WorldWideScience

Sample records for abrogates lead-induced neurodegeneration

  1. Combinational chelation therapy abrogates lead-induced neurodegeneration in rats

    International Nuclear Information System (INIS)

    Pachauri, Vidhu; Saxena, Geetu; Mehta, Ashish; Mishra, Deepshikha; Flora, Swaran J.S.

    2009-01-01

    Lead, a ubiquitous and potent neurotoxicant causes oxidative stress which leads to numerous neurobehavioral and physiological alterations. The ability of lead to bind sulfhydryl groups or compete with calcium could be one of the reasons for its debilitating effects. In the present study, we addressed: i) if chelation therapy could circumvent the altered oxidative stress and prevent neuronal apoptosis in chronic lead-intoxicated rats, ii) whether chelation therapy could reverse biochemical and behavioral changes, and iii) if mono or combinational therapy with captopril (an antioxidant) and thiol chelating agents (DMSA/MiADMSA) is more effective than individual thiol chelator in lead-exposed rats. Results indicated that lead caused a significant increase in reactive oxygen species, nitric oxide, and intracellular free calcium levels along with altered behavioral abnormalities in locomotor activity, exploratory behavior, learning, and memory that were supported by changes in neurotransmitter levels. A fall in membrane potential, release of cytochrome c, and DNA damage indicated mitochondrial-dependent apoptosis. Most of these alterations showed significant recovery following combined therapy with captopril with MiADMSA and to a smaller extend with captopril + DMSA over monotherapy with these chelators. It could be concluded from our present results that co-administration of a potent antioxidant (like captopril) might be a better treatment protocol than monotherapy to counter lead-induced oxidative stress. The major highlight of the work is an interesting experimental evidence of the efficacy of combinational therapy using an antioxidant with a thiol chelator in reversing neurological dystrophy caused due to chronic lead exposure in rats.

  2. Oxidative Stress in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Varsha Shukla

    2011-01-01

    Full Text Available It has been demonstrated that oxidative stress has a ubiquitous role in neurodegenerative diseases. Major source of oxidative stress due to reactive oxygen species (ROS is related to mitochondria as an endogenous source. Although there is ample evidence from tissues of patients with neurodegenerative disorders of morphological, biochemical, and molecular abnormalities in mitochondria, it is still not very clear whether the oxidative stress itself contributes to the onset of neurodegeneration or it is part of the neurodegenerative process as secondary manifestation. This paper begins with an overview of how oxidative stress occurs, discussing various oxidants and antioxidants, and role of oxidative stress in diseases in general. It highlights the role of oxidative stress in neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis. The last part of the paper describes the role of oxidative stress causing deregulation of cyclin-dependent kinase 5 (Cdk5 hyperactivity associated with neurodegeneration.

  3. Neuroinflammation Induces Neurodegeneration.

    Science.gov (United States)

    Kempuraj, D; Thangavel, R; Natteru, P A; Selvakumar, G P; Saeed, D; Zahoor, H; Zaheer, S; Iyer, S S; Zaheer, A

    2016-01-01

    Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Multiple Sclerosis (MS) are characterized by neuronal degeneration and neuronal death in specific regions of the central nervous system (CNS). In AD, neurons of the hippocampus and entorhinal cortex are the first to degenerate, whereas in PD, dopaminergic neurons in the substantia nigra degenerate. MS patients show destruction of the myelin sheath. Once the CNS neurons are damaged, they are unable to regenerate unlike any other tissue in the body. Neurodegeneration is mediated by inflammatory and neurotoxic mediators such as interleukin-1beta (IL-1β), IL-6, IL-8, IL-33, tumor necrosis factor-alpha (TNF-α), chemokine (C-C motif) ligand 2 (CCL2), CCL5, matrix metalloproteinase (MMPs), granulocyte macrophage colony-stimulating factor (GM-CSF), glia maturation factor (GMF), substance P, reactive oxygen species (ROS), reactive nitrogen species (RNS), mast cells-mediated histamine and proteases, protease activated receptor-2 (PAR-2), CD40, CD40L, CD88, intracellular Ca + elevation, and activation of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa-B (NF-kB). Activated microglia, astrocytes, neurons, T-cells and mast cells release these inflammatory mediators and mediate neuroinflammation and neurodegeneration in a vicious manner. Further, immune and inflammatory cells and inflammatory mediators from the periphery cross the defective blood-brain-barrier (BBB) and augment neuroinflammation. Though inflammation is crucial in the onset and the progression of neurodegenerative diseases, anti-inflammatory drugs do not provide significant therapeutic effects in these patients till date, as the disease pathogenesis is not yet clearly understood. In this review, we discuss the possible factors involved in neuroinflammation-mediated neurodegeneration.

  4. Metals and Neurodegeneration

    Science.gov (United States)

    Chen, Pan; Miah, Mahfuzur Rahman; Aschner, Michael

    2016-01-01

    Metals play important roles in the human body, maintaining cell structure and regulating gene expression, neurotransmission, and antioxidant response, to name a few. However, excessive metal accumulation in the nervous system may be toxic, inducing oxidative stress, disrupting mitochondrial function, and impairing the activity of numerous enzymes. Damage caused by metal accumulation may result in permanent injuries, including severe neurological disorders. Epidemiological and clinical studies have shown a strong correlation between aberrant metal exposure and a number of neurological diseases, including Alzheimer’s disease, amyotrophic lateral sclerosis, autism spectrum disorders, Guillain–Barré disease, Gulf War syndrome, Huntington’s disease, multiple sclerosis, Parkinson’s disease, and Wilson’s disease. Here, we briefly survey the literature relating to the role of metals in neurodegeneration. PMID:27006759

  5. Peptides Against Autoimmune Neurodegeneration.

    Science.gov (United States)

    Stepanov, Alexey; Lomakin, Yakov; Gabibov, Alexander; Belogurov, Alexey

    2017-01-01

    The mammalian immune system is a nearly perfect defensive system polished by a hundred million years of evolution. Unique flexibility and adaptivity have created a virtually impenetrable barrier to numerous exogenous pathogens that are assaulting us every moment. Unfortunately, triggers that remain mostly enigmatic will sometimes persuade the immune system to retarget against self-antigens. This civil war remains underway, showing no mercy and taking no captives, eventually leading to irreversible pathological changes in the human body. Research that has emerged during the last two decades has given us hope that we may have a chance to overcome autoimmune diseases using a variety of techniques to "reset" the immune system. In this report, we summarize recent advances in utilizing short polypeptides - mostly fragments of autoantigens - in the treatment of autoimmune neurodegeneration. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Neurodegeneration in the diabetic eye

    DEFF Research Database (Denmark)

    Simó, Rafael; Hernández, Cristina; Bandello, F

    2014-01-01

    Diabetic retinopathy (DR), one of the leading causes of preventable blindness, has been considered a microcirculatory disease of the retina. However, there is emerging evidence to suggest that retinal neurodegeneration is an early event in the pathogenesis of DR, which participates in the develop...

  7. Initiation and propagation of neurodegeneration.

    Science.gov (United States)

    Haass, Christian

    2010-11-01

    Although substantial progress has been made in understanding the molecular and pathological bases of neurodegeneration, there have been few successes in the clinic and a number of fundamental questions remain unanswered. Is this skepticism misplaced, or do the words of Sir Isaac Newton hold true, that "what we know is a drop, what we don't know is an ocean"?

  8. Glioprotective Effects of Ashwagandha Leaf Extract against Lead Induced Toxicity

    Directory of Open Access Journals (Sweden)

    Praveen Kumar

    2014-01-01

    Full Text Available Withania somnifera (Ashwagandha, also known as Indian Ginseng, is a well-known Indian medicinal plant due to its antioxidative, antistress, antigenotoxic, and immunomodulatory properties. The present study was designed to assess and establish the cytoprotective potential of Ashwagandha leaf aqueous extract against lead induced toxicity. Pretreatment of C6 cells with 0.1% Ashwagandha extract showed cytoprotection against 25 μM to 400 μM concentration of lead nitrate. Further pretreatment with Ashwagandha extract to lead nitrate exposed cells (200 μM resulted in normalization of glial fibrillary acidic protein (GFAP expression as well as heat shock protein (HSP70, mortalin, and neural cell adhesion molecule (NCAM expression. Further, the cytoprotective efficacy of Ashwagandha extract was studied in vivo. Administration of Ashwagandha extract provided significant protection to lead induced altered antioxidant defense that may significantly compromise normal cellular function. Ashwagandha also provided a significant protection to lipid peroxidation (LPx levels, catalase, and superoxide dismutase (SOD but not reduced glutathione (GSH contents in brain tissue as well as peripheral organs, liver and kidney, suggesting its ability to act as a free radical scavenger protecting cells against toxic insult. These results, thus, suggest that Ashwagandha water extract may have the potential therapeutic implication against lead poisoning.

  9. Lead induced oxidative stress: beneficial effects of Kombucha tea.

    Science.gov (United States)

    Dipti, P; Yogesh, B; Kain, A K; Pauline, T; Anju, B; Sairam, M; Singh, B; Mongia, S S; Kumar, G Ilavazhagan Devendra; Selvamurthy, W

    2003-09-01

    To evaluate the effect of oral administration of Kombucha tea (K-tea) on lead induced oxidative stress. Sprague Dawley rats were administered 1 mL of 3.8% lead acetate solution daily alone or in combination with K-tea orally for 45 d, and the antioxidant status and lipid peroxidation were evaluated. Oral administration of lead acetate to rats enhanced lipid peroxidation and release of creatine phosphokinase and decreased levels of reduced glutathione (GSH) and antioxidant enzymes (superoxide dismutase, SOD and glutathione peroxidase, GPx). Lead treatment did not alter humoral immunity, but inhibited DTH response when compared to the control. Lead administration also increased DNA fragmentation in liver. Oral administration of Kombucha tea to rats exposed to lead decreased lipid peroxidation and DNA damage with a concomitant increase in the reduced glutathione level and GPx activity. Kombucha tea supplementation relieved the lead induced immunosuppression to appreciable levels. The results suggest that K-tea has potent antioxidant and immunomodulating properties.

  10. DNA repair deficiency in neurodegeneration

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A; Stevnsner, Tinna V.

    2011-01-01

    Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive...... neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative...... base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby...

  11. Unconventional neurotransmitters, neurodegeneration and neuroprotection

    Directory of Open Access Journals (Sweden)

    M. Leonelli

    2009-01-01

    Full Text Available Neurotransmitters are also involved in functions other than conventional signal transfer between nerve cells, such as development, plasticity, neurodegeneration, and neuroprotection. For example, there is a considerable amount of data indicating developmental roles for the glutamatergic, cholinergic, dopaminergic, GABA-ergic, and ATP/adenosine systems. In this review, we discuss the existing literature on these "new" functions of neurotransmitters in relation to some unconventional neurotransmitters, such as the endocannabinoids and nitric oxide. Data indicating both transcriptional and post-transcriptional modulation of endocannabinoid and nitrinergic systems after neural lesions are discussed in relation to the non-conventional roles of these neurotransmitters. Knowledge of the roles of neurotransmitters in brain functions other than information transfer is critical for a more complete understanding of the functional organization of the brain and to provide more opportunities for the development of therapeutical tools aimed at minimizing neuronal death.

  12. THE LAWFUL CONSEQUENCES OF BIRTH CERTIFICATE ON CHILDREN ABROGATION

    Directory of Open Access Journals (Sweden)

    Natasya Immanuela Sandjojo

    2017-12-01

    Full Text Available Research due to the law on the abrogation of birth certificates against children aims to know the effect of law affecting the child, as well as review of the determination and judgment in court that play a role in the birth certificate abrogation. This research describes the importance of birth certificate because of the low public awareness to perform birth registration. The study uses normative juridical research, which faces legal issues with the process of discovering legal rules, principles, and legal doctrines, with deductive methods, starting from the general thing and then generating specific and legitimate answers. Based on the results of the study, that the abrogation of birth certificate brings great lawful consequences for the child, especially the status and position of the child, as well as the right of alimentation,  which in this study included some examples of determination and court decision about the birth certificate abrogation.

  13. Ebselen abrogates TNFα induced pro‐inflammatory response in glioblastoma

    OpenAIRE

    Tewari, Richa; Sharma, Vivek; Koul, Nitin; Ghosh, Abhishek; Joseph, Christy; Hossain Sk, Ugir; Sen, Ellora

    2008-01-01

    We investigated the pro‐inflammatory response mediated by TNFα in glioblastoma and whether treatment with organoselenium Ebselen (2‐phenyl‐1,2‐benzisoselenazol‐3[2H]one) can affect TNFα induced inflammatory response. Exposure to TNFα increased the expression of pro‐inflammatory mediator interleukin IL‐6, IL‐8, monocyte chemoattractant protein‐1 (MCP‐1) and cyclooxygenase (COX‐2). Treatment with Ebselen abrogated TNFα induced increase in pro‐inflammatory mediators. Ebselen not only abrogated T...

  14. Mechanism of Neurodegeneration Following Viral Infection

    National Research Council Canada - National Science Library

    Maheshwari, Radha

    2001-01-01

    The long term goal of this proposal is to delineate the mechanism(s) for neurodegeneration and neuropathogenesis following infection with a neurovirulent virus, Venezuelan equine encephalitis virus (VEE...

  15. The db/db mouse: a useful model for the study of diabetic retinal neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Patricia Bogdanov

    Full Text Available BACKGROUND: To characterize the sequential events that are taking place in retinal neurodegeneration in a murine model of spontaneous type 2 diabetes (db/db mouse. METHODS: C57BLKsJ-db/db mice were used as spontaneous type 2 diabetic animal model, and C57BLKsJ-db/+ mice served as the control group. To assess the chronological sequence of the abnormalities the analysis was performed at different ages (8, 16 and 24 weeks. The retinas were evaluated in terms of morphological and functional abnormalities [electroretinography (ERG]. Histological markers of neurodegeneration (glial activation and apoptosis were evaluated by immunohistochemistry. In addition glutamate levels and glutamate/aspartate transporter (GLAST expression were assessed. Furthermore, to define gene expression changes associated with early diabetic retinopathy a transcriptome analyses was performed at 8 week. Furthermore, an additional interventional study to lower blood glucose levels was performed. RESULTS: Glial activation was higher in diabetic than in non diabetic mice in all the stages (p<0.01. In addition, a progressive loss of ganglion cells and a significant reduction of neuroretinal thickness were also observed in diabetic mice. All these histological hallmarks of neurodegeneration were less pronounced at week 8 than at week 16 and 24. Significant ERG abnormalities were present in diabetic mice at weeks 16 and 24 but not at week 8. Moreover, we observed a progressive accumulation of glutamate in diabetic mice associated with an early downregulation of GLAST. Morphological and ERG abnormalities were abrogated by lowering blood glucose levels. Finally, a dysregulation of several genes related to neurotransmission and oxidative stress such as UCP2 were found at week 8. CONCLUSIONS: Our results suggest that db/db mouse reproduce the features of the neurodegenerative process that occurs in the human diabetic eye. Therefore, it seems an appropriate model for investigating the

  16. Parkinson’s disease managing reversible neurodegeneration

    Science.gov (United States)

    Hinz, Marty; Stein, Alvin; Cole, Ted; McDougall, Beth; Westaway, Mark

    2016-01-01

    Traditionally, the Parkinson’s disease (PD) symptom course has been classified as an irreversible progressive neurodegenerative disease. This paper documents 29 PD and treatment-induced systemic depletion etiologies which cause and/or exacerbate the seven novel primary relative nutritional deficiencies associated with PD. These reversible relative nutritional deficiencies (RNDs) may facilitate and accelerate irreversible progressive neurodegeneration, while other reversible RNDs may induce previously undocumented reversible pseudo-neurodegeneration that is hiding in plain sight since the symptoms are identical to the symptoms being experienced by the PD patient. Documented herein is a novel nutritional approach for reversible processes management which may slow or halt irreversible progressive neurodegenerative disease and correct reversible RNDs whose symptoms are identical to the patient’s PD symptoms. PMID:27103805

  17. Parkinson’s disease managing reversible neurodegeneration

    Directory of Open Access Journals (Sweden)

    Hinz M

    2016-04-01

    Full Text Available Marty Hinz,1 Alvin Stein,2 Ted Cole,3 Beth McDougall,4 Mark Westaway5 1Clinical Research, NeuroResearch Clinics, Inc., Cape Coral, FL, 2Stein Orthopedic Associates, Plantation, FL, 3Cole Center for Healing, Cincinnati, OH, 4CLEARCenter of Health, Mill Valley, CA, USA; 5Four Pillars Health, Brendale, QLD, Australia Abstract: Traditionally, the Parkinson’s disease (PD symptom course has been classified as an irreversible progressive neurodegenerative disease. This paper documents 29 PD and treatment-induced systemic depletion etiologies which cause and/or exacerbate the seven novel primary relative nutritional deficiencies associated with PD. These reversible relative nutritional deficiencies (RNDs may facilitate and accelerate irreversible progressive neurodegeneration, while other reversible RNDs may induce previously undocumented reversible pseudo-neurodegeneration that is hiding in plain sight since the symptoms are identical to the symptoms being experienced by the PD patient. Documented herein is a novel nutritional approach for reversible processes management which may slow or halt irreversible progressive neurodegenerative disease and correct reversible RNDs whose symptoms are identical to the patient’s PD symptoms. Keywords: Parkinson’s disease, L-dopa, carbidopa, B6, neurodegeneration

  18. Intracellular Cholesterol Trafficking and Impact in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Fabian Arenas

    2017-11-01

    Full Text Available Cholesterol is a critical component of membrane bilayers where it plays key structural and functional roles by regulating the activity of diverse signaling platforms and pathways. Particularly enriched in brain, cholesterol homeostasis in this organ is singular with respect to other tissues and exhibits a heterogeneous regulation in distinct brain cell populations. Due to the key role of cholesterol in brain physiology and function, alterations in cholesterol homeostasis and levels have been linked to brain diseases and neurodegeneration. In the case of Alzheimer disease (AD, however, this association remains unclear with evidence indicating that either increased or decreased total brain cholesterol levels contribute to this major neurodegenerative disease. Here, rather than analyzing the role of total cholesterol levels in neurodegeneration, we focus on the contribution of intracellular cholesterol pools, particularly in endolysosomes and mitochondria through its trafficking via specialized membrane domains delineated by the contacts between endoplasmic reticulum and mitochondria, in the onset of prevalent neurodegenerative diseases such as AD, Parkinson disease, and Huntington disease as well as in lysosomal disorders like Niemann-Pick type C disease. We dissect molecular events associated with intracellular cholesterol accumulation, especially in mitochondria, an event that results in impaired mitochondrial antioxidant defense and function. A better understanding of the mechanisms involved in the distribution of cholesterol in intracellular compartments may shed light on the role of cholesterol homeostasis disruption in neurodegeneration and may pave the way for specific intervention opportunities.

  19. Protective Effect of Morocco Carob Honey Against Lead-Induced Anemia and Hepato-Renal Toxicity

    Directory of Open Access Journals (Sweden)

    Aicha Fassi Fihri

    2016-06-01

    Full Text Available Background/Aims: Natural honey has many biological activities including protective effect against toxic materials. The aim of this study was to evaluate the protective effect of carob honey against lead-induced hepato-renal toxicity and lead-induced anemia in rabbits. Methods: Twenty four male rabbits were allocated into four groups six rabbits each; group 1: control group, received distilled water (0.1 ml / kg.b.wt /daily; group 2: received oral lead acetate (2 g/kg.b.wt/daily; group 3: treated with oral honey (1g /kg.b.wt/daily and oral lead (2 g/kg.b.wt/daily, and group 4: received oral honey (1 g/kg.b.wt/daily. Honey and lead were given daily during 24 days of experimentation. Laboratory tests and histopathological evaluations of kidneys were done. Results: Oral administration of lead induced hepatic and kidney injury and caused anemia during three weeks of the exposure. Treatment with honey prevented hepato-renal lead toxicity and ameliorated lead-induced anemia when honey was given to animals during lead exposure. Conclusion: It might be concluded that honey has a protective effect against lead-induced blood, hepatic and renal toxic effects.

  20. Protective Effect of Morocco Carob Honey Against Lead-Induced Anemia and Hepato-Renal Toxicity.

    Science.gov (United States)

    Fihri, Aicha Fassi; Al-Waili, Noori S; El-Haskoury, Redouan; Bakour, Meryem; Amarti, Afaf; Ansari, Mohammad J; Lyoussi, Badiaa

    2016-01-01

    Natural honey has many biological activities including protective effect against toxic materials. The aim of this study was to evaluate the protective effect of carob honey against lead-induced hepato-renal toxicity and lead-induced anemia in rabbits. Twenty four male rabbits were allocated into four groups six rabbits each; group 1: control group, received distilled water (0.1 ml / kg.b.wt /daily); group 2: received oral lead acetate (2 g/kg.b.wt/daily); group 3: treated with oral honey (1g /kg.b.wt/daily) and oral lead (2 g/kg.b.wt/daily), and group 4: received oral honey (1 g/kg.b.wt/daily). Honey and lead were given daily during 24 days of experimentation. Laboratory tests and histopathological evaluations of kidneys were done. Oral administration of lead induced hepatic and kidney injury and caused anemia during three weeks of the exposure. Treatment with honey prevented hepato-renal lead toxicity and ameliorated lead-induced anemia when honey was given to animals during lead exposure. It might be concluded that honey has a protective effect against lead-induced blood, hepatic and renal toxic effects. © 2016 The Author(s) Published by S. Karger AG, Basel.

  1. Protective Effect of Morocco Carob Honey Against Lead-Induced Anemia and Hepato-Renal Toxicity

    OpenAIRE

    Aicha Fassi Fihri; Noori S. Al-Waili; Redouan El-Haskoury; Meryem Bakour; Afaf Amarti; Mohammad J. Ansari; Badiaa Lyoussi

    2016-01-01

    Background/Aims: Natural honey has many biological activities including protective effect against toxic materials. The aim of this study was to evaluate the protective effect of carob honey against lead-induced hepato-renal toxicity and lead-induced anemia in rabbits. Methods: Twenty four male rabbits were allocated into four groups six rabbits each; group 1: control group, received distilled water (0.1 ml / kg.b.wt /daily); group 2: received oral lead acetate (2 g/kg.b.wt/daily); group 3: tr...

  2. Lead-induced DNA damage in Vicia faba root cells: Potential involvement of oxidative stress

    OpenAIRE

    Pourrut, Bertrand; Jean, Séverine; Silvestre, Jérôme; Pinelli, Eric

    2011-01-01

    Genotoxic effects of lead (0–20 µM) were investigated in whole-plant roots of Vicia faba L., grown hydroponically under controlled conditions. Lead-induced DNA damage in V. faba roots was evaluated by use of the comet assay, which allowed the detection of DNA strand-breakage and with the V. faba micronucleus test, which revealed chromosome aberrations. The results clearly indicate that lead induced DNA fragmentation in a dose-dependant manner with a maximum effect at 10 µM. In addition, at th...

  3. Vascular Changes and Neurodegeneration in the Early Stages of Diabetic Retinopathy

    DEFF Research Database (Denmark)

    Jonsson, Karoline Boegeberg; Frydkjaer-Olsen, Ulrik; Grauslund, Jakob

    2016-01-01

    INTRODUCTION: Neurodegeneration is an early component of diabetic retinopathy (DR). It is unclear whether neurodegeneration is an independent factor or a consequence of damaged retinal vasculature. The aims of this study were to review the literature concerning neurodegeneration in diabetic...

  4. Metalloproteinase Inhibition Protects against Reductions in Circulating Adrenomedullin during Lead-induced Acute Hypertension.

    Science.gov (United States)

    Nascimento, Regina A; Mendes, Gabryella; Possomato-Vieira, Jose S; Gonçalves-Rizzi, Victor Hugo; Kushima, Hélio; Delella, Flavia K; Dias-Junior, Carlos A

    2015-06-01

    Intoxication with lead (Pb) results in increased blood pressure by mechanisms involving matrix metalloproteinases (MMPs). Recent findings have revealed that MMP type two (MMP-2) seems to cleave vasoactive peptides. This study examined whether MMP-2 and MMP-9 levels/activities increase after acute intoxication with low lead concentrations and whether these changes were associated with increases in blood pressure and circulating endothelin-1 or with reductions in circulating adrenomedullin and calcitonin gene-related peptide (CGRP). Here, we expand previous findings and examine whether doxycycline (a MMPs inhibitor) affects these alterations. Wistar rats received intraperitoneally (i.p.) 1st dose 8 μg/100 g of lead (or sodium) acetate, a subsequent dose of 0.1 μg/100 g to cover daily loss and treatment with doxycycline (30 mg/kg/day) or water by gavage for 7 days. Similar whole-blood lead levels (9 μg/dL) were found in lead-exposed rats treated with either doxycycline or water. Lead-induced increases in systolic blood pressure (from 143 ± 2 to 167 ± 3 mmHg) and gelatin zymography of plasma samples showed that lead increased MMP-9 (but not MMP-2) levels. Both lead-induced increased MMP-9 activity and hypertension were blunted by doxycycline. Doxycycline also prevented lead-induced reductions in circulating adrenomedullin. No significant changes in plasma levels of endothelin-1 or CGRP were found. Lead-induced decreases in nitric oxide markers and antioxidant status were not prevented by doxycycline. In conclusion, acute lead exposure increases blood pressure and MMP-9 activity, which were blunted by doxycycline. These findings suggest that MMP-9 may contribute with lead-induced hypertension by cleaving the vasodilatory peptide adrenomedullin, thereby inhibiting adrenomedullin-dependent lowering of blood pressure. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  5. Insights into Mechanisms of Chronic Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Abigail B. Diack

    2016-01-01

    Full Text Available Chronic neurodegenerative diseases such as Alzheimer’s disease (AD, Parkinson’s disease (PD, and prion diseases are characterised by the accumulation of abnormal conformers of a host encoded protein in the central nervous system. The process leading to neurodegeneration is still poorly defined and thus development of early intervention strategies is challenging. Unique amongst these diseases are Transmissible Spongiform Encephalopathies (TSEs or prion diseases, which have the ability to transmit between individuals. The infectious nature of these diseases has permitted in vivo and in vitro modelling of the time course of the disease process in a highly reproducible manner, thus early events can be defined. Recent evidence has demonstrated that the cell-to-cell spread of protein aggregates by a “prion-like mechanism” is common among the protein misfolding diseases. Thus, the TSE models may provide insights into disease mechanisms and testable hypotheses for disease intervention, applicable to a number of these chronic neurodegenerative diseases.

  6. Structural neurodegeneration correlates with early diabetic retinopathy

    DEFF Research Database (Denmark)

    Frydkjaer-Olsen, Ulrik; Hansen, Rasmus Søgaard; Peto, Tunde

    2018-01-01

    PURPOSE: To examine differences in structural and functional neurodegenerative measurements between patients with no and early diabetic retinopathy (DR). METHODS: In this cross-sectional study, we examined 103 patients with type 2 diabetes mellitus. In 7-field fundus photographs acquired...... with Topcon TRC-NW6S, a single, certified grader determined the presence of DR according to the Early Treatment Diabetic Retinopathy Study (ETDRS) scale. Retinal neurodegeneration was evaluated by Topcon 3D OCT-2000 spectral domain optical coherence tomography (OCT) and by a RETI-scan multifocal...... electroretinography (mf-ERG) system in rings 1-6. RESULTS: Median age and duration of diabetes were 63.6 and 10 years, respectively, and 46% were men. Median HbA1c was 50 mmol/mol (6.7%), and ETDRS levels were 10 (41.7%, n = 43), 20 (35.0%, n = 36), and 35 (23.3%, n = 24). The duration of diabetes increased...

  7. Near-critical GLUT1 and Neurodegeneration.

    Science.gov (United States)

    Barros, L Felipe; San Martín, Alejandro; Ruminot, Ivan; Sandoval, Pamela Y; Fernández-Moncada, Ignacio; Baeza-Lehnert, Felipe; Arce-Molina, Robinson; Contreras-Baeza, Yasna; Cortés-Molina, Francisca; Galaz, Alex; Alegría, Karin

    2017-11-01

    Recent articles have drawn renewed attention to the housekeeping glucose transporter GLUT1 and its possible involvement in neurodegenerative diseases. Here we provide an updated analysis of brain glucose transport and the cellular mechanisms involved in its acute modulation during synaptic activity. We discuss how the architecture of the blood-brain barrier and the low concentration of glucose within neurons combine to make endothelial/glial GLUT1 the master controller of neuronal glucose utilization, while the regulatory role of the neuronal glucose transporter GLUT3 emerges as secondary. The near-critical condition of glucose dynamics in the brain suggests that subtle deficits in GLUT1 function or its activity-dependent control by neurons may contribute to neurodegeneration. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. TSH Receptor Signaling Abrogation by a Novel Small Molecule.

    Science.gov (United States)

    Latif, Rauf; Realubit, Ronald B; Karan, Charles; Mezei, Mihaly; Davies, Terry F

    2016-01-01

    Pathological activation of the thyroid-stimulating hormone receptor (TSHR) is caused by thyroid-stimulating antibodies in patients with Graves' disease (GD) or by somatic and rare genomic mutations that enhance constitutive activation of the receptor influencing both G protein and non-G protein signaling. Potential selective small molecule antagonists represent novel therapeutic compounds for abrogation of such abnormal TSHR signaling. In this study, we describe the identification and in vitro characterization of a novel small molecule antagonist by high-throughput screening (HTS). The identification of the TSHR antagonist was performed using a transcription-based TSH-inhibition bioassay. TSHR-expressing CHO cells, which also expressed a luciferase-tagged CRE response element, were optimized using bovine TSH as the activator, in a 384 well plate format, which had a Z score of 0.3-0.6. Using this HTS assay, we screened a diverse library of ~80,000 compounds at a final concentration of 16.7 μM. The selection criteria for a positive hit were based on a mean signal threshold of ≥50% inhibition of control TSH stimulation. The screening resulted in 450 positive hits giving a hit ratio of 0.56%. A secondary confirmation screen against TSH and forskolin - a post receptor activator of adenylyl cyclase - confirmed one TSHR-specific candidate antagonist molecule (named VA-K-14). This lead molecule had an IC 50 of 12.3 μM and a unique chemical structure. A parallel analysis for cell viability indicated that the lead inhibitor was non-cytotoxic at its effective concentrations. In silico docking studies performed using a TSHR transmembrane model showed the hydrophobic contact locations and the possible mode of inhibition of TSHR signaling. Furthermore, this molecule was capable of inhibiting TSHR stimulation by GD patient sera and monoclonal-stimulating TSHR antibodies. In conclusion, we report the identification of a novel small molecule TSHR inhibitor, which has the

  9. PARP Inhibition Prevents Ethanol-Induced Neuroinflammatory Signaling and Neurodegeneration in Rat Adult-Age Brain Slice Cultures

    Science.gov (United States)

    Tajuddin, Nuzhath; Kim, Hee-Yong

    2018-01-01

    Using rat adult-age hippocampal-entorhinal cortical (HEC) slice cultures, we examined the role of poly [ADP-ribose] polymerase (PARP) in binge ethanol’s brain inflammatory and neurodegenerative mechanisms. Activated by DNA strand breaks, PARP (principally PARP1 in the brain) promotes DNA repair via poly [ADP-ribose] (PAR) products, but PARP overactivation triggers regulated neuronal necrosis (e.g., parthanatos). Previously, we found that brain PARP1 levels were upregulated by neurotoxic ethanol binges in adult rats and HEC slices, and PARP inhibitor PJ34 abrogated slice neurodegeneration. Binged HEC slices also exhibited increased Ca+2-dependent phospholipase A2 (PLA2) isoenzymes (cPLA2 IVA and sPLA2 IIA) that mobilize proinflammatory ω6 arachidonic acid (ARA). We now find in 4-day–binged HEC slice cultures (100 mM ethanol) that PARP1 elevations after two overnight binges precede PAR, cPLA2, and sPLA2 enhancements by 1 day and high-mobility group box-1 (HMGB1), an ethanol-responsive alarmin that augments proinflammatory cytokines via toll-like receptor-4 (TLR4), by 2 days. After verifying that PJ34 effectively blocks PARP activity (↑PAR), we demonstrated that, like PJ34, three other PARP inhibitors—olaparib, veliparib, and 4-aminobenzamide—provided neuroprotection from ethanol. Importantly, PJ34 and olaparib also prevented ethanol’s amplification of the PLA2 isoenzymes, and two PLA2 inhibitors were neuroprotective—thus coupling PARP to PLA2, with PLA2 activity promoting neurodegeneration. Also, PJ34 and olaparib blocked ethanol-induced HMGB1 elevations, linking brain PARP induction to TLR4 activation. The results provide evidence in adult brains that induction of PARP1 may mediate dual neuroinflammatory pathways (PLA2→phospholipid→ARA and HMGB1→TLR4→proinflammatory cytokines) that are complicit in binge ethanol-induced neurodegeneration. PMID:29339456

  10. Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction.

    Science.gov (United States)

    Sankrityayan, Himanshu; Majumdar, Anuradha S

    2016-01-01

    Methotrexate, an antifolate drug widely used in rheumatoid arthritis, psoriasis, and cancer, is known to cause vascular endothelial dysfunction by causing hyperhomocysteinemia, direct injury to endothelium or by increasing the oxidative stress (raising levels of 7,8-dihydrobiopterin). Curcumin is a naturally occurring polyphenol with strong antioxidant and anti-inflammatory action and therapeutic spectra similar to that of methotrexate. This study was performed to evaluate the effects of curcumin on methotrexate induced vascular endothelial dysfunction and also compare its effect with that produced by folic acid (0.072 μg·g(-1)·day(-1), p.o., 2 weeks) per se and in combination. Male Wistar rats were exposed to methotrexate (0.35 mg·kg(-1)·day(-1), i.p.) for 2 weeks to induce endothelial dysfunction. Methotrexate exposure led to shedding of endothelium, decreased vascular reactivity, increased oxidative stress, decreased serum nitrite levels, and increase in aortic collagen deposition. Curcumin (200 mg·kg(-1)·day(-1) and 400 mg·kg(-1)·day(-1), p.o.) for 4 weeks prevented the increase in oxidative stress, decrease in serum nitrite, aortic collagen deposition, and also vascular reactivity. The effects were comparable with those produced by folic acid therapy. The study shows that curcumin, when concomitantly administered with methotrexate, abrogated its vascular side effects by preventing an increase in oxidative stress and abating any reduction in physiological nitric oxide levels.

  11. Phosphatidylinositol transfer protein alpha and its role in neurodegeneration

    NARCIS (Netherlands)

    Bunte, H.

    2007-01-01

    Selective neuronal loss is a prominent feature in neurodegenerative disorders. Recently, a link between neurodegeneration and a deficiency in the protein phosphatidylinositol transfer protein alpha (PI-TPalpha) has been demonstrated. In this context it is of importance that fibroblasts

  12. Epidemiology of neurodegeneration in American-style professional football players

    OpenAIRE

    Lehman, Everett J

    2013-01-01

    The purpose of this article is to review the history of head injuries in relation to American-style football play, summarize recent research that has linked football head injuries to neurodegeneration, and provide a discussion of the next steps for refining the examination of neurodegeneration in football players. For most of the history of football, the focus of media reports and scientific studies on football-related head injuries was on the acute or short-term effects of serious, traumatic...

  13. A bioavailable cathepsin S nitrile inhibitor abrogates tumor development.

    Science.gov (United States)

    Wilkinson, Richard D A; Young, Andrew; Burden, Roberta E; Williams, Rich; Scott, Christopher J

    2016-04-21

    Cathepsin S has been implicated in a variety of malignancies with genetic ablation studies demonstrating a key role in tumor invasion and neo-angiogenesis. Thus, the application of cathepsin S inhibitors may have clinical utility in the treatment of cancer. In this investigation, we applied a cell-permeable dipeptidyl nitrile inhibitor of cathepsin S, originally developed to target cathepsin S in inflammatory diseases, in both in vitro and in vivo tumor models. Validation of cathepsin S selectivity was carried out by assaying fluorogenic substrate turnover using recombinant cathepsin protease. Complete kinetic analysis was carried out and true K i values calculated. Abrogation of tumour invasion using murine MC38 and human MCF7 cell lines were carried out in vitro using a transwell migration assay. Effect on endothelial tube formation was evaluated using primary HUVEC cells. The effect of inhibitor in vivo on MC38 and MCF7 tumor progression was evaluated using cells propagated in C57BL/6 and BALB/c mice respectively. Subsequent immunohistochemical staining of proliferation (Ki67) and apoptosis (TUNEL) was carried out on MCF7 tumors. We confirmed that this inhibitor was able to selectively target cathepsin S over family members K, V, L and B. The inhibitor also significantly reduced MC38 and MCF7 cell invasion and furthermore, significantly reduced HUVEC endothelial tubule formation in vitro. In vivo analysis revealed that the compound could significantly reduce tumor volume in murine MC38 syngeneic and MCF7 xenograft models. Immunohistochemical analysis of MCF7 tumors revealed cathepsin S inhibitor treatment significantly reduced proliferation and increased apoptosis. In summary, these results highlight the characterisation of this nitrile cathepsin S inhibitor using in vitro and in vivo tumor models, presenting a compound which may be used to further dissect the role of cathepsin S in cancer progression and may hold therapeutic potential.

  14. Methylenedioxymethamphetamine (MDMA, 'Ecstasy': Neurodegeneration versus Neuromodulation

    Directory of Open Access Journals (Sweden)

    Elena Puerta

    2011-07-01

    Full Text Available The amphetamine analogue 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’ is widely abused as a recreational drug due to its unique psychological effects. Of interest, MDMA causes long-lasting deficits in neurochemical and histological markers of the serotonergic neurons in the brain of different animal species. Such deficits include the decline in the activity of tryptophan hydroxylase in parallel with the loss of 5-HT and its main metabolite 5-hydoxyindoleacetic acid (5-HIAA along with a lower binding of specific ligands to the 5-HT transporters (SERT. Of concern, reduced 5-HIAA levels in the CSF and SERT density have also been reported in human ecstasy users, what has been interpreted to reflect the loss of serotonergic fibers and terminals. The neurotoxic potential of MDMA has been questioned in recent years based on studies that failed to show the loss of the SERT protein by western blot or the lack of reactive astrogliosis after MDMA exposure. In addition, MDMA produces a long-lasting down-regulation of SERT gene expression; which, on the whole, has been used to invoke neuromodulatory mechanisms as an explanation to MDMA-induced 5-HT deficits. While decreased protein levels do not necessarily reflect neurodegeneration, the opposite is also true, that is, neuroregulatory mechanisms do not preclude the existence of 5-HT terminal degeneration.

  15. Lack of beneficial effect of activated charcoal in lead induced testicular toxicity in male albino rats

    Directory of Open Access Journals (Sweden)

    Samuel James Offor

    2017-09-01

    Full Text Available Objective: Lead is a multi-organ toxicant implicated in various diseases including testicular toxicity. In search of cheap and readily available antidote this study has investigated a beneficial role of activated charcoal in lead induced testicular toxicity in male albino rats. Materials and Method: Eighteen male albino rats were divided into three groups of six rats per group. Group 1 (control rats received deionised water (10 ml/kg, group 2 was given lead acetate solution 60 mg/kg and group 3 rats were given lead acetate (60 mg/kg followed by Activated charcoal, AC (1000 mg/kg by oral gavage daily for 28 days. Absolute and relative weights of testis, epididymal sperm reserve, testicular sperm count, percent sperm motility and percent sperm viability were monitored. Results: AC failed to show any significant beneficial effect in ameliorating lead induced testicular toxicity. Conclusions: There seem to be a poor adsorption on lead onto AC in vivo.

  16. Lipoic acid in combination with a chelator ameliorates lead-induced peroxidative damages in rat kidney

    Energy Technology Data Exchange (ETDEWEB)

    Sivaprasad, R.; Nagaraj, M.; Varalakshmi, P. [Department of Medical Biochemistry, University of Madras (Taramani), Chennai 600 113 (India)

    2002-08-01

    The deleterious effect of lead has been attributed to lead-induced oxidative stress with the consequence of lipid peroxidation. The present study was designed to investigate the combined effect of DL-{alpha}-lipoic acid (LA) and meso-2,3-dimercaptosuccinic acid (DMSA) on lead-induced peroxidative damages in rat kidney. The increase in peroxidated lipids in lead-poisoned rats was accompanied by alterations in antioxidant defence systems. Lead acetate (Pb, 0.2%) was administered in drinking water for 5 weeks to induce lead toxicity. LA (25 mg/kg body weight per day i.p) and DMSA (20 mg/kg body weight per day i.p) were administered individually and also in combination during the sixth week. Nephrotoxic damage was evident from decreases in the activities of {gamma}-glutamyl transferase and N-acetyl {beta}-D-glucosaminidase, which were reversed upon combined treatment with LA and DMSA. Rats subjected to lead intoxication showed a decline in the thiol capacity of the cell, accompanied by high malondialdehyde levels along with lowered activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione metabolizing enzymes (glutathione reductase, glucose-6-phosphate dehydrogenase, glutathione-S-transferase). Supplementation with LA as a sole agent showed considerable changes over oxidative stress parameters. The study has highlighted the combined effect of both drugs as being more effective in reversing oxidative damage by bringing about an improvement in the reductive status of the cell. (orig.)

  17. Natural Products Combating Neurodegeneration: Parkinson's Disease.

    Science.gov (United States)

    Solayman, Md; Islam, Md Asiful; Alam, Fahmida; Khalil, Md Ibrahim; Kamal, Mohammad Amjad; Gan, Siew Hua

    2017-01-01

    Parkinson's disease (PD) is characterized by neurodegeneration and a progressive functional impairment of the midbrain nigral dopaminergic neurons. The cause remains unknown; however, several pathological processes and central factors, such as protein aggregation, mitochondrial dysfunction, iron accumulation, neuroinflammation and oxidative stress, have been reported. The current treatment method primarily targets symptoms by using anti-Parkinson drugs such as levodopa, carbidopa, dopamine (DA) agonists, monoamine oxidase type B inhibitors and anticholinergics to replace DA. When drug therapy is not satisfactory, surgical treatments are recommended. Unfortunately, the existing conventional strategies that target PD are associated with numerous side effects and possess an economic burden. Therefore, novel therapeutic approaches that regulate the pathways leading to neuronal death and dysfunction are necessary. For many years, nature has provided the primary resource for the discovery of potential therapeutic agents. Remarkably, many natural products from medicinal plants, fruits and vegetables have been demonstrated to be efficacious anti-Parkinson agents. These products possess neuroprotective properties as a result of not only their wellrecognized anti-oxidative and anti-inflammatory activities but also their inhibitory roles regarding iron accumulation, protein misfolding and the maintenance of proteasomal degradation, as well as mitochondrial homeostasis. The aim of this review is to report the available anti-Parkinson agents based on natural products and delineate their therapeutic actions, which act on various pathways. Overall, this review emphasizes the types of natural products that are potential future resources in the treatment of PD as novel regimens or supplementary agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Neurodegeneration and Neuroprotection in Diabetic Retinopathy

    Directory of Open Access Journals (Sweden)

    Abdullah S. Alhomida

    2013-01-01

    Full Text Available Diabetic retinopathy is widely considered to be a neurovascular disease. This is in contrast to its previous identity as solely a vascular disease. Early in the disease progression of diabetes, the major cells in the neuronal component of the retina consist of retinal ganglion cells and glial cells, both of which have been found to be compromised. A number of retinal function tests also indicated a functional deficit in diabetic retina, which further supports dysfunction of neuronal cells. As an endocrinological disorder, diabetes alters metabolism both systemically and locally in several body organs, including the retina. A growing body of evidences indicates increased levels of excitotoxic metabolites, including glutamate, branched chain amino acids and homocysteine in cases of diabetic retinopathy. Also present, early in the disease, are decreased levels of folic acid and vitamin-B12, which are potential metabolites capable of damaging neurons. These altered levels of metabolites are found to activate several metabolic pathways, leading to increases in oxidative stress and decreases in the level of neurotrophic factors. As a consequence, they may damage retinal neurons in diabetic patients. In this review, we have discussed those potential excitotoxic metabolites and their implications in neuronal damage. Possible therapeutic targets to protect neurons are also discussed. However, further research is needed to understand the exact molecular mechanism of neurodegeneration so that effective neuroprotection strategies can be developed. By protecting retinal neurons early in diabetic retinopathy cases, damage of retinal vessels can be protected, thereby helping to ameliorate the progression of diabetic retinopathy, a leading cause of blindness worldwide.

  19. Molecular pathways underpinning ethanol-induced neurodegeneration

    Directory of Open Access Journals (Sweden)

    Dan eGoldowitz*

    2014-07-01

    -induced neurodegeneration.

  20. Ameliorating activity of ginger (Zingiber officinale) extract against lead induced renal toxicity in male rats.

    Science.gov (United States)

    Reddy, Y Amarnath; Chalamaiah, M; Ramesh, B; Balaji, G; Indira, P

    2014-05-01

    Lead poisoning has been known to be associated with structural and functional abnormalities of multiple organ systems of human body. The aim of this investigation was to study the renal protective effects of ginger (Zingiber officinale) extract in lead induced toxicity rats. In this study renal glutathione (GSH) level, glutathione peroxidase (GPX), glutathione-s-transferase (GST), and catalase enzymes were measured in lead nitrate (300 mg/kg BW), and lead nitrate plus ginger extract (150 mg/kg BW) treated rat groups for 1 week and 3 weeks respectively. The glutathione level and GSH dependent antioxidant enzymes such as glutathione peroxidase, glutathione-s-transferase, and catalase significantly (P < 0.05) increased in ginger extract treated rat groups. In addition, histological studies showed lesser renal changes in lead plus ginger extract treated rat groups than that of lead alone treated rat groups. These results indicate that ginger extract alleviated lead toxic effects by enhancing the levels of glutathione, glutathione peroxidase, glutathione-s-transferase and catalase.

  1. Thymoquinone ameliorates lead-induced brain damage in Sprague Dawley rats.

    Science.gov (United States)

    Radad, Khaled; Hassanein, Khaled; Al-Shraim, Mubarak; Moldzio, Rudolf; Rausch, Wolf-Dieter

    2014-01-01

    The present study aims to investigate the protective effects of thymoquinone, the major active ingredient of Nigella sativa seeds, against lead-induced brain damage in Sprague-Dawley rats. In which, 40 rats were divided into four groups (10 rats each). The first group served as control. The second, third and fourth groups received lead acetate, lead acetate and thymoquinone, and thymoquinone only, respectively, for one month. Lead acetate was given in drinking water at a concentration of 0.5 g/l (500 ppm). Thymoquinone was given daily at a dose of 20mg/kg b.w. in corn oil by gastric tube. Control and thymoquinone-treated rats showed normal brain histology. Treatment of rats with lead acetate was shown to produce degeneration of endothelial lining of brain blood vessels with peri-vascular cuffing of mononuclear cells consistent to lymphocytes, congestion of choroid plexus blood vessels, ischemic brain infarction, chromatolysis and neuronal degeneration, microglial reaction and neuronophagia, degeneration of hippocampal and cerebellar neurons, and axonal demyelination. On the other hand, co-administration of thymoquinone with lead acetate markedly decreased the incidence of lead acetate-induced pathological lesions. Thus the current study shed some light on the beneficial effects of thymoquinone against neurotoxic effects of lead in rats. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Effects of mild running on substantia nigra during early neurodegeneration.

    Science.gov (United States)

    Almeida, Michael F; Silva, Carolliny M; Chaves, Rodrigo S; Lima, Nathan C R; Almeida, Renato S; Melo, Karla P; Demasi, Marilene; Fernandes, Tiago; Oliveira, Edilamar M; Netto, Luis E S; Cardoso, Sandra M; Ferrari, Merari F R

    2018-06-01

    Moderate physical exercise acts at molecular and behavioural levels, such as interfering in neuroplasticity, cell death, neurogenesis, cognition and motor functions. Therefore, the aim of this study is to analyse the cellular effects of moderate treadmill running upon substantia nigra during early neurodegeneration. Aged male Lewis rats (9-month-old) were exposed to rotenone 1mg/kg/day (8 weeks) and 6 weeks of moderate treadmill running, beginning 4 weeks after rotenone exposure. Substantia nigra was extracted and submitted to proteasome and antioxidant enzymes activities, hydrogen peroxide levels and Western blot to evaluate tyrosine hydroxylase (TH), alpha-synuclein, Tom-20, PINK1, TrkB, SLP1, CRMP-2, Rab-27b, LC3II and Beclin-1 level. It was demonstrated that moderate treadmill running, practiced during early neurodegeneration, prevented the increase of alpha-synuclein and maintained the levels of TH unaltered in substantia nigra of aged rats. Physical exercise also stimulated autophagy and prevented impairment of mitophagy, but decreased proteasome activity in rotenone-exposed aged rats. Physical activity also prevented H 2 O 2 increase during early neurodegeneration, although the involved mechanism remains to be elucidated. TrkB levels and its anterograde trafficking seem not to be influenced by moderate treadmill running. In conclusion, moderate physical training could prevent early neurodegeneration in substantia nigra through the improvement of autophagy and mitophagy.

  3. Genetics Home Reference: fatty acid hydroxylase-associated neurodegeneration

    Science.gov (United States)

    ... Mutat. 2010 Apr;31(4):E1251-60. doi: 10.1002/humu.21205. Citation on PubMed Edvardson S, Hama H, ... Neurol. 2010 Nov;68(5):611-8. doi: 10.1002/ana.22122. Citation on PubMed Schipper HM. Neurodegeneration ...

  4. 4R-cembranoid protects against diisopropylfluorophosphate-mediated neurodegeneration

    OpenAIRE

    Ferchmin, P.A.; Andino, Myrna; Salaman, Rebeca Reyes; Alves, Janaina; Velez-Roman, Joyce; Cuadrado, Brenda; Carrasco, Marimeé; Torres-Rivera, Wilmarie; Segarra, Annabell; Martins, Antonio Henrique; Lee, Jae Eun; Eterovic, Vesna A.

    2014-01-01

    Many organophosphorous esters synthesized for applications in industry, agriculture, or warfare irreversibly inhibit acetylcholinesterase, and acute poisoning with these compounds causes life-threatening cholinergic overstimulation. Following classical emergency treatment with atropine, an oxime, and a benzodiazepine, surviving victims often suffer brain neurodegeneration. Currently, there is no pharmacological treatment to prevent this brain injury. Here we show that a cyclic diterpenoid, (1...

  5. Temporal dynamics of hippocampal neurogenesis in chronic neurodegeneration

    Science.gov (United States)

    Suzzi, Stefano; Vargas-Caballero, Mariana; Fransen, Nina L.; Al-Malki, Hussain; Cebrian-Silla, Arantxa; Garcia-Verdugo, Jose Manuel; Riecken, Kristoffer; Fehse, Boris; Perry, V. Hugh

    2014-01-01

    The study of neurogenesis during chronic neurodegeneration is crucial in order to understand the intrinsic repair mechanisms of the brain, and key to designing therapeutic strategies. In this study, using an experimental model of progressive chronic neurodegeneration, murine prion disease, we define the temporal dynamics of the generation, maturation and integration of new neurons in the hippocampal dentate gyrus, using dual pulse-chase, multicolour γ-retroviral tracing, transmission electron microscopy and patch-clamp. We found increased neurogenesis during the progression of prion disease, which partially counteracts the effects of chronic neurodegeneration, as evidenced by blocking neurogenesis with cytosine arabinoside, and helps to preserve the hippocampal function. Evidence obtained from human post-mortem samples, of both variant Creutzfeldt-Jakob disease and Alzheimer’s disease patients, also suggests increased neurogenic activity. These results open a new avenue into the exploration of the effects and regulation of neurogenesis during chronic neurodegeneration, and offer a new model to reproduce the changes observed in human neurodegenerative diseases. PMID:24941947

  6. Lead phytotoxicity in soils and nutrient solutions is related to lead induced phosphorus deficiency

    International Nuclear Information System (INIS)

    Cheyns, Karlien; Peeters, Sofie; Delcourt, Dorien; Smolders, Erik

    2012-01-01

    This study was set up to relate lead (Pb) bioavailability with its toxicity to plants in soils. Tomato and barley seedlings were grown in six different PbCl 2 spiked soils (pH: 4.7–7.4; eCEC: 4.2–41.7 cmol c /kg). Soils were leached and pH corrected after spiking to exclude confounding factors. Plant growth was halved at 1600–6500 mg Pb/kg soil for tomato and at 1900–8300 mg Pb/kg soil for barley. These soil Pb threshold were unrelated to soil pH, organic carbon, texture or eCEC and neither soil solution Pb nor Pb 2+ ion activity adequately explained Pb toxicity among soils. Shoot phosphorus (P) concentrations significantly decreased with increasing soil Pb concentrations. Tomato grown in hydroponics at either varying P supply or at increasing Pb (equal initial P) illustrated that shoot P explained growth response in both scenarios. The results suggest that Pb toxicity is partially related to Pb induced P deficiency, likely due to lead phosphate precipitation. - Highlights: ► Tomato and barley shoot growth was affected by Pb toxicity in six different soils. ► Soil properties did not explain differences in plant Pb toxicity among soils. ► Neither soil solution Pb nor Pb 2+ ion activity explained Pb toxicity among soils. ► Shoot phosphorus concentration decreased with increasing soil Pb concentrations. ► Lead induced a P deficiency in plants, likely due to lead phosphate precipitation. - Soil properties did not explain differences in plant lead toxicity among different soils. Shoot phosphorus concentration decreased with increasing soil lead concentrations.

  7. G2 checkpoint abrogator abates the antagonistic interaction between antimicrotubule drugs and radiation therapy

    International Nuclear Information System (INIS)

    Sui Meihua; Zhang Hongfang; Di Xiaoyun; Chang Jinjia; Shen Youqing; Fan Weimin

    2012-01-01

    Background and purpose: We previously demonstrated that radiation may arrest tumor cells at G2 phase, which in turn prevents the cytotoxicity of antimicrotubule drugs and results in antagonistic interaction between these two modalities. Herein we tested whether G2 abrogators would attenuate the above antagonistic interaction and improve the therapeutic efficacy of combination therapy between radiation and antimicrotubule drugs. Materials and methods: Breast cancer BCap37 and epidermoid carcinoma KB cell lines were administered with radiation, UCN-01 (a model drug of G2 abrogator), paclitaxel or vincristine, alone or in combinations. The antitumor activities of single and combined treatments were analyzed by a series of cytotoxic, apoptotic, cell cycle, morphological and biochemical assays. Results: UCN-01 significantly enhanced the cytotoxicity of radiation, antimitotic drugs, and their combined treatments in vitro. Further investigations demonstrated that UCN-01 attenuated radiation-induced G2 arrest, and subsequently repressed the inhibitory effect of radiation on drug-induced mitotic arrest and apoptosis. Conclusions: This is the first report demonstrating that G2 checkpoint abrogation represses the inhibitory effect of radiation on antimicrotubule drugs, which may be implicated in cancer combination therapy. Considering that G2 abrogators are under extensive evaluation for cancer treatment, our findings provide valuable information for this class of promising compounds.

  8. Microglial cell dysregulation in brain aging and neurodegeneration

    OpenAIRE

    von Bernhardi, Rommy; Eugen?n-von Bernhardi, Laura; Eugen?n, Jaime

    2015-01-01

    Aging is the main risk factor for neurodegenerative diseases. In aging, microglia undergoes phenotypic changes compatible with their activation. Glial activation can lead to neuroinflammation, which is increasingly accepted as part of the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD). We hypothesize that in aging, aberrant microglia activation leads to a deleterious environment and neurodegeneration. In aged mice, microglia exhibit an increased expression of c...

  9. Multiproteinopathy, neurodegeneration and old age: a case study.

    Science.gov (United States)

    Rojas, Julio C; Stephens, Melanie L; Rabinovici, Gil D; Kramer, Joel H; Miller, Bruce L; Seeley, William W

    2018-02-01

    A complex spectrum of mixed brain pathologies is common in older people. This clinical pathologic conference case study illustrates the challenges of formulating clinicopathologic correlations in late-onset neurodegenerative diseases featuring cognitive-behavioral syndromes with underlying multiple proteinopathy. Studies on the co-existence and interactions of Alzheimer's disease (AD) with neurodegenerative non-AD pathologies in the aging brain are needed to understand the pathogenesis of neurodegeneration and to support the development of diagnostic biomarkers and therapies.

  10. Astrocytic Pathological Calcium Homeostasis and Impaired Vesicle Trafficking in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Nina Vardjan

    2017-02-01

    Full Text Available Although the central nervous system (CNS consists of highly heterogeneous populations of neurones and glial cells, clustered into diverse anatomical regions with specific functions, there are some conditions, including alertness, awareness and attention that require simultaneous, coordinated and spatially homogeneous activity within a large area of the brain. During such events, the brain, representing only about two percent of body mass, but consuming one fifth of body glucose at rest, needs additional energy to be produced. How simultaneous energy procurement in a relatively extended area of the brain takes place is poorly understood. This mechanism is likely to be impaired in neurodegeneration, for example in Alzheimer’s disease, the hallmark of which is brain hypometabolism. Astrocytes, the main neural cell type producing and storing glycogen, a form of energy in the brain, also hold the key to metabolic and homeostatic support in the central nervous system and are impaired in neurodegeneration, contributing to the slow decline of excitation-energy coupling in the brain. Many mechanisms are affected, including cell-to-cell signalling. An important question is how changes in cellular signalling, a process taking place in a rather short time domain, contribute to the neurodegeneration that develops over decades. In this review we focus initially on the slow dynamics of Alzheimer’s disease, and on the activity of locus coeruleus, a brainstem nucleus involved in arousal. Subsequently, we overview much faster processes of vesicle traffic and cytosolic calcium dynamics, both of which shape the signalling landscape of astrocyte-neurone communication in health and neurodegeneration.

  11. Optic neuropathies: the tip of the neurodegeneration iceberg

    Science.gov (United States)

    Carelli, Valerio; La Morgia, Chiara; Ross-Cisneros, Fred N.; Sadun, Alfredo A.

    2017-01-01

    Abstract The optic nerve and the cells that give origin to its 1.2 million axons, the retinal ganglion cells (RGCs), are particularly vulnerable to neurodegeneration related to mitochondrial dysfunction. Optic neuropathies may range from non-syndromic genetic entities, to rare syndromic multisystem diseases with optic atrophy such as mitochondrial encephalomyopathies, to age-related neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease where optic nerve involvement has, until recently, been a relatively overlooked feature. New tools are available to thoroughly investigate optic nerve function, allowing unparalleled access to this part of the central nervous system. Understanding the molecular pathophysiology of RGC neurodegeneration and optic atrophy, is key to broadly understanding the pathogenesis of neurodegenerative disorders, for monitoring their progression in describing the natural history, and ultimately as outcome measures to evaluate therapies. In this review, the different layers, from molecular to anatomical, that may contribute to RGC neurodegeneration and optic atrophy are tackled in an integrated way, considering all relevant players. These include RGC dendrites, cell bodies and axons, the unmyelinated retinal nerve fiber layer and the myelinated post-laminar axons, as well as olygodendrocytes and astrocytes, looked for unconventional functions. Dysfunctional mitochondrial dynamics, transport, homeostatic control of mitobiogenesis and mitophagic removal, as well as specific propensity to apoptosis may target differently cell types and anatomical settings. Ultimately, we can envisage new investigative approaches and therapeutic options that will speed the early diagnosis of neurodegenerative diseases and their cure. PMID:28977448

  12. Xeroderma Pigmentosum: defective DNA repair causes skin cancer and neurodegeneration

    International Nuclear Information System (INIS)

    Robbins, J.H.

    1988-01-01

    Xeroderma pigmentosum is a rare autosomal recessive disease with numerous malignancies on sun-exposed areas of the skin and eye because of an inability to repair DNA damage inflicted by harmful ultraviolet (UV) radiation of the sun. Because it is the only disease in which cancer is known to result from defective DNA repair, XP has received intense clinical and biochemical study during the last two decades. Furthermore, some patients with XP develop a primary neuronal degeneration, probably due to the inability of nerve cells to repair damage to their DNA caused by intraneuronal metabolites and physicochemical events that mimic the effects of UV radiation. Studies of XP neurodegeneration and DNA-repair defects have led to the conclusion that efficient DNA repair is required to prevent premature death of human nerve cells. Since XP neurodegeneration has similarities to premature death of nerve cells that occurs in such neurodegenerative disorders, XP may be the prototype for these more common neurodegenerations. Recent studies indicate that these degenerations also may have DNA-repair defects

  13. Epidemiology of neurodegeneration in American-style professional football players.

    Science.gov (United States)

    Lehman, Everett J

    2013-01-01

    The purpose of this article is to review the history of head injuries in relation to American-style football play, summarize recent research that has linked football head injuries to neurodegeneration, and provide a discussion of the next steps for refining the examination of neurodegeneration in football players. For most of the history of football, the focus of media reports and scientific studies on football-related head injuries was on the acute or short-term effects of serious, traumatic head injuries. Beginning about 10 years ago, a growing concern developed among neurologists and researchers about the long-term effects that playing professional football has on the neurologic health of the players. Autopsy-based studies identified a pathologically distinct neurodegenerative disorder, chronic traumatic encephalopathy, among athletes who were known to have experienced concussive and subconcussive blows to the head during their playing careers. Football players have been well represented in these autopsy findings. A mortality study of a large cohort of retired professional football players found a significantly increased risk of death from neurodegeneration. Further analysis found that non-line players were at higher risk than line players, possibly because of an increased risk of concussion. Although the results of the studies reviewed do not establish a cause effect relationship between football-related head injury and neurodegenerative disorders, a growing body of research supports the hypothesis that professional football players are at an increased risk of neurodegeneration. Significant progress has been made in the last few years on detecting and defining the pathology of neurodegenerative diseases. However, less progress has been made on other factors related to the progression of those diseases in football players. This review identifies three areas for further research: (a) quantification of exposure - a consensus is needed on the use of clinically

  14. Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots

    OpenAIRE

    Pourrut, Bertrand; Perchet, Geoffrey; Silvestre, Jérôme; Cecchi, Marie; Guiresse, Agnès Maritchù; Pinelli, Eric

    2008-01-01

    The mechanism of oxidative burst induced by lead in Vicia faba excised roots was investigated by luminol-dependent chemiluminescence. Results showed that lead triggered a rapid and dose-dependent increase in chemiluminescence production. In this study, specific inhibitors of putative reactive oxygen species (ROS) sources were used to determine the mechanism of lead-induced ROS generation. This generation was sensitive to dephenylene iodonium (DPI), quinacrine and imidazole, some inhibitors of ...

  15. The role of PGC-1α and MRP1 in lead-induced mitochondrial toxicity in testicular Sertoli cells

    International Nuclear Information System (INIS)

    Li, Zhen; Liu, Xi; Wang, Lu; Wang, Yan; Du, Chuang; Xu, Siyuan; Zhang, Yucheng; Wang, Chunhong; Yang, Chengfeng

    2016-01-01

    The lead-induced toxic effect on mitochondria in Sertoli cells is not well studied and the underlying mechanism is poorly understood. Here we reported the potential role of peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) and multidrug resistance protein 1 (MRP1) in lead acetate-induced mitochondrial toxicity in mouse testicular Sertoli cells TM4 line. We found that lead acetate treatment significantly reduced the expression level of PGC-1α, but increased the level of MRP1 in mitochondria of TM4 cells. To determine the role of PGC-1α and MRP1 in lead acetate-induced mitochondrial toxicity, we then generated PGC-1α stable overexpression and MRP1 stable knockdown TM4 cells, respectively. The lead acetate treatment caused TM4 cell mitochondrial ultrastructure damages, a decrease in ATP synthesis, an increase in ROS levels, and apoptotic cell death. In contrast, stably overexpressing PGC-1α significantly ameliorated the lead acetate treatment-caused mitochondrial toxicity and apoptosis. Moreover, it was also found that stably knocking down the level of MRP1 increased the TM4 cell mitochondrial lead-accumulation by 4–6 folds. Together, the findings from this study suggest that PGC-1α and MRP1 plays important roles in protecting TM4 cells against lead-induced mitochondrial toxicity, providing a better understanding of lead-induced mitochondrial toxicity.

  16. Defining SNAP by cross-sectional and longitudinal definitions of neurodegeneration

    OpenAIRE

    Wisse, L.E.M.; Das, S.R.; Davatzikos, C.; Dickerson, B.C.; Xie, S.X.; Yushkevich, P.A.; Wolk, D.A.

    2018-01-01

    Introduction: Suspected non-Alzheimer's pathophysiology (SNAP) is a biomarker driven designation that represents a heterogeneous group in terms of etiology and prognosis. SNAP has only been identified by cross-sectional neurodegeneration measures, whereas longitudinal measures might better reflect “active” neurodegeneration and might be more tightly linked to prognosis. We compare neurodegeneration defined by cross-sectional ‘hippocampal volume’ only (SNAP/L−) versus both cross-sectional and ...

  17. Brain and Peripheral Atypical Inflammatory Mediators Potentiate Neuroinflammation and Neurodegeneration.

    Science.gov (United States)

    Kempuraj, Duraisamy; Thangavel, Ramasamy; Selvakumar, Govindhasamy P; Zaheer, Smita; Ahmed, Mohammad E; Raikwar, Sudhanshu P; Zahoor, Haris; Saeed, Daniyal; Natteru, Prashant A; Iyer, Shankar; Zaheer, Asgar

    2017-01-01

    Neuroinflammatory response is primarily a protective mechanism in the brain. However, excessive and chronic inflammatory responses can lead to deleterious effects involving immune cells, brain cells and signaling molecules. Neuroinflammation induces and accelerates pathogenesis of Parkinson's disease (PD), Alzheimer's disease (AD) and Multiple sclerosis (MS). Neuroinflammatory pathways are indicated as novel therapeutic targets for these diseases. Mast cells are immune cells of hematopoietic origin that regulate inflammation and upon activation release many proinflammatory mediators in systemic and central nervous system (CNS) inflammatory conditions. In addition, inflammatory mediators released from activated glial cells induce neurodegeneration in the brain. Systemic inflammation-derived proinflammatory cytokines/chemokines and other factors cause a breach in the blood brain-barrier (BBB) thereby allowing for the entry of immune/inflammatory cells including mast cell progenitors, mast cells and proinflammatory cytokines and chemokines into the brain. These peripheral-derived factors and intrinsically generated cytokines/chemokines, α-synuclein, corticotropin-releasing hormone (CRH), substance P (SP), beta amyloid 1-42 (Aβ1-42) peptide and amyloid precursor proteins can activate glial cells, T-cells and mast cells in the brain can induce additional release of inflammatory and neurotoxic molecules contributing to chronic neuroinflammation and neuronal death. The glia maturation factor (GMF), a proinflammatory protein discovered in our laboratory released from glia, activates mast cells to release inflammatory cytokines and chemokines. Chronic increase in the proinflammatory mediators induces neurotoxic Aβ and plaque formation in AD brains and neurodegeneration in PD brains. Glial cells, mast cells and T-cells can reactivate each other in neuroinflammatory conditions in the brain and augment neuroinflammation. Further, inflammatory mediators from the brain can

  18. Huntingtin interacting proteins are genetic modifiers of neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Linda S Kaltenbach

    2007-05-01

    Full Text Available Huntington's disease (HD is a fatal neurodegenerative condition caused by expansion of the polyglutamine tract in the huntingtin (Htt protein. Neuronal toxicity in HD is thought to be, at least in part, a consequence of protein interactions involving mutant Htt. We therefore hypothesized that genetic modifiers of HD neurodegeneration should be enriched among Htt protein interactors. To test this idea, we identified a comprehensive set of Htt interactors using two complementary approaches: high-throughput yeast two-hybrid screening and affinity pull down followed by mass spectrometry. This effort led to the identification of 234 high-confidence Htt-associated proteins, 104 of which were found with the yeast method and 130 with the pull downs. We then tested an arbitrary set of 60 genes encoding interacting proteins for their ability to behave as genetic modifiers of neurodegeneration in a Drosophila model of HD. This high-content validation assay showed that 27 of 60 orthologs tested were high-confidence genetic modifiers, as modification was observed with more than one allele. The 45% hit rate for genetic modifiers seen among the interactors is an order of magnitude higher than the 1%-4% typically observed in unbiased genetic screens. Genetic modifiers were similarly represented among proteins discovered using yeast two-hybrid and pull-down/mass spectrometry methods, supporting the notion that these complementary technologies are equally useful in identifying biologically relevant proteins. Interacting proteins confirmed as modifiers of the neurodegeneration phenotype represent a diverse array of biological functions, including synaptic transmission, cytoskeletal organization, signal transduction, and transcription. Among the modifiers were 17 loss-of-function suppressors of neurodegeneration, which can be considered potential targets for therapeutic intervention. Finally, we show that seven interacting proteins from among 11 tested were able to

  19. Cerebrospinal fluid biomarkers of neurodegeneration are decreased or normal in narcolepsy

    DEFF Research Database (Denmark)

    Jennum, Poul Jørgen; Pedersen, Lars Østergaard; Bahl, Justyna Maria Czarna

    2017-01-01

    OBJECTIVES: To investigate whether cerebrospinal fluid (CSF) biomarkers of neurodegeneration are altered in narcolepsy in order to evaluate whether the hypocretin deficiency and abnormal sleep-wake pattern in narcolepsy leads to neurodegeneration. METHODS: Twenty-one patients with central...... that hypocretin deficiency and an abnormal sleep-wake pattern alter the turnover of these proteins in CNS....

  20. Autophagy and Microglia: Novel Partners in Neurodegeneration and Aging.

    Science.gov (United States)

    Plaza-Zabala, Ainhoa; Sierra-Torre, Virginia; Sierra, Amanda

    2017-03-09

    Autophagy is emerging as a core regulator of Central Nervous System (CNS) aging and neurodegeneration. In the brain, it has mostly been studied in neurons, where the delivery of toxic molecules and organelles to the lysosome by autophagy is crucial for neuronal health and survival. However, we propose that the (dys)regulation of autophagy in microglia also affects innate immune functions such as phagocytosis and inflammation, which in turn contribute to the pathophysiology of aging and neurodegenerative diseases. Herein, we first describe the basic concepts of autophagy and its regulation, discuss key aspects for its accurate monitoring at the experimental level, and summarize the evidence linking autophagy impairment to CNS senescence and disease. We focus on acute, chronic, and autoimmunity-mediated neurodegeneration, including ischemia/stroke, Alzheimer's, Parkinson's, and Huntington's diseases, and multiple sclerosis. Next, we describe the actual and potential impact of autophagy on microglial phagocytic and inflammatory function. Thus, we provide evidence of how autophagy may affect microglial phagocytosis of apoptotic cells, amyloid-β, synaptic material, and myelin debris, and regulate the progression of age-associated neurodegenerative diseases. We also discuss data linking autophagy to the regulation of the microglial inflammatory phenotype, which is known to contribute to age-related brain dysfunction. Overall, we update the current knowledge of autophagy and microglia, and highlight as yet unexplored mechanisms whereby autophagy in microglia may contribute to CNS disease and senescence.

  1. Impact of aging immune system on neurodegeneration and potential immunotherapies.

    Science.gov (United States)

    Liang, Zhanfeng; Zhao, Yang; Ruan, Linhui; Zhu, Linnan; Jin, Kunlin; Zhuge, Qichuan; Su, Dong-Ming; Zhao, Yong

    2017-10-01

    The interaction between the nervous and immune systems during aging is an area of avid interest, but many aspects remain unclear. This is due, not only to the complexity of the aging process, but also to a mutual dependency and reciprocal causation of alterations and diseases between both the nervous and immune systems. Aging of the brain drives whole body systemic aging, including aging-related changes of the immune system. In turn, the immune system aging, particularly immunosenescence and T cell aging initiated by thymic involution that are sources of chronic inflammation in the elderly (termed inflammaging), potentially induces brain aging and memory loss in a reciprocal manner. Therefore, immunotherapeutics including modulation of inflammation, vaccination, cellular immune therapies and "protective autoimmunity" provide promising approaches to rejuvenate neuroinflammatory disorders and repair brain injury. In this review, we summarize recent discoveries linking the aging immune system with the development of neurodegeneration. Additionally, we discuss potential rejuvenation strategies, focusing aimed at targeting the aging immune system in an effort to prevent acute brain injury and chronic neurodegeneration during aging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Protective role of ginger on lead induced derangement in plasma testosterone and luteinizing hormone levels of male sprague dawley rats

    International Nuclear Information System (INIS)

    Riaz, F.; Ayub, M.; Shaukat, S.

    2011-01-01

    Background: Lead is one of the most serious environmental threats to human health especially in developing countries. It damages multiple body systems including the reproductive system. Ginger's antioxidant and androgenic activity is reported in multiple animal studies. The aim of this study was to investigate the ameliorative effect of Zingiber officinale (ginger) on lead induced derangement in plasma testosterone and luteinizing hormone (LH) levels of male rats. Methods: Sixty adult male Sprague Dawley rats were used in this study in four groups. Group A served as normal control, Group B received 0.3% lead acetate in drinking water, Group C and group D received supplementary 0.5 and 1 gm/Kg bodyweight of ginger respectively along with lead acetate in drinking water. Five rats from each group were sacrificed at the end of 2nd, 4th and 6th weeks. Serum testosterone and LH levels were analysed using ELISA technique. Results: After co administration with different doses of ginger, serum testosterone level which was significantly decreased in lead treated group, showed a significant rise as compared to lead treated group. LH levels which had exhibited no significant change by lead treatment, after co administration with different doses of ginger, again showed no significant change. Conclusion: Oral administration of ginger ameliorated lead induced testicular toxicity in male rats by increasing serum testosterone level at all durations which might be a product of both its androgenic and antioxidant properties. (author)

  3. A blunted anxiolytic like effect of curcumin against acute lead induced anxiety in rat: involvement of serotonin.

    Science.gov (United States)

    Benammi, Hind; El Hiba, Omar; Romane, Abderrahmane; Gamrani, Halima

    2014-06-01

    Anxiety is one of the most common mental disorders sharing extreme or pathological anxiety states as the primary disturbance in mood or emotional tone, with increased fear and exaggerated acute stress responses. Medicinal plants are very variable, but some of them are used as a spice such as curcumin (Curcuma longa). Curcumin shows a wide range of pharmacological potentialities, however, little is known about its anxiolytic properties. The aim of our study was to assess the anti-anxiety potential of curcumin extract against experimental lead induced-anxiety in rats. Experiments were carried out on male Wistar rats intoxicated acutely with an intraperitoneal injection of Pb (25mg/kg B.W.) and/or concomitantly with administration of curcumin (30 mg/kg B.W.) for 3 days. Using immunohistochemistry and anxiety assessment tests (dark light box and elevated plus maze), we evaluated, respectively, the expression of serotonin (5HT) in the dorsal raphe nucleus (DRN) and the anxiety state in our animals. Our results showed, for the first time, a noticeable anxiolytic effect of curcumin against lead induced anxiety in rats and this may possibly result from modulation of central neuronal monoaminergic neurotransmission, especially serotonin, which has shown a significant reduction of the immunoreactivity within the DRN. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Timing of neurodegeneration and beta-amyloid (Abeta) peptide deposition in the brain of aging kokanee salmon.

