WorldWideScience

Sample records for abscisic acid-induced enhancement

  1. Involvement of Polyamine Oxidase in Abscisic Acid induced Cytosolic Antioxidant Defense in Leaves of Maize

    Institute of Scientific and Technical Information of China (English)

    Beibei Xue; Aying Zhang; Mingyi Jiang

    2009-01-01

    Using pharmacological and biochemical approaches, the role of maize polyamine oxidase (MPAO) in abscisic acid (ABA)induced antioxidant defense in leaves of maize (Zea mays L.) plants was investigated. Exogenous ABA treatment enhanced the expression of the MPAO gene and the activities of apoplastic MPAO. Pretreatment with two different inhibitors for apoplastic MPAO partly reduced hydrogen peroxide (H2O2) accumulation induced by ABA and blocked the ABA-induced expression of the antioxidant genes superoxide dismutase 4 and cytosolic ascorbate peroxidase and the activities of the cytosolic antioxidant enzymes. Treatment with spermidine, the optimum substrate of MPAO, also induced the expression and the activities of the antioxidant enzymes, and the upregulation of the antioxidant enzymes was prevented by two inhibitors of MPAO and two scavengers of H2O2. These results suggest that MPAO contributes to ABA-induced cytosolic antioxidant defense through H2O2, a Spd catabolic product.

  2. Abscisic acid induces ectopic outgrowth in epidermal cells through cortical microtubule reorganization in Arabidopsis thaliana

    Science.gov (United States)

    Takatani, Shogo; Hirayama, Takashi; Hashimoto, Takashi; Takahashi, Taku; Motose, Hiroyasu

    2015-01-01

    Abscisic acid (ABA) regulates seed maturation, germination and various stress responses in plants. The roles of ABA in cellular growth and morphogenesis, however, remain to be explored. Here, we report that ABA induces the ectopic outgrowth of epidermal cells in Arabidopsis thaliana. Seedlings of A. thaliana germinated and grown in the presence of ABA developed ectopic protrusions in the epidermal cells of hypocotyls, petioles and cotyledons. One protrusion was formed in the middle of each epidermal cell. In the hypocotyl epidermis, two types of cell files are arranged alternately into non-stoma cell files and stoma cell files, ectopic protrusions being restricted to the non-stoma cell files. This suggests the presence of a difference in the degree of sensitivity to ABA or in the capacity of cells to form protrusions between the two cell files. The ectopic outgrowth was suppressed in ABA insensitive mutants, whereas it was enhanced in ABA hypersensitive mutants. Interestingly, ABA-induced ectopic outgrowth was also suppressed in mutants in which microtubule organization was compromised. Furthermore, cortical microtubules were disorganized and depolymerized by the ABA treatment. These results suggest that ABA signaling induces ectopic outgrowth in epidermal cells through microtubule reorganization. PMID:26068445

  3. Nucleotide sequence and spatial expression pattern of a drought- and abscisic Acid-induced gene of tomato.

    Science.gov (United States)

    Plant, A L; Cohen, A; Moses, M S; Bray, E A

    1991-11-01

    The nucleotide sequence of le16, a tomato (Lycopersicon esculentum Mill.) gene induced by drought stress and regulated by abscisic acid specifically in aerial vegetative tissue, is presented. The single open reading frame contained within the gene has the capacity to encode a polypeptide of 12.7 kilodaltons and is interrupted by a small intron. The predicted polypeptide is rich in leucine, glycine, and alanine and has an isoelectric point of 8.7. The amino terminus is hydrophobic and characteristic of signal sequences that target polypeptides for export from the cytoplasm. There is homology (47.2% identity) between the amino terminus of the LE 16 polypeptide and the corresponding amino terminal domain of the maize phospholipid transfer protein. le16 was expressed in drought-stressed leaf, petiole, and stem tissue and to a much lower extent in the pericarp of mature green tomato fruit and developing seeds. No expression was detected in the pericarp of red fruit or in drought-stressed roots. Expression of le16 was also induced in leaf tissue by a variety of other abiotic stresses including polyethylene glycol-mediated water deficit, salinity, cold stress, and heat stress. None of these stresses or direct applications of abscisic acid induced the expression of le16 in the roots of the same plants. The unique expression characteristics of this gene indicates that novel regulatory mechanisms, in addition to endogenous abscisic acid, are involved in controlling gene expression.

  4. Abscisic Acid Induces Rapid Reductions in Mesophyll Conductance to Carbon Dioxide.

    Directory of Open Access Journals (Sweden)

    Giuseppe Sorrentino

    Full Text Available The rate of photosynthesis (A of plants exposed to water deficit is a function of stomatal (gs and mesophyll (gm conductance determining the availability of CO2 at the site of carboxylation within the chloroplast. Mesophyll conductance often represents the greatest impediment to photosynthetic uptake of CO2, and a crucial determinant of the photosynthetic effects of drought. Abscisic acid (ABA plays a fundamental role in signalling and co-ordination of plant responses to drought; however, the effect of ABA on gm is not well-defined. Rose, cherry, olive and poplar were exposed to exogenous ABA and their leaf gas exchange parameters recorded over a four hour period. Application with ABA induced reductions in values of A, gs and gm in all four species. Reduced gm occurred within one hour of ABA treatment in three of the four analysed species; indicating that the effect of ABA on gm occurs on a shorter timescale than previously considered. These declines in gm values associated with ABA were not the result of physical changes in leaf properties due to altered turgor affecting movement of CO2, or caused by a reduction in the sub-stomatal concentration of CO2 (Ci. Increased [ABA] likely induces biochemical changes in the properties of the interface between the sub-stomatal air-space and mesophyll layer through the actions of cooporins to regulate the transport of CO2. The results of this study provide further evidence that gm is highly responsive to fluctuations in the external environment, and stress signals such as ABA induce co-ordinated modifications of both gs and gm in the regulation of photosynthesis.

  5. Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases.

    OpenAIRE

    Anderberg, R J; Walker-Simmons, M K

    1992-01-01

    Increases in the plant hormone abscisic acid (ABA) initiate water-stress responses in plants. We present evidence that a transcript with homology to protein kinases is induced by ABA and dehydration in wheat. A 1.2-kilobase cDNA clone (PKABA1) was isolated from an ABA-treated wheat embryo cDNA library by screening the library with a probe developed by polymerase chain reaction amplification of serine/threonine protein kinase subdomains VIb to VIII. The deduced amino acid sequence of the PKABA...

  6. Abscisic acid induces biosynthesis of bisbibenzyls and tolerance to UV-C in the liverwort Marchantia polymorpha.

    Science.gov (United States)

    Kageyama, Akito; Ishizaki, Kimitsune; Kohchi, Takayuki; Matsuura, Hideyuki; Takahashi, Kosaku

    2015-09-01

    Environmental stresses are effective triggers for the biosynthesis of various secondary metabolites in plants, and phytohormones such as jasmonic acid and abscisic acid are known to mediate such responses in flowering plants. However, the detailed mechanism underlying the regulation of secondary metabolism in bryophytes remains unclear. In this study, the induction mechanism of secondary metabolites in the model liverwort Marchantia polymorpha was investigated. Abscisic acid (ABA) and ultraviolet irradiation (UV-C) were found to induce the biosynthesis of isoriccardin C, marchantin C, and riccardin F, which are categorized as bisbibenzyls, characteristic metabolites of liverworts. UV-C led to the significant accumulation of ABA. Overexpression of MpABI1, which encodes protein phosphatase 2C (PP2C) as a negative regulator of ABA signaling, suppressed accumulation of bisbibenzyls in response to ABA and UV-C irradiation and conferred susceptibility to UV-C irradiation. These data show that ABA plays a significant role in the induction of bisbibenzyl biosynthesis, which might confer tolerance against UV-C irradiation in M. polymorpha.

  7. The role of zeatin and gibberellic acid in breaking of the abscisic acid-induced dormancy in Triticale caryopses

    Directory of Open Access Journals (Sweden)

    Stanisław Weidner

    2014-01-01

    Full Text Available The investigations were conducted on the germinating embryos and the whole caryopses of Triticale. During preimbibition and 24 hours germination caryopses were treated with abscisic acid (ABA, which produced 63% inhibition of embryo growth. Gibberellin-A3 (GA3 reversed the ABA effect in 18%, while zeatin in 22%. The clear synergic reaction was observed (36% when both stimulators acted together. There was no significant effect of ABA, ABA and GA3, as well as ABA and zeatin on the synthesis of polyribosomal RNA in the initial period of germination of excised embryos. However, during 24 hours germination of whole caryopses ABA caused a twofold decrease in 3H-uridine incorporation into the total fraction of embryonic ribosomes. While the incorporation of 14C-aminoacid mixture into ribosomal proteins was even three-fold lower. Effect of GA3 and zeatin on breaking of the ABA-induced "dormancy" was studied. It was confirmed that the higher polyribosome contribution to the sum total of ribosomes the more intensive synthesis of ribosomal proteins. No higher 3H-uridine incorporation into polyribosomal fraction was observed. From the results it may be inferred that in the initial period of germination of Triticale caryopses regulation of protein biosynthesis occurs rather at the translation than transcription level.

  8. The parasitic plant Cuscuta australis is highly insensitive to abscisic acid-induced suppression of hypocotyl elongation and seed germination.

    Directory of Open Access Journals (Sweden)

    Juan Li

    Full Text Available Around 1% of angiosperms are parasitic plants. Their growth and development solely or partly depend on host plants from which they extract water, nutrients, and other molecules using a parasitic plant-specific organ, the haustorium. Strong depletion of nutrients can result in serious growth retardation and in some cases, death of the hosts. The genus Cuscuta (dodder comprises about 200 holoparasitic species occurring on all continents. Their seedlings have no roots and cotyledons but are only string-like hypocotyls. When they contact suitable host plants, haustoria are formed and thereafter seedlings rapidly develop into vigorously growing branches without roots and leaves. This highly specialized lifestyle suggests that Cuscuta plants likely have unique physiology in development and stress responses. Using germination and seedling growth assays, we show that C. australis seeds and seedlings are highly insensitive to abscisic acid (ABA. Transcriptome analysis and protein sequence alignment with Arabidopsis, tomato, and rice homologs revealed that C. australis most likely consists of only four functional ABA receptors. Given that Cuscuta plants are no longer severely challenged by drought stress, we hypothesize that the ABA-mediated drought resistance pathway in Cuscuta spp. might have had degenerated over time during evolution.

  9. Abscisic acid-induced rearrangement of intracellular structures associated with freezing and desiccation stress tolerance in the liverwort Marchantia polymorpha.

    Science.gov (United States)

    Akter, Khaleda; Kato, Masahiro; Sato, Yuki; Kaneko, Yasuko; Takezawa, Daisuke

    2014-09-15

    The plant growth regulator abscisic acid (ABA) is known to be involved in triggering responses to various environmental stresses such as freezing and desiccation in angiosperms, but little is known about its role in basal land plants, especially in liverworts, representing the earliest land plant lineage. We show here that survival rate after freezing and desiccation of Marchantia polymorpha gemmalings was increased by pretreatment with ABA in the presence of increasing concentrations of sucrose. ABA treatment increased accumulation of soluble sugars in gemmalings, and sugar accumulation was further increased by addition of sucrose to the culture medium. ABA treatment of gemmalings also induced accumulation of transcripts for proteins with similarity to late embryogenesis abundant (LEA) proteins, which accumulate in association with acquisition of desiccation tolerance in maturing seeds. Observation by light and electron microscopy indicated that the ABA treatment caused fragmentation of vacuoles with increased cytosolic volume, which was more prominent in the presence of a high concentration of external sucrose. ABA treatment also increased the density of chloroplast distribution and remarkably enlarged their volume. These results demonstrate that ABA induces drastic physiological changes in liverwort cells for stress tolerance, accompanied by accumulation of protectants against dehydration and rearrangement and morphological alterations of cellular organelles. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. Hardening with salicylic acid induces concentration-dependent changes in abscisic acid biosynthesis of tomato under salt stress.

    Science.gov (United States)

    Horváth, Edit; Csiszár, Jolán; Gallé, Ágnes; Poór, Péter; Szepesi, Ágnes; Tari, Irma

    2015-07-01

    The role of salicylic acid (SA) in the control of abscisic acid (ABA) biosynthesis is controversial although both plant growth regulators may accumulate in tissues under abiotic and biotic stress conditions. Hardening of tomato plants to salinity stress with 10(-4)M SA ("high SA") resulted in an up-regulation of ABA biosynthesis genes, zeaxanthin epoxidase (SlZEP1), 9-cis-epoxycarotenoid dioxygenase (SlNCED1) and aldehyde oxidases (SlAO1 and SlAO2) in the roots and led to ABA accumulation both in root and leaf tissues. In plants pre-treated with lower concentration of SA (10(-7)M, "low SA"), the up-regulation of SlNCED1 in the roots promoted ABA accumulation in the root tissues but the hormone concentration remained at control level in the leaves. Salt stress induced by 100mM NaCl reduced the transcript abundance of ABA biosynthetic genes and inhibited SlAO activity in plants hardened with "high SA", but the tissues maintained root ABA level over the untreated control. The combined effect of "high SA" and ABA under salt stress led to partially recovered photosynthetic activity, reduced ethylene production in root apices, and restored root growth, which is one of the main features of salt tolerance. Unlike "high SA", hardening with "low SA" had no influence on ethylene production, and led to reduced elongation of roots in plants exposed to 100mM NaCl. The up-regulation of carotenoid cleavage dioxygenases SlCCD1A and SlCCD1B by SA, which produce apocarotenoids, may open new pathways in SA sensing and signalling processes.

  11. Abscisic acid enhances resistance to Alternaria solani in tomato seedlings.

    Science.gov (United States)

    Song, Weiwei; Ma, Xinrong; Tan, Hong; Zhou, Jinyan

    2011-07-01

    The plant hormone abscisic acid (ABA) is an important regulator in many aspects of plant growth and development, as well as stress resistance. Here, we investigated the effects of exogenous ABA application on the interaction between tomato (Solanum lycopersicon L.) and Alternaria solani (early blight). Foliar spraying of 7.58 μM ABA was effective in reducing disease severity in tomato plants. Previously, increased activities of phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO) and peroxidase (POD) were observed in exogenous ABA-treated tomato leaves. Moreover, these enzyme activities were maintained at higher levels in ABA-pretreated and A. solani challenged tomato plants. Tomato defense genes, such as PR1, β-1, 3-glucanase (GLU), PPO, POD, and superoxide dismutase (SOD), were rapidly and significantly up-regulated by exogenous ABA treatment. Furthermore, a subsequent challenge of ABA-pretreated plants with the pathogen A. solani resulted in higher expression of defense genes, compared to water-treated or A. solani inoculated plants. Therefore, our results suggest that exogenous ABA could enhance disease resistance against A. solani infection in tomato through the activation of defense genes and via the enhancement of defense-related enzymatic activities.

  12. Abscisic acid induced changes in production of primary and secondary metabolites, photosynthetic capacity, antioxidant capability, antioxidant enzymes and lipoxygenase inhibitory activity of Orthosiphon stamineus Benth.

    Science.gov (United States)

    Ibrahim, Mohd Hafiz; Jaafar, Hawa Z E

    2013-07-05

    An experiment was conducted to investigate and distinguish the relationships in the production of total phenolics, total flavonoids, soluble sugars, H2O2, O2-, phenylalanine ammonia lyase (PAL) activity, leaf gas exchange, antioxidant activity, antioxidant enzyme activity [ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD) and Lipoxygenase inhibitory activity (LOX)] under four levels of foliar abscisic acid (ABA) application (0, 2, 4, 6 µM) for 15 weeks in Orthosiphon stamineus Benth. It was found that the production of plant secondary metabolites, soluble sugars, antioxidant activity, PAL activity and LOX inhibitory activity was influenced by foliar application of ABA. As the concentration of ABA was increased from 0 to 6 µM the production of total phenolics, flavonoids, sucrose, H2O2, O2-, PAL activity and LOX inhibitory activity was enhanced. It was also observed that the antioxidant capabilities (DPPH and ORAC) were increased. This was followed by increases in production of antioxidant enzymes APX, CAT and SOD. Under high application rates of ABA the net photosynthesis and stomatal conductance was found to be reduced. The production of primary and secondary metabolites displayed a significant positive relationship with H2O2 (total phenolics, r2 = 0.877; total flavonoids, r2 = 0.812; p ≤ 0.05) and O2- (total phenolics, r2 = 0.778; total flavonoids, r2 = 0.912; p ≤ 0.05). This indicated that increased oxidative stress at high application rates of ABA, improved the production of phytochemicals.

  13. Abscisic Acid Induced Changes in Production of Primary and Secondary Metabolites, Photosynthetic Capacity, Antioxidant Capability, Antioxidant Enzymes and Lipoxygenase Inhibitory Activity of Orthosiphon stamineus Benth.

    Directory of Open Access Journals (Sweden)

    Mohd Hafiz Ibrahim

    2013-07-01

    Full Text Available An experiment was conducted to investigate and distinguish the relationships in the production of total phenolics, total flavonoids, soluble sugars, H2O2, O2−, phenylalanine ammonia lyase (PAL activity, leaf gas exchange, antioxidant activity, antioxidant enzyme activity [ascorbate peroxidase (APX, catalase (CAT, superoxide dismutase (SOD and Lipoxygenase inhibitory activity (LOX] under four levels of foliar abscisic acid (ABA application (0, 2, 4, 6 µM for 15 weeks in Orthosiphon stamineus Benth. It was found that the production of plant secondary metabolites, soluble sugars, antioxidant activity, PAL activity and LOX inhibitory activity was influenced by foliar application of ABA. As the concentration of ABA was increased from 0 to 6 µM the production of total phenolics, flavonoids, sucrose, H2O2, O2−, PAL activity and LOX inhibitory activity was enhanced. It was also observed that the antioxidant capabilities (DPPH and ORAC were increased. This was followed by increases in production of antioxidant enzymes APX, CAT and SOD. Under high application rates of ABA the net photosynthesis and stomatal conductance was found to be reduced. The production of primary and secondary metabolites displayed a significant positive relationship with H2O2 (total phenolics, r2 = 0.877; total flavonoids, r2 = 0.812; p ≤ 0.05 and O2− (total phenolics, r2 = 0.778; total flavonoids, r2 = 0.912; p ≤ 0.05. This indicated that increased oxidative stress at high application rates of ABA, improved the production of phytochemicals.

  14. Effects of exogenous plant growth regulator abscisic acid-induced resistance in rice on the expression of vitellogenin mRNA in Nilaparvata lugens (Hemiptera: Delphacidae) adult females.

    Science.gov (United States)

    Liu, Jing-Lan; Chen, Xiao; Zhang, Hong-Mei; Yang, Xia; Wong, Andrew

    2014-01-01

    Recent study showed that exogenous abscisic acid (ABA) acts as a regulator of plant resistance. This study investigated average injury scale and callose contents of rice, and vitellogenin (Nlvg) mRNA expression in Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) adult females after third instar nymphs fed on exogenous ABA-treated susceptible [Taichung Native one (TN1)] and moderately resistant (IR42) rice cultivars. The results showed that exogenous ABA significantly decreased average injury scale of rice and Nlvg mRNA expression in N. lugens adults compared with the control (without ABA spraying). Nlvg mRNA expression in N. lugens adults decreased significantly after third instar nymphs fed on ABA-treated (5, 20, and 40 mg/liter) TN1 for 1 and 2 d, and for IR42, after fed on ABA-treated (20 and 40 mg/liter) rice plants for 1 d and after fed on ABA-treated (5, 20, and 40 mg/liter) rice for 2 d decreased significantly. The callose contents showed no significant change for TN1, while for IR42, significantly increased in roots and sheathes after N. lugens infestation under ABA treatments (20 and 40 mg/liter) compared with the control. The decrease of Nlvg mRNA expression may be partially attributed to the increase of callose content of plants. The results provide a profile for concerning the effects of ABA-induced rice plants' defenses on phloem-feeding insects.

  15. The C2H2-type Zinc Finger Protein ZFP182 is Involved in Abscisic Acid-Induced Antioxidant Defense in Rice

    Institute of Scientific and Technical Information of China (English)

    Hong Zhang; Lan Ni; Yanpei Liu; Yunfei Wang; Aying Zhang; Mingpu Tan; Mingyi Jiang

    2012-01-01

    C2H2-type zinc finger proteins (ZFPs) are thought to play important roles in modulating the responses of plants to drought,salinity and oxidative stress.However,direct evidence is lacking for the involvement of these ZFPs in abscisic acid (ABA)-induced antioxidant defense in plants.In this study,the role of the rice (Oryza sativa L.sub.japonica cv.Nipponbare) C2H2-type ZFP ZFP182 in ABA-induced antioxidant defense and the relationship between ZFP182 and two rice MAPKs,OsMPK1 and OsMPK5 in ABA signaling were investigated.ABA treatment induced the increases in the expression of ZFP182,OsMPK1 and OsMPK5,and the activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in rice leaves.The transient gene expression analysis and the transient RNA interference (RNAi) analysis in protoplasts showed that ZFP182,OsMPK1 and OsMPK5 are involved in ABA-induced up-regulation in the activities of SOD and APX.Besides,OsMPK1 and OsMPK5 were shown to be required for the up-regulation in the expression of ZFP182 in ABA signaling,but ZFP182 did not mediate the ABA-induced up-regulation in the expression of OsMPK1 and OsMPK5.These results indicate that ZFP182 is required for ABA-induced antioxidant defense and the expression of ZFP182 is regulated by rice MAPKs in ABA signaling.

  16. Folic acid induces salicylic acid-dependent immunity in Arabidopsis and enhances susceptibility to Alternaria brassicicola.

    Science.gov (United States)

    Wittek, Finni; Kanawati, Basem; Wenig, Marion; Hoffmann, Thomas; Franz-Oberdorf, Katrin; Schwab, Wilfried; Schmitt-Kopplin, Philippe; Vlot, A Corina

    2015-08-01

    Folates are essential for one-carbon transfer reactions in all organisms and contribute, for example, to de novo DNA synthesis. Here, we detected the folate precursors 7,8-dihydropteroate (DHP) and 4-amino-4-deoxychorismate (ADC) in extracts from Arabidopsis thaliana plants by Fourier transform ion cyclotron resonance-mass spectrometry. The accumulation of DHP, but not ADC, was induced after infection of plants with Pseudomonas syringae delivering the effector protein AvrRpm1. Application of folic acid or the DHP precursor 7,8-dihydroneopterin (DHN) enhanced resistance in Arabidopsis to P. syringae and elevated the transcript accumulation of the salicylic acid (SA) marker gene pathogenesis-related1 in both the treated and systemic untreated leaves. DHN- and folic acid-induced systemic resistance was dependent on SA biosynthesis and signalling. Similar to SA, folic acid application locally enhanced Arabidopsis susceptibility to the necrotrophic fungus Alternaria brassicicola. Together, the data associate the folic acid pathway with innate immunity in Arabidopsis, simultaneously activating local and systemic SA-dependent resistance to P. syringae and suppressing local resistance to A. brassicicola.

  17. Production of Polyamines Is Enhanced by Endogenous Abscisic Acid in Maize Seedlings Subjected to Salt Stress

    Institute of Scientific and Technical Information of China (English)

    Jun LIU; Ming-Yi JIANG; Yi-Feng ZHOU; You-Liang LIU

    2005-01-01

    It is known that salt stress and exogenously applied abscisic acid (ABA) can enhance the polyamine content in plants and that salt stress itself can lead to an increase in endogenous ABA production.In the present study, the relationships between salt-induced ABA and polyamine accumulation were investigated using ABA-deficient mutant (vp5/vp5) maize (Zea mays L.) seedlings and ABA and polyamine :biosynthesis inhibitors. The results show that reduced endogenous ABA levels, as a result of either the mutation or by using a chemical inhibitor (sodium tungstate), also reduced the accumulation of polyamines in salt-stressed leaves of maize seedlings. The polyamine synthesis inhibitors D-arginine and αdifluoromethylornithine also reduced the polyamine content of the leaves of maize seedling under salt stress. Both ABA and polyamine enhanced the dry weight accumulation of salt-stressed seedlings and also increased the activities of the two dominant tonoplast membrane enzymes, H+-ATPase and H+-PPase, when plants were under salt stress. The results suggest that salt stress induces an increase in endogenous ABA levels, which then enhances polyamine synthesis. Such responses may increase a plant's tolerance to salt.

  18. Enhancing tolerance of rice (Oryza sativa) to simulated acid rain by exogenous abscisic acid.

    Science.gov (United States)

    Wu, Xi; Liang, Chanjuan

    2016-12-16

    Abscisic acid (ABA) regulates much important plant physiological and biochemical processes and induces tolerance to different stresses. Here, we studied the regulation of exogenous ABA on adaptation of rice seedlings to simulated acid rain (SAR) stress by measuring biomass dry weight, stomatal conductance, net photosynthesis rate, nutrient elements, and endogenous hormones. The application of 10 μM ABA alleviated the SAR-induced inhibition on growth, stomatal conductance, net photosynthesis rate, and decreases in contents of nutrient (K, Mg, N, and P) and hormone (auxin, gibberellins, and zeatin). Moreover, 10 μM ABA could stimulate the Ca content as signaling molecules under SAR stress. Contrarily, the application of 100 μM ABA aggravated the SAR-induced inhibition on growth, stomatal conductance, net photosynthesis rate, and contents of nutrient and hormone. The results got after a 5-day recovery (without SAR) show that exogenous 10 μM ABA can promote self-restoration process in rice whereas 100 μM ABA hindered the restoration by increasing deficiency of nutrients and disturbing the balance of hormones. These results confirmed that exogenous ABA at proper concentration could enhance the tolerance of rice to SAR stress.

  19. Homologous Recombination Defective Arabidopsis Mutants Exhibit Enhanced Sensitivity to Abscisic Acid

    Science.gov (United States)

    Roy, Sujit; Das, Kali Pada

    2017-01-01

    Abscisic acid (ABA) acts as an important plant hormone in regulating various aspects of plant growth and developmental processes particularly under abiotic stress conditions. An increased ABA level in plant cells inhibits DNA replication and cell division, causing plant growth retardation. In this study, we have investigated the effects of ABA on the growth responses of some major loss-of-function mutants of DNA double-stand break (DSB) repair genes in Arabidopsis during seed germination and early stages of seedling growth for understanding the role of ABA in the induction of genome instability in plants. A comparative analysis of ABA sensitivity of wild-type Arabidopsis and the knockout mutant lines related to DSB sensors, including atatm, atatr, the non-homologous end joining (NHEJ) pathway genes, and mutants related to homologous recombination (HR) pathway genes showed relatively enhanced sensitivity of atatr and HR-related mutants to ABA treatment. The expression levels of HR-related genes were increased in wild-type Arabidopsis (Col-0) during seed germination and early stages of seedling growth. Immunoblotting experiments detected phosphorylation of histone H2AX in wild-type (Col-0) and DSB repair gene mutants after ABA treatment, indicating the activation of DNA damage response due to ABA treatment. Analyses of DSB repair kinetics using comet assay under neutral condition have revealed comparatively slower DSB repair activity in HR mutants. Overall, our results have provided comprehensive information on the possible effect of ABA on DNA repair machinery in plants and also indicated potential functional involvement of HR pathway in repairing ABA induced DNA damage in Arabidopsis. PMID:28046013

  20. Enhanced determination of abscisic acid (ABA) and abscisic acid glucose ester (ABA-GE) in Cistus albidus plants by liquid chromatography-mass spectrometry in tandem mode.

    Science.gov (United States)

    López-Carbonell, Marta; Gabasa, Marta; Jáuregui, Olga

    2009-04-01

    An improved, quick and simple method for the extraction and quantification of the phytohormones (+)-abscisic acid (ABA) and its major glucose conjugate, abscisic acid glucose ester (ABA-GE) in plant samples is described. The method includes the addition of deuterium-labeled internal standards to the leaves at the beginning of the extraction for quantification, a simple extraction/centrifugation process and the injection into the liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS-MS) system in multiple reaction monitoring mode (MRM). Quality parameters of the method (detection limits, repeatability, reproducibility and linearity) have been studied. The objective of this work is to show the applicability of this method for quantifying the endogenous content of both ABA and ABA-GE in Cistus albidus plants that have been grown during an annual cycle under Mediterranean field conditions. Leaf samples from winter plants have low levels of ABA which increase in spring and summer showing two peaks that corresponded to April and August. These increases are coincident with the high temperature and solar radiation and the low RWC and RH registered along the year. On the other hand, the endogenous levels of ABA-GE increase until maximum values in July just before the ABA content reaches its highest concentration, decreasing in August and during autumn and winter. Our results suggest that the method is useful for quantifying both compounds in this plant material and represents the advantage of a short-time sample preparation with a high accuracy and viability.

  1. Valproic acid induces cutaneous wound healing in vivo and enhances keratinocyte motility.

    Directory of Open Access Journals (Sweden)

    Soung-Hoon Lee

    Full Text Available BACKGROUND: Cutaneous wound healing is a complex process involving several signaling pathways such as the Wnt and extracellular signal-regulated kinase (ERK signaling pathways. Valproic acid (VPA is a commonly used antiepileptic drug that acts on these signaling pathways; however, the effect of VPA on cutaneous wound healing is unknown. METHODS AND FINDINGS: We created full-thickness wounds on the backs of C3H mice and then applied VPA. After 7 d, we observed marked healing and reduced wound size in VPA-treated mice. In the neo-epidermis of the wounds, β-catenin and markers for keratinocyte terminal differentiation were increased after VPA treatment. In addition, α-smooth muscle actin (α-SMA, collagen I and collagen III in the wounds were significantly increased. VPA induced proliferation and suppressed apoptosis of cells in the wounds, as determined by Ki67 and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL staining analyses, respectively. In vitro, VPA enhanced the motility of HaCaT keratinocytes by activating Wnt/β-catenin, ERK and phosphatidylinositol 3-kinase (PI3-kinase/Akt signaling pathways. CONCLUSIONS: VPA enhances cutaneous wound healing in a murine model and induces migration of HaCaT keratinocytes.

  2. Potassium channel currents in intact stomatal guard cells: rapid enhancement by abscisic acid.

    Science.gov (United States)

    Blatt, M R

    1990-02-01

    Evidence of a role for abscisic acid (ABA) in signalling conditions of water stress and promoting stomatal closure is convincing, but past studies have left few clues as to its molecular mechanism(s) of action; arguments centred on changes in H(+)-pump activity and membrane potential, especially, remain ambiguous without the fundamental support of a rigorous electrophysiological analysis. The present study explores the response to ABA of K(+) channels at the membrane of intact guard cells of Vicia faba L. Membrane potentials were recorded before and during exposures to ABA, and whole-cell currents were measured at intervals throughout to quantitate the steady-state and time-dependent characteristics of the K(+) channels. On adding 10 μM ABA in the presence of 0.1, 3 or 10 mM extracellular K(+), the free-running membrane potential (V m) shifted negative-going (-)4-7 mV in the first 5 min of exposure, with no consistent effect thereafter. Voltage-clamp measurements, however, revealed that the K(+)-channel current rose to between 1.84- and 3.41-fold of the controls in the steady-state with a mean halftime of 1.1 ± 0.1 min. Comparable changes in current return via the leak were also evident and accounted for the minimal response in V m. Calculated at V m, the K(+) currents translated to an average 2.65-fold rise in K(+) efflux with ABA. Abscisic acid was not observed to alter either K(+)-current activation or deactivation.These results are consistent with an ABA-evoked mobilization of K(+) channels or channel conductance, rather than a direct effect of the phytohormone on K(+)-channel gating. The data discount notions that large swings in membrane voltage are a prerequisite to controlling guard-cell K(+) flux. Instead, thev highlight a rise in membrane capacity for K(+) flux, dependent on concerted modulations of K(+)-channel and leak currents, and sufficiently rapid to account generally for the onset of K(+) loss from guard cells and stomatal closure in ABA.

  3. Overexpression of AtABCG25 enhances the abscisic acid signal in guard cells and improves plant water use efficiency.

    Science.gov (United States)

    Kuromori, Takashi; Fujita, Miki; Urano, Kaoru; Tanabata, Takanari; Sugimoto, Eriko; Shinozaki, Kazuo

    2016-10-01

    In addition to improving drought tolerance, improvement of water use efficiency is a major challenge in plant physiology. Due to their trade-off relationships, it is generally considered that achieving stress tolerance is incompatible with maintaining stable growth. Abscisic acid (ABA) is a key phytohormone that regulates the balance between intrinsic growth and environmental responses. Previously, we identified AtABCG25 as a cell-membrane ABA transporter that export ABA from the inside to the outside of cells. AtABCG25-overexpressing plants showed a lower transpiration phenotype without any growth retardation. Here, we dissected this useful trait using precise phenotyping approaches. AtABCG25 overexpression stimulated a local ABA response in guard cells. Furthermore, AtABCG25 overexpression enhanced drought tolerance, probably resulting from maintenance of water contents over the common threshold for survival after drought stress treatment. Finally, we observed enhanced water use efficiency by overexpression of AtABCG25, in addition to drought tolerance. These results were consistent with the function of AtABCG25 as an ABA efflux transporter. This unique trait may be generally useful for improving the water use efficiency and drought tolerance of plants.

  4. Accumulation of eicosapolyenoic acids enhances sensitivity to abscisic acid and mitigates the effects of drought in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Yuan, Xiaowei; Li, Yaxiao; Liu, Shiyang; Xia, Fei; Li, Xinzheng; Qi, Baoxiu

    2014-04-01

    IgASE1, a C₁₈ Δ(9)-specific polyunsaturated fatty acid elongase from the marine microalga Isochrysis galbana, is able to convert linoleic acid and α-linolenic acid to eicosadienoic acid and eicosatrienoic acid in Arabidopsis. Eicosadienoic acid and eicosatrienoic acid are precursors of arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, which are synthesized via the Δ(8) desaturation biosynthetic pathways. This study shows that the IgASE1-expressing transgenic Arabidopsis exhibited altered morphology (decreased leaf area and biomass) and enhanced drought resistance compared to wild-type plants. The transgenic Arabidopsis were hypersensitive to abscisic acid (ABA) during seed germination, post-germination growth, and seedling development. They had elevated leaf ABA levels under well-watered and dehydrated conditions and their stomata were more sensitive to ABA. Exogenous application of eicosadienoic acid and eicosatrienoic acid can mimic ABA and drought responses in the wild type plants, similar to that found in the transgenic ones. The transcript levels of genes involved in the biosynthesis of ABA (NCED3, ABA1, AAO3) as well as other stress-related genes were upregulated in this transgenic line upon osmotic stress (300 mM mannitol). Taken together, these results indicate that these two eicosapolyenoic acids or their derived metabolites can mitigate the effects of drought in transgenic Arabidopsis, at least in part, through the action of ABA.

  5. Abscisic Acid-Induced H2O2 Accumulation Enhances Antioxidant Capacity in Pumpkin-Grafted Cucumber Leaves under Ca(NO3)2 Stress

    Science.gov (United States)

    Shu, Sheng; Gao, Pan; Li, Lin; Yuan, Yinghui; Sun, Jin; Guo, Shirong

    2016-01-01

    With the aim to clarifying the role of the ABA/H2O2 signaling cascade in the regulating the antioxidant capacity of grafted cucumber plants in response to Ca(NO3)2 stress, we investigated the relationship between ABA-mediated H2O2 production and the activities of antioxidant enzymes in the leaves of pumpkin-grafted cucumber seedlings. The results showed that both ABA and H2O2 were detected in pumpkin-grafted cucumber seedlings in response to Ca(NO3)2 treatment within 0.5 h in the leaves and peaked at 3 and 6 h after Ca(NO3)2 treatment, respectively, compared to the levels under control conditions. The activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and peroxidase (POD) in pumpkin-grafted cucumber leaves gradually increased over time and peaked at 12 h of Ca(NO3)2 stress. Furthermore, in the leaves of pumpkin-grafted cucumber seedlings, the H2O2 generation, the antioxidant enzyme activities and the expression of SOD, POD and cAPX were strongly blocked by an inhibitor of ABA under Ca(NO3)2 stress, but this effect was eliminated by the addition of exogenous ABA. Moreover, the activities and gene expressions of these antioxidant enzymes in pumpkin-grafted leaves were almost inhibited under Ca(NO3)2 stress by pretreatment with ROS scavengers. These results suggest that the pumpkin grafting-induced ABA accumulation mediated H2O2 generation, resulting in the induction of antioxidant defense systems in leaves exposed to Ca(NO3)2 stress in the ABA/H2O2 signaling pathway. PMID:27746808

  6. EFFECT OF EXOGENOUS ABSCISIC ACID ON GROWTH AND BIOCHEMICAL CHANGES IN THE HALOPHYTE SUAEDA MARITIMA

    Directory of Open Access Journals (Sweden)

    Anbarasi G.

    2015-04-01

    Full Text Available Different types of phytohormones are being extensively used to alleviate the adverse effect of salinity stress on plant growth. Among those, Abscisic acid (ABA is a plant stress hormone and one of the most important signaling molecules in plants. Drought and salinity activate De-novo abscisic acid synthesis prevent further water loss by evaporation through stomata, mediated by changes in the guard cell turgor pressure. Under osmotic stress abscisic acid induce the accumulation of protein involved in the biosynthesis of osmolites which increasing the stress tolerance of plant. In addition, exogenous application of ABA enhances the tolerance of plants or plant cells to cold, heat, drought, anoxia and heavy metal stresses. This study was carried out to study the exogenous abscisic (ABA acid induced regulatory role on the growth, water content, protein content, chlorophyll content, osmolyte accumulation and protein profiling through SDS PAGE in a halophyte, Suaeda maritima. The osmolyte accumulation of proline and glycine betaine was found to be more in 50 µM ABA concentrations. The protein profiling through SDS PAGE revealed that ̴ 66KDa proteins was not expressed in the control plant and in 10μM ABA treated plants. Interestingly, the ABA treatment induced a new protein of 14.2KDa in 10μM concentration. The ABA treated plants with concentrations 50μM, 100μM and 150μM showed changes in the expression of protein in abundance than the control and 10μM ABA treated plants. The findings in this study indicate that among all the concentrations, 50μM ABA concentration treated plants exhibited higher growth rate.

  7. Possible protective role of pregnenolone-16 alpha-carbonitrile in lithocholic acid-induced hepatotoxicity through enhanced hepatic lipogenesis.

    Science.gov (United States)

    Miyata, Masaaki; Nomoto, Masahiro; Sotodate, Fumiaki; Mizuki, Tomohiro; Hori, Wataru; Nagayasu, Miho; Yokokawa, Shinya; Ninomiya, Shin-ichi; Yamazoe, Yasushi

    2010-06-25

    Lithocholic acid (LCA) feeding causes both liver parenchymal and cholestatic damages in experimental animals. Although pregnenolone-16 alpha-carbonitrile (PCN)-mediated protection against LCA-induced hepatocyte injury may be explained by induction of drug metabolizing enzymes, the protection from the delayed cholestasis remains incompletely understood. Thus, the PCN-mediated protective mechanism has been studied from the point of modification of lipid metabolism. At an early stage of LCA feeding, an imbalance of biliary bile acid and phospholipid excretion was observed. Co-treatment with PCN reversed the increase in serum alanine aminotransferase (ALT) as well as alkaline phosphatase (ALP) activities and hepatic hydrophobic bile acid levels. LCA feeding decreased hepatic mRNA levels of several fatty acid- and phospholipid-related genes before elevation of serum ALT and ALP activities. On the other hand, PCN co-treatment reversed the decrease in the mRNA levels and hepatic levels of phospholipids, triglycerides and free fatty acids. PCN co-treatment also reversed the decrease in biliary phospholipid output in LCA-fed mice. Treatment with PCN alone increased hepatic phospholipid, triglyceride and free fatty acid concentrations. Hepatic fatty acid and phosphatidylcholine synthetic activities increased in mice treated with PCN alone or PCN and LCA, compared to control mice, whereas these activities decreased in LCA-fed mice. These results suggest the possibility that PCN-mediated stimulation of lipogenesis contributes to the protection from lithocholic acid-induced hepatotoxicity.

  8. Tomato PYR/PYL/RCAR abscisic acid receptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to enhance plant drought resistance.

    Science.gov (United States)

    González-Guzmán, Miguel; Rodríguez, Lesia; Lorenzo-Orts, Laura; Pons, Clara; Sarrión-Perdigones, Alejandro; Fernández, Maria A; Peirats-Llobet, Marta; Forment, Javier; Moreno-Alvero, Maria; Cutler, Sean R; Albert, Armando; Granell, Antonio; Rodríguez, Pedro L

    2014-08-01

    Abscisic acid (ABA) plays a crucial role in the plant's response to both biotic and abiotic stress. Sustainable production of food faces several key challenges, particularly the generation of new varieties with improved water use efficiency and drought tolerance. Different studies have shown the potential applications of Arabidopsis PYR/PYL/RCAR ABA receptors to enhance plant drought resistance. Consequently the functional characterization of orthologous genes in crops holds promise for agriculture. The full set of tomato (Solanum lycopersicum) PYR/PYL/RCAR ABA receptors have been identified here. From the 15 putative tomato ABA receptors, 14 of them could be grouped in three subfamilies that correlated well with corresponding Arabidopsis subfamilies. High levels of expression of PYR/PYL/RCAR genes was found in tomato root, and some genes showed predominant expression in leaf and fruit tissues. Functional characterization of tomato receptors was performed through interaction assays with Arabidopsis and tomato clade A protein phosphatase type 2Cs (PP2Cs) as well as phosphatase inhibition studies. Tomato receptors were able to inhibit the activity of clade A PP2Cs differentially in an ABA-dependent manner, and at least three receptors were sensitive to the ABA agonist quinabactin, which inhibited tomato seed germination. Indeed, the chemical activation of ABA signalling induced by quinabactin was able to activate stress-responsive genes. Both dimeric and monomeric tomato receptors were functional in Arabidopsis plant cells, but only overexpression of monomeric-type receptors conferred enhanced drought resistance. In summary, gene expression analyses, and chemical and transgenic approaches revealed distinct properties of tomato PYR/PYL/RCAR ABA receptors that might have biotechnological implications.

  9. Stathmin inhibition enhances okadaic acid-induced mitotic arrest: a potential role for stathmin in mitotic exit.

    Science.gov (United States)

    Mistry, S J; Atweh, G F

    2001-08-17

    Stathmin is a microtubule-destabilizing phosphoprotein that plays a critical role in the regulation of mitosis. The microtubule-depolymerizing activity of stathmin is lost upon phosphorylation in mitosis. Although the role of phosphorylation of stathmin by p34(cdc2) kinase in the assembly of the mitotic spindle is well established, the role of dephosphorylation of stathmin in mitosis is unknown. In this study, we tested the hypothesis that dephosphorylation of stathmin may be critically important for the depolymerization of the mitotic spindle and the exit from mitosis. We compared the effects of okadaic acid, a specific inhibitor of serine/threonine protein phosphatases, on different parameters of mitotic progression in the presence or absence of stathmin deficiency. Because okadaic acid prevents dephosphorylation of stathmin and results in accumulation of the inactive phosphorylated form, exposure to okadaic acid would be expected to have a more profound effect on mitosis in the presence of relative stathmin deficiency. We found that inhibition of stathmin expression results in increased sensitivity to the antimitotic effects of okadaic acid. This was reflected by increased growth inhibition associated with mitotic arrest. A vast majority of the stathmin-inhibited cells were found to be arrested in late metaphase/anaphase and had severe mitotic spindle abnormalities. Exposure to okadaic acid also resulted in a bigger ratio of polymerized/unpolymerized tubulin in stathmin-inhibited cells relative to control cells. Because the only difference between the control and the stathmin-inhibited cells is the deficiency of stathmin in the latter, the increased susceptibility of the stathmin-inhibited cells to okadaic acid-induced mitotic arrest implies a role for stathmin in the later stages of mitosis.

  10. A maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid signaling and enhanced drought stress tolerance in transgenic Arabidopsis.

    Science.gov (United States)

    Jiang, Shanshan; Zhang, Dan; Wang, Li; Pan, Jiaowen; Liu, Yang; Kong, Xiangpei; Zhou, Yan; Li, Dequan

    2013-10-01

    Calcium-dependent protein kinases (CDPKs) play essential roles in calcium-mediated signal transductions in plant response to abiotic stress. Several members have been identified to be regulators for plants response to abscisic acid (ABA) signaling. Here, we isolated a subgroup I CDPK gene, ZmCPK4, from maize. Quantitative real time PCR (qRT-PCR) analysis revealed that the ZmCPK4 transcripts were induced by various stresses and signal molecules. Transient and stable expression of the ZmCPK4-GFP fusion proteins revealed ZmCPK4 localized to the membrane. Moreover, overexpression of ZmCPK4 in the transgenic Arabidopsis enhanced ABA sensitivity in seed germination, seedling growth and stomatal movement. The transgenic plants also enhanced drought stress tolerance. Taken together, the results suggest that ZmCPK4 might be involved in ABA-mediated regulation of stomatal closure in response to drought stress.

  11. Maternal ethanol consumption during pregnancy enhances bile acid-induced oxidative stress and apoptosis in fetal rat liver.

    Science.gov (United States)

    Perez, Maria J; Velasco, Elena; Monte, Maria J; Gonzalez-Buitrago, Jose M; Marin, Jose J G

    2006-08-15

    Ethanol is able to cross the placenta, which may cause teratogenicity. Here we investigated whether ethanol consumption during pregnancy (ECDP), even at doses unable to cause malformation, might increase the susceptibility of fetal rat liver to oxidative insults. Since cholestasis is a common condition in alcoholic liver disease and pregnancy, exposure to glycochenodeoxycholic acid (GCDCA) has been used here as the oxidative insult. The mothers received drinking water without or with ethanol from 4 weeks before mating until term, when placenta, maternal liver, and fetal liver were used. Ethanol induced a decreased GSH/GSSG ratio in these organs, together with enhanced gamma-glutamylcysteine synthetase and glutathione reductase activities in both placenta and fetal liver. Lipid peroxidation in placenta and fetal liver was enhanced by ethanol, although it had no effect on caspase-3 activity. Although the basal production of reactive oxygen species (ROS) was higher by fetal (FHs) than by maternal (AHs) hepatocytes in short-term cultures, the production of ROS in response to the presence of varying GCDCA concentrations was higher in AHs and was further increased by ECDP, which was associated to a more marked impairment in mitochondrial function. Moreover, GCDCA-induced apoptosis was increased by ECDP, as revealed by enhanced Bax-alpha/Bcl-2 ratio (both in AHs and FHs) and the activity of caspase-8 (only in AHs) and caspase-3. In sum, our results indicate that although AHs are more prone than FHs to producing ROS, at doses unable to cause maternal liver damage ethanol consumption causes oxidative stress and apoptosis in fetal liver.

  12. Sustained exposure to abscisic acid enhances the colonization potential of the mutualist fungus Piriformospora indica on Arabidopsis thaliana roots.

    Science.gov (United States)

    Peskan-Berghöfer, Tatjana; Vilches-Barro, Amaya; Müller, Teresa M; Glawischnig, Erich; Reichelt, Michael; Gershenzon, Jonathan; Rausch, Thomas

    2015-11-01

    Root colonization by the beneficial fungus Piriformospora indica is controlled by plant innate immunity, but factors that channel this interaction into a mutualistic relationship are not known. We have explored the impact of abscisic acid (ABA) and osmotic stress on the P. indica interaction with Arabidopsis thaliana. The activation of plant innate immunity in roots was determined by measuring the concentration of the phytoalexin camalexin and expression of transcription factors regulating the biosynthesis of tryptophan-related defence metabolites. Furthermore, the impact of the fungus on the content of ABA, salicylic acid, jasmonic acid (JA) and JA-related metabolites was examined. We demonstrated that treatment with exogenous ABA or the ABA analogue pyrabactin increased fungal colonization efficiency without impairment of plant fitness. Concomitantly, ABA-deficient mutants of A. thaliana (aba1-6 and aba2-1) were less colonized, while plants exposed to moderate stress were more colonized than corresponding controls. Sustained exposure to ABA attenuated expression of transcription factors MYB51, MYB122 and WRKY33 in roots upon P. indica challenge or chitin treatment, and prevented an increase in camalexin content. The results indicate that ABA can strengthen the interaction with P. indica as a consequence of its impact on plant innate immunity. Consequently, ABA will be relevant for the establishment and outcome of the symbiosis under stress conditions.

  13. Abscisic Acid Regulation of Root Hydraulic Conductivity and Aquaporin Gene Expression Is Crucial to the Plant Shoot Growth Enhancement Caused by Rhizosphere Humic Acids.

    Science.gov (United States)

    Olaetxea, Maite; Mora, Verónica; Bacaicoa, Eva; Garnica, María; Fuentes, Marta; Casanova, Esther; Zamarreño, Angel M; Iriarte, Juan C; Etayo, David; Ederra, Iñigo; Gonzalo, Ramón; Baigorri, Roberto; García-Mina, Jose M

    2015-12-01

    The physiological and metabolic mechanisms behind the humic acid-mediated plant growth enhancement are discussed in detail. Experiments using cucumber (Cucumis sativus) plants show that the shoot growth enhancement caused by a structurally well-characterized humic acid with sedimentary origin is functionally associated with significant increases in abscisic acid (ABA) root concentration and root hydraulic conductivity. Complementary experiments involving a blocking agent of cell wall pores and water root transport (polyethylenglycol) show that increases in root hydraulic conductivity are essential in the shoot growth-promoting action of the model humic acid. Further experiments involving an inhibitor of ABA biosynthesis in root and shoot (fluridone) show that the humic acid-mediated enhancement of both root hydraulic conductivity and shoot growth depended on ABA signaling pathways. These experiments also show that a significant increase in the gene expression of the main root plasma membrane aquaporins is associated with the increase of root hydraulic conductivity caused by the model humic acid. Finally, experimental data suggest that all of these actions of model humic acid on root functionality, which are linked to its beneficial action on plant shoot growth, are likely related to the conformational structure of humic acid in solution and its interaction with the cell wall at the root surface.

  14. Abscisic acid enhances tolerance of wheat seedlings to drought and regulates transcript levels of genes encoding ascorbate-glutathione biosynthesis

    Directory of Open Access Journals (Sweden)

    Wei eLiting

    2015-06-01

    Full Text Available Glutathione (GSH and ascorbate (ASA are associated with the abscisic acid (ABA-induced abiotic tolerance in higher plant, however, its molecular mechanism remains obscure. In this study, exogenous application (10 μM of ABA significantly increased the tolerance of seedlings of common wheat (Triticum aestivum L. suffering from 5 days of 15% polyethylene glycol (PEG-stimulated drought stress, as demonstrated by increased shoot lengths and shoot and root dry weights, while showing decreased contents of hydrogen peroxide (H2O2 and malondialdehyde (MDA. Under drought stress conditions, ABA markedly increased contents of GSH and ASA in both leaves and roots of ABA-treated plants. Temporal and spatial expression patterns of eight genes encoding ASA and GSH synthesis-related enzymes were measured using quantitative real-time reverse transcription polymerase chain reaction (qPCR. The results showed that ABA temporally regulated the transcript levels of genes encoding ASA-GSH cycle enzymes. Moreover, these genes exhibited differential expression patterns between the root and leaf organs of ABA-treated wheat seedlings during drought stress. These results implied that exogenous ABA increased the levels of GSH and ASA in drought-stressed wheat seedlings in time- and organ-specific manners. Moreover, the transcriptional profiles of ASA-GSH synthesis-related enzyme genes in the leaf tissue were compared between ABA- and salicylic acid (SA-treated wheat seedlings under PEG-stimulated drought stress, suggesting that they increased the contents of ASA and GSH by differentially regulating expression levels of ASA-GSH synthesis enzyme genes. Our results increase our understanding of the molecular mechanism of ABA-induced drought tolerance in higher plants

  15. Epibrassinolide induces changes in indole-3-acetic acid, abscisic acid and polyamine concentrations and enhances antioxidant potential of radish seedlings under copper stress.

    Science.gov (United States)

    Choudhary, Sikander Pal; Bhardwaj, Renu; Gupta, Bishan Datt; Dutt, Prabhu; Gupta, Rajinder Kumar; Biondi, Stefania; Kanwar, Mukesh

    2010-11-01

    In the present study, the effects of epibrassinolide (EBL) on indole-3-acetic acid (IAA), abscisic acid (ABA) and polyamine (PA) tissue concentrations and antioxidant potential of 7-day-old Raphanus sativus L. cv. 'Pusa chetki' seedlings grown under Cu stress were investigated. EBL treatment alone or in combination with Cu enhanced free and bound IAA titers when compared with the metal alone. Modest increases in free and bound ABA contents were observed for EBL treatment alone. However, the combination of EBL with Cu caused major increases in both forms of ABA, over Cu alone. Among the PAs analyzed, only putrescine and cadaverine concentrations were enhanced by EBL treatment alone. By contrast, a significant decline in putrescine and spermine contents was found in seedlings treated with EBL plus Cu. EBL treatments alone or in combination with Cu enhanced activities of guaiacol peroxidase (EC1.11.1.7), catalase (EC 1.11.1.6), superoxide dismutase (EC 1.15.1.1) and glutathione reductase (EC 1.6.4.2) and protein contents in comparison with metal and control treatments. A major decrease in malondialdehyde content was also recorded for EBL treatments with or without Cu. An increase in phytochelatin content was also observed in seedlings treated with EBL alone or in combination with Cu. Major improvement in radical scavenging activities, as attested by the antioxidant activity assay using DPPH (1,1-diphenylpicrylhydrazyl), and elevated deoxyribose and reducing powers, along with increased contents of ascorbic acid, total phenols and proline, also suggest a major influence of EBL application in mitigating copper-induced oxidative stress in radish seedlings. Copyright © Physiologia Plantarum 2010.

  16. Plant, cell, and molecular mechanisms of abscisic-acid regulation of stomatal apertures. In vivo phosphorylation of phosphoenolpyruvate carboxylase in guard cells of Vicia faba L. is enhanced by fusicoccin and suppressed by abscisic acid

    Energy Technology Data Exchange (ETDEWEB)

    Du, Z.; Aghoram, K.; Outlaw, W.H. Jr.

    1996-12-31

    Plants regulate water loss and CO{sub 2} gain by modulating the aperture sizes of stomata that penetrate the epidermis. Aperture size itself is increased by osmolyte accumulation and consequent turgor increase in the pair of guard cells that flank each stoma. Guard-cell phosphoenolpyruvate carboxylase, which catalyzes the regulated step leading to malate synthesis, is crucial for charge and pH maintenance during osmolyte accumulation. Regulation of this cytosolic enzyme by effectors is well documented, but additional regulation by posttranslational modification is predicted by the alteration of PEPC kinetics during stomatal opening. In this study, the authors have investigated whether this alteration is associated with the phosphorylation status of this enzyme. Using sonicated epidermal peels (isolated guard cells) pre-loaded with {sub 32}PO{sub 4}, the authors induced stomatal opening and guard-cell malate accumulation by incubation with 5 {micro}M fusicoccin (FC). In corroboratory experiments, guard cells were incubated with 5 {micro}M fusicoccin (FC). In corroboratory experiments, guard cells were incubated with the FC antagonist, 10 {micro}M abscisic acid (ABA). The phosphorylation status of PEPC was assessed by immunoprecipitation, electrophoresis, immunoblotting, and autoradiography. PEPC was phosphorylated when stomata were stimulated to open, and phosphorylation was lessened by incubation with ABA.

  17. Response of barley aleurone layers to abscisic acid

    Energy Technology Data Exchange (ETDEWEB)

    Ho, D.T.H.; Varner, J.E.

    1976-02-01

    Cordycepin, an inhibitor of RNA synthesis in barley (Hordeum vulgare L.) aleurone cells, does not inhibit the gibberellic acid-enhanced ..cap alpha..-amylase (EC 3.2.1.1.) synthesis in barley aleurone layers if it is added 12 hours or more after the addition of the hormone. However, the accumulation of ..cap alpha..-amylase activity after 12 hours of gibberellic acid can be decreased by abscisic acid. The accumulation of ..cap alpha..-amylase activity is sustained or quickly restored when cordycepin is added simultaneously or some time after abscisic acid, indicating that the response of aleurone layers to abscisic acid depends on the continuous synthesis of a short lived RNA. By analysis of the newly synthesized proteins by gel electrophoresis with sodium dodecylsulfate, it was observed that the synthesis of ..cap alpha..-amylase is decreased in the presence of abscisic acid while the synthesis of most of the other proteins remains unchanged. From the rate of resumption of ..cap alpha..-amylase production in the presence of cordycepin and abscisic acid, it appears that abscisic acid does not have a measurable effect on the stability of ..cap alpha..-amylase mRNA.

  18. Role of Nitric Oxide in Abscisic Acid-induced Subcellular Antioxidant Defense of Maize Leaves%一氧化氮在脱落酸诱导的玉米叶片亚细胞抗氧化防护中的作用

    Institute of Scientific and Technical Information of China (English)

    桑建荣; 蒋明义; 林凡; 李晶; 许树成

    2007-01-01

    The sources of nitric oxide(NO)production in response to abscisic acid(ABA)and the role of NO in ABA-induced hydrogen peroxide(H2O2)accumulation and subcellular antioxidant defense in leaves of maize (Zea mays L.)plants were investigated.ABA induced increases in generation of NO and activity of nitric Oxide synthase (NOS) in maize leaves.Such increases were blocked by pretreatment with each of the two NOS inhibitors.Pretreatments with a NO scavenger or NR inhibitors inhibited ABA-induced increase in production of NO.but did not aflfect the ABA-induced increases in activity of NOS,indicating that ABA-induced NO production originated from sources of NOS and NR.ABAand H2O2-induced increases in expression of the antioxidant genes superoxide dismutase 4(SOD4),cytosolic ascorbate peroxidase(cAPS),and glutathione reductase 1(GR1)and the activities of the chloroplastic and cytosolic antioxidant enzymes were alTeSted by pretreatments with the NO scavenger.inhibitors of NOS and NR,indicaring that NO iS involved in the ABA-and H2O2-induced subcellular antioxidant defense reactions.On the other hand,NO donor sodium nitroprusside(SNP)reduced accumulation of H2O2 induced by ABA,and CPTIO reversed the effect of SNP in decreasing the accumulation of H2O2.SNP induced increases in activities of subcellular antioxidant enzymes,and the increases were substantially prevented from occurring by the pretreatment with c-PTIO.These results suggest that ABA in duces production of H2O2 and NO,which can up-regulate activities of the subcellular antioxidant enzymes,to prevent overproduction of H2O2 in maize plants.There is a negative feedback loop between NO and H2O2 in ABA signal transduction in maize plants.%研究了ABA诱导NO产生的来源以及NO在ABA诱导的玉米叶片H2O2累积和亚细胞水平抗氧化中的作用.ABA诱导玉米叶片NO的产生以及NOS 活性增加,NOS抑制剂抑制这种增加.NO清除剂和NR抑制剂预处理也抑制了ABA诱导的NO产生,但是并不影

  19. [Tissue culture of medicinal plant and abscisic acid].

    Science.gov (United States)

    Fang, Hui-Yong; Zhu, Hong; Yao, Jian-Xun; Jia, Cai-Feng; Shan, Gao-Wei; Li, Min-Hui

    2013-01-01

    Abscisic acid (ABA) plays a key role in many physiological processes of plants, and it was also applied to fields of medicinal plant biotechnology. The article presents a review of some recent application of ABA in enhancing the production of secondary metabolites of medicinal plants, improving the in vitro conservation in medicinal plant tissue culture system.

  20. Expression of Stipa purpurea SpCIPK26 in Arabidopsis thaliana Enhances Salt and Drought Tolerance and Regulates Abscisic Acid Signaling

    Directory of Open Access Journals (Sweden)

    Yanli Zhou

    2016-06-01

    Full Text Available Stipa purpurea (S. purpurea is the dominant plant species in the alpine steppe of the Qinghai-Tibet Plateau, China. It is highly resistant to cold and drought conditions. However, the underlying mechanisms regulating the stress tolerance are unknown. In this study, a CIPK gene from S. purpurea (SpCIPK26 was isolated. The SpCIPK26 coding region consisted of 1392 bp that encoded 464 amino acids. The protein has a highly conserved catalytic structure and regulatory domain. The expression of SpCIPK26 was induced by drought and salt stress. SpCIPK26 overexpression in Arabidopsis thaliana (A. thaliana plants provided increased tolerance to drought and salt stress in an abscisic acid (ABA-dependent manner. Compared with wild-type A. thaliana plants, SpCIPK26-overexpressing plants had higher survival rates, water potentials, and photosynthetic efficiency (Fv/Fm, as well as lower levels of reactive oxygen species (ROS following exposure to drought and salt stress. Gene expression analyses indicated stress-inducible genes (RD29A, RD29B, and ABF2 and a ROS-scavenger gene (CAT1 were upregulated in SpCIPK26-overexpressing plants after stress treatments. All of these marker genes are associated with ABA-responsive cis-acting elements. Additionally, the similarities in the gene expression patterns following ABA, mannitol, and NaCl treatments suggest SpCIPK26 has an important role during plant responses to drought and salt stress and in regulating ABA signaling.

  1. Effects of glutathione depletion by 2-cyclohexen-1-one on excitatory amino acids-induced enhancement of activator protein-1 DNA binding in murine hippocampus.

    Science.gov (United States)

    Ogita, K; Kitayama, T; Okuda, H; Yoneda, Y

    2001-03-01

    We have investigated the role of glutathione in mechanisms associated with excitatory amino acid signaling to the nuclear transcription factor activator protein-1 (AP1) in the brain using mice depleted of endogenous glutathione by prior treatment with 2-cyclohexen-1-one (CHX). In the hippocampus of animals treated with CHX 2 h before, a significant increase was seen in enhancement of AP1 DNA binding when determined 2 h after the injection of kainic acid (KA) at low doses. The sensitization to KA was not seen in animals injected with CHX 24 h before, in coincidence with the recovery of glutathione contents to the normal levels. By contrast, CHX did not significantly affect the potentiation by NMDA of AP1 binding under any experimental conditions. Prior treatment with CHX resulted in facilitation of behavioral changes induced by KA without affecting those induced by NMDA. These results suggest that endogenous glutathione may be at least in part involved in molecular mechanisms underlying transcriptional control by KA, but not by NMDA, signals of cellular functions.

  2. Virus-induced down-regulation of GmERA1A and GmERA1B genes enhances the stomatal response to abscisic acid and drought resistance in soybean.

    Science.gov (United States)

    Ogata, Takuya; Nagatoshi, Yukari; Yamagishi, Noriko; Yoshikawa, Nobuyuki; Fujita, Yasunari

    2017-01-01

    Drought is a major threat to global soybean production. The limited transformation potential and polyploid nature of soybean have hindered functional analysis of soybean genes. Previous research has implicated farnesylation in the plant's response to abscisic acid (ABA) and drought tolerance. We therefore used virus-induced gene silencing (VIGS) to evaluate farnesyltransferase genes, GmERA1A and GmERA1B (Glycine max Enhanced Response to ABA1-A and -B), as potential targets for increasing drought resistance in soybean. Apple latent spherical virus (ALSV)-mediated GmERA1-down-regulated soybean leaves displayed an enhanced stomatal response to ABA and reduced water loss and wilting under dehydration conditions, suggesting that GmERA1A and GmERA1B negatively regulate ABA signaling in soybean guard cells. The findings provide evidence that the ALSV-VIGS system, which bypasses the need to generate transgenic plants, is a useful tool for analyzing gene function using only a single down-regulated leaf. Thus, the ALSV-VIGS system could constitute part of a next-generation molecular breeding pipeline to accelerate drought resistance breeding in soybean.

  3. Jinlida granule inhibits palmitic acid induced-intracellular lipid accumulation and enhances autophagy in NIT-1 pancreatic β cells through AMPK activation.

    Science.gov (United States)

    Wang, Dingkun; Tian, Min; Qi, Yuan; Chen, Guang; Xu, Lijun; Zou, Xin; Wang, Kaifu; Dong, Hui; Lu, Fuer

    2015-02-23

    TOR and the up-regulation of TSC1 and LC3-II proteins expression. However, when AMPK phosphorylation was inhibited by Compound C, JLDG supplementation did not exhibit any effect on the expression of these AMPK downstream molecules in NIT-1 cells. The results suggest that JLDG could reduce intracellular lipid accumulation and enhance the autophagy in NIT-1 pancreatic β cells cultured with PA. The mechanism is possibly mediated by AMPK activation. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  4. Unraveling rhizobacteria- and abscisic acid-induced pathogen resistance in rice (Oryza sativa L.)

    OpenAIRE

    De Vleesschauwer, David

    2008-01-01

    Induced disease resistance is the phenomenon by which plants exhibit a heightened level of resistance against pathogen infection after appropriate stimulation. In contrast to the relative wealth of information on inducible resistance responses in dicotyledoneous plants, our current understanding of the molecular machinery governing induced resistance in monocotyledoneous crops is still in its infancy. In light of aforementioned knowledge gap, this dissertation aimed to expand our knowledge on...

  5. Powdery Mildew Resistance Conferred by Loss of the ENHANCED DISEASE RESISTANCE1 Protein Kinase Is Suppressed by a Missense Mutation in KEEP ON GOING, a Regulator of Abscisic Acid Signaling1[W][OA

    Science.gov (United States)

    Wawrzynska, Anna; Christiansen, Katy M.; Lan, Yinan; Rodibaugh, Natalie L.; Innes, Roger W.

    2008-01-01

    Loss-of-function mutations in the Arabidopsis (Arabidopsis thaliana) ENHANCED DISEASE RESISTANCE1 (EDR1) gene confer enhanced resistance to infection by powdery mildew (Golovinomyces cichoracearum). EDR1 encodes a protein kinase, but its substrates and the pathways regulated by EDR1 are unknown. To identify components of the EDR1 signal transduction pathway(s), we conducted a forward genetic screen for mutations that suppressed edr1-mediated disease resistance. Genetic mapping and cloning of one of these suppressor mutations revealed a recessive missense mutation in the KEEP ON GOING gene (KEG; At5g13530), which we designated keg-4. KEG encodes a multidomain protein that includes a RING E3 ligase domain, a kinase domain, ankyrin repeats, and HERC2-like repeats. The KEG protein has previously been shown to have ubiquitin ligase activity and to negatively regulate protein levels of the transcription factor ABCISIC ACID INSENSITIVE5. KEG mRNA levels were found to be 3-fold higher in edr1 mutant plants compared to wild type. Loss-of-function mutations in KEG are seedling lethal and are hypersensitive to glucose and abscisic acid (ABA). The keg-4 mutation, in contrast, conferred resistance to 6% glucose and suppressed edr1-mediated hypersensitivity to ABA, suggesting that the keg-4 mutation suppresses ABA signaling by altering KEG function. Several ABA-responsive genes were found to be further up-regulated in the edr1 mutant following ABA treatment, and this up-regulation was suppressed by the keg-4 mutation. We conclude that edr1-mediated resistance to powdery mildew is mediated, in part, by enhanced ABA signaling. PMID:18815384

  6. Powdery mildew resistance conferred by loss of the ENHANCED DISEASE RESISTANCE1 protein kinase is suppressed by a missense mutation in KEEP ON GOING, a regulator of abscisic acid signaling.

    Science.gov (United States)

    Wawrzynska, Anna; Christiansen, Katy M; Lan, Yinan; Rodibaugh, Natalie L; Innes, Roger W

    2008-11-01

    Loss-of-function mutations in the Arabidopsis (Arabidopsis thaliana) ENHANCED DISEASE RESISTANCE1 (EDR1) gene confer enhanced resistance to infection by powdery mildew (Golovinomyces cichoracearum). EDR1 encodes a protein kinase, but its substrates and the pathways regulated by EDR1 are unknown. To identify components of the EDR1 signal transduction pathway(s), we conducted a forward genetic screen for mutations that suppressed edr1-mediated disease resistance. Genetic mapping and cloning of one of these suppressor mutations revealed a recessive missense mutation in the KEEP ON GOING gene (KEG; At5g13530), which we designated keg-4. KEG encodes a multidomain protein that includes a RING E3 ligase domain, a kinase domain, ankyrin repeats, and HERC2-like repeats. The KEG protein has previously been shown to have ubiquitin ligase activity and to negatively regulate protein levels of the transcription factor ABCISIC ACID INSENSITIVE5. KEG mRNA levels were found to be 3-fold higher in edr1 mutant plants compared to wild type. Loss-of-function mutations in KEG are seedling lethal and are hypersensitive to glucose and abscisic acid (ABA). The keg-4 mutation, in contrast, conferred resistance to 6% glucose and suppressed edr1-mediated hypersensitivity to ABA, suggesting that the keg-4 mutation suppresses ABA signaling by altering KEG function. Several ABA-responsive genes were found to be further up-regulated in the edr1 mutant following ABA treatment, and this up-regulation was suppressed by the keg-4 mutation. We conclude that edr1-mediated resistance to powdery mildew is mediated, in part, by enhanced ABA signaling.

  7. Enhanced Abscisic Acid-Mediated Responses in nia1nia2noa1-2 Triple Mutant Impaired in NIA/NR- and AtNOA1-Dependent Nitric Oxide Biosynthesis in Arabidopsis1[W

    Science.gov (United States)

    Lozano-Juste, Jorge; León, José

    2010-01-01

    Nitric oxide (NO) regulates a wide range of plant processes from development to environmental adaptation. Despite its reported regulatory functions, it remains unclear how NO is synthesized in plants. We have generated a triple nia1nia2noa1-2 mutant that is impaired in nitrate reductase (NIA/NR)- and Nitric Oxide-Associated1 (AtNOA1)-mediated NO biosynthetic pathways. NO content in roots of nia1nia2 and noa1-2 plants was lower than in wild-type plants and below the detection limit in nia1nia2noa1-2 plants. NIA/NR- and AtNOA1-mediated biosynthesis of NO were thus active and responsible for most of the NO production in Arabidopsis (Arabidopsis thaliana). The nia1nia2noa1-2 plants displayed reduced size, fertility, and seed germination potential but increased dormancy and resistance to water deficit. The increasing deficiency in NO of nia1nia2, noa1-2, and nia1nia2noa1-2 plants correlated with increased seed dormancy, hypersensitivity to abscisic acid (ABA) in seed germination and establishment, as well as dehydration resistance. In nia1nia2noa1-2 plants, enhanced drought tolerance was due to a very efficient stomata closure and inhibition of opening by ABA, thus uncoupling NO from ABA-triggered responses in NO-deficient guard cells. The NO-deficient mutants in NIA/NR- and AtNOA1-mediated pathways in combination with the triple mutant will be useful tools to functionally characterize the role of NO and the contribution of both biosynthetic pathways in regulating plant development and defense. PMID:20007448

  8. Enhanced abscisic acid-mediated responses in nia1nia2noa1-2 triple mutant impaired in NIA/NR- and AtNOA1-dependent nitric oxide biosynthesis in Arabidopsis.

    Science.gov (United States)

    Lozano-Juste, Jorge; León, José

    2010-02-01

    Nitric oxide (NO) regulates a wide range of plant processes from development to environmental adaptation. Despite its reported regulatory functions, it remains unclear how NO is synthesized in plants. We have generated a triple nia1nia2noa1-2 mutant that is impaired in nitrate reductase (NIA/NR)- and Nitric Oxide-Associated1 (AtNOA1)-mediated NO biosynthetic pathways. NO content in roots of nia1nia2 and noa1-2 plants was lower than in wild-type plants and below the detection limit in nia1nia2noa1-2 plants. NIA/NR- and AtNOA1-mediated biosynthesis of NO were thus active and responsible for most of the NO production in Arabidopsis (Arabidopsis thaliana). The nia1nia2noa1-2 plants displayed reduced size, fertility, and seed germination potential but increased dormancy and resistance to water deficit. The increasing deficiency in NO of nia1nia2, noa1-2, and nia1nia2noa1-2 plants correlated with increased seed dormancy, hypersensitivity to abscisic acid (ABA) in seed germination and establishment, as well as dehydration resistance. In nia1nia2noa1-2 plants, enhanced drought tolerance was due to a very efficient stomata closure and inhibition of opening by ABA, thus uncoupling NO from ABA-triggered responses in NO-deficient guard cells. The NO-deficient mutants in NIA/NR- and AtNOA1-mediated pathways in combination with the triple mutant will be useful tools to functionally characterize the role of NO and the contribution of both biosynthetic pathways in regulating plant development and defense.

  9. Regulation of Senescence in Carnation (Dianthus caryophyllus): Effect of Abscisic Acid and Carbon Dioxide on Ethylene Production.

    Science.gov (United States)

    Mayak, S; Dilley, D R

    1976-11-01

    Abscisic acid hastened senescence of carnation flowers and this was preceded by stimulation of accelerated ethylene production. Carbon dioxide delayed the onset of autocatalytic ethylene production in flowers regardless of treatment with abscisic acid. Flowers exhibited a low and transient climacteric of ethylene production without wilting while in 4% carbon dioxide and underwent accelerated ethylene production culminating in wilting when removed from carbon dioxide. Hypobaric ventilation, which lowers ethylene to hyponormal levels within tissues, extended flower longevity and largely negated enhancement of senescence by abscisic acid. Supplementing hypobarically ventilated flowers with ethylene hastened senescence irrespective of abscisic acid treatment. Collectively, the data indicate that abscisic acid hastens senescence of carnations largely as a result of advancing the onset of autocatalytic ethylene production.

  10. Mefenamic Acid Induced Nephrotoxicity: An Animal Model

    Directory of Open Access Journals (Sweden)

    Muhammad Nazrul Somchit

    2014-12-01

    Full Text Available Purpose: Nonsteroidal anti-inflammatory drugs (NSAIDs are used for the treatment of many joint disorders, inflammation and to control pain. Numerous reports have indicated that NSAIDs are capable of producing nephrotoxicity in human. Therefore, the objective of this study was to evaluate mefenamic acid, a NSAID nephrotoxicity in an animal model. Methods: Mice were dosed intraperitoneally with mefenamic acid either as a single dose (100 or 200 mg/kg in 10% Dimethyl sulfoxide/Palm oil or as single daily doses for 14 days (50 or 100 mg/kg in 10% Dimethyl sulfoxide/Palm oil per day. Venous blood samples from mice during the dosing period were taken prior to and 14 days post-dosing from cardiac puncture into heparinized vials. Plasma blood urea nitrogen (BUN and creatinine activities were measured. Results: Single dose of mefenamic acid induced mild alteration of kidney histology mainly mild glomerular necrosis and tubular atrophy. Interestingly, chronic doses induced a dose dependent glomerular necrosis, massive degeneration, inflammation and tubular atrophy. Plasma blood urea nitrogen was statistically elevated in mice treated with mefenamic acid for 14 days similar to plasma creatinine. Conclusion: Results from this study suggest that mefenamic acid as with other NSAIDs capable of producing nephrotoxicity. Therefore, the study of the exact mechanism of mefenamic acid induced severe nephrotoxicity can be done in this animal model.

  11. A New Approach to Sequence Analysis Exemplified by Identification of cis-Elements in Abscisic Acid Inducible Promoters

    DEFF Research Database (Denmark)

    Busk, Peter Kamp; Hallin, Peter Fischer; Salomon, Jesper

    Identification of cis-regulatory elements in DNA promoters by computational approaches are a great help in genome-wide elucidation of signal transduction, transcriptional regulation and gene expression. However, to accomplish this has proven a difficult problem in computational genomics in part d...

  12. Effects of copper on chlorophyll, proline, protein and abscisic acid level of sunflower (Helianthus annuus L.) seedlings.

    Science.gov (United States)

    Zengin, Fikriye Kirbag; Kirbag, Sevda

    2007-07-01

    The effect of copperchloride (CuCl2) on the level of chlorophyll (a+b), proline, protein and abscisic acid in sunflower (Helianthus annuus L.) seedlings were investigated Control and copper treated (0.4, 0.5 and 0.6 mM) seedlings were grown for ten days in Hoagland solution. Abscisic acid content was determined in root, shoot and leaf tissues of seedlings by HPLC. Copper stress caused significant increase of the abscisic acid contents in roots, shoots and leaves of seedlings. The increase was dependent on the copper salt concentration. Enhanced accumulation of proline in the leaves of seedlings exposed to copper was determined, as well as a decrease of chlorophyll (a+b) and total protein (p Helianthus annuus L.) seedlings. Thus, we assumed that copper levels increase above some critical points seedling growth get negative effects. This assumption is in line with previous findings.

  13. Tomato ABSCISIC ACID STRESS RIPENING (ASR) gene family revisited.

    Science.gov (United States)

    Golan, Ido; Dominguez, Pia Guadalupe; Konrad, Zvia; Shkolnik-Inbar, Doron; Carrari, Fernando; Bar-Zvi, Dudy

    2014-01-01

    Tomato ABSCISIC ACID RIPENING 1 (ASR1) was the first cloned plant ASR gene. ASR orthologs were then cloned from a large number of monocot, dicot and gymnosperm plants, where they are mostly involved in response to abiotic (drought and salinity) stress and fruit ripening. The tomato genome encodes five ASR genes: ASR1, 2, 3 and 5 encode low-molecular-weight proteins (ca. 110 amino acid residues each), whereas ASR4 encodes a 297-residue polypeptide. Information on the expression of the tomato ASR gene family is scarce. We used quantitative RT-PCR to assay the expression of this gene family in plant development and in response to salt and osmotic stresses. ASR1 and ASR4 were the main expressed genes in all tested organs and conditions, whereas ASR2 and ASR3/5 expression was two to three orders of magnitude lower (with the exception of cotyledons). ASR1 is expressed in all plant tissues tested whereas ASR4 expression is limited to photosynthetic organs and stamens. Essentially, ASR1 accounted for most of ASR gene expression in roots, stems and fruits at all developmental stages, whereas ASR4 was the major gene expressed in cotyledons and young and fully developed leaves. Both ASR1 and ASR4 were expressed in flower organs, with ASR1 expression dominating in stamens and pistils, ASR4 in sepals and petals. Steady-state levels of ASR1 and ASR4 were upregulated in plant vegetative organs following exposure to salt stress, osmotic stress or the plant abiotic stress hormone abscisic acid (ABA). Tomato plants overexpressing ASR1 displayed enhanced survival rates under conditions of water stress, whereas ASR1-antisense plants displayed marginal hypersensitivity to water withholding.

  14. Tomato ABSCISIC ACID STRESS RIPENING (ASR gene family revisited.

    Directory of Open Access Journals (Sweden)

    Ido Golan

    Full Text Available Tomato ABSCISIC ACID RIPENING 1 (ASR1 was the first cloned plant ASR gene. ASR orthologs were then cloned from a large number of monocot, dicot and gymnosperm plants, where they are mostly involved in response to abiotic (drought and salinity stress and fruit ripening. The tomato genome encodes five ASR genes: ASR1, 2, 3 and 5 encode low-molecular-weight proteins (ca. 110 amino acid residues each, whereas ASR4 encodes a 297-residue polypeptide. Information on the expression of the tomato ASR gene family is scarce. We used quantitative RT-PCR to assay the expression of this gene family in plant development and in response to salt and osmotic stresses. ASR1 and ASR4 were the main expressed genes in all tested organs and conditions, whereas ASR2 and ASR3/5 expression was two to three orders of magnitude lower (with the exception of cotyledons. ASR1 is expressed in all plant tissues tested whereas ASR4 expression is limited to photosynthetic organs and stamens. Essentially, ASR1 accounted for most of ASR gene expression in roots, stems and fruits at all developmental stages, whereas ASR4 was the major gene expressed in cotyledons and young and fully developed leaves. Both ASR1 and ASR4 were expressed in flower organs, with ASR1 expression dominating in stamens and pistils, ASR4 in sepals and petals. Steady-state levels of ASR1 and ASR4 were upregulated in plant vegetative organs following exposure to salt stress, osmotic stress or the plant abiotic stress hormone abscisic acid (ABA. Tomato plants overexpressing ASR1 displayed enhanced survival rates under conditions of water stress, whereas ASR1-antisense plants displayed marginal hypersensitivity to water withholding.

  15. Bile Acid-Induced Suicidal Erythrocyte Death

    Directory of Open Access Journals (Sweden)

    Elisabeth Lang

    2016-04-01

    Full Text Available Background/Aims: In nucleated cells, bile acids may activate cation channels subsequently leading to entry of Ca2+. In erythrocytes, increase of cytosolic Ca2+ activity triggers eryptosis, the suicidal death of erythrocytes characterized by phosphatidylserine exposure at the cell surface and cell shrinkage. Eryptosis is triggered by bile duct ligation, an effect partially attributed to conjugated bilirubin. The present study explored, whether bile acids may stimulate eryptosis. Methods: Phosphatidylserine exposing erythrocytes have been identified utilizing annexin V binding, cell volume estimated from forward scatter, cytosolic Ca2+ activity determined using Fluo-3 fluorescence, and ceramide abundance at the erythrocyte surface utilizing specific antibodies. Results: The exposure of human erythrocytes to glycochenodesoxycholic (GCDC and taurochenodesoxycholic (TCDC acid was followed by a significant decrease of forward scatter and significant increase of Fluo-3 fluorescence, ceramide abundance as well as annexin V binding. The effect on annexin V binding was significantly blunted, but not abolished by removal of extracellular Ca2+. Conclusion: Bile acids stimulate suicidal cell death, an effect paralleled by and in part due to Ca2+ entry and ceramide. The bile acid induced eryptosis may in turn lead to accelerated clearance of circulating erythrocytes and, thus, may contribute to anemia in cholestatic patients.

  16. Presence of abscisic acid, a phytohormone, in the mammalian brain

    Energy Technology Data Exchange (ETDEWEB)

    Le Page-Degivry, M.T.; Bidard, J.N.; Rouvier, E.; Bulard, C.; Lazdunski, M.

    1986-02-01

    This paper reports the presence of abscisic acid, one of the most important phytohormones, in the central nervous system of pigs and rats. The identification of this hormone in brain was made after extensive purification by using a radioimmunoassay that is very specific for (+)-cis-abscisic acid. The final product of purification from mammalian brain has the same properties as authentic abscisic acid: it crossreacts in the radioimmunoassay for the phytohormone and it has the same retention properties and the same gas chromatography/mass spectrometry characteristics. Moreover, like (+)-cis-abscisic acid itself, the brain factor inhibits stomatal apertures of abaxial epidermis strips of Setcreasea purpurea Boom (Commelinaceae). The presence of abscisic acid conjugates that are present in plants has also been identified in brain.

  17. Presence of abscisic acid, a phytohormone, in the mammalian brain.

    Science.gov (United States)

    Le Page-Degivry, M T; Bidard, J N; Rouvier, E; Bulard, C; Lazdunski, M

    1986-01-01

    This paper reports the presence of abscisic acid, one of the most important phytohormones, in the central nervous system of pigs and rats. The identification of this hormone in brain was made after extensive purification by using a radioimmunoassay that is very specific for (+)-cis-abscisic acid. The final product of purification from mammalian brain has the same properties as authentic abscisic acid: it crossreacts in the radioimmunoassay for the phytohormone and it has the same retention properties and the same gas chromatography/mass spectrometry characteristics. Moreover, like (+)-cis-abscisic acid itself, the brain factor inhibits stomatal apertures of abaxial epidermis strips of Setcreasea purpurea Boom (Commelinaceae). The presence of abscisic acid conjugates that are present in plants has also been identified in brain. Images PMID:2937056

  18. Abscisic acid and blue light signaling pathways in chloroplast movements in Arabidopsis mesophyll.

    Science.gov (United States)

    Eckstein, Aleksandra; Krzeszowiec, Weronika; Banaś, Agnieszka Katarzyna; Janowiak, Franciszek; Gabryś, Halina

    2016-01-01

    Abscisic acid (ABA) and phototropins act antagonistically to control stomatal movements. Here, we investigated the role of ABA in phototropin-directed chloroplast movements in mesophyll cells of Arabidopsis thaliana. We analyzed the expression of phototropins at mRNA and protein level under the influence of ABA. PHOT1 mRNA level was decreased by ABA in the dark while it was insensitive to ABA in light. PHOT2 mRNA level was independent of the hormone treatment. The levels of phototropin proteins were down-regulated by ABA, both in darkness and light. No impact of exogenous ABA on amplitudes and kinetics of chloroplast movements was detected. Chloroplast responses in wild type Arabidopsis and three mutants, abi4, abi2 (abscisic acid insensitive4, 2) and aba1 (abscisic acid1), were measured to account for endogenous ABA signaling. The chloroplast responses were slightly reduced in abi2 and aba1 mutants in strong light. To further investigate the effect, abi2 and aba1 mutants were supplemented with exogenous ABA. In the aba1 mutant, the reaction was rescued but in abi2 it was unaffected. Our results show that ABA is not directly involved in phototropin-controlled chloroplast responses in mature leaves of Arabidopsis. However, the disturbance of ABA biosynthesis and signaling in mutants affects some elements of the chloroplast movement mechanism. In line with its role as a stress hormone, ABA appears to enhance plant sensitivity to light and promote the chloroplast avoidance response.

  19. Control of Ribonuclease and Acid Phosphatase by Auxin and Abscisic Acid during Senescence of Rhoeo Leaf Sections 1

    Science.gov (United States)

    De Leo, Pietro; Sacher, Joseph A.

    1970-01-01

    We report the effects of abscisic acid and auxin (α-naphthalene acetic acid) on regulation of enzyme synthesis during senescence of leaf sections of Rhoeo discolor Hance. Abscisic acid always accelerates the onset of and enhances the magnitude of the increase in activity of acid phosphatase; this is followed by an acceleration of the onset of a rapid increase in free space. RNase activity increases 2- to 5-fold after cutting of leaf sections. Abscisic acid increases RNase activity and inhibits the rate of incorporation of uridine and leucine in leaf sections removed from plants grown under stress but not favorable conditions. Auxin inhibits the increase in RNase and acid phosphatase and suppresses the effects of abscisic acid. The increase in activity of RNase and acid phosphatase is inhibited by inhibitors of RNA and protein synthesis. This and other evidence suggests that the increases in hydrolase activity could result from new enzyme synthesis. The possible significance of the results in respect of hormonal regulation of enzyme activity and senescence is discussed. PMID:5500207

  20. Control of ribonuclease and acid phosphatase by auxin and abscisic acid during senescence of Rhoeo leaf sections.

    Science.gov (United States)

    De Leo, P; Sacher, J A

    1970-12-01

    We report the effects of abscisic acid and auxin (alpha-naphthalene acetic acid) on regulation of enzyme synthesis during senescence of leaf sections of Rhoeo discolor Hance. Abscisic acid always accelerates the onset of and enhances the magnitude of the increase in activity of acid phosphatase; this is followed by an acceleration of the onset of a rapid increase in free space.RNase activity increases 2- to 5-fold after cutting of leaf sections. Abscisic acid increases RNase activity and inhibits the rate of incorporation of uridine and leucine in leaf sections removed from plants grown under stress but not favorable conditions. Auxin inhibits the increase in RNase and acid phosphatase and suppresses the effects of abscisic acid. The increase in activity of RNase and acid phosphatase is inhibited by inhibitors of RNA and protein synthesis. This and other evidence suggests that the increases in hydrolase activity could result from new enzyme synthesis. The possible significance of the results in respect of hormonal regulation of enzyme activity and senescence is discussed.

  1. Platelet-Rich Plasma in Treatment of Zoledronic Acid-Induced Bisphosphonate-related Osteonecrosis of the Jaws

    OpenAIRE

    Sarkarat; Kalantar Motamedi; Jahanbani; Sepehri; Kahali; Nematollahi

    2014-01-01

    Background Bisphosphonate-related osteonecrosis of the jaws (BRONJ) is a well-known challenging entity warranting management. Platelet-Rich Plasma (PRP) plays an important role in bone biology by enhancing bone repair and regeneration. Objectives The aim of this animal study was to evaluate the effects of PRP on zoledronic acid-induced BRONJ. Materials and Methods Seven rats were g...

  2. GENETIC ANALYSIS OF ABSCISIC ACID BIOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    MCCARTY D R

    2012-01-10

    The carotenoid cleavage dioxygenases (CCD) catalyze synthesis of a variety of apo-carotenoid secondary metabolites in plants, animals and bacteria. In plants, the reaction catalyzed by the 11, 12, 9-cis-epoxy carotenoid dioxygenase (NCED) is the first committed and key regulated step in synthesis of the plant hormone, abscisic acid (ABA). ABA is a key regulator of plant stress responses and has critical functions in normal root and seed development. The molecular mechanisms responsible for developmental control of ABA synthesis in plant tissues are poorly understood. Five of the nine CCD genes present in the Arabidopsis genome encode NCED's involved in control of ABA synthesis in the plant. This project is focused on functional analysis of these five AtNCED genes as a key to understanding developmental regulation of ABA synthesis and dissecting the role of ABA in plant development. For this purpose, the project developed a comprehensive set of gene knockouts in the AtNCED genes that facilitate genetic dissection of ABA synthesis. These mutants were used in combination with key molecular tools to address the following specific objectives: (1) the role of ABA synthesis in root development; (2) developmental control of ABA synthesis in seeds; (3) analysis of ATNCED over-expressers; (4) preliminary crystallography of the maize VP14 protein.

  3. Roles of Abscisic Acid in Fruit Ripening

    Directory of Open Access Journals (Sweden)

    Sutthiwal SETHA

    2012-12-01

    Full Text Available Abscisic acid (ABA is a plant growth regulator, and it plays a variety of important roles throughout a plant’s life cycle. These roles include seed development and dormancy, plant response to environmental stresses, and fruit ripening. ABA concentration is very low in unripe fruit, but it increases as a fruit ripens, so it is therefore believed that ABA plays an important role in regulating the rate of fruit ripening. This article reviews the effect of ABA on ripening and quality of climacteric and non-climacteric fruits. The effects of ABA application on fruit ripening are subsequently discussed. Moreover, it is found that during fruit ripening, ABA also contributes to other functions, such as ethylene and respiratory metabolism, pigment and color changes, phenolic metabolism and nutritional contents, cell wall metabolism and fruit softening, and sugar and acid metabolism. These processes are all discussed as part of the relationship between ABA and fruit ripening, and the possibilities for its commercial application and use are highlighted.

  4. Abscisic Acid Receptors: Past, Present and Future

    Institute of Scientific and Technical Information of China (English)

    Jianjun Guo; Xiaohan Yang; David J. Weston; Jin-Gui Chen

    2011-01-01

    Abscisic acid (ABA) is the key plant stress hormone. Consistent with the earlier studies in support of the presence of both membrane- and cytoplasm-localized ABA receptors, recent studies have identified multiple ABA receptors located in various subcellular locations. These include a chloroplast envelope-localized receptor (the H subunit of Chloroplast Mg2+-chelatase/ABA Receptor), two plasma membrane-localized receptors (G-protein Coupled Receptor 2 and GPCR-type G proteins),and one cytosol/nucleus-localized Pyrabactin Resistant (PYR)/PYR-Like (PYL)/Regulatory Component of ABA Receptor 1 (RCAR). Although the downstream molecular events for most of the identified ABA receptors are currently unknown, one of them, PYR/PYL/RCAR was found to directly bind and regulate the activity of a long-known central regulator of ABA signaling, the A-group protein phosphatase 2C (PP2C). Together with the Sucrose Non-fermentation Kinase Subfamily 2 (SnRK2s) protein kinases, a central signaling complex (ABA-PYR-PP2Cs-SnRK2s) that is responsible for ABA signal perception and transduction is supported by abundant genetic, physiological, biochemical and structural evidence. The identification of multiple ABA receptors has advanced our understanding of ABA signal perception and transduction while adding an extra layer of complexity.

  5. Autophagy Protects against Palmitic Acid-Induced Apoptosis in Podocytes in vitro.

    Science.gov (United States)

    Jiang, Xu-Shun; Chen, Xue-Mei; Wan, Jiang-Min; Gui, Hai-Bo; Ruan, Xiong-Zhong; Du, Xiao-Gang

    2017-02-22

    Autophagy is a highly conserved degradation process that is involved in the clearance of proteins and damaged organelles to maintain intracellular homeostasis and cell integrity. Type 2 diabetes is often accompanied by dyslipidemia with elevated levels of free fatty acids (FFAs). Podocytes, as an important component of the filtration barrier, are susceptible to lipid disorders. The loss of podocytes causes proteinuria, which is involved in the pathogenesis of diabetic nephropathy. In the present study, we demonstrated that palmitic acid (PA) promoted autophagy in podocytes. We further found that PA increased the production of reactive oxygen species (ROS) in podocytes and that NAC (N-acetyl-cysteine), a potent antioxidant, significantly eliminated the excessive ROS and suppressed autophagy, indicating that the increased generation of ROS was associated with the palmitic acid-induced autophagy in podocytes. Moreover, we also found that PA stimulation decreased the mitochondrial membrane potential in podocytes and induced podocyte apoptosis, while the inhibition of autophagy by chloroquine (CQ) enhanced palmitic acid-induced apoptosis accompanied by increased ROS generation, and the stimulation of autophagy by rapamycin (Rap) remarkably suppressed palmitic acid-induced ROS generation and apoptosis. Taken together, these in vitro findings suggest that PA-induced autophagy in podocytes is mediated by ROS production and that autophagy plays a protective role against PA-induced podocyte apoptosis.

  6. Autophagy Protects against Palmitic Acid-Induced Apoptosis in Podocytes in vitro

    Science.gov (United States)

    Jiang, Xu-shun; Chen, Xue-mei; Wan, Jiang-min; Gui, Hai-bo; Ruan, Xiong-zhong; Du, Xiao-gang

    2017-01-01

    Autophagy is a highly conserved degradation process that is involved in the clearance of proteins and damaged organelles to maintain intracellular homeostasis and cell integrity. Type 2 diabetes is often accompanied by dyslipidemia with elevated levels of free fatty acids (FFAs). Podocytes, as an important component of the filtration barrier, are susceptible to lipid disorders. The loss of podocytes causes proteinuria, which is involved in the pathogenesis of diabetic nephropathy. In the present study, we demonstrated that palmitic acid (PA) promoted autophagy in podocytes. We further found that PA increased the production of reactive oxygen species (ROS) in podocytes and that NAC (N-acetyl-cysteine), a potent antioxidant, significantly eliminated the excessive ROS and suppressed autophagy, indicating that the increased generation of ROS was associated with the palmitic acid-induced autophagy in podocytes. Moreover, we also found that PA stimulation decreased the mitochondrial membrane potential in podocytes and induced podocyte apoptosis, while the inhibition of autophagy by chloroquine (CQ) enhanced palmitic acid-induced apoptosis accompanied by increased ROS generation, and the stimulation of autophagy by rapamycin (Rap) remarkably suppressed palmitic acid-induced ROS generation and apoptosis. Taken together, these in vitro findings suggest that PA-induced autophagy in podocytes is mediated by ROS production and that autophagy plays a protective role against PA-induced podocyte apoptosis. PMID:28225005

  7. Benfotiamine attenuates nicotine and uric acid-induced vascular endothelial dysfunction in the rat.

    Science.gov (United States)

    Balakumar, Pitchai; Sharma, Ramica; Singh, Manjeet

    2008-01-01

    The study has been designed to investigate the effect of benfotiamine, a thiamine derivative, in nicotine and uric acid-induced vascular endothelial dysfunction (VED) in rats. Nicotine (2 mg kg(-1)day(-1), i.p., 4 weeks) and uric acid (150 mg kg(-1)day(-1), i.p., 3 weeks) were administered to produce VED in rats. The development of VED was assessed by employing isolated aortic ring preparation and estimating serum and aortic concentration of nitrite/nitrate. Further, the integrity of vascular endothelium was assessed using the scanning electron microscopy (SEM) of thoracic aorta. Moreover, the oxidative stress was assessed by estimating serum thiobarbituric acid reactive substances (TBARS) and aortic superoxide anion generation. The administration of nicotine and uric acid produced VED by impairing the integrity of vascular endothelium and subsequently decreasing serum and aortic concentration of nitrite/nitrate and attenuating acetylcholine-induced endothelium dependent relaxation. Further, nicotine and uric acid produced oxidative stress, which was assessed in terms of increase in serum TBARS and aortic superoxide generation. However, treatment with benfotiamine (70 mg kg(-1)day(-1), p.o.) or atorvastatin (30 mg kg(-1)day(-1) p.o., a standard agent) markedly prevented nicotine and uric acid-induced VED and oxidative stress by improving the integrity of vascular endothelium, increasing the concentration of serum and aortic nitrite/nitrate, enhancing the acetylcholine-induced endothelium dependent relaxation and decreasing serum TBARS and aortic superoxide anion generation. Thus, it may be concluded that benfotiamine reduces the oxidative stress and consequently improves the integrity of vascular endothelium and enhances the generation of nitric oxide to prevent nicotine and uric acid-induced experimental VED.

  8. Abscisic acid and assimilate partitioning during seed development.

    NARCIS (Netherlands)

    Bruijn, de S.M.

    1993-01-01

    This thesis describes the influence of abscisic acid (ABA) on the transport of assimilates to seeds and the deposition of reserves in seeds. It is well-known from literature that ABA accumulates in seeds during development, and that ABA concentrations in seeds correlate rather well with seed size an

  9. Mitogen-activated protein kinase and abscisic acid signal transduction

    NARCIS (Netherlands)

    Heimovaara-Dijkstra, S.; Testerink, C.; Wang, M.

    1998-01-01

    The phytohormone abscisic acid (ABA) is a classical plant hormone, responsible for regulation of abscission, diverse aspects of plant and seed development, stress responses and germination. It was found that ABA signal transduction in plants can involve the activity of type 2C-phosphatases (PP2C), c

  10. Hypochlorous and peracetic acid induced oxidation of dairy proteins.

    Science.gov (United States)

    Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Aedo, Philip Roger; Ling, Shen Yan; De Meulenaer, Bruno

    2011-02-09

    Hypochlorous and peracetic acids, both known disinfectants in the food industry, were compared for their oxidative capacity toward dairy proteins. Whey proteins and caseins were oxidized under well controlled conditions at pH 8 as a function of the sanitizing concentration. Different markers for protein oxidation were monitored. The results established that the protein carbonyl content was a rather unspecific marker for protein oxidation, which did not allow one to differentiate the oxidant used especially at the lower concentrations. Cysteine, tryptophan, and methionine were proven to be the most vulnerable amino acids for degradation upon hypochlorous and peracetic acid treatment, while tyrosine was only prone to degradation in the presence of hypochlorous acid. Hypochlorous acid induced oxidation gave rise to protein aggregation, while during peracetic acid induced oxidation, no high molecular weight aggregates were observed. Protein aggregation upon hypochlorous acid oxidation could primarily be linked to tryptophan and tyrosine degradation.

  11. UDP-glucosyltransferase71c5, a major glucosyltransferase, mediates abscisic acid homeostasis in Arabidopsis.

    Science.gov (United States)

    Liu, Zhen; Yan, Jin-Ping; Li, De-Kuan; Luo, Qin; Yan, Qiujie; Liu, Zhi-Bin; Ye, Li-Ming; Wang, Jian-Mei; Li, Xu-Feng; Yang, Yi

    2015-04-01

    Abscisic acid (ABA) plays a key role in plant growth and development. The effect of ABA in plants mainly depends on its concentration, which is determined by a balance between biosynthesis and catabolism of ABA. In this study, we characterize a unique UDP-glucosyltransferase (UGT), UGT71C5, which plays an important role in ABA homeostasis by glucosylating ABA to abscisic acid -: glucose ester (GE) in Arabidopsis (Arabidopsis thaliana). Biochemical analyses show that UGT71C5 glucosylates ABA in vitro and in vivo. Mutation of UGT71C5 and down-expression of UGT71C5 in Arabidopsis cause delay in seed germination and enhanced drought tolerance. In contrast, overexpression of UGT71C5 accelerates seed germination and reduces drought tolerance. Determination of the content of ABA and ABA-GE in Arabidopsis revealed that mutation in UGT71C5 and down-expression of UGT71C5 resulted in increased level of ABA and reduced level of ABA-GE, whereas overexpression of UGT71C5 resulted in reduced level of ABA and increased level of ABA-GE. Furthermore, altered levels of ABA in plants lead to changes in transcript abundance of ABA-responsive genes, correlating with the concentration of ABA regulated by UGT71C5 in Arabidopsis. Our work shows that UGT71C5 plays a major role in ABA glucosylation for ABA homeostasis.

  12. Rho Kinase ROCK2 Mediates Acid-Induced NADPH Oxidase NOX5-S Expression in Human Esophageal Adenocarcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Jie Hong

    Full Text Available Mechanisms of the progression from Barrett's esophagus (BE to esophageal adenocarcinoma (EA are not fully understood. We have shown that NOX5-S may be involved in this progression. However, how acid upregulates NOX5-S is not well known. We found that acid-induced increase in NOX5-S expression was significantly decreased by the Rho kinase (ROCK inhibitor Y27632 in BE mucosal biopsies and FLO-1 EA cells. In addition, acid treatment significantly increased the Rho kinase activity in FLO-1 cells. The acid-induced increase in NOX5-S expression and H2O2 production was significantly decreased by knockdown of Rho kinase ROCK2, but not by knockdown of ROCK1. Conversely, the overexpression of the constitutively active ROCK2, but not the constitutively active ROCK1, significantly enhanced the NOX5-S expression and H2O2 production. Moreover, the acid-induced increase in Rho kinase activity and in NOX5-S mRNA expression was blocked by the removal of calcium in both FLO-1 and OE33 cells. The calcium ionophore A23187 significantly increased the Rho kinase activity and NOX5-S mRNA expression. We conclude that acid-induced increase in NOX5-S expression and H2O2 production may depend on the activation of ROCK2, but not ROCK1, in EA cells. The acid-induced activation of Rho kinase may be mediated by the intracellular calcium increase. It is possible that persistent acid reflux present in BE patients may increase the intracellular calcium, activate ROCK2 and thereby upregulate NOX5-S. High levels of reactive oxygen species derived from NOX5-S may cause DNA damage and thereby contribute to the progression from BE to EA.

  13. Rho Kinase ROCK2 Mediates Acid-Induced NADPH Oxidase NOX5-S Expression in Human Esophageal Adenocarcinoma Cells.

    Science.gov (United States)

    Hong, Jie; Li, Dan; Cao, Weibiao

    2016-01-01

    Mechanisms of the progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. We have shown that NOX5-S may be involved in this progression. However, how acid upregulates NOX5-S is not well known. We found that acid-induced increase in NOX5-S expression was significantly decreased by the Rho kinase (ROCK) inhibitor Y27632 in BE mucosal biopsies and FLO-1 EA cells. In addition, acid treatment significantly increased the Rho kinase activity in FLO-1 cells. The acid-induced increase in NOX5-S expression and H2O2 production was significantly decreased by knockdown of Rho kinase ROCK2, but not by knockdown of ROCK1. Conversely, the overexpression of the constitutively active ROCK2, but not the constitutively active ROCK1, significantly enhanced the NOX5-S expression and H2O2 production. Moreover, the acid-induced increase in Rho kinase activity and in NOX5-S mRNA expression was blocked by the removal of calcium in both FLO-1 and OE33 cells. The calcium ionophore A23187 significantly increased the Rho kinase activity and NOX5-S mRNA expression. We conclude that acid-induced increase in NOX5-S expression and H2O2 production may depend on the activation of ROCK2, but not ROCK1, in EA cells. The acid-induced activation of Rho kinase may be mediated by the intracellular calcium increase. It is possible that persistent acid reflux present in BE patients may increase the intracellular calcium, activate ROCK2 and thereby upregulate NOX5-S. High levels of reactive oxygen species derived from NOX5-S may cause DNA damage and thereby contribute to the progression from BE to EA.

  14. In vitro Transient Expression System of Latex C-serum was used for Analysis of Hevein Promoter in Response to Abscisic Acid in Hevea brasiliensis

    Institute of Scientific and Technical Information of China (English)

    Xiao-Wen Fei; Xiao-Dong Deng

    2008-01-01

    Hevein has been found to be an essential element in coagulation of rubber particles in latex of rubber trees. In a previous study, we cloned a 1 241-bp fragment of a 5' upstream region of the hevein gene by genome walking. This fragment was analyzed by a 5' end nested deletion method in the present study, fused with a uidA (gus) gene to produce a series of tested constructs, which were transferred into C-serum of latex and the Gus activities were detected. Results showed that the fragment from -749 to -292 was sufficient for expression of gus gene in latex, and the fragment from -292 to -168 was crucial in response to abscisic acid inducement. In a transient transgenic test of rubber leaf with particle bombardment, construct Hev749 conferred gus-specific expression in veins, in which the latex tubes mainly distributed. This implies that the fragment from -749 to -292 was laticiferous-specific.

  15. Incorporation of oxygen into abscisic Acid and phaseic Acid from molecular oxygen.

    Science.gov (United States)

    Creelman, R A; Zeevaart, J A

    1984-05-01

    Abscisic acid accumulates in detached, wilted leaves of Xanthium strumarium. When these leaves are subsequently rehydrated, phaseic acid, a catabolite of abscisic acid, accumulates. Analysis by gas chromatography-mass spectrometry of phaseic acid isolated from stressed and subsequently rehydrated leaves placed in an atmosphere containing 20% (18)O(2) and 80% N(2) indicates that one atom of (18)O is incorporated in the 6'-hydroxymethyl group of phaseic acid. This suggests that the enzyme that converts abscisic acid to phaseic acid is an oxygenase.Analysis by gas chromatography-mass spectrometry of abscisic acid isolated from stressed leaves kept in an atmosphere containing (18)O(2) indicates that one atom of (18)O is present in the carboxyl group of abscisic acid. Thus, when abscisic acid accumulates in water-stressed leaves, only one of the four oxygens present in the abscisic acid molecule is derived from molecular oxygen. This suggests that either (a) the oxygen present in the 1'-, 4'-, and one of the two oxygens at the 1-position of abscisic acid arise from water, or (b) there exists a stored precursor with oxygen atoms already present in the 1'- and 4'-positions of abscisic acid which is converted to abscisic acid under conditions of water stress.

  16. Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins, and jasmonates.

    Science.gov (United States)

    Piotrowska, Alicja; Bajguz, Andrzej

    2011-12-01

    Phytohormones, including auxins, abscisic acid, brassinosteroids, cytokinins, ethylene, gibberellins, and jasmonates, are involved in all aspects of plant growth, and developmental processes as well as environmental responses. However, our understanding of hormonal homeostasis is far from complete. Phytohormone conjugation is considered as a part of the mechanism to control cellular levels of these compounds. Active phytohormones are changed into multiple forms by acylation, esterification or glycosylation, for example. It seems that conjugated compounds could serve as pool of inactive phytohormones that can be converted to active forms by de-conjugation reactions. Some conjugates are thought to be temporary storage forms, from which free active hormones can be released after hydrolysis. It is also believed that conjugation serves functions, such as irreversible inactivation, transport, compartmentalization, and protection against degradation. The nature of abscisic acid, brassinosteroid, ethylene, gibberellin, and jasmonate conjugates is discussed.

  17. Valproic acid-induced hyperammonaemic coma and unrecognised portosystemic shunt.

    Science.gov (United States)

    Nzwalo, Hipólito; Carrapatoso, Leonor; Ferreira, Fátima; Basilio, Carlos

    2013-06-01

    Hyperammonaemic encephalopathy is a rare and potentially fatal complication of valproic acid treatment. The clinical presentation of hyperammonaemic encephalopathy is wide and includes seizures and coma. We present a case of hyperammonaemic coma precipitated by sodium valproate use for symptomatic epilepsy in a patient with unrecognised portosystemic shunt, secondary to earlier alcoholism. The absence of any stigmata of chronic liver disease and laboratory markers of liver dysfunction delayed the recognition of this alcohol-related complication. The portal vein bypass led to a refractory, valproic acid-induced hyperammonaemic coma. The patient fully recovered after dialysis treatment.

  18. Amoxicillin/clavulanic acid-induced pemphigus vulgaris: case report.

    Science.gov (United States)

    Baroni, Adone; Russo, Teresa; Faccenda, Franco; Piccolo, Vincenzo

    2012-01-01

    Drug-induced pemphigus is a well-established variety of pemphigus, presenting with clinical and histopathologic features identical to idiopathic form. Medical history plays a fundamental role in the diagnosis of drug-induced pemphigus. A large variety of drugs have been implicated in its pathogenesis and they may induce acantholysis via biochemical and/or immune mechanism. We present a case of a 69-year-old woman affected by amoxicillin/clavulanic acid-induced pemphigus and discuss its pathogenetic mechanism.

  19. Exogenous abscisic acid application during grain filling in winter wheat improves cold tolerance of offspring's seedlings

    DEFF Research Database (Denmark)

    Li, X.; Cai, J.; Liu, Fulai

    2014-01-01

    Low temperature seriously depresses seed germination and seedling growth in winter wheat (Triticum aestivum L.). In this study, wheat plants were sprayed with abscisic acid (ABA) and fluridone (inhibitor of ABA biosynthesis) at 19 days after anthesis (DAA) and repeated at 26 DAA. The seeds of those...... plants were harvested, and seed germination and offspring's seedling growth under low temperature were evaluated. The results showed that exogenous ABA application decreased seed weight and slightly reduced seed set and seed number per spike. Under low temperature, seeds from ABA-treated plants showed...... reduced germination rate, germination index, growth of radicle and coleoptile, amylase activity and depressed starch degradation as compared with seeds from non-ABA-treated plants; however, activities of the antioxidant enzymes in both germinating seeds and seedling were enhanced from those exposed...

  20. [Sunitinib and zoledronic acid induced osteonecrosis of the jaw].

    Science.gov (United States)

    Soós, Balázs; Vajta, László; Szalma, József

    2015-11-15

    The tendency for bisphosphonate and non-bisphosphonate (eg.: antiresorptive or anti-angiogenesis drugs) induced osteonecrosis is increasing. Treatment of these patients is a challenge both for dentists and for oral and maxillofacial surgeons. Cooperation with the drug prescribing general medicine colleagues to prevent osteonecrosis is extremely important. Furthermore, prevention should include dental focus elimination, oral hygienic instructions and education, dental follow-up and, in case of manifest necrosis, referral to maxillofacial departments. Authors outline the difficulties of conservative and surgical treatment of a patient with sunitinib and zoledronic acid induced osteonecrosis. The patient became symptomless and the operated area healed entirely six and twelve months postoperatively. A long term success further follow-up is necessary to verify long-term success.

  1. Increased isoprostane levels in oleic acid-induced lung injury

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Koichi [Department of Anesthesiology and Resuscitation, Shinshu University School of Medicine, Matsumoto (Japan); Koizumi, Tomonobu, E-mail: tomonobu@shinshu-u.ac.jp [First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto (Japan); Tsushima, Kenji; Yoshikawa, Sumiko; Yokoyama, Toshiki [First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto (Japan); Nakagawa, Rikimaru [Department of Anesthesiology and Resuscitation, Shinshu University School of Medicine, Matsumoto (Japan); Obata, Toru [Department of Molecular Cell Biology, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo (Japan)

    2009-10-16

    The present study was performed to examine a role of oxidative stress in oleic acid-induced lung injury model. Fifteen anesthetized sheep were ventilated and instrumented with a lung lymph fistula and vascular catheters for blood gas analysis and measurement of isoprostanes (8-epi prostaglandin F2{alpha}). Following stable baseline measurements, oleic acid (0.08 ml/kg) was administered and observed 4 h. Isoprostane was measured by gas chromatography mass spectrometry with the isotope dilution method. Isoprostane levels in plasma and lung lymph were significantly increased 2 h after oleic acid administration and then decreased at 4 h. The percent increases in isoprostane levels in plasma and lung lymph at 2 h were significantly correlated with deteriorated oxygenation at the same time point, respectively. These findings suggest that oxidative stress is involved in the pathogenesis of the pulmonary fat embolism-induced acute lung injury model in sheep and that the increase relates with the deteriorated oxygenation.

  2. Arabidopsis cysteine-rich receptor-like kinase 45 functions in the responses to abscisic acid and abiotic stresses

    KAUST Repository

    Zhang, Xiujuan

    2013-06-01

    The phytohormone abscisic acid (ABA) regulates seed germination, plant growth and development, and response to abiotic stresses such as drought and salt stresses. Receptor-like kinases are well known signaling components that mediate plant responses to developmental and environmental stimuli. Here, we characterized the biological function of an ABA and stress-inducible cysteine-rich receptor-like protein kinase, CRK45, in ABA signaling in Arabidopsis thaliana. The crk45 mutant was less sensitive to ABA than the wild type during seed germination and early seedling development, whereas CRK45 overexpression plants were more sensitive to ABA compared to the wild type. Furthermore, overexpression of CRK45 led to hypersensitivity to salt and glucose inhibition of seed germination, whereas the crk45 mutant showed the opposite phenotypes. In addition, CRK45 overexpression plants had enhanced tolerance to drought. Gene expression analyses revealed that the expression of representative stress-responsive genes was significantly enhanced in CRK45 overexpression plants in response to salt stress. ABA biosynthetic genes such as NCED3,. 22NCED3, 9-Cis-Epoxycarotenoid Dioxygenase 3.NCED5,. 33NCED5, 9-Cis-Epoxycarotenoid Dioxygenase 5.ABA2,. 44ABA2, Abscisic Acid Deficient 2. and AAO355AAO3, Abscisic Aldehyde Oxidase 3. were also constitutively elevated in the CRK45 overexpression plants. We concluded that CRK45 plays an important role in ABA signaling that regulates Arabidopsis seeds germination, early seedling development and abiotic stresses response, by positively regulating ABA responses in these processes. © 2013 Elsevier Masson SAS.

  3. Uprooting an abscisic acid paradigm: Shoots are the primary source.

    Science.gov (United States)

    McAdam, Scott A M; Manzi, Matías; Ross, John J; Brodribb, Timothy J; Gómez-Cadenas, Aurelio

    2016-06-02

    In the past, a conventional wisdom has been that abscisic acid (ABA) is a xylem-transported hormone that is synthesized in the roots, while acting in the shoot to close stomata in response to a decrease in plant water status. Now, however, evidence from two studies, which we have conducted independently, challenges this root-sourced ABA paradigm. We show that foliage-derived ABA has a major influence over root development and that leaves are the predominant location for ABA biosynthesis during drought stress.

  4. Abscisic acid and assimilate partitioning during seed development.

    OpenAIRE

    Bruijn, de, NG Dick

    1993-01-01

    This thesis describes the influence of abscisic acid (ABA) on the transport of assimilates to seeds and the deposition of reserves in seeds. It is well-known from literature that ABA accumulates in seeds during development, and that ABA concentrations in seeds correlate rather well with seed size and seed growth rates. However, since ABA is at least partly synthesized in the leaves and transported to the seeds via the phloem, a correlation between ABA levels and growth rate can easily be expl...

  5. Action of Abscisic Acid on Auxin Transport and its Relation to Phototropism

    DEFF Research Database (Denmark)

    Naqvi, S. M.; Engvild, Kjeld Christensen

    1974-01-01

    The action of abscisic acid on the kinetics of auxin transport through Zea mays L. (cv. Goudster) coleoptiles has been investigated. Abscisic acid applied simultaneously with indoleacetic acid-2-14C in the donor block reduced the transport intensity without materially affecting the basipetal...

  6. Minor Role of Mitochondrial Respiration for Fatty-Acid Induced Insulin Secretion

    Directory of Open Access Journals (Sweden)

    Annette Schürmann

    2013-09-01

    Full Text Available An appropriate insulin secretion by pancreatic beta-cells is necessary to maintain glucose homeostasis. A rise in plasma glucose leads to increased metabolism and an elevated cytoplasmic ATP/ADP ratio that finally triggers insulin granule exocytosis. In addition to this triggering pathway, one or more amplifying pathways—activated by amino acids or fatty acid—enhance secretion by promoting insulin granule recruitment to, and priming at, the plasma membrane. The aim of this study was to clarify the impact of the mitochondrial respiratory activity on fatty acid-induced insulin secretion that was assessed by an extracellular flux analyzer. Treatment of isolated mouse islets with glucose (20 mM increased insulin secretion 18-fold and correlated with ATP-synthesizing respiration. Furthermore, oxygen consumption rate (OCR significantly increased by 62% in response to glucose, whereas the addition of palmitate resulted only in a minor increase of OCR at both 2.8 mM (11% and 20 mM glucose (21%. The addition of palmitate showed a pronounced increase of coupling efficiency (CE at 2.8 mM glucose but no further insulin secretion. However, treatment with palmitate at 20 mM glucose increased insulin secretion about 32-fold accompanied by a small increase in CE. Thus, fatty acid induced respiration has a minor impact on insulin secretion. Our data clearly demonstrate that fatty acids in contrast to glucose play a minor role for respiration-mediated insulin secretion. In the presence of high glucose, fatty acids contribute partially to amplifying pathways of insulin secretion by further increasing mitochondrial activity in the islets of Langerhans.

  7. The Ayurvedic drug, Ksheerabala, ameliorates quinolinic acid-induced oxidative stress in rat brain.

    Science.gov (United States)

    Swathy, S S; Indira, M

    2010-01-01

    One of the mechanisms of neurotoxicity is the induction of oxidative stress. There is hardly any cure for neurotoxicity in modern medicine, whereas many drugs in Ayurveda possess neuroprotective effects; however, there is no scientific validation for these drugs. Ksheerabala is an ayurvedic drug which is used to treat central nervous system disorders, arthritis, and insomnia. The aim of our study was to evaluate the effect of Ksheerabala on quinolinic acid-induced toxicity in rat brain. The optimal dose of Ksheerabala was found from a dose escalation study, wherein it was found that Ksheerabala showed maximum protection against quinolinic acid-induced neurotoxicity at a dose of 15 microL/100 g body weight/day, which was selected for further experiments. Four groups of female albino rats were maintained for 21 days as follows: 1. Control group, 2. Quinolinic acid (55 microg/100 g body weight), 3. Ksheerabala (15 microL/100 g body weight), 4. Ksheerabala (15 microL/100 g body weight) + Quinolinic acid (55 microg/100 g body weight). At the end of the experimental period, levels of lipid peroxidation products, protein carbonyls, and activities of scavenging enzymes were analyzed. The results revealed that quinolinic acid intake caused enhanced lipid and protein peroxidation as evidenced by increased levels of peroxidation products such as malondialdehyde, hydroperoxide, conjugated dienes, and protein carbonyls. On the other hand, the activities of scavenging enzymes such as catalase, superoxide dismutase (SOD), glutathione peroxidase, and glutathione reductase as well as the concentration of glutathione were reduced. On coadminstration of Ksheerabala along with quinolinic acid, the levels of all the biochemical parameters were restored to near-normal levels, indicating the protective effect of the drug. These results were reinforced by histopathological studies.

  8. Structure and rheological properties of acid-induced egg white protein gels

    NARCIS (Netherlands)

    Weijers, M.; Velde, van de F.; Stijnman, A.; Pijpekamp, van de A.; Visschers, R.W.

    2006-01-01

    This study compares the rheological properties of acid-induced gels prepared of industrial spray-dried egg white proteins (EWP) with the acid-induced gels prepared of ovalbumin (OA) and whey protein isolate (WPI). Also we aimed to form transparent gels of EWP by means of the cold-gelation process. W

  9. Caffeic Acid Induces Apoptosis in Human Cervical Cancer Cells Through the Mitochondrial Pathway

    Directory of Open Access Journals (Sweden)

    Wei-Chun Chang

    2010-12-01

    Conclusion: Caffeic acid induces apoptosis by inhibiting Bcl-2 activity, leading to release of cytochrome c and subsequent activation of caspase-3, indicating that caffeic acid induces apoptosis via the mitochondrial apoptotic pathway. This also suggests that caffeic acid has a strong anti-tumor effect and may be a promising chemopreventive or chemotherapeutic agent.

  10. Metformin protects rat hepatocytes against bile acid-induced apoptosis.

    Directory of Open Access Journals (Sweden)

    Titia E Woudenberg-Vrenken

    Full Text Available BACKGROUND: Metformin is used in the treatment of Diabetes Mellitus type II and improves liver function in patients with non-alcoholic fatty liver disease (NAFLD. Metformin activates AMP-activated protein kinase (AMPK, the cellular energy sensor that is sensitive to changes in the AMP/ATP-ratio. AMPK is an inhibitor of mammalian target of rapamycin (mTOR. Both AMPK and mTOR are able to modulate cell death. AIM: To evaluate the effects of metformin on hepatocyte cell death. METHODS: Apoptotic cell death was induced in primary rat hepatocytes using either the bile acid glycochenodeoxycholic acid (GCDCA or TNFα in combination with actinomycin D (actD. AMPK, mTOR and phosphoinositide-3 kinase (PI3K/Akt were inhibited using pharmacological inhibitors. Apoptosis and necrosis were quantified by caspase activation, acridine orange staining and Sytox green staining respectively. RESULTS: Metformin dose-dependently reduces GCDCA-induced apoptosis, even when added 2 hours after GCDCA, without increasing necrotic cell death. Metformin does not protect against TNFα/ActD-induced apoptosis. The protective effect of metformin is dependent on an intact PI3-kinase/Akt pathway, but does not require AMPK/mTOR-signaling. Metformin does not inhibit NF-κB activation. CONCLUSION: Metformin protects against bile acid-induced apoptosis and could be considered in the treatment of chronic liver diseases accompanied by inflammation.

  11. Sphingoid bases inhibit acid-induced demineralization of hydroxyapatite.

    Science.gov (United States)

    Valentijn-Benz, Marianne; van 't Hof, Wim; Bikker, Floris J; Nazmi, Kamran; Brand, Henk S; Sotres, Javier; Lindh, Liselott; Arnebrant, Thomas; Veerman, Enno C I

    2015-01-01

    Calcium hydroxyapatite (HAp), the main constituent of dental enamel, is inherently susceptible to the etching and dissolving action of acids, resulting in tooth decay such as dental caries and dental erosion. Since the prevalence of erosive wear is gradually increasing, there is urgent need for agents that protect the enamel against erosive attacks. In the present study we studied in vitro the anti-erosive effects of a number of sphingolipids and sphingoid bases, which form the backbone of sphingolipids. Pretreatment of HAp discs with sphingosine, phytosphingosine (PHS), PHS phosphate and sphinganine significantly protected these against acid-induced demineralization by 80 ± 17%, 78 ± 17%, 78 ± 7% and 81 ± 8%, respectively (p measurement revealed that HAp discs treated with PHS were almost completely and homogeneously covered by patches of PHS. This suggests that PHS and other sphingoid bases form layers on the surface of HAp, which act as diffusion barriers against H(+) ions. In principle, these anti-erosive properties make PHS and related sphingosines promising and attractive candidates as ingredients in oral care products.

  12. The action of exogenous abscisic and gibberellic acids on gene expression in germinating castor beans.

    Science.gov (United States)

    Dommes, J; Northcote, D H

    1985-09-01

    Exogenously applied abscisic acid inhibits isocitrate-lyase activity of the endosperm during germination of castor-bean seeds. Amounts of isocitrate-lyase mRNA have been estimated by immunoprecipitation of in-vitro-translated polypeptide products. Exogenous abscisic acid leads to an inhibition of isocitrate lyase-mRNA accumulation. A large proportion of this effect of the growth factor may be accounted for by its action in inhibiting the overall accumulation of ribosomal RNA and total mRNA. However, the effect of abscisic acid on protein synthesis is not general, as the production of some mRNAs was stimulated. The major mRNA stored in the dry seed, coding for a 25600-Mr polypeptide that normally disappears within the first 12 h of germination, exhibited high levels in abscisic-acid-treated endosperms throughout the germination period. Three complementary DNA clones, of which two clones are complementary to isocitrate lyase, have been used to measure levels of transcripts during seed germination. The accumulation of both transcripts was inhibited by exogenous abscisic acid. The data strongly indicate that the action of abscisic acid on isocitrate lyase synthesis is either to inhibit the transcription, or to increase the transcript turnover. Exogenous gibberellic acid is able to counteract the inhibitory effects of abscisic acid.

  13. Linoleic acid-induced mitochondrial Ca(2+) efflux causes peroxynitrite generation and protein nitrotyrosylation.

    Science.gov (United States)

    Zhang, Hong-Mei; Dang, Howard; Yeh, Chih-Ko; Zhang, Bin-Xian

    2009-06-26

    It is well known that excessive non-esterified fatty acids in diabetes contribute to the pathogenesis of renal complications although the mechanism remains elusive. Enhanced oxidative stress has been hypothesized as a unified factor contributing to diabetic complications and increased protein nitrotyrosylation has been reported in the kidneys of diabetic patients. In the current manuscript we described that linoleic acid (LA) caused mitochondrial Ca(2+) efflux and peroxynitrite production, along with increased nitrotyrosine levels of cellular proteins in primary human mesangial cells. The peroxynitrite production by LA was found to depend on mitochondrial Ca(2+) efflux. Downregulation of hsp90beta1, which has been previously shown to be essential for polyunsaturated fatty acid-induced mitochondrial Ca(2+) efflux, significantly diminished LA-responsive mitochondrial Ca(2+) efflux and the coupled peroxynitrite generation, implicating a critical role of hsp90beta1 in the LA responses. Our results further demonstrated that mitochondrial complexes I and III were directly involved in the LA-induced peroxynitrite generation. Using the well established type 2 diabetic animal model db/db mice, we observed a dramatically enhanced LA responsive mitochondrial Ca(2+) efflux and protein nitrotyrosylation in the kidney. Our study thus demonstrates a cause-effect relationship between LA and peroxynitrite or protein nitrotyrosylation and provides a novel mechanism for lipid-induced nephropathy in diabetes.

  14. Linoleic Acid-Induced Mitochondrial Ca2+ Efflux Causes Peroxynitrite Generation and Protein Nitrotyrosylation

    Science.gov (United States)

    Zhang, Hong-Mei; Dang, Howard; Yeh, Chih-Ko; Zhang, Bin-Xian

    2009-01-01

    It is well known that excessive non-esterified fatty acids in diabetes contribute to the pathogenesis of renal complications although the mechanism remains elusive. Enhanced oxidative stress has been hypothesized as a unified factor contributing to diabetic complications and increased protein nitrotyrosylation has been reported in the kidneys of diabetic patients. In the current manuscript we described that linoleic acid (LA) caused mitochondrial Ca2+ efflux and peroxynitrite production, along with increased nitrotyrosine levels of cellular proteins in primary human mesangial cells. The peroxynitrite production by LA was found to depend on mitochondrial Ca2+ efflux. Downregulation of hsp90β1, which has been previously shown to be essential for polyunsaturated fatty acid-induced mitochondrial Ca2+ efflux, significantly diminished LA-responsive mitochondrial Ca2+ efflux and the coupled peroxynitrite generation, implicating a critical role of hsp90β1 in the LA responses. Our results further demonstrated that mitochondrial complexes I and III were directly involved in the LA-induced peroxynitrite generation. Using the well established type 2 diabetic animal model db/db mice, we observed a dramatically enhanced LA responsive mitochondrial Ca2+ efflux and protein nitrotyrosylation in the kidney. Our study thus demonstrates a cause-effect relationship between LA and peroxynitrite or protein nitrotyrosylation and provides a novel mechanism for lipid-induced nephropathy in diabetes. PMID:19557129

  15. Linoleic acid-induced mitochondrial Ca(2+ efflux causes peroxynitrite generation and protein nitrotyrosylation.

    Directory of Open Access Journals (Sweden)

    Hong-Mei Zhang

    Full Text Available It is well known that excessive non-esterified fatty acids in diabetes contribute to the pathogenesis of renal complications although the mechanism remains elusive. Enhanced oxidative stress has been hypothesized as a unified factor contributing to diabetic complications and increased protein nitrotyrosylation has been reported in the kidneys of diabetic patients. In the current manuscript we described that linoleic acid (LA caused mitochondrial Ca(2+ efflux and peroxynitrite production, along with increased nitrotyrosine levels of cellular proteins in primary human mesangial cells. The peroxynitrite production by LA was found to depend on mitochondrial Ca(2+ efflux. Downregulation of hsp90beta1, which has been previously shown to be essential for polyunsaturated fatty acid-induced mitochondrial Ca(2+ efflux, significantly diminished LA-responsive mitochondrial Ca(2+ efflux and the coupled peroxynitrite generation, implicating a critical role of hsp90beta1 in the LA responses. Our results further demonstrated that mitochondrial complexes I and III were directly involved in the LA-induced peroxynitrite generation. Using the well established type 2 diabetic animal model db/db mice, we observed a dramatically enhanced LA responsive mitochondrial Ca(2+ efflux and protein nitrotyrosylation in the kidney. Our study thus demonstrates a cause-effect relationship between LA and peroxynitrite or protein nitrotyrosylation and provides a novel mechanism for lipid-induced nephropathy in diabetes.

  16. Arabidopsis YAK1 regulates abscisic acid response and drought resistance

    KAUST Repository

    Kim, Dongjin

    2016-06-06

    Abscisic acid (ABA) is an important phytohormone that controls several plant processes such as seed germination, seedling growth, and abiotic stress response. Here, we report that AtYak1 plays an important role in ABA signaling and postgermination growth in Arabidopsis. AtYak1 knockout mutant plants were hyposensitive to ABA inhibition of seed germination, cotyledon greening, seedling growth, and stomatal movement. atyak1-1 mutant plants display reduced drought stress resistance, as evidenced by water loss rate and survival rate. Molecular genetic analysis revealed that AtYak1 deficiency led to elevated expression of stomatal-related gene, MYB60, and down-regulation of several stress-responsive genes. Altogether, these results indicate that AtYak1 plays a role as a positive regulator in ABA-mediated drought response in Arabidopsis. © 2016 Federation of European Biochemical Societies.

  17. High dose of ascorbic acid induces cell death in mesothelioma cells.

    Science.gov (United States)

    Takemura, Yukitoshi; Satoh, Motohiko; Satoh, Kiyotoshi; Hamada, Hironobu; Sekido, Yoshitaka; Kubota, Shunichiro

    2010-04-02

    Malignant mesothelioma is an asbestos-related fatal disease with no effective cure. Recently, high dose of ascorbate in cancer treatment has been reexamined. We studied whether high dose of ascorbic acid induced cell death of four human mesothelioma cell lines. High dose of ascorbic acid induced cell death of all mesothelioma cell lines in a dose-dependent manner. We further clarified the cell killing mechanism that ascorbic acid induced reactive oxygen species and impaired mitochondrial membrane potential. In vivo experiment, intravenous administration of ascorbic acid significantly decreased the growth rate of mesothelioma tumor inoculated in mice. These data suggest that ascorbic acid may have benefits for patients with mesothelioma.

  18. Effects of Abscisic Acid and of Hydrostatic Pressure Gradient on Water Movement through Excised Sunflower Roots.

    Science.gov (United States)

    Glinka, Z

    1977-05-01

    The effect of abscisic acid on the exudation rate from decapitated roots of sunflower plants (Helianthus annuus L.) was investigated in the presence and absence of an imposed hydrostatic pressure gradient. The magnitude of the abscisic acid effect was constant even when suctions up to 60 cm Hg were applied to the cut stumps.When roots were bathed in a THO-labeled nutrient solution, the course of the appearance of radioactivity in the exudate, expressed as a function of exudate volume, was not affected by abscisic acid treatment but was strongly speeded up by applying suction.The implications of those findings with regard to the water pathway through the root and the location of the abscisic acid effect are discussed.

  19. Tomato ABSCISIC ACID STRESS RIPENING (ASR) Gene Family Revisited: e107117

    National Research Council Canada - National Science Library

    Ido Golan; Pia Guadalupe Dominguez; Zvia Konrad; Doron Shkolnik-Inbar; Fernando Carrari; Dudy Bar-Zvi

    2014-01-01

      Tomato ABSCISIC ACID RIPENING 1 (ASR1) was the first cloned plant ASR gene. ASR orthologs were then cloned from a large number of monocot, dicot and gymnosperm plants, where they are mostly involved in response to abiotic...

  20. Abscisic acid-cytokinin antagonism modulates resistance against pseudomonas syringae in Tobacco

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; van der Graaff, Eric; Roitsch, Thomas Georg

    2014-01-01

    immunity has been described in Arabidopsis, rice, and tobacco. Although interactions of cytokinins with salicylic acid and auxin have been indicated, the complete network of cytokinin interactions with other immunity-relevant phytohormones is not yet understood. Therefore, we studied the interaction...... of kinetin and abscisic acid as a negative regulator of plant immunity to modulate resistance in tobacco against Pseudomonas syringae. By analyzing infection symptoms, pathogen proliferation, and accumulation of the phytoalexin scopoletin as a key mediator of kinetin-induced resistance in tobacco......, antagonistic interaction of these phytohormones in plant immunity was identified. Kinetin reduced abscisic acid levels in tobacco, while increased abscisic acid levels by exogenous application or inhibition of abscisic acid catabolism by diniconazole neutralized kinetin-induced resistance. Based...

  1. Extracellular and intracellular arachidonic acid-induced contractions in rat aorta

    NARCIS (Netherlands)

    Filipeanu, CM; Brailoiu, E; Petrescu, G; Nelemans, SA

    1998-01-01

    Arachidonic acid induced contractions of de-endothelized rat aortic rings. A more potent effect was obtained after intracellular administration of arachidonic acid using liposomes. Contractions induced by extracellular arachidonic acid were inhibited similarly to phenylephrine-induced contractions b

  2. PGC-1alpha inhibits oleic acid induced proliferation and migration of rat vascular smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available BACKGROUND: Oleic acid (OA stimulates vascular smooth muscle cell (VSMC proliferation and migration. The precise mechanism is still unclear. We sought to investigate the effects of peroxisome proliferator-activated receptor gamma (PPARgamma coactivator-1 alpha (PGC-1alpha on OA-induced VSMC proliferation and migration. PRINCIPAL FINDINGS: Oleate and palmitate, the most abundant monounsaturated fatty acid and saturated fatty acid in plasma, respectively, differently affect the mRNA and protein levels of PGC-1alpha in VSMCs. OA treatment resulted in a reduction of PGC-1alpha expression, which may be responsible for the increase in VSMC proliferation and migration caused by this fatty acid. In fact, overexpression of PGC-1alpha prevented OA-induced VSMC proliferation and migration while suppression of PGC-1alpha by siRNA enhanced the effects of OA. In contrast, palmitic acid (PA treatment led to opposite effects. This saturated fatty acid induced PGC-1alpha expression and prevented OA-induced VSMC proliferation and migration. Mechanistic study demonstrated that the effects of PGC-1alpha on VSMC proliferation and migration result from its capacity to prevent ERK phosphorylation. CONCLUSIONS: OA and PA regulate PGC-1alpha expression in VSMCs differentially. OA stimulates VSMC proliferation and migration via suppression of PGC-1alpha expression while PA reverses the effects of OA by inducing PGC-1alpha expression. Upregulation of PGC-1alpha in VSMCs provides a potential novel strategy in preventing atherosclerosis.

  3. Hydrogen peroxide modulates abscisic acid signaling in root growth and development in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    BAI Ling; ZHOU Yun; ZHANG XiaoRan; SONG ChunPeng; Gao MingQing

    2007-01-01

    Exogenous abscisic acid (ABA) can inhibit root growth and promote formation of more root hairs in the root tip of Arabidopsis. However, the molecular mechanisms that underlie root ABA signaling are largely unknown. We report here that hydrogen peroxide (H2O2) reduces the root growth of wild type,and the phenotype of H2O2 on the root growth is similar to ABA response. Meanwhile ABA-induced changes in the morphology of root system can be partly reversed by ascorbic acid in wild type and abolished in NADPH oxidase defective mutant atrbohF and atrbohC. Further, ABA can induce H2O2 accumulation in the root cells and enhance transcription level of OXI1, which is necessary for many more AOS-dependent processes such as root hair growth in Arabidopsis. Our results suggest that H2O2 as an important signal molecule is required for the ABA-regulated root growth and development in Arabidopsis.

  4. ABI4 mediates antagonistic effects of abscisic acid and gibberellins at transcript and protein levels.

    Science.gov (United States)

    Shu, Kai; Chen, Qian; Wu, Yaorong; Liu, Ruijun; Zhang, Huawei; Wang, Pengfei; Li, Yanli; Wang, Shengfu; Tang, Sanyuan; Liu, Chunyan; Yang, Wenyu; Cao, Xiaofeng; Serino, Giovanna; Xie, Qi

    2016-02-01

    Abscisic acid (ABA) and gibberellins (GAs) are plant hormones which antagonistically mediate numerous physiological processes, and their optimal balance is essential for normal plant development. However, the molecular mechanism underlying ABA and GA antagonism still needs to be determined. Here, we report that ABA-INSENSITIVE 4 (ABI4) is a central factor in GA/ABA homeostasis and antagonism in post-germination stages. ABI4 overexpression in Arabidopsis (OE-ABI4) leads to developmental defects including a decrease in plant height and poor seed production. The transcription of a key ABA biosynthetic gene, NCED6, and of a key GA catabolic gene, GA2ox7, is significantly enhanced by ABI4 overexpression. ABI4 activates NCED6 and GA2ox7 transcription by directly binding to the promoters, and genetic analysis revealed that mutation in these two genes partially rescues the dwarf phenotype of ABI4 overexpressing plants. Consistently, ABI4 overexpressing seedlings have a lower GA/ABA ratio than the wild type. We further show that ABA induces GA2ox7 transcription while GA represses NCED6 expression in an ABI4-dependent manner; and that ABA stabilizes the ABI4 protein whereas GA promotes its degradation. Taken together, these results suggest that ABA and GA antagonize each other by oppositely acting on ABI4 transcript and protein levels.

  5. Fern and lycophyte guard cells do not respond to endogenous abscisic acid.

    Science.gov (United States)

    McAdam, Scott A M; Brodribb, Timothy J

    2012-04-01

    Stomatal guard cells regulate plant photosynthesis and transpiration. Central to the control of seed plant stomatal movement is the phytohormone abscisic acid (ABA); however, differences in the sensitivity of guard cells to this ubiquitous chemical have been reported across land plant lineages. Using a phylogenetic approach to investigate guard cell control, we examined the diversity of stomatal responses to endogenous ABA and leaf water potential during water stress. We show that although all species respond similarly to leaf water deficit in terms of enhanced levels of ABA and closed stomata, the function of fern and lycophyte stomata diverged strongly from seed plant species upon rehydration. When instantaneously rehydrated from a water-stressed state, fern and lycophyte stomata rapidly reopened to predrought levels despite the high levels of endogenous ABA in the leaf. In seed plants under the same conditions, high levels of ABA in the leaf prevented rapid reopening of stomata. We conclude that endogenous ABA synthesized by ferns and lycophytes plays little role in the regulation of transpiration, with stomata passively responsive to leaf water potential. These results support a gradualistic model of stomatal control evolution, offering opportunities for molecular and guard cell biochemical studies to gain further insights into stomatal control.

  6. Phenolic compounds in juice of “Isabel” grape treated with abscisic acid for color improvement

    Directory of Open Access Journals (Sweden)

    Yamamoto Lilian Yukari

    2015-01-01

    Full Text Available Isabel grape is the main cultivar used to produce juice in Brazil, which has rusticity and high productivity, but it is deficient in anthocyanins, a pigment responsible for the color. Thus, an alternative is the application of abscisic acid (S-ABA, which is responsible to promote the synthesis of anthocyanins. The aim of this work was to evaluate the phenolic compounds composition in “Isabel” grape juice treated with S-ABA, by HPLC-DAD–ESI-MS/MS technique. The results showed the increasing in total anthocyanin concentration in juices, with S-ABA treatments, as well as the proportion of B-ring tri-substituted anthocyanidins. Regarding total flavonols, differences were only significant in juices obtained in 2012 season. S-ABA treatments did not significantly affect the hydroxycinnamic acid derivatives, flavan-3-ols, resveratrol and antioxidant capacity of juices. Juice from “Isabel” grapes treated with S-ABA provides an enhancement of total anthocyanin concentration, mainly when grapes are treated before or at the onset of véraison.

  7. Abscisic acid (ABA) sensitivity regulates desiccation tolerance in germinated Arabidopsis seeds.

    Science.gov (United States)

    Maia, Julio; Dekkers, Bas J W; Dolle, Miranda J; Ligterink, Wilco; Hilhorst, Henk W M

    2014-07-01

    During germination, orthodox seeds lose their desiccation tolerance (DT) and become sensitive to extreme drying. Yet, DT can be rescued, in a well-defined developmental window, by the application of a mild osmotic stress before dehydration. A role for abscisic acid (ABA) has been implicated in this stress response and in DT re-establishment. However, the path from the sensing of an osmotic cue and its signaling to DT re-establishment is still largely unknown. Analyses of DT, ABA sensitivity, ABA content and gene expression were performed in desiccation-sensitive (DS) and desiccation-tolerant Arabidopsis thaliana seeds. Furthermore, loss and re-establishment of DT in germinated Arabidopsis seeds was studied in ABA-deficient and ABA-insensitive mutants. We demonstrate that the developmental window in which DT can be re-established correlates strongly with the window in which ABA sensitivity is still present. Using ABA biosynthesis and signaling mutants, we show that this hormone plays a key role in DT re-establishment. Surprisingly, re-establishment of DT depends on the modulation of ABA sensitivity rather than enhanced ABA content. In addition, the evaluation of several ABA-insensitive mutants, which can still produce normal desiccation-tolerant seeds, but are impaired in the re-establishment of DT, shows that the acquisition of DT during seed development is genetically different from its re-establishment during germination. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  8. Influence of abscisic acid and sucrose on somatic embryogenesis in Cactus Copiapoa tenuissima Ritt. forma mostruosa.

    Science.gov (United States)

    Lema-Rumińska, J; Goncerzewicz, K; Gabriel, M

    2013-01-01

    Having produced the embryos of cactus Copiapoa tenuissima Ritt. forma monstruosa at the globular stage and callus, we investigated the effect of abscisic acid (ABA) in the following concentrations: 0, 0.1, 1, 10, and 100  μ M on successive stages of direct (DSE) and indirect somatic embryogenesis (ISE). In the indirect somatic embryogenesis process we also investigated a combined effect of ABA (0, 0.1, 1  μ M) and sucrose (1, 3, 5%). The results showed that a low concentration of ABA (0-1  μ M) stimulates the elongation of embryos at the globular stage and the number of correct embryos in direct somatic embryogenesis, while a high ABA concentration (10-100  μ M) results in growth inhibition and turgor pressure loss of somatic embryos. The indirect somatic embryogenesis study in this cactus suggests that lower ABA concentrations enhance the increase in calli fresh weight, while a high concentration of 10  μ M ABA or more changes calli color and decreases its proliferation rate. However, in the case of indirect somatic embryogenesis, ABA had no effect on the number of somatic embryos and their maturation. Nevertheless, we found a positive effect of sucrose concentration for both the number of somatic embryos and the increase in calli fresh weight.

  9. Abscisic Acid: Hidden Architect of Root System Structure

    Directory of Open Access Journals (Sweden)

    Jeanne M. Harris

    2015-08-01

    Full Text Available Plants modulate root growth in response to changes in the local environment, guided by intrinsic developmental genetic programs. The hormone Abscisic Acid (ABA mediates responses to different environmental factors, such as the presence of nitrate in the soil, water stress and salt, shaping the structure of the root system by regulating the production of lateral roots as well as controlling root elongation by modulating cell division and elongation. Curiously, ABA controls different aspects of root architecture in different plant species, perhaps providing some insight into the great diversity of root architecture in different plants, both from different taxa and from different environments. ABA is an ancient signaling pathway, acquired well before the diversification of land plants. Nonetheless, how this ancient signaling module is implemented or interacts within a larger signaling network appears to vary in different species. This review will examine the role of ABA in the control of root architecture, focusing on the regulation of lateral root formation in three plant species, Arabidopsis thaliana, Medicago truncatula and Oryza sativa. We will consider how the implementation of the ABA signaling module might be a target of natural selection, to help contribute to the diversity of root architecture in nature.

  10. Abscisic acid controlled sex before transpiration in vascular plants.

    Science.gov (United States)

    McAdam, Scott A M; Brodribb, Timothy J; Banks, Jo Ann; Hedrich, Rainer; Atallah, Nadia M; Cai, Chao; Geringer, Michael A; Lind, Christof; Nichols, David S; Stachowski, Kye; Geiger, Dietmar; Sussmilch, Frances C

    2016-10-26

    Sexual reproduction in animals and plants shares common elements, including sperm and egg production, but unlike animals, little is known about the regulatory pathways that determine the sex of plants. Here we use mutants and gene silencing in a fern species to identify a core regulatory mechanism in plant sexual differentiation. A key player in fern sex differentiation is the phytohormone abscisic acid (ABA), which regulates the sex ratio of male to hermaphrodite tissues during the reproductive cycle. Our analysis shows that in the fern Ceratopteris richardii, a gene homologous to core ABA transduction genes in flowering plants [SNF1-related kinase2s (SnRK2s)] is primarily responsible for the hormonal control of sex determination. Furthermore, we provide evidence that this ABA-SnRK2 signaling pathway has transitioned from determining the sex of ferns to controlling seed dormancy in the earliest seed plants before being co-opted to control transpiration and CO2 exchange in derived seed plants. By tracing the evolutionary history of this ABA signaling pathway from plant reproduction through to its role in the global regulation of plant-atmosphere gas exchange during the last 450 million years, we highlight the extraordinary effect of the ABA-SnRK2 signaling pathway in plant evolution and vegetation function.

  11. Plants, endosymbionts and parasites: Abscisic acid and calcium signaling.

    Science.gov (United States)

    Nagamune, Kisaburo; Xiong, Liming; Chini, Eduardo; Sibley, L David

    2008-01-01

    It was recently discovered that the protozoan parasite, Toxoplasma gondii produces and uses the plant hormone, abscisic acid (ABA), for communication. Following intracellular replication, ABA production influences the timing of parasite egress from the host cell. This density-dependent signal may serve to coordinate exit from the host cell in a synchronous manner by triggering calcium-dependent activation of motility. In the absence of ABA production, parasites undergo differentiation to the semidormant, tissue cyst. The pathway for ABA production in T. gondii may be derived from a relict endosymbiont, acquired by ingestion of a red algal cell. Although the parasite has lost the capacity for photosynthesis, the plant-like nature of this signaling pathway may be exploited to develop new drugs. In support of this idea, an inhibitor of ABA biosynthesis protected mice against lethal infection with T. gondii. Here, we compare the role of ABA in parasites to its activities in plants, where it is know to control development and stress responses.

  12. Interactions between red light, abscisic acid, and calcium in gravitropism

    Science.gov (United States)

    Leopold, A. C.; LaFavre, A. K.

    1989-01-01

    The effect of red light on orthogravitropism of Merit corn (Zea mays L.) roots has been attributed to its effects on the transduction phase of gravitropism (AC Leopold, SH Wettlaufer [1988] Plant Physiol 87:803-805). In an effort to characterize the orthogravitropic transduction system, comparative experiments have been carried out on the effects of red light, calcium, and abscisic acid (ABA). The red light effect can be completely satisfied with added ABA (100 micromolar) or with osmotic shock, which is presumed to increase endogenous ABA. The decay of the red light effect is closely paralleled by the decay of the ABA effect. ABA and exogenous calcium show strong additive effects when applied to either Merit or a line of corn which does not require red light for orthogravitropism. Measurements of the ABA content show marked increases in endogenous ABA in the growing region of the roots after red light. The interpretation is offered that red light or ABA may serve to increase the cytoplasmic concentrations of calcium, and that this may be an integral part of orthogravitropic transduction.

  13. Design and Functional Characterization of a Novel Abscisic Acid Analog.

    Science.gov (United States)

    Han, Xiaoqiang; Jiang, Lun; Che, Chuanliang; Wan, Chuan; Lu, Huizhe; Xiao, Yumei; Xu, Yanjun; Chen, Zhongzhou; Qin, Zhaohai

    2017-03-08

    The phytohormone abscisic acid (ABA) plays a crucial role in mediating plant growth and development by recruiting genetically redundant ABA receptors. To overcome its oxidation inactivation, we developed a novel ABA analog named 2',3'-benzo-iso-ABA (iso-PhABA) and studied its function and structural characterization with A. thaliana ABA receptors. The (+)-iso-PhABA form showed much higher ABA-like activities than (+)-ABA including inhibitory effects on the seed germination of lettuce and A. thaliana, wheat embryo germination and rice seedling elongation. The PP2C (protein phosphatases 2C) activity assay showed that (+)-iso-PhABA acted as a potent and selective ABA receptor agonist, which is preferred to PYL10. In some cases, (-)-iso-PhABA showed moderate to high activity for the PYL protein inhibiting PP2C activity, suggesting different mechanisms of action of iso-PhABA and ABA. The complex crystal structure of iso-PhABA with PYL10 was determined and elucidated successfully, revealing that (+)-iso-PhABA was better coordinated in the same binding pocket compared to (+)-ABA. Moreover, the detailed interaction network of iso-PhABA/PYL10 was disclosed and involves hydrogen bonds and multiple hydrophobic interactions that provide a robust framework for the design of novel ABA receptor agonists/antagonists.

  14. Structural basis and functions of abscisic acid receptors PYLs

    Science.gov (United States)

    Zhang, Xing L.; Jiang, Lun; Xin, Qi; Liu, Yang; Tan, Jian X.; Chen, Zhong Z.

    2015-01-01

    Abscisic acid (ABA) plays a key role in many developmental processes and responses to adaptive stresses in plants. Recently, a new family of nucleocytoplasmic PYR/PYL/RCAR (PYLs) has been identified as bona fide ABA receptors. PYLs together with protein phosphatases type-2C (PP2Cs), Snf1 (Sucrose-non-fermentation 1)-related kinases subfamily 2 (SnRK2s) and downstream substrates constitute the core ABA signaling network. Generally, PP2Cs inactivate SnRK2s kinases by physical interaction and direct dephosphorylation. Upon ABA binding, PYLs change their conformations and then contact and inhibit PP2Cs, thus activating SnRK2s. Here, we reviewed the recent progress in research regarding the structures of the core signaling pathways of ABA, including the (+)-ABA, (−)-ABA and ABA analogs pyrabactin as well as 6AS perception by PYLs, SnRK2s mimicking PYLs in binding PP2Cs. PYLs inhibited PP2Cs in both the presence and absence of ABA and activated SnRK2s. The present review elucidates multiple ABA signal perception and transduction by PYLs, which might shed light on how to design small chemical compounds for improving plant performance in the future. PMID:25745428

  15. Tranexamic acid induces kaolin intake stimulating a pathway involving tachykinin neurokinin 1 receptors in rats.

    Science.gov (United States)

    Kakiuchi, Hitoshi; Kawarai-Shimamura, Asako; Kuwagata, Makiko; Orito, Kensuke

    2014-01-15

    Tranexamic acid suppresses post-partum haemorrhage and idiopathic menorrhagia through its anti-fibrinolytic action. Although it is clinically useful, it is associated with high risks of side effects such as emesis. Understanding the mechanisms underlying tranexamic acid-induced emesis is very important to explore appropriate anti-emetic drugs for the prevention and/or suppression of emesis. In this study, we examined the receptors involved in tranexamic acid-induced kaolin intake in rats, which reflects the drug's clinical emetogenic potential in humans. Further, we examined the brain regions activated by administration of tranexamic acid and elucidated pivotal pathways of tranexamic acid-induced kaolin intake. We examined the effects of ondansetron, a 5-hydroxytryptamine 3 receptor antagonist, domperidone, a dopamine 2 receptor antagonist, and aprepitant, a tachykinin neurokinin 1 (NK1) receptor antagonist, on tranexamic acid-induced kaolin intake in rats. Then, we determined the brain regions that showed increased numbers of c-Fos immunoreactive cells. Finally, we examined the effects of an antagonist(s) that reduced tranexamic acid-induced kaolin intake on the increase in c-Fos immunoreactive cells. Aprepitant significantly decreased tranexamic acid-induced kaolin intake. However, neither ondansetron nor domperidone decreased kaolin intake. Tranexamic acid significantly increased c-Fos immunoreactive cells by approximately 5.5-fold and 22-fold in the area postrema and nucleus of solitary tract, respectively. Aprepitant decreased the number of c-Fos immunoreactive cells in both areas. Tranexamic acid induced kaolin intake possibly via stimulation of tachykinin NK1 receptors in rats. The tachykinin NK1 receptor could be targeted to prevent and/or suppress emesis in patients receiving tranexamic acid. © 2013 Published by Elsevier B.V.

  16. Effects of mechanical stress or abscisic acid on growth, water status and leaf abscisic acid content of eggplant seedlings

    Science.gov (United States)

    Latimer, J. G.; Mitchell, C. A.

    1988-01-01

    Container-grown eggplant (Solanum melongena L. var esculentum Nees. 'Burpee's Black Beauty') seedlings were conditioned with brief, periodic mechanical stress or abscisic acid (ABA) in a greenhouse prior to outdoor exposure. Mechanical stress consisted of seismic (shaking) or thigmic (stem flexing) treatment. Exogenous ABA (10(-3) or 10(-4)M) was applied as a soil drench 3 days prior to outdoor transfer. During conditioning, only thigmic stress reduced stem elongation and only 10(-3) M ABA reduced relative growth rate (RGR). Both conditioning treatments increased leaf specific chlorophyll content, but mechanical stress did not affect leaf ABA content. Outdoor exposure of unconditioned eggplant seedlings decreased RGR and leaf-specific chlorophyll content, but tended to increase leaf ABA content relative to that of plants maintained in the greenhouse. Conditioning did not affect RGR of plants subsequently transferred outdoors, but did reduce stem growth. Seismic stress applied in the greenhouse reduced dry weight gain by plants subsequently transferred outdoors. Mechanical stress treatments increased leaf water potential by 18-25% relative to that of untreated plants.

  17. Patterns of auxin and abscisic acid movement in the tips of gravistimulated primary roots of maize

    Science.gov (United States)

    Young, L. M.; Evans, M. L.

    1996-01-01

    Because both abscisic acid (ABA) and auxin (IAA) have been suggested as possible chemical mediators of differential growth during root gravitropism, we compared with redistribution of label from applied 3H-IAA and 3H-ABA during maize root gravitropism and examined the relative basipetal movement of 3H-IAA and 3H-ABA applied to the caps of vertical roots. Lateral movement of 3H-ABA across the tips of vertical roots was non-polar and about 2-fold greater than lateral movement of 3H-IAA (also non-polar). The greater movement of ABA was not due to enhanced uptake since the uptake of 3H-IAA was greater than that of 3H-ABA. Basipetal movement of label from 3H-IAA or 3H-ABA applied to the root cap was determined by measuring radioactivity in successive 1 mm sections behind the tip 90 minutes after application. ABA remained largely in the first mm (point of application) whereas IAA was concentrated in the region 2-4 mm from the tip with substantial levels found 7-8 mm from the tip. Pretreatment with inhibitors of polar auxin transport decreased both gravicurvature and the basipetal movement of IAA. When roots were placed horizontally, the movement of 3H-IAA from top to bottom across the cap was enhanced relative to movement from bottom to top whereas the pattern of movement of label from 3H-ABA was unaffected. These results are consistent with the hypothesis that IAA plays a role in root gravitropism but contrary to the idea that gravi-induced asymmetric distribution of ABA contributes to the response.

  18. Exogenous Abscisic Acid Mimics Cold Acclimation for Cacti Differing in Freezing Tolerance.

    Science.gov (United States)

    Loik, M. E.; Nobel, P. S.

    1993-11-01

    The responses to low temperature were determined for two species of cacti sensitive to freezing, Ferocactus viridescens and Opuntia ficus-indica, and a cold hardy species, Opuntia fragilis. Fourteen days after shifting the plants from day/night air temperatures of 30/20[deg]C to 10/0[deg]C, the chlorenchyma water content decreased only for O. fragilis. This temperature shift caused the freezing tolerance (measured by vital stain uptake) of chlorenchyma cells to be enhanced only by about 2.0[deg]C for F. viridescens and O. ficus-indica but by 14.6[deg]C for O. fragilis. Also, maintenance of high water content by injection of water into plants at 10/0[deg]C reversed the acclimation. The endogenous abscisic acid (ABA) concentration was below 0.4 pmol g-1 fresh weight at 30/20[deg]C, but after 14 d at 10/0[deg]C it increased to 84 pmol g-1 fresh weight for O. ficus-indica and to 49 pmol g-1 fresh weight for O. fragilis. Four days after plants were sprayed with 7.5 x 10-5 M ABA at 30/20[deg]C, freezing tolerance was enhanced by 0.5[deg]C for F. viridescens, 4.1[deg]C for O. ficus-indica, and 23.4[deg]C for O. fragilis. Moreover, the time course for the change in freezing tolerance over 14 d was similar for plants shifted to low temperatures as for plants treated with exogenous ABA at moderate temperatures. Decreases in plant water content and increases in ABA concentration may be important for low-temperature acclimation by cacti, especially O. fragilis, which is widely distributed in Canada and the United States.

  19. Abscisic acid ameliorates the systemic sclerosis fibroblast phenotype in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Bruzzone, Santina, E-mail: santina.bruzzone@unige.it [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Advanced Biotechnology Center, Largo Rosanna Benzi 10, 16132 Genova (Italy); Battaglia, Florinda [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Mannino, Elena [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Parodi, Alessia [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Fruscione, Floriana [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Advanced Biotechnology Center, Largo Rosanna Benzi 10, 16132 Genova (Italy); Basile, Giovanna [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Salis, Annalisa; Sturla, Laura [Department of Experimental Medicine, Section of Biochemistry, University of Genova, Viale Benedetto XV 1, 16132 Genova (Italy); Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Negrini, Simone; Kalli, Francesca; Stringara, Silvia [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Filaci, Gilberto [Centre of Excellence for Biomedical Research, University of Genova, Viale Benedetto XV 9, 16132 Genova (Italy); Department of Internal Medicine, Viale Benedetto XV 6, 16132 Genova (Italy); and others

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer ABA is an endogenous hormone in humans, regulating different cell responses. Black-Right-Pointing-Pointer ABA reverts some of the functions altered in SSc fibroblasts to a normal phenotype. Black-Right-Pointing-Pointer UV-B irradiation increases ABA content in SSc cultures. Black-Right-Pointing-Pointer SSc fibroblasts could benefit from exposure to ABA and/or to UV-B. -- Abstract: The phytohormone abscisic acid (ABA) has been recently identified as an endogenous hormone in humans, regulating different cell functions, including inflammatory processes, insulin release and glucose uptake. Systemic sclerosis (SSc) is a chronic inflammatory disease resulting in fibrosis of skin and internal organs. In this study, we investigated the effect of exogenous ABA on fibroblasts obtained from healthy subjects and from SSc patients. Migration of control fibroblasts induced by ABA was comparable to that induced by transforming growth factor-{beta} (TGF-{beta}). Conversely, migration toward ABA, but not toward TGF-{beta}, was impaired in SSc fibroblasts. In addition, ABA increased cell proliferation in fibroblasts from SSc patients, but not from healthy subjects. Most importantly, presence of ABA significantly decreased collagen deposition by SSc fibroblasts, at the same time increasing matrix metalloproteinase-1 activity and decreasing the expression level of tissue inhibitor of metalloproteinase (TIMP-1). Thus, exogenously added ABA appeared to revert some of the functions altered in SSc fibroblasts to a normal phenotype. Interestingly, ABA levels in plasma from SSc patients were found to be significantly lower than in healthy subjects. UV-B irradiation induced an almost 3-fold increase in ABA content in SSc cultures. Altogether, these results suggest that the fibrotic skin lesions in SSc patients could benefit from exposure to high(er) ABA levels.

  20. In vitro reconstitution of an abscisic acid signalling pathway

    KAUST Repository

    Fujii, Hiroaki

    2009-11-18

    The phytohormone abscisic acid (ABA) regulates the expression of many genes in plants; it has critical functions in stress resistance and in growth and development. Several proteins have been reported to function as ABA receptors, and many more are known to be involved in ABA signalling. However, the identities of ABA receptors remain controversial and the mechanism of signalling from perception to downstream gene expression is unclear. Here we show that by combining the recently identified ABA receptor PYR1 with the type 2C protein phosphatase (PP2C) ABI1, the serine/threonine protein kinase SnRK2.6/OST1 and the transcription factor ABF2/AREB1, we can reconstitute ABA-triggered phosphorylation of the transcription factor in vitro. Introduction of these four components into plant protoplasts results in ABA-responsive gene expression. Protoplast and test-tube reconstitution assays were used to test the function of various members of the receptor, protein phosphatase and kinase families. Our results suggest that the default state of the SnRK2 kinases is an autophosphorylated, active state and that the SnRK2 kinases are kept inactive by the PP2Cs through physical interaction and dephosphorylation. We found that in the presence of ABA, the PYR/PYL (pyrabactin resistance 1/PYR1-like) receptor proteins can disrupt the interaction between the SnRK2s and PP2Cs, thus preventing the PP2C-mediated dephosphorylation of the SnRK2s and resulting in the activation of the SnRK2 kinases. Our results reveal new insights into ABA signalling mechanisms and define a minimal set of core components of a complete major ABA signalling pathway. © 2009 Macmillan Publishers Limited. All rights reserved.

  1. Transcriptional Responses to Gibberellin and Abscisic Acid in Barley Aleurone

    Institute of Scientific and Technical Information of China (English)

    Kegui Chen; Yong-Qiang Charles An

    2006-01-01

    Cereal aleurone has been established as a model system to investigate giberrellin (GA) and abscisic acid (ABA) responses. Using Barley 1 GeneChip, we examined the mRNA accumulation of over 22 000 genes in de-embryonated barley aleurone treated with GA and ABA. We observed that 1328 genes had more than a threefold change in response to GA treatment, whereas 206 genes had a more than threefold change in response to ABA treatment. Interestingly, approximately 2.5-fold more genes were up-regulated than downregulated by ABA. Eighty-three genes were differentially regulated by both GA and ABA. Most of the genes were subject to antagonistic regulation by ABA and GA, particularly for genes related to seed maturation and germination, such as genes encoding late embryogenesis abundant proteins and storage mobilization enzymes. This supports the antagonistic roles of GA and ABA in seed maturation and seed germination.Interestingly, we observed that a significant percentage of the genes were coordinately regulated by both GA and ABA. Some GA-responsive genes encoded proteins involved in ethylene, jasmonate, brassinosteroid and auxin metabolic and signaling transduction pathways, suggesting their potential interaction with the GA response. We also identified a group of transcription factor genes, such as MYB and Homeobox genes, that were differentially regulated by GA. In addition, a number of GA- and/or ABA-responsive genes encoded components potentially involved in GA and ABA signal transduction pathway. Overall, the present study provides a comprehensive and global view of transcript expression accompanying the GA and ABA response in barley aleurone and identifies a group of genes with potential regulatory functions in GA- and ABA-signaling pathways for future functional validation.

  2. The role of cis-carotenoids in abscisic acid biosynthesis.

    Science.gov (United States)

    Parry, A D; Babiano, M J; Horgan, R

    1990-08-01

    Evidence has been obtained which is consistent with 9'-cis-neoxanthin being a major precursor of abscisic acid (ABA) in higher plants. A mild, rapid procedure was developed for the extraction and analysis of carotenoids from a range of tissues. Once purified the carotenoids were identified from their light-absorbance properties, reactions with dilute acid, high-performance liquid chromatography Rts, mass spectra and the quasiequilibria resulting from iodine-catalysed or chlorophyllsensitised photoisomerisation. Two possible ABA precursors, 9'-cis-neoxanthin and 9-cis-violaxanthin, were identified in extracts of light-grown and etiolated leaves (of Lycopersicon esculentum, Phaseolus vulgaris, Vicia faba, Pisum sativum, Cicer arietinum, Zea mays, Nicotiana plumbaginifolia, Plantago lanceolata and Digitalis purpurea), and roots of light-grown and etiolated plants (Lycopersicon, Phaseolus and Zea). The 9,9'-di-cisisomer of violaxanthin was synthesised but its presence was not detected in any extracts. Levels of 9'-cis-neoxanthin and all-trans-violaxanthin were between 20- to 100-fold greater than those of ABA in light-grown leaves. The levels of 9-cis-violaxanthin were similar to those of ABA but unaffected by water stress. Etiolated Phaseolus leaves contained reduced amounts of carotenoids (15-20% compared with light-grown leaves) but retained the ability to synthesise large amounts of ABA. The amounts of ABA synthesised, measured as increases in ABA and its metabolites phaseic acid and dihydrophaseic acid, were closely matched by decreases in the levels of 9'-cis-neoxanthin and all-trans-violaxanthin. In etiolated seedlings grown on 50% D2O, deuterium incorporation into ABA was similar to that into the xanthophylls. Relative levels of carotenoids in roots and light-grown and etiolated leaves of the ABA-deficient mutants, notabilis, flacca and sitiens were the same as those found in wild-type tomato tissues.