    Science.gov (United States)

    Maldonado, Tammy A; Jones, Richard E; Norris, David O

    2002-10-01

    Brains of kokanee salmon (Oncorhynchus nerka kennerlyi) in one of four reproductive stages (sexually immature, maturing, sexually mature, and spawning) were stained with cresyl violet and silver stain to visualize neurodegeneration. These reproductive stages correlate with increasing somatic aging of kokanee salmon, which die after spawning. Twenty-four regions of each brain were examined. Brains of sexually immature fish exhibited low levels of neurodegeneration, whereas neurodegeneration was more marked in maturing fish and greatest in spawning fish. Neurodegeneration was present in specific regions of the telencephalon, diencephalon, mesencephalon, and rhombencephalon. Pyknotic neurons were observed in all regions previously reported to be immunopositive for A beta. Regions that did not exhibit neurodegeneration during aging included the magnocellular vestibular nucleus, the nucleus lateralis tuberis of the hypothalamus, and Purkinje cells of the cerebellum, all of which also lack A beta; perhaps these regions are neuroprotected. In 14 of 16 brain areas for which data were available on both the increase in A beta deposition and pyknosis, neurodegeneration preceded or appeared more or less simultaneously with A beta production, whereas in only two regions did A beta deposition precede neurodegeneration. This information supports the hypothesis that A beta deposition is a downstream product of neurodegeneration in most brain regions. Other conclusions are that the degree of neurodegeneration varies among brain regions, neurodegeneration begins in maturing fish and peaks in spawning fish, the timing of neurodegeneration varies among brain regions, and some regions do not exhibit accelerated neurodegeneration during aging. Copyright 2002 Wiley Periodicals, Inc.

  5. Age-Related Neurodegeneration and Memory Loss in Down Syndrome

    Directory of Open Access Journals (Sweden)

    Jason P. Lockrow

    2012-01-01

    Full Text Available Down syndrome (DS is a condition where a complete or segmental chromosome 21 trisomy causes variable intellectual disability, and progressive memory loss and neurodegeneration with age. Many research groups have examined development of the brain in DS individuals, but studies on age-related changes should also be considered, with the increased lifespan observed in DS. DS leads to pathological hallmarks of Alzheimer's disease (AD by 40 or 50 years of age. Progressive age-related memory deficits occurring in both AD and in DS have been connected to degeneration of several neuronal populations, but mechanisms are not fully elucidated. Inflammation and oxidative stress are early events in DS pathology, and focusing on these pathways may lead to development of successful intervention strategies for AD associated with DS. Here we discuss recent findings and potential treatment avenues regarding development of AD neuropathology and memory loss in DS.

  6. Metals and Neurodegeneration [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Pan Chen

    2016-03-01

    Full Text Available Metals play important roles in the human body, maintaining cell structure and regulating gene expression, neurotransmission, and antioxidant response, to name a few. However, excessive metal accumulation in the nervous system may be toxic, inducing oxidative stress, disrupting mitochondrial function, and impairing the activity of numerous enzymes. Damage caused by metal accumulation may result in permanent injuries, including severe neurological disorders. Epidemiological and clinical studies have shown a strong correlation between aberrant metal exposure and a number of neurological diseases, including Alzheimer’s disease, amyotrophic lateral sclerosis, autism spectrum disorders, Guillain–Barré disease, Gulf War syndrome, Huntington’s disease, multiple sclerosis, Parkinson’s disease, and Wilson’s disease. Here, we briefly survey the literature relating to the role of metals in neurodegeneration.

  7. Deep Brain Stimulation for Pantothenate Kinase-Associated Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Pedro J. Garcia-Ruiz

    2015-01-01

    Full Text Available Pantothenate kinase-associated neurodegeneration (PKAN is usually associated with dystonia, which is typically severe and progressive over time. Pallidal stimulation (GPi DBS has been carried out in selected cases of PKAN with drug-resistant dystonia with variable results. We report a 30-month follow-up study of a 30-year-old woman with PKAN-related dystonia treated with GPi DBS. Postoperatively, the benefit quickly became evident, as the patient exhibited a marked improvement in her dystonia, including her writing difficulty. This result has been maintained up to the present. GPi DBS should be considered in dystonic PKAN patients provided fixed contractures and/or pyramidal symptoms are not present.

  8. Neuronal matrix metalloproteinase-9 is a determinant of selective neurodegeneration.

    Science.gov (United States)

    Kaplan, Artem; Spiller, Krista J; Towne, Christopher; Kanning, Kevin C; Choe, Ginn T; Geber, Adam; Akay, Turgay; Aebischer, Patrick; Henderson, Christopher E

    2014-01-22

    Selective neuronal loss is the hallmark of neurodegenerative diseases. In patients with amyotrophic lateral sclerosis (ALS), most motor neurons die but those innervating extraocular, pelvic sphincter, and slow limb muscles exhibit selective resistance. We identified 18 genes that show >10-fold differential expression between resistant and vulnerable motor neurons. One of these, matrix metalloproteinase-9 (MMP-9), is expressed only by fast motor neurons, which are selectively vulnerable. In ALS model mice expressing mutant superoxide dismutase (SOD1), reduction of MMP-9 function using gene ablation, viral gene therapy, or pharmacological inhibition significantly delayed muscle denervation. In the presence of mutant SOD1, MMP-9 expressed by fast motor neurons themselves enhances activation of ER stress and is sufficient to trigger axonal die-back. These findings define MMP-9 as a candidate therapeutic target for ALS. The molecular basis of neuronal diversity thus provides significant insights into mechanisms of selective vulnerability to neurodegeneration. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Chromosome 13 dementia syndromes as models of neurodegeneration

    DEFF Research Database (Denmark)

    Ghiso, J.; Revesz, T.; Holton, J.

    2001-01-01

    Two hereditary conditions, familial British dementia (FBD) and familial Danish dementia (FDD), are associated with amyloid deposition in the central nervous system and neurodegeneration. The two amyloid proteins, ABri and ADan, are degradation products of the same precursor molecule BriPP bearing......-terminus. Neurofibrillary tangles containing the classical paired helical filaments as well as neuritic components in many instances co-localize with the amyloid deposits. In both disorders, the pattern of hyperphosphorylatedtau immunoreactivity is almost indistinguishable from that seen in Alzheimer's disease....... These issues argue for the primary importance of the amyloid deposits in the mechanism(s) of neuronal cell loss. We propose FBD and FDD, the chromosome 13 dementia syndromes, as models to study the molecular basis of neurofibrillary degeneration, cell death and amyloid formation in the brain....

  10. Strategies for clinical approach to neurodegeneration in Amyotrophic lateral sclerosis.

    Science.gov (United States)

    Carlesi, Cecilia; Pasquali, Livia; Piazza, Selina; Lo Gerfo, Annalisa; Caldarazzo Ienco, Elena; Alessi, Rosaria; Fornai, Francesco; Siciliano, Gabriele

    2011-03-01

    Amyotrophic lateral sclerosis (ALS) is a rapidly progressive and ultimately fatal neurodegenerative disorder of unknown aetiology that involves the loss of upper and lower motor neurons in the cerebral cortex, brainstem and spinal cord. Significant progress in understanding the cellular mechanisms of motor neuron degeneration in ALS has not been matched with the development of therapeutic strategies to prevent disease progression, and riluzole remains the only available therapy, with only marginal effects on disease survival. More recently alterations of mRNA processing in genetically defined forms of ALS, as those related to TDP-43 and FUS-TLS gene mutations have provided important insights into the molecular networks implicated in the disease pathogenesis. Here we review some of the recent progress in promoting therapeutic strategies for neurodegeneration.

  11. Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities.

    Science.gov (United States)

    Menzies, Fiona M; Fleming, Angeleen; Caricasole, Andrea; Bento, Carla F; Andrews, Stephen P; Ashkenazi, Avraham; Füllgrabe, Jens; Jackson, Anne; Jimenez Sanchez, Maria; Karabiyik, Cansu; Licitra, Floriana; Lopez Ramirez, Ana; Pavel, Mariana; Puri, Claudia; Renna, Maurizio; Ricketts, Thomas; Schlotawa, Lars; Vicinanza, Mariella; Won, Hyeran; Zhu, Ye; Skidmore, John; Rubinsztein, David C

    2017-03-08

    Autophagy is a conserved pathway that delivers cytoplasmic contents to the lysosome for degradation. Here we consider its roles in neuronal health and disease. We review evidence from mouse knockout studies demonstrating the normal functions of autophagy as a protective factor against neurodegeneration associated with intracytoplasmic aggregate-prone protein accumulation as well as other roles, including in neuronal stem cell differentiation. We then describe how autophagy may be affected in a range of neurodegenerative diseases. Finally, we describe how autophagy upregulation may be a therapeutic strategy in a wide range of neurodegenerative conditions and consider possible pathways and druggable targets that may be suitable for this objective. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction

    Directory of Open Access Journals (Sweden)

    Antonio eZorzano

    2015-06-01

    Full Text Available Mitochondrial dynamics is a term that encompasses the movement of mitochondria along the cytoskeleton, regulation of their architecture, and connectivity mediated by tethering and fusion/fission. The importance of these events in cell physiology and pathology has been partially unraveled with the identification of the genes responsible for the catalysis of mitochondrial fusion and fission. Mutations in two mitochondrial fusion genes (MFN2 and OPA1 cause neurodegenerative diseases, namely Charcot-Marie Tooth type 2A and autosomal dominant optic atrophy. Alterations in mitochondrial dynamics may be involved in the pathophysiology of prevalent neurodegenerative conditions. Moreover, impairment of the activity of mitochondrial fusion proteins dysregulates the function of hypothalamic neurons, leading to alterations in food intake and in energy homeostasis. Here we review selected findings in the field of mitochondrial dynamics and their relevance for neurodegeneration and hypothalamic dysfunction.

  13. Microglial cell dysregulation in Brain Aging and Neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Rommy eVon Bernhardi

    2015-07-01

    Full Text Available Aging is the main risk factor for neurodegenerative diseases. In aging, microglia undergo phenotypic changes compatible with their activation. Glial activation can lead to neuroinflammation, which is increasingly accepted as part of the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD. We hypothesize that in aging, aberrant microglia activation leads to a deleterious environment and neurodegeneration. In aged mice, microglia exhibit an increased expression of cytokines and an exacerbated inflammatory response to pathological changes. Whereas LPS increases nitric oxide secretion in microglia from young mice, induction of reactive oxygen species (ROS predominates in older mice. Furthermore, there is accumulation of DNA oxidative damage in mitochondria of microglia during aging, and also an increased intracellular ROS production. Increased ROS activates the redox-sensitive nuclear factor kappa B, which promotes more neuroinflammation, and can be translated in functional deficits, such as cognitive impairment. Mitochondria-derived ROS and cathepsin B, are also necessary for the microglial cell production of interleukin-1β, a key inflammatory cytokine. Interestingly, whereas the regulatory cytokine TGFβ1 is also increased in the aged brain, neuroinflammation persists. Assessing this apparent contradiction, we have reported that TGFβ1 induction and activation of Smad3 signaling after inflammatory stimulation are reduced in adult mice. Other protective functions, such as phagocytosis, although observed in aged animals, become not inducible by inflammatory stimuli and TGFβ1. Here, we discuss data suggesting that mitochondrial and endolysosomal dysfunction could at least partially mediate age-associated microglial cell changes, and, together with the impairment of the TGFβ1-Smad3 pathway, could result in a reduction of protective activation and a facilitation of cytotoxic activation of microglia, resulting in the

  14. The multiple sclerosis visual pathway cohort: understanding neurodegeneration in MS.

    Science.gov (United States)

    Martínez-Lapiscina, Elena H; Fraga-Pumar, Elena; Gabilondo, Iñigo; Martínez-Heras, Eloy; Torres-Torres, Ruben; Ortiz-Pérez, Santiago; Llufriu, Sara; Tercero, Ana; Andorra, Magi; Roca, Marc Figueras; Lampert, Erika; Zubizarreta, Irati; Saiz, Albert; Sanchez-Dalmau, Bernardo; Villoslada, Pablo

    2014-12-15

    Multiple Sclerosis (MS) is an immune-mediated disease of the Central Nervous System with two major underlying etiopathogenic processes: inflammation and neurodegeneration. The latter determines the prognosis of this disease. MS is the main cause of non-traumatic disability in middle-aged populations. The MS-VisualPath Cohort was set up to study the neurodegenerative component of MS using advanced imaging techniques by focusing on analysis of the visual pathway in a middle-aged MS population in Barcelona, Spain. We started the recruitment of patients in the early phase of MS in 2010 and it remains permanently open. All patients undergo a complete neurological and ophthalmological examination including measurements of physical and disability (Expanded Disability Status Scale; Multiple Sclerosis Functional Composite and neuropsychological tests), disease activity (relapses) and visual function testing (visual acuity, color vision and visual field). The MS-VisualPath protocol also assesses the presence of anxiety and depressive symptoms (Hospital Anxiety and Depression Scale), general quality of life (SF-36) and visual quality of life (25-Item National Eye Institute Visual Function Questionnaire with the 10-Item Neuro-Ophthalmic Supplement). In addition, the imaging protocol includes both retinal (Optical Coherence Tomography and Wide-Field Fundus Imaging) and brain imaging (Magnetic Resonance Imaging). Finally, multifocal Visual Evoked Potentials are used to perform neurophysiological assessment of the visual pathway. The analysis of the visual pathway with advance imaging and electrophysilogical tools in parallel with clinical information will provide significant and new knowledge regarding neurodegeneration in MS and provide new clinical and imaging biomarkers to help monitor disease progression in these patients.

  15. The culture of referendum in Albania: Technical and theoritecal reflections on the abrogative referendum

    Directory of Open Access Journals (Sweden)

    Valbona Pajo Bala

    2014-01-01

    Full Text Available The aim of this paper is to analyse the Albanian constitutional and legal framework on referenda, in general, focusing special attention to the abrogative referenda of a law or part thereof. Given the absence of any concrete case of an abrogative referenda held in Albania, which does not creates very much room for discussion in that regard, the paper, through a comparative approach on the referenda culture in other european states, aims at offering to the reader a more complete view on the mechanisms and guarantees enjoyed by voters and the effective way of their use, in order to give life to the direct democracy, but without replacing the representative one. In addition, part of the analyses will be the powers of the Constitutional Court for the ex ante constitutional review of the issue subject to a referendum, the review of constitutionality of the referndum and of its results. In this context, the paper will focus on the constitutional case-law as a tool for increasing the referenda culture and shaping the constitional order, as well as a source of standards and values. Another objective of the paper is to open a discussion on the need for the reception of referenda-related standards elaborated in those European countries, where the culture of helding a referenda and the case-law on the regard is enriched and may serve as a qualitative basis for further reference.

  16. Dystonia in neurodegeneration with brain iron accumulation : outcome of bilateral pallidal stimulation

    NARCIS (Netherlands)

    Timmermann, L.; Pauls, K. A. M.; Wieland, K.; Jech, R.; Kurlemann, G.; Sharma, N.; Gill, S. S.; Haenggeli, C. A.; Hayflick, S. J.; Hogarth, P.; Leenders, K. L.; Limousin, P.; Malanga, C. J.; Moro, E.; Ostrem, J. L.; Revilla, F. J.; Santens, P.; Schnitzler, A.; Tisch, S.; Valldeoriola, F.; Vesper, J.; Volkmann, J.; Woitalla, D.; Peker, S.

    Neurodegeneration with brain iron accumulation encompasses a heterogeneous group of rare neurodegenerative disorders that are characterized by iron accumulation in the brain. Severe generalized dystonia is frequently a prominent symptom and can be very disabling, causing gait impairment, difficulty

  17. Abrogation of Early Apoptosis Does Not Alter Late Inhibition of Hippocampal Neurogenesis After Irradiation

    International Nuclear Information System (INIS)

    Li Yuqing; Aubert, Isabelle; Wong, C. Shun

    2010-01-01

    Purpose: Irradiation of the adult brain results in acute apoptosis of neural progenitors and vascular endothelial cells, as well as late dysfunction of neural progenitors and inhibition of neurogenesis. We sought to determine whether the early apoptotic response has a causative role in late inhibition of neurogenesis after cranial irradiation. Methods and Materials: Using a genetic approach with p53 and smpd1 transgenic mice and a pharmacologic approach with basic fibroblast growth factor (bFGF) to abrogate the early apoptotic response, we evaluated the late inhibition of neurogenesis in the hippocampal dentate gyrus after cranial irradiation. Results: In dentate gyrus, subgranular neural progenitors underwent p53-dependent apoptosis within 24 h after irradiation. Despite a near abrogation of neural progenitor apoptosis in p53-/- mice, the reduction in newborn neurons in dentate gyrus at 9 weeks after irradiation in p53-/- mice was not different from that observed in wildtype controls. Endothelial cell apoptosis after radiation is mediated by membrane damage initiated by activation of acid sphingomyelinase (ASMase). Deletion of the smpd1 gene (which encodes ASMase) attenuated the apoptotic response of endothelial cells. At 9 weeks after irradiation, the inhibition of hippocampal neurogenesis was not rescued by ASMase deficiency. Intravenous administration of bFGF protected both endothelial cells and neural progenitors against radiation-induced apoptosis. There was no protection against inhibition of neurogenesis at 9 weeks after irradiation in bFGF-treated mice. Conclusion: Early apoptotic death of neural progenitors, endothelial cells, or both does not have a causative association with late inhibition of neurogenesis after irradiation.

  18. Chromosomal instability and the abrogated G2/M arrest in x-irradiated myelodysplastic syndrome cells

    International Nuclear Information System (INIS)

    Ban, S.; Sudo, H.; Saegusa, K.; Sagara, M.; Imai, T.; Kimura, A.

    2003-01-01

    A preliminary epidemiological study demonstrated that myelodysplastic syndrome (MDS) has an excess relative risk per sievert of 13 in atomic bomb survivors in Hiroshima. MDS is the only other radiogenic blood disease apart from leukemia. Clinically, MDS involves dysplastic hematopoiesis and an increased risk of leukemic transformation. Because it is uncertain whether MDS pathogenesis affects lymphoid progenitor cells as well as myeloid progenitor cells, we investigated the karyotypes of bone marrow cells and the micronucleus (MN) frequency in peripheral T lymphocytes of twenty- three atomic bomb survivors with MDS and five normal individuals. Aneuploidy was observed in 10 of 23 patients. Chromosome aberrations were observed in 3 of 12 patients with mild symptoms, and six of 11 patients of severe symptoms. The spontaneous- and X-ray-induced-MN frequencies were significantly higher in MDS patients than in normal individuals. Interestingly, radiation sensitivity increased along with the severity of MDS clinical subtypes. Because many of the patients in this study had not been exposed to chemo- or radiation- therapy, their unusual radiosensitivity may be related to their chromosomal or genomic instability. Immortalized lymphoid cell lines were established from B-lymphocytes infected with Epstein-Barr virus in vitro. The abrogation of radiation-induced-G2/M arrest was observed in 10 of 12 MDS-B lymphoid cell lines, but not in the normal B lymphoid cell lines. Our data suggest that the control of chromosomal stability is impaired in pluripotent stem cells of MDS patients, and that the abrogated G2/M arrest may be involved in the pathophysiology of disease progression and the high radiation sensitivity of patients

  19. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain

    Directory of Open Access Journals (Sweden)

    Mariko Saito

    2016-08-01

    Full Text Available Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD. While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy. Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7 mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain.

  20. Influence of minerals on lead-induced alterations in liver function in rats exposed to long-term lead exposure

    International Nuclear Information System (INIS)

    Herman, D'souza Sunil; Geraldine, Menezes; T, Venkatesh

    2009-01-01

    The objective of this study was to evaluate the role of minerals on lead-induced effect on the liver. Differentiation of minerals and heavy metals pose an inherent problem due to certain common properties shared by them. With this approach to the problem of heavy metal toxicity, in the present study two groups of male Wistar albino rats, one group (well-nourished) fed on mineral rich diet and other group (undernourished) fed on diet without mineral supplements were used. Both the groups of rats were subjected to long-term lead exposure. The diet of well-nourished group was supplemented with calcium (Ca); 1.2%, phosphorous (P); 0.6%, iron (Fe); 90 mg/kg, zinc (Zn); 50 mg/kg, magnesium (Mg); 0.08%, manganese (Mn); 70 mg/kg, selenium (Se); 0.2 mg/kg, copper (Cu); 5 mg/kg, molybdenum (Mo); 0.8 mg/kg, iodine (I); 0.6 mg/kg, cobalt (Co); 3.0 mg/kg. Their blood lead and parameters of liver function were monitored periodically. Results of the study showed a very high statistically significant increase (p < 0.001) in the blood lead (PbB) levels and liver function test parameters in the undernourished subjects compared to the well-nourished subjects. Nutritional management of lead poisoning is of importance since essential elements and toxic heavy metals may interact to minimize the absorption of lead.

  1. Influence of minerals on lead-induced alterations in liver function in rats exposed to long-term lead exposure

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D' souza Sunil, E-mail: hermansdsouza@rediffmail.com [Department of Biotechnology, Manipal Life Sciences Centre, KMC, Manipal University, Manipal (India); Geraldine, Menezes, E-mail: gere1@rediffmail.com [Department of Biochemistry and Biophysics, St. John' s Medical College, Koramangala, Bangalore 560034, Karnataka (India); T, Venkatesh, E-mail: venky_tv@hotmail.com [Department of Biochemistry and Biophysics, St. John' s Medical College, Koramangala, Bangalore 560034, Karnataka (India)

    2009-07-30

    The objective of this study was to evaluate the role of minerals on lead-induced effect on the liver. Differentiation of minerals and heavy metals pose an inherent problem due to certain common properties shared by them. With this approach to the problem of heavy metal toxicity, in the present study two groups of male Wistar albino rats, one group (well-nourished) fed on mineral rich diet and other group (undernourished) fed on diet without mineral supplements were used. Both the groups of rats were subjected to long-term lead exposure. The diet of well-nourished group was supplemented with calcium (Ca); 1.2%, phosphorous (P); 0.6%, iron (Fe); 90 mg/kg, zinc (Zn); 50 mg/kg, magnesium (Mg); 0.08%, manganese (Mn); 70 mg/kg, selenium (Se); 0.2 mg/kg, copper (Cu); 5 mg/kg, molybdenum (Mo); 0.8 mg/kg, iodine (I); 0.6 mg/kg, cobalt (Co); 3.0 mg/kg. Their blood lead and parameters of liver function were monitored periodically. Results of the study showed a very high statistically significant increase (p < 0.001) in the blood lead (PbB) levels and liver function test parameters in the undernourished subjects compared to the well-nourished subjects. Nutritional management of lead poisoning is of importance since essential elements and toxic heavy metals may interact to minimize the absorption of lead.

  2. LINGO-1 and Neurodegeneration: Pathophysiologic Clues for Essential Tremor?

    Directory of Open Access Journals (Sweden)

    Zhou Zhi-dong

    2012-03-01

    Full Text Available Essential tremor (ET, one of the most common adult-onset movement disorders, has been associated with cerebellar Purkinje cell degeneration and formation of brainstem Lewy bodies. Recent findings suggest that genetic variants of the leucine-rich repeat and Ig domain containing 1 (LINGO-1 gene could be risk factors for ET. The LINGO-1 protein contains both leucine-rich repeat (LRR and immunoglobulin (Ig-like domains in its extracellular region, as well as a transmembrane domain and a short cytoplasmic tail. LINGO-1 can form a ternary complex with Nogo-66 receptor (NgR1 and p75. Binding of LINGO-1 with NgR1 can activate the NgR1 signaling pathway, leading to inhibition of oligodendrocyte differentiation and myelination in the central nervous system. LINGO-1 has also been found to bind with epidermal growth factor receptor (EGFR and induce downregulation of the activity of EGFR–PI3K–Akt signaling, which might decrease Purkinje cell survival. Therefore, it is possible that genetic variants of LINGO-1, either alone or in combination with other genetic or environmental factors, act to increase LINGO-1 expression levels in Purkinje cells and confer a risk to Purkinje cell survival in the cerebellum. Here, we provide a concise summary of the link between LINGO-1 and neurodegeneration and discuss various hypotheses as to how this could be potentially relevant to ET pathogenesis.

  3. Molecular Mechanisms of Neurodegeneration in Spinal Muscular Atrophy

    Directory of Open Access Journals (Sweden)

    Saif Ahmad

    2016-01-01

    Full Text Available Spinal muscular atrophy (SMA is an autosomal recessive motor neuron disease with a high incidence and is the most common genetic cause of infant mortality. SMA is primarily characterized by degeneration of the spinal motor neurons that leads to skeletal muscle atrophy followed by symmetric limb paralysis, respiratory failure, and death. In humans, mutation of the Survival Motor Neuron 1 (SMN1 gene shifts the load of expression of SMN protein to the SMN2 gene that produces low levels of full-length SMN protein because of alternative splicing, which are sufficient for embryonic development and survival but result in SMA. The molecular mechanisms of the (a regulation of SMN gene expression and (b degeneration of motor neurons caused by low levels of SMN are unclear. However, some progress has been made in recent years that have provided new insights into understanding of the cellular and molecular basis of SMA pathogenesis. In this review, we have briefly summarized recent advances toward understanding of the molecular mechanisms of regulation of SMN levels and signaling mechanisms that mediate neurodegeneration in SMA.

  4. Brain aging and neurodegeneration: from a mitochondrial point of view.

    Science.gov (United States)

    Grimm, Amandine; Eckert, Anne

    2017-11-01

    Aging is defined as a progressive time-related accumulation of changes responsible for or at least involved in the increased susceptibility to disease and death. The brain seems to be particularly sensitive to the aging process since the appearance of neurodegenerative diseases, including Alzheimer's disease, is exponential with the increasing age. Mitochondria were placed at the center of the 'free-radical theory of aging', because these paramount organelles are not only the main producers of energy in the cells, but also to main source of reactive oxygen species. Thus, in this review, we aim to look at brain aging processes from a mitochondrial point of view by asking: (i) What happens to brain mitochondrial bioenergetics and dynamics during aging? (ii) Why is the brain so sensitive to the age-related mitochondrial impairments? (iii) Is there a sex difference in the age-induced mitochondrial dysfunction? Understanding mitochondrial physiology in the context of brain aging may help identify therapeutic targets against neurodegeneration. This article is part of a series "Beyond Amyloid". © 2017 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

  5. Application of medical cannabis in patients with the neurodegeneration disorders

    Directory of Open Access Journals (Sweden)

    Lidia Kotuła

    2014-04-01

    Full Text Available Medical cannabis is the dried flowers of the female Cannabis sativa L. plant. Cannabis contains a number of active elements, including dronabinol (THC and cannabidiol (CBD. Dronabinol is usually the main ingredient. The body’s own cannabinoid system has been identified. The discovery of this system, which comprises endocannabinoids and receptors, confirmed that cannabis has a positive effect on certain illnesses and conditions. Two types of cannabinoid receptors have been identified: CB1 and CB2 receptors. The first type CB1 is mostly found in the central nervous system, modulate pain. It also has an anti-emetic effect, and has influence on the memory and the motor system. The second type of receptors CB2 is peripheral, and it is primarily found in immune system cells and it is responsible for the immunomodulatory effects of cannabinoids. Medical cannabis can help in cases of the neurodegeneration disorders, for example Parkinson’s disease, Huntington’s Disease, Amyotrophic Lateral Sclerosis. Patients generally tolerate medical cannabis well.

  6. Oxidative damage and neurodegeneration in manganese-induced neurotoxicity

    International Nuclear Information System (INIS)

    Milatovic, Dejan; Zaja-Milatovic, Snjezana; Gupta, Ramesh C.; Yu, Yingchun; Aschner, Michael

    2009-01-01

    Exposure to excessive manganese (Mn) levels results in neurotoxicity to the extrapyramidal system and the development of Parkinson's disease (PD)-like movement disorder, referred to as manganism. Although the mechanisms by which Mn induces neuronal damage are not well defined, its neurotoxicity appears to be regulated by a number of factors, including oxidative injury, mitochondrial dysfunction and neuroinflammation. To investigate the mechanisms underlying Mn neurotoxicity, we studied the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates (HEP), neuroinflammation mediators and associated neuronal dysfunctions both in vitro and in vivo. Primary cortical neuronal cultures showed concentration-dependent alterations in biomarkers of oxidative damage, F 2 -isoprostanes (F 2 -IsoPs) and mitochondrial dysfunction (ATP), as early as 2 h following Mn exposure. Treatment of neurons with 500 μM Mn also resulted in time-dependent increases in the levels of the inflammatory biomarker, prostaglandin E 2 (PGE 2 ). In vivo analyses corroborated these findings, establishing that either a single or three (100 mg/kg, s.c.) Mn injections (days 1, 4 and 7) induced significant increases in F 2 -IsoPs and PGE 2 in adult mouse brain 24 h following the last injection. Quantitative morphometric analyses of Golgi-impregnated striatal sections from mice exposed to single or three Mn injections revealed progressive spine degeneration and dendritic damage of medium spiny neurons (MSNs). These findings suggest that oxidative stress, mitochondrial dysfunction and neuroinflammation are underlying mechanisms in Mn-induced neurodegeneration.

  7. Cerebellar neurodegeneration in the absence of microRNAs

    Science.gov (United States)

    Schaefer, Anne; O'Carroll, Dónal; Tan, Chan Lek; Hillman, Dean; Sugimori, Mutsuyuki; Llinas, Rodolfo; Greengard, Paul

    2007-01-01

    Genome-encoded microRNAs (miRNAs) are potent regulators of gene expression. The significance of miRNAs in various biological processes has been suggested by studies showing an important role of these small RNAs in regulation of cell differentiation. However, the role of miRNAs in regulation of differentiated cell physiology is not well established. Mature neurons express a large number of distinct miRNAs, but the role of miRNAs in postmitotic neurons has not been examined. Here, we provide evidence for an essential role of miRNAs in survival of differentiated neurons. We show that conditional Purkinje cell–specific ablation of the key miRNA-generating enzyme Dicer leads to Purkinje cell death. Deficiency in Dicer is associated with progressive loss of miRNAs, followed by cerebellar degeneration and development of ataxia. The progressive neurodegeneration in the absence of Dicer raises the possibility of an involvement of miRNAs in neurodegenerative disorders. PMID:17606634

  8. Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration

    Science.gov (United States)

    Zwilling, Daniel; Huang, Shao-Yi; Sathyasaikumar, Korrapati V.; Notarangelo, Francesca M.; Guidetti, Paolo; Wu, Hui-Qiu; Lee, Jason; Truong, Jennifer; Andrews-Zwilling, Yaisa; Hsieh, Eric W.; Louie, Jamie Y.; Wu, Tiffany; Scearce-Levie, Kimberly; Patrick, Christina; Adame, Anthony; Giorgini, Flaviano; Moussaoui, Saliha; Laue, Grit; Rassoulpour, Arash; Flik, Gunnar; Huang, Yadong; Muchowski, Joseph M.; Masliah, Eliezer; Schwarcz, Robert; Muchowski, Paul J.

    2011-01-01

    SUMMARY Metabolites in the kynurenine pathway of tryptophan degradation are thought to play an important role in neurodegenerative disorders such as Alzheimer’s disease and Huntington’s disease. Metabolites that cause glutamate receptor-mediated excitotoxicity and free radical formation are elevated in the blood and vulnerable brain regions in these diseases, while levels of the neuroprotective metabolite kynurenic acid are often decreased. Here we describe the synthesis and characterization of JM6, a novel small-molecule pro-drug inhibitor of kynurenine 3-monooxygenase (KMO). JM6 raises kynurenic acid and reduces extracellular glutamate in the brain after chronic oral administration by inhibiting KMO in blood. In a transgenic mouse model of Alzheimer’s disease, JM6 prevented spatial memory deficits, anxiety-related behavior, and synaptic loss. JM6 also extended life span, prevented synaptic loss, and decreased microglial activation in a mouse model of Huntington’s disease. These findings support a critical link between blood cells and neurodegeneration that is mediated by KMO and the kynurenine pathway. PMID:21640374

  9. Progressing neurobiological strategies against proteostasis failure: Challenges in neurodegeneration.

    Science.gov (United States)

    Amanullah, Ayeman; Upadhyay, Arun; Joshi, Vibhuti; Mishra, Ribhav; Jana, Nihar Ranjan; Mishra, Amit

    2017-12-01

    Proteins are ordered useful cellular entities, required for normal health and organism's survival. The proteome is the absolute set of cellular expressed proteins, which regulates a wide range of physiological functions linked with all domains of life. In aging cells or under unfavorable cellular conditions, misfolding of proteins generates common pathological events linked with neurodegenerative diseases and aging. Current advances of proteome studies systematically generates some progress in our knowledge that how misfolding of proteins or their accumulation can contribute to the impairment or depletion of proteome functions. Still, the underlying causes of this unrecoverable loss are not clear that how such unsolved transitions give rise to multifactorial challengeable degenerative pathological conditions in neurodegeneration. In this review, we specifically focus and systematically summarize various molecular mechanisms of proteostasis maintenance, as well as discuss progressing neurobiological strategies, promising natural and pharmacological candidates, which can be useful to counteract the problem of proteopathies. Our article emphasizes an urgent need that now it is important for us to recognize the fundamentals of proteostasis to design a new molecular framework and fruitful strategies to uncover how the proteome defects are associated with aging and neurodegenerative diseases. A enhance understanding of progress link with proteome and neurobiological challenges may provide new basic concepts in the near future, based on pharmacological agents, linked with impaired proteostasis and neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. TARGETED DELETION OF INDUCIBLE HEAT SHOCK PROTEIN 70 ABROGATES THE LATE INFARCT-SPARING EFFECT OF MYOCARDIAL ISCHEMIC PRECONDITIONING

    Science.gov (United States)

    Abstract submitted for 82nd annual meeting of the American Association for Thoracic Surgery, May 4-8, 2002 in Washington D.C.Targeted Deletion of Inducible Heat Shock Protein 70 Abrogates the Late Infarct-Sparing Effect of Myocardial Ischemic PreconditioningCraig...

  11. Melatonin Protects Cultured Tobacco Cells against Lead-Induced Cell Death via Inhibition of Cytochrome c Translocation

    Science.gov (United States)

    Kobylińska, Agnieszka; Reiter, Russel J.; Posmyk, Malgorzata M.

    2017-01-01

    Melatonin was discovered in plants more than two decades ago and, especially in the last decade, it has captured the interests of plant biologists. Beyond its possible participation in photoperiod processes and its role as a direct free radical scavenger as well as an indirect antioxidant, melatonin is also involved in plant defense strategies/reactions. However, the mechanisms that this indoleamine activates to improve plant stress tolerance still require identification and clarification. In the present report, the ability of exogenous melatonin to protect Nicotiana tabacum L. line Bright Yellow 2 (BY-2) suspension cells against the toxic exposure to lead was examined. Studies related to cell proliferation and viability, DNA fragmentation, possible translocation of cytochrome c from mitochondria to cytosol, cell morphology after fluorescence staining and also the in situ accumulation of superoxide radicals measured via the nitro blue tetrazolium reducing test, were conducted. This work establishes a novel finding by correcting the inhibition of release of mitochondrial ctytocrome c in to the cytoplasm with the high accumulation of superoxide radicals. The results show that pretreatment with 200 nm of melatonin protected tobacco cells from DNA damage caused by lead. Melatonin, as an efficacious antioxidant, limited superoxide radical accumulation as well as cytochrome c release thereby, it likely prevents the activation of the cascade of processes leading to cell death. Fluorescence staining with acridine orange and ethidium bromide documented that lead-stressed cells additionally treated with melatonin displayed intact nuclei. The results revealed that melatonin at proper dosage could significantly increase BY-2 cell proliferation and protected them against death. It was proved that melatonin could function as an effective priming agent to promote survival of tobacco cells under harmful lead-induced stress conditions. PMID:28959267

  12. Melatonin Protects Cultured Tobacco Cells against Lead-Induced Cell Death via Inhibition of Cytochrome c Translocation

    Directory of Open Access Journals (Sweden)

    Agnieszka Kobylińska

    2017-09-01

    Full Text Available Melatonin was discovered in plants more than two decades ago and, especially in the last decade, it has captured the interests of plant biologists. Beyond its possible participation in photoperiod processes and its role as a direct free radical scavenger as well as an indirect antioxidant, melatonin is also involved in plant defense strategies/reactions. However, the mechanisms that this indoleamine activates to improve plant stress tolerance still require identification and clarification. In the present report, the ability of exogenous melatonin to protect Nicotiana tabacum L. line Bright Yellow 2 (BY-2 suspension cells against the toxic exposure to lead was examined. Studies related to cell proliferation and viability, DNA fragmentation, possible translocation of cytochrome c from mitochondria to cytosol, cell morphology after fluorescence staining and also the in situ accumulation of superoxide radicals measured via the nitro blue tetrazolium reducing test, were conducted. This work establishes a novel finding by correcting the inhibition of release of mitochondrial ctytocrome c in to the cytoplasm with the high accumulation of superoxide radicals. The results show that pretreatment with 200 nm of melatonin protected tobacco cells from DNA damage caused by lead. Melatonin, as an efficacious antioxidant, limited superoxide radical accumulation as well as cytochrome c release thereby, it likely prevents the activation of the cascade of processes leading to cell death. Fluorescence staining with acridine orange and ethidium bromide documented that lead-stressed cells additionally treated with melatonin displayed intact nuclei. The results revealed that melatonin at proper dosage could significantly increase BY-2 cell proliferation and protected them against death. It was proved that melatonin could function as an effective priming agent to promote survival of tobacco cells under harmful lead-induced stress conditions.

  13. Protective efficacy of Emblica against radiation and lead induced biochemical changes in the kidney of Swiss albino mice

    International Nuclear Information System (INIS)

    Chakrawarti, Aruna; Dev, Rahul; Rathore, Narendra Singh; Khatri, Anand

    2012-01-01

    Ionizing radiation kills cells in the area being treated (the target tissue) as well as other surrounding healthy cells. The damaging effects of ionizing radiation on healthy tissue create a major barrier in effective treatment of common human cancers. Thus there is a need to find a safe and highly effective avenue to reduce normal cell damage during cancer therapy, plants have been used in the traditional healthcare system from time immemorial, and phyto products continue to play an essential role in medicine. Emblica, is reported to have an excellent radio protective activity, antioxidant and a free radical scavenger. In light of above, the present study was aimed to evaluate the protective effect of Emblica against radiation and lead induced biochemical alterations in the kidney of Swiss albino mice. The animals were exposed to 6.0 Gy of gamma rays with or without Lead acetate treatment. The Emblica was administered seven days prior to irradiation or Lead Acetate treatment. The animals from all experimental groups were sacrificed by cervical dislocation at each post treatment intervals of 1, 2, 4, 7, 14 and 28 days. After sacrificing the animals, pieces of the kidney were taken out and kept at - 20 deg C for different biochemical parameters. For the study the animals were exposed to 6.0 Gy of gamma rays with or without Lead acetate treatments. In the experimental groups the Emblica juice was given seven days prior to the radiation or lead acetate treatment. The various biochemical parameters viz, total proteins, glycogen, cholesterol, acid phosphatase and alkaline phosphatase activities, DNA and RNA were estimated. The values were observed in the form of increase or decrease. After combined treatment of radiation and lead acetate the changes were more severe showing synergistic effect of both the agent. An early and fast recovery was also noticed in Emblica pre-treated animals. Thus it appears that Emblica is potent enough to check Lead and Radiation induced

  14. Comparative Effect of Silymarin and D-Penicillamine on Lead Induced Hemotoxicity and Oxidative Stress in Rat

    Directory of Open Access Journals (Sweden)

    Seyedeh Missagh Jalali*

    2017-03-01

    Full Text Available Background: This study was performed to investigate the adverse effects of acute lead intoxication on hemogram, erythrocyte osmotic fragility and oxidant/antioxidant status and the probable ameliorating effect of silymarin in comparison to d-penicillamine. Methods: Forty-eight albino rats were divided in 8 groups and received the following treatments in a 10 day experiment in Shahid Chamran University of Ahvaz, southwest Iran in 2015. Group 1: Normal saline as control; Group 2: 25 mg/kg lead acetate, intraperitoneally (IP for the last 5 days; Group 3: 100 mg/kg D-penicillamine, IP for the last 5 days; Group 4: 200 mg/kg silymarin, orally for 10 days; Group 5, 6, 7 and 8: In addition to lead, they received D-penicillamine, for the last 5 days, silymarin for 10 days, a combination of silymarin for 10 days and D-penicillamine for the last 5 days, and silymarin for the last 5 days, respectively. Results: Lead exposure induced a significant microcytic anemia accompanied by a significant elevation in total leukocyte, lymphocyte and neutrophil counts. Erythrocyte superoxide dismutase (SOD and glutathion peroxidase (Gpx activities were significantly increased along with a significant elevation of malondialdehyde (MDA concentration in lead treated rats. Activities of SOD and Gpx were significantly alleviated by silymarin administration for 10 days while both D-penicillamine and silymarin could significantly reduce MDA concentration. Conclusion: Acute lead exposure induced significant leukocytosis and anemia that was associated with increased activity of erythrocyte antioxidant enzymes and lipid peroxidation. Silymarin in contrast to D-penicillamine treatment was more effective in preventing lead-induced oxidative stress in erythrocytes.

  15. A study of chemopreventive effects of Emblica officinalis Linn. against radiation and lead induced haematological changes in Swiss albino mice

    International Nuclear Information System (INIS)

    Halduniya, Hanish K.; Singariya, Seema; Bhatnagar, Shruti; Srivasrava, Deepti; Agarwal, Manisha

    2012-01-01

    The vast potential of radiant energy opens vistas of new horizons as its use in various fields of science, technology, therapeutics and diagnosis. However its also exposes the global population to the hazards of nuclear accidents and radiation injury. In this era of nuclear science it has become a prerequisite to know the effects of radiation on mankind and to develop effective countermeasures for minimizing the damages of radiation exposure. Heavy metals like lead can cause deleterious effects when its concentration goes beyond the limit in ecosystem. The combined effects of radiation and lead further increases the causation of damages to organs and tissues. Amla is found to be a non toxic, inexpensive, easily available herbal drug. Therefore present study was pertain to evaluate the chemo preventive role of Amla against radiation and lead induced changes in blood of Swiss albino mice. The animals were exposed to 6.0 Gy of gamma rays and with or without lead acetate which was given to them adlibitum. The Emblica was administered seven days prior to irradiation or lead acetate treatment. Three animals were sacrificed from all the experimental group at each post treatment intervals of 1, 2, 4, 7, 14 and 28 days by cervical dislocation . The blood was collected in heparinised tube for estimating various haematological parameters. The value of RBC, WBC, PCV, Hemoglobin, and MCV decreased up to day-14 in non drug treated groups and day-7 in drug treated groups, thereafter the value increased. When the animals treated with radiation and lead simultaneously synergistic effects were observed. The Amla treated groups showed early and fast recovery thus, it may deduce from above observation that Amla has potential to check the alteration produced by radiation and lead in the blood of Swiss albino mice. (author)

  16. Protective efficacy of Emblica against radiation and lead induced changes in the Jejunum of Swiss Albino mice

    International Nuclear Information System (INIS)

    Purohit, R.K.; Meena, Dinesh; Issran, Rakesh; Pyarelal; Jangir, Ashok Kumar

    2014-01-01

    Recently, increased interest has developed on search for potential drugs of plant origin which can quench the radiation induced free radicals and eliminate oxygen with minimum side effects. In view of the fact, present study was planned to evaluate the protective efficacy of Emblica against radiation and lead induced changes in jejunum of mice. For the purpose, six to eight weeks old male Swiss albino mice were selected and divided into seven groups on the basis of radiation, lead, combined treatment and drug treated. The values of total proteins, cholesterol, acid phosphatase activity, alkaline phosphatase activity, DNA and RNA were estimated. The values of total proteins, cholesterol, DNA and RNA decreased whereas acid phosphatase and alkaline phosphatase activity increased. After irradiation with various doses of gamma rays, histological changes depend upon the dose of radiation delivered. The important radio-lesions were looseness of musculatrue, hydropic degeneration in submucosa and lamina propria, hyperaemia and haemorrhage in submucosa, pyknotic cells, cytoplasmic degranulation and vacuolation, abnormal mitotic figures. Karyolysis, karyorrhexis and chromatolysis were also observed in crypt cells. Shortening and breaking of villus tips, leucocytic infiltration in lamina propria and cell debris in intestinal lumen were also noted. The number of goblet cells per crypt section also decreased in all the experimental groups. The value of the experimental groups was significantly lower than that of the control group. The biochemical finding indicated the drug treated section of living tissue showed slightly/no degenerative changes. The drug treated groups demonstrating the ability of Aloe vera to inhibit oxidative stress thus preventing tissue injury. (author)

  17. Defining SNAP by cross-sectional and longitudinal definitions of neurodegeneration.

    Science.gov (United States)

    Wisse, L E M; Das, S R; Davatzikos, C; Dickerson, B C; Xie, S X; Yushkevich, P A; Wolk, D A

    2018-01-01

    Suspected non-Alzheimer's pathophysiology (SNAP) is a biomarker driven designation that represents a heterogeneous group in terms of etiology and prognosis. SNAP has only been identified by cross-sectional neurodegeneration measures, whereas longitudinal measures might better reflect "active" neurodegeneration and might be more tightly linked to prognosis. We compare neurodegeneration defined by cross-sectional 'hippocampal volume' only (SNAP/L-) versus both cross-sectional and longitudinal 'hippocampal atrophy rate' (SNAP/L+) and investigate how these definitions impact prevalence and the clinical and biomarker profile of SNAP in Mild Cognitive Impairment (MCI). 276 MCI patients from ADNI-GO/2 were designated amyloid "positive" (A+) or "negative" (A-) based on their florbetapir scan and neurodegeneration 'positive' or 'negative' based on cross-sectional hippocampal volume and longitudinal hippocampal atrophy rate. 74.1% of all SNAP participants defined by the cross-sectional definition of neurodegeneration also met the longitudinal definition of neurodegeneration, whereas 25.9% did not. SNAP/L+ displayed larger white matter hyperintensity volume, a higher conversion rate to dementia over 5 years and a steeper decline on cognitive tasks compared to SNAP/L- and the A- CN group. SNAP/L- had more abnormal values on neuroimaging markers and worse performance on cognitive tasks than the A- CN group, but did not show a difference in dementia conversion rate or longitudinal cognition. Using a longitudinal definition of neurodegeneration in addition to a cross-sectional one identifies SNAP participants with significant cognitive decline and a worse clinical prognosis for which cerebrovascular disease may be an important driver.

  18. Herpesvirus telomerase RNA (vTR with a mutated template sequence abrogates herpesvirus-induced lymphomagenesis.

    Directory of Open Access Journals (Sweden)

    Benedikt B Kaufer

    2011-10-01

    Full Text Available Telomerase reverse transcriptase (TERT and telomerase RNA (TR represent the enzymatically active components of telomerase. In the complex, TR provides the template for the addition of telomeric repeats to telomeres, a protective structure at the end of linear chromosomes. Human TR with a mutation in the template region has been previously shown to inhibit proliferation of cancer cells in vitro. In this report, we examined the effects of a mutation in the template of a virus encoded TR (vTR on herpesvirus-induced tumorigenesis in vivo. For this purpose, we used the oncogenic avian herpesvirus Marek's disease virus (MDV as a natural virus-host model for lymphomagenesis. We generated recombinant MDV in which the vTR template sequence was mutated from AATCCCAATC to ATATATATAT (vAU5 by two-step Red-mediated mutagenesis. Recombinant viruses harboring the template mutation replicated with kinetics comparable to parental and revertant viruses in vitro. However, mutation of the vTR template sequence completely abrogated virus-induced tumor formation in vivo, although the virus was able to undergo low-level lytic replication. To confirm that the absence of tumors was dependent on the presence of mutant vTR in the telomerase complex, a second mutation was introduced in vAU5 that targeted the P6.1 stem loop, a conserved region essential for vTR-TERT interaction. Absence of vTR-AU5 from the telomerase complex restored virus-induced lymphoma formation. To test if the attenuated vAU5 could be used as an effective vaccine against MDV, we performed vaccination-challenge studies and determined that vaccination with vAU5 completely protected chickens from lethal challenge with highly virulent MDV. Taken together, our results demonstrate 1 that mutation of the vTR template sequence can completely abrogate virus-induced tumorigenesis, likely by the inhibition of cancer cell proliferation, and 2 that this strategy could be used to generate novel vaccine candidates

  19. m-AAA proteases, mitochondrial calcium homeostasis and neurodegeneration.

    Science.gov (United States)

    Patron, Maria; Sprenger, Hans-Georg; Langer, Thomas

    2018-03-01

    The function of mitochondria depends on ubiquitously expressed and evolutionary conserved m-AAA proteases in the inner membrane. These ATP-dependent peptidases form hexameric complexes built up of homologous subunits. AFG3L2 subunits assemble either into homo-oligomeric isoenzymes or with SPG7 (paraplegin) subunits into hetero-oligomeric proteolytic complexes. Mutations in AFG3L2 are associated with dominant spinocerebellar ataxia (SCA28) characterized by the loss of Purkinje cells, whereas mutations in SPG7 cause a recessive form of hereditary spastic paraplegia (HSP7) with motor neurons of the cortico-spinal tract being predominantly affected. Pleiotropic functions have been assigned to m-AAA proteases, which act as quality control and regulatory enzymes in mitochondria. Loss of m-AAA proteases affects mitochondrial protein synthesis and respiration and leads to mitochondrial fragmentation and deficiencies in the axonal transport of mitochondria. Moreover m-AAA proteases regulate the assembly of the mitochondrial calcium uniporter (MCU) complex. Impaired degradation of the MCU subunit EMRE in AFG3L2-deficient mitochondria results in the formation of deregulated MCU complexes, increased mitochondrial calcium uptake and increased vulnerability of neurons for calcium-induced cell death. A reduction of calcium influx into the cytosol of Purkinje cells rescues ataxia in an AFG3L2-deficient mouse model. In this review, we discuss the relationship between the m-AAA protease and mitochondrial calcium homeostasis and its relevance for neurodegeneration and describe a novel mouse model lacking MCU specifically in Purkinje cells. Our results pledge for a novel view on m-AAA proteases that integrates their pleiotropic functions in mitochondria to explain the pathogenesis of associated neurodegenerative disorders.

  20. Arsenic induces apoptosis in mouse liver is mitochondria dependent and is abrogated by N-acetylcysteine

    International Nuclear Information System (INIS)

    Santra, Amal; Chowdhury, Abhijit; Ghatak, Subhadip; Biswas, Ayan; Dhali, Gopal Krishna

    2007-01-01

    Arsenicosis, caused by arsenic contamination of drinking water supplies, is a major public health problem in India and Bangladesh. Chronic liver disease, often with portal hypertension occurs in chronic arsenicosis, contributes to the morbidity and mortality. The early cellular events that initiate liver cell injury due to arsenicosis have not been studied. Our aim was to identify the possible mechanisms related to arsenic-induced liver injury in mice. Liver injury was induced in mice by arsenic treatment. The liver was used for mitochondrial oxidative stress, mitochondrial permeability transition (MPT). Evidence of apoptosis was sought by TUNEL test, caspase assay and histology. Pretreatment with N-acetyl-L-cysteine (NAC) was done to modulate hepatic GSH level. Arsenic treatment in mice caused liver injury associated with increased oxidative stress in liver mitochondria and alteration of MPT. Altered MPT facilitated cytochrome c release in the cytosol, activation of caspase 9 and caspase 3 activities and apoptotic cell death. Pretreatment of NAC to arsenic-treated mice abrogated all these alteration suggesting a glutathione (GSH)-dependent mechanism. Oxidative stress in mitochondria and inappropriate MPT are important in the pathogenesis of arsenic induced apoptotic liver cell injury. The phenomenon is GSH dependent and supplementation of NAC might have beneficial effects

  1. Secoisolariciresinol diglucoside abrogates oxidative stress-induced damage in cardiac iron overload condition.

    Directory of Open Access Journals (Sweden)

    Stephanie Puukila

    Full Text Available Cardiac iron overload is directly associated with cardiac dysfunction and can ultimately lead to heart failure. This study examined the effect of secoisolariciresinol diglucoside (SDG, a component of flaxseed, on iron overload induced cardiac damage by evaluating oxidative stress, inflammation and apoptosis in H9c2 cardiomyocytes. Cells were incubated with 50 μ5M iron for 24 hours and/or a 24 hour pre-treatment of 500 μ M SDG. Cardiac iron overload resulted in increased oxidative stress and gene expression of the inflammatory mediators tumor necrosis factor-α, interleukin-10 and interferon γ, as well as matrix metalloproteinases-2 and -9. Increased apoptosis was evident by increased active caspase 3/7 activity and increased protein expression of Forkhead box O3a, caspase 3 and Bax. Cardiac iron overload also resulted in increased protein expression of p70S6 Kinase 1 and decreased expression of AMP-activated protein kinase. Pre-treatment with SDG abrogated the iron-induced increases in oxidative stress, inflammation and apoptosis, as well as the increased p70S6 Kinase 1 and decreased AMP-activated protein kinase expression. The decrease in superoxide dismutase activity by iron treatment was prevented by pre-treatment with SDG in the presence of iron. Based on these findings we conclude that SDG was cytoprotective in an in vitro model of iron overload induced redox-inflammatory damage, suggesting a novel potential role for SDG in cardiac iron overload.

  2. Loss of p53 induces M-phase retardation following G2 DNA damage checkpoint abrogation.

    Science.gov (United States)

    Minemoto, Yuzuru; Uchida, Sanae; Ohtsubo, Motoaki; Shimura, Mari; Sasagawa, Toshiyuki; Hirata, Masato; Nakagama, Hitoshi; Ishizaka, Yukihito; Yamashita, Katsumi

    2003-04-01

    Most cell lines that lack functional p53 protein are arrested in the G2 phase of the cell cycle due to DNA damage. When the G2 checkpoint is abrogated, these cells are forced into mitotic catastrophe. A549 lung adenocarcinoma cells, in which p53 was eliminated with the HPV16 E6 gene, exhibited efficient arrest in the G2 phase when treated with adriamycin. Administration of caffeine to G2-arrested cells induced a drastic change in cell phenotype, the nature of which depended on the status of p53. Flow cytometric and microscopic observations revealed that cells that either contained or lacked p53 resumed their cell cycles and entered mitosis upon caffeine treatment. However, transit to the M phase was slower in p53-negative cells than in p53-positive cells. Consistent with these observations, CDK1 activity was maintained at high levels, along with stable cyclin B1, in p53-negative cells. The addition of butyrolactone I, which is an inhibitor of CDK1 and CDK2, to the p53-negative cells reduced the floating round cell population and induced the disappearance of cyclin B1. These results suggest a relationship between the p53 pathway and the ubiquitin-mediated degradation of mitotic cyclins and possible cross-talk between the G2-DNA damage checkpoint and the mitotic checkpoint.

  3. Beclin1-induced autophagy abrogates radioresistance of lung cancer cells by suppressing osteopontin

    International Nuclear Information System (INIS)

    Chang, Seung-Hee; Minai-Tehrani, Arash; Shin, Ji-Young

    2012-01-01

    Osteopontin (OPN) serves as an indicator of resistance to radiotherapy. However, the role of OPN in the development of acquired radioresistance in human lung cancer cells has not yet been fully elucidated. Therefore, the potential importance of OPN as a marker of lung cancer with a potential significant role in the development of radioresistance against repeated radiotherapy has prompted us to define the pathways by which OPN regulates lung cancer cell growth. In addition, autophagy has been reported to play a key role in the radiosensitization of cancer cells. Here, we report that increased OPN expression through induction of nuclear p53 following irradiation was inhibited by exogenous beclin-1 (BECN1). Our results clearly show that BECN1 gene expression led to induction of autophagy and inhibition of cancer cell growth and angiogenesis. Our results suggest that the induction of autophagy abrogated the radioresistance of the cancer cells. Interestingly, we showed that knockdown of OPN by lentivirus-mediated shRNA induced the autophagy of human lung cancer cell. Taken together, these results suggest that OPN and BECN1 can be molecular targets for overcoming radioresistance by controlling autophagy. (author)

  4. Protective potential of Emblica Officinalis Linn. against radiation and lead induced hepatic lesion in Swiss albino mice

    International Nuclear Information System (INIS)

    Purohit, R.K.; Bhartiya, K.M.; Isran, Rakesh; Bhati, Sharwan; Pyarelal; Basu, Arindam

    2013-01-01

    Exposure of living systems to ionizing radiation causes a variety of damages to DNA and membranes due to generation of free radicals and reactive oxygen species. So there is a need of hour is to search for an ideal radioprotector which could minimize the deleterious and damaging effects caused by ionizing radiation. Radioprotectors are agents which reduce the radiation effects on cell when applied prior to exposure of radiation. The aim of this study was to access the efficacy of Emblica officinalis in reducing radiation and lead induced changes in mice liver. For the present experiment, healthy male Swiss albino mice (6-8 weeks) were selected and maintained under standard conditions of temperature and light. Fruit extract of Emblica was fed orally at the dose of 0.01 ml/animal/day.The animal were divided into seven groups according to the treatment i.e. lead acetate solution as drinking water (group-II) or exposed to 3.5 or 7.0 Gy gamma radiation (group-III) or combined treatment of radiation and lead acetate (group-IV). The animals of experimental groups were administered Emblica extract seven days prior to radiation or lead acetate treatment (group V, VI and VII) respectively. The animals from all the groups were sacrificed by cervical dislocation at each post-treatment intervals of 1, 2, 4, 7, 14 and 28 days. After sacrificing the animals pieces of liver were taken out and some of them were kept at -20℃ for different biochemical parameters. The histopathological changes included cytoplasmic degranulation, vacuolation, hyperaemia, pycnotic and crenated nuclei. The changes observed in the control groups were compared with the respective experimental groups. An increase in the value of total proteins, glycogen, acid phosphatase, alkaline phosphatase activity and RNA was observed up to day - 14 in the non drug treated group and day 7 in the Emblica treated groups, thereafter value declined up to day - 28 without reaching to normal. Whereas the value of

  5. Proanthocyanidins Attenuation of Chronic Lead-Induced Liver Oxidative Damage in Kunming Mice via the Nrf2/ARE Pathway

    Directory of Open Access Journals (Sweden)

    Miao Long

    2016-10-01

    Full Text Available Lead is harmful for human health and animals. Proanthocyanidins (PCs, a natural antioxidant, possess a broad spectrum of pharmacological and medicinal properties. However, its protective effects against lead-induced liver damage have not been clarified. This study was aimed to evaluate the protective effect of PCs on the hepatotoxicity of male Kunming mice induced by chronic lead exposure. A total of 70 healthy male Kunming mice were averagely divided into four groups: control group, i.e., the group exposed to lead, the group treated with PCs, and the group co-treated with lead and PCs. The mice exposed to lead were given water containing 0.2% lead acetate. Mice treated in the PCs and PCs lead co-treated groups were given PC (100 mg/kg in 0.9% saline by oral gavage. Lead exposure caused a significant elevation in the liver function parameters, lead level, lipid peroxidation, and inhibition of antioxidant enzyme activities. The induction of oxidative stress and histological alterations in the liver were minimized by co-treatment with PCs. Meanwhile, the number of Transferase-Mediated Deoxyuridine Triphosphate-Biotin Nick End Labeling (TUNEL-positive cells was significantly reduced in the PCs/lead co-treated group compared to the lead group. In addition, the lead group showed an increase in the expression level of Bax, while the expression of Bcl-2 was decreased. Furthermore, the lead group showed an increase in the expression level of endoplasmic reticulum (ER stress-related genes and protein (GRP78 and CHOP. Co-treated with PCs significantly reversed these expressions in the liver. PCs were, therefore, demonstrated to have protective, antioxidant, and anti-ER stress and anti-apoptotic activities in liver damage caused by chronic lead exposure in the Kunming mouse. This may be due to the ability of PCs to enhance the ability of liver tissue to protect against oxidative stress via the Nrf2/ARE signaling pathway, resulting in decreasing ER stress

  6. 15. Sensitivity in visualizing vegetations in cardiac lead-induced endocarditis: A comparative study between transesophageal vs. transthoracic echocardiography

    Directory of Open Access Journals (Sweden)

    A. AlFagih

    2016-07-01

    Full Text Available Despite advancement in sterile cardiac device implantation techniques, wound infections and/or bacteremia remain a significant problem. The presence of a vegetation in lead-induced endocarditis (LIE is a critical factor that determines the management. Transthoracic (TTE and Transesophageal (TEE Echocardiography are two different cardiac modalities that are used for the detection of lead vegetation. However, it is not yet clear which of the two has the highest diagnostic accuracy. We aim to identify which of the two has the highest sensitivity. In addition, we aim to correlate the existence of a vegetation with blood and wound culture results. We conducted a chart review in 113 patients whom underwent lead extraction at Prince Sultan Cardiac Center in Saudi Arabia during the period of Jan, 2002 to Jul, 2015. Six patients underwent lead extraction twice, increasing the number to be a total of 119 cases. Out of the study cohort, we include 38 patients who had both TTE and TEE done prior to lead extraction. Data regarding TTE, TEE, as well as blood and wound cultures were collected from echocardiography and microbiology lab reports using a well-structured case report form.Of the study population, 21 patients (55.3% had lead vegetations visualized either by TTE or TEE. Nineteen patients had vegetations detected by TEE, compared to 6 patients only when TTE was used. The sensitivity of TEE and TTE were 90.5% (CI: 69.6–98.8% and 28.5% (95% CI: 11.3–52.1%, respectively. Blood and wound culture results showed that in the presence of a vegetation, blood cultures were positive in 55% of the cases (P = 0.036 while only 44.4% of those with vegetations had a positive wound culture (P = 0.347. TEE has higher sensitivity in detecting vegetations compared to TTE in LIE. The presence of a vegetation is more likely to be associated with a positive blood culture than a positive wound culture. Further studies ought to measure the accuracy of different

  7. A Patient with Beta-Propeller Protein-Associated Neurodegeneration: Treatment with Iron Chelation Therapy

    Directory of Open Access Journals (Sweden)

    Shen-Yang Lim

    2018-05-01

    Full Text Available We present a case of beta-propeller protein-associated neurodegeneration, a form of neurodegeneration with brain iron accumulation. The patient harbored a novel mutation in the WDR45 gene. A detailed video and description of her clinical condition are provided. Her movement disorder phenomenology was characterized primarily by limb stereotypies and gait dyspraxia. The patient’s disability was advanced by the time iron-chelating therapy with deferiprone was initiated, and no clinical response in terms of cognitive function, behavior, speech, or movements were observed after one year of treatment.

  8. Disruption of microvascular flow-patterns in Alzheimer's disease correlates with neurodegeneration and cognitive decline

    DEFF Research Database (Denmark)

    Nielsen, Rune Bæksager; Egefjord, Lærke; Eskildsen, Simon Fristed

    and neurodegeneration in AD. METHOD: 24 patients diagnosed with AD were assessed at inclusion and after six months. Using perfusion magnetic resonance imaging (MRI), we estimated CTH, flow-normalized CTH termed relative transit time heterogeneity (RTH), OEFmax and relative cerebral blood flow (rCBF). Neurodegeneration...... was quantified as cortical thickness utilizing structural MRI, while cognitive abilities were tested with brief cognitive status exam (BCSE). Low BCSE-score indicates worse symptoms. Regional means were extracted from atrophic cortical grey matter (A-CGM), defined using MRIs from the ADNI-database. Correlation...

  9. Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Ahad, Amjid [Lipid Metabolism Laboratory, Department of Biochemistry, Faculty of Science, Jamia Hamdard, Hamdard Nagar, New Delhi 110062 (India); Ganai, Ajaz Ahmad [Department of Biotechnology, Faculty of Science, Jamia Hamdard, Hamdard Nagar, New Delhi 110062 (India); Mujeeb, Mohd [Department of Pharmacognosy and Phytochemistry, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi 110062 (India); Siddiqui, Waseem Ahmad, E-mail: was.sid121@gmail.com [Lipid Metabolism Laboratory, Department of Biochemistry, Faculty of Science, Jamia Hamdard, Hamdard Nagar, New Delhi 110062 (India)

    2014-08-15

    Diabetic nepropathy (DN) is considered as the leading cause of end-stage renal disease (ESRD) worldwide, but the current available treatments are limited. Recent experimental evidences support the role of chronic microinflammation in the development of DN. Therefore, the tumor necrosis factor-alpha (TNF-α) pathway has emerged as a new therapeutic target for the treatment of DN. We investigated the nephroprotective effects of chrysin (5, 7-dihydroxyflavone) in a high fat diet/streptozotocin (HFD/STZ)-induced type 2 diabetic Wistar albino rat model. Chrysin is a potent anti-inflammatory compound that is abundantly found in plant extracts, honey and bee propolis. The treatment with chrysin for 16 weeks post induction of diabetes significantly abrogated renal dysfunction and oxidative stress. Chrysin treatment considerably reduced renal TNF-α expression and inhibited the nuclear transcription factor-kappa B (NF-kB) activation. Furthermore, chrysin treatment improved renal pathology and suppressed transforming growth factor-beta (TGF-β), fibronectin and collagen-IV protein expressions in renal tissues. Chrysin also significantly reduced the serum levels of pro-inflammatory cytokines, interleukin-1beta (IL-1β) and IL-6. Moreover, there were no appreciable differences in fasting blood glucose and serum insulin levels between the chrysin treated groups compared to the HFD/STZ-treated group. Hence, our results suggest that chrysin prevents the development of DN in HFD/STZ-induced type 2 diabetic rats through anti-inflammatory effects in the kidney by specifically targeting the TNF-α pathway. - Highlights: • Chrysin reduced renal oxidative stress and inflammation in diabetic rats. • Chrysin reduced serum levels of pro-inflammatory in diabetic rats. • Chrysin exhibited renal protective effect by suppressing the TNF-α pathway.

  10. Targeting ILK and β4 integrin abrogates the invasive potential of ovarian cancer

    International Nuclear Information System (INIS)

    Choi, Yoon Pyo; Kim, Baek Gil; Gao, Ming-Qing; Kang, Suki; Cho, Nam Hoon

    2012-01-01

    Highlights: ► The potential of targeting ILK and integrins for highly aggressive ovarian cancer. ► Unanticipated synergistic effect for the combination of ILK/β4 integrin. ► Combination of ILK/β4 integrin effectively inhibited the PI3K/Akt/Rac1 cascade. ► Targeting of β4 integrin/ILK had potent inhibitory effects in ovarian cancer. -- Abstract: Integrins and integrin-linked kinase (ILK) are essential to cancerous invasion because they mediate physical interactions with the extracellular matrix, and regulate oncogenic signaling pathways. The purpose of our study is to determine whether deletion of β1 and β4 integrin and ILK, alone or in combination, has antitumoral effects in ovarian cancer. Expression of β1 and β4 integrin and ILK was analyzed by immunohistochemistry in 196 ovarian cancer tissue samples. We assessed the effects of depleting these molecules with shRNAs in ovarian cancer cells by Western blot, conventional RT-PCR, cell proliferation, migration, invasion, and in vitro Rac1 activity assays, and in vivo xenograft formation assays. Overexpression of β4 integrin and ILK in human ovarian cancer specimens was found to correlate with tumor aggressiveness. Depletion of these targets efficiently suppresses ovarian cancer cell proliferation, migration, and invasion in vitro and xenograft tumor formation in vivo. We also demonstrated that single depletion of ILK or combination depletion of β4 integrin/ILK inhibits phosphorylation of downstream signaling targets, p-Ser 473 Akt and p-Thr202/Tyr204 Erk1/2, and activation of Rac1, as well as reduce expression of MMP-2 and MMP-9 and increase expression of caspase-3 in vitro. In conclusion, targeting β4 integrin combined with ILK can instigate the latent tumorigenic potential and abrogate the invasive potential in ovarian cancer.

  11. Targeting ILK and {beta}4 integrin abrogates the invasive potential of ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yoon Pyo; Kim, Baek Gil [BK21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of); Department of Pathology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Gao, Ming-Qing; Kang, Suki [Department of Pathology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cho, Nam Hoon, E-mail: cho1988@yuhs.ac [BK21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of); Department of Pathology, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer The potential of targeting ILK and integrins for highly aggressive ovarian cancer. Black-Right-Pointing-Pointer Unanticipated synergistic effect for the combination of ILK/{beta}4 integrin. Black-Right-Pointing-Pointer Combination of ILK/{beta}4 integrin effectively inhibited the PI3K/Akt/Rac1 cascade. Black-Right-Pointing-Pointer Targeting of {beta}4 integrin/ILK had potent inhibitory effects in ovarian cancer. -- Abstract: Integrins and integrin-linked kinase (ILK) are essential to cancerous invasion because they mediate physical interactions with the extracellular matrix, and regulate oncogenic signaling pathways. The purpose of our study is to determine whether deletion of {beta}1 and {beta}4 integrin and ILK, alone or in combination, has antitumoral effects in ovarian cancer. Expression of {beta}1 and {beta}4 integrin and ILK was analyzed by immunohistochemistry in 196 ovarian cancer tissue samples. We assessed the effects of depleting these molecules with shRNAs in ovarian cancer cells by Western blot, conventional RT-PCR, cell proliferation, migration, invasion, and in vitro Rac1 activity assays, and in vivo xenograft formation assays. Overexpression of {beta}4 integrin and ILK in human ovarian cancer specimens was found to correlate with tumor aggressiveness. Depletion of these targets efficiently suppresses ovarian cancer cell proliferation, migration, and invasion in vitro and xenograft tumor formation in vivo. We also demonstrated that single depletion of ILK or combination depletion of {beta}4 integrin/ILK inhibits phosphorylation of downstream signaling targets, p-Ser 473 Akt and p-Thr202/Tyr204 Erk1/2, and activation of Rac1, as well as reduce expression of MMP-2 and MMP-9 and increase expression of caspase-3 in vitro. In conclusion, targeting {beta}4 integrin combined with ILK can instigate the latent tumorigenic potential and abrogate the invasive potential in ovarian cancer.

  12. WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma.

    Science.gov (United States)

    Zhukova, Nataliya; Ramaswamy, Vijay; Remke, Marc; Martin, Dianna C; Castelo-Branco, Pedro; Zhang, Cindy H; Fraser, Michael; Tse, Ken; Poon, Raymond; Shih, David J H; Baskin, Berivan; Ray, Peter N; Bouffet, Eric; Dirks, Peter; von Bueren, Andre O; Pfaff, Elke; Korshunov, Andrey; Jones, David T W; Northcott, Paul A; Kool, Marcel; Pugh, Trevor J; Pomeroy, Scott L; Cho, Yoon-Jae; Pietsch, Torsten; Gessi, Marco; Rutkowski, Stefan; Bognár, Laszlo; Cho, Byung-Kyu; Eberhart, Charles G; Conter, Cecile Faure; Fouladi, Maryam; French, Pim J; Grajkowska, Wieslawa A; Gupta, Nalin; Hauser, Peter; Jabado, Nada; Vasiljevic, Alexandre; Jung, Shin; Kim, Seung-Ki; Klekner, Almos; Kumabe, Toshihiro; Lach, Boleslaw; Leonard, Jeffrey R; Liau, Linda M; Massimi, Luca; Pollack, Ian F; Ra, Young Shin; Rubin, Joshua B; Van Meir, Erwin G; Wang, Kyu-Chang; Weiss, William A; Zitterbart, Karel; Bristow, Robert G; Alman, Benjamin; Hawkins, Cynthia E; Malkin, David; Clifford, Steven C; Pfister, Stefan M; Taylor, Michael D; Tabori, Uri

    2014-12-24

    TP53 mutations confer subgroup specific poor survival for children with medulloblastoma. We hypothesized that WNT activation which is associated with improved survival for such children abrogates TP53 related radioresistance and can be used to sensitize TP53 mutant tumors for radiation. We examined the subgroup-specific role of TP53 mutations in a cohort of 314 patients treated with radiation. TP53 wild-type or mutant human medulloblastoma cell-lines and normal neural stem cells were used to test radioresistance of TP53 mutations and the radiosensitizing effect of WNT activation on tumors and the developing brain. Children with WNT/TP53 mutant medulloblastoma had higher 5-year survival than those with SHH/TP53 mutant tumours (100% and 36.6%±8.7%, respectively (p<0.001)). Introduction of TP53 mutation into medulloblastoma cells induced radioresistance (survival fractions at 2Gy (SF2) of 89%±2% vs. 57.4%±1.8% (p<0.01)). In contrast, β-catenin mutation sensitized TP53 mutant cells to radiation (p<0.05). Lithium, an activator of the WNT pathway, sensitized TP53 mutant medulloblastoma to radiation (SF2 of 43.5%±1.5% in lithium treated cells vs. 56.6±3% (p<0.01)) accompanied by increased number of γH2AX foci. Normal neural stem cells were protected from lithium induced radiation damage (SF2 of 33%±8% for lithium treated cells vs. 27%±3% for untreated controls (p=0.05). Poor survival of patients with TP53 mutant medulloblastoma may be related to radiation resistance. Since constitutive activation of the WNT pathway by lithium sensitizes TP53 mutant medulloblastoma cells and protect normal neural stem cells from radiation, this oral drug may represent an attractive novel therapy for high-risk medulloblastomas.

  13. Inhibition of GRP78 abrogates radioresistance in oropharyngeal carcinoma cells after EGFR inhibition by cetuximab.

    Directory of Open Access Journals (Sweden)

    Chaonan Sun

    Full Text Available The EGFR-specific mAb cetuximab is one of the most effective treatments for oropharyngeal carcinoma, while patient responses to EGFR inhibitors given alone are modest. Combination treatment with radiation can improve the efficacy of treatment through increasing radiosensitivity, while resistance to radiation after administration of cetuximab limits its efficiency. Radiation and drugs can damage the endoplasmic reticulum (ER homeostatic state and result in ER stress (ERS, subsequently causing resistance to radiation and drugs. Whether the ERS pathway is involved in radioresistance after administration of cetuximab has not been reported. Herein, we show that cetuximab could increase the radiosensitivity of FaDu cells but not Detroit562 cells. In addition, cetuximab inhibited the radiation-induced activation of the ERS signalling pathway IRE1α/ATF6-GRP78 in FaDu cells, while this effect was absent in Detroit562 cells. Silencing GRP78 increased the radiosensitivity of oropharyngeal carcinoma cells and inhibited radiation-induced DNA double-strand-break (DSB repair and autophagy. More interestingly, silencing GRP78 abrogated resistance to cetuximab and radiation in Detroit562 cells and had a synergistic effect with cetuximab in increasing the radiosensitivity of FaDu cells. Immunohistochemistry showed that overexpression of both GRP78 and EGFR was associated with a poor prognosis in oropharyngeal carcinoma patients (P<0.05. Overall, the results of this study show that radioresistance after EGFR inhibition by cetuximab is mediated by the ERS signalling pathway IRE1α/ATF6-GRP78. This suppression was consequently unable to inhibit radiation-induced DSB repair and autophagy in oropharyngeal carcinoma cells, which conferred resistance to radiotherapy and cetuximab. These results suggest that the cooperative effects of radiotherapy and cetuximab could be further improved by inhibiting GRP78 in non-responsive oropharyngeal carcinoma patients.

  14. Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats

    International Nuclear Information System (INIS)

    Ahad, Amjid; Ganai, Ajaz Ahmad; Mujeeb, Mohd; Siddiqui, Waseem Ahmad

    2014-01-01

    Diabetic nepropathy (DN) is considered as the leading cause of end-stage renal disease (ESRD) worldwide, but the current available treatments are limited. Recent experimental evidences support the role of chronic microinflammation in the development of DN. Therefore, the tumor necrosis factor-alpha (TNF-α) pathway has emerged as a new therapeutic target for the treatment of DN. We investigated the nephroprotective effects of chrysin (5, 7-dihydroxyflavone) in a high fat diet/streptozotocin (HFD/STZ)-induced type 2 diabetic Wistar albino rat model. Chrysin is a potent anti-inflammatory compound that is abundantly found in plant extracts, honey and bee propolis. The treatment with chrysin for 16 weeks post induction of diabetes significantly abrogated renal dysfunction and oxidative stress. Chrysin treatment considerably reduced renal TNF-α expression and inhibited the nuclear transcription factor-kappa B (NF-kB) activation. Furthermore, chrysin treatment improved renal pathology and suppressed transforming growth factor-beta (TGF-β), fibronectin and collagen-IV protein expressions in renal tissues. Chrysin also significantly reduced the serum levels of pro-inflammatory cytokines, interleukin-1beta (IL-1β) and IL-6. Moreover, there were no appreciable differences in fasting blood glucose and serum insulin levels between the chrysin treated groups compared to the HFD/STZ-treated group. Hence, our results suggest that chrysin prevents the development of DN in HFD/STZ-induced type 2 diabetic rats through anti-inflammatory effects in the kidney by specifically targeting the TNF-α pathway. - Highlights: • Chrysin reduced renal oxidative stress and inflammation in diabetic rats. • Chrysin reduced serum levels of pro-inflammatory in diabetic rats. • Chrysin exhibited renal protective effect by suppressing the TNF-α pathway

  15. Selective induction of cyclin B protein abrogates the G2 delay after irradiation

    International Nuclear Information System (INIS)

    Kao, G.; Muschel, R.J.; Maity, A.; Kunig, A.; McKenna, W.G.