  3. Abscisic Acid Biosynthesis in Leaves and Roots of Xanthium strumarium.

    Science.gov (United States)

    Creelman, R A; Gage, D A; Stults, J T; Zeevaart, J A

    1987-11-01

    RESEARCH ON THE BIOSYNTHESIS OF ABSCISIC ACID (ABA) HAS FOCUSED PRIMARILY ON TWO PATHWAYS: (a) the direct pathway from farnesyl pyrophosphate, and (b) the indirect pathway involving a carotenoid precursor. We have investigated which biosynthetic pathway is operating in turgid and stressed Xanthium leaves, and in stressed Xanthium roots using long-term incubations in (18)O(2). It was found that in stressed leaves three atoms of (18)O from (18)O(2) are incorporated into the ABA molecule, and that the amount of (18)O incorporated increases with time. One (18)O atom is incorporated rapidly into the carboxyl group of ABA, whereas the other two atoms are very slowly incorporated into the ring oxygens. The fourth oxygen atom in the carboxyl group of ABA is derived from water. ABA from stressed roots of Xanthium incubated in (18)O(2) shows a labeling pattern similar to that of ABA in stressed leaves, but with incorporation of more (18)O into the tertiary hydroxyl group at C-1' after 6 and 12 hours than found in ABA from stressed leaves. It is proposed that the precursors to stress-induced ABA are xanthophylls, and that a xanthophyll lacking an oxygen function at C-6 (carotenoid numbering scheme) plays a crucial role in ABA biosynthesis in Xanthium roots. In turgid Xanthium leaves, (18)O is incorporated into ABA to a much lesser extent than it is in stressed leaves, whereas exogenously applied (14)C-ABA is completely catabolized within 48 hours. This suggests that ABA in turgid leaves is either (a) made via a biosynthetic pathway which is different from the one in stressed leaves, or (b) has a half-life on the order of days as compared with a half-life of 15.5 hours in water-stressed Xanthium leaves. Phaseic acid showed a labeling pattern similar to that of ABA, but with an additional (18)O incorporated during 8'-hydroxylation of ABA to phaseic acid.

  4. Palmitic acid-induced apoptosis in pancreatic β-cells is increased by liver X receptor agonist and attenuated by eicosapentaenoate.

    Science.gov (United States)

    Liang, Huasheng; Zhong, Yuhua; Zhou, Shaobi; Li, Qingdi Quentin

    2011-01-01

    Saturated fatty acids are implicated in the development of diabetes via the impairment of pancreatic islet β-cell viability and function. Liver X receptors (LXRs) and eicosapentaenoate (EPA) are known regulators of fatty acid metabolism. However, their roles in the pathogenesis of diabetes remain incompletely understood. The aim of this study was to determine the effects of EPA and the LXR agonist T0901317 on saturated fatty acid (palmitic acid)-induced apoptosis in the insulinoma β-cell line INS-1, a model for insulin-secreting β-cells. T0901317 significantly promoted palmitic acid-induced apoptotic cell death in the INS-1 cells. Consistent with these results, caspase-3 activity and BAX and sterol regulatory element binding protein-1c (SREBP-1c) mRNA levels were markedly increased in INS-1 cells co-administered palmitic acid and T0901317. The production of reactive oxygen species was considerably higher in the cells cultured concurrently with T0901317 and palmitic acid than in the cells incubated with either agent alone. EPA treatment attenuated the cellular death promoted by palmitic acid and T0901317 in the INS-1 cells, disclosing a possible mediating mechanism involving the inhibition of SREBP-1c. Finally, T0901317 up-regulated the palmitic acid-induced expression of p27(KIP1), transforming growth factor beta 1, and SMAD3 proteins in INS-1 cells. These results demonstrate that palmitic acid-induced apoptosis in β-cells is enhanced by T0901317 via the activation of LXRs and is blocked by EPA via the inhibition of SREBP-1c, suggesting that the regulation of lipogenesis and lipotoxicity affecting pancreatic β-cell viability and insulin production may be a unique strategy for diabetes therapy.

  5. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor.

    Science.gov (United States)

    Jia, Haifeng; Jiu, Songtao; Zhang, Cheng; Wang, Chen; Tariq, Pervaiz; Liu, Zhongjie; Wang, Baoju; Cui, Liwen; Fang, Jinggui

    2016-10-01

    Although great progress has been made towards understanding the role of abscisic acid (ABA) and sucrose in fruit ripening, the mechanisms underlying the ABA and sucrose signalling pathways remain elusive. In this study, transcription factor ABA-stress-ripening (ASR), which is involved in the transduction of ABA and sucrose signalling pathways, was isolated and analysed in the nonclimacteric fruit, strawberry and the climacteric fruit, tomato. We have identified four ASR isoforms in tomato and one in strawberry. All ASR sequences contained the ABA stress- and ripening-induced proteins and water-deficit stress-induced proteins (ABA/WDS) domain and all ASR transcripts showed increased expression during fruit development. The expression of the ASR gene was influenced not only by sucrose and ABA, but also by jasmonic acid (JA) and indole-3-acetic acid (IAA), and these four factors were correlated with each other during fruit development. ASR bound the hexose transporter (HT) promoter, which contained a sugar box that activated downstream gene expression. Overexpression of the ASR gene promoted fruit softening and ripening, whereas RNA interference delayed fruit ripening, as well as affected fruit physiological changes. Change in ASR gene expression influenced the expression of several ripening-related genes such as CHS, CHI, F3H, DFR, ANS, UFGT, PG, PL, EXP1/2, XET16, Cel1/2 and PME. Taken together, this study may provide new evidence on the important role of ASR in cross-signalling between ABA and sucrose to regulate tomato and strawberry fruit ripening. The findings of this study also provide new insights into the regulatory mechanism underlying fruit development.

  6. Isolation of Abscisic Acid from Korean Acacia Honey with Anti-Helicobacter pylori Activity.

    Science.gov (United States)

    Kim, SeGun; Hong, InPyo; Woo, SoonOk; Jang, HyeRi; Pak, SokCheon; Han, SangMi

    2017-07-01

    Helicobacter pylori (H. pylori) is linked to the development of the majority of peptic ulcers and some types of gastric cancers, and its antibiotic resistance is currently found worldwide. This study is aimed at evaluating the anti-H. pylori activity of Korean acacia honey and isolating the related active components using organic solvents. The crude acacia honey was extracted with n-hexane, dichloromethane, ethyl acetate (EtOAc), and n-butanol. The EtOAc extract was subjected to octadecyl-silica chromatography. The extracts and fractions were then examined for anti-H. pylori activity using the agar well diffusion method. The antimicrobial activity of abscisic acid against H. pylori was investigated by determining the minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), and by performing a time-kill assay. Abscisic acid related to the botanical origins of acacia honey from Korea has been analyzed using ultra-performance liquid chromatography. The MICs and MBCs of abscisic acid were 2.7 ± 1.3 and 6.9 ± 1.9 μg/mL, respectively. The bactericidal activity of abscisic acid (at 10.8 μg/mL corresponding to 4 × MIC) killed the organism within 36-72 h. These results suggest that abscisic acid isolated from Korean acacia honey has antibacterial activity against H. pylori. Abscisic acid isolated from Korean acacia honey can be therapeutic and may be further exploited as a potential lead candidate for the development of treatments for H. pylori-induced infections. The crude acacia honey was extracted with n-hexane, dichloromethane, EtOAc, and n-butanolThe EtOAc extract yielded eight fractions and four subfractions were subsequently obtained chromatographicallyAbscisic acid was isolated from one subfractionAll the solvent extracts and fractions showed antibacterial activity against H. pyloriAbscisic acid exhibited antibacterial activity against H. pylori. Abbreviations used: MeOH: Methanol; EtOAc: Ethyl acetate; TSB: Trypticase soy broth

  7. The Pepper CaOSR1 Protein Regulates the Osmotic Stress Response via Abscisic Acid Signaling.

    Science.gov (United States)

    Park, Chanmi; Lim, Chae Woo; Lee, Sung Chul

    2016-01-01

    Plants are sessile organisms, and their growth and development is detrimentally affected by environmental stresses such as drought and high salinity. Defense mechanisms are tightly regulated and complex processes, which respond to changing environmental conditions; however, the precise mechanisms that function under adverse conditions remain unclear. Here, we report the identification and functional characterization of the CaOSR1 gene, which functions in the adaptive response to abiotic stress. We found that CaOSR1 gene expression in pepper leaves was up-regulated after exposure to abscisic acid (ABA), drought, and high salinity. In addition, we demonstrated that the fusion protein of CaOSR1 with green fluorescent protein (GFP) is localized in the nucleus. We used CaOSR1-silenced pepper plants and CaOSR1-OX-overexpressing (OX) transgenic Arabidopsis plants to show that the CaOSR1 protein regulates the osmotic stress response. CaOSR1-silenced pepper plants showed increased drought susceptibility, and this was accompanied by a high transpiration rate. CaOSR1-OX plants displayed phenotypes that were hypersensitive to ABA and hyposensitive to osmotic stress, during the seed germination and seedling growth stages; furthermore, these plants exhibited enhanced drought tolerance at the adult stage, and this was characterized by higher leaf temperatures and smaller stomatal apertures because of ABA hypersensitivity. Taken together, our data indicate that CaOSR1 positively regulates osmotic stress tolerance via ABA-mediated cell signaling. These findings suggest an involvement of a novel protein in ABA and osmotic stress signalings in plants.

  8. Effects of exogenous abscisic acid on yield, antioxidant capacities, and phytochemical contents of greenhouse grown lettuces.

    Science.gov (United States)

    Li, Zheng; Zhao, Xin; Sandhu, Amandeep K; Gu, Liwei

    2010-05-26

    Antioxidants and phytochemicals in vegetables are known to provide health benefits. Strategies that enhance these properties are expected to increase the nutritional values of vegetables. The objective of this research is to assess the effects of exogenous abscisic acid (ABA) on yield, antioxidant capacities, and phytochemical content of lettuces grown in a greenhouse. Red loose leaf lettuce (cv. Galactic) and green loose leaf lettuce (cv. Simpson Elite) were cultivated using a randomized complete block design. Three concentrations of ABA in water [0 (control), 150, 300 ppm] were sprayed on the 30th and 39th days after sowing, and lettuces were harvested on the 46th day. Exogenous ABA significantly decreased yield of green and red lettuces. Total phenolic and total anthocyanin contents in red lettuce treated with ABA were significantly higher than in controls, whereas no significant differences were observed in green lettuce. ABA significantly induced the accumulation of chlorophyll b and total carotenoids in lettuces. The phenolic compounds identified and quantified in red and green lettuces included caffeoyltartaric acid, 5-O-caffeoylquinic acid, dicaffeoyltartaric acid, 3,5-dicaffeoylquinic acid, and quercetin 3-(6''-malonyl)-glucoside. Additionally, cyanidin 3-glucoside, cyanidin 3-(3''-malonoyl)-glucoside, and cyanidin 3-(6''-malonoyl)-glucoside in red lettuces were quantified. No significant effects of ABA on these individual phytochemicals were observed in green lettuces, whereas ABA significantly elevated the content of individual phytochemicals in red lettuces except for 5-O-caffeoylquinic acid. Differences among red lettuces with or without exogenous ABA were visualized on the score plots of principal component analyses. Loading plot indicated that multiple phenolic compounds contributed to the observed differences in red lettuces.

  9. Abscisic acid in salt stress predisposition to phytophthora root and crown rot in tomato and chrysanthemum.

    Science.gov (United States)

    Dileo, Matthew V; Pye, Matthew F; Roubtsova, Tatiana V; Duniway, John M; Macdonald, James D; Rizzo, David M; Bostock, Richard M

    2010-09-01

    Plants respond to changes in the environment with complex signaling networks, often under control of phytohormones that generate positive and negative crosstalk among downstream effectors of the response. Accordingly, brief dehydration stresses such as salinity and water deficit, which induce a rapid and transient systemic increase in levels of abscisic acid (ABA), can influence disease response pathways. ABA has been associated with susceptibility of plants to bacteria, fungi, and oomycetes but relatively little attention has been directed at its role in abiotic stress predisposition to root pathogens. This study examines the impact of brief salinity stress on infection of tomato and chrysanthemum roots by Phytophthora spp. Roots of plants in hydroponic culture exposed to a brief episode of salt (sodium chloride) stress prior to or after inoculation were severely diseased relative to nonstressed plants. Tomato roots remained in a predisposed state up to 24 h following removal from the stress. An increase in root ABA levels in tomato preceded or temporally paralleled the onset of stress-induced susceptibility, with levels declining in roots prior to recovery from the predisposed state. Exogenous ABA could substitute for salt stress and significantly enhanced pathogen colonization and disease development. ABA-deficient tomato mutants lacked the predisposition response, which could be restored by complementation of the mutant with exogenous ABA. In contrast, ethylene, which exacerbates disease symptoms in some host-parasite interactions, did not appear to contribute to the predisposition response. Thus, several lines of evidence support ABA as a critical and dominant factor in the salinity-induced predisposition to Phytophthora spp. infection.

  10. The effects of ancymidol, abscisic acid, uniconazole and paclobutrazol on somatic embryogenesis of asparagus.

    Science.gov (United States)

    Li, B; Wolyn, D J

    1995-05-01

    The effects of ancymidol, abscisic acid (ABA), uniconazole, and paclobutrazol on asparagus somatic embryogenesis were evaluated. Calli induced from seedlings of genotype G447 were transferred to embryo induction medium (MS plus 3% sucrose, 0.1 mg L(-1) NAA, 0.5 mg L(-1) kinetin and 3% gelrite), with different concentrations of these compounds. After 8 weeks, the recovered bipolar or globular embryos were placed on germination medium (MS plus 6% sucrose, 0.1 mg L(-1) NAA, 0.1 mg L(-1) kinetin, 0.75 mg L(-1) ancymidol, 40 mg L(-1) adenine sulphate dihydrate, 0.17 mg L(-1) sodium phosphate monobasic and 3% gelrite) for conversion to plantlets. Inclusion of ancymidol, ABA, uniconazole and paclobutrazol in the embryo induction medium did not affect the total number of somatic embryos produced relative to the control without these compounds. However, ancymidol, ABA and uniconazole significantly improved embryo development by increasing the production of bipolar embryos 250-750% and decreasing that of globular embryos 8-35% relative to the control. The bipolar embryos produced with any of the four compounds in the embryo induction medium converted to plantlets at rates 700-1100% greater than the control. None of the globular embryos converted to plantlets. Ancymidol (0.75 mg L(-1)) and ABA (0.05 mg L(-1)) were the most effective treatments; 61 and 46 bipolar embryos g(-1) callus were produced, and 38% and 37% of the bipolar embryos converted to plantlets, respectively. These results indicated that ancymidol, ABA, uniconazole and paclobutrazol significantly enhanced the production of asparagus somatic embryos and their conversion to plantlets, and ancymidol and ABA were more effective than uniconazole and paclobutrazol.

  11. Enhancement of the citrus immune system provides effective resistance against Alternaria brown spot disease.

    Science.gov (United States)

    Llorens, Eugenio; Fernández-Crespo, Emma; Vicedo, Begonya; Lapeña, Leonor; García-Agustín, Pilar

    2013-01-15

    In addition to basal defense mechanisms, plants are able to develop enhanced defense mechanisms such as induced resistance (IR) upon appropriate stimulation. We recently described the means by which several carboxylic acids protect Arabidopsis and tomato plants against fungi. In this work, we demonstrate the effectiveness of hexanoic acid (Hx) in the control of Alternaria brown spot (ABS) disease via enhancement of the immune system of Fortune mandarin. The application of 1mM Hx in irrigation water to 2-year-old Fortune plants clearly reduced the incidence of the disease and led to smaller lesions. We observed that several of the most important mechanisms involved in induced resistance were affected by Hx application. Our results demonstrate enhanced callose deposition in infected plants treated with Hx, which suggests an Hx priming mechanism. Plants treated with the callose inhibitor 2-DDG were more susceptible to the fungus. Moreover, polygalacturonase-inhibiting protein (PGIP) gene expression was rapidly and significantly upregulated in treated plants. However, treatment with Hx decreased the levels of reactive oxygen species (ROS) in infected plants. Hormonal and gene analyses revealed that the jasmonic acid (JA) pathway was activated due to a greater accumulation of 12-oxo-phytodienoic acid (OPDA) and JA along with a rapid accumulation of JA-isoleucine (JA-Ile). Furthermore, we observed a more rapid accumulation of abscisic acid (ABA), which could act as a positive regulator of callose deposition. Thus, our results support the hypothesis that both enhanced physical barriers and the JA signaling pathway are involved in hexanoic acid-induced resistance (Hx-IR) to Alternaria alternata.

  12. Bile-acid-induced cell injury and protection

    Institute of Scientific and Technical Information of China (English)

    Maria J Perez; Oscar Briz

    2009-01-01

    Several studies have characterized the cellular and molecular mechanisms of hepatocyte injury caused by the retention of hydrophobic bile acids (BAs) in cholestatic diseases. BAs may disrupt cell membranes through their detergent action on lipid components and can promote the generation of reactive oxygen species that, in turn, oxidatively modify lipids, proteins, and nucleic acids, and eventually cause hepatocyte necrosis and apoptosis. Several pathways are involved in triggering hepatocyte apoptosis. Toxic BAs can activate hepatocyte death receptors directly and induce oxidative damage, thereby causing mitochondrial dysfunction, and induce endoplasmic reticulum stress. When these compounds are taken up and accumulate inside biliary cells, they can also cause apoptosis. Regarding extrahepatic tissues, the accumulation of BAs in the systemic circulation may contribute to endothelial injury in the kidney and lungs. In gastrointestinal cells, BAs may behave as cancer promoters through an indirect mechanism involving oxidative stress and DNA damage, as well as acting as selection agents for apoptosis-resistant cells. The accumulation of BAs may have also deleterious effects on placental and fetal cells. However, other BAs, such as ursodeoxycholic acid, have been shown to modulate BA-induced injury in hepatocytes. The major beneficial effects of treatment with ursodeoxycholic acid are protection against cytotoxicity due to more toxic BAs; the stimulation of hepatobiliary secretion; antioxidant activity, due in part to an enhancement in glutathione levels; and the inhibition of liver cell apoptosis. Other natural BAs or their derivatives, such as cholyl-Nmethylglycine or cholylsarcosine, have also aroused pharmacological interest owing to their protective properties.

  13. Formic-acid-induced depolymerization of oxidized lignin to aromatics.

    Science.gov (United States)

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J; Stahl, Shannon S

    2014-11-13

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  14. Formic-acid-induced depolymerization of oxidized lignin to aromatics

    Science.gov (United States)

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J.; Stahl, Shannon S.

    2014-11-01

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  15. Valproic acid induces antimicrobial compound production in Doratomyces microspores.

    Directory of Open Access Journals (Sweden)

    Christoph eZutz

    2016-04-01

    Full Text Available One of the biggest challenges in public health is the rising number of antibiotic resistant pathogens and the lack of novel antibiotics. In recent years there is a rising focus on fungi as sources of antimicrobial compounds due to their ability to produce a large variety of bioactive compounds and the observation that virtually every fungus may still contain yet unknown so called cryptic, often silenced, compounds. These putative metabolites could include novel bioactive compounds. Considerable effort is spent on methods to induce production of these cryptic metabolites. One approach is the use of small molecule effectors, potentially influencing chromatin landscape in fungi. We observed that the supernatant of the fungus Doratomyces (D. microsporus treated with valproic acid (VPA displayed antimicrobial activity against Staphylococcus (S. aureus and two methicillin resistant clinical S. aureus isolates. VPA treatment resulted in enhanced production of seven antimicrobial compounds: cyclo-(L-proline-L-methionine (cPM, p-hydroxybenzaldehyde, cyclo-(phenylalanine-proline (cFP, indole-3-carboxylic acid, phenylacetic acid (PAA and indole-3-acetic acid. The production of the antimicrobial compound phenyllactic acid was exclusively detectable after VPA treatment. Furthermore three compounds, cPM, cFP and PAA, were able to boost the antimicrobial activity of other antimicrobial compounds. cPM, for the first time isolated from fungi, and to a lesser extent PAA, are even able to decrease the minimal inhibitory concentration of ampicillin in MRSA strains. In conclusion we could show in this study that VPA treatment is a potent tool for induction of cryptic antimicrobial compound production in fungi, and that the induced compounds are not exclusively linked to the secondary metabolism. Furthermore this is the first discovery of the rare diketopiperazine cPM in fungi. Additionally we could demonstrate that cPM and PAA boost antibiotic activity against

  16. Valproic Acid Induces Antimicrobial Compound Production in Doratomyces microspores

    Science.gov (United States)

    Zutz, Christoph; Bacher, Markus; Parich, Alexandra; Kluger, Bernhard; Gacek-Matthews, Agnieszka; Schuhmacher, Rainer; Wagner, Martin; Rychli, Kathrin; Strauss, Joseph

    2016-01-01

    One of the biggest challenges in public health is the rising number of antibiotic resistant pathogens and the lack of novel antibiotics. In recent years there is a rising focus on fungi as sources of antimicrobial compounds due to their ability to produce a large variety of bioactive compounds and the observation that virtually every fungus may still contain yet unknown so called “cryptic,” often silenced, compounds. These putative metabolites could include novel bioactive compounds. Considerable effort is spent on methods to induce production of these “cryptic” metabolites. One approach is the use of small molecule effectors, potentially influencing chromatin landscape in fungi. We observed that the supernatant of the fungus Doratomyces (D.) microsporus treated with valproic acid (VPA) displayed antimicrobial activity against Staphylococcus (S.) aureus and two methicillin resistant clinical S. aureus isolates. VPA treatment resulted in enhanced production of seven antimicrobial compounds: cyclo-(L-proline-L-methionine) (cPM), p-hydroxybenzaldehyde, cyclo-(phenylalanine-proline) (cFP), indole-3-carboxylic acid, phenylacetic acid (PAA) and indole-3-acetic acid. The production of the antimicrobial compound phenyllactic acid was exclusively detectable after VPA treatment. Furthermore three compounds, cPM, cFP, and PAA, were able to boost the antimicrobial activity of other antimicrobial compounds. cPM, for the first time isolated from fungi, and to a lesser extent PAA, are even able to decrease the minimal inhibitory concentration of ampicillin in MRSA strains. In conclusion we could show in this study that VPA treatment is a potent tool for induction of “cryptic” antimicrobial compound production in fungi, and that the induced compounds are not exclusively linked to the secondary metabolism. Furthermore this is the first discovery of the rare diketopiperazine cPM in fungi. Additionally we could demonstrate that cPM and PAA boost antibiotic activity

  17. Molecular cloning and characterization of drought stress responsive abscisic acid-stress-ripening (Asr 1) gene from wild jujube, Ziziphus nummularia (Burm.f.) Wight & Arn.

    Science.gov (United States)

    Padaria, Jasdeep Chatrath; Yadav, Radha; Tarafdar, Avijit; Lone, Showkat Ahmad; Kumar, Kanika; Sivalingam, Palaiyur Nanjappan

    2016-08-01

    Drought is a calamitous abiotic stress hampering agricultural productivity all over the world and its severity is likely to increase further. Abscisic acid-stress-ripening proteins (ASR), are a group of small hydrophilic proteins which are induced by abscisic acid, stress and ripening in many plants. In the present study, ZnAsr 1 gene was fully characterized for the first time from Ziziphus nummularia, which is one of the most low water forbearing plant. Full length ZnAsr 1 gene was characterised and in silico analysis of ZnASR1 protein was done for predicting its phylogeny and physiochemical properties. To validate transcriptional pattern of ZnAsr 1 in response to drought stress, expression profiling in polyethylene glycol (PEG) induced Z. nummularia seedlings was studied by RT-qPCR analysis and heterologous expression of the recombinant ZnAsr1 in Escherichia coli. The nucleotide sequence analysis revealed that the complete open reading frame of ZnAsr 1 is 819 bp long encoding a protein of 273 amino acid residues, consisting of a histidine rich N terminus with an abscisic acid/water deficit stress domain and a nuclear targeting signal at the C terminus. In expression studies, ZnAsr 1 gene was found to be highly upregulated under drought stress and recombinant clones of E. coli cells expressing ZnASR1 protein showed better survival in PEG containing media. ZnAsr1 was proven to enhance drought stress tolerance in the recombinant E.coli cells expressing ZnASR1. The cloned ZnAsr1 after proper validation in a plant system, can be used to develop drought tolerant transgenic crops.

  18. Age-related changes in oxidative stress markers and abscisic acid levels in a drought-tolerant shrub, Cistus clusii grown under Mediterranean field conditions.

    Science.gov (United States)

    Munné-Bosch, Sergi; Lalueza, Patricia

    2007-03-01

    Compared with our knowledge of senescence in annuals and biennials, little is known about age-related changes in perennials. To get new insights into the mechanisms underlying aging in perennials, we measured oxidative stress markers in leaves and organelles, together with abscisic acid levels in leaves of 2- and 7-year-old Cistus clusii dunal plants grown under Mediterranean field conditions. Recently emerged leaves, which either appeared during autumn or spring, were compared to evaluate the effects of environmental constraints on oxidative stress and abscisic acid accumulation as plants aged. Plant aging led to an enhanced oxidation of ot-tocopherol and ascorbate, increased lipid peroxidation and reduced PSII efficiency in leaves during the more stressful conditions of spring and summer, but not during autumn. Analyses of lipid peroxidation in organelles isolated from the same leaves revealed that oxidative stress occurred both in chloroplasts and mitochondria. Although both plant groups showed similar leaf water and nitrogen contents throughout the study, abscisic acid levels were markedly higher (up to 75%) in 7-year-old plants compared to 2-year-old plants throughout the study. It is concluded that (a) meristematic tissues of C. clusii maintain the capacity to make new leaves with no symptoms of oxidative stress for several years, unless these leaves are exposed to environmental constraints, (b) leaves of oldest plants show higher oxidative stress than those of young plants when exposed to adverse climatic conditions, thus supporting the idea that the oxidative stress associated with aging is due at least partly to extrinsic factors, (c) at the subcellular level, age-induced oxidative stress occurs both in chloroplasts and mitochondria, and (d) even in the absence of environmental stress, newly emerged leaves accumulate higher amounts of ABA as plants age.

  19. Abscisic acid form, concentration, and application timing influence phenology and bud cold hardiness in Merlot grapevines

    Science.gov (United States)

    The effects of abscisic acid (ABA) form, concentration and application timing on bud cold hardiness, phenology and fruiting performance on ‘Merlot’ grapevines (Vitis vinifera) were evaluated in a three year field trial with site locations in British Columbia Canada, Ontario Canada, Washington U.S. ...

  20. Solar sterilization of abscised fruit: a cultural practice to reduce infestations of Anastrepha obliqua around orchards

    Science.gov (United States)

    Abscised mangoes, Mangifera indica L., of several varieties were stored under varying conditions of insolation, including no sun (stored in a laboratory), shade (stored under the shade of a mango tree), full sun (stored in direct view of the sun), and covered in a black plastic bag and stored in dir...

  1. Effect of bunch sanitation on spatial distributions of abscised fruit and phycitine moths (Lepidoptera: Pyralidae) in California date gardens.

    Science.gov (United States)

    Nay, Justin E; Park, Yong-Lak; Perring, Thomas M

    2007-12-01

    Phycitine moths are an economic impediment to California date, Phoenix dactylifera L., production. Summer populations build to damaging levels on abscised dates that get trapped in fruit bunches. This study was conducted to determine the relationship between abscised fruit and moth infestation, and to evaluate changes in the spatial distribution of abscised fruit and moth-infested fruit after a bunch-sanitation treatment. Over the 9 wk of this study, there was a 69.9% reduction in the number of moth-infested fruit after a single sanitation treatment. Linear regression analysis showed a significant relationship between abscised fruit and phycitine moth-infested fruit; 42 and 76.6% of the variation in the number of infested fruit was explained by the number of abscised fruit in noncleaned and cleaned plots, respectively. The pattern of reinfestation by moths over the 9 wk posttreatment period was analyzed with spatial analysis with distance indices. Significant spatial associations were found between abscised fruit and moth-infested fruit, supporting the regression analysis. The sanitation treatments caused significant gaps in both abscised fruit and moth-infested fruit. Over time, gap sizes became smaller, indicating a nonrandom pattern of reinfestation that likely was caused by the movement of moths from nontreated areas into treated areas. This study, the first spatial analysis conducted in dates, suggests that in-season bunch sanitation could be effective at reducing summer moth densities if applied on a large regional scale.

  2. An Update on Abscisic Acid Signaling in Plants and More...

    Institute of Scientific and Technical Information of China (English)

    Aleksandra Wasilewska; Florina Vlad; Caroline Sirichandra; Yulia Redko; Fabien Jammes; Christiane Valon; Nicolas Frei dit Frey; Jeffrey Leung

    2008-01-01

    The mode of abscisic acid (ABA) action,and its relations to drought adaptive responses in particular,has been a captivating area of plant hormone research for much over a decade.The hormone triggers stomatal closure to limit water loss through transpiration,as well as mobilizes a battery of genes that presumably serve to protect the cells from the ensuing oxidative damage in prolonged stress.The signaling network orchestrating these various responses is,however,highly complex.This review summarizes several significant advances made within the last few years.The biosynthetic pathway of the hormone is now almost completely elucidated,with the latest identification of the ABA4 gene encoding a neoxanthin synthase,which seems essential for de novo ABA biosynthesis during water stress.This leads to the interesting question on how ABA is then delivered to perception sites.In this respect,regulated transport has attracted renewed focus by the unexpected finding of a shoot-to-root translocation of ABA during drought response,and at the cellular level,by the identification of a β-galactosidase that releases biologically active ABA from inactive ABA-glucose ester.Surprising candidate ABA receptors were also identified in the form of the Flowering Time Control Protein A (FCA)and the Chloroplastic Magnesium Protoporphyrin-IX Chelatase H subunit (CHLH) in chloroplast-nucleus communication,both of which have been shown to bind ABA in vitro.On the other hand,the protein(s) corresponding to the physiologically detectable cell-surface ABA receptor(s) is (are) still not known with certainty.Genetic and physiological studies based on the guard cell have reinforced the central importance of reversible phosphorylation in modulating rapid ABA responses.Sucrose Non-Fermenting Related Kinases (SnRK),Calcium-Dependent Protein Kinases (CDPK),Protein Phosphatases (PP) of the 2C and 2A classes figure as prominent regulators in this single-cell model.Identifying their direct in vivo targets of

  3. Genetic interaction of two abscisic acid signaling regulators, HY5 and FIERY1, in mediating lateral root formation

    KAUST Repository

    Chen, Hao

    2011-01-01

    Root architecture is continuously shaped in a manner that helps plants to better adapt to the environment. Gene regulation at the transcriptional or post-transcriptional levels largely controls this environmental response. Recently, RNA silencing has emerged as an important player in gene regulation and is involved in many aspects of plant development, including lateral root formation. In a recent study, we found that FIERY1, a bifunctional abiotic stress and abscisic acid (ABA) signaling regulator and an endogenous RNA silencing suppressor, mediates auxin response during lateral root formation in Arabidopsis. We proposed that FRY1 regulates lateral root development through its activity on adenosine 3,5-bisphosphate (PAP), a strong inhibitor of exoribonucleases (XRNs). Interestingly, some of the phenotypes of fry1, such as enhanced response to light in repressing hypocotyl elongation and hypersensitivity to ABA in lateral root growth, are opposite to those of another light- and ABA-signaling mutant, hy5. Here we analyzed the hy5 fry1 double mutant for root and hypocotyl growth. We found that the hy5 mutation can suppress the enhanced light sensitivity in fry1 hypocotyl elongation and restore the lateral root formation. The genetic interaction between HY5 and FRY1 indicates that HY5 and FRY1 may act in overlapping pathways that mediate light signaling and lateral root development. © 2011 Landes Bioscience.

  4. GID1 modulates stomatal response and submergence tolerance involving abscisic acid and gibberellic acid signaling in rice.

    Science.gov (United States)

    Du, Hao; Chang, Yu; Huang, Fei; Xiong, Lizhong

    2015-11-01

    Plant responses to abiotic stresses are coordinated by arrays of growth and developmental programs. Gibberellic acid (GA) and abscisic acid (ABA) play critical roles in the developmental programs and environmental responses, respectively, through complex signaling and metabolism networks. However, crosstalk between the two phytohormones in stress responses remains largely unknown. In this study, we report that GIBBERELLIN-INSENSITIVE DWARF 1 (GID1), a soluble receptor for GA, regulates stomatal development and patterning in rice (Oryza sativa L.). The gid1 mutant showed impaired biosynthesis of endogenous ABA under drought stress conditions, but it exhibited enhanced sensitivity to exogenous ABA. Scanning electron microscope and infrared thermal image analysis indicated an increase in the stomatal conductance in the gid1 mutant under drought conditions. Interestingly, the gid1 mutant had increased levels of chlorophyll and carbohydrates under submergence conditions, and showed enhanced reactive oxygen species (ROS)-scavenging ability and submergence tolerance compared with the wild-type. Further analyses suggested that the function of GID1 in submergence responses is partially dependent on ABA, and GA signaling by GID1 is involved in submergence tolerance by modulating carbohydrate consumption. Taken together, these findings suggest GID1 plays distinct roles in stomatal response and submergence tolerance through both the ABA and GA signaling pathways in rice.

  5. Ethylene responses in rice roots and coleoptiles are differentially regulated by a carotenoid isomerase-mediated abscisic acid pathway.

    Science.gov (United States)

    Yin, Cui-Cui; Ma, Biao; Collinge, Derek Phillip; Pogson, Barry James; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Chen, Hui; Yang, Chao; Lu, Xiang; Wang, Yi-Qin; Zhang, Wan-Ke; Chu, Cheng-Cai; Sun, Xiao-Hong; Fang, Shuang; Chu, Jin-Fang; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-04-01

    Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice.

  6. Arabidopsis Glutamate Receptor Homolog3.5 Modulates Cytosolic Ca2+ Level to Counteract Effect of Abscisic Acid in Seed Germination1[OPEN

    Science.gov (United States)

    Kong, Dongdong; Ju, Chuanli; Parihar, Aisha; Kim, So; Cho, Daeshik; Kwak, June M.

    2015-01-01

    Seed germination is a critical step in a plant’s life cycle that allows successful propagation and is therefore strictly controlled by endogenous and environmental signals. However, the molecular mechanisms underlying germination control remain elusive. Here, we report that the Arabidopsis (Arabidopsis thaliana) glutamate receptor homolog3.5 (AtGLR3.5) is predominantly expressed in germinating seeds and increases cytosolic Ca2+ concentration that counteracts the effect of abscisic acid (ABA) to promote germination. Repression of AtGLR3.5 impairs cytosolic Ca2+ concentration elevation, significantly delays germination, and enhances ABA sensitivity in seeds, whereas overexpression of AtGLR3.5 results in earlier germination and reduced seed sensitivity to ABA. Furthermore, we show that Ca2+ suppresses the expression of ABSCISIC ACID INSENSITIVE4 (ABI4), a key transcription factor involved in ABA response in seeds, and that ABI4 plays a fundamental role in modulation of Ca2+-dependent germination. Taken together, our results provide molecular genetic evidence that AtGLR3.5-mediated Ca2+ influx stimulates seed germination by antagonizing the inhibitory effects of ABA through suppression of ABI4. These findings establish, to our knowledge, a new and pivotal role of the plant glutamate receptor homolog and Ca2+ signaling in germination control and uncover the orchestrated modulation of the AtGLR3.5-mediated Ca2+ signal and ABA signaling via ABI4 to fine-tune the crucial developmental process, germination, in Arabidopsis. PMID:25681329

  7. Arabidopsis glutamate receptor homolog3.5 modulates cytosolic Ca2+ level to counteract effect of abscisic acid in seed germination.

    Science.gov (United States)

    Kong, Dongdong; Ju, Chuanli; Parihar, Aisha; Kim, So; Cho, Daeshik; Kwak, June M

    2015-04-01

    Seed germination is a critical step in a plant's life cycle that allows successful propagation and is therefore strictly controlled by endogenous and environmental signals. However, the molecular mechanisms underlying germination control remain elusive. Here, we report that the Arabidopsis (Arabidopsis thaliana) glutamate receptor homolog3.5 (AtGLR3.5) is predominantly expressed in germinating seeds and increases cytosolic Ca2+ concentration that counteracts the effect of abscisic acid (ABA) to promote germination. Repression of AtGLR3.5 impairs cytosolic Ca2+ concentration elevation, significantly delays germination, and enhances ABA sensitivity in seeds, whereas overexpression of AtGLR3.5 results in earlier germination and reduced seed sensitivity to ABA. Furthermore, we show that Ca2+ suppresses the expression of ABSCISIC ACID INSENSITIVE4 (ABI4), a key transcription factor involved in ABA response in seeds, and that ABI4 plays a fundamental role in modulation of Ca2+-dependent germination. Taken together, our results provide molecular genetic evidence that AtGLR3.5-mediated Ca2+ influx stimulates seed germination by antagonizing the inhibitory effects of ABA through suppression of ABI4. These findings establish, to our knowledge, a new and pivotal role of the plant glutamate receptor homolog and Ca2+ signaling in germination control and uncover the orchestrated modulation of the AtGLR3.5-mediated Ca2+ signal and ABA signaling via ABI4 to fine-tune the crucial developmental process, germination, in Arabidopsis.

  8. Platelet-Rich Plasma in Treatment of Zoledronic Acid-Induced Bisphosphonate-related Osteonecrosis of the Jaws.

    Science.gov (United States)

    Sarkarat, Farzin; Kalantar Motamedi, Mohammad Hosein; Jahanbani, Jahanfar; Sepehri, Dena; Kahali, Roozbeh; Nematollahi, Zahra

    2014-04-01

    Bisphosphonate-related osteonecrosis of the jaws (BRONJ) is a well-known challenging entity warranting management. Platelet-Rich Plasma (PRP) plays an important role in bone biology by enhancing bone repair and regeneration. The aim of this animal study was to evaluate the effects of PRP on zoledronic acid-induced BRONJ. Seven rats were given 0.04 mg Zoledronic acid intravenously once a week for five weeks. Two weeks later, the animals underwent extraction of their first lower molars, bilaterally. After clinical confirmation of the osteonecrosis, PRP was injected randomly into one of the extraction sockets of each rat. Three weeks later, all rats were sacrificed in order to obtain histological sections. The analysis of epithelialization was performed by McNamar's test, and the analysis of osteogenesis and angiogenesis was performed by the Wilcoxon Sign Rank test. P value was set at 0.05. We found no significant differences between the two groups regarding the amount of epithelialization, angiogenesis or sequestrum formation (P > 0.05), but a significant difference was seen between the two groups regarding the amount of existing vital bone (P < 0.05). Our study demonstrates positive results (preservation or regeneration of bone) using PRP in treatment of BRONJ. Although PRP may enhance osseous regeneration, long-term follow-ups are required to confirm its benefits.

  9. Protective Effect of Ocimum basilicum Essential Oil Against Acetic Acid-Induced Colitis in Rats.

    Science.gov (United States)

    Rashidian, Amir; Roohi, Parnia; Mehrzadi, Saeed; Ghannadi, Ali Reza; Minaiyan, Mohsen

    2016-10-01

    Ocimum basilicum L has been traditionally used for the treatment of inflammatory bowel disease in Iran. This study investigates the ameliorative effect of Ocimum basilicum essential oil on an acetic acid-induced colitis model in rats. Ocimum basilicum essential oil with 2 doses (200 and 400 μL/kg) significantly ameliorated wet weight/length ratio of colonic tissue compared to the control group. Higher doses of essential oil (200 and 400 μL/kg) significantly reduced ulcer severity, ulcer area, and ulcer index. On the other hand, histological examination revealed the diminution of total colitis index as a marker for inflammatory cell infiltration in the colonic segments of rats treated with Ocimum basilicum essential oil (200 and 400 μL/kg). The increased level of myeloperoxidase was significantly decreased after the treatment with the essential oil (200 and 400 μL/kg). These results suggest that Ocimum basilicum exhibits protective effect against acetic acid-induced colitis.

  10. The Ayurvedic drug, Ksheerabala, ameliorates quinolinic acid-induced oxidative stress in rat brain

    OpenAIRE

    Swathy, S. S.; Indira, M.

    2010-01-01

    One of the mechanisms of neurotoxicity is the induction of oxidative stress. There is hardly any cure for neurotoxicity in modern medicine, whereas many drugs in Ayurveda possess neuroprotective effects; however, there is no scientific validation for these drugs. Ksheerabala is an ayurvedic drug which is used to treat central nervous system disorders, arthritis, and insomnia. The aim of our study was to evaluate the effect of Ksheerabala on quinolinic acid-induced toxicity in rat brain. The o...

  11. Use of Activated Carbon in Packaging to Attenuate Formaldehyde-Induced and Formic Acid-Induced Degradation and Reduce Gelatin Cross-Linking in Solid Dosage Forms.

    Science.gov (United States)

    Colgan, Stephen T; Zelesky, Todd C; Chen, Raymond; Likar, Michael D; MacDonald, Bruce C; Hawkins, Joel M; Carroll, Sophia C; Johnson, Gail M; Space, J Sean; Jensen, James F; DeMatteo, Vincent A

    2016-07-01

    Formaldehyde and formic acid are reactive impurities found in commonly used excipients and can be responsible for limiting drug product shelf-life. Described here is the use of activated carbon in drug product packaging to attenuate formaldehyde-induced and formic acid-induced drug degradation in tablets and cross-linking in hard gelatin capsules. Several pharmaceutical products with known or potential vulnerabilities to formaldehyde-induced or formic acid-induced degradation or gelatin cross-linking were subjected to accelerated stability challenges in the presence and absence of activated carbon. The effects of time and storage conditions were determined. For all of the products studied, activated carbon attenuated drug degradation or gelatin cross-linking. This novel use of activated carbon in pharmaceutical packaging may be useful for enhancing the chemical stability of drug products or the dissolution stability of gelatin-containing dosage forms and may allow for the 1) extension of a drug product's shelf-life when the limiting attribute is a degradation product induced by a reactive impurity, 2) marketing of a drug product in hotter and more humid climatic zones than currently supported without the use of activated carbon, and 3) enhanced dissolution stability of products that are vulnerable to gelatin cross-linking.

  12. Protective effect of hispidulin on kainic acid-induced seizures and neurotoxicity in rats.

    Science.gov (United States)

    Lin, Tzu Yu; Lu, Cheng Wei; Wang, Su Jane; Huang, Shu Kuei

    2015-05-15

    Hispidulin is a flavonoid compound which is an active ingredient in a number of traditional Chinese medicinal herbs, and it has been reported to inhibit glutamate release. The purpose of this study was to investigate whether hispidulin protects against seizures induced by kainic acid, a glutamate analog with excitotoxic properties. The results indicated that intraperitoneally administering hispidulin (10 or 50mg/kg) to rats 30 min before intraperitoneally injecting kainic acid (15 mg/kg) increased seizure latency and decreased seizure score. In addition, hispidulin substantially attenuated kainic acid-induced hippocampal neuronal cell death, and this protective effect was accompanied by the suppression of microglial activation and the production of proinflammatory cytokines such as interleukin-1β, interleukin-6, and tumor necrosis factor-α in the hippocampus. Moreover, hispidulin reduced kainic acid-induced c-Fos expression and the activation of mitogen-activated protein kinases in the hippocampus. These data suggest that hispidulin has considerable antiepileptic, neuroprotective, and antiinflammatory effects on kainic acid-induced seizures in rats.

  13. Salivary a-amylase protects enamel surface against acid induced softening

    DEFF Research Database (Denmark)

    Lazovic, Maja Bruvo; Moe, Dennis; Kirkeby, Svend

    Objectives: Recently we have demonstrated individual differences in protection against acid-induced enamel softening offered by experimentally developed saliva pellicles. Although ethnicity seemed to be related to protection level, the saliva proteins responsible for the differences were not iden......Objectives: Recently we have demonstrated individual differences in protection against acid-induced enamel softening offered by experimentally developed saliva pellicles. Although ethnicity seemed to be related to protection level, the saliva proteins responsible for the differences were......, and one Chinese. After collection, saliva was dialysed and lyophilised and re-dissolved at 0.5% in Type I water. Next, four polished bovine enamel specimens were immersed into each sample under gentle and constant shaking for 12 hours. Last, specimens were exposed to an erosive challenge of pH 2.3 for 4......-TOF mass fingerprinting following trypsin digestion. Each persistent peak in the HPLC chromatograms was related to the protective effect against acid-induced enamel softening obtained by the corresponding saliva sample by multiple regression analysis. Results: One peak identified as a-amylase had...

  14. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    Science.gov (United States)

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism.

  15. Nuclear-localized AtHSPR links abscisic acid-dependent salt tolerance and antioxidant defense in Arabidopsis.

    Science.gov (United States)

    Yang, Tao; Zhang, Liang; Hao, Hongyan; Zhang, Peng; Zhu, Haowei; Cheng, Wei; Wang, Yongli; Wang, Xinyu; Wang, Chongying

    2015-12-01

    Salt stress from soil or irrigation water limits plant growth. A T-DNA insertion mutant in C24, named athspr (Arabidopsis thaliana heat shock protein-related), showed several phenotypes, including reduced organ size and enhanced sensitivity to environmental cues. The athspr mutant is severely impaired under salinity levels at which wild-type (WT) plants grow normally. AtHSPR encodes a nuclear-localized protein with ATPase activity, and its expression was enhanced by high salinity and abscisic acid (ABA). Overexpression (OE) of AtHSPR significantly enhanced tolerance to salt stress by increasing the activities of the antioxidant system and by maintaining K(+) /Na(+) homeostasis. Quantitative RT-PCR analyses showed that OE of AtHSPR increased the expression of ABA/stress-responsive, salt overly sensitive (SOS)-related and antioxidant-related genes. In addition, ABA content was reduced in athspr plants with or without salt stress, and exogenous ABA restored WT-like salt tolerance to athspr plants. athspr exhibited increased leaf stomatal density and stomatal index, slower ABA-induced stomatal closure and reduced drought tolerance relative to the WT. AtHSPR OE enhanced drought tolerance by reducing leaf water loss and stomatal aperture. Transcript profiling in athspr showed a differential salt-stress response for genes involved in accumulation of reactive oxygen species (ROS), ABA signaling, cell death, stress response and photosynthesis. Taken together, our results suggested that AtHSPR is involved in salt tolerance in Arabidopsis through modulation of ROS levels, ABA-dependent stomatal closure, photosynthesis and K(+) /Na(+) homeostasis.

  16. Effect of Azadirachta indica leaves extract on acetic acid-induced colitis in rats:Role of antioxidants, free radicals and myeloperoxidase

    Directory of Open Access Journals (Sweden)

    Ghatule RR

    2012-10-01

    Full Text Available Objective: To evaluate the healing effects of extract of dried leaves of Azadirachta indica (Neem on acetic acid-induced colitis in rats. Neem tree is known as ‘arishtha ’ in Sanskrit, meaning ‘reliever of sicknesses ’. Methods: 50% ethanolic extract of Azadirachta indica leaves was administered orally, once daily for 14 days in rats after the induction of colitis with acetic acid and 500 mg/kg dose of extract was found to have an optimal effect against acetic acid-induced colonic damage score, weight and adhesions (Macroscopic. Effect of Azadirachta indica extract was then further studied on various physical (mucous/blood in stool, food and water intake and body weight changes, colonic mucosal damage and inflammation (microscopic, antibacterial and biochemical parameters viz. i antioxidants (superoxide dismutase, catalase and reduced glutathione and ii free radicals (nitric oxide and lipid peroxidation and myeloperoxidase (acute inflammatory marker activities in acetic acid-induced colitis. Results: Azadirachta indica extract decreased colonic mucosal damage and inflammation (macroscopic and microscopic, mucous/bloody diarrhea, fecal frequency and increased body weight. Azadirachta indica extract showed intestinal antibacterial activity and enhanced the antioxidants but decreased free radicals and myeloperoxidase activities. Acute toxicity study indicated no mortality or other ANS or CNS related adverse effects even with 5.0 g/kg dose (10 times of effective dose indicating its safety. Conclusions: Azadirachta indica seemed to be safe and effective in colitis by its predominant effect on promoting antioxidant status and decreasing intestinal bacterial load, free radicals and myeloperoxidase responsible for tissue damage and delayed healing.

  17. Two glucosylated abscisic acid derivates from avocado seeds (Persea americana Mill. Lauraceae cv. Hass).

    Science.gov (United States)

    del Refugio Ramos, María; Jerz, Gerold; Villanueva, Socorro; López-Dellamary, Fernando; Waibel, Reiner; Winterhalter, Peter

    2004-04-01

    Phytochemical investigation of avocado seed material (Persea americana Mill., Lauraceae) resulted in the isolation of two glucosylated abscisic acid derivates. One of these was not known as a natural product and can be regarded as a potential 'missing link' in abscisic acid metabolism in plants. After fractionation by high-speed countercurrent chromatography, and multiple steps of column chromatography, structures were elucidated by 1D-, 2D-NMR, electrospray-MS to be the novel beta-d-glucoside of (1'S,6'R)-8'-hydroxyabscisic acid, and (1'R,3'R,5'R,8'S)-epi-dihydrophaseic acid beta-d-glucoside. Absolute configuration was determined by circulardichroism, optical rotation, and by NOE experiments.

  18. Effects of lanthanum on abscisic acid regulation of root growth in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    王建荣; 王蕾; 胡婷; 李文超; 薛绍武

    2014-01-01

    Rare earth elements (REEs) were reported to have adverse biology effects on plant growth and production. However, whether REEs are involved in plant hormone abscisic acid signal is not clear. Here we reported that REE lanthanum (La) interacted with abscisic acid (ABA) in the regulation of seed germination and root growth in model plant Arabidopsis. La3+at a concentration of 10 µmol/L alleviated ABA depression of seed germination and reversed ABA inhibition of root elongation growth in Arabidopsis. Previous studies showed that ABA could promote root hair development. In the present study, La3+inhibited root hair development promoted by ABA. Moreover, La3+inhibited H2O2 generation induced by ABA in root cells. Therefore we inferred that La3+might interact with ABA upstream of H2O2 generation.

  19. Measurement of abscisic acid and gibberellins by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Okamoto, Masanori; Hanada, Atsushi; Kamiya, Yuji; Yamaguchi, Shinjiro; Nambara, Eiji

    2009-01-01

    Gas chromatography-mass spectrometry (GC-MS)-based analysis is an accurate and sensitive method to quantify plant hormones. This method is commonly used for analysis of low-molecular-weight compounds, such as abscisic acid (ABA), gibberellins (GAs), auxins, and brassinosteroids. Procedures are composed of four major steps: extraction, fractionation, derivatization, and detection. Here, we describe a protocol for quantification of ABA and GAs.

  20. Abscisic acid is not necessary for gravitropism in primary roots of Zea mays

    Science.gov (United States)

    Moore, R.

    1990-01-01

    Primary roots of Zea mays L. cv. Tx 5855 treated with fluridone are strongly graviresponsive, but have undetectable levels of abscisic acid (ABA). Primary roots of the carotenoid-deficient w-3, vp-5, and vp-7 mutants of Z. mays are also graviresponsive despite having undetectable amounts of ABA. Graviresponsive roots of untreated and wild-type seedlings contain 286 to 317 ng ABA g-1 f. wt, respectively. These results indicate that ABA is not necessary for root gravicurvature.

  1. Endogenous abscisic acid promotes hypocotyl growth and affects endoreduplication during dark-induced growth in tomato (Solanum lycopersicum L.).

    Science.gov (United States)

    Humplík, Jan F; Bergougnoux, Véronique; Jandová, Michaela; Šimura, Jan; Pěnčík, Aleš; Tomanec, Ondřej; Rolčík, Jakub; Novák, Ondřej; Fellner, Martin

    2015-01-01

    Dark-induced growth (skotomorphogenesis) is primarily characterized by rapid elongation of the hypocotyl. We have studied the role of abscisic acid (ABA) during the development of young tomato (Solanum lycopersicum L.) seedlings. We observed that ABA deficiency caused a reduction in hypocotyl growth at the level of cell elongation and that the growth in ABA-deficient plants could be improved by treatment with exogenous ABA, through which the plants show a concentration dependent response. In addition, ABA accumulated in dark-grown tomato seedlings that grew rapidly, whereas seedlings grown under blue light exhibited low growth rates and accumulated less ABA. We demonstrated that ABA promotes DNA endoreduplication by enhancing the expression of the genes encoding inhibitors of cyclin-dependent kinases SlKRP1 and SlKRP3 and by reducing cytokinin levels. These data were supported by the expression analysis of the genes which encode enzymes involved in ABA and CK metabolism. Our results show that ABA is essential for the process of hypocotyl elongation and that appropriate control of the endogenous level of ABA is required in order to drive the growth of etiolated seedlings.

  2. Leucine-rich repeat kinase 2 modulates retinoic acid-induced neuronal differentiation of murine embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Cathrin Schulz

    Full Text Available BACKGROUND: Dominant mutations in the leucine-rich repeat kinase 2 (LRRK2 gene are the most prevalent cause of Parkinson's disease, however, little is known about the biological function of LRRK2 protein. LRRK2 is expressed in neural precursor cells suggesting a role in neurodevelopment. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, differential gene expression profiling revealed a faster silencing of pluripotency-associated genes, like Nanog, Oct4, and Lin28, during retinoic acid-induced neuronal differentiation of LRRK2-deficient mouse embryonic stem cells compared to wildtype cultures. By contrast, expression of neurotransmitter receptors and neurotransmitter release was increased in LRRK2+/- cultures indicating that LRRK2 promotes neuronal differentiation. Consistently, the number of neural progenitor cells was higher in the hippocampal dentate gyrus of adult LRRK2-deficient mice. Alterations in phosphorylation of the putative LRRK2 substrates, translation initiation factor 4E binding protein 1 and moesin, do not appear to be involved in altered differentiation, rather there is indirect evidence that a regulatory signaling network comprising retinoic acid receptors, let-7 miRNA and downstream target genes/mRNAs may be affected in LRRK2-deficient stem cells in culture. CONCLUSION/SIGNIFICANCE: Parkinson's disease-linked LRRK2 mutations that associated with enhanced kinase activity may affect retinoic acid receptor signaling during neurodevelopment and/or neuronal maintenance as has been shown in other mouse models of chronic neurodegenerative diseases.

  3. Biocontrol agents-mediated suppression of oxalic acid induced cell death during Sclerotinia sclerotiorum-pea interaction.

    Science.gov (United States)

    Jain, Akansha; Singh, Akanksha; Singh, Surendra; Sarma, Birinchi Kumar; Singh, Harikesh Bahadur

    2015-05-01

    Oxalic acid (OA) is an important pathogenic factor during early Sclerotinia sclerotiorum-host interaction and might work by reducing hydrogen peroxide production (H2 O2 ). In the present investigation, oxalic acid-induced cell death in pea was studied. Pea plants treated with biocontrol agents (BCAs) viz., Pseudomonas aeruginosa PJHU15, Bacillus subtilis BHHU100, and Trichoderma harzianum TNHU27 either singly and/or in consortium acted on S. sclerotiorum indirectly by enabling plants to inhibit the OA-mediated suppression of oxidative burst via induction of H2 O2 . Our results showed that BCA treated plants upon treatment with culture filtrate of the pathogen, conferred the resistance via. significantly decreasing relative cell death of pea against S. sclerotiorum compared to control plants without BCA treatment but treated with the culture filtrate of the pathogen. The results obtained from the present study indicate that the microbes especially in consortia play significant role in protection against S. sclerotiorum by modulating oxidative burst and partially enhancing tolerance by increasing the H2 O2 generation, which is otherwise suppressed by OA produced by the pathogen.

  4. Abscisic acid activates a Ca2+-calmodulin-stimulated protein kinase involved in antioxidant defense in maize leaves

    Institute of Scientific and Technical Information of China (English)

    Shucheng Xu

    2010-01-01

     The role of a calcium-dependent and calmodulin(CaM)stimulated protein kinase in abscisic acid(ABA)-induced antioxidant defense was determined in leaves of maize (Zea mays).In-gel kinase assays showed that treatments with ABA or H2O2 induced the activation of a 49-kDa protein kinase and a 52-kDa protein kinase significantly.Furthermore,we showed that the 52-kDa protein kinase has the characteristics of CaM-stimulating activity and is sensitive to calcium-CaM-dependent protein kinase Ⅱ (CaMK Ⅱ)inhibitor KN-93 or CaM antagonist W-7.Treatments with ABA or H2O2 not only induced the acti vation of the 52-kDa protein kinase,but also enhanced the total activities of the antioxidant enzymes,including catalase,ascorbate peroxidase,glutathione reductase,and superoxide dismutase.Such enhancements were blocked by pretreatment with a CaMK inhibitor and a reactive oxygen species(ROS)inhibitor or scavenger.Pretreatment with the CaMK inhibitor also substantially arrested the ABA-induced H2O2 production.Kinase activity enhancements induced by ABA were attenuated by pretreatment with an ROS inhibitor or scavenger.These results suggest that the 52-kDa CaMK is involved in ABA-induced antioxidant defense and that cross-talk between CaMK and H2O2 plays a pivotal role in ABA signaling.We infer that CaMK acts both upstream and downstream of H2O2,but mainly acts between ABA and H2O2 in ABA-induced antioxidant-defensive signaling.

  5. The occurrence of abscisic acid in inhibitors B1 and C from immature fruit of Ceratonia siliqua L. (carob) and in commercial carob syrup.

    Science.gov (United States)

    Most, B H; Gaskin, P; Macmillan, J

    1970-03-01

    The presence of abscisic acid in the inhibitors B1 and C from immature carob fruit, whole and minus seed, has been established by thin-layer and gas chromatography and by combined gas chromatography-mass spectrometry. Abscisic acid has been identified in commercial carob syrup by the same means. Most, if not all, of the growth inhibitory activity in these fractions is accounted for as abscisic acid by quantitative gas chromatography as the methyl ester. Trimethylsilylation of abscisic acid with bis (trimethylsilyl) acetamide in pyridine gives two isomeric tris(trimethylsilyl) derivatives.

  6. Effects of abscisic acid and nitric oxide on trap formation and trapping of nematodes by the fungus Drechslerella stenobrocha AS6.1.

    Science.gov (United States)

    Xu, Ling-Ling; Lai, Yi-Ling; Wang, Lin; Liu, Xing-Zhong

    2011-02-01

    The in vitro effects of abscisic acid (ABA) and nitric oxide (NO) on the nematode-trapping fungus Drechslerella stenobrocha AS6.1 were examined. The average number of traps (constricting rings) per colony and the percentage of nematodes (Caenorhabditis elegans) trapped were greatly increased by addition of ABA but greatly suppressed by addition of sodium nitroprusside (SNP, an NO donor) to corn meal agar. The suppressive effect of SNP was not negated by addition of an NO synthase competitive inhibitor (l-naphthylacetic acid, L-NNA) or an NO-specific scavenger [2-(4-carboxyphenyl)-4,4, 5,5-tetramethylimidazoline-1-oxyl-3-oxide, cPTIO]. When added without SNP, however, L-NNA and cPTIO caused moderate increases in trap number and trapping. The results indicate that the trap formation and nematode-trapping ability of D. stenobrocha were enhanced by ABA but decreased by exogenous NO.

  7. A role for sodium and chloride in kainic acid-induced beading of inhibitory interneuron dendrites.

    Science.gov (United States)

    Al-Noori, S; Swann, J W

    2000-01-01

    Excitotoxic injury of the dendrites of inhibitory interneurons could lead to decreases in their synaptic activation and explain subsequent local circuit hyperexcitability and epilepsy. A hallmark of dendrotoxicity, at least in principal neurons of the hippocampus and cortex, is focal or varicose swellings of dendritic arbors. In experiments reported here, transient (1h) exposure of hippocampal explant cultures to kainic acid produced marked focal swellings of the dendrites of parvalbumin-immunoreactive pyramidal basket cells in a highly reproducible and dose-dependent manner. At 5mM kainic acid, more than half of the immunopositive apical dendrites in area CA(1) had a beaded appearance. However, the somal volumes of these cells were unaltered by the same treatment. The presence of focal swellings was reversible with kainate washout and was not accompanied by interneuronal cell death. In contrast, exposure to much higher concentrations (300mM) of kainic acid resulted in the total loss of parvalbumin-positive interneurons from explants. Surprisingly, kainic acid-induced dendritic beading does not appear to be mediated by extracellular calcium. Beading was unaltered in the presence of N-methyl-D-aspartate receptor antagonists, the L-type calcium channel antagonist, nimodipine, cadmium, or by removing extracellular calcium. However, blockade of voltage-gated sodium channels by either tetrodotoxin or lidocaine abolished dendritic beading, while the activation of existing voltage-gated sodium channels by veratridine mimicked the kainic acid-induced dendritic beading. Finally, the removal of extracellular chloride prevented the kainic acid-induced dendritic beading.Thus, we suggest that the movement of Na(+) and Cl(-), rather than Ca(2+), into cells underlies the focal swellings of interneuron dendrites in hippocampus.

  8. Clavulanic acid induces penile erection and yawning in male rats: comparison with apomorphine.

    Science.gov (United States)

    Sanna, Fabrizio; Melis, Maria Rosaria; Angioni, Laura; Argiolas, Antonio

    2013-02-01

    The beta-lactamase inhibitor clavulanic acid induced penile erection and yawning in a dose dependent manner when given intraperitoneally (IP, 0.05-5mg/kg), perorally (OS, 0.1-5mg/kg) and intracereboventricularly (ICV, 0.01-5 μg/rat) to male rats. The effect resembles that of the dopamine receptor agonist apomorphine given subcutaneously (SC) (0.02-0.25mg/kg), although the responses of the latter followed a U inverted dose-response curve, disappearing at doses higher than 0.1mg/kg. Clavulanic acid responses were reduced by about 55% by haloperidol, a dopamine D2 receptor antagonist (0.1mg/kg IP), and by d(CH(2))(5)Tyr(Me)(2)-Orn(8)-vasotocin, an oxytocin receptor antagonist (2 μg/rat ICV), both given 15 min before clavulanic acid. A higher reduction of clavulanic acid responses (more than 80%) was also found with morphine, an opioid receptor agonist (5mg/kg IP), and with mianserin, a serotonin 5HT(2c) receptor antagonist (0.2mg/kg SC). In contrast, no reduction was found with naloxone, an opioid receptor antagonist (1mg/kg IP). The ability of haloperidol, d(CH(2))(5)Tyr(Me)(2)-Orn(8)-vasotocin and morphine to reduce clavulanic acid induced penile erection and yawning suggests that clavulanic acid induces these responses, at least in part, by increasing central dopaminergic neurotransmission. Dopamine in turn activates oxytocinergic neurotransmission and centrally released oxytocin induces penile erection and yawning. However, since both penile erection and yawning episodes were reduced not only by the blockade of central dopamine and oxytocin receptors and by the stimulation of opioid receptors, which inhibits oxytocinergic neurotransmission, but also by mianserin, an increase of central serotonin neurotransmission is also likely to participate in these clavulanic acid responses.

  9. Calcium Uptake via Mitochondrial Uniporter Contributes to Palmitic Acid-induced Apoptosis in Mouse Podocytes.

    Science.gov (United States)

    Yuan, Zeting; Cao, Aili; Liu, Hua; Guo, Henjiang; Zang, Yingjun; Wang, Yi; Wang, Yunman; Wang, Hao; Yin, Peihao; Peng, Wen

    2017-02-09

    Podocytes are component cells of the glomerular filtration barrier, and their loss by apoptosis is the main cause of proteinuria that leads to diabetic nephropathy (DN). Therefore, insights into podocyte apoptosis mechanism would allow a better understanding of DN pathogenesis and thus help develop adequate therapeutic strategies. Here, we investigated the molecular mechanism of palmitic acid-inhibited cell death in mouse podocytes, and found that palmitic acid increased cell death in a dose- and time-dependent manner. Palmitic acid induces apoptosis in podocytes through up-regulation of cytosolic and mitochondrial Ca(2+) , mitochondrial membrane potential (MMP), cytochrome c release and depletion of endoplasmic reticulum (ER) Ca(2+) , The intracellular calcium chelator, 1,2-bis (2-aminophenoxy) ethane-N,N,N, N'-tetraacetic acid tetrakis acetoxymethyl ester (BAPTA-AM), partially prevented this up-regulation whereas 2-aminoethoxydiphenyl borate (2-APB), an inositol 1,4,5-triphosphate receptor (IP3R) inhibitor; dantrolene, a ryanodine receptor (RyR) inhibitor; and 4,4'-diisothiocyanatostibene-2,2'-disulfonic acid (DIDS), an anion exchange inhibitor, had no effect. Interestingly, ruthenium red and Ru360, both inhibitors of the mitochondrial Ca(2+) uniporter (MCU), blocked palmitic acid-induced mitochondrial Ca(2+) elevation, cytochrome c release from mitochondria to cytosol, and apoptosis. siRNA to MCU markedly reduced curcumin-induced apoptosis. These data indicate that Ca(2+) uptake via mitochondrial uniporter contributes to palmitic acid-induced apoptosis in mouse podocytes. This article is protected by copyright. All rights reserved.

  10. Mentha longifolia protects against acetic-acid induced colitis in rats.

    Science.gov (United States)

    Murad, Hussam A S; Abdallah, Hossam M; Ali, Soad S

    2016-08-22

    Mentha longifolia L (Wild Mint or Habak) (ML) is used in traditional medicine in treatment of many gastrointestinal disorders. This study aimed to evaluate potential protecting effect of ML and its major constituent, eucalyptol, against acetic acid-induced colitis in rats, a model of human inflammatory bowel disease (IBD). Rats were divided into ten groups (n=8) given orally for three days (mg/kg/day) the following: normal control, acetic acid-induced colitis (un-treated, positive control), vehicle (DMSO), sulfasalazine (500), ML extract (100, 500, 1000), and eucalyptol (100, 200, 400). After 24h-fasting, two ML of acetic acid (3%) was administered intrarectally. On the fifth day, serum and colonic biochemical markers, and histopathological changes were evaluated. Colitis significantly increased colonic myeloperoxidase activity and malonaldehyde level, and serum tumor necrosis factor-α, interleukin-6, and malonaldehyde levels while significantly decreased colonic and serum glutathione levels. All treatments (except ML 100, ML 1000, and eucalyptol 100) significantly reversed these changes where eucalyptol (400) showed the highest activity in a dose-dependent manner. The colitis-induced histopathological changes were mild in sulfasalazine and eucalyptol 400 groups, moderate in ML 500 and eucalyptol 200 groups, and severe in ML 100, ML 1000, and eucalyptol 100 groups nearly similar to colitis-untreated rats. ML (in moderate doses) and eucalyptol (dose-dependently) exerted protective effects against acetic acid-induced colitis in rats possibly through antioxidant and antiinflammatory properties suggesting a potential benefit in treatments of IBD. To our knowledge this is the first report addressing this point. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Salicylic acid improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic acid accumulation, and increases Na+ content in leaves without toxicity symptoms in Solanum lycopersicum L.

    Science.gov (United States)

    Szepesi, Agnes; Csiszár, Jolán; Gémes, Katalin; Horváth, Edit; Horváth, Ferenc; Simon, Mária L; Tari, Irma

    2009-06-01

    Pre-treatment with 10(-4)M salicylic acid (SA) in hydroponic culture medium provided protection against salinity stress in tomato plants (Solanum lycopersicum L. cv. Rio Fuego). The effect of 10(-7) or 10(-4)M SA on the water status of plants was examined in relation to the biosynthesis and accumulation of abscisic acid (ABA) in order to reveal the role of SA in the subsequent response to salt stress. Both pre-treatments inhibited the K+(86Rb+) uptake of plants, reduced the K+ content of leaves, and caused a decrease in leaf water potential (psi(w)). Due to the changes in the cellular water status, SA triggered the accumulation of ABA. Since the decrease in psi(w) proved to be transient, the effect of SA on ABA synthesis may also develop via other mechanisms. In spite of osmotic adaptation, the application of 10(-4)M, but not 10(-7)M SA, led to prolonged ABA accumulation and to enhanced activity of aldehyde oxidase (AO1, EC.1.2.3.1.), an enzyme responsible for the conversion of ABA-aldehyde to ABA, both in root and leaf tissues. AO2-AO4 isoforms from the root extracts also exhibited increased activities. The fact that the activities of AO are significantly enhanced both in the leaves and roots of plants exposed to 10(-4)M SA, may indicate a positive feedback regulation of ABA synthesis by ABA in this system. Moreover, during a 100mM NaCl treatment, higher levels of free putrescine or spermine were found in these leaves or roots, respectively, than in the salt-stressed controls, suggesting that polyamines may be implicated in the protection response of the cells. As a result, Na+ could be transported to the leaf mesophyll cells without known symptoms of salt toxicity.

  12. Priming by Hexanoic acid induce activation of mevalonic and linolenic pathways and promotes the emission of plant volatiles.

    Directory of Open Access Journals (Sweden)

    Eugenio eLlorens

    2016-04-01

    Full Text Available Hexanoic acid is a short natural monocarboxylic acid present in some fruits and plants. Previous studies reported that soil drench application of this acid induces effective resistance in tomato plants against Botrytis cinerea and Pseudomonas syringae and in citrus against Alternaria alternata and Xanthomonas citri. In this work, we performed an in deep study of the metabolic changes produced in citrus by the application of hexanoic acid in response to the challenge pathogen Alternaria alternata, focusing on the response of the plant. Moreover, we used 13C labeled hexanoic to analyze its behavior inside the plants. Finally, we studied the volatile emission of the treated plants after the challenge inoculation. Drench application of 13C labeled hexanoic demonstrated that this molecule stays in the roots and is not mobilized to the leaves, suggesting long distance induction of resistance. Moreover, the study of the metabolic profile showed an alteration of more than two hundred molecules differentially induced by the application of the compound and the inoculation with the fungus. Bioinformatics analysis of data showed that most of these altered molecules could be related with the mevalonic and linolenic pathways suggesting the implication of these pathways in the induced resistance mediated by hexanoic acid. Finally, the application of this compound showed an enhancement of the emission of 17 volatile metabolites. Taken together, this study indicates that after the application of hexanoic acid this compound remains in the roots, provoking molecular changes that may trigger the defensive response in the rest of the plant mediated by changes in the mevalonic and linolenic pathways and enhancing the emission of volatile compounds, suggesting for the first time the implication of mevalonic pathway in response to hexanoic application.

  13. Priming by Hexanoic Acid Induce Activation of Mevalonic and Linolenic Pathways and Promotes the Emission of Plant Volatiles.

    Science.gov (United States)

    Llorens, Eugenio; Camañes, Gemma; Lapeña, Leonor; García-Agustín, Pilar

    2016-01-01

    Hexanoic acid (Hx) is a short natural monocarboxylic acid present in some fruits and plants. Previous studies reported that soil drench application of this acid induces effective resistance in tomato plants against Botrytis cinerea and Pseudomonas syringae and in citrus against Alternaria alternata and Xanthomonas citri. In this work, we performed an in deep study of the metabolic changes produced in citrus by the application of Hx in response to the challenge pathogen A. alternata, focusing on the response of the plant. Moreover, we used (13)C labeled hexanoic to analyze its behavior inside the plants. Finally, we studied the volatile emission of the treated plants after the challenge inoculation. Drench application of (13)C labeled hexanoic demonstrated that this molecule stays in the roots and is not mobilized to the leaves, suggesting long distance induction of resistance. Moreover, the study of the metabolic profile showed an alteration of more than 200 molecules differentially induced by the application of the compound and the inoculation with the fungus. Bioinformatics analysis of data showed that most of these altered molecules could be related with the mevalonic and linolenic pathways suggesting the implication of these pathways in the induced resistance mediated by Hx. Finally, the application of this compound showed an enhancement of the emission of 17 volatile metabolites. Taken together, this study indicates that after the application of Hx this compound remains in the roots, provoking molecular changes that may trigger the defensive response in the rest of the plant mediated by changes in the mevalonic and linolenic pathways and enhancing the emission of volatile compounds, suggesting for the first time the implication of mevalonic pathway in response to hexanoic application.

  14. Role of hepatocyte S6K1 in palmitic acid-induced endoplasmic reticulum stress, lipotoxicity, insulin resistance and in oleic acid-induced protection.

    Science.gov (United States)

    Pardo, Virginia; González-Rodríguez, Águeda; Muntané, Jordi; Kozma, Sara C; Valverde, Ángela M

    2015-06-01

    The excess of saturated free fatty acids, such as palmitic acid, that induces lipotoxicity in hepatocytes, has been implicated in the development of non-alcoholic fatty liver disease also associated with insulin resistance. By contrast, oleic acid, a monounsaturated fatty acid, attenuates the effects of palmitic acid. We evaluated whether palmitic acid is directly associated with both insulin resistance and lipoapoptosis in mouse and human hepatocytes and the impact of oleic acid in the molecular mechanisms that mediate both processes. In human and mouse hepatocytes palmitic acid at a lipotoxic concentration triggered early activation of endoplasmic reticulum (ER) stress-related kinases, induced the apoptotic transcription factor CHOP, activated caspase 3 and increased the percentage of apoptotic cells. These effects concurred with decreased IR/IRS1/Akt insulin pathway. Oleic acid suppressed the toxic effects of palmitic acid on ER stress activation, lipoapoptosis and insulin resistance. Besides, oleic acid suppressed palmitic acid-induced activation of S6K1. This protection was mimicked by pharmacological or genetic inhibition of S6K1 in hepatocytes. In conclusion, this is the first study highlighting the activation of S6K1 by palmitic acid as a common and novel mechanism by which its inhibition by oleic acid prevents ER stress, lipoapoptosis and insulin resistance in hepatocytes.

  15. Bacillus licheniformis SA03 Confers Increased Saline–Alkaline Tolerance in Chrysanthemum Plants by Induction of Abscisic Acid Accumulation

    Directory of Open Access Journals (Sweden)

    Cheng Zhou

    2017-06-01

    Full Text Available Soil saline-alkalization is a major abiotic stress that leads to low iron (Fe availability and high toxicity of sodium ions (Na+ for plants. It has recently been shown that plant growth promoting rhizobacteria (PGPR can enhance the ability of plants to tolerate multiple abiotic stresses such as drought, salinity, and nutrient deficiency. However, the possible involvement of PGPR in improving saline–alkaline tolerance of plants and the underlying mechanisms remain largely unknown. In this study, we investigated the effects of Bacillus licheniformis (strain SA03 on the growth of Chrysanthemum plants under saline–alkaline conditions. Our results revealed that inoculation with SA03 alleviated saline–alkaline stress in plants with increased survival rates, photosynthesis and biomass. The inoculated plants accumulated more Fe and lower Na+ concentrations under saline–alkaline stress compared with the non-inoculated plants. RNA-Sequencing analyses further revealed that SA03 significantly activated abiotic stress- and Fe acquisition-related pathways in the stress-treated plants. However, SA03 failed to increase saline–alkaline tolerance in plants when cellular abscisic acid (ABA and nitric oxide (NO synthesis were inhibited by treatment with fluridone (FLU and 2-(4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO, respectively. Importantly, we also found that NO acted downstream of SA03-induced ABA to activate a series of adaptive responses in host plants under saline–alkaline stress. These findings demonstrated the potential roles of B. licheniformis SA03 in enhancing saline–alkaline tolerance of plants and highlighted the intricate integration of microbial signaling in regulating cellular Fe and Na+ accumulation.

  16. Obestatin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats.

    Science.gov (United States)

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Bonior, Joanna; Jaworek, Jolanta; Kuśnierz-Cabala, Beata; Konturek, Peter; Ambroży, Tadeusz; Dembiński, Artur

    2016-01-01

    Obestatin, a 23-amino acid peptide derived from the proghrelin, has been shown to exhibit some protective and therapeutic effects in the gut. The aim of present study was to determine the effect of obestatin administration on the course of acetic acid-induced colitis in rats. Materials and Methods. Studies have been performed on male Wistar rats. Colitis was induced by a rectal enema with 3.5% acetic acid solution. Obestatin was administered intraperitoneally twice a day at a dose of 8 nmol/kg, starting 24 h after the induction of colitis. Seven or 14 days after the induction of colitis, the healing rate of the colon was evaluated. Results. Treatment with obestatin after induction of colitis accelerated the healing of colonic wall damage and this effect was associated with a decrease in the colitis-evoked increase in mucosal activity of myeloperoxidase and content of interleukin-1β. Moreover, obestatin administration significantly reversed the colitis-evoked decrease in mucosal blood flow and DNA synthesis. Conclusion. Administration of exogenous obestatin exhibits therapeutic effects in the course of acetic acid-induced colitis and this effect is related, at least in part, to the obestatin-evoked anti-inflammatory effect, an improvement of local blood flow, and an increase in cell proliferation in colonic mucosa.

  17. Salicylic acid induces mitochondrial injury by inhibiting ferrochelatase heme biosynthesis activity.

    Science.gov (United States)

    Gupta, Vipul; Liu, Shujie; Ando, Hideki; Ishii, Ryohei; Tateno, Shumpei; Kaneko, Yuki; Yugami, Masato; Sakamoto, Satoshi; Yamaguchi, Yuki; Nureki, Osamu; Handa, Hiroshi

    2013-12-01

    Salicylic acid is a classic nonsteroidal anti-inflammatory drug. Although salicylic acid also induces mitochondrial injury, the mechanism of its antimitochondrial activity is not well understood. In this study, by using a one-step affinity purification scheme with salicylic acid-immobilized beads, ferrochelatase (FECH), a homodimeric enzyme involved in heme biosynthesis in mitochondria, was identified as a new molecular target of salicylic acid. Moreover, the cocrystal structure of the FECH-salicylic acid complex was determined. Structural and biochemical studies showed that salicylic acid binds to the dimer interface of FECH in two possible orientations and inhibits its enzymatic activity. Mutational analysis confirmed that Trp301 and Leu311, hydrophobic amino acid residues located at the dimer interface, are directly involved in salicylic acid binding. On a gel filtration column, salicylic acid caused a shift in the elution profile of FECH, indicating that its conformational change is induced by salicylic acid binding. In cultured human cells, salicylic acid treatment or FECH knockdown inhibited heme synthesis, whereas salicylic acid did not exert its inhibitory effect in FECH knockdown cells. Concordantly, salicylic acid treatment or FECH knockdown inhibited heme synthesis in zebrafish embryos. Strikingly, the salicylic acid-induced effect in zebrafish was partially rescued by FECH overexpression. Taken together, these findings illustrate that FECH is responsible for salicylic acid-induced inhibition of heme synthesis, which may contribute to its antimitochondrial and anti-inflammatory function. This study establishes a novel aspect of the complex pharmacological effects of salicylic acid.

  18. Curcumin-attenuated trinitrobenzene sulphonic acid induces chronic colitis by inhibiting expression of cyclooxygenase-2

    Institute of Scientific and Technical Information of China (English)

    Hua Jiang; Chang-Sheng Deng; Ming Zhang; Jian Xia

    2006-01-01

    AIM: To explore the possible mechanisms of curcumin in rat colitis induced by trinitrobenzene sulfonic (TNBS) acid. METHODS: Rats with TNBS acid-induced colitis were treated with curcumin (30 mg/kg or 60 mg/kg per day ip). Changes of body weight and histological scores as well as survival rate were evaluated. Leukocyte infiltration was detected by myeloperoxidase (MPO)activity assay. The expression of cyclooxygenase-2(COX-2) was detected by RT-PCR and Western blot.Inflammation cytokines were determined by RT-PCR.Local concentration of prostaglandin E2 (PGE2) in colon mucosa was determined by ELISA.RESULTS: Curcumin improved survival rate and histological image, decreased the macroscopic scores and MPO activity. Also curcumin reduced the expression of COX-2 and inflammation cytokines. In addition,treatment with curcumin increased the PGE2 level.CONCLUSION: Curcumin has therapeutic effects on TNBS acid-induced colitis, the mechanisms seem to be related to COX-2 inhibition and PGE2 improvement.

  19. The effect of sodium valproate on acetic acid-induced colitis in rats.

    Science.gov (United States)

    Najafi, Ali; Motaghi, Ehsan; Hosseini, Mohammad Javad; Ghasemi-Pirbaluti, Masoumeh

    2017-02-01

    Ulcerative colitis is a chronic recurrent disease with incomplete treatment options. The current article evaluated the effect of sodium valproate on acetic acid-induced ulcerative colitis in rats. Rats were randomly distributed into six groups including Sham group, colitis control group, sodium valproate treatment groups (50, 100 and 300 mg/kg, i.p.) and dexamethasone-treatment group. Dexamethasone was used as a reference drug. Colitis was induced by intracolonic instillation of 2 mL of 3% acetic acid solution. The efficacy of sodium valproate was evaluated by macroscopical and histopathological scoring systems, hematocrit measurement as well as biochemical analysis including myeloperoxidase (MPO) and pro-inflammatory cytokines assessment. Sodium valproate, particularly with doses of 100 and 300 mg/kg significantly improved weight loss, and macroscopic damage, reduced ulcer area, colon weight, microscopic colitis index and elevated hematocrit level. Biochemical experiments showed elevated levels of colonic MPO activity, interleukin 1β (IL-1β), interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) in colitis control group. Treatment with sodium valproate at the doses of 100 and 300 mg/Kg) decreased the MPO activity and colonic concentrations of IL-1β, IL-6 and TNF-α. The results provide evidence that sodium valproate has a protective effect in acetic acid-induced ulcerative colitis which might be due to its anti-inflammatory activities, and it may be useful in patients with ulcerative colitis.