    1996-01-01

    Purpose/Objective: Irradiation of tumor cells commonly results in G2 delay, which has been postulated to allow DNA repair and cell survival. The G2 delay after irradiation is also often marked in some cell lines by delayed expression of cyclin B protein, suggesting a role for cyclin B regulation. Investigations of these hypotheses however has been hampered by the inability to selectively perturb the G2 delay in a physiologic manner. Materials and Methods: We have devised a system, with which we are able to selectively induce cyclin B protein expression in vivo at specific points in the cell cycle, by transfecting Hela cells with an expression vector under control of a dexamethasone-inducible promoter. Experiments were subsequently performed by synchronizing, releasing, irradiating, inducing, and harvesting these cells through the cell cycle. Results: Irradiation with 5 Gy led to a pronounced G2 delay, reflected by markedly slowed progression into mitosis, concomitant with reduced expression of cyclin B protein. Induction of cyclin B after radiation in these cells abrogated the G2 delay by approximately doubling the rate at which the cells re-enter mitosis. Treatment of irradiated untransfected control cells with dexamethasone, in which cyclin B is not induced, led to minimal changes. Studies of effects of cyclin B induction on cyclin B localization (using immunofluorescence), cdc2 phosphorylation and activation will also be presented. Conclusion: This system should allow further investigations into fundamental mechanisms of cell cycle regulation after irradiation and DNA damage. This also provides direct evidence for the first time that cyclin B protein regulation may play a role in the G2 delay following irradiation in Hela cells, perhaps complementing phosphorylation events

  16. KNK437, abrogates hypoxia-induced radioresistance by dual targeting of the AKT and HIF-1α survival pathways

    International Nuclear Information System (INIS)

    Oommen, Deepu; Prise, Kevin M.

    2012-01-01

    Highlights: ► KNK437, a benzylidene lactam compound, is a novel radiosensitizer. ► KNK437 inhibits AKT signaling and abrogates the accumulation of HIF-1α under hypoxia. ► KNK437 abrogates hypoxia induced resistance to radiation. -- Abstract: KNK437 is a benzylidene lactam compound known to inhibit stress-induced synthesis of heat shock proteins (HSPs). HSPs promote radioresistance and play a major role in stabilizing hypoxia inducible factor-1α (HIF-1α). HIF-1α is widely responsible for tumor resistance to radiation under hypoxic conditions. We hypothesized that KNK437 sensitizes cancer cells to radiation and overrides hypoxia-induced radioresistance via destabilizing HIF-1α. Treatment of human cancer cells MDA-MB-231 and T98G with KNK437 sensitized them to ionizing radiation (IR). Surprisingly, IR did not induce HSPs in these cell lines. As hypothesized, KNK437 abrogated the accumulation of HIF-1α in hypoxic cells. However, there was no induction of HSPs under hypoxic conditions. Moreover, the proteosome inhibitor MG132 did not restore HIF-1α levels in KNK437-treated cells. This suggested that the absence of HIF-1α in hypoxic cells was not due to the enhanced protein degradation. HIF-1α is mainly regulated at the level of post-transcription and AKT is known to modulate the translation of HIF-1α mRNA. Interestingly, pre-treatment of cells with KNK437 inhibited AKT signaling. Furthermore, down regulation of AKT by siRNA abrogated HIF-1α levels under hypoxia. Interestingly, KNK437 reduced cell survival in hypoxic conditions and inhibited hypoxia-induced resistance to radiation. Taken together, these data suggest that KNK437 is an effective radiosensitizer that targets multiple pro-survival stress response pathways.

  17. Potentiation of lead-induced cell death in PC12 cells by glutamate: Protection by N-acetylcysteine amide (NACA), a novel thiol antioxidant

    International Nuclear Information System (INIS)

    Penugonda, Suman; Mare, Suneetha; Lutz, P.; Banks, William A.; Ercal, Nuran

    2006-01-01

    Oxidative stress has been implicated as an important factor in many neurological diseases. Oxidative toxicity in a number of these conditions is induced by excessive glutamate release and subsequent glutamatergic neuronal stimulation. This, in turn, causes increased generation of reactive oxygen species (ROS), oxidative stress, excitotoxicity, and neuronal damage. Recent studies indicate that the glutamatergic neurotransmitter system is involved in lead-induced neurotoxicity. Therefore, this study aimed to (1) investigate the potential effects of glutamate on lead-induced PC12 cell death and (2) elucidate whether the novel thiol antioxidant N-acetylcysteine amide (NACA) had any protective abilities against such cytotoxicity. Our results suggest that glutamate (1 mM) potentiates lead-induced cytotoxicity by increased generation of ROS, decreased proliferation (MTS), decreased glutathione (GSH) levels, and depletion of cellular adenosine-triphosphate (ATP). Consistent with its ability to decrease ATP levels and induce cell death, lead also increased caspase-3 activity, an effect potentiated by glutamate. Exposure to glutamate and lead elevated the cellular malondialdehyde (MDA) levels and phospholipase-A 2 (PLA 2 ) activity and diminished the glutamine synthetase (GS) activity. NACA protected PC12 cells from the cytotoxic effects of glutamate plus lead, as evaluated by MTS assay. NACA reduced the decrease in the cellular ATP levels and restored the intracellular GSH levels. The increased levels of ROS and MDA in glutamate-lead treated cells were significantly decreased by NACA. In conclusion, our data showed that glutamate potentiated the effects of lead-induced PC12 cell death by a mechanism involving mitochondrial dysfunction (ATP depletion) and oxidative stress. NACA had a protective role against the combined toxic effects of glutamate and lead by inhibiting lipid peroxidation and scavenging ROS, thus preserving intracellular GSH

  18. Role of garlic extract and silymarin compared to dimercaptosuccinic acid (DMSA in treatment of lead induced nephropathy in adult male albino rats

    Directory of Open Access Journals (Sweden)

    Iman A. El-Khishin

    2015-01-01

    Full Text Available Lead poisoning has been known as an important disorder that affects individuals through acute, sub-acute and chronic exposure in environmental and occupational settings. This study was conducted to compare the curative role of garlic combined with silymarin versus dimercaptosuccinic acid (DMSA in decreasing lead induced nephrotoxicity in adult male albino rats. The period of lead intoxication extended for 3 months followed by either 1 month treatment with garlic and silymarin or 5 days treatment with DMSA. Lead poisoning caused non-significant difference in kidney function tests (BUN and serum creatinine while, it caused significant elevation in kidney lead level, significant decrease in renal antioxidant enzyme glutathione peroxidase and significant elevation in kidney malondialdehyde. Histologically, lead induced disorganization and shrinkage of glomeruli with sloughing and vaculation of epithelium, widening of Bowman's space and inflammatory infiltration in renal medulla. Treatment by garlic extract combined with silymarin as well as treatment with DMSA resulted in significant improvement in the affected parameters. Also, both methods of treatment resulted in improvement of the histopathological changes. It can be concluded that garlic extract combined to silymarin is comparable to DMSA in amelioration of lead induced nephrotoxicity.

  19. Clinical Heterogeneity of Atypical Pantothenate Kinase-Associated Neurodegeneration in Koreans

    Directory of Open Access Journals (Sweden)

    Jae-Hyeok Lee

    2016-01-01

    Full Text Available Objective Neurodegeneration with brain iron accumulation (NBIA represents a group of inherited movement disorders characterized by iron accumulation in the basal ganglia. Recent advances have included the identification of new causative genes and highlighted the wide phenotypic variation between and within the specific NBIA subtypes. This study aimed to investigate the current status of NBIA in Korea. Methods We collected genetically confirmed NBIA patients from twelve nationwide referral hospitals and from a review of the literature. We conducted a study to describe the phenotypic and genotypic characteristics of Korean adults with atypical pantothenate kinase-associated neurodegeneration (PKAN. Results Four subtypes of NBIA including PKAN (n = 30, PLA2G6-related neurodegeneration (n = 2, beta-propeller protein-associated neurodegeneration (n = 1, and aceruloplasminemia (n = 1 have been identified in the Korean population. The clinical features of fifteen adults with atypical PKAN included early focal limb dystonia, parkinsonism-predominant feature, oromandibular dystonia, and isolated freezing of gait (FOG. Patients with a higher age of onset tended to present with parkinsonism and FOG. The p.R440P and p.D378G mutations are two major mutations that represent approximately 50% of the mutated alleles. Although there were no specific genotype-phenotype correlations, most patients carrying the p.D378G mutation had a late-onset, atypical form of PKAN. Conclusions We found considerable phenotypic heterogeneity in Korean adults with atypical PKAN. The age of onset may influence the presentation of extrapyramidal symptoms.

  20. Metallothionein prevents neurodegeneration and central nervous system cell death after treatment with gliotoxin 6-aminonicotinamide

    DEFF Research Database (Denmark)

    Penkowa, Milena; Quintana, Albert; Carrasco, Javier

    2004-01-01

    Transgenic expression of interleukin-6 (IL-6) in the CNS under the control of the glial fibrillary acidic protein (GFAP) gene promoter (GFAP-IL6 mice) induces significant inflammation and neurodegeneration but also affords neuroprotection against acute traumatic brain injury. This neuroprotection...

  1. Mechanisms of neurodegeneration : Towards a cure for Alzheimer’s disease

    NARCIS (Netherlands)

    Dumbacher, M.|info:eu-repo/dai/nl/372628737

    2018-01-01

    Neurodegeneration in Alzheimer’s disease (AD) entails dysregulated signalling in and between neurons. As such, the search for new therapies capable of normalising these signalling dysfunctions in AD is a promising strategy to treat the disease. Therefore we set out to validate an in-house

  2. Thiamine Deficiency and Neurodegeneration: the Interplay Among Oxidative Stress, Endoplasmic Reticulum Stress, and Autophagy.

    Science.gov (United States)

    Liu, Dexiang; Ke, Zunji; Luo, Jia

    2017-09-01

    Thiamine (vitamin B1) is an essential nutrient and indispensable for normal growth and development of the organism due to its multilateral participation in key biochemical and physiological processes. Humans must obtain thiamine from their diet since it is synthesized only in bacteria, fungi, and plants. Thiamine deficiency (TD) can result from inadequate intake, increased requirement, excessive deletion, and chronic alcohol consumption. TD affects multiple organ systems, including the cardiovascular, muscular, gastrointestinal, and central and peripheral nervous systems. In the brain, TD causes a cascade of events including mild impairment of oxidative metabolism, neuroinflammation, and neurodegeneration, which are commonly observed in neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Thiamine metabolites may serve as promising biomarkers for neurodegenerative diseases, and thiamine supplementations exhibit therapeutic potential for patients of some neurodegenerative diseases. Experimental TD has been used to model aging-related neurodegenerative diseases. However, to date, the cellular and molecular mechanisms underlying TD-induced neurodegeneration are not clear. Recent research evidence indicates that TD causes oxidative stress, endoplasmic reticulum (ER) stress, and autophagy in the brain, which are known to contribute to the pathogenesis of various neurodegenerative diseases. In this review, we discuss the role of oxidative stress, ER stress, and autophagy in TD-mediated neurodegeneration. We propose that it is the interplay of oxidative stress, ER stress, and autophagy that contributes to TD-mediated neurodegeneration.

  3. The GluR2 hypothesis: Ca(++)-permeable AMPA receptors in delayed neurodegeneration

    NARCIS (Netherlands)

    Bennett, M. V.; Pellegrini-Giampietro, D. E.; Gorter, J. A.; Aronica, E.; Connor, J. A.; Zukin, R. S.

    1996-01-01

    Increased glutamate-receptor-mediated Ca++ influx is considered an important factor underlying delayed neurodegeneration following ischemia or seizures. Until recently, the NMDA receptor was the only glutamate receptor known to be Ca(++)-permeable. It is now well established that glutamate receptors

  4. Trace elements monitored with neutron activation analysis durig neurodegeneration in brains of mutant mice

    Czech Academy of Sciences Publication Activity Database

    Kranda, Karel; Kučera, Jan; Bäurle, J.

    2006-01-01

    Roč. 269, č. 3 (2006), s. 555-559 ISSN 0236-5731 Institutional research plan: CEZ:AV0Z10480505 Keywords : trace elements * neutron activation analysis * brain neurodegeneration * mutant mice Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.509, year: 2006

  5. 3-NP-induced neurodegeneration studies in experimental models of Huntington's disease.

    NARCIS (Netherlands)

    Vis, J.C.

    2005-01-01

    This thesis investigates the possible role of apoptosis, or programmed cell death, in Huntington's disease (HD). HD is caused by an expanded CAG repeat in the N-terminal region of the huntingtin protein leading to specific neostriatal neurodegeneration. The sequence of events that leads to this

  6. Relationship between brainstem neurodegeneration and clinical impairment in traumatic spinal cord injury

    Directory of Open Access Journals (Sweden)

    Patrick Grabher

    2017-01-01

    Conclusion: Neurodegeneration, indicated by volume loss and myelin reductions, is evident in major brainstem pathways and nuclei following traumatic SCI; the magnitude of these changes relating to clinical impairment. Thus, quantitative MRI protocols offer new targets, which may be used as neuroimaging biomarkers in treatment trials.

  7. Natural Mutations in Streptococcus agalactiae Resulting in Abrogation of β Antigen Production.

    Science.gov (United States)

    Vasilyeva, Anastasia; Santos Sanches, Ilda; Florindo, Carlos; Dmitriev, Alexander

    2015-01-01

    Streptococcus agalactiae genome encodes 21 two-component systems (TCS) and a variety of regulatory proteins in order to control gene expression. One of the TCS, BgrRS, comprising the BgrR DNA-binding regulatory protein and BgrS sensor histidine kinase, was discovered within a putative virulence island. BgrRS influences cell metabolism and positively control the expression of bac gene, coding for β antigen at transcriptional level. Inactivation of bgrR abrogated bac gene expression and increased virulence properties of S. agalactiae. In this study, a total of 140 strains were screened for the presence of bac gene, and the TCS bgrR and bgrS genes. A total of 53 strains carried the bac, bgrR and bgrS genes. Most of them (48 strains) expressed β antigen, while five strains did not express β antigen. Three strains, in which bac gene sequence was intact, while bgrR and/or bgrS genes had mutations, and expression of β antigen was absent, were complemented with a constructed plasmid pBgrRS(P) encoding functionally active bgrR and bgrS gene alleles. This procedure restored expression of β antigen indicating the crucial regulatory role of TCS BgrRS. The complemented strain A49V/BgrRS demonstrated attenuated virulence in intraperitoneal mice model of S. agalactiae infection compared to parental strain A49V. In conclusion we showed that disruption of β antigen expression is associated with: i) insertion of ISSa4 upstream the bac gene just after the ribosomal binding site; ii) point mutation G342A resulting a stop codon TGA within the bac gene and a truncated form of β antigen; iii) single deletion (G) in position 439 of the bgrR gene resulting in a frameshift and the loss of DNA-binding domain of the BgrR protein, and iv) single base substitutions in bgrR and bgrS genes causing single amino acid substitutions in BgrR (Arg187Lys) and BgrS (Arg252Gln). The fact that BgrRS negatively controls virulent properties of S. agalactiae gives a novel clue for understanding of S

  8. Evaluation of Amyloid Protective Factors and Alzheimer Disease Neurodegeneration Protective Factors in Elderly Individuals.

    Science.gov (United States)

    Vemuri, Prashanthi; Knopman, David S; Lesnick, Timothy G; Przybelski, Scott A; Mielke, Michelle M; Graff-Radford, Jonathan; Murray, Melissa E; Roberts, Rosebud O; Vassilaki, Maria; Lowe, Val J; Machulda, Mary M; Jones, David T; Petersen, Ronald C; Jack, Clifford R

    2017-06-01

    While amyloid and neurodegeneration are viewed together as Alzheimer disease pathophysiology (ADP), the factors that influence amyloid and AD-pattern neurodegeneration may be considerably different. Protection from these ADP factors may be important for aging without significant ADP. To identify the combined and independent protective factors for amyloid and AD-pattern neurodegeneration in a population-based sample and to test the hypothesis that "exceptional agers" with advanced ages do not have significant ADP because they have protective factors for amyloid and neurodegeneration. This cohort study conducted a prospective analysis of 942 elderly individuals (70-≥90 years) with magnetic resonance imaging and Pittsburgh compound B-positron emission tomography scans enrolled in the Mayo Clinic Study of Aging, a longitudinal population-based study of cognitive aging in Olmsted County, Minnesota. We operationalized "exceptional aging" without ADP by considering individuals 85 years or older to be without significant evidence of ADP. We evaluated predictors including demographics, APOE, intellectual enrichment, midlife risk factors (physical inactivity, obesity, smoking, diabetes, hypertension, and dyslipidemia), and the total number of late-life cardiac and metabolic conditions. We used multivariate linear regression models to identify the combined and independent protective factors for amyloid and AD-pattern neurodegeneration. Using a subsample of the cohort 85 years of age or older, we computed Cohen d-based effect size estimations to compare the quantitative strength of each predictor variable in their contribution with exceptional aging without ADP. The study participants included 423 (45%) women and the average age of participants was 79.7 (5.9) years. Apart from demographics and the APOE genotype, only midlife dyslipidemia was associated with amyloid deposition. Obesity, smoking, diabetes, hypertension, and cardiac and metabolic conditions, but not

  9. Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron.

    Science.gov (United States)

    Haider, Lukas; Simeonidou, Constantina; Steinberger, Günther; Hametner, Simon; Grigoriadis, Nikolaos; Deretzi, Georgia; Kovacs, Gabor G; Kutzelnigg, Alexandra; Lassmann, Hans; Frischer, Josa M

    2014-12-01

    In multiple sclerosis (MS), diffuse degenerative processes in the deep grey matter have been associated with clinical disabilities. We performed a systematic study in MS deep grey matter with a focus on the incidence and topographical distribution of lesions in relation to white matter and cortex in a total sample of 75 MS autopsy patients and 12 controls. In addition, detailed analyses of inflammation, acute axonal injury, iron deposition and oxidative stress were performed. MS deep grey matter was affected by two different processes: the formation of focal demyelinating lesions and diffuse neurodegeneration. Deep grey matter demyelination was most prominent in the caudate nucleus and hypothalamus and could already be seen in early MS stages. Lesions developed on the background of inflammation. Deep grey matter inflammation was intermediate between low inflammatory cortical lesions and active white matter lesions. Demyelination and neurodegeneration were associated with oxidative injury. Iron was stored primarily within oligodendrocytes and myelin fibres and released upon demyelination. In addition to focal demyelinated plaques, the MS deep grey matter also showed diffuse and global neurodegeneration. This was reflected by a global reduction of neuronal density, the presence of acutely injured axons, and the accumulation of oxidised phospholipids and DNA in neurons, oligodendrocytes and axons. Neurodegeneration was associated with T cell infiltration, expression of inducible nitric oxide synthase in microglia and profound accumulation of iron. Thus, both focal lesions as well as diffuse neurodegeneration in the deep grey matter appeared to contribute to the neurological disabilities of MS patients. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. N-Acetyl-L-Cysteine Affords Protection against Lead-Induced Cytotoxicity and Oxidative Stress in Human Liver Carcinoma (HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2007-06-01

    Full Text Available Although lead exposure has declined in recent years as a result of change to lead-free gasoline, several epidemiological have pointed out that it represents a medical and public health emergency, especially in young children consuming high amounts of lead-contaminated flake paints. A previous study in our laboratory indicated that lead exposure induces cytotoxicity in human liver carcinoma cells. In the present study, we evaluated the role of oxidative stress in lead-induced toxicity, and the protective effect of the anti-oxidant n-acetyl-l-cysteine (NAC. We hypothesized that oxidative stress plays a role in lead-induced cytotoxicity, and that NAC affords protection against this adverse effect. To test this hypothesis, we performed the MTT [3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyltetrazolium bromide] assay and the trypan blue exclusion test for cell viability. We also performed the thiobarbituric acid test for lipid peroxidation. Data obtained from the MTT assay indicated that NAC significantly increased the viability of HepG2 cells in a dosedependent manner upon 48 hours of exposure. Similar trend was obtained with the trypan blue exclusion test. Data generated from the thiobarbituric acid test showed a significant (p ≤ 0.05 increase of MDA levels in lead nitrate-treated HepG2 cells compared to control cells. Interestingly, the addition of NAC to lead nitrate-treated HepG2 cells significantly decreased cellular content of reactive oxygen species (ROS, as evidenced by the decrease in lipid peroxidation byproducts. Overall, findings from this study suggest that NAC inhibits lead nitrate-induced cytotoxicity and oxidative stress in HepG2 cells. Hence, NAC may be used as a salvage therapy for lead-induced toxicity in exposed persons.

  11. The human papillomavirus type 58 E7 oncoprotein modulates cell cycle regulatory proteins and abrogates cell cycle checkpoints

    International Nuclear Information System (INIS)

    Zhang Weifang; Li Jing; Kanginakudru, Sriramana; Zhao Weiming; Yu Xiuping; Chen, Jason J.

    2010-01-01

    HPV type 58 (HPV-58) is the third most common HPV type in cervical cancer from Eastern Asia, yet little is known about how it promotes carcinogenesis. In this study, we demonstrate that HPV-58 E7 significantly promoted the proliferation and extended the lifespan of primary human keratinocytes (PHKs). HPV-58 E7 abrogated the G1 and the postmitotic checkpoints, although less efficiently than HPV-16 E7. Consistent with these observations, HPV-58 E7 down-regulated the cellular tumor suppressor pRb to a lesser extent than HPV-16 E7. Similar to HPV-16 E7 expressing PHKs, Cdk2 remained active in HPV-58 E7 expressing PHKs despite the presence of elevated levels of p53 and p21. Interestingly, HPV-58 E7 down-regulated p130 more efficiently than HPV-16 E7. Our study demonstrates a correlation between the ability of down-regulating pRb/p130 and abrogating cell cycle checkpoints by HPV-58 E7, which also correlates with the biological risks of cervical cancer progression associated with HPV-58 infection.

  12. Peptidomimetic hydroxamate metalloproteinase inhibitors abrogate local and systemic toxicity induced by Echis ocellatus (saw-scaled) snake venom.

    Science.gov (United States)

    Arias, Ana Silvia; Rucavado, Alexandra; Gutiérrez, José María

    2017-06-15

    The ability of two peptidomimetic hydroxamate metalloproteinase inhibitors, Batimastat and Marimastat, to abrogate toxic and proteinase activities of the venom of Echis ocellatus from Cameroon and Ghana was assessed. Since this venom largely relies for its toxicity on the action of zinc-dependent metalloproteinases (SVMPs), the hypothesis was raised that toxicity could be largely eliminated by using SVMP inhibitors. Both hydroxamate molecules inhibited local and pulmonary hemorrhagic, in vitro coagulant, defibrinogenating, and proteinase activities of the venoms in conditions in which venom and inhibitors were incubated prior to the test. In addition, the inhibitors prolonged the time of death of mice receiving 4 LD 50 s of venom by the intravenous route. Lower values of IC 50 were observed for in vitro and local hemorrhagic activities than for systemic effects. When experiments were performed in conditions that simulated the actual circumstances of snakebite, i.e. by administering the inhibitor after envenoming, Batimastat completely abrogated local hemorrhage if injected immediately after venom. Moreover, it was also effective at inhibiting lethality and defibrinogenation when venom and inhibitor were injected by the intraperitoneal route. Results suggest that these, and possibly other, metalloproteinase inhibitors may become an effective adjunct therapy in envenomings by E. ocellatus when administered at the anatomic site of venom injection rapidly after the bite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Dietary chlorophyllin abrogates TGFβ signaling to modulate the hallmark capabilities of cancer in an animal model of forestomach carcinogenesis.

    Science.gov (United States)

    Thiyagarajan, Paranthaman; Kavitha, Krishnamurthy; Thautam, Avaneesh; Dixit, Madhulika; Nagini, Siddavaram

    2014-07-01

    Transforming growth factor (TGF) β signaling pathway plays a central role in the regulation of a wide range of cellular processes involved in the acquisition of the malignant phenotype. The objective of the present study was to examine the effect of chlorophyllin, a semisynthetic derivative of chlorophyll on N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)--induced rat forestomach carcinogenesis based on the modulation of TGFβ signaling and the downstream target genes associated with cell proliferation, apoptosis evasion, angiogenesis, invasion, and metastasis. We determined the effect of dietary chlorophyllin on TGFβ signaling and the downstream events-cell proliferation, apoptosis evasion, angiogenesis, invasion, and metastasis by semiquantitative and quantitative reverse transcription (RT)-PCR, Western blot, and immunohistochemical analyses. We further validated the inhibition of TGFβ signaling by chlorophyllin by performing molecular docking studies. We found that dietary supplementation of chlorophyllin at 4-mg/kg bw inhibits the development of MNNG-induced forestomach carcinomas by downregulating the expression of TGFβ RI, TGFβ RII, and Smad 2 and 4 and upregulating Smad 7, thereby abrogating canonical TGFβ signaling. Docking interactions also confirmed the inhibition of TGFβ signaling by chlorophyllin via inactivating TGFβ RI. Furthermore, attenuation of TGFβ signaling by chlorophyllin also blocked cell proliferation, angiogenesis, invasion, and metastasis, and induced mitochondria-mediated cell death. Dietary chlorophyllin that simultaneously abrogates TGFβ signaling pathway and the key hallmark events of cancer appear to be an ideal candidate for cancer chemoprevention.

  14. Abrogation of the presenilin 1/beta-catenin interaction and preservation of the heterodimeric presenilin 1 complex following caspase activation.

    Science.gov (United States)

    Tesco, G; Kim, T W; Diehlmann, A; Beyreuther, K; Tanzi, R E

    1998-12-18

    beta-Catenin has previously been shown to interact with presenilin 1 (PS1) in transfected cells. Here we report that beta-catenin co-immunoprecipitates with the endogenous C-terminal fragment of presenilin 1 (PS1-CTF) but not with the endogenous CTF of presenilin 2 (PS2-CTF) in H4 human neuroglioma cells. During staurosporine (STS)-induced cell death, beta-catenin and PS1-CTF undergo a caspase-mediated cleavage. After 12 h of STS treatment, the beta-catenin.PS1-CTF interaction is abrogated. While PS1-CTF immunoprecipitated with all caspase-cleaved species of beta-catenin, beta-catenin holoprotein did not co-immunoprecipitate with the "alternative" caspase-derived PS1-CTF (PS1-aCTF). Thus, the abrogation of the beta-catenin.PS1-CTF complex was due to caspase cleavage of PS1-CTF. beta-Catenin co-immunoprecipitated with PS1-NTF, but only when PS1-NTF was associated with PS1-CTF. Even though PS1-NTF.CTF complex stability was not altered by caspase cleavage, its ability to bind beta-catenin was abolished. Thus, while the PS1-NTF.CTF complex is preserved after caspase cleavage, it may no longer be fully functional.

  15. Landolphia owariensis Attenuates Alcohol-induced Cerebellar Neurodegeneration: Significance of Neurofilament Protein Alteration in the Purkinje Cells

    Directory of Open Access Journals (Sweden)

    Oyinbo Charles A.

    2016-12-01

    Full Text Available Background: Alcohol-induced cerebellar neurodegeneration is a neuroadaptation that is associated with chronic alcohol abuse. Conventional drugs have been largely unsatisfactory in preventing neurodegeneration. Yet, multimodal neuro-protective therapeutic agents have been hypothesised to have high therapeutic potential for the treatment of CNS conditions; there is yet a dilemma of how this would be achieved. Contrarily, medicinal botanicals are naturally multimodal in their mechanism of action.

  16. Resveratrol Attenuates Neurodegeneration and Improves Neurological Outcomes after Intracerebral Hemorrhage in Mice

    Directory of Open Access Journals (Sweden)

    Frederick Bonsack

    2017-08-01

    Full Text Available Intracerebral hemorrhage (ICH is a devastating type of stroke with a substantial public health impact. Currently, there is no effective treatment for ICH. The purpose of the study was to evaluate whether the post-injury administration of Resveratrol confers neuroprotection in a pre-clinical model of ICH. To this end, ICH was induced in adult male CD1 mice by collagenase injection method. Resveratrol (10 mg/kg or vehicle was administered at 30 min post-induction of ICH and the neurobehavioral outcome, neurodegeneration, cerebral edema, hematoma resolution and neuroinflammation were assessed. The Resveratrol treatment significantly attenuated acute neurological deficits, neurodegeneration and cerebral edema after ICH in comparison to vehicle treated controls. Further, Resveratrol treated mice exhibited improved hematoma resolution with a concomitant reduction in the expression of proinflammatory cytokine, IL-1β after ICH. Altogether, the data suggest the efficacy of post-injury administration of Resveratrol in improving acute neurological function after ICH.

  17. Neurodegeneration in Alzheimer Disease: Role of Amyloid Precursor Protein and Presenilin 1 Intracellular Signaling

    Directory of Open Access Journals (Sweden)

    Mario Nizzari

    2012-01-01

    Full Text Available Alzheimer disease (AD is a heterogeneous neurodegenerative disorder characterized by (1 progressive loss of synapses and neurons, (2 intracellular neurofibrillary tangles, composed of hyperphosphorylated Tau protein, and (3 amyloid plaques. Genetically, AD is linked to mutations in few proteins amyloid precursor protein (APP and presenilin 1 and 2 (PS1 and PS2. The molecular mechanisms underlying neurodegeneration in AD as well as the physiological function of APP are not yet known. A recent theory has proposed that APP and PS1 modulate intracellular signals to induce cell-cycle abnormalities responsible for neuronal death and possibly amyloid deposition. This hypothesis is supported by the presence of a complex network of proteins, clearly involved in the regulation of signal transduction mechanisms that interact with both APP and PS1. In this review we discuss the significance of novel finding related to cell-signaling events modulated by APP and PS1 in the development of neurodegeneration.

  18. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain

    DEFF Research Database (Denmark)

    Lauritzen, Knut H.; Hasan-Olive, Md Mahdi; Regnell, Christine E.

    2016-01-01

    neurons. Here, we examine whether severe neurodegeneration in mutUNG1-expressing mice could be rescued by feeding the mice a ketogenic diet, which is known to have beneficial effects in several neurological disorders. The diet increased the levels of superoxide dismutase 2, and mitochondrial mass, enzymes......, and regulators such as SIRT1 and FIS1, and appeared to downregulate N-methyl-D-aspartic acid (NMDA) receptor subunits NR2A/B and upregulate γ-aminobutyric acid A (GABAA) receptor subunits α1. However, unexpectedly, the ketogenic diet aggravated neurodegeneration and mitochondrial deterioration. Electron...... microscopy showed structurally impaired mitochondria accumulating in neuronal perikarya. We propose that aggravation is caused by increased mitochondrial biogenesis of generally dysfunctional mitochondria. This study thereby questions the dogma that a ketogenic diet is unambiguously beneficial...

  19. Identification of chemicals that mimic transcriptional changes associated with autism, brain aging and neurodegeneration

    Science.gov (United States)

    Pearson, Brandon L.; Simon, Jeremy M.; McCoy, Eric S.; Salazar, Gabriela; Fragola, Giulia; Zylka, Mark J.

    2016-01-01

    Environmental factors, including pesticides, have been linked to autism and neurodegeneration risk using retrospective epidemiological studies. Here we sought to prospectively identify chemicals that share transcriptomic signatures with neurological disorders, by exposing mouse cortical neuron-enriched cultures to hundreds of chemicals commonly found in the environment and on food. We find that rotenone, a pesticide associated with Parkinson's disease risk, and certain fungicides, including pyraclostrobin, trifloxystrobin, famoxadone and fenamidone, produce transcriptional changes in vitro that are similar to those seen in brain samples from humans with autism, advanced age and neurodegeneration (Alzheimer's disease and Huntington's disease). These chemicals stimulate free radical production and disrupt microtubules in neurons, effects that can be reduced by pretreating with a microtubule stabilizer, an antioxidant, or with sulforaphane. Our study provides an approach to prospectively identify environmental chemicals that transcriptionally mimic autism and other brain disorders. PMID:27029645

  20. Protective effect of Allium sativum (garlic) aqueous extract against lead-induced oxidative stress in the rat brain, liver, and kidney.

    Science.gov (United States)

    Manoj Kumar, V; Henley, A K; Nelson, C J; Indumati, O; Prabhakara Rao, Y; Rajanna, S; Rajanna, B

    2017-01-01

    The present investigation was undertaken to evaluate the ameliorative activity of Allium sativum against lead-induced oxidative stress in the brain, liver, and kidney of male rats. Four groups of male Wistar strain rats (100-120 g) were taken: group 1 received 1000 mg/L sodium acetate and group 2 was given 1000 mg/L lead acetate through drinking water for 2 weeks. Group 3 and 4 were treated with 250 mg/kg body weight/day of A. sativum and 500 mg/kg body weight/day of A. sativum, respectively, by oral intubation for a period of 2 weeks along with lead acetate. The rats were sacrificed after treatment and the brain, liver, and kidney were isolated on ice. In the brain, four important regions namely the hippocampus, cerebellum, cerebral cortex, and brain stem were separated and used for the present investigation. Blood was also drawn by cardiac puncture and preserved in heparinized vials at 4 °C for estimation of delta-aminolevulinic acid dehydratase (ALAD) activity. The results showed a significant (p sativum resulted in tissue-specific recovery of oxidative stress parameters namely ROS, LPP, and TPCC. A. sativum treatment also restored the blood delta-ALAD activity back to control. Overall, our results indicate that A. sativum administration could be an effective antioxidant treatment strategy for lead-induced oxidative insult.

  1. Anaesthetic management of a child with panthothenate kinase-associated neurodegeneration

    Directory of Open Access Journals (Sweden)

    Renu Sinha

    2015-01-01

    Full Text Available Panthothenate kinase-associated neurodegeneration (PKAN (Hallervorden-Spatz disease is a rare autosomal recessive chromosomal disorder characterised by progressive neuroaxonal dystrophy. The characteristic features include involuntary movements, rigidity, mental retardation, seizures, emaciation. The anaesthetic concerns include difficult airway, aspiration pneumonia, dehydration, and post-operative respiratory, and renal insufficiency. We report successful anaesthetic management of a 9-year-old intellectually disabled male child with PKAN, scheduled for ophthalmic surgery under general anaesthesia.

  2. Insulin resistance and neurodegeneration: Roles of obesity, type 2 diabetes mellitus and non-alcoholic steatohepatitis

    OpenAIRE

    de la Monte, Suzanne M; Longato, Lisa; Tong, Ming; Wands, Jack R

    2009-01-01

    Recent studies have linked obesity, type 2 diabetes mellitus (T2DM) or non-alcoholic steatohepatitis (NASH) to insulin resistance in the brain, cognitive impairment and neurodegeneration. Insulin resistance compromises cell survival, metabolism and neuronal plasticity, and increases oxidative stress, cytokine activation and apoptosis. T2DM/NASH has been demonstrated to be associated with increased ceramide generation, suggesting a mechanistic link between peripheral insulin resistance and neu...

  3. Compensatory mechanisms in genetic models of neurodegeneration: are the mice better than humans?

    OpenAIRE

    Kreiner, Grzegorz

    2015-01-01

    Neurodegenerative diseases are one of the main causes of mental and physical disabilities. Neurodegeneration has been estimated to begin many years before the first clinical symptoms manifest, and even a prompt diagnosis at this stage provides very little advantage for a more effective treatment as the currently available pharmacotherapies are based on disease symptomatology. The etiology of the majority of neurodegenerative diseases remains unknown, and even for those diseases caused by iden...

  4. Novel Mechanism for Reducing Acute and Chronic Neurodegeneration After Traumatic Brain Injury

    Science.gov (United States)

    2017-07-01

    Award Number: W81XWH-14-1-0195 TITLE: Novel Mechanism for Reducing Acute and Chronic Neurodegeneration after Traumatic Brain Injury...Purpose: The purpose of this project is to develop a radically different strategy to reduce brain glutamate excitotoxicity and treat TBI. We will...objective of reducing blood levels of glutamate. This will produce a brain -to-blood gradient of glutamate which will enhance the removal of excess

  5. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration

    Directory of Open Access Journals (Sweden)

    William Sealy Hambright

    2017-08-01

    Full Text Available Synaptic loss and neuron death are the underlying cause of neurodegenerative diseases such as Alzheimer's disease (AD; however, the modalities of cell death in those diseases remain unclear. Ferroptosis, a newly identified oxidative cell death mechanism triggered by massive lipid peroxidation, is implicated in the degeneration of neurons populations such as spinal motor neurons and midbrain neurons. Here, we investigated whether neurons in forebrain regions (cerebral cortex and hippocampus that are severely afflicted in AD patients might be vulnerable to ferroptosis. To this end, we generated Gpx4BIKO mouse, a mouse model with conditional deletion in forebrain neurons of glutathione peroxidase 4 (Gpx4, a key regulator of ferroptosis, and showed that treatment with tamoxifen led to deletion of Gpx4 primarily in forebrain neurons of adult Gpx4BIKO mice. Starting at 12 weeks after tamoxifen treatment, Gpx4BIKO mice exhibited significant deficits in spatial learning and memory function versus Control mice as determined by the Morris water maze task. Further examinations revealed that the cognitively impaired Gpx4BIKO mice exhibited hippocampal neurodegeneration. Notably, markers associated with ferroptosis, such as elevated lipid peroxidation, ERK activation and augmented neuroinflammation, were observed in Gpx4BIKO mice. We also showed that Gpx4BIKO mice fed a diet deficient in vitamin E, a lipid soluble antioxidant with anti-ferroptosis activity, had an expedited rate of hippocampal neurodegeneration and behavior dysfunction, and that treatment with a small-molecule ferroptosis inhibitor ameliorated neurodegeneration in those mice. Taken together, our results indicate that forebrain neurons are susceptible to ferroptosis, suggesting that ferroptosis may be an important neurodegenerative mechanism in diseases such as AD. Keywords: Ferroptosis, Neurodegeneration, Cognitive impairment, Alzheimer's disease, Glutathione peroxidase 4, Transgenic mice

  6. Therapeutic effect of mesenchymal multipotent stromal cells on memory in animals with Alzheimer-type neurodegeneration.

    Science.gov (United States)

    Bobkova, N V; Poltavtseva, R A; Samokhin, A N; Sukhikh, G T

    2013-11-01

    Transplantation of human mesenchymal multipotent stromal cells improved spatial memory in bulbectomized mice with Alzheimer-type neurodegeneration. The positive effect was observed in 1 month after intracerebral transplantation and in 3 months after systemic injection of mesenchymal multipotent stromal cells. No cases of malignant transformation were noted. These findings indicate prospects of using mesenchymal multipotent stromal cells for the therapy of Alzheimer disease and the possibility of their systemic administration for attaining the therapeutic effect.

  7. Early intranasal insulin therapy halts progression of neurodegeneration: progress in Alzheimer’s disease therapeutics

    OpenAIRE

    de la Monte, Suzanne M.

    2012-01-01

    Evaluation of Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, et al. Intranasal Insulin Therapy for Alzheimer Disease and Amnestic Mild Cognitive Impairment: A Pilot Clinical Trial. Arch Neurol. 2011 Sep 12. Alzheimer’s disease is associated with brain insulin deficiency and insulin resistance, similar to the problems in diabetes. If insulin could be supplied to the brain in the early stages of Alzheimer’s, subsequent neurodegeneration might be prevented. ...

  8. Virulence test using nematodes to prescreen Nocardia species capable of inducing neurodegeneration and behavioral disorders

    Directory of Open Access Journals (Sweden)

    Claire Bernardin Souibgui

    2017-10-01

    Full Text Available Background Parkinson’s disease (PD is a disorder characterized by dopaminergic neuron programmed cell death. The etiology of PD remains uncertain—some cases are due to selected genes associated with familial heredity, others are due to environmental exposure to toxic components, but over 90% of cases have a sporadic origin. Nocardia are Actinobacteria that can cause human diseases like nocardiosis. This illness can lead to lung infection or central nervous system (CNS invasion in both immunocompromised and immunocompetent individuals. The main species involved in CNS are N. farcinica, N. nova, N. brasiliensis and N. cyriacigeorgica. Some studies have highlighted the ability of N. cyriacigeorgica to induce Parkinson’s disease-like symptoms in animals. Actinobacteria are known to produce a large variety of secondary metabolites, some of which can be neurotoxic. We hypothesized that neurotoxic secondary metabolite production and the onset of PD-like symptoms in animals could be linked. Methods Here we used a method to screen bacteria that could induce dopaminergic neurodegeneration before performing mouse experiments. Results The nematode Caenorhabditis elegans allowed us to demonstrate that Nocardia strains belonging to N. cyriacigeorgica and N. farcinica species can induce dopaminergic neurodegeneration. Strains of interest involved with the nematodes in neurodegenerative disorders were then injected in mice. Infected mice had behavioral disorders that may be related to neuronal damage, thus confirming the ability of Nocardia strains to induce neurodegeneration. These behavioral disorders were induced by N. cyriacigeorgica species (N. cyriacigeorgica GUH-2 and N. cyriacigeorgica 44484 and N. farcinica 10152. Discussion We conclude that C. elegans is a good model for detecting Nocardia strains involved in neurodegeneration. This model allowed us to detect bacteria with high neurodegenerative effects and which should be studied in mice to

  9. Reduced synaptic vesicle protein degradation at lysosomes curbs TBC1D24/sky-induced neurodegeneration.

    Science.gov (United States)

    Fernandes, Ana Clara; Uytterhoeven, Valerie; Kuenen, Sabine; Wang, Yu-Chun; Slabbaert, Jan R; Swerts, Jef; Kasprowicz, Jaroslaw; Aerts, Stein; Verstreken, Patrik

    2014-11-24

    Synaptic demise and accumulation of dysfunctional proteins are thought of as common features in neurodegeneration. However, the mechanisms by which synaptic proteins turn over remain elusive. In this paper, we study Drosophila melanogaster lacking active TBC1D24/Skywalker (Sky), a protein that in humans causes severe neurodegeneration, epilepsy, and DOOR (deafness, onychdystrophy, osteodystrophy, and mental retardation) syndrome, and identify endosome-to-lysosome trafficking as a mechanism for degradation of synaptic vesicle-associated proteins. In fly sky mutants, synaptic vesicles traveled excessively to endosomes. Using chimeric fluorescent timers, we show that synaptic vesicle-associated proteins were younger on average, suggesting that older proteins are more efficiently degraded. Using a genetic screen, we find that reducing endosomal-to-lysosomal trafficking, controlled by the homotypic fusion and vacuole protein sorting (HOPS) complex, rescued the neurotransmission and neurodegeneration defects in sky mutants. Consistently, synaptic vesicle proteins were older in HOPS complex mutants, and these mutants also showed reduced neurotransmission. Our findings define a mechanism in which synaptic transmission is facilitated by efficient protein turnover at lysosomes and identify a potential strategy to suppress defects arising from TBC1D24 mutations in humans. © 2014 Fernandes et al.

  10. Intranasal Insulin Therapy for Cognitive Impairment and Neurodegeneration: Current State of the Art

    Science.gov (United States)

    de la Monte, Suzanne M.

    2015-01-01

    Introduction Growing evidence supports the concept that insulin resistance plays an important role in the pathogenesis of cognitive impairment and neurodegeneration, including in Alzheimer's disease (AD). The metabolic hypothesis has led to the development and utilization of insulin- and insulin agonist-based treatments. Therapeutic challenges faced include the ability to provide effective treatments that do not require repeated injections and also minimize potentially hazardous off-target effects. Areas covered This review covers the role of intra-nasal insulin therapy for cognitive impairment and neurodegeneration, particularly Alzheimer's disease. The literature reviewed focuses on data published within the past 5 years as this field is evolving rapidly. The author provides evidence that brain insulin resistance is an important and early abnormality in Alzheimer's disease, and that increasing brain supply and utilization of insulin improves cognition and memory. Emphasis was placed on discussing outcomes of clinical trials and interpreting discordant results to clarify the benefits and limitations of intranasal insulin therapy. Expert Opinion Intranasal insulin therapy can efficiently and directly target the brain to support energy metabolism, myelin maintenance, cell survival, and neuronal plasticity, which begin to fail in the early stages of neurodegeneration. Efforts must continue toward increasing the safety, efficacy, and specificity of intranasal insulin therapy. PMID:24215447

  11. Gallic acid and p-coumaric acid attenuate type 2 diabetes-induced neurodegeneration in rats.

    Science.gov (United States)

    Abdel-Moneim, Adel; Yousef, Ahmed I; Abd El-Twab, Sanaa M; Abdel Reheim, Eman S; Ashour, Mohamed B

    2017-08-01

    The brain of diabetics revealed deterioration in many regions, especially the hippocampus. Hence, the present study aimed to evaluate the effects of gallic acid and p-coumaric acid against the hippocampal neurodegeneration in type 2 diabetic rats. Adult male albino rats were randomly allocated into four groups: Group 1 served as control ones and others were induced with diabetes. Group 2 considered as diabetic, and groups 3 and 4 were further orally treated with gallic acid (20 mg/kg b.wt./day) and p-coumaric acid (40 mg/kg b.wt./day) for six weeks. Diabetic rats revealed significant elevation in the levels of serum glucose, blood glycosylated hemoglobin and serum tumor necrosis factor-α, while the level of serum insulin was significantly declined. Furthermore, the brain of diabetic rats showed a marked increase in oxidative stress and a decrease of antioxidant parameters as well as upregulation the protein expression of Bax and downregulation the protein expression of Bcl-2 in the hippocampus. Treatment of diabetic rats with gallic acid and p-coumaric acid significantly ameliorated glucose tolerance, diminished the brain oxidative stress and improved antioxidant status, declined inflammation and inhibited apoptosis in the hippocampus. The overall results suggested that gallic acid and p-coumaric acid may inhibit hippocampal neurodegeneration via their potent antioxidant, anti-inflammatory and anti-apoptotic properties. Therefore, both compounds can be recommended as hopeful adjuvant agents against brain neurodegeneration in diabetics.

  12. Mutations in the Heme Exporter FLVCR1 Cause Sensory Neurodegeneration with Loss of Pain Perception.

    Science.gov (United States)

    Chiabrando, Deborah; Castori, Marco; di Rocco, Maja; Ungelenk, Martin; Gießelmann, Sebastian; Di Capua, Matteo; Madeo, Annalisa; Grammatico, Paola; Bartsch, Sophie; Hübner, Christian A; Altruda, Fiorella; Silengo, Lorenzo; Tolosano, Emanuela; Kurth, Ingo

    2016-12-01

    Pain is necessary to alert us to actual or potential tissue damage. Specialized nerve cells in the body periphery, so called nociceptors, are fundamental to mediate pain perception and humans without pain perception are at permanent risk for injuries, burns and mutilations. Pain insensitivity can be caused by sensory neurodegeneration which is a hallmark of hereditary sensory and autonomic neuropathies (HSANs). Although mutations in several genes were previously associated with sensory neurodegeneration, the etiology of many cases remains unknown. Using next generation sequencing in patients with congenital loss of pain perception, we here identify bi-allelic mutations in the FLVCR1 (Feline Leukemia Virus subgroup C Receptor 1) gene, which encodes a broadly expressed heme exporter. Different FLVCR1 isoforms control the size of the cytosolic heme pool required to sustain metabolic activity of different cell types. Mutations in FLVCR1 have previously been linked to vision impairment and posterior column ataxia in humans, but not to HSAN. Using fibroblasts and lymphoblastoid cell lines from patients with sensory neurodegeneration, we here show that the FLVCR1-mutations reduce heme export activity, enhance oxidative stress and increase sensitivity to programmed cell death. Our data link heme metabolism to sensory neuron maintenance and suggest that intracellular heme overload causes early-onset degeneration of pain-sensing neurons in humans.

  13. Drugs of abuse in pregnancy, poor neonatal development, and future neurodegeneration. Is oxidative stress the culprit?

    Science.gov (United States)

    Neri, Margherita; Bello, Stefania; Turillazzi, Emanuela; Riezzo, Irene

    2015-01-01

    The abuse of licit and illicit drugs is a worldwide issue that is a cause for concern in pregnant women. It may lead to complications in pregnancy that may affect the mother, fetus, and /or neonate. The effects of any substance on the developing embryo and fetus are dependent upon dosing, timing, duration of drug exposure, and the extent of drug distribution. Teratogenic effects have been described when exposure takes place during the embryonic stage; however drugs have subtle effects, including abnormal growth and/or maturation, alterations in neurotransmitters and their receptors, and brain organization. The mechanisms by which intrauterine exposure to many substances may result in neuronal injury have not been completely elucidated. Oxidative stress and epigenetic changes have been recently implicated in the pathogenesis of long - term adverse health sequelae, and neuro-developmental impairment in the offspring of addicted mothers. Transgenerational epigenetics may also explain the alarming datum that developmental abnormalities, impairment in learning and memory, and attention deficit can occur even in the absence of direct fetal exposure, when drugs are consumed prior to conception. There is a growing body of evidence demonstrating a link between redox state unbalance, epigenetic markers, developmental anomalies, and neurodegeneration. The reviewed literature data uphold redox homeostasis disruption as an important factor in the pathogenesis of drug of abuse- induced neurodegeneration, and highlight the potential for new therapies that could prevent neurodegeneration through antioxidant and epigenetic modulatory mechanisms. This therefore reveals important targets for novel neuroprotective strategies.

  14. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis.

    Science.gov (United States)

    Kim, Dohoon; Nguyen, Minh Dang; Dobbin, Matthew M; Fischer, Andre; Sananbenesi, Farahnaz; Rodgers, Joseph T; Delalle, Ivana; Baur, Joseph A; Sui, Guangchao; Armour, Sean M; Puigserver, Pere; Sinclair, David A; Tsai, Li-Huei

    2007-07-11

    A progressive loss of neurons with age underlies a variety of debilitating neurological disorders, including Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), yet few effective treatments are currently available. The SIR2 gene promotes longevity in a variety of organisms and may underlie the health benefits of caloric restriction, a diet that delays aging and neurodegeneration in mammals. Here, we report that a human homologue of SIR2, SIRT1, is upregulated in mouse models for AD, ALS and in primary neurons challenged with neurotoxic insults. In cell-based models for AD/tauopathies and ALS, SIRT1 and resveratrol, a SIRT1-activating molecule, both promote neuronal survival. In the inducible p25 transgenic mouse, a model of AD and tauopathies, resveratrol reduced neurodegeneration in the hippocampus, prevented learning impairment, and decreased the acetylation of the known SIRT1 substrates PGC-1alpha and p53. Furthermore, injection of SIRT1 lentivirus in the hippocampus of p25 transgenic mice conferred significant protection against neurodegeneration. Thus, SIRT1 constitutes a unique molecular link between aging and human neurodegenerative disorders and provides a promising avenue for therapeutic intervention.

  15. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis

    Science.gov (United States)

    Kim, Dohoon; Nguyen, Minh Dang; Dobbin, Matthew M; Fischer, Andre; Sananbenesi, Farahnaz; Rodgers, Joseph T; Delalle, Ivana; Baur, Joseph A; Sui, Guangchao; Armour, Sean M; Puigserver, Pere; Sinclair, David A; Tsai, Li-Huei

    2007-01-01

    A progressive loss of neurons with age underlies a variety of debilitating neurological disorders, including Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), yet few effective treatments are currently available. The SIR2 gene promotes longevity in a variety of organisms and may underlie the health benefits of caloric restriction, a diet that delays aging and neurodegeneration in mammals. Here, we report that a human homologue of SIR2, SIRT1, is upregulated in mouse models for AD, ALS and in primary neurons challenged with neurotoxic insults. In cell-based models for AD/tauopathies and ALS, SIRT1 and resveratrol, a SIRT1-activating molecule, both promote neuronal survival. In the inducible p25 transgenic mouse, a model of AD and tauopathies, resveratrol reduced neurodegeneration in the hippocampus, prevented learning impairment, and decreased the acetylation of the known SIRT1 substrates PGC-1alpha and p53. Furthermore, injection of SIRT1 lentivirus in the hippocampus of p25 transgenic mice conferred significant protection against neurodegeneration. Thus, SIRT1 constitutes a unique molecular link between aging and human neurodegenerative disorders and provides a promising avenue for therapeutic intervention. PMID:17581637

  16. The Kynurenine Pathway Modulates Neurodegeneration in a Drosophila Model of Huntington’s Disease

    Science.gov (United States)

    Campesan, Susanna; Green, Edward W.; Breda, Carlo; Sathyasaikumar, Korrapati V.; Muchowski, Paul J.; Schwarcz, Robert; Kyriacou, Charalambos P.; Giorgini, Flaviano

    2014-01-01

    Summary Neuroactive metabolites of the kynurenine pathway (KP) of tryptophan degradation have been implicated in the pathophysiology of neurodegenerative disorders, including Huntington’s disease (HD) [1]. A central hallmark of HD is neurodegeneration caused by a polyglutamine expansion in the huntingtin (htt) protein [2]. Here we exploit a transgenic Drosophila melanogaster model of HD to interrogate the therapeutic potential of KP manipulation. We observe that genetic and pharmacological inhibition of kynurenine 3-monooxygenase (KMO) increases levels of the neuroprotective metabolite kynurenic acid (KYNA) relative to the neurotoxic metabolite 3-hydroxykynurenine (3-HK) and ameliorates neurodegeneration. We also find that genetic inhibition of tryptophan 2,3-dioxygenase (TDO), the first and rate-limiting step in the pathway, leads to a similar neuroprotective shift toward KYNA synthesis. Importantly, we demonstrate that the feeding of KYNA and 3-HK to HD model flies directly modulates neurodegeneration, underscoring the causative nature of these metabolites. This study provides the first genetic evidence that inhibition of KMO and TDO activity protects against neurodegenerative disease in an animal model, indicating that strategies targeted at two key points within the KP may have therapeutic relevance in HD, and possibly other neurodegenerative disorders. PMID:21636279

  17. Neuroprotective Effects of Citicoline in in Vitro Models of Retinal Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Andrea Matteucci

    2014-04-01

    Full Text Available In recent years, citicoline has been the object of remarkable interest as a possible neuroprotectant. The aim of this study was to investigate if citicoline affected cell survival in primary retinal cultures and if it exerted neuroprotective activity in conditions modeling retinal neurodegeneration. Primary retinal cultures, obtained from rat embryos, were first treated with increasing concentrations of citicoline (up to 1000 µM and analyzed in terms of apoptosis and caspase activation and characterized by immunocytochemistry to identify neuronal and glial cells. Subsequently, excitotoxic concentration of glutamate or High Glucose-containing cell culture medium (HG was administered as well-known conditions modeling neurodegeneration. Glutamate or HG treatments were performed in the presence or not of citicoline. Neuronal degeneration was evaluated in terms of apoptosis and loss of synapses. The results showed that citicoline did not cause any damage to the retinal neuroglial population up to 1000 µM. At the concentration of 100 µM, it was able to counteract neuronal cell damage both in glutamate- and HG-treated retinal cultures by decreasing proapoptotic effects and contrasting synapse loss. These data confirm that citicoline can efficiently exert a neuroprotective activity. In addition, the results suggest that primary retinal cultures, under conditions inducing neurodegeneration, may represent a useful system to investigate citicoline neuroprotective mechanisms.

  18. Mapping and reconstruction of domoic acid-induced neurodegeneration in the mouse brain.

    Science.gov (United States)

    Colman, J R; Nowocin, K J; Switzer, R C; Trusk, T C; Ramsdell, J S

    2005-01-01

    Domoic acid, a potent neurotoxin and glutamate analog produced by certain species of the marine diatom Pseudonitzschia, is responsible for several human and wildlife intoxication events. The toxin characteristically damages the hippocampus in exposed humans, rodents, and marine mammals. Histochemical studies have identified this, and other regions of neurodegeneration, though none have sought to map all brain regions affected by domoic acid. In this study, mice exposed (i.p.) to 4 mg/kg domoic acid for 72 h exhibited behavioral and pathological signs of neurotoxicity. Brains were fixed by intracardial perfusion and processed for histochemical analysis. Serial coronal sections (50 microm) were stained using the degeneration-sensitive cupric silver staining method of DeOlmos. Degenerated axons, terminals, and cell bodies, which stained black, were identified and the areas of degeneration were mapped onto Paxinos mouse atlas brain plates using Adobe Illustrator CS. The plates were then combined to reconstruct a 3-dimensional image of domoic acid-induced neurodegeneration using Amira 3.1 software. Affected regions included the olfactory bulb, septal area, and limbic system. These findings are consistent with behavioral and pathological studies demonstrating the effects of domoic acid on cognitive function and neurodegeneration in rodents.

  19. The Drosophila carbonyl reductase sniffer prevents oxidative stress-induced neurodegeneration.

    Science.gov (United States)

    Botella, Jose A; Ulschmid, Julia K; Gruenewald, Christoph; Moehle, Christoph; Kretzschmar, Doris; Becker, Katja; Schneuwly, Stephan

    2004-05-04

    A growing body of evidence suggests that oxidative stress is a common underlying mechanism in the pathogenesis of neurodegenerative disorders such as Alzheimer's, Huntington's, Creutzfeld-Jakob and Parkinson's diseases. Despite the increasing number of reports finding a causal relation between oxidative stress and neurodegeneration, little is known about the genetic elements that confer protection against the deleterious effects of oxidation in neurons. We have isolated and characterized the Drosophila melanogaster gene sniffer, whose function is essential for preventing age-related neurodegeneration. In addition, we demonstrate that oxidative stress is a direct cause of neurodegeneration in the Drosophila central nervous system and that reduction of sniffer activity leads to neuronal cell death. The overexpression of the gene confers neuronal protection against oxygen-induced apoptosis, increases resistance of flies to experimental normobaric hyperoxia, and improves general locomotor fitness. Sniffer belongs to the family of short-chain dehydrogenase/reductase (SDR) enzymes and exhibits carbonyl reductase activity. This is the first in vivo evidence of the direct and important implication of this enzyme as a neuroprotective agent in the cellular defense mechanisms against oxidative stress.

  20. Mutations in the Heme Exporter FLVCR1 Cause Sensory Neurodegeneration with Loss of Pain Perception.

    Directory of Open Access Journals (Sweden)

    Deborah Chiabrando

    2016-12-01

    Full Text Available Pain is necessary to alert us to actual or potential tissue damage. Specialized nerve cells in the body periphery, so called nociceptors, are fundamental to mediate pain perception and humans without pain perception are at permanent risk for injuries, burns and mutilations. Pain insensitivity can be caused by sensory neurodegeneration which is a hallmark of hereditary sensory and autonomic neuropathies (HSANs. Although mutations in several genes were previously associated with sensory neurodegeneration, the etiology of many cases remains unknown. Using next generation sequencing in patients with congenital loss of pain perception, we here identify bi-allelic mutations in the FLVCR1 (Feline Leukemia Virus subgroup C Receptor 1 gene, which encodes a broadly expressed heme exporter. Different FLVCR1 isoforms control the size of the cytosolic heme pool required to sustain metabolic activity of different cell types. Mutations in FLVCR1 have previously been linked to vision impairment and posterior column ataxia in humans, but not to HSAN. Using fibroblasts and lymphoblastoid cell lines from patients with sensory neurodegeneration, we here show that the FLVCR1-mutations reduce heme export activity, enhance oxidative stress and increase sensitivity to programmed cell death. Our data link heme metabolism to sensory neuron maintenance and suggest that intracellular heme overload causes early-onset degeneration of pain-sensing neurons in humans.

  1. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain.

    Science.gov (United States)

    Lauritzen, Knut H; Hasan-Olive, Md Mahdi; Regnell, Christine E; Kleppa, Liv; Scheibye-Knudsen, Morten; Gjedde, Albert; Klungland, Arne; Bohr, Vilhelm A; Storm-Mathisen, Jon; Bergersen, Linda H

    2016-12-01

    Mitochondrial genome maintenance plays a central role in preserving brain health. We previously demonstrated accumulation of mitochondrial DNA damage and severe neurodegeneration in transgenic mice inducibly expressing a mutated mitochondrial DNA repair enzyme (mutUNG1) selectively in forebrain neurons. Here, we examine whether severe neurodegeneration in mutUNG1-expressing mice could be rescued by feeding the mice a ketogenic diet, which is known to have beneficial effects in several neurological disorders. The diet increased the levels of superoxide dismutase 2, and mitochondrial mass, enzymes, and regulators such as SIRT1 and FIS1, and appeared to downregulate N-methyl-D-aspartic acid (NMDA) receptor subunits NR2A/B and upregulate γ-aminobutyric acid A (GABA A ) receptor subunits α 1 . However, unexpectedly, the ketogenic diet aggravated neurodegeneration and mitochondrial deterioration. Electron microscopy showed structurally impaired mitochondria accumulating in neuronal perikarya. We propose that aggravation is caused by increased mitochondrial biogenesis of generally dysfunctional mitochondria. This study thereby questions the dogma that a ketogenic diet is unambiguously beneficial in mitochondrial disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. VDAC1 as pharmacological target in cancer and neurodegeneration: focus on its role in apoptosis.

    Science.gov (United States)

    Magrì, Andrea; Reina, Simona; De Pinto, Vito

    2018-04-01

    Cancer and neurodegeneration are different classes of diseases that share the involvement of mitochondria in their pathogenesis. Whereas the high glycolytic rate (the so-called Warburg metabolism) and the suppression of apoptosis are key elements for the establishment and maintenance of cancer cells, mitochondrial dysfunction and increased cell death mark neurodegeneration. As a main actor in the regulation of cell metabolism and apoptosis, VDAC may represent the common point between these two broad families of pathologies. Located in the outer mitochondrial membrane, VDAC forms channels that control the flux of ions and metabolites across the mitochondrion thus mediating the organelle's cross-talk with the rest of the cell. Furthermore, the interaction with both pro-apoptotic and anti-apoptotic factors makes VDAC a gatekeeper for mitochondria-mediated cell death and survival signaling pathways. Unfortunately, the lack of an evident druggability of this protein, since it has no defined binding or active sites, makes the quest for VDAC interacting molecules a difficult tale. Pharmacologically active molecules of different classes have been proposed to hit cancer and neurodegeneration. In this work, we provide an exhaustive and detailed survey of all the molecules, peptides and microRNAs that exploit VDAC in the treatment of the two examined classes of pathologies. The mechanism of action and the potential or effectiveness of each compound are discussed.

  3. The Regulatory Machinery of Neurodegeneration in In Vitro Models of Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Burcin Ikiz

    2015-07-01

    Full Text Available Neurodegenerative phenotypes reflect complex, time-dependent molecular processes whose elucidation may reveal neuronal class-specific therapeutic targets. The current focus in neurodegeneration has been on individual genes and pathways. In contrast, we assembled a genome-wide regulatory model (henceforth, “interactome”, whose unbiased interrogation revealed 23 candidate causal master regulators of neurodegeneration in an in vitro model of amyotrophic lateral sclerosis (ALS, characterized by a loss of spinal motor neurons (MNs. Of these, eight were confirmed as specific MN death drivers in our model of familial ALS, including NF-κB, which has long been considered a pro-survival factor. Through an extensive array of molecular, pharmacological, and biochemical approaches, we have confirmed that neuronal NF-κB drives the degeneration of MNs in both familial and sporadic models of ALS, thus providing proof of principle that regulatory network analysis is a valuable tool for studying cell-specific mechanisms of neurodegeneration.

  4. Searching for neurodegeneration in multiple sclerosis at clinical onset: Diagnostic value of biomarkers.

    Science.gov (United States)

    Novakova, Lenka; Axelsson, Markus; Malmeström, Clas; Imberg, Henrik; Elias, Olle; Zetterberg, Henrik; Nerman, Olle; Lycke, Jan

    2018-01-01

    Neurodegeneration occurs during the early stages of multiple sclerosis. It is an essential, devastating part of the pathophysiology. Tools for measuring the degree of neurodegeneration could improve diagnostics and patient characterization. This study aimed to determine the diagnostic value of biomarkers of degeneration in patients with recent clinical onset of suspected multiple sclerosis, and to evaluate these biomarkers for characterizing disease course. This cross-sectional study included 271 patients with clinical features of suspected multiple sclerosis onset and was the baseline of a prospective study. After diagnostic investigations, the patients were classified into the following disease groups: patients with clinically isolated syndrome (n = 4) or early relapsing remitting multiple sclerosis (early RRMS; n = 93); patients with relapsing remitting multiple sclerosis with disease durations ≥2 years (established RRMS; n = 39); patients without multiple sclerosis, but showing symptoms (symptomatic controls; n = 89); and patients diagnosed with other diseases (n = 46). In addition, we included healthy controls (n = 51) and patients with progressive multiple sclerosis (n = 23). We analyzed six biomarkers of neurodegeneration: cerebrospinal fluid neurofilament light chain levels; cerebral spinal fluid glial fibrillary acidic protein; cerebral spinal fluid tau; retinal nerve fiber layer thickness; macula volume; and the brain parenchymal fraction. Except for increased cerebral spinal fluid neurofilament light chain levels, median 670 ng/L (IQR 400-2110), we could not find signs of early degeneration in the early disease group with recent clinical onset. However, the intrathecal immunoglobin G production and cerebral spinal fluid neurofilament light chain levels showed diagnostic value. Moreover, elevated levels of cerebral spinal fluid glial fibrillary acidic protein, thin retinal nerve fiber layers, and low brain parenchymal fractions were associated with

  5. Effects of dissolved calcium and magnesium ions on lead-induced stress corrosion cracking susceptibility of nuclear steam generator tubing alloy in high temperature crevice solutions

    International Nuclear Information System (INIS)

    Lu, B.T.; Tian, L.P.; Zhu, R.K.; Luo, J.L.; Lu, Y.C.

    2011-01-01

    The effects of Ca 2+ and Mg 2+ ions on the stress corrosion cracking (SCC) susceptibility of UNS N08800 are investigated using constant extension rate tensile (CERT) tests at 300 o C in simulated crevice chemistries. The presence of lead contamination in the crevice chemistries increases significantly the SCC susceptibility of the alloy. The lead-assisted SCC (PbSCC) susceptibility is reduced markedly by the addition of Ca 2+ and Mg 2+ ions into the solution and this mitigating effect is enhanced by increasing the total concentration of Ca 2+ + Mg 2+ . The CERT test results are consistent with the types of fracture surfaces shown by Scanning Electron Microscopy (SEM). There is a reasonable correlation between the SCC susceptibility and the donor densities in the anodic films in accord with the role of lead-induced passivity degradation in PbSCC.

  6. Increase of CTGF mRNA expression by respiratory syncytial virus infection is abrogated by caffeine in lung epithelial cells.

    Science.gov (United States)

    Kunzmann, Steffen; Krempl, Christine; Seidenspinner, Silvia; Glaser, Kirsten; Speer, Christian P; Fehrholz, Markus

    2018-04-16

    Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract infection in early childhood. Underlying pathomechanisms of elevated pulmonary morbidity in later infancy are largely unknown. We found that RSV-infected H441 cells showed increased mRNA expression of connective tissue growth factor (CTGF), a key factor in airway remodeling. Additional dexamethasone treatment led to further elevated mRNA levels, indicating additive effects. Caffeine treatment prevented RSV-mediated increase of CTGF mRNA. RSV may be involved in airway remodeling processes by increasing CTGF mRNA expression. Caffeine might abrogate these negative effects and thereby help to restore lung homeostasis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Paraquat and maneb co-exposure induces noradrenergic locus coeruleus neurodegeneration through NADPH oxidase-mediated microglial activation

    International Nuclear Information System (INIS)

    Hou, Liyan; Zhang, Cong; Wang, Ke; Liu, Xiaofang; Wang, Hongwei; Che, Yuning; Sun, Fuqiang; Zhou, Xueying; Zhao, Xiulan; Wang, Qingshan

    2017-01-01

    Highlights: • Microglial activation induced by paraquat and maneb precedes noradrenergic neurodegeneration in locus coeruleus. • NADPH oxidase activation contributes to microglia-mediated neuroinflammation and related noradrenergic neurodegeneration. • Inhibition of NADPH oxidase by apocynin protects noradrenergic neurons against paraquat and maneb-induced toxicity. - Abstract: Co-exposure to paraquat (PQ) and maneb (Mb) has been shown to increase the risk of Parkinson’s disease (PD) and dopaminergic (DA) neurodegeneration in the substantia nigra pars compacta (SNpc) is observed in PQ and Mb-treated experimental animals. The loss of noradrenergic locus coeruleus (LC/NE) neurons in brainstem is a common feature shared by multiple neurodegenerative diseases, including PD. However, whether PQ and Mb is able to damage LC/NE neurons remains undefined. In this study, mice treated with combined PQ and Mb displayed progressive LC/NE neurodegeneration. Time course studies revealed that the activation of microglia preceded LC/NE neurodegeneration. Mechanistically, the activation of NADPH oxidase contributed to microglial activation and subsequent LC/NE neurodegeneration. We found that PQ and Mb co-exposure induced activation of NADPH oxidase as shown by increased superoxide production and membrane translocation of p47 phox , a cytosolic subunit of NADPH oxidase. Inhibition of NADPH oxidase by apocynin, a widely used NADPH oxidase inhibitor, suppressed microglial activation and gene expressions of proinflammatory factors. Furthermore, reduced activation of nuclear factor-κB (NF-κB) pathway was observed in apocynin-treated mice. More importantly, inhibition of NADPH oxidase by apocynin afforded LC/NE neuroprotection against PQ and Mb-induced neurotoxicity. Thus, our findings revealed the critical role NADPH oxidase-mediated microglial activation in driving LC/NE neurodegeneration induced by PQ and Mb, providing new insights into the pathogenesis of environmental

  8. Intestinal microbiota shifts towards elevated commensal Escherichia coli loads abrogate colonization resistance against Campylobacter jejuni in mice.

    Directory of Open Access Journals (Sweden)

    Lea-Maxie Haag

    Full Text Available BACKGROUND: The zoonotic pathogen Campylobacter jejuni is a leading cause of bacterial foodborne enterocolitis in humans worldwide. The understanding of immunopathology underlying human campylobacteriosis is hampered by the fact that mice display strong colonization resistance against the pathogen due to their host specific gut microbiota composition. METHODOLOGY/PRINCIPAL FINDINGS: Since the microbiota composition changes significantly during intestinal inflammation we dissected factors contributing to colonization resistance against C. jejuni in murine ileitis, colitis and in infant mice. In contrast to healthy animals C. jejuni could stably colonize mice suffering from intestinal inflammation. Strikingly, in mice with Toxoplasma gondii-induced acute ileitis, C. jejuni disseminated to mesenteric lymphnodes, spleen, liver, kidney, and blood. In infant mice C. jejuni infection induced enterocolitis. Mice suffering from intestinal inflammation and C. jejuni susceptible infant mice displayed characteristical microbiota shifts dominated by increased numbers of commensal Escherichia coli. To further dissect the pivotal role of those distinct microbiota shifts in abrogating colonization resistance, we investigated C. jejuni infection in healthy adult mice in which the microbiota was artificially modified by feeding live commensal E. coli. Strikingly, in animals harboring supra-physiological intestinal E. coli loads, colonization resistance was significantly diminished and C. jejuni infection induced enterocolitis mimicking key features of human campylobacteriosis. CONCLUSION/SIGNIFICANCE: Murine colonization resistance against C. jejuni is abrogated by changes in the microbiota composition towards elevated E. coli loads during intestinal inflammation as well as in infant mice. Intestinal inflammation and microbiota shifts thus represent potential risk factors for C. jejuni infection. Corresponding interplays between C. jejuni and microbiota might

  9. Vorinostat synergizes with ridaforolimus and abrogates the ridaforolimus-induced activation of AKT in synovial sarcoma cells.

    Science.gov (United States)

    Morgan, Sherif S; Cranmer, Lee D

    2014-11-18

    Curative treatments for patients with metastatic synovial sarcoma (SS) do not exist, and such patients have a poor prognosis. We explored combinations of molecularly-targeted and cytotoxic agents to identify synergistic treatment combinations in SS cells. Two SS cell lines (HS-SY-II and SYO-I) were treated with single agents or combinations of molecularly targeted therapies (HDAC inhibitor, vorinostat; mTOR inhibitor, ridaforolimus) and cytotoxic agents. After 72 hours, cell viability was measured using the MTS cell proliferation assay. Combination Indices (CI) were calculated to determine whether each combination was synergistic, additive, or antagonistic. Western Blot analysis assessed alterations in total and phospho-AKT protein levels in response to drug treatment. We determined the single-agent IC50 for ridaforolimus, vorinostat, doxorubicin, and melphalan in HS-SY-II and SYO-I. Synergism was apparent in cells co-treated with ridaforolimus and vorinostat: CI was 0.28 and 0.63 in HS-SY-II and SYO-I, respectively. Ridaforolimus/doxorubicin and ridaforolimus/melphalan exhibited synergism in both cell lines. An additive effect was observed with combination of vorinostat/doxorubicin in both cell lines. Vorinostat/melphalan was synergistic in HS-SY-II and additive in SYO-I. Western blot analysis demonstrated that ridaforolimus increased pAKT-ser473 levels; this effect was abrogated by vorinostat co-treatment. The combination of ridaforolimus and vorinostat demonstrates in vitro synergism in SS. Addition of vorinostat abrogated ridaforolimus-induced AKT activation. Since AKT activation is a possible mechanism of resistance to mTOR inhibitors, adding vorinostat (or another HDAC inhibitor) may be a route to circumvent AKT-mediated resistance to mTOR inhibitors.

  10. Selective abrogation of the uPA-uPAR interaction in vivo reveals a novel role in suppression of fibrin-associated inflammation

    DEFF Research Database (Denmark)

    Connolly, Brian M; Choi, Eun Young; Gårdsvoll, Henrik

    2010-01-01

    the interaction between endogenous uPA and uPAR is selectively abrogated, whereas other functions of both the protease and its receptor are retained. Specifically, we introduced 4 amino acid substitutions into the growth factor domain (GFD) of uPA that abrogate uPAR binding while preserving the overall structure...... a principal in vivo role of the uPA-uPAR interaction in cell-associated fibrinolysis critical for suppression of fibrin accumulation and fibrin-associated inflammation and provides a valuable model for further exploration of this multifunctional receptor....