  20. Uric Acid Induces Renal Inflammation via Activating Tubular NF-κB Signaling Pathway

    Science.gov (United States)

    Zhou, Yang; Fang, Li; Jiang, Lei; Wen, Ping; Cao, Hongdi; He, Weichun; Dai, Chunsun; Yang, Junwei

    2012-01-01

    Inflammation is a pathologic feature of hyperuricemia in clinical settings. However, the underlying mechanism remains unknown. Here, infiltration of T cells and macrophages were significantly increased in hyperuricemia mice kidneys. This infiltration of inflammatory cells was accompanied by an up-regulation of TNF-α, MCP-1 and RANTES expression. Further, infiltration was largely located in tubular interstitial spaces, suggesting a role for tubular cells in hyperuricemia-induced inflammation. In cultured tubular epithelial cells (NRK-52E), uric acid, probably transported via urate transporter, induced TNF-α, MCP-1 and RANTES mRNA as well as RANTES protein expression. Culture media of NRK-52E cells incubated with uric acid showed a chemo-attractive ability to recruit macrophage. Moreover uric acid activated NF-κB signaling. The uric acid-induced up-regulation of RANTES was blocked by SN 50, a specific NF-κB inhibitor. Activation of NF-κB signaling was also observed in tubule of hyperuricemia mice. These results suggest that uric acid induces renal inflammation via activation of NF-κB signaling. PMID:22761883

  1. Exogenous Ghrelin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats

    Directory of Open Access Journals (Sweden)

    Aleksandra Matuszyk

    2016-09-01

    Full Text Available Previous studies have shown that ghrelin reduces colonic inflammation induced by trinitrobenzene sulfonic acid and dextran sodium sulfate. In the present study we determined the effect of treatment with ghrelin on the course of acetic acid-induced colitis in rats. Rectal administration of 3% acetic acid solution led to induction of colitis in all animals. Damage of the colonic wall was accompanied by an increase in mucosal concentration of pro-inflammatory interleukin-1β (IL-1β and tumor necrosis factor-α (TNF-α, as well mucosal activity of myeloperoxidase. Moreover, induction of colitis led to a reduction in colonic blood flow and DNA synthesis. Administration of ghrelin after induction of colitis led to faster regeneration of the colonic wall and reduction in colonic levels of IL-1β, TNF-α, and myeloperoxidase. In addition, treatment with ghrelin improved mucosal DNA synthesis and blood flow. Our study disclosed that ghrelin exhibits a strong anti-inflammatory and healing effect in acetic acid-induced colitis. Our current observation in association with previous findings that ghrelin exhibits curative effect in trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis suggest that therapeutic effect of ghrelin in the colon is universal and independent of the primary cause of colitis.

  2. Comparative neuroprotective profile of statins in quinolinic acid induced neurotoxicity in rats.

    Science.gov (United States)

    Kalonia, Harikesh; Kumar, Puneet; Kumar, Anil

    2011-01-01

    A possible neuroprotective role has been recently suggested for 3H3MGCoA reductase inhibitors (statins). Here, we sought to determine neuroprotective effect of statins in quinolinic acid induced neurotoxicity in rats. Rats were surgically administered quinolinic acid and treated with Atorvastatin (10, 20 mg/kg), simvastatin (15, 30 mg/kg) and fluvastatin (5, 10 mg/kg) once daily up to 3 weeks. Atorvastatin (10, 20 mg/kg), simvastatin (30 mg/kg) and fluvastatin (10 mg/kg) treatment significantly attenuated the quinolinic acid induced behavioral (locomotor activity, rotarod performance and beam walk test), biochemical (lipid peroxidation, nitrite concentration, SOD and catalase), mitochondrial enzyme complex alterations in rats suggesting their free radical scavenging potential. Additionally, atorvastatin (10, 20 mg/kg), simvastatin (30 mg/kg) and fluvastatin (10 mg/kg) significantly decrease the TNF-α level and striatal lesion volume in quinolinic acid treated animals indicating their anti-inflammatory effects. In comparing the protective effect of different statins, atorvastatin is effective at both the doses while simvastatin and fluvastatins at respective lower doses were not able to produce the protective effect in quinolinic acid treated animals. These modulations can account, at least partly, for the beneficial effect of statins in our rodent model of striatal degeneration. Our findings show that statins could be explored as possible neuroprotective agents for neurodegenerative disorders such as HD.

  3. Ethephon use and application timing of abscisic acid for improving color of 'Rubi' table grape

    Directory of Open Access Journals (Sweden)

    Sergio Ruffo Roberto

    2013-07-01

    Full Text Available The objective of this work was to evaluate the effect of ethephon and of abscisic acid (ABA application timing on the color of 'Rubi' Table grape. Eight treatments were evaluated: control, without application; ethephon 500 mg L‑1 applied seven days after veraison (7 DAV; and two concentrations of ABA (200 and 400 mg L‑1 arranged with three application timings at 7 DAV, at 15 days before harvest (DBH, and at 7 DAV + 15 DBH. ABA does not modify physical‑chemical characteristics of the cluster and improves the color of grapes, especially when applied twice (7 DAV + 15 DBH at the concentration of 400 mg L‑1.

  4. ATAF1 transcription factor directly regulates abscisic acid biosynthetic gene NCED3 in Arabidopsis thaliana

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Lindemose, Søren; De Masi, Federico

    2013-01-01

    ATAF1, an Arabidopsis thaliana NAC transcription factor, plays important roles in plant adaptation to environmental stress and development. To search for ATAF1 target genes, we used protein binding microarrays and chromatin-immunoprecipitation (ChIP). This identified T[A,C,G]CGT[A,G] and TT[A,C,G...... abscisic acid (ABA) phytohormone biosynthetic gene NCED3. ChIP-qPCR and expression analysis showed that ATAF1 binding to the NCED3 promoter correlated with increased NCED3 expression and ABA hormone levels. These results indicate that ATAF1 regulates ABA biosynthesis....

  5. The putative E3 ubiquitin ligase ECERIFERUM9 regulates abscisic acid biosynthesis and response during seed germination and postgermination growth in arabidopsis

    KAUST Repository

    Zhao, Huayan

    2014-05-08

    The ECERIFERUM9 (CER9) gene encodes a putative E3 ubiquitin ligase that functions in cuticle biosynthesis and the maintenance of plant water status. Here, we found that CER9 is also involved in abscisic acid (ABA) signaling in seeds and young seedlings of Arabidopsis (Arabidopsis thaliana). The germinated embryos of the mutants exhibited enhanced sensitivity to ABA during the transition from reversible dormancy to determinate seedling growth. Expression of the CER9 gene is closely related to ABA levels and displays a similar pattern to that of ABSCISIC ACID-INSENSITIVE5 (ABI5), which encodes a positive regulator of ABA responses in seeds. cer9 mutant seeds exhibited delayed germination that is independent of seed coat permeability. Quantitative proteomic analyses showed that cer9 seeds had a protein profile similar to that of the wild type treated with ABA. Transcriptomics analyses revealed that genes involved in ABA biosynthesis or signaling pathways were differentially regulated in cer9 seeds. Consistent with this, high levels of ABA were detected in dry seeds of cer9. Blocking ABA biosynthesis by fluridone treatment or by combining an ABA-deficient mutation with cer9 attenuated the phenotypes of cer9. Whereas introduction of the abi1-1, abi3-1, or abi4-103 mutation could completely eliminate the ABA hypersensitivity of cer9, introduction of abi5 resulted only in partial suppression. These results indicate that CER9 is a novel negative regulator of ABA biosynthesis and the ABA signaling pathway during seed germination. © 2014 American Society of Plant Biologists. All Rights Reserved.

  6. Cyclic adenosine monophosphate-mediated protection against bile acid-induced apoptosis in cultured rat hepatocytes.

    Science.gov (United States)

    Webster, C R; Anwer, M S

    1998-05-01

    Cyclic adenosine monophosphate (cAMP) has been shown to modulate apoptosis. To evaluate the role of cAMP in bile acid-induced hepatocyte apoptosis, we studied the effect of agents that increase cAMP on the induction of apoptosis by glycochenodeoxycholate (GCDC) in cultured rat hepatocytes. GCDC induced apoptosis in 26.5%+/-1.1% of hepatocytes within 2 hours. Twenty-minute pretreatment of hepatocytes with 100 micromol/L 8-(4-chlorothiophenyl) cAMP (CP-cAMP) resulted in a reduction in the amount of apoptosis to 35.2%+/-3.8% of that seen in hepatocytes treated with GCDC alone. Other agents that increase intracellular cAMP, including dibutyryl cAMP (100 micromol/L), glucagon (200 nmol/L), and a combination of forskolin (20 micromol/L) and 3-isobutyl-1-methylxanthine (20 micromol/L), also inhibited GCDC-induced apoptosis to a similar extent. Pretreatment with the protein kinase A (PKA) inhibitor, KT5720, prevented the protective effect of CP-cAMP and inhibited CP-cAMP-induced activation of PKA activity. Inhibitors of phosphatidylinositol 3-kinase (PI3K), wortmannin (50 nmol/L), or Ly 294002 (20 micromol/L) also prevented the cytoprotective effect of cAMP. PI3K assays confirmed that wortmannin (50 nmol/L) inhibited PI3K activity, while CP-cAMP had no effect on the activity of this lipid kinase. GCDC increased mitogen-activated protein kinase (MAPK) activity, but had no effect on stress-activated protein kinase (SAPK) activity in hepatocytes. cAMP decreased basal and GCDC-induced MAPK activity and increased SAPK activity. The MAPK kinase inhibitor, PD 98059, inhibited both GCDC-mediated MAPK activation and GCDC-induced apoptosis. 1) agents that increase intracellular cAMP protect against hepatocyte apoptosis induced by hydrophobic bile acids; 2) activation of MAPK by GCDC may be involved in bile acid-induced apoptosis; and 3) cAMP-mediated cytoprotection against bile acid-induced apoptosis appears to involve PKA, MAPK, and PI3K.

  7. Activation of AMP-activated protein kinase and phosphorylation of glycogen synthase kinase3 β mediate ursolic acid induced apoptosis in HepG2 liver cancer cells.

    Science.gov (United States)

    Son, Hyun-Soo; Kwon, Hee Young; Sohn, Eun Jung; Lee, Jang-Hoon; Woo, Hong-Jung; Yun, Miyong; Kim, Sung-Hoon; Kim, Young-Chul

    2013-11-01

    Despite the antitumour effect of ursolic acid observed in several cancers, the underlying mechanism remains unclear. Thus, in the present study, the roles of AMP-activated protein kinase (AMPK) and glycogen synthase kinase 3 beta (GSK3β) were examined in ursolic acid induced apoptosis in HepG2 hepatocellular carcinoma cells. Ursolic acid significantly exerted cytotoxicity, increased the sub-G1 population and the number of ethidium homodimer and terminal deoxynucleotidyl transferase(TdT) mediated dUTP nick end labeling positive cells in HepG2 cells. Also, ursolic acid enhanced the cleavages of poly-ADP-ribose polymerase (PARP) and caspase3, attenuated the expression of astrocyte elevated gene (AEG1) and survivin in HepG2 cells. Interestingly, ursolic acid increased the phosphorylation of AMPK and coenzyme A carboxylase and also enhanced phosphorylation of GSK3β at inactive form serine 9, whereas ursolic acid attenuated the phosphorylation of AKT and mTOR in HepG2 cells. Conversely, AMPK inhibitor compound C or GSK3β inhibitor SB216763 blocked the cleavages of PARP and caspase 3 induced by ursolic acid in HepG2 cells. Furthermore, proteosomal inhibitor MG132 suppressed AMPK activation, GSK3β phosphorylation, cleaved PARP and deceased AEG-1 induced by ursolic acid in HepG2 cells. Overall, our findings suggest that ursolic acid induced apoptosis in HepG2 cells via AMPK activation and GSK3β phosphorylation as a potent chemopreventive agent. Copyright © 2013 John Wiley & Sons, Ltd.

  8. Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development.

    Science.gov (United States)

    Rizzi, Massimo; Perego, Carlo; Aliprandi, Marisa; Richichi, Cristina; Ravizza, Teresa; Colella, Daniele; Velískŏvá, Jana; Moshé, Solomon L; De Simoni, M Grazia; Vezzani, Annamaria

    2003-12-01

    In adult rats, status epilepticus (SE) induces cytokine production by glia especially when seizures are associated with neuronal injury. This suggests that cytokines may play a role in seizure-induced neuronal damage. As SE-induced injury is age-specific, we used rats of different ages (with distinct susceptibilities to seizure-induced neuronal injury) to elucidate the role of cytokines in this process. Thus, we investigated the activation of microglia and astrocytes, induction of cytokines, and hippocampal neuronal injury 4 and 24 h following kainic acid-induced SE in postnatal day (PN) 9, 15, and 21 rats. At PN9, there was little activation of microglia and astrocytes at any time point studied. Interleukin-1beta (IL), tumor necrosis factor-alpha (TNF), and IL-6 or the naturally occurring IL-1 receptor antagonist (Ra) mRNA expression did not increase. No evidence of cell injury has been detected. At PN15, immunostaining of microglia and astrocytes was enhanced, but only IL-1beta mRNA expression was increased. These changes were observed 4 h after SE. Scattered injured neurons in CA3 and subiculum, but not in any other region, were present 24 h following SE. At PN21, immunostaining of microglia and astrocytes and the mRNA expression of all cytokines studied was significantly increased already 4 h after SE. At 24 h, many injured neurons were present in CA1 and CA3 regions and in 40% of rats in other forebrain areas. These data show that (i) the pattern of glia activation and cytokine gene transcription induced by SE is age-dependent and (ii) neuronal injury in the hippocampus occurs only when cytokines are induced and their synthesis precedes the appearance of neuronal damage. Thus, cytokine expression in immature brain is associated specifically with cell injury rather than with seizures per se, suggesting that proinflammatory cytokines may contribute to the occurence of SE-induced hippocampal damage.

  9. The restrained expression of NF-kB in renal tissue ameliorates folic acid induced acute kidney injury in mice.

    Directory of Open Access Journals (Sweden)

    Dev Kumar

    Full Text Available The Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB represent family of structurally-related eukaryotic transcription factors which regulate diverse array of cellular processes including immunological responses, inflammation, apoptosis, growth & development. Increased expression of NF-kB has often been seen in many diverse diseases, suggesting the importance of genomic deregulation to disease pathophysiology. In the present study we focused on acute kidney injury (AKI, which remains one of the major risk factor showing a high rate of mortality and morbidity. The pathology associated with it, however, remains incompletely known though inflammation has been reported to be one of the major risk factor in the disease pathophysiology. The role of NF-kB thus seemed pertinent. In the present study we show that high dose of folic acid (FA induced acute kidney injury (AKI characterized by elevation in levels of blood urea nitrogen & serum creatinine together with extensive tubular necrosis, loss of brush border and marked reduction in mitochondria. One of the salient observations of this study was a coupled increase in the expression of renal, relA, NF-kB2, and p53 genes and proteins during folic acid induced AKI (FA AKI. Treatment of mice with NF-kB inhibitor, pyrrolidine dithio-carbamate ammonium (PDTC lowered the expression of these transcription factors and ameliorated the aberrant renal function by decreasing serum creatinine levels. In conclusion, our results suggested that NF-kB plays a pivotal role in maintaining renal function that also involved regulating p53 levels during FA AKI.

  10. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    António Rego

    2014-08-01

    Full Text Available Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria.

  11. Effect of Tanshitone on prevention and treatment of retinoic acid-induced osteoporosis in mice

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yan-meng; LIU Yu-bo; GAO Yun-sheng

    2008-01-01

    Objective To observe the prevention and therapeutic effects of tanshitone (TAN) on retinoic acid induced osteoporosis in mice. Methods The mice osteoporosis was induced by given retinoic acid intragasttrically for two weeks. The histomorphological features of bone were observed and biochemical indexes in serum (Ca, P, ALP, TRAP, E2, BGP) were determined after mice were given TAN at the dose of 40, 80, 160 mg·kg-1 respectively. Results Tanshitone can induce high conversion of osteoporosis. The levels of P, ALP, TRAP and BGP in the TAN groups were lower than the model group, while the E2 level was higher than the model group. Conclusions Tanshitone can prevent the loss bone in the experimental mice. The mechanism may be that it improves the level of estrogenic hormone and inhibits the high bone turnover.

  12. Valproic Acid-Induced Severe Acute Pancreatitis with Pseudocyst Formation: Report of a Case.

    Science.gov (United States)

    Ray, Sukanta; Khamrui, Sujan; Kataria, Mohnish; Biswas, Jayanta; Saha, Suman

    2015-08-01

    Valproic acid is the most widely used anti-epilep-tic drug in children, and it is probably the most frequent cause of drug-induced acute pancreatitis. Outcomes for patients with valproic acid-associated pancreatitis vary from full recovery after discontinuation of the drug to severe acute pancreatitis and death. Here, we present a case of valproic acid-induced severe acute pancreatitis with pseudocyst formation in a 10-year-old girl with cerebral palsy and generalized tonic-clonic seizure. There was no resolution of the pseudocyst after discontinuation of valproic acid. The patient became symptomatic with a progressive increase in the size of the pseudocyst. She was successfully treated with cystogastrostomy and was well at 12-month follow-up.

  13. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    Science.gov (United States)

    Rego, António; Duarte, Ana M.; Azevedo, Flávio; Sousa, Maria J.; Côrte-Real, Manuela; Chaves, Susana R.

    2014-01-01

    Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria. PMID:28357256

  14. Acid-induced p16 hypermethylation contributes to development of esophageal adenocarcinoma via activation of NADPH oxidase NOX5-S.

    Science.gov (United States)

    Hong, Jie; Resnick, Murray; Behar, Jose; Wang, Li Juan; Wands, Jack; DeLellis, Ronald A; Souza, Rhonda F; Spechler, Stuart J; Cao, Weibiao

    2010-09-01

    Inactivation of tumor suppressor gene p16 may play an important role in the progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA). Hypermethylation of p16 gene promoter is an important mechanism inactivating p16. However, the mechanisms of p16 hypermethylation in EA are not known. Therefore, we examined whether acid increases methylation of p16 gene promoter and whether NADPH oxidase NOX5-S mediates acid-induced p16 hypermethylation in a Barrett's cell line BAR-T and an EA cell line OE33. We found that NOX5-S was present in BAR-T and OE33 cells. Acid-induced increase in H(2)O(2) production and cell proliferation was significantly reduced by knockdown of NOX5-S. Exogenous H(2)O(2) remarkably increased p16 promoter methylation and cell proliferation. In addition, acid treatment significantly increased p16 promoter methylation and decreased p16 mRNA level. Knockdown of NOX5-S significantly increased p16 mRNA, inhibited acid-induced downregulation of p16 mRNA, and blocked acid-induced increase in p16 methylation and cell proliferation. Conversely, overexpression of NOX5-S significantly decreased p16 mRNA and increased p16 methylation and cell proliferation. In conclusion, NOX5-S is present in BAR-T cells and OE33 cells and mediates acid-induced H(2)O(2) production and cell proliferation. NOX5-S is also involved in acid-induced hypermethylation of p16 gene promoter and downregulation of p16 mRNA. It is possible that acid reflux present in BE patients may activate NOX5-S and increase production of reactive oxygen species, which in turn increase p16 promoter methylation, downregulate p16 expression, and increase cell proliferation, thereby contributing to the progression from BE to EA.

  15. Heat shock protein 70-dependent protective effect of polaprezinc on acetylsalicylic acid-induced apoptosis of rat intestinal epithelial cells.

    Science.gov (United States)

    Qin, Ying; Naito, Yuji; Handa, Osamu; Hayashi, Natsuko; Kuki, Aiko; Mizushima, Katsura; Omatsu, Tatsushi; Tanimura, Yuko; Morita, Mayuko; Adachi, Satoko; Fukui, Akifumi; Hirata, Ikuhiro; Kishimoto, Etsuko; Nishikawa, Taichiro; Uchiyama, Kazuhiko; Ishikawa, Takeshi; Takagi, Tomohisa; Yagi, Nobuaki; Kokura, Satoshi; Yoshikawa, Toshikazu

    2011-11-01

    Protection of the small intestine from mucosal injury induced by nonsteroidal anti-inflammatory drugs including acetylsalicylic acid is a critical issue in the field of gastroenterology. Polaprezinc an anti-ulcer drug, consisting of zinc and L-carnosine, provides gastric mucosal protection against various irritants. In this study, we investigated the protective effect of polaprezinc on acetylsalicylic acid-induced apoptosis of the RIE1 rat intestinal epithelial cell line. Confluent rat intestinal epithelial cells were incubated with 70 µM polaprezinc for 24 h, and then stimulated with or without 15 mM acetylsalicylic acid for a further 15 h. Subsequent cellular viability was quantified by fluorometric assay based on cell lysis and staining. Acetylsalicylic acid-induced cell death was also qualified by fluorescent microscopy of Hoechst33342 and propidium iodide. Heat shock proteins 70 protein expression after adding polaprezinc or acetylsalicylic acid was assessed by western blotting. To investigate the role of Heat shock protein 70, Heat shock protein 70-specific small interfering RNA was applied. Cell viability was quantified by fluorometric assay based on cell lysis and staining and apoptosis was analyzed by fluorescence-activated cell sorting. We found that acetylsalicylic acid significantly induced apoptosis of rat intestinal epithelial cells in a dose- and time-dependent manner. Polaprezinc significantly suppressed acetylsalicylic acid-induced apoptosis of rat intestinal epithelial cells at its late phase. At the same time, polaprezinc increased Heat shock protein 70 expressions of rat intestinal epithelial cells in a time-dependent manner. However, in Heat shock protein 70-silenced rat intestinal epithelial cells, polaprezinc could not suppress acetylsalicylic acid -induced apoptosis at its late phase. We conclude that polaprezinc-increased Heat shock protein 70 expression might be an important mechanism by which polaprezinc suppresses acetylsalicylic

  16. Proteomic investigation into betulinic acid-induced apoptosis of human cervical cancer HeLa cells.

    Science.gov (United States)

    Xu, Tao; Pang, Qiuying; Zhou, Dong; Zhang, Aiqin; Luo, Shaman; Wang, Yang; Yan, Xiufeng

    2014-01-01

    Betulinic acid is a pentacyclic triterpenoid that exhibits anticancer functions in human cancer cells. This study provides evidence that betulinic acid is highly effective against the human cervical cancer cell line HeLa by inducing dose- and time-dependent apoptosis. The apoptotic process was further investigated using a proteomics approach to reveal protein expression changes in HeLa cells following betulinic acid treatment. Proteomic analysis revealed that there were six up- and thirty down-regulated proteins in betulinic acid-induced HeLa cells, and these proteins were then subjected to functional pathway analysis using multiple analysis software. UDP-glucose 6-dehydrogenase, 6-phosphogluconate dehydrogenase decarboxylating, chain A Horf6-a novel human peroxidase enzyme that involved in redox process, was found to be down-regulated during the apoptosis process of the oxidative stress response pathway. Consistent with our results at the protein level, an increase in intracellular reactive oxygen species was observed in betulinic acid-treated cells. The proteins glucose-regulated protein and cargo-selection protein TIP47, which are involved in the endoplasmic reticulum pathway, were up-regulated by betulinic acid treatment. Meanwhile, 14-3-3 family proteins, including 14-3-3β and 14-3-3ε, were down-regulated in response to betulinic acid treatment, which is consistent with the decrease in expression of the target genes 14-3-3β and 14-3-3ε. Furthermore, it was found that the antiapoptotic bcl-2 gene was down-regulated while the proapoptotic bax gene was up-regulated after betulinic acid treatment in HeLa cells. These results suggest that betulinic acid induces apoptosis of HeLa cells by triggering both the endoplasmic reticulum pathway and the ROS-mediated mitochondrial pathway.

  17. Unsaturated fatty acids induce mesenchymal stem cells to increase secretion of angiogenic mediators.

    Science.gov (United States)

    Smith, Andria N; Muffley, Lara A; Bell, Austin N; Numhom, Surawej; Hocking, Anne M

    2012-09-01

    Mesenchymal stem cells (MSC) represent emerging cell-based therapies for diabetes and associated complications. Ongoing clinical trials are using exogenous MSC to treat type 1 and 2 diabetes, cardiovascular disease and non-healing wounds due to diabetes. The majority of these trials are aimed at exploiting the ability of these multipotent mesenchymal stromal cells to release soluble mediators that reduce inflammation and promote both angiogenesis and cell survival at sites of tissue damage. Growing evidence suggests that MSC secretion of soluble factors is dependent on tissue microenvironment. Despite the contribution of fatty acids to the metabolic environment of type 2 diabetes, almost nothing is known about their effects on MSC secretion of growth factors and cytokines. In this study, human bone marrow-derived MSC were exposed to linoleic acid, an omega-6 polyunsaturated fatty acid, or oleic acid, a monounsaturated fatty acid, for seven days in the presence of 5.38 mM glucose. Outcomes measured included MSC proliferation, gene expression, protein secretion and chemotaxis. Linoleic and oleic acids inhibited MSC proliferation and altered MSC expression and secretion of known mediators of angiogenesis. Both unsaturated fatty acids induced MSC to increase secretion of interleukin-6, VEGF and nitric oxide. In addition, linoleic acid but not oleic acid induced MSC to increase production of interleukin-8. Collectively these data suggest that exposure to fatty acids may have functional consequences for MSC therapy. Fatty acids may affect MSC engraftment to injured tissue and MSC secretion of cytokines and growth factors that regulate local cellular responses to injury.

  18. Onset of herbivore-induced resistance in systemic tissue primed for jasmonate-dependent defenses is activated by abscisic acid.

    Science.gov (United States)

    Vos, Irene A; Verhage, Adriaan; Schuurink, Robert C; Watt, Lewis G; Pieterse, Corné M J; Van Wees, Saskia C M

    2013-01-01

    In Arabidopsis, the MYC2 transcription factor on the one hand and the AP2/ERF transcription factors ORA59 and ERF1 on the other hand regulate distinct branches of the jasmonic acid (JA) signaling pathway in an antagonistic fashion, co-regulated by abscisic acid (ABA) and ethylene, respectively. Feeding by larvae of the specialist herbivorous insect Pieris rapae (small cabbage white butterfly) results in activation of the MYC-branch and concomitant suppression of the ERF-branch in insect-damaged leaves. Here we investigated differential JA signaling activation in undamaged systemic leaves of P. rapae-infested plants. We found that the MYC2 transcription factor gene was induced both in the local insect-damaged leaves and the systemic undamaged leaves of P. rapae-infested Arabidopsis plants. However, in contrast to the insect-damaged leaves, the undamaged tissue did not show activation of the MYC-branch marker gene VSP1. Comparison of the hormone signal signature revealed that the levels of JA and (+)-7-iso-jasmonoyl-L-isoleucine raised to similar extents in locally damaged and systemically undamaged leaves, but the production of ABA and the JA precursor 12-oxo-phytodienoic acid was enhanced only in the local herbivore-damaged leaves, and not in the distal undamaged leaves. Challenge of undamaged leaves of pre-infested plants with either P. rapae larvae or exogenously applied ABA led to potentiated expression levels of MYC2 and VSP1, with the latter reaching extremely high expression levels. Moreover, P. rapae-induced resistance, as measured by reduction of caterpillar growth on pre-infested plants, was blocked in the ABA biosynthesis mutant aba2-1, that was also impaired in P. rapae-induced expression of VSP1. Together, these results suggest that ABA is a crucial regulator of herbivore-induced resistance by activating primed JA-regulated defense responses upon secondary herbivore attack in Arabidopsis.

  19. Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis

    Indian Academy of Sciences (India)

    Song Yu; Chen Ligang; Zhang Liping; Yu Diqiu

    2010-09-01

    Through activating specific transcriptional programmes, plants can launch resistance mechanisms to stressful environments and acquire a new equilibrium between development and defence. To screen the rice WRKY transcription factor which functions in abiotic stress tolerance and modulates the abscisic acid (ABA) response, we generated a whole array of 35S-OsWRKY transgenic Arabidopsis. In this study, we report that 35S-OsWRKY72 transgenic Arabidopsis, whose seed germination was retarded under normal conditions, emerged more sensitive to mannitol, NaCl, ABA stresses and sugar starvation than vector plants. Meanwhile, 35S-OsWRKY72 transgenic Arabidopsis displayed early flowering, reduced apical dominance, lost high temperature-induced hypocotyl elongation response, and enhanced gravitropism response, which were similar to the auxin-related gene mutants aux1, axr1 and bud1. Further, semi-quantitative RT-PCR showed that the expression patterns of three auxin-related genes AUX1, AXR1 and BUD1 were significantly altered in rosette leaves and inflorescences of 35S-OsWRKY72 plants compared with control Arabidopsis, and two ABA-related genes ABA2 and ABI4 were induced in 35S-OsWRKY72 seedlings. In addition, northern blot analysis indicated that, in rice, OsWRKY72 was inducible by polyethylene glycol (PEG), NaCl, naphthalene acetic acid (NAA), ABA and 42°C, similar to its orthologue AtWRKY75 in Arabidopsis, implying that these two WRKY genes might be required for multiple physiological processes in their plants. Together, these results suggest that OsWRKY72 interferes in the signal cross-talk between the ABA signal and auxin transport pathway in transgenic Arabidopsis.

  20. Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis.

    Science.gov (United States)

    Yu, Song; Ligang, Chen; Liping, Zhang; Diqiu, Yu

    2010-09-01

    Through activating specific transcriptional programmes, plants can launch resistance mechanisms to stressful environments and acquire a new equilibrium between development and defence. To screen the rice WRKY transcription factor which functions in abiotic stress tolerance and modulates the abscisic acid (ABA) response, we generated a whole array of 35S-OsWRKY transgenic Arabidopsis. In this study, we report that 35S-OsWRKY72 transgenic Arabidopsis, whose seed germination was retarded under normal conditions, emerged more sensitive to mannitol, NaCl, ABA stresses and sugar starvation than vector plants. Meanwhile, 35S-OsWRKY72 transgenic Arabidopsis displayed early flowering, reduced apical dominance, lost high temperature-induced hypocotyl elongation response, and enhanced gravitropism response, which were similar to the auxin-related gene mutants aux1, axr1 and bud1. Further, semi-quantitative RT-PCR showed that the expression patterns of three auxin-related genes AUX1, AXR1 and BUD1 were significantly altered in rosette leaves and infl orescences of 35S-OsWRKY72 plants compared with control Arabidopsis, and two ABA-related genes ABA2 and ABI4 were induced in 35S-OsWRKY72 seedlings. In addition, northern blot analysis indicated that, in rice, OsWRKY72 was inducible by polyethylene glycol (PEG), NaCl, naphthalene acetic acid (NAA), ABA and 42 degrees C, similar to its orthologue AtWRKY75 in Arabidopsis, implying that these two WRKY genes might be required for multiple physiological processes in their plants. Together, these results suggest that OsWRKY72 interferes in the signal cross-talk between the ABA signal and auxin transport pathway in transgenic Arabidopsis.

  1. Dynamic distribution and the role of abscisic acid during seed development of a lady’s slipper orchid, Cypripedium formosanum

    Science.gov (United States)

    Lee, Yung-I; Chung, Mei-Chu; Yeung, Edward C.; Lee, Nean

    2015-01-01

    Background and Aims Although abscisic acid (ABA) is commonly recognized as a primary cause of seed dormancy, there is a lack of information on the role of ABA during orchid seed development. In order to address this issue, the localization and quantification of ABA were determined in developing seeds of Cypripedium formosanum. Methods The endogenous ABA profile of seeds was measured by enzyme-linked immunosorbent assay (ELISA). Temporal and spatial distributions of ABA in developing seeds were visualized by immunohistochemical staining with monoclonal ABA antibodies. Fluoridone was applied to test the causal relationship between ABA content and seed germinability. Key Results ABA content was low at the proembryo stage, then increased rapidly from 120 to 150 days after pollination (DAP), accompanied by a progressive decrease in water content and seed germination. Immunofluorescence signals indicated an increase in fluorescence over time from the proembryo stage to seed maturation. From immunogold labelling, gold particles could be seen within the cytoplasm of embryo-proper cells during the early stages of seed development. As seeds approached maturity, increased localization of gold particles was observed in the periplasmic space, the plasmalemma between embryo-proper cells, the surface wall of the embryo proper, and the inner walls of inner seed-coat cells. At maturity, gold particles were found mainly in the apoplast, such as the surface wall of the embryo proper, and the shrivelled inner and outer seed coats. Injection of fluoridone into capsules resulted in enhanced germination of mature seeds. Conclusions The results indicate that ABA is the key inhibitor of germination in C. formosanum. The distinct accumulation pattern of ABA suggests that it is synthesized in the cytosol of embryo cells during the early stages of seed development, and then exported to the apoplastic region of the cells for subsequent regulatory processes as seeds approach maturity. PMID

  2. Evidence connecting old, new and neglected glucose-lowering drugs to bile acid-induced GLP-1 secretion - a review

    DEFF Research Database (Denmark)

    Kårhus, Martin L; Brønden, Andreas; Sonne, David P

    2017-01-01

    been demonstrated to modulate the secretion of the gut-derived incretin hormone glucagon-like peptide-1 (GLP-1), possibly via the transmembrane receptor Takeda G protein-coupled receptor 5 (TGR5) and the nuclear farnesoid X receptor (FXR), in intestinal L cell. The present article critically reviews...... current evidence connecting established glucose-lowering drugs to bile acid-induced GLP-1 secretion and discusses whether bile acid-induced GLP-1 secretion may constitute a new basis for understanding how metformin, inhibitors of the apical sodium-dependent bile acids transporter, and bile acid...

  3. Abscisic acid coordinates nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula.

    Science.gov (United States)

    Ding, Yiliang; Kalo, Peter; Yendrek, Craig; Sun, Jongho; Liang, Yan; Marsh, John F; Harris, Jeanne M; Oldroyd, Giles E D

    2008-10-01

    Nodulation is tightly regulated in legumes to ensure appropriate levels of nitrogen fixation without excessive depletion of carbon reserves. This balance is maintained by intimately linking nodulation and its regulation with plant hormones. It has previously been shown that ethylene and jasmonic acid (JA) are able to regulate nodulation and Nod factor signal transduction. Here, we characterize the nature of abscisic acid (ABA) regulation of nodulation. We show that application of ABA inhibits nodulation, bacterial infection, and nodulin gene expression in Medicago truncatula. ABA acts in a similar manner as JA and ethylene, regulating Nod factor signaling and affecting the nature of Nod factor-induced calcium spiking. However, this action is independent of the ethylene signal transduction pathway. We show that genetic inhibition of ABA signaling through the use of a dominant-negative allele of ABSCISIC ACID INSENSITIVE1 leads to a hypernodulation phenotype. In addition, we characterize a novel locus of M. truncatula, SENSITIVITY TO ABA, that dictates the sensitivity of the plant to ABA and, as such, impacts the regulation of nodulation. We show that ABA can suppress Nod factor signal transduction in the epidermis and can regulate cytokinin induction of the nodule primordium in the root cortex. Therefore, ABA is capable of coordinately regulating the diverse developmental pathways associated with nodule formation and can intimately dictate the nature of the plants' response to the symbiotic bacteria.

  4. Large-scale proteome analysis of abscisic acid and ABSCISIC ACID INSENSITIVE3-dependent proteins related to desiccation tolerance in Physcomitrella patens

    Energy Technology Data Exchange (ETDEWEB)

    Yotsui, Izumi, E-mail: izumi.yotsui@riken.jp [Department of BioScience, Tokyo University of Agriculture 1-1-1 Sakuragaoka, Setagayaku, Tokyo, 156-8502 (Japan); Serada, Satoshi, E-mail: serada@nibiohn.go.jp [Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085 (Japan); Naka, Tetsuji, E-mail: tnaka@nibiohn.go.jp [Laboratory of Immune Signal, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085 (Japan); Saruhashi, Masashi, E-mail: s13db001@mail.saitama-u.ac.jp [Department of BioScience, Tokyo University of Agriculture 1-1-1 Sakuragaoka, Setagayaku, Tokyo, 156-8502 (Japan); Taji, Teruaki, E-mail: t3teruak@nodai.ac.jp [Department of BioScience, Tokyo University of Agriculture 1-1-1 Sakuragaoka, Setagayaku, Tokyo, 156-8502 (Japan); Hayashi, Takahisa, E-mail: t4hayash@nodai.ac.jp [Department of BioScience, Tokyo University of Agriculture 1-1-1 Sakuragaoka, Setagayaku, Tokyo, 156-8502 (Japan); Quatrano, Ralph S., E-mail: rsq@wustl.edu [Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130-4899 (United States); Sakata, Yoichi, E-mail: sakata@nodai.ac.jp [Department of BioScience, Tokyo University of Agriculture 1-1-1 Sakuragaoka, Setagayaku, Tokyo, 156-8502 (Japan)

    2016-03-18

    Desiccation tolerance is an ancestral feature of land plants and is still retained in non-vascular plants such as bryophytes and some vascular plants. However, except for seeds and spores, this trait is absent in vegetative tissues of vascular plants. Although many studies have focused on understanding the molecular basis underlying desiccation tolerance using transcriptome and proteome approaches, the critical molecular differences between desiccation tolerant plants and non-desiccation plants are still not clear. The moss Physcomitrella patens cannot survive rapid desiccation under laboratory conditions, but if cells of the protonemata are treated by the phytohormone abscisic acid (ABA) prior to desiccation, it can survive 24 h exposure to desiccation and regrow after rehydration. The desiccation tolerance induced by ABA (AiDT) is specific to this hormone, but also depends on a plant transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3). Here we report the comparative proteomic analysis of AiDT between wild type and ABI3 deleted mutant (Δabi3) of P. patens using iTRAQ (Isobaric Tags for Relative and Absolute Quantification). From a total of 1980 unique proteins that we identified, only 16 proteins are significantly altered in Δabi3 compared to wild type after desiccation following ABA treatment. Among this group, three of the four proteins that were severely affected in Δabi3 tissue were Arabidopsis orthologous genes, which were expressed in maturing seeds under the regulation of ABI3. These included a Group 1 late embryogenesis abundant (LEA) protein, a short-chain dehydrogenase, and a desiccation-related protein. Our results suggest that at least three of these proteins expressed in desiccation tolerant cells of both Arabidopsis and the moss are very likely to play important roles in acquisition of desiccation tolerance in land plants. Furthermore, our results suggest that the regulatory machinery of ABA- and ABI3-mediated gene expression for desiccation

  5. Large-scale proteome analysis of abscisic acid and ABSCISIC ACID INSENSITIVE3-dependent proteins related to desiccation tolerance in Physcomitrella patens.

    Science.gov (United States)

    Yotsui, Izumi; Serada, Satoshi; Naka, Tetsuji; Saruhashi, Masashi; Taji, Teruaki; Hayashi, Takahisa; Quatrano, Ralph S; Sakata, Yoichi

    2016-03-18

    Desiccation tolerance is an ancestral feature of land plants and is still retained in non-vascular plants such as bryophytes and some vascular plants. However, except for seeds and spores, this trait is absent in vegetative tissues of vascular plants. Although many studies have focused on understanding the molecular basis underlying desiccation tolerance using transcriptome and proteome approaches, the critical molecular differences between desiccation tolerant plants and non-desiccation plants are still not clear. The moss Physcomitrella patens cannot survive rapid desiccation under laboratory conditions, but if cells of the protonemata are treated by the phytohormone abscisic acid (ABA) prior to desiccation, it can survive 24 h exposure to desiccation and regrow after rehydration. The desiccation tolerance induced by ABA (AiDT) is specific to this hormone, but also depends on a plant transcription factor ABSCISIC ACID INSENSITIVE3 (ABI3). Here we report the comparative proteomic analysis of AiDT between wild type and ABI3 deleted mutant (Δabi3) of P. patens using iTRAQ (Isobaric Tags for Relative and Absolute Quantification). From a total of 1980 unique proteins that we identified, only 16 proteins are significantly altered in Δabi3 compared to wild type after desiccation following ABA treatment. Among this group, three of the four proteins that were severely affected in Δabi3 tissue were Arabidopsis orthologous genes, which were expressed in maturing seeds under the regulation of ABI3. These included a Group 1 late embryogenesis abundant (LEA) protein, a short-chain dehydrogenase, and a desiccation-related protein. Our results suggest that at least three of these proteins expressed in desiccation tolerant cells of both Arabidopsis and the moss are very likely to play important roles in acquisition of desiccation tolerance in land plants. Furthermore, our results suggest that the regulatory machinery of ABA- and ABI3-mediated gene expression for desiccation

  6. Abscisic acid controls embryo growth potential and endosperm cap weakening during coffee (Coffea arabica cv. Rubi) seed germination

    NARCIS (Netherlands)

    Silva, da E.A.A.; Toorop, P.E.; Aelst, van A.C.; Hilhorst, H.W.M.

    2004-01-01

    The mechanism and regulation of coffee seed germination were studied in Coffea arabica L. cv. Rubi. The coffee embryo grew inside the endosperm prior to radicle protrusion and abscisic acid (ABA) inhibited the increase in its pressure potential. There were two steps of endosperm cap weakening. An in

  7. The role of abscisic acid in germination of light-sensitive and light-insensitive lettuce seeds

    NARCIS (Netherlands)

    Roth-Bejerano, N.; Sedee, N.J.A.; Meulen, R.M. van der; Wang, M.

    1999-01-01

    The role of abscisic acid (ABA) in seed germination of two cultivars of lettuce (Lactuca sativa L.; light-sensitive Ritsa and light-insensitive Strada) was investigated. The inhibition of Ritsa seed germination by exogenous ABA was higher than that of Strada seeds, the extent of inhibition of both

  8. The role of abscisic acid in germination of light-sensitive and light-insensitive lettuce seeds

    NARCIS (Netherlands)

    Roth-Bejerano, N.; Sedee, N.J.A.; Meulen, R.M. van der; Wang, M.

    1999-01-01

    The role of abscisic acid (ABA) in seed germination of two cultivars of lettuce (Lactuca sativa L.; light-sensitive Ritsa and light-insensitive Strada) was investigated. The inhibition of Ritsa seed germination by exogenous ABA was higher than that of Strada seeds, the extent of inhibition of both c

  9. Abscisic acid controls embryo growth potential and endosperm cap weakening during coffee (Coffea arabica cv. Rubi) seed germination

    NARCIS (Netherlands)

    Silva, da E.A.A.; Toorop, P.E.; Aelst, van A.C.; Hilhorst, H.W.M.

    2004-01-01

    The mechanism and regulation of coffee seed germination were studied in Coffea arabica L. cv. Rubi. The coffee embryo grew inside the endosperm prior to radicle protrusion and abscisic acid (ABA) inhibited the increase in its pressure potential. There were two steps of endosperm cap weakening. An in

  10. Gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancers by accelerating EGFR turnover.

    Science.gov (United States)

    Nam, Boas; Rho, Jin Kyung; Shin, Dong-Myung; Son, Jaekyoung

    2016-10-01

    Gallic acid is a common botanic phenolic compound, which is present in plants and foods worldwide. Gallic acid is implicated in various biological processes such as cell growth and apoptosis. Indeed, gallic acid has been shown to induce apoptosis in many cancer types. However, the molecular mechanisms of gallic acid-induced apoptosis in cancer, particularly lung cancer, are still unclear. Here, we report that gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancer (NSCLC) cells, but not in EGFR-WT NSCLC cells. Treatment with gallic acid resulted in a significant reduction in proliferation and induction of apoptosis, only in EGFR-mutant NSCLC cells. Interestingly, treatment with gallic acid led to a robust decrease in EGFR levels, which is critical for NSCLC survival. Treatment with gallic acid had no significant effect on transcription, but induced EGFR turnover. Indeed, treatment with a proteasome inhibitor dramatically reversed gallic acid-induced EGFR downregulation. Moreover, treatment with gallic acid induced EGFR turnover leading to apoptosis in EGFR-TKI (tyrosine kinase inhibitor)-resistant cell lines, which are dependent on EGFR signaling for survival. Thus, these studies suggest that gallic acid can induce apoptosis in EGFR-dependent lung cancers that are dependent on EGFR for growth and survival via acceleration of EGFR turnover.

  11. Phenylethanoids in the herb of Plantago lanceolata and inhibitory effect on arachidonic acid-induced mouse ear edema.

    Science.gov (United States)

    Murai, M; Tamayama, Y; Nishibe, S

    1995-10-01

    The five phenylethanoids, acteoside (1), cistanoside F (2), lavandulifolioside (3), plantamajoside (4) and isoacteoside (5) were isolated from the herb of Plantago lanceolata L. (Plantaginaceae). Compounds 1, the major phenylethanoid in the herb of P. lanceolata L., and 4, the major phenylethanoid in the herb of P. asiatica L., showed inhibitory effects on arachidonic acid-induced mouse ear edema.

  12. The upregulation of thiamine (vitamin B1 biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response

    Directory of Open Access Journals (Sweden)

    Rapala-Kozik Maria

    2012-01-01

    Full Text Available Abstract Background Recent reports suggest that vitamin B1 (thiamine participates in the processes underlying plant adaptations to certain types of abiotic and biotic stress, mainly oxidative stress. Most of the genes coding for enzymes involved in thiamine biosynthesis in Arabidopsis thaliana have been identified. In our present study, we examined the expression of thiamine biosynthetic genes, of genes encoding thiamine diphosphate-dependent enzymes and the levels of thiamine compounds during the early (sensing and late (adaptation responses of Arabidopsis seedlings to oxidative, salinity and osmotic stress. The possible roles of plant hormones in the regulation of the thiamine contribution to stress responses were also explored. Results The expression of Arabidopsis genes involved in the thiamine diphosphate biosynthesis pathway, including that of THI1, THIC, TH1 and TPK, was analyzed for 48 h in seedlings subjected to NaCl or sorbitol treatment. These genes were found to be predominantly up-regulated in the early phase (2-6 h of the stress response. The changes in these gene transcript levels were further found to correlate with increases in thiamine and its diphosphate ester content in seedlings, as well as with the enhancement of gene expression for enzymes which require thiamine diphosphate as a cofactor, mainly α-ketoglutarate dehydrogenase, pyruvate dehydrogenase and transketolase. In the case of the phytohormones including the salicylic, jasmonic and abscisic acids which are known to be involved in plant stress responses, only abscisic acid was found to significantly influence the expression of thiamine biosynthetic genes, the thiamine diphosphate levels, as well as the expression of genes coding for main thiamine diphosphate-dependent enzymes. Using Arabidopsis mutant plants defective in abscisic acid production, we demonstrate that this phytohormone is important in the regulation of THI1 and THIC gene expression during salt stress

  13. Interaction of Polyamines, Abscisic Acid, Nitric Oxide, and Hydrogen Peroxide under Chilling Stress in Tomato (Lycopersicon esculentum Mill.) Seedlings.

    Science.gov (United States)

    Diao, Qiannan; Song, Yongjun; Shi, Dongmei; Qi, Hongyan

    2017-01-01

    Polyamines (PAs) play a vital role in the responses of higher plants to abiotic stresses. However, only a limited number of studies have examined the interplay between PAs and signal molecules. The aim of this study was to elucidate the cross-talk among PAs, abscisic acid (ABA), nitric oxide (NO), and hydrogen peroxide (H2O2) under chilling stress conditions using tomato seedlings [(Lycopersicon esculentum Mill.) cv. Moneymaker]. The study showed that during chilling stress (4°C; 0, 12, and 24 h), the application of spermidine (Spd) and spermine (Spm) elevated NO and H2O2 levels, enhanced nitrite reductase (NR), nitric oxide synthase (NOS)-like, and polyamine oxidase activities, and upregulated LeNR relative expression, but did not influence LeNOS1 expression. In contrast, putrescine (Put) treatment had no obvious impact. During the recovery period (25/15°C, 10 h), the above-mentioned parameters induced by the application of PAs were restored to their control levels. Seedlings pretreated with sodium nitroprusside (SNP, an NO donor) showed elevated Put and Spd levels throughout the treatment period, consistent with increased expression in leaves of genes encoding arginine decarboxylase (LeADC. LeADC1), ornithine decarboxylase (LeODC), and Spd synthase (LeSPDS) expressions in tomato leaves throughout the treatment period. Under chilling stress, the Put content increased first, followed by a rise in the Spd content. Exogenously applied SNP did not increase the expression of genes encoding S-adenosylmethionine decarboxylase (LeSAMDC) and Spm synthase (LeSPMS), consistent with the observation that Spm levels remained constant under chilling stress and during the recovery period. In contrast, exogenous Put significantly increased the ABA content and the 9-cis-epoxycarotenoid dioxygenase (LeNCED1) transcript level. Treatment with ABA could alleviate the electrolyte leakage (EL) induced by D-Arg (an inhibitor of Put). Taken together, it is concluded that, under chilling

  14. The mechanism of gentisic acid-induced relaxation of the guinea pig isolated trachea: the role of potassium channels and vasoactive intestinal peptide receptors

    Directory of Open Access Journals (Sweden)

    J.F. Cunha

    2001-03-01

    Full Text Available We examined some of the mechanisms by which the aspirin metabolite and the naturally occurring metabolite gentisic acid induced relaxation of the guinea pig trachea in vitro. In preparations with or without epithelium and contracted by histamine, gentisic acid caused concentration-dependent and reproducible relaxation, with mean EC50 values of 18 µM and Emax of 100% (N = 10 or 20 µM and Emax of 92% (N = 10, respectively. The relaxation caused by gentisic acid was of slow onset in comparison to that caused by norepinephrine, theophylline or vasoactive intestinal peptide (VIP. The relative rank order of potency was: salbutamol 7.9 > VIP 7.0 > gentisic acid 4.7 > theophylline 3.7. Gentisic acid-induced relaxation was markedly reduced (24 ± 7.0, 43 ± 3.9 and 78 ± 5.6% in preparations with elevated potassium concentration in the medium (20, 40 or 80 mM, respectively. Tetraethylammonium (100 µM, a nonselective blocker of the potassium channels, partially inhibited the relaxation response to gentisic acid, while 4-AP (10 µM, a blocker of the voltage potassium channel, inhibited gentisic acid-induced relaxation by 41 ± 12%. Glibenclamide (1 or 3 µM, at a concentration which markedly inhibited the relaxation induced by the opener of ATP-sensitive K+ channels, levcromakalim, had no effect on the relaxation induced by gentisic acid. Charybdotoxin (0.1 or 0.3 µM, a selective blocker of the large-conductance Ca2+-activated K+ channels, caused rightward shifts (6- and 7-fold of the gentisic acid concentration-relaxation curve. L-N G-nitroarginine (100 µM, a NO synthase inhibitor, had no effect on the relaxant effect of gentisic acid, and caused a slight displacement to the right in the relaxant effect of the gentisic acid curve at 300 µM, while methylene blue (10 or 30 µM or ODQ (1 µM, the inhibitors of soluble guanylate cyclase, all failed to affect gentisic acid-induced relaxation. D-P-Cl-Phe6,Leu17[VIP] (0.1 µM, a VIP receptor antagonist

  15. Mechanistic Basis for Plant Responses to Drought Stress : Regulatory Mechanism of Abscisic Acid Signaling

    Science.gov (United States)

    Miyakawa, Takuya; Tanokura, Masaru

    The phytohormone abscisic acid (ABA) plays a key role in the rapid adaptation of plants to environmental stresses such as drought and high salinity. Accumulated ABA in plant cells promotes stomatal closure in guard cells and transcription of stress-tolerant genes. Our understanding of ABA responses dramatically improved by the discovery of both PYR/PYL/RCAR as a soluble ABA receptor and inhibitory complex of a protein phospatase PP2C and a protein kinase SnRK2. Moreover, several structural analyses of PYR/PYL/RCAR revealed the mechanistic basis for the regulatory mechanism of ABA signaling, which provides a rational framework for the design of alternative agonists in future.

  16. Isolation and Crystal Structure of 1′,4′-Trans-diol of Abscisic Acid

    Institute of Scientific and Technical Information of China (English)

    WANG Tian-Shan; ZHOU Jin-Yan; TAN Hong

    2006-01-01

    1 ′,4′-Trans-diol of abscisic acid was isolated from botrytis cinerea as a colorless crystal. The molecular and crystal structures have been determined by X-ray diffraction analysis. It crystallizes in orthorhombic system, space group P212121 with a = 6.724(3), b = 17.559(6), c =12.265(2) (A), a = β = y = 90°, V = 1448.1(8) (A)3, Z = 4, Dx = 1.222 g/cm3, F(000) = 576 and μ(MoKa) = 0.087 mm-1. The final R = 0.0628 and wR = 0.1604 for 2501 independent reflections with Rint = 0.0160 and 1679 observed reflections with I >2σ(Ⅰ). There are three intermolecular hydrogen bonds in a unit cell.

  17. Abscisic acid is a negative regulator of root gravitropism in Arabidopsis thaliana.

    Science.gov (United States)

    Han, Woong; Rong, Honglin; Zhang, Hanma; Wang, Myeong-Hyeon

    2009-01-23

    The plant hormone abscisic acid (ABA) plays a role in root gravitropism and has led to an intense debate over whether ABA acts similar to auxin by translating the gravitational signal into directional root growth. While tremendous advances have been made in the past two decades in establishing the role of auxin in root gravitropism, little progress has been made in characterizing the role of ABA in this response. In fact, roots of plants that have undetectable levels of ABA and that display a normal gravitropic response have raised some serious doubts about whether ABA plays any role in root gravitropism. Here, we show strong evidence that ABA plays a role opposite to that of auxin and that it is a negative regulator of the gravitropic response of Arabidopsis roots.

  18. Abscisic acid effects on activity and expression of barley (Hordeum vulgare) plastidial glucose-6-phosphate dehydrogenase.

    Science.gov (United States)

    Cardi, Manuela; Chibani, Kamel; Cafasso, Donata; Rouhier, Nicolas; Jacquot, Jean-Pierre; Esposito, Sergio

    2011-07-01

    Total glucose-6-phosphate dehydrogenase (G6PDH) activity, protein abundance, and transcript levels of G6PDH isoforms were measured in response to exogenous abscisic acid (ABA) supply to barley (Hordeum vulgare cv Nure) hydroponic culture. Total G6PDH activity increased by 50% in roots treated for 12 h with exogenous 0.1 mM ABA. In roots, a considerable increase (35%) in plastidial P2-G6PDH transcript levels was observed during the first 3 h of ABA treatment. Similar protein variations were observed in immunoblotting analyses. In leaves, a 2-fold increase in total G6PDH activity was observed after ABA treatment, probably related to an increase in the mRNA level (increased by 50%) and amount of protein (increased by 85%) of P2-G6PDH. Together these results suggest that the plastidial P2-isoform plays an important role in ABA-treated barley plants.

  19. Emerging roles of protein kinase CK2 in abscisic acid (ABA signaling

    Directory of Open Access Journals (Sweden)

    Belmiro eVilela

    2015-11-01

    Full Text Available The phytohormone abscisic acid (ABA regulates many aspects of plant growth and development as well as responses to multiple stresses. Post-translational modifications such as phosphorylation or ubiquitination have pivotal roles in the regulation of ABA signaling. In addition to the positive regulator sucrose non-fermenting-1 related protein kinase 2 (SnRK2, the relevance of the role of other protein kinases, such as CK2, has been recently highlighted. We have recently established that CK2 phosphorylates the maize ortholog of open stomata 1 OST1, ZmOST1, suggesting a role of CK2 phosphorylation in the control of ZmOST1 protein degradation (Vilela et al., 2015. CK2 is a pleiotropic enzyme involved in multiple developmental and stress-responsive pathways. This review summarizes recent advances that taken together suggest a prominent role of protein kinase CK2 in ABA signaling and related processes.

  20. ABSCISIC ACID EFFECTS ON WATER AND PHOTOSYNTHETIC CHARACTERISTICS OF TWO ECOTYPES OF Atriplex halimus L.

    Directory of Open Access Journals (Sweden)

    Y. Bidai

    2016-05-01

    Full Text Available The aim of this study is to compare the water and photosynthetic characteristics of two xerophilic ecotypes of Atriplex halimus (L.. Seeds collected from two different sites Djelfa and Oran are germinated in controlled greenhouse. After 6 months, the plantlets were treated 21 days with increasing concentrations of abscisic acid (0M, 10-6 M and 10-3 M. The results show that ecotype of Djelfa reduced water loss through transpiration because of high stomatal resistance. Consequently the content of chlorophyll a and b decrease significantly compared to Oran ecotype which show an increase of the osmotic potential and relative water content. Osmotic adjustment to reduce dehydration and maintain a good photosynthesis seems efficient in Oran ecotype.

  1. Effect of abscisic and gibberellic acids on malate synthase transcripts in germinating castor bean seeds.

    Science.gov (United States)

    Rodriguez, D; Dommes, J; Northcote, D H

    1987-05-01

    Several clones complementary to malate synthase mRNA have been identified in a complementary-DNA library to mRNA from castor bean endosperm. One of these clones has been used as a probe to measure levels of transcripts during seed germination and the effects of gibberellic acid and abscisic acid on these levels have been examined.Malate synthase transcripts increased during germination and GA3 advanced their appearance in the endosperm. Exogenously applied ABA inhibited the accumulation of transcripts over a time course of germination but the addition of GA3 counteracted its inhibitory effects. The data confirmed previous reports which indicated that the action of both growth regulators was on transcript accumulation and that there is a coordinated induction of the enzymes involved in the lipid metabolism in oil seeds.

  2. A mesoscale abscisic acid hormone interactome reveals a dynamic signaling landscape in Arabidopsis.

    Science.gov (United States)

    Lumba, Shelley; Toh, Shigeo; Handfield, Louis-François; Swan, Michael; Liu, Raymond; Youn, Ji-Young; Cutler, Sean R; Subramaniam, Rajagopal; Provart, Nicholas; Moses, Alan; Desveaux, Darrell; McCourt, Peter

    2014-05-12

    The sesquiterpenoid abscisic acid (ABA) mediates an assortment of responses across a variety of kingdoms including both higher plants and animals. In plants, where most is known, a linear core ABA signaling pathway has been identified. However, the complexity of ABA-dependent gene expression suggests that ABA functions through an intricate network. Here, using systems biology approaches that focused on genes transcriptionally regulated by ABA, we defined an ABA signaling network of over 500 interactions among 138 proteins. This map greatly expanded ABA core signaling but was still manageable for systematic analysis. For example, functional analysis was used to identify an ABA module centered on two sucrose nonfermenting (SNF)-like kinases. We also used coexpression analysis of interacting partners within the network to uncover dynamic subnetwork structures in response to different abiotic stresses. This comprehensive ABA resource allows for application of approaches to understanding ABA functions in higher plants. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Anacardic acid induces apoptosis-like cell death in the rice blast fungus Magnaporthe oryzae.

    Science.gov (United States)

    Muzaffar, Suhail; Bose, Chinchu; Banerji, Ashok; Nair, Bipin G; Chattoo, Bharat B

    2016-01-01

    Anacardic acid (6-pentadecylsalicylic acid), extracted from cashew nut shell liquid, is a natural phenolic lipid well known for its strong antibacterial, antioxidant, and anticancer activities. Its effect has been well studied in bacterial and mammalian systems but remains largely unexplored in fungi. The present study identifies antifungal, cytotoxic, and antioxidant activities of anacardic acid in the rice blast fungus Magnaporthe oryzae. It was found that anacardic acid causes inhibition of conidial germination and mycelial growth in this ascomycetous fungus. Phosphatidylserine externalization, chromatin condensation, DNA degradation, and loss of mitochondrial membrane potential suggest that growth inhibition of fungus is mainly caused by apoptosis-like cell death. Broad-spectrum caspase inhibitor Z-VAD-FMK treatment indicated that anacardic acid induces caspase-independent apoptosis in M. oryzae. Expression of a predicted ortholog of apoptosis-inducing factor (AIF) was upregulated during the process of apoptosis, suggesting the possibility of mitochondria dependent apoptosis via activation of apoptosis-inducing factor. Anacardic acid treatment leads to decrease in reactive oxygen species rather than increase in reactive oxygen species (ROS) accumulation normally observed during apoptosis, confirming the antioxidant properties of anacardic acid as suggested by earlier reports. Our study also shows that anacardic acid renders the fungus highly sensitive to DNA damaging agents like ethyl methanesulfonate (EMS). Treatment of rice leaves with anacardic acid prevents M. oryzae from infecting the plant without affecting the leaf, suggesting that anacardic acid can be an effective antifungal agent.

  4. Acupuncture suppresses kainic acid-induced neuronal death and inflammatory events in mouse hippocampus.

    Science.gov (United States)

    Kim, Seung-Tae; Doo, Ah-Reum; Kim, Seung-Nam; Kim, Song-Yi; Kim, Yoon Young; Kim, Jang-Hyun; Lee, Hyejung; Yin, Chang Shik; Park, Hi-Joon

    2012-09-01

    The administration of kainic acid (KA) causes seizures and produces neurodegeneration in hippocampal CA3 pyramidal cells. The present study investigated a possible role of acupuncture in reducing hippocampal cell death and inflammatory events, using a mouse model of kainic acid-induced epilepsy. Male C57BL/6 mice received acupuncture treatments at acupoint HT8 or in the tail area bilaterally once a day for 2 days and again immediately after an intraperitoneal injection of KA (30 mg/kg). HT8 is located on the palmar surface of the forelimbs, between the fourth and fifth metacarpal bones. Twenty-four hours after the KA injection, neuronal cell survival, the activations of microglia and astrocytes, and mRNA expression of two proinflammatory cytokines, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), were measured in the hippocampus. Acupuncture stimulation at HT8, but not in the tail area, significantly reduced the KA-induced seizure, neuron death, microglial and astrocyte activations, and IL-1β mRNA expression in the hippocampus. The acupuncture stimulation also decreased the mRNA expression of TNF-α, but it was not significant. These results indicate that acupuncture at HT8 can inhibit hippocampal cell death and suppress KA-induced inflammatory events, suggesting a possible role for acupuncture in the treatment of epilepsy.

  5. Oleic acid-induced lung injury in rabbits: effect of fibrinogen depletion with Arvin

    Energy Technology Data Exchange (ETDEWEB)

    Allard, M.F.; Doerschuk, C.M.; Brumwell, M.L.; Belzberg, A.; Hogg, J.C.

    1988-03-01

    The role of fibrinogen in the evolution of the increased permeability after oleic acid-induced lung injury was studied in New Zealand White rabbits. Animals depleted of fibrinogen by treatment with Malayan pit viper venom were compared with untreated rabbits immediately and at 1 and 24 h after injury. The increased permeability to albumin and elevated extravascular lung water (EVLW) associated with lung injury returned to control values by 24 h in untreated animals. Fibrinogen-depleted animals had a higher mortality (10/25 vs. 2/17, P less than 0.02) and showed a greater immediate increase in permeability to albumin that returned to control values at 1 and 24 h after injury, as well as trends toward elevated blood-free dry lung weight and larger increases in EVLW that persisted for 24 h. These findings indicate that fibrinogen-related proteins play an important role in controlling the microvascular injury that is produced by oleic acid. However, when these proteins are depleted, other mechanisms partially control the leak at later stages of the repair process.

  6. Effect of partial liquid ventilation on oleic acid-induced inflammatory responses in piglets

    Institute of Scientific and Technical Information of China (English)

    ZHU Yao-bin; WANG Qiang; LIU Ying-long; LI Xiao-feng; LI Jian-an; L(U) Xiao-dong; LING Feng; LIU Ai-jun; FAN Xiang-ming

    2010-01-01

    Background Pediatric patients are susceptible to lung injury.Acute lung injury (ALI) in children often results in a high mortality.Partial liquid ventilation (PLV) has been shown to markedly improve oxygenation and reduce histologic evidence of injury in a number of lung injury models.This study aimed to examine the hypothesis that PLV would attenuate the production of local and systemic cytokines in an immature piglet model of ALI induced by oleic acid (OA).Methods Twelve Chinese immature piglets were induced to develop ALI by oleic acid.The animals were randomly assigned to two groups (n=6): (1) conventional mechanical ventilation (MV) group and (2) PLV with FC-77 (10 ml/kg) group.Results Compared with MV group, PLV group got better cardiopulmonary variables (P <0.05).These variables included heart rate, mean blood pressure, blood pH, partial pressure of arterial oxygen (PaO2), PaO2/FiO2 and partial pressure of arterial carbon dioxide (PaCO2).Partial liquid ventilation reduced IL-1β, IL-6, IL-10 and TN F-α both in plasma and tissue concentrations compared with MV group (P <0.05).Conclusions Partial liquid ventilation provides protective effects against inflammatory responses in the lungs of oleic acid-induced immature piglets.

  7. Acid-induced gelation behavior of casein/whey protein solutions assessed by oscillatory rheology.

    Science.gov (United States)

    Sadeghi, Mahboubeh; Madadlou, Ashkan; Khosrowshahi, Asghar; Mohammadifar, Mohammadamin

    2014-09-01

    Gelation process of acid-induced casein gels was studied using response surface method (RSM). Ratio of casein to whey proteins, incubation and heating temperatures were independent variables. Final storage modulus (G') measured 200 min after the addition of glucono-δ-lactone and the gelation time i.e. the time at which G' of gels became greater than 1 Pa were the parameters studied. Incubation temperature strongly affected both parameters. The higher the incubation temperature, the lower was the G' and the shorter the gelation time. Increased heating temperature however, increased the G' but again shortened the gelation time. Increase in G' was attributed to the formation of disulphide cross-linkages between denatured whey proteins and casein chains; whilst the latter was legitimized by considering the higher isoelectric pH of whey proteins. Maximum response (G' = 268.93 Pa) was obtained at 2.7 % w/w, 25 °C and 90 °C for casein content, incubation and heating temperatures, respectively.

  8. Viscoelastic properties and fractal analysis of acid-induced SPI gels at different ionic strength.

    Science.gov (United States)

    Bi, Chong-hao; Li, Dong; Wang, Li-jun; Adhikari, Benu

    2013-01-30

    The viscoelastic property and scaling behavior of acid (glucono-δ-lactone)-induced soy protein isolate (SPI) gels were investigated at various ionic strengths (0-800mM) and five protein concentrations ranging between 4% and 8% (w/w). The infinite storage modulus ( [Formula: see text] ) and the gelation start time (t(g)) which indicate the progress of gelation process exhibited strong ionic strength dependence. The storage modulus and critical strain were found to exhibit a power-law relationship with protein concentration. Rheological analysis and confocal laser scanning microscopy (CLSM) analysis were applied to estimate the fractal dimensions (D(f)) of the gels and the values were found to vary between 2.319 and 2.729. The comparison of the rheological methods and the CLSM image analysis method showed that the Shih, Shih, Kim, Liu, and Aksay (1990) model was better suited in estimating the D(f) value of acid-induced SPI gel system.

  9. Rotavirus nonstructural protein 1 antagonizes innate immune response by interacting with retinoic acid inducible gene I

    Directory of Open Access Journals (Sweden)

    Qin Lan

    2011-12-01

    Full Text Available Abstract Background The nonstructural protein 1 (NSP1 of rotavirus has been reported to block interferon (IFN signaling by mediating proteasome-dependent degradation of IFN-regulatory factors (IRFs and (or the β-transducin repeat containing protein (β-TrCP. However, in addition to these targets, NSP1 may subvert innate immune responses via other mechanisms. Results The NSP1 of rotavirus OSU strain as well as the IRF3 binding domain truncated NSP1 of rotavirus SA11 strain are unable to degrade IRFs, but can still inhibit host IFN response, indicating that NSP1 may target alternative host factor(s other than IRFs. Overexpression of NSP1 can block IFN-β promoter activation induced by the retinoic acid inducible gene I (RIG-I, but does not inhibit IFN-β activation induced by the mitochondrial antiviral-signaling protein (MAVS, indicating that NSP1 may target RIG-I. Immunoprecipitation experiments show that NSP1 interacts with RIG-I independent of IRF3 binding domain. In addition, NSP1 induces down-regulation of RIG-I in a proteasome-independent way. Conclusions Our findings demonstrate that inhibition of RIG-I mediated type I IFN responses by NSP1 may contribute to the immune evasion of rotavirus.

  10. Primary and secondary genetic responses after folic acid-induced acute renal injury in the mouse.

    Science.gov (United States)

    Calvet, J P; Chadwick, L J

    1994-12-01

    Folic acid-induced acute renal injury results in dramatic changes in gene expression. Among the genes affected by folic acid treatment are the primary response genes, c-fos and c-myc, which are thought to function to initiate cell cycle events. In this report, changes in the expression of three other genes in response to folic acid injury have been investigated: ornithine decarboxylase, epidermal growth factor (EGF), and sulfated glycoprotein-2 (SGP-2). Renal injury was found to cause a rapid decrease in EGF mRNA, which remained absent for several days after the initial injury, gradually returning to normal levels over an approximately 3-wk regeneration and recovery period. Ornithine decarboxylase mRNA showed a similar decrease. In contrast, folic acid caused a rapid increase in SGP-2 mRNA, which peaked several days after treatment, decreasing to normal levels over the 3-wk period. The mRNAs for the primary response genes were superinduced in the injured kidneys in the presence of the protein synthesis inhibitor cycloheximide. In contrast, the changes in EGF and SGP-2 mRNA levels were blocked by cycloheximide, indicating that these responses required new protein synthesis during the first few hours after folic acid injury. The opposite but parallel responses in the expression of the EGF and SGP-2 genes suggest that their regulation is coupled to the initial injury-induced dedifferentiation and subsequent return to the fully differentiated state.

  11. Involvement of Sp1 in Butyric Acid-Induced HIV-1 Gene Expression

    Directory of Open Access Journals (Sweden)

    Kenichi Imai

    2015-09-01

    Full Text Available Background/Aims: The ability of human immunodeficiency virus-1(HIV-1 to establish latent infection and its re-activation is considered critical for progression of HIV-1 infection. We previously reported that a bacterial metabolite butyric acid, acting as a potent inhibitor of histone deacetylases (HDACs, could lead to induction of HIV-1 transcription; however, the molecular mechanism remains unclear. The aim of this study was to investigate the effect of butyric acid on HIV-1 gene expression. Methods: Butyric acid-mediated HIV-1 gene expression was determined by luciferase assay and Chromatin immunoprecipitation assay. Western blot analysis and ELISA were used for the detection of HIV-1. Results: We found that Sp1 binding sites within the HIV-1 promoter are primarily involved in butyric acid-mediated HIV-1 activation. In fact, Sp1 knockdown by small interfering RNA and the Sp1 inhibitor mithramycin A abolished the effect of butyric acid. We also observed that cAMP response element-binding-binding protein (CBP was required for butyric acid-induced HIV-1 activation. Conclusions: These results suggest that butyric acid stimulates HIV-1 promoter through inhibition of the Sp1-associated HDAC activity and recruitment of CBP to the HIV-1 LTR. Our findings suggest that Sp1 should be considered as one of therapeutic targets in anti-viral therapy against HIV-1 infection aggravated by butyric acid-producing bacteria.

  12. Neuroprotective effects of MK-801 on L-2-chloropropionic acid-induced neurotoxicity.

    Science.gov (United States)

    Williams, R E; Lock, E A; Bachelard, H S

    2001-02-01

    L-2-Chloropropionic acid is selectively toxic to the cerebellum in rats; the granule cell necrosis observed within 48 h can be prevented by prior administration of MK-801. Short-term treatment (2 h) with L-2-chloropropionic acid has also been shown to activate the mitochondrial pyruvate dehydrogenase complex in fasted adult rats. This study aimed to investigate the effect of prior exposure to MK-801 on the biochemical and neurotoxicological effects of L-2-chloropropionic acid. Extracts were prepared from the forebrain and cerebellum of animals that had been treated with L-2-chloropropionic acid, with and without prior treatment with MK-801, and were analysed using magnetic resonance spectroscopy and amino acid analysis. Glucose metabolism was studied by monitoring the metabolism of [1-(13)C]-glucose using GC/MS. L-2-Chloropropionic acid caused increased glucose metabolism in both brain regions 6 h after administration, confirming activation of the pyruvate dehydrogenase complex, which was not prevented by MK-801. After 48 h an increase in lactate and a decrease in N-acetylaspartate was observed only in the cerebellum, whereas phosphocreatine and ATP decreased in both tissues. MK-801 prevented the changes in lactate and N:-acetylaspartate, but not those on the energy state. These studies suggest that L-2-chloropropionic acid-induced neurotoxicity is only partly mediated by the NMDA subtype of glutamate receptor.

  13. ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription

    Science.gov (United States)

    Shu, Kai; Chen, Qian; Wu, Yaorong; Liu, Ruijun; Zhang, Huawei; Wang, Shengfu; Tang, Sanyuan; Yang, Wenyu; Xie, Qi

    2016-01-01

    During the life cycle of a plant, one of the major biological processes is the transition from the vegetative to the reproductive stage. In Arabidopsis, flowering time is precisely controlled by extensive environmental and internal cues. Gibberellins (GAs) promote flowering, while abscisic acid (ABA) is considered as a flowering suppressor. However, the detailed mechanism through which ABA inhibits the floral transition is poorly understood. Here, we report that ABSCISIC ACID-INSENSITIVE 4 (ABI4), a key component in the ABA signalling pathway, negatively regulates floral transition by directly promoting FLOWERING LOCUS C (FLC) transcription. The abi4 mutant showed the early flowering phenotype whereas ABI4-overexpressing (OE-ABI4) plants had delayed floral transition. Consistently, quantitative reverse transcription–PCR (qRT–PCR) assay revealed that the FLC transcription level was down-regulated in abi4, but up-regulated in OE-ABI4. The change in FT level was consistent with the pattern of FLC expression. Chromatin immunoprecipitation-qPCR (ChIP-qPCR), electrophoretic mobility shift assay (EMSA), and tobacco transient expression analysis showed that ABI4 promotes FLC expression by directly binding to its promoter. Genetic analysis demonstrated that OE-ABI4::flc-3 could not alter the flc-3 phenotype. OE-FLC::abi4 showed a markedly delayed flowering phenotype, which mimicked OE-FLC::WT, and suggested that ABI4 acts upstream of FLC in the same genetic pathway. Taken together, these findings suggest that ABA inhibits the floral transition by activating FLC transcription through ABI4. PMID:26507894

  14. AtPUB 19, a U-Box E3 Ubiquitin Ligase, Negatively Regulates Abscisic Acid and Drought Responses in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Yong-Chang Liu; Yao-Rong Wu; Xia-He Huang; Jie Sun; Qi Xie

    2011-01-01

    Ubiquitination is an important protein post-translational modification,which is involved in various cellular processes in higher plants,and U-box E3 ligases play important roles in diverse functions in eukaryotes.Here,we describe the functions of Arabidopsis thaliana PUB19 (AtPUB19),which we demonstrated in an in vitro assay to encode a U-box type E3 ubiquitin ligase.AtPUB19 was up-regulated by drought,salt,cold,and abscisic acid (ABA).Down-regulation of AtPUB19led to hypersensitivity to ABA,enhanced ABA-induced stomatal closing,and enhanced drought tolerance,while AtPUB 19overexpression resulted in the reverse phenotypes.Molecular analysis showed that the expression levels of a number of ABA and stress marker genes were altered in both AtPUB 19 overexpressing and atpub 19-1 mutant plants.In summary,our data show that AtPUB19 negatively regulates ABA and drought responses in A.thaliana.

  15. Ethylene Responses in Rice Roots and Coleoptiles Are Differentially Regulated by a Carotenoid Isomerase-Mediated Abscisic Acid Pathway[OPEN

    Science.gov (United States)

    Yin, Cui-Cui; Ma, Biao; Collinge, Derek Phillip; Pogson, Barry James; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Chen, Hui; Yang, Chao; Lu, Xiang; Wang, Yi-Qin; Zhang, Wan-Ke; Chu, Cheng-Cai; Sun, Xiao-Hong; Fang, Shuang; Chu, Jin-Fang; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice. PMID:25841037

  16. Assessment of the antinociceptive effects of pregabalin alone or in combination with morphine during acetic acid-induced writhing in mice.

    Science.gov (United States)

    Shamsi Meymandi, Manzumeh; Keyhanfar, Fariborz

    2013-09-01

    Visceral pain currently represents one of the most important pain treatment challenges in clinical practice, and investigators across the world are continuously designing and conducting numerous studies in search of new analgesics and new combination therapies. The current study assessed the analgesic effects of saline, pregabalin (2, 5, 17, 50, 100, and 200 mg/kg, i.p.) and morphine (0.25, 0.5, 1, 3 and 5 mg/kg) alone or in combination on acetic-acid induced abdominal contractions in mice. The number of writhes and the inhibitory effects (as percentages, %E) were calculated as antinociception indexes. These indexes indicated that both pregabalin (Prg) and morphine (Mrp) produced dose-dependent antinociception. Pregabalin at 5 mg/kg (%E=32.5±4.0) or 2 mg/kg (%E=20.8±4.5) and morphine at 0.25 mg/kg (%E=20.2±7.8) and 0.5 mg/kg (%E=43.6±4.5) exhibited antinociceptive effects, and the combination of pregabalin and morphine produced significantly greater antinociceptive effects (%E=62.4±5.8 for Prg5+Mrp0.25; %E=71.7±4.8 for Prg5+Mrp0.5; and %E=54.1±4.0 for Prg2+Mrp0.25), although this enhancement was not observed when morphine was combined with 17 mg/kg pregabalin. Pre-treatment with 2 mg/kg (i.p.) naloxone did not affect increased analgesia when combined with these drugs. A dose-response curve was established for pregabalin at a fixed morphine dose and revealed that, at low doses, pregabalin dose-dependently enhanced the antinociceptive effects, while the opposite was true at high doses (17 and 25 mg/kg). In conclusion, pregabalin can produce levels of antinociception that are similar to those of morphine in acetic acid-induced viscero-somatic pain. The enhancement of antinociception produced by the co-administration of morphine and pregabalin is termed a supra-additive interaction and occurred at low doses but not at high doses. These findings militate for increased attention and caution in clinical settings.

  17. Abscisic acid flux alterations result in differential abscisic acid signaling responses and impact assimilation efficiency in barley under terminal drought stress.

    Science.gov (United States)

    Seiler, Christiane; Harshavardhan, Vokkaliga T; Reddy, Palakolanu S; Hensel, Götz; Kumlehn, Jochen; Eschen-Lippold, Lennart; Rajesh, Kalladan; Korzun, Viktor; Wobus, Ulrich; Lee, Justin; Selvaraj, Gopalan; Sreenivasulu, Nese

    2014-04-01

    Abscisic acid (ABA) is a central player in plant responses to drought stress. How variable levels of ABA under short-term versus long-term drought stress impact assimilation and growth in crops is unclear. We addressed this through comparative analysis, using two elite breeding lines of barley (Hordeum vulgare) that show senescence or stay-green phenotype under terminal drought stress and by making use of transgenic barley lines that express Arabidopsis (Arabidopsis thaliana) 9-cis-epoxycarotenoid dioxygenase (AtNCED6) coding sequence or an RNA interference (RNAi) sequence of ABA 8'-hydroxylase under the control of a drought-inducible barley promoter. The high levels of ABA and its catabolites in the senescing breeding line under long-term stress were detrimental for assimilate productivity, whereas these levels were not perturbed in the stay-green type that performed better. In transgenic barley, drought-inducible AtNCED expression afforded temporal control in ABA levels such that the ABA levels rose sooner than in wild-type plants but also subsided, unlike as in the wild type , to near-basal levels upon prolonged stress treatment due to down-regulation of endogenous HvNCED genes. Suppressing of ABA catabolism with the RNA interference approach of ABA 8'-hydroxylase caused ABA flux during the entire period of stress. These transgenic plants performed better than the wild type under stress to maintain a favorable instantaneous water use efficiency and better assimilation. Gene expression analysis, protein structural modeling, and protein-protein interaction analyses of the members of the PYRABACTIN RESISTANCE1/PYRABACTIN RESISTANCE1-LIKE/REGULATORY COMPONENT OF ABA RECEPTORS, TYPE 2C PROTEIN PHOSPHATASE Sucrose non-fermenting1-related protein kinase2, and ABA-INSENSITIVE5/ABA-responsive element binding factor family identified specific members that could potentially impact ABA metabolism and stress adaptation in barley.

  18. Effect of terbutaline on alveolar liquid clearance after oleic acid-induced lung injury in rats

    Institute of Scientific and Technical Information of China (English)

    TAO Jun; YANG Tian-de; LI Hong; DU Zhi-yong

    2006-01-01

    Objective: To investigate whether terbutaline affects alveolar liquid clearance after oleic acid-induced lung injury in rats.Methods: Forty healthy Wistar rats ( weighing 250-280 g) were randomly divided into five groups ( n = 8 in each group): the normal control group ( control group),oleic acid injury group ( injury group), terbutaline-treated group (terbutaline group ), terbutaline plus amiloridetreated group (terbutaline + amiloride group ) and terbutaline plus ouabain-treated group (terbutaline + ouabain group). Acute lung injury model was induced by intravenous oleic acid (0. 25 mi/kg body weight). 24 hours later, 1.5 μCi 125I-labeled 5% albumin solution (5 ml/kg body weight) was dripped into the lungs through trachea.The alveolar liquid clearance rate, extravascular lung water content, and arterial blood gas were measured 1 hour thereafter.Results: At 24 hours after infusion of oleic acid, the rats developed pulmonary edema and severe hypoxemia,with the alveolar liquid clearance rate decreased by 49.2 % and the extravascular lung water content elevated by 47.9%. Compared with the rats in the injury group,terbutaline (10-4 mol/L ) significantly increased the alveolar liquid clearance rate, decreased the extravascular lung water content and improved hypoxemia. The effect of terbutaline was partly blocked by amiloride and ouabain,which were inhibitors of sodium transport. Terbutaline increased the alveolar liquid clearance rate by 63.7 %, and amiloride and ouabain reduced the alveolar liquid clearance rate by 54.7% and 56.8%, respectively.Conclusions: Terbutaline can accelerate alveolar liquid clearance through increasing sodium transport to attenuate pulmonary edema, thus improving gas exchange,which may have therapeutical effect on pulmonary edema after acute lung injury.

  19. Bile acid-induced arrhythmia is mediated by muscarinic M2 receptors in neonatal rat cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Siti H Sheikh Abdul Kadir

    Full Text Available BACKGROUND: Intrahepatic cholestasis of pregnancy (ICP is a common disease affecting up to 5% of pregnancies and which can cause fetal arrhythmia and sudden intrauterine death. We previously demonstrated that bile acid taurocholate (TC, which is raised in the bloodstream of ICP, can acutely alter the rate and rhythm of contraction and induce abnormal calcium destabilization in cultured neonatal rat cardiomyocytes (NRCM. Apart from their hepatic functions bile acids are ubiquitous signalling molecules with diverse systemic effects mediated by either the nuclear receptor FXR or by a recently discovered G-protein coupled receptor TGR5. We aim to investigate the mechanism of bile-acid induced arrhythmogenic effects in an in-vitro model of the fetal heart. METHODS AND RESULTS: Levels of bile acid transporters and nuclear receptor FXR were studied by quantitative real time PCR, western blot and immunostaining, which showed low levels of expression. We did not observe functional involvement of the canonical receptors FXR and TGR5. Instead, we found that TC binds to the muscarinic M(2 receptor in NRCM and serves as a partial agonist of this receptor in terms of inhibitory effect on intracellular cAMP and negative chronotropic response. Pharmacological inhibition and siRNA-knockdown of the M(2 receptor completely abolished the negative effect of TC on contraction, calcium transient amplitude and synchronisation in NRCM clusters. CONCLUSION: We conclude that in NRCM the TC-induced arrhythmia is mediated by the partial agonism at the M(2 receptor. This mechanism might serve as a promising new therapeutic target for fetal arrhythmia.

  20. Oral Grapeseed Oil and Sesame Oil in Experimental Acetic Acid-Induced Ulcerative Colitis in Rat

    Directory of Open Access Journals (Sweden)

    Hosseinzadeh

    2016-06-01

    Full Text Available Background Ulcerative colitis (UC is a multi-factorial disease with unknown etiology and has many clinical manifestations. Objectives The current study aimed to evaluate the effects of sesame oil (SO and grapeseed oil (GSO on acetic acid-induced UC in rats. Materials and Methods Eighty male rats were divided into eight groups as health control (HC1, received normal saline; HC2, received SO; HC3, received GSO; negative control (NC, UC and normal saline; positive control (PC, UC and mesalamine; SO, UC and SO; GSO, UC and GSO, and SO + GSO. The daily weight changes, serum levels of oxidative stress markers and lipid profile plus colon macroscopic and microscopic histological changes were measured at the end of the seventh day. Results Significant differences were detected between HC1 and PC on the 3rd (P = 0.002, 4th (0.013 and 6th days (0.014 and between HC1 and NC on the 4th day (0.027 in weight of rats. Use of GSO alone or in combination with SO decreased the extent of the changes both in macroscopic and microscopic indices and also at the inflammation level. The most significant decrease in the MDA level and the most obvious increase in the TAC belonged to the GSO group in comparison to the NC group. The lowest cholesterol (51.43 ± 5.62 mg/dL and HDL levels (29.29 ± 6.24 mg/dL were detected in response to SO consumption in comparison to NC group (P = 0.030 and P = 0.257, respectively. Conclusions GSO in combination with SO may be considered as the treatment of choice for UC based on antioxidant and histopathological evaluations.

  1. Nephroprotective effect of Corn Silk extract on oxalic acid-induced nephrocalcinosis in rabbit model

    Directory of Open Access Journals (Sweden)

    Faruk Hassan Al-Jawad

    2012-04-01

    Full Text Available ABSTRACT Background : Nephrocalcinosis is a state of deposition of calcium phosphate or oxalate in the renal parenchyma. It may occur in patients with renal tubular acidosis, vitamin D intoxication, and hyperparathyroidism. Corn silk was used in traditional Chinese medicine to relieve renal pains. Aim: To evaluate the effect of Corn silk aqueous extract in reducing calcium deposits from renal parenchyma in oxalic acid-induced nephrocalcinosis model. Materials and methods: Fourteen healthy rabbits were allocated to two groups. Two hours before induction of nephrocalcinosis, one group received water and the other received aqueous extract of corn silk and continued feeding for ten days. Blood samples were collected for biochemical analysis before induction and in the fifth and tenth post-induction day. Urine samples were taken to estimate urinary ca+2 levels and crystals. The histopathological examination was carried to check for crystal deposits in renal tissues. Results: Corn silk aqueous extract produced a significant reduction of blood urea nitrogen(5.2+/-0.08 vs 7.3+/-0.2 mmol/l, serum creatinine (85.9+/-0.2 vs 97.3+/-0.5 mmol/l and serum Na+ levels (137+/-0.2 vs 142.16+/-0.7 mmol/l with non-significant reduction in serum K+ (4.0+/-0.02 vs 4.2+/-0.05. There is a significant reduction in calcium deposition in renal parenchyma in comparison to the control group after ten days of treatment. Conclusion: Corn silk had a significant diuretic effect that accelerates the excretion of urinary calcium. [J Intercult Ethnopharmacol 2012; 1(2.000: 75-78

  2. Mechanism of Ascorbic Acid-induced Reversion Against Malignant Phenotype in Human Gastric Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    YA-XUAN SUN; QIU-SHENG ZHENG; GANG LI; DE-AN GUO; ZI-REN WANG

    2006-01-01

    Objective To find out the mechanisms of redifferentiation and reversion of malignant human gastric cancer cells induced by ascorbic acid. Methods Human gastric cancer cells grown in the laboratory were used. The Trypan blue dye exclusion method was used to determine the cell doubling time. The electrophoresis rate and colonogenic potential were the indices used to measure the rate of redifferentiation. The content of malondialdehyde (MDA) was measured using the thiobarbituric acid(TBA) method. The activities of superoxide dismutase (SOD), catalase (CAT) and the content of H2O2 were evaluated by spectrophotography. Results Six mmol/L ascorbic acid was used as a positive control. Human gastric cancer cells were treated with 75 μm hydrogen peroxide, which alleviated many of the malignant characteristics. For example, the cell surface charge obviously decreased and the electrophoresis rate dropped from 2.21 to 1.10 μm·s-1·V-1·cm-1. The colonogenic potential, a measure of cell differentiation, decreased 90.2%. After treatment with ascorbic acid, there was a concentration- and time-dependent increase in hydrogen peroxide (H2O2) and the activity of superoxide dismutase (SOD). However, the activity of catalase (CAT) resulted in a concentration- and time-dependent decrease. SOD and 3-amino-1,2,4-triazole (AT) exhibited some effects, but there were statistically significant differences between the SOD and AT group and the H2O2 group. Conclusions Ascorbic acid induces growth inhibition and redifferentiation of human gastric cancer cells through the production of hydrogen peroxide.

  3. Bile acid-induced necrosis in primary human hepatocytes and in patients with obstructive cholestasis

    Energy Technology Data Exchange (ETDEWEB)

    Woolbright, Benjamin L.; Dorko, Kenneth [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Antoine, Daniel J.; Clarke, Joanna I. [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Gholami, Parviz [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Li, Feng [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Kumer, Sean C.; Schmitt, Timothy M.; Forster, Jameson [Department of Surgery, University of Kansas Medical Center, Kansas City, KS (United States); Fan, Fang [Department of Pathology, University of Kansas Medical Center, Kansas City, KS (United States); Jenkins, Rosalind E.; Park, B. Kevin [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Hagenbuch, Bruno [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Olyaee, Mojtaba [Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2015-03-15

    Accumulation of bile acids is a major mediator of cholestatic liver injury. Recent studies indicate bile acid composition between humans and rodents is dramatically different, as humans have a higher percent of glycine conjugated bile acids and increased chenodeoxycholate content, which increases the hydrophobicity index of bile acids. This increase may lead to direct toxicity that kills hepatocytes, and promotes inflammation. To address this issue, this study assessed how pathophysiological concentrations of bile acids measured in cholestatic patients affected primary human hepatocytes. Individual bile acid levels were determined in serum and bile by UPLC/QTOFMS in patients with extrahepatic cholestasis with, or without, concurrent increases in serum transaminases. Bile acid levels increased in serum of patients with liver injury, while biliary levels decreased, implicating infarction of the biliary tracts. To assess bile acid-induced toxicity in man, primary human hepatocytes were treated with relevant concentrations, derived from patient data, of the model bile acid glycochenodeoxycholic acid (GCDC). Treatment with GCDC resulted in necrosis with no increase in apoptotic parameters. This was recapitulated by treatment with biliary bile acid concentrations, but not serum concentrations. Marked elevations in serum full-length cytokeratin-18, high mobility group box 1 protein (HMGB1), and acetylated HMGB1 confirmed inflammatory necrosis in injured patients; only modest elevations in caspase-cleaved cytokeratin-18 were observed. These data suggest human hepatocytes are more resistant to human-relevant bile acids than rodent hepatocytes, and die through necrosis when exposed to bile acids. These mechanisms of cholestasis in humans are fundamentally different to mechanisms observed in rodent models. - Highlights: • Cholestatic liver injury is due to cytoplasmic bile acid accumulation in hepatocytes. • Primary human hepatocytes are resistant to BA-induced injury

  4. Pistacia lentiscus resin regulates intestinal damage and inflammation in trinitrobenzene sulfonic acid-induced colitis.

    Science.gov (United States)

    Gioxari, Aristea; Kaliora, Andriana C; Papalois, Apostolos; Agrogiannis, George; Triantafillidis, John K; Andrikopoulos, Nikolaos K

    2011-11-01

    Mastic (Pistacia lentiscus) of the Anacardiaceae family has exhibited anti-inflammatory and antioxidant properties in patients with Crohn's disease. This study was based on the hypothesis that mastic inhibits intestinal damage in inflammatory bowel disease, regulating inflammation and oxidative stress in intestinal epithelium. Four different dosages of P. lentiscus powder in the form of powder were administered orally to trinitrobenzene sulfonic acid-induced colitic rats. Eighty-four male Wistar rats were randomly assigned to seven groups: A, control; B, colitic; C-F, colitic rats daily supplemented with P. lentiscus powder at (C) 50 mg/kg, (D) 100 mg/kg, (E) 200 mg/kg, and (F) 300 mg/kg of body weight; and G, colitic rats treated daily with cortisone (25 μg/kg of body weight). Colonic damage was assessed microscopically. The cytokines tumor necrosis factor-α, intercellular adhesion molecule-1 (ICAM-1), interleukin (IL)-6, IL-8, and IL-10 and malonaldehyde were measured in colonic specimens. Results were expressed as mean ± SE values. Histological amelioration of colitis (P≤.001) and significant differences in colonic indices occurred after 3 days of treatment. Daily administration of 100 mg of P. lentiscus powder/kg of body weight decreased all inflammatory cytokines (P≤.05), whereas 50 mg of P. lentiscus powder/kg of body weight and cortisone treatment reduced only ICAM-1 (P≤.05 and P≤.01, respectively). Malonaldehyde was significantly suppressed in all treated groups (P≤.01). IL-10 remained unchanged. Cytokines and malonaldehyde remained unaltered after 6 days of treatment. Thus P. lentiscus powder could possibly have a therapeutic role in Crohn's disease, regulating oxidant/antioxidant balance and modulating inflammation.

  5. Enhanced seizures and hippocampal neurodegeneration following kainic acid-induced seizures in metallothionein-I + II-deficient mice

    DEFF Research Database (Denmark)

    Carrasco, J; Penkowa, M; Hadberg, H

    2000-01-01

    ), a potent convulsive agent, to examine the neurobiological importance of these MT isoforms. At 35 mg/kg KA, MT-I + II deficient male mice showed a higher number of convulsions and a longer convulsion time than control mice. Three days later, KA-injected mice showed gliosis and neuronal injury...

  6. Onset of herbivore-induced resistance in systemic tissue primed for jasmonate-dependent defenses is activated by abscisic acid

    Directory of Open Access Journals (Sweden)

    Irene A. Vos

    2013-12-01

    Full Text Available In Arabidopsis, the MYC2 transcription factor on the one hand and the AP2/ERF transcription factors ORA59 and ERF1 on the other hand regulate distinct branches of the jasmonic acid (JA signaling pathway in an antagonistic fashion, co-regulated by abscisic acid (ABA and ethylene, respectively. Feeding by larvae of the specialist herbivorous insect Pieris rapae (small cabbage white butterfly results in activation of the MYC-branch and concomitant suppression of the ERF-branch in insect-damaged leaves. Here we investigated differential JA signaling activation in undamaged systemic leaves of P. rapae-infested plants. We found that the MYC2 transcription factor gene was induced both in the local insect-damaged leaves and the systemic undamaged leaves of P. rapae-infested Arabidopsis plants. However, in contrast to the insect-damaged leaves, the undamaged tissue did not show activation of the MYC-branch marker gene VSP1. Comparison of the hormone signal signature revealed that the levels of JA and (+-7-iso-jasmonoyl-L-isoleucine (JA-Ile raised to similar extents in locally damaged and systemically undamaged leaves, but the production of ABA and the JA precursor 12-oxo-phytodienoic acid (OPDA was enhanced only in the local herbivore-damaged leaves, and not in the distal undamaged leaves. Challenge of undamaged leaves of pre-infested plants with either P. rapae larvae or exogenously applied ABA led to potentiated expression levels of MYC2 and VSP1, with the latter reaching extremely high expression levels. Moreover, P. rapae-induced resistance, as measured by reduction of caterpillar growth on pre-infested plants, was blocked in the ABA biosynthesis mutant aba2-1, that was also impaired in P. rapae-induced expression of VSP1. Together, these results suggest that ABA is a crucial regulator of herbivore-induced resistance by activating primed JA-regulated defense responses upon secondary herbivore attack in Arabidopsis.

  7. Analysis of ADP-glucose pyrophosphorylase expression during turion formation induced by abscisic acid in Spirodela polyrhiza (greater duckweed

    Directory of Open Access Journals (Sweden)

    Wang Wenqin

    2012-01-01

    Full Text Available Abstract Background Aquatic plants differ in their development from terrestrial plants in their morphology and physiology, but little is known about the molecular basis of the major phases of their life cycle. Interestingly, in place of seeds of terrestrial plants their dormant phase is represented by turions, which circumvents sexual reproduction. However, like seeds turions provide energy storage for starting the next growing season. Results To begin a characterization of the transition from the growth to the dormant phase we used abscisic acid (ABA, a plant hormone, to induce controlled turion formation in Spirodela polyrhiza and investigated their differentiation from fronds, representing their growth phase, into turions with respect to morphological, ultra-structural characteristics, and starch content. Turions were rich in anthocyanin pigmentation and had a density that submerged them to the bottom of liquid medium. Transmission electron microscopy (TEM of turions showed in comparison to fronds shrunken vacuoles, smaller intercellular space, and abundant starch granules surrounded by thylakoid membranes. Turions accumulated more than 60% starch in dry mass after two weeks of ABA treatment. To further understand the mechanism of the developmental switch from fronds to turions, we cloned and sequenced the genes of three large-subunit ADP-glucose pyrophosphorylases (APLs. All three putative protein and exon sequences were conserved, but the corresponding genomic sequences were extremely variable mainly due to the invasion of miniature inverted-repeat transposable elements (MITEs into introns. A molecular three-dimensional model of the SpAPLs was consistent with their regulatory mechanism in the interaction with the substrate (ATP and allosteric activator (3-PGA to permit conformational changes of its structure. Gene expression analysis revealed that each gene was associated with distinct temporal expression during turion formation. APL2 and

  8. Regulation of the High-Affinity Nitrate Transport System in Wheat Roots by Exogenous Abscisic Acid and Glutamine

    Institute of Scientific and Technical Information of China (English)

    Chao Cai; Xue-Qiang Zhao; Yong-Guan Zhu; Bin Li; Yi-Ping Tong; Zhen-Sheng Li

    2007-01-01

    Nitrate is a major nitrogen (N) source for most crops.Nitrate uptake by root cells is a key step of nitrogen metabolism and has been widely studied at the physiological and molecular levels.Understanding how nitrate uptake is regulated will help us engineer crops with improved nitrate uptake efficiency.The present study investigated the regulation of the high-affinity nitrate transport system (HATS) by exogenous abscisic acid (ABA) and glutamine (Gin) in wheat (Triticum aestivum L.) roots.Wheat seedlings grown in nutrient solution containing 2 mmollL nitrate as the only nitrogen source for 2 weeks were deprived of N for 4d and were then transferred to nutrient solution containing 50 μmol/L ABA, and 1 mmol/L Gin in the presence or absence of 2 mmol/L nitrate for 0, 0.5, 1, 2, 4, and 8 h.Treated wheat plants were then divided into two groups.One group of plants was used to investigate the mRNA levels of the HATS components NRT2 and NAR2 genes in roots through semi-quantitative RT-PCR approach, and the other set of plants were used to measure high-affinity nitrate influx rates in a nutrient solution containing 0.2 mmol/L 15 N-labeled nitrate.The results showed that exogenous ABA induced the expression of the TaNRT2.1, TaNRT2.2, TaNRT2.3, TaNAR2.1, and TaNAR2.2 genes in roots when nitrate was not present in the nutrient solution, but did not further enhance the induction of these genes by nitrate.Glutamine, which has been shown to inhibit the expression of NRT2 genes when nitrate is present in the growth media, did not inhibit this induction.When Gin was supplied to a nitrate-free nutrient solution, the expression of these five genes in roots was induced.These results imply that the inhibition by Gin of NRT2 expression occurs only when nitrate is present in the growth media.Although exogenous ABA and Gin induced HATS genes in the roots of wheat, they did not induce nitrate influx.

  9. Ameliorative effects of polyunsaturated fatty acids against palmitic acid-induced insulin resistance in L6 skeletal muscle cells

    Directory of Open Access Journals (Sweden)

    Sawada Keisuke

    2012-03-01

    Full Text Available Abstract Background Fatty acid-induced insulin resistance and impaired glucose uptake activity in muscle cells are fundamental events in the development of type 2 diabetes and hyperglycemia. There is an increasing demand for compounds including drugs and functional foods that can prevent myocellular insulin resistance. Methods In this study, we established a high-throughput assay to screen for compounds that can improve myocellular insulin resistance, which was based on a previously reported non-radioisotope 2-deoxyglucose (2DG uptake assay. Insulin-resistant muscle cells were prepared by treating rat L6 skeletal muscle cells with 750 μM palmitic acid for 14 h. Using the established assay, the impacts of several fatty acids on myocellular insulin resistance were determined. Results In normal L6 cells, treatment with saturated palmitic or stearic acid alone decreased 2DG uptake, whereas unsaturated fatty acids did not. Moreover, co-treatment with oleic acid canceled the palmitic acid-induced decrease in 2DG uptake activity. Using the developed assay with palmitic acid-induced insulin-resistant L6 cells, we determined the effects of other unsaturated fatty acids. We found that arachidonic, eicosapentaenoic and docosahexaenoic acids improved palmitic acid-decreased 2DG uptake at lower concentrations than the other unsaturated fatty acids, including oleic acid, as 10 μM arachidonic acid showed similar effects to 750 μM oleic acid. Conclusions We have found that polyunsaturated fatty acids, in particular arachidonic and eicosapentaenoic acids prevent palmitic acid-induced myocellular insulin resistance.

  10. Priming by Hexanoic Acid Induce Activation of Mevalonic and Linolenic Pathways and Promotes the Emission of Plant Volatiles

    OpenAIRE

    Eugenio eLlorens; Gemma eCamañes; Leonor eLapeña; Pilar eGarcía-Agustín

    2016-01-01

    Hexanoic acid is a short natural monocarboxylic acid present in some fruits and plants. Previous studies reported that soil drench application of this acid induces effective resistance in tomato plants against Botrytis cinerea and Pseudomonas syringae and in citrus against Alternaria alternata and Xanthomonas citri. In this work, we performed an in deep study of the metabolic changes produced in citrus by the application of hexanoic acid in response to the challenge pathogen Alternaria altern...

  11. The influence of pretreatment with ghrelin on the development of acetic-acid-induced colitis in rats.

    Science.gov (United States)

    Maduzia, D; Matuszyk, A; Ceranowicz, D; Warzecha, Z; Ceranowicz, P; Fyderek, K; Galazka, K; Dembinski, A

    2015-12-01

    Ghrelin has been primarily shown to exhibit protective and therapeutic effect in the gut. Pretreatment with ghrelin inhibits the development of acute pancreatitis and accelerates pancreatic recovery in the course of this disease. In the stomach, ghrelin reduces gastric mucosal damage induced by ethanol, stress or alendronate, as well as accelerates the healing of acetic acid-induced gastric and duodenal ulcer. The aim of present studies was to investigate the effect of pretreatment with ghrelin on the development of acetic acid-induced colitis. Studies have been performed on male Wistar rats. Animals were treated intraperitoneally with saline (control) or ghrelin (4, 8 or 16 nmol/kg/dose). Saline or ghrelin was given twice: 8 and 1 h before induction of colitis. Colitis was induced by a rectal enema with 1 ml of 4% solution of acetic acid and the severity of colitis was assessed 1 or 24 hours after induction of inflammation. Rectal administration of acetic acid induced colitis in all animals. Damage of colonic wall was seen at the macroscopic and microscopic level. This effect was accompanied by a reduction in colonic blood flow and mucosal DNA synthesis. Moreover, induction of colitis significantly increased mucosal concentration of pro-inflammatory interleukin-1β (IL-1β), activity of myeloperoxidase and concentration of malondialdehyde (MDA). Mucosal activity of superoxide dismutase (SOD) was reduced. Pretreatment with ghrelin reduced the area and grade of mucosal damage. This effect was accompanied by an improvement of blood flow, DNA synthesis and SOD activity in colonic mucosa. Moreover, ghrelin administration reduced mucosal concentration of IL-1β and MDA, as well as decreased mucosal activity of myeloperoxidase. Administration of ghrelin protects the large bowel against the development of the acetic acid-induced colitis and this effect seems to be related to the ghrelin-evoked anti-inflammatory and anti-oxidative effects.

  12. Effect of CMC Molecular Weight on Acid-Induced Gelation of Heated WPI-CMC Soluble Complex.

    Science.gov (United States)

    Huan, Yan; Zhang, Sha; Vardhanabhuti, Bongkosh

    2016-02-01

    Acid-induced gelation properties of heated whey protein isolate (WPI) and carboxymethylcellulose (CMC) soluble complex were investigated as a function of CMC molecular weight (270, 680, and 750 kDa) and concentrations (0% to 0.125%). Heated WPI-CMC soluble complex with 6% protein was made by heating biopolymers together at pH 7.0 and 85 °C for 30 min and diluted to 5% protein before acid-induced gelation. Acid-induced gel formed from heated WPI-CMC complexes exhibited increased hardness and decreased water holding capacity with increasing CMC concentrations but gel strength decreased at higher CMC content. The highest gel strength was observed with CMC 750 k at 0.05%. Gels with low CMC concentration showed homogenous microstructure which was independent of CMC molecular weight, while increasing CMC concentration led to microphase separation with higher CMC molecular weight showing more extensive phase separation. When heated WPI-CMC complexes were prepared at 9% protein the acid gels showed improved gel hardness and water holding capacity, which was supported by the more interconnected protein network with less porosity when compared to complexes heated at 6% protein. It is concluded that protein concentration and biopolymer ratio during complex formation are the major factors affecting gel properties while the effect of CMC molecular weight was less significant. © 2016 Institute of Food Technologists®

  13. Detection of phytohormones in temperate forest fungi predicts consistent abscisic acid production and a common pathway for cytokinin biosynthesis.

    Science.gov (United States)

    Morrison, Erin N; Knowles, Sarah; Hayward, Allison; Thorn, R Greg; Saville, Barry J; Emery, R J N

    2015-01-01

    The phytohormones, abscisic acid and cytokinin, once were thought to be present uniquely in plants, but increasing evidence suggests that these hormones are present in a wide variety of organisms. Few studies have examined fungi for the presence of these "plant" hormones or addressed whether their levels differ based on the nutrition mode of the fungus. This study examined 20 temperate forest fungi of differing nutritional modes (ectomycorrhizal, wood-rotting, saprotrophic). Abscisic acid and cytokinin were present in all fungi sampled; this indicated that the sampled fungi have the capacity to synthesize these two classes of phytohormones. Of the 27 cytokinins analyzed by HPLC-ESI MS/MS, seven were present in all fungi sampled. This suggested the existence of a common cytokinin metabolic pathway in fungi that does not vary among different nutritional modes. Predictions regarding the source of isopentenyl, cis-zeatin and methylthiol CK production stemming from the tRNA degradation pathway among fungi are discussed.

  14. Proline and Abscisic Acid Content in Droughted Corn Plant Inoculated with Azospirillum sp. and Arbuscular Mycorrhizae Fungi

    Directory of Open Access Journals (Sweden)

    NOVRI YOULA KANDOWANGKO

    2009-03-01

    Full Text Available Plants that undergo drought stress perform a physiological response such as accumulation of proline in the leaves and increased content abscisic acid. A research was conducted to study proline and abscisic acid (ABA content on drought-stressed corn plant with Azospirillum sp. and arbuscular mycorrhizae fungi (AMF inoculated at inceptisol soil from Bogor, West Java. The experiments were carried out in a green house from June up to September 2003, using a factorial randomized block design. In pot experiments, two factors were assigned, i.e. inoculation with Azospirillum (0, 0.50, 1.00, 1.50 ml/pot and inoculation with AMF Glomus manihotis (0, 12.50, 25.00, 37.50 g/pot. The plants were observed during tasseling up to seed filling periods. Results of experiments showed that the interaction between Azospirillum sp. and AMF was synergistically increased proline, however it decreased ABA.

  15. Concurrent profiling of indole-3-acetic acid, abscisic acid, and cytokinins and structurally related purines by high-performance-liquid-chromatography tandem electrospray mass spectrometry

    Directory of Open Access Journals (Sweden)

    Farrow Scott C

    2012-10-01

    Full Text Available Abstract Background Cytokinins (CKs are a group of plant growth regulators that are involved in several plant developmental processes. Despite the breadth of knowledge surrounding CKs and their diverse functions, much remains to be discovered about the full potential of CKs, including their relationship with the purine salvage pathway, and other phytohormones. The most widely used approach to query unknown facets of CK biology utilized functional genomics coupled with CK metabolite assays and screening of CK associated phenotypes. There are numerous different types of assays for determining CK quantity, however, none of these methods screen for the compendium of metabolites that are necessary for elucidating all roles, including purine salvage pathway enzymes in CK metabolism, and CK cross-talk with other phytohormones. Furthermore, all published analytical methods have drawbacks ranging from the required use of radiolabelled compounds, or hazardous derivatization reagents, poor sensitivity, lack of resolution between CK isomers and lengthy run times. Results In this paper, a method is described for the concurrent extraction, purification and analysis of several CKs (freebases, ribosides, glucosides, nucleotides, purines (adenosine monophosphate, inosine, adenosine, and adenine, indole-3-acetic acid, and abscisic acid from hundred-milligram (mg quantities of Arabidopsis thaliana leaf tissue. This method utilizes conventional Bieleski solvents extraction, solid phase purification, and is unique because of its diverse range of detectable analytes, and implementation of a conventional HPLC system with a fused core column that enables good sensitivity without the requirement of a UHPLC system. Using this method we were able to resolve CKs about twice as fast as our previous method. Similarly, analysis of adenosine, indole-3-acetic acid, and abscisic acid, was comparatively rapid. A further enhancement of the method was the utilization of a QTRAP

  16. Inhibition of inward K+ channels and stomatal response by abscisic acid: an intracellular locus of phytohormone action.

    OpenAIRE

    Schwartz, A; Wu, W. H.; Tucker, E B; Assmann, S M

    1994-01-01

    Abscisic acid (ABA), a plant hormone whose production is stimulated by water stress, reduces the apertures of stomatal pores in the leaf surface, thereby lessening transpirational water loss. It has been thought that inhibition of stomatal opening and promotion of stomatal closure by ABA are initiated by the binding of extracellular ABA to a receptor located in the guard-cell plasma membrane. However, in the present research, we employ three distinct experimental approaches to demonstrate tha...

  17. Effect of abscisic acid on biochemical constituents, enzymatic and non enzymatic antioxidant status of lettuce (Lactuca sativa L. under varied irrigation regimes

    Directory of Open Access Journals (Sweden)

    Mohamed A. Al Muhairi

    2015-12-01

    Full Text Available Economically important vegetable crop lettuce (Lactuca sativa L. of family Asteraceae was selected for the present investigation. It is being cultivated in UAE due to its commercial importance. In lettuce cultivation, the major problem is the requirement of large quantities of irrigation water. The present study was aimed to reduce the water consumption of lettuce cultivation; for that, a varied irrigation regime was used with the application of abscisic acid (ABA. The parameters studied were biochemical constituents, antioxidant potential and antioxidant enzymes’ activities in lettuce plants under drought stress and its response to ABA under stress. Drought stress caused an increase in the biochemical constituents like proline and amino acid contents when compared with control and also increased under individual ABA treatments and treatments under drought stress. The non-enzymatic antioxidant molecules like ascorbate and α-tocopherol showed significant increase under drought condition in lettuce. ABA slightly reduced these contents. The antioxidant enzymes like superoxide dismutase, catalase and peroxidase showed significant increase under drought condition and ABA caused significant enhancement in these antioxidant enzymes under drought stress and also in unstressed conditions, thereby protecting the plants from the deleterious effects of drought stress. From the results of this investigation, it can be concluded that ABA in 10 mg g−1 can be used as a potential tool to minimise the drought stress effects in lettuce cultivation.

  18. Rice G-protein subunits qPE9-1 and RGB1 play distinct roles in abscisic acid responses and drought adaptation.

    Science.gov (United States)

    Zhang, Dong-Ping; Zhou, Yong; Yin, Jian-Feng; Yan, Xue-Jiao; Lin, Sheng; Xu, Wei-Feng; Baluška, František; Wang, Yi-Ping; Xia, Yi-Ji; Liang, Guo-hua; Liang, Jian-Sheng

    2015-10-01

    Heterotrimeric GTP-binding protein (G-protein)-mediated abscisic acid (ABA) and drought-stress responses have been documented in numerous plant species. However, our understanding of the function of rice G-protein subunits in ABA signalling and drought tolerance is limited. In this study, the function of G-protein subunits in ABA response and drought resistance in rice plants was explored. It was found that the transcription level of qPE9-1 (rice Gγ subunit) gradually decreased with increasing ABA concentration and the lack of qPE9-1 showed an enhanced drought tolerance in rice plants. In contrast, mRNA levels of RGB1 (rice Gβ subunit) were significantly upregulated by ABA treatment and the lack of RGB1 led to reduced drought tolerance. Furthermore, the results suggested that qPE9-1 negatively regulates the ABA response by suppressing the expression of key transcription factors involved in ABA and stress responses, while RGB1 positively regulates ABA biosynthesis by upregulating NCED gene expression under both normal and drought stress conditions. Taken together, it is proposed that RGB1 is a positive regulator of the ABA response and drought adaption in rice plants, whereas qPE9-1 is modulated by RGB1 and functions as a negative regulator in the ABA-dependent drought-stress responses.

  19. Arabidopsis HOOKLESS1 Regulates Responses to Pathogens and Abscisic Acid through Interaction with MED18 and Acetylation of WRKY33 and ABI5 Chromatin.

    Science.gov (United States)

    Liao, Chao-Jan; Lai, Zhibing; Lee, Sanghun; Yun, Dae-Jin; Mengiste, Tesfaye

    2016-07-01

    Arabidopsis thaliana HOOKLESS1 (HLS1) encodes a putative histone acetyltransferase with known functions in seedling growth. Here, we show that HLS1 regulates plant responses to pathogens and abscisic acid (ABA) through histone acetylation at chromatin of target loci. The hls1 mutants show impaired responses to bacterial and fungal infection, accelerated senescence, and impaired responses to ABA. HLS1 modulates the expression of WRKY33 and ABA INSENSITIVE5 (ABI5), known regulators of pathogen and ABA responses, respectively, through direct association with these loci. Histone 3 acetylation (H3Ac), a positive mark of transcription, at WRKY33 and ABI5 requires HLS1 function. ABA treatment and pathogen infection enhance HLS1 recruitment and H3Ac at WRKY33. HLS1 associates with Mediator, a eukaryotic transcription coregulatory complex, through direct interaction with mediator subunit 18 (MED18), with which it shares multiple functions. HLS1 recruits MED18 to the WRKY33 promoter, boosting WKRY33 expression, suggesting the synergetic action of HLS1 and MED18. By contrast, MED18 recruitment to ABI5 and transcriptional activation are independent of HLS1. ABA-mediated priming of resistance to fungal infection was abrogated in hls1 and wrky33 mutants but correlated with ABA-induced HLS1 accumulation. In sum, HLS1 provides a regulatory node in pathogen and hormone response pathways through interaction with the Mediator complex and important transcription factors.

  20. Arabidopsis WRKY6 Transcription Factor Acts as a Positive Regulator of Abscisic Acid Signaling during Seed Germination and Early Seedling Development.

    Science.gov (United States)

    Huang, Yun; Feng, Cui-Zhu; Ye, Qing; Wu, Wei-Hua; Chen, Yi-Fang

    2016-02-01

    The phytohormone abscisic acid (ABA) plays important roles during seed germination and early seedling development. Here, we characterized the function of the Arabidopsis WRKY6 transcription factor in ABA signaling. The transcript of WRKY6 was repressed during seed germination and early seedling development, and induced by exogenous ABA. The wrky6-1 and wrky6-2 mutants were ABA insensitive, whereas WRKY6-overexpressing lines showed ABA-hypersensitive phenotypes during seed germination and early seedling development. The expression of RAV1 was suppressed in the WRKY6-overexpressing lines and elevated in the wrky6 mutants, and the expression of ABI3, ABI4, and ABI5, which was directly down-regulated by RAV1, was enhanced in the WRKY6-overexpressing lines and repressed in the wrky6 mutants. Electrophoretic mobility shift and chromatin immunoprecipitation assays showed that WRKY6 could bind to the RAV1 promoter in vitro and in vivo. Overexpression of RAV1 in WRKY6-overexpressing lines abolished their ABA-hypersensitive phenotypes, and the rav1 wrky6-2 double mutant showed an ABA-hypersensitive phenotype, similar to rav1 mutant. Together, the results demonstrated that the Arabidopsis WRKY6 transcription factor played important roles in ABA signaling by directly down-regulating RAV1 expression.

  1. Linoleic Acid-Induced Mitochondrial Ca2+ Efflux Causes Peroxynitrite Generation and Protein Nitrotyrosylation: e6048

    National Research Council Canada - National Science Library

    Hong-Mei Zhang; Howard Dang; Chih-Ko Yeh; Bin-Xian Zhang

    2009-01-01

    .... Enhanced oxidative stress has been hypothesized as a unified factor contributing to diabetic complications and increased protein nitrotyrosylation has been reported in the kidneys of diabetic patients...

  2. Linoleic Acid-Induced Mitochondrial Ca2+ Efflux Causes Peroxynitrite Generation and Protein Nitrotyrosylation

    National Research Council Canada - National Science Library

    Zhang, Hong-Mei; Dang, Howard; Yeh, Chih-Ko; Zhang, Bin-Xian

    2009-01-01

    .... Enhanced oxidative stress has been hypothesized as a unified factor contributing to diabetic complications and increased protein nitrotyrosylation has been reported in the kidneys of diabetic patients...

  3. Linoleic acid-induced mitochondrial Ca(2+) efflux causes peroxynitrite generation and protein nitrotyrosylation

    National Research Council Canada - National Science Library

    Hong-Mei Zhang; Howard Dang; Chih-Ko Yeh; Bin-Xian Zhang

    .... Enhanced oxidative stress has been hypothesized as a unified factor contributing to diabetic complications and increased protein nitrotyrosylation has been reported in the kidneys of diabetic patients...

  4. Linoleic acid-induced mitochondrial Ca(2+) efflux causes peroxynitrite generation and protein nitrotyrosylation

    National Research Council Canada - National Science Library

    Zhang, Hong-Mei; Dang, Howard; Yeh, Chih-Ko; Zhang, Bin-Xian

    2009-01-01

    .... Enhanced oxidative stress has been hypothesized as a unified factor contributing to diabetic complications and increased protein nitrotyrosylation has been reported in the kidneys of diabetic patients...

  5. Metabolic pathways regulated by abscisic acid, salicylic acid and γ-aminobutyric acid in association with improved drought tolerance in creeping bentgrass (Agrostis stolonifera).

    Science.gov (United States)

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2017-01-01

    Abscisic acid (ABA), salicylic acid (SA) and γ-aminobutyric acid (GABA) are known to play roles in regulating plant stress responses. This study was conducted to determine metabolites and associated pathways regulated by ABA, SA and GABA that could contribute to drought tolerance in creeping bentgrass (Agrostis stolonifera). Plants were foliar sprayed with ABA (5 μM), GABA (0.5 mM) and SA (10 μM) or water (untreated control) prior to 25 days drought stress in controlled growth chambers. Application of ABA, GABA or SA had similar positive effects on alleviating drought damages, as manifested by the maintenance of lower electrolyte leakage and greater relative water content in leaves of treated plants relative to the untreated control. Metabolic profiling showed that ABA, GABA and SA induced differential metabolic changes under drought stress. ABA mainly promoted the accumulation of organic acids associated with tricarboxylic acid cycle (aconitic acid, succinic acid, lactic acid and malic acid). SA strongly stimulated the accumulation of amino acids (proline, serine, threonine and alanine) and carbohydrates (glucose, mannose, fructose and cellobiose). GABA enhanced the accumulation of amino acids (GABA, glycine, valine, proline, 5-oxoproline, serine, threonine, aspartic acid and glutamic acid) and organic acids (malic acid, lactic acid, gluconic acid, malonic acid and ribonic acid). The enhanced drought tolerance could be mainly due to the enhanced respiration metabolism by ABA, amino acids and carbohydrates involved in osmotic adjustment (OA) and energy metabolism by SA, and amino acid metabolism related to OA and stress-defense secondary metabolism by GABA.

  6. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis.

    Science.gov (United States)

    Chen, Ligang; Zhang, Liping; Li, Daibo; Wang, Fang; Yu, Diqiu

    2013-05-21

    WRKY transcription factors are key players in the plant immune response, but less is known about their involvement in antiviral defense than about their roles in defense against bacterial or fungi pathogens. Here, we report that Arabidopsis thaliana WRKY DNA-binding protein 8 (WRKY8) has a role in mediating the long-distance movement of crucifer-infecting tobacco mosaic virus (TMV-cg). The expression of WRKY8 was inhibited by TMV-cg infection, and mutation of WRKY8 accelerated the accumulation of TMV-cg in systemically infected leaves. Quantitative RT-PCR analysis showed that the expression of ABA insensitive 4 (ABI4) was reduced and the expression of 1-aminocyclopropane-1-carboxylic acid synthase 6 (ACS6) and ethylene response factor 104 (ERF104) was enhanced in the systemically infected leaves of wrky8. Immunoprecipitation assays demonstrated that WRKY8 could bind selectively to putative W-boxes of the ABI4, ACS6, and ERF104 promoters. Furthermore, TMV-cg infection enhanced WRKY8 binding to the ABI4 promoter but reduced the binding of WRKY8 to the ACS6 and ERF104 promoters, indicating that regulation of ABI4, ACS6, and ERF104 by WRKY8 is at least partially dependent on TMV-cg. Exogenous applications of abscisic acid (ABA) reduced the systemic accumulation of TMV-cg. Mutations in ABA deficient 1, ABA deficient 2, ABA deficient 3, or abi4 accelerated systemic TMV-cg accumulation. In contrast, exogenous application of aminocyclopropane-1-carboxylic acid enhanced the systemic accumulation of TMV-cg, but mutations in acs6, erf104, or an octuple acs mutant inhibited systemic TMV-cg accumulation. Our results demonstrate that WRKY8 is involved in the defense response against TMV-cg through the direct regulation of the expression of ABI4, ACS6, and ERF104 and may mediate the crosstalk between ABA and ethylene signaling during the TMV-cg-Arabidopsis interaction.

  7. Music application alleviates short-term memory impairments through increasing cell proliferation in the hippocampus of valproic acid-induced autistic rat pups.

    Science.gov (United States)

    Lee, Sung-Min; Kim, Bo-Kyun; Kim, Tae-Woon; Ji, Eun-Sang; Choi, Hyun-Hee

    2016-06-01

    Autism is a neurodevelopmental disorder and this disorder shows impairment in reciprocal social interactions, deficits in communication, and restrictive and repetitive patterns of behaviors and interests. The effect of music on short-term memory in the view of cell proliferation in the hippocampus was evaluated using valproic acid-induced autistic rat pups. Animal model of autism was made by subcutaneous injection of 400-mg/kg valproic acid into the rat pups on the postnatal day 14. The rat pups in the music-applied groups were exposed to the 65-dB comfortable classic music for 1 hr once a day, starting postnatal day 15 and continued until postnatal day 28. In the present results, short-term memory was deteriorated by autism induction. The numbers of 5-bromo-2'-deoxyridine (BrdU)-positive, Ki-67-positive, and doublecortin (DCX)-positive cells in the hippocampal dentate gyrus were decreased by autism induction. Brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) expressions in the hippocampus were also suppressed in the autistic rat pups. Music application alleviated short-term memory deficits with enhancing the numbers of BrdU-positive, Ki-67-positive, and DCX-positive cells in the autistic rat pups. Music application also enhanced BDNF and TrkB expressions in the autistic rat pups. The present study show that application of music enhanced hippocampal cell proliferation and alleviated short-term memory impairment through stimulating BDNF-TrkB signaling in the autistic rat pups. Music can be suggested as the therapeutic strategy to overcome the autism-induced memory deficits.

  8. Retinoic acid-inducible gene-I is constitutively expressed and involved in IFN-gamma-stimulated CXCL9-11 production in intestinal epithelial cells.

    Science.gov (United States)

    Kawaguchi, Shogo; Ishiguro, Yoh; Imaizumi, Tadaatsu; Mori, Fumiaki; Matsumiya, Tomoh; Yoshida, Hidemi; Ota, Ken; Sakuraba, Hirotake; Yamagata, Kazufumi; Sato, Yuki; Tanji, Kunikazu; Haga, Toshihiro; Wakabayashi, Koichi; Fukuda, Shinsaku; Satoh, Kei

    2009-03-24

    Retinoic acid-inducible gene-I (RIG-I) is a member of the DExH/D family proteins, and plays an important role in antiviral response via interferon-stimulated genes (ISGs) and type 1 IFN. In this study, the roles of RIG-I in the epithelial cells in the cross-talk between type 2 IFN and inducible chemokines production are high-lighted. The results showed that RIG-I was constitutively expressed in normal surface epithelia lining the colonic mucosa. RIG-I was constitutively expressed in the epithelial cell lines HT-29, and IFN-gamma and TNF-alpha enhanced the RIG-I expression in a dose-dependent manner. IFN-gamma was shown to stimulate CXCL9-11 production, and RNA interference against RIG-I resulted in significant decrease of IFN-gamma-induced CXCL9-11 productions. These results suggest that RIG-I play an important role in the cross-talk between inflammatory cytokines and immune cell trafficking. In conclusion, RIG-I might regulate the gut barrier function in homeostatic and inflammatory conditions.

  9. Abscisic acid accumulation in spinach leaf slices in the presence of penetrating and nonpenetrating solutes

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A.; Zeevaart, J.A.D.

    1985-01-01

    Abscisic acid (ABA) accumulated in detached, wilted leaves of spinach (Spinacia oleracea L. cv Savoy Hybrid 612) and reached a maximum level within 3 to 4 hours. The increase in ABA over that found in detached turgid leaves was approximately 10-fold. The effects of water stress could be mimicked by the use of thin slices of spinach leaves incubated in the presence of 0.6 molar mannitol, a compound which causes plasmolysis (loss of turgor). When spinach leaf slices were incubated with ethylene glycol, a compound which rapidly penetrates the cell membrane causing a decrease in the osmotic potential of the tissue and only transient loss of turgor, no ABA accumulated. Spinach leaf slices incubated in both ethylene glycol and mannitol had ABA levels similar to those found when slices were incubated with mannitol alone. Increases similar to those found with mannitol also occurred when Aquacide III, a highly purified form of polyethylene glycol, was used. When spinach leaf slices were incubated with solutes which are supposed to disturb membrane integrity no increase in ABA was observed. These data indicate that, with respect to the accumulation of ABA, mannitol caused a physical stress rather than a chemical stress.

  10. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice

    Science.gov (United States)

    Meguro, Ayano; Sato, Yutaka

    2014-04-01

    We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.

  11. Growth, Gas Exchange, Abscisic Acid, and Calmodulin Response to Salt Stress in Three Poplars

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In the present study, we investigated the effects of increasing salinity on growth, gas exchange, abscisic acid(ABA), calmodulin (CAM), and the relevance to salt tolerance in seedlings of Populus euphratica Oliv. and cuttings of P. "pupularis 35-44" (P. popularis) and P. x euramericana cv. 1-214 (P. cv. Italica). The relative growth rates of shoot height (RGRH) for P. cv. Italica and P. popularis were severely reduced by increasing salt stress,whereas the growth reduction was relatively less in P. euphratica. Similarly, P. euphratica maintained higher net photosynthetic rates (Pn) and unit transpiration rates (TRN) than P. cv. Italica and P. popularis under conditions of higher salinity. Salinity caused a significant increase in leaf ABA and CaM in the three genotypes after the onset of stress, but NaCl-induced ABA and CaM accumulation was more pronounced in P. euphratica,suggesting that P. euphratica plants are more sensitive in sensing soil salinity than the other two poplars.Furthermore, P. euphratica maintained relatively higher ABA and CaM concentrations under conditions of high salinity. The higher capacity to synthesize stress signals, namely ABA and CaM, in P. euphratica and the contribution of this to the salt resistance of P. euphratica are discussed.

  12. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis

    KAUST Repository

    Wang, Zhen-Yu

    2014-11-21

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.

  13. Proanthocyanidins Inhibit Seed Germination by Maintaining a High Level of Abscisic Acid in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Liguo Jia; Jianhua Zhang; Qiuyu Wu; Nenghui Ye; Rui Liu; Lu Shi; Weifeng Xu; Hui Zhi; A. N. M. Rubaiyath Bin Rahman; Yiji Xia

    2012-01-01

    Proanthocyanidins (PAs) are the main products of the flavonoid biosynthetic pathway in seeds,but their biological function during seed germination is still unclear.We observed that seed germination is delayed with the increase of exogenous PA concentration in Arabidopsis.A similar inhibitory effect occurred in peeled Brassica napus seeds,which was observed by measuring radicle elongation.Using abscisic acid (ABA),a biosynthetic and metabolic inhibitor,and gene expression analysis by real-time polymerase chain reaction,we found that the inhibitory effect of PAs on seed germination is due to their promotion of ABA via de novo biogenesis,rather than by any inhibition of its degradation.Consistent with the relationship between PA content and ABA accumulation in seeds,PA-deficient mutants maintain a lower level of ABA compared with wild-types during germination.Our data suggest that PA distribution in the seed coat can act as a doorkeeper to seed germination.PA regulation of seed germination is mediated by the ABA signaling pathway.

  14. Autocrine abscisic acid plays a key role in quartz-induced macrophage activation.

    Science.gov (United States)

    Magnone, Mirko; Sturla, Laura; Jacchetti, Emanuela; Scarfì, Sonia; Bruzzone, Santina; Usai, Cesare; Guida, Lucrezia; Salis, Annalisa; Damonte, Gianluca; De Flora, Antonio; Zocchi, Elena

    2012-03-01

    Inhalation of quartz induces silicosis, a lung disease where alveolar macrophages release inflammatory mediators, including prostaglandin-E(2) (PGE(2)) and tumor necrosis factor α (TNF-α). Here we report the pivotal role of abscisic acid (ABA), a recently discovered human inflammatory hormone, in silica-induced activation of murine RAW264.7 macrophages and of rat alveolar macrophages (AMs). Stimulation of both RAW264.7 cells and AMs with quartz induced a significant increase of ABA release (5- and 10-fold, respectively), compared to untreated cells. In RAW264.7 cells, autocrine ABA released after quartz stimulation sequentially activates the plasma membrane receptor LANCL2 and NADPH oxidase, generating a Ca(2+) influx resulting in NFκ B nuclear translocation and PGE(2) and TNF-α release (3-, 2-, and 3.5-fold increase, respectively, compared to control, unstimulated cells). Quartz-stimulated RAW264.7 cells silenced for LANCL2 or preincubated with a monoclonal antibody against ABA show an almost complete inhibition of NFκ B nuclear translocation and PGE(2) and TNF-α release compared to controls electroporated with a scramble oligonucleotide or preincubated with an unrelated antibody. AMs showed similar early and late ABA-induced responses as RAW264.7 cells. These findings identify ABA and LANCL2 as key mediators in quartz-induced inflammation, providing possible new targets for antisilicotic therapy.

  15. Functional analysis of a Lemna gibba rbcS promoter regulated by abscisic acid and sugar

    Indian Academy of Sciences (India)

    Youru Wang

    2013-04-01

    Photosynthesis-associated nuclear genes (PhANGs) are able to respond to multiple environmental and developmental signals, including light, sugar and abscisic acid (ABA). PhANGs have been extensively studied at the level of transcriptional regulation, and several cis-acting elements important for light responsiveness have been identified in their promoter sequences. However, the regulatory elements involved in sugar and ABA regulation of PhANGs have not been completely characterized. A ribulose-1,5-bisphosphate carboxylase small subunit gene (rbcS) promoter (SSU5C promoter) was isolated from duckweed (Lemna gibba). A series of SSU5C promoter 5′ deletion fragments were fused to an intron–gus gene, and transgenic tobacco suspension cell lines were generated. Assay of tobacco suspension cell line harbouring the complete promoter in the fusion construct indicated that SSU5C promoter was negatively regulated by sugar and ABA under the condition of regular photoperiod. 5′ deletion analysis of SSU5C promoter in transgenic tobacco suspension cell lines confirmed that a region between positions $-310$ and $-152$ included the ABA-response region, and that sugar-response cis-acting elements might be located in the region between $-152$ and $-117$. Taken together, our results confirmed that the cis-regulatory region responsible for repression by ABA and sugar in the SSU5C promoter was located between $-310$ and $-117$.

  16. Role of Soybean GmbZIP132 under Abscisic Acid and Salt Stresses

    Institute of Scientific and Technical Information of China (English)

    Yong Liao; Jin-Song Zhang; Shou-Yi Chen; Wan-Ke Zhang

    2008-01-01

    Plant basic-leucina zipper (bZIP) transcription factors play important roles in many biological processes. In the present study, a bZIP gene, GmbZIP132, was cloned from soybean and its biological function under abiotic stresses was studied. The transcription of GmbZIP132 was Induced by drought and high salt treatments. Among all of the organs analyzed, its expression was the highest in cotyUedon and stems. GmbZIP132 could weakly bind to the GCN4-1ika motif (GLM) (5'-GTGAGTCAT-3') In yeast one-hybrid assay. Compared with wild-type (WT) Arabidopsis plants, transgenic plants overexpressing GmbZIP132 showed reduced abscisic acid sensitivity and increased water loss rate. At the stage of germination, transgenic plants were more tolerant to salt treatment than wild-type plants. The expression of some abiotic stress-related genes, such as rd29B, DREB2A, and PSCS, were upregulatsd in the transgenic plants. These results indicated that GmbZIP132 was an abiotic atress-related gene, and its overexpression could increase the salt tolerance of transgenic Arabidopsis plants dudng germination, yet no significant difference of tolerance to abiotic stresses was found between transgenic and wild type plants at the seedling stage.

  17. Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination.

    Science.gov (United States)

    Linkies, Ada; Leubner-Metzger, Gerhard

    2012-02-01

    Appropriate responses of seeds and fruits to environmental factors are key traits that control the establishment of a species in a particular ecosystem. Adaptation of germination to abiotic stresses and changing environmental conditions is decisive for fitness and survival of a species. Two opposing forces provide the basic physiological mechanism for the control of seed germination: the increasing growth potential of the embryo and the restraint weakening of the various covering layers (seed envelopes), including the endosperm which is present to a various extent in the mature seeds of most angiosperms. Gibberellins (GA), abscisic acid (ABA) and ethylene signaling and metabolism mediate environmental cues and in turn influence developmental processes like seed germination. Cross-species work has demonstrated that GA, ABA and ethylene interact during the regulation of endosperm weakening, which is at least partly based on evolutionarily conserved mechanisms. We summarize the recent progress made in unraveling how ethylene promotes germination and acts as an antagonist of ABA. Far less is known about jasmonates in seeds for which we summarize the current knowledge about their role in seeds. While it seems very clear that jasmonates inhibit germination, the results obtained so far are partly contradictory and depend on future research to reach final conclusions on the mode of jasmonate action during seed germination. Understanding the mechanisms underlying the control of seed germination and its hormonal regulation is not only of academic interest, but is also the ultimate basis for further improving crop establishment and yield, and is therefore of common importance.

  18. Gibberellins and abscisic acid signal crosstalk: living and developing under unfavorable conditions.

    Science.gov (United States)

    Golldack, Dortje; Li, Chao; Mohan, Harikrishnan; Probst, Nina

    2013-07-01

    Plants adapt to adverse environments by integrating growth and development to environmentally activated cues. Within the adaptive signaling networks, plant hormones tightly control convergent developmental and stress adaptive processes and coordinate cellular responses to external and internal conditions. Recent studies have uncovered novel antagonizing roles of the plant hormones gibberellin (GA) and abscisic acid (ABA) in integrating growth and development in plants with environmental signaling. According to current concepts, GRAS transcription factors of the DELLA and SCARECROW-LIKE (SCL) types have a key role as major growth regulators and have pivotal functions in modulating GA signaling. Significantly, current models emphasize a function of DELLA proteins as central regulators in GA homeostasis. DELLA proteins interact with the cellular GA receptor GID1 (GA-INSENSITIVE DWARF1) and degradation of DELLAs activates the function of GA. Supplementary to the prevailing view of a pivotal role of GRAS family transcriptional factors in plant growth regulation, recent work has suggested that the DELLA and SCL proteins integrate generic GA responses into ABA-controlled abiotic stress tolerance. Here, we review and discuss how GRAS type proteins influence plant development and versatile adaptation as hubs in GA and ABA triggered signaling pathways.

  19. Microarray Analysis of Transcriptional Responses to Abscisic Acid and Salt Stress in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yucheng Wang

    2013-05-01

    Full Text Available Abscisic acid (ABA plays a crucial role in plant responses to abiotic stress. To investigate differences in plant responses to salt and ABA stimulus, differences in gene expression in Arabidopsis in response to salt and ABA were compared using an Agilent oligo microarray. A total of 144 and 139 genes were significantly up- and downregulated, respectively, under NaCl stress, while 406 and 381 genes were significantly up- and downregulated, respectively, under ABA stress conditions. In addition, 31 genes were upregulated by both NaCl and ABA stresses, and 23 genes were downregulated by these stressors, suggesting that these genes may play similar roles in plant responses to salt and ABA stress. Gene ontology (GO analysis revealed four subgroups of genes, including genes in the GO categories “Molecular transducer activity”, “Growth”, “Biological adhesion” and “Pigmentation”, which were expressed in response to ABA stress but not NaCl stress. In addition, genes that play specific roles during salt or ABA stress were identified. Our results may help elucidate differences in the response of plants to salt and ABA stress.

  20. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Melcher, Karsten; Ng, Ley-Moy; Zhou, X Edward; Soon, Fen-Fen; Xu, Yong; Suino-Powell, Kelly M; Park, Sang-Youl; Weiner, Joshua J; Fujii, Hiroaki; Chinnusamy, Viswanathan; Kovach, Amanda; Li, Jun; Wang, Yonghong; Li, Jiayang; Peterson, Francis C; Jensen, Davin R; Yong, Eu-Leong; Volkman, Brian F; Cutler, Sean R; Zhu, Jian-Kang; Xu, H Eric; (NU Sinapore); (Van Andel); (MCW); (UCR); (Chinese Aca. Sci.)

    2010-01-12

    Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved β-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling.

  1. The Effect of Abscisic Acid on the Freezing Tolerance of Callus Cultures of Lotus corniculatus L.

    Science.gov (United States)

    Keith, C N; McKersie, B D

    1986-03-01

    The effects of growth temperature (2 degrees C and 24 degrees C), abscisic acid (ABA) concentration, duration of exposure to ABA, and light were assessed for their ability to induce acclimation to freezing temperatures in callus cultures of Lotus corniculatus L. cv Leo, a perennial forage legume. The maximal expression of freezing tolerance was achieved on B(5) media containing 10(-5) molar ABA, at 24 degrees C for 7 or 14 days. Under these culture conditions, the freezing tolerance of the callus approximated that observed in field grown plants. In contrast, low temperatures (2 degrees C) induced only a limited degree of freezing tolerance in these cultures. Viability was assessed by tetrazolium reduction and by regrowth of the callus. The two assays often differed in their estimates of absolute freezing tolerance. Regression analysis of the temperature profile suggested that there may be two or more distinct populations of cells differing in freezing tolerance, which may have contributed to the variability between viability assays.

  2. Prediction and Validation of Promoters Involved in the Abscisic Acid Response in Physcomitrella patens

    Institute of Scientific and Technical Information of China (English)

    Gerrit Timmerhaus; Sebastian T.Hanke; Karl Buchta; Stefan A. Rensing

    2011-01-01

    Detection of cis-regulatory elements, such as transcription factor binding sites (TFBS), through utilization of ortholog conservation is possible only if genomic data from closely related organisms are available. An alternative ap-proach is the detection of TFBS based on their overrepresentation in promoters of co-regulated genes. However, this ap-proach usually suffers from a high rate of false-positive prediction. Here, we have conducted a case study using promoters of genes known to be strongly induced by the phytohormone abscisic acid (ABA)in the model plant Physcornitrella patens,a moss. Putative TFBS were detected using three de novo motif detection tools in a strict consensus approach. The resulting motifs were validated using data from microarray expression profiling and were able to predict ABA-induced genes with high specificity (90.48%)at mediocre sensitivity (33.33%). In addition, 27 genes predicted to contain ABA-responsive TFBS were validated using real-time PCR. Here, a total of 37% of the genes could be shown to be induced upon ABA treatment,while 70% were found to be regulated by ABA. We conclude that the consensus approach for motif detection using co-regulation information can be used to identify genes that are regulated under a given stimulus. In terms of evolution, we find that the ABA response has apparently been conserved since the first land plants on the level of families involved in transcriptional regulation.

  3. Color of berry and juice of 'Isabel' grape treated with abscisic acid in different ripening stages

    Directory of Open Access Journals (Sweden)

    Lilian Yukari Yamamoto

    2015-12-01

    Full Text Available Abstract : The objective of this work was to evaluate the effect of (S-cis-abscisic acid (S-ABA application at different ripening stages, in increasing phenolic compounds and color of berry and juice of 'Isabel' grape (Vitis labrusca. The evaluated treatments were: control, without S-ABA application; 400 mg L-1S-ABA applied 7 days before veraison (DBV + 400 mg L-1S-ABA at 35 days after first application (DAFA; 400 mg L-1S-ABA applied at veraison (V + 400 mg L-1S-ABA at 35 DAFA; and 400 mg L-1S-ABA applied 7 days after veraison (DAV + 400 mg L-1S-ABA at 35 DAFA. There was no difference among treatments regarding the physical characteristics of berries and clusters, as well as total polyphenols in berry and juice. However, there was an increase in total anthocyanins in berry and juice with S-ABA application. Colorimetric variables indicated the increase in color of berry treated with S-ABA. Juices produced from grapes treated with S-ABA were more appreciated by tasters. The treatments with 400 mg L-1S-ABA applied 7 days before, during, or 7 days after veraison, combined with an additional application 35 days after the first one, increment total anthocyanin concentration and color of berry and juice of 'Isabel' grape, with better juice acceptance, without affecting total polyphenol concentration.

  4. Abscisic acid - an overlooked player in plant-microbe symbioses formation?

    Science.gov (United States)

    Stec, Natalia; Banasiak, Joanna; Jasiński, Michał

    2016-01-01

    Abscisic acid (ABA) is an ubiquitous plant hormone and one of the foremost signalling molecules, controlling plants' growth and development, as well as their response to environmental stresses. To date, the function of ABA has been extensively investigated as an abiotic stress molecule which regulates the plants' water status. However, in the context of symbiotic associations, ABA is less recognized. In contrast to well-described auxin/cytokinin and gibberellin/strigolactone involvement in symbioses, ABA has long been underestimated. Interestingly, ABA emerges as an important player in arbuscular mycorrhiza and legume-rhizobium symbiosis. The plant's use of stress hormones like ABA in regulation of those interactions directly links the efficiency of these processes to the environmental status of the plant, notably during drought stress. Here we provide an overview of ABA interplay in beneficial associations of plants with microorganisms and propose ABA as a potential factor determining whether the investment in establishing the interaction is higher than the profit coming from it.

  5. Interactions between ethylene, abscisic acid and cytokinin during germination and seedling establishment in Arabidopsis

    Indian Academy of Sciences (India)

    Veeraputhiran Subbiah; Karingu Janardhan Reddy

    2010-09-01

    In order to investigate the interaction of the plant hormones ethylene, abscisic acid (ABA) and cytokinin in seed germination and early seedling development, we studied germination in ethylene-related mutants of Arabidopsis. Mutations in the genes etr1 and ein2, which reduce ethylene responses, showed increased dormancy and a delay in germination in comparison with wild type. Mutations in etr1, ein2 and ein6 also resulted in increased sensitivity to ABA with respect to inhibition of germination. Conversely, mutations in ctr1 and eto3, which lead to an increased ethylene response and overproduction of ethylene, respectively, decreased sensitivity to ABA during germination. Increased ABA sensitivity was also effected in wild type seeds by the presence during germination of AgNO3, an inhibitor of ethylene action. The addition of the cytokinin N-6 benzyl adenine (BA) reversed the increased sensitivity of ethylene-resistant mutants to ABA. The action of cytokinin in reversing increased ABA sensitivity of ethylene-resistant mutants also suggests that at least part of the action of cytokinin in promoting germination is independent of its role in stimulating ethylene production. These observations further extend the evidence in support of interaction between ethylene, ABA and cytokinin signalling in controlling seed germination and early seedling development in Arabidopsis.

  6. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors

    KAUST Repository

    Melcher, Karsten

    2009-12-03

    Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved ?-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling. © 2009 Macmillan Publishers Limited. All rights reserved.

  7. The dynamics of embolism refilling in abscisic acid (ABA)-deficient tomato plants.

    Science.gov (United States)

    Secchi, Francesca; Perrone, Irene; Chitarra, Walter; Zwieniecka, Anna K; Lovisolo, Claudio; Zwieniecki, Maciej A

    2012-12-24

    Plants are in danger of embolism formation in xylem vessels when the balance between water transport capacity and transpirational demand is compromised. To maintain this delicate balance, plants must regulate the rate of transpiration and, if necessary, restore water transport in embolized vessels. Abscisic acid (ABA) is the dominant long-distance signal responsible for plant response to stress, and it is possible that it plays a role in the embolism/refilling cycle. To test this idea, a temporal analysis of embolism and refilling dynamics, transpiration rate and starch content was performed on ABA-deficient mutant tomato plants. ABA-deficient mutants were more vulnerable to embolism formation than wild-type plants, and application of exogenous ABA had no effect on vulnerability. However, mutant plants treated with exogenous ABA had lower stomatal conductance and reduced starch content in the xylem parenchyma cells. The lower starch content could have an indirect effect on the plant's refilling activity. The results confirm that plants with high starch content (moderately stressed mutant plants) were more likely to recover from loss of water transport capacity than plants with low starch content (mutant plants with application of exogenous ABA) or plants experiencing severe water stress. This study demonstrates that ABA most likely does not play any direct role in embolism refilling, but through the modulation of carbohydrate content, it could influence the plant's capacity for refilling.

  8. Induction of phytic acid synthesis by abscisic acid in suspension-cultured cells of rice.

    Science.gov (United States)

    Matsuno, Koya; Fujimura, Tatsuhito

    2014-03-01

    A pathway of phytic acid (PA) synthesis in plants has been revealed via investigations of low phytic acid mutants. However, the regulation of this pathway is not well understood because it is difficult to control the environments of cells in the seeds, where PA is mainly synthesized. We modified a rice suspension culture system in order to study the regulation of PA synthesis. Rice cells cultured with abscisic acid (ABA) accumulate PA at higher levels than cells cultured without ABA, and PA accumulation levels increase with ABA concentration. On the other hand, higher concentrations of sucrose or inorganic phosphorus do not affect PA accumulation. Mutations in the genes RINO1, OsMIK, OsIPK1 and OsLPA1 have each been reported to confer low phytic acid phenotypes in seeds. Each of these genes is upregulated in cells cultured with ABA. OsITPK4 and OsITPK6 are upregulated in cells cultured with ABA and in developing seeds. These results suggest that the regulation of PA synthesis is similar between developing seeds and cells in this suspension culture system. This system will be a powerful tool for elucidating the regulation of PA synthesis.

  9. Interplay between Carotenoids, Abscisic Acid and Jasmonate Guides the Compatible Rice-Meloidogyne graminicola Interaction

    Directory of Open Access Journals (Sweden)

    Tina Kyndt

    2017-06-01

    Full Text Available In this study, we have characterized the role of carotenoids and chlorophyll in the compatible interaction between the sedentary root knot nematode (RKN Meloidogyne graminicola and the monocot model plant rice (Oryza sativa. Previous transcriptome data showed a differential expression of carotenoid and chlorophyll biosynthesis genes in nematode-induced giant cells and gall tissue. Metabolite measurement showed that galls indeed accumulate chlorophyll a, b and carotenoids, as well as the hormone abscisic acid (ABA. When ABA was externally applied on rice plants, or when ABA-biosynthesis was inhibited, a significant increase in gall formation and nematode development was found, showing the complex role of ABA in this interaction. ABA application suppressed jasmonic acid (JA levels in the plants, while ABA-biosynthesis inhibition lead to increased JA levels confirming an antagonism between ABA and JA in rice roots. In addition, combined applications of ABA and JA showed that the ABA-effect can overcome JA-induced defense. Based on these observations, we hypothesized that the accumulation of chlorophyll and carotenoid precursors would be beneficial to nematode infection. Indeed, when chemically blocking the carotenoid biosynthesis pathway at different steps, which leads to differential accumulation of carotenoids and chlorophyll in the plants, a positive and clear link between accumulation of carotenoids and chlorophyll and rice susceptibility to RKN was detected.

  10. Abscisic acid deficiency increases defence responses against Myzus persicae in Arabidopsis.

    Science.gov (United States)

    Hillwig, Melissa S; Chiozza, Mariana; Casteel, Clare L; Lau, Siau Ting; Hohenstein, Jessica; Hernández, Enrique; Jander, Georg; MacIntosh, Gustavo C

    2016-02-01

    Comparison of Arabidopsis thaliana (Arabidopsis) gene expression induced by Myzus persicae (green peach aphid) feeding, aphid saliva infiltration and abscisic acid (ABA) treatment showed a significant positive correlation. In particular, ABA-regulated genes are over-represented among genes that are induced by M. persicae saliva infiltration into Arabidopsis leaves. This suggests that the induction of ABA-related gene expression could be an important component of the Arabidopsis-aphid interaction. Consistent with this hypothesis, M. persicae populations induced ABA production in wild-type plants. Furthermore, aphid populations were smaller on Arabidopsis aba1-1 mutants, which cannot synthesize ABA, and showed a significant preference for wild-type plants compared with the mutant. Total free amino acids, which play an important role in aphid nutrition, were not altered in the aba1-1 mutant line, but the levels of isoleucine (Ile) and tryptophan (Trp) were differentially affected by aphids in wild-type and mutant plants. Recently, indole glucosinolates have been shown to promote aphid resistance in Arabidopsis. In this study, 4-methoxyindol-3-ylmethylglucosinolate was more abundant in the aba1-1 mutant than in wild-type Arabidopsis, suggesting that the induction of ABA signals that decrease the accumulation of defence compounds may be beneficial for aphids. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  11. Control of macaw palm seed germination by the gibberellin/abscisic acid balance.

    Science.gov (United States)

    Bicalho, E M; Pintó-Marijuan, M; Morales, M; Müller, M; Munné-Bosch, S; Garcia, Q S

    2015-09-01

    The hormonal mechanisms involved in palm seed germination are not fully understood. To better understand how germination is regulated in Arecaceae, we used macaw palm (Acrocomia aculeata (Jacq.) Lodd. Ex Mart.) seed as a model. Endogenous hormone concentrations, tocopherol and tocotrienol and lipid peroxidation during germination were studied separately in the embryo and endosperm. Evaluations were performed in dry (D), imbibed (I), germinated (G) and non-germinated (NG) seeds treated (+GA3 ) or not treated (control) with gibberellins (GA). With GA3 treatment, seeds germinated faster and to a higher percentage than control seeds. The +GA3 treatment increased total bioactive GA in the embryo during germination relative to the control. Abscisic acid (ABA) concentrations decreased gradually from D to G in both tissues. Embryos of G seeds had a lower ABA content than NG seeds in both treatments. The GA/ABA ratio in the embryo was significantly higher in G than NG seeds. The +GA3 treatment did not significantly affect the GA/ABA ratio in either treatment. Cytokinin content increased from dry to germinated seeds. Jasmonic acid (JA) increased and 1-aminocyclopropane-1-carboylic acid (ACC) decreased after imbibition. In addition, α-tocopherol and α-tocotrienol decreased, while lipid peroxidation increased in the embryo during germination. We conclude that germination in macaw palm seed involves reductions in ABA content and, consequently, increased GA/ABA in the embryo. Furthermore, the imbibition process generates oxidative stress (as observed by changes in vitamin E and MDA).

  12. Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination.

    Science.gov (United States)

    El-Maarouf-Bouteau, Hayat; Sajjad, Yasar; Bazin, Jérémie; Langlade, Nicolas; Cristescu, Simona M; Balzergue, Sandrine; Baudouin, Emmanuel; Bailly, Christophe

    2015-02-01

    Sunflower (Helianthus annuus L.) seed dormancy is regulated by reactive oxygen species (ROS) and can be alleviated by incubating dormant embryos in the presence of methylviologen (MV), a ROS-generating compound. Ethylene alleviates sunflower seed dormancy whereas abscisic acid (ABA) represses germination. The purposes of this study were to identify the molecular basis of ROS effect on seed germination and to investigate their possible relationship with hormone signalling pathways. Ethylene treatment provoked ROS generation in embryonic axis whereas ABA had no effect on their production. The beneficial effect of ethylene on germination was lowered in the presence of antioxidant compounds, and MV suppressed the inhibitory effect of ABA. MV treatment did not alter significantly ethylene nor ABA production during seed imbibition. Microarray analysis showed that MV treatment triggered differential expression of 120 probe sets (59 more abundant and 61 less abundant genes), and most of the identified transcripts were related to cell signalling components. Many transcripts less represented in MV-treated seeds were involved in ABA signalling, thus suggesting an interaction between ROS and ABA signalling pathways at the transcriptional level. Altogether, these results shed new light on the crosstalk between ROS and plant hormones in seed germination.

  13. Heat-stable proteins and abscisic acid action in barley aleurone cells

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, J.V. (CSIRO, Canberra (Australia)); Shaw, D.C. (Australian National Univ., Canberra (Australia))

    1989-12-01

    ({sup 35}S)Methionine labeling experiments showed that abscisic acid (ABA) induced the synthesis of at least 25 polypeptides in mature barley (Hordeum vulgare) aleurone cells. The polypeptides were not secreted. Whereas most of the proteins extracted from aleurone cells were coagulated by heating to 100{degree}C for 10 minutes, most of the ABA-induced polypeptides remained in solution (heat-stable). ABA had little effect on the spectrum of polypeptides that were synthesized and secreted by aleurone cells, and most of these secreted polypeptides were also heat-stable. Coomassie blue staining of sodium dodecyl sulfate polyacrylamide gels indicated that ABA-induced polypeptides already occurred in high amounts in mature aleurone layers having accumulated during grain development. About 60% of the total protein extracted from mature aleurone was heat stable. Amino acid analyses of total preparations of heat-stable and heat-labile proteins showed that, compared to heat-labile proteins, heat-stable intracellular proteins were characterized by higher glutamic acid/glutamine (Glx) and glycine levels and lower levels of neutral amino acids. Secreted heat-stable proteins were rich in Glx and proline. The possibilities that the accumulation of the heat-stable polypeptides during grain development is controlled by ABA and that the function of these polypeptides is related to their abundance and extraordinary heat stability are considered.

  14. K-channels inhibited by hydrogen peroxide mediate abscisic acid signaling in Vicia guard cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A number of studies show that environmental stress conditions increase abscisic acid (ABA) and hydrogen peroxide (H2O2) levels in plant cells. Despite this central role of ABA in altering stomatal aperture by regulating guard cell ion transport, little is known concerning the relationship between ABA and H2O2 in signal transduction leading to stomatal movement. Epidermal strip bioassay illustrated that ABA-inhibited stomatal opening and ABA-induced stomatal closure were abolished partly by externally added catalase (CAT) or diphenylene iodonium (DPI), which are a H2O2 scavenger and a NADPH oxidase inhibitor respectively. In contrast, internally added CAT or DPI nearly completely or partly reversed ABA-induced closure in half-stoma. Consistent with these results, whole-cell patch-clamp analysis showed that intracellular application of CAT or DPI partly abolished ABA-inhibited inward K+ current across the plasma membrane of guard cells. H2O2 mimicked ABA to inhibit inward K+ current, an effect which was reversed by the addition of ascorbic acid (Vc) in patch clamping micropipettes. These results suggested that H2O2 mediated ABA-induced stomatal movement by targeting inward K+ channels at plasma membrane.

  15. Abscisic Acid-mediated Epigenetic Processes in Plant Development and Stress Responses

    Institute of Scientific and Technical Information of China (English)

    Viswanathan Chinnusamy; Zhizhong Gong; Jian-Kang Zhu

    2008-01-01

    Abscisic acid (ABA) regulates diverse plant processes, growth and development under non-stress conditions and plays a pivotal role in abiotic stress tolerance. Although ABA-regulated genetic processes are well known, recent discoveries reveal that epigenetic processes are an integral part of ABA-regulated processes. Epigenetic mechanisms, namely, histone modifications and cytosine DNA methylation-induced modification of genome give rise to epigenomes, which add diversity and complexity to the genome of organisms. Histone monoubiquitination appears to regulate ABA levels in developing seeds through histone H2B monoubiquitination. ABA and H2B ubiquitination dependent chromatin remodeling regulate seed dormancy. Transcription factor networks necessary for seed maturation are repressed by histone deacetylases (HDACs)-dependent and PICKLE chromatin remodeling complexes (CRCs), whereas ABA induces the expression of these genes directly or through repression of HDACs. Abiotic stress-induced ABA regulates stomatal response and stress-responsive gene expression through HDACs and HOS15-dependent histone deacetylation, as well as through the ATP-dependent SWITCH/SUCROSE NONFERMENTING CRC. ABA also probably regulates the abiotic stress response through DNA methylation and short interfering RNA pathways. Further studies on ABA-regulated spigenome will be of immense use to understand the plant development, stress adaptation and stress memory.

  16. Drought-Induced Increases in Abscisic Acid Levels in the Root Apex of Sunflower 1

    Science.gov (United States)

    Robertson, J. Mason; Pharis, Richard P.; Huang, Yan Y.; Reid, David M.; Yeung, Edward C.

    1985-01-01

    Abscisic acid (ABA) levels in 3-mm apical root segments of slowly droughted sunflower plants (Helianthus annuus L. cv Russian Giant) were analyzed as the methyl ester by selected ion monitoring gas chromatography-mass spectrometry using characteristic ions. An internal standard, hexadeuterated ABA (d6ABA) was used for quantitative analysis. Sunflower seedlings, grown in aeroponic chambers, were slowly droughted over a 7-day period. Drought stress increased ABA levels in the root tips at 24, 72, and 168 hour sample times. Control plants had 57 to 106 nanograms per gram ABA dry weight in the root tips (leaf water potential, −0.35 to −0.42 megapascals). The greatest increase in ABA, about 20-fold, was found after 72 hours of drought (leaf water potential, −1.34 to −1.47 megapascals). Levels of ABA also increased (about 7− to 54-fold) in 3-mm apical root segments which were excised and then allowed to dessicate for 1 hour at room temperature. PMID:16664535

  17. The Dynamics of Embolism Refilling in Abscisic Acid (ABA-Deficient Tomato Plants

    Directory of Open Access Journals (Sweden)

    Francesca Secchi

    2012-12-01

    Full Text Available Plants are in danger of embolism formation in xylem vessels when the balance between water transport capacity and transpirational demand is compromised. To maintain this delicate balance, plants must regulate the rate of transpiration and, if necessary, restore water transport in embolized vessels. Abscisic acid (ABA is the dominant long-distance signal responsible for plant response to stress, and it is possible that it plays a role in the embolism/refilling cycle. To test this idea, a temporal analysis of embolism and refilling dynamics, transpiration rate and starch content was performed on ABA-deficient mutant tomato plants. ABA-deficient mutants were more vulnerable to embolism formation than wild-type plants, and application of exogenous ABA had no effect on vulnerability. However, mutant plants treated with exogenous ABA had lower stomatal conductance and reduced starch content in the xylem parenchyma cells. The lower starch content could have an indirect effect on the plant’s refilling activity. The results confirm that plants with high starch content (moderately stressed mutant plants were more likely to recover from loss of water transport capacity than plants with low starch content (mutant plants with application of exogenous ABA or plants experiencing severe water stress. This study demonstrates that ABA most likely does not play any direct role in embolism refilling, but through the modulation of carbohydrate content, it could influence the plant’s capacity for refilling.

  18. Involvement of a lipoxygenase-like enzyme in abscisic Acid biosynthesis.

    Science.gov (United States)

    Creelman, R A; Bell, E; Mullet, J E

    1992-07-01

    Several lines of evidence indicate that abscisic acid (ABA) is derived from 9'-cis-neoxanthin or 9'-cis-violaxanthin with xanthoxin as an intermediate. (18)O-labeling experiments show incorporation primarily into the side chain carboxyl group of ABA, suggesting that oxidative cleavage occurs at the 11, 12 (11', 12') double bond of xanthophylls. Carbon monoxide, a strong inhibitor of heme-containing P-450 monooxygenases, did not inhibit ABA accumulation, suggesting that the oxygenase catalyzing the carotenoid cleavage step did not contain heme. This observation, plus the ability of lipoxygenase to make xanthoxin from violaxanthin, suggested that a lipoxygenase-like enzyme is involved in ABA biosynthesis. To test this idea, the ability of several soybean (Glycine max L.) lipoxygenase inhibitors (5,8,11-eicosatriynoic acid, 5,8,11,14-eicosatetraynoic acid, nordihydroguaiaretic acid, and naproxen) to inhibit stress-induced ABA accumulation in soybean cell culture and soybean seedlings was determined. All lipoxygenase inhibitors significantly inhibited ABA accumulation in response to stress. These results suggest that the in vivo oxidative cleavage reaction involved in ABA biosynthesis requires activity of a nonheme oxygenase having lipoxygenase-like properties.

  19. Gene expression in retinoic acid-induced neural tube defects A cDNA mieroarray analysis

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Long; Zhong Yang; Yi Zeng; Hongli Li; Yangyun Han; Chao You

    2009-01-01

    the cranium and abnormal changes of the metencephalon and face.cDNA microarray analysis suggested that the changes in expression of seven different genes were similar on both days E10.5 and E11.5. These were downregulation of NekT, Igfbp5, Zw10,Csf3r, Psmc6 and Rbl, and upregulation of Apoa-4. This study also indicated that Cdk5 expression was downregulated in the retinoic acid group on day E11.5. The results of the cDNA microarray analysis were partly confirmed by Northern blotting.CONCLUSION: Cdk5, NekT, Igfbp5, ZwlO, Csf3r, Psmc6, Rb 1 and Apoa-4 may be key factors in retinoic acid-induced neural tube defects.

  20. Effects of low potassium dextran glucose solution on oleic acid-induced acute lung injury in juvenile piglets

    Institute of Scientific and Technical Information of China (English)

    LING Feng; LIU Ying-long; LIU Ai-jun; WANG Dong; WANG Qiang

    2011-01-01

    Background Epithelial dysfunction in lungs plays a key role in the pathogenesis of acute lung injury. The beneficial effects of low potassium dextran glucose solution (LPD) have been reported in lung preservation, and LPD enables injured alveolar pneumocytes to recover. So we hypothesized that systemic administration of LPD may have benefits in treating acute lung injury. We investigated the effects of LPD on arterial blood gas and levels of some cytokines in oleic acid-induced acute lung injury in juvenile piglets.Methods Oleic acid (0.1 ml/kg) was intrapulmonarily administered to healthy anesthetized juvenile piglets. Ten animals were randomly assigned to two groups (n=5 each): oleic acid-induced group (control group) with intravenous infusion of 12.5 ml/kg of lactated Ringer's solution 30 minutes before administration of oleic acid and LPD group with systemic administration of LPD (12.5 ml/kg) 30 minutes before injecting oleic acid. Blood gas variables and concentrations of tumor necrosis factor alpha, endothelin 1 and interleukin 10 were measured before and every 1 hour for 6 hours after initial lung injury.Results Compared with control group, blood pH, partial pressure of arterial oxygen to fraction of inspired oxygen ratio,partial pressure of arterial carbon dioxide, and mean pulmonary arterial pressure in LPD group were improved (P<0.05or 0.01). Six hours after lung injury, concentration of tumor necrosis factor alpha in lung tissue was lower in LPD group than control group (P<0.05). Plasmic concentration of endothelin 1 showed lower in LPD group while plasmic concentration of interleukin 10 showed higher in LPD group (P<0.05).Conclusions Before lung injury, systemic administration of LPD can improve gas exchange, attenuate pulmonary hypertension, decrease plasmic levels of endothelin 1, increase interleukin 10 and decrease concentration of tumor necrosis factor alpha in lung tissue in oleic acid-induced acute lung injury in juvenile piglets.

  1. Genetic parameters for rennet- and acid-induced coagulation properties in milk from Swedish Red dairy cows.

    Science.gov (United States)

    Gustavsson, F; Glantz, M; Poulsen, N A; Wadsö, L; Stålhammar, H; Andrén, A; Lindmark Månsson, H; Larsen, L B; Paulsson, M; Fikse, W F

    2014-01-01

    Milk coagulation is an important processing trait, being the basis for production of both cheese and fermented products. There is interest in including technological properties of these products in the breeding goal for dairy cattle. The aim of the present study was therefore to estimate genetic parameters for milk coagulation properties, including both rennet- and acid-induced coagulation, in Swedish Red dairy cattle using genomic relationships. Morning milk samples and blood samples were collected from 395 Swedish Red cows that were selected to be as genetically unrelated as possible. Using a rheometer, milk samples were analyzed for rennet- and acid-induced coagulation properties, including gel strength (G'), coagulation time, and yield stress (YS). In addition to the technological traits, milk composition was analyzed. A binary trait was created to reflect that milk samples that had not coagulated 40min after rennet addition were considered noncoagulating milk. The cows were genotyped by using the Illumina BovineHD BeadChip (Illumina Inc., San Diego, CA). Almost 600,000 markers remained after quality control and were used to construct a matrix of genomic relationships among the cows. Multivariate models including fixed effects of herd, lactation stage, and parity were fitted using the ASReml software to obtain estimates of heritabilities and genetic and phenotypic correlations. Heritability estimates (h(2)) for G' and YS in rennet and acid gels were found to be high (h(2)=0.38-0.62) and the genetic correlations between rennet-induced and acid-induced coagulation properties were weak but favorable, with the exception of YSrennet with G'acid and YSacid, both of which were strong. The high heritability (h(2)=0.45) for milk coagulating ability expressed as a binary trait suggests that noncoagulation could be eliminated through breeding. Additionally, the results indicated that the current breeding objective could increase the frequency of noncoagulating milk and

  2. Importance of interferon inducible trans-membrane proteins and retinoic acid inducible gene I for influenza virus replication: A review.