  11. Mechanisms of AD neurodegeneration may be independent of Aβ and its derivatives.

    Science.gov (United States)

    Robakis, Nikolaos K

    2011-03-01

    Alzheimer's disease (AD) is the most common cause of dementia in the aged population. Most cases are sporadic although a small percent are familial (FAD) linked to genetic mutations. AD is caused by severe neurodegeneration in the hippocampus and neocortical regions of the brain but the cause of this neuronal loss is unclear. A widely discussed theory posits that amyloid depositions of Aβ peptides or their soluble forms are the causative agents of AD. Extensive research in the last 20 years however, failed to produce convincing evidence that brain amyloid is the main cause of AD neurodegeneration. Moreover, a number of observations, including absence of correlations between amyloid deposits and cognition, detection in normal individuals of amyloid loads similar to AD, and animal models with behavioral abnormalities independent of amyloid, are inconsistent with this theory. Other theories propose soluble Aβ peptides or their oligomers as agents that promote AD. These peptides, however, are normal components of human CSF and serum and there is little evidence of disease-associated increases in soluble Aβ and oligomers. That mutants of amyloid precursor protein (APP) and presenilin (PS) promote FAD suggests these proteins play crucial roles in neuronal function and survival. Accordingly, PS regulates production of signaling peptides and cell survival pathways while APP functions in cell death and may promote endosomal abnormalities. Evidence that FAD mutations inhibit the biological functions of PS combined with absence of haploinsufficiency mutants, support a model of allelic interference where inactive FAD mutant alleles promote autosomal dominant neurodegeneration by also inhibiting the functions of wild type alleles. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Loss of circadian clock accelerates aging in neurodegeneration-prone mutants.

    Science.gov (United States)

    Krishnan, Natraj; Rakshit, Kuntol; Chow, Eileen S; Wentzell, Jill S; Kretzschmar, Doris; Giebultowicz, Jadwiga M

    2012-03-01

    Circadian clocks generate rhythms in molecular, cellular, physiological, and behavioral processes. Recent studies suggest that disruption of the clock mechanism accelerates organismal senescence and age-related pathologies in mammals. Impaired circadian rhythms are observed in many neurological diseases; however, it is not clear whether loss of rhythms is the cause or result of neurodegeneration, or both. To address this important question, we examined the effects of circadian disruption in Drosophila melanogaster mutants that display clock-unrelated neurodegenerative phenotypes. We combined a null mutation in the clock gene period (per(01)) that abolishes circadian rhythms, with a hypomorphic mutation in the carbonyl reductase gene sniffer (sni(1)), which displays oxidative stress induced neurodegeneration. We report that disruption of circadian rhythms in sni(1) mutants significantly reduces their lifespan compared to single mutants. Shortened lifespan in double mutants was coupled with accelerated neuronal degeneration evidenced by vacuolization in the adult brain. In addition, per(01)sni(1) flies showed drastically impaired vertical mobility and increased accumulation of carbonylated proteins compared to age-matched single mutant flies. Loss of per function does not affect sni mRNA expression, suggesting that these genes act via independent pathways producing additive effects. Finally, we show that per(01) mutation accelerates the onset of brain pathologies when combined with neurodegeneration-prone mutation in another gene, swiss cheese (sws(1)), which does not operate through the oxidative stress pathway. Taken together, our data suggest that the period gene may be causally involved in neuroprotective pathways in aging Drosophila. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Neurodegeneration Alters Metabolic Profile and Sirt 1 Signaling in High-Fat-Induced Obese Mice.

    Science.gov (United States)

    Lima, Leandro Ceotto Freitas; Saliba, Soraya Wilke; Andrade, João Marcus Oliveira; Cunha, Maria Luisa; Cassini-Vieira, Puebla; Feltenberger, John David; Barcelos, Lucíola Silva; Guimarães, André Luiz Sena; de-Paula, Alfredo Mauricio Batista; de Oliveira, Antônio Carlos Pinheiro; Santos, Sérgio Henrique Sousa

    2017-07-01

    Different factors may contribute to the development of neurodegenerative diseases. Among them, metabolic syndrome (MS), which has reached epidemic proportions, has emerged as a potential element that may be involved in neurodegeneration. Furthermore, studies have shown the importance of the sirtuin family in neuronal survival and MS, which opens the possibility of new pharmacological targets. This study investigates the influence of sirtuin metabolic pathways by examining the functional capacities of glucose-induced obesity in an excitotoxic state induced by a quinolinic acid (QA) animal model. Mice were divided into two groups that received different diets for 8 weeks: one group received a regular diet, and the other group received a high-fat diet (HF) to induce MS. The animals were submitted to a stereotaxic surgery and subdivided into four groups: Standard (ST), Standard-QA (ST-QA), HF and HF-QA. The QA groups were given a 250 nL quinolinic acid injection in the right striatum and PBS was injected in the other groups. Obese mice presented with a weight gain of 40 % more than the ST group beyond acquiring an insulin resistance. QA induced motor impairment and neurodegeneration in both ST-QA and HF-QA, although no difference was observed between these groups. The HF-QA group showed a reduction in adiposity when compared with the groups that received PBS. Therefore, the HF-QA group demonstrated a commitment-dependent metabolic pathway. The results suggest that an obesogenic diet does not aggravate the neurodegeneration induced by QA. However, the excitotoxicity induced by QA promotes a sirtuin pathway impairment that contributes to metabolic changes.

  14. Minocycline Rescues from Zinc-Induced Nigrostriatal Dopaminergic Neurodegeneration: Biochemical and Molecular Interventions.

    Science.gov (United States)

    Kumar, Vinod; Singh, Brajesh Kumar; Chauhan, Amit Kumar; Singh, Deepali; Patel, Devendra Kumar; Singh, Chetna

    2016-07-01

    Accumulation of zinc (Zn) in dopaminergic neurons is implicated in Parkinson's disease (PD), and microglial activation plays a critical role in toxin-induced Parkinsonism. Oxidative stress is accused in Zn-induced dopaminergic neurodegeneration; however, its connection with microglial activation is still not known. This study was undertaken to elucidate the role and underlying mechanism of microglial activation in Zn-induced nigrostriatal dopaminergic neurodegeneration. Male Wistar rats were treated intraperitoneally with/without zinc sulphate (20 mg/kg) in the presence/absence of minocycline (30 mg/kg), a microglial activation inhibitor, for 2-12 weeks. While neurobehavioral and biochemical indexes of PD and number of dopaminergic neurons were reduced, the number of microglial cells was increased in the substantia nigra of the Zn-exposed animals. Similarly, Zn elevated lipid peroxidation (LPO) and activities of superoxide dismutase (SOD) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase; however, catalase activity was reduced. Besides, Zn increased an association of NADPH oxidase subunit p67(phox) with membrane, cytochrome c release from the mitochondria and cleavage of pro-caspase 3. Zn attenuated the expression of tyrosine hydroxylase (TH) and vesicular monoamine transporter-2 (VMAT-2) while augmented the expression of dopamine transporter (DAT) and heme oxygenase-1 (HO-1). Minocycline alleviated Zn-induced behavioural impairments, loss of TH-positive neurons, activated microglial cells and biochemical indexes and modulated the expression of studied genes/proteins towards normalcy. The results demonstrate that minocycline reduces the number of activated microglial cells and oxidative stress, which rescue from Zn-induced changes in the expression of monoamine transporter and nigrostriatal dopaminergic neurodegeneration.

  15. Progranulin: A Proteolytically Processed Protein at the Crossroads of Inflammation and Neurodegeneration*

    Science.gov (United States)

    Cenik, Basar; Sephton, Chantelle F.; Kutluk Cenik, Bercin; Herz, Joachim; Yu, Gang

    2012-01-01

    GRN mutations cause frontotemporal lobar degeneration with TDP-43-positive inclusions. The mechanism of pathogenesis is haploinsufficiency. Recently, homozygous GRN mutations were detected in two patients with neuronal ceroid lipofuscinosis, a lysosomal storage disease. It is unknown whether the pathogenesis of these two conditions is related. Progranulin is cleaved into smaller peptides called granulins. Progranulin and granulins are attributed with roles in cancer, inflammation, and neuronal physiology. Cell surface receptors for progranulin, but not granulin peptides, have been reported. Revealing the cell surface receptors and the intracellular functions of granulins and progranulin is crucial for understanding their contributions to neurodegeneration. PMID:22859297

  16. Neurodegeneration with inflammation is accompanied by accumulation of iron and ferritin in microglia and neurons.

    Science.gov (United States)

    Thomsen, Maj Schneider; Andersen, Michelle Vandborg; Christoffersen, Pia Rægaard; Jensen, Malene Duedal; Lichota, Jacek; Moos, Torben

    2015-09-01

    Chronic inflammation in the substantia nigra (SN) accompanies conditions with progressive neurodegeneration. This inflammatory process contributes to gradual iron deposition that may catalyze formation of free-radical mediated damage, hence exacerbating the neurodegeneration. This study examined proteins related to iron-storage (ferritin) and iron-export (ferroportin) (aka metal transporter protein 1, MTP1) in a model of neurodegeneration. Ibotenic acid injected stereotactically into the striatum leads to loss of GABAergic neurons projecting to SN pars reticulata (SNpr), which subsequently leads to excitotoxicity in the SNpr as neurons here become vulnerable to their additional glutamatergic projections from the subthalamic nucleus. This imbalance between glutamate and GABA eventually led to progressive shrinkage of the SNpr and neuronal loss. Neuronal cell death was accompanied by chronic inflammation as revealed by the presence of cells expressing ED1 and CD11b in the SNpr and the adjacent white matter mainly denoted by the crus cerebri. The SNpr also exhibited changes in iron metabolism seen as a marked accumulation of inflammatory cells containing ferric iron and ferritin with morphology corresponding to macrophages and microglia. Ferritin was detected in neurons of the lesioned SNpr in contrast to the non-injected side. Compared to non-injected rats, surviving neurons of the SNpr expressed ferroportin at unchanged level. Analyses of dissected SNpr using RT-qPCR showed a rise in ferritin-H and -L transcripts with increasing age but no change was observed in the lesioned side compared to the non-lesioned side, indicating that the increased expression of ferritin in the lesioned side occurred at the post-transcriptional level. Hepcidin transcripts were higher in the lesioned side in contrast to ferroportin mRNA that remained unaltered. The continuous entry of iron-containing inflammatory cells into the degenerating SNpr and their subsequent demise is probably

  17. Frontal lobe neurodegeneration - Use of songs in the music therapy setting

    DEFF Research Database (Denmark)

    Ridder, Hanne Mette Ochsner

    2005-01-01

    .g. in vascular or frontotemporal dementia) it is difficult to avoid secondary symptoms of the brain damage that is caused by missing communicative abilities and difficulties in fulfilment of psychosocial needs. Songs are used to build up the music therapy setting with this client group. The songs function......When the frontal lobes are damaged by neurodegeneration certain qualities of psychosocial functioning are changed. The person might show lack of initiative, poor social judgment, and loss of personal and social awareness. When these symptoms co-occur with other cortical degeneration (e...

  18. HIV-1 Nef mutations abrogating downregulation of CD4 affect other Nef functions and show reduced pathogenicity in transgenic mice

    International Nuclear Information System (INIS)

    Hanna, Zaher; Priceputu, Elena; Hu, Chunyan; Vincent, Patrick; Jolicoeur, Paul

    2006-01-01

    HIV-1 Nef has the ability to downmodulate CD4 cell surface expression. Several studies have shown that CD4 downregulation is required for efficient virus replication and high infectivity. However, the pathophysiological relevance of this phenomenon in vivo, independently of its role in sustaining high virus loads, remains unclear. We studied the impact of the CD4 downregulation function of Nef on its pathogenesis in vivo, in the absence of viral replication, in the CD4C/HIV transgenic (Tg) mouse model. Two independent Nef mutants (RD35/36AA and D174K), known to abrogate CD4 downregulation, were tested in Tg mice. Flow cytometry analysis showed that downregulation of murine CD4 was severely decreased or abrogated on Tg T cells expressing respectively Nef RD35/36AA and Nef D174K . Similarly, the severe depletion of double-positive CD4 + CD8 + and of single-positive CD4 + CD8 - thymocytes, usually observed with Nef Wt , was not detected in Nef RD35/36AA and Nef D174K Tg mice. However, both mutant Tg mice showed a partial depletion of peripheral CD4 + T cells. This was accompanied, as previously reported for Net Wt Tg mice, by the presence of an activated/memory-like phenotype (CD69 + , CD25 + , CD44 + , CD45RB Low , CD62 Low ) of CD4 + T cells expressing Nef RD35/36AA and to a lesser extent Nef D174K . In addition, both mutants retained the ability to block CD4 + T cell proliferation in vitro after anti-CD3 stimulation, but not to enhance apoptosis/death of CD4 + T cells. Therefore, it appears that Nef-mediated CD4 downregulation is associated with thymic defects, but segregates independently of the activated/memory-like phenotype, of the partial depletion and of the impaired in vitro proliferation of peripheral CD4 + T cells. Histopathological assessment revealed the total absence of or decrease severity and frequency of organ AIDS-like diseases (lung, heart and kidney pathologies) in respectively Nef RD35/36AA and Nef D174K Tg mice, relative to those developing in

  19. Insulin and Insulin-Sensitizing Drugs in Neurodegeneration: Mitochondria as Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Paula I. Moreira

    2009-12-01

    Full Text Available Insulin, besides its glucose lowering effects, is involved in the modulation of lifespan, aging and memory and learning processes. As the population ages, neurodegenerative disorders become epidemic and a connection between insulin signaling dysregulation, cognitive decline and dementia has been established. Mitochondria are intracellular organelles that despite playing a critical role in cellular metabolism are also one of the major sources of reactive oxygen species. Mitochondrial dysfunction, oxidative stress and neuroinflammation, hallmarks of neurodegeneration, can result from impaired insulin signaling. Insulin-sensitizing drugs such as the thiazolidinediones are a new class of synthetic compounds that potentiate insulin action in the target tissues and act as specific agonists of the peroxisome proliferator-activated receptor gamma (PPAR-γ. Recently, several PPAR agonists have been proposed as novel and possible therapeutic agents for neurodegenerative disorders. Indeed, the literature shows that these agents are able to protect against mitochondrial dysfunction, oxidative damage, inflammation and apoptosis. This review discusses the role of mitochondria and insulin signaling in normal brain function and in neurodegeneration. Furthermore, the potential protective role of insulin and insulin sensitizers in Alzheimer´s, Parkinson´s and Huntington´s diseases and amyotrophic lateral sclerosis will be also discussed.

  20. Chronic Progressive Neurodegeneration in a transgenic mouse model of Prion disease

    Directory of Open Access Journals (Sweden)

    Nina Fainstein

    2016-11-01

    Full Text Available Neurodegenerative diseases present pathologically with progressive structural destruction of neurons and accumulation of mis-folded proteins specific for each condition leading to brain atrophy and functional disability. Many animal models exert deposition of pathogenic protein without accompanying neurodegeneration pattern. The lack of a comprehensive model hinders the efforts to develop treatment. We performed longitudinal quantification of cellular, neuronal and synaptic density, as well as of neurogenesis in brains of mice, mimicking for genetic Creutzfeldt-Jacob disease as compared to age matched wild type mice. Mice exhibited a neurodegenerative process indicated by progressive reduction in cortical neurons and synapses, starting at age of 4-6 months, in accordance with neurologic disability. This was accompanied by significant decrease in subventricular/subependymal zone neurogenesis. Although increased hippocampal neurogenesis was detected in mice, a neurodegenerative process of CA1 and CA3 regions associated with impaired hippocampal-dependent memory function was observed. In conclusion, mice exhibit pathological neurodegeneration concomitant with progressive neurological disease, indicating these mice can serve as a model for neurodegenerative diseases.

  1. Network Neurodegeneration in Alzheimer’s Disease via MRI based Shape Diffeomorphometry and High Field Atlasing

    Directory of Open Access Journals (Sweden)

    Michael I Miller

    2015-05-01

    Full Text Available This paper examines MRI analysis of neurodegeneration in Alzheimer’s Disease (AD in a network of structures within the medial temporal lobe using diffeomorphometry methods coupled with high-field atlasing in which the entorhinal cortex is partitioned into nine subareas. The morphometry markers for three groups of subjects (controls, preclinical AD and symptomatic AD are indexed to template coordinates measured with respect to these nine subareas. The location and timing of changes are examined within the subareas as it pertains to the classic Braak and Braak staging by comparing the three groups. We demonstrate that the earliest preclinical changes in the population occur in the lateral most sulcal extent in the entorhinal cortex (alluded to as trans entorhinal cortex by Braak and Braak, and then proceeds medially which is consistent with the Braak and Braak staging. We use high field 11T atlasing to demonstrate that the network changes are occurring at the junctures of the substructures in this medial temporal lobe network. Temporal progression of the disease through the network is also examined via changepoint analysis demonstrating earliest changes in entorhinal cortex. The differential expression of rate of atrophy with progression signaling the changepoint time across the network is demonstrated to be signaling in the intermediate caudal subarea of the entorhinal cortex, which has been noted to be proximal to the hippocampus. This coupled to the findings of the nearby basolateral involvement in amygdala demonstrates the selectivity of neurodegeneration in early AD.

  2. Forced swimming stress does not affect monoamine levels and neurodegeneration in rats.

    Science.gov (United States)

    Abbas, Ghulam; Naqvi, Sabira; Mehmood, Shahab; Kabir, Nurul; Dar, Ahsana

    2011-10-01

    The current study was aimed to investigate the correlations between immobility time in the forced swimming test (FST, a behavioral indicator of stress level) and hippocampal monoamine levels (markers of depression), plasma adrenalin level (a peripheral marker of stress) as well as fluoro-jade C staining (a marker of neurodegeneration). Male Sprague-Dawley rats were subjected to acute, sub-chronic (7 d) or chronic (14 d) FSTs and immobility time was recorded. Levels of noradrenalin, serotonin and dopamine in the hippocampus, and adrenalin level in the plasma were quantified by high-performance liquid chromatography with electrochemical detection. Brain sections from rats after chronic forced swimming or rotenone treatment (3 mg/kg subcutaneously for 4 d) were stained with fluoro-jade C. The rats subjected to swimming stress (acute, sub-chronic and chronic) showed long immobility times [(214 +/- 5), (220 +/- 4) and (231 +/- 7) s, respectively], indicating that the animals were under stress. However, the rats did not exhibit significant declines in hippocampal monoamine levels, and the plasma adrenalin level was not significantly increased compared to that in unstressed rats. The rats that underwent chronic swimming stress did not manifest fluoro-jade C staining in brain sections, while degenerating neurons were evident after rotenone treatment. The immobility time in the FST does not correlate with markers of depression (monoamine levels) and internal stress (adrenalin levels and neurodegeneration), hence this parameter may not be a true indicator of stress level.

  3. Evolution of Neurodegeneration Imaging Biomarkers from Clinically Normal to Dementia in the Alzheimer Disease Spectrum

    Science.gov (United States)

    Knopman, David S.; Jack, Clifford R.; Lundt, Emily S.; Weigand, Stephen D.; Vemuri, Prashanthi; Lowe, Val J.; Kantarci, Kejal; Gunter, Jeffrey L.; Senjem, Matthew L.; Mielke, Michelle M.; Machulda, Mary M.; Roberts, Rosebud O.; Boeve, Bradley F.; Jones, David T.; Petersen, Ronald C.

    2016-01-01

    The availability of antemortem biomarkers for Alzheimer’s Disease (AD) enables monitoring the evolution of neurodegenerative processes in real time. Pittsburgh compound B (PIB) positron emission tomography (PET) was used to select participants in the Mayo Clinic Study of Aging and the Mayo Alzheimer’s Disease Research Center with elevated β-amyloid, designated as “A+,” and hippocampal volume and 18fluorodeoxyglucose (FDG) positron emission tomography were used to characterize participants as having evidence of neurodegeneration (“N+”) at the baseline evaluation. There were 145 clinically normal (CN) A+ individuals, 62 persons with mild cognitive impairment (MCI) who were A+ and 20 with A+ AD dementia. Over a period of 1–6 years, MCI A+N+ individuals showed declines in medial temporal, lateral temporal, lateral parietal, and to a lesser extent, medial parietal regions for both FDG standardized uptake value ratio (SUVR) and grey matter (GM) volume that exceeded declines seen in the CN A+N+ group. The AD dementia group showed declines in the same regions on FDG SUVR and GM volume with rates that exceeded that in MCI A+N+. Expansion of regional involvement and faster rate of neurodegeneration characterizes progression in the AD pathway. PMID:27460147

  4. Evolution of neurodegeneration-imaging biomarkers from clinically normal to dementia in the Alzheimer disease spectrum.

    Science.gov (United States)

    Knopman, David S; Jack, Clifford R; Lundt, Emily S; Weigand, Stephen D; Vemuri, Prashanthi; Lowe, Val J; Kantarci, Kejal; Gunter, Jeffrey L; Senjem, Matthew L; Mielke, Michelle M; Machulda, Mary M; Roberts, Rosebud O; Boeve, Bradley F; Jones, David T; Petersen, Ronald C

    2016-10-01

    The availability of antemortem biomarkers for Alzheimer's disease (AD) enables monitoring the evolution of neurodegenerative processes in real time. Pittsburgh compound B (PIB) positron emission tomography (PET) was used to select participants in the Mayo Clinic Study of Aging and the Mayo Alzheimer's Disease Research Center with elevated β-amyloid, designated as "A+," and hippocampal volume and (18)fluorodeoxyglucose (FDG) positron emission tomography were used to characterize participants as having evidence of neurodegeneration ("N+") at the baseline evaluation. There were 145 clinically normal (CN) A+ individuals, 62 persons with mild cognitive impairment (MCI) who were A+ and 20 with A+ AD dementia. Over a period of 1-6 years, MCI A+N+ individuals showed declines in medial temporal, lateral temporal, lateral parietal, and to a lesser extent, medial parietal regions for both FDG standardized uptake value ratio and gray matter volume that exceeded declines seen in the CN A+N+ group. The AD dementia group showed declines in the same regions on FDG standardized uptake value ratio and gray matter volume with rates that exceeded that in MCI A+N+. Expansion of regional involvement and faster rate of neurodegeneration characterizes progression in the AD pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Tryptophan-2,3-dioxygenase (TDO) inhibition ameliorates neurodegeneration by modulation of kynurenine pathway metabolites.

    Science.gov (United States)

    Breda, Carlo; Sathyasaikumar, Korrapati V; Sograte Idrissi, Shama; Notarangelo, Francesca M; Estranero, Jasper G; Moore, Gareth G L; Green, Edward W; Kyriacou, Charalambos P; Schwarcz, Robert; Giorgini, Flaviano

    2016-05-10

    Metabolites of the kynurenine pathway (KP) of tryptophan (TRP) degradation have been closely linked to the pathogenesis of several neurodegenerative disorders. Recent work has highlighted the therapeutic potential of inhibiting two critical regulatory enzymes in this pathway-kynurenine-3-monooxygenase (KMO) and tryptophan-2,3-dioxygenase (TDO). Much evidence indicates that the efficacy of KMO inhibition arises from normalizing an imbalance between neurotoxic [3-hydroxykynurenine (3-HK); quinolinic acid (QUIN)] and neuroprotective [kynurenic acid (KYNA)] KP metabolites. However, it is not clear if TDO inhibition is protective via a similar mechanism or if this is instead due to increased levels of TRP-the substrate of TDO. Here, we find that increased levels of KYNA relative to 3-HK are likely central to the protection conferred by TDO inhibition in a fruit fly model of Huntington's disease and that TRP treatment strongly reduces neurodegeneration by shifting KP flux toward KYNA synthesis. In fly models of Alzheimer's and Parkinson's disease, we provide genetic evidence that inhibition of TDO or KMO improves locomotor performance and ameliorates shortened life span, as well as reducing neurodegeneration in Alzheimer's model flies. Critically, we find that treatment with a chemical TDO inhibitor is robustly protective in these models. Consequently, our work strongly supports targeting of the KP as a potential treatment strategy for several major neurodegenerative disorders and suggests that alterations in the levels of neuroactive KP metabolites could underlie several therapeutic benefits.

  6. Chronic Progressive Neurodegeneration in a Transgenic Mouse Model of Prion Disease.

    Science.gov (United States)

    Fainstein, Nina; Dori, Dvir; Frid, Kati; Fritz, Alexa T; Shapiro, Ilona; Gabizon, Ruth; Ben-Hur, Tamir

    2016-01-01

    Neurodegenerative diseases present pathologically with progressive structural destruction of neurons and accumulation of mis-folded proteins specific for each condition leading to brain atrophy and functional disability. Many animal models exert deposition of pathogenic proteins without an accompanying neurodegeneration pattern. The lack of a comprehensive model hinders efforts to develop treatment. We performed longitudinal quantification of cellular, neuronal and synaptic density, as well as of neurogenesis in brains of mice mimicking for genetic Creutzfeldt-Jacob disease as compared to age-matched wild-type mice. Mice exhibited a neurodegenerative process of progressive reduction in cortical neurons and synapses starting at age of 4-6 months, in accord with neurologic disability. This was accompanied by significant decrease in subventricular/subependymal zone neurogenesis. Although increased hippocampal neurogenesis was detected in mice, a neurodegenerative process of CA1 and CA3 regions associated with impaired hippocampal-dependent memory function was observed. In conclusion, mice exhibit pathological neurodegeneration concomitant with neurological disease progression, indicating these mice can serve as a model for neurodegenerative diseases.

  7. Common defects of mitochondria and iron in neurodegeneration and diabetes (MIND): A paradigm worth exploring

    Science.gov (United States)

    Stroh, Matthew; Swerdlow, Russell H.; Zhu, Hao

    2014-01-01

    A popular, if not centric, approach to the study of an event is to first consider that of the simplest cause. When dissecting the underlying mechanisms governing idiopathic diseases, this generally takes the form of an ab initio genetic approach. To date, this genetic ‘smoking gun’ has remained elusive in diabetes mellitus and for many affected by neurodegenerative diseases. With no single gene, or even subset of genes, conclusively causative in all cases, other approaches to the etiology and treatment of these diseases seem reasonable, including the correlation of a systems’ predisposed sensitivity to particular influence. In the cases of diabetes mellitus and neurodegenerative diseases, overlapping themes of mitochondrial influence or dysfunction and iron dyshomeostasis are apparent and relatively consistent. This mini-review discusses the influence of mitochondrial function and iron homeostasis on diabetes mellitus and neurodegenerative disease, namely Alzheimer’s disease. Also discussed is the incidence of diabetes accompanied by neuropathy and neurodegeneration along with neurodegenerative disorders prone to development of diabetes. Mouse models containing multiple facets of this overlap are also described alongside current molecular trends attributed to both diseases. As a way of approaching the idiopathic and complex nature of these diseases we are proposing the consideration of a MIND (mitochondria, iron, neurodegeneration, and diabetes) paradigm in which systemic metabolic influence, iron homeostasis, and respective genetic backgrounds play a central role in the development of disease. PMID:24361914

  8. Uncoupling of Protein Aggregation and Neurodegeneration in a Mouse Amyotrophic Lateral Sclerosis Model.

    Science.gov (United States)

    Lee, Joo-Yong; Kawaguchi, Yoshiharu; Li, Ming; Kapur, Meghan; Choi, Su Jin; Kim, Hak-June; Park, Song-Yi; Zhu, Haining; Yao, Tso-Pang

    2015-01-01

    Aberrant accumulation of protein aggregates is a pathological hallmark of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Although a buildup of protein aggregates frequently leads to cell death, whether it is the key pathogenic factor in driving neurodegenerative disease remains controversial. HDAC6, a cytosolic ubiquitin-binding deacetylase, has emerged as an important regulator of ubiquitin-dependent quality control autophagy, a lysosome-dependent degradative system responsible for the disposal of misfolded protein aggregates and damaged organelles. Here, we show that in cell models HDAC6 plays a protective role against multiple disease-associated and aggregation-prone cytosolic proteins by facilitating their degradation. We further show that HDAC6 is required for efficient localization of lysosomes to protein aggregates, indicating that lysosome targeting to autophagic substrates is regulated. Supporting a critical role of HDAC6 in protein aggregate disposal in vivo, genetic ablation of HDAC6 in a transgenic SOD1G93A mouse, a model of ALS, leads to dramatic accumulation of ubiquitinated SOD1G93A protein aggregates. Surprisingly, despite a robust buildup of SOD1G93A aggregates, deletion of HDAC6 only moderately modified the motor phenotypes. These findings indicate that SOD1G93A aggregation is not the only determining factor to drive neurodegeneration in ALS, and that HDAC6 likely modulates neurodegeneration through additional mechanisms beyond protein aggregate clearance. © 2015 S. Karger AG, Basel.

  9. The human epilepsy mutation GABRG2(Q390X) causes chronic subunit accumulation and neurodegeneration.

    Science.gov (United States)

    Kang, Jing-Qiong; Shen, Wangzhen; Zhou, Chengwen; Xu, Dong; Macdonald, Robert L

    2015-07-01

    Genetic epilepsy and neurodegenerative diseases are two common neurological disorders that are conventionally viewed as being unrelated. A subset of patients with severe genetic epilepsies who have impaired development and often go on to die of their disease respond poorly to anticonvulsant drug therapy, suggesting a need for new therapeutic targets. Previously, we reported that multiple GABAA receptor epilepsy mutations result in protein misfolding and abnormal receptor trafficking. We have now developed a model of a severe human genetic epileptic encephalopathy, the Gabrg2(+/Q390X) knock-in mouse. We found that, in addition to impairing inhibitory neurotransmission, mutant GABAA receptor γ2(Q390X) subunits accumulated and aggregated intracellularly, activated caspase 3 and caused widespread, age-dependent neurodegeneration. These findings suggest that the fundamental protein metabolism and cellular consequences of the epilepsy-associated mutant γ2(Q390X) ion channel subunit are not fundamentally different from those associated with neurodegeneration. Our results have far-reaching relevance for the identification of conserved pathological cascades and mechanism-based therapies that are shared between genetic epilepsies and neurodegenerative diseases.

  10. C19orf12 mutations in neurodegeneration with brain iron accumulation mimicking juvenile amyotrophic lateral sclerosis.

    Science.gov (United States)

    Deschauer, M; Gaul, C; Behrmann, C; Prokisch, H; Zierz, S; Haack, T B

    2012-11-01

    Mutations in C19orf12 have been recently identified as the molecular genetic cause of a subtype of neurodegeneration with brain iron accumulation (NBIA). Given the mitochondrial localization of the gene product the new NBIA subtype was designated mitochondrial membrane protein-associated neurodegeneration. Frequent features in the patients described so far included extrapyramidal signs and pyramidal tract involvement. Here, we report three C19orf12-mutant patients from two families presenting with predominant upper and lower motor neuron dysfunction mimicking amyotrophic lateral sclerosis with juvenile onset. While extrapyramidal signs were absent, all patients showed neuropsychological abnormalities with disinhibited or impulsive behavior. Optic atrophy was present in the simplex case. T2-weighted cranial MRI showed hypointensities suggestive of iron accumulation in the globi pallidi and the midbrain in all patients. Sequence analysis of C19orf12 revealed a novel mutation, p.Gly66del, compound heterozygous with known mutations in all patients. These patients highlight that C19orf12 defects should be considered as a differential diagnosis in patients with juvenile onset motor neuron diseases. Patients have to be examined carefully for neuropsychological abnormalities, optic neuropathy, and signs of brain iron accumulation in MRI.

  11. The P66Shc/Mitochondrial Permeability Transition Pore Pathway Determines Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Costanza Savino

    2013-01-01

    Full Text Available Mitochondrial-mediated oxidative stress and apoptosis play a crucial role in neurodegenerative disease and aging. Both mitochondrial permeability transition (PT and swelling of mitochondria have been involved in neurodegeneration. Indeed, knockout mice for cyclophilin-D (Cyc-D, a key regulatory component of the PT pore (PTP that triggers mitochondrial swelling, resulted to be protected in preclinical models of multiple sclerosis (MS, Parkinson’s disease (PD, and amyotrophic lateral sclerosis (ALS. However, how neuronal stress is transduced into mitochondrial oxidative stress and swelling is unclear. Recently, the aging determinant p66Shc that generates H2O2 reacting with cytochrome c and induces oxidation of PTP and mitochondrial swelling was found to be involved in MS and ALS. To investigate the role of p66Shc/PTP pathway in neurodegeneration, we performed experimental autoimmune encephalomyelitis (EAE experiments in p66Shc knockout mice (p66Shc−/−, knock out mice for cyclophilin-D (Cyc-D−/−, and p66Shc Cyc-D double knock out (p66Shc/Cyc-D−/− mice. Results confirm that deletion of p66Shc protects from EAE without affecting immune response, whereas it is not epistatic to the Cyc-D mutation. These findings demonstrate that p66Shc contributes to EAE induced neuronal damage most likely through the opening of PTP suggesting that p66Shc/PTP pathway transduces neurodegenerative stresses.

  12. Moderate exercise prevents neurodegeneration in D-galactose-induced aging mice

    Directory of Open Access Journals (Sweden)

    Li Li

    2016-01-01

    Full Text Available D-galactose has been widely used in aging research because of its efficacy in inducing senescence and accelerating aging in animal models. The present study investigated the benefits of exercise for preventing neurodegeneration, such as synaptic plasticity, spatial learning and memory abilities, in mouse models of aging. D-galactose-induced aging mice were administered daily subcutaneous injections of D-galactose at the base of the neck for 10 consecutive weeks. Then, the mice were subjected to exercise training by running on a treadmill for 6 days a week. Shortened escape latency in a Morris water maze test indicated that exercise improved learning and memory in aging mice. The ameliorative changes were likely induced by an upregulation of Bcl-2 and brain-derived neurotrophic factor, the repression of apoptosis factors such as Fas and Bax, and an increase in the activity of glucose transporters-1 and 4. The data suggest moderate exercise may retard or inhibit neurodegeneration in D-galactose-induced aging mice.

  13. Assaying locomotor, learning, and memory deficits in Drosophila models of neurodegeneration.

    Science.gov (United States)

    Ali, Yousuf O; Escala, Wilfredo; Ruan, Kai; Zhai, R Grace

    2011-03-11

    Advances in genetic methods have enabled the study of genes involved in human neurodegenerative diseases using Drosophila as a model system. Most of these diseases, including Alzheimer's, Parkinson's and Huntington's disease are characterized by age-dependent deterioration in learning and memory functions and movement coordination. Here we use behavioral assays, including the negative geotaxis assay and the aversive phototaxic suppression assay (APS assay), to show that some of the behavior characteristics associated with human neurodegeneration can be recapitulated in flies. In the negative geotaxis assay, the natural tendency of flies to move against gravity when agitated is utilized to study genes or conditions that may hinder locomotor capacities. In the APS assay, the learning and memory functions are tested in positively-phototactic flies trained to associate light with aversive bitter taste and hence avoid this otherwise natural tendency to move toward light. Testing these trained flies 6 hours post-training is used to assess memory functions. Using these assays, the contribution of any genetic or environmental factors toward developing neurodegeneration can be easily studied in flies.

  14. Point mutations in EBV gH that abrogate or differentially affect B cell and epithelial cell fusion

    International Nuclear Information System (INIS)

    Wu Liguo; Hutt-Fletcher, Lindsey M.

    2007-01-01

    Cell fusion mediated by Epstein-Barr virus requires three conserved glycoproteins, gB and gHgL, but activation is cell type specific. B cell fusion requires interaction between MHC class II and a fourth virus glycoprotein, gp42, which complexes non-covalently with gHgL. Epithelial cell fusion requires interaction between gHgL and a novel epithelial cell coreceptor and is blocked by excess gp42. We show here that gp42 interacts directly with gH and that point mutations in the region of gH recognized by an antibody that differentially inhibits epithelial and B cell fusion significantly impact both the core fusion machinery and cell-specific events. Substitution of alanine for glycine at residue 594 completely abrogates fusion with either B cells or epithelial cells. Substitution of alanine for glutamic acid at residue 595 reduces fusion with epithelial cells, greatly enhances fusion with B cells and allows low levels of B cell fusion even in the absence of gL

  15. Dexamethasone abrogates the antimicrobial and antibiofilm activities of different drugs against clinical isolates of Staphylococcus aureus and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Aquila Rodrigues

    2017-01-01

    Full Text Available Staphylococcus aureus and Pseudomonas aeruginosa are part of the human microbiota and are also important bacterial pathogens, for which therapeutic options are lacking nowadays. The combined administration of corticosteroids and antimicrobials is commonly used in the treatment of infectious diseases to control inflammatory processes and to minimize potential toxicity of antimicrobials, avoiding sequelae. Although different pharmaceutical dosage forms of antimicrobials combined to corticosteroids are available, studies on the interference of corticosteroids on the pharmacological activity of antimicrobials are scarce and controversial. Here, we provide evidence of the interference of dexamethasone on the pharmacological activity of clinically important antimicrobial drugs against biofilms and planktonic cells of S. aureus and P. aeruginosa. Broth microdilution assays of minimal inhibitory concentration (MIC, minimum bactericidal concentration (MBC, and minimum biofilm eradication concentration (MBEC of gentamicin, chloramphenicol, oxacillin, ceftriaxone and meropenem were conducted with and without the addition of dexamethasone. The effect of all drugs was abrogated by dexamethasone in their MIC, MBC, and MBEC, except gentamicin and meropenem, for which the MBC was not affected in some strains. The present study opens doors for more investigations on in vitro and in vivo effects and safety of the combination of antimicrobials and glucocorticoids.

  16. Mutations Abrogating VP35 Interaction with Double-Stranded RNA Render Ebola Virus Avirulent in Guinea Pigs

    Energy Technology Data Exchange (ETDEWEB)

    Prins, Kathleen C.; Delpeut, Sebastien; Leung, Daisy W.; Reynard, Olivier; Volchkova, Valentina A.; Reid, St. Patrick; Ramanan, Parameshwaran; Cárdenas, Washington B.; Amarasinghe, Gaya K.; Volchkov, Viktor E.; Basler, Christopher F. (CNRS-INSERM); (Mount Sinai Hospital); (LB-Ecuador); (Iowa State)

    2010-10-11

    Ebola virus (EBOV) protein VP35 is a double-stranded RNA (dsRNA) binding inhibitor of host interferon (IFN)-{alpha}/{beta} responses that also functions as a viral polymerase cofactor. Recent structural studies identified key features, including a central basic patch, required for VP35 dsRNA binding activity. To address the functional significance of these VP35 structural features for EBOV replication and pathogenesis, two point mutations, K319A/R322A, that abrogate VP35 dsRNA binding activity and severely impair its suppression of IFN-{alpha}/{beta} production were identified. Solution nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography reveal minimal structural perturbations in the K319A/R322A VP35 double mutant and suggest that loss of basic charge leads to altered function. Recombinant EBOVs encoding the mutant VP35 exhibit, relative to wild-type VP35 viruses, minimal growth attenuation in IFN-defective Vero cells but severe impairment in IFN-competent cells. In guinea pigs, the VP35 mutant virus revealed a complete loss of virulence. Strikingly, the VP35 mutant virus effectively immunized animals against subsequent wild-type EBOV challenge. These in vivo studies, using recombinant EBOV viruses, combined with the accompanying biochemical and structural analyses directly correlate VP35 dsRNA binding and IFN inhibition functions with viral pathogenesis. Moreover, these studies provide a framework for the development of antivirals targeting this critical EBOV virulence factor.

  17. Disruption of IL-21 signaling affects T cell-B cell interactions and abrogates protective humoral immunity to malaria.

    Directory of Open Access Journals (Sweden)

    Damián Pérez-Mazliah

    2015-03-01

    Full Text Available Interleukin-21 signaling is important for germinal center B-cell responses, isotype switching and generation of memory B cells. However, a role for IL-21 in antibody-mediated protection against pathogens has not been demonstrated. Here we show that IL-21 is produced by T follicular helper cells and co-expressed with IFN-γ during an erythrocytic-stage malaria infection of Plasmodium chabaudi in mice. Mice deficient either in IL-21 or the IL-21 receptor fail to resolve the chronic phase of P. chabaudi infection and P. yoelii infection resulting in sustained high parasitemias, and are not immune to re-infection. This is associated with abrogated P. chabaudi-specific IgG responses, including memory B cells. Mixed bone marrow chimeric mice, with T cells carrying a targeted disruption of the Il21 gene, or B cells with a targeted disruption of the Il21r gene, demonstrate that IL-21 from T cells signaling through the IL-21 receptor on B cells is necessary to control chronic P. chabaudi infection. Our data uncover a mechanism by which CD4+ T cells and B cells control parasitemia during chronic erythrocytic-stage malaria through a single gene, Il21, and demonstrate the importance of this cytokine in the control of pathogens by humoral immune responses. These data are highly pertinent for designing malaria vaccines requiring long-lasting protective B-cell responses.

  18. Hesperidin protects against cyclophosphamide-induced hepatotoxicity by upregulation of PPARγ and abrogation of oxidative stress and inflammation.

    Science.gov (United States)

    Mahmoud, Ayman M

    2014-09-01

    The most important reason for the non-approval and withdrawal of drugs by the Food and Drug Administration is hepatotoxicity. Therefore, this study was undertaken to evaluate the protective effects of hesperidin against cyclophosphamide (CYP)-induced hepatotoxicity in Wistar rats. The rats received a single intraperitoneal dose of CYP of 200 mg/kg body mass, followed by treatment with hesperidin, orally, at doses of 25 and 50 mg/kg for 11 consecutive days. CYP induced hepatic damage, as evidenced by the significantly elevated levels of serum pro-inflammatory cytokines, serum transaminases, liver lipid peroxidation, and nitric oxide. As a consequence, there was reduced glutathione content, and the activities of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, were markedly reduced. In addition, CYP administration induced a considerable downregulation of peroxisome proliferator activated receptor gamma (PPARγ) and upregulation of nuclear factor-kappa B (NF-κB) and inducible nitric oxide synthase (iNOS) mRNA expression. Hesperidin, in a dose-dependent manner, rejuvenated the altered markers to an almost normal state. In conclusion, hesperidin showed a potent protective effect against CYP-induced oxidative stress and inflammation leading to hepatotoxicity. The study suggests that hesperidin exerts its protective effect against CYP-induced hepatotoxicity through upregulation of hepatic PPARγ expression and abrogation of inflammation and oxidative stress.

  19. Silencing of poly(ADP-ribose) glycohydrolase sensitizes lung cancer cells to radiation through the abrogation of DNA damage checkpoint

    Energy Technology Data Exchange (ETDEWEB)

    Nakadate, Yusuke [Shien-Lab, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Department of Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Kodera, Yasuo; Kitamura, Yuka [Shien-Lab, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Tachibana, Taro [Department of Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Tamura, Tomohide [Division of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan); Koizumi, Fumiaki, E-mail: fkoizumi@ncc.go.jp [Division of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 (Japan)

    2013-11-29

    Highlights: •Radiosensitization by PARG silencing was observed in multiple lung cancer cells. •PAR accumulation was enhanced by PARG silencing after DNA damage. •Radiation-induced G2/M arrest and checkpoint activation were impaired by PARG siRNA. -- Abstract: Poly(ADP-ribose) glycohydrolase (PARG) is a major enzyme that plays a role in the degradation of poly(ADP-ribose) (PAR). PARG deficiency reportedly sensitizes cells to the effects of radiation. In lung cancer, however, it has not been fully elucidated. Here, we investigated whether PARG siRNA contributes to an increased radiosensitivity using 8 lung cancer cell lines. Among them, the silencing of PARG induced a radiosensitizing effect in 5 cell lines. Radiation-induced G2/M arrest was largely suppressed by PARG siRNA in PC-14 and A427 cells, which exhibited significantly enhanced radiosensitivity in response to PARG knockdown. On the other hand, a similar effect was not observed in H520 cells, which did not exhibit a radiosensitizing effect. Consistent with a cell cycle analysis, radiation-induced checkpoint signals were not well activated in the PC-14 and A427 cells when treated with PARG siRNA. These results suggest that the increased sensitivity to radiation induced by PARG knockdown occurs through the abrogation of radiation-induced G2/M arrest and checkpoint activation in lung cancer cells. Our findings indicate that PARG could be a potential target for lung cancer treatments when used in combination with radiotherapy.

  20. Surgical Stress Abrogates Pre-Existing Protective T Cell Mediated Anti-Tumor Immunity Leading to Postoperative Cancer Recurrence.

    Directory of Open Access Journals (Sweden)

    Abhirami A Ananth

    Full Text Available Anti-tumor CD8+ T cells are a key determinant for overall survival in patients following surgical resection for solid malignancies. Using a mouse model of cancer vaccination (adenovirus expressing melanoma tumor-associated antigen (TAA-dopachrome tautomerase (AdDCT and resection resulting in major surgical stress (abdominal nephrectomy, we demonstrate that surgical stress results in a reduction in the number of CD8+ T cell that produce cytokines (IFNγ, TNFα, Granzyme B in response to TAA. This effect is secondary to both reduced proliferation and impaired T cell function following antigen binding. In a prophylactic model, surgical stress completely abrogates tumor protection conferred by vaccination in the immediate postoperative period. In a clinically relevant surgical resection model, vaccinated mice undergoing a positive margin resection with surgical stress had decreased survival compared to mice with positive margin resection alone. Preoperative immunotherapy with IFNα significantly extends survival in surgically stressed mice. Importantly, myeloid derived suppressor cell (MDSC population numbers and functional impairment of TAA-specific CD8+ T cell were altered in surgically stressed mice. Our observations suggest that cancer progression may result from surgery-induced suppression of tumor-specific CD8+ T cells. Preoperative immunotherapies aimed at targeting the prometastatic effects of cancer surgery will reduce recurrence and improve survival in cancer surgery patients.

  1. An exon 53 frameshift mutation in CUBN abrogates cubam function and causes Imerslund-Gräsbeck syndrome in dogs.

    Science.gov (United States)

    Fyfe, John C; Hemker, Shelby L; Venta, Patrick J; Fitzgerald, Caitlin A; Outerbridge, Catherine A; Myers, Sherry L; Giger, Urs

    2013-08-01

    Cobalamin malabsorption accompanied by selective proteinuria is an autosomal recessive disorder known as Imerslund-Gräsbeck syndrome in humans and was previously described in dogs due to amnionless (AMN) mutations. The resultant vitamin B12 deficiency causes dyshematopoiesis, lethargy, failure to thrive, and life-threatening metabolic disruption in the juvenile period. We studied 3 kindreds of border collies with cobalamin malabsorption and mapped the disease locus in affected dogs to a 2.9Mb region of homozygosity on canine chromosome 2. The region included CUBN, the locus encoding cubilin, a peripheral membrane protein that in concert with AMN forms the functional intrinsic factor-cobalamin receptor expressed in ileum and a multi-ligand receptor in renal proximal tubules. Cobalamin malabsorption and proteinuria comprising CUBN ligands were demonstrated by radiolabeled cobalamin uptake studies and SDS-PAGE, respectively. CUBN mRNA and protein expression were reduced ~10 fold and ~20 fold, respectively, in both ileum and kidney of affected dogs. DNA sequencing demonstrated a single base deletion in exon 53 predicting a translational frameshift and early termination codon likely triggering nonsense mediated mRNA decay. The mutant allele segregated with the disease in the border collie kindred. The border collie disorder indicates that a CUBN mutation far C-terminal from the intrinsic factor-cobalamin binding site can abrogate receptor expression and cause Imerslund-Gräsbeck syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. A lesion model of envy and Schadenfreude: legal, deservingness and moral dimensions as revealed by neurodegeneration

    Science.gov (United States)

    Santamaría-García, Hernando; Baez, Sandra; Reyes, Pablo; Santamaría-García, José A; Santacruz-Escudero, José M; Matallana, Diana; Arévalo, Analía; Sigman, Mariano; García, Adolfo M; Ibáñez, Agustín

    2017-01-01

    Abstract The study of moral emotions (i.e. Schadenfreude and envy) is critical to understand the ecological complexity of everyday interactions between cognitive, affective, and social cognition processes. Most previous studies in this area have used correlational imaging techniques and framed Schadenfreude and envy as unified and monolithic emotional domains. Here, we profit from a relevant neurodegeneration model to disentangle the brain regions engaged in three dimensions of Schadenfreude and envy: deservingness, morality, and legality. We tested a group of patients with behavioural variant frontotemporal dementia (bvFTD), patients with Alzheimer’s disease, as a contrastive neurodegeneration model, and healthy controls on a novel task highlighting each of these dimensions in scenarios eliciting Schadenfreude and envy. Compared with the Alzheimer’s disease and control groups, patients with bvFTD obtained significantly higher scores on all dimensions for both emotions. Correlational analyses revealed an association between envy and Schadenfreude scores and greater deficits in social cognition, inhibitory control, and behaviour disturbances in bvFTD patients. Brain anatomy findings (restricted to bvFTD and controls) confirmed the partially dissociable nature of the moral emotions’ experiences and highlighted the importance of socio-moral brain areas in processing those emotions. In all subjects, an association emerged between Schadenfreude and the ventral striatum, and between envy and the anterior cingulate cortex. In addition, the results supported an association between scores for moral and legal transgression and the morphology of areas implicated in emotional appraisal, including the amygdala and the parahippocampus. By contrast, bvFTD patients exhibited a negative association between increased Schadenfreude and envy across dimensions and critical regions supporting social-value rewards and social-moral processes (dorsolateral prefrontal cortex, angular

  3. A lesion model of envy and Schadenfreude: legal, deservingness and moral dimensions as revealed by neurodegeneration.

    Science.gov (United States)

    Santamaría-García, Hernando; Baez, Sandra; Reyes, Pablo; Santamaría-García, José A; Santacruz-Escudero, José M; Matallana, Diana; Arévalo, Analía; Sigman, Mariano; García, Adolfo M; Ibáñez, Agustín

    2017-12-01

    The study of moral emotions (i.e. Schadenfreude and envy) is critical to understand the ecological complexity of everyday interactions between cognitive, affective, and social cognition processes. Most previous studies in this area have used correlational imaging techniques and framed Schadenfreude and envy as unified and monolithic emotional domains. Here, we profit from a relevant neurodegeneration model to disentangle the brain regions engaged in three dimensions of Schadenfreude and envy: deservingness, morality, and legality. We tested a group of patients with behavioural variant frontotemporal dementia (bvFTD), patients with Alzheimer's disease, as a contrastive neurodegeneration model, and healthy controls on a novel task highlighting each of these dimensions in scenarios eliciting Schadenfreude and envy. Compared with the Alzheimer's disease and control groups, patients with bvFTD obtained significantly higher scores on all dimensions for both emotions. Correlational analyses revealed an association between envy and Schadenfreude scores and greater deficits in social cognition, inhibitory control, and behaviour disturbances in bvFTD patients. Brain anatomy findings (restricted to bvFTD and controls) confirmed the partially dissociable nature of the moral emotions' experiences and highlighted the importance of socio-moral brain areas in processing those emotions. In all subjects, an association emerged between Schadenfreude and the ventral striatum, and between envy and the anterior cingulate cortex. In addition, the results supported an association between scores for moral and legal transgression and the morphology of areas implicated in emotional appraisal, including the amygdala and the parahippocampus. By contrast, bvFTD patients exhibited a negative association between increased Schadenfreude and envy across dimensions and critical regions supporting social-value rewards and social-moral processes (dorsolateral prefrontal cortex, angular gyrus and

  4. Novel neuroprotective function of apical-basal polarity gene crumbs in amyloid beta 42 (aβ42 mediated neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Andrew M Steffensmeier

    Full Text Available Alzheimer's disease (AD, OMIM: 104300, a progressive neurodegenerative disorder with no cure to date, is caused by the generation of amyloid-beta-42 (Aβ42 aggregates that trigger neuronal cell death by unknown mechanism(s. We have developed a transgenic Drosophila eye model where misexpression of human Aβ42 results in AD-like neuropathology in the neural retina. We have identified an apical-basal polarity gene crumbs (crb as a genetic modifier of Aβ42-mediated-neuropathology. Misexpression of Aβ42 caused upregulation of Crb expression, whereas downregulation of Crb either by RNAi or null allele approach rescued the Aβ42-mediated-neurodegeneration. Co-expression of full length Crb with Aβ42 increased severity of Aβ42-mediated-neurodegeneration, due to three fold induction of cell death in comparison to the wild type. Higher Crb levels affect axonal targeting from the retina to the brain. The structure function analysis identified intracellular domain of Crb to be required for Aβ42-mediated-neurodegeneration. We demonstrate a novel neuroprotective role of Crb in Aβ42-mediated-neurodegeneration.

  5. Alzheimer Disease Signature Neurodegeneration and APOE Genotype in Mild Cognitive Impairment With Suspected Non-Alzheimer Disease Pathophysiology.

    Science.gov (United States)

    Schreiber, Stefanie; Schreiber, Frank; Lockhart, Samuel N; Horng, Andy; Bejanin, Alexandre; Landau, Susan M; Jagust, William J

    2017-06-01

    There are conflicting results claiming that Alzheimer disease signature neurodegeneration may be more, less, or similarly advanced in individuals with β-amyloid peptide (Aβ)-negative (Aβ-) suspected non-Alzheimer disease pathophysiology (SNAP) than in Aβ-positive (Aβ+) counterparts. To examine patterns of neurodegeneration in individuals with SNAP compared with their Aβ+ counterparts. A longitudinal cohort study was conducted among individuals with mild cognitive impairment (MCI) and cognitively normal individuals receiving care at Alzheimer's Disease Neuroimaging Initiative sites in the United States and Canada for a mean follow-up period of 30.5 months from August 1, 2005, to June 30, 2015. Several neurodegeneration biomarkers and longitudinal cognitive function were compared between patients with distinct SNAP (Aβ- and neurodegeneration-positive [Aβ-N+]) subtypes and their Aβ+N+ counterparts. Participants were classified according to the results of their florbetapir F-18 (Aβ) positron emission tomography and their Alzheimer disease-associated neurodegeneration status (temporoparietal glucose metabolism determined by fluorodeoxyglucose F 18 [FDG]-labeled positron emission tomography and/or hippocampal volume [HV] determined by magnetic resonance imaging: participants with subthreshold HV values were regarded as exhibiting hippocampal volume atrophy [HV+], while subthreshold mean FDG values were considered as FDG hypometabolism [FDG+]). The study comprised 265 cognitively normal individuals (135 women and 130 men; mean [SD] age, 75.5 [6.7] years) and 522 patients with MCI (225 women and 297 men; mean [SD] age, 72.6 [7.8] years). A total of 469 individuals with MCI had data on neurodegeneration biomarkers; of these patients, 107 were Aβ-N+ (22.8%; 63 FDG+, 82 HV+, and 38 FDG+HV+) and 187 were Aβ+N+ (39.9%; 135 FDG+, 147 HV+, and 95 FDG+HV+ cases). A total of 209 cognitively normal participants had data on neurodegeneration biomarkers; of these, 52 were

  6. Neurodegeneration in drop-dead mutant drosophila melanogaster is associated with the respiratory system but not with Hypoxia.

    Directory of Open Access Journals (Sweden)

    Christine Lynn Sansone

    Full Text Available Mutations in the gene drop-dead (drd cause diverse phenotypes in adult Drosophila melanogaster including early lethality, neurodegeneration, tracheal defects, gut dysfunction, reduced body mass, and female sterility. Despite the identification of the drd gene itself, the causes of early lethality and neurodegeneration in the mutant flies remain unknown. To determine the pattern of drd expression associated with the neurodegenerative phenotype, knockdown of drd with various Gal4 drivers was performed. Early adult lethality and neurodegeneration were observed upon knockdown of drd in the tracheal system with two independent insertions of the breathless-Gal4 driver and upon knockdown in the tracheal system and elsewhere with the DJ717-Gal4 driver. Surprisingly, rescue of drd expression exclusively in the tracheae in otherwise mutant flies rescued the neurodegenerative phenotype but not adult lethality. Gut dysfunction, as measured by defecation rate, was not rescued in these flies, and gut function appeared normal upon tracheal-specific knockdown of drd. Finally, the hypothesis that tracheal dysfunction in drd mutants results in hypoxia was tested. Hypoxia-sensitive reporter transgenes (LDH-Gal4 and LDH-LacZ were placed on a drd mutant background, but enhanced expression of these reporters was not observed. In addition, manipulation of drd expression in the tracheae did not affect expression of the hypoxia-induced genes LDH, tango, and similar. Overall, these results indicate that there are at least two causes of adult lethality in drd mutants, that gut dysfunction and neurodegeneration are independent phenotypes, and that neurodegeneration is associated with tracheal expression of drd but not with hypoxia.

  7. Alpha-Synuclein Toxicity in the Early Secretory Pathway: How it Drives Neurodegeneration in Parkinsons Disease

    Directory of Open Access Journals (Sweden)

    Ting eWang

    2015-11-01

    Full Text Available Alpha-synuclein is a predominant player in the pathogenesis of Parkinson’s Disease. However, despite extensive study for two decades, its physiological and pathological mechanisms remain poorly understood. Alpha-synuclein forms a perplexing web of interactions with lipids, trafficking machinery, and other regulatory factors. One emerging consensus is that synaptic vesicles are likely the functional site for alpha-synuclein, where it appears to facilitate vesicle docking and fusion. On the other hand, the disfunctions of alpha-synuclein are more dispersed and numerous; when mutated or over-expressed, alpha-synuclein affects several membrane trafficking and stress pathways, including exocytosis, ER-to-Golgi transport, ER stress, Golgi homeostasis, endocytosis, autophagy, oxidative stress and others. Here we examine recent developments in alpha-synuclein’s toxicity in the early secretory pathway placed in the context of emerging themes from other affected pathways to help illuminate its underlying pathogenic mechanisms in neurodegeneration.

  8. Cp/Heph mutant mice have iron-induced neurodegeneration diminished by deferiprone

    Science.gov (United States)

    Zhao, Liangliang; Hadziahmetovic, Majda; Wang, Chenguang; Xu, Xueying; Song, Ying; Jinnah, H.A.; Wodzinska, Jolanta; Iacovelli, Jared; Wolkow, Natalie; Krajacic, Predrag; Weissberger, Alyssa Cwanger; Connelly, John; Spino, Michael; Lee, Michael K.; Connor, James; Giasson, Benoit; Harris, Z. Leah; Dunaief, Joshua L.

    2016-01-01

    Brain iron accumulates in several neurodegenerative diseases and can cause oxidative damage, but mechanisms of brain iron homeostasis are incompletely understood. Patients with mutations in the cellular iron-exporting ferroxidase ceruloplasmin (Cp) have brain iron accumulation causing neurodegeneration. Here, we assessed the brains of mice with combined mutation of Cp and its homolog hephaestin. Compared to single mutants, brain iron accumulation was accelerated in double mutants in the cerebellum, substantia nigra, and hippocampus. Iron accumulated within glia, while neurons were iron deficient. There was loss of both neurons and glia. Mice developed ataxia and tremor, and most died by 9 months. Treatment with the oral iron chelator deferiprone diminished brain iron levels, protected against neuron loss, and extended lifespan. Ferroxidases play important, partially overlapping roles in brain iron homeostasis by facilitating iron export from glia, making iron available to neurons. PMID:26303407

  9. Obesity and the Ageing Brain: Could Leptin Play a Role in Neurodegeneration?

    Directory of Open Access Journals (Sweden)

    G. H. Doherty

    2011-01-01

    Full Text Available Obesity and ageing are both characteristics of the human population that are on the increase across the globe. It has long been established that ageing is the major risk factor for neurodegenerative conditions such as Alzheimer's disease, and it is becoming increasingly evident that obesity is another such factor. Leptin resistance or insensitivity has been uncovered as a cause of obesity, and in addition the leptin signalling system is less potent in the elderly. Taken together, these findings reveal that this molecule may be a link between neurodegeneration and obesity or ageing. It is now known that leptin has beneficial effects on both the survival and neurophysiology of the neurons that are lost in Alzheimer's disease suggesting that it may be an important research target in the quest for strategies to prevent, halt, or cure this condition.

  10. Exome sequencing and SNP analysis detect novel compound heterozygosity in fatty acid hydroxylase-associated neurodegeneration

    Science.gov (United States)

    Pierson, Tyler Mark; Simeonov, Dimitre R; Sincan, Murat; Adams, David A; Markello, Thomas; Golas, Gretchen; Fuentes-Fajardo, Karin; Hansen, Nancy F; Cherukuri, Praveen F; Cruz, Pedro; Blackstone, Craig; Tifft, Cynthia; Boerkoel, Cornelius F; Gahl, William A

    2012-01-01

    Fatty acid hydroxylase-associated neurodegeneration due to fatty acid 2-hydroxylase deficiency presents with a wide range of phenotypes including spastic paraplegia, leukodystrophy, and/or brain iron deposition. All previously described families with this disorder were consanguineous, with homozygous mutations in the probands. We describe a 10-year-old male, from a non-consanguineous family, with progressive spastic paraplegia, dystonia, ataxia, and cognitive decline associated with a sural axonal neuropathy. The use of high-throughput sequencing techniques combined with SNP array analyses revealed a novel paternally derived missense mutation and an overlapping novel maternally derived ∼28-kb genomic deletion in FA2H. This patient provides further insight into the consistent features of this disorder and expands our understanding of its phenotypic presentation. The presence of a sural nerve axonal neuropathy had not been previously associated with this disorder and so may extend the phenotype. PMID:22146942

  11. Correlated Inflammatory Responses and Neurodegeneration in Peptide-Injected Animal Models of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    James G. McLarnon

    2014-01-01

    Full Text Available Animal models of Alzheimer’s disease (AD which emphasize activation of microglia may have particular utility in correlating proinflammatory activity with neurodegeneration. This paper reviews injection of amyloid-β (Aβ into rat brain as an alternative AD animal model to the use of transgenic animals. In particular, intrahippocampal injection of Aβ1-42 peptide demonstrates prominent microglial mobilization and activation accompanied by a significant loss of granule cell neurons. Furthermore, pharmacological inhibition of inflammatory reactivity is demonstrated by a broad spectrum of drugs with a common endpoint in conferring neuroprotection in peptide-injected animals. Peptide-injection models provide a focus on glial cell responses to direct peptide injection in rat brain and offer advantages in the study of the mechanisms underlying neuroinflammation in AD brain.

  12. ER stress signaling and neurodegeneration: At the intersection between Alzheimer's disease and Prion-related disorders.

    Science.gov (United States)

    Torres, Mauricio; Matamala, José Manuel; Duran-Aniotz, Claudia; Cornejo, Victor Hugo; Foley, Andrew; Hetz, Claudio

    2015-09-02

    Alzheimer's and Prion diseases are two neurodegenerative conditions sharing different pathophysiological characteristics. Disease symptoms are associated with the abnormal accumulation of protein aggregates, which are generated by the misfolding and oligomerization of specific proteins. Recent functional studies uncovered a key role of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in the occurrence of synaptic dysfunction and neurodegeneration in Prion-related disorders and Alzheimer's disease. Here we review common pathological features of both diseases, emphasizing the link between amyloid formation, its pathogenesis and alterations in ER proteostasis. The potential benefits of targeting the UPR as a therapeutic strategy is also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation.

    Science.gov (United States)

    Ramasamy, Ravichandran; Vannucci, Susan J; Yan, Shirley Shi Du; Herold, Kevan; Yan, Shi Fang; Schmidt, Ann Marie

    2005-07-01

    The products of nonenzymatic glycation and oxidation of proteins and lipids, the advanced glycation end products (AGEs), accumulate in a wide variety of environments. AGEs may be generated rapidly or over long times stimulated by a range of distinct triggering mechanisms, thereby accounting for their roles in multiple settings and disease states. A critical property of AGEs is their ability to activate receptor for advanced glycation end products (RAGE), a signal transduction receptor of the immunoglobulin superfamily. It is our hypothesis that due to such interaction, AGEs impart a potent impact in tissues, stimulating processes linked to inflammation and its consequences. We hypothesize that AGEs cause perturbation in a diverse group of diseases, such as diabetes, inflammation, neurodegeneration, and aging. Thus, we propose that targeting this pathway may represent a logical step in the prevention/treatment of the sequelae of these disorders.

  14. Early intranasal insulin therapy halts progression of neurodegeneration: progress in Alzheimer's disease therapeutics.

    Science.gov (United States)

    de la Monte, Suzanne M

    Evaluation of Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, et al. Intranasal Insulin Therapy for Alzheimer Disease and Amnestic Mild Cognitive Impairment: A Pilot Clinical Trial. Arch Neurol . 2011 Sep 12. Alzheimer's disease is associated with brain insulin deficiency and insulin resistance, similar to the problems in diabetes. If insulin could be supplied to the brain in the early stages of Alzheimer's, subsequent neurodegeneration might be prevented. Administering systemic insulin to elderly non-diabetics poses unacceptable risks of inadvertant hypoglycemia. However, intranasal delivery directs the insulin into the brain, avoiding systemic side-effects. This pilot study demonstrates both efficacy and safety of using intranasal insulin to treat early Alzheimer's and mild cognitive impairment, i.e. the precursor to Alzheimer's. Significant improvements in learning, memory, and cognition occured within a few months, but without intranasal insulin, brain function continued to deteriorate in measurable degrees. Intranasal insulin therapy holds promise for halting progression of Alzheimer's disease.

  15. Minocycline reduces neuroinflammation but does not ameliorate neuron loss in a mouse model of neurodegeneration

    Science.gov (United States)

    Cheng, Shanshan; Hou, Jinxing; Zhang, Chen; Xu, Congyu; Wang, Long; Zou, Xiaoxia; Yu, Huahong; Shi, Yun; Yin, Zhenyu; Chen, Guiquan

    2015-01-01

    Minocycline is a broad-spectrum tetracycline antibiotic. A number of preclinical studies have shown that minocycline exhibits neuroprotective effects in various animal models of neurological diseases. However, it remained unknown whether minocycline is effective to prevent neuron loss. To systematically evaluate its effects, minocycline was used to treat Dicer conditional knockout (cKO) mice which display age-related neuron loss. The drug was given to mutant mice prior to the occurrence of neuroinflammation and neurodegeneration, and the treatment had lasted 2 months. Levels of inflammation markers, including glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule1 (Iba1) and interleukin6 (IL6), were significantly reduced in minocycline-treated Dicer cKO mice. In contrast, levels of neuronal markers and the total number of apoptotic cells in Dicer cKO mice were not affected by the drug. In summary, inhibition of neuroinflammation by minocycline is insufficient to prevent neuron loss and apoptosis. PMID:26000566

  16. Allogeneic hematopoietic cell transplantation in first remission abrogates poor outcomes associated with high-risk pediatric acute myeloid leukemia.

    Science.gov (United States)

    Burke, Michael J; Wagner, John E; Cao, Qing; Ustun, Celalettin; Verneris, Michael R

    2013-07-01

    Despite remission rates of approximately 85% for children diagnosed with acute myeloid leukemia (AML), greater than 40% will die from relapsed disease. Patients with poor-risk molecular/cytogenetics and/or inadequate response to up-front therapy are typically considered high-risk (HR) and historically have poor outcomes with chemotherapy alone. We investigated whether allogeneic hematopoietic cell transplantation (allo-HCT) with best available donor in first remission (CR1) would abrogate the poor outcomes associated with HR AML in children and young adults treated with chemotherapy. We reviewed the outcomes of 50 consecutive children and young adults (ages 0 to 30 years) with AML who received a myeloablative allo-HCT between 2001 and 2010. Thirty-six patients (72%) were HR, defined as having FLT3-ITD mutations, 11q23 MLL rearrangements, chromosome 5 or 7 abnormalities, induction failure, and/or having persistent disease. The majority of patients received cyclophosphamide and total body irradiation conditioning, and graft-versus-host-disease (GVHD) prophylaxis was cyclosporine based. Transplantation outcomes for HR patients were compared to standard-risk patients, with no significant differences observed in overall survival (72% versus 78%, P = .72), leukemia-free survival (69% versus 79%, P = .62), relapse (11% versus 7%, P = .71), or treatment-related mortality (17% versus 14%, P = .89). Children and young adults with HR-AML have comparable outcomes to standard-risk patients following allo-HCT in CR1. Copyright © 2013 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  17. Mutations that abrogate transactivational activity of the feline leukemia virus long terminal repeat do not affect virus replication

    International Nuclear Information System (INIS)

    Abujamra, Ana L.; Faller, Douglas V.; Ghosh, Sajal K.

    2003-01-01

    The U3 region of the LTR of oncogenic Moloney murine leukemia virus (Mo-MuLV) and feline leukemia viruses (FeLV) have been previously reported to activate expression of specific cellular genes in trans, such as MHC class I, collagenase IV, and MCP-1, in an integration-independent manner. It has been suggested that transactivation of these specific cellular genes by leukemia virus U3-LTR may contribute to the multistage process of leukemogenesis. The U3-LTR region, necessary for gene transactivational activity, also contains multiple transcription factor-binding sites that are essential for normal virus replication. To dissect the promoter activity and the gene transactivational activity of the U3-LTR, we conducted mutational analysis of the U3-LTR region of FeLV-A molecular clone 61E. We identified minimal nucleotide substitution mutants on the U3 LTR that did not disturb transcription factor-binding sites but abrogated its ability to transactivate the collagenase gene promoter. To determine if these mutations actually have altered any uncharacterized important transcription factor-binding site, we introduced these U3-LTR mutations into the full-length infectious molecular clone 61E. We demonstrate that the mutant virus was replication competent but could not transactivate cellular gene expression. These results thus suggest that the gene transactivational activity is a distinct property of the LTR and possibly not related to its promoter activity. The cellular gene transactivational activity-deficient mutant FeLV generated in this study may also serve as a valuable reagent for testing the biological significance of LTR-mediated cellular gene activation in the tumorigenesis caused by leukemia viruses

  18. Combined inhibition of p38 and Akt signaling pathways abrogates cyclosporine A-mediated pathogenesis of aggressive skin SCCs

    Energy Technology Data Exchange (ETDEWEB)

    Arumugam, Aadithya; Walsh, Stephanie B.; Xu, Jianmin; Afaq, Farrukh [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019 (United States); Elmets, Craig A. [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019 (United States); Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019 (United States); Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL 35294 (United States)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer p38 and Akt are the crucial molecular targets in the pathogenesis of SCCs in OTRs. Black-Right-Pointing-Pointer Combined inhibition of these targets diminished tumor growth by 90%. Black-Right-Pointing-Pointer Inhibition of these targets act through downregulating mTOR signaling pathway. -- Abstract: Non-melanoma skin cancers (NMSCs) are the most common neoplasm in organ transplant recipients (OTRs). These cancers are more invasive and metastatic as compared to those developed in normal cohorts. Previously, we have shown that immunosuppressive drug, cyclosporine A (CsA) directly alters tumor phenotype of cutaneous squamous cell carcinomas (SCCs) by activating TGF-{beta} and TAK1/TAB1 signaling pathways. Here, we identified novel molecular targets for the therapeutic intervention of these SCCs. We observed that combined blockade of Akt and p38 kinases-dependent signaling pathways in CsA-promoted human epidermoid carcinoma A431 xenograft tumors abrogated their growth by more than 90%. This diminution in tumor growth was accompanied by a significant decrease in proliferation and an increase in apoptosis. The residual tumors following the combined treatment with Akt inhibitor triciribine and p38 inhibitors SB-203580 showed significantly diminished expression of phosphorylated Akt and p38 and these tumors were less invasive and highly differentiated. Diminished tumor invasiveness was associated with the reduced epithelial-mesenchymal transition as ascertained by the enhanced E-cadherin and reduced vimentin and N-cadherin expression. Consistently, these tumors also manifested reduced MMP-2/9. The decreased p-Akt expression was accompanied by a significant reduction in p-mTOR. These data provide first important combinatorial pharmacological approach to block the pathogenesis of CsA-induced highly aggressive cutaneous neoplasm in OTRs.

  19. Tobacco Smoke Exposure Impairs Brain Insulin/IGF Signaling: Potential Co-Factor Role in Neurodegeneration.

    Science.gov (United States)

    Deochand, Chetram; Tong, Ming; Agarwal, Amit R; Cadenas, Enrique; de la Monte, Suzanne M

    2016-01-01

    Human studies suggest tobacco smoking is a risk factor for cognitive impairment and neurodegeneration, including Alzheimer's disease (AD). However, experimental data linking tobacco smoke exposures to underlying mediators of neurodegeneration, including impairments in brain insulin and insulin-like growth factor (IGF) signaling in AD are lacking. This study tests the hypothesis that cigarette smoke (CS) exposures can impair brain insulin/IGF signaling and alter expression of AD-associated proteins. Adult male A/J mice were exposed to air for 8 weeks (A8), CS for 4 or 8 weeks (CS4, CS8), or CS8 followed by 2 weeks recovery (CS8+R). Gene expression was measured by qRT-PCR analysis and proteins were measured by multiplex bead-based or direct binding duplex ELISAs. CS exposure effects on insulin/IGF and insulin receptor substrate (IRS) proteins and phosphorylated proteins were striking compared with the mRNA. The main consequences of CS4 or CS8 exposures were to significantly reduce insulin R, IGF-1R, IRS-1, and tyrosine phosphorylated insulin R and IGF-1R proteins. Paradoxically, these effects were even greater in the CS8+R group. In addition, relative levels of S312-IRS-1, which inhibits downstream signaling, were increased in the CS4, CS8, and CS8+R groups. Correspondingly, CS and CS8+R exposures inhibited expression of proteins and phosphoproteins required for signaling through Akt, PRAS40, and/or p70S6K, increased AβPP-Aβ, and reduced ASPH protein, which is a target of insulin/IGF-1 signaling. Secondhand CS exposures caused molecular and biochemical abnormalities in brain that overlap with the findings in AD, and many of these effects were sustained or worsened despite short-term CS withdrawal.

  20. Ninjin'yoeito and ginseng extract prevent oxaliplatin-induced neurodegeneration in PC12 cells.

    Science.gov (United States)

    Suzuki, Toshiaki; Yamamoto, Ayano; Ohsawa, Masahiro; Motoo, Yoshiharu; Mizukami, Hajime; Makino, Toshiaki

    2015-10-01

    Ninjin'yoeito (NYT) is a formula of Japanese traditional kampo medicine composed of 12 crude drugs, and is designed to improve the decline in constitution after recovery from disease, fatigue, anemia, anorexia, perspiration during sleep, cold limbs, slight fever, chills, persistent cough, malaise, mental disequilibrium, insomnia, and constipation. Oxaliplatin (L-OHP) is a platinum-based anticancer drug used to treat colorectal, pancreatic, and stomach cancers. However, it often causes acute and chronic peripheral neuropathies including cold allodynia and mechanical hyperalgesia. In this study, we investigated the preventive effects of NYT on neuronal degeneration caused by L-OHP using PC12 cells, which are derived from the rat adrenal medulla and differentiate into nerve-like cells after exposure to nerve growth factor. L-OHP treatment decreased the elongation of neurite-like projection outgrowths in differentiated PC12 cells. When PC12 cells were treated with NYT hot water extract, neurodegeneration caused by L-OHP was significantly prevented in a concentration-dependent manner. Among the 12 crude drugs composing NYT, the extract of Ginseng (the root of Panax ginseng) exhibited the strongest preventive effects on neurodegeneration in differentiated PC12 cells. By activity-guided fractionation, we found that the fraction containing ginsenosides displayed preventive activity and, among several ginsenosides, ginsenoside F2 exhibited significant preventive effects on L-OHP-induced decreases in neurite-like outgrowths in differentiated PC12 cells. These results suggest that NYT and ginseng are promising agents for preventing L-OHP-induced neuropathies and present ginsenoside F2 as one of the active ingredients in ginseng.

  1. Mössbauer spectroscopy and the understanding of the role of iron in neurodegeneration

    Science.gov (United States)

    Friedman, A.; Galazka-Friedman, J.

    2017-11-01

    The possible role of iron in neurodegeneration may be related to the oxidative stress, triggered by Fenton reaction. In this reaction hydroxyl free radical production is generated by divalent iron. Motor symptoms of Parkinson's disease depend on the destruction of substantia nigra (SN). As the substantive questions were: 1/ what is the concentration of iron in the samples, 2/ what is the proportion of divalent vs. trivalent iron in the samples, and 3/ what is the iron-binding compound, it seemed appropriate to use Mössbauer spectroscopy to answer those questions. We found no difference in the concentration of total iron between PD and control, with the ratio of iron in PD vs. control being 1.00 ± 0.13. The divalent iron could not exceed 5% of the total iron. The main iron-binding compound in SN, both in PD and control is ferritin. Our further studies of ferritin in parkinsonian SN demonstrated a decrease, compared to control, of L-ferritin involved in the storage of iron within ferritin. This could allow an efflux of iron from the ferritin shell and an increase of non-ferritin iron in PD SN, which was confirmed by us. Mössbauer studies in Alzheimer showed slightly higher concentration of iron in hippocampal cortex with significantly higher concentrations of L and H ferritins compared to control. In atypical parkinsonism, progressive supranuclear palsy, higher concentration of iron was found in globus pallidus and SN compared to control. Mössbauer spectroscopy may play crucial role in further studies of human neurodegeneration.

  2. Age and neurodegeneration imaging biomarkers in persons with Alzheimer disease dementia.

    Science.gov (United States)

    Knopman, David S; Jack, Clifford R; Wiste, Heather J; Weigand, Stephen D; Vemuri, Prashanthi; Lowe, Val J; Kantarci, Kejal; Gunter, Jeffrey L; Senjem, Matthew L; Mielke, Michelle M; Machulda, Mary M; Roberts, Rosebud O; Boeve, Bradley F; Jones, David T; Petersen, Ronald C

    2016-08-16

    To examine neurodegenerative imaging biomarkers in Alzheimer disease (AD) dementia from middle to old age. Persons with AD dementia and elevated brain β-amyloid with Pittsburgh compound B (PiB)-PET imaging underwent [(18)F]-fluorodeoxyglucose (FDG)-PET and structural MRI. We evaluated 3 AD-related neurodegeneration biomarkers: hippocampal volume adjusted for total intracranial volume (HVa), FDG standardized uptake value ratio (SUVR) in regions of interest linked to AD, and cortical thickness in AD-related regions of interest. We examined associations of each biomarker with age and evaluated age effects on cutpoints defined by the 90th percentile in AD dementia. We assembled an age-, sex-, and intracranial volume-matched group of 194 similarly imaged clinically normal (CN) persons. The 97 participants with AD dementia (aged 49-93 years) had PiB SUVR ≥1.8. A nonlinear (inverted-U) relationship between FDG SUVR and age was seen in the AD group but an inverse linear relationship with age was seen in the CN group. Cortical thickness had an inverse linear relationship with age in AD but a nonlinear (flat, then inverse linear) relationship in the CN group. HVa showed an inverse linear relationship with age in both AD and CN groups. Age effects on 90th percentile cutpoints were small for FDG SUVR and cortical thickness, but larger for HVa. In persons with AD dementia with elevated PiB SUVR, values of each neurodegeneration biomarker were associated with age. Cortical thickness had the smallest differences in 90th percentile cutpoints from middle to old age, and HVa the largest differences. © 2016 American Academy of Neurology.

  3. Differentiated NSC-34 motoneuron-like cells as experimental model for cholinergic neurodegeneration.

    Science.gov (United States)

    Maier, Oliver; Böhm, Julia; Dahm, Michael; Brück, Stefan; Beyer, Cordian; Johann, Sonja

    2013-06-01

    Alpha-motoneurons appear to be exceedingly affected in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). Morphological and physiological degeneration of this neuronal phenotype is typically characterized by a marked decrease of neuronal markers and by alterations of cholinergic metabolism such as reduced choline acetyltransferase (ChAT) expression. The motoneuron-like cell line NSC-34 is a hybrid cell line produced by fusion of neuroblastoma with mouse motoneuron-enriched primary spinal cord cells. In order to further establish this cell line as a valid model system to investigate cholinergic neurodegeneration, NSC-34 cells were differentiated by serum deprivation and additional treatment with all-trans retinoic acid (atRA). Cell maturation was characterized by neurite outgrowth and increased expression of neuronal and cholinergic markers, including MAP2, GAP-43 and ChAT. Subsequently, we used differentiated NSC-34 cells to study early degenerative responses following exposure to various neurotoxins (H2O2, TNF-α, and glutamate). Susceptibility to toxin-induced cell death was determined by means of morphological changes, expression of neuronal marker proteins, and the ratio of pro-(Bax) to anti-(Bcl-2) apoptotic proteins. NSC-34 cells respond to low doses of neurotoxins with increased cell death of remaining undifferentiated cells with no obvious adverse effects on differentiated cells. Thus, the different vulnerability of differentiated and undifferentiated NSC-34 cells to neurotoxins is a key characteristic of NSC-34 cells and has to be considered in neurotoxic studies. Nonetheless, application of atRA induced differentiation of NSC-34 cells and provides a suitable model to investigate molecular events linked to neurodegeneration of differentiated neurons. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Zinc Improves Cognitive and Neuronal Dysfunction During Aluminium-Induced Neurodegeneration.

    Science.gov (United States)

    Singla, Neha; Dhawan, D K

    2017-01-01

    Metals are considered as important components of a physiologically active cell, and imbalance in their levels can lead to various diseased conditions. Aluminium (Al) is an environmental neurotoxicant, which is etiologically related to several neurodegenerative disorders like Alzheimer's, whereas zinc (Zn) is an essential trace element that regulates a large number of metabolic processes in the brain. The objective of the present study was to understand whether Zn provides any physiological protection during Al-induced neurodegeneration. Male Sprague Dawley rats weighing 140-160 g received either aluminium chloride (AlCl 3 ) orally (100 mg/kg b.wt./day), zinc sulphate (ZnSO 4 ) in drinking water (227 mg/L) or combined treatment of aluminium and zinc for 8 weeks. Al treatment resulted in a significant decline in the cognitive behaviour of rats, whereas zinc supplementation caused an improvement in various neurobehavior parameters. Further, Al exposure decreased (p ≤ 0.001) the levels of neurotransmitters, acetylcholinesterase activity, but increased (p ≤ 0.001) the levels of L-citrulline as well as activities of nitric oxide and monoamine oxidase in the brain. However, zinc administration to Al-treated animals increased the levels of neurotransmitters and regulated the altered activities of brain markers. Western blot of tau, amyloid precursor protein (APP), glial fibrillary acidic protein (GFAP), ubiquitin, α-synuclein and Hsp 70 were also found to be elevated after Al exposure, which however were reversed following Zn treatment. Al treatment also revealed alterations in neurohistoarchitecture in the form of loss of pyramidal and Purkinje cells, which were improved upon zinc co-administration. Therefore, the present study demonstrates that zinc improves cognitive functions by regulating α-synuclein and APP-mediated molecular pathways during aluminium-induced neurodegeneration.

  5. Increased RhoA prenylation in the loechrig (loe mutant leads to progressive neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Mandy Cook

    Full Text Available The Drosophila mutant loechrig (loe shows age-dependent degeneration of the nervous system and is caused by the loss of a neuronal isoform of the AMP-activated protein kinase (AMPK γ-subunit (also known as SNF4Aγ. The trimeric AMPK complex is activated by low energy levels and metabolic insults and regulates multiple important signal pathways that control cell metabolism. A well-known downstream target of AMPK is hydroxyl-methylglutaryl-CoA reductase (HMGR, a key enzyme in isoprenoid synthesis, and we have previously shown that HMGR genetically interacts with loe and affects the severity of the degenerative phenotype. Prenylation of proteins like small G-proteins is an important posttranslational modification providing lipid moieties that allow the association of these proteins with membranes, thereby facilitating their subsequent activation. Rho proteins have been extensively studied in neuronal outgrowth, however, much less is known about their function in neuronal maintenance. Here we show that the loe mutation interferes with isoprenoid synthesis, leading to increased prenylation of the small GTPase Rho1, the fly orthologue of vertebrate RhoA. We also demonstrate that increased prenylation and Rho1 activity causes neurodegeneration and aggravates the behavioral and degenerative phenotypes of loe. Because we cannot detect defects in the development of the central nervous system in loe, this suggests that loe only interferes with the function of the RhoA pathway in maintaining neuronal integrity during adulthood. In addition, our results show that alterations in isoprenoids can result in progressive neurodegeneration, supporting findings in vertebrates that prenylation may play a role in neurodegenerative diseases like Alzheimer's Disease.

  6. The Effects of Meditation on Grey Matter Atrophy and Neurodegeneration: A Systematic Review.

    Science.gov (United States)

    Last, Nicole; Tufts, Emily; Auger, Leslie E

    2017-01-01

    The present systematic review is based on the premise that a variety of neurodegenerative diseases are accompanied by grey matter atrophy in the brain and meditation may impact this. Given that age is a major risk factor for many of these progressive and neurodegenerative diseases and that the percentage of the population over the age of 65 is quickly increasing, there is an obvious need for prompt treatment and prevention advances in research. As there is currently no cure for Alzheimer's disease and other neurodegenerative diseases, many are seeking non-pharmacological treatment options in attempts to offset the disease-related cognitive and functional declines. On the basis of a growing body of research suggesting that meditation is effective in increasing grey matter volume in healthy participants, this paper systematically reviewed the literature regarding the effects of meditation on restoring grey matter volume in healthy individuals and those affected by neurodegeneration. This review searched PubMed, CINAHL, and APA PsycNET to identify original studies that included MRI imaging to measure grey matter volume in meditators and post-mindfulness-based intervention participants compared to controls. Thirteen studies were considered eligible for review and involved a wide variety of meditation techniques and included participants with and without cognitive impairment. All studies reported significant increases in grey matter volume in the meditators/intervention group, albeit in assorted regions of the brain. Limited research exists on the mechanisms through which meditation affects disease-related neurodegeneration, but preliminary evidence suggests that it may offset grey matter atrophy.

  7. Further characterization of loss of heterozygosity enhanced by p53 abrogation in human lymphoblastoid TK6 cells: disappearance of endpoint hotspots.

    Science.gov (United States)

    Yatagai, Fumio; Morimoto, Shigeko; Kato, Takesi; Honma, Masamitsu

    2004-06-13

    Loss of heterozygosity (LOH) is the predominant mechanism of spontaneous mutagenesis at the heterozygous thymindine kinase locus (tk) in TK6 cells. LOH events detected in spontaneous TK(-) mutants (110 clones from p53 wild-type cells TK6-20C and 117 clones from p53-abrogated cells TK6-E6) were analyzed using 13 microsatellite markers spanning the whole of chromosome 17. Our analysis indicated an approximately 60-fold higher frequency of terminal deletions in p53-abrogated cells TK6-E6 compared to p53 wild-type cells TK6-20C whereas frequencies of point mutations (non-LOH events), interstitial deletions, and crossing over events were found to increase only less than twofold by such p53 abrogation. We then made use of an additional 17 microsatellite markers which provided an average map-interval of 1.6Mb to map various LOH endpoints on the 45Mb portion of chromosome 17q corresponding to the maximum length of LOH tracts (i.e. from the distal marker D17S932 to the terminal end). There appeared to be four prominent peaks (I-IV) in the distribution of LOH endpoints/Mb of Tk6-20C cells that were not evident in p53-abrogated cells TK6-E6, where they appeared to be rather broadly distributed along the 15-20Mb length (D17S1807 to D17S1607) surrounding two of the peaks that we detected in TK6-20C cells (peaks II and III). We suggest that the chromosomal instability that is so evident in TK6-E6 cells may be due to DNA double-strand break repair occurring through non homologous end-joining rather than allelic recombination.

  8. Functional and Structural Findings of Neurodegeneration in Early Stages of Diabetic Retinopathy. Cross-sectional Analyses of Baseline Data of the EUROCONDOR project

    DEFF Research Database (Denmark)

    Santos, Ana Rita; Ribeiro, Luisa; Bandello, Francesco

    2017-01-01

    Cross-sectional study evaluating the relationship between: a) functional and structural measurements of neurodegeneration in initial stages of diabetic retinopathy (DR); and b) presence of neurodegeneration and early microvascular impairment. We analyzed baseline data of patients with type 2...... diabetes (n=449) enrolled in the EUROCONDOR study (NCT01726075). Functional studies by multifocal ERG (mfERG) evaluated neurodysfunction and structural measurements using spectral domain optical-coherence tomography (SD-OCT) evaluated neurodegeneration. The mfERG P1 amplitude was more sensitive than the P1...

  9. Clinical and Imaging Presentation of a Patient with Beta-Propeller Protein-Associated Neurodegeneration, a Rare and Sporadic form of Neurodegeneration with Brain Iron Accumulation (NBIA).

    Science.gov (United States)

    Hattingen, Elke; Handke, Nikolaus; Cremer, Kirsten; Hoffjan, Sabine; Kukuk, Guido Matthias

    2017-12-01

    Neurodegeneration with brain iron accumulation (NBIA) is a heterogeneous group of inherited neurologic disorders with iron accumulation in the basal ganglia, which share magnetic resonance (MR) imaging characteristics, histopathologic and clinical features. According to the affected basal nuclei, clinical features include extrapyramidal movement disorders and varying degrees of intellectual disability status. The most common NBIA subtype is caused by pathogenic variants in PANK2. The hallmark of MR imaging in patients with PANK2 mutations is an eye-of-the-tiger sign in the globus pallidus. We report a 33-year-old female with a rare subtype of NBIA, called beta-propeller protein-associated neurodegeneration (BPAN) with a hitherto unknown missense variant in WDR45. She presented with BPAN's particular biphasic course of neurological symptoms and with a dominant iron accumulation in the midbrain that enclosed a spotty T2-hyperintensity.

  10. Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase-associated neurodegeneration mouse model

    NARCIS (Netherlands)

    Brunetti, Dario; Dusi, Sabrina; Giordano, Carla; Lamperti, Costanza; Morbin, Michela; Fugnanesi, Valeria; Marchet, Silvia; Fagiolari, Gigliola; Sibon, Ody; Moggio, Maurizio; d'Amati, Giulia; Tiranti, Valeria

    Pantothenate kinase-associated neurodegeneration, caused by mutations in the PANK2 gene, is an autosomal recessive disorder characterized by dystonia, dysarthria, rigidity, pigmentary retinal degeneration and brain iron accumulation. PANK2 encodes the mitochondrial enzyme pantothenate kinase type 2,

  11. Dementia, preclinical studies in neurodegeneration and its potential for translational medicine in SouthAmerica

    Directory of Open Access Journals (Sweden)

    Gloria Patricia Cardona Gomez

    2016-12-01

    Full Text Available Latin-American people with dementia will increase in a 368% in 2050, higher than USA and Europe. In addition, to sporadic dementia type Alzheimer and vascular dementia progression after Cerebrovascular disease, the statistics are increased in Colombia by specific populations affected with pure neurodegenerative and vascular dementias like autosomical dominant familial Alzheimer´s disease and CADASIL. In spite of the enormous human and economical effort and investment, neither sporadic nor genetic kinds of dementia progression have been prevented or blocked yet. Currently, exist several animal models that partially solve the understanding of the neurodegenerative etiopathogenesis and its treatment. However, when the potential therapies are translated to humans, those do not work or present a limited action. Main difficulties are the diverse comorbility associated to the cause and/or several affected brain regions, reducing the efficacy of some therapies which are limited to a tissue-specific action or modulating a kind of neurotransmission. Global investigation suggests that a general prevention could be achieved with the improvement in the quality of lifestyle, including healthy diet, physical and mental activity, and avoiding mechanical or chemical pro-inflammatory events in an early stage in the most of non-communicable diseases. In this review, we present some molecular targets and preclinical studies in animal models to propose strategies that could be useful in a future translation to prevent or block neurodegeneration: One is gene therapy silencing pathogenic genes in critical brain areas where excitotoxicity arise and spread. Another is to take advantage of the natural source and its wide biodiversity of natural products some of them identified by the blocking and prevention of neurodegeneration. On the other side, the casuistic of pure dementias in the Latin-American region give an exceptional opportunity to understand the pathogenesis

  12. Dopamine receptor D3 expressed on CD4+ T cells favors neurodegeneration of dopaminergic neurons during Parkinson's disease.

    Science.gov (United States)

    González, Hugo; Contreras, Francisco; Prado, Carolina; Elgueta, Daniela; Franz, Dafne; Bernales, Sebastián; Pacheco, Rodrigo

    2013-05-15

    Emerging evidence has demonstrated that CD4(+) T cells infiltrate into the substantia nigra (SN) in Parkinson's disease (PD) patients and in animal models of PD. SN-infiltrated CD4(+) T cells bearing inflammatory phenotypes promote microglial activation and strongly contribute to neurodegeneration of dopaminergic neurons. Importantly, altered expression of dopamine receptor D3 (D3R) in PBLs from PD patients has been correlated with disease severity. Moreover, pharmacological evidence has suggested that D3R is involved in IFN-γ production by human CD4(+) T cells. In this study, we examined the role of D3R expressed on CD4(+) T cells in neurodegeneration of dopaminergic neurons in the SN using a mouse model of PD. Our results show that D3R-deficient mice are strongly protected against loss of dopaminergic neurons and microglial activation during 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD. Notably, D3R-deficient mice become susceptible to MPTP-induced neurodegeneration and microglial activation upon transfer of wild-type (WT) CD4(+) T cells. Furthermore, RAG1 knockout mice, which are devoid of T cells and are resistant to MPTP-induced neurodegeneration, become susceptible to MPTP-induced loss of dopaminergic neurons when reconstituted with WT CD4(+) T cells but not when transferred with D3R-deficient CD4(+) T cells. In agreement, experiments analyzing activation and differentiation of CD4(+) T cells revealed that D3R favors both T cell activation and acquisition of the Th1 inflammatory phenotype. These findings indicate that D3R expressed on CD4(+) T cells plays a fundamental role in the physiopathology of MPTP-induced PD in a mouse model.

  13. Ferrous Iron Up-regulation in Fibroblasts of Patients with Beta Propeller Protein-Associated Neurodegeneration (BPAN).

    OpenAIRE

    Ingrassia, Rosaria; Memo, Maurizio; Garavaglia, Barbara

    2017-01-01

    Mutations in WDR45 gene, coding for a beta-propeller protein, have been found in patients affected by Neurodegeneration with Brain Iron Accumulation, NBIA5 (also known as BPAN). BPAN is a movement disorder with Non Transferrin Bound Iron (NTBI) accumulation in the basal ganglia as common hallmark between NBIA classes (Hayflick et al., 2013). WDR45 has been predicted to have a role in autophagy, while the impairment of iron metabolism in the different NBIA subclasses has not currently been cla...

  14. Neuroprotective Effect of Fisetin Against Amyloid-Beta-Induced Cognitive/Synaptic Dysfunction, Neuroinflammation, and Neurodegeneration in Adult Mice.

    Science.gov (United States)

    Ahmad, Ashfaq; Ali, Tahir; Park, Hyun Young; Badshah, Haroon; Rehman, Shafiq Ur; Kim, Myeong Ok

    2017-04-01

    Alzheimer's disease (AD) is a devastating and progressive neurodegenerative disease and is characterized pathologically by the accumulation of amyloid beta (Aβ) and the hyperphosphorylation of tau proteins in the brain. The deposition of Aβ aggregates triggers synaptic dysfunction, hyperphosphorylation of tau, and neurodegeneration, which lead to cognitive disorders. Here, we investigated the neuroprotective effect of fisetin in the Aβ 1-42 mouse model of AD. Single intracerebroventricular injections of Aβ 1-42 (3 μl/5 min/mouse) markedly induced memory/synaptic deficits, neuroinflammation, and neurodegeneration. Intraperitoneal injections of fisetin at a dose of 20 mg/kg/day for 2 weeks starting 24 h after Aβ 1-42 injection significantly decreased the Aβ 1-42 -induced accumulation of Aβ, BACE-1 expression, and hyperphosphorylation of tau protein at serine 413. Fisetin treatment also markedly reversed Aβ 1-42 -induced synaptic dysfunction by increasing the levels of both presynaptic (SYN and SNAP-25) and postsynaptic proteins (PSD-95, SNAP-23, p-GluR1 (Ser 845), p-CREB (Ser 133) and p-CAMKII (Thr 286) and ultimately improved mouse memory, as observed in the Morris water maze test. Fisetin significantly activated p-PI3K, p-Akt (Ser 473), and p-GSK3β (Ser 9) expression in Aβ 1-42 -treated mice. Moreover, fisetin prevented neuroinflammation by suppressing various activated neuroinflammatory mediators and gliosis; it also suppressed the apoptotic neurodegeneration triggered by Aβ 1-42 injections in the mouse hippocampus. Fluorojade-B and immunohistochemical staining for caspase-3 revealed that fisetin prevented neurodegeneration in Aβ 1-42 -treated mice. Our results suggest that fisetin has a potent neuroprotective effect against Aβ 1-42 -induced neurotoxicity. These results demonstrate that polyphenolic flavonoids such as fisetin could be a beneficial, effective and safe neuroprotective agent for preventing neurological disorders such as AD.

  15. Increased CDK5 expression in HIV encephalitis contributes to neurodegeneration via tau phosphorylation and is reversed with Roscovitine.

    Science.gov (United States)

    Patrick, Christina; Crews, Leslie; Desplats, Paula; Dumaop, Wilmar; Rockenstein, Edward; Achim, Cristian L; Everall, Ian P; Masliah, Eliezer

    2011-04-01

    Recent treatments with highly active antiretroviral therapy (HAART) regimens have been shown to improve general clinical status in patients with human immunodeficiency virus (HIV) infection; however, the prevalence of cognitive alterations and neurodegeneration has remained the same or has increased. These deficits are more pronounced in the subset of HIV patients with the inflammatory condition known as HIV encephalitis (HIVE). Activation of signaling pathways such as GSK3β and CDK5 has been implicated in the mechanisms of HIV neurotoxicity; however, the downstream mediators of these effects are unclear. The present study investigated the involvement of CDK5 and tau phosphorylation in the mechanisms of neurodegeneration in HIVE. In the frontal cortex of patients with HIVE, increased levels of CDK5 and p35 expression were associated with abnormal tau phosphorylation. Similarly, transgenic mice engineered to express the HIV protein gp120 exhibited increased brain levels of CDK5 and p35, alterations in tau phosphorylation, and dendritic degeneration. In contrast, genetic knockdown of CDK5 or treatment with the CDK5 inhibitor roscovitine improved behavioral performance in the water maze test and reduced neurodegeneration, abnormal tau phosphorylation, and astrogliosis in gp120 transgenic mice. These findings indicate that abnormal CDK5 activation contributes to the neurodegenerative process in HIVE via abnormal tau phosphorylation; thus, reducing CDK5 might ameliorate the cognitive impairments associated with HIVE. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. Towards an Integrative Understanding of tRNA Aminoacylation–Diet–Host–Gut Microbiome Interactions in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Elena L. Paley

    2018-03-01

    Full Text Available Transgenic mice used for Alzheimer’s disease (AD preclinical experiments do not recapitulate the human disease. In our models, the dietary tryptophan metabolite tryptamine produced by human gut microbiome induces tryptophanyl-tRNA synthetase (TrpRS deficiency with consequent neurodegeneration in cells and mice. Dietary supplements, antibiotics and certain drugs increase tryptamine content in vivo. TrpRS catalyzes tryptophan attachment to tRNAtrp at initial step of protein biosynthesis. Tryptamine that easily crosses the blood–brain barrier induces vasculopathies, neurodegeneration and cell death via TrpRS competitive inhibition. TrpRS inhibitor tryptophanol produced by gut microbiome also induces neurodegeneration. TrpRS inhibition by tryptamine and its metabolites preventing tryptophan incorporation into proteins lead to protein biosynthesis impairment. Tryptophan, a least amino acid in food and proteins that cannot be synthesized by humans competes with frequent amino acids for the transport from blood to brain. Tryptophan is a vulnerable amino acid, which can be easily lost to protein biosynthesis. Some proteins marking neurodegenerative pathology, such as tau lack tryptophan. TrpRS exists in cytoplasmic (WARS and mitochondrial (WARS2 forms. Pathogenic gene variants of both forms cause TrpRS deficiency with consequent intellectual and motor disabilities in humans. The diminished tryptophan-dependent protein biosynthesis in AD patients is a proof of our model-based disease concept.

  17. The Role of S-Nitrosylation and S-Glutathionylation of Protein Disulphide Isomerase in Protein Misfolding and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    M. Halloran

    2013-01-01

    Full Text Available Neurodegenerative diseases involve the progressive loss of neurons, and a pathological hallmark is the presence of abnormal inclusions containing misfolded proteins. Although the precise molecular mechanisms triggering neurodegeneration remain unclear, endoplasmic reticulum (ER stress, elevated oxidative and nitrosative stress, and protein misfolding are important features in pathogenesis. Protein disulphide isomerase (PDI is the prototype of a family of molecular chaperones and foldases upregulated during ER stress that are increasingly implicated in neurodegenerative diseases. PDI catalyzes the rearrangement and formation of disulphide bonds, thus facilitating protein folding, and in neurodegeneration may act to ameliorate the burden of protein misfolding. However, an aberrant posttranslational modification of PDI, S-nitrosylation, inhibits its protective function in these conditions. S-nitrosylation is a redox-mediated modification that regulates protein function by covalent addition of nitric oxide- (NO- containing groups to cysteine residues. Here, we discuss the evidence for abnormal S-nitrosylation of PDI (SNO-PDI in neurodegeneration and how this may be linked to another aberrant modification of PDI, S-glutathionylation. Understanding the role of aberrant S-nitrosylation/S-glutathionylation of PDI in the pathogenesis of neurodegenerative diseases may provide insights into novel therapeutic interventions in the future.

  18. Towards an Integrative Understanding of tRNA Aminoacylation-Diet-Host-Gut Microbiome Interactions in Neurodegeneration.

    Science.gov (United States)

    Paley, Elena L; Perry, George

    2018-03-26

    Transgenic mice used for Alzheimer's disease (AD) preclinical experiments do not recapitulate the human disease. In our models, the dietary tryptophan metabolite tryptamine produced by human gut microbiome induces tryptophanyl-tRNA synthetase (TrpRS) deficiency with consequent neurodegeneration in cells and mice. Dietary supplements, antibiotics and certain drugs increase tryptamine content in vivo. TrpRS catalyzes tryptophan attachment to tRNA trp at initial step of protein biosynthesis. Tryptamine that easily crosses the blood-brain barrier induces vasculopathies, neurodegeneration and cell death via TrpRS competitive inhibition. TrpRS inhibitor tryptophanol produced by gut microbiome also induces neurodegeneration. TrpRS inhibition by tryptamine and its metabolites preventing tryptophan incorporation into proteins lead to protein biosynthesis impairment. Tryptophan, a least amino acid in food and proteins that cannot be synthesized by humans competes with frequent amino acids for the transport from blood to brain. Tryptophan is a vulnerable amino acid, which can be easily lost to protein biosynthesis. Some proteins marking neurodegenerative pathology, such as tau lack tryptophan. TrpRS exists in cytoplasmic (WARS) and mitochondrial (WARS2) forms. Pathogenic gene variants of both forms cause TrpRS deficiency with consequent intellectual and motor disabilities in humans. The diminished tryptophan-dependent protein biosynthesis in AD patients is a proof of our model-based disease concept.

  19. Neuronal dark matter: The emerging role of microRNAs in neurodegeneration

    Directory of Open Access Journals (Sweden)

    Emily Frances Goodall

    2013-10-01

    Full Text Available MicroRNAs (miRNAs are small, abundant RNA molecules that constitute part of the cell’s non-coding RNA dark matter. In recent years, the discovery of miRNAs has revolutionised the traditional view of gene expression and our understanding of miRNA biogenesis and function has expanded. Altered expression of miRNAs is increasingly recognised as a feature of many disease states, including neurodegeneration. Here, we review the emerging role for miRNA dysfunction in Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis and Huntington’s disease pathogenesis. We emphasise the complex nature of gene regulatory networks and the need for systematic studies, with larger sample cohorts than have so far been reported, to reveal the most important miRNA regulators in disease. Finally, miRNA diversity and their potential to target multiple pathways, offers novel clinical applications for miRNAs as biomarkers and therapeutic agents in neurodegenerative diseases.

  20. Brain network alterations and vulnerability to simulated neurodegeneration in breast cancer.

    Science.gov (United States)

    Kesler, Shelli R; Watson, Christa L; Blayney, Douglas W

    2015-08-01

    Breast cancer and its treatments are associated with mild cognitive impairment and brain changes that could indicate an altered or accelerated brain aging process. We applied diffusion tensor imaging and graph theory to measure white matter organization and connectivity in 34 breast cancer survivors compared with 36 matched healthy female controls. We also investigated how brain networks (connectomes) in each group responded to simulated neurodegeneration based on network attack analysis. Compared with controls, the breast cancer group demonstrated significantly lower fractional anisotropy, altered small-world connectome properties, lower brain network tolerance to systematic region (node), and connection (edge) attacks and significant cognitive impairment. Lower tolerance to network attack was associated with cognitive impairment in the breast cancer group. These findings provide further evidence of diffuse white matter pathology after breast cancer and extend the literature in this area with unique data demonstrating increased vulnerability of the post-breast cancer brain network to future neurodegenerative processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Switch-Like Roles for Polycomb Proteins from Neurodevelopment to Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Anke Hoffmann

    2017-12-01

    Full Text Available Polycomb Group (PcG proteins are best-known for maintaining repressive or active chromatin states that are passed on across multiple cell divisions, and thus sustain long-term memory of gene expression. PcG proteins engage different, partly gene- and/or stage-specific, mechanisms to mediate spatiotemporal gene expression during central nervous system development. In the course of this, PcG proteins bind to various cis-regulatory sequences (e.g., promoters, enhancers or silencers and coordinate, as well the interactions between distantly separated genomic regions to control chromatin function at different scales ranging from compaction of the linear chromatin to the formation of topological hubs. Recent findings show that PcG proteins are involved in switch-like changes in gene expression states of selected neural genes during the transition from multipotent to differentiating cells, and then to mature neurons. Beyond neurodevelopment, PcG proteins sustain mature neuronal function and viability, and prevent progressive neurodegeneration in mice. In support of this view, neuropathological findings from human neurodegenerative diseases point to altered PcG functions. Overall, improved insight into the multiplicity of PcG functions may advance our understanding of human neurodegenerative diseases and ultimately pave the way to new therapies.

  2. New isatin derivative inhibits neurodegeneration by restoring insulin signaling in brain.

    Science.gov (United States)

    Aftab, Meha Fatima; Afridi, Shabbir Khan; Mughal, Uzma Rasool; Karim, Aneela; Haleem, Darakhshan Jabeen; Kabir, Nurul; Khan, Khalid M; Hafizur, Rahman M; Waraich, Rizwana S

    2017-04-01

    Diabetes is associated with neurodegeneration. Glycation ensues in diabetes and glycated proteins cause insulin resistance in brain resulting in amyloid plaques and NFTs. Also glycation enhances gliosis by promoting neuroinflammation. Currently there is no therapy available to target neurodegenration in brain therefore, development of new therapy that offers neuroprotection is critical. The objective of this study was to evaluate mechanistic effect of isatin derivative URM-II-81, an anti-glycation agent for improvement of insulin action in brain and inhibition of neurodegenration. Methylglyoxal induced stress was inhibited by treatment with URM-II-81. Also, Ser473 and Ser9 phosphorylation of Akt and GSK-3β respectively were restored by URM-II-81. Effect of URM-II-81 on axonal integrity was studied by differentiating Neuro2A using retinoic acid. URM-II-81 restored axonal length in MGO treated cells. Its effects were also studied in high fat and low dose streptozotocin induced diabetic mice where it reduced RBG levels and inhibited glycative stress by reducing HbA1c. URM-II-81 treatment also showed inhibition of gliosis in hippocampus. Histological analysis showed reduced NFTs in CA3 hippocampal region and restoration of insulin signaling in hippocampii of diabetic mice. Our findings suggest that URM-II-81 can be developed as a new therapeutic agent for treatment of neurodegenration. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Cystathionine γ-lyase deficiency mediates neurodegeneration in Huntington’s disease

    Science.gov (United States)

    Paul, Bindu D.; Sbodio, Juan I.; Xu, Risheng; Vandiver, M. Scott; Cha, Jiyoung Y.; Snowman, Adele M.; Snyder, Solomon H.

    2015-01-01

    Huntington’s disease is an autosomal dominant disease associated with a mutation in the gene encoding huntingtin (Htt) leading to expanded polyglutamine repeats of mutant Htt (mHtt) that elicit oxidative stress, neurotoxicity, and motor and behavioural changes1. Huntington’s disease is characterized by highly selective and profound damage to the corpus striatum, which regulates motor function. Striatal selectivity of Huntington’s disease may reflect the striatally selective small G protein Rhes binding to mHtt and enhancing its neurotoxicity2. Specific molecular mechanisms by which mHtt elicits neurodegeneration have been hard to determine. Here we show a major depletion of cystathionine γ-lyase (CSE), the biosynthetic enzyme for cysteine, in Huntington’s disease tissues, which may mediate Huntington’s disease pathophysiology. The defect occurs at the transcriptional level and seems to reflect influences of mHtt on specificity protein 1, a transcriptional activator for CSE. Consistent with the notion of loss of CSE as a pathogenic mechanism, supplementation with cysteine reverses abnormalities in cultures of Huntington’s disease tissues and in intact mouse models of Huntington’s disease, suggesting therapeutic potential. PMID:24670645

  4. Compensatory mechanisms in genetic models of neurodegeneration: are the mice better than humans?

    Directory of Open Access Journals (Sweden)

    Grzegorz eKreiner

    2015-03-01

    Full Text Available Neurodegenerative diseases are one of the main causes of mental and physical disabilities. Neurodegeneration has been estimated to begin many years before the first clinical symptoms manifest, and even a prompt diagnosis at this stage provides very little advantage for a more effective treatment as the currently available pharmacotherapies are based on disease symptomatology. The etiology of the majority of neurodegenerative diseases remains unknown, and even for those diseases caused by identified genetic mutations, the direct pathways from gene alteration to final cell death have not yet been fully elucidated. Advancements in genetic engineering have provided many transgenic mice that are used as an alternative to pharmacological models of neurodegenerative diseases. Surprisingly, even the models reiterating the same causative mutations do not fully recapitulate the inevitable neuronal loss, and some fail to even show phenotypic alterations, which suggests the possible existence of compensatory mechanisms. A better evaluation of these mechanisms may not only help us to explain why neurodegenerative diseases are mostly late-onset disorders in humans but may also provide new markers and targets for novel strategies designed to extend neuronal function and survival. The aim of this mini-review is to draw attention to this under-explored field in which investigations may reasonably contribute to unveiling hidden reserves in the organism.

  5. Neurodegeneration caused by expression of human truncated tau leads to progressive neurobehavioural impairment in transgenic rats.

    Science.gov (United States)

    Hrnkova, Miroslava; Zilka, Norbert; Minichova, Zuzana; Koson, Peter; Novak, Michal

    2007-01-26

    Human truncated tau protein is an active constituent of the neurofibrillary degeneration in sporadic Alzheimer's disease. We have shown that modified tau protein, when expressed as a transgene in rats, induced AD characteristic tau cascade consisting of tau hyperphosphorylation, formation of argyrophilic tangles and sarcosyl-insoluble tau complexes. These pathological changes led to the functional impairment characterized by a variety of neurobehavioural symptoms. In the present study we have focused on the behavioural alterations induced by transgenic expression of human truncated tau. Transgenic rats underwent a battery of behavioural tests involving cognitive- and sensorimotor-dependent tasks accompanied with neurological assessment at the age of 4.5, 6 and 9 months. Behavioural examination of these rats showed altered spatial navigation in Morris water maze resulting in less time spent in target quadrant (popen field was not influenced by transgene expression. However beam walking test revealed that transgenic rats developed progressive sensorimotor disturbances related to the age of tested animals. The disturbances were most pronounced at the age of 9 months (p<0.01). Neurological alterations indicating impaired reflex responses were other added features of behavioural phenotype of this novel transgenic rat. These results allow us to suggest that neurodegeneration, caused by the non-mutated human truncated tau derived from sporadic human AD, result in the neuronal dysfunction consequently leading to the progressive neurobehavioural impairment.

  6. Bifenthrin causes neurite retraction in the absence of cell death: a model for pesticide associated neurodegeneration.

    Science.gov (United States)

    Nandi, Avishek; Chandil, Daljit; Lechesal, Rethabile; Pryor, Stephen C; McLaughlin, Ashlea; Bonventre, Josephine A; Flynnx, Katherine; Weeks, Benjamin S

    2006-05-01

    Bifenthrin is a synthetic pyrethroid insecticide derivative of naturally occurring pyrethrins from chrysanthemum flowers. Bifenthrin is considered relatively safe and therefore incorporated as the active ingredient in preparations sold over the counter for household use. Recent studies have raised concern that chronic exposure to pesticides in the home setting may increase the risk for neurodegenerative diseases. To address this concer, in the present study, bifenthrin is added to pre-differentiated PC12 and effect of bifenthrin on the retraction of existing neurites is observed a model for neurodegeneration. PC12 cells were differentiated with nerve growth factor for twenty-four hours and then treated with what was determined to be a sublethal dose of bifenthrin for up to an additional 48 hours. The percent of cells with neurites was assessed at various times before and after nerve growth factor treatment. Bifenthrin toxicity was determined using trypan blue exclusion. Bifenthrin was not toxic to PC12 cells at concentrations ranging from 1 x 10(-10) M to 1 x 10(-4) M. Twenty-four hours after nerve growth factor treatment, a maximum percent of cells had formed neurites and with a treatment of 1 x 10(-5) M bifenthrin, approximately 80% of these neurites retracted in within 12 additional hours and almost all neurites had retracted within 48 hours. Trypan exclusion showed that these cells were viable. These data show that bifenthrin can stimulate the retraction of neurites in the absence of frank toxicity.

  7. Neurodegeneration after mild and repetitive traumatic brain injury: Chronic traumatic encepalopathy

    Directory of Open Access Journals (Sweden)

    Stanescu Ioana

    2015-09-01

    Full Text Available Repetitive brain trauma is associated with a progressive neurological deterioration, now termed as chronic traumatic encephalopathy (CTE. Although research on the long-term effects of TBI is advancing quickly, the incidence and prevalence of post-traumatic neurodegeneration and CTE are unknown. The incidence and prevalence of chronic traumatic encephalopathy and the genetic risk factors critical to its development are currently under research. CTE can be diagnosed only by post mortem neuropathological examination of the brain. Great efforts are being made to better understand the clinical signs and symptoms of CTE, obtained in most cases retrospectively from families of affected persons.Patients with CTE are described as having behavioral, mood, cognitive and motor impairments, occurring after a long latency from the traumatic events. Recent pathogenetic studies have provided new insights to CTE mechanisms, offering important clues in understanding neurodegenerative process and relations between physical factors and pathologic protein deposition. Further research is needed to better identify the genetic and environmental risk factors for CTE, as well as rehabilitation and treatment strategies.

  8. Use of Okadaic Acid to Identify Relevant Phosphoepitopes in Pathology: A Focus on Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Jesús Avila

    2013-05-01

    Full Text Available Protein phosphorylation is involved in the regulation of a wide variety of physiological processes and is the result of a balance between protein kinase and phosphatase activities. Biologically active marine derived compounds have been shown to represent an interesting source of novel compounds that could modify that balance. Among them, the marine toxin and tumor promoter, okadaic acid (OA, has been shown as an inhibitor of two of the main cytosolic, broad-specificity protein phosphatases, PP1 and PP2A, thus providing an excellent cell-permeable probe for examining the role of protein phosphorylation, and PP1 and PP2A in particular, in any physiological or pathological process. In the present work, we review the use of okadaic acid to identify specific phosphoepitopes mainly in proteins relevant for neurodegeneration. We will specifically highlight those cases of highly dynamic phosphorylation-dephosphorylation events and the ability of OA to block the high turnover phosphorylation, thus allowing the detection of modified residues that could be otherwise difficult to identify. Finally, its effect on tau hyperhosphorylation and its relevance in neurodegenerative pathologies such as Alzheimer’s disease and related dementia will be discussed.

  9. KCa2 and KCa3 channels in learning and memory processes, and neurodegeneration

    Directory of Open Access Journals (Sweden)

    Els F. E. Kuiper

    2012-06-01

    Full Text Available Calcium-activated potassium (KCa channels are present throughout the central nervous system as well as many peripheral tissues. Activation of KCa channels is essential for maintenance of the neuronal membrane potential and was shown to underlie the afterhyperpolarization (AHP that regulates action potential firing and limits the firing frequency of repetitive action potentials. Different subtypes of KCa channels were anticipated on the basis of their physiological and pharmacological profiles, and cloning revealed two well defined but phylogenetic distantly related groups of channels. The group subject of this review includes both the small-conductance KCa2 channels (KCa2.1, KCa2.2, and KCa2.3 and the intermediate-conductance (KCa3.1 channel. These channels are activated by submicromolar intracellular Ca2+ concentrations and are voltage independent. Of all KCa channels only the KCa2 channels can be potently but differentially blocked by the bee-venom apamin. In the past few years modulation of KCa channel activation revealed new roles for KCa2 channels in controlling dendritic excitability, synaptic functioning and synaptic plasticity. Furthermore, KCa2 channels appeared to be involved in neurodegeneration, and learning and memory processes. In this review, we focus on the role of KCa2 and KCa3 channels in these latter mechanisms with emphasis on learning and memory, Alzheimer’s disease and on the interplay between neuroinflammation and different neurotransmitters/neuromodulators, their signalling components and KCa channel activation.

  10. Sirtuin-2 Protects Neural Cells from Oxidative Stress and Is Elevated in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Preeti Singh

    2017-01-01

    Full Text Available Sirtuins are highly conserved lysine deacetylases involved in ageing, energy production, and lifespan extension. The mammalian SIRT2 has been implicated in Parkinson’s disease (PD where studies suggest SIRT2 promotes neurodegeneration. We therefore evaluated the effects of SIRT2 manipulation in toxin treated SH-SY5Y cells and determined the expression and activity of SIRT2 in postmortem brain tissue from patients with PD. SH-SY5Y viability in response to oxidative stress induced by diquat or rotenone was measured following SIRT2 overexpression or inhibition of deacetylase activity, along with α-synuclein aggregation. SIRT2 in human tissues was evaluated using Western blotting, immunohistochemistry, and fluorometric activity assays. In SH-SY5Y cells, elevated SIRT2 protected cells from rotenone or diquat induced cell death and enzymatic inhibition of SIRT2 enhanced cell death. SIRT2 protection was mediated, in part, through elevated SOD2 expression. SIRT2 reduced the formation of α-synuclein aggregates but showed minimal colocalisation with α-synuclein. In postmortem PD brain tissue, SIRT2 activity was elevated compared to controls but also elevated in other neurodegenerative disorders. Results from both in vitro work and brain tissue suggest that SIRT2 is necessary for protection against oxidative stress and higher SIRT2 activity in PD brain may be a compensatory mechanism to combat neuronal stress.

  11. Retinal Vascular Fractals Correlate With Early Neurodegeneration in Patients With Type 2 Diabetes Mellitus

    DEFF Research Database (Denmark)

    Frydkjaer-Olsen, Ulrik; Soegaard Hansen, Rasmus; Pedersen, Knud

    2015-01-01

    . In a randomly selected eye of each patient, Fd was calculated using SIVA-Fractal, a specialized semiautomatic software. Retinal neurodegeneration was evaluated by Topcon 3D OCT-2000 spectral-domain optical coherence tomography (OCT) and by a RETI-scan multifocal ERG (mf-ERG) system in rings one to six. Level...... were 10 (42.7%), 20 (35.0%), and 35 (22.3%), respectively. Fd correlated inversely with mf-ERG implicit time of ring one (r = -0.25, P = 0.01) and present diabetic neuropathy (P = 0.02), and positively with OCT ganglion cell layer (GCL) thickness (r = 0.20, P = 0.04). In a multivariable linear...... regression model, Fd was associated with mf-ERG implicit time of ring one (coefficient -0.0021/ms, P = 0.040) and the presence of diabetic neuropathy (coefficient -0.0209 for neuropathy present versus absent, P = 0.041). Conclusions: In patients with T2DM and no or minimal DR, independent correlations were...

  12. AP-1 proteins in the adult brain: facts and fiction about effectors of neuroprotection and neurodegeneration.

    Science.gov (United States)

    Herdegen, T; Waetzig, V

    2001-04-30

    Jun and Fos proteins are induced and activated following most physiological and pathophysiological stimuli in the brain. Only few data allow conclusions about distinct functions of AP-1 proteins in neurodegeneration and neuroregeneration, and these functions mainly refer to c-Jun and its activation by JNKs. Apoptotic functions of activated c-Jun affect hippocampal, nigral and primary cultured neurons following excitotoxic stimulation and destruction of the neuron-target-axis including withdrawal of trophic molecules. The inhibition of JNKs might exert neuroprotection by subsequent omission of c-Jun activation. Besides endogenous neuronal functions, the c-Jun/AP-1 proteins can damage the nervous system by upregulation of harmful programs in non-neuronal cells (e.g. microglia) with release of neurodegenerative molecules. In contrast, the differentiation with neurite extension and maturation of neural cells in vitro indicate physiological and potentially neuroprotective functions of c-Jun and JNKs including sensoring for alterations in the cytoskeleton. This review summarizes the multiple molecular interfunctions which are involved in the shift from the physiological role to degenerative effects of the Jun/JNK-axis such as cell type-specific expression and intracellular localization of scaffold proteins and upstream activators, antagonistic phosphatases, interaction with other kinase systems, or the activation of transcription factors competing for binding to JNK proteins and AP-1 DNA elements.

  13. Puzzles in modern biology. IV. Neurodegeneration, localized origin and widespread decay [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Steven A. Frank

    2016-10-01

    Full Text Available The motor neuron disease amyotrophic lateral sclerosis (ALS typically begins with localized muscle weakness. Progressive, widespread paralysis often follows over a few years. Does the disease begin with local changes in a small piece of neural tissue and then spread? Or does neural decay happen independently across diverse spatial locations? The distinction matters, because local initiation may arise by local changes in a tissue microenvironment, by somatic mutation, or by various epigenetic or regulatory fluctuations in a few cells. A local trigger must be coupled with a mechanism for spread. By contrast, independent decay across spatial locations cannot begin by a local change, but must depend on some global predisposition or spatially distributed change that leads to approximately synchronous decay. This article outlines the conceptual frame by which one contrasts local triggers and spread versus parallel spatially distributed decay. Various neurodegenerative diseases differ in their mechanistic details, but all can usefully be understood as falling along a continuum of interacting local and global processes. Cancer provides an example of disease progression by local triggers and spatial spread, setting a conceptual basis for clarifying puzzles in neurodegeneration. Heart disease also has crucial interactions between global processes, such as circulating lipid levels, and local processes in the development of atherosclerotic plaques. The distinction between local and global processes helps to understand these various age-related diseases.

  14. A saposin deficiency model in Drosophila: Lysosomal storage, progressive neurodegeneration and sensory physiological decline.

    Science.gov (United States)

    Hindle, Samantha J; Hebbar, Sarita; Schwudke, Dominik; Elliott, Christopher J H; Sweeney, Sean T

    2017-02-01

    Saposin deficiency is a childhood neurodegenerative lysosomal storage disorder (LSD) that can cause premature death within three months of life. Saposins are activator proteins that promote the function of lysosomal hydrolases that mediate the degradation of sphingolipids. There are four saposin proteins in humans, which are encoded by the prosaposin gene. Mutations causing an absence or impaired function of individual saposins or the whole prosaposin gene lead to distinct LSDs due to the storage of different classes of sphingolipids. The pathological events leading to neuronal dysfunction induced by lysosomal storage of sphingolipids are as yet poorly defined. We have generated and characterised a Drosophila model of saposin deficiency that shows striking similarities to the human diseases. Drosophila saposin-related (dSap-r) mutants show a reduced longevity, progressive neurodegeneration, lysosomal storage, dramatic swelling of neuronal soma, perturbations in sphingolipid catabolism, and sensory physiological deterioration. Our data suggests a genetic interaction with a calcium exchanger (Calx) pointing to a possible calcium homeostasis deficit in dSap-r mutants. Together these findings support the use of dSap-r mutants in advancing our understanding of the cellular pathology implicated in saposin deficiency and related LSDs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. REM Sleep Behavior Disorder and Prodromal Neurodegeneration - Where are We Headed?

    Directory of Open Access Journals (Sweden)

    Ronald B. Postuma

    2013-04-01

    Full Text Available Rapid eye movement (REM sleep behavior disorder (RBD is characterized by loss of normal atonia during REM sleep, such that patients appear to act out their dreams. The most important implication of research into this area is that patients with idiopathic RBD are at very high risk of developing synucleinmediated neurodegenerative disease (Parkinson's disease [PD], dementia with Lewy bodies [DLB], and multiple system atrophy, with risk estimates that approximate 40–65% at 10 years. Thus, RBD disorder is a very strong feature of prodromal synucleinopathy. This provides several opportunities for future research. First, patients with REM sleep behavior disorder can be studied to test other predictors of disease, which could potentially be applied to the general population. These studies have demonstrated that olfactory loss, decreased color vision, slowing on quantitative motor testing, and abnormal substantia nigra neuroimaging findings can predict clinical synucleinopathy. Second, prospectively studying patients with RBD allows a completely unprecedented opportunity to directly evaluate patients as they transition into clinical neurodegenerative disease. Studies assessing progression of markers of neurodegeneration in prodromal PD are beginning to appear. Third, RBD are very promising subjects for neuroprotective therapy trials because they have a high risk of disease conversion with a sufficiently long latency, which provides an opportunity for early intervention. As RBD research expands, collaboration between centers will become increasingly essential.

  16. Autophagy and Neurodegeneration: Insights from a Cultured Cell Model of ALS

    Directory of Open Access Journals (Sweden)

    Francesca Navone

    2015-08-01

    Full Text Available Autophagy plays a major role in the elimination of cellular waste components, the renewal of intracellular proteins and the prevention of the build-up of redundant or defective material. It is fundamental for the maintenance of homeostasis and especially important in post-mitotic neuronal cells, which, without competent autophagy, accumulate protein aggregates and degenerate. Many neurodegenerative diseases are associated with defective autophagy; however, whether altered protein turnover or accumulation of misfolded, aggregate-prone proteins is the primary insult in neurodegeneration has long been a matter of debate. Amyotrophic lateral sclerosis (ALS is a fatal disease characterized by selective degeneration of motor neurons. Most of the ALS cases occur in sporadic forms (SALS, while 10%–15% of the cases have a positive familial history (FALS. The accumulation in the cell of misfolded/abnormal proteins is a hallmark of both SALS and FALS, and altered protein degradation due to autophagy dysregulation has been proposed to contribute to ALS pathogenesis. In this review, we focus on the main molecular features of autophagy to provide a framework for discussion of our recent findings about the role in disease pathogenesis of the ALS-linked form of the VAPB gene product, a mutant protein that drives the generation of unusual cytoplasmic inclusions.

  17. Missense variants in AIMP1 gene are implicated in autosomal recessive intellectual disability without neurodegeneration.

    Science.gov (United States)

    Iqbal, Zafar; Püttmann, Lucia; Musante, Luciana; Razzaq, Attia; Zahoor, Muhammad Yasir; Hu, Hao; Wienker, Thomas F; Garshasbi, Masoud; Fattahi, Zohreh; Gilissen, Christian; Vissers, Lisenka E L M; de Brouwer, Arjan P M; Veltman, Joris A; Pfundt, Rolph; Najmabadi, Hossein; Ropers, Hans-Hilger; Riazuddin, Sheikh; Kahrizi, Kimia; van Bokhoven, Hans

    2016-03-01

    AIMP1/p43 is a multifunctional non-catalytic component of the multisynthetase complex. The complex consists of nine catalytic and three non-catalytic proteins, which catalyze the ligation of amino acids to their cognate tRNA isoacceptors for use in protein translation. To date, two allelic variants in the AIMP1 gene have been reported as the underlying cause of autosomal recessive primary neurodegenerative disorder. Here, we present two consanguineous families from Pakistan and Iran, presenting with moderate to severe intellectual disability, global developmental delay, and speech impairment without neurodegeneration. By the combination of homozygosity mapping and next generation sequencing, we identified two homozygous missense variants, p.(Gly299Arg) and p.(Val176Gly), in the gene AIMP1 that co-segregated with the phenotype in the respective families. Molecular modeling of the variants revealed deleterious effects on the protein structure that are predicted to result in reduced AIMP1 function. Our findings indicate that the clinical spectrum for AIMP1 defects is broader than witnessed so far.

  18. Missense variants in AIMP1 gene are implicated in autosomal recessive intellectual disability without neurodegeneration

    Science.gov (United States)

    Iqbal, Zafar; Püttmann, Lucia; Musante, Luciana; Razzaq, Attia; Zahoor, Muhammad Yasir; Hu, Hao; Wienker, Thomas F; Garshasbi, Masoud; Fattahi, Zohreh; Gilissen, Christian; Vissers, Lisenka ELM; de Brouwer, Arjan PM; Veltman, Joris A; Pfundt, Rolph; Najmabadi, Hossein; Ropers, Hans-Hilger; Riazuddin, Sheikh; Kahrizi, Kimia; van Bokhoven, Hans

    2016-01-01

    AIMP1/p43 is a multifunctional non-catalytic component of the multisynthetase complex. The complex consists of nine catalytic and three non-catalytic proteins, which catalyze the ligation of amino acids to their cognate tRNA isoacceptors for use in protein translation. To date, two allelic variants in the AIMP1 gene have been reported as the underlying cause of autosomal recessive primary neurodegenerative disorder. Here, we present two consanguineous families from Pakistan and Iran, presenting with moderate to severe intellectual disability, global developmental delay, and speech impairment without neurodegeneration. By the combination of homozygosity mapping and next generation sequencing, we identified two homozygous missense variants, p.(Gly299Arg) and p.(Val176Gly), in the gene AIMP1 that co-segregated with the phenotype in the respective families. Molecular modeling of the variants revealed deleterious effects on the protein structure that are predicted to result in reduced AIMP1 function. Our findings indicate that the clinical spectrum for AIMP1 defects is broader than witnessed so far. PMID:26173967

  19. Endosomal sorting complexes required for ESCRTing cells toward death during neurogenesis, neurodevelopment and neurodegeneration.

    Science.gov (United States)

    Kaul, Zenia; Chakrabarti, Oishee

    2018-03-25

    The endosomal sorting complexes required for transport (ESCRT) proteins help in the recognition, sorting and degradation of ubiquitinated cargoes from the cell surface, long-lived proteins or aggregates, and aged organelles present in the cytosol. These proteins take part in the endo-lysosomal system of degradation. The ESCRT proteins also play an integral role in cytokinesis, viral budding and mRNA transport. Many neurodegenerative diseases are caused by toxic accumulation of cargo in the cell, which causes stress and ultimately leads to neuronal death. This accumulation of cargo occurs because of defects in the endo-lysosomal degradative pathway-loss of function of ESCRTs has been implicated in this mechanism. ESCRTs also take part in many survival processes, lack of which can culminate in neuronal cell death. While the role played by the ESCRT proteins in maintaining healthy neurons is known, their role in neurodegenerative diseases is still poorly understood. In this review, we highlight the importance of ESCRTs in maintaining healthy neurons and then suggest how perturbations in many of the survival mechanisms governed by these proteins could eventually lead to cell death; quite often these correlations are not so obviously laid out. Extensive neuronal death eventually culminates in neurodegeneration. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Phosphatidylinositol-glycan-phospholipase D is involved in neurodegeneration in prion disease.

    Directory of Open Access Journals (Sweden)

    Jae-Kwang Jin

    Full Text Available PrPSc is formed from a normal glycosylphosphatidylinositol (GPI-anchored prion protein (PrPC by a posttranslational modification. Most GPI-anchored proteins have been shown to be cleaved by GPI phospholipases. Recently, GPI-phospholipase D (GPI-PLD was shown to be a strictly specific enzyme for GPI anchors. To investigate the involvement of GPI-PLD in the processes of neurodegeneration in prion diseases, we examined the mRNA and protein expression levels of GPI-PLD in the brains of a prion animal model (scrapie, and in both the brains and cerebrospinal fluids (CSF of sporadic and familial Creutzfeldt-Jakob disease (CJD patients. We found that compared with controls, the expression of GPI-PLD was dramatically down-regulated in the brains of scrapie-infected mice, especially in the caveolin-enriched membrane fractions. Interestingly, the observed decrease in GPI-PLD expression levels began at the same time that PrPSc began to accumulate in the infected brains and this decrease was also observed in both the brain and CSF of CJD patients; however, no differences in expression were observed in either the brains or CSF specimens from Alzheimer's disease patients. Taken together, these results suggest that the down-regulation of GPI-PLD protein may be involved in prion propagation in the brains of prion diseases.

  1. Mitochondrial deficiency: a double-edged sword for ageing and neurodegeneration

    Directory of Open Access Journals (Sweden)

    Daniele eBano

    2012-11-01

    Full Text Available For decades, ageing was considered the inevitable result of the accumulation of damaged macromolecules due to environmental factors and intrinsic processes. Our current knowledge clearly supports that ageing is a complex biological process influenced by multiple evolutionary conserved molecular pathways. With the advanced age, loss of cellular homeostasis severely affects the structure and function of various tissues, especially those highly sensitive to stressful conditions like the central nervous system. In this regard, the age-related regression of neural circuits and the consequent poor neuronal plasticity have been associated with metabolic dysfunctions, in which the decline of mitochondrial activity significantly contributes. Interestingly, while mitochondrial lesions promote the onset of degenerative disorders, mild mitochondrial manipulations delay some of the age-related phenotypes and, more importantly, increase the lifespan of organisms ranging from invertebrates to mammals. Here, we survey the insulin/IGF-1 and the TOR signaling pathways and review how these two important longevity determinants regulate mitochondrial activity. Furthermore, we discuss the contribution of slight mitochondrial dysfunction in the engagement of pro-longevity processes and the opposite role of strong mitochondrial dysfunction in neurodegeneration.

  2. The m-AAA Protease Associated with Neurodegeneration Limits MCU Activity in Mitochondria.

    Science.gov (United States)

    König, Tim; Tröder, Simon E; Bakka, Kavya; Korwitz, Anne; Richter-Dennerlein, Ricarda; Lampe, Philipp A; Patron, Maria; Mühlmeister, Mareike; Guerrero-Castillo, Sergio; Brandt, Ulrich; Decker, Thorsten; Lauria, Ines; Paggio, Angela; Rizzuto, Rosario; Rugarli, Elena I; De Stefani, Diego; Langer, Thomas

    2016-10-06

    Mutations in subunits of mitochondrial m-AAA proteases in the inner membrane cause neurodegeneration in spinocerebellar ataxia (SCA28) and hereditary spastic paraplegia (HSP7). m-AAA proteases preserve mitochondrial proteostasis, mitochondrial morphology, and efficient OXPHOS activity, but the cause for neuronal loss in disease is unknown. We have determined the neuronal interactome of m-AAA proteases in mice and identified a complex with C2ORF47 (termed MAIP1), which counteracts cell death by regulating the assembly of the mitochondrial Ca 2+ uniporter MCU. While MAIP1 assists biogenesis of the MCU subunit EMRE, the m-AAA protease degrades non-assembled EMRE and ensures efficient assembly of gatekeeper subunits with MCU. Loss of the m-AAA protease results in accumulation of constitutively active MCU-EMRE channels lacking gatekeeper subunits in neuronal mitochondria and facilitates mitochondrial Ca 2+ overload, mitochondrial permeability transition pore opening, and neuronal death. Together, our results explain neuronal loss in m-AAA protease deficiency by deregulated mitochondrial Ca 2+ homeostasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The Role of Microglia in Diabetic Retinopathy: Inflammation, Microvasculature Defects and Neurodegeneration

    Science.gov (United States)

    Altmann, Christine

    2018-01-01

    Diabetic retinopathy is a common complication of diabetes mellitus, which appears in one third of all diabetic patients and is a prominent cause of vision loss. First discovered as a microvascular disease, intensive research in the field identified inflammation and neurodegeneration to be part of diabetic retinopathy. Microglia, the resident monocytes of the retina, are activated due to a complex interplay between the different cell types of the retina and diverse pathological pathways. The trigger for developing diabetic retinopathy is diabetes-induced hyperglycemia, accompanied by leukostasis and vascular leakages. Transcriptional changes in activated microglia, mediated via the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) and extracellular signal–regulated kinase (ERK) signaling pathways, results in release of various pro-inflammatory mediators, including cytokines, chemokines, caspases and glutamate. Activated microglia additionally increased proliferation and migration. Among other consequences, these changes in microglia severely affected retinal neurons, causing increased apoptosis and subsequent thinning of the nerve fiber layer, resulting in visual loss. New potential therapeutics need to interfere with these diabetic complications even before changes in the retina are diagnosed, to prevent neuronal apoptosis and blindness in patients. PMID:29301251

  4. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus.

    Science.gov (United States)

    Sohn, Elliott H; van Dijk, Hille W; Jiao, Chunhua; Kok, Pauline H B; Jeong, Woojin; Demirkaya, Nazli; Garmager, Allison; Wit, Ferdinand; Kucukevcilioglu, Murat; van Velthoven, Mirjam E J; DeVries, J Hans; Mullins, Robert F; Kuehn, Markus H; Schlingemann, Reinier Otto; Sonka, Milan; Verbraak, Frank D; Abràmoff, Michael David

    2016-05-10

    Diabetic retinopathy (DR) has long been recognized as a microvasculopathy, but retinal diabetic neuropathy (RDN), characterized by inner retinal neurodegeneration, also occurs in people with diabetes mellitus (DM). We report that in 45 people with DM and no to minimal DR there was significant, progressive loss of the nerve fiber layer (NFL) (0.25 μm/y) and the ganglion cell (GC)/inner plexiform layer (0.29 μm/y) on optical coherence tomography analysis (OCT) over a 4-y period, independent of glycated hemoglobin, age, and sex. The NFL was significantly thinner (17.3 μm) in the eyes of six donors with DM than in the eyes of six similarly aged control donors (30.4 μm), although retinal capillary density did not differ in the two groups. We confirmed significant, progressive inner retinal thinning in streptozotocin-induced "type 1" and B6.BKS(D)-Lepr(db)/J "type 2" diabetic mouse models on OCT; immunohistochemistry in type 1 mice showed GC loss but no difference in pericyte density or acellular capillaries. The results suggest that RDN may precede the established clinical and morphometric vascular changes caused by DM and represent a paradigm shift in our understanding of ocular diabetic complications.

  5. Moringa oleifera Mitigates Memory Impairment and Neurodegeneration in Animal Model of Age-Related Dementia

    Directory of Open Access Journals (Sweden)

    Chatchada Sutalangka

    2013-01-01

    Full Text Available To date, the preventive strategy against dementia is still essential due to the rapid growth of its prevalence and the limited therapeutic efficacy. Based on the crucial role of oxidative stress in age-related dementia and the antioxidant and nootropic activities of Moringa oleifera, the enhancement of spatial memory and neuroprotection of M. oleifera leaves extract in animal model of age-related dementia was determined. The possible underlying mechanism was also investigated. Male Wistar rats, weighing 180–220 g, were orally given M. oleifera leaves extract at doses of 100, 200, and 400 mg/kg at a period of 7 days before and 7 days after the intracerebroventricular administration of AF64A bilaterally. Then, they were assessed memory, neuron density, MDA level, and the activities of SOD, CAT, GSH-Px, and AChE in hippocampus. The results showed that the extract improved spatial memory and neurodegeneration in CA1, CA2, CA3, and dentate gyrus of hippocampus together with the decreased MDA level and AChE activity but increased SOD and CAT activities. Therefore, our data suggest that M. oleifera leaves extract is the potential cognitive enhancer and neuroprotectant. The possible mechanism might occur partly via the decreased oxidative stress and the enhanced cholinergic function. However, further explorations concerning active ingredient(s are still required.

  6. Grey matter alterations in patients with Pantothenate Kinase-Associated Neurodegeneration (PKAN).

    Science.gov (United States)

    Rodriguez-Raecke, Rea; Roa-Sanchez, Pedro; Speckter, Herwin; Fermin-Delgado, Rafael; Perez-Then, Eddy; Oviedo, Jairo; Stoeter, Peter

    2014-09-01

    Pantothenate Kinase-Associated Neurodegeneration (PKAN) is a rare heritable disease marked by dystonia and loss of movement control. In contrast to the well-known "Eye-of-the-Tiger" sign affecting the globus pallidus, little is known about other deviations of brain morphology, especially about grey matter changes. We investigated 29 patients with PKAN and 29 age-matched healthy controls using Magnet Resonance Imaging and Voxel-Based Morphometry. As compared to controls, children with PKAN showed increased grey matter density in the putamen and nucleus caudatus and adults with PKAN showed increased grey matter density in the ventral part of the anterior cingulate cortex. A multiple regression analysis with dystonia score as predictor showed grey matter reduction in the cerebellum, posterior cingulate cortex, superior parietal lobule, pars triangularis and small frontal and temporal areas and an analysis with age as predictor showed grey matter decreases in the putamen, nucleus caudatus, supplementary motor area and anterior cingulate cortex. The grey matter increases may be regarded as a secondary phenomenon compensating the increased activity of the motor system due to a reduced inhibitory output of the globus pallidus. With increasing age, the grey matter reduction of cortical midline structures however might contribute to the progression of dystonic symptoms due to loss of this compensatory control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Whey protein concentrate supplementation protects rat brain against aging-induced oxidative stress and neurodegeneration.

    Science.gov (United States)

    Garg, Geetika; Singh, Sandeep; Singh, Abhishek Kumar; Rizvi, Syed Ibrahim

    2018-05-01

    Whey protein concentrate (WPC) is a rich source of sulfur-containing amino acids and is consumed as a functional food, incorporating a wide range of nutritional attributes. The purpose of this study is to evaluate the neuroprotective effect of WPC on rat brain during aging. Young (4 months) and old (24 months) male Wistar rats were supplemented with WPC (300 mg/kg body weight) for 28 days. Biomarkers of oxidative stress and antioxidant capacity in terms of ferric reducing antioxidant potential (FRAP), lipid hydroperoxide (LHP), total thiol (T-SH), protein carbonyl (PC), reactive oxygen species (ROS), nitric oxide (NO), and acetylcholinesterase (AChE) activity were measured in brain of control and experimental (WPC supplemented) groups. In addition, gene expression and histopathological studies were also performed. The results indicate that WPC augmented the level of FRAP, T-SH, and AChE in old rats as compared with the old control. Furthermore, WPC-treated groups exhibited significant reduction in LHP, PC, ROS, and NO levels in aged rats. WPC supplementation also downregulated the expression of inflammatory markers (tumor necrosis factor alpha, interleukin (IL)-1β, IL-6), and upregulated the expression of marker genes associated with autophagy (Atg3, Beclin-1, LC3B) and neurodegeneration (neuron specific enolase, Synapsin-I, MBP-2). The findings suggested WPC to be a potential functional nutritional food supplement that prevents the progression of age-related oxidative damage in Wistar rats.

  8. Neurodegeneration and functional impairments associated with glycogen synthase accumulation in a mouse model of Lafora disease.

    Science.gov (United States)

    Valles-Ortega, Jordi; Duran, Jordi; Garcia-Rocha, Mar; Bosch, Carles; Saez, Isabel; Pujadas, Lluís; Serafin, Anna; Cañas, Xavier; Soriano, Eduardo; Delgado-García, José M; Gruart, Agnès; Guinovart, Joan J

    2011-11-01

    Lafora disease (LD) is caused by mutations in either the laforin or malin gene. The hallmark of the disease is the accumulation of polyglucosan inclusions called Lafora Bodies (LBs). Malin knockout (KO) mice present polyglucosan accumulations in several brain areas, as do patients of LD. These structures are abundant in the cerebellum and hippocampus. Here, we report a large increase in glycogen synthase (GS) in these mice, in which the enzyme accumulates in LBs. Our study focused on the hippocampus where, under physiological conditions, astrocytes and parvalbumin-positive (PV(+)) interneurons expressed GS and malin. Although LBs have been described only in neurons, we found this polyglucosan accumulation in the astrocytes of the KO mice. They also had LBs in the soma and some processes of PV(+) interneurons. This phenomenon was accompanied by the progressive loss of these neuronal cells and, importantly, neurophysiological alterations potentially related to impairment of hippocampal function. Our results emphasize the relevance of the laforin-malin complex in the control of glycogen metabolism and highlight altered glycogen accumulation as a key contributor to neurodegeneration in LD. Copyright © 2011 EMBO Molecular Medicine.

  9. Bill project aiming at abrogating exclusive search permits for unconventional hydrocarbon searches, and at prohibiting their exploration and exploitation of the national territory

    International Nuclear Information System (INIS)

    2011-01-01

    After having briefly recalled the origin of shale gases, their extraction process and the evolution of their production in the USA, the authors outline the extremely negative environmental impacts of the fracking technique (hydraulic fracturing): water pollution, air pollution, soil pollution, existence of numerous drilling sites which would degrade landscapes, water and soil contamination risks. As some search permits have already been awarded, and while taking these negative consequences into account, the authors propose a bill project to prohibit these explorations, to abrogate the existing permits, and to ensure public information before bestowing such search permits and exploitation concessions

  10. Sensitization of Tumor to {sup 212}Pb Radioimmunotherapy by Gemcitabine Involves Initial Abrogation of G2 Arrest and Blocked DNA Damage Repair by Interference With Rad51

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Kwon Joong; Milenic, Diane E.; Baidoo, Kwamena E. [Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States); Brechbiel, Martin W., E-mail: martinwb@mail.nih.gov [Radioimmune and Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland (United States)

    2013-03-15

    Purpose: To elucidate the mechanism of the therapeutic efficacy of targeted α-particle radiation therapy using {sup 212}Pb-TCMC-trastuzumab together with gemcitabine for treatment of disseminated peritoneal cancers. Methods and Materials: Mice bearing human colon cancer LS-174T intraperitoneal xenografts were pretreated with gemcitabine, followed by {sup 212}Pb-TCMC-trastuzumab and compared with controls. Results: Treatment with {sup 212}Pb-TCMC-trastuzumab increased the apoptotic rate in the S-phase-arrested tumors induced by gemcitabine at earlier time points (6 to 24 hours). {sup 212}Pb-TCMC-trastuzumab after gemcitabine pretreatment abrogated G2/M arrest at the same time points, which may be associated with the inhibition of Chk1 phosphorylation and, in turn, cell cycle perturbation, resulting in apoptosis. {sup 212}Pb-TCMC-trastuzumab treatment after gemcitabine pretreatment caused depression of DNA synthesis, DNA double-strand breaks, accumulation of unrepaired DNA, and down-regulation of Rad51 protein, indicating that DNA damage repair was blocked. In addition, modification in the chromatin structure of p21 may be associated with transcriptionally repressed chromatin states, indicating that the open structure was delayed at earlier time points. Conclusion: These findings suggest that the cell-killing efficacy of {sup 212}Pb-TCMC-trastuzumab after gemcitabine pretreatment may be associated with abrogation of the G2/M checkpoint, inhibition of DNA damage repair, and chromatin remodeling.

  11. Sensitization of Tumor to 212Pb Radioimmunotherapy by Gemcitabine Involves Initial Abrogation of G2 Arrest and Blocked DNA Damage Repair by Interference With Rad51

    International Nuclear Information System (INIS)

    Yong, Kwon Joong; Milenic, Diane E.; Baidoo, Kwamena E.; Brechbiel, Martin W.

    2013-01-01

    Purpose: To elucidate the mechanism of the therapeutic efficacy of targeted α-particle radiation therapy using 212 Pb-TCMC-trastuzumab together with gemcitabine for treatment of disseminated peritoneal cancers. Methods and Materials: Mice bearing human colon cancer LS-174T intraperitoneal xenografts were pretreated with gemcitabine, followed by 212 Pb-TCMC-trastuzumab and compared with controls. Results: Treatment with 212 Pb-TCMC-trastuzumab increased the apoptotic rate in the S-phase-arrested tumors induced by gemcitabine at earlier time points (6 to 24 hours). 212 Pb-TCMC-trastuzumab after gemcitabine pretreatment abrogated G2/M arrest at the same time points, which may be associated with the inhibition of Chk1 phosphorylation and, in turn, cell cycle perturbation, resulting in apoptosis. 212 Pb-TCMC-trastuzumab treatment after gemcitabine pretreatment caused depression of DNA synthesis, DNA double-strand breaks, accumulation of unrepaired DNA, and down-regulation of Rad51 protein, indicating that DNA damage repair was blocked. In addition, modification in the chromatin structure of p21 may be associated with transcriptionally repressed chromatin states, indicating that the open structure was delayed at earlier time points. Conclusion: These findings suggest that the cell-killing efficacy of 212 Pb-TCMC-trastuzumab after gemcitabine pretreatment may be associated with abrogation of the G2/M checkpoint, inhibition of DNA damage repair, and chromatin remodeling

  12. Protective effects of Erigeron breviscapus Hand.- Mazz. (EBHM) extract in retinal neurodegeneration models.

    Science.gov (United States)

    Zhu, Jingyuan; Chen, Li; Qi, Yun; Feng, Jing; Zhu, Li; Bai, Yujing; Wu, Huijuan

    2018-01-01

    To investigate the neuroprotective effects of scutellarin, an active component of the multifunctional traditional Chinese herb Erigeron breviscapus (vant.) Hand.-Mazz. (EBHM), which has been used as a neuroprotective therapy for cerebrovascular diseases. We performed the experiments using in vitro and in vivo models of retinal neurodegeneration. In the in vitro experiments, we exposed BV-2 cells to low oxygen levels in an incubator for 24 and 48 h to generate hypoxia models. We then treated these cells with scutellarin at concentrations of 2, 10, and 50 µM. Cell viability was measured using an enzyme-linked immunosorbent assay (ELISA). The levels of the components of the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 (NLRP3) inflammasome signaling pathway, including NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), cleaved caspase-1, interleukin-18 (IL-18), and IL-1β were analyzed using western blots and ELISAs. In the in vivo study, we raised the intraocular pressure of Brown Norway rats to 60 mmHg for 30 min to generate a high intraocular pressure (HIOP) model, that is, an acute glaucoma model. The rats were then treated with scutellarin via oral gavage for 2 consecutive weeks. The relevant components of the NLRP3 inflammasome signaling pathway were analyzed with western blots and ELISAs. Retinal ganglion cells (RGCs) were retrogradely labeled using 4% Fluoro-Gold, and then the numbers of cells were calculated. Retinal microglial cells were labeled using immunofluorescence, and then the morphological changes were observed. In the in vitro cell viability experiments, 50 µM scutellarin statistically significantly enhanced the viability rate when compared to 2 µM and 10 µM scutellarin (hypoxia + 50 µM EBHM group: 94.01±2.130% and 86.02±2.520% after 24 and 48 h, respectively; hypoxia model group: 74.98±3.860% and 64.41±4.890% after 24 and 48 h, respectively; for all

  13. Protective effects of Erigeron breviscapus Hand.– Mazz. (EBHM) extract in retinal neurodegeneration models

    Science.gov (United States)

    Zhu, Jingyuan; Chen, Li; Qi, Yun; Feng, Jing; Zhu, Li; Bai, Yujing

    2018-01-01

    Purpose To investigate the neuroprotective effects of scutellarin, an active component of the multifunctional traditional Chinese herb Erigeron breviscapus (vant.) Hand.-Mazz. (EBHM), which has been used as a neuroprotective therapy for cerebrovascular diseases. We performed the experiments using in vitro and in vivo models of retinal neurodegeneration. Methods In the in vitro experiments, we exposed BV-2 cells to low oxygen levels in an incubator for 24 and 48 h to generate hypoxia models. We then treated these cells with scutellarin at concentrations of 2, 10, and 50 µM. Cell viability was measured using an enzyme-linked immunosorbent assay (ELISA). The levels of the components of the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 (NLRP3) inflammasome signaling pathway, including NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), cleaved caspase-1, interleukin-18 (IL-18), and IL-1β were analyzed using western blots and ELISAs. In the in vivo study, we raised the intraocular pressure of Brown Norway rats to 60 mmHg for 30 min to generate a high intraocular pressure (HIOP) model, that is, an acute glaucoma model. The rats were then treated with scutellarin via oral gavage for 2 consecutive weeks. The relevant components of the NLRP3 inflammasome signaling pathway were analyzed with western blots and ELISAs. Retinal ganglion cells (RGCs) were retrogradely labeled using 4% Fluoro-Gold, and then the numbers of cells were calculated. Retinal microglial cells were labeled using immunofluorescence, and then the morphological changes were observed. Results In the in vitro cell viability experiments, 50 µM scutellarin statistically significantly enhanced the viability rate when compared to 2 µM and 10 µM scutellarin (hypoxia + 50 µM EBHM group: 94.01±2.130% and 86.02±2.520% after 24 and 48 h, respectively; hypoxia model group: 74.98±3.860% and 64.41±4.890% after 24 and 48 h

  14. Multivariate profiling of neurodegeneration-associated changes in a subcellular compartment of neurons via image processing

    Directory of Open Access Journals (Sweden)

    Kumarasamy Saravana K

    2008-11-01

    differentiates all three bchs phenotypes (loss of function as well as overexpression from the wild type. Conclusion Our model demonstrates that neurodegeneration-associated endolysosomal defects can be detected, analyzed, and classified rapidly and accurately as a diagnostic imaging-based screening tool.