    Science.gov (United States)

    Suo, Siqingaowa; Ren, Xiaofeng

    2016-01-01

    Understanding the interplay between Influenza viruses and host cells is key to elucidating the pathogenesis of these viruses. Several host factors have been identified that exert antiviral functions; however, influenza viruses continue to replicate utilizing host cell machinery. Herein, we review the mechanisms of action of two host-derived proteins on conferring cellular resistance to the influenza virus; (1) the interferon inducible trans-membrane proteins, 1, 2 and 3, a recently identified family of early restriction factors; and (2) retinoic acid inducible gene I, a key mediator of antiviral immunity. These data may contribute to the design of novel and efficient anti-influenza treatments.

  3. Silencing the SpMPK1, SpMPK2, and SpMPK3 Genes in Tomato Reduces Abscisic Acid—Mediated Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Yan Liang

    2013-11-01

    Full Text Available Drought is a major threat to agriculture production worldwide. Mitogen-activated protein kinases (MAPKs play a pivotal role in sensing and converting stress signals into appropriate responses so that plants can adapt and survive. To examine the function of MAPKs in the drought tolerance of tomato plants, we silenced the SpMPK1, SpMPK2, and SpMPK3 genes in wild-type plants using the virus-induced gene silencing (VIGS method. The results indicate that silencing the individual genes or co-silencing SpMPK1, SpMPK2, and SpMPK3 reduced the drought tolerance of tomato plants by varying degrees. Co-silencing SpMPK1 and SpMPK2 impaired abscisic acid (ABA-induced and hydrogen peroxide (H2O2-induced stomatal closure and enhanced ABA-induced H2O2 production. Similar results were observed when silencing SpMPK3 alone, but not when SpMPK1 and SpMPK2 were individually silenced. These data suggest that the functions of SpMPK1 and SpMPK2 are redundant, and they overlap with that of SpMPK3 in drought stress signaling pathways. In addition, we found that SpMPK3 may regulate H2O2 levels by mediating the expression of CAT1. Hence, SpMPK1, SpMPK2, and SpMPK3 may play crucial roles in enhancing tomato plants’ drought tolerance by influencing stomatal activity and H2O2 production via the ABA-H2O2 pathway.

  4. Blockage of epithelial to mesenchymal transition and upregulation of let 7b are critically involved in ursolic acid induced apoptosis in malignant mesothelioma cell.

    Science.gov (United States)

    Sohn, Eun Jung; Won, Gunho; Lee, Jihyun; Yoon, Sang Wook; Lee, Ilho; Kim, Hee Jeong; Kim, Sung-Hoon

    2016-01-01

    Malignant pleural mesothelioma (MPN), which is caused by asbestos exposure, is one of aggressive lung tumors. In the present study, we elucidated the anti-tumor mechanism of ursolic acid in malignant mesotheliomas. Ursolic acid significantly exerted cytotoxicity in a time and dose dependent manner in H28, H2452 and MSTO-211H mesothelioma cells and inhibited cell proliferation by colony formation assay in a dose-dependent fashion. Also, ursolic acid treatment accumulated the sub-G1 population, attenuated the expression of procapase 9, cyclin D1, pAKT, p-glycogen synthase kinase 3-alpha/beta (pGSK3α/β), β-catenin and nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) and also cleaved caspase 3 and poly (ADP-ribose) polymerase (PARP) in mesothelioma cells. Furthermore, ursolic acid treatment blocked epithelial and mesenchymal transition (EMT) molecules by activating E-cadherin as an epithelial marker and attenuating Vimentin, and Twist as mesenchymal molecules. Interestingly, miRNA array revealed that 23 miRNAs (>2 folds) including let-7b and miRNA3613-5p, miRNA134 and miRNA196b were significantly upregulated while 33 miRNAs were downregulated in ursolic acid treated H2452 cells. Furthermore, overexpression of let 7b using let-7b mimics enhanced the antitumor effect of ursolic acid to attenuate the expression of procaspases 3, pro-PARP, pAKT, β-catenin and Twist and increase sub-G1 accumulation in H2452 mesothelioma cells. Overall, our findings suggest that ursolic acid induces apoptosis via inhibition of EMT and activation of let7b in mesothelioma cells as a potent chemotherapeutic agent for treatment of malignant mesotheliomas.

  5. Sustained low abscisic acid levels increase seedling vigor under cold stress in rice (Oryza sativa L.).

    Science.gov (United States)

    Mega, Ryosuke; Meguro-Maoka, Ayano; Endo, Akira; Shimosaka, Etsuo; Murayama, Seiji; Nambara, Eiji; Seo, Mitsunori; Kanno, Yuri; Abrams, Suzanne R; Sato, Yutaka

    2015-09-09

    Stress-induced abscisic acid (ABA) is mainly catabolized by ABA 8'-hydroxylase (ABA8ox), which also strictly regulates endogenous ABA levels. Although three members of the ABA8ox gene family are conserved in rice, it is not clear which stressors induce expression of these genes. Here, we found that OsABA8ox1 was induced by cold stress within 24 h and that OsABA8ox2 and OsABA8ox3 were not. In contrast, OsABA8ox2 and OsABA8ox3 were ABA-inducible, but OsABA8ox1 was not. OsABA8ox1, OsABA8ox2, and OsABA8ox3 restored germination of a cyp707a1/a2/a3 triple mutant of Arabidopsis to rates comparable to those of the wild type, indicating that OsABA8ox1, OsABA8ox2, and OsABA8ox3 function as ABA-catabolic genes in vivo. Transgenic rice lines overexpressing OsABA8ox1 showed decreased levels of ABA and increased seedling vigor at 15 °C. These results indicate that sustained low levels of ABA lead to increased seedling vigor during cold stress. On the other hand, excessively low endogenous ABA levels caused reduced drought and cold tolerance, although some of the transgenic rice lines expressing OsABA8ox1 at moderate levels did not show these harmful effects. Adequate regulation of endogenous ABA levels is thought to be crucial for maintaining seedling vigor under cold stress and for cold and drought tolerance in rice.

  6. Identification of Interactions between Abscisic Acid and Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase.

    Directory of Open Access Journals (Sweden)

    Marek M Galka

    Full Text Available Abscisic acid ((+-ABA is a phytohormone involved in the modulation of developmental processes and stress responses in plants. A chemical proteomics approach using an ABA mimetic probe was combined with in vitro assays, isothermal titration calorimetry (ITC, x-ray crystallography and in silico modelling to identify putative (+-ABA binding-proteins in crude extracts of Arabidopsis thaliana. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco was identified as a putative ABA-binding protein. Radiolabelled-binding assays yielded a Kd of 47 nM for (+-ABA binding to spinach Rubisco, which was validated by ITC, and found to be similar to reported and experimentally derived values for the native ribulose-1,5-bisphosphate (RuBP substrate. Functionally, (+-ABA caused only weak inhibition of Rubisco catalytic activity (Ki of 2.1 mM, but more potent inhibition of Rubisco activation (Ki of ~ 130 μM. Comparative structural analysis of Rubisco in the presence of (+-ABA with RuBP in the active site revealed only a putative low occupancy (+-ABA binding site on the surface of the large subunit at a location distal from the active site. However, subtle distortions in electron density in the binding pocket and in silico docking support the possibility of a higher affinity (+-ABA binding site in the RuBP binding pocket. Overall we conclude that (+-ABA interacts with Rubisco. While the low occupancy (+-ABA binding site and weak non-competitive inhibition of catalysis may not be relevant, the high affinity site may allow ABA to act as a negative effector of Rubisco activation.

  7. Comparative transcriptome analysis of tomato (Solanum lycopersicum) in response to exogenous abscisic acid.

    Science.gov (United States)

    Wang, Yan; Tao, Xiang; Tang, Xiao-Mei; Xiao, Liang; Sun, Jiao-Long; Yan, Xue-Feng; Li, Dan; Deng, Hong-Yuan; Ma, Xin-Rong

    2013-12-01

    Abscisic acid (ABA) can regulate the expressions of many stress-responsive genes in plants. However, in defense responses to pathogens, mounting evidence suggests that ABA plays variable roles. Little information exists about genome-wide gene expression in ABA responses in tomato (Solanum lycopersicum L.), a model fruit crop plant. Global transcriptome profiles of tomato leaf responses to exogenous ABA were generated using Illumina RNA-sequencing. More than 173 million base pair reads were mapped onto the tomato reference genome and the expression pattern differences between treated and control leaves were assessed. In total, 50,616 transcripts were generated. Among them, 42,583 were functionally annotated in the NCBI non-redundant database and 47,877 in the tomato genome reference. Additionally, 31,107 transcripts were categorized into 57 functional groups based on Gene Ontology terms, and 14,371 were assigned to 310 Kyoto Encyclopedia of Genes and Genomes pathways. In both the ABA treatment and control samples, 39,671 transcripts were available to analyze their expressions, of which 21,712 (54.73%) responded to exogenous ABA. Of these transcripts, 2,787 were significantly differently expressed genes (DEGs). Many known and novel ABA-induced and -repressed genes were found. Exogenous ABA can influence the ABA signaling pathway with PYR/PYL/RCARs-PP2Cs-SnRK2s as the center. Eighteen PYL genes were detected. A large number of genes related to various transcription factors, heat shock proteins, pathogen resistance, and the salicylic acid, jasmonic acid, and ethylene signaling pathways were up-regulated by exogenous ABA. The results indicated that ABA has the potential to improve pathogen-resistance and abiotic stress tolerance in tomato. This study presents the global expression analysis of ABA-regulated transcripts in tomato and provides a robust database for investigating the functions of genes induced by ABA.

  8. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid.

    Science.gov (United States)

    Rogiers, Suzy Y; Greer, Dennis H; Hatfield, Jo M; Hutton, Ron J; Clarke, Simon J; Hutchinson, Paul A; Somers, Anthony

    2012-03-01

    Stomatal responsiveness to evaporative demand (air vapour pressure deficit (VPD)) ranges widely between species and cultivars, and mechanisms for stomatal control in response to VPD remain obscure. The interaction of irrigation and soil moisture with VPD on stomatal conductance is particularly difficult to predict, but nevertheless is critical to instantaneous transpiration and vulnerability to desiccation. Stomatal sensitivity to VPD and soil moisture was investigated in Semillon, an anisohydric Vitis vinifera L. variety whose leaf water potential (Ψ(l)) is frequently lower than that of other grapevine varieties grown under similar conditions in the warm grape-growing regions of Australia. A survey of Semillon vines across seven vineyards revealed that, regardless of irrigation treatment, midday Ψ(l) was dependent on not only soil moisture but VPD at the time of measurement. Predawn Ψ(l) was more closely correlated to not only soil moisture in dry vineyards but to night-time VPD in drip-irrigated vineyards, with incomplete rehydration during high night-time VPD. Daytime stomatal conductance was low only under severe plant water deficits, induced by extremes in dry soil. Stomatal response to VPD was inconsistent across irrigation regime; however, in an unirrigated vineyard, stomatal sensitivity to VPD-the magnitude of stomatal response to VPD-was heightened under dry soils. It was also found that stomatal sensitivity was proportional to the magnitude of stomatal conductance at a reference VPD of 1kPa. Exogenous abscisic acid (ABA) applied to roots of Semillon vines growing in a hydroponic system induced stomatal closure and, in field vines, petiole xylem sap ABA concentrations rose throughout the morning and were higher in vines with low Ψ(l). These data indicate that despite high stomatal conductance of this anisohydric variety when grown in medium to high soil moisture, increased concentrations of ABA as a result of very limited soil moisture may augment

  9. Inhibitors from carob (Ceratonia siliqua L.) : III. Comparisons with abscisic acid.

    Science.gov (United States)

    Corcoran, M R

    1970-06-01

    Inhibitory extracts of carob and abscisic acid (ABA) were compared and found to behave differently in three types of tests. The carob inhibitors remained at the origin upon thin-layer chromatography in two different solvent systems while a cis-trans mixture of ABA had Rf's of 2.5 and 3.5 in the first system (chloroform:acetic acid, 95:5), and 3.5 and 4.5 in the second system (benzene:acetic acid:water, 8:3:5). When ABA and carob extract were mixed and then chromatographed, the ABA had the same Rf values as ABA chromatographed alone.Assays utilizing light-grown, dwarf peas showed that a weight ratio of 1000: 1 ABA:gibberellic acid (GA3) was necessary to inhibit GA3-induced growth by 50% while carob fraction C is inhibitory to GA3 at a ratio of 17:1. The amount of ABA which inhibited 50% of the growth induced by 0.05 μg GA3 reduced the endogenous growth of both dwarf and non-dwarf pea seedlings; in contrast, concentrations of carob extract up to 100 times greater than the amount necessary for 50% inhibition of the growth response caused by 0.05 μg GA3 did not affect endogenous growth.Only very small amounts of inhibitory activity from carob extract were transferred from water to chloroform at a pH (2.0) at which most of the ABA was transferred.

  10. Visualization of abscisic acid-perception sites on the plasma membrane of stomatal guard cells.

    Science.gov (United States)

    Yamazaki, Daiki; Yoshida, Shigeo; Asami, Tadao; Kuchitsu, Kazuyuki

    2003-07-01

    Abscisic acid (ABA) is a phytohormone that plays a key role as a stress signal, regulating water relations during drought conditions, by inducing stomatal closure. However, to date, no putative ABA receptor(s) has been reported at the protein sequence, gene family, or cellular localization levels. We used biotinylated ABA (bioABA) to characterize the ABA-perception sites in the stomatal guard cells of Vicia faba. Treatment with bioABA induced stomatal closure and shrinkage of guard cell protoplasts (GCPs). The ABA-perception sites were visualized by fluorescence microscopy and confocal laser scanning microscopy (CLSM), using bioABA and fluorescence-labeled avidin. Fluorescent particles were observed in patches on the surface of the GCPs. Fluorescence intensity was quantified by flow cytometry (FCM) as well as by CLSM. Binding of bioABA was inhibited by ABA in a dose-dependent manner. Pre-treatment of GCPs with proteinase K also blocked the binding of bioABA. Binding of bioABA was inhibited by RCA-7a, an ABA analog that induces stomatal closure, but not by RCA-16, which has no effect on stomatal aperture. Another ABA analog, PBI-51, inhibited ABA-induced stomatal closure. This ABA antagonist also inhibited binding of bioABA to the GCPs. These results suggest that ABA is perceived on the plasma membrane of stomatal guard cells, and that the present experimental methods constitute valuable tools for characterizing the nature of the ABA receptor(s) that perceives physiological ABA signals. These imaging studies allow us to demonstrate the spatial distribution of the ABA-perception sites. Visualization of the ABA-perception sites provides new insights into the nature of membrane-associated ABA receptor(s).

  11. Abscisic acid root and leaf concentration in relation to biomass partitioning in salinized tomato plants.

    Science.gov (United States)

    Lovelli, Stella; Scopa, Antonio; Perniola, Michele; Di Tommaso, Teodoro; Sofo, Adriano

    2012-02-15

    Salinization is one of the most important causes of crop productivity reduction in many areas of the world. Mechanisms that control leaf growth and shoot development under the osmotic phase of salinity are still obscure, and opinions differ regarding the Abscisic acid (ABA) role in regulation of biomass allocation under salt stress. ABA concentration in roots and leaves was analyzed in a genotype of processing tomato under two increasing levels of salinity stress for five weeks: 100 mM NaCl (S10) and 150 mM NaCl (S15), to study the effect of ABA changes on leaf gas exchange and dry matter partitioning of this crop under salinity conditions. In S15, salinization decreased dry matter by 78% and induced significant increases of Na(+) and Cl(-) in both leaves and roots. Dry matter allocated in different parts of plant was significantly different in salt-stressed treatments, as salinization increased root/shoot ratio 2-fold in S15 and 3-fold in S15 compared to the control. Total leaf water potential (Ψ(w)) decreased from an average value of approximately -1.0 MPa, measured on control plants and S10, to -1.17 MPa in S15. In S15, photosynthesis was reduced by 23% and stomatal conductance decreased by 61%. Moreover, salinity induced ABA accumulation both in tomato leaves and roots of the more stressed treatment (S15), where ABA level was higher in roots than in leaves (550 and 312 ng g(-1) fresh weight, respectively). Our results suggest that the dynamics of ABA and ion accumulation in tomato leaves significantly affected both growth and gas exchange-related parameters in tomato. In particular, ABA appeared to be involved in the tomato salinity response and could play an important role in dry matter partitioning between roots and shoots of tomato plants subjected to salt stress.

  12. Lignosulfonate Improves Photostability and Bioactivity of Abscisic Acid under Ultraviolet Radiation.

    Science.gov (United States)

    Gao, Fei; Yu, Sha; Tao, Qun; Tan, Weiming; Duan, Liusheng; Li, Zhaohu; Cui, Haixin

    2017-09-13

    Abscisic acid (ABA), as a commonly used plant growth regulator, is easy to be degraded and lose its bioactivity under sunshine. To select an eco-friendly and efficient photoprotectant for the improvement of photostability and bioactivity of ABA when exposed to ultraviolet (UV) light, we tested the effects of three biodegradable natural-derived high polymers, sodium lignosulfonates 3A [molecular weight (MW) > 50000, with degree of sulfonation (DS) of 0.48] and NA (20000 < MW < 50000, with DS of 0.7) and calcium lignosulfonate CASA (MW < 20000, with DS of 0.7), on the photodegradation of ABA. Lignosulfonates 3A, NA, and CASA showed significant photostabilizing capability on ABA. Lignosulfonate 3A showed preferable photostabilizing effects on ABA compared to CASA, while NA showed an intermediate effect. That indicated that lignosulfonate with a high MW and low DS had a stronger UV absorption and the hollow aggregate micelles formatted by lignosulfonate protect ABA from UV damage. Approximately 50% more ABA was kept when 280 mg/L ABA aqueous solution was irradiated by UV light for 2 h in the presence of 2000 mg/L lignosulfonate 3A. The bioactivity on wheat (JIMAI 22) seed germination was greatly kept by 3A in comparison to that of ABA alone. The 300 times diluent of 280 mg/L ABA plus 2000 mg/L 3A after 2 h of irradiation showed 20.8, 19.3, and 9.3% more inhibition on shoot growth, root growth, and root numbers of wheat seed, separately, in comparison to ABA diluent alone. We conclude that lignosulfonate 3A was an eco-friendly and efficient agent to keep ABA activity under UV radiation. This research could be used in UV-sensitive and water-soluble agrichemicals and to optimize the application times and dosages of ABA products.

  13. Abscisic acid-deficient sit tomato mutant responses to cadmium-induced stress.

    Science.gov (United States)

    Pompeu, Georgia B; Vilhena, Milca B; Gratão, Priscila L; Carvalho, Rogério F; Rossi, Mônica L; Martinelli, Adriana P; Azevedo, Ricardo A

    2017-03-01

    There is a very effective cross-talk between signals triggered by reactive oxygen species and hormonal responses in plants, activating proteins/enzymes likely to be involved in stress tolerance. Abscisic acid (ABA) is known as a stress hormone that takes part in the integration of signals. This work aimed to characterize the biochemical response and ultrastructural changes induced by cadmium (Cd) in the Micro-Tom (MT) sitiens ABA-deficient mutant (sit) and its wild-type (MT) counterpart. MT and sit plants were grown over a 96-h period in the presence of Cd (0, 10, and 100 μM CdCl2). The overall results indicated increases in lipid peroxidation, hydrogen peroxide content and in the activities of the key antioxidant enzymes such as catalase, glutathione reductase, and ascorbate peroxidase in both genotypes. On the other hand, no alteration was observed in chlorophyll content, while the activity of another antioxidant enzyme, superoxide dismutase, remained constant or even decreased in the presence of Cd. Roots and shoots of the sit mutant and MT were analyzed by light and transmission electron microscopy in order to characterize the structural changes caused by the exposure to this metal. Cd caused a decrease in intercellular spaces in shoots and a decrease in cell size in roots of both genotypes. In leaves, Cd affected organelle shape and internal organization of the thylakoid membranes, whereas noticeable increase in the number of mitochondria and vacuoles in MT and sit roots were observed. These results add new information that should help unravel the relative importance of ABA in regulating the cell responses to stressful conditions induced by Cd apart from providing the first characterization of this mutant to oxidative stress.

  14. Effects of abscisic acid and xanthoxin on elongation and gravitropism in primary roots of Zea mays

    Science.gov (United States)

    Lee, J. S.; Hasenstein, K. H.; Mulkey, T. J.; Yang, R. L.; Evans, M. L.

    1990-01-01

    We examined the involvement of abscisic acid (ABA) and xanthoxin (Xan) in maize root gravitropism by (1) testing the ability of ABA to allow positive gravitropism in dark-grown seedlings of the maize cultivar LG11, a cultivar known to require light for positive gravitropism of the primary root, (2) comparing curvature in roots in which half of the cap had been excised and replaced with agar containing either ABA or indole-3-acetic acid (IAA), (3) measuring gravitropism in roots of seedlings submerged in oxygenated solutions of ABA or IAA and (4) testing the effect of Xan on root elongation. Using a variety of methods of applying ABA to the root, we found that ABA did not cause horizontally-oriented primary roots of dark-grown seedlings to become positively gravitropic. Replacing half of the root cap of vertically oriented roots with an agar block containing ABA had little or no effect on curvature relative to that of controls in which the half cap was replaced by a plain agar block. Replacement of the removed half cap with IAA either canceled or reversed the curvature displayed by controls. When light-grown seedlings were submerged in ABA they responded strongly to gravistimulation while those in IAA did not. Xan (up to 0.1 mM) did not affect root elongation. The results indicate that ABA is not a likely mediator of root gravitropism and that the putative ABA precursor, Xan, lacks the appropriate growth-inhibiting properties to serve as a mediator of root gravitropism.

  15. Suberization: inhibition by washing and stimulation by abscisic Acid in potato disks and tissue culture.

    Science.gov (United States)

    Soliday, C L; Dean, B B; Kolattukudy, P E

    1978-02-01

    Wounding of potato (Solanum tuberosum L.) tubers results in suberization, apparently triggered by the release of some chemical factor(s) at the cut surface. Suberization, as measured by diffusion resistance of the tissue surface to water vapor, was inhibited by mm concentrations of indoleacetic acid, unaffected by mm concentrations of traumatic acid, severely inhibited at mum concentrations of cytokinin, but stimulated by abscisic acid (ABA) at 10(-4)m. Thorough washing of potato disks up to 3 to 4 days after cutting resulted in severe inhibition of suberization as measured both by diffusion resistance and by the amount of the octadecene diol generated by hydrogenolysis (LiAlH(4)) of the tissue. Disks washed after 4 days did not show any inhibition of suberization. High performance liquid chromatographic analysis of the wash from fresh potato disks showed that about 14 ng of ABA was released into the wash per g of tissue. The amount of ABA released increased with time up to 4 to 6 hours of washing. The maximal amount of ABA was washed out after aging for 24 hours and after 2 days of aging ABA could no longer be found in the surface wash of the disks. Addition of ABA to the media of potato tissue cultures resulted in suberin formation whereas control cultures contained little suberin. The effect of ABA on suberization in the tissue cultures was shown to be linearly concentration-dependent up to 10(-4)m and a linear increase in suberin formation was seen up to about 8 days of culture growth on the media containing 10(-4)m ABA. From these results it is proposed that during the early phase of wound-healing ABA plays a role in triggering a chain of biochemical processes which eventually (in about 3 to 4 days) result in the formation of a suberization-inducing factor, responsible for the induction of the enzymes involved in suberin biosynthesis.

  16. Abscisic acid regulates seed germination of Vellozia species in response to temperature.

    Science.gov (United States)

    Vieira, B C; Bicalho, E M; Munné-Bosch, S; Garcia, Q S

    2017-03-01

    The relationship between the phytohormones, gibberellin (GA) and abscisic acid (ABA) and light and temperature on seed germination is still not well understood. We aimed to investigate the role of the ABA and GA on seed germination of Vellozia caruncularis, V. intermedia and V. alutacea in response to light/dark conditions on different temperature. Seeds were incubated in GA (GA3 or GA4 ) or ABA and their respective biosynthesis inhibitors (paclobutrazol - PAC, and fluridone - FLU) solutions at two contrasting temperatures (25 and 40 °C). Furthermore, endogenous concentrations of active GAs and those of ABA were measured in seeds of V. intermedia and V. alutacea during imbibition/germination. Exogenous ABA inhibited the germination of Vellozia species under all conditions tested. GA, FLU and FLU + GA3 stimulated germination in the dark at 25 °C (GA4 being more effective than GA3 ). PAC reduced seed germination in V. caruncularis and V. alutacea, but did not affect germination of V. intermedia at 40 °C either under light or dark conditions. During imbibition in the dark, levels of active GAs decreased in the seeds of V. intermedia, but were not altered in those of V. alutacea. Incubation at 40 °C decreased ABA levels during imbibition in both V. caruncularis and V. alutacea. We conclude that the seeds of Vellozia species studied here require light or high temperature to germinate and ABA has a major role in the regulation of Vellozia seed germination in response to light and temperature. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Application time and concentrations of abscisic acid on the color development of ‘Isabel’ grapes

    Directory of Open Access Journals (Sweden)

    Renata Koyama

    2014-09-01

    Full Text Available The grape ‘Isabel’ main cultivar used for juice production in Brazil has a deficiency of coloring and an alternative is the application of abscisic acid (S-ABA, since the accumulation of anthocyanins, pigment that interferes in the color of berries, appears to be regulated by this growth regulator. The aim of this research was to evaluate the effect of different concentrations of S-ABA applied at different times in the clusters of ‘Isabel’ grapes to improve their color attributes. The vines were conducted in a vertical support structure, spaced 2 x 1 m in cordon. A randomized block design was used as a statistical model, with 4 replications and 5 treatments, as follows: control; S-ABA 200 mg L-1 applied seven days after veraison (DAV; S-ABA 400 mg L-1 7 DAV; S-ABA 200 mg L-1 7 DAV +S-ABA 200 mg L-1 10 days before harvest (DBH; S-ABA 400 mg L-1 7 DAV + 400 mg L-1 10 DBH. At harvest the following variables were evaluated: mass and diameter of the berries, mass and length of the clusters; soluble solids (SS, titratable acidity (TA and maturation index (TSS/TA. It was also evaluated the concentration of anthocyanins and total polyphenol index in wine and juice, prepared by the extraction method of the pan and color of the berries by colorimetry. The application of S-ABA did not influence the physical characteristics of the grapes, however, favored the increase of SS and SS/TA of the berries, except for the concentration of 200 mg L-1 applied seven days after veraison. The S-ABA has an effect on improving the content of anthocyanins of the berries and the juice of the ‘Isabel’ grape, mainly in the 400 mg L-1 applied 7 DAV + 10 DBH, besides enabling the improvement in the color attribute of berries.

  18. Reactive oxygen species are involved in gibberellin/abscisic acid signaling in barley aleurone cells.

    Science.gov (United States)

    Ishibashi, Yushi; Tawaratsumida, Tomoya; Kondo, Koji; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Zheng, Shao-Hui; Yuasa, Takashi; Iwaya-Inoue, Mari

    2012-04-01

    Reactive oxygen species (ROS) act as signal molecules for a variety of processes in plants. However, many questions about the roles of ROS in plants remain to be clarified. Here, we report the role of ROS in gibberellin (GA) and abscisic acid (ABA) signaling in barley (Hordeum vulgare) aleurone cells. The production of hydrogen peroxide (H2O2), a type of ROS, was induced by GA in aleurone cells but suppressed by ABA. Furthermore, exogenous H2O2 appeared to promote the induction of α-amylases by GA. In contrast, antioxidants suppressed the induction of α-amylases. Therefore, H2O2 seems to function in GA and ABA signaling, and in regulation of α-amylase production, in aleurone cells. To identify the target of H2O2 in GA and ABA signaling, we analyzed the interrelationships between H2O2 and DELLA proteins Slender1 (SLN1), GA-regulated Myb transcription factor (GAmyb), and ABA-responsive protein kinase (PKABA) and their roles in GA and ABA signaling in aleurone cells. In the presence of GA, exogenous H2O2 had little effect on the degradation of SLN1, the primary transcriptional repressor mediating GA signaling, but it promoted the production of the mRNA encoding GAMyb, which acts downstream of SLN1 and involves induction of α-amylase mRNA. Additionally, H2O2 suppressed the production of PKABA mRNA, which is induced by ABA:PKABA represses the production of GAMyb mRNA. From these observations, we concluded that H2O2 released the repression of GAMyb mRNA by PKABA and consequently promoted the production of α-amylase mRNA, thus suggesting that the H2O2 generated by GA in aleurone cells is a signal molecule that antagonizes ABA signaling.

  19. Influence Mechanism of Endogenous Abscisic Acid on Storage Softening Process of Hardy Kiwifruit

    Directory of Open Access Journals (Sweden)

    Li Shuqian

    2014-01-01

    Full Text Available In order to study the relation of Abscisic Acid (ABA with other biochemistry factors during hardy kiwifruit softening process. The changing trend of ABA under the fruits storage conditions of 20 and 0C was analyzed. A conclusion is drawn as below: During storage under 20C, it shows the highest content of ABA in 4 days to 222.19 &mu g/L, which reaches the almost same content in 3 and 5 days. The value keeps inclining since 5 days and decline rate is lower in 7 and 8 days. The lowest value is reached to 20.88 &mug/L in 10 days. During storage under 0C, ABA content is at a relatively high level but shows the slow down trend. ABA content falls greatly from 9 to 11 days. After this period, ABA content still follows up-trend and declining then. The peak appears in 15 days to 90.49 &mug/L, but it is lower than that in the first nine days. Moreover, peak during storage in environment under 0C is lower than that during the storage in environment at normal temperature, accordingly delaying fruit softening. As the ABA content rises to the highest level, the fruit hardness drops drastically. When ABA content slightly changes, the hardness decreases gently. ABA content is featured that same changing trend of ethylene content, respiratory intensity, pectase content and amylase content. Moreover, ABA has the same peak appearance time as amylase but it is later than appearance of both pectase and ethylene, they basically match each other. The rule of peak appearance time is not obvious for ABA and amylase. Mutual inhibition exists between peak appearance time of ABA and respiratory intensity. Quick ABA rise is accompanied with slow amylase rise and vice versa.

  20. Abscisic Acid accumulation in spinach leaf slices in the presence of penetrating and nonpenetrating solutes.

    Science.gov (United States)

    Creelman, R A; Zeevaart, J A

    1985-01-01

    Abscisic acid (ABA) accumulated in detached, wilted leaves of spinach (Spinacia oleracea L. cv Savoy Hybrid 612) and reached a maximum level within 3 to 4 hours. The increase in ABA over that found in detached turgid leaves was approximately 10-fold. The effects of water stress could be mimicked by the use of thin slices of spinach leaves incubated in the presence of 0.6 molar mannitol, a compound which causes plasmolysis (loss of turgor). About equal amounts of ABA were found both in the leaf slices and in detached leaves, whereas 2 to 4 times more ABA accumulated in the medium than in the slices. When spinach leaf slices were incubated with ethylene glycol, a compound which rapidly penetrates the cell membrane causing a decrease in the osmotic potential of the tissue and only transient loss of turgor, no ABA accumulated. Ethylene glycol was not inhibitory with respect to ABA accumulation. Spinach leaf slices incubated in both ethylene glycol and mannitol had ABA levels similar to those found when slices were incubated with mannitol alone. Increases similar to those found with mannitol also occurred when Aquacide III, a highly purified form of polyethylene glycol, was used. Aquacide III causes cytorrhysis, a situation similar to that found in wilted leaves. Thus, it appears that loss of turgor is essential for ABA accumulation.When spinach leaf slices were incubated with solutes which are supposed to disturb membrane integrity (KHSO(3), 2-propanol, or KCl) no increase in ABA was observed. These data indicate that, with respect to the accumulation of ABA, mannitol caused a physical stress (loss of turgor) rather than a chemical stress (membrane damage).

  1. Abscisic Acid accumulates at positive turgor potential in excised soybean seedling growing zones.

    Science.gov (United States)

    Creelman, R A; Mullet, J E

    1991-04-01

    Abscisic acid (ABA) accumulated in soybean (Glycine max [L.] Merr. cv Williams) hypocotyl elongating regions when seedlings were transferred to low water potential vermiculite (Psi = -0.3 megapascals) even though positive turgor is retained in this tissue. Accumulation of ABA in growing zones could occur from de novo biosynthesis within this tissue or transport from adjacent nongrowing zones. Both growing and nongrowing hypocotyl and root tissues accumulated significant levels of ABA when excised and dehydrated to reduce turgor. Surprisingly, excised growing zones (which experienced no water loss) also accumulated ABA when incubated in darkness for 4 hours at 100% relative humidity and 29 degrees C. Induction of ABA accumulation in the excised elongating region of the hypocotyl was not caused by disruption of root pressure or wounding. While excision of hypocotyl elongating regions induced ABA accumulation, no change in either extensin or p33 mRNA levels was observed. Accumulation of extensin or p33 mRNA required more severe wounding. This suggests that ABA is not involved in the response of these genes in wounded tissue and that wound signals are not causing ABA accumulation in excised tissue. Accumulation of ABA in excised elongating regions was correlated with growth inhibition and a decline in turgor to the yield threshold (Psi;(p) = 0.37 megapascals; R Matyssek, S Maruyama, JS Boyer [1988] Plant Physiol 86: 1163-1167). Inhibiting hypocotyl growth by transferring seedlings to lower temperatures or light did not cause ABA accumulation. We conclude that induction of ABA accumulation in growing zones is more sensitive to changes in turgor than the induction which occurs in mature tissues.

  2. Saturated Fatty Acid Induces Insulin Resistance Partially Through Nucleotide-binding Oligomerization Domain 1 Signaling Pathway in Adipocytes

    Institute of Scientific and Technical Information of China (English)

    Yi-jun Zhou; Yin-si Tang; Yu-ling Song; Ai Li; Hui Zhou; Yan Li

    2013-01-01

    Objective To investigate the potential role of nucleotide-binding oligomerization domain 1 (NOD1), a component of the innate immune system, in mediating lipid-induced insulin resistance in adipocytes. Methods Adipocytes from Toll-like receptor 4 deficiency mice were used for stimulation experiments. The effect of oleate/palmitate mixture on nuclear factor-κB (NF-κB) activation was analyzed by reporter plasmid assay. The release of proinflammatory chemokine/cytokines production was determined by using real-time PCR. Insulin-stimulated glucose uptake was measured by 2-deoxy-D-[3H] glucose uptake assay. Chemokine/cytokine expression and glucose uptake in adipocytes transfected with small interfering RNA (siRNA) targeting NOD1 upon fatty acids treatment were analyzed. Results Oleate/palmitate mixture activated the NF-κB pathway and induced interleukin-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1 mRNA expressions in adipocytes from mice deficient in Toll-like receptor 4, and these effects were blocked by siRNA targeting NOD1. Furthermore, saturated fatty acids decreased the ability of insulin-stimulated glucose uptake. Importantly, siRNA targeting NOD1 partially reversed saturated fatty acid-induced suppression of insulin-induced glucose uptake. Conclusion NOD1 might play an important role in saturated fatty acid-induced insulin resistance in adipocytes, suggesting a mechanism by which reduced NOD1 activity confers beneficial effects on insulin action.

  3. Evidence for the involvement of GPR40 and NADPH oxidase in palmitic acid-induced superoxide production and insulin secretion.

    Science.gov (United States)

    Graciano, Maria Fernanda; Valle, Maíra Mello; Curi, Rui; Carpinelli, Angelo Rafael

    2013-01-01

    G protein coupled receptor 40 (GPR40) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex have been shown to be involved in the fatty acid amplification of glucose-stimulated insulin secretion (GSIS). The effect of palmitic acid on superoxide production and insulin secretion by INS-1E cells and the possible involvement of GPR40 and NADPH oxidase in these processes were examined in this study. Cells were incubated during 1 h with palmitic acid in low and high glucose concentrations, a GPR40 agonist (GW9508) and inhibitors of NADPH oxidase (diphenyleneiodonium, DPI) and PKC (calphostin C). GW9508 induced superoxide production at 2.8 and 5.6 mM glucose concentrations and stimulated insulin secretion at 16.7 mM glucose concentration involving both PKC and NADPH oxidase activation. Palmitic acid induced superoxide production through NADPH oxidase and GPR40-dependent pathways and the stimulation of insulin secretion in the presence of a high glucose concentration was reduced by knockdown of GPR40 using siRNA. Our results suggest that palmitic acid induces superoxide production and potentiates GSIS through NADPH oxidase and GPR40 pathways in pancreatic ? cells.

  4. Palmitic acid but not palmitoleic acid induces insulin resistance in a human endothelial cell line by decreasing SERCA pump expression.

    Science.gov (United States)

    Gustavo Vazquez-Jimenez, J; Chavez-Reyes, Jesus; Romero-Garcia, Tatiana; Zarain-Herzberg, Angel; Valdes-Flores, Jesus; Manuel Galindo-Rosales, J; Rueda, Angelica; Guerrero-Hernandez, Agustin; Olivares-Reyes, J Alberto

    2016-01-01

    Palmitic acid is a negative regulator of insulin activity. At the molecular level, palmitic acid reduces insulin stimulated Akt Ser473 phosphorylation. Interestingly, we have found that incubation with palmitic acid of human umbilical vein endothelial cells induced a biphasic effect, an initial transient elevation followed by a sustained reduction of SERCA pump protein levels. However, palmitic acid produced a sustained inhibition of SERCA pump ATPase activity. Insulin resistance state appeared before there was a significant reduction of SERCA2 expression. The mechanism by which palmitic acid impairs insulin signaling may involve endoplasmic reticulum stress, because this fatty acid induced activation of both PERK, an ER stress marker, and JNK, a kinase associated with insulin resistance. None of these effects were observed by incubating HUVEC-CS cells with palmitoleic acid. Importantly, SERCA2 overexpression decreased the palmitic acid-induced insulin resistance state. All these results suggest that SERCA pump might be the target of palmitic acid to induce the insulin resistance state in a human vascular endothelial cell line. Importantly, these data suggest that HUVEC-CS cells respond to palmitic acid-exposure with a compensatory overexpression of SERCA pump within the first hour, which eventually fades out and insulin resistance prevails.

  5. Effect of abscisic acid, Paclobutrazol and Salicylic acid on the growth and Pigment variation in Solanum Trilobatum (l

    Directory of Open Access Journals (Sweden)

    D. Nivedithadevi

    2012-09-01

    Full Text Available Solanum trilobatum (Family: Solanaceae is one of the common Indian medicinal plants and it has been used in traditional medicine for many centuries. This plant is a thorny creeper with bluish violet flower, more commonly available in southern India has been used traditional in Siddha system of medicines to treat various diseases. The roots, leaves, berries and flowers are used for cough. The decoction of entire Solanum trilobatum plant is used to treat acute and chronic bronchitis. It has been widely used to treat respiratory disorders. This plant is commonly used to treat asthma, cough, dysonoea, chronic febrile infections and difficult parturition. The constituents of this plant include sobatum, -solamarine, solanine, solasodine, glycoalkaloid, diosogenin and tomatidine. Plant growth regulators are substance that influences physiological processes of plants at very low concentration. Abscisic acid is a many important plant growth development processed. Paclobutrazol is a triazolic group of fungicide which has plant growth regulating properties. Salicylic acid is phenolic phytohormones and is formed in plants with role of plant growth and development. The given treatments were started at 70th day followed by 80th, 90th and 100th days. The groups were treated with respect growth hormones by spraying method. After 10th day, the plants were harvested for further analysis. On over all physical assessment plants treated with paclobutrazol were found to have more whole plant fresh weight, dry weight, root length and stem length followed by abscisic acid and salicylic acid. After the physical evaluation, the leaves were collected from each group for pigment analysis. Chlorophyll, carotenoid, anthocyanin and xanthophylls pigment contents were increased in abscisic acid followed by paclobutrazol and salicylic acid.

  6. Impaired Increase of Plasma Abscisic Acid in Response to Oral Glucose Load in Type 2 Diabetes and in Gestational Diabetes

    OpenAIRE

    Pietro Ameri; Santina Bruzzone; Elena Mannino; Giovanna Sociali; Gabriella Andraghetti; Annalisa Salis; Monica Laura Ponta; Lucia Briatore; Adami, Giovanni F.; Antonella Ferraiolo; Pier Luigi Venturini; Davide Maggi; Renzo Cordera; Giovanni Murialdo; Elena Zocchi

    2015-01-01

    The plant hormone abscisic acid (ABA) is present and active in humans, regulating glucose homeostasis. In normal glucose tolerant (NGT) human subjects, plasma ABA (ABAp) increases 5-fold after an oral glucose load. The aim of this study was to assess the effect of an oral glucose load on ABAp in type 2 diabetes (T2D) subjects. We chose two sub-groups of patients who underwent an oral glucose load for diagnostic purposes: i) 9 treatment-naive T2D subjects, and ii) 9 pregnant women with gestati...

  7. Profiling the dynamics of abscisic acid and ABA-glucose ester after using the glucosyltransferase UGT71C5 to mediate abscisic acid homeostasis in Arabidopsis thaliana by HPLC-ESI-MS/MS

    Institute of Scientific and Technical Information of China (English)

    Dong-Mei Xiong; Zhen Liu; Han Chen; Jin-Tao Xue; Yi Yang; Cong Chen; Li-Ming Ye

    2014-01-01

    The HPLC-MS/MS method was developed to profile the dynamics of abscisic acid (ABA) and ABA-glucose ester (ABA-GE) after cloning glycosyltransferase enzyme family gene AtUGT71C5 into Arabidopsis thaliana. By constructing over-expression lines (OE) and down-expression lines (DN), we acquired mutant strains to analyze the function of AtUGT71C5. The multiple-reaction monitoring (MRM) was used for quantitative determination in negative mode. The transition was m/z 263.1-153.0 for ABA ([M-H]þ), m/z 425.1-263.0 for ABA-GE ([M-H]þ), and m/z 321.0-152.0 for chloramphe-nicol. The linear range was 0.8684-217.1 ng/mL for ABA and 0.3920-196.0 ng/mL for ABA-GE. The accuracy was 88.0-109.0% for ABA and 86.6-113.0% for ABA-GE; the inter-day and intra-day precisions were less than 5.4%for ABA and 8.9%for ABA-GE, respectively. This method is simple and sensitive enough for determination of ABA and ABA-GE in A. thaliana leaves. All the evidence confirmed the speculation that AtUGT71C5 can mediate abscisic acid homeostasis.

  8. Storage behavior and changes in concentrations of abscisic acid and gibberellins during dormancy break and germination in seeds of Phellodendron amurense var. wilsonii (Rutaceae).

    Science.gov (United States)

    Chen, Shun-Ying; Chien, Ching-Te; Baskin, Jerry M; Baskin, Carol C

    2010-02-01

    The medicinal Asian plant genus Phellodendron is known to contain several very important compounds that have biological action. The main purpose of this study was to determine whether seeds of Phellodendron amurense var. wilsonii can be stored and to characterize their dormancy. Seeds of this taxon stored at -20 and -80 degrees C and in liquid nitrogen retained their high germinability, indicating that they have orthodox storage behavior. Intact seeds from freshly collected fruits were dormant and required 12 weeks of cold stratification at 4 degrees C for complete germination. Scarifying the seed coat was partially effective in breaking seed dormancy. Exogenous gibberellins (GA(3), GA(4) and GA(4+7)) promoted germination of scarified seeds, GA(4) and GA(4+7) being more effective than GA(3). Fluridone, an abscisic acid (ABA) biosynthesis inhibitor, was efficient in breaking dormancy, but it was less effective than GA(4) or GA(4+7) alone. Paclobutrazol, a GA biosynthesis inhibitor, inhibited seed germination, and the inhibitory effect was reversed completely by GA(4) and by GA(4+7). ABA content of seeds subjected to cold stratification or to incubation at 35/10 degrees C, which enhanced seed germination, was reduced about four- to sixfold compared to that of fresh seeds. Higher concentrations of GA(3), GA(4) and GA(7) were detected in nondormant seeds and in seeds with an emerged radicle than in fresh seeds. Present results seem to indicate that dormancy in P. amurense var. wilsonii seeds is imposed partially by the seed coat and partially by high ABA content. ABA content decreased and GA(3), GA(4) and GA(7) content increased during germination.

  9. The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice.

    Directory of Open Access Journals (Sweden)

    Mahmoud W Yaish

    2010-09-01

    Full Text Available The interaction between phytohormones is an important mechanism which controls growth and developmental processes in plants. Deciphering these interactions is a crucial step in helping to develop crops with enhanced yield and resistance to environmental stresses. Controlling the expression level of OsAP2-39 which includes an APETALA 2 (AP2 domain leads to phenotypic changes in rice. Overexpression of OsAP2-39 leads to a reduction in yield by decreasing the biomass and the number of seeds in the transgenic rice lines. Global transcriptome analysis of the OsAP2-39 overexpression transgenic rice revealed the upregulation of a key abscisic acid (ABA biosynthetic gene OsNCED-I which codes for 9-cis-epoxycarotenoid dioxygenase and leads to an increase in the endogenous ABA level. In addition to OsNCED-1, the gene expression analysis revealed the upregulation of a gene that codes for the Elongation of Upper most Internode (EUI protein, an enzyme that catalyzes 16α, 17-epoxidation of non-13-hydroxylated GAs, which has been shown to deactivate gibberellins (GAs in rice. The exogenous application of GA restores the wild-type phenotype in the transgenic line and ABA application induces the expression of EUI and suppresses the expression of OsAP2-39 in the wild-type line. These observations clarify the antagonistic relationship between ABA and GA and illustrate a mechanism that leads to homeostasis of these hormones. In vivo and in vitro analysis showed that the expression of both OsNCED-1 and EUI are directly controlled by OsAP2-39. Together, these results reveal a novel mechanism for the control of the ABA/GA balance in rice which is regulated by OsAP2-39 that in turn regulates plant growth and seed production.

  10. Silencer-of-Death Domain Mediates Acid-Induced Decrease in Cell Apoptosis in Barrett's Associated Esophageal Adenocarcinoma Cells.

    Science.gov (United States)

    Li, Dan; Hong, Jie; Cao, Weibiao

    2017-01-01

    We have shown that NADPH oxidase (NOX)5-S may mediate the acid-induced decrease in cell apoptosis. However, mechanisms of NOX5-S-dependent decrease in cell apoptosis are not fully understood. In this study, we found that silencer-of-death domain (SODD) was significantly increased in esophageal adenocarcinoma (EA) tissues, EA cell lines FLO and OE33, and a dysplastic cell line CP-B. Strong SODD immunostaining was significantly higher in low-grade dysplasia (66.7%), high-grade dysplasia (81.2%), and EA (71.2%) than in Barrett's mucosa (10.5%). Acid treatment significantly increased SODD protein and mRNA expression and promoter activity in FLO cells, an increase that was significantly decreased by the knockdown of NOX5-S and nuclear factor κB (NF-κB)1 p50 with their small interfering RNAs. Similarly, acid-induced increase of SODD mRNA was blocked by knockdown of NOX5-S and p50 in a BE cell line CP-A. Overexpression of NOX5-S significantly increased SODD protein expression in FLO cells. Moreover, overexpression of NOX5-S or p50 significantly increased the SODD promoter activity and decreased the caspase 9 activity or apoptosis. NOX5-S overexpression-induced increase in SODD promoter activity was significantly decreased by knockdown of p50. In addition, acid treatment significantly decreased the caspase 9 activity, a decrease that was significantly inhibited by knockdown of SODD. Furthermore, chromatin immunoprecipitation assay showed that NF-κB1 p50 bound to SODD genomic DNA containing a NF-κB-binding element GGGGACACCCT. This binding element was further confirmed by a gel mobility shift assay. We conclude that acid-induced increase in SODD expression and decrease in cell apoptosis may depend on the activation of NOX5-S and NF-κB1 p50 in FLO cells. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  11. L-theanine prevent quinolinic acid induced motor deficit and striatal neurotoxicity: Reduction in oxido-nitrosative stress and restoration of striatal neurotransmitters level.

    Science.gov (United States)

    Jamwal, Sumit; Singh, Shamsher; Gill, Jaskamal Singh; Kumar, Puneet

    2017-09-15

    L-theanine has been documented to possess anti-oxidant, anti-inflammatory and neuroprotective potential in various animal models of neurological disorders. The present study was anticipated to investigate the effect of L-theanine against quinolinic acid induced motor deficits, oxido-nitrosative stress, neuro-inflammation and neurotransmitters alteration in rats. Rats were stereotaxically injected QA (200nmol/2µl saline; intrastriatal); bilaterally on 0 day and L-theanine (25 & 50mg/kg; p.o.) was administered for 21 days starting from day 1 of QA injection. Either, L-NAME (10mg/kg; i.p.), a nitric oxide synthase inhibitor and L-arginine (50mg/kg; i.p.), a nitric oxide synthase precursor were administered with L-theanine in respective groups. Behavioral observations were evaluated on weekly basis using rota-rod, grip strength, narrow beam walking and open field test. QA treatment induces significant alteration in body weight, motor coordination, oxidative defense, pro-inflammatory cytokines and striatal neurotransmitters level. L-theanine treatment alone, at both the tested doses, significantly attenuated QA induced alterations. In addition, treatment of L-theanine with L-NAME significantly enhances the protective effect of L-theanine whereas treatment of L-theanine with L-arginine significantly ameliorated the protective effect of L-theanine. The protective effect of L-theanine is attributed to its anti-oxidant, anti-inflammatory and modulatory effect on nitric oxide pathway and neurotransmitters level in striatum. This suggests use of L-theanine in the clinical settings of HD. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Hepatitis C Virus Frameshift/Alternate Reading Frame Protein Suppresses Interferon Responses Mediated by Pattern Recognition Receptor Retinoic-Acid-Inducible Gene-I.

    Directory of Open Access Journals (Sweden)

    Seung Bum Park

    Full Text Available Hepatitis C virus (HCV actively evades host interferon (IFN responses but the mechanisms of how it does so are not completely understood. In this study, we present evidence for an HCV factor that contributes to the suppression of retinoic-acid-inducible gene-I (RIG-I-mediated IFN induction. Expression of frameshift/alternate reading frame protein (F/ARFP from HCV -2/+1 frame in Huh7 hepatoma cells suppressed type I IFN responses stimulated by HCV RNA pathogen-associated molecular pattern (PAMP and poly(IC. The suppression occurred independently of other HCV factors; and activation of interferon stimulated genes, TNFα, IFN-λ1, and IFN-λ2/3 was likewise suppressed by HCV F/ARFP. Point mutations in the full-length HCV sequence (JFH1 genotype 2a strain were made to introduce premature termination codons in the -2/+1 reading frame coding for F/ARFP while preserving the original reading frame, which enhanced IFNα and IFNβ induction by HCV. The potentiation of IFN response by the F/ARFP mutations was diminished in Huh7.5 cells, which already have a defective RIG-I, and by decreasing RIG-I expression in Huh7 cells. Furthermore, adding F/ARFP back via trans-complementation suppressed IFN induction in the F/ARFP mutant. The F/ARFP mutants, on the other hand, were not resistant to exogenous IFNα. Finally, HCV-infected human liver samples showed significant F/ARFP antibody reactivity, compared to HCV-uninfected control livers. Therefore, HCV F/ARFP likely cooperates with other viral factors to suppress type I and III IFN induction occurring through the RIG-I signaling pathway. This study identifies a novel mechanism of pattern recognition receptor modulation by HCV and suggests a biological function of the HCV alternate reading frame in the modulation of host innate immunity.

  13. Abscisic acid pathway involved in the regulation of watermelon fruit ripening and quality trait evolution.

    Science.gov (United States)

    Wang, Yanping; Guo, Shaogui; Tian, Shouwei; Zhang, Jie; Ren, Yi; Sun, Honghe; Gong, Guoyi; Zhang, Haiying; Xu, Yong

    2017-01-01

    Watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai) is a non-climacteric fruit. The modern sweet-dessert watermelon is the result of years of cultivation and selection for fruits with desirable qualities. To date, the mechanisms of watermelon fruit ripening, and the role of abscisic acid (ABA) in this process, has not been well understood. We quantified levels of free and conjugated ABA contents in the fruits of cultivated watermelon (97103; C. lanatus subsp. vulgaris), semi-wild germplasm (PI179878; C. lanatus subsp. mucosospermus), and wild germplasm (PI296341-FR; C. lanatus subsp. lanatus). Results showed that ABA content in the fruits of 97103 and PI179878 increased during fruit development and ripening, but maintained a low steady state in the center flesh of PI296341-FR fruits. ABA levels in fruits were highest in 97103 and lowest in PI296341-FR, but no obvious differences in ABA levels were observed in seeds of these lines. Examination of 31 representative watermelon accessions, including different C. lanatus subspecies and ancestral species, showed a correlation between soluble solids content (SSC) and ABA levels in ripening fruits. Furthermore, injection of exogenous ABA or nordihydroguaiaretic acid (NDGA) into 97103 fruits promoted or inhibited ripening, respectively. Transcriptomic analyses showed that the expression levels of several genes involved in ABA metabolism and signaling, including Cla009779 (NCED), Cla005404 (NCED), Cla020673 (CYP707A), Cla006655 (UGT) and Cla020180 (SnRK2), varied significantly in cultivated and wild watermelon center flesh. Three SNPs (-738, C/A; -1681, C/T; -1832, G/T) in the promoter region of Cla020673 (CYP707A) and one single SNP (-701, G/A) in the promoter of Cla020180 (SnRK2) exhibited a high level of correlation with SSC variation in the 100 tested accessions. Our results not only demonstrate for the first time that ABA is involved in the regulation of watermelon fruit ripening, but also provide insights into the

  14. Genomic profiling of exogenous abscisic acid-responsive microRNAs in tomato (Solanum lycopersicum).

    Science.gov (United States)

    Cheng, Hai-Yang; Wang, Yan; Tao, Xiang; Fan, Yan-Fen; Dai, Ya; Yang, Hong; Ma, Xin-Rong

    2016-06-03

    Plant microRNAs (miRNAs) are involved in various biological pathways and stress responses as negative regulators at the posttranscriptional level. Abscisic acid (ABA) is a key signaling molecule that mediates plant stress response by activating many stress-related genes. Although some miRNAs in plants are previously identified to respond to ABA, a comprehensive profile of ABA-responsive miRNAs has not yet been elucidated. Here, we identified miRNAs responding to exogenous application of ABA, and their predicted target genes in the model plant organism tomato (Solanum lycopersicum). Deep sequencing of small RNAs from ABA-treated and untreated tomatoes revealed that miRNAs can be up- or down-regulated upon treatment with ABA. A total of 1067 miRNAs were detected (including 365 known and 702 candidate novel miRNAs), of those, 416 miRNAs which had an abundance over two TPM (transcripts per million) were selected for differential expression analysis. We identified 269 (180 known and 89 novel) miRNAs that respond to exogenous ABA treatment with a change in expression level of |log2FC|≥0.25. 136 of these miRNAs (90 known and 46 novel) were expressed at significantly different levels |log2FC|≥1 between treatments. Furthermore, stem-loop RT-PCR was applied to validate the RNA-seq data. Target prediction and analysis of the corresponding ABA-responsive transcriptome data uncovered that differentially expressed miRNAs are involved in condition stress and pathogen resistance, growth and development. Among them, approximately 90 miRNAs were predicted to target transcription factors and pathogen resistance genes. Some miRNAs had functional overlap in biotic and abiotic stress. Most of these miRNAs were down-regulated following exposure to exogenous ABA, while their related target genes were inversely up-regulated, which is consistent with their negative regulatory role in gene expression. Exogenous ABA application influences the composition and expression level of tomato mi

  15. Roles of gibberellins and abscisic acid in dormancy and germination of red bayberry (Myrica rubra) seeds.

    Science.gov (United States)

    Chen, Shun-Ying; Kuo, Shing-Rong; Chien, Ching-Te

    2008-09-01

    Intact seeds from freshly harvested fruits of Myrica rubra (Sieb et Zucc.) were dormant and required 8 weeks of warm stratification followed by 12 weeks of cold stratification for germination. Exogenous application of gibberellic acid (GA(3)) to intact fresh seeds was effective in breaking dormancy, with > 70% of seeds germinating when treated with 5.2 mM GA(3) and incubated at a day/night temperature of 30/20 degrees C for 20 weeks. Removing the hard endocarp or endocarp plus seed coat of fresh seeds promoted germination, and addition of GA(3) to the embryo accelerated germination. The gibberellins GA(1) and GA(4) were more effective than GA(3) in promoting germination of seeds with the endocarp removed. Endogenous contents of GA(1), GA(3), GA(4), GA(7) and GA(20) were quantified by gas chromatography-mass spectrometry-selected ion monitoring in the endocarps, seed coats and embryos of fresh seeds treated with 5.2 mM GA(3). The content of GA(3) decreased in the endocarp during incubation, whereas GA(1) contents increased in the endocarp and seed coat. A high GA(1) content was detected in the endocarps and embryos of newly germinated seeds. We speculate that GA(3) was converted to GA(1) during incubation and that GA(1) is involved in seed germination. Endogenous abscisic acid (ABA) contents were measured in fresh seeds and in warm and cold stratified seeds. The ABA content in fresh seeds was distributed in the order endocarp > seed coat > embryo, with the content in the endocarp being about 132-fold higher than in the seed coat and embryo. Total ABA content of seeds subjected to warm or cold stratification, or both, was 8.7- to 14.0-fold lower than that of fresh seeds. Low contents of endogenous GA(1), GA(3), GA(7) and GA(20), but elevated contents of GA(4), were found in the seed coats and endocarps of warm plus cold stratified seeds and in the seed coats and embryos of newly germinated seeds. These observations, coupled with the finding that GA stimulated

  16. Regulation of Water Deficit-Induced Abscisic Acid Accumulation by Apoplastic Ascorbic Acid in Maize Seedlings

    Institute of Scientific and Technical Information of China (English)

    Jian-Fang HU; Gui-Fen LI; Zhi-Hui GAO; Lin CHEN; Hui-Bo REN; Wen-Suo JIA

    2005-01-01

    Water deficit-induced abscisic acid (ABA) accumulation is one of the most important stress signaling pathways in plant cells. Redox regulation of cellular signaling has currently attracted particular attention, but much less is known about its roles and mechanisms in plant signaling. Herein, we report that water deficit-induced ABA accumulation could be regulated by ascorbic acid (AA)-controlled redox status in leave apoplast. The AA content in non-stressed leaves was approximately 3 μmol/g FW, corresponding to a mean concentration of 3 mmol/L in a whole cell. Because AA is mainly localized in the cytosol and chloroplasts, the volume of which is much smaller than that of the whole cell, AA content in cytosolic and chloroplast compartments should be much higher than 3 mmol/L. Water deficit-induced ABA accumulation in both leaf and root tissues of maize seedlings was significantly inhibited by AA and reduced glutathione (GSH) at concentrations of 500 μmol/L and was completely blocked by 50 mmol/L AA and GSH. These results suggest that the AA-induced inhibition of ABA accumulation should not occur at sites where AA exists in high concentrations. Although water deficit led to a small increase in the dehydroascorbic acid (DHA) content, no significant changes in AA content were observed in either leaf or root tissues. When compared with the whole leaf cell, the AA content in the apoplastic compartment was much lower (i.e.approximately 70 nmol/g FW, corresponding to 0.7 mmol/L). Water deficit induced a significant decrease (approximately 2.5-fold) in the AA content and an increase (approximately 3.4-fold) in the DHA content in the apoplastic compartment, thus leading to a considerably decreased redox status there, which may have contributed to the relief of AA-induced inhibition of ABA accumulation, alternatively, promoting water deficit-induced ABA accumulation. Reactive oxygen species (ROS) could not mimic water deficit in inducing ABA accumulation, suggesting that

  17. Alleviation of Osmotic Stress Effects by Exogenous Application of Salicylic or Abscisic Acid on Wheat Seedlings

    Directory of Open Access Journals (Sweden)

    Katarzyna Cyganek

    2013-06-01

    Full Text Available The aim of the study was to assess the role of salicylic acid (SA and abscisic acid (ABA in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1 and drought resistant (CS wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM or ABA (0.1 μM to solutions containing half-strength Hoagland medium and PEG 6000 (−0.75 MPa. The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant

  18. Effect of auxin and abscisic acid on cell wall extensibility in maize coleoptiles.

    Science.gov (United States)

    Kutschera, U; Schopfer, P

    1986-04-01

    Plastic and elastic in-vitro extensibilities (E pland E el ) of cell walls from growing maize (Zea mays L.) coleoptile segments were measured by stretching frozen-thawed tissue, pre-extended to its in-vivo length, at constant force (creep test) in a custom-buildt extensiometer, equipped with a linear-displacement transducer. The indole-3-acetic acid (IAA)-induced change of E pl (ΔE pl ) is strictly correlated with the growth rate for a period of 3-4 h. Subsequently, ΔE plremains constant while the growth rate is slowing down. Since this discrepancy can be accounted for by a growth-dependent reduction of osmotic pressure, it is concluded that ΔE plrepresents quantitatively the relative increase of in-vivo extensibility (cell wall loosening) involved in IAA-mediated cell growth over a much longer time. On the other side it is argued that the growth rate may not be strictly correlated with wall extensibility during long-term growth. Abscisic acid (ABA) inhibits segment growth induced by auxin, fusicoccin, or exogenous acid, and this effect can be quantitatively attributed to an ABA-mediated reduction of cell wall extensibility as determined by the ΔE plmeasurement. Both, IAA and ABA have no effect on total protein synthesis, RNA synthesis, and amount of osmotic solutes. Fusicoccin-induced proton excretion is only slightly inhibited by ABA. In contrast to ABA, growth inhibition by cycloheximide (CHI) is always much larger than the concomitant reduction of ΔE pl , indicating that a further growth parameter is also involved in the inhibition of cell growth by CHI. ΔE el is not affected by either IAA, ABA, or CHI. It is concluded that δE pl as determined by the applied method, represents a relative measure of the actual in-vivo extensibility of the growing cell wall at the very moment when the tissue is killed, rather than an average extensibility accumulated over some immediate-past period of time as suggested by Cleland (1984, Planta 160, 514-520). Hence, we

  19. Molecular mechanisms in the activation of abscisic acid receptor PYR1.

    Science.gov (United States)

    Dorosh, Lyudmyla; Kharenko, Olesya A; Rajagopalan, Nandhakishore; Loewen, Michele C; Stepanova, Maria

    2013-01-01

    The pyrabactin resistance 1 (PYR1)/PYR1-like (PYL)/regulatory component of abscisic acid (ABA) response (RCAR) proteins comprise a well characterized family of ABA receptors. Recent investigations have revealed two subsets of these receptors that, in the absence of ABA, either form inactive homodimers (PYR1 and PYLs 1-3) or mediate basal inhibition of downstream target type 2C protein phosphatases (PP2Cs; PYLs 4-10) respectively in vitro. Addition of ABA has been shown to release the apo-homodimers yielding ABA-bound monomeric holo-receptors that can interact with PP2Cs; highlighting a competitive-interaction process. Interaction selectivity has been shown to be mediated by subtle structural variations of primary sequence and ligand binding effects. Now, the dynamical contributions of ligand binding on interaction selectivity are investigated through extensive molecular dynamics (MD) simulations of apo and holo-PYR1 in monomeric and dimeric form as well as in complex with a PP2C, homology to ABA insensitive 1 (HAB1). Robust comparative interpretations were enabled by a novel essential collective dynamics approach. In agreement with recent experimental findings, our analysis indicates that ABA-bound PYR1 should efficiently bind to HAB1. However, both ABA-bound and ABA-extracted PYR1-HAB1 constructs have demonstrated notable similarities in their dynamics, suggesting that apo-PYR1 should also be able to make a substantial interaction with PP2Cs, albeit likely with slower complex formation kinetics. Further analysis indicates that both ABA-bound and ABA-free PYR1 in complex with HAB1 exhibit a higher intra-molecular structural stability and stronger inter-molecular dynamic correlations, in comparison with either holo- or apo-PYR1 dimers, supporting a model that includes apo-PYR1 in complex with HAB1. This possibility of a conditional functional apo-PYR1-PP2C complex was validated in vitro. These findings are generally consistent with the competitive-interaction model

  20. QTLs and candidate genes for desiccation and abscisic acid content in maize kernels

    Directory of Open Access Journals (Sweden)

    Charcosset Alain

    2010-01-01

    Full Text Available Abstract Background Kernel moisture at harvest is an important trait since a low value is required to prevent unexpected early germination and ensure seed preservation. It is also well known that early germination occurs in viviparous mutants, which are impaired in abscisic acid (ABA biosynthesis. To provide some insight into the genetic determinism of kernel desiccation in maize, quantitative trait loci (QTLs were detected for traits related to kernel moisture and ABA content in both embryo and endosperm during kernel desiccation. In parallel, the expression and mapping of genes involved in kernel desiccation and ABA biosynthesis, were examined to detect candidate genes. Results The use of an intermated recombinant inbred line population allowed for precise QTL mapping. For 29 traits examined in an unreplicated time course trial of days after pollination, a total of 78 QTLs were detected, 43 being related to kernel desiccation, 15 to kernel weight and 20 to ABA content. Multi QTL models explained 35 to 50% of the phenotypic variation for traits related to water status, indicating a large genetic control amenable to breeding. Ten of the 20 loci controlling ABA content colocated with previously detected QTLs controlling water status and ABA content in water stressed leaves. Mapping of candidate genes associated with kernel desiccation and ABA biosynthesis revealed several colocations between genes with putative functions and QTLs. Parallel investigation via RT-PCR experiments showed that the expression patterns of the ABA-responsive Rab17 and Rab28 genes as well as the late embryogenesis abundant Emb5 and aquaporin genes were related to desiccation rate and parental allele effect. Database searches led to the identification and mapping of two zeaxanthin epoxidase (ZEP and five novel 9-cis-epoxycarotenoid dioxygenase (NCED related genes, both gene families being involved in ABA biosynthesis. The expression of these genes appeared independent in

  1. Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid

    Directory of Open Access Journals (Sweden)

    Lin Li

    2011-06-01

    Full Text Available Abstract Background Seed germination is a complex multi-stage developmental process, and mainly accomplished through concerted activities of many gene products and biological pathways that are often subjected to strict developmental regulation. Gibberellins (GA and abscisic acid (ABA are two key phytohormones regulating seed germination and seedling growth. However, transcriptional regulatory networks underlying seed germination and its associated biological pathways are largely unknown. Results The studies examined transcriptomes of barley representing six distinct and well characterized germination stages and revealed that the transcriptional regulatory program underlying barley germination was composed of early, late, and post-germination phases. Each phase was accompanied with transcriptional up-regulation of distinct biological pathways. Cell wall synthesis and regulatory components including transcription factors, signaling and post-translational modification components were specifically and transiently up-regulated in early germination phase while histone families and many metabolic pathways were up-regulated in late germination phase. Photosynthesis and seed reserve mobilization pathways were up-regulated in post-germination phase. However, stress related pathways and seed storage proteins were suppressed through the entire course of germination. A set of genes were transiently up-regulated within three hours of imbibition, and might play roles in initiating biological pathways involved in seed germination. However, highly abundant transcripts in dry barley and Arabidopsis seeds were significantly conserved. Comparison with transcriptomes of barley aleurone in response to GA and ABA identified three sets of germination responsive genes that were regulated coordinately by GA, antagonistically by ABA, and coordinately by GA but antagonistically by ABA. Major CHO metabolism, cell wall degradation and protein degradation pathways were up

  2. Molecular mechanisms in the activation of abscisic acid receptor PYR1.

    Directory of Open Access Journals (Sweden)

    Lyudmyla Dorosh

    Full Text Available The pyrabactin resistance 1 (PYR1/PYR1-like (PYL/regulatory component of abscisic acid (ABA response (RCAR proteins comprise a well characterized family of ABA receptors. Recent investigations have revealed two subsets of these receptors that, in the absence of ABA, either form inactive homodimers (PYR1 and PYLs 1-3 or mediate basal inhibition of downstream target type 2C protein phosphatases (PP2Cs; PYLs 4-10 respectively in vitro. Addition of ABA has been shown to release the apo-homodimers yielding ABA-bound monomeric holo-receptors that can interact with PP2Cs; highlighting a competitive-interaction process. Interaction selectivity has been shown to be mediated by subtle structural variations of primary sequence and ligand binding effects. Now, the dynamical contributions of ligand binding on interaction selectivity are investigated through extensive molecular dynamics (MD simulations of apo and holo-PYR1 in monomeric and dimeric form as well as in complex with a PP2C, homology to ABA insensitive 1 (HAB1. Robust comparative interpretations were enabled by a novel essential collective dynamics approach. In agreement with recent experimental findings, our analysis indicates that ABA-bound PYR1 should efficiently bind to HAB1. However, both ABA-bound and ABA-extracted PYR1-HAB1 constructs have demonstrated notable similarities in their dynamics, suggesting that apo-PYR1 should also be able to make a substantial interaction with PP2Cs, albeit likely with slower complex formation kinetics. Further analysis indicates that both ABA-bound and ABA-free PYR1 in complex with HAB1 exhibit a higher intra-molecular structural stability and stronger inter-molecular dynamic correlations, in comparison with either holo- or apo-PYR1 dimers, supporting a model that includes apo-PYR1 in complex with HAB1. This possibility of a conditional functional apo-PYR1-PP2C complex was validated in vitro. These findings are generally consistent with the competitive

  3. Conclusion on the peer review of the pesticide risk assessment of the active substance S-abscisic acid

    Directory of Open Access Journals (Sweden)

    European Food Safety Authority

    2013-08-01

    Full Text Available The conclusions of the European Food Safety Authority (EFSA following the peer review of the initial risk assessments carried out by the competent authority of the rapporteur Member State the Netherlands, for the pesticide active substance S-abscisic acid are reported. The context of the peer review was that required by Commission Regulation EU No 188/2011. The conclusions were reached on the basis of the evaluation of the representative uses of S-abscisic acid as a plant growth regulator on tomato seedlings and grapes. The reliable endpoints concluded as being appropriate for use in regulatory risk assessment, derived from the available studies and literature in the dossier peer reviewed, are presented. Missing information identified as being required by the regulatory framework is listed. Concerns are identified in the areas of residues and ecotoxicology, as the consumer risk assessment and the risk assessment for higher aquatic plants for some metabolites could not be finalised based on the data available.

  4. The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy.

    Science.gov (United States)

    Bethke, Paul C; Libourel, Igor G L; Aoyama, Natsuyo; Chung, Yong-Yoon; Still, David W; Jones, Russell L

    2007-03-01

    Seed dormancy is a common phase of the plant life cycle, and several parts of the seed can contribute to dormancy. Whole seeds, seeds lacking the testa, embryos, and isolated aleurone layers of Arabidopsis (Arabidopsis thaliana) were used in experiments designed to identify components of the Arabidopsis seed that contribute to seed dormancy and to learn more about how dormancy and germination are regulated in this species. The aleurone layer was found to be the primary determinant of seed dormancy. Embryos from dormant seeds, however, had a lesser growth potential than those from nondormant seeds. Arabidopsis aleurone cells were examined by light and electron microscopy, and cell ultrastructure was similar to that of cereal aleurone cells. Arabidopsis aleurone cells responded to nitric oxide (NO), gibberellin (GA), and abscisic acid, with NO being upstream of GA in a signaling pathway that leads to vacuolation of protein storage vacuoles and abscisic acid inhibiting vacuolation. Molecular changes that occurred in embryos and aleurone layers prior to germination were measured, and these data show that both the aleurone layer and the embryo expressed the NO-associated gene AtNOS1, but only the embryo expressed genes for the GA biosynthetic enzyme GA3 oxidase.

  5. GIGANTEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS.

    Science.gov (United States)

    Riboni, Matteo; Galbiati, Massimo; Tonelli, Chiara; Conti, Lucio

    2013-07-01

    Modulation of the transition to flowering plays an important role in the adaptation to drought. The drought-escape (DE) response allows plants to adaptively shorten their life cycle to make seeds before severe stress leads to death. However, the molecular basis of the DE response is unknown. A screen of different Arabidopsis (Arabidopsis thaliana) flowering time mutants under DE-triggering conditions revealed the central role of the flower-promoting gene GIGANTEA (GI) and the florigen genes FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF) in the DE response. Further screens showed that the phytohormone abscisic acid is required for the DE response, positively regulating flowering under long-day conditions. Drought stress promotes the transcriptional up-regulation of the florigens in an abscisic acid- and photoperiod-dependent manner, so that early flowering only occurs under long days. Along with the florigens, the floral integrator SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 is also up-regulated in a similar fashion and contributes to the activation of TSF. The DE response was recovered under short days in the absence of the floral repressor SHORT VEGETATIVE PHASE or in GI-overexpressing plants. Our data reveal a key role for GI in connecting photoperiodic cues and environmental stress independently from the central FT/TSF activator CONSTANS. This mechanism explains how environmental cues may act upon the florigen genes in a photoperiodically controlled manner, thus enabling plastic flowering responses.

  6. Phosphoinositides in barley aleurone layers and gibberellic acid-induced changes in metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, P.P.N.; Renders, J.M.; Keranen, L.M. (Michigan Technological Univ., Houghton (USA))

    1989-12-01

    Phospholipids of barley (Hordeum vulgare L. cv Himalaya) aleurone layers were labeled with myo-(2-{sup 3}H)inositol or ({sup 32}Pi), extracted, and analyzed by physical (chromatography) and chemical (deacylation) techniques. Three phospholipids were found to incorporate both myo-(2-{sup 3}H)inositol and ({sup 32}Pi)-phosphatidylinositol, phosphatidylinositol-monophosphate, and phosphatidylinositol-bisphosphate. Stimulation of ({sup 3}H)inositol prelabeled aleurone layers with GA{sub 3} showed enhanced incorporation of label into phosphatidylinositol within 30 seconds and subsequent rapid breakdown. Stimulation of phosphatidylinositol labeling observed in these studies is the earliest response of aleurone cells to gibberellic acid reported.

  7. Agmatine rescues autistic behaviors in the valproic acid-induced animal model of autism.

    Science.gov (United States)

    Kim, Ji-Woon; Seung, Hana; Kim, Ki Chan; Gonzales, Edson Luck T; Oh, Hyun Ah; Yang, Sung Min; Ko, Mee Jung; Han, Seol-Heui; Banerjee, Sourav; Shin, Chan Young

    2017-02-01

    Autism spectrum disorder (ASD) is an immensely challenging developmental disorder characterized primarily by two core behavioral symptoms of social communication deficits and restricted/repetitive behaviors. Investigating the etiological process and identifying an appropriate therapeutic target remain as formidable challenges to overcome ASD due to numerous risk factors and complex symptoms associated with the disorder. Among the various mechanisms that contribute to ASD, the maintenance of excitation and inhibition balance emerged as a key factor to regulate proper functioning of neuronal circuitry. Interestingly, our previous study involving the valproic acid animal model of autism (VPA animal model) has demonstrated excitatory-inhibitory imbalance (E/I imbalance) due to enhanced differentiation of glutamatergic neurons and reduced GABAergic neurons. Here, we investigated the potential of agmatine, an endogenous NMDA receptor antagonist, as a novel therapeutic candidate in ameliorating ASD symptoms by modulating E/I imbalance using the VPA animal model. We observed that a single treatment of agmatine rescued the impaired social behaviors as well as hyperactive and repetitive behaviors in the VPA animal model. We also observed that agmatine treatment rescued the overly activated ERK1/2 signaling in the prefrontal cortex and hippocampus of VPA animal models, possibly, by modulating over-excitability due to enhanced excitatory neural circuit. Taken together, our results have provided experimental evidence suggesting a possible therapeutic role of agmatine in ameliorating ASD-like symptoms in the VPA animal model of ASD.

  8. Proteomic analysis of salicylic acid induced resistance to Mungbean Yellow Mosaic India Virus in Vigna mungo.

    Science.gov (United States)

    Kundu, Subrata; Chakraborty, Dipjyoti; Pal, Amita

    2011-03-01

    The role of salicylic acid (SA) in inducing resistance to MYMIV infection in Vigna mungo has been elucidated by proteomics. Twenty-nine proteins identified by MALDI-TOF/TOF, predicted to be involved in stress responses, metabolism, photosynthesis, transport and signal transduction, showed increased abundance upon SA treatment. Susceptible plants showed characteristic yellow mosaic symptoms upon MYMIV infection. A concentration dependent decrease in physiological symptoms associated with MYMIV was observed upon exogenous SA treatment prior to viral inoculation; and no visible symptom was observed at 100 μM SA. SA treatment stimulated SOD and GPX activity and inhibited CAT activity thus preventing ROS mediated damage. Significant increase in chlorophyll, protein, carbohydrate, phenolic content and H(2)O(2) were observed. Involvement of calmodulin for transmission of defense signal by SA is suggested. A metabolic reprogramming leading to enhanced synthesis of proteins involved in primary and secondary metabolisms is necessary for SA mediated resistance to MYMIV. Identification of proteins showing increased abundance, involved in photosynthetic process is a significant finding which restores virus-induced degradation of the photosynthetic apparatus and provides enhanced metabolites required for repartition of resources towards defense.

  9. Interleukin-6 deficiency reduces the brain inflammatory response and increases oxidative stress and neurodegeneration after kainic acid-induced seizures

    DEFF Research Database (Denmark)

    Penkowa, M; Molinero, A; Carrasco, J

    2001-01-01

    , the immunoreactivity for inducible nitric oxide synthase, peroxynitrite-induced nitration of proteins and byproducts of fatty acid peroxidation were dramatically increased, as was that for metallothionein I+II, Mn-superoxide dismutase and Cu/Zn-superoxide dismutase. In accordance, a significant neuronal apoptosis...... was caused by kainic acid, as revealed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling and interleukin-1beta converting enzyme/Caspase-1 stainings. In kainic acid-injected interleukin-6 null mice, reactive astrogliosis and microgliosis were reduced, while......The role of interleukin-6 in hippocampal tissue damage after injection with kainic acid, a rigid glutamate analogue inducing epileptic seizures, has been studied by means of interleukin-6 null mice. At 35mg/kg, kainic acid induced convulsions in both control (75%) and interleukin-6 null (100%) mice...

  10. Regulation of Retinoic Acid Inducible Gene-I (RIG-I Activation by the Histone Deacetylase 6

    Directory of Open Access Journals (Sweden)

    Helene Minyi Liu

    2016-07-01

    Full Text Available Retinoic acid inducible gene-I (RIG-I is a cytosolic pathogen recognition receptor that initiates the immune response against many RNA viruses. Upon RNA ligand binding, RIG-I undergoes a conformational change facilitating its homo-oligomerization and activation that results in its translocation from the cytosol to intracellular membranes to bind its signaling adaptor protein, mitochondrial antiviral-signaling protein (MAVS. Here we show that RIG-I activation is regulated by reversible acetylation. Acetyl-mimetic mutants of RIG-I do not form virus-induced homo-oligomers, revealing that acetyl-lysine residues of the RIG-I repressor domain prevent assembly to active homo-oligomers. During acute infection, deacetylation of RIG-I promotes its oligomerization upon ligand binding. We identify histone deacetylase 6 (HDAC6 as the deacetylase that promotes RIG-I activation and innate antiviral immunity to recognize and restrict RNA virus infection.

  11. Combinatorial localized dissolution analysis: Application to acid-induced dissolution of dental enamel and the effect of surface treatments.

    Science.gov (United States)

    Parker, Alexander S; Al Botros, Rehab; Kinnear, Sophie L; Snowden, Michael E; McKelvey, Kim; Ashcroft, Alexander T; Carvell, Mel; Joiner, Andrew; Peruffo, Massimo; Philpotts, Carol; Unwin, Patrick R

    2016-08-15

    A combination of scanning electrochemical cell microscopy (SECCM) and atomic force microscopy (AFM) is used to quantitatively study the acid-induced dissolution of dental enamel. A micron-scale liquid meniscus formed at the end of a dual barrelled pipette, which constitutes the SECCM probe, is brought into contact with the enamel surface for a defined period. Dissolution occurs at the interface of the meniscus and the enamel surface, under conditions of well-defined mass transport, creating etch pits that are then analysed via AFM. This technique is applied to bovine dental enamel, and the effect of various treatments of the enamel surface on acid dissolution (1mM HNO3) is studied. The treatments investigated are zinc ions, fluoride ions and the two combined. A finite element method (FEM) simulation of SECCM mass transport and interfacial reactivity, allows the intrinsic rate constant for acid-induced dissolution to be quantitatively determined. The dissolution of enamel, in terms of Ca(2+) flux ( [Formula: see text] ), is first order with respect to the interfacial proton concentration and given by the following rate law: [Formula: see text] , with k0=0.099±0.008cms(-1). Treating the enamel with either fluoride or zinc ions slows the dissolution rate, although in this model system the partly protective barrier only extends around 10-20nm into the enamel surface, so that after a period of a few seconds dissolution of modified surfaces tends towards that of native enamel. A combination of both treatments exhibits the greatest protection to the enamel surface, but the effect is again transient.

  12. Olodaterol attenuates citric acid-induced cough in naïve and ovalbumin-sensitized and challenged guinea pigs.

    Science.gov (United States)

    Wex, Eva; Bouyssou, Thierry

    2015-01-01

    Excessive coughing is a common feature of airway diseases. Different G-protein coupled receptors, including β2-adrenergic receptors (β2-AR), have been implicated in the molecular mechanisms underlying the cough reflex. However, the potential antitussive property of β2-AR agonists in patients with respiratory disease is a matter of ongoing debate. The aim of our study was to test the efficacy of the long-acting β2-AR agonist olodaterol with regard to its antitussive property in a pre-clinical model of citric acid-induced cough in guinea pigs and to compare the results to different clinically relevant β2-AR agonists. In our study β2-AR agonists were intratracheally administered, as dry powder, into the lungs of naïve or ovalbumin-sensitized guinea pigs 15 minutes prior to induction of cough by exposure to citric acid. Cough events were counted over 15 minutes during the citric acid exposure. Olodaterol dose-dependently inhibited the number of cough events in naïve and even more potently and with a greater maximal efficacy in ovalbumin-sensitized guinea pigs (p citric acid-induced cough in naïve and ovalbumin-sensitized guinea pigs. This is in agreement with pre-clinical and clinical studies showing antitussive efficacy of β2-AR agonists. Indacaterol increased the number of coughs in this model, which concurs with clinical data where a transient cough has been observed after indacaterol inhalation. While the antitussive properties of β2-AR agonists can be explained by their ability to lead to the cAMP-induced hyperpolarization of the neuron membrane thereby inhibiting sensory nerve activation and the cough reflex, the mechanism underlying the pro-tussive property of indacaterol is not known.