  15. Presymptomatic and longitudinal neuroimaging in neurodegeneration--from snapshots to motion picture: a systematic review.

    Science.gov (United States)

    Schuster, Christina; Elamin, Marwa; Hardiman, Orla; Bede, Peter

    2015-10-01

    Recent quantitative neuroimaging studies have been successful in capturing phenotype and genotype-specific changes in dementia syndromes, amyotrophic lateral sclerosis, Parkinson's disease and other neurodegenerative conditions. However, the majority of imaging studies are cross-sectional, despite the obvious superiority of longitudinal study designs in characterising disease trajectories, response to therapy, progression rates and evaluating the presymptomatic phase of neurodegenerative conditions. The aim of this work is to perform a systematic review of longitudinal imaging initiatives in neurodegeneration focusing on methodology, optimal statistical models, follow-up intervals, attrition rates, primary study outcomes and presymptomatic studies. Longitudinal imaging studies were identified from 'PubMed' and reviewed from 1990 to 2014. The search terms 'longitudinal', 'MRI', 'presymptomatic' and 'imaging' were utilised in combination with one of the following degenerative conditions; Alzheimer's disease, amyotrophic lateral sclerosis/motor neuron disease, frontotemporal dementia, Huntington's disease, multiple sclerosis, Parkinson's disease, ataxia, HIV, alcohol abuse/dependence. A total of 423 longitudinal imaging papers and 103 genotype-based presymptomatic studies were identified and systematically reviewed. Imaging techniques, follow-up intervals and attrition rates showed significant variation depending on the primary diagnosis. Commonly used statistical models included analysis of annualised percentage change, mixed and random effect models, and non-linear cumulative models with acceleration-deceleration components. Although longitudinal imaging studies have the potential to provide crucial insights into the presymptomatic phase and natural trajectory of neurodegenerative processes a standardised design is required to enable meaningful data interpretation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under

  16. Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration

    Directory of Open Access Journals (Sweden)

    Brad eKincaid

    2013-09-01

    Full Text Available Caloric restriction, fasting, and exercise have long been recognized for their neuroprotective and lifespan-extending properties; however, the underlying mechanisms of these phenomena remain elusive. Such extraordinary benefits might be linked to the activation of sirtuins. In mammals, the sirtuin family has seven members (SIRT1-7, which diverge in tissue distribution, subcellular localization, enzymatic activity and targets. SIRT1, SIRT2, and SIRT3 have deacetylase activity. Their dependence on NAD+ directly links their activity to the metabolic status of the cell. High NAD+ levels convey neuroprotective effects, possibly via activation of sirtuin family members. Mitochondrial sirtuin 3 (SIRT3 has received much attention for its role in metabolism and aging. Specific small nucleotide polymorphisms (SNPs in Sirt3 are linked to increased human lifespan. SIRT3 mediates the adaptation of increased energy demand during caloric restriction, fasting and exercise to increased production of energy equivalents. SIRT3 deacetylates and activates mitochondrial enzymes involved in fatty acid β-oxidation, amino acid metabolism, the electron transport chain, and antioxidant defenses. As a result, the mitochondrial energy metabolism increases. In addition, SIRT3 prevents apoptosis by lowering reactive oxygen species (ROS and inhibiting components of the mitochondrial permeability transition pore. Mitochondrial deficits associated with aging and neurodegeneration might therefore be slowed or even prevented by SIRT3 activation. In addition, upregulating SIRT3 activity by dietary supplementation of sirtuin activating compounds might promote the beneficial effects of this enzyme. The goal of this review is to summarize emerging data supporting a neuroprotective action of SIRT3 against Alzheimer’s disease (AD, Huntington’s disease (HD, Parkinson’s disease (PD and amyotrophic lateral sclerosis (ALS.

  17. Presence of insoluble Tau following rotenone exposure ameliorates basic pathways associated with neurodegeneration

    Directory of Open Access Journals (Sweden)

    Rodrigo S. Chaves

    2016-12-01

    aggregation might exert protective cellular effects, at least briefly, when neurons are facing neurodegeneration stimulus. We believe that our data add more complexity for the understanding of protein aggregation role in AD etiology.

  18. Protection of DFP-induced oxidative damage and neurodegeneration by antioxidants and NMDA receptor antagonist

    International Nuclear Information System (INIS)

    Zaja-Milatovic, Snjezana; Gupta, Ramesh C.; Aschner, Michael; Milatovic, Dejan

    2009-01-01

    Prophylactic agents acutely administered in response to anticholinesterases intoxication can prevent toxic symptoms, including fasciculations, seizures, convulsions and death. However, anticholinesterases also have long-term unknown pathophysiological effects, making rational prophylaxis/treatment problematic. Increasing evidence suggests that in addition to excessive cholinergic stimulation, organophosphate compounds such as diisopropylphosphorofluoridate (DFP) induce activation of glutamatergic neurons, generation of reactive oxygen (ROS) and nitrogen species (RNS), leading to neurodegeneration. The present study investigated multiple affectors of DFP exposure critical to cerebral oxidative damage and whether antioxidants and NMDA receptor antagonist memantine provide neuroprotection by preventing DFP-induced biochemical and morphometric changes in rat brain. Rats treated acutely with DFP (1.25 mg/kg, s.c.) developed onset of toxicity signs within 7-15 min that progressed to maximal severity of seizures and fasciculations within 60 min. At this time point, DFP caused significant (p 2 -isoprostanes, F 2 -IsoPs; and F 4 -neuroprostanes, F 4 -NeuroPs), RNS (citrulline), and declines in high-energy phosphates (HEP) in rat cerebrum. At the same time, quantitative morphometric analysis of pyramidal neurons of the hippocampal CA1 region revealed significant (p 2 -IsoPs, F 4 -NeuroPs, citrulline, and depletion of HEP were noted. Furthermore, attenuation in oxidative damage following antioxidants or memantine pretreatment was accompanied by rescue from dendritic degeneration of pyramidal neurons in the CA1 hippocampal area. These findings closely associated DFP-induced lipid peroxidation with dendritic degeneration of pyramidal neurons in the CA1 hippocampal area and point to possible interventions to limit oxidative injury and dendritic degeneration induced by anticholinesterase neurotoxicity.

  19. First successful trial of preimplantation genetic diagnosis for pantothenate kinase-associated neurodegeneration.

    Science.gov (United States)

    Trachoo, Objoon; Satirapod, Chonthicha; Panthan, Bhakbhoom; Sukprasert, Matchuporn; Charoenyingwattana, Angkana; Chantratita, Wasun; Choktanasiri, Wicharn; Hongeng, Suradej

    2017-01-01

    We aim to present a case of a healthy infant born after intracytoplasmic sperm injection-in vitro fertilization (ICSI-IVF) with a preimplantation genetic diagnosis (PGD) for pantothenate kinase-associated neurodegeneration (PKAN) due to PANK2 mutation. ICSI-IVF was performed on a Thai couple, 34-year-old female and 33-year-old male, with a family history of PKAN in their first child. Following fertilization, each of the embryos were biopsied in the cleavage stage and subsequently processed for whole-genome amplification. Genetic status of the embryos was diagnosed by linkage analysis and direct mutation testing using primer extension-based mini-sequencing. Comprehensive chromosomal aneuploidy screening was performed using a next-generation sequencing-based strategy. Only a single cycle of ICSI-IVF was processed. There were seven embryos from this couple-two were likely affected, three were likely carriers, one was likely unaffected, and one failed in target genome amplification. Aneuploidy screening was performed before making a decision on embryo transfer, and only one unaffected embryo passed the screening. That embryo was transferred in a frozen thawed cycle, and the pregnancy was successful. The diagnosis was confirmed by amniocentesis, which presented with a result consistent with PGD. At 38 weeks of gestational age, a healthy male baby was born. Postnatal genetic confirmation was also consistent with PGD and the prenatal results. At the age of 24 months, the baby presented with normal growth and development lacking any neurological symptoms. We report the first successful trial of PGD for PKAN in a developing country using linkage analysis and mini-sequencing in cleavage stage embryos.

  20. Estimating Memory Deterioration Rates Following Neurodegeneration and Traumatic Brain Injuries in a Hopfield Network Model

    Directory of Open Access Journals (Sweden)

    Melanie Weber

    2017-11-01

    Full Text Available Neurodegenerative diseases and traumatic brain injuries (TBI are among the main causes of cognitive dysfunction in humans. At a neuronal network level, they both extensively exhibit focal axonal swellings (FAS, which in turn, compromise the information encoded in spike trains and lead to potentially severe functional deficits. There are currently no satisfactory quantitative predictors of decline in memory-encoding neuronal networks based on the impact and statistics of FAS. Some of the challenges of this translational approach include our inability to access small scale injuries with non-invasive methods, the overall complexity of neuronal pathologies, and our limited knowledge of how networks process biological signals. The purpose of this computational study is three-fold: (i to extend Hopfield's model for associative memory to account for the effects of FAS, (ii to calibrate FAS parameters from biophysical observations of their statistical distribution and size, and (iii to systematically evaluate deterioration rates for different memory-recall tasks as a function of FAS injury. We calculate deterioration rates for a face-recognition task to account for highly correlated memories and also for a discrimination task of random, uncorrelated memories with a size at the capacity limit of the Hopfield network. While it is expected that the performance of any injured network should decrease with injury, our results link, for the first time, the memory recall ability to observed FAS statistics. This allows for plausible estimates of cognitive decline for different stages of brain disorders within neuronal networks, bridging experimental observations following neurodegeneration and TBI with compromised memory recall. The work lends new insights to help close the gap between theory and experiment on how biological signals are processed in damaged, high-dimensional functional networks, and towards positing new diagnostic tools to measure cognitive

  1. Curcumin confers neuroprotection against alcohol-induced hippocampal neurodegeneration via CREB-BDNF pathway in rats.

    Science.gov (United States)

    Motaghinejad, Majid; Motevalian, Manijeh; Fatima, Sulail; Hashemi, Hajar; Gholami, Mina

    2017-03-01

    Alcohol abuse causes severe damage to the brain neurons. Studies have reported the neuroprotective effects of curcumin against alcohol-induced neurodegeneration. However, the precise mechanism of action remains unclear. Seventy rats were equally divided into 7 groups (10 rats per group). Group 1 received normal saline (0.7ml/rat) and group 2 received alcohol (2g/kg/day) for 21days. Groups 3, 4, 5 and 6 concurrently received alcohol (2g/kg/day) and curcumin (10, 20, 40 and 60mg/kg, respectively) for 21days. Animals in group 7 self- administered alcohol for 21days. Group 8 treated with curcumin (60mg/kg, i.p.) alone for 21days. Open Field Test (OFT) was used to investigate motor activity in rats. Hippocampal oxidative, antioxidative and inflammatory factors were evaluated. Furthermore, brain cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) and brain derived neurotrophic factor (BDNF) levels were studied at gene level by reverse transcriptase polymerase chain reaction (RT-PCR). In addition, protein expression for BDNF, CREB, phosphorylated CREB (CREB-P), Bax and Bcl-2 was determined by western blotting. Voluntary and involuntary administration of alcohol altered motor activity in OFT, and curcumin treatment inhibited this alcohol-induced motor disturbance. Also, alcohol administration augmented lipid peroxidation, mitochondrial oxidized glutathione (GSSG), interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α) and Bax levels in isolated hippocampal tissues. Furthermore, alcohol-induced significant reduction were observed in reduced form of glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) activities and CREB, BDNF and Bcl-2 levels. Also curcumin alone did not change the behavior and biochemical and molecular parameters. Curcumin can act as a neuroprotective agent against neurodegenerative effects of alcohol abuse, probably via activation of CREB-BDNF signaling pathway

  2. Protective effect of pyruvate against ethanol-induced apoptotic neurodegeneration in the developing rat brain.

    Science.gov (United States)

    Ullah, Najeeb; Naseer, Muhammad Imran; Ullah, Ikram; Lee, Hae Young; Koh, Phil Ok; Kim, Myeong Ok

    2011-12-01

    Exposure to alcohol during the early stages of brain development can lead to neurological disorders in the CNS. Apoptotic neurodegeneration due to ethanol exposure is a main feature of alcoholism. Exposure of developing animals to alcohol (during the growth spurt period in particular) elicits apoptotic neuronal death and causes fetal alcohol effects (FAE) or fetal alcohol syndrome (FAS). A single episode of ethanol intoxication (at 5 g/kg) in a seven-day-old developing rat can activate the apoptotic cascade, leading to widespread neuronal death in the brain. In the present study, we investigated the potential protective effect of pyruvate against ethanol-induced neuroapoptosis. After 4h, a single dose of ethanol induced upregulation of Bax, release of mitochondrial cytochrome-c into the cytosol, activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP-1), all of which promote apoptosis. These effects were all reversed by co-treatment with pyruvate at a well-tolerated dosage (1000 mg/kg). Histopathology performed at 24 and 48 h with Fluoro-Jade-B and cresyl violet stains showed that pyruvate significantly reduced the number of dead cells in the cerebral cortex, hippocampus and thalamus. Immunohistochemical analysis at 24h confirmed that ethanol-induced cell death is both apoptotic and inhibited by pyruvate. These findings suggest that pyruvate treatment attenuates ethanol-induced neuronal cell loss in the developing rat brain and holds promise as a safe therapeutic and neuroprotective agent in the treatment of neurodegenerative disorders in newborns and infants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Mito-Nuclear Interactions Affecting Lifespan and Neurodegeneration in a Drosophila Model of Leigh Syndrome.

    Science.gov (United States)

    Loewen, Carin A; Ganetzky, Barry

    2018-04-01

    Proper mitochondrial activity depends upon proteins encoded by genes in the nuclear and mitochondrial genomes that must interact functionally and physically in a precisely coordinated manner. Consequently, mito-nuclear allelic interactions are thought to be of crucial importance on an evolutionary scale, as well as for manifestation of essential biological phenotypes, including those directly relevant to human disease. Nonetheless, detailed molecular understanding of mito-nuclear interactions is still lacking, and definitive examples of such interactions in vivo are sparse. Here we describe the characterization of a mutation in Drosophila ND23 , a nuclear gene encoding a highly conserved subunit of mitochondrial complex 1. This characterization led to the discovery of a mito-nuclear interaction that affects the ND23 mutant phenotype. ND23 mutants exhibit reduced lifespan, neurodegeneration, abnormal mitochondrial morphology, and decreased ATP levels. These phenotypes are similar to those observed in patients with Leigh syndrome, which is caused by mutations in a number of nuclear genes that encode mitochondrial proteins, including the human ortholog of ND23 A key feature of Leigh syndrome, and other mitochondrial disorders, is unexpected and unexplained phenotypic variability. We discovered that the phenotypic severity of ND23 mutations varies depending on the maternally inherited mitochondrial background. Sequence analysis of the relevant mitochondrial genomes identified several variants that are likely candidates for the phenotypic interaction with mutant ND23 , including a variant affecting a mitochondrially encoded component of complex I. Thus, our work provides an in vivo demonstration of the phenotypic importance of mito-nuclear interactions in the context of mitochondrial disease. Copyright © 2018 by the Genetics Society of America.

  4. Estimating Memory Deterioration Rates Following Neurodegeneration and Traumatic Brain Injuries in a Hopfield Network Model

    Science.gov (United States)

    Weber, Melanie; Maia, Pedro D.; Kutz, J. Nathan

    2017-01-01

    Neurodegenerative diseases and traumatic brain injuries (TBI) are among the main causes of cognitive dysfunction in humans. At a neuronal network level, they both extensively exhibit focal axonal swellings (FAS), which in turn, compromise the information encoded in spike trains and lead to potentially severe functional deficits. There are currently no satisfactory quantitative predictors of decline in memory-encoding neuronal networks based on the impact and statistics of FAS. Some of the challenges of this translational approach include our inability to access small scale injuries with non-invasive methods, the overall complexity of neuronal pathologies, and our limited knowledge of how networks process biological signals. The purpose of this computational study is three-fold: (i) to extend Hopfield's model for associative memory to account for the effects of FAS, (ii) to calibrate FAS parameters from biophysical observations of their statistical distribution and size, and (iii) to systematically evaluate deterioration rates for different memory-recall tasks as a function of FAS injury. We calculate deterioration rates for a face-recognition task to account for highly correlated memories and also for a discrimination task of random, uncorrelated memories with a size at the capacity limit of the Hopfield network. While it is expected that the performance of any injured network should decrease with injury, our results link, for the first time, the memory recall ability to observed FAS statistics. This allows for plausible estimates of cognitive decline for different stages of brain disorders within neuronal networks, bridging experimental observations following neurodegeneration and TBI with compromised memory recall. The work lends new insights to help close the gap between theory and experiment on how biological signals are processed in damaged, high-dimensional functional networks, and towards positing new diagnostic tools to measure cognitive deficits. PMID

  5. Altered expression of the Cdk5 activator-like protein, Cdk5α, causes neurodegeneration, in part by accelerating the rate of aging

    Directory of Open Access Journals (Sweden)

    Joshua Spurrier

    2018-03-01

    Full Text Available Aging is the greatest risk factor for neurodegeneration, but the connection between the two processes remains opaque. This is in part for want of a rigorous way to define physiological age, as opposed to chronological age. Here, we develop a comprehensive metric for physiological age in Drosophila, based on genome-wide expression profiling. We applied this metric to a model of adult-onset neurodegeneration, increased or decreased expression of the activating subunit of the Cdk5 protein kinase, encoded by the gene Cdk5α, the ortholog of mammalian p35. Cdk5α-mediated degeneration was associated with a 27-150% acceleration of the intrinsic rate of aging, depending on the tissue and genetic manipulation. Gene ontology analysis and direct experimental tests revealed that affected age-associated processes included numerous core phenotypes of neurodegeneration, including enhanced oxidative stress and impaired proteostasis. Taken together, our results suggest that Cdk5α-mediated neurodegeneration results from accelerated aging, in combination with cell-autonomous neuronal insults. These data fundamentally recast our picture of the relationship between neurodegeneration and its most prominent risk factor, natural aging.

  6. Pantethine treatment is effective in recovering the disease phenotype induced by ketogenic diet in a pantothenate kinase-associated neurodegeneration mouse model

    Science.gov (United States)

    Brunetti, Dario; Dusi, Sabrina; Giordano, Carla; Lamperti, Costanza; Morbin, Michela; Fugnanesi, Valeria; Marchet, Silvia; Fagiolari, Gigliola; Sibon, Ody; Moggio, Maurizio; d’Amati, Giulia

    2014-01-01

    Pantothenate kinase-associated neurodegeneration, caused by mutations in the PANK2 gene, is an autosomal recessive disorder characterized by dystonia, dysarthria, rigidity, pigmentary retinal degeneration and brain iron accumulation. PANK2 encodes the mitochondrial enzyme pantothenate kinase type 2, responsible for the phosphorylation of pantothenate or vitamin B5 in the biosynthesis of co-enzyme A. A Pank2 knockout (Pank2−/−) mouse model did not recapitulate the human disease but showed azoospermia and mitochondrial dysfunctions. We challenged this mouse model with a low glucose and high lipid content diet (ketogenic diet) to stimulate lipid use by mitochondrial beta-oxidation. In the presence of a shortage of co-enzyme A, this diet could evoke a general impairment of bioenergetic metabolism. Only Pank2−/− mice fed with a ketogenic diet developed a pantothenate kinase-associated neurodegeneration-like syndrome characterized by severe motor dysfunction, neurodegeneration and severely altered mitochondria in the central and peripheral nervous systems. These mice also showed structural alteration of muscle morphology, which was comparable with that observed in a patient with pantothenate kinase-associated neurodegeneration. We here demonstrate that pantethine administration can prevent the onset of the neuromuscular phenotype in mice suggesting the possibility of experimental treatment in patients with pantothenate kinase-associated neurodegeneration. PMID:24316510

  7. Anthocyanins protect against LPS-induced oxidative stress-mediated neuroinflammation and neurodegeneration in the adult mouse cortex.

    Science.gov (United States)

    Khan, Muhammad Sohail; Ali, Tahir; Kim, Min Woo; Jo, Myeung Hoon; Jo, Min Gi; Badshah, Haroon; Kim, Myeong Ok

    2016-11-01

    Several studies provide evidence that reactive oxygen species (ROS) are key mediators of various neurological disorders. Anthocyanins are polyphenolic compounds and are well known for their anti-oxidant and neuroprotective effects. In this study, we investigated the neuroprotective effects of anthocyanins (extracted from black soybean) against lipopolysaccharide (LPS)-induced ROS-mediated neuroinflammation and neurodegeneration in the adult mouse cortex. Intraperitoneal injection of LPS (250 μg/kg) for 7 days triggers elevated ROS and oxidative stress, which induces neuroinflammation and neurodegeneration in the adult mouse cortex. Treatment with 24 mg/kg/day of anthocyanins for 14 days in LPS-injected mice (7 days before and 7 days co-treated with LPS) attenuated elevated ROS and oxidative stress compared to mice that received LPS-injection alone. The immunoblotting results showed that anthocyanins reduced the level of the oxidative stress kinase phospho-c-Jun N-terminal Kinase 1 (p-JNK). The immunoblotting and morphological results showed that anthocyanins treatment significantly reduced LPS-induced-ROS-mediated neuroinflammation through inhibition of various inflammatory mediators, such as IL-1β, TNF-α and the transcription factor NF- k B. Anthocyanins treatment also reduced activated astrocytes and microglia in the cortex of LPS-injected mice, as indicated by reductions in GFAP and Iba-1, respectively. Anthocyanins also prevent overexpression of various apoptotic markers, i.e., Bax, cytosolic cytochrome C, cleaved caspase-3 and PARP-1. Immunohistochemical fluoro-jade B (FJB) and Nissl staining indicated that anthocyanins prevent LPS-induced neurodegeneration in the mouse cortex. Our results suggest that dietary flavonoids, such as anthocyanins, have antioxidant and neuroprotective activities that could be beneficial to various neurological disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Neurodegeneration severity can be predicted from early microglia alterations monitored in vivo in a mouse model of chronic glaucoma

    Directory of Open Access Journals (Sweden)

    Alejandra Bosco

    2015-05-01

    Full Text Available Microglia serve key homeostatic roles, and respond to neuronal perturbation and decline with a high spatiotemporal resolution. The course of all chronic CNS pathologies is thus paralleled by local microgliosis and microglia activation, which begin at early stages of the disease. However, the possibility of using live monitoring of microglia during early disease progression to predict the severity of neurodegeneration has not been explored. Because the retina allows live tracking of fluorescent microglia in their intact niche, here we investigated their early changes in relation to later optic nerve neurodegeneration. To achieve this, we used the DBA/2J mouse model of inherited glaucoma, which develops progressive retinal ganglion cell degeneration of variable severity during aging, and represents a useful model to study pathogenic mechanisms of retinal ganglion cell decline that are similar to those in human glaucoma. We imaged CX3CR1+/GFP microglial cells in vivo at ages ranging from 1 to 5 months by confocal scanning laser ophthalmoscopy (cSLO and quantified cell density and morphological activation. We detected early microgliosis at the optic nerve head (ONH, where axonopathy first manifests, and could track attenuation of this microgliosis induced by minocycline. We also observed heterogeneous and dynamic patterns of early microglia activation in the retina. When the same animals were aged and analyzed for the severity of optic nerve pathology at 10 months of age, we found a strong correlation with the levels of ONH microgliosis at 3 to 4 months. Our findings indicate that live imaging and monitoring the time course and levels of early retinal microgliosis and microglia activation in glaucoma could serve as indicators of future neurodegeneration severity.

  9. Neurodegeneration in Autoimmune Optic Neuritis Is Associated with Altered APP Cleavage in Neurons and Up-Regulation of p53.

    Directory of Open Access Journals (Sweden)

    Sabine Herold

    Full Text Available Multiple Sclerosis (MS is a chronic autoimmune inflammatory disease of the central nervous system (CNS. Histopathological and radiological analysis revealed that neurodegeneration occurs early in the disease course. However, the pathological mechanisms involved in neurodegeneration are poorly understood. Myelin oligodendrocyte glycoprotein (MOG-induced experimental autoimmune encephalomyelitis (EAE in Brown Norway rats (BN-rats is a well-established animal model, especially of the neurodegenerative aspects of MS. Previous studies in this animal model indicated that loss of retinal ganglion cells (RGCs, the neurons that form the axons of the optic nerve, occurs in the preclinical phase of the disease and is in part independent of overt histopathological changes of the optic nerve. Therefore, the aim of this study was to identify genes which are involved in neuronal cell loss at different disease stages of EAE. Furthermore, genes that are highly specific for autoimmune-driven neurodegeneration were compared to those regulated in RGCs after optic nerve axotomy at corresponding time points. Using laser capture micro dissection we isolated RNA from unfixed RGCs and performed global transcriptome analysis of retinal neurons. In total, we detected 582 genes sequentially expressed in the preclinical phase and 1150 genes in the clinical manifest EAE (P 1.5. Furthermore, using ingenuity pathway analysis (IPA, we identified amyloid precursor protein (APP as a potential upstream regulator of changes in gene expression in the preclinical EAE but neither in clinical EAE, nor at any time point after optic nerve transection. Therefore, the gene pathway analysis lead to the hypothesis that altered cleavage of APP in neurons in the preclinical phase of EAE leads to the enhanced production of APP intracellular domain (AICD, which in turn acts as a transcriptional regulator and thereby initiates an apoptotic signaling cascade via up-regulation of the target gene p

  10. Exacerbation of CNS inflammation and neurodegeneration by systemic LPS treatment is independent of circulating IL-1 beta and IL-6

    LENUS (Irish Health Repository)

    Murray, Carol L

    2011-05-17

    Abstract Background Chronic neurodegeneration comprises an inflammatory response but its contribution to the progression of disease remains unclear. We have previously shown that microglial cells are primed by chronic neurodegeneration, induced by the ME7 strain of prion disease, to synthesize limited pro-inflammatory cytokines but to produce exaggerated responses to subsequent systemic inflammatory insults. The consequences of this primed response include exaggerated hypothermic and sickness behavioural responses, acute neuronal death and accelerated progression of disease. Here we investigated whether inhibition of systemic cytokine synthesis using the anti-inflammatory steroid dexamethasone-21-phosphate was sufficient to block any or all of these responses. Methods ME7 animals, at 18-19 weeks post-inoculation, were challenged with LPS (500 μg\\/kg) in the presence or absence of dexamethasone-21-phosphate (2 mg\\/kg) and effects on core-body temperature and systemic and CNS cytokine production and apoptosis were examined. Results LPS induced hypothermia and decreased exploratory activity. Dexamethasone-21-phosphate prevented this hypothermia, markedly suppressed systemic IL-1β and IL-6 secretion but did not prevent decreased exploration. Furthermore, robust transcription of cytokine mRNA occurred in the hippocampus of both ME7 and NBH (normal brain homogenate) control animals despite the effective blocking of systemic cytokine synthesis. Microglia primed by neurodegeneration were not blocked from the robust synthesis of IL-1β protein and endothelial COX-2 was also robustly synthesized. We injected biotinylated LPS at 100 μg\\/kg and even at this lower dose this could be detected in blood plasma. Apoptosis was acutely induced by LPS, despite the inhibition of the systemic cytokine response. Conclusions These data suggest that LPS can directly activate the brain endothelium even at relatively low doses, obviating the need for systemic cytokine stimulation to

  11. Caffeine prevents d-galactose-induced cognitive deficits, oxidative stress, neuroinflammation and neurodegeneration in the adult rat brain.

    Science.gov (United States)

    Ullah, Faheem; Ali, Tahir; Ullah, Najeeb; Kim, Myeong Ok

    2015-11-01

    d-galactose has been considered a senescent model for age-related neurodegenerative disease. It induces oxidative stress which triggers memory impairment, neuroinflammation and neurodegeneration. Caffeine act as anti-oxidant and has been used in various model of neurodegenerative disease. Nevertheless, the effect of caffeine against d-galactose aging murine model of age-related neurodegenerative disease elucidated. Here, we investigated the neuroprotective effect of caffeine against d-galactose. We observed that chronic treatment of caffeine (3 mg/kg/day intraperitoneally (i.p) for 60 days) improved memory impairment and synaptic markers (Synaptophysin and PSD95) in the d-galactose treated rats. Chronic caffeine treatment reduced the oxidative stress via the reduction of 8-oxoguanine through immunofluorescence in the d-galactose-treated rats. Consequently caffeine treatment suppressed stress kinases p-JNK. Additionally, caffeine treatment significantly reduced the d-galactose-induced neuroinflammation through alleviation of COX-2, NOS-2, TNFα and IL-1β. Furthermore we also analyzed that caffeine reduced cytochrome C, Bax/Bcl2 ratio, caspase-9, caspase-3 and PARP-1 level. Moreover by evaluating the immunohistochemical results of Nissl and Fluro-Jade B staining showed that caffeine prevented the neurodegeneration in the d-galactose-treated rats. Our results showed that caffeine prevents the d-galactose-induced oxidative stress and consequently alleviated neuroinflammation and neurodegeneration; and synaptic dysfunction and memory impairment. Therefore, we could suggest that caffeine might be a dietary anti-oxidant agent and a good candidate for the age-related neurodegenerative disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Cerebrospinal fluid neurofilament light chain as a biomarker of neurodegeneration in the Tg4510 and MitoPark mouse models

    DEFF Research Database (Denmark)

    Clement, Amalie; Mitchelmore, Cathy; Andersson, Daniel

    2017-01-01

    examined whether changes in NF-L levels in brain, plasma, and CSF reflect the changing disease status of preclinical models of neurodegeneration. Using Western Blot and ELISA we characterized NF-L and disease-related proteins in brain, CSF and plasma samples from Tg4510 mice (tauopathy/AD), MitoPark mice...... (PD), and their age-matched control littermates. We found that CSF NF-L clearly discriminates Tg4510 from control littermates, which was not observed for the MitoPark model. However, both Tg4510 and MitoPark showed altered expression and solubilization of NFs compared to control littermates. We found...

  13. Role of Ca+2 and other second messengers in excitatory amino acid receptor mediated neurodegeneration: clinical perspectives

    DEFF Research Database (Denmark)

    Schousboe, A; Belhage, B; Frandsen, A

    1997-01-01

    Neurodegeneration associated with neurological disorders such as epilepsy, Huntington's Chorea, Alzheimer's disease, and olivoponto cerebellar atrophy or with energy failure such as ischemia, hypoxia, and hypoglycemia proceeds subsequent to overexposure of neurons to excitatory amino acids of which...... glutamate and aspartate may be quantitatively the most important. The toxic action of glutamate and aspartate is mediated through activation of glutamate receptors of the N-methyl-D-aspartate (NMDA) and non-NMDA subtypes. Antagonists for these receptors can act as neuroprotectants both in in vitro model...

  14. Diabetes and overexpression of proNGF cause retinal neurodegeneration via activation of RhoA pathway.

    Directory of Open Access Journals (Sweden)

    Mohammed M H Al-Gayyar

    Full Text Available Our previous studies showed positive correlation between accumulation of proNGF, activation of RhoA and neuronal death in diabetic models. Here, we examined the neuroprotective effects of selective inhibition of RhoA kinase in the diabetic rat retina and in a model that stably overexpressed the cleavage-resistance proNGF plasmid in the retina. Male Sprague-Dawley rats were rendered diabetic using streptozotocin or stably express cleavage-resistant proNGF plasmid. The neuroprotective effects of the intravitreal injection of RhoA kinase inhibitor Y27632 were examined in vivo. Effects of proNGF were examined in freshly isolated primary retinal ganglion cell (RGC cultures and RGC-5 cell line. Retinal neurodegeneration was assessed by counting TUNEL-positive and Brn-3a positive retinal ganglion cells. Expression of proNGF, p75(NTR, cleaved-PARP, caspase-3 and p38MAPK/JNK were examined by Western-blot. Activation of RhoA was assessed by pull-down assay and G-LISA. Diabetes and overexpression of proNGF resulted in retinal neurodegeneration as indicated by 9- and 6-fold increase in TUNEL-positive cells, respectively. In vitro, proNGF induced 5-fold cell death in RGC-5 cell line, and it induced >10-fold cell death in primary RGC cultures. These effects were associated with significant upregulation of p75(NTR and activation of RhoA. While proNGF induced TNF-α expression in vivo, it selectively activated RhoA in primary RGC cultures and RGC-5 cell line. Inhibiting RhoA kinase with Y27632 significantly reduced diabetes- and proNGF-induced activation of proapoptotic p38MAPK/JNK, expression of cleaved-PARP and caspase-3 and prevented retinal neurodegeneration in vivo and in vitro. Taken together, these results provide compelling evidence for a causal role of proNGF in diabetes-induced retinal neurodegeneration through enhancing p75(NTR expression and direct activation of RhoA and p38MAPK/JNK apoptotic pathways.

  15. Brain Renin-Angiotensin System and Microglial Polarization: Implications for Aging and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Jose L. Labandeira-Garcia

    2017-05-01

    , such as estrogens, Rho kinase (ROCK, insulin-like growth factor-1 (IGF-1, tumor necrosis factor α (TNF-α, iron, peroxisome proliferator-activated receptor gamma, and toll-like receptors (TLRs. Metabolic reprogramming has recently been involved in the regulation of the neuroinflammatory response. Interestingly, we have recently observed a mitochondrial RAS, which is altered in aged brains. In conclusion, dysregulation of brain RAS plays a major role in aging-related changes and neurodegeneration by exacerbation of oxidative stress (OS and neuroinflammation, which may be attenuated by pharmacological manipulation of RAS components.

  16. Developmental toxicity of toluene in male rats: effects on semen quality, testis morphology, and apoptotic neurodegeneration

    Energy Technology Data Exchange (ETDEWEB)

    Dalgaard, M.; Hossaini, A.; Hass, U.; Ladefoged, O. [Inst. of Food Safety and Toxicology, Danish Veterinary and Food Administration, Soborg (Denmark); Hougaard, K.S. [National Inst. of Occupational Health, Copenhagen (Denmark)

    2001-04-01

    In one study, pregnant Wistar rats were exposed to 1200 ppm toluene by inhalation 6 h a day from gestational day (GD) 7 to postnatal day (PND) 18. Sperm analysis was performed in the adult male offspring at PND 110 by using computer-assisted sperm analysis. Toluene did not affect the semen quality of exposed rats. In another study, pregnant rats were exposed to 1800 ppm from GD 7 to GD 20, and the male offspring were killed at PND 11, 21 or 90. Paired testes weight, histopathology and immunoexpression of vimentin in Sertoli cells were used as markers of testis toxicity. In the brain, the number of apoptotic cells in the hippocampus and cerebellum were counted after visualisation by means of the TUNEL assay. Mean body weight in pups of exposed dams was lower than in pups from control litters. This decrease was still statistically significant at PND 11, but at PND 21 and 90 the body weight of toluene-exposed males tended to approach that of the controls. Absolute and relative testes weights were reduced in all three age groups, although not to a statistically significant degree. Histopathological examinations of the testis and immuno-expression of vimentin did not reveal any differences between toluene-exposed animals and control animals. In the hippocampus, almost no apoptosis was observed in any age group, and there were no differences in apoptotic neurodegeneration between male rats exposed to 1800 ppm and control animals at PND 11, 21 or 90. Generally, a marked increase in number of apoptotic cells was observed in cerebellar granule cells at PND 21 compared with the other age groups. Toluene induced a statistically significant increase in the number of apoptotic cells in the cerebellar granule layer at PND 21. The mean was increased from 37 in the control group to 71 in the toluene-exposed group. Thus, the granular cell layer in cerebellum is a highly relevant tissue with which to study toluene-induced apoptosis, because of the continuous migration of neurons and

  17. Serum neurofilament light in familial Alzheimer disease: A marker of early neurodegeneration.

    Science.gov (United States)

    Weston, Philip S J; Poole, Teresa; Ryan, Natalie S; Nair, Akshay; Liang, Yuying; Macpherson, Kirsty; Druyeh, Ronald; Malone, Ian B; Ahsan, R Laila; Pemberton, Hugh; Klimova, Jana; Mead, Simon; Blennow, Kaj; Rossor, Martin N; Schott, Jonathan M; Zetterberg, Henrik; Fox, Nick C

    2017-11-21

    To investigate whether serum neurofilament light (NfL) concentration is increased in familial Alzheimer disease (FAD), both pre and post symptom onset, and whether it is associated with markers of disease stage and severity. We recruited 48 individuals from families with PSEN1 or APP mutations to a cross-sectional study: 18 had symptomatic Alzheimer disease (AD) and 30 were asymptomatic but at 50% risk of carrying a mutation. Serum NfL was measured using an ultrasensitive immunoassay on the single molecule array (Simoa) platform. Cognitive testing and MRI were performed; 33 participants had serial MRI, allowing calculation of atrophy rates. Genetic testing established mutation status. A generalized least squares regression model was used to compare serum NfL among symptomatic mutation carriers, presymptomatic carriers, and noncarriers, adjusting for age and sex. Spearman coefficients assessed associations between serum NfL and (1) estimated years to/from symptom onset (EYO), (2) cognitive measures, and (3) MRI measures of atrophy. Nineteen of the asymptomatic participants were mutation carriers (mean EYO -9.6); 11 were noncarriers. Compared with noncarriers, serum NfL concentration was higher in both symptomatic ( p < 0.0001) and presymptomatic mutation carriers ( p = 0.007). Across all mutation carriers, serum NfL correlated with EYO (ρ = 0.81, p < 0.0001) and multiple cognitive and imaging measures, including Mini-Mental State Examination (ρ = -0.62, p = 0.0001), Clinical Dementia Rating Scale sum of boxes (ρ = 0.79, p < 0.0001), baseline brain volume (ρ = -0.62, p = 0.0002), and whole-brain atrophy rate (ρ = 0.53, p = 0.01). Serum NfL concentration is increased in FAD prior to symptom onset and correlates with measures of disease stage and severity. Serum NfL may thus be a feasible biomarker of early AD-related neurodegeneration. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  18. DNA demethylation by 5-aza-2-deoxycytidine treatment abrogates 17 beta-estradiol-induced cell growth and restores expression of DNA repair genes in human breast cancer cells.

    Science.gov (United States)

    Singh, Kamaleshwar P; Treas, Justin; Tyagi, Tulika; Gao, Weimin

    2012-03-01

    Prolonged exposure to elevated levels of estrogen is a risk factor for breast cancer. Though increased cell growth and loss of DNA repair capacity is one of the proposed mechanisms for estrogen-induced cancers, the mechanism through which estrogen induces cell growth and decreases DNA repair capacity is not clear. DNA hypermethylation is known to inactivate DNA repair genes and apoptotic response in cancer cells. Therefore, the objective of this study was to determine the role of DNA hypermethylation in estrogen-induced cell growth and regulation of DNA repair genes expression in breast cancer cells. To achieve this objective, the estrogen-responsive MCF-7 cells either pretreated with 5-aza-2-deoxycytidine (5-aza-dC) or untreated (as control) were exposed to 17 beta-estradiol (E2), and its effect on cell growth and expression of DNA repair genes were measured. The result revealed that 5-aza-dC abrogates the E2-induced growth in MCF-7 cells. An increased expression of OGG1, MSH4, and MLH1 by 5-aza-dC treatment alone, suggest the DNA hypermethylation as a potential cause for decreased expression of these genes in MCF-7 cells. The decreased expression of ERCC1, XPC, OGG1, and MLH1 by E2 alone and its restoration by co-treatment with 5-aza-dC further suggest that E2 reduces the expression of these DNA repair genes potentially through promoter hypermethylation. Reactivation of mismatch repair (MMR) gene MLH1 and abrogation of E2-induced cell growth by 5-aza-dC treatment suggest that estrogen causes increased growth in breast cancer cells potentially through the inhibition of MMR-mediated apoptotic response. In summary, this study suggests that estrogen increases cell growth and decreases the DNA repair capacity in breast cancer cells, at least in part, through epigenetic mechanism. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Inhibition of Hb Binding to GP1bα Abrogates Hb-Mediated Thrombus Formation on Immobilized VWF and Collagen under Physiological Shear Stress.

    Science.gov (United States)

    Annarapu, Gowtham K; Singhal, Rashi; Peng, Yuandong; Guchhait, Prasenjit

    2016-01-01

    Reports including our own describe that intravascular hemolysis increases the risk of thrombosis in hemolytic disorders. Our recent study shows that plasma Hb concentrations correlate directly with platelet activation in patients with paroxysmal nocturnal hemoglobinuria (PNH). The binding of Hb to glycoprotein1bα (GP1bα) increases platelet activation. A peptide AA1-50, designed from N-terminal amino acid sequence of GP1bα significantly inhibits the Hb binding to GP1bα as well as Hb-induced platelet activation. This study further examined if the Hb-mediated platelet activation plays any significant role in thrombus formation on subendothelium matrix under physiological flow shear stresses and the inhibition of Hb-platelet interaction can abrogate the above effects of Hb. Study performed thrombus formation assay in vitro by perfusing whole blood over immobilized VWF or collagen type I in presence of Hb under shear stresses simulating arterial or venous flow. The Hb concentrations ranging from 5 to 10 μM, commonly observed level in plasma of the hemolytic patients including PNH, dose-dependently increased thrombus formation on immobilized VWF under higher shear stress of 25 dyne/cm2, but not at 5 dyne/cm2. The above Hb concentrations also increased thrombus formation on immobilized collagen under both shear stresses of 5 and 25 dyne/cm2. The peptide AA1-50 abrogated invariably the above effects of Hb on thrombus formation. This study therefore indicates that the Hb-induced platelet activation plays a crucial role in thrombus formation on immobilized VWF or collagen under physiological flow shear stresses. Thus suggesting a probable role of this mechanism in facilitating thrombosis under hemolytic conditions.

  20. Dual Role of Vitamin C on the Neuroinflammation Mediated Neurodegeneration and Memory Impairments in Colchicine Induced Rat Model of Alzheimer Disease.

    Science.gov (United States)

    Sil, Susmita; Ghosh, Tusharkanti; Gupta, Pritha; Ghosh, Rupsa; Kabir, Syed N; Roy, Avishek

    2016-12-01

    The neurodegeneration in colchicine induced AD rats (cAD) is mediated by cox-2 linked neuroinflammation. The importance of ROS in the inflammatory process in cAD has not been identified, which may be deciphered by blocking oxidative stress in this model by a well-known anti-oxidant vitamin C. Therefore, the present study was designed to investigate the role of vitamin C on colchicine induced oxidative stress linked neuroinflammation mediated neurodegeneration and memory impairments along with peripheral immune responses in cAD. The impairments of working and reference memory were associated with neuroinflammation and neurodegeneration in the hippocampus of cAD. Administration of vitamin C (200 and 400 mg/kg BW) in cAD resulted in recovery of memory impairments, with prevention of neurodegeneration and neuroinflammation in the hippocampus. The neuroinflammation in the hippocampus also influenced the peripheral immune responses and inflammation in the serum of cAD and all of these parameters were also recovered at 200 and 400 mg dose of vitamin C. However, cAD treated with 600 mg dose did not recover but resulted in increase of memory impairments, neurodegeneration and neuroinflammation in hippocampus along with alteration of peripheral immune responses in comparison to cAD of the present study. Therefore, the present study showed that ROS played an important role in the colchicine induced neuroinflammation linked neurodegeneration and memory impairments along with alteration of peripheral immune responses. It also appears from the results that vitamin C at lower doses showed anti-oxidant effect and at higher dose resulted in pro-oxidant effects in cAD.

  1. Patient Affected by Beta-Propeller Protein-Associated Neurodegeneration: A Therapeutic Attempt with Iron Chelation Therapy

    Directory of Open Access Journals (Sweden)

    Mattia Fonderico

    2017-08-01

    Full Text Available Here, we report the case of a 36-year-old patient with a diagnosis of de novo mutation of the WDR45 gene, responsible for beta-propeller protein-associated neurodegeneration, a phenotypically distinct, X-linked dominant form of Neurodegeneration with Brain Iron Accumulation. The clinical history is characterized by a relatively stable intellectual disability and a hypo-bradykinetic and hypertonic syndrome with juvenile onset. Genetic investigations and T1 and T2-weighted MR images align with what is described in literature. The patient was also subjected to PET with 18-FDG investigation and DaT-Scan study. In reporting relevant clinical data, we want to emphasize the fact that the patient received a chelation therapy with deferiprone (treatment already used in other forms of NBIA with encouraging results, which, however, had to be interrupted because the parkinsonian symptoms worsened. Conversely, the patient has benefited from non-drug therapies and, in particular, from an adapted motor activity with assisted pedaling (method in the process of validation in treatments of parkinsonian syndromes, which started before the treatment with deferiprone and still continues.

  2. Gene Expression Profiling as a Tool to Investigate the Molecular Machinery Activated during Hippocampal Neurodegeneration Induced by Trimethyltin (TMT Administration

    Directory of Open Access Journals (Sweden)

    Maria Concetta Geloso

    2013-08-01

    Full Text Available Trimethyltin (TMT is an organotin compound exhibiting neurotoxicant effects selectively localized in the limbic system and especially marked in the hippocampus, in both experimental animal models and accidentally exposed humans. TMT administration causes selective neuronal death involving either the granular neurons of the dentate gyrus or the pyramidal cells of the Cornu Ammonis, with a different pattern of localization depending on the different species studied or the dosage schedule. TMT is broadly used to realize experimental models of hippocampal neurodegeneration associated with cognitive impairment and temporal lobe epilepsy, though the molecular mechanisms underlying the associated selective neuronal death are still not conclusively clarified. Experimental evidence indicates that TMT-induced neurodegeneration is a complex event involving different pathogenetic mechanisms, probably acting differently in animal and cell models, which include neuroinflammation, intracellular calcium overload, and oxidative stress. Microarray-based, genome-wide expression analysis has been used to investigate the molecular scenario occurring in the TMT-injured brain in different in vivo and in vitro models, producing an overwhelming amount of data. The aim of this review is to discuss and rationalize the state-of-the-art on TMT-associated genome wide expression profiles in order to identify comparable and reproducible data that may allow focusing on significantly involved pathways.

  3. Neurodegeneration and unfolded-protein response in mice expressing a membrane-tethered flexible tail of PrP.

    Directory of Open Access Journals (Sweden)

    Paolo Dametto

    Full Text Available The cellular prion protein (PrPC consists of a flexible N-terminal tail (FT, aa 23-128 hinged to a membrane-anchored globular domain (GD, aa 129-231. Ligation of the GD with antibodies induces rapid neurodegeneration, which is prevented by deletion or functional inactivation of the FT. Therefore, the FT is an allosteric effector of neurotoxicity. To explore its mechanism of action, we generated transgenic mice expressing the FT fused to a GPI anchor, but lacking the GD (PrPΔ141-225, or "FTgpi". Here we report that FTgpi mice develop a progressive, inexorably lethal neurodegeneration morphologically and biochemically similar to that triggered by anti-GD antibodies. FTgpi was mostly retained in the endoplasmic reticulum, where it triggered a conspicuous unfolded protein response specifically activating the PERK pathway leading to phosphorylation of eIF2α and upregulation of CHOP ultimately leading to neurodegeration similar to what was observed in prion infection.

  4. NF-κB Immunity in the Brain Determines Fly Lifespan in Healthy Aging and Age-Related Neurodegeneration.

    Science.gov (United States)

    Kounatidis, Ilias; Chtarbanova, Stanislava; Cao, Yang; Hayne, Margaret; Jayanth, Dhruv; Ganetzky, Barry; Ligoxygakis, Petros

    2017-04-25

    During aging, innate immunity progresses to a chronically active state. However, what distinguishes those that "age well" from those developing age-related neurological conditions is unclear. We used Drosophila to explore the cost of immunity in the aging brain. We show that mutations in intracellular negative regulators of the IMD/NF-κB pathway predisposed flies to toxic levels of antimicrobial peptides, resulting in early locomotor defects, extensive neurodegeneration, and reduced lifespan. These phenotypes were rescued when immunity was suppressed in glia. In healthy flies, suppressing immunity in glial cells resulted in increased adipokinetic hormonal signaling with high nutrient levels in later life and an extension of active lifespan. Thus, when levels of IMD/NF-κB deviate from normal, two mechanisms are at play: lower levels derepress an immune-endocrine axis, which mobilizes nutrients, leading to lifespan extension, whereas higher levels increase antimicrobial peptides, causing neurodegeneration. Immunity in the fly brain is therefore a key lifespan determinant. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. NF-κB Immunity in the Brain Determines Fly Lifespan in Healthy Aging and Age-Related Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Ilias Kounatidis

    2017-04-01

    Full Text Available During aging, innate immunity progresses to a chronically active state. However, what distinguishes those that “age well” from those developing age-related neurological conditions is unclear. We used Drosophila to explore the cost of immunity in the aging brain. We show that mutations in intracellular negative regulators of the IMD/NF-κB pathway predisposed flies to toxic levels of antimicrobial peptides, resulting in early locomotor defects, extensive neurodegeneration, and reduced lifespan. These phenotypes were rescued when immunity was suppressed in glia. In healthy flies, suppressing immunity in glial cells resulted in increased adipokinetic hormonal signaling with high nutrient levels in later life and an extension of active lifespan. Thus, when levels of IMD/NF-κB deviate from normal, two mechanisms are at play: lower levels derepress an immune-endocrine axis, which mobilizes nutrients, leading to lifespan extension, whereas higher levels increase antimicrobial peptides, causing neurodegeneration. Immunity in the fly brain is therefore a key lifespan determinant.

  6. Mithramycin is a gene-selective Sp1 inhibitor that identifies a biological intersection between cancer and neurodegeneration.

    Science.gov (United States)

    Sleiman, Sama F; Langley, Brett C; Basso, Manuela; Berlin, Jill; Xia, Li; Payappilly, Jimmy B; Kharel, Madan K; Guo, Hengchang; Marsh, J Lawrence; Thompson, Leslie Michels; Mahishi, Lata; Ahuja, Preeti; MacLellan, W Robb; Geschwind, Daniel H; Coppola, Giovanni; Rohr, Jürgen; Ratan, Rajiv R

    2011-05-04

    Oncogenic transformation of postmitotic neurons triggers cell death, but the identity of genes critical for degeneration remain unclear. The antitumor antibiotic mithramycin prolongs survival of mouse models of Huntington's disease in vivo and inhibits oxidative stress-induced death in cortical neurons in vitro. We had correlated protection by mithramycin with its ability to bind to GC-rich DNA and globally displace Sp1 family transcription factors. To understand how antitumor drugs prevent neurodegeneration, here we use structure-activity relationships of mithramycin analogs to discover that selective DNA-binding inhibition of the drug is necessary for its neuroprotective effect. We identify several genes (Myc, c-Src, Hif1α, and p21(waf1/cip1)) involved in neoplastic transformation, whose altered expression correlates with protective doses of mithramycin or its analogs. Most interestingly, inhibition of one these genes, Myc, is neuroprotective, whereas forced expression of Myc induces Rattus norvegicus neuronal cell death. These results support a model in which cancer cell transformation shares key genetic components with neurodegeneration.

  7. Binge Alcohol Exposure Transiently Changes the Endocannabinoid System: A Potential Target to Prevent Alcohol-Induced Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Daniel J. Liput

    2017-11-01

    Full Text Available Excessive alcohol consumption leads to neurodegeneration, which contributes to cognitive decline that is associated with alcohol use disorders (AUDs. The endocannabinoid system has been implicated in the development of AUDs, but little is known about how the neurotoxic effects of alcohol impact the endocannabinoid system. Therefore, the current study investigated the effects of neurotoxic, binge-like alcohol exposure on components of the endocannabinoid system and related N-acylethanolamines (NAEs, and then evaluated the efficacy of fatty acid amide hydrolase (FAAH inhibition on attenuating alcohol-induced neurodegeneration. Male rats were administered alcohol according to a binge model, which resulted in a transient decrease in [3H]-CP-55,940 binding in the entorhinal cortex and hippocampus following two days, but not four days, of treatment. Furthermore, binge alcohol treatment did not change the tissue content of the three NAEs quantified, including the endocannabinoid and anandamide. In a separate study, the FAAH inhibitor, URB597 was administered to rats during alcohol treatment and neuroprotection was assessed by FluoroJade B (FJB staining. The administration of URB597 during binge treatment did not significantly reduce FJB+ cells in the entorhinal cortex or hippocampus, however, a follow up “target engagement” study found that NAE augmentation by URB597 was impaired in alcohol intoxicated rats. Thus, potential alcohol induced alterations in URB597 pharmacodynamics may have contributed to the lack of neuroprotection by FAAH inhibition.

  8. Pantothenate kinase-associated neurodegeneration: altered mitochondria membrane potential and defective respiration in Pank2 knock-out mouse model.

    Science.gov (United States)

    Brunetti, Dario; Dusi, Sabrina; Morbin, Michela; Uggetti, Andrea; Moda, Fabio; D'Amato, Ilaria; Giordano, Carla; d'Amati, Giulia; Cozzi, Anna; Levi, Sonia; Hayflick, Susan; Tiranti, Valeria

    2012-12-15

    Neurodegeneration with brain iron accumulation (NBIA) comprises a group of neurodegenerative disorders characterized by high brain content of iron and presence of axonal spheroids. Mutations in the PANK2 gene, which encodes pantothenate kinase 2, underlie an autosomal recessive inborn error of coenzyme A metabolism, called pantothenate kinase-associated neurodegeneration (PKAN). PKAN is characterized by dystonia, dysarthria, rigidity and pigmentary retinal degeneration. The pathogenesis of this disorder is poorly understood and, although PANK2 is a mitochondrial protein, perturbations in mitochondrial bioenergetics have not been reported. A knock-out (KO) mouse model of PKAN exhibits retinal degeneration and azoospermia, but lacks any neurological phenotype. The absence of a clinical phenotype has partially been explained by the different cellular localization of the human and murine PANK2 proteins. Here we demonstrate that the mouse Pank2 protein localizes to mitochondria, similar to its human orthologue. Moreover, we show that Pank2-defective neurons derived from KO mice have an altered mitochondrial membrane potential, a defect further corroborated by the observations of swollen mitochondria at the ultra-structural level and by the presence of defective respiration.

  9. Bill project aiming at abrogating exclusive search permits for unconventional hydrocarbon searches, and at prohibiting their exploration and exploitation of the national territory; Proposition de Loi visant a abroger les permis exclusifs de recherches d'hydrocarbures non conventionnels et a interdire leur exploration et leur exploitation sur le territoire national

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    After having briefly recalled the origin of shale gases, their extraction process and the evolution of their production in the USA, the authors outline the extremely negative environmental impacts of the fracking technique (hydraulic fracturing): water pollution, air pollution, soil pollution, existence of numerous drilling sites which would degrade landscapes, water and soil contamination risks. As some search permits have already been awarded, and while taking these negative consequences into account, the authors propose a bill project to prohibit these explorations, to abrogate the existing permits, and to ensure public information before bestowing such search permits and exploitation concessions

  10. Bill project aiming at abrogating exclusive search permits for unconventional hydrocarbon searches, and at prohibiting their exploration and exploitation of the national territory; Proposition de Loi visant a abroger les permis exclusifs de recherches d'hydrocarbures non conventionnels et a interdire leur exploration et leur exploitation sur le territoire national

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    After having briefly recalled the origin of shale gases, their extraction process and the evolution of their production in the USA, the authors outline the extremely negative environmental impacts of the fracking technique (hydraulic fracturing): water pollution, air pollution, soil pollution, existence of numerous drilling sites which would degrade landscapes, water and soil contamination risks. As some search permits have already been awarded, and while taking these negative consequences into account, the authors propose a bill project to prohibit these explorations, to abrogate the existing permits, and to ensure public information before bestowing such search permits and exploitation concessions

  11. Retinal neurodegeneration in patients with type 1 diabetes mellitus: the role of glycemic variability.

    Science.gov (United States)

    Picconi, Fabiana; Parravano, Mariacristina; Ylli, Dorina; Pasqualetti, Patrizio; Coluzzi, Sara; Giordani, Ilaria; Malandrucco, Ilaria; Lauro, Davide; Scarinci, Fabio; Giorno, Paola; Varano, Monica; Frontoni, Simona

    2017-05-01

    Recent studies have identified neuroretinal abnormalities in persons affected by diabetes mellitus, before the onset of microvascular alterations. However, the role of glycemic variability (GV) on early retinal neurodegeneration is still not clarified. To explore the relationship between glycemic control and neuroretinal characteristics, 37 persons with Type 1 diabetes mellitus (Type 1 DM) divided into two groups with no signs (noRD) and with mild non-proliferative diabetic retinopathy (NPDR) compared to 13 healthy control participants (C) were recruited. All persons underwent an optical coherence tomography with automatic segmentation of all neuroretinal layers. Measurements of mean of nasal (N)/temporal (T)/superior (S)/inferior (I) macular quadrants for individual layer were also calculated. Metabolic control was evaluated by glycated hemoglobin (HbA1c), and indexes of GV were calculated from continuous glucose monitoring. The difference among the three groups in terms of RNFL thickness was significantly dependent on quadrant (F(6;132) = 2.315; p = 0.037). This interaction was due to a specific difference in RNFL-N thickness, where both Type 1 DM groups showed a similar reduction versus C (-3.9 for noDR and -4.9 for NPDR), without any relevant difference between them (-1.0). Inner nuclear layer (INL) was increased in all quadrants in the two Type 1 DM groups compared to C (mean difference = 7.73; 95% CI: 0.32-15.14, p = 0.043; mean difference = 7.74; 95% CI: 0.33-15.15, p = 0.043, respectively). A negative correlation between RNFL-N and low blood glucose index (r = -0.382, p = 0.034) and positive correlation between INL and continuous overall net glycemic action -1, -2, -4 h (r = 0.40, p = 0.025; r = 0.39, p = 0.031; r = 0.41, p = 0.021, respectively) were observed in Type 1 DM patients. The triglycerides were positively and significantly correlated to INL (r = 0.48, p = 0.011), in Type 1 DM subjects. GV and triglycerides

  12. Clinical phenotype and genetic mutation of fatty acid hydroxylase - associated neurodegeneration: analysis of four cases

    Directory of Open Access Journals (Sweden)

    Xiao-jun HUANG

    2017-07-01

    Full Text Available Objective To report 4 cases of fatty acid hydroxylase - associated neurodegeneration (FAHN and to summarize the clinical and genetic characteristics of FAHN by literatures review.  Methods Four cases of FAHN patients' clinical and family data were collected in detail. The gDNA of patients and their parents were extracted from peripheral blood. FA2H gene was conducted and followed by Sanger sequencing.  Results Among the 4 cases, 3 cases (Case 2, Case 3, Case 4 presented typical manifestations of FAHN while the other (Case 1 was atypical. Genetic sequencing showed FA2H gene mutation in all affected patients. Compound heterozygous mutation c.461G > A (p.Arg154His and c.794T > G (p.Phe265Cys were seen in Case 1. In Case 2, only one documented heterozygous mutation c.703C > T (p.Arg235Cys was found, and dificit mutation was not found in single nucleotide polymorphism (SNP chip test of the patient and her mother. Compound heterozygous mutation c.688G > A (p.Glu230Lys and insertion mutation c.172_173insGGGCCAGGAC (p.Ile58ArgfsX47 were presented in Case 3. In Case 4, compound heterozygous mutation c.688G > A (p.Glu230Lys, c.968C > A (p.Pro323Gln and c.976G > A (p. Gly326Asp were seen, while his father was the carrier of c.688G > A (p.Glu230Lys mutation and his mother was the carrier of c.968C > A (p.Pro323Gln and c.976G > A (p.Gly326Asp mutation. According to the standard of American College of Medical Genetics and Genomics (ACMG, c.461G > A (p.Arg154His and c.794T > G (p.Phe265Cys in Case 1, and c.703C > T (p.Arg235Cys in Case 2 were considered as "likely pathogenic", while FA2H gene compound heterozygous mutation c.688G > A (p.Glu230Lys, insertion mutation c.172_173insGGGCCAGGAC (p.Ile58ArgfsX47 in Case 3 was as "pathogenic", and in Case 4, the FA2H gene mutation c.688G > A (p.Glu230Lys and c.968C > A (p.Pro323Gln were "pathogenic" and c.976G > A (p.Gly326Asp was "likely pathogenic".  Conclusions FAHN has highly clinical and genetic

  13. Aralia elata inhibits neurodegeneration by downregulating O-GlcNAcylation of NF-κB in diabetic mice

    Directory of Open Access Journals (Sweden)

    Seong-Jae Kim

    2017-08-01

    Full Text Available AIM: To investigate the role of O-GlcNAcylation of nuclear factor-kappa B (NF-κB in retinal ganglion cell (RGC death and analysedthe effect of Aralia elata (AE on neurodegeneration in diabetic mice. METHODS: C57BL/6mice with streptozotocin-induced diabetes were fed daily with AE extract or control (CTL diet at the onset of diabetes mellitus (DM. Two months after injection of streptozotocin or saline, the degree of cell death and the expression of O-GlcNAc transferase (OGT, N-acetyl-b-D-glucosaminidase (OGA, O-GlcNAcylated proteins, and O-GlcNAcylation of NF-κB were examined. RESULTS: AE did not affect the metabolic status of diabetic mice. The decrease in the inner retinal thickness (P<0.001 vs CTL, P<0.01 vs DM and increases in RGCs with terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (P<0.001 vs CTL, P<0.0001 vs DM, glial activation, and active caspase-3 (P<0.0001 vs CTL, P<0.0001 vs DM were blocked in diabetic retinas of AE extract-fed mice. Expression levels of protein O-GlcNAcylation and OGT were increased in diabetic retinas (P<0.0001 vs CTL, and the level of O-GlcNAcylation of the NF-κB p65 subunit was higher in diabetic retinas than in controls (P<0.0001 vs CTL. AE extract downregulated O-GlcNAcylation of NF-κB and prevented neurodegeneration induced by hyperglycemia (P<0.0001 vs DM. CONCLUSION: O-GlcNAcylation of NF-κB is concerned in neuronal degeneration and that AE prevents diabetes-induced RGC apoptosis via downregulation of NF-κB O-GlcNAcylation. Hence, O-GlcNAcylation may be a new object for the treatment of DR, and AE may have therapeutic possibility to prevent diabetes-induced neurodegeneration.

  14. Data on pharmacological applications and hypothermia protection against in vitro oxygen-glucose-deprivation-related neurodegeneration of adult rat CA1 region

    Directory of Open Access Journals (Sweden)

    Pınar Öz

    2017-02-01

    Here, the use CA1sp width measurements on Nissl-stained hippocampal slices is introduced as a valid and affordable method for detecting the level of neurodegeneration and neuroprotection on hippocampal slices. The protective effect of hypothermia was found to be more pronounced compared to other agents.

  15. Peroxisome proliferator-activated receptor γ is expressed in hippocampal neurons and its activation prevents β-amyloid neurodegeneration: role of Wnt signaling

    International Nuclear Information System (INIS)

    Inestrosa, Nibaldo C.; Godoy, Juan A.; Quintanilla, Rodrigo A.; Koenig, Cecilia S.; Bronfman, Miguel

    2005-01-01

    The molecular pathogenesis of Alzheimer's disease (AD) involves the participation of the amyloid-β-peptide (Aβ), which plays a critical role in the neurodegeneration that triggers the disease. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors, which are members of the nuclear receptor family. We report here that (1) PPARγ is present in rat hippocampal neurons in culture. (2) Activation of PPARγ by troglitazone and rosiglitazone protects rat hippocampal neurons against Aβ-induced neurodegeneration, as shown by the 3-[4,5 -2yl]-2,5-diphenyltetrazolium bromide (MTT) reduction assay, immunofluorescence using an anti-heavy neurofilament antibody, and quantitative electron microscopy. (3) Hippocampal neurons treated with several PPARγ agonists, including troglitazone, rosiglitazone, and ciglitazone, prevent the excitotoxic Aβ-induced rise in bulk-free Ca 2+ . (4) PPARγ activation results in the modulation of Wnt signaling components, including the inhibition of glycogen synthase kinase-3β (GSK-3β) and an increase of the cytoplasmic and nuclear β-catenin levels. We conclude that the activation of PPARγ prevents Aβ-induced neurodegeneration by a mechanism that may involve a cross talk between neuronal PPARγ and the Wnt signaling pathway. More important, the fact that the activation of PPARγ attenuated Aβ-dependent neurodegeneration opens the possibility to fight AD from a new therapeutic perspective

  16. Knockdown of platinum-induced growth differentiation factor 15 abrogates p27-mediated tumor growth delay in the chemoresistant ovarian cancer model A2780cis

    International Nuclear Information System (INIS)

    Meier, Julia C; Haendler, Bernard; Seidel, Henrik; Groth, Philip; Adams, Robert; Ziegelbauer, Karl; Kreft, Bertolt; Beckmann, Georg; Sommer, Anette; Kopitz, Charlotte

    2015-01-01

    Molecular mechanisms underlying the development of resistance to platinum-based treatment in patients with ovarian cancer remain poorly understood. This is mainly due to the lack of appropriate in vivo models allowing the identification of resistance-related factors. In this study, we used human whole-genome microarrays and linear model analysis to identify potential resistance-related genes by comparing the expression profiles of the parental human ovarian cancer model A2780 and its platinum-resistant variant A2780cis before and after carboplatin treatment in vivo. Growth differentiation factor 15 (GDF15) was identified as one of five potential resistance-related genes in the A2780cis tumor model. Although A2780-bearing mice showed a strong carboplatin-induced increase of GDF15 plasma levels, the basal higher GDF15 plasma levels of A2780cis-bearing mice showed no further increase after short-term or long-term carboplatin treatment. This correlated with a decreased DNA damage response, enhanced AKT survival signaling and abrogated cell cycle arrest in the carboplatin-treated A2780cis tumors. Furthermore, knockdown of GDF15 in A2780cis cells did not alter cell proliferation but enhanced cell migration and colony size in vitro. Interestingly, in vivo knockdown of GDF15 in the A2780cis model led to a basal-enhanced tumor growth, but increased sensitivity to carboplatin treatment as compared to the control-transduced A2780cis tumors. This was associated with larger necrotic areas, a lobular tumor structure and increased p53 and p16 expression of the carboplatin-treated shGDF15-A2780cis tumors. Furthermore, shRNA-mediated GDF15 knockdown abrogated p27 expression as compared to control-transduced A2780cis tumors. In conclusion, these data show that GDF15 may contribute to carboplatin resistance by suppressing tumor growth through p27. These data show that GDF15 might serve as a novel treatment target in women with platinum-resistant ovarian cancer

  17. EGFR-targeted plasmonic magnetic nanoparticles suppress lung tumor growth by abrogating G2/M cell-cycle arrest and inducing DNA damage

    Directory of Open Access Journals (Sweden)

    Kuroda S

    2014-08-01

    Full Text Available Shinji Kuroda,1 Justina Tam,2 Jack A Roth,1 Konstantin Sokolov,2 Rajagopal Ramesh3–5 1Department of Thoracic and Cardiovascular Surgery, 2Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 3Department of Pathology, 4Graduate Program in Biomedical Sciences, 5Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA Background: We have previously demonstrated the epidermal growth factor receptor (EGFR-targeted hybrid plasmonic magnetic nanoparticles (225-NP produce a therapeutic effect in human lung cancer cell lines in vitro. In the present study, we investigated the molecular mechanism of 225-NP-mediated antitumor activity both in vitro and in vivo using the EGFR-mutant HCC827 cell line. Methods: The growth inhibitory effect of 225-NP on lung tumor cells was determined by cell viability and cell-cycle analysis. Protein expression related to autophagy, apoptosis, and DNA-damage were determined by Western blotting and immunofluorescence. An in vivo efficacy study was conducted using a human lung tumor xenograft mouse model. Results: The 225-NP treatment markedly reduced tumor cell viability at 72 hours compared with the cell viability in control treatment groups. Cell-cycle analysis showed the percentage of cells in the G2/M phase was reduced when treated with 225-NP, with a concomitant increase in the number of cells in Sub-G1 phase, indicative of cell death. Western blotting showed LC3B and PARP cleavage, indicating 225-NP-treatment activated both autophagy- and apoptosis-mediated cell death. The 225-NP strongly induced γH2AX and phosphorylated histone H3, markers indicative of DNA damage and mitosis, respectively. Additionally, significant γH2AX foci formation was observed in 225-NP-treated cells compared with control treatment groups, suggesting 225-NP induced cell death by triggering DNA damage. The 225-NP-mediated DNA damage involved abrogation of the

  18. Nitrosamine exposure exacerbates high fat diet-mediated type 2 diabetes mellitus, non-alcoholic steatohepatitis, and neurodegeneration with cognitive impairment

    Directory of Open Access Journals (Sweden)

    de la Monte Suzanne M

    2009-12-01

    Full Text Available Abstract Background The current epidemics of type 2 diabetes mellitus (T2DM, non-alcoholic steatohepatitis (NASH, and Alzheimer's disease (AD all represent insulin-resistance diseases. Previous studies linked insulin resistance diseases to high fat diets or exposure to streptozotocin, a nitrosamine-related compound that causes T2DM, NASH, and AD-type neurodegeneration. We hypothesize that low-level exposure to nitrosamines that are widely present in processed foods, amplifies the deleterious effects of high fat intake in promoting T2DM, NASH, and neurodegeneration. Methods Long Evans rat pups were treated with N-nitrosodiethylamine (NDEA by i.p. Injection, and upon weaning, they were fed with high fat (60%; HFD or low fat (5%; LFD chow for 6 weeks. Rats were evaluated for cognitive impairment, insulin resistance, and neurodegeneration using behavioral, biochemical, molecular, and histological methods. Results NDEA and HFD ± NDEA caused T2DM, NASH, deficits in spatial learning, and neurodegeneration with hepatic and brain insulin and/or IGF resistance, and reductions in tau and choline acetyltransferase levels in the temporal lobe. In addition, pro-ceramide genes, which promote insulin resistance, were increased in livers and brains of rats exposed to NDEA, HFD, or both. In nearly all assays, the adverse effects of HFD+NDEA were worse than either treatment alone. Conclusions Environmental and food contaminant exposures to low, sub-mutagenic levels of nitrosamines, together with chronic HFD feeding, function synergistically to promote major insulin resistance diseases including T2DM, NASH, and AD-type neurodegeneration. Steps to minimize human exposure to nitrosamines and consumption of high-fat content foods are needed to quell these costly and devastating epidemics.

  19. Loss of Dendritic Complexity Precedes Neurodegeneration in a Mouse Model with Disrupted Mitochondrial Distribution in Mature Dendrites

    Directory of Open Access Journals (Sweden)

    Guillermo López-Doménech

    2016-10-01

    Full Text Available Correct mitochondrial distribution is critical for satisfying local energy demands and calcium buffering requirements and supporting key cellular processes. The mitochondrially targeted proteins Miro1 and Miro2 are important components of the mitochondrial transport machinery, but their specific roles in neuronal development, maintenance, and survival remain poorly understood. Using mouse knockout strategies, we demonstrate that Miro1, as opposed to Miro2, is the primary regulator of mitochondrial transport in both axons and dendrites. Miro1 deletion leads to depletion of mitochondria from distal dendrites but not axons, accompanied by a marked reduction in dendritic complexity. Disrupting postnatal mitochondrial distribution in vivo by deleting Miro1 in mature neurons causes a progressive loss of distal dendrites and compromises neuronal survival. Thus, the local availability of mitochondrial mass is critical for generating and sustaining dendritic arbors, and disruption of mitochondrial distribution in mature neurons is associated with neurodegeneration.

  20. A Novel Drug Delivery Vesicle Development to Reverse Neurodegeneration: Analysis of the Interactions among Protein, Graphene Oxide and Liposome

    Science.gov (United States)

    Miraz, Md Alamin

    In this study, Liposome was decorated with graphene oxide (GO) to synthesize fully-biocompatible theranostic vesicle that can carry bovine serum albumin (BSA) as a model protein. Graphene oxide has been studied as one of the most promising platforms for promoting the growth and repair of neurons. Our graphene oxide based structure could account for the high efficiency of protein loading and deliver to the damaged neuron cell which can reverse the neurodegeneration associated with Alzheimer's disease. The resultant vesicle exhibited high stability in aqueous solution. We investigated the protein adsorption capacity and protein interaction to carbon-based nanomaterials. The Liposome, graphene oxide and bovine serum albumin (BSA) are all biocompatible and hence will not trigger an immune response in vivo.

  1. Andrographolide - A promising therapeutic agent, negatively regulates glial cell derived neurodegeneration of prefrontal cortex, hippocampus and working memory impairment.

    Science.gov (United States)

    Das, Sudeshna; Mishra, K P; Ganju, Lilly; Singh, S B

    2017-12-15

    Over activation of glial cell derived innate immune factors induces neuro-inflammation that results in neurodegenerative disease, like working memory impairment. In this study, we have investigated the role of andrographolide, a major constituent of Andrographis paniculata plant, in reduction of reactive glial cell derived working memory impairment. Real time PCR, Western bloting, flow cytometric and immunofluorescence studies demonstrated that andrographolide inhibited lipopolysaccharide (LPS)-induced overexpression of HMGB1, TLR4, NFκB, COX-2, iNOS, and release of inflammatory mediators in primary mix glial culture, adult mice prefrontal cortex and hippocampus region. Active microglial and reactive astrocytic makers were also downregulated after andrographolide treatment. Andrographolide suppressed overexpression of microglial MIP-1α, P2X7 receptor and its downstream signaling mediators including-inflammasome NLRP3, caspase1 and mature IL-1β. Furthermore, in vivo maze studies suggested that andrographolide treatment reversed LPS-induced behavioural and working memory disturbances including regulation of expression of protein markers like PKC, p-CREB, amyloid beta, APP, p-tau, synapsin and PSD-95. Andrographolide, by lowering expression of pro apoptotic genes and enhancing the expression of anti-apoptotic gene showed its anti-apoptotic nature that in turn reduces neurodegeneration. Morphology studies using Nissl and FJB staining also showed the neuroprotective effect of andrographolide in the prefrontal cortex region. The above studies indicated that andrographolide prevented neuroinflammation-associated neurodegeneration and improved synaptic plasticity markers in cortical as well as hippocampal region which suggests that andrographolide could be a novel pharmacological countermeasure for the treatment of neuroinflammation and neurological disorders related to memory impairment. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A new in vivo model of pantothenate kinase-associated neurodegeneration reveals a surprising role for transcriptional regulation in pathogenesis.

    Directory of Open Access Journals (Sweden)

    Varun ePandey

    2013-09-01

    Full Text Available Pantothenate Kinase-Associated Neurodegeneration (PKAN is a neurodegenerative disorder with a poorly understood molecular mechanism. It is caused by mutations in Pantothenate Kinase, the first enzyme in the Coenzyme A (CoA biosynthetic pathway. Here, we developed a Drosophila model of PKAN (tim-fbl flies that allows us to continuously monitor the modeled disease in the brain. In tim-fbl flies, downregulation of fumble, the Drosophila PanK homologue in the cells containing a circadian clock results in characteristic features of PKAN such as developmental lethality, hypersensitivity to oxidative stress, and diminished life span. Despite quasi-normal circadian transcriptional rhythms, tim-fbl flies display brain-specific aberrant circadian locomotor rhythms, and a unique transcriptional signature. Comparison with expression data from flies exposed to paraquat demonstrates that, as previously suggested, pathways others than oxidative stress are affected by PANK downregulation. Surprisingly we found a significant decrease in the expression of key components of the photoreceptor recycling pathways, which could lead to retinal degeneration, a hallmark of PKAN. Importantly, these defects are not accompanied by changes in structural components in eye genes suggesting that changes in gene expression in the eye precede and may cause the retinal degeneration. Indeed tim-fbl flies have diminished response to light transitions, and their altered day/night patterns of activity demonstrates defects in light perception. This suggest that retinal lesions are not solely due to oxidative stress and demonstrates a role for the transcriptional response to CoA deficiency underlying the defects observed in dPanK deficient flies. Moreover, in the present study we developed a new fly model that can be applied to other diseases and that allows the assessment of neurodegeneration in the brains of living flies.

  3. Pharmacologic antagonism of dopamine receptor D3 attenuates neurodegeneration and motor impairment in a mouse model of Parkinson's disease.

    Science.gov (United States)

    Elgueta, Daniela; Aymerich, María S; Contreras, Francisco; Montoya, Andro; Celorrio, Marta; Rojo-Bustamante, Estefanía; Riquelme, Eduardo; González, Hugo; Vásquez, Mónica; Franco, Rafael; Pacheco, Rodrigo

    2017-02-01

    Neuroinflammation involves the activation of glial cells, which is associated to the progression of neurodegeneration in Parkinson's disease. Recently, we and other researchers demonstrated that dopamine receptor D3 (D3R)-deficient mice are completely refractory to neuroinflammation and consequent neurodegeneration associated to the acute intoxication with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In this study we examined the therapeutic potential and underlying mechanism of a D3R-selective antagonist, PG01037, in mice intoxicated with a chronic regime of administration of MPTP and probenecid (MPTPp). Biodistribution analysis indicated that intraperitoneally administered PG01037 crosses the blood-brain barrier and reaches the highest concentration in the brain 40 min after the injection. Furthermore, the drug was preferentially distributed to the brain in comparison to the plasma. Treatment of MPTPp-intoxicated mice with PG01037 (30 mg/kg, administrated twice a week for five weeks) attenuated the loss of dopaminergic neurons in the substantia nigra pars compacta, as evaluated by stereological analysis, and the loss of striatal dopaminergic terminals, as determined by densitometric analyses of tyrosine hydroxylase and dopamine transporter immunoreactivities. Accordingly, the treatment resulted in significant improvement of motor performance of injured animals. Interestingly, the therapeutic dose of PG01037 exacerbated astrogliosis and resulted in increased ramification density of microglial cells in the striatum of MPTPp-intoxicated mice. Further analyses suggested that D3R expressed in astrocytes favours a beneficial astrogliosis with anti-inflammatory consequences on microglia. Our findings indicate that D3R-antagonism exerts a therapeutic effect in parkinsonian animals by reducing the loss of dopaminergic neurons in the nigrostriatal pathway, alleviating motor impairments and modifying the pro-inflammatory phenotype of glial cells. Copyright

  4. XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Du, Sienmi; Itoh, Noriko; Askarinam, Sahar; Hill, Haley; Arnold, Arthur P; Voskuhl, Rhonda R

    2014-02-18

    Women are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic. These studies demonstrated an effect of sex chromosomes in the induction of immune responses, but did not address a potential role of sex chromosomes in the CNS response to immune-mediated injury. Here, we examined this possibility using XX versus XY bone marrow chimeras reconstituted with a common immune system of one sex chromosomal type. We found that experimental autoimmune encephalomyelitis mice with an XY sex chromosome complement in the CNS, compared with XX, demonstrated greater clinical disease severity with more neuropathology in the spinal cord, cerebellum, and cerebral cortex. A candidate gene on the X chromosome, toll-like receptor 7, was then examined. Toll-like receptor 7 expression in cortical neurons was higher in mice with XY compared with mice with XX CNS, consistent with the known neurodegenerative role for toll-like receptor 7 in neurons. These results suggest that sex chromosome effects on neurodegeneration in the CNS run counter to effects on immune responses, and may bear relevance to the clinical enigma of greater MS susceptibility in women but faster disability progression in men. This is a demonstration of a direct effect of sex chromosome complement on neurodegeneration in a neurological disease.

  5. In vivo treatment with diphenyl ditelluride induces neurodegeneration in striatum of young rats: Implications of MAPK and Akt pathways

    Energy Technology Data Exchange (ETDEWEB)

    Heimfarth, Luana; Loureiro, Samanta Oliveira; Dutra, Márcio Ferreira; Andrade, Cláudia; Pettenuzzo, Letícia; Guma, Fátima T. Costa Rodrigues; Gonçalves, Carlos Alberto Saraiva [Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS (Brazil); Batista Teixeira da Rocha, João [Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS Brazil (Brazil); Pessoa-Pureur, Regina, E-mail: rpureur@ufrgs.br [Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS (Brazil)

    2012-10-15

    In the present report 15 day-old Wistar rats were injected with 0.3 μmol of diphenyl ditelluride (PhTe){sub 2}/kg body weight and parameters of neurodegeneration were analyzed in slices from striatum 6 days afterwards. We found hyperphosphorylation of intermediate filament (IF) proteins from astrocyte (glial fibrillary acidic protein—GFAP and vimentin) and from neuron (low-, medium- and high molecular weight neurofilament subunits: NF-L, NF-M and NF-H, respectively) and increased MAPK (Erk, JNK and p38MAPK) as well as PKA activities. The treatment induced reactive astrogliosis in the striatum, evidenced by increased GFAP and vimentin immunocontent as well as their mRNA overexpression. Also, (PhTe){sub 2} significantly increased the propidium iodide (PI) positive cells in NeuN positive population without altering PI incorporation into GFAP positive cells, indicating that in vivo exposure to (PhTe){sub 2} provoked neuronal damage. Immunohistochemistry showed a dramatic increase of GFAP staining characteristic of reactive astrogliosis. Moreover, increased caspase 3 in (PhTe){sub 2} treated striatal slices suggested apoptotic cell death. (PhTe){sub 2} exposure decreased Akt immunoreactivity, however phospho-GSK-3-β (Ser9) was unaltered, suggesting that this kinase is not directly implicated in the neurotoxicity of this compound. Therefore, the present results shed light into the mechanisms of (PhTe){sub 2}-induced neurodegeneration in rat striatum, evidencing a critical role for the MAPK and Akt signaling pathways and disruption of cytoskeletal homeostasis, which could be related with apoptotic neuronal death and astrogliosis. -- Highlights: ► Diphenyl ditelluride causes apoptotic neuronal death in the striatum of young rats. ► Diphenyl ditelluride causes reactive astrogliosis in the striatum of rats. ► Diphenyl ditelluride disrupts the homeostasis of the cytoskeleton of the striatum. ► The actions of diphenyl ditelluride are mediated by MAPK and Akt

  6. Blueberry and malvidin inhibit cell cycle progression and induce mitochondrial-mediated apoptosis by abrogating the JAK/STAT-3 signalling pathway.

    Science.gov (United States)

    Baba, Abdul Basit; Nivetha, Ramesh; Chattopadhyay, Indranil; Nagini, Siddavaram

    2017-11-01

    Blueberries, a rich source of anthocyanins have attracted considerable attention as functional foods that confer immense health benefits including anticancer properties. Herein, we assessed the potential of blueberry and its major constituent malvidin to target STAT-3, a potentially druggable oncogenic transcription factor with high therapeutic index. We demonstrate that blueberry abrogates the JAK/STAT-3 pathway and modulates downstream targets that influence cell proliferation and apoptosis in a hamster model of oral oncogenesis. Further, we provide mechanistic evidence that blueberry and malvidin function as STAT-3 inhibitors in the oral cancer cell line SCC131. Blueberry and malvidin suppressed STAT-3 phosphorylation and nuclear translocation thereby inducing cell cycle arrest and mitochondrial-mediated apoptosis. However, the combination of blueberry and malvidin with the STAT-3 inhibitor S3I-201 was more efficacious in STAT-3 inhibition relative to single agents. The present study has provided leads for the development of novel combinations of compounds that can serve as inhibitors of STAT-mediated oncogenic signalling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Increased expression of endosomal members of toll-like receptor family abrogates wound healing in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Singh, Kanhaiya; Agrawal, Neeraj K; Gupta, Sanjeev K; Mohan, Gyanendra; Chaturvedi, Sunanda; Singh, Kiran

    2016-10-01

    The inflammatory phase of wound healing cascade is an important determinant of the fate of the wound. Acute inflammation is necessary to initiate proper wound healing, while chronic inflammation abrogates wound healing. Different endosomal members of toll-like receptor (TLR) family initiate inflammatory signalling via a range of different inflammatory mediators such as interferons, internal tissue damaged-associated molecular patterns (DAMPs) and hyperactive effector T cells. Sustained signalling of TLR9 and TLR7 contributes to chronic inflammation by activating the plasmacytoid dendritic cells. Diabetic wounds are also characterised by sustained inflammatory phase. The objective of this study was to analyse the differential expression of endosomal TLRs in human diabetic wounds compared with control wounds. We analysed the differential expression of TLR7 and TLR9 both at transcriptional and translational levels in wounds of 84 patients with type 2 diabetes mellitus (T2DM) and 6 control subjects without diabetes using quantitative real-time polymerase chain reaction (RT-PCR), western blot and immunohistochemistry. TLR7 and TLR9 were significantly up-regulated in wounds of the patients with T2DM compared with the controls and were dependent on the infection status of the diabetic wounds, and wounds with microbial infection exhibited lower expression levels of endosomal TLRs. Altered endosomal TLR expression in T2DM subjects might be associated with wound healing impairment. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  8. Proteasome Inhibitor YSY01A Abrogates Constitutive STAT3 Signaling via Down-regulation of Gp130 and JAK2 in Human A549 Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wei Huang

    2017-08-01

    Full Text Available Proteasome inhibition interfering with many cell signaling pathways has been extensively explored as a therapeutic strategy for cancers. Proteasome inhibitor YSY01A is a novel agent that has shown remarkable anti-tumor effects; however, its mechanisms of action are not fully understood. Here we report that YSY01A is capable of suppressing cancer cell survival by induction of apoptosis. Paradoxically, we find that YSY01A abrogates constitutive activation of STAT3 via proteasome-independent degradation of gp130 and JAK2, but not transcriptional regulation, in human A549 non-small cell lung cancer cells. The reduction in gp130 and JAK2 can be restored by co-treatment with 3-methyladenine, an early-stage autophagy lysosome and type I/III PI3K inhibitor. YSY01A also effectively inhibits cancer cell migration and lung xenograft tumor growth with little adverse effect on animals. Thus, our findings suggest that YSY01A represents a promising candidate for further development of novel anticancer therapeutics targeting the proteasome.

  9. Thiazolidinediones abrogate cervical cancer growth

    Energy Technology Data Exchange (ETDEWEB)

    Wuertz, Beverly R., E-mail: knier003@umn.edu; Darrah, Lindsay, E-mail: ldarrah@obgynmn.com; Wudel, Justin, E-mail: drwudel@drwudel.com; Ondrey, Frank G., E-mail: ondre002@umn.edu

    2017-04-15

    Peroxisome proliferator-activated receptor gamma (PPAR γ) is activated by thiazolidinedione drugs (TZDs) and can promote anti-cancer properties. We used three TZDs (pioglitazone, rosiglitazone, and ciglitazone) to target cervical cancer cell lines and a nude mouse animal model. Each agent increased activation of PPAR γ, as judged by a luciferase reporter gene assay in three HPV-associated cell lines (CaSki, SiHa, and HeLa cells) while decreasing cellular proliferation in a dose-dependent manner. They also promoted Oil Red O accumulation in treated cell lines and upregulated the lipid differentiation marker adipsin. Interestingly, xenograft HeLa tumors in nude mice treated with 100 mg/kg/day pioglitazone exhibited decreased growth compared to control mice or mice treated with standard cervical chemotherapy. In conclusion, TZDs slow tumor cell growth in vitro and in vivo with decreases in cell proliferation and increases in PPAR γ and adipsin. These agents may be interesting treatments or treatment adjuncts for HPV-associated cancers or perhaps even precancerous conditions. - Highlights: • Thiazolidinediones decreases cervical cancer proliferation. • Pioglitazone increases cervical cancer differentiation. • Pioglitazone decreases tumor growth in mice. • Pioglitazone may be a useful treatment adjunct.

  10. Sodium phenylbutyrate abrogates African swine fever virus replication by disrupting the virus-induced hypoacetylation status of histone H3K9/K14.

    Science.gov (United States)

    Frouco, Gonçalo; Freitas, Ferdinando B; Martins, Carlos; Ferreira, Fernando

    2017-10-15

    African swine fever virus (ASFV) causes a highly lethal disease in swine for which neither a vaccine nor treatment are available. Recently, a new class of drugs that inhibit histone deacetylases enzymes (HDACs) has received an increasing interest as antiviral agents. Considering studies by others showing that valproic acid, an HDAC inhibitor (HDACi), blocks the replication of enveloped viruses and that ASFV regulates the epigenetic status of the host cell by promoting heterochromatinization and recruitment of class I HDACs to viral cytoplasmic factories, the antiviral activity of four HDACi against ASFV was evaluated in this study. Results showed that the sodium phenylbutyrate fully abrogates the ASFV replication, whereas the valproic acid leads to a significant reduction of viral progeny at 48h post-infection (-73.9%, p=0.046), as the two pan-HDAC inhibitors tested (Trichostatin A: -82.2%, p=0.043; Vorinostat: 73.9%, p=0.043). Further evaluation showed that protective effects of NaPB are dose-dependent, interfering with the expression of late viral genes and reversing the ASFV-induced histone H3 lysine 9 and 14 (H3K9K14) hypoacetylation status, compatible to an open chromatin state and possibly enabling the expression of host genes non-beneficial to infection progression. Additionally, a synergic antiviral effect was detected when NaPB is combined with an ASFV-topoisomerase II poison (Enrofloxacin). Altogether, our results strongly suggest that cellular HDACs are involved in the establishment of ASFV infection and emphasize that further in vivo studies are needed to better understand the antiviral activity of HDAC inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Chitosan-shelled oxygen-loaded nanodroplets abrogate hypoxia dysregulation of human keratinocyte gelatinases and inhibitors: New insights for chronic wound healing

    International Nuclear Information System (INIS)

    Khadjavi, Amina; Magnetto, Chiara; Panariti, Alice; Argenziano, Monica; Gulino, Giulia Rossana; Rivolta, Ilaria; Cavalli, Roberta; Giribaldi, Giuliana; Guiot, Caterina; Prato, Mauro

    2015-01-01

    Background: : In chronic wounds, efficient epithelial tissue repair is hampered by hypoxia, and balances between the molecules involved in matrix turn-over such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are seriously impaired. Intriguingly, new oxygenating nanocarriers such as 2H,3H-decafluoropentane-based oxygen-loaded nanodroplets (OLNs) might effectively target chronic wounds. Objective: : To investigate hypoxia and chitosan-shelled OLN effects on MMP/TIMP production by human keratinocytes. Methods: : HaCaT cells were treated for 24 h with 10% v/v OLNs both in normoxia or hypoxia. Cytotoxicity and cell viability were measured through biochemical assays; cellular uptake by confocal microscopy; and MMP and TIMP production by enzyme-linked immunosorbent assay or gelatin zymography. Results: : Normoxic HaCaT cells constitutively released MMP-2, MMP-9, TIMP-1 and TIMP-2. Hypoxia strongly impaired MMP/TIMP balances by reducing MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. After cellular uptake by keratinocytes, nontoxic OLNs abrogated all hypoxia effects on MMP/TIMP secretion, restoring physiological balances. OLN abilities were specifically dependent on time-sustained oxygen diffusion from OLN core. Conclusion: : Chitosan-shelled OLNs effectively counteract hypoxia-dependent dysregulation of MMP/TIMP balances in human keratinocytes. Therefore, topical administration of exogenous oxygen, properly encapsulated in nanodroplet formulations, might be a promising adjuvant approach to promote healing processes in hypoxic wounds. - Highlights: • Hypoxia impairs MMP9/TIMP1 and MMP2/TIMP2 balances in HaCaT human keratinocytes. • Chitosan-shelled oxygen-loaded nanodroplets (OLNs) are internalised by HaCaT cells. • OLNs are not toxic to HaCaT cells. • OLNs effectively counteract hypoxia effects on MMP/TIMP balances in HaCaT cells. • OLNs appear as promising and cost-effective therapeutic tools for hypoxic

  12. TGF-β1 induced epithelial to mesenchymal transition (EMT in human bronchial epithelial cells is enhanced by IL-1β but not abrogated by corticosteroids

    Directory of Open Access Journals (Sweden)

    Zuraw Bruce L

    2009-10-01

    Full Text Available Abstract Background Chronic persistent asthma is characterized by ongoing airway inflammation and airway remodeling. The processes leading to airway remodeling are poorly understood, and there is increasing evidence that even aggressive anti-inflammatory therapy does not completely prevent this process. We sought to investigate whether TGFβ1 stimulates bronchial epithelial cells to undergo transition to a mesenchymal phenotype, and whether this transition can be abrogated by corticosteroid treatment or enhanced by the pro-inflammatory cytokine IL-1β. Methods BEAS-2B and primary normal human bronchial epithelial cells were stimulated with TGFβ1 and expression of epithelial and mesenchymal markers assessed by quantitative real-time PCR, immunoblotting, immunofluorescence microscopy and zymography. In some cases the epithelial cells were also incubated with corticosteroids or IL-1β. Results were analyzed using non-parametric statistical tests. Results Treatment of BEAS-2B or primary human bronchial epithelial cells with TGFβ1 significantly reduced the expression level of the epithelial adherence junction protein E-cadherin. TGFβ1 then markedly induced mesenchymal marker proteins such as collagen I, tenascin C, fibronectin and α-smooth muscle actin mRNA in a dose dependant manner. The process of mesenchymal transition was accompanied by a morphological change towards a more spindle shaped fibroblast cell type with a more motile and invasive phenotype. Corticosteroid pre-treatment did not significantly alter the TGFβ1 induced transition but IL-1β enhanced the transition. Conclusion Our results indicate, that TGFβ1 can induce mesenchymal transition in the bronchial epithelial cell line and primary cells. Since asthma has been strongly associated with increased expression of TGFβ1 in the airway, epithelial to mesenchymal transition may contribute to the contractile and fibrotic remodeling process that accompanies chronic asthma.

  13. Defective TCR stimulation in anergized type 2 T helper cells correlates with abrogated p56(lck) and ZAP-70 tyrosine kinase activities.

    Science.gov (United States)

    Faith, A; Akdis, C A; Akdis, M; Simon, H U; Blaser, K

    1997-07-01

    Development of IgE-mediated allergic conditions is dependent on the secretion of a Th2 cytokine pattern, including IL-4, IL-5, and IL-13. The induction of anergy would be one mechanism to abrogate cytokine secretion by Th2 cells, which may be pivotal to the allergic response. We demonstrate here that incubation of cloned human CD4+ phospholipase A2 (PLA)-specific Th2 cells with antigenic peptide, in the absence of professional APC, results in a state of nonresponsiveness. The anergic T cells failed to proliferate or secrete IL-4 in response to optimal stimulation with PLA and autologous, professional APC. Secretion of IL-5 and IL-13, however, was only partially inhibited. The anergic state of the Th2 cells was not associated with CD3 or CD28 down-regulation. However, anergy did appear to be closely related to alterations in signaling pathways, mediated through the TCR, of the cells. In contrast to untreated Th2 cells, anergized Th2 cells failed to respond to anti-CD3 mAb with either increased tyrosine kinase activity or increased levels of tyrosine phosphorylation of p56(lck) or ZAP70. A strong and sustained intracellular calcium flux, observed in untreated Th2 cells in response to anti-CD3 mAb, was absent in anergic Th2 cells. Furthermore, the induction of anergy seems to represent an active process, associated with increased levels of basal tyrosine kinase activity, cytokine production, and CD25 up-regulation in anergic Th2 cells. Together, our results indicate that anergy in Th2 cells is associated with defective transmembrane signaling through the TCR.

  14. Keampferol-3-O-rhamnoside abrogates amyloid beta toxicity by modulating monomers and remodeling oligomers and fibrils to non-toxic aggregates

    Directory of Open Access Journals (Sweden)

    Sharoar Md

    2012-12-01

    Full Text Available Abstract Background Aggregation of soluble, monomeric β- amyloid (Aβ to oligomeric and then insoluble fibrillar Aβ is a key pathogenic feature in development of Alzheimer’s disease (AD. Increasing evidence suggests that toxicity is linked to diffusible Aβ oligomers, rather than to insoluble fibrils. The use of naturally occurring small molecules for inhibition of Aβ aggregation has recently attracted significant interest for development of effective therapeutic strategies against the disease. A natural polyphenolic flavone, Kaempferol-3-O-rhamnoside (K-3-rh, was utilized to investigate its effects on aggregation and cytotoxic effects of Aβ42 peptide. Several biochemical techniques were used to determine the conformational changes and cytotoxic effect of the peptide in the presence and absence of K-3-rh. Results K-3-rh showed a dose-dependent effect against Aβ42 mediated cytotoxicity. Anti-amyloidogenic properties of K-3-rh were found to be efficient in inhibiting fibrilogenesis and secondary structural transformation of the peptide. The consequence of these inhibitions was the accumulation of oligomeric structural species. The accumulated aggregates were smaller, soluble, non-β-sheet and non-toxic aggregates, compared to preformed toxic Aβ oligomers. K-3-rh was also found to have the remodeling properties of preformed soluble oligomers and fibrils. Both of these conformers were found to remodel into non-toxic aggregates. The results showed that K-3-rh interacts with different Aβ conformers, which affects fibril formation, oligomeric maturation and fibrillar stabilization. Conclusion K-3-rh is an efficient molecule to hinder the self assembly and to abrogate the cytotoxic effects of Aβ42 peptide. Hence, K-3-rh and small molecules with similar structure might be considered for therapeutic development against AD.

  15. Chitosan-shelled oxygen-loaded nanodroplets abrogate hypoxia dysregulation of human keratinocyte gelatinases and inhibitors: New insights for chronic wound healing

    Energy Technology Data Exchange (ETDEWEB)

    Khadjavi, Amina [Dipartimento di Neuroscienze, Università di Torino, Torino (Italy); Magnetto, Chiara [Istituto Nazionale di Ricerca Metrologica (INRIM), Torino (Italy); Panariti, Alice [Dipartimento di Scienze della Salute, Università di Milano Bicocca, Monza (Italy); Argenziano, Monica [Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino (Italy); Gulino, Giulia Rossana [Dipartimento di Oncologia, Università di Torino, Torino (Italy); Rivolta, Ilaria [Dipartimento di Scienze della Salute, Università di Milano Bicocca, Monza (Italy); Cavalli, Roberta [Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino (Italy); Giribaldi, Giuliana [Dipartimento di Oncologia, Università di Torino, Torino (Italy); Guiot, Caterina [Dipartimento di Neuroscienze, Università di Torino, Torino (Italy); Prato, Mauro, E-mail: mauro.prato@unito.it [Dipartimento di Neuroscienze, Università di Torino, Torino (Italy); Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Torino (Italy)

    2015-08-01

    Background: : In chronic wounds, efficient epithelial tissue repair is hampered by hypoxia, and balances between the molecules involved in matrix turn-over such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are seriously impaired. Intriguingly, new oxygenating nanocarriers such as 2H,3H-decafluoropentane-based oxygen-loaded nanodroplets (OLNs) might effectively target chronic wounds. Objective: : To investigate hypoxia and chitosan-shelled OLN effects on MMP/TIMP production by human keratinocytes. Methods: : HaCaT cells were treated for 24 h with 10% v/v OLNs both in normoxia or hypoxia. Cytotoxicity and cell viability were measured through biochemical assays; cellular uptake by confocal microscopy; and MMP and TIMP production by enzyme-linked immunosorbent assay or gelatin zymography. Results: : Normoxic HaCaT cells constitutively released MMP-2, MMP-9, TIMP-1 and TIMP-2. Hypoxia strongly impaired MMP/TIMP balances by reducing MMP-2, MMP-9, and TIMP-2, without affecting TIMP-1 release. After cellular uptake by keratinocytes, nontoxic OLNs abrogated all hypoxia effects on MMP/TIMP secretion, restoring physiological balances. OLN abilities were specifically dependent on time-sustained oxygen diffusion from OLN core. Conclusion: : Chitosan-shelled OLNs effectively counteract hypoxia-dependent dysregulation of MMP/TIMP balances in human keratinocytes. Therefore, topical administration of exogenous oxygen, properly encapsulated in nanodroplet formulations, might be a promising adjuvant approach to promote healing processes in hypoxic wounds. - Highlights: • Hypoxia impairs MMP9/TIMP1 and MMP2/TIMP2 balances in HaCaT human keratinocytes. • Chitosan-shelled oxygen-loaded nanodroplets (OLNs) are internalised by HaCaT cells. • OLNs are not toxic to HaCaT cells. • OLNs effectively counteract hypoxia effects on MMP/TIMP balances in HaCaT cells. • OLNs appear as promising and cost-effective therapeutic tools for hypoxic

  16. Abrogation of cisplatin-induced hepatotoxicity in mice by xanthorrhizol is related to its effect on the regulation of gene transcription

    International Nuclear Information System (INIS)

    Hwan Kim, Seong; Ok Hong, Kyoung; Chung, Won-Yoon; Kwan Hwang, Jae; Park, Kwang-Kyun

    2004-01-01

    Cisplatin is a widely used anticancer drug, but at high dose, it can produce undesirable side effects such as hepatotoxicity. Because Curcuma xanthorrhiza Roxb. (Zingiberaceae) has been traditionally used to treat liver disorders, the protective effect of xanthorrhizol, which is isolated from C. xanthorrhiza, on cisplatin-induced hepatotoxicity was evaluated in mice. The pretreatment of xanthorrhizol (200 mg/kg/day, po) for 4 days prevented the hepatotoxicity induced by cisplatin (45 mg/kg, ip) with statistical significance. Interestingly, it abrogated cisplatin-induced DNA-binding activity of nuclear factor-kappaB (NF-κB), which consequently affected mRNA expression levels of NF-κB-dependent genes, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), even in part. It also attenuated the cisplatin-suppressed DNA-binding activity of activator protein 1 (AP-1). Using differential display reverse transcription-polymerase chain reaction (DDRT-PCR), seven upregulated genes including S100 calcium binding protein A9 (S100A9) mRNA and antigenic determinant for rec-A protein mRNA and five downregulated genes including caseinolytic protease X (ClpX) mRNA and ceruloplasmin (CP) mRNA by cisplatin were identified. Although these mRNA expression patterns were not totally consistent with gel shift patterns, altered expression levels by cisplatin were reversed by the pretreatment of xanthorrhizol. In conclusion, the ability of xanthorrhizol to regulate the DNA-binding activities of transcription factors, NF-κB and AP-1, could be one possible mechanism to elucidate the preventive effect of xanthorrhizol on cisplatin-induced hepatotoxicity. Furthermore, genes identified in this study could be helpful to understand the mechanism of cisplatin-induced hepatotoxicity. Finally, the combination treatment of xanthorrhizol and cisplatin may provide more advantage than single treatment of cisplatin in cancer therapy

  17. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles.

    Science.gov (United States)

    Jansen, Felix; Yang, Xiaoyan; Hoelscher, Marion; Cattelan, Arianna; Schmitz, Theresa; Proebsting, Sebastian; Wenzel, Daniela; Vosen, Sarah; Franklin, Bernardo S; Fleischmann, Bernd K; Nickenig, Georg; Werner, Nikos

    2013-10-29

    Repair of the endothelium after vascular injury is crucial for preserving endothelial integrity and preventing the development of vascular disease. The underlying mechanisms of endothelial cell repair are largely unknown. We sought to investigate whether endothelial microparticles (EMPs), released from apoptotic endothelial cells (ECs), influence EC repair. Systemic treatment of mice with EMPs after electric denudation of the endothelium accelerated reendothelialization in vivo. In vitro experiments revealed that EMP uptake in ECs promotes EC migration and proliferation, both critical steps in endothelial repair. To dissect the underlying mechanisms, Taqman microRNA array was performed, and microRNA (miR)-126 was identified as the predominantly expressed miR in EMPs. The following experiments demonstrated that miR-126 was transported into recipient human coronary artery endothelial cells by EMPs and functionally regulated the target protein sprouty-related, EVH1 domain-containing protein 1 (SPRED1). Knockdown of miR-126 in EMPs abrogated EMP-mediated effects on human coronary artery endothelial cell migration and proliferation in vitro and reendothelialization in vivo. Interestingly, after simulating diabetic conditions, EMPs derived from glucose-treated ECs contained significantly lower amounts of miR-126 and showed reduced endothelial repair capacity in vitro and in vivo. Finally, expression analysis of miR-126 in circulating microparticles from 176 patients with stable coronary artery disease with and without diabetes mellitus revealed a significantly reduced miR-126 expression in circulating microparticles from diabetic patients. Endothelial microparticles promote vascular endothelial repair by delivering functional miR-126 into recipient cells. In pathological hyperglycemic conditions, EMP-mediated miR-126-induced EC repair is altered.

  18. Environmental exposure to lead induces oxidative stress and modulates the function of the antioxidant defense system and the immune system in the semen of males with normal semen profile

    Energy Technology Data Exchange (ETDEWEB)

    Kasperczyk, Aleksandra; Dobrakowski, Michał [Dept. of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, Katowice, Jordana 19, 41-808 Zabrze (Poland); Czuba, Zenon P. [Dept. of Microbiology and Immunology, School of Medicine with the Division of Dentistry, Medical University of Silesia, Katowice, Jordana 19, 41-808 Zabrze (Poland); Horak, Stanisław [I-st Chair and Clin. Dept. of Gynecology, Obstetrics and Gynecological Oncology, School of Medicine with the Division of Dentistry, Medical University of Silesia, Katowice, Batorego 15, 41-902 Bytom (Poland); Kasperczyk, Sławomir, E-mail: kaslav@mp.pl [Dept. of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, Katowice, Jordana 19, 41-808 Zabrze (Poland)

    2015-05-01

    We investigated the associations between environmental exposure to lead and a repertoire of cytokines in seminal plasma of males with normal semen profile according to the WHO criteria. Based on the median lead concentration in seminal plasma, 65 samples were divided into two groups: low (LE) and high exposure to lead (HE). Differences in semen volume and the pH, count, motility and morphology of sperm cells were not observed between the examined groups. The total oxidant status value and the level of protein sulfhydryl groups as well as the activities of manganese superoxide dismutase and catalase were significantly higher in the HE group, whereas the total antioxidant capacity value and the activities of glutathione reductase and glutathione-S-transferase were depressed. IL-7, IL-10, IL-12, and TNF-α levels were significantly higher in the HE group compared with the LE group. Environmental exposure to lead is sufficient to induce oxidative stress in seminal plasma and to modulate antioxidant defense system. - Highlights: • Lead induces oxidative stress in seminal plasma in human. • Lead modulates antioxidant defense system in seminal plasma in human. • Lead does not change a Th1/Th2 imbalance in seminal plasma in human.

  19. Functional and Structural Findings of Neurodegeneration in Early Stages of Diabetic Retinopathy: Cross-sectional Analyses of Baseline Data of the EUROCONDOR Project.

    Science.gov (United States)

    Santos, Ana Rita; Ribeiro, Luísa; Bandello, Francesco; Lattanzio, Rosangela; Egan, Catherine; Frydkjaer-Olsen, Ulrik; García-Arumí, José; Gibson, Jonathan; Grauslund, Jakob; Harding, Simon P; Lang, Gabriele E; Massin, Pascale; Midena, Edoardo; Scanlon, Peter; Aldington, Stephen J; Simão, Sílvia; Schwartz, Christian; Ponsati, Berta; Porta, Massimo; Costa, Miguel Ângelo; Hernández, Cristina; Cunha-Vaz, José; Simó, Rafael

    2017-09-01

    This cross-sectional study evaluated the relationship between 1 ) functional and structural measurements of neurodegeneration in the initial stages of diabetic retinopathy (DR) and 2 ) the presence of neurodegeneration and early microvascular impairment. We analyzed baseline data of 449 patients with type 2 diabetes enrolled in the European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR) study (NCT01726075). Functional studies by multifocal electroretinography (mfERG) evaluated neurodysfunction, and structural measurements using spectral domain optical coherence tomography (SD-OCT) evaluated neurodegeneration. The mfERG P1 amplitude was more sensitive than the P1 implicit time and was lower in patients with Early Treatment of Diabetic Retinopathy Study (ETDRS) level 20-35 than in patients with ETDRS level <20 ( P = 0.005). In 58% of patients, mfERG abnormalities were present in the absence of visible retinopathy. Correspondence between SD-OCT thinning and mfERG abnormalities was shown in 67% of the eyes with ETDRS <20 and in 83% of the eyes with ETDRS level 20-35. Notably, 32% of patients with ETDRS 20-35 presented no abnormalities in mfERG or SD-OCT. We conclude that there is a link between mfERG and SD-OCT measurements that increases with the presence of microvascular impairment. However, a significant proportion of patients in our particular study population (ETDRS ≤35) had normal ganglion cell-inner plexiform layer thickness and normal mfERG findings. We raise the hypothesis that neurodegeneration may play a role in the pathogenesis of DR in many but not in all patients with type 2 diabetes. © 2017 by the American Diabetes Association.

  20. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer?s disease

    OpenAIRE

    Streit, Wolfgang J.; Braak, Heiko; Xue, Qing-Shan; Bechmann, Ingo

    2009-01-01

    The role of microglial cells in the pathogenesis of Alzheimer’s disease (AD) neurodegeneration is unknown. Although several works suggest that chronic neuroinflammation caused by activated microglia contributes to neurofibrillary degeneration, anti-inflammatory drugs do not prevent or reverse neuronal tau pathology. This raises the question if indeed microglial activation occurs in the human brain at sites of neurofibrillary degeneration. In view of the recent work demonstrating presence of d...

  1. Nicotinamide Inhibits Ethanol-Induced Caspase-3 and PARP-1 Over-activation and Subsequent Neurodegeneration in the Developing Mouse Cerebellum.

    Science.gov (United States)

    Ieraci, Alessandro; Herrera, Daniel G

    2018-06-01

    Fetal alcohol spectrum disorder (FASD) is the principal preventable cause of mental retardation in the western countries resulting from alcohol exposure during pregnancy. Ethanol-induced massive neuronal cell death occurs mainly in immature neurons during the brain growth spurt period. The cerebellum is one of the brain areas that are most sensitive to ethanol neurotoxicity. Currently, there is no effective treatment that targets the causes of these disorders and efficient treatments to counteract or reverse FASD are desirable. In this study, we investigated the effects of nicotinamide on ethanol-induced neuronal cell death in the developing cerebellum. Subcutaneous administration of ethanol in postnatal 4-day-old mice induced an over-activation of caspase-3 and PARP-1 followed by a massive neurodegeneration in the developing cerebellum. Interestingly, treatment with nicotinamide, immediately or 2 h after ethanol exposure, diminished caspase-3 and PARP-1 over-activation and reduced ethanol-induced neurodegeneration. Conversely, treatment with 3-aminobenzadine, a specific PARP-1 inhibitor, was able to completely block PARP-1 activation, but not caspase-3 activation or ethanol-induced neurodegeneration in the developing cerebellum. Our results showed that nicotinamide reduces ethanol-induced neuronal cell death and inhibits both caspase-3 and PARP-1 alcohol-induced activation in the developing cerebellum, suggesting that nicotinamide might be a promising and safe neuroprotective agent for treating FASD and other neurodegenerative disorders in the developing brain that shares similar cell death pathways.

  2. Short-term exposure to dim light at night disrupts rhythmic behaviors and causes neurodegeneration in fly models of tauopathy and Alzheimer's disease.

    Science.gov (United States)

    Kim, Mari; Subramanian, Manivannan; Cho, Yun-Ho; Kim, Gye-Hyeong; Lee, Eunil; Park, Joong-Jean

    2018-01-08

    The accumulation and aggregation of phosphorylated tau proteins in the brain are the hallmarks for the onset of Alzheimer's disease (AD). In addition, disruptions in circadian rhythms (CRs) with altered sleep-wake cycles, dysregulation of locomotion, and increased memory defects have been reported in patients with AD. Drosophila flies that have an overexpression of human tau protein in neurons exhibit most of the symptoms of human patients with AD, including locomotion defects and neurodegeneration. Using the fly model for tauopathy/AD, we investigated the effects of an exposure to dim light at night on AD symptoms. We used a light intensity of 10 lux, which is considered the lower limit of light pollution in many countries. After the tauopathy flies were exposed to the dim light at night for 3 days, the flies showed disrupted CRs, altered sleep-wake cycles due to increased pTau proteins and neurodegeneration, in the brains of the AD flies. The results indicate that the nighttime exposure of tauopathy/AD model Drosophila flies to dim light disrupted CR and sleep-wake behavior and promoted neurodegeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. S113R mutation in SLC33A1 leads to neurodegeneration and augmented BMP signaling in a mouse model

    Directory of Open Access Journals (Sweden)

    Pingting Liu

    2017-01-01

    Full Text Available The S113R mutation (c.339T>G (MIM #603690.0001 in SLC33A1 (MIM #603690, an ER membrane acetyl-CoA transporter, has been previously identified in individuals with hereditary spastic paraplegia type 42 (SPG42; MIM #612539. SLC33A1 has also been shown to inhibit the bone morphogenetic protein (BMP signaling pathway in zebrafish. To better understand the function of SLC33A1, we generated and characterized Slc33a1S113R knock-in mice. Homozygous Slc33a1S113R mutant mice were embryonic lethal, whereas heterozygous Slc33a1 mutant mice (Slc33a1wt/mut exhibited behavioral abnormalities and central neurodegeneration, which is consistent with hereditary spastic paraplegia (HSP phenotypes. Importantly, we found an upregulation of BMP signaling in the nervous system and mouse embryonic fibroblasts of Slc33a1wt/mut mice. Using a sciatic nerve crush injury model in vivo and dorsal root ganglion (DRG culture in vitro we showed that injury-induced axonal regeneration in Slc33a1wt/mut mice was accelerated and mediated by upregulated BMP signaling. Exogenous addition of BMP signaling antagonist, noggin, could efficiently alleviate the accelerated injury-induced axonal regrowth. These results indicate that SLC33A1 can negatively regulate BMP signaling in mice, further supporting the notion that upregulation of BMP signaling is a common mechanism of a subset of hereditary spastic paraplegias.

  4. Clinical assessment of dysphagia in neurodegeneration (CADN): development, validity and reliability of a bedside tool for dysphagia assessment.

    Science.gov (United States)

    Vogel, Adam P; Rommel, Natalie; Sauer, Carina; Horger, Marius; Krumm, Patrick; Himmelbach, Marc; Synofzik, Matthis

    2017-06-01

    Screening assessments for dysphagia are essential in neurodegenerative disease. Yet there are no purpose-built tools to quantify swallowing deficits at bedside or in clinical trials. A quantifiable, brief, easy to administer assessment that measures the impact of dysphagia and predicts the presence or absence of aspiration is needed. The Clinical Assessment of Dysphagia in Neurodegeneration (CADN) was designed by a multidisciplinary team (neurology, neuropsychology, speech pathology) validated against strict methodological criteria in two neurodegenerative diseases, Parkinson's disease (PD) and degenerative ataxia (DA). CADN comprises two parts, an anamnesis (part one) and consumption (part two). Two-thirds of patients were assessed using reference tests, the SWAL-QOL symptoms subscale (part one) and videofluoroscopic assessment of swallowing (part two). CADN has 11 items and can be administered and scored in an average of 7 min. Test-retest reliability was established using correlation and Bland-Altman plots. 125 patients with a neurodegenerative disease were recruited; 60 PD and 65 DA. Validity was established using ROC graphs and correlations. CADN has sensitivity of 79 and 84% and specificity 71 and 69% for parts one and two, respectively. Significant correlations with disease severity were also observed (p dysphagia symptomatology and risk of aspiration. The CADN is a reliable, valid, brief, quantifiable, and easily deployed assessment of swallowing in neurodegenerative disease. It is thus ideally suited for both clinical bedside assessment and future multicentre clinical trials in neurodegenerative disease.

  5. Garcinia kola aqueous suspension prevents cerebellar neurodegeneration in long-term diabetic rat - a type 1 diabetes mellitus model.

    Science.gov (United States)

    Farahna, Mohammed; Seke Etet, Paul F; Osman, Sayed Y; Yurt, Kıymet K; Amir, Naheed; Vecchio, Lorella; Aydin, Isınsu; Aldebasi, Yousef H; Sheikh, Azimullah; Chijuka, John C; Kaplan, Süleyman; Adem, Abdu

    2017-01-04

    The development of compounds able to improve metabolic syndrome and mitigate complications caused by inappropriate glycemic control in type 1 diabetes mellitus is challenging. The medicinal plant with established hypoglycemic properties Garcinia kola Heckel might have the potential to mitigate diabetes mellitus metabolic syndrome and complications. We have investigated the neuroprotective properties of a suspension of G. kola seeds in long-term type 1 diabetes mellitus rat model. Wistar rats, made diabetic by single injection of streptozotocin were monitored for 8 months. Then, they were administered with distilled water or G. kola oral aqueous suspension daily for 30 days. Body weight and glycemia were determined before and after treatment. After sacrifice, cerebella were dissected out and processed for stereological quantification of Purkinje cells. Histopathological and immunohistochemical analyses of markers of neuroinflammation and neurodegeneration were performed. Purkinje cell counts were significantly increased, and histopathological signs of apoptosis and neuroinflammation decreased, in diabetic animals treated with G. kola compared to diabetic rats given distilled water. Glycemia was also markedly improved and body weight restored to non-diabetic control values, following G. kola treatment. These results suggest that G. kola treatment improved the general condition of long-term diabetic rats and protected Purkinje cells partly by improving the systemic glycemia and mitigating neuroinflammation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Pacific Ciguatoxin Induces Excitotoxicity and Neurodegeneration in the Motor Cortex Via Caspase 3 Activation: Implication for Irreversible Motor Deficit.

    Science.gov (United States)

    Asthana, Pallavi; Zhang, Ni; Kumar, Gajendra; Chine, Virendra Bhagawan; Singh, Kunal Kumar; Mak, Yim Ling; Chan, Leo Lai; Lam, Paul Kwan Sing; Ma, Chi Him Eddie

    2018-01-18

    Consumption of fish containing ciguatera toxins or ciguatoxins (CTXs) causes ciguatera fish poisoning (CFP). In some patients, CFP recurrence occurs even years after exposure related to CTXs accumulation. Pacific CTX-1 (P-CTX-1) is one of the most potent natural substances known that causes predominantly neurological symptoms in patients; however, the underlying pathogenies of CFP remain unknown. Using clinically relevant neurobehavioral tests and electromyography (EMG) to assess effects of P-CTX-1 during the 4 months after exposure, recurrent motor strength deficit occurred in mice exposed to P-CTX-1. We detected irreversible motor strength deficits accompanied by reduced EMG activity, demyelination, and slowing of motor nerve conduction, whereas control unexposed mice fully recovered in 1 month after peripheral nerve injury. Finally, to uncover the mechanism underlying CFP, we detected reduction of spontaneous firing rate of motor cortical neurons even 6 months after exposure and increased number of glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes. Increased numbers of motor cortical neuron apoptosis were detected by dUTP-digoxigenin nick end labeling assay along with activation of caspase 3. Taken together, our study demonstrates that persistence of P-CTX-1 in the nervous system induces irreversible motor deficit that correlates well with excitotoxicity and neurodegeneration detected in the motor cortical neurons.

  7. Synthesis of new heterocyclic compounds based on pyrazolopyridine scaffold and evaluation of their neuroprotective potential in MPP+-induced neurodegeneration.

    Science.gov (United States)

    Jouha, Jabrane; Loubidi, Mohammed; Bouali, Jamila; Hamri, Salha; Hafid, Abderrafia; Suzenet, Franck; Guillaumet, Gérald; Dagcı, Taner; Khouili, Mostafa; Aydın, Fadime; Saso, Luciano; Armagan, Güliz

    2017-03-31

    Neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, and Huntington's disease affect millions of people in the world. Thus several new approaches to treat brain disorders are under development. The aim of the present study is to synthesize potential neuroprotective heterocyclic compounds based on pyrazolopyridine derivatives and then to evaluate their effects in MPP + -induced neurodegeneration in human neuroblastoma cell line (SH-SY5Y cells). The effects of the compounds on cell viability were measured by MTT assay and the changes in apoptosis-related proteins including bax, Bcl-2, Bcl-xl and caspase-3 were investigated by western blot technique. Based on the cell viability results obtained by MTT assay, the percentage of neuroprotection-induced by compounds against MPP + -induced neurotoxicity in SH-SY5Y cells was between 20% and 30% at 5 μM concentrations of all synthesized compounds. Moreover, the downregulation in pro-apoptotic proteins including bax and caspase-3 were found following the novel synthesized compounds treatments and these effects were observed in a dose-dependent manner. Our results provide an evidence that these heterocyclic compounds based on pyrazolopyridine derivatives may have a role on dopaminergic neuroprotection via antiapoptotic pathways. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  8. Targeting PERK signaling with the small molecule GSK2606414 prevents neurodegeneration in a model of Parkinson's disease.

    Science.gov (United States)

    Mercado, Gabriela; Castillo, Valentina; Soto, Paulina; López, Nélida; Axten, Jeffrey M; Sardi, Sergio P; Hoozemans, Jeroen J M; Hetz, Claudio

    2018-04-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder, leading to the progressive decline of motor control due to the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Accumulating evidence suggest that altered proteostasis is a salient feature of PD, highlighting perturbations to the endoplasmic reticulum (ER), the main compartment involved in protein folding and secretion. PERK is a central ER stress sensor that enforces adaptive programs to recover homeostasis through a block of protein translation and the induction of the transcription factor ATF4. In addition, chronic PERK signaling results in apoptosis induction and neuronal dysfunction due to the repression in the translation of synaptic proteins. Here we confirmed the activation of PERK signaling in postmortem brain tissue derived from PD patients and three different rodent models of the disease. Pharmacological targeting of PERK by the oral administration of GSK2606414 demonstrated efficient inhibition of the pathway in the SNpc after experimental ER stress stimulation. GSK2606414 protected nigral-dopaminergic neurons against a PD-inducing neurotoxin, improving motor performance. The neuroprotective effects of PERK inhibition were accompanied by an increase in dopamine levels and the expression of synaptic proteins. However, GSK2606414 treated animals developed secondary effects possibly related to pancreatic toxicity. This study suggests that strategies to attenuate ER stress levels may be effective to reduce neurodegeneration in PD. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Ferrous Iron Up-regulation in Fibroblasts of Patients with Beta Propeller Protein-Associated Neurodegeneration (BPAN).

    Science.gov (United States)

    Ingrassia, Rosaria; Memo, Maurizio; Garavaglia, Barbara

    2017-01-01

    Mutations in WDR45 gene, coding for a beta-propeller protein, have been found in patients affected by Neurodegeneration with Brain Iron Accumulation, NBIA5 (also known as BPAN). BPAN is a movement disorder with Non Transferrin Bound Iron (NTBI) accumulation in the basal ganglia as common hallmark between NBIA classes (Hayflick et al., 2013). WDR45 has been predicted to have a role in autophagy, while the impairment of iron metabolism in the different NBIA subclasses has not currently been clarified. We found the up-regulation of the ferrous iron transporter (-)IRE/Divalent Metal Transporter1 and down-regulation of Transferrin receptor in the fibroblasts of two BPAN affected patients with splicing mutations 235+1G>A (BPAN1) and 517_519ΔVal 173 (BPAN2). The BPAN patients showed a concomitant increase of intracellular ferrous iron after starvation. An altered pattern of iron transporters with iron overload is highlighted in BPAN human fibroblasts, supporting for a role of DMT1 in NBIA. We here present a novel element, about iron accumulation, to the existing knowledge in field of NBIA. Attention is focused to a starvation-dependent iron overload, possibly accounting for iron accumulation in the basal ganglia. Further investigation could clarify iron regulation in BPAN.

  10. Identification of Novel Compound Mutations in PLA2G6-Associated Neurodegeneration Patient with Characteristic MRI Imaging.

    Science.gov (United States)

    Guo, Sen; Yang, Liu; Liu, Huijie; Chen, Wei; Li, Jinchen; Yu, Ping; Sun, Zhong Sheng; Chen, Xiang; Du, Jie; Cai, Tao

    2017-08-01

    Neurodegeneration with brain iron accumulation comprises a heterogeneous group of disorders characterized clinically by progressive motor dysfunction. Accurate identification of de novo and rare inherited mutations is important for determining causative genes of undiagnosed neurological diseases. In the present study, we report a unique case with cerebellar ataxia symptoms and social communication difficulties in an intermarriage family. MRI showed a marked cerebellar atrophy and the "eye-of-the-tiger"-like sign in the medial globus pallidus. Potential genetic defects were screened by whole-exome sequencing (WES) for the patient and four additional family members. A previously undescribed de novo missense mutation (c.1634A>G, p.K545R) in the exon 12 of the PLA2G6 gene was identified. A second rare variant c.1077G>A at the end of exon 7 was also identified, which was inherited from the mother, and resulted in a frame-shift mutation (c.1074_1077del.GTCG) due to an alternative splicing. In conclusion, the identification of the "eye-of-the-tiger"-like sign in the globus pallidus of the patient expands the phenotypic spectrum of PLA2G6-associated disorders and reveals its value in differential diagnosis of PLA2G6-associated disorders.

  11. Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Suzana Gispert

    Full Text Available BACKGROUND: Parkinson's disease (PD is an adult-onset movement disorder of largely unknown etiology. We have previously shown that loss-of-function mutations of the mitochondrial protein kinase PINK1 (PTEN induced putative kinase 1 cause the recessive PARK6 variant of PD. METHODOLOGY/PRINCIPAL FINDINGS: Now we generated a PINK1 deficient mouse and observed several novel phenotypes: A progressive reduction of weight and of locomotor activity selectively for spontaneous movements occurred at old age. As in PD, abnormal dopamine levels in the aged nigrostriatal projection accompanied the reduced movements. Possibly in line with the PARK6 syndrome but in contrast to sporadic PD, a reduced lifespan, dysfunction of brainstem and sympathetic nerves, visible aggregates of alpha-synuclein within Lewy bodies or nigrostriatal neurodegeneration were not present in aged PINK1-deficient mice. However, we demonstrate PINK1 mutant mice to exhibit a progressive reduction in mitochondrial preprotein import correlating with defects of core mitochondrial functions like ATP-generation and respiration. In contrast to the strong effect of PINK1 on mitochondrial dynamics in Drosophila melanogaster and in spite of reduced expression of fission factor Mtp18, we show reduced fission and increased aggregation of mitochondria only under stress in PINK1-deficient mouse neurons. CONCLUSION: Thus, aging Pink1(-/- mice show increasing mitochondrial dysfunction resulting in impaired neural activity similar to PD, in absence of overt neuronal death.

  12. The BRCA1 variant p.Ser36Tyr abrogates BRCA1 protein function and potentially confers a moderate risk of breast cancer.

    Science.gov (United States)

    Christou, Charita M; Hadjisavvas, Andreas; Kyratzi, Maria; Flouri, Christina; Neophytou, Ioanna; Anastasiadou, Violetta; Loizidou, Maria A; Kyriacou, Kyriacos

    2014-01-01

    The identification of variants of unknown clinical significance (VUS) in the BRCA1 gene complicates genetic counselling and causes additional anxiety to carriers. In silico approaches currently used for VUS pathogenicity assessment are predictive and often produce conflicting data. Furthermore, functional assays are either domain or function specific, thus they do not examine the entire spectrum of BRCA1 functions and interpretation of individual assay results can be misleading. PolyPhen algorithm predicted that the BRCA1 p.Ser36Tyr VUS identified in the Cypriot population was damaging, whereas Align-GVGD predicted that it was possibly of no significance. In addition the BRCA1 p.Ser36Tyr variant was found to be associated with increased risk (OR = 3.47, 95% CI 1.13-10.67, P = 0.02) in a single case-control series of 1174 cases and 1109 controls. We describe a cellular system for examining the function of exogenous full-length BRCA1 and for classifying VUS. We achieved strong protein expression of full-length BRCA1 in transiently transfected HEK293T cells. The p.Ser36Tyr VUS exhibited low protein expression similar to the known pathogenic variant p.Cys61Gly. Co-precipitation analysis further demonstrated that it has a reduced ability to interact with BARD1. Further, co-precipitation analysis of nuclear and cytosolic extracts as well as immunofluorescence studies showed that a high proportion of the p.Ser36Tyr variant is withheld in the cytoplasm contrary to wild type protein. In addition the ability of p.Ser36Tyr to co-localize with conjugated ubiquitin foci in the nuclei of S-phase synchronized cells following genotoxic stress with hydroxyurea is impaired at more pronounced levels than that of the p.Cys61Gly pathogenic variant. The p.Ser36Tyr variant demonstrates abrogated function, and based on epidemiological, genetic, and clinical data we conclude that the p.Ser36Tyr variant is probably associated with a moderate breast cancer risk.

  13. The BRCA1 variant p.Ser36Tyr abrogates BRCA1 protein function and potentially confers a moderate risk of breast cancer.

    Directory of Open Access Journals (Sweden)

    Charita M Christou

    Full Text Available The identification of variants of unknown clinical significance (VUS in the BRCA1 gene complicates genetic counselling and causes additional anxiety to carriers. In silico approaches currently used for VUS pathogenicity assessment are predictive and often produce conflicting data. Furthermore, functional assays are either domain or function specific, thus they do not examine the entire spectrum of BRCA1 functions and interpretation of individual assay results can be misleading. PolyPhen algorithm predicted that the BRCA1 p.Ser36Tyr VUS identified in the Cypriot population was damaging, whereas Align-GVGD predicted that it was possibly of no significance. In addition the BRCA1 p.Ser36Tyr variant was found to be associated with increased risk (OR = 3.47, 95% CI 1.13-10.67, P = 0.02 in a single case-control series of 1174 cases and 1109 controls. We describe a cellular system for examining the function of exogenous full-length BRCA1 and for classifying VUS. We achieved strong protein expression of full-length BRCA1 in transiently transfected HEK293T cells. The p.Ser36Tyr VUS exhibited low protein expression similar to the known pathogenic variant p.Cys61Gly. Co-precipitation analysis further demonstrated that it has a reduced ability to interact with BARD1. Further, co-precipitation analysis of nuclear and cytosolic extracts as well as immunofluorescence studies showed that a high proportion of the p.Ser36Tyr variant is withheld in the cytoplasm contrary to wild type protein. In addition the ability of p.Ser36Tyr to co-localize with conjugated ubiquitin foci in the nuclei of S-phase synchronized cells following genotoxic stress with hydroxyurea is impaired at more pronounced levels than that of the p.Cys61Gly pathogenic variant. The p.Ser36Tyr variant demonstrates abrogated function, and based on epidemiological, genetic, and clinical data we conclude that the p.Ser36Tyr variant is probably associated with a moderate breast cancer risk.

  14. NS1-binding protein abrogates the elevation of cell viability by the influenza A virus NS1 protein in association with CRKL

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Masaya [Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Nishihara, Hiroshi, E-mail: hnishihara@med.hokudai.ac.jp [Department of Translational Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Hasegawa, Hideki [Department of Pathology, National Institute of Infectious Diseases, Sinjuku-ku, Tokyo (Japan); Tashiro, Masato [Influenza Virus Research Center, National Institute of Infectious Diseases, Sinjuku-ku, Tokyo (Japan); Wang, Lei [Department of Translational Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Kimura, Taichi; Tanino, Mishie; Tsuda, Masumi [Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Tanaka, Shinya [Department of Cancer Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan); Department of Translational Pathology, Hokkaido University Graduate School of Medicine, N15W7, Kita-ku, Sapporo 060-8638 (Japan)

    2013-11-29

    Highlights: •NS1 induced excessive phosphorylation of ERK and elevated cell viability. •NS1-BP expression and CRKL knockdown abolished survival effect of NS1. •NS1-BP and NS1 formed the complex through the interaction with CRKL-SH3(N). -- Abstract: The influenza A virus non-structural protein 1 (NS1) is a multifunctional virulence factor consisting of an RNA binding domain and several Src-homology (SH) 2 and SH3 binding motifs, which promotes virus replication in the host cell and helps to evade antiviral immunity. NS1 modulates general host cell physiology in association with various cellular molecules including NS1-binding protein (NS1-BP) and signaling adapter protein CRK-like (CRKL), while the physiological role of NS1-BP during influenza A virus infection especially in association with NS1 remains unclear. In this study, we analyzed the intracellular association of NS1-BP, NS1 and CRKL to elucidate the physiological roles of these molecules in the host cell. In HEK293T cells, enforced expression of NS1 of A/Beijing (H1N1) and A/Indonesia (H5N1) significantly induced excessive phosphorylation of ERK and elevated cell viability, while the over-expression of NS1-BP and the abrogation of CRKL using siRNA abolished such survival effect of NS1. The pull-down assay using GST-fusion CRKL revealed the formation of intracellular complexes of NS1-BP, NS1 and CRKL. In addition, we identified that the N-terminus SH3 domain of CRKL was essential for binding to NS1-BP using GST-fusion CRKL-truncate mutants. This is the first report to elucidate the novel function of NS1-BP collaborating with viral protein NS1 in modulation of host cell physiology. In addition, an alternative role of adaptor protein CRKL in association with NS1 and NS1-BP during influenza A virus infection is demonstrated.

  15. Human LT-alpha-mediated resistance to autoimmune diabetes is induced in NOD, but not NOD-scid, mice and abrogated by IL-12.

    Science.gov (United States)

    Miyaguchi, S; Satoh, J; Takahashi, K; Sakata, Y; Nakazawa, T; Miyazaki, J; Toyota, T

    2001-01-01

    the resistance was abrogated by IL-12 treatment, it is speculated that hLT-alpha treatment may have changed a local cytokine balance protective from beta cell destruction. Copyright 2001 Academic Press.

  16. Organophosphate-Induced Changes in the PKA Regulatory Function of Swiss Cheese/NTE Lead to Behavioral Deficits and Neurodegeneration

    Science.gov (United States)

    Kretzschmar, Doris

    2014-01-01

    Organophosphate-induced delayed neuropathy (OPIDN) is a Wallerian-type axonopathy that occurs weeks after exposure to certain organophosphates (OPs). OPs have been shown to bind to Neuropathy Target Esterase (NTE), thereby inhibiting its enzymatic activity. However, only OPs that also induce the so-called aging reaction cause OPIDN. This reaction results in the release and possible transfer of a side group from the bound OP to NTE and it has been suggested that this induces an unknown toxic function of NTE. To further investigate the mechanisms of aging OPs, we used Drosophila, which expresses a functionally conserved orthologue of NTE named Swiss Cheese (SWS). Treating flies with the organophosporous compound tri-ortho-cresyl phosphate (TOCP) resulted in behavioral deficits and neurodegeneration two weeks after exposure, symptoms similar to the delayed effects observed in other models. In addition, we found that primary neurons showed signs of axonal degeneration within an hour after treatment. Surprisingly, increasing the levels of SWS, and thereby its enzymatic activity after exposure, did not ameliorate these phenotypes. In contrast, reducing SWS levels protected from TOCP-induced degeneration and behavioral deficits but did not affect the axonopathy observed in cell culture. Besides its enzymatic activity as a phospholipase, SWS also acts as regulatory PKA subunit, binding and inhibiting the C3 catalytic subunit. Measuring PKA activity in TOCP treated flies revealed a significant decrease that was also confirmed in treated rat hippocampal neurons. Flies expressing additional PKA-C3 were protected from the behavioral and degenerative phenotypes caused by TOCP exposure whereas primary neurons were not. In addition, knocking-down PKA-C3 caused similar behavioral and degenerative phenotypes as TOCP treatment. We therefore propose a model in which OP-modified SWS cannot release PKA-C3 and that the resulting loss of PKA-C3 activity plays a crucial role in developing

  17. Mitochondrial Complex 1 Activity Measured by Spectrophotometry Is Reduced across All Brain Regions in Ageing and More Specifically in Neurodegeneration.

    Science.gov (United States)

    Pollard, Amelia Kate; Craig, Emma Louise; Chakrabarti, Lisa

    2016-01-01

    Mitochondrial function, in particular complex 1 of the electron transport chain (ETC), has been shown to decrease during normal ageing and in neurodegenerative disease. However, there is some debate concerning which area of the brain has the greatest complex 1 activity. It is important to identify the pattern of activity in order to be able to gauge the effect of age or disease related changes. We determined complex 1 activity spectrophotometrically in the cortex, brainstem and cerebellum of middle aged mice (70-71 weeks), a cerebellar ataxic neurodegeneration model (pcd5J) and young wild type controls. We share our updated protocol on the measurements of complex1 activity and find that mitochondrial fractions isolated from frozen tissues can be measured for robust activity. We show that complex 1 activity is clearly highest in the cortex when compared with brainstem and cerebellum (p<0.003). Cerebellum and brainstem mitochondria exhibit similar levels of complex 1 activity in wild type brains. In the aged brain we see similar levels of complex 1 activity in all three-brain regions. The specific activity of complex 1 measured in the aged cortex is significantly decreased when compared with controls (p<0.0001). Both the cerebellum and brainstem mitochondria also show significantly reduced activity with ageing (p<0.05). The mouse model of ataxia predictably has a lower complex 1 activity in the cerebellum, and although reductions are measured in the cortex and brain stem, the remaining activity is higher than in the aged brains. We present clear evidence that complex 1 activity decreases across the brain with age and much more specifically in the cerebellum of the pcd5j mouse. Mitochondrial impairment can be a region specific phenomenon in disease, but in ageing appears to affect the entire brain, abolishing the pattern of higher activity in cortical regions.

  18. NEW ROLES FOR FC RECEPTORS IN NEURODEGENERATION-THE IMPACT ON IMMUNOTHERAPY FOR ALZHEIMER’S DISEASE

    Directory of Open Access Journals (Sweden)

    James P. Fuller

    2014-08-01

    Full Text Available There are an estimated 18 million Alzheimer’s disease (AD sufferers worldwide and with no disease modifying treatment currently available, development of new therapies represents an enormous unmet clinical need. AD is characterised by episodic memory loss followed by severe cognitive decline and is associated with many neuropathological changes. AD is characterised by deposits of amyloid beta (Aβ, neurofibrillary tangles, and neuroinflammation. Active immunisation or passive immunisation against Aβ leads to the clearance of deposits in transgenic mice expressing human Aβ. This clearance is associated with reversal of associated cognitive deficits, but these results have failed to translate to humans, with both active and passive immunotherapy failing to improve memory loss. One explanation for these observations is that certain anti-Aβ antibodies mediate damage to the cerebral vasculature limiting the top dose and potentially reducing efficacy. Fc gamma receptors (Fcγ are a family of immunoglobulin like receptors which bind to the Fc portion of IgG, and mediate the response of effector cells to immune complexes. Data from both mouse and human studies suggest that cross-linking Fc receptors by therapeutic antibodies and the subsequent pro-inflammatory response mediates the vascular side effects seen following immunotherapy. Increasing evidence is emerging that Fc receptor expression on CNS resident cells, including microglia and neurons, is increased during aging and functionally involved in the pathogenesis of age-related neurodegenerative diseases. We propose that increased expression and ligation of Fc receptors in the CNS, either by endogenous IgG or therapeutic antibodies, has the potential to induce vascular damage and exacerbate neurodegeneration. To produce safe and effective immunotherapies for AD and other neurodegenerative diseases it will be vital to understand the role of Fc receptors in the healthy and diseased brain.

  19. Neuroinflammation and J2 prostaglandins: linking impairment of the ubiquitin-proteasome pathway and mitochondria to neurodegeneration

    Directory of Open Access Journals (Sweden)

    Maria Emilia Figueiredo-Pereira

    2015-01-01

    Full Text Available The immune response of the CNS is a defense mechanism activated upon injury to initiate repair mechanisms while chronic over-activation of the CNS immune system (termed neuroinflammation may exacerbate injury. The latter is implicated in a variety of neurological and neurodegenerative disorders such as Alzheimer and Parkinson diseases, amyotrophic lateral sclerosis, multiple sclerosis, traumatic brain injury, HIV dementia and prion diseases. Cyclooxygenases (COX -1 and COX-2, which are key enzymes in the conversion of arachidonic acid into bioactive prostanoids, play a central role in the inflammatory cascade. J2 prostaglandins are endogenous toxic products of cyclooxygenases, and because their levels are significantly increased upon brain injury, they are actively involved in neuronal dysfunction induced by pro-inflammatory stimuli. In this review, we highlight the mechanisms by which J2 prostaglandins (1 exert their actions, (2 potentially contribute to the transition from acute to chronic inflammation and to the spreading of neuropathology, (3 disturb the ubiquitin-proteasome pathway and mitochondrial function, and (4 contribute to neurodegenerative disorders such as Alzheimer and Parkinson diseases, and amyotrophic lateral sclerosis, as well as stroke, traumatic brain injury, and demyelination in Krabbe disease. We conclude by discussing the therapeutic potential of targeting the J2 prostaglandin pathway to prevent/delay neurodegeneration associated with neuroinflammation. In this context, we suggest a shift from the traditional view that cyclooxygenases are the most appropriate targets to treat neuroinflammation, to the notion that J2 prostaglandin pathways and other neurotoxic prostaglandins downstream from cyclooxygenases, would offer significant benefits as more effective therapeutic targets to treat chronic neurodegenerative diseases, while minimizing adverse side effects.

  20. Fisetin as a caloric restriction mimetic protects rat brain against aging induced oxidative stress, apoptosis and neurodegeneration.

    Science.gov (United States)

    Singh, Sandeep; Singh, Abhishek Kumar; Garg, Geetika; Rizvi, Syed Ibrahim

    2018-01-15

    In the present study, attempts have been made to evaluate the potential role of fisetin, a caloric restriction mimetic (CRM), for neuroprotection in D-galactose (D-gal) induced accelerated and natural aging models of rat. Fisetin was supplemented (15mg/kg b.w., orally) to young, D-gal induced aged (D-gal 500mg/kg b.w subcutaneously) and naturally aged rats for 6weeks. Standard protocols were employed to measure pro-oxidants, antioxidants and mitochondrial membrane potential in brain tissues. Gene expression analysis with reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to assess the expression of autophagy, neuronal, aging as well as inflammatory marker genes. We have also evaluated apoptotic cell death and synaptosomal membrane-bound ion transporter activities in brain tissues. Our data demonstrated that fisetin significantly decreased the level of pro-oxidants and increased the level of antioxidants. Furthermore, fisetin also ameliorated mitochondrial membrane depolarization, apoptotic cell death and impairments in the activities of synaptosomal membrane-bound ion transporters in aging rat brain. RT-PCR data revealed that fisetin up-regulated the expression of autophagy genes (Atg-3 and Beclin-1), sirtuin-1 and neuronal markers (NSE and Ngb), and down-regulated the expression of inflammatory (IL-1β and TNF-α) and Sirt-2 genes respectively in aging brain. The present study suggests that fisetin supplementation may provide neuroprotection against aging-induced oxidative stress, apoptotic cell death, neuro-inflammation, and neurodegeneration in rat brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Prenatal exposure to a novel antipsychotic quetiapine: impact on neuro-architecture, apoptotic neurodegeneration in fetal hippocampus and cognitive impairment in young rats.

    Science.gov (United States)

    Singh, K P; Tripathi, Nidhi

    2015-05-01

    Reports on prenatal exposure to some of the first generation antipsychotic drugs like, haloperidol, their effects on fetal neurotoxicity and functional impairments in the offspring, are well documented. But studies on in utero exposure to second generation antipsychotics, especially quetiapine, and its effects on fetal neurotoxicity, apoptotic neurodegeneration, postnatal developmental delay and neurobehavioral consequences are lacking. Therefore, the present study was undertaken to evaluate the effect of prenatal administration to equivalent therapeutic doses of quetiapine on neuro-architectural abnormalities, neurohistopathological changes, apoptotic neurodegeneration in fetal hippocampus, and postnatal development and growth as well as its long-lasting imprint on cognitive impairment in young-adult offspring. Pregnant Wistar rats (n=24) were exposed to selected doses (55 mg, 80 mg and 100mg/kg) of quetiapine, equivalent to human therapeutic doses, from gestation day 6 to 21 orally with control subjects. Half of the pregnant subjects of each group were sacrificed at gestation day 21 for histopathological, confocal and electron microscopic studies and rest of the dams were allowed to deliver naturally. Their pups were reared postnatally up to 10 weeks of age for neurobehavioral observations. In quetiapine treated groups, there was significant alterations in total and differential thickness of three typical layers of hippocampus associated with neuronal cells deficit and enhanced apoptotic neurodegeneration in the CA1 area of fetal hippocampus. Prenatally drug treated rat offspring displayed post-natal developmental delay till postnatal day 70, and these young-adult rats displayed cognitive impairment in Morris water maze and passive avoidance regimes as long-lasting impact of the drug. Therefore, quetiapine should be used with cautions considering its developmental neurotoxicological and neurobehavioral potential in animal model, rat. Copyright © 2015 Elsevier

  2. Total Lignans of Schisandra chinensis Ameliorates Aβ1-42-Induced Neurodegeneration with Cognitive Impairment in Mice and Primary Mouse Neuronal Cells.

    Directory of Open Access Journals (Sweden)

    Xu Zhao

    Full Text Available Lignan compounds extracted from Schisandra chinensis (Turcz. Baill. have been reported to possess various biological activities, and have potential in the treatment of Alzheimer's disease. This study was designed to investigate the effects of total lignans of Schisandra chinensis (TLS on cognitive function and neurodegeneration in the model of AD induced by Aβ1-42 in vivo and in vitro. It was found that intragastric infusion with TLS (50 and 200 mg/kg to Aβ1-42-induced mice significantly increased the number of avoidances in the shuttle-box test and swimming time in the target quadrant in the Morris water maze test. TLS at dose of 200 mg/kg significantly restored the activities of total antioxidant capacity (T-AOC, as well as the level of malondialdehyde (MDA both in the hippocampus and cerebral cortex in mice. Results of histopathological examination indicated that TLS noticeably ameliorated the neurodegeneration in the hippocampus in mice. On the other hand, TLS (100 μM could protect the Aβ1-42-induced primary mouse neuronal cells by blocking the decrease of mitochondrial membrane potential (MMP, change the expressions of Bcl-2 (important regulator in the mitochondria apoptosis pathway. Moreover, TLS also decreased the activity of β-secretase 1 (BACE1, crucial protease contributes to the hydrolysis of amyloid precursor protein (APP, and inhibited the expression of JKN/p38, which involved in the MAPKs signaling pathways in both mice and primary mouse neuronal cells. In summary, TLS might protect against cognitive deficits and neurodegeneration by releasing the damage of oxidative stress, inhibiting the expression of BACE1 and the MAPKs inflammatory signaling pathways.

  3. Pituitary adenylate cyclase-activating polypeptide (PACAP has a neuroprotective function in dopamine-based neurodegeneration in rat and snail parkinsonian models

    Directory of Open Access Journals (Sweden)

    Gabor Maasz

    2017-02-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP rescues dopaminergic neurons from neurodegeneration and improves motor changes induced by 6-hydroxy-dopamine (6-OHDA in rat parkinsonian models. Recently, we investigated the molecular background of the neuroprotective effect of PACAP in dopamine (DA-based neurodegeneration using rotenone-induced snail and 6-OHDA-induced rat models of Parkinson's disease. Behavioural activity, monoamine (DA and serotonin, metabolic enzyme (S-COMT, MB-COMT and MAO-B and PARK7 protein concentrations were measured before and after PACAP treatment in both models. Locomotion and feeding activity were decreased in rotenone-treated snails, which corresponded well to findings obtained in 6-OHDA-induced rat experiments. PACAP was able to prevent the behavioural malfunctions caused by the toxins. Monoamine levels decreased in both models and the decreased DA level induced by toxins was attenuated by ∼50% in the PACAP-treated animals. In contrast, PACAP had no effect on the decreased serotonin (5HT levels. S-COMT metabolic enzyme was also reduced but a protective effect of PACAP was not observed in either of the models. Following toxin treatment, a significant increase in MB-COMT was observed in both models and was restored to normal levels by PACAP. A decrease in PARK7 was also observed in both toxin-induced models; however, PACAP had a beneficial effect only on 6-OHDA-treated animals. The neuroprotective effect of PACAP in different animal models of Parkinson's disease is thus well correlated with neurotransmitter, enzyme and protein levels. The models successfully mimic several, but not all etiological properties of the disease, allowing us to study the mechanisms of neurodegeneration as well as testing new drugs. The rotenone and 6-OHDA rat and snail in vivo parkinsonian models offer an alternative method for investigation of the molecular mechanisms of neuroprotective agents, including PACAP.

  4. Relative importance of redox buffers GSH and NAD(P)H in age-related neurodegeneration and Alzheimer disease-like mouse neurons.

    Science.gov (United States)

    Ghosh, Debolina; Levault, Kelsey R; Brewer, Gregory J

    2014-08-01

    Aging, a major risk factor in Alzheimer's disease (AD), is associated with an oxidative redox shift, decreased redox buffer protection, and increased free radical reactive oxygen species (ROS) generation, probably linked to mitochondrial dysfunction. While NADH is the ultimate electron donor for many redox reactions, including oxidative phosphorylation, glutathione (GSH) is the major ROS detoxifying redox buffer in the cell. Here, we explored the relative importance of NADH and GSH to neurodegeneration in aging and AD neurons from nontransgenic and 3xTg-AD mice by inhibiting their synthesis to determine whether NADH can compensate for the GSH loss to maintain redox balance. Neurons stressed by either depleting NAD(P)H or GSH indicated that NADH redox control is upstream of GSH levels. Further, although depletion of NAD(P)H or GSH correlated linearly with neuron death, compared with GSH depletion, higher neurodegeneration was observed when NAD(P)H was extrapolated to zero, especially in old age, and in the 3xTg-AD neurons. We also observed an age-dependent loss of gene expression of key redox-dependent biosynthetic enzymes, NAMPT (nicotinamide phosphoribosyltransferase), and NNT (nicotinamide nucleotide transhydrogenase). Moreover, age-related correlations between brain NNT or NAMPT gene expression and NADPH levels suggest that these genes contribute to the age-related declines in NAD(P)H. Our data indicate that in aging and more so in AD-like neurons, NAD(P)H redox control is upstream of GSH and an oxidative redox shift that promotes neurodegeneration. Thus, NAD(P)H generation may be a more efficacious therapeutic target upstream of GSH and ROS. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  5. Induction of Neuron-Specific Degradation of Coenzyme A Models Pantothenate Kinase-Associated Neurodegeneration by Reducing Motor Coordination in Mice.