  13. Gastroprotective effects of sulforaphane and thymoquinone against acetylsalicylic acid-induced gastric ulcer in rats.

    Science.gov (United States)

    Zeren, Sezgin; Bayhan, Zulfu; Kocak, Fatma Emel; Kocak, Cengiz; Akcılar, Raziye; Bayat, Zeynep; Simsek, Hasan; Duzgun, Sukru Aydin

    2016-06-15

    Nonsteroidal anti-inflammatory drugs (NSAIDs) commonly cause gastric ulcers (GUs). We investigated the effects of sulforaphane (SF) and thymoquinone (TQ) in rats with acetylsalicylic acid (ASA)-induced GUs. Thirty-five male Wistar-Albino rats were divided into five groups: control; ASA; ASA with vehicle; ASA + SF; and ASA + TQ. Compounds were administered by oral gavage before GU induction. GUs were induced by intragastric administration of ASA. Four hours after GU induction, rats were killed and stomachs excised. Total oxidant status, total antioxidant status, total thiol, nitric oxide, asymmetric dimethylarginine, tumor necrosis factor-alpha levels, superoxide dismutase activity, and glutathione peroxidase activity in tissue were measured. Messenger RNA expression of dimethylarginine dimethylaminohydrolases, heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor 2, and nuclear factor kappa-light-chain-enhancer of activated B cells were analyzed. Renal tissues were evaluated by histopathologic and immunohistochemical means. SF and TQ reduced GU indices, apoptosis, total oxidant status, asymmetric dimethylarginine, and tumor necrosis factor-alpha levels, nuclear factor kappa-light-chain-enhancer of activated B cells, and inducible nitric oxide synthase expressions (P < 0.001, P = 0.001). Both examined compounds increased superoxide dismutase activity, glutathione peroxidase activity, total antioxidant status, total thiol, nitric oxide levels, endothelial nitric oxide synthase, dimethylarginine dimethylaminohydrolases, HO-1, nuclear factor erythroid 2-related factor 2, and HO-1 expressions (P < 0.001). These results suggest that pretreatment with SF or TQ can reduce ASA-induced GUs via anti-inflammatory, antioxidant, and antiapoptotic effects. These compounds may be useful therapeutic strategies to prevent the gastrointestinal adverse effects that limit nonsteroidal anti-inflammatory drugs use. Copyright © 2016 Elsevier Inc. All rights

  14. In vivo characterization of the effects of abscisic acid and drying protocols associated with the acquisition of desiccation tolerance in alfalfa (Medicago sativa L.) somatic embryos

    NARCIS (Netherlands)

    Sreedhar, L.; Wolkers, W.F.; Hoekstra, F.A.; Bewley, J.D.

    2002-01-01

    Although somatic embryos of alfalfa (Medicago sativa L.) had acquired some tolerance to desiccation at the cotyledonary stage of development (22 d after plating), additional culturing in 20 ?M abscisic acid (ABA) for 8 d induced greater desiccation tolerance, as determined by increased germination.

  15. Immunolocalization of endogenous indole-3-acetic acid and abscisic acid in the shoot internodes of Fargesia yunnanensis bamboo during development

    Science.gov (United States)

    Shuguang Wang; Yongpeng Ma; Chengbin Wan; Chungyun Hse; Todd F. Shupe; Yujun Wang; Changming. Wang

    2016-01-01

    The Bambusoideae subfamily includes the fastest-growing plants worldwide, as a consequence of fast internode elongation. However, few studies have evaluated the temporal and spatial distribution of endogenous hormones during internode elongation. In this paper, endogenous indole-3-acetic acid (IAA) and abscisic acid (ABA) were detected in different developmental...

  16. In vivo characterization of the effects of abscisic acid and drying protocols associated with the acquisition of desiccation tolerance in alfalfa (Medicago sativa L.) somatic embryos

    NARCIS (Netherlands)

    Sreedhar, L.; Wolkers, W.F.; Hoekstra, F.A.; Bewley, J.D.

    2002-01-01

    Although somatic embryos of alfalfa (Medicago sativa L.) had acquired some tolerance to desiccation at the cotyledonary stage of development (22 d after plating), additional culturing in 20 ?M abscisic acid (ABA) for 8 d induced greater desiccation tolerance, as determined by increased germination.

  17. Do pH and flavonoids influence hypochlorous acid-induced catalase inhibition and heme modification?

    Science.gov (United States)

    Krych-Madej, Justyna; Gebicka, Lidia

    2015-09-01

    Hypochlorous acid (HOCl), highly reactive oxidizing and chlorinating species, is formed in the immune response to invading pathogens by the reaction of hydrogen peroxide with chloride catalyzed by the enzyme myeloperoxidase. Catalase, an important antioxidant enzyme, catalyzing decomposition of hydrogen peroxide to water and molecular oxygen, hampers in vitro HOCl formation, but is also one of the main targets for HOCl. In this work we have investigated HOCl-induced catalase inhibition at different pH, and the influence of flavonoids (catechin, epigallocatechin gallate and quercetin) on this process. It has been shown that HOCl-induced catalase inhibition is independent on pH in the range 6.0-7.4. Preincubation of catalase with epigallocatechin gallate and quercetin before HOCl treatment enhances the degree of catalase inhibition, whereas catechin does not affect this process. Our rapid kinetic measurements of absorption changes around the heme group have revealed that heme modification by HOCl is mainly due to secondary, intramolecular processes. The presence of flavonoids, which reduce active catalase intermediate, Compound I to inactive Compound II have not influenced the kinetics of HOCl-induced heme modification. Possible mechanisms of the reaction of hypochlorous acid with catalase are proposed and the biological consequences are discussed.

  18. Leptin attenuates lipopolysaccharide or oleic acid-induced acute lung injury in mice.

    Science.gov (United States)

    Dong, Hai-Ying; Xu, Min; Ji, Zhen-Yu; Wang, Yan-Xia; Dong, Ming-Qing; Liu, Man-Ling; Xu, Dun-Quan; Zhao, Peng-Tao; Liu, Yi; Luo, Ying; Niu, Wen; Zhang, Bo; Ye, Jing; Li, Zhi-Chao

    2013-12-01

    Leptin is reported to be involved in acute lung injury (ALI). However, the role and underlying mechanisms of leptin in ALI remain unclear. The aim of this study was to determine whether leptin deficiency promoted the development of ALI. LPS or oleic acid (OA) were administered to wild-type and leptin deficient (ob/ob) mice to induce ALI. Leptin level, survival rate, and lung injury were examined. Results showed that leptin levels were predominantly increased in the lung, but also in the heart, liver, kidney, and adipose tissue after LPS adminiatration. Compared with wild-type mice, LPS- or OA-induced lung injury was worse and the survival rate was lower in ob/ob mice. Moreover, leptin deficiency promoted the release of proinflammatory cytokines. Exogenous administration of leptin reduced lethality in ob/ob mice and ameliorated lung injury partly through inhibiting the activation of NF-κB, p38, and ERK pathways. These results indicated that leptin deficiency contributed to the development of lung injury by enhancing inflammatory response, and a high level of leptin improved survival and protected against ALI.

  19. Influence of suppressor gene p16 on retinoic acid inducing cancer cell A549 differentiation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To investigate the role of suppressor gene p16 in the process of differential regulation of retinoic acid (RA) on the A549 lung cancer cells.Methods Tumor suppressor gene p16 was transferred into A549 cells and the cells were treated with all-trans retinoic acid (ATR) at the dosage of 5×10-6 mol/L for 4 d. After that, the proliferation and differentiation of A549 cells were examined by growth curve and cytometry analysis, the change of lung lineage-specific marker MUC1 was tested by immunohistochemical staining. Meanwhile, Western blot was used to observe the change of p16 protein expression in A549 cells treated with ATRA.Results ATRA could obviously inhibit the growth and induce the differentiation of A549 Cells that were transferred with p16 gene. There were more cells arrested in G1/G0 phase and the expression of MUG1 was markedly down-regulated than in control cells. The expression of p16 protein was up-regulated in A549 cells treated with ATRA.Conclusion Suppressor gene p16 could enhance the effects of RA and proliferated suppression and differential induction of A549 cells.

  20. DL-β-aminobutyric acid-induced resistance in soybean against Aphis glycines Matsumura (Hemiptera: Aphididae.

    Directory of Open Access Journals (Sweden)

    Yunpeng Zhong

    Full Text Available Priming can improve plant innate capability to deal with the stresses caused by both biotic and abiotic factors. In this study, the effect of DL-β-amino-n-butyric acid (BABA against Aphis glycines Matsumura, the soybean aphid (SA was evaluated. We found that 25 mM BABA as a root drench had minimal adverse impact on plant growth and also efficiently protected soybean from SA infestation. In both choice and non-choice tests, SA number was significantly decreased to a low level in soybean seedlings drenched with 25 mM BABA compared to the control counterparts. BABA treatment resulted in a significant increase in the activities of several defense enzymes, such as phenylalanine ammonia-lyase (PAL, peroxidase (POX, polyphenol oxidase (PPO, chitinase (CHI, and β-1, 3-glucanase (GLU in soybean seedlings attacked by aphid. Meanwhile, the induction of 15 defense-related genes by aphid, such as AOS, CHS, MMP2, NPR1-1, NPR1-2, and PR genes, were significantly augmented in BABA-treated soybean seedlings. Our study suggest that BABA application is a promising way to enhance soybean resistance against SA.

  1. GPBAR1/TGR5 mediates bile acid-induced cytokine expression in murine Kupffer cells.

    Directory of Open Access Journals (Sweden)

    Guiyu Lou

    Full Text Available GPBAR1/TGR5 is a novel plasma membrane-bound G protein-coupled bile acid (BA receptor. BAs are known to induce the expression of inflammatory cytokines in the liver with unknown mechanism. Here we show that without other external stimuli, TGR5 activation alone induced the expression of interleukin 1β (IL-1β and tumor necrosis factor-α (TNF-α in murine macrophage cell line RAW264.7 or murine Kupffer cells. The TGR5-mediated increase of pro-inflammatory cytokine expression was suppressed by JNK inhibition. Moreover, the induced pro-inflammatory cytokine expression in mouse liver by 1% cholic acid (CA diet was blunted in JNK-/- mice. TGR5 activation by its ligands enhanced the phosphorylation levels, DNA-binding and trans-activities of c-Jun and ATF2 transcription factors. Finally, the induced pro-inflammatory cytokine expression in Kupffer cells by TGR5 activation correlated with the suppression of Cholesterol 7α-hydroxylase (Cyp7a1 expression in murine hepatocytes. These results suggest that TGR5 mediates the BA-induced pro-inflammatory cytokine production in murine Kupffer cells through JNK-dependent pathway. This novel role of TGR5 may correlate to the suppression of Cyp7a1 expression in hepatocytes and contribute to the delicate BA feedback regulation.

  2. Preventive effect of a pectic polysaccharide of the common cranberry Vaccinium oxycoccos L. on acetic acid-induced colitis in mice

    Institute of Scientific and Technical Information of China (English)

    Sergey V Popov; Pavel A Markov; Ida R Nikitina; Sergey Petrishev; Vasily Smirnov; Yury S Ovodov

    2006-01-01

    AIM: To study isolation and chemical characterization of pectin derived from the common cranberry Vaccinium oxycoccos L. (oxycoccusan OP) and the testing of its preventive effect on experimental colitis.METHODS: Mice were administrated orally with OP two days prior to a rectal injection of 5% acetic acid and examined for colonic damage 24 h later. Colonic inflammation was characterized by macroscopical injury and enhanced levels of myeloperoxidase activity measured spectrophotometrically with o-phenylene diamine as the substrate. The mucus contents of the colon were determined by the Alcian blue dye binding method. Vascular permeability was estimated using 4%Evans blue passage after i.p. injection of 0.05 mol/L acetic acid.RESULTS: In the mice treated with OP, colonic macroscopic scores (1.1 ± 0.4 vs 2.7, P < 0.01) and the total square area of damage (10 ± 2 vs 21 ± 7, P < 0.01)were significantly reduced when compared with the vehicle-treated colitis group. OP was shown to decrease the tissue myeloperoxidase activity in colons (42 ± 11 vs 112 ± 40, P < 0.01) and enhance the amount of mucus of colitis mice (0.9 ± 0.1 vs 0.4 ± 0.1, P < 0.01). The level of colonic malondialdehyde was noted to decrease in OP-pretreated mice (3.6 ± 0.7 vs 5.1 ± 0.8, P < 0.01).OP was found to decrease the inflammatory status of mice as was determined by reduction of vascular permeability (161 ± 34 vs 241 ± 21, P < 0.01). Adhesion of peritoneal neutrophils and macrophages was also shown to decrease after administration of OP (141 ± 50vs 235 ± 37, P < 0.05).CONCLUSION: Thus, a preventive effect of pectin from the common cranberry, namely oxycoccusan OP,on acetic acid-induced colitis in mice was detected.A reduction of neutrophil infiltration and antioxidant action may be implicated in the protective effect of oxycoccusan.

  3. Characterization of major ripening events during softening in grape: turgor, sugar accumulation, abscisic acid metabolism, colour development, and their relationship with growth.

    Science.gov (United States)

    Castellarin, Simone D; Gambetta, Gregory A; Wada, Hiroshi; Krasnow, Mark N; Cramer, Grant R; Peterlunger, Enrico; Shackel, Kenneth A; Matthews, Mark A

    2016-02-01

    Along with sugar accumulation and colour development, softening is an important physiological change during the onset of ripening in fruits. In this work, we investigated the relationships among major events during softening in grape (Vitis vinifera L.) by quantifying elasticity in individual berries. In addition, we delayed softening and inhibited sugar accumulation using a mechanical growth-preventing treatment in order to identify processes that are sugar and/or growth dependent. Ripening processes commenced on various days after anthesis, but always at similarly low elasticity and turgor. Much of the softening occurred in the absence of other changes in berry physiology investigated here. Several genes encoding key cell wall-modifying enzymes were not up-regulated until softening was largely completed, suggesting softening may result primarily from decreases in turgor. Similarly, there was no decrease in solute potential, increase in sugar concentration, or colour development until elasticity and turgor were near minimum values, and these processes were inhibited when berry growth was prevented. Increases in abscisic acid occurred early during softening and in the absence of significant expression of the V. vinifera 9-cis-epoxycarotenoid dioxygenases. However, these increases were coincident with decreases in the abscisic acid catabolite diphasic acid, indicating that initial increases in abscisic acid may result from decreases in catabolism and/or exogenous import. These data suggest that softening, decreases in turgor, and increases in abscisic acid represent some of the earliest events during the onset of ripening. Later, physical growth, further increases in abscisic acid, and the accumulation of sugar are integral for colour development.

  4. [The ABC of abscisic acid action in plant drought stress responses].

    Science.gov (United States)

    Leung, Jeffrey; Valon, Christiane; Moreau, Bertrand; Boeglin, Martin; Lefoulon, Cécile; Joshi-Saha, Archana; Chérel, Isabelle

    2012-01-01

    The combined daily consumption of fresh water ranges from 200 to 700 liters per capita per day in most developed countries, with about 70% being used for agricultural needs. Unlike other resources such as the different forms of energy, water has no other alternatives. With the looming prospect of global water crisis, the recent laudable success in deciphering the early steps in the signal transduction of the "stress hormone" abscisic acid (ABA) has ignited hopes that crops can be engineered with the capacity to maintain productivity while requiring less water input. Although ABA was first discovered in plants, it has resurfaced in the human brain (and many other non-plant organisms : sea sponge, some parasites, hydra to name a few), suggesting that its existence may be widespread. In humans, more amazingly, ABA has shown anti-inflammatory and antiviral properties. Even its receptors and key signaling intermediates have homologs in the human genome suggesting that evolution has re-fashioned these same proteins into new functional contexts. Thus, learning about the molecular mechanisms of ABA in action using the more flexible plant model will be likely beneficial to other organisms, and especially in human diseases, which is topical in the medical circle. ABA can accumulate up to 10 to 30-fold in plants under drought stress relative to unstressed conditions. The built up of the hormone then triggers diverse adaptive pathways permitting plants to withstand temporary bouts of water shortage. One favorite experimental model to unravel ABA signaling mechanisms in all of its intimate detail is based on the hormone's ability to elicit stomatal closure - a rapid cellular response of land plants to limit water loss through transpiration. Each microscopic stoma, or pore, is contoured by two specialized kidney-shaped cells called the guard cells. Because land plants are protected by a waxy cuticle impermeable to gas exchange, the stomatal pores are thus the primary portals for

  5. Dietary sea cucumber cerebroside alleviates orotic acid-induced excess hepatic adipopexis in rats

    Directory of Open Access Journals (Sweden)

    Zhang Bei

    2012-05-01

    Full Text Available Abstract Background Nonalcoholic fatty liver disease (NAFLD is a prevalent chronic liver disease in industrialized countries. The present study was undertaken to explore the preventive effect of dietary sea cucumber cerebroside (SCC extracted from Acaudina molpadioides in fatty liver rats. Methods Male Wistar rats were randomly divided into four groups including normal control group, NAFLD model group, and two SCC-treated groups with SCC at 0.006% and 0.03% respectively. The fatty liver model was established by administration of 1% orotic acid (OA to the rats. After 10d, serum and hepatic lipid levels were detected. And the serum alanine aminotransferase (ALT and aspartate aminotransferase (AST activities were also determined. Besides, to gain the potential mechanism, the changes of key enzymes and gene expressions related to the hepatic lipid metabolism were measured. Results Dietary SCC at the level of 0.006% and 0.03% ameliorated the hepatic lipid accumulation in fatty liver rats. SCC administration elevated the serum triglyceride (TG level and the ALT, AST activities in OA-fed rats. The activities of hepatic lipogenic enzymes including fatty acid synthase (FAS, malic enzyme (ME and glucose-6-phosphatedehydrogenase (G6PDH were inhibited by SCC treatment. And the gene expressions of FAS, ME, G6PDH and sterol-regulatory element binding protein (SREBP-1c were also reduced in rats fed SCC. However, dietary SCC didn't affect the activity and mRNA expression of carnitine palmitoyltransferase (CPT in liver. Besides, suppression of microsomal triglyceride transfer protein (MTP activity was observed in SCC-feeding rats. Conclusions These results suggested that dietary SCC could attenuate hepatic steatosis due to its inhibition of hepatic lipogenic gene expression and enzyme activity and the enhancement of TG secretion from liver.

  6. Concerted action of p62 and Nrf2 protects cells from palmitic acid-induced lipotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Su [Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kang, Dong Hoon [Department of Life Science and Ewha Research Center for Systems Biology (Korea, Republic of); The Research Center for Cell Homeostasis, Ewha Womans University, Seoul 127-750 (Korea, Republic of); Lee, Da Hyun [Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Bae, Soo Han, E-mail: soohanbae@yuhs.ac [Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of)

    2015-10-09

    Nonalcoholic fatty liver disease (NAFLD), frequently associated with obesity and diabetes mellitus, is caused by the accumulation of excess fatty acids within liver cells. Palmitic acid (PA), a common saturated fatty acid found in mammals, induces the generation of reactive oxygen species (ROS) and elicits apoptotic cell death, known as lipotoxicity. However, protective mechanisms against PA-induced lipotoxicity have not been elucidated. In this study, we aimed to clarify the role of p62, an adapter protein in the autophagic process, as well as the nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway, in protecting cells from PA-induced lipotoxicity. The Nrf2-Keap1 pathway is essential for the protection of cells from oxidative stress. p62 enhances its binding to Keap1 and leads to Nrf2 activation. Here, we show that PA potentiates Keap1 degradation and thereby activates the transcription of Nrf2 target genes partially through autophagy. Furthermore, this PA-mediated Keap1 degradation depends on p62. Correspondingly, a lack of p62 attenuates the PA-mediated Nrf2 activation and increases the susceptibility of cells to oxidative stress. These results indicate that p62 plays an important role in protecting cells against lipotoxicity through Keap1 degradation-mediated Nrf2 activation. - Highlights: • PA induces Keap1 downregulation and activates Nrf2 target gene transcription. • PA-induced Keap1 degradation is partly mediated by the autophagic pathway. • PA-induced Keap1 degradation depends on p62. • Ablation of p62 exacerbates PA-mediated apoptotic cell death.

  7. Alleviating effects of Bushen-Yizhi formula on ibotenic acid-induced cholinergic impairments in rat.

    Science.gov (United States)

    Hou, Xue-Qin; Zhang, Lei; Yang, Cong; Rong, Cui-Ping; He, Wen-Qing; Zhang, Chun-Xia; Li, Shi; Su, Ru-Yu; Chang, Xiang; Qin, Ji-Huan; Chen, Yun-Bo; Xian, Shao-Xiang; Wang, Qi

    2015-04-01

    This study explored the curative effect and underlying mechanisms of a traditional Chinese medicine compound prescription, Bushen-Yizhi formula (BSYZ), in ibotenic acid (IBO)-induced rats. Morris water maze and novel object recognition tests showed that BSYZ significantly improved spatial and object memory. Brain immunohistochemistry staining showed that BSYZ significantly up-regulated expression of choline acetyltransferase (ChAT) and nerve growth factor (NGF) in the hippocampus and cortex. The protein tyrosine kinase high-affinity receptor TrkA was slightly increased in the hippocampus and cortex, and significantly enhanced in the nucleus basalis of Meynert (NBM) after BSYZ intervention. The immunoreactivity of the p75 low-affinity receptor in BSYZ-treated rats was significantly strengthened in the cortex. Similar expression trends of nerve growth factor (NGF), TrkA, and p75 mRNA were observed in the hippocampus and cortex. Additionally, BSYZ reversed IBO-induced disorders of acetylcholine (ACh) levels, ChAT, and cholinesterase (ChE) in the cortex, which was consistent with the changes in mRNA levels of ChAT and acetylcholinesterase (AChE). Expression of ChAT and AChE proteins and mRNA in the hippocampus was up-regulated, whereas the apoptosis-relative protein cleaved caspase-3 was decreased after administration of BSYZ. Moreover, changes in cell death were confirmed by histological morphology. Thus, the results indicated that the BSYZ formula could ameliorate memory impairments in IBO-induced rats, and it exerted its therapeutic action probably by modulating cholinergic pathways, NGF signaling, and anti-apoptosis. Overall, it is suggested that the BSYZ formula might be a potential therapeutic approach for the treatment of Alzheimer's disease (AD) and other cholinergic impairment-related diseases.

  8. Lysophosphatidic acid induces chemotaxis in MC3T3-E1 osteoblastic cells

    Energy Technology Data Exchange (ETDEWEB)

    Masiello, Lisa M.; Fotos, Joseph S.; Galileo, Deni S.; Karin, Norm J.

    2006-07-01

    Lysophosphatidic acid (LPA) is a bioactive lipid that has pleiotropic effects on a variety of cell types and enhances the migration of endothelial and cancer cells, but it is not known if this lipid can alter osteoblast motility. We performed transwell migration assays using MC3T3-E1 osteoblastic cells and found LPA to be a potent chemotactic agent. Quantitative time-lapse video analysis of osteoblast migration after wounds were introduced into cell monolayers indicated that LPA stimulated both migration velocity and the average migration distance per cell. LPA also elicited substantial changes in cell shape and actin cytoskeletal structure; lipid-treated cells contained fewer stress fibers and displayed long membrane processes that were enriched in F-actin. Quantitative RT-PCR analysis showed that MC3T3-E1 cells express all four known LPA-specific G protein-coupled receptors (LPA1-LPA4) with a relative mRNA abundance of LPA1 > LPA4 > LPA2 >> LPA3. LPA-induced changes in osteoblast motility and morphology were antagonized by both pertussis toxin and Ki16425, a subtype-specific blocker of LPA1 and LPA3 receptor function. Cell migration in many cell types is linked to changes in intracellular Ca2+. Ki16425 also inhibited LPA-induced Ca2+ signaling in a dose-dependent manner, suggesting a link between LPA-induced Ca2+ transients and osteoblast chemotaxis. Our data show that LPA stimulates MC3T3-E1 osteoblast motility via a mechanism that is linked primarily to the G protein-coupled receptor LPA1.

  9. Hydroxysafflor yellow A suppress oleic acid-induced acute lung injury via protein kinase A

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chaoyun [School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003 (China); Huang, Qingxian [Department of Hepatobiliary Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000 (China); Wang, Chunhua; Zhu, Xiaoxi; Duan, Yunfeng; Yuan, Shuai [School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003 (China); Bai, Xianyong, E-mail: xybai2012@163.com [School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003 (China)

    2013-11-01

    enhance Cytokine release, increase NADPH oxidase activation and reduce activities of antioxidant enzymes. • Hydroxysafflor yellow A (HSYA) up regulate cAMP/PKA signal pathway in lung tissue induced by OA. • HSYA attenuate OA mediated lung injury via reducing inflammatory cytokine release and improving antioxidant capacity.

  10. Microbial Mechanisms Underlying Acidity-induced Reduction in Soil Respiration Under Nitrogen Fertilization

    Science.gov (United States)

    Niu, S.; Li, Y.

    2016-12-01

    Terrestrial ecosystems are receiving increasing amounts of reactive nitrogen (N) due to anthropogenic activities, which largely changes soil respiration and its feedback to climate change. N enrichment can not only increase N availability but also induce soil acidification, both may affect soil microbial activity and root growth with a consequent impact on soil respiration. However, it remains unclear whether elevated N availability or soil acidity has greater impact on soil respiration (Rs). We conducted a manipulative experiment to simulate N enrichment (10 g m-2 yr-1 NH4NO3) and soil acidity (0.552 mol H+ m-2 yr-1 sulfuric acid) and studied their effects on Rs and its components in a temperate forest. Our results showed that soil pH was reduced by 0.2 under N addition or acid addition treatment. Acid addition significantly decreased autotrophic respiration (Ra) and heterotrophic respiration (Rh) by 21.5% and 22.7% in 2014, 34.8% and 21.9% in 2015, respectively, resulting in a reduction of Rs by 22.2% in 2014 and 26.1% in 2015. Nitrogen enrichment reduced Ra, Rh, Rs by 21.9%, 16.2%, 18.6% in 2014 and 22.1%, 5.9%, 11.7% in 2015, respectively. The reductions of Rs and its components were attributable to decrease of fine root biomass, microbial biomass, and cellulose degrading enzymes. N addition did not change microbial community but acid addition increased both fungal and arbuscular mycorrhiza fungi PLFAs, and N plus acid addition significantly enhanced fungal to bacterial ratio. All the hydrolase enzymes were reduced more by soil acidity (43-50%) than nitrogen addition (30-39%). Structural equation model showed that soil acidity played more important role than N availability in reducing soil respiration mainly by changing microbial extracellular enzymes. We therefore suggest that N deposition induced indirect effect of soil acidification on microbial properties is critical and should be taken into account to better understand and predict ecosystem C cycling in

  11. Phyllostachys edulis compounds inhibit palmitic acid-induced monocyte chemoattractant protein 1 (MCP-1 production.

    Directory of Open Access Journals (Sweden)

    Jason K Higa

    Full Text Available BACKGROUND: Phyllostachys edulis Carriere (Poaceae is a bamboo species that is part of the traditional Chinese medicine pharmacopoeia. Compounds and extracts from this species have shown potential applications towards several diseases. One of many complications found in obesity and diabetes is the link between elevated circulatory free fatty acids (FFAs and chronic inflammation. This study aims to present a possible application of P. edulis extract in relieving inflammation caused by FFAs. Monocyte chemoattractant protein 1 (MCP-1/CCL2 is a pro-inflammatory cytokine implicated in chronic inflammation. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and activator protein 1 (AP-1 are transcription factors activated in response to inflammatory stimuli, and upregulate pro-inflammatory cytokines such as MCP-1. This study examines the effect of P. edulis extract on cellular production of MCP-1 and on the NF-κB and AP-1 pathways in response to treatment with palmitic acid (PA, a FFA. METHODOLOGY/PRINCIPAL FINDINGS: MCP-1 protein was measured by cytometric bead assay. NF-κB and AP-1 nuclear localization was detected by colorimetric DNA-binding ELISA. Relative MCP-1 mRNA was measured by real-time quantitative PCR. Murine cells were treated with PA to induce inflammation. PA increased expression of MCP-1 mRNA and protein, and increased nuclear localization of NF-κB and AP-1. Adding bamboo extract (BEX inhibited the effects of PA, reduced MCP-1 production, and inhibited nuclear translocation of NF-κB and AP-1 subunits. Compounds isolated from BEX inhibited MCP-1 secretion with different potencies. CONCLUSIONS/SIGNIFICANCE: PA induced MCP-1 production in murine adipose, muscle, and liver cells. BEX ameliorated PA-induced production of MCP-1 by inhibiting nuclear translocation of NF-κB and AP-1. Two O-methylated flavones were isolated from BEX with functional effects on MCP-1 production. These results may represent a possible

  12. Comparative effects of auxin and abscisic acid on growth, hydrogen ion efflux and gravitropism in primary roots of maize

    Science.gov (United States)

    Evans, M. L.; Mulkey, T. J.

    1984-01-01

    In order to test the idea that auxin action on root growth may be mediated by H(+) movement, the correlation of auxin action on growth and H(+) movement in roots was examined along with changes in H(+) efflux patterns associated with the asymmetric growth which occurs during gravitropism. The effects of indoleacetic acid (IAA) and abscisic acid (AbA) on growth, H(+) secretion, and gravitropism in roots were compared. Results show a close correlation existent between H(+) efflux and growth in maize roots. In intact roots there is strong H(+) efflux from the elongation zone. Growth-promoting concentrations of IAA stimulate H(+) efflux. During gravitropism the H(+) efflux from the elongation zone becomes asymmetric; the evidence indicates that auxin redistribution contributes to the development of acid efflux asymmetry. That AbA stimulates root growth is reflected in its ability to stimulate H(+) efflux from apical root segments.

  13. Antagonism between abscisic acid and gibberellins is partially mediated by ascorbic acid during seed germination in rice.

    Science.gov (United States)

    Ye, Nenghui; Zhang, Jianhua

    2012-05-01

    The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination, but the mechanism of antagonism during this process is not known. In the associated study, we investigated the relationship among ABA, reactive oxygen species (ROS), ascorbic acid (ASC) and GA during rice seed germination. ROS production is reduced by ABA, which hence results in decreasing ASC accumulation during imbibition. GA accumulation was also suppressed by a reduced ROS and ASC level, whereas application of exogenous ASC can partially rescue seed germination from ABA treatment. Further results show that production of ASC, which acts as a substrate in GA biosynthesis, was significantly inhibited by lycorine which thus suppressed the accumulation of GA. Consequently, expression of GA biosynthesis genes was suppressed by the low levels of ROS and ASC in ABA-treated seeds. These studies reveal a new role for ASC in mediating the antagonism between ABA and GA during seed germination in rice.

  14. Synthesis, structural characterization and effect on human granulocyte intracellular cAMP levels of abscisic acid analogs.

    Science.gov (United States)

    Bellotti, Marta; Salis, Annalisa; Grozio, Alessia; Damonte, Gianluca; Vigliarolo, Tiziana; Galatini, Andrea; Zocchi, Elena; Benatti, Umberto; Millo, Enrico

    2015-01-01

    The phytohormone abscisic acid (ABA), in addition to regulating physiological functions in plants, is also produced and released by several mammalian cell types, including human granulocytes, where it stimulates innate immune functions via an increase of the intracellular cAMP concentration ([cAMP]i). We synthesized several ABA analogs and evaluated the structure-activity relationship, by the systematical modification of selected regions of these analogs. The resulting molecules were tested for their ability to inhibit the ABA-induced increase of [cAMP]i in human granulocytes. The analogs with modified configurations at C-2' and C-3' abrogated the ABA-induced increase of the [cAMP]i and also inhibited several pro-inflammatory effects induced by exogenous ABA on granulocytes and monocytes. Accordingly, these analogs could be suitable as novel putative anti-inflammatory compounds.

  15. Structural Insights into Maize Viviparous14, a Key Enzyme in the Biosynthesis of the Phytohormone Abscisic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Messing, Simon A.J.; Gabelli, Sandra B.; Echeverria, Ignacia; Vogel, Jonathan T.; Guan, Jiahn Chou; Tan, Bao Cai; Klee, Harry J.; McCarty, Donald R.; Amzel, L. Mario (JHU); (Florida)

    2011-09-06

    The key regulatory step in the biosynthesis of abscisic acid (ABA), a hormone central to the regulation of several important processes in plants, is the oxidative cleavage of the 11,12 double bond of a 9-cis-epoxycarotenoid. The enzyme viviparous14 (VP14) performs this cleavage in maize (Zea mays), making it a target for the rational design of novel chemical agents and genetic modifications that improve plant behavior through the modulation of ABA levels. The structure of VP14, determined to 3.2-{angstrom} resolution, provides both insight into the determinants of regio- and stereospecificity of this enzyme and suggests a possible mechanism for oxidative cleavage. Furthermore, mutagenesis of the distantly related CCD1 of maize shows how the VP14 structure represents a template for all plant carotenoid cleavage dioxygenases (CCDs). In addition, the structure suggests how VP14 associates with the membrane as a way of gaining access to its membrane soluble substrate.

  16. Effects of Formulated Fertilizer Synergist on Abscisic Acid Accumulation, Proline Content and Photosynthetic Characteristics of Rice under Drought

    Institute of Scientific and Technical Information of China (English)

    WANG Shao-xian; XIA Shi-tou; PENG Ke-qin; KUANG Feng-chun; CAO Yong; XIAO Lang-tao

    2007-01-01

    To investigate the effects of formulated fertilizer synergist on the drought tolerance in rice, pot experiment was conducted to analyze the photosynthetic characteristics and the accumulation of abscisic acid (ABA) and proline in middle-season rice variety Peiliangyou 93. The synergist could improve the net photosynthetic rate, and coordination between the water loss and the CO2 absorption as well as reduce the harmful effect on photosynthetic process under drought conditions. Under drought, the ABA accumulated massively both in roots and leaves, while the ABA content in roots was far higher than that in leaves. The results indicate that synergist could increase the ABA accumulation, but reduce the proline accumulation in rice plant under drought.

  17. Structural Insights into Maize Viviparous14, a Key Enzyme in the Biosynthesis of the Phytohormone Abscisic Acid W

    Energy Technology Data Exchange (ETDEWEB)

    Messing, S.; Gabelli, S; Echeverria, I; Vogel, J; Guan, J; Tan, B; Klee, H; McCarty, D; Amzela, M

    2010-01-01

    The key regulatory step in the biosynthesis of abscisic acid (ABA), a hormone central to the regulation of several important processes in plants, is the oxidative cleavage of the 11,12 double bond of a 9-cis-epoxycarotenoid. The enzyme viviparous14 (VP14) performs this cleavage in maize (Zea mays), making it a target for the rational design of novel chemical agents and genetic modifications that improve plant behavior through the modulation of ABA levels. The structure of VP14, determined to 3.2-{angstrom} resolution, provides both insight into the determinants of regio- and stereospecificity of this enzyme and suggests a possible mechanism for oxidative cleavage. Furthermore, mutagenesis of the distantly related CCD1 of maize shows how the VP14 structure represents a template for all plant carotenoid cleavage dioxygenases (CCDs). In addition, the structure suggests how VP14 associates with the membrane as a way of gaining access to its membrane soluble substrate.

  18. Sensitivity during the forced swim test is a key factor in evaluating the antidepressant effects of abscisic acid in mice.

    Science.gov (United States)

    Qi, Cong-Cong; Shu, Yu-Mian; Chen, Fang-Han; Ding, Yu-Qiang; Zhou, Jiang-Ning

    2016-03-01

    Abscisic acid (ABA), a crucial phytohormone, is distributed in the brains of mammals and has been shown to have antidepressant effects in the chronic unpredictable mild stress test. The forced swim test (FST) is another animal model that can be used to assess antidepressant-like behavior in rodents. Here, we report that the antidepressant effects of ABA are associated with sensitivities to the FST in mice. Based on mean immobility in the 5-min forced swim pre-test, ICR mice were divided into short immobility mice (SIM) and long immobility mice (LIM) substrains. FST was carried out 8 days after drug administration. Learned helplessness, as shown by increased immobility, was only observed in SIM substrain and could be prevented by an 8-day ABA treatment. Our results show that ABA has antidepressant effects in SIM substrain and suggest that mice with learned helplessness might be more suitable for screening potential antidepressant drugs.

  19. Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition.

    Science.gov (United States)

    Sulochana, Sujitha Balakrishnan; Arumugam, Muthu

    2016-08-01

    Scenedesmus quadricauda, accumulated more lipid but with a drastic reduction in biomass yield during nitrogen starvation. Abscisic acid (ABA) being a stress responsible hormone, its effect on growth and biomass with sustainable lipid yield during nitrogen depletion was studied. The result revealed that the ABA level shoots up at 24h (27.21pmol/L) during the onset of nitrogen starvation followed by a sharp decline. The external supplemented ABA showed a positive effect on growth pattern (38×10(6)cells/ml) at a lower concentration. The dry biomass yield is also increasing up to 2.1 fold compared to nitrogen deficient S. quadricauda. The lipid content sustains in 1 and 2μM concentration of ABA under nitrogen-deficient condition. The fatty acid composition of ABA treated S. quadricauda cultures with respect to nitrogen-starved cells showed 11.17% increment in saturated fatty acid content, the desired lipid composition for biofuel application.

  20. The p450 monooxygenase BcABA1 is essential for abscisic acid biosynthesis in Botrytis cinerea

    DEFF Research Database (Denmark)

    Siewers, V.; Smedsgaard, Jørn; Tudzynski, P.

    2004-01-01

    The phytopathogenic ascomycete Botrytis cinerea is known to produce abscisic acid (ABA), which is thought to be involved in host-pathogen interaction. Biochemical analyses had previously shown that, in contrast to higher plants, the fungal ABA biosynthesis probably does not proceed via carotenoids...... but involves direct cyclization of farnesyl diphosphate and subsequent oxidation steps. We present here evidence that this "direct" pathway is indeed the only one used by an ABA-overproducing strain of B. cinerea. Targeted inactivation of the gene bccpr1 encoding a cytochrome P450 oxidoreductase reduced...... the ABA production significantly, proving the involvement of P450 monooxygenases in the pathway. Expression analysis of 28 different putative P450 monooxygenase genes revealed two that were induced under ABA biosynthesis conditions. Targeted inactivation showed that one of these, bcaba1, is essential...

  1. Olodaterol attenuates citric acid-induced cough in naive and ovalbumin-sensitized and challenged guinea pigs.

    Directory of Open Access Journals (Sweden)

    Eva Wex

    Full Text Available Excessive coughing is a common feature of airway diseases. Different G-protein coupled receptors, including β2-adrenergic receptors (β2-AR, have been implicated in the molecular mechanisms underlying the cough reflex. However, the potential antitussive property of β2-AR agonists in patients with respiratory disease is a matter of ongoing debate. The aim of our study was to test the efficacy of the long-acting β2-AR agonist olodaterol with regard to its antitussive property in a pre-clinical model of citric acid-induced cough in guinea pigs and to compare the results to different clinically relevant β2-AR agonists. In our study β2-AR agonists were intratracheally administered, as dry powder, into the lungs of naïve or ovalbumin-sensitized guinea pigs 15 minutes prior to induction of cough by exposure to citric acid. Cough events were counted over 15 minutes during the citric acid exposure. Olodaterol dose-dependently inhibited the number of cough events in naïve and even more potently and with a greater maximal efficacy in ovalbumin-sensitized guinea pigs (p < 0.01. Formoterol and salmeterol showed a trend towards reducing cough. On the contrary, indacaterol demonstrated pro-tussive properties as it significantly increased the number of coughs, both in naïve and ovalbumin-sensitized animals (p < 0.001. In conclusion, olodaterol, at doses eliciting bronchodilation, showed antitussive properties in a model of citric acid-induced cough in naïve and ovalbumin-sensitized guinea pigs. This is in agreement with pre-clinical and clinical studies showing antitussive efficacy of β2-AR agonists. Indacaterol increased the number of coughs in this model, which concurs with clinical data where a transient cough has been observed after indacaterol inhalation. While the antitussive properties of β2-AR agonists can be explained by their ability to lead to the cAMP-induced hyperpolarization of the neuron membrane thereby inhibiting sensory nerve

  2. Inhibition of acid-induced apoptosis by targeting ASIC1a mRNA with short hairpin RNA

    Institute of Scientific and Technical Information of China (English)

    Xie-chuan WENG; Jian-quan ZHENG; Qing-e JIN; Xiao-yun MA

    2007-01-01

    Aim: To study the role of acid-sensing ion channel (ASIC) la in the cell death and apoptosis induced by extracellular acid in C6 glioma cells. Methods: The stable ASICla-silenced C6 cell line, built with RNA interference technology, were con-firmed by RT-PCR and Western blot analysis. The cell viability following acid exposure was analyzed with lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. The apoptotic cells dyed with Annexin-V and propidium iodide were measured with a flow cytometer, while the changes of cell cycle were also assayed. Results: The downregulation of ASIC 1 a proteins by stable transfection of short hairpin RNA decreased the cell death percentage and increased cell viability following acid exposure with LDH and the MTT assay. The rate of apoptosis was lower in the ASIC la-silenced cell line than that in the wild-type C6 cell line. The percentage of sub-G0 cells was lower in the ASICla-silenced C6 cells than that in the wild-type cells. Conclusion: Extracellular acid induced cell death and apoptosis viaASICla mechanisms in the C6 glioma cells.

  3. Rabbit gastric ulcer models: comparison and evaluation of acetic acid-induced ulcer and mucosectomy-induced ulcer.

    Science.gov (United States)

    Maeng, Jin Hee; Lee, Eunhye; Lee, Don Haeng; Yang, Su-Geun

    2013-06-01

    In this study, we examined rabbit gastric ulcer models that can serve as more clinically relevant models. Two types of ulcer model were studied: acetic acid-induced ulcers (AAU) and mucosal resection-induced ulcers (MRU). For AAU, rabbit gastric mucosa was exposed by median laparotomy and treated with bottled acetic acid. MRU was examined as a model for endoscopic mucosal resection (EMR). Normal saline was injected into the submucosal layer and the swollen mucosa was resected with scissors. Endoscopic mucosal resection (EMR) is frequently performed for treatment of early gastric cancers. This procedure inevitably leads to ulcers and bleeding. Bleeding control is the major concern in endoscopic mucosectomy, and some endoscopic hemostatic agents are currently under clinical and preclinical studies. MRU was developed as a model for these induced ulcers and the evaluation of the healing process. The clinical relevancy of those models was compared with that of rat models. Progressive healing was observed for 7 days based on histology. Rabbit models demonstrate round, deep ulcers with clear margins and well-defined healing stages that were difficult to define in rat models.

  4. Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling

    Science.gov (United States)

    Foy, Eileen; Li, Kui; Sumpter, Rhea; Loo, Yueh-Ming; Johnson, Cynthia L.; Wang, Chunfu; Fish, Penny Mar; Yoneyama, Mitsutoshi; Fujita, Takashi; Lemon, Stanley M.; Gale, Michael

    2005-01-01

    Hepatitis C virus (HCV) is a major human pathogen that infects 170 million people. A hallmark of HCV is its ability to establish persistent infections reflecting the evasion of host immunity and interference with α/β-IFN innate immune defenses. We demonstrate that disruption of retinoic acid-inducible gene I (RIG-I) signaling by the viral NS3/4A protease contributes to the ability of HCV to control innate antiviral defenses. RIG-I was essential for virus or HCV RNA-induced signaling to the IFN-β promoter in human hepatoma cells. This signaling was disrupted by the protease activity of NS3/4A, which ablates RIG-I signaling of downstream IFN regulatory factor 3 and NF-κB activation, attenuating expression of host antiviral defense genes and interrupting an IFN amplification loop that otherwise suppresses HCV replication. Treatment of cells with an active site inhibitor of the NS3/4A protease relieved this suppression and restored intracellular antiviral defenses. Thus, NS3/4A control of RIG-I supports HCV persistence by preventing IFN regulatory factor 3 and NF-κB activation. Our results demonstrate that these processes are amenable to restoration through pharmacologic inhibition of viral protease function. PMID:15710892

  5. Rheological and physical properties of camel and cow milk gels enriched with phosphate and calcium during acid-induced gelation.

    Science.gov (United States)

    Kamal, Mohammad; Foukani, Mohammed; Karoui, Romdhane

    2017-02-01

    The rheological properties of acid-induced coagulation of camel and cow milk gels following the addition of calcium chloride (CaCl2) and hydrogen phosphate dehydrate (Na2HPO4*2H2O) were investigated using a dynamic low amplitude oscillatory rheology. For a considered condition, the final values of storage modulus (G') and loss modulus (G″) of camel milk gels were significantly lower than those of cow milk gels. The increase of the added CaCl2 levels improved significantly the gelation properties of camel and cow milk gels, since a reduction in the gelation time and an increase in the gel firmness were observed. Following the addition of Na2HPO4*2H2O at 10 and 20 mM, no significant effect on the gelation rate and the firmness of camel milk gels was observed, while, a significant decrease in the gelation rate and firmness were observed for cow milk gels.

  6. Isobolographic analysis of interaction between cyclooxygenase inhibitors and tramadol in acetic acid-induced writhing in mice.

    Science.gov (United States)

    Satyanarayana, Padi S V; Jain, Naveen K; Singh, Amarjit; Kulkarni, Shrinivas K

    2004-07-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) and opioids are the most commonly used analgesics in the management of acute and chronic pain. Combined use of NSAIDs and opioids has been indicated for achieving better analgesia with reduced side effects. The present study was aimed at evaluating the combination of different NSAIDs, which inhibit cyclooxygenase (COX) enzymes and tramadol against acetic acid-induced writhing in mice. The expected beneficial effect of combination regimen was analyzed by isobolographic analysis. The oral and intrathecally administered tramadol, a mu-opioid and naproxen, a nonselective COX inhibitor produced dose-dependent antinociception, however, rofecoxib, a selective COX-2 inhibitor lacked analgesic efficacy in writhing test. Isobolographic analysis showed synergistic or supra-additive interactions for the combinations of naproxen and tramadol after oral and intrathecal administration. However, similar interaction was not observed when tramadol was combined with rofecoxib. Pretreatment with naloxone partially reversed the antinociceptive effect of tramadol per se and its combination with naproxen without modifying the per se effect of NSAID. The results demonstrated marked synergistic interaction between naproxen and tramadol and such interaction involved opioid as well as non-opioid mechanisms of tramadol and inhibition of COX-1 but not COX-2 by naproxen.

  7. The effect of alginates on deoxycholic-acid-induced changes in oesophageal mucosal biology at pH 4.

    Science.gov (United States)

    Dettmar, Peter W; Strugala, Vicki; Tselepis, Chris; Jankowski, Janusz A

    2007-01-01

    Long-standing gastro-oesophageal reflux disease (GORD) can give rise to Barrett's oesophagus (BM), a metaplastic condition and precursor to oesophageal adenocarcinoma (AC). Oesophageal cancer was once rare but is now the 5th biggest cancer killer in the U.K. Reflux of bile acids into the oesophagus is implicated in the progression to BM as bile acids at pH 4 have been shown to induce c-myc expression, an oncogene upregulated in BM and AC. In the present study we investigated the role of the biopolymer alginate on bile acid induced molecular changes in oesophageal cell lines. OE21, OE33 and TE-7 oesophageal cell lines were exposed to 100 microM deoxycholic acid at pH 4 in the presence or absence of alginates. Levels of c-myc, E-cadherin, beta-catenin and Tcf signalling were determined by Real-Time PCR, Western blotting, immunofluoresence and reporter assays. All alginates tested were able to prevent the induction of c-myc by acidified deoxycholic acid in vitro. The upstream effects of acidified deoxycholic acid on E-cadherin, beta-catenin and Tcf signalling were also suppressed by alginate. Therefore, we have demonstrated that reflux of bile acids into the oesophagus initiates a potentially damaging molecular cascade of events using an in vitro model and that a biopolymer, alginate, can protect against these effects.

  8. Protective Effect of Cod (Gadus macrocephalus) Skin Collagen Peptides on Acetic Acid-Induced Gastric Ulcer in Rats.

    Science.gov (United States)

    Niu, Huina; Wang, Zhicong; Hou, Hu; Zhang, Zhaohui; Li, Bafang

    2016-07-01

    This research was performed to explore the protective effect of cod skin collagen peptides (CCP) on gastric ulcer induced by acetic acid. The CCP were fractionated into low molecular CCP (LMCCP, Mw 3 kDa). In HMCCP and LMCCP, glycine of accounted for about one-third of the total amino acids without cysteine and tryptophan, and hydrophobic amino acids accounted for about 50%. After 21 d CCP treatment (60 or 300 mg/kg, p.o./daily), the healing effects on acetic acid-induced gastric ulcers were evaluated by macroscopic measure, microscopic measure, and immune histochemistry. Moreover, the expression levels of the growth factors, such as vascular endothelial growth factor, epidermal growth factor, transforming growth factor β1 (TGFβ1), and the heat shock protein 70 (HSP70) was detected. The results showed that both LMCCP and HMCCP could significantly decrease the ulcer areas and promote the healing of the lesions. They also could improve the levels of hexosamine, glutathione, superoxide dismutase, and glutathione peroxidase, and reduce the content of malondialdehyde and inducible nitric oxide synthase. In addition, the expression level of TGFβ1 gene and HSP70 mRNA was significantly improved by the treatment. It suggested that CCP could be able to improve symptoms of gastric ulcer and probably be used in the treatment of gastric ulcer. © 2016 Institute of Food Technologists®

  9. The effect of nedocromil sodium, sodium cromoglycate and codeine phosphate on citric acid-induced cough in dogs.

    Science.gov (United States)

    Jackson, D. M.

    1988-01-01

    1. The effects of nedocromil sodium, sodium cromoglycate and codeine phosphate on citric acid-induced cough have been studied in conscious tracheostomised dogs. 2. Nedocromil sodium (approximately 15 mg given as an aerosol) and codeine phosphate (5 mg kg-1, i.v.) significantly increased the time to the first cough when dogs were challenged with citric acid aerosol. The mean number of coughs in the initial period of coughing fell after treatment of dogs with nedocromil sodium or with codeine phosphate, but this reduction in mean cough number was not statistically significant. 3. Neither sodium cromoglycate (approximately 15 mg given as an aerosol) nor saline had significant effect on a citric acid challenge. 4. It is concluded that nedocromil sodium, but not sodium cromoglycate, possesses an anti-tussive action that may result from inhibition of sensory nerve activity in the lung. Nedocromil sodium may prove useful in the treatment of unproductive cough in situations where the use of a centrally-acting antitussive is undesirable. PMID:2836011

  10. Phenylbutyric acid induces the cellular senescence through an Akt/p21{sup WAF1} signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hag Dong [Laboratory of Biochemistry, School of Life Sciences and Biotechnology, and BioInstitute, Korea University, Seoul 136-701 (Korea, Republic of); Jang, Chang-Young [Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul 140-742 (Korea, Republic of); Choe, Jeong Min [Laboratory of Biochemistry, School of Life Sciences and Biotechnology, and BioInstitute, Korea University, Seoul 136-701 (Korea, Republic of); Department of Biochemistry, Korea University College of Medicine, Seoul 136-705 (Korea, Republic of); Korean Institute of Molecular Medicine and Nutrition, Seoul 136-705 (Korea, Republic of); Sohn, Jeongwon, E-mail: biojs@korea.ac.kr [Department of Biochemistry, Korea University College of Medicine, Seoul 136-705 (Korea, Republic of); Korean Institute of Molecular Medicine and Nutrition, Seoul 136-705 (Korea, Republic of); Kim, Joon, E-mail: joonkim@korea.ac.kr [Laboratory of Biochemistry, School of Life Sciences and Biotechnology, and BioInstitute, Korea University, Seoul 136-701 (Korea, Republic of)

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer Phenylbutyric acid induces cellular senescence. Black-Right-Pointing-Pointer Phenylbutyric acid activates Akt kinase. Black-Right-Pointing-Pointer The knockdown of PERK also can induce cellular senescence. Black-Right-Pointing-Pointer Akt/p21{sup WAF1} pathway activates in PERK knockdown induced cellular senescence. -- Abstract: It has been well known that three sentinel proteins - PERK, ATF6 and IRE1 - initiate the unfolded protein response (UPR) in the presence of misfolded or unfolded proteins in the ER. Recent studies have demonstrated that upregulation of UPR in cancer cells is required to survive and proliferate. Here, we showed that long exposure to 4-phenylbutyric acid (PBA), a chemical chaperone that can reduce retention of unfolded and misfolded proteins in ER, induced cellular senescence in cancer cells such as MCF7 and HT1080. In addition, we found that treatment with PBA activates Akt, which results in p21{sup WAF1} induction. Interestingly, the depletion of PERK but not ATF6 and IRE1 also induces cellular senescence, which was rescued by additional depletion of Akt. This suggests that Akt pathway is downstream of PERK in PBA induced cellular senescence. Taken together, these results show that PBA induces cellular senescence via activation of the Akt/p21{sup WAF1} pathway by PERK inhibition.

  11. Chromosomal localization of a novel retinoic acid induced gene RA28 and the protein distribution of its encoded protein

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Gene RA28 is a retinoic acid induced novel gene isolated in our laboratory previously. All-trans retinoic acid (ATRA) was used to induce lung adenocarcinoma cell line GLC-82, and RA28 was obtained by subtractive hybridization. Green fluorescent protein (GFP) has emerged as a unique tool for examining introcellular phenomena in living cells. GFP possesses an intrinsic fluorescence at 488 nm that does not require other co-factors. In this report, an eukaryotic expression plasmid pEGFP-C1-RA28 was constructed and transfected with parental cell line GLC-82 to analyze protein expression and its distribution in living cells. Moreover, radiation hybrid (RH) technique was used to localize RA28 to the chromosome. The results show that gene RA28 is mapped to the chromosome 19q13.1 region, its encoded protein is distributed on cell membrane. All the results further demonstrate that GFP and RH techniques are accurate, fast, repetitive, and will be powerful methods for investigating the gene and protein localization.

  12. COPPER AMINE OXIDASE1 (CuA01)of Arabidopsis thaliana Contributes to Abscisic Acid-and Polyamine-Induced Nitric Oxide Biosynthesis and Abscisic Acid Signal Transduction

    Institute of Scientific and Technical Information of China (English)

    Rinukshi Wimalasekera; Corina Villar; Tahmina Begum; Günther F. E. Scherer

    2011-01-01

    Polyamines (PA), polyamine oxidases, copper amine oxidases, and nitric oxide (NO)play important roles in physiology and stress responses in plants. NO biosynthesis as a result of catabolism of PA by polyamine oxidases and copper amine oxidases may explain in part PA-mediated responses. Involvement of a copper amine oxidase gene, COPPER AMINE OXIDASE1 (CuA01), of Arabidopsis was tested for its role in stress responses using the knockouts cuaol.1 and cuaol-2. PA-induced and ABA-induced NO production investigated by fluorometry and fluorescence microscopy showed that the cuaol-1 and cuaol-2 are impaired in NO production, suggesting a function of CuAO1 in PA and ABA-mediated NO production. Furthermore, we found a PA-dependent increase in protein S-nitrosylation. The addition of PA and ABA also resulted in HO increases, cuaol-1 and cuaol-2 showed less sensitivity to exogenous ABA supplementation during ger-mination, seedling establishment, and root growth inhibition as compared to wild-type. In response to ABA treatment,expression levels of the stress-responsive genes RD29A and ADH1 were significantly lower in the knockouts. These obser-vations characterize cuaol-1 and cuaol-2 as ABA-insensitive mutants. Taken together, our findings extend the ABA signal transduction network to include CuAO1 as one potential contributor to enhanced NO production by ABA.

  13. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea.

    Science.gov (United States)

    Angulo, Carlos; de la O Leyva, María; Finiti, Ivan; López-Cruz, Jaime; Fernández-Crespo, Emma; García-Agustín, Pilar; González-Bosch, Carmen

    2015-03-01

    Resistance of tomato (Solanum Lycopersicum) to the fungal pathogen Botrytis cinerea requires complex interplay between hormonal signalling. In this study, we explored the involvement of new oxylipins in the tomato basal and induced response to this necrotroph through the functional analysis of the tomato α-dioxygenase2 (α-DOX2)-deficient mutant divaricata. We also investigated the role of SA in the defence response against this necrotrophic fungus using SA-deficient tomato nahG plants. The plants lacking dioxigenase α-DOX2, which catalyses oxylipins production from fatty acids, were more susceptible to Botrytis, and hexanoic acid-induced resistance (Hx-IR) was impaired; hence α-DOX2 is required for both tomato defence and the enhanced protection conferred by natural inducer hexanoic acid (Hx) against B. cinerea. The divaricata plants accumulated less pathogen-induced callose and presented lower levels of jasmonic acid (JA) and 12-oxo-phytodienoic acid (OPDA) upon infection if compared to the wild type. Glutathion-S-transferase (GST) gene expression decreased and ROS production significantly increased in Botrytis-infected divaricata plants. These results indicate that absence of α-DOX2 influences the hormonal changes, oxidative burst and callose deposition that occur upon Botrytis infection in tomato. The study of SA-deficient nahG tomato plants showed that the plants with low SA levels displayed increased resistance to Botrytis, but were unable to display Hx-IR. This supports the involvement of SA in Hx-IR. NaghG plants displayed reduced callose and ROS accumulation upon infection and an increased GST expression. This reflects a positive relationship between SA and these defensive mechanisms in tomato. Finally, Hx boosted the pathogen-induced callose in nahG plants, suggesting that this priming mechanism is SA-independent. Our results support the involvement of the oxylipins pathway and SA in tomato response to Botrytis, probably through complex crosstalk of

  14. Abscisic Acid and Cytokinin-Induced Osmotic and Antioxidant Regulation in Two Drought-Tolerant and Drought-Sensitive Cultivars of Wheat During Grain Filling Under Water Deficit in Field Conditions

    Directory of Open Access Journals (Sweden)

    Mohammad-Reza SARAFRAZ-ARDAKANI

    2014-09-01

    Full Text Available Phytohormones play critical roles in regulating plant responses to stress. The present study investigates the effect of cytokinin, abscisic acid and cytokinin/abscisic acid interaction on some osmoprotectants and antioxidant parameters induced by drought stress in two wheat cultivars (Triticum aestivum L. of ‘Pishgam’ and ‘MV-17’ as tolerant and sensitive to drought during post-anthesis phase, respectively grown in field conditions. The most considerable effect of the treatments was exhibited 21 days after anthesis. Under drought conditions, the flag leaf soluble carbohydrate content increased in both cultivars while starch content was remarkably decreased in ‘Pishgam’ as compared to ‘MV-17’. Abscisic acid increased total soluble sugar and reduced starch more than other hormonal treatments, although it decreased studied monosaccharaides in ‘Pishgam’, especially. Drought stress induced high proportion of gylycinebetain and free proline in ‘Pishgam’ cultivar. Application of abscisic acid and cytokinin/abscisic acid interaction increased gylycinebetain and proline content in both cultivars under irrigation and drought conditions. The tolerant cultivar exhibited less accumulation of hydrogen peroxide and malondialdehyde in relation to significant increase of catalase and peroxidase activities and α-tocpherol content under drought conditions. All hormonal treatments increased the named enzyme activities under both irrigation and drought conditions, while higher accumulation of α-tocopherol was only showed in case of cytokinin application. Also, abscisic acid and cytokinin/abscisic acid could decrease drought-induced hydrogen peroxide and malondialdehyde level to some extent, although abscisic acid increased both of hydrogen peroxide andmalondialdehyde content in irrigation phase, especially.

  15. AtPP2CG1, a protein phosphatase 2C, positively regulates salt tolerance of Arabidopsis in abscisic acid-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin, E-mail: fangfei6073@126.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Zhu, Yanming, E-mail: ymzhu2001@neau.edu.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Zhai, Hong, E-mail: Zhai.h@neigaehrb.ac.cn [Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150040 (China); Cai, Hua, E-mail: small-big@sohu.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Ji, Wei, E-mail: iwei_j@hotmail.com [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Luo, Xiao, E-mail: luoxiao2010@yahoo.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China); Li, Jing, E-mail: lijing@neau.edu.cn [Plant Secondary Metabolism Laboratory, Northeast Agricultural University, Harbin 150030 (China); Bai, Xi, E-mail: baixi@neau.edu.cn [Plant Bioengineering Laboratory, Northeast Agricultural University, Harbin 150030 (China)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer AtPP2CG1 positively regulates salt tolerance in ABA-dependent manner. Black-Right-Pointing-Pointer AtPP2CG1 up-regulates the expression of marker genes in different pathways. Black-Right-Pointing-Pointer AtPP2CG1 expresses in the vascular system and trichomes of Arabidopsis. -- Abstract: AtPP2CG1 (Arabidopsis thaliana protein phosphatase 2C G Group 1) was predicted as an abiotic stress candidate gene by bioinformatic analysis in our previous study. The gene encodes a putative protein phosphatase 2C that belongs to Group G of PP2C. There is no report of Group G genes involved in abiotic stress so far. Real-time RT-PCR analysis showed that AtPP2CG1 expression was induced by salt, drought, and abscisic acid (ABA) treatment. The expression levels of AtPP2CG1 in the ABA synthesis-deficient mutant abi2-3 were much lower than that in WT plants under salt stress suggesting that the expression of AtPP2CG1 acts in an ABA-dependent manner. Over-expression of AtPP2CG1 led to enhanced salt tolerance, whereas its loss of function caused decreased salt tolerance. These results indicate that AtPP2CG1 positively regulates salt stress in an ABA-dependent manner. Under salt treatment, AtPP2CG1 up-regulated the expression levels of stress-responsive genes, including RD29A, RD29B, DREB2A and KIN1. GUS activity was detected in roots, leaves, stems, flower, and trichomes of AtPP2CG1 promoter-GUS transgenic plants. AtPP2CG1 protein was localized in nucleus and cytoplasm via AtPP2CG1:eGFP and YFP:AtPP2CG1 fusion approaches.

  16. On the use of Ethephon as abscising agent in cv. Crimson Seedless table grape production: combination of Fruit Detachment Force, Fruit Drop and metabolomics.

    Science.gov (United States)

    Rizzuti, Antonino; Aguilera-Sáez, Luis Manuel; Gallo, Vito; Cafagna, Isabella; Mastrorilli, Piero; Latronico, Mario; Pacifico, Andrea; Matarrese, Angela Maria Stella; Ferrara, Giuseppe

    2015-03-15

    The effect of 2-chloroethylphosphonic acid (Ethephon, in the following ETH) as abscising agent on cv. Crimson Seedless table grape was investigated by means of Fruit Detachment Force (FDF) and Fruit Drop (FD) analyses combined with a metabolomic study carried out by High Resolution Mass Spectrometry (HRMS) and Nuclear Magnetic Resonance (NMR) spectroscopy. The effectiveness of ETH as abscising agent was ascertained with ETH concentration ranging from 1.4 to 4.0 g/L in a two-year study. The ETH treatments caused berry drops higher than 40% and induced an increase of tartaric acid, procyanidin P2, terpenoid derivatives and peonidin-3-glucoside as well as a decrease of catechin and epicatechin. HRMS-NMR covariance analysis was carried out to correlate the fluctuations of tartaric acid NMR signals to those of MS peaks of the secondary metabolites affected by ETH treatments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Mutations in the Arabidopsis Lst8 and Raptor genes encoding partners of the TOR complex, or inhibition of TOR activity decrease abscisic acid (ABA) synthesis.

    Science.gov (United States)

    Kravchenko, Alena; Citerne, Sylvie; Jéhanno, Isabelle; Bersimbaev, Rakhmetkazhi I; Veit, Bruce; Meyer, Christian; Leprince, Anne-Sophie

    2015-11-27

    The Target of Rapamycin (TOR) kinase regulates essential processes in plant growth and development by modulation of metabolism and translation in response to environmental signals. In this study, we show that abscisic acid (ABA) metabolism is also regulated by the TOR kinase. Indeed ABA hormone level strongly decreases in Lst8-1 and Raptor3g mutant lines as well as in wild-type (WT) Arabidopsis plants treated with AZD-8055, a TOR inhibitor. However the growth and germination of these lines are more sensitive to exogenous ABA. The diminished ABA hormone accumulation is correlated with lower transcript levels of ZEP, NCED3 and AAO3 biosynthetic enzymes, and higher transcript amount of the CYP707A2 gene encoding a key-enzyme in abscisic acid catabolism. These results suggest that the TOR signaling pathway is implicated in the regulation of ABA accumulation in Arabidopsis.

  18. Effects of abscisic acid, gibberellic acid and fusicoccin on the transmembrane potential during the early phases of germination in radish (Raphanus sativus L.) seeds.

    Science.gov (United States)

    Ballarin-Denti, A; Cocucci, M

    1979-01-01

    During germination, the transmembrane electric potential (PD) of cortical cells of the embryonal axis of radish seeds (Raphanus sativus L.) rises from-120 mV initially to a maximum of-150 mV after 5 h incubation, then falls again to stable values of around-120 mV. Treatments inhibiting germination block the transitory PD increase. Administration of uncoupling agents or low temperatures, during the process of germination, produces a marked fall of the PD transitory increase. Abscisic Acid has a parallel inhibitory effect on PD and germination, while fusicoccin produces a rise in both; administration of abscisic acid with fusicoccin inhibits germination, while the PD remains at the high levels given by fusicoccin. These results are discussed in relation to ion exchange at membrane level.

  19. Preemptive hemodynamic intervention restricting the administration of fluids attenuates lung edema progression in oleic acid-induced lung injury.

    Science.gov (United States)

    Gil Cano, A; Gracia Romero, M; Monge García, M I; Guijo González, P; Ruiz Campos, J

    2017-04-01

    A study is made of the influence of preemptive hemodynamic intervention restricting fluid administration upon the development of oleic acid-induced lung injury. A randomized in vivo study in rabbits was carried out. University research laboratory. Sixteen anesthetized, mechanically ventilated rabbits. Hemodynamic measurements obtained by transesophageal Doppler signal. Respiratory mechanics computed by a least square fitting method. Lung edema assessed by the ratio of wet weight to dry weight of the right lung. Histological examination of the left lung. Animals were randomly assigned to either the early protective lung strategy (EPLS) (n=8) or the early protective hemodynamic strategy (EPHS) (n=8). In both groups, lung injury was induced by the intravenous infusion of oleic acid (OA) (0.133mlkg(-1)h(-1) for 2h). At the same time, the EPLS group received 15mlkg(-1)h(-1) of Ringer lactate solution, while the EPHS group received 30mlkg(-1)h(-1). Measurements were obtained at baseline and 1 and 2h after starting OA infusion. After 2h, the cardiac index decreased in the EPLS group (p<0.05), whereas in the EPHS group it remained unchanged. Lung compliance decreased significantly only in the EPHS group (p<0.05). Lung edema was greater in the EPHS group (p<0.05). Histological damage proved similar in both groups (p=0.4). In this experimental model of early lung injury, lung edema progression was attenuated by preemptively restricting the administration of fluids. Copyright © 2016 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  20. Chronic activity wheel running reduces the severity of kainic acid-induced seizures in the rat: possible role of galanin.

    Science.gov (United States)

    Reiss, J I; Dishman, R K; Boyd, H E; Robinson, J K; Holmes, P V

    2009-04-17

    Studies in both humans and rodents suggest that exercise can be neuroprotective, but the mechanisms by which this occurs are still poorly understood. Three weeks of voluntary, physical activity in rats upregulates prepro-galanin messenger RNA levels in the locus coeruleus. Galanin is a neuropeptide extensively coexisting with norepinephrine that decreases neuronal hyperexcitability both in vivo and in vitro. Thus, exercise may diminish neural hyperexcitability through a galaninergic mechanism. The current experiments tested whether voluntary activity wheel running would protect against kainic acid-evoked seizures and whether galaninergic signaling is a necessary factor in this protection. In experiment 1, rats were given access to running wheels or remained sedentary for three weeks. After this period, rats received an intraperitoneal (i.p.) injection of 0, 7, 10 or 14 mg/kg kainic acid. Exercise decreased the severity of or eliminated seizure behaviors and hippocampal c-fos expression induced by kainic acid. In experiment 2, exercising or sedentary rats were injected intracerebroventricularly (i.c.v.) with 0.2 or 0.4 microg of kainic acid following either an injection of M-40 (a galanin receptor antagonist) or saline. Exercise decreased kainic acid-induced seizures at the 0.2 microg dose, and M-40 (6 nmol) decreased this effect. In contrast, there were no detectable differences between exercising and sedentary rats in behavior at the 0.4 microg dose. The results suggest that the protective effects of exercise against seizures are at least partially mediated by regulation of neural excitability through a process involving galanin.

  1. Effects of Changtai granules, a traditional compound Chinese medicine, on chronic trinitrobenzene sulfonic acid-induced colitis in rats

    Institute of Scientific and Technical Information of China (English)

    Yong-Bing Cao; Yah Wang; Yuan-Ying Jiang; Jun-Dong Zhang; Ya-Ying Diao; Lan Yan; De-Jun Wang; Xin-Ming Jia; Ping-Hui Gao; Ming-He Cheng; Zheng Xu

    2005-01-01

    AIM: To study the effects of Changtai granules (CTG), a traditional compound Chinese medicine, on chronic trinitrobenzene sulfonic acid-induced colitis in rats. METHODS: Healthy adult Sprague-Dawley (SD) rats of both sexes, weighing 250-300 g, were employed in the present study. The rat colitis models were induced by 2, 4,6-trinitrobenzene sulfonic acid (TNBS) enemas at a concentration of 100 mg/kg in 50% ethanol. The experimental animals were randomly divided into dexamethasone (DX) treatment, CTG treatment, and model control groups, which were intracolicly treated daily with DX (0.2 mg/kg), CTG at doses of 2.9, 5.7 and 11.4 g crude drug/kg, and the equal amount of saline respectively from 6 h following induction of the colitis in rats inflicted with TNBS to the end of study. A normal control group of rats treated without TNBS but saline enema was also included in the study. After 3 wk of treatment, the animals were assessed for colonal inflammatory and ulcerative responses with respect to mortality, frequency of diarrhea, histology and myeloperoxidase activity (MPO).RESULTS: The therapeutic effect of CTG on ulcerative colitis (UC) was better than DX. CTG effectively inhibited the activity of granulocytes, macrophages and monocytes in a dosedependent manner. Also it reduced MPO and formation of inflammation in colonic mucosal tissue. Furthermore, administration of CTG significantly prevented body mass loss and death, and decreased frequency of diarrhea in UC rats, when compared with the model control group rats.CONCLUSION: CTG would prove to be an ideal drug for chronic UC, and is warranted to be studied further.

  2. Functional and cellular characterization of human Retinoic Acid Induced 1 (RAI1 mutations associated with Smith-Magenis Syndrome

    Directory of Open Access Journals (Sweden)

    Carmona-Mora Paulina

    2010-08-01

    Full Text Available Abstract Background Smith-Magenis Syndrome is a contiguous gene syndrome in which the dosage sensitive gene has been identified: the Retinoic Acid Induced 1 (RAI1. Little is known about the function of human RAI1. Results We generated the full-length cDNA of the wild type protein and five mutated forms: RAI1-HA 2687delC, RAI1-HA 3103delC, RAI1 R960X, RAI1-HA Q1562R, and RAI1-HA S1808N. Four of them have been previously associated with SMS clinical phenotype. Molecular weight, subcellular localization and transcription factor activity of the wild type and mutant forms were studied by western blot, immunofluorescence and luciferase assays respectively. The wild type protein and the two missense mutations presented a higher molecular weight than expected, localized to the nucleus and activated transcription of a reporter gene. The frameshift mutations generated a truncated polypeptide with transcription factor activity but abnormal subcellular localization, and the same was true for the 1-960aa N-terminal half of RAI1. Two different C-terminal halves of the RAI1 protein (1038aa-end and 1229aa-end were able to localize into the nucleus but had no transactivation activity. Conclusion Our results indicate that transcription factor activity and subcellular localization signals reside in two separate domains of the protein and both are essential for the correct functionality of RAI1. The pathogenic outcome of some of the mutated forms can be explained by the dissociation of these two domains.

  3. Protective effect of the methanolic extract of malva parviflora l. leaves on acetic acid-induced ulcerative colitis in rats

    Directory of Open Access Journals (Sweden)

    Aisha Dugani

    2016-01-01

    Full Text Available Background/Aims: Inflammatory bowel disease (IBD is a general term describing chronic, idiopathic relapsing, inflammatory conditions of the gastrointestinal tract of unknown etiology. Previous studies have indicated that Malva parviflora leaf extract possesses anti-inflammatory, antioxidant, and antiulcerogenic activity. activity. This work aimed to investigatee the anti-inflammatory effect of the methanolic (MEMP and aqueous (AEMP extracts of M. parviflora leaves on acetic acid-induced colitis in rats. Materials and Methods: 42 male Wistar albino rats were divided into seven groups (n = 6. Group I: Normal saline control group with no colitis; Group II: Acetic acid colitis group; Group III: 100 mg/kg/5 d MEMP; Group IV: 200 mg/kg/5 d.MEMP; Group V: 100 mg/kg/5 d AEMP; Group VI: 200 mg/kg/5 d AEMP; Group VII: Prednisolone group (2 mg/kg/5 d. Treatments were followed by induction of colitis using intrarectal instillation of 2 mL of 4% acetic acid. Colon damage was evaluated macroscopically (spleen weight/body weight, colon weight/length ratio and the histological changes were also recorded. Results: The results of this study showed that acetic acid caused severe inflammation of the colon and a significant increase in spleen weight/body weight, and an increase in colon weight/length ratio compared with normal control group. Pretreatment with MEMP and AEMP for 5 days followed by induction of colitis resulted in a significant attenuation of spleen weight and colon weight/length ratio compared with acetic acid control group. Methanolic extract provided better anticolitic effect than aqueous extract; the effect was prominent at the dose of 200 mg/kg. Histopathological findings confirmed the protective effect of the MEMP. Conclusion: In conclusion, MEMP could ameliorate mucosal damage in experimentally induced colitis when given orally.

  4. Berberine reverses free-fatty-acid-induced insulin resistance in 3T3-L1 adipocytes through targeting IKKβ

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    AIM:To investigate the effects and molecular mechanisms of berberine on improving insulin resistance induced by free fatty acids (FFAs) in 3T3-LI adipocytes.METHODS:The model of insulin resistance in 3T3-L1 adipocytes was established by adding palmic acid (0.5 mmol/L) to the culture medium.Berberine treatment was performed at the same time.Glucose uptake rate was determined by the 2-deoxy-[3H]-Dglucose method.The levels of IkB kinase beta (IKKβ)Ser181 phosphorylation,insulin receptor substrate1(IRS-1) Ser307 phosphorylation,expression of IKKβ,IRS-1,nuclear transcription factor kappaB p65 (NF-κB p65),phosphatidylinositol-3-kinase p85(PI-3K p85) and glucose transporter 4 (GLUT4) proteins were detected by Western blotting.The distribution of NF-κB p65 proteins inside the adipocytes was observed through confocal laser scanning microscopy(CLSM).RESULTS:After the intervention of palmic acid for 24 h,the insulin-stimulated glucose transport in 3T3-L1 adipocytes was inhibited by 67%.Meanwhile,the expression of IRS-1 and PI-3K p85 protein was reduced,while the levels of IKKβ Ser181 and IRS-1 Ser307 phosphorylation,and nuclear translocation of NF-κB p65 protein were increased.However,the above indexes,which indicated the existence of insulin resistance,were reversed by berberine although the expression of GLUT4,IKKβ and total NF-κB p65 protein were not changed during this study.CONCLUSION:Insulin resistance induced by FFAs in 3T3-L1 adipocytes can be improved by berberine.Berberine reversed free-fatty-acid-induced insulin resistance in 3T3-L1 adipocytes through targeting IKKβ.

  5. Subchronic treatment of donepezil rescues impaired social, hyperactive, and stereotypic behavior in valproic acid-induced animal model of autism.

    Science.gov (United States)

    Kim, Ji-Woon; Seung, Hana; Kwon, Kyung Ja; Ko, Mee Jung; Lee, Eun Joo; Oh, Hyun Ah; Choi, Chang Soon; Kim, Ki Chan; Gonzales, Edson Luck; You, Jueng Soo; Choi, Dong-Hee; Lee, Jongmin; Han, Seol-Heui; Yang, Sung Min; Cheong, Jae Hoon; Shin, Chan Young; Bahn, Geon Ho

    2014-01-01

    Autism spectrum disorder (ASD) is a group of pervasive developmental disorders with core symptoms such as sociability deficit, language impairment, and repetitive/restricted behaviors. Although worldwide prevalence of ASD has been increased continuously, therapeutic agents to ameliorate the core symptoms especially social deficits, are very limited. In this study, we investigated therapeutic potential of donepezil for ASD using valproic acid-induced autistic animal model (VPA animal model). We found that prenatal exposure of valproic acid (VPA) induced dysregulation of cholinergic neuronal development, most notably the up-regulation of acetylcholinesterase (AChE) in the prefrontal cortex of affected rat and mouse offspring. Similarly, differentiating cortical neural progenitor cell in culture treated with VPA showed increased expression of AChE in vitro. Chromatin precipitation experiments revealed that acetylation of histone H3 bound to AChE promoter region was increased by VPA. In addition, other histone deacetyalse inhibitors (HDACIs) such as trichostatin A and sodium butyrate also increased the expression of AChE in differentiating neural progenitor cells suggesting the essential role of HDACIs in the regulation of AChE expression. For behavioral analysis, we injected PBS or donepezil (0.3 mg/kg) intraperitoneally to control and VPA mice once daily from postnatal day 14 all throughout the experiment. Subchronic treatment of donepezil improved sociability and prevented repetitive behavior and hyperactivity of VPA-treated mice offspring. Taken together, these results provide evidence that dysregulation of ACh system represented by the up-regulation of AChE may serve as an effective pharmacological therapeutic target against autistic behaviors in VPA animal model of ASD, which should be subjected for further investigation to verify the clinical relevance.

  6. Subchronic treatment of donepezil rescues impaired social, hyperactive, and stereotypic behavior in valproic acid-induced animal model of autism.

    Directory of Open Access Journals (Sweden)

    Ji-Woon Kim

    Full Text Available Autism spectrum disorder (ASD is a group of pervasive developmental disorders with core symptoms such as sociability deficit, language impairment, and repetitive/restricted behaviors. Although worldwide prevalence of ASD has been increased continuously, therapeutic agents to ameliorate the core symptoms especially social deficits, are very limited. In this study, we investigated therapeutic potential of donepezil for ASD using valproic acid-induced autistic animal model (VPA animal model. We found that prenatal exposure of valproic acid (VPA induced dysregulation of cholinergic neuronal development, most notably the up-regulation of acetylcholinesterase (AChE in the prefrontal cortex of affected rat and mouse offspring. Similarly, differentiating cortical neural progenitor cell in culture treated with VPA showed increased expression of AChE in vitro. Chromatin precipitation experiments revealed that acetylation of histone H3 bound to AChE promoter region was increased by VPA. In addition, other histone deacetyalse inhibitors (HDACIs such as trichostatin A and sodium butyrate also increased the expression of AChE in differentiating neural progenitor cells suggesting the essential role of HDACIs in the regulation of AChE expression. For behavioral analysis, we injected PBS or donepezil (0.3 mg/kg intraperitoneally to control and VPA mice once daily from postnatal day 14 all throughout the experiment. Subchronic treatment of donepezil improved sociability and prevented repetitive behavior and hyperactivity of VPA-treated mice offspring. Taken together, these results provide evidence that dysregulation of ACh system represented by the up-regulation of AChE may serve as an effective pharmacological therapeutic target against autistic behaviors in VPA animal model of ASD, which should be subjected for further investigation to verify the clinical relevance.

  7. The Healing Effect of Hydroalcoholic Extract of Hypericum Perforatum on Acetic Acid-Induced Ulcerative Colitis in Male Rats

    Directory of Open Access Journals (Sweden)

    Nader Tanideh

    2017-02-01

    Full Text Available Background & Objective: Anti-inflammatory effect of Hypericum have long been considered. Ulcerative Colitis (UC is a form of Inflammatory Bowel Disease (IBD. In this study, the effects of Hypericum perforatum on histopathological changes and tissue malondialdehyde (MDA level of colonic tissue in rats with induced UC were evaluated. Materials & Methods: 70 rats were divided into seven equal groups. Colitis was induced by acetic acid.. Groups I and II received 1 mL of 600 and 300 mg/kg H. perforatum extract orally per day respectively; groups III and IV received 1 mL of 20% and 10% intra-colonic gel form of H. perforatum extract daily respectively; group V, as positive control, received 1 mL of intra-colonic Asacol; group VI received 1 mL of normal saline as negative control; group VII received just intra-colonic gel base. All the animals were evaluated for histological changes and tissue MDA level of colon seven days after the treatment. Results: H. perforatum extract in the two forms of trans-rectal and oral administration could result in a more healing effect on acetic acid-induced damaged colonic tissue with a reduction in the MDA activity. In trans-rectal administration, the 20% gel had a better healing response than the 10% gel. In oral administration, the 600 mg/kg dosage had a better healing response than the 300 mg/kg. Conclusions: Therefor, H. perforatum can be considered as a treatment of choice for UC especially in trans-rectal gel form.