    Directory of Open Access Journals (Sweden)

    Stephanie A Shumar

    Full Text Available Pantothenate kinase-associated neurodegeneration, PKAN, is an inherited disorder characterized by progressive impairment in motor coordination and caused by mutations in PANK2, a human gene that encodes one of four pantothenate kinase (PanK isoforms. PanK initiates the synthesis of coenzyme A (CoA, an essential cofactor that plays a key role in energy metabolism and lipid synthesis. Most of the mutations in PANK2 reduce or abolish the activity of the enzyme. This evidence has led to the hypothesis that lower CoA might be the underlying cause of the neurodegeneration in PKAN patients; however, no mouse model of the disease is currently available to investigate the connection between neuronal CoA levels and neurodegeneration. Indeed, genetic and/or dietary manipulations aimed at reducing whole-body CoA synthesis have not produced a desirable PKAN model, and this has greatly hindered the discovery of a treatment for the disease.Cellular CoA levels are tightly regulated by a balance between synthesis and degradation. CoA degradation is catalyzed by two peroxisomal nudix hydrolases, Nudt7 and Nudt19. In this study we sought to reduce neuronal CoA in mice through the alternative approach of increasing Nudt7-mediated CoA degradation. This was achieved by combining the use of an adeno-associated virus-based expression system with the synapsin (Syn promoter. We show that mice with neuronal overexpression of a cytosolic version of Nudt7 (scAAV9-Syn-Nudt7cyt exhibit a significant decrease in brain CoA levels in conjunction with a reduction in motor coordination. These results strongly support the existence of a link between CoA levels and neuronal function and show that scAAV9-Syn-Nudt7cyt mice can be used to model PKAN.

  6. Pantothenate kinase 2 mutation with classic pantothenate-kinase-associated neurodegeneration without 'eye-of-the-tiger' sign on MRI in a pair of siblings

    International Nuclear Information System (INIS)

    Zolkipli, Zarazuela; Surtees, Robert; Dahmoush, Hisham; Saunders, Dawn E.; Kling Chong, W.K.

    2006-01-01

    It has been postulated that all patients with pantothenate kinase 2 (PANK2) mutations causing pantothenate-kinase-associated neurodegeneration (PKAN) are associated with the 'eye-of-the-tiger' sign on MRI. We report a pair of siblings who presented with dystonia and who have been found to be homozygous for 104C>A, S35X mutation, confirming the diagnosis of PKAN. They do not have the typical iron deposition in the globi pallida or substantia nigra on MR imaging. (orig.)

  7. Correlation between Retinal Vessel Calibre and Neurodegeneration in Patients with Type 2 Diabetes Mellitus in the European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR)

    DEFF Research Database (Denmark)

    Frydkjaer-Olsen, Ulrik; Soegaard Hansen, Rasmus; Simó, Rafael

    2016-01-01

    .04). In a multivariable linear regression model, CRAE was associated with macular ganglion cell layer thickness (coefficient 0.27 per micrometre, p correlated with macular retinal thickness (coefficient -0.07 per micrometre, p = 0.04) and retinal nerve fibre layer thickness at the optic disc......PURPOSE: To investigate the correlation between retinal vessel calibre and measurements of neurodegeneration in patients with type 2 diabetes (T2D) and no or early diabetic retinopathy (DR). METHODS: Baseline data on 440 patients with T2D from the EUROCONDOR clinical trial were used. DR was graded...... (coefficient 0.32 per micrometre, p

  8. Pathological changes in hippocampal neuronal circuits underlie age-associated neurodegeneration and memory loss: positive clue toward SAD.

    Science.gov (United States)

    Moorthi, P; Premkumar, P; Priyanka, R; Jayachandran, K S; Anusuyadevi, M

    2015-08-20

    defect in neuronal-circuits of hippocampus (DG-CA4-CA1-Sub) that were significantly damaged leading to memory impairment. Interestingly, RSV was observed to culminate pathological events in the hippocampal neuronal circuit during aging, proving them as potent therapeutic drug against age-associated neurodegeneration and memory loss. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. 17β-trenbolone, an anabolic–androgenic steroid as well as an environmental hormone, contributes to neurodegeneration

    International Nuclear Information System (INIS)

    Ma, Fucui; Liu, Daicheng

    2015-01-01

    Both genetic and environmental factors contribute to neurodegenerative disorders. In a large number of neurodegenerative diseases (for example, Alzheimer's disease (AD)), patients do not carry the mutant genes. Other risk factors, for example the environmental factors, should be evaluated. 17β-trenbolone is a kind of environmental hormone as well as an anabolic–androgenic steroid. 17β-trenbolone is used as a growth promoter for livestock in the USA. Also, a large portion of recreational exercisers inject 17β-trenbolone in large doses and for very long time to increase muscle and strength. 17β-trenbolone is stable in the environment after being excreted. In the present study, 17β-trenbolone was administered to adult and pregnant rats and the primary hippocampal neurons. 17β-trenbolone's distribution and its effects on serum hormone levels and Aβ42 accumulation in vivo and its effects on AD related parameters in vitro were assessed. 17β-trenbolone accumulated in adult rat brain, especially in the hippocampus, and in the fetus brain. It altered Aβ42 accumulation. 17β-trenbolone induced apoptosis of primary hippocampal neurons in vitro and resisted neuroprotective function of testosterone. Presenilin-1 protein expression was down-regulated while β-amyloid peptide 42 (Aβ42) production and caspase-3 activities were increased. Both androgen and estrogen receptors mediated the processes. 17β-trenbolone played critical roles in neurodegeneration. Exercisers who inject large doses of trenbolone and common people who are exposed to 17β-trenbolone by various ways are all influenced chronically and continually. Identification of such environmental risk factors will help us take early prevention measure to slow down the onset of neurodegenerative disorders. - Highlights: • The widely used anabolic–androgenic steroid 17β-trenbolone has neurotoxicity. • 17β-trenbolone crosses the blood brain barrier and placental barrier. • Rat has high level of

  10. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer's disease.

    Science.gov (United States)

    Streit, Wolfgang J; Braak, Heiko; Xue, Qing-Shan; Bechmann, Ingo

    2009-10-01

    The role of microglial cells in the pathogenesis of Alzheimer's disease (AD) neurodegeneration is unknown. Although several works suggest that chronic neuroinflammation caused by activated microglia contributes to neurofibrillary degeneration, anti-inflammatory drugs do not prevent or reverse neuronal tau pathology. This raises the question if indeed microglial activation occurs in the human brain at sites of neurofibrillary degeneration. In view of the recent work demonstrating presence of dystrophic (senescent) microglia in aged human brain, the purpose of this study was to investigate microglial cells in situ and at high resolution in the immediate vicinity of tau-positive structures in order to determine conclusively whether degenerating neuronal structures are associated with activated or with dystrophic microglia. We used a newly optimized immunohistochemical method for visualizing microglial cells in human archival brain together with Braak staging of neurofibrillary pathology to ascertain the morphology of microglia in the vicinity of tau-positive structures. We now report histopathological findings from 19 humans covering the spectrum from none to severe AD pathology, including patients with Down's syndrome, showing that degenerating neuronal structures positive for tau (neuropil threads, neurofibrillary tangles, neuritic plaques) are invariably colocalized with severely dystrophic (fragmented) rather than with activated microglial cells. Using Braak staging of Alzheimer neuropathology we demonstrate that microglial dystrophy precedes the spread of tau pathology. Deposits of amyloid-beta protein (Abeta) devoid of tau-positive structures were found to be colocalized with non-activated, ramified microglia, suggesting that Abeta does not trigger microglial activation. Our findings also indicate that when microglial activation does occur in the absence of an identifiable acute central nervous system insult, it is likely to be the result of systemic infectious

  11. Squamosamide derivative FLZ protects dopaminergic neurons against inflammation-mediated neurodegeneration through the inhibition of NADPH oxidase activity

    Directory of Open Access Journals (Sweden)

    Wilson Belinda

    2008-05-01

    Full Text Available Abstract Background Inflammation plays an important role in the pathogenesis of Parkinson's disease (PD through over-activation of microglia, which consequently causes the excessive production of proinflammatory and neurotoxic factors, and impacts surrounding neurons and eventually induces neurodegeneration. Hence, prevention of microglial over-activation has been shown to be a prime target for the development of therapeutic agents for inflammation-mediated neurodegenerative diseases. Methods For in vitro studies, mesencephalic neuron-glia cultures and reconstituted cultures were used to investigate the molecular mechanism by which FLZ, a squamosamide derivative, mediates anti-inflammatory and neuroprotective effects in both lipopolysaccharide-(LPS- and 1-methyl-4-phenylpyridinium-(MPP+-mediated models of PD. For in vivo studies, a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-(MPTP- induced PD mouse model was used. Results FLZ showed potent efficacy in protecting dopaminergic (DA neurons against LPS-induced neurotoxicity, as shown in rat and mouse primary mesencephalic neuronal-glial cultures by DA uptake and tyrosine hydroxylase (TH immunohistochemical results. The neuroprotective effect of FLZ was attributed to a reduction in LPS-induced microglial production of proinflammatory factors such as superoxide, tumor necrosis factor-α (TNF-α, nitric oxide (NO and prostaglandin E2 (PGE2. Mechanistic studies revealed that the anti-inflammatory properties of FLZ were mediated through inhibition of NADPH oxidase (PHOX, the key microglial superoxide-producing enzyme. A critical role for PHOX in FLZ-elicited neuroprotection was further supported by the findings that 1 FLZ's protective effect was reduced in cultures from PHOX-/- mice, and 2 FLZ inhibited LPS-induced translocation of the cytosolic subunit of p47PHOX to the membrane and thus inhibited the activation of PHOX. The neuroprotective effect of FLZ demonstrated in primary neuronal

  12. Neurovascular-neuroenergetic coupling axis in the brain: master regulation by nitric oxide and consequences in aging and neurodegeneration.

    Science.gov (United States)

    Lourenço, Cátia F; Ledo, Ana; Barbosa, Rui M; Laranjinha, João

    2017-07-01

    The strict energetic demands of the brain require that nutrient supply and usage be fine-tuned in accordance with the specific temporal and spatial patterns of ever-changing levels of neuronal activity. This is achieved by adjusting local cerebral blood flow (CBF) as a function of activity level - neurovascular coupling - and by changing how energy substrates are metabolized and shuttled amongst astrocytes and neurons - neuroenergetic coupling. Both activity-dependent increase of CBF and O 2 and glucose utilization by active neural cells are inextricably linked, establishing a functional metabolic axis in the brain, the neurovascular-neuroenergetic coupling axis. This axis incorporates and links previously independent processes that need to be coordinated in the normal brain. We here review evidence supporting the role of neuronal-derived nitric oxide ( • NO) as the master regulator of this axis. Nitric oxide is produced in tight association with glutamatergic activation and, diffusing several cell diameters, may interact with different molecular targets within each cell type. Hemeproteins such as soluble guanylate cyclase, cytochrome c oxidase and hemoglobin, with which • NO reacts at relatively fast rates, are but a few of the key in determinants of the regulatory role of • NO in the neurovascular-neuroenergetic coupling axis. Accordingly, critical literature supporting this concept is discussed. Moreover, in view of the controversy regarding the regulation of catabolism of different neural cells, we further discuss key aspects of the pathways through which • NO specifically up-regulates glycolysis in astrocytes, supporting lactate shuttling to neurons for oxidative breakdown. From a biomedical viewpoint, derailment of neurovascular-neuroenergetic axis is precociously linked to aberrant brain aging, cognitive impairment and neurodegeneration. Thus, we summarize current knowledge of how both neurovascular and neuroenergetic coupling are compromised in

  13. 17β-trenbolone, an anabolic–androgenic steroid as well as an environmental hormone, contributes to neurodegeneration

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Fucui, E-mail: mafucui@hotmail.com [Wenzhou Institute of Biomaterials and Engineering, No. 16 Xinshan Road, Hi-tech Industry Park, Wenzhou (China); Key Laboratory of Animal Resistance, College of Life Science, Shandong Normal University, 88 East Wenhua Road, Jinan 250014 (China); Liu, Daicheng, E-mail: liudch@sdnu.edu.cn [Key Laboratory of Animal Resistance, College of Life Science, Shandong Normal University, 88 East Wenhua Road, Jinan 250014 (China)

    2015-01-01

    Both genetic and environmental factors contribute to neurodegenerative disorders. In a large number of neurodegenerative diseases (for example, Alzheimer's disease (AD)), patients do not carry the mutant genes. Other risk factors, for example the environmental factors, should be evaluated. 17β-trenbolone is a kind of environmental hormone as well as an anabolic–androgenic steroid. 17β-trenbolone is used as a growth promoter for livestock in the USA. Also, a large portion of recreational exercisers inject 17β-trenbolone in large doses and for very long time to increase muscle and strength. 17β-trenbolone is stable in the environment after being excreted. In the present study, 17β-trenbolone was administered to adult and pregnant rats and the primary hippocampal neurons. 17β-trenbolone's distribution and its effects on serum hormone levels and Aβ42 accumulation in vivo and its effects on AD related parameters in vitro were assessed. 17β-trenbolone accumulated in adult rat brain, especially in the hippocampus, and in the fetus brain. It altered Aβ42 accumulation. 17β-trenbolone induced apoptosis of primary hippocampal neurons in vitro and resisted neuroprotective function of testosterone. Presenilin-1 protein expression was down-regulated while β-amyloid peptide 42 (Aβ42) production and caspase-3 activities were increased. Both androgen and estrogen receptors mediated the processes. 17β-trenbolone played critical roles in neurodegeneration. Exercisers who inject large doses of trenbolone and common people who are exposed to 17β-trenbolone by various ways are all influenced chronically and continually. Identification of such environmental risk factors will help us take early prevention measure to slow down the onset of neurodegenerative disorders. - Highlights: • The widely used anabolic–androgenic steroid 17β-trenbolone has neurotoxicity. • 17β-trenbolone crosses the blood brain barrier and placental barrier. • Rat has high level of

  14. Alterations in the Interplay between Neurons, Astrocytes and Microglia in the Rat Dentate Gyrus in Experimental Models of Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Daniele Lana

    2017-09-01

    the different susceptibility of the DG in comparison to the CA1 and CA3 hippocampal areas to neurodegeneration during aging and inflammation.

  15. Brain aging and Aβ₁₋₄₂ neurotoxicity converge via deterioration in autophagy-lysosomal system: a conditional Drosophila model linking Alzheimer's neurodegeneration with aging.

    Science.gov (United States)

    Ling, Daijun; Salvaterra, Paul M

    2011-02-01

    Aging is known to be the most prominent risk factor for Alzheimer's disease (AD); however, the underlying mechanism linking brain aging with AD pathogenesis remains unknown. The expression of human amyloid beta 42 peptide (Aβ₁₋₄₂), but not Aβ₁₋₄₀ in Drosophila brain induces an early onset and progressive autophagy-lysosomal neuropathology. Here we show that the natural process of brain aging also accompanies a chronic and late-onset deterioration of neuronal autophagy-lysosomal system. This process is characterized by accumulation of dysfunctional autophagy-lysosomal vesicles, a compromise of these vesicles leading to damage of intracellular membranes and organelles, necrotic-like intraneuronal destruction and neurodegeneration. In addition, conditional activation of neuronal autophagy in young animals is protective while late activation is deleterious for survival. Intriguingly, conditional Aβ₁₋₄₂ expression limited to young animals exacerbates the aging process to a greater extent than Aβ₁₋₄₂ expression in old animals. These data suggest that the neuronal autophagy-lysosomal system may shift from a functional and protective state to a pathological and deleterious state either during brain aging or via Aβ₁₋₄₂ neurotoxicity. A chronic deterioration of the neuronal autophagy-lysosomal system is likely to be a key event in transitioning from normal brain aging to pathological aging leading to Alzheimer's neurodegeneration.

  16. Nebula/DSCR1 upregulation delays neurodegeneration and protects against APP-induced axonal transport defects by restoring calcineurin and GSK-3β signaling.

    Directory of Open Access Journals (Sweden)

    Jillian L Shaw

    Full Text Available Post-mortem brains from Down syndrome (DS and Alzheimer's disease (AD patients show an upregulation of the Down syndrome critical region 1 protein (DSCR1, but its contribution to AD is not known. To gain insights into the role of DSCR1 in AD, we explored the functional interaction between DSCR1 and the amyloid precursor protein (APP, which is known to cause AD when duplicated or upregulated in DS. We find that the Drosophila homolog of DSCR1, Nebula, delays neurodegeneration and ameliorates axonal transport defects caused by APP overexpression. Live-imaging reveals that Nebula facilitates the transport of synaptic proteins and mitochondria affected by APP upregulation. Furthermore, we show that Nebula upregulation protects against axonal transport defects by restoring calcineurin and GSK-3β signaling altered by APP overexpression, thereby preserving cargo-motor interactions. As impaired transport of essential organelles caused by APP perturbation is thought to be an underlying cause of synaptic failure and neurodegeneration in AD, our findings imply that correcting calcineurin and GSK-3β signaling can prevent APP-induced pathologies. Our data further suggest that upregulation of Nebula/DSCR1 is neuroprotective in the presence of APP upregulation and provides evidence for calcineurin inhibition as a novel target for therapeutic intervention in preventing axonal transport impairments associated with AD.

  17. Nebula/DSCR1 upregulation delays neurodegeneration and protects against APP-induced axonal transport defects by restoring calcineurin and GSK-3β signaling.

    Science.gov (United States)

    Shaw, Jillian L; Chang, Karen T

    2013-01-01

    Post-mortem brains from Down syndrome (DS) and Alzheimer's disease (AD) patients show an upregulation of the Down syndrome critical region 1 protein (DSCR1), but its contribution to AD is not known. To gain insights into the role of DSCR1 in AD, we explored the functional interaction between DSCR1 and the amyloid precursor protein (APP), which is known to cause AD when duplicated or upregulated in DS. We find that the Drosophila homolog of DSCR1, Nebula, delays neurodegeneration and ameliorates axonal transport defects caused by APP overexpression. Live-imaging reveals that Nebula facilitates the transport of synaptic proteins and mitochondria affected by APP upregulation. Furthermore, we show that Nebula upregulation protects against axonal transport defects by restoring calcineurin and GSK-3β signaling altered by APP overexpression, thereby preserving cargo-motor interactions. As impaired transport of essential organelles caused by APP perturbation is thought to be an underlying cause of synaptic failure and neurodegeneration in AD, our findings imply that correcting calcineurin and GSK-3β signaling can prevent APP-induced pathologies. Our data further suggest that upregulation of Nebula/DSCR1 is neuroprotective in the presence of APP upregulation and provides evidence for calcineurin inhibition as a novel target for therapeutic intervention in preventing axonal transport impairments associated with AD.

  18. Recent progress on curcumin-based therapeutics: a patent review (2012-2016). Part II: curcumin derivatives in cancer and neurodegeneration.

    Science.gov (United States)

    Di Martino, Rita Maria Concetta; Bisi, Alessandra; Rampa, Angela; Gobbi, Silvia; Belluti, Federica

    2017-08-01

    Curcumin, the main bioactive compound found in the rhizome of Curcuma longa L., is considered a 'privileged structure', due to its ability to modulate different signaling pathways involved in the pathogenesis of several diseases. Unfortunately, its poor pharmacodynamic and pharmacokinetic properties, mainly related to chemical instability, low solubility and rapid metabolism, greatly reduce its therapeutic potential. In the last years a number of derivatives were developed and patented, aimed both at improving its multifaceted biological profile and overcoming its undesired effects. Areas covered: This review summarizes the patent literature of the last five years dealing with synthetic curcumin-related compounds in cancer and neurodegeneration, properly designed in order to avoid the so-called 'dark side of curcumin', and to take advantage of the beneficial properties of this molecule, worth to be further exploited to obtain effective therapeutics. Expert opinion: Due to the synergistic binding to several networked targets, curcumin turned out to be suitable for polypharmacological approaches, and its 'privileged structure' could also provide the key scaffold to develop novel multipotent drugs useful for treating multifactiorial pathologic conditions such as cancer and neurodegeneration.

  19. Genetic Correction of SOD1 Mutant iPSCs Reveals ERK and JNK Activated AP1 as a Driver of Neurodegeneration in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Akshay Bhinge

    2017-04-01

    Full Text Available Summary: Although mutations in several genes with diverse functions have been known to cause amyotrophic lateral sclerosis (ALS, it is unknown to what extent causal mutations impinge on common pathways that drive motor neuron (MN-specific neurodegeneration. In this study, we combined induced pluripotent stem cells-based disease modeling with genome engineering and deep RNA sequencing to identify pathways dysregulated by mutant SOD1 in human MNs. Gene expression profiling and pathway analysis followed by pharmacological screening identified activated ERK and JNK signaling as key drivers of neurodegeneration in mutant SOD1 MNs. The AP1 complex member JUN, an ERK/JNK downstream target, was observed to be highly expressed in MNs compared with non-MNs, providing a mechanistic insight into the specific degeneration of MNs. Importantly, investigations of mutant FUS MNs identified activated p38 and ERK, indicating that network perturbations induced by ALS-causing mutations converge partly on a few specific pathways that are drug responsive and provide immense therapeutic potential. : In this article, Bhinge, Stanton, and colleagues use genome editing of patient-derived iPSCs to model ALS phenotypic defects in vitro. Transcriptomic analysis of disease MNs reveals activation of MAPK, AP1, WNT, cell-cycle, and p53 signaling in ALS MNs. Pharmacological screening uncovers activated ERK and JNK signaling as therapeutic targets in ALS. Keywords: ALS, SOD1, FUS, CRISPR-Cas9, p38, ERK, JNK, WNT, TP53, JUN

  20. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration.

    Science.gov (United States)

    Janssen, Carola I F; Kiliaan, Amanda J

    2014-01-01

    Many clinical and animal studies demonstrate the importance of long-chain polyunsaturated fatty acids (LCPUFA) in neural development and neurodegeneration. This review will focus on involvement of LCPUFA from genesis to senescence. The LCPUFA docosahexaenoic acid and arachidonic acid are important components of neuronal membranes, while eicosapentaenoic acid, docosahexaenoic acid, and arachidonic acid also affect cardiovascular health and inflammation. In neural development, LCPUFA deficiency can lead to severe disorders like schizophrenia and attention deficit hyperactivity disorder. Perinatal LCPUFA supplementation demonstrated beneficial effects in neural development in humans and rodents resulting in improved cognition and sensorimotor integration. In normal aging, the effect of LCPUFA on prevention of cognitive impairment will be discussed. LCPUFA are important for neuronal membrane integrity and function, and also contribute in prevention of brain hypoperfusion. Cerebral perfusion can be compromised as result of obesity, cerebrovascular disease, hypertension, or diabetes mellitus type 2. Last, we will focus on the role of LCPUFA in most common neurodegenerative diseases like Alzheimer's disease and Parkinson's disease. These disorders are characterized by impaired cognition and connectivity and both clinical and animal supplementation studies have shown the potential of LCPUFA to decrease neurodegeneration and inflammation. This review shows that LCPUFA are essential throughout life. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Dopaminergic expression of the Parkinsonian gene LRRK2-G2019S leads to non-autonomous visual neurodegeneration, accelerated by increased neural demands for energy

    Science.gov (United States)

    Hindle, Samantha; Afsari, Farinaz; Stark, Meg; Middleton, C. Adam; Evans, Gareth J.O.; Sweeney, Sean T.; Elliott, Christopher J.H.

    2013-01-01

    Parkinson's disease (PD) is associated with loss of dopaminergic signalling, and affects not just movement, but also vision. As both mammalian and fly visual systems contain dopaminergic neurons, we investigated the effect of LRRK2 mutations (the most common cause of inherited PD) on Drosophila electroretinograms (ERGs). We reveal progressive loss of photoreceptor function in flies expressing LRRK2-G2019S in dopaminergic neurons. The photoreceptors showed elevated autophagy, apoptosis and mitochondrial disorganization. Head sections confirmed extensive neurodegeneration throughout the visual system, including regions not directly innervated by dopaminergic neurons. Other PD-related mutations did not affect photoreceptor function, and no loss of vision was seen with kinase-dead transgenics. Manipulations of the level of Drosophila dLRRK suggest G2019S is acting as a gain-of-function, rather than dominant negative mutation. Increasing activity of the visual system, or of just the dopaminergic neurons, accelerated the G2019S-induced deterioration of vision. The fly visual system provides an excellent, tractable model of a non-autonomous deficit reminiscent of that seen in PD, and suggests that increased energy demand may contribute to the mechanism by which LRRK2-G2019S causes neurodegeneration. PMID:23396536

  2. Grape powder consumption affects the expression of neurodegeneration-related brain proteins in rats chronically fed a high-fructose-high-fat diet.

    Science.gov (United States)

    Liao, Hsiang; Chou, Liang-Mao; Chien, Yi-Wen; Wu, Chi-Hao; Chang, Jung-Su; Lin, Ching-I; Lin, Shyh-Hsiang

    2017-05-01

    Abnormal glucose metabolism in the brain is recognized to be associated with cognitive decline. Because grapes are rich in polyphenols that produce antioxidative and blood sugar-lowering effects, we investigated how grape consumption affects the expression and/or phosphorylation of neurodegeneration-related brain proteins in aged rats fed a high-fructose-high-fat (HFHF) diet. Wistar rats were maintained on the HFHF diet from the age of 8 weeks to 66 weeks, and then on an HFHF diet containing either 3% or 6% grape powder as an intervention for 12 weeks. Western blotting was performed to measure the expression/phosphorylation levels of several cortical and hippocampal proteins, including amyloid precursor protein (APP), tau, phosphatidylinositol-3-kinase (PI3K), extracellular signal-regulated kinase (ERK), receptor for advanced glycation end products (RAGEs), erythroid 2-related factor 2 (Nrf2) and brain-derived neurotrophic factor (BDNF). Inclusion of up to 6% grape powder in the diet markedly reduced RAGE expression and tau hyperphosphorylation, but upregulated the expression of Nrf2 and BDNF, as well as the phosphorylation of PI3K and ERK, in the brain tissues of aged rats fed the HFHF diet. Thus, grape powder consumption produced beneficial effects in HFHF-diet-fed rats, exhibiting the potential to ameliorate changes in neurodegeneration-related proteins in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Genetic pathways to Neurodegeneration

    Indian Academy of Sciences (India)

    Renu

    The extensive resource on ataxia has led to the development of a clinico-genetic ... Keywords: Cerebellar ataxias, SCAs, ARCAs, NGS, Gene network, iPSCs, .... Besides, mutations in different regions of the same gene result in different ..... integration with population data can also allow focussed testing/screening in specific.

  4. Neuroglia in neurodegeneration

    Czech Academy of Sciences Publication Activity Database

    Heneka, M. T.; Rodríguez Arellano, Jose Julio; Verkhratsky, Alexei

    2010-01-01

    Roč. 63, 1-2 (2010), s. 189-211 ISSN 0165-0173 R&D Projects: GA ČR GA309/09/1696; GA ČR GA305/08/1384 Institutional research plan: CEZ:AV0Z50390703 Keywords : Glia * Astrocyte * Microglia Subject RIV: FH - Neurology Impact factor: 8.842, year: 2010

  5. Bill project aiming at prohibiting the exploration and exploitation of unconventional hydrocarbons, and at abrogating exclusive search permits for liquid or gaseous hydrocarbon mines, and aiming at ensuring transparency in the issue of search permits and concessions

    International Nuclear Information System (INIS)

    2011-01-01

    As offshore drillings and the search for unconventional gas has faced a strong opposition by part of the French population, this bill project (presented mainly by the Socialist group) aims at prohibiting these practices in France, and notably at abrogating some exclusive search permits which have been recently awarded. The authors outline the main motivations of this bill project: these exploitation and mining techniques are very expensive; they have several negative impacts with respect to environment protection commitments like the Grenelle de l'Environnement and the Grenelle de la Mer; these techniques have also an impact on water resources, and generate pollution which impacts water quality as well as ecosystems and biodiversity; some chemical products used by these techniques are carcinogenic (as it already appeared in the USA and in Canada); and finally, the exploitation of unconventional hydrocarbons has a bad carbon assessment. This presentation if followed by the bill project text

  6. The mosaic of environment involvement in autoimmunity: the abrogation of viral latency by stress, a non-infectious environmental agent, is an intrinsic prerequisite prelude before viruses can rank as infectious environmental agents that trigger autoimmune diseases.

    Science.gov (United States)

    Temajo, Norbert O; Howard, Neville

    2014-06-01

    An autoimmune disease (AD), organ-specific or systemic, results from an aberrant response in which the protective immune system normally schooled to recognize and destroy invading infectious agents (viruses, etc.) instead fails to distinguish self-antigens and proceeds to attack and destroy the host's organs. There can be familial aggregation in which a single AD may occur in members of a family, or a single family may be afflicted with multiple ADs. Finally, sometimes multiple ADs co-occur in a single individual: the kaleidoscope of autoimmunity. Autoimmunity is a multifactorial process in which genetic, hormonal, immunological and environmental factors act in concert to materialize the mosaic of autoimmunity phenomenon. A genetically primed individual may yet not develop an AD: the contribution by an environmental factor (non-infectious or infectious) is essential for completion of the act. Of the non-infectious factors, stress plays a determinative step in autoimmunity in that it abrogates viral latency and thereby ordains the viruses to qualify as infectious environmental factors that trigger ADs. This is note-worthy as viruses rank first as the most important environmental triggers of ADs. Furthermore, all these viruses experience going through latency. Hence the hypothesis: "The abrogation of viral latency by stress, a non-infectious environmental agent, is an intrinsic prerequisite prelude before viruses can rank as infectious environmental agents that trigger autoimmune diseases". There is collaboration here between non-infectious- and infectious-agent to achieve the cause of autoimmunity. We say viral latency and stress have a covenant: continued perpetration of autoimmunity is dependent on the intervention by stress to reactivate latent infections. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  7. In vitro Repair of Oxidative DNA Damage by Human Nucleotide Excision Repair System: Possible Explanation for Neurodegeneration in Xeroderma Pigmentosum Patients

    Science.gov (United States)

    Reardon, Joyce T.; Bessho, Tadayoshi; Kung, Hsiang Chuan; Bolton, Philip H.; Sancar, Aziz

    1997-08-01

    Xeroderma pigmentosum (XP) patients fail to remove pyrimidine dimers caused by sunlight and, as a consequence, develop multiple cancers in areas exposed to light. The second most common sign, present in 20-30% of XP patients, is a set of neurological abnormalities caused by neuronal death in the central and peripheral nervous systems. Neural tissue is shielded from sunlight-induced DNA damage, so the cause of neurodegeneration in XP patients remains unexplained. In this study, we show that two major oxidative DNA lesions, 8-oxoguanine and thymine glycol, are excised from DNA in vitro by the same enzyme system responsible for removing pyrimidine dimers and other bulky DNA adducts. Our results suggest that XP neurological disease may be caused by defective repair of lesions that are produced in nerve cells by reactive oxygen species generated as by-products of an active oxidative metabolism.

  8. Lack of CCR5 modifies glial phenotypes and population of the nigral dopaminergic neurons, but not MPTP-induced dopaminergic neurodegeneration.

    Science.gov (United States)

    Choi, Dong-Young; Lee, Myung Koo; Hong, Jin Tae

    2013-01-01

    Constitutive expression of C-C chemokine receptor (CCR) 5 has been detected in astrocytes, microglia and neurons, but its physiological roles in the central nervous system are obscure. The bidirectional interactions between neuron and glial cells through CCR5 and its ligands were thought to be crucial for maintaining normal neuronal activities. No study has described function of CCR5 in the dopaminergic neurodegeneration in Parkinson's disease. In order to examine effects of CCR5 on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration, we employed CCR5 wild type (WT) and knockout (KO) mice. Immunostainings for tyrosine hydroxylase (TH) exhibited that CCR5 KO mice had lower number of TH-positive neurons even in the absence of MPTP. Difference in MPTP (15mg/kg×4 times, 2hr interval)-mediated loss of TH-positive neurons was subtle between CCR5 WT and KO mice, but there was larger dopamine depletion, behavioral impairments and microglial activation in CCR5 deficient mice. Intriguingly, CCR5 KO brains contained higher immunoreactivity for monoamine oxidase (MAO) B which was mainly localized within astrocytes. In agreement with upregulation of MAO B, concentration of MPP+ was higher in the substantia nigra and striatum of CCR5 KO mice after MPTP injection. We found remarkable activation of p38 MAPK in CCR5 deficient mice, which positively regulates MAO B expression. These results indicate that CCR5 deficiency modifies the nigrostriatal dopaminergic neuronal system and bidirectional interaction between neurons and glial cells via CCR5 might be important for dopaminergic neuronal survival. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. (-)-P7C3-S243 Protects a Rat Model of Alzheimer's Disease From Neuropsychiatric Deficits and Neurodegeneration Without Altering Amyloid Deposition or Reactive Glia.

    Science.gov (United States)

    Voorhees, Jaymie R; Remy, Matthew T; Cintrón-Pérez, Coral J; El Rassi, Eli; Khan, Michael Z; Dutca, Laura M; Yin, Terry C; McDaniel, Latisha N; Williams, Noelle S; Brat, Daniel J; Pieper, Andrew A

    2017-11-06

    In addition to cognitive deficits, Alzheimer's disease (AD) is associated with other neuropsychiatric symptoms, including severe depression. Indeed, depression often precedes cognitive deficits in patients with AD. Unfortunately, the field has seen only minimal therapeutic advances, underscoring the critical need for new treatments. P7C3 aminopropyl carbazoles promote neuronal survival by enhancing nicotinamide adenine dinucleotide flux in injured neurons. Neuroprotection with P7C3 compounds has been demonstrated in preclinical models of neurodegeneration by virtue of promoting neuronal survival independently of early disease-specific pathology, resulting in protection from cognitive deficits and depressive-like behavior. We hypothesize that P7C3 compounds might be uniquely applicable to patients with AD, given the comorbid presentation of depression and cognitive deficits. Aging male and female wild-type and TgF344-AD rats, a well-characterized preclinical AD model, were administered (-)-P7C3-S243 daily for 9 and 18 months, beginning at 6 months of age. Behavioral phenotypes related to cognition and depression were assessed at 15 and 24 months, and brain pathology and biochemistry were assessed at 24 months. (-)-P7C3-S243 safely protected aging male and female wild-type and TgF344-AD rats from cognitive deficits and depressive-like behavior. Depressive-like behavior occurred earlier than cognitive deficits in TgF344-AD rats, consistent with AD in many patients. Treatment with (-)-P7C3-S243 blocked neurodegeneration in TgF344-AD rats, without altering amyloid deposition or indicators of neuroinflammation. Neuronal cell death-specific treatment approaches, such as P7C3 compounds, may represent a new treatment approach for patients experiencing the combination of cognitive deficits and depression associated with AD. Published by Elsevier Inc.

  10. Rats with a missense mutation in Atm display neuroinflammation and neurodegeneration subsequent to accumulation of cytosolic DNA following unrepaired DNA damage.

    Science.gov (United States)

    Quek, Hazel; Luff, John; Cheung, KaGeen; Kozlov, Sergei; Gatei, Magtouf; Lee, C Soon; Bellingham, Mark C; Noakes, Peter G; Lim, Yi Chieh; Barnett, Nigel L; Dingwall, Steven; Wolvetang, Ernst; Mashimo, Tomoji; Roberts, Tara L; Lavin, Martin F

    2017-04-01

    Mutations in the ataxia-telangiectasia (A-T)-mutated ( ATM ) gene give rise to the human genetic disorder A-T, characterized by immunodeficiency, cancer predisposition, and neurodegeneration. Whereas a series of animal models recapitulate much of the A-T phenotype, they fail to present with ataxia or neurodegeneration. We describe here the generation of an Atm missense mutant [amino acid change of leucine (L) to proline (P) at position 2262 (L2262P)] rat by intracytoplasmic injection (ICSI) of mutant sperm into oocytes. Atm -mutant rats ( Atm L2262P/L2262P ) expressed low levels of ATM protein, suggesting a destabilizing effect of the mutation, and had a significantly reduced lifespan compared with Atm +/+ Whereas these rats did not show cerebellar atrophy, they succumbed to hind-limb paralysis (45%), and the remainder developed tumors. Closer examination revealed the presence of both dsDNA and ssDNA in the cytoplasm of cells in the hippocampus, cerebellum, and spinal cord of Atm L2262P/L2262P rats. Significantly increased levels of IFN-β and IL-1β in all 3 tissues were indicative of DNA damage induction of the type 1 IFN response. This was further supported by NF-κB activation, as evidenced by p65 phosphorylation (P65) and translocation to the nucleus in the spinal cord and parahippocampus. Other evidence of neuroinflammation in the brain and spinal cord was the loss of motor neurons and the presence of increased activation of microglia. These data provide support for a proinflammatory phenotype that is manifested in the Atm mutant rat as hind-limb paralysis. This mutant represents a useful model to investigate the importance of neuroinflammation in A-T. © Society for Leukocyte Biology.

  11. The effect of various morphine weaning regimens on the sequelae of opioid tolerance involving physical dependency, anxiety and hippocampus cell neurodegeneration in rats.

    Science.gov (United States)

    Motaghinejad, Majid; Karimian, Seyed Morteza; Motaghinejad, Ozra; Shabab, Behnaz; Asadighaleni, Majid; Fatima, Sulail

    2015-06-01

    Chronic consumption of morphine induces physical dependency, anxiety, and neurodegeneration. In this study, morphine on its own has been used for the management of morphine-induced dependency, oxidative stress, and apoptosis. Forty-eight male rats were randomly divided into six groups. Rats in groups 1-5 were made morphine dependent by an increasing manner of morphine for 7 days (15-45 mg/kg). For the next 14 days, morphine was administered using the following regimen: (i) once daily 45 mg/kg (positive controls), (ii) the same dose at additional intervals (6 h longer than the previous intervals each time), (iii) 45 mg/kg of morphine at irregular intervals like of 12, 24, 36 h, (iv) decreasing dose once daily (every time 2.5 mg/kg less than the former dosage). Group 5 received 45 mg/kg of morphine and 10 mg/kg of SOD mimetic agent (M40401) injection per day. Group 6 (negative control) received saline solution only. On day 22, all animals received naloxone (3 mg/kg) and their Total Withdrawal Index (TWI) and blood cortisol levels were measured. After drug treatment, hippocampus cells were isolated, and oxidative, antioxidative, and apoptotic factors were evaluated. Various regimens of morphine reduced TWI, cortisol levels, Bax activity, caspase-3, caspase-9, TNF-α, and IL-1β and lipid peroxidation. In all treatment groups, GSH level, superoxide dismutase, glutathione peroxidase, and Bcl-2 activity were significantly increased. Furthermore, SOD mimetic agent c diminished morphine effect on SOD activity. Thus, varying the dosage regimen of morphine can reduce the severity of morphine-induced dependency and neurodegeneration. © 2015 Société Française de Pharmacologie et de Thérapeutique.

  12. Interaction between subclinical doses of the Parkinson's disease associated gene, α-synuclein, and the pesticide, rotenone, precipitates motor dysfunction and nigrostriatal neurodegeneration in rats.

    Science.gov (United States)

    Naughton, Carol; O'Toole, Daniel; Kirik, Deniz; Dowd, Eilís

    2017-01-01

    In most patients, Parkinson's disease is thought to emerge after a lifetime of exposure to, and interaction between, various genetic and environmental risk factors. One of the key genetic factors linked to this condition is α-synuclein, and the α-synuclein protein is pathologically associated with idiopathic cases. However, α-synuclein pathology is also present in presymptomatic, clinically "normal" individuals suggesting that environmental factors, such as Parkinson's disease-linked agricultural pesticides, may be required to precipitate Parkinson's disease in these individuals. In this context, the aim of this study was to assess the behavioural and neuropathological impact of exposing rats with a subclinical load of α-synuclein to subclinical doses of the organic pesticide, rotenone. Rats were randomly assigned to two groups for intra-nigral infusion of AAV 2/5- GFP or AAV 2/5 -α-synuclein. Post viral motor function was assessed at 8, 10 and 12 weeks in the Corridor, Stepping and Whisker tests of lateralised motor function. At week 12, animals were performance-matched to receive a subsequent intra-striatal challenge of the organic pesticide rotenone (or its vehicle) to yield four final groups (Control, Rotenone, AAV 2/5 -α-synuclein and Combined). Behavioural testing resumed one week after rotenone surgery and continued for 5 weeks. We found that, when administered alone, neither intra-nigral AAV-α-synuclein nor intra-striatal rotenone caused sufficient nigrostriatal neurodegeneration to induce a significant motor impairment in their own right. However, when these were administered sequentially to the same rats, the interaction between the two Parkinsonian challenges significantly exacerbated nigrostriatal neurodegeneration which precipitated a pronounced impairment in motor function. These results indicate that exposing rats with a subclinical α-synuclein-induced pathology to the pesticide, rotenone, profoundly exacerbates their Parkinsonian

  13. Th17 cell-mediated neuroinflammation is involved in neurodegeneration of aβ1-42-induced Alzheimer's disease model rats.

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    Full Text Available Neuroinflammation, especially innate immunocyte-mediated neuroinflammation, has been reported to participate in pathogenesis of Alzheimer's disease (AD. However, the involvement of adaptive immune cells, such as CD4(+ T lymphocytes, in pathogenesis of AD is not well clarified. Herein, we focus on T helper 17 (Th17 cells, a subpopulation of CD4(+ T cells with high proinflammation, and show the implication of the cells in neurodegeneration of AD. Amyloid β1-42 (Aβ1-42 was bilaterally injected into hippocampus of rats to induce AD. On days 7 and 14 following the Aβ1-42 administration, escape latency of the rats in Morris water maze was increased, expression of amyloid precursor protein was upregulated, but expression of protein phosphatase 2A was downregulated in the hippocampus, and Nissl stain showed neuronal loss and gliosis in CA1 region. Infusion of FITC-linked albumin in blood circulation and combination with immunostaining of hippocampal sections for RORγ, a specific transcriptional factor of Th17 cells, demonstrated blood-brain barrier (BBB disruption and Th17 cells' infiltration into brain parenchyma of AD rats. Expression of Th17 proinflammatory cytokines, interleukin (IL-17 and IL-22, was increased in the hippocampus, and concentrations of the two cytokines were elevated in both the cerebrospinal fluid and the serum in AD occurrence and development. Compared with intact or saline-treated control rats, AD animals indicated an upregulated expression of Fas and FasL in the hippocampus. Further, the immunofluorescent histochemistry on AD hippocampal sections with NeuN, RORγ, Fas and FasL displayed that Fas was principally expressed by neurons and FasL was predominantly expressed by Th17 cells, and that neuronal apoptosis shown by TUNEL and NeuN double-labeled cells increased. These results suggest that Th17 cells, which were infiltrated into AD brain parenchyma, participate in neuroinflammation and neurodegeneration of AD by release of

  14. N-Acetyl Cysteine Protects against Methamphetamine-Induced Dopaminergic Neurodegeneration via Modulation of Redox Status and Autophagy in Dopaminergic Cells

    Directory of Open Access Journals (Sweden)

    Prashanth Chandramani Shivalingappa

    2012-01-01

    Full Text Available Methamphetamine- (MA- induced neurotoxicity is associated with mitochondrial dysfunction and enhanced oxidative stress. Our previous study demonstrated that MA induces autophagy in a dopaminergic neuronal cell model (N27 cells. The cellular mechanisms underlying MA-induced autophagy and apoptosis remain poorly characterized. In the present study we sought to investigate the importance of GSH redox status in MA-induced neurotoxicity using a thiol antioxidant, N-acetylcysteine (NAC. Morphological and biochemical analysis revealed that MA-induced autophagy in N27 dopaminergic cells was associated with pronounced depletion of GSH levels. Moreover, pretreatment with NAC reduced MA-induced GSH depletion and autophagy, while depletion of GSH using L-buthionine sulfoximine (L-BSO enhanced autophagy. Furthermore, treatment with NAC significantly attenuated MA-induced apoptotic cell death as well as oxidative stress markers, namely, 3-nitrotyrosine (3-NT and 4-hydroxynonenal (4-HNE. Together, these results suggest that NAC exhibits significant protective effects against MA-induced dopaminergic cell death, presumably via modulation of the GSH level and autophagy. Collectively, our data provide mechanistic insights into the role of cellular GSH redox status in MA-induced autophagy and apoptotic cell death, and additional studies are needed to determine the therapeutic effectiveness of cellular redox modifiers in attenuating dopaminergic neurodegeneration in vivo.

  15. The Alu neurodegeneration hypothesis: A primate-specific mechanism for neuronal transcription noise, mitochondrial dysfunction, and manifestation of neurodegenerative disease.

    Science.gov (United States)

    Larsen, Peter A; Lutz, Michael W; Hunnicutt, Kelsie E; Mihovilovic, Mirta; Saunders, Ann M; Yoder, Anne D; Roses, Allen D

    2017-07-01

    It is hypothesized that retrotransposons have played a fundamental role in primate evolution and that enhanced neurologic retrotransposon activity in humans may underlie the origin of higher cognitive function. As a potential consequence of this enhanced activity, it is likely that neurons are susceptible to deleterious retrotransposon pathways that can disrupt mitochondrial function. An example is observed in the TOMM40 gene, encoding a β-barrel protein critical for mitochondrial preprotein transport. Primate-specific Alu retrotransposons have repeatedly inserted into TOMM40 introns, and at least one variant associated with late-onset Alzheimer's disease originated from an Alu insertion event. We provide evidence of enriched Alu content in mitochondrial genes and postulate that Alus can disrupt mitochondrial populations in neurons, thereby setting the stage for progressive neurologic dysfunction. This Alu neurodegeneration hypothesis is compatible with decades of research and offers a plausible mechanism for the disruption of neuronal mitochondrial homeostasis, ultimately cascading into neurodegenerative disease. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Linking aβ42-induced hyperexcitability to neurodegeneration, learning and motor deficits, and a shorter lifespan in an Alzheimer's model.

    Directory of Open Access Journals (Sweden)

    Yong Ping

    2015-03-01

    Full Text Available Alzheimer's disease (AD is the most prevalent form of dementia in the elderly. β-amyloid (Aβ accumulation in the brain is thought to be a primary event leading to eventual cognitive and motor dysfunction in AD. Aβ has been shown to promote neuronal hyperactivity, which is consistent with enhanced seizure activity in mouse models and AD patients. Little, however, is known about whether, and how, increased excitability contributes to downstream pathologies of AD. Here, we show that overexpression of human Aβ42 in a Drosophila model indeed induces increased neuronal activity. We found that the underlying mechanism involves the selective degradation of the A-type K+ channel, Kv4. An age-dependent loss of Kv4 leads to an increased probability of AP firing. Interestingly, we find that loss of Kv4 alone results in learning and locomotion defects, as well as a shortened lifespan. To test whether the Aβ42-induced increase in neuronal excitability contributes to, or exacerbates, downstream pathologies, we transgenically over-expressed Kv4 to near wild-type levels in Aβ42-expressing animals. We show that restoration of Kv4 attenuated age-dependent learning and locomotor deficits, slowed the onset of neurodegeneration, and partially rescued premature death seen in Aβ42-expressing animals. We conclude that Aβ42-induced hyperactivity plays a critical role in the age-dependent cognitive and motor decline of this Aβ42-Drosophila model, and possibly in AD.

  17. Associations of Diabetic Retinopathy with Retinal Neurodegeneration on the Background of Diabetes Mellitus. Overview of Recent Medical Studies with an Assessment of the Impact on Healthcare systems.

    Science.gov (United States)

    Muc, Rafał; Saracen, Agnieszka; Grabska-Liberek, Iwona

    2018-01-01

    Diabetes Mellitus (DM) is one of the biggest healthcare and financial problems worldwide. The disease is strongly associated with microvascular and macrovascular complications, causing co-existing diseases like Diabetic Retinopathy, Diabetic Neuropathy and Diabetic Nephropathy. Annual healthcare expenditures for diabetes treatment and complications prevention cost 727 billion USD in year 2017. Diabetes Mellitus, Diabetic Retinopathy and Diabetic Retinal Neuropathy are closely related diseases - originating from incorrectly controlled glycemia, blood pressure and lipid levels in the course of increasing resistance of the body tissues to insulin. Irrespectively of thorough programs for Diabetes Mellitus prevention and treatment, Diabetic Retinopathy management requires targeted treatment strategies for both microvasculopathy and retinal neurodegeneration, to delay disease severity course and risk of blindness. The study and conclusions in this article are based on web-available data and officially published articles related to the diabetes mellitus and associated diseases - Diabetic Retinopathy and Diabetic Retinal Neuropathy. The articles have been reviewed and analyzed to assess mutual relations between the discussed diseases.

  18. Abrogation by human menopausal gonadotropin on testicular ...

    African Journals Online (AJOL)

    Cisplatin is one of the most effective chemotherapeutic agents used in the treatment of cancer cells including testicular cancer. Human Menopausal Gonadotropin (HMG) is a natural hormone necessary for human reproduction. This hormone is a leading modality of treatment for infertility as it contains equal amount of ...

  19. Lead induced dyslipidemia: The comparative effects of ascorbate ...

    African Journals Online (AJOL)

    R.N. UGBAJA

    2013-04-10

    Apr 10, 2013 ... Key words: Ascorbate, chelating agents, dyslipidemia, lead exposure, plumbism. .... elements like iron, zinc, calcium and a host of other divalent elements in ..... cholesterol synthesis and transport pathways may be adversely ...

  20. Lead induced dyslipidemia: The comparative effects of ascorbate ...

    African Journals Online (AJOL)

    R.N. UGBAJA

    2013-04-10

    Apr 10, 2013 ... metabolism in lead exposed rats, 35 male Wistar rats were used. They were grouped ... The blood lipid profiles were determined spectrophotometrically. Lead exposure ... Other significant sources include cosmetic products, food-can .... duplicates using a Thermo Scientific S Series Atomic Absorption.

  1. Lead induced dyslipidemia: The comparative effects of ascorbate ...

    African Journals Online (AJOL)

    The blood lipid profiles were determined spectrophotometrically. Lead exposure resulted in significant dyslipidemia (p < 0.05), characterized by 50% hypercholesterolemia and hypertriglyceridemia and 132% hyperphospholipidemia (plasma) while in the red blood cells, hypocholesterolemia and hypophospholipidemia ...

  2. Amelioration of lead-induced hepatotoxicity by Allium sativum ...

    African Journals Online (AJOL)

    2010-01-07

    Jan 7, 2010 ... The efficacy of garlic (Allium sativum) to reduce hepatotoxicity induced by ..... fatty acids having double bonds, largely present in the phospholipids of .... disulfide, and diallyl disulfide, possess antioxidant prop- erties and can ...

  3. Zika (PRVABC59 Infection Is Associated with T cell Infiltration and Neurodegeneration in CNS of Immunocompetent Neonatal C57Bl/6 Mice.

    Directory of Open Access Journals (Sweden)

    Mohanraj Manangeeswaran

    2016-11-01

    Full Text Available The recent spread of Zika virus (ZIKV and its association with increased rates of Guillain Barre and other neurological disorders as well as congenital defects that include microcephaly has created an urgent need to develop animal models to examine the pathogenesis of the disease and explore the efficacy of potential therapeutics and vaccines. Recently developed infection models for ZIKV utilize mice defective in interferon responses. In this study we establish and characterize a new model of peripheral ZIKV infection using immunocompetent neonatal C57BL/6 mice and compare its clinical progression, virus distribution, immune response, and neuropathology with that of C57BL/6-IFNAR KO mice. We show that while ZIKV infected IFNAR KO mice develop bilateral hind limb paralysis and die 5-6 days post-infection (dpi, immunocompetent B6 WT mice develop signs of neurological disease including unsteady gait, kinetic tremors, severe ataxia and seizures by 13 dpi that subside gradually over 2 weeks. Immunohistochemistry show viral antigen predominantly in cerebellum at the peak of the disease in both models. However, whereas IFNAR KO mice showed infiltration by neutrophils and macrophages and higher expression of IL-1, IL-6 and Cox2, B6 WT mice show a cellular infiltration in the CNS composed predominantly of T cells, particularly CD8+ T cells, and increased mRNA expression levels of IFNg, GzmB and Prf1 at peak of disease. Lastly, the CNS of B6 WT mice shows evidence of neurodegeneration predominantly in the cerebellum that are less prominent in mice lacking the IFN response possibly due to the difference in cellular infiltrates and rapid progression of the disease in that model. The development of the B6 WT model of ZIKV infection will provide insight into the immunopathology of the virus and facilitate assessments of possible therapeutics and vaccines.

  4. Cerebrospinal fluid analysis for HIV replication and biomarkers of immune activation and neurodegeneration in long-term atazanavir/ritonavir monotherapy treated patients.

    Science.gov (United States)

    Ferretti, Francesca; Bigoloni, Alba; Passeri, Laura; Galli, Laura; Longo, Valeria; Gerevini, Simonetta; Spagnuolo, Vincenzo; Gisslen, Magnus; Zetterberg, Henrik; Fuchs, Dietmar; Cattaneo, Dario; Caramatti, Giada; Lazzarin, Adriano; Cinque, Paola; Castagna, Antonella

    2016-07-01

    Cerebrospinal fluid (CSF) viral escape is a concern in ritonavir-boosted protease inhibitors monotherapy. The aim was to assess HIV-RNA, biomarkers of immune activation and neurodegeneration, and atazanavir concentrations in CSF of patients on successful long-term atazanavir/ritonavir (ATV/r) monotherapy. This is a substudy of the multicentric, randomized, open-label, noninferiority trial monotherapy once a day with atazanavir/ritonavir (NCT01511809), comparing the ongoing ATV/r along with 2 nucleoside retrotranscriptase inhibitors (NRTIs) regimen to a simplified ATV/r monotherapy. Patients with plasma HIV-RNA < 50 copies/mL after at least 96 study weeks were eligible.We assessed HIV-RNA, soluble (s)CD14, sCD163, CCL2, CXCL10, interleukin-6, and YKL40 by enzyme-linked immunosorbent assay; neopterin, tryptophan, kynurenine, and neurofilament by immunoassays; and ATV concentrations by liquid chromatography-mass spectrometry in paired plasma and CSF samples. Variables were compared with Wilcoxon rank-sum or Fisher exact test, as appropriate. HIV-RNA was detected in the CSF of 1/11 patients on ATV/r monotherapy (114 copies/mL), without neurological symptoms, who was successfully reintensified with his previous 2NRTIs, and in none of the 12 patients on ATV/r + 2NRTIs. CSF biomarkers and ATV concentrations did not differ between the 2 arms. CSF escape was uncommon in patients on long-term ATV/r monotherapy and was controlled with reintensification.

  5. α-Synuclein-induced dopaminergic neurodegeneration in a rat model of Parkinson's disease occurs independent of ATP13A2 (PARK9).

    Science.gov (United States)

    Daniel, Guillaume; Musso, Alessandra; Tsika, Elpida; Fiser, Aris; Glauser, Liliane; Pletnikova, Olga; Schneider, Bernard L; Moore, Darren J

    2015-01-01

    Mutations in the ATP13A2 (PARK9) gene cause early-onset, autosomal recessive Parkinson's disease (PD) and Kufor-Rakeb syndrome. ATP13A2 mRNA is spliced into three distinct isoforms encoding a P5-type ATPase involved in regulating heavy metal transport across vesicular membranes. Here, we demonstrate that three ATP13A2 mRNA isoforms are expressed in the normal human brain and are modestly increased in the cingulate cortex of PD cases. ATP13A2 can mediate protection toward a number of stressors in mammalian cells and can protect against α-synuclein-induced toxicity in cellular and invertebrate models of PD. Using a primary cortical neuronal model combined with lentiviral-mediated gene transfer, we demonstrate that human ATP13A2 isoforms 1 and 2 display selective neuroprotective effects toward toxicity induced by manganese and hydrogen peroxide exposure through an ATPase-independent mechanism. The familial PD mutations, F182L and G504R, abolish the neuroprotective effects of ATP13A2 consistent with a loss-of-function mechanism. We further demonstrate that the AAV-mediated overexpression of human ATP13A2 is not sufficient to attenuate dopaminergic neurodegeneration, neuropathology, and striatal dopamine and motoric deficits induced by human α-synuclein expression in a rat model of PD. Intriguingly, the delivery of an ATPase-deficient form of ATP13A2 (D513N) to the substantia nigra is sufficient to induce dopaminergic neuronal degeneration and motor deficits in rats, potentially suggesting a dominant-negative mechanism of action. Collectively, our data demonstrate a distinct lack of ATP13A2-mediated protection against α-synuclein-induced neurotoxicity in the rat nigrostriatal dopaminergic pathway, and limited neuroprotective capacity overall, and raise doubts about the potential of ATP13A2 as a therapeutic target for PD. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. CDK5-mediated phosphorylation of p19INK4d avoids DNA damage-induced neurodegeneration in mouse hippocampus and prevents loss of cognitive functions.

    Science.gov (United States)

    Ogara, María Florencia; Belluscio, Laura M; de la Fuente, Verónica; Berardino, Bruno G; Sonzogni, Silvina V; Byk, Laura; Marazita, Mariela; Cánepa, Eduardo T

    2014-07-01

    DNA damage, which perturbs genomic stability, has been linked to cognitive decline in the aging human brain, and mutations in DNA repair genes have neurological implications. Several studies have suggested that DNA damage is also increased in brain disorders such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. However, the precise mechanisms connecting DNA damage with neurodegeneration remain poorly understood. CDK5, a critical enzyme in the development of the central nervous system, phosphorylates a number of synaptic proteins and regulates dendritic spine morphogenesis, synaptic plasticity and learning. In addition to these physiological roles, CDK5 has been involved in the neuronal death initiated by DNA damage. We hypothesized that p19INK4d, a member of the cell cycle inhibitor family INK4, is involved in a neuroprotective mechanism activated in response to DNA damage. We found that in response to genotoxic injury or increased levels of intracellular calcium, p19INK4d is transcriptionally induced and phosphorylated by CDK5 which provides it with greater stability in postmitotic neurons. p19INK4d expression improves DNA repair, decreases apoptosis and increases neuronal survival under conditions of genotoxic stress. Our in vivo experiments showed that decreased levels of p19INK4d rendered hippocampal neurons more sensitive to genotoxic insult resulting in the loss of cognitive abilities that rely on the integrity of this brain structure. We propose a feedback mechanism by which the neurotoxic effects of CDK5-p25 activated by genotoxic stress or abnormal intracellular calcium levels are counteracted by the induction and stabilization of p19INK4d protein reducing the adverse consequences on brain functions. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Gene expression profiling for human iPS-derived motor neurons from sporadic ALS patients reveals a strong association between mitochondrial functions and neurodegeneration

    Science.gov (United States)

    Alves, Chrystian J.; Dariolli, Rafael; Jorge, Frederico M.; Monteiro, Matheus R.; Maximino, Jessica R.; Martins, Roberto S.; Strauss, Bryan E.; Krieger, José E.; Callegaro, Dagoberto; Chadi, Gerson

    2015-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that leads to widespread motor neuron death, general palsy and respiratory failure. The most prevalent sporadic ALS form is not genetically inherited. Attempts to translate therapeutic strategies have failed because the described mechanisms of disease are based on animal models carrying specific gene mutations and thus do not address sporadic ALS. In order to achieve a better approach to study the human disease, human induced pluripotent stem cell (hiPSC)-differentiated motor neurons were obtained from motor nerve fibroblasts of sporadic ALS and non-ALS subjects using the STEMCCA Cre-Excisable Constitutive Polycistronic Lentivirus system and submitted to microarray analyses using a whole human genome platform. DAVID analyses of differentially expressed genes identified molecular function and biological process-related genes through Gene Ontology. REVIGO highlighted the related functions mRNA and DNA binding, GTP binding, transcription (co)-repressor activity, lipoprotein receptor binding, synapse organization, intracellular transport, mitotic cell cycle and cell death. KEGG showed pathways associated with Parkinson's disease and oxidative phosphorylation, highlighting iron homeostasis, neurotrophic functions, endosomal trafficking and ERK signaling. The analysis of most dysregulated genes and those representative of the majority of categorized genes indicates a strong association between mitochondrial function and cellular processes possibly related to motor neuron degeneration. In conclusion, iPSC-derived motor neurons from motor nerve fibroblasts of sporadic ALS patients may recapitulate key mechanisms of neurodegeneration and may offer an opportunity for translational investigation of sporadic ALS. Large gene profiling of differentiated motor neurons from sporadic ALS patients highlights mitochondrial participation in the establishment of autonomous mechanisms associated with sporadic ALS

  8. In the carotid body, galanin is a signal for neurogenesis in young, and for neurodegeneration in the old and in drug-addicted subjects

    Science.gov (United States)

    Mazzatenta, Andrea; Marconi, Guya D.; Zara, Susi; Cataldi, Amelia; Porzionato, Andrea; Di Giulio, Camillo

    2014-01-01

    The carotid body is a highly specialized chemoreceptive structure for the detection of and reaction to hypoxia, through induction of an increase in hypoxia inducible factor. As tissue hypoxia increases with aging and can have dramatic effects in respiratory depression induced by drug addiction, we investigated the carotid body in young and old healthy subjects in comparison with drug-addicted subjects, including the expression of the neurotransmitter galanin. Galanin expression was recently reported for neuronal-like cells of the human carotid body, and it is implicated in several functions in neurons. In particular, this includes the regulation of differentiation of neural stem cells, and participation in the development and plasticity of the nervous system. Using immunohistochemistry detection, we demonstrate that galanin expression in the human carotid body in healthy older subjects and drug-addicted subjects is significantly reduced in comparison with healthy young subjects. This demonstrates not only the effects of normal aging and senescence, but also in the drug-addicted subjects, this appears to be due to a disorganization of the chemo-sensory region. With both aging and drug addiction, this results in a physiological reduction in neuronal-like cells, coupled with interlobular and intralobular increases in connective tissue fibers. Consequently, in both aging and drug addiction, this reduction of neuronal-like cells and the regeneration suggest that the carotid body is losing its sensory capabilities, with the transmission of chemoreceptive signals dramatically and vitally reduced. The level of galanin expression would thus provide a signal for neurogenesis in young subjects, and for neurodegeneration in older and drug-addicted subjects. PMID:25400591

  9. Bu-Shen-Ning-Xin decoction: inhibition of osteoclastogenesis by abrogation of the RANKL-induced NFATc1 and NF-κB signaling pathways via selective estrogen receptor α

    Directory of Open Access Journals (Sweden)

    Wang L

    2015-07-01

    in osteoclast precursor cells; the inhibitory effect was abolished by methyl-piperidino-pyrazole but not the estrogen receptor β antagonist or androgen receptor antagonist.Conclusion: These results collectively suggest that administration of BSNXD presents inhibitory effects on osteoclast differentiation by abrogating the RANKL-induced nuclear factor of activated T-cells, cytoplasmic 1 and NF-κB signaling pathways downstream of estrogen receptor α, thereby contributing to the inhibitory effect on bone resorption.Keywords: herbal formula, osteoclastogenesis, estrogen receptor α, NF-κB, NFATc1

  10. Visualizing Hyperactivation in Neurodegeneration Based on Prefrontal Oxygenation: A Comparative Study of Mild Alzheimer's Disease, Mild Cognitive Impairment, and Healthy Controls

    Directory of Open Access Journals (Sweden)

    Kah Hui Yap

    2017-09-01

    hypoactivation in mild AD could reflect an inability to compensate. Future studies will investigate the fNIRS parameters with a larger sample size, and their validity as prognostic biomarkers of neurodegeneration.

  11. Mitophagy in neurodegeneration and aging

    DEFF Research Database (Denmark)

    Fivenson, Elayne M; Lautrup, Sofie; Sun, Nuo

    2017-01-01

    Mitochondrial dysfunction contributes to normal aging and a wide spectrum of age-related diseases, including neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. It is important to maintain a healthy mitochondrial population which is tightly regulated by proteolysis...... a sophisticated and integrated cellular network that regulates the degradation of mitochondria. Strategies directed at maintaining a healthy mitophagy level in aged individuals might have beneficial effects. In this review, we provide an updated mechanistic overview of mitophagy pathways and discuss the role...

  12. Neurodegeneration and Mirror Image Agnosia

    Science.gov (United States)

    Chandra, Sadanandavalli Retnaswami; Issac, Thomas Gregor

    2014-01-01

    Background: Normal Percept with abnormal meaning (Agnosias) has been described from nineteenth century onwards. Later literature became abundant with information on the spectrum of Prosopagnosias. However, selective difficulty in identifying reflected self images with relatively better cognitive functions leads to problems in differentiating it from non-organic psychosis. Aim: In the present study, we investigated patients with dementia who showed difficulty in identifying reflected self images while they were being tested for problems in gnosis with reference to identification of reflected objects, animals, relatives, and themselves and correlate with neuropsychological and radiological parameters. Patients and Methods: Five such patients were identified and tested with a 45 cm × 45 cm mirror kept at 30-cm distance straight ahead of them. Results: Mirror image agnosia is seen in patients with moderate stage posterior dementias who showed neuropsychological and radiological evidence of right parietal dysfunction. Conclusion: Interpretation of reflected self images perception in real time probably involves distinct data-linking circuits in the right parietal lobe, which may get disrupted early in the course of the disease. PMID:25317393

  13. Nutrition, brain aging, and neurodegeneration

    Science.gov (United States)

    The onset of age-related neurodegenerative diseases superimposed on a declining nervous system could enhance the motor and cognitive behavioral deficits that normally occur in senescence. It is likely that, in cases of severe deficits in memory or motor function, hospitalization and/or custodial car...

  14. Neurodegeneration with Brain Iron Accumulation

    Science.gov (United States)

    ... or occupational therapy, exercise physiology, and/or speech pathology. Many medications are available to treat the primary symptoms of dystonia and spasticity, including oral medications, intrathecal baclofen pump (in which a small ...

  15. An improved route to 19-substituted geldanamycins as novel Hsp90 inhibitors ? potential therapeutics in cancer and neurodegeneration? ?Electronic supplementary information (ESI) available. See DOI: 10.1039/c3cc43457e Click here for additional data file. Click here for additional data file.

    OpenAIRE

    Kitson, Russell R. A.; Moody, Christopher J.

    2013-01-01

    19-Substituted geldanamycin derivatives are efficient Hsp90 inhibitors, without the toxicity associated with the other benzoquinone ansamycins, thus giving them potential for use as molecular therapeutics in cancer and neurodegeneration. Here a new method of synthesising these important compounds is reported, eliminating the need for toxic metals and metalloids.

  16. Age-specific and sex-specific prevalence of cerebral β-amyloidosis, tauopathy, and neurodegeneration in cognitively unimpaired individuals aged 50-95 years: a cross-sectional study.

    Science.gov (United States)

    Jack, Clifford R; Wiste, Heather J; Weigand, Stephen D; Therneau, Terry M; Knopman, David S; Lowe, Val; Vemuri, Prashanthi; Mielke, Michelle M; Roberts, Rosebud O; Machulda, Mary M; Senjem, Matthew L; Gunter, Jeffrey L; Rocca, Walter A; Petersen, Ronald C

    2017-06-01

    A new classification for biomarkers in Alzheimer's disease and cognitive ageing research is based on grouping the markers into three categories: amyloid deposition (A), tauopathy (T), and neurodegeneration or neuronal injury (N). Dichotomising these biomarkers as normal or abnormal results in eight possible profiles. We determined the clinical characteristics and prevalence of each ATN profile in cognitively unimpaired individuals aged 50 years and older. All participants were in the Mayo Clinic Study of Aging, a population-based study that uses a medical records linkage system to enumerate all individuals aged 50-89 years in Olmsted County, MN, USA. Potential participants are randomly selected, stratified by age and sex, and invited to participate in cognitive assessments; individuals without medical contraindications are invited to participate in brain imaging studies. Participants who were judged clinically as having no cognitive impairment and underwent multimodality imaging between Oct 11, 2006, and Oct 5, 2016, were included in the current study. Participants were classified as having normal (A-) or abnormal (A+) amyloid using amyloid PET, normal (T-) or abnormal (T+) tau using tau PET, and normal (N-) or abnormal (N+) neurodegeneration or neuronal injury using cortical thickness assessed by MRI. We used the cutoff points of standard uptake value ratio (SUVR) 1·42 (centiloid 19) for amyloid PET, 1·23 SUVR for tau PET, and 2·67 mm for MRI cortical thickness. Age-specific and sex-specific prevalences of the eight groups were determined using multinomial models combining data from 435 individuals with amyloid PET, tau PET, and MRI assessments, and 1113 individuals who underwent amyloid PET and MRI, but not tau PET imaging. The numbers of participants in each profile group were 165 A-T-N-, 35 A-T+N-, 63 A-T-N+, 19 A-T+N+, 44 A+T-N-, 25 A+T+N-, 35 A+T-N+, and 49 A+T+N+. Age differed by ATN group (pgroup (p=0·04), with carriers roughly twice as frequent in each

  17. Andrographolide suppresses preadipocytes proliferation through glutathione antioxidant systems abrogation.

    Science.gov (United States)

    Chen, Wei; Su, Hongming; Feng, Lina; Zheng, Xiaodong

    2016-07-01

    Oxidative stress is considered to play a profound role in lipid storage and whole-body energy homeostasis. Inhibition of preadipocytes proliferation by natural products is one of the strategies to prevent obesity. Andrographolide, a small molecule, has been reported to possess versatile bioactivities. However, molecular mechanism underlying the potential effect of andrographolide on preadipocytes proliferation remains obscure. In the present study, 3T3-L1 preadipocytes were employed to determine whether andrographolide could affect the proliferation of preadipocytes. Our results demonstrated andrographolide suppressed 3T3-L1 preadipocytes proliferation. The casual relationship analysis indicated that andrographolide (10 and 20μg/ml) appeared to exert the proliferation inhibitory effect through suppression of glutathione peroxidase 1 (GPX1) activity and depleting GSH by promoting its efflux in 3T3-L1 preadipocytes, which subsequently resulted in 2.06-2.41 fold increase in ROS accumulation. Excessive ROS eruption could account for oxidative damage to mitochondrial membranes as well as ultimately inhibition of cell proliferation. Taken together, our study reveals that suppression of GPX1 and GSH depletion by andrographolide seems to play a critical role in the inhibition of 3T3-L1 preadipocytes proliferation, which might have implication for obesity prevention and treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Sirtinol abrogates late phase of cardiac ischemia preconditioning in rats.

    Science.gov (United States)

    Safari, Fereshteh; Shekarforoosh, Shahnaz; Hashemi, Tahmineh; Namvar Aghdash, Simin; Fekri, Asefeh; Safari, Fatemeh

    2017-07-01

    The aim of this study was to investigate the effect of sirtinol, as an inhibitor of sirtuin NAD-dependent histone deacetylases, on myocardial ischemia reperfusion injury following early and late ischemia preconditioning (IPC). Rats underwent sustained ischemia and reperfusion (IR) alone or proceeded by early or late IPC. Sirtinol (S) was administered before IPC. Arrhythmias were evaluated based on the Lambeth model. Infarct size (IS) was measured using triphenyltetrazolium chloride staining. The transcription level of antioxidant-coding genes was assessed by real-time PCR. In early and late IPC groups, IS and the number of arrhythmia were significantly decreased (P < 0.05 and P < 0.01 vs IR, respectively). In S + early IPC, incidences of arrhythmia and IS were not different compared with the early IPC group. However, in S + late IPC the IS was different from the late IPC group (P < 0.05). In late IPC but not early IPC, transcription levels of catalase (P < 0.01) and Mn-SOD (P < 0.05) increased, although this upregulation was not significant in the S + late IPC group. Our results are consistent with the notion that different mechanisms are responsible for early and late IPC. In addition, sirtuin NAD-dependent histone deacetylases may be implicated in late IPC-induced cardioprotection.

  19. Making Aggressive Prostate Cancer Quiescent by Abrogating Cholesterol Esterification

    Science.gov (United States)

    2017-10-01

    presentations: 10 09-09-2016, “ Lipid metabolism: from single cell biology to in vivo diagnosis”, Big Ten Cancer Research Consortium Summit, Indianapolis...PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for Public...MONITOR’S ACRONYM(S) U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12

  20. Nutraceuticals against Neurodegeneration: A Mechanistic Insight.

    Science.gov (United States)

    Dadhania, Vivekkumar P; Trivedi, Priyanka P; Vikram, Ajit; Tripathi, Durga Nand

    2016-01-01

    The mechanisms underlying neurodegenerative disorders are complex and multifactorial; however, accumulating evidences suggest few common shared pathways. These common pathways include mitochondrial dysfunction, intracellular Ca2+ overload, oxidative stress and inflammation. Often multiple pathways co-exist, and therefore limit the benefits of therapeutic interventions. Nutraceuticals have recently gained importance owing to their multifaceted effects. These food-based approaches are believed to target multiple pathways in a slow but more physiological manner without causing severe adverse effects. Available information strongly supports the notion that apart from preventing the onset of neuronal damage, nutraceuticals can potentially attenuate the continued progression of neuronal destruction. In this article, we i) review the common pathways involved in the pathogenesis of the toxicants-induced neurotoxicity and neurodegenerative disorders with special emphasis on Alzheimer`s disease (AD), Parkinson`s disease (PD), Huntington`s disease (HD), Multiple sclerosis (MS) and Amyotrophic lateral sclerosis (ALS), and ii) summarize current research advancements on the effects of nutraceuticals against these detrimental pathways.

  1. The spectrum of neurodegeneration in children

    International Nuclear Information System (INIS)

    Sultan, T.; Qureshi, A.A.; Rehman, U.M.; Malik, M.; Khan, N.

    2006-01-01

    To find out the spectrum of diagnosis, clinical presentation and role of neuroimaging in neurodegenerative disorders of childhood. A total of 1273 patients were admitted in the Neurology Department in the said period. Out of them, 66 children fulfilled the inclusion criteria. History, clinical examination and relevant investigations were carried out and proformas were filled. Data was analyzed for descriptive statistics. In a total sample of 66, the male to female ratio was 1.4:1. Age range was one to twelve years. Metachromatic leukodystrophy was the predominant type seen in 14 (21%), followed by 11 cases of adrenoleukodystrophy (16%) and 8 patients with SSPE (12%). Six children (9.8%) had Wilson's disease. Five cases (7.5%) were diagnosed as Friedrich ataxia, 4 cases (4%) as lipidosis, 3 case as Gaucher's disease (4.5%), and two cases (3%) each as Alexander disease, and Hellervorden-spatz disease; and one case each as multiple sclerosis and ataxia telangiectasia. In 6 cases, final diagnosis could not be made. MRI and CT scan of brain were done in 71% and 41% patients only. Furdos copy (in 65%), CSF examination in 59% and EEG in 56% were main non-imaging investigations utilized for diagnosis. (author)

  2. Diabetes and Neurodegeneration in Wolfram Syndrome

    Science.gov (United States)

    Rohayem, Julia; Ehlers, Christian; Wiedemann, Bärbel; Holl, Reinhard; Oexle, Konrad; Kordonouri, Olga; Salzano, Giuseppina; Meissner, Thomas; Burger, Walter; Schober, Edith; Huebner, Angela; Lee-Kirsch, Min Ae

    2011-01-01

    OBJECTIVE To describe the diabetes phenotype in Wolfram syndrome compared with type 1 diabetes, to investigate the effect of glycemic control on the neurodegenerative process, and to assess the genotype-phenotype correlation. RESEARCH DESIGN AND METHODS The clinical data of 50 patients with Wolfram syndrome-related diabetes (WSD) were reviewed and compared with the data of 24,164 patients with type 1 diabetes. Patients with a mean HbA1c during childhood and adolescence of ≤7.5 and >7.5% were compared with respect to the occurrence of additional Wolfram syndrome symptoms. The wolframin (WFS1) gene was screened for mutations in 39 patients. WFS1 genotypes were examined for correlation with age at onset of diabetes. RESULTS WSD was diagnosed earlier than type 1 diabetes (5.4 ± 3.8 vs. 7.9 ± 4.2 years; P diabetes (NS). Severe hypoglycemia occurred in 37 vs. 7.9% (P 7.5% (P = 0.031). Thirteen novel WSF1 mutations