  8. Niflumic acid-induced increase in potassium currents in frog motor nerve terminals: effects on transmitter release.

    Science.gov (United States)

    Miralles, F; Marsal, J; Peres, J; Solsona, C

    1996-04-01

    The actions of the nonsteroidal antiinflammatory drug niflumic acid were studied on frog neuromuscular preparations by conventional electrophysiological techniques. Niflumic acid reduced the amplitude and increased the latency of endplate potentials in a concentration-dependent manner. Neuromuscular junctions pretreated with niflumic acid (0.05-0.5 mM) showed much less depression than control when they were stimulated with trains of impulses. Inhibition of acetylcholine release was reverted by raising the extracellular Ca(2+) concentration but not by simply washing out the preparations with niflumic acid-free solutions. Pretreatment with indomethacin (0.1 mM), another nonsteroidal antiinflammatory drug, did not affect the niflumic acid-induced inhibition of evoked responses. Niflumic acid (0.1 mM) did not change the amplitude of miniature endplate potentials and had a dual action on the frequency of miniatures: it decreased their frequency at 0.1 mM whereas it produced an enormous increase in the rate of spontaneous discharge at 0.5 mM. Niflumic acid (0.1 - 1 mM) reversibly increased the amplitude and affected the kinetics of presynaptic voltage-activated K+ current and Ca(2+)-activated K(+) current in a concentration-dependent manner. Niflumic acid (0.1 - 1 mM) irreversibly decreased the amplitude and reversibly affected the kinetics of the nodal Na(+) current. Indomethacin (0.1 mM) had no effect on presynaptic currents. In conclusion, niflumic acid reduces acetylcholine release by increasing presynaptic K+ currents. This may shorten the depolarizing phase of the presynaptic action potential and may reduce the entry of Ca(2+) with each impulse.

  9. "THE ROLE OF PROSTAGLANDINS AND MAST CELLS IN THE MODULATION OF ACUTE ACID-INDUCED TRACHEAL CONTRACTION IN RAT"

    Directory of Open Access Journals (Sweden)

    M. H. Pipelzadeh

    2004-05-01

    Full Text Available The exact role of the epithelial lining of the trachea in modulating the bronchial tone is controversial. The present study was an attempt to verify the role of both prostaglandins and mast cells in the acute phase of acid inspiration in rat. Four groups (n = 6 of N. Mari rats were employed. The first group was used as placebo control, and normal saline was injected. To the second group hydrochloric acid (25 µl with pH of 1.3 was injected into the trachea through the criothyroid membrane. The third and fourth groups were pretreated for three consecutive days either with indomethacin (10 mg/Kg or nebulized sodium cromoglycate (20 mg/Kg, 1 hour prior to installation of the acid. Three minutes after instillation of acid, the trachea was removed. The tracheal spirals were prepared and immediately suspended in an organ bath containing Tyrode’s solution. Dose response curves to acetylcholine (10-9 to 10-3M were constructed. The results showed that the responses to acetylcholine in the acid treated trachea were significantly (P<0.01 reduced compared with the control saline treated trachea due to acute acid-induced tracheal contraction. Incubation with atropine, induced reduction of baseline tension and reversed the responses to acetylcholine. Both indomethacin and sodium cromoglycate, reversed the responses to acetylcholine and were in similar range as the control trachea. In conclusion, it seems that both prostaglandins and mast cells are important mediators in the acute phase of airway smooth muscle contraction following instillation of acid.

  10. Excitatory amino acid transporter 2 downregulation correlates with thalamic neuronal death following kainic acid-induced status epilepticus in rat.

    Science.gov (United States)

    Sakurai, Masashi; Kurokawa, Haruna; Shimada, Akinori; Nakamura, Kazuhiro; Miyata, Hajime; Morita, Takehito

    2015-02-01

    Recurrent seizures without interictal resumption (status epilepticus) have been reported to induce neuronal death in the midline thalamic region that has functional roles in memory and decision-making; however, the pathogenesis underlying status epilepticus-induced thalamic neuronal death is yet to be determined. We performed histological and immunohistochemical studies as well as cerebral blood flow measurement using 4.7 tesla magnetic resonance imaging spectrometer on midline thalamic region in Sprague-Dawley rats (n = 75, male, 7 weeks after birth, body weight 250-300 g) treated with intraperitoneal injection of kainic acid (10 mg/kg) to induce status epilepticus (n = 55) or normal saline solution (n = 20). Histological study using paraffin-embedded specimens revealed neuronal death showing ischemic-like changes and Fluoro-Jade C positivity with calcium deposition in the midline thalamic region of epileptic rats. The distribution of neuronal death was associated with focal loss of immunoreactivity for excitatory amino acid transporter 2 (EAAT2), stronger immunoreaction for glutamate and increase in number of Iba-1-positive microglial cells showing swollen cytoplasm and long processes. Double immunofluorescence study demonstrated co-expression of interleukin-1 beta (IL-1β) and inducible nitric oxide synthase (iNOS) within microglial cells, and loss of EAAT2 immunoreactivity in reactive astrocytes. These microglial alterations and astrocytic EAAT2 downregulation were also observed in tissue without obvious neuronal death in kainic acid-treated rats. These results suggest the possible role of glutamate excitotoxicity in neuronal death in the midline thalamic region following kainic acid-induced status epilepticus due to astrocytic EAAT2 downregulation following microglial activation showing upregulation of IL-1β and iNOS.

  11. Dietary interesterified fat enriched with palmitic acid induces atherosclerosis by impairing macrophage cholesterol efflux and eliciting inflammation.

    Science.gov (United States)

    Afonso, Milessa Silva; Lavrador, Maria Silvia Ferrari; Koike, Marcia Kiyomi; Cintra, Dennys Esper; Ferreira, Fabiana Dias; Nunes, Valeria Sutti; Castilho, Gabriela; Gioielli, Luiz Antonio; Paula Bombo, Renata; Catanozi, Sergio; Caldini, Elia Garcia; Damaceno-Rodrigues, Nilsa Regina; Passarelli, Marisa; Nakandakare, Edna Regina; Lottenberg, Ana Maria

    2016-06-01

    Interesterified fats are currently being used to replace trans fatty acids. However, their impact on biological pathways involved in the atherosclerosis development was not investigated. Weaning male LDLr-KO mice were fed for 16weeks on a high-fat diet (40% energy as fat) containing polyunsaturated (PUFA), TRANS, palmitic (PALM), palmitic interesterified (PALM INTER), stearic (STEAR) or stearic interesterified (STEAR INTER). Plasma lipids, lipoprotein profile, arterial lesion area, macrophage infiltration, collagen content and inflammatory response modulation were determined. Macrophage cholesterol efflux and the arterial expression of cholesterol uptake and efflux receptors were also performed. The interesterification process did not alter plasma lipid concentrations. Although PALM INTER did not increase plasma cholesterol concentration as much as TRANS, the cholesterol enrichment in the LDL particle was similar in both groups. Moreover, PALM INTER induced the highest IL-1β, MCP-1 and IL-6 secretion from peritoneal macrophages as compared to others. This inflammatory response elicited by PALM INTER was confirmed in arterial wall, as compared to PALM. These deleterious effects of PALM INTER culminate in higher atherosclerotic lesion, macrophage infiltration and collagen content than PALM, STEAR, STEAR INTER and PUFA. These events can partially be attributed to a macrophage cholesterol accumulation, promoted by apoAI and HDL2-mediated cholesterol efflux impairment and increased Olr-1 and decreased Abca1 and Nr1h3 expressions in the arterial wall. Interesterified fats containing palmitic acid induce atherosclerosis development by promoting cholesterol accumulation in LDL particles and macrophagic cells, activating the inflammatory process in LDLr-KO mice.

  12. Anti-inflammatory effect of Moringa oleifera Lam. seeds on acetic acid-induced acute colitis in rats

    Directory of Open Access Journals (Sweden)

    Mohsen Minaiyan

    2014-02-01

    Full Text Available Objective: Anti-inflammatory, immuno-modulatory, and antioxidant properties of Moringa oleifera Lam. suggest that it might have beneficial effects on colitis. The present study was performed to investigate the anticolitis effect of Moringa oleifera seeds hydro-alcoholic extract (MSHE and its chloroform fraction (MCF on acetic acid-induced colitis in rats. Materials and Methods: Both MSHE and MCF with three increasing doses (50, 100, and 200 mg/kg were administered orally to separate groups of male Wistar rats, 2 h before ulcer induction (using acetic acid 4% and continued for 5 days. Prednisolone (4 mg/kg and normal saline (1 ml/kg were used in reference and control groups, respectively. All rats were sacrificed 24 h after the last dose (at day 6 and tissue injuries were assessed macroscopically and pathologically. Results: Extracts with three doses mentioned before were effective to reduce weight of distal colon (8 cm as a marker for inflammation and tissue edema. Three doses of MSHE and two greater doses of MCF (100 and 200 mg/kg were effective to reduce ulcer severity, area, and index as well as mucosal inflammation severity and extent, crypt damage, invasion involvement, total colitis index, and MPO activity compared with controls. MCF (50 mg/kg was not significantly effective in reducing evaluated parameters of colitis compared with controls. Conclusion: It is concluded that MSHE and MCF were both effective to treat experimental colitis and this might be attributed to their similar major components, biophenols and flavonoids. Since the efficacy was evident even in low doses of MSHE, presence of active constituents with high potency in seeds is persuasive.

  13. Hydroalcoholic extract of Brazilian red propolis exerts protective effects on acetic acid-induced ulcerative colitis in a rodent model.

    Science.gov (United States)

    Barbosa Bezerra, Gislaine; de Menezes de Souza, Luana; Dos Santos, Adailma Santana; de Almeida, Grace Kelly Melo; Souza, Marília Trindade Santana; Santos, Sandra Lauton; Aparecido Camargo, Enilton; Dos Santos Lima, Bruno; de Souza Araújo, Adriano Antunes; Cardoso, Juliana Cordeiro; Gomes, Silvana Vieira Floresta; Gomes, Margarete Zanardo; de Albuquerque, Ricardo Luiz Cavalcanti

    2017-01-01

    Ulcerative colitis (UC) is a common intestinal inflammatory disease with an etiology that is not well understood. Although the anti-inflammatory and anti-oxidant effects of the hydroalcoholic extract of Brazilian red propolis (HERP) have been reported in various experimental models, its protective effect in models of UC have not been evaluated. The purpose of this study was to investigate the chemopreventive effect of hydroalcoholic extract of Brazilian red propolis (HERP) in acetic acid-induced colitis (AAIC) using a rodent model. The HERP was chemically characterised by HPLC/DAD analyses. Male rats were randomly assigned into four groups: sham, vehicle (with AAIC, treated with vehicle), P10 (with AAIC, treated with 10mg/kg HERP), and P100 (with AAIC, treated with 100mg/kg HERP). Treatments were performed for 7days, and colitis was induced on day seven. Animals were euthanized 24h after colitis induction and body weight, colon length, gross and histological scores, malondialdehyde (MDA) and myeloperoxidase (MPO) concentrations in colon tissue, and the immunohistochemical expression of inducible nitric oxide synthase (iNOS) were assessed. The major compounds found in HERP were liquiritigenin (68.8mg/g), formononetin (54.29mg/g), biochanin A (30.97mg/g), and daidzein (19.90mg/g). Rats treated with 10mg/kg HERP demonstrated significant decreases in MPO concentrations, gross and histological scores of tissue damage, and iNOS expression (p<0.05). Similarly, rats treated with 100mg/kg HERP demonstrated significant decreases in MPO levels (p<0.05) and histological scores of tissue damage (p<0.05). The results of this study indicate that oral administration of HERP attenuates AAIC in rats, which may be due to anti-inflammatory effects related to iNOS inhibition. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Mitochondrial proteomics of the acetic acid - induced programmed cell death response in a highly tolerant Zygosaccharomyces bailii - derived hybrid strain

    Science.gov (United States)

    Guerreiro, Joana F.; Sampaio-Marques, Belém; Soares, Renata; Coelho, Ana V.; Leão, Cecília; Ludovico, Paula; Sá-Correia, Isabel

    2016-01-01

    Very high concentrations of acetic acid at low pH induce programmed cell death (PCD) in both the experimental model Saccharomyces cerevisiae and in Zygosaccharomyces bailii, the latter being considered the most problematic acidic food spoilage yeast due to its remarkable intrinsic resistance to this food preservative. However, while the mechanisms underlying S. cerevisiae PCD induced by acetic acid have been previously examined, the corresponding molecular players remain largely unknown in Z. bailii. Also, the reason why acetic acid concentrations known to be necrotic for S. cerevisiae induce PCD with an apoptotic phenotype in Z. bailii remains to be elucidated. In this study, a 2-DE-based expression mitochondrial proteomic analysis was explored to obtain new insights into the mechanisms involved in PCD in the Z. bailii derived hybrid strain ISA1307. This allowed the quantitative assessment of expression of protein species derived from each of the parental strains, with special emphasis on the processes taking place in the mitochondria known to play a key role in acetic acid - induced PCD. A marked decrease in the content of proteins involved in mitochondrial metabolism, in particular, in respiratory metabolism (Cor1, Rip1, Lpd1, Lat1 and Pdb1), with a concomitant increase in the abundance of proteins involved in fermentation (Pdc1, Ald4, Dld3) was registered. Other differentially expressed identified proteins also suggest the involvement of the oxidative stress response, protein translation, amino acid and nucleotide metabolism, among other processes, in the PCD response. Overall, the results strengthen the emerging concept of the importance of metabolic regulation of yeast PCD. PMID:28357336

  15. Stability of the acetic acid-induced bladder irritation model in alpha chloralose-anesthetized female cats.

    Science.gov (United States)

    Kullmann, F Aura; Wells, Grace I; Langdale, Christopher L; Zheng, Jihong; Thor, Karl B

    2013-01-01

    Time- and vehicle-related variability of bladder and urethral rhabdosphincter (URS) activity as well as cardiorespiratory and blood chemistry values were examined in the acetic acid-induced bladder irritation model in α-chloralose-anesthetized female cats. Additionally, bladder and urethra were evaluated histologically using Mason trichrome and toluidine blue staining. Urodynamic, cardiovascular and respiratory parameters were collected during intravesical saline infusion followed by acetic acid (0.5%) to irritate the bladder. One hour after starting acetic acid infusion, a protocol consisting of a cystometrogram, continuous infusion-induced rhythmic voiding contractions, and a 5 min "quiet period" (bladder emptied without infusion) was precisely repeated every 30 minutes. Administration of vehicle (saline i.v.) occurred 15 minutes after starting each of the first 7 cystometrograms and duloxetine (1mg/kg i.v.) after the 8(th). Acetic acid infusion into the bladder increased URS-EMG activity, bladder contraction frequency, and decreased contraction amplitude and capacity, compared to saline. Bladder activity and URS activity stabilized within 1 and 2 hours, respectively. Duloxetine administration significantly decreased bladder contraction frequency and increased URS-EMG activity to levels similar to previous reports. Cardiorespiratory parameters and blood gas levels remained consistent throughout the experiment. The epithelium of the bladder and urethra were greatly damaged and edema and infiltration of neutrophils in the lamina propria of urethra were observed. These data provide an ample evaluation of the health of the animals, stability of voiding function and appropriateness of the model for testing drugs designed to evaluate lower urinary tract as well as cardiovascular and respiratory systems function.

  16. Stability of the acetic acid-induced bladder irritation model in alpha chloralose-anesthetized female cats.

    Directory of Open Access Journals (Sweden)

    F Aura Kullmann

    Full Text Available Time- and vehicle-related variability of bladder and urethral rhabdosphincter (URS activity as well as cardiorespiratory and blood chemistry values were examined in the acetic acid-induced bladder irritation model in α-chloralose-anesthetized female cats. Additionally, bladder and urethra were evaluated histologically using Mason trichrome and toluidine blue staining. Urodynamic, cardiovascular and respiratory parameters were collected during intravesical saline infusion followed by acetic acid (0.5% to irritate the bladder. One hour after starting acetic acid infusion, a protocol consisting of a cystometrogram, continuous infusion-induced rhythmic voiding contractions, and a 5 min "quiet period" (bladder emptied without infusion was precisely repeated every 30 minutes. Administration of vehicle (saline i.v. occurred 15 minutes after starting each of the first 7 cystometrograms and duloxetine (1mg/kg i.v. after the 8(th. Acetic acid infusion into the bladder increased URS-EMG activity, bladder contraction frequency, and decreased contraction amplitude and capacity, compared to saline. Bladder activity and URS activity stabilized within 1 and 2 hours, respectively. Duloxetine administration significantly decreased bladder contraction frequency and increased URS-EMG activity to levels similar to previous reports. Cardiorespiratory parameters and blood gas levels remained consistent throughout the experiment. The epithelium of the bladder and urethra were greatly damaged and edema and infiltration of neutrophils in the lamina propria of urethra were observed. These data provide an ample evaluation of the health of the animals, stability of voiding function and appropriateness of the model for testing drugs designed to evaluate lower urinary tract as well as cardiovascular and respiratory systems function.

  17. Meristem aging is not responsible for age-related changes in growth and abscisic acid levels in the Mediterranean shrub, Cistus clusii.

    Science.gov (United States)

    Oñate, M; Munné-Bosch, S

    2008-09-01

    To obtain new insights into the mechanisms underlying aging in perennials, we measured abscisic acid levels, growth and other stress indicators in leaves of Cistus clusii Dunal plants of different ages grown under Mediterranean field conditions. Recently emerged leaves from 9-year-old plants were compared to those of 1-year-old plants (obtained from cuttings from 9-year-old plants) to evaluate the effects of meristem aging on plant aging. Rooting and successful establishment of the cuttings allowed us to compare the physiology of plants with old meristems, but of different size. Plants obtained from cuttings were rejuvenated, with new leaves displaying a higher leaf area and chlorophyll content, but smaller leaf mass per unit area ratios and endogenous abscisic acid levels than those of 9-year-old plants. A comparative study in 1-, 4- and 9-year-old plants revealed that abscisic acid levels increase during the early stages of plant life (with increases of 90% between 1- and 4-year-old plants), but then remain constant at advanced developmental stages (between 4- and 9-year-old plants). Although leaf biomass was 53% smaller in 9-year-old compared to 4-year-old plants, the dry matter produced per shoot apical meristem was equivalent in both plant groups due to an increased number of leaves per shoot in the former. It is concluded that (i) C. clusii plants maintain the capacity to rejuvenate for several years; (ii) newly emerged leaves accumulate higher amounts of abscisic acid during early stages of plant life, but the levels of this phytohormone later remain constant; and (iii) although plant aging leads to the production of smaller leaves, the amount of biomass produced per shoot apical meristem remains constant at advanced developmental stages.

  18. In vivo Characterization of the Effects of Abscisic Acid and Drying Protocols Associated with the Acquisition of Desiccation Tolerance in Alfalfa (Medicago sativa L.) Somatic Embryos

    OpenAIRE

    SREEDHAR, LEKHA; Wolkers, Willem F.; Hoekstra, Folkert A.; BEWLEY, J. DEREK

    2002-01-01

    Although somatic embryos of alfalfa (Medicago sativa L.) had acquired some tolerance to desiccation at the cotyledonary stage of development (22 d after plating), additional culturing in 20 μm abscisic acid (ABA) for 8 d induced greater desiccation tolerance, as determined by increased germination. Compared with fast drying, slow drying of the ABA‐treated embryos improved desiccation tolerance. However, slow drying of non‐ABA‐treated embryos led to the complete loss of germination capacity, w...

  19. Music application alleviates short-term memory impairments through increasing cell proliferation in the hippocampus of valproic acid-induced autistic rat pups

    OpenAIRE

    Lee, Sung-Min; Kim, Bo-Kyun; Kim, Tae-Woon; Ji, Eun-Sang; Choi, Hyun-Hee

    2016-01-01

    Autism is a neurodevelopmental disorder and this disorder shows impairment in reciprocal social interactions, deficits in communication, and restrictive and repetitive patterns of behaviors and interests. The effect of music on short-term memory in the view of cell proliferation in the hippocampus was evaluated using valproic acid-induced autistic rat pups. Animal model of autism was made by subcutaneous injection of 400-mg/kg valproic acid into the rat pups on the postnatal day 14. The rat p...

  20. Palmitic acid induces interleukin-1β secretion via NLRP3 inflammasomes and inflammatory responses through ROS production in human placental cells.

    Science.gov (United States)

    Shirasuna, Koumei; Takano, Hiroki; Seno, Kotomi; Ohtsu, Ayaka; Karasawa, Tadayoshi; Takahashi, Masafumi; Ohkuchi, Akihide; Suzuki, Hirotada; Matsubara, Shigeki; Iwata, Hisataka; Kuwayama, Takehito

    2016-08-01

    Maternal obesity, a major risk factor for adverse pregnancy complications, results in inflammatory cytokine release in the placenta. Levels of free fatty acids are elevated in the plasma of obese human. These fatty acids include obesity-related palmitic acids, which is a major saturated fatty acid, that promotes inflammatory responses. Increasing evidence indicates that nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasomes mediate inflammatory responses induced by endogenous danger signals. We hypothesized that inflammatory responses associated with gestational obesity cause inflammation. To test this hypothesis, we investigated the effect of palmitic acid on the activation of NLRP3 inflammasomes and inflammatory responses in a human Sw.71 trophoblast cell line. Palmitic acid stimulated caspase-1 activation and markedly increased interleukin (IL)-1β secretion in Sw.71 cells. Treatment with a caspase-1 inhibitor diminished palmitic acid-induced IL-1β release. In addition, NLRP3 and caspase-1 genome editing using a CRISPR/Cas9 system in Sw.71 cells suppressed IL-1β secretion, which was stimulated by palmitic acid. Moreover, palmitic acid stimulated caspase-3 activation and inflammatory cytokine secretion (e.g., IL-6 and IL-8). Palmitic acid-induced cytokine secretion were dependent on caspase-3 activation. In addition, palmitic acid-induced IL-1β, IL-6, and IL-8 secretion was depended on reactive oxygen species (ROS) generation. In conclusion, palmitic acid caused activation of NLRP3 inflammasomes and inflammatory responses, inducing IL-1β, IL-6, and IL-8 secretion, which is associated with ROS generation, in human Sw.71 placental cells. We suggest that obesity-related palmitic acid induces placental inflammation, resulting in association with pregnancy complications.

  1. Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress.

    Science.gov (United States)

    Guo, Huijuan; Sun, Yucheng; Peng, Xinhong; Wang, Qinyang; Harris, Marvin; Ge, Feng

    2016-02-01

    The activation of the abscisic acid (ABA) signaling pathway reduces water loss from plants challenged by drought stress. The effect of drought-induced ABA signaling on the defense and nutrition allocation of plants is largely unknown. We postulated that these changes can affect herbivorous insects. We studied the effects of drought on different feeding stages of pea aphids in the wild-type A17 of Medicago truncatula and ABA signaling pathway mutant sta-1. We examined the impact of drought on plant water status, induced plant defense signaling via the abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA) pathways, and on the host nutritional quality in terms of leaf free amino acid content. During the penetration phase of aphid feeding, drought decreased epidermis/mesophyll resistance but increased mesophyll/phloem resistance of A17 but not sta-1 plants. Quantification of transcripts associated with ABA, JA and SA signaling indicated that the drought-induced up-regulation of ABA signaling decreased the SA-dependent defense but increased the JA-dependent defense in A17 plants. During the phloem-feeding phase, drought had little effect on the amino acid concentrations and the associated aphid phloem-feeding parameters in both plant genotypes. In the xylem absorption stage, drought decreased xylem absorption time of aphids in both genotypes because of decreased water potential. Nevertheless, the activation of the ABA signaling pathway increased water-use efficiency of A17 plants by decreasing the stomatal aperture and transpiration rate. In contrast, the water potential of sta-1 plants (unable to close stomata) was too low to support xylem absorption activity of aphids; the aphids on sta-1 plants had the highest hemolymph osmolarity and lowest abundance under drought conditions. Taken together this study illustrates the significance of cross-talk between biotic-abiotic signaling pathways in plant-aphid interaction, and reveals the mechanisms leading to alter

  2. Proteome analysis of Norway maple (Acer platanoides L. seeds dormancy breaking and germination: influence of abscisic and gibberellic acids

    Directory of Open Access Journals (Sweden)

    Pawłowski Tomasz A

    2009-05-01

    Full Text Available Abstract Background Seed dormancy is controlled by the physiological or structural properties of a seed and the external conditions. It is induced as part of the genetic program of seed development and maturation. Seeds with deep physiological embryo dormancy can be stimulated to germinate by a variety of treatments including cold stratification. Hormonal imbalance between germination inhibitors (e.g. abscisic acid and growth promoters (e.g. gibberellins is the main cause of seed dormancy breaking. Differences in the status of hormones would affect expression of genes required for germination. Proteomics offers the opportunity to examine simultaneous changes and to classify temporal patterns of protein accumulation occurring during seed dormancy breaking and germination. Analysis of the functions of the identified proteins and the related metabolic pathways, in conjunction with the plant hormones implicated in seed dormancy breaking, would expand our knowledge about this process. Results A proteomic approach was used to analyse the mechanism of dormancy breaking in Norway maple seeds caused by cold stratification, and the participation of the abscisic (ABA and gibberellic (GA acids. Forty-four proteins showing significant changes were identified by mass spectrometry. Of these, eight spots were identified as water-responsive, 18 spots were ABA- and nine GA-responsive and nine spots were regulated by both hormones. The classification of proteins showed that most of the proteins associated with dormancy breaking in water were involved in protein destination. Most of the ABA- and GA-responsive proteins were involved in protein destination and energy metabolism. Conclusion In this study, ABA was found to mostly down-regulate proteins whereas GA up-regulated proteins abundance. Most of the changes were observed at the end of stratification in the germinated seeds. This is the most active period of dormancy breaking when seeds pass from the quiescent

  3. Sida rhomboidea.Roxb extract alleviates pathophysiological changes in experimental in vivo and in vitro models of high fat diet/fatty acid induced non-alcoholic steatohepatitis.

    Science.gov (United States)

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Dandekar, Deven S; Devkar, Ranjitsinh V; Ramachandran, A V

    2012-03-01

    The present study was aim to evaluate protective role of Sida rhomboidea.Roxb (SR) extract against high fat diet/fatty acid induced pathophysiological alterations in experimental model of non-alcoholic steatohepatitis (NASH). Effect of SR extract on plasma levels of markers of hepatic damage, plasma and hepatic lipids, mitochondrial oxidative stress, status of enzymatic and non-enzymatic antioxidants and histopathological changes in liver tissue were evaluated in high fat diet fed C57BL/6J mice. Also, the effect of SR supplementation on lipid accumulation, lipid peroxidation, cytotoxicity and cell viability were evaluated in oleic acid treated HepG2 cells. Supplementation of NASH mice with SR extract prevented high fat diet induced elevation in plasma marker enzymes of liver damage, plasma and hepatic lipids, mitochondrial oxidative stress and compromised enzymatic and non-enzymatic antioxidant status. Further, addition of SR extract to in vitro HepG2 cells minimized oleic acid induced lipid accumulation, higher lipid peroxidation, cytotoxicity and reduced cell viability. These in vivo and in vitro studies suggest that SR extract has the potential of preventing high fat/fatty acid induced NASH mainly due to its hypolipidemic and antioxidant activities. Copyright © 2010 Elsevier GmbH. All rights reserved.

  4. Analysis of Cytokinin Mutants and Regulation of Cytokinin Metabolic Genes Reveals Important Regulatory Roles of Cytokinins in Drought, Salt and Abscisic Acid Responses, and Abscisic Acid Biosynthesis[C][W

    Science.gov (United States)

    Nishiyama, Rie; Watanabe, Yasuko; Fujita, Yasunari; Le, Dung Tien; Kojima, Mikiko; Werner, Tomás; Vankova, Radomira; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo; Kakimoto, Tatsuo; Sakakibara, Hitoshi; Schmülling, Thomas; Tran, Lam-Son Phan

    2011-01-01

    Cytokinins (CKs) regulate plant growth and development via a complex network of CK signaling. Here, we perform functional analyses with CK-deficient plants to provide direct evidence that CKs negatively regulate salt and drought stress signaling. All CK-deficient plants with reduced levels of various CKs exhibited a strong stress-tolerant phenotype that was associated with increased cell membrane integrity and abscisic acid (ABA) hypersensitivity rather than stomatal density and ABA-mediated stomatal closure. Expression of the Arabidopsis thaliana ISOPENTENYL-TRANSFERASE genes involved in the biosynthesis of bioactive CKs and the majority of the Arabidopsis CYTOKININ OXIDASES/DEHYDROGENASES genes was repressed by stress and ABA treatments, leading to a decrease in biologically active CK contents. These results demonstrate a novel mechanism for survival under abiotic stress conditions via the homeostatic regulation of steady state CK levels. Additionally, under normal conditions, although CK deficiency increased the sensitivity of plants to exogenous ABA, it caused a downregulation of key ABA biosynthetic genes, leading to a significant reduction in endogenous ABA levels in CK-deficient plants relative to the wild type. Taken together, this study provides direct evidence that mutual regulation mechanisms exist between the CK and ABA metabolism and signals underlying different processes regulating plant adaptation to stressors as well as plant growth and development. PMID:21719693

  5. 法国海岸松树皮提取物碧萝芷对长链游离脂肪酸诱导的巨噬细胞perilipin2基因表达的影响%Pycnogenol, an Extract from French Martime Pine, Suppresses Oleic Acid-induced perilipin2 Expression in Macrophages

    Institute of Scientific and Technical Information of China (English)

    范斌; 杜强; 谷剑秋; 张锦

    2011-01-01

    Abstract Objective To investigate the effect of Pycnogenol on oleic acid-induced perilipin2 expression in macrophages. Methods Realtime PCR and Western blot were performed to detect perilipin2 expression. Transient transfection and luciferase assay were employed to measure perilipin2 promoter activity. Results Oleic acid significantly induced perilipiti2 expression in a dose-and time-dependent manner in macrophages; oleic acid markedly enhanced perilipin2 promoter activity; Pycnogenol significantly suppressed oleic acid-induced perihpin2 expression and promoter activity. Conclusion For the first time,we demonstrated that Pycnogenol significantly suppressed oleic acid-induced perilipin2 expression and promoter activity.%目的 研究碧萝芷(PYC)对油酸诱导的巨噬细胞perilipin2表达的影响及其相关分子机制.方法 应用Real-time PCR 和Western blot测定油酸及PYC对perilipin2 mRNA和蛋白水平表达影响.应用荧光素酶活性分析方法检测油酸及PYC时perilipin2启动子活性的影响.结果油酸以剂量和浓度依赖方式上调perilipin2 mRNA和蛋白水平表达,并促进perilipin2启动子活性.PYC以剂量依赖方式抑制了油酸诱导的perilipin2表达及启动子活性.结论PYC抑制了巨噬细胞中油酸诱导的perilipin2的表达.PYC通过抑制perilipin2启动子活性,从而直接抑制perilipin2的表达.

  6. Eucalyptus ESTs involved in the production of 9-cis epoxycarotenoid dioxygenase, a regulatory enzyme of abscisic acid production

    Directory of Open Access Journals (Sweden)

    Iraê A. Guerrini

    2005-01-01

    Full Text Available Abscisic acid (ABA regulates stress responses in plants, and genomic tools can help us to understand the mechanisms involved in that process. FAPESP, a Brazilian research foundation, in association with four private forestry companies, has established the FORESTs database (https://forests.esalq.usp.br. A search was carried out in the Eucalyptus expressed sequence tag database to find ESTs involved with 9-cis epoxycarotenoid dioxygenase (NCED, the regulatory enzyme for ABA biosynthesis, using the basic local BLAST alignment tool. We found four clusters (EGEZLV2206B11.g, EGJMWD2252H08.g, EGBFRT3107F10.g, and EGEQFB1200H10.g, which represent similar sequences of the gene that produces NCED. Data showed that the EGBFRT3107F10.g cluster was similar to the maize (Zea mays NCED enzyme, while EGEZLV2206B11.g and EGJMWD2252H08.g clusters were similar to the avocado (Persea americana NCED enzyme. All Eucalyptus clusters were expressed in several tissues, especially in flower buds, where ABA has a special participation during the floral development process.

  7. Evidence for a universal pathway of abscisic acid biosynthesis in higher plants from sup 18 O incorporation patterns

    Energy Technology Data Exchange (ETDEWEB)

    Zeevaart, J.A.D.; Heath, T.G.; Gage, D.A. (Michigan State University, East Lansing (USA))

    1989-12-01

    Previous labeling studies of abscisic acid (ABA) with {sup 18}O{sub 2} have been mainly conducted with water-stressed leaves. In this study, {sup 18}O incorporation into ABA of stressed leaves of various species was compared with {sup 18}O labeling of ABA of turgid leaves and of fruit tissue in different stages of ripening. In stressed leaves of all six species investigated, avocado (Persea americana), barley (Hordeum vulgare), bean (Phaseolus vulgaris), cocklebur (Xanthium strumarium), spinach (Spinacia oleracea), and tobacco (Nicotiana tabacum), {sup 18}O was most abundant in the carboxyl group, whereas incorporation of a second and third {sup 18}O in the oxygen atoms on the ring of ABA was much less prominent after 24 h in {sup 18}O{sub 2}. ABA from turgid bean leaves showed significant {sup 18}O incorporation, again with highest {sup 18}O enrichment in the carboxyl group. On the basis of {sup 18}O-labeling patterns observed in ABA from different tissues it is concluded that, despite variations in precusor pool sizes and intermediate turnover rates, there is a universal pathway of ABA biosynthesis in higher plants which involves cleavage of a larger precursor molecule, presumably an oxygenated carotenoid.

  8. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in salvia miltiorrhiza bunge hairy roots.

    Science.gov (United States)

    Liang, Zongsuo; Ma, Yini; Xu, Tao; Cui, Beimi; Liu, Yan; Guo, Zhixin; Yang, Dongfeng

    2013-01-01

    Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants.

  9. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in salvia miltiorrhiza bunge hairy roots.

    Directory of Open Access Journals (Sweden)

    Zongsuo Liang

    Full Text Available Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA, gibberellin (GA and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S. miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants.

  10. Abscisic Acid Signaling and Abiotic Stress Tolerance in Plants: A Review on Current Knowledge and Future Prospects

    Science.gov (United States)

    Vishwakarma, Kanchan; Upadhyay, Neha; Kumar, Nitin; Yadav, Gaurav; Singh, Jaspreet; Mishra, Rohit K.; Kumar, Vivek; Verma, Rishi; Upadhyay, R. G.; Pandey, Mayank; Sharma, Shivesh

    2017-01-01

    Abiotic stress is one of the severe stresses of environment that lowers the growth and yield of any crop even on irrigated land throughout the world. A major phytohormone abscisic acid (ABA) plays an essential part in acting toward varied range of stresses like heavy metal stress, drought, thermal or heat stress, high level of salinity, low temperature, and radiation stress. Its role is also elaborated in various developmental processes including seed germination, seed dormancy, and closure of stomata. ABA acts by modifying the expression level of gene and subsequent analysis of cis- and trans-acting regulatory elements of responsive promoters. It also interacts with the signaling molecules of processes involved in stress response and development of seeds. On the whole, the stress to a plant can be susceptible or tolerant by taking into account the coordinated activities of various stress-responsive genes. Numbers of transcription factor are involved in regulating the expression of ABA responsive genes by acting together with their respective cis-acting elements. Hence, for improvement in stress-tolerance capacity of plants, it is necessary to understand the mechanism behind it. On this ground, this article enlightens the importance and role of ABA signaling with regard to various stresses as well as regulation of ABA biosynthetic pathway along with the transcription factors for stress tolerance. PMID:28265276

  11. Abscisic acid controls embryo growth potential and endosperm cap weakening during coffee (Coffea arabica cv. Rubi) seed germination.

    Science.gov (United States)

    da Silva, E A Amaral; Toorop, Peter E; van Aelst, Adriaan C; Hilhorst, Henk W M

    2004-12-01

    The mechanism and regulation of coffee seed germination were studied in Coffea arabica L. cv. Rubi. The coffee embryo grew inside the endosperm prior to radicle protrusion and abscisic acid (ABA) inhibited the increase in its pressure potential. There were two steps of endosperm cap weakening. An increase in cellulase activity coincided with the first step and an increase in endo-beta-mannanase (EBM) activity with the second step. ABA inhibited the second step of endosperm cap weakening, presumably by inhibiting the activities of at least two EBM isoforms and/or, indirectly, by inhibiting the pressure force of the radicle. The increase in the activities of EBM and cellulase coincided with the decrease in the force required to puncture the endosperm and with the appearance of porosity in the cell walls as observed by low-temperature scanning electronic microscopy. Tissue printing showed that EBM activity was spatially regulated in the endosperm. Activity was initiated in the endosperm cap whereas later during germination it could also be detected in the remainder of the endosperm. Tissue printing revealed that ABA inhibited most of the EBM activity in the endosperm cap, but not in the remainder of the endosperm. ABA did not inhibit cellulase activity. There was a transient rise in ABA content in the embryo during imbibition, which was likely to be responsible for slow germination, suggesting that endogenous ABA also may control embryo growth potential and the second step of endosperm cap weakening during coffee seed germination.

  12. Abscisic acid as an internal integrator of multiple physiological processes modulates leaf senescence onset in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Yuwei eSong

    2016-02-01

    Full Text Available Many studies have shown that exogenous abscisic acid (ABA promotes leaf abscission and senescence. However, owing to a lack of genetic evidence, ABA function in plant senescence has not been clearly defined. Here, two-leaf early-senescence mutants (eas that were screened by chlorophyll fluorescence imaging and named eas1-1 and eas1-2 showed high photosynthetic capacity in the early stage of plant growth compared with the wild type. Gene mapping showed that eas1-1 and eas1-2 are two novel ABA2 allelic mutants. Under unstressed conditions, the eas1 mutations caused plant dwarf, early germination, larger stomatal apertures, and early leaf senescence compared with those of the wild type. Flow cytometry assays showed that the cell apoptosis rate in eas1 mutant leaves was higher than that of the wild type after day 30. A significant increase in the transcript levels of several senescence-associated genes, especially SAG12, was observed in eas1 mutant plants in the early stage of plant growth. More importantly, ABA-activated calcium channel activity in plasma membrane and induced the increase of cytoplasmic calcium concentration in guard cells are suppressed due to the mutation of EAS1. In contrast, the eas1 mutants lost chlorophyll and ion leakage significant faster than in the wild type under treatment with calcium channel blocker. Hence, our results indicate that endogenous ABA level is an important factor controlling the onset of leaf senescence through Ca2+ signaling.

  13. Protein Geranylgeranyltransferase I Is Involved in Specific Aspects of Abscisic Acid and Auxin Signaling in Arabidopsis1

    Science.gov (United States)

    Johnson, Cynthia D.; Chary, S. Narasimha; Chernoff, Ellen A.; Zeng, Qin; Running, Mark P.; Crowell, Dring N.

    2005-01-01

    Arabidopsis (Arabidopsis thaliana) mutants lacking a functional ERA1 gene, which encodes the β-subunit of protein farnesyltransferase (PFT), exhibit pleiotropic effects that establish roles for protein prenylation in abscisic acid (ABA) signaling and meristem development. Here, we report the effects of T-DNA insertion mutations in the Arabidopsis GGB gene, which encodes the β-subunit of protein geranylgeranyltransferase type I (PGGT I). Stomatal apertures of ggb plants were smaller than those of wild-type plants at all concentrations of ABA tested, suggesting that PGGT I negatively regulates ABA signaling in guard cells. However, germination of ggb seeds in response to ABA was similar to the wild type. Lateral root formation in response to exogenous auxin was increased in ggb seedlings compared to the wild type, but no change in auxin inhibition of primary root growth was observed, suggesting that PGGT I is specifically involved in negative regulation of auxin-induced lateral root initiation. Unlike era1 mutants, ggb mutants exhibited no obvious developmental phenotypes. However, era1 ggb double mutants exhibited more severe developmental phenotypes than era1 mutants and were indistinguishable from plp mutants lacking the shared α-subunit of PFT and PGGT I. Furthermore, overexpression of GGB in transgenic era1 plants partially suppressed the era1 phenotype, suggesting that the relatively weak phenotype of era1 plants is due to partial redundancy between PFT and PGGT I. These results are discussed in the context of Arabidopsis proteins that are putative substrates of PGGT I. PMID:16183844

  14. Abscisic acid levels in tomato ovaries are regulated by LeNCED1 and SlCYP707A1.

    Science.gov (United States)

    Nitsch, Lisette Maria Catharina; Oplaat, Carla; Feron, Richard; Ma, Qian; Wolters-Arts, Mieke; Hedden, Peter; Mariani, Celestina; Vriezen, Wim Hendrik

    2009-05-01

    Although the hormones, gibberellin and auxin, are known to play a role in the initiation of fruits, no such function has yet been demonstrated for abscisic acid (ABA). However, ABA signaling and ABA responses are high in tomato (Solanum lycopersicum L.) ovaries before pollination and decrease thereafter (Vriezen et al. in New Phytol 177:60-76, 2008). As a first step to understanding the role of ABA in ovary development and fruit set in tomato, we analyzed ABA content and the expression of genes involved in its metabolism in relation to pollination. We show that ABA levels are relatively high in mature ovaries and decrease directly after pollination, while an increase in the ABA metabolite dihydrophaseic acid was measured. An important regulator of ABA biosynthesis in tomato is 9-cis-epoxy-carotenoid dioxygenase (LeNCED1), whose mRNA level in ovaries is reduced after pollination. The increased catabolism is likely caused by strong induction of one of four newly identified putative (+)ABA 8'-hydroxylase genes. This gene was named SlCYP707A1 and is expressed specifically in ovules and placenta. Transgenic plants, overexpressing SlCYP707A1, have reduced ABA levels and exhibit ABA-deficient phenotypes suggesting that this gene encodes a functional ABA 8'-hydroxylase. Gibberellin and auxin application have different effects on the LeNCED1 and SlCYP707A1 gene expression. The crosstalk between auxins, gibberellins and ABA during fruit set is discussed.

  15. Analysis of Global Expression Profiles of Arabidopsis Genes Under Abscisic Acid and H2O2 Applications

    Institute of Scientific and Technical Information of China (English)

    Peng-Cheng Wang; Yan-Yan Du; Guo-Yong An; Yun Zhou; Chen Miao; Chun-Peng Song

    2006-01-01

    To gain insight into the coordination of gene expression profiles under abscisic acid (ABA) and H2O2 applications,global changes in gene expression in response to ABA and H2O2 in Arabidopsis seedlings were investigated using GeneChip (Santa Clara, CA, USA) arrays. Among over 24 000 genes present in the arrays, 459 transcripts were found to be significantly increased, whereas another 221 decreased following H2O2 treatment compared with control. Similar to treatment with H2O2, ABA treatment elevated the transcription of 391 genes and repressed that of 322 genes. One hundred and forty-three upregulated genes and 75 downregulated genes were shared between the two treatments and these genes were mainly involved in metabolism, signal transduction, transcription, defense, and resistance. Only two genes, which encode an APETALA2/dehydration-responsive element binding protein (AP2/DREBP) family transcriptional factor and a late embryogenesisabundant protein, were downregulated by H2O2, but upregulated by ABA. These results suggest that, similar to ABA, H2O2 plays a global role in gene transcription of Arabidopsisseedlings. The transcriptional responses induced by the application of exogenous ABA and H2O2 overlapped substantially. These two treatments regulated most of the downstream genes in a coordinated manner.

  16. Genetic analyses of the interaction between abscisic acid and gibberellins in the control of leaf development in Arabidopsis thaliana.

    Science.gov (United States)

    Chiang, Ming-Hau; Shen, Hwei-Ling; Cheng, Wan-Hsing

    2015-07-01

    Although abscisic acid (ABA) and gibberellins (GAs) play pivotal roles in many physiological processes in plants, their interaction in the control of leaf growth remains elusive. In this study, genetic analyses of ABA and GA interplay in leaf growth were performed in Arabidopsis thaliana. The results indicate that for the ABA and GA interaction, leaf growth of both the aba2/ga20ox1 and aba2/GA20ox1 plants, which were derived from the crosses of aba2×ga20ox1 and aba2×GA20ox1 overexpressor, respectively, exhibits partially additive effects but is similar to the aba2 mutant. Consistently, the transcriptome analysis suggests that a substantial proportion (45-65%) of the gene expression profile of aba2/ga20ox1 and aba2/GA20ox1 plants overlap and share a pattern similar to the aba2 mutant. Thus, these data suggest that ABA deficiency dominates leaf growth regardless of GA levels. Moreover, the gene ontology (GO) analysis indicates gene enrichment in the categories of hormone response, developmental and metabolic processes, and cell wall organization in these three genotypes. Leaf developmental genes are also involved in the ABA-GA interaction. Collectively, these data support that the genetic relationship of ABA and GA interaction involves multiple coordinated pathways rather than a simple linear pathway for the regulation of leaf growth.

  17. The Arabidopsis small GTPase AtRAC7/ROP9 is a modulator of auxin and abscisic acid signalling

    Science.gov (United States)

    Cheung, Alice Y.

    2013-01-01

    Rac-like GTPases or Rho-related GTPases from plants (RAC/ROPs) are important components of hormone signalling pathways in plants. Based on phylogeny, several groups can be distinguished, and the underlying premise is that members of different groups perform distinct functions in the plant. AtRAC7/ROP9 is phylogenetically unique among 11 Arabidopsis RAC/ROPs, and here it was shown that it functions as a modulator of auxin and abscisic acid (ABA) signalling, a dual role not previously assigned to these small GTPases. Plants with reduced levels of AtRAC7/ROP9 had increased sensitivity to auxin and were less sensitive to ABA. On the other hand, overexpressing AtRAC7/ROP9 activated ABA-induced gene expression but repressed auxin-induced gene expression. In addition, both hormones regulated the activity of the AtRAC7/ROP9 promoter, suggesting a feedback mechanism to modulate the signalling output from the AtRAC7/ROP9-controlled molecular switch. High levels of AtRAC7/ROP9 were detected specifically in embryos and lateral roots, underscoring the important role of this protein during embryo development and lateral root formation. These results place AtRAC7/ROP9 as an important signal transducer in recently described pathways that integrate auxin and ABA signalling in the plant. PMID:23918972

  18. Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine.

    Science.gov (United States)

    Toumi, Imene; Moschou, Panagiotis N; Paschalidis, Konstantinos A; Bouamama, Badra; Ben Salem-Fnayou, Asma; Ghorbel, Abdel Wahed; Mliki, Ahmed; Roubelakis-Angelakis, Kalliopi A

    2010-05-01

    Polyamines (PAs) have been suggested to be implicated in plant responses to abiotic and biotic stress. Grapevine is a model perennial plant species whose cultivars respond differently to osmotic stress. In this study, we used two cultivars, one sensitive (S) and one tolerant (T) to drought. In adult vines subjected to drought under greenhouse conditions, total PAs were significantly lower in the control T- and higher in the control S-genotype and significantly increased or decreased, respectively, post-treatment. Soluble Put and Spd exhibited the greatest increase on d 8 post-treatment in the T- but not in the S-genotype, which accumulated soluble Spm. Abscisic acid (ABA) was differentially accumulated in T- and S-genotypes under drought conditions, and activated the PA biosynthetic pathway, which in turn was correlated with the differential increases in PA titers. In parallel, polyamine oxidases (PAOs) increased primarily in the S-genotype. ABA at least partially induced PA accumulation and exodus into the apoplast, where they were oxidized by the apoplastic amine oxidases (AOs), producing H2O2, which signaled secondary stress responses. The results here show that the ABA signaling pathway integrates PAs and AOs to regulate the generation of H2O2, which signals further stress responses or the PCD syndrome.

  19. Genetic analyses of interactions among gibberellin, abscisic acid, and brassinosteroids in the control of flowering time in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Malgorzata A Domagalska

    Full Text Available BACKGROUND: Genetic interactions between phytohormones in the control of flowering time in Arabidopsis thaliana have not been extensively studied. Three phytohormones have been individually connected to the floral-timing program. The inductive function of gibberellins (GAs is the most documented. Abscisic acid (ABA has been demonstrated to delay flowering. Finally, the promotive role of brassinosteroids (BRs has been established. It has been reported that for many physiological processes, hormone pathways interact to ensure an appropriate biological response. METHODOLOGY: We tested possible genetic interactions between GA-, ABA-, and BR-dependent pathways in the control of the transition to flowering. For this, single and double mutants deficient in the biosynthesis of GAs, ABA, and BRs were used to assess the effect of hormone deficiency on the timing of floral transition. Also, plants that over-express genes encoding rate-limiting enzymes in each biosynthetic pathway were generated and the flowering time of these lines was investigated. CONCLUSIONS: Loss-of-function studies revealed a complex relationship between GAs and ABA, and between ABA and BRs, and suggested a cross-regulatory relation between GAs to BRs. Gain-of-function studies revealed that GAs were clearly limiting in their sufficiency of action, whereas increases in BRs and ABA led to a more modest phenotypic effect on floral timing. We conclude from our genetic tests that the effects of GA, ABA, and BR on timing of floral induction are only in partially coordinated action.

  20. Abscisic acid promotes accumulation of toxin ODAP in relation to free spermine level in grass pea seedlings (Lathyrus sativus L.).

    Science.gov (United States)

    Xiong, You-Cai; Xing, Geng-Mei; Li, Feng-Min; Wang, Shao-Ming; Fan, Xian-Wei; Li, Zhi-Xiao; Wang, Ya-Fu

    2006-01-01

    Interrelationship among abscisic acid (ABA) content, accumulation of free polyamines and biosynthesis of beta-N-oxalyl-l-alpha,beta-diaminopropionic acid (ODAP) was studied in grass pea (Lathyrus sativus L.) seedlings under drought stress induced by 10% polyethylene glycol (PEG6000). Increase of ABA content occurred prior to that of ODAP and polyamine contents, and was found significantly positive correlation between ABA content and ODAP content. Addition of exogenous ABA increased ODAP content in leaves. On the other hand, pretreatment with alpha-difluoromethylarginine (DFMA), a polyamine biosynthesis inhibitor, significantly suppressed the accumulation of free putrescine (Put), free spermidine (Spd) and free spermine (Spm), which in turn inhibited biosynthesis of ODAP in well-watered leaves. Meanwhile, addition of exogenous Put alleviated DFMA-induced inhibition on the biosynthesis of Put and Spd, but did not affect the biosynthesis of Spm and ODAP in well-watered leaves. Same result was also achieved in drought-stressed leaves. Increasing accumulation of ODAP was significantly correlated with increasing Spm content (R=0.7957**) but not with that of Spd and Put. Therefore, it can be argued that ABA stimulated the biosynthesis of ODAP simultaneously with increasing the level of free Spm under drought stress condition.

  1. Inhibition of inward K+ channels and stomatal response by abscisic acid: an intracellular locus of phytohormone action.

    Science.gov (United States)

    Schwartz, A; Wu, W H; Tucker, E B; Assmann, S M

    1994-04-26

    Abscisic acid (ABA), a plant hormone whose production is stimulated by water stress, reduces the apertures of stomatal pores in the leaf surface, thereby lessening transpirational water loss. It has been thought that inhibition of stomatal opening and promotion of stomatal closure by ABA are initiated by the binding of extracellular ABA to a receptor located in the guard-cell plasma membrane. However, in the present research, we employ three distinct experimental approaches to demonstrate that ABA can act from within guard cells to regulate stomatal apertures. (i) The extent to which ABA inhibits stomatal opening and promotes stomatal closure in Commelina communis L. is proportional to the extent of ABA uptake, as assayed with [3H]ABA. (ii) Direct microinjection of ABA into the cytoplasm of Commelina guard cells precipitates stomatal closure. (iii) Application of ABA to the cytosol of Vicia faba L. guard-cell protoplasts via patch-clamp techniques inhibits inward K+ currents, an effect sufficient to inhibit stomatal opening. These results demonstrate an intracellular locus of phytohormone action and imply that the search for hormone receptor proteins should be extended to include intracellular compartments.

  2. Effects of Exterior Abscisic Acid on Calcium Distribution of Mesophyll Cells and Calcium Concentration of Guard Cells in Maize Seedlings

    Institute of Scientific and Technical Information of China (English)

    GUO Xiu-lin; MA Yuan-yuan; LIU Zi-hui; LIU Bin-hui

    2008-01-01

    In this study, the direct effects of exterior abscisic acid (ABA) on both calcium distribution of mesophyll cells and cytosolic calcium concentration of guard cells were examined. The distribution of Ca2+ localization were observed with calcium antimonate precipitate-electromicroscopic-cyto-chemical methods after treated with ABA and pretreated with ethylene glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA), verapamil (Vp), and trifluoperazine (TFP). The laser scanning confocal microscopy was used to measure the cytosolic calcium concentrations of guard cells under different treatments. The results showed that the cytosolic Ca2+ concentration of mesophyll cells was induced to increase by ABA, but to decrease in both outside cell and the vacuoles within 10 min after treatments. The cytosolic calcium concentration of guard cells was increased gradually with the lag in treatment time. However, both EGTA and TFP could inverse those effects, indicating that the increase of cytosolic calcium induced by exterior ABA was mainly caused by calcium influx. The results also showed that calmodulin could influence both the calcium distribution of mesophyll cells and calcium concentration of guard cells. It shows that calmodulin participates in the process of ABA signal transduction, but the mechanism is not known as yet. The changes both calcium distribution of mesophyll cells and calcium concentration of guard cells further proved that the variations of cytosolic Ca2+ concentration induced by ABA were involved in the stomatal movements of maize seedlings.

  3. The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis

    KAUST Repository

    Wang, Zhenyu

    2011-05-01

    Osmotic stress activates the biosynthesis of abscisic acid (ABA). One major step in ABA biosynthesis is the carotenoid cleavage catalyzed by a 9-cis epoxycarotenoid dioxygenase (NCED). To understand the mechanism for osmotic stress activation of ABA biosynthesis, we screened for Arabidopsis thaliana mutants that failed to induce the NCED3 genee xpression in response to osmotic stress treatments. The ced1 (for 9-cis epoxycarotenoid dioxy genase defective 1) mutant isolated in this study showed markedly reduced expression of NCED3 in response to osmotic stress (polyethylene glycol)treatments compared with the wild type. Other ABA biosynthesis genes are also greatly reduced in ced1 under osmotic stress. ced1 mutant plants are very sensitive to even mild osmotic stress. Map-based cloning revealed unexpectedly thatCED1 encodes a putative a/b hydrolase domain-containing protein and is allelic to the BODYGUARD gene that was recently shown to be essential for cuticle biogenesis. Further studies discovered that other cut in biosynthesis mutants are also impaired in osmotic stress induction of ABA biosynthesis genes and are sensitive to osmotic stress. Our work demonstrates that the cuticle functions not merely as a physical barrier to minimize water loss but also mediates osmotic stress signaling and tolerance by regulating ABA biosynthesis and signaling. © 2011 American Society of Plant Biologists. All rights reserved.

  4. Integrin-like Protein Is Involved in the Osmotic Stress-induced Abscisic Acid Biosynthesis in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Bing Lü; Feng Chen; Zhong-Hua Gong; Hong Xie; Jian-Sheng Liang

    2007-01-01

    We studied the perception of plant cells to osmotic stress that leads to the accumulation of abscisic acid (ABA) in stressed Arabidopsis thaliana L. cells. A significant difference was found between protoplasts and cells in terms of their responses to osmotic stress and ABA biosynthesis, implying that cell wall and/or cell wall-plasma membrane interaction are essential in identifying osmotic stress. Western blotting and immunofluorescence localization experiments, using polyclonal antibody against human integrin β1, revealed the existence of a protein similar to the integrin protein of animals in the suspension-cultured cells located in the plasma membrane fraction.Treatment with a synthetic pentapeptide, Gly-Arg-Gly-Asp-Ser (GRGDS), which contains an RGD domain and interacts specifically with integrin protein and thus blocks the cell wall-plasma membrane interaction, significantly inhibited osmotic stress-induced ABA biosynthesis in cells, but not in protoplasts. These results demonstrate that cell wall and/or cell wall-plasma membrane interaction mediated by integrin-like proteins played important roles in osmotic stress-induced ABA biosynthesis in Arabidopsis thaliana.

  5. The avoidance and aggregative movements of mesophyll chloroplasts in C(4) monocots in response to blue light and abscisic acid.

    Science.gov (United States)

    Maai, Eri; Shimada, Shouu; Yamada, Masahiro; Sugiyama, Tatsuo; Miyake, Hiroshi; Taniguchi, Mitsutaka

    2011-05-01

    In C(4) plants, mesophyll (M) chloroplasts are randomly distributed along the cell walls, whereas bundle sheath chloroplasts are located in either a centripetal or centrifugal position. It was reported previously that only M chloroplasts aggregatively redistribute to the bundle sheath side in response to extremely strong light or environmental stresses. The aggregative movement of M chloroplasts is also induced in a light-dependent fashion upon incubation with abscisic acid (ABA). The involvement of reactive oxygen species (ROS) and red/blue light in the aggregative movement of M chloroplasts are examined here in two distinct subtypes of C(4) plants, finger millet and maize. Exogenously applied hydrogen peroxide or ROS scavengers could not change the response patterns of M chloroplast movement to light and ABA. Blue light irradiation essentially induced the rearrangement of M chloroplasts along the sides of anticlinal walls, parallel to the direction of the incident light, which is analogous to the avoidance movement of C(3) chloroplasts. In the presence of ABA, most of the M chloroplasts showed the aggregative movement in response to blue light but not red light. Together these results suggest that ROS are not involved in signal transduction for the aggregative movement, and ABA can shift the blue light-induced avoidance movement of C(4)-M chloroplasts to the aggregative movement.

  6. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid.

    Science.gov (United States)

    Ishitani, M; Nakamura, T; Han, S Y; Takabe, T

    1995-01-01

    When subjected to salt stress or drought, some vascular plants such as barley respond with an increased accumulation of the osmoprotectant glycine betaine (betaine), being the last step of betaine synthesis catalyzed by betaine aldehyde dehydrogenase (BADH). We report here cloning and characterization of BADH cDNA from barley, a monocot, and the expression pattern of a BADH transcript. An open reading frame of 1515 bp encoded a protein which showed high homology to BADH enzymes present in other plants (spinach and sugar-beet) and in Escherichia coli. Transgenic tobacco plants harboring the clone expressed high levels of both BADH protein and its enzymatic activity. Northern blot analyses indicated that BADH mRNA levels increased almost 8-fold and 2-fold, respectively, in leaves and roots of barley plants grown in high-salt conditions, and that these levels decreased upon release of the stress, whereas they did not decrease under continuous salt stress. BADH transcripts also accumulate in response to water stress or drought, indicating a common response of the plant to osmotic changes that affect its water status. The addition of abscisic acid (ABA) to plants during growth also increased the levels of BADH transcripts dramatically, although the response was delayed when compared to that found for salt-stressed plants. Removal of plant roots before transferring the plants to high-salt conditions reduced only slightly the accumulation of BADH transcripts in the leaves.

  7. Studies on the growth and indole-3-acetic acid and abscisic acid content of Zea mays seedlings grown in microgravity

    Science.gov (United States)

    Schulze, A.; Jensen, P. J.; Desrosiers, M.; Buta, J. G.; Bandurski, R. S.

    1992-01-01

    Measurements were made of the fresh weight, dry weight, dry weight-fresh weight ratio, free and conjugated indole-3-acetic acid, and free and conjugated abscisic acid in seedlings of Zea mays grown in darkness in microgravity and on earth. Imbibition of the dry kernels was 17 h prior to launch. Growth was for 5 d at ambient orbiter temperature and at a chronic accelerational force of the order of 3 x 10(-5) times earth gravity. Weights and hormone content of the microgravity seedlings were, with minor exceptions, not statistically different from seedlings grown in normal gravity. The tissues of the shuttle-grown plants appeared normal and the seedlings differed only in the lack of orientation of roots and shoots. These findings, based upon 5 d of growth in microgravity, cannot be extrapolated to growth in microgravity for weeks, months, and years, as might occur on a space station. Nonetheless, it is encouraging, for prospects of bioregeneration of the atmosphere and food production in a space station, that no pronounced differences in the parameters measured were apparent during the 5 d of plant seedling growth in microgravity.

  8. Graviresponsiveness and abscisic-acid content of roots of carotenoid-deficient mutants of Zea mays L

    Science.gov (United States)

    Moore, R.; Smith, J. D.

    1985-01-01

    The abscisic-acid (ABA) content of roots of the carotenoid-deficient w-3, vp-5, and vp-7 mutants of Z. mays was analyzed using gas chromatography-mass spectrometry with an analysis sensitivity of 6 ng ABA g-1 fresh weight (FW). Roots of normal seedlings of the same lines were characterized by the following amounts of ABA (as ng ABA g-1 FW, +/- standard deviation): w-3, 279 +/- 43; vp-5, 237 +/- 26; vp-7, 338 +/- 61. We did not detect any ABA in roots of any of the mutants. Thus, the lack of carotenoids in these mutants correlated positively with the apparent absence of ABA. Primary roots of normal and mutant seedlings were positively gravitropic, with no significant differences in the curvatures of roots of normal as compared with mutant seedlings. These results indicate that ABA 1) is synthesized in maize roots via the carotenoid pathway, and 2) is not necessary for positive gravitropism by primary roots of Z. mays.

  9. Growth and graviresponsiveness of primary roots of Zea mays seedlings deficient in abscisic acid and gibberellic acid

    Science.gov (United States)

    Moore, R.; Dickey, K.

    1985-01-01

    The objective of this research was to determine if gibberellic acid (GA) and/or abscisic acid (ABA) are necessary for graviresponsiveness by primary roots of Zea mays. To accomplish this objective we measured the growth and graviresponsiveness of primary roots of seedlings in which the synthesis of ABA and GA was inhibited collectively and individually by genetic and chemical means. Roots of seedlings treated with Fluridone (an inhibitor of ABA biosynthesis) and Ancymidol (an inhibitor of GA biosynthesis) were characterized by slower growth rates but not significantly different gravicultures as compared to untreated controls. Gravicurvatures of primary roots of d-5 mutants (having undetectable levels of GA) and vp-9 mutants (having undectable levels of ABA) were not significantly different from those of wild-type seedlings. Roots of seedlings in which the biosynthesis of ABA and GA was collectively inhibited were characterized by gravicurvatures not significantly different for those of controls. These results (1) indicate that drastic reductions in the amount of ABA and GA in Z. mays seedlings do not significantly alter root graviresponsiveness, (2) suggest that neither ABA nor GA is necessary for root gravicurvature, and (3) indicate that root gravicurvature is not necessarily proportional to root elongation.

  10. P-HYDROXYPHENYLPYRUVATE DIOXYGENASE from Medicago sativa is involved in vitamin E biosynthesis and abscisic acid-mediated seed germination

    Science.gov (United States)

    Jiang, Jishan; Chen, Zhihong; Ban, Liping; Wu, Yudi; Huang, Jianping; Chu, Jinfang; Fang, Shuang; Wang, Zan; Gao, Hongwen; Wang, Xuemin

    2017-01-01

    P-HYDROXYPHENYLPYRUVATE DIOXYGENASE (HPPD) is the first committed enzyme involved in the biosynthesis of vitamin E, and is characterized by catalyzing the conversion of p-hydroxyphenyl pyruvate (HPP) to homogentisic acid (HGA). Here, an HPPD gene was cloned from Medicago sativa L. and designated MsHPPD, which was expressed at high levels in alfalfa leaves. PEG 6000 (polyethylene glycol), NaCl, abscisic acid and salicylic acid were shown to significantly induce MsHPPD expression, especially in the cotyledons and root tissues. Overexpression of MsHPPD was found to significantly increase the level of β-tocotrienol and the total vitamin E content in Arabidopsis seeds. Furthermore, these transgenic Arabidopsis seeds exhibited an accelerated germination time, compared with wild-type seeds under normal conditions, as well as under NaCl and ABA treatments. Meanwhile, the expression level of several genes associated with ABA biosynthesis (NCED3, NCED5 and NCED9) and the ABA signaling pathway (RAB18, ABI3 and ABI5) were significantly down-regulated in MsHPPD-overexpressing transgenic lines, as well as the total free ABA content. Taken together, these results demonstrate that MsHPPD functions not only in the vitamin E biosynthetic pathway, but also plays a critical role in seed germination via affecting ABA biosynthesis and signaling. PMID:28084442

  11. OsHK3 is a crucial regulator of abscisic acid signaling involved in antioxidant defense in rice

    Institute of Scientific and Technical Information of China (English)

    Feng Wen; Tingting Qin; Yao Wang; Wen Dong; Aying Zhang; Mingpu Tan; Mingyi Jiang

    2015-01-01

    In this study, the role of the rice (Oryza sativa L.) histidine kinase OsHK3 in abscisic acid (ABA)‐induced antioxi-dant defense was investigated. Treatments with ABA, H2O2, and polyethylene glycol (PEG) induced the expression of OsHK3 in rice leaves, and H2O2 is required for ABA‐induced increase in the expression of OsHK3 under water stress. Subcel ular localization analysis showed that OsHK3 is located in the cytoplasm and the plasma membrane. The transient expres-sion analysis and the transient RNA interference test in rice protoplasts showed that OsHK3 is required for ABA‐induced upregulation in the expression of antioxidant enzymes genes and the activities of antioxidant enzymes. Further analysis showed that OsHK3 functions upstream of the calcium/calmodulin‐dependent protein kinase OsDMI3 and the mito-gen‐activated protein kinase OsMPK1 to regulate the activities of antioxidant enzymes in ABA signaling. Moreover, OsHK3 was also shown to regulate the expression of nicotinamide adenine dinucleotide phosphate oxidase genes, OsrbohB and OsrbohE, and the production of H2O2 in ABA signaling. Our data indicate that OsHK3 play an important role in the regulation of ABA‐induced antioxidant defense and in the feedback regula-tion of H2O2 production in ABA signaling.

  12. Implication of abscisic acid on ripening and quality in sweet cherries: differential effects during pre- and postharvest

    Directory of Open Access Journals (Sweden)

    Verónica eTijero

    2016-05-01

    Full Text Available Sweet cherry, a non-climacteric fruit, is usually cold-stored during postharvest to prevent over-ripening. The aim of the study was to evaluate the role of abscisic acid (ABA on fruit growth and ripening of this fruit, considering as well its putative implication in over-ripening and effects on quality. We measured the endogenous concentrations of ABA during the ripening of sweet cherries (Prunus avium L. var. Prime Giant collected from orchard trees and in cherries exposed to 4ºC and 23ºC during 10d of postharvest. Furthermore, we examined to what extent endogenous ABA concentrations were related to quality parameters, such as fruit biomass, anthocyanin accumulation and levels of vitamins C and E. Endogenous concentrations of ABA in fruits increased progressively during fruit growth and ripening on the tree, to decrease later during postharvest at 23ºC. Cold treatment, however, increased ABA levels and led to an inhibition of over-ripening. Furthermore, ABA levels positively correlated with anthocyanin and vitamin E levels during preharvest, but not during postharvest. We conclude that ABA plays a major role in sweet cherry development, stimulating its ripening process and positively influencing quality parameters during preharvest. The possible influence of ABA preventing over-ripening in cold-stored sweet cherries is also discussed.

  13. Implication of Abscisic Acid on Ripening and Quality in Sweet Cherries: Differential Effects during Pre- and Post-harvest

    Science.gov (United States)

    Tijero, Verónica; Teribia, Natalia; Muñoz, Paula; Munné-Bosch, Sergi

    2016-01-01

    Sweet cherry, a non-climacteric fruit, is usually cold-stored during post-harvest to prevent over-ripening. The aim of the study was to evaluate the role of abscisic acid (ABA) on fruit growth and ripening of this fruit, considering as well its putative implication in over-ripening and effects on quality. We measured the endogenous concentrations of ABA during the ripening of sweet cherries (Prunus avium L. var. Prime Giant) collected from orchard trees and in cherries exposed to 4°C and 23°C during 10 days of post-harvest. Furthermore, we examined to what extent endogenous ABA concentrations were related to quality parameters, such as fruit biomass, anthocyanin accumulation and levels of vitamins C and E. Endogenous concentrations of ABA in fruits increased progressively during fruit growth and ripening on the tree, to decrease later during post-harvest at 23°C. Cold treatment, however, increased ABA levels and led to an inhibition of over-ripening. Furthermore, ABA levels positively correlated with anthocyanin and vitamin E levels during pre-harvest, but not during post-harvest. We conclude that ABA plays a major role in sweet cherry development, stimulating its ripening process and positively influencing quality parameters during pre-harvest. The possible influence of ABA preventing over-ripening in cold-stored sweet cherries is also discussed. PMID:27200070

  14. Anion-Channel Blockers Inhibit S-Type Anion Channels and Abscisic Acid Responses in Guard Cells.

    Science.gov (United States)

    Schwartz, A.; Ilan, N.; Schwarz, M.; Scheaffer, J.; Assmann, S. M.; Schroeder, J. I.

    1995-10-01

    The effects of anion-channel blockers on light-mediated stomatal opening, on the potassium dependence of stomatal opening, on stomatal responses to abscisic acid (ABA), and on current through slow anion channels in the plasma membrane of guard cells were investigated. The anion-channel blockers anthracene-9-carboxylic acid (9-AC) and niflumic acid blocked current through slow anion channels of Vicia faba L. guard cells. Both 9-AC and niflumic acid reversed ABA inhibition of stomatal opening in V. faba L. and Commelina communis L. The anion-channel blocker probenecid also abolished ABA inhibition of stomatal opening in both species. Additional tests of 9-AC effects on stomatal aperture in Commelina revealed that application of this anion-channel blocker allowed wide stomatal opening under low (1 mM) KCI conditions and increased the rate of stomatal opening under both low and high (100 mM) KCI conditions. These results indicate that anion channels can function as a negative regulator of stomatal opening, presumably by allowing anion efflux and depolarization, which prohibits ion up-take in guard cells. Furthermore, 9-AC prevented ABA induction of stomatal closure. A model in which ABA activation of anion channels contributes a rate-limiting mechanism during ABA-induced stomatal closure and inhibition of stomatal opening is discussed.

  15. Meristem maintenance, auxin, jasmonic and abscisic acid pathways as a mechanism for phenotypic plasticity in Antirrhinum majus

    Science.gov (United States)

    Weiss, Julia; Alcantud-Rodriguez, Raquel; Toksöz, Tugba; Egea-Cortines, Marcos

    2016-01-01

    Plants grow under climatic changing conditions that cause modifications in vegetative and reproductive development. The degree of changes in organ development i.e. its phenotypic plasticity seems to be determined by the organ identity and the type of environmental cue. We used intraspecific competition and found that Antirrhinum majus behaves as a decoupled species for lateral organ size and number. Crowding causes decreases in leaf size and increased leaf number whereas floral size is robust and floral number is reduced. Genes involved in shoot apical meristem maintenance like ROA and HIRZ, cell cycle (CYCD3a; CYCD3b, HISTONE H4) or organ polarity (GRAM) were not significantly downregulated under crowding conditions. A transcriptomic analysis of inflorescence meristems showed Gene Ontology enriched pathways upregulated including Jasmonic and Abscisic acid synthesis and or signalling. Genes involved in auxin synthesis such as AmTAR2 and signalling AmANT were not affected by crowding. In contrast, AmJAZ1, AmMYB21, AmOPCL1 and AmABA2 were significantly upregulated. Our work provides a mechanistic working hypothesis where a robust SAM and stable auxin signalling enables a homogeneous floral size while changes in JA and ABA signalling maybe responsible for the decreased leaf size and floral number.

  16. Expression of genes associated with the biosynthetic pathways of abscisic acid, gibberellin, and ethylene during the germination of lettuce seeds.

    Science.gov (United States)

    Clemente, A C S; Guimarães, R M; Martins, D C; Gomes, L A A; Caixeta, F; Reis, R G E; Rosa, S D V F

    2015-01-01

    Seed germination and dormancy are complex phenomena that are controlled by many genes and environmental factors. Such genes are indicated by phytohormones that interact with each other, and may cause dormancy or promote seed germination. The objective of this study was to investigate gene expression associated with the biosynthetic pathways of abscisic acid (ABA), gibberellic acid (GA), and ethylene (ET) in dormant and germinated lettuce seeds. The expressions of LsNCED, LsGA3ox1, and ACO-B were evaluated in germinating and dormant seeds from the cultivars Everglades, Babá de Verão, Verônica, Salinas, Colorado, and Regina 71. The expressions of LsNCED, LsGA3ox1, and ACO-B were related to the biosynthesis of ABA, GA, and ET, respectively; therefore, the presence of these substances depends on genotype. LsNCED expression only occurred in dormant seeds, and was connected to dormancy. LsGA3ox1expression only occurred in germinated seeds, and was connected to germination. The ACO-B gene was involved in ET biosynthesis, and was expressed differently in germinated and dormant seeds, depending on the genotype, indicating different functions for different characteristics. Furthermore, sensitivity to phytohormones appeared to be more important than the expression levels of LsNCED, LsGA3ox1, or ACO-B.

  17. The role of the atypical kinases ABC1K7 and ABC1K8 in abscisic acid responses

    Directory of Open Access Journals (Sweden)

    Anna eManara

    2016-03-01

    Full Text Available The ABC1K family of atypical kinases (activity of bc1 complex kinase is represented in bacteria, archaea and eukaryotes. In plants they regulate diverse physiological processes in the chloroplasts and mitochondria, but their precise functions are poorly defined. ABC1K7 and ABC1K8 are probably involved in oxidative stress responses, isoprenyl lipid synthesis and distribution of iron within chloroplasts. Because reactive oxygen species take part in abscisic acid (ABA-mediated processes, we investigated the functions of ABC1K7 and ABC1K8 during germination, stomatal movement and leaf senescence. Both genes were upregulated by ABA treatment and some ABA-responsive physiological processes were affected in abc1k7 and abc1k8 mutants. Germination was more severely affected by ABA, osmotic stress and salt stress in the single and double mutants; the stomatal aperture was smaller in the mutants under standard growth conditions and was not further reduced by exogenous ABA application; ABA-induced senescence symptoms were more severe in the leaves of the single and double mutants compared to wild type leaves. Taken together, our results suggest that ABC1K7 and ABC1K8 might be involved in the cross-talk between ABA and ROS signaling.

  18. Gene Overexpression and RNA Silencing Tools for the Genetic Manipulation of the S-(+-Abscisic Acid Producing Ascomycete Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Zhong-Tao Ding

    2015-05-01

    Full Text Available The phytopathogenic ascomycete Botrytis cinerea produces several secondary metabolites that have biotechnical significance and has been particularly used for S-(+-abscisic acid production at the industrial scale. To manipulate the expression levels of specific secondary metabolite biosynthetic genes of B. cinerea with Agrobacterium tumefaciens-mediated transformation system, two expression vectors (pCBh1 and pCBg1 with different selection markers and one RNA silencing vector, pCBSilent1, were developed with the In-Fusion assembly method. Both expression vectors were highly effective in constitutively expressing eGFP, and pCBSilent1 effectively silenced the eGFP gene in B. cinerea. Bcaba4, a gene suggested to participate in ABA biosynthesis in B. cinerea, was then targeted for gene overexpression and RNA silencing with these reverse genetic tools. The overexpression of bcaba4 dramatically induced ABA formation in the B. cinerea wild type strain Bc-6, and the gene silencing of bcaba4 significantly reduced ABA-production in an ABA-producing B. cinerea strain.

  19. Docosahexaenoic acid and other fatty acids induce a decrease in pHi in Jurkat T-cells

    Science.gov (United States)

    Aires, Virginie; Hichami, Aziz; Moutairou, Kabirou; Khan, Naim Akhtar

    2003-01-01

    Docosahexaenoic acid (DHA) induced rapid (t1/2=33 s) and dose-dependent decreases in pHi in BCECF-loaded human (Jurkat) T-cells. Addition of 5-(N,N-dimethyl)-amiloride, an inhibitor of Na+/H+ exchanger, prolonged DHA-induced acidification as a function of time, indicating that the exchanger is implicated in pHi recovery. Other fatty acids like oleic acid, arachidonic acid, eicosapentaenoic acid, but not palmitic acid, also induced a fall in pHi in these cells. To assess the role of calcium in the DHA-induced acidification, we conducted experiments in Ca2+-free (0% Ca2+) and Ca2+-containing (100% Ca2+) buffer. We observed that there was no difference in the degree of DHA-induced transient acidification in both the experimental conditions, though pHi recovery was faster in 0% Ca2+ medium than that in 100% Ca2+ medium. In the presence of BAPTA, a calcium chelator, a rapid recovery of DHA-induced acidosis was observed. Furthermore, addition of CaCl2 into 0% Ca2+ medium curtailed DHA-evoked rapid pHi recovery. In 0% Ca2+ medium, containing BAPTA, DHA did not evoke increases in [Ca2+]i, though this fatty acid still induced a rapid acidification in these cells. These observations suggest that calcium is implicated in the long-lasting DHA-induced acidosis. DHA-induced rapid acidification may be due to its deprotonation in the plasma membrane (flip-flop model), as suggested by the following observations: (1) DHA with a –COOH group induced intracellular acidification, but this fatty acid with a –COOCH3 group failed to do so, and (2) DHA, but not propionic acid, -induced acidification was completely reversed by addition of fatty acid-free bovine serum albumin in these cells. These results suggest that DHA induces acidosis via deprotonation and Ca2+ mobilization in human T-cells. PMID:14645139

  20. SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis.

    Science.gov (United States)

    Miura, Kenji; Okamoto, Hiroyuki; Okuma, Eiji; Shiba, Hayato; Kamada, Hiroshi; Hasegawa, Paul M; Murata, Yoshiyuki

    2013-01-01

    Transpiration and gas exchange occur through stomata. Thus, the control of stomatal aperture is important for the efficiency and regulation of water use, and for the response to drought. Here, we demonstrate that SIZ1-mediated endogenous salicylic acid (SA) accumulation plays an important role in stomatal closure and drought tolerance. siz1 reduced stomatal apertures. The reduced stomatal apertures of siz1 were inhibited by the application of peroxidase inhibitors, salicylhydroxamic acid and azide, which inhibits SA-dependent reactive oxygen species (ROS) production, but not by an NADPH oxidase inhibitor, diphenyl iodonium chloride, which inhibits ABA-dependent ROS production. Furthermore, the introduction of nahG into siz1, which reduces SA accumulation, restored stomatal opening. Stomatal closure is generally induced by water deficit. The siz1 mutation caused drought tolerance, whereas nahG siz1 suppressed the tolerant phenotype. Drought stresses also induced expression of SA-responsive genes, such as PR1 and PR2. Furthermore, other SA-accumulating mutants, cpr5 and acd6, exhibited stomatal closure and drought tolerance, and nahG suppressed the phenotype of cpr5 and acd6, as did siz1 and nahG siz1. Together, these results suggest that SIZ1 negatively affects stomatal closure and drought tolerance through the accumulation of SA.

  1. The Na+/H+ exchanger controls deoxycholic acid-induced apoptosis by a H+-activated, Na+-dependent ionic shift in esophageal cells.

    Directory of Open Access Journals (Sweden)

    Aaron Goldman

    Full Text Available Apoptosis resistance is a hallmark of cancer cells. Typically, bile acids induce apoptosis. However during gastrointestinal (GI tumorigenesis the cancer cells develop resistance to bile acid-induced cell death. To understand how bile acids induce apoptosis resistance we first need to identify the molecular pathways that initiate apoptosis in response to bile acid exposure. In this study we examined the mechanism of deoxycholic acid (DCA-induced apoptosis, specifically the role of Na(+/H(+ exchanger (NHE and Na(+ influx in esophageal cells. In vitro studies revealed that the exposure of esophageal cells (JH-EsoAd1, CP-A to DCA (0.2 mM-0.5 mM caused lysosomal membrane perturbation and transient cytoplasmic acidification. Fluorescence microscopy in conjunction with atomic absorption spectrophotometry demonstrated that this effect on lysosomes correlated with influx of Na(+, subsequent loss of intracellular K(+, an increase of Ca(2+ and apoptosis. However, ethylisopropyl-amiloride (EIPA, a selective inhibitor of NHE, prevented Na(+, K(+ and Ca(2+ changes and caspase 3/7 activation induced by DCA. Ouabain and amphotericin B, two drugs that increase intracellular Na(+ levels, induced similar changes as DCA (ion imbalance, caspase3/7 activation. On the contrary, DCA-induced cell death was inhibited by medium with low a Na(+ concentrations. In the same experiments, we exposed rat ileum ex-vivo to DCA with or without EIPA. Severe tissue damage and caspase-3 activation was observed after DCA treatment, but EIPA almost fully prevented this response. In summary, NHE-mediated Na(+ influx is a critical step leading to DCA-induced apoptosis. Cells tolerate acidification but evade DCA-induced apoptosis if NHE is inhibited. Our data suggests that suppression of NHE by endogenous or exogenous inhibitors may lead to apoptosis resistance during GI tumorigenesis.

  2. Dietary abscisic acid ameliorates influenza-virus-associated disease and pulmonary immunopathology through a PPARγ-dependent mechanism.

    Science.gov (United States)

    Hontecillas, Raquel; Roberts, Paul C; Carbo, Adria; Vives, Cristina; Horne, William T; Genis, Sandra; Velayudhan, Binu; Bassaganya-Riera, Josep

    2013-06-01

    The anti-inflammatory phytohormone abscisic acid (ABA) modulates immune and inflammatory responses in mouse models of colitis and obesity. ABA has been identified as a ligand of lanthionine synthetase C-like 2, a novel therapeutic target upstream of the peroxisome proliferator-activated receptor γ (PPARγ) pathway. The goal of this study was to investigate the immune modulatory mechanisms underlying the anti-inflammatory efficacy of ABA against influenza-associated pulmonary inflammation. Wild-type (WT) and conditional knockout mice with defective PPARγ expression in lung epithelial and hematopoietic cells (cKO) treated orally with or without ABA (100 mg/kg diet) were challenged with influenza A/Udorn (H3N2) to assess ABA's impact in disease, lung lesions and gene expression. Dietary ABA ameliorated disease activity and lung inflammatory pathology, accelerated recovery and increased survival in WT mice. ABA suppressed leukocyte infiltration and monocyte chemotactic protein 1 mRNA expression in WT mice through PPARγ since this effect was abrogated in cKO mice. ABA ameliorated disease when administered therapeutically on the same day of the infection to WT but not mice lacking PPARγ in myeloid cells. We also show that ABA's greater impact is between days 7 and 10 postchallenge when it regulates the expression of genes involved in resolution, like 5-lipoxygenase and other members of the 5-lipoxygenase pathway. Furthermore, ABA significantly increased the expression of the immunoregulatory cytokine interleukin-10 in WT mice. Our results show that ABA, given preventively or therapeutically, ameliorates influenza-virus-induced pathology by activating PPARγ in pulmonary immune cells, suppressing initial proinflammatory responses and promoting resolution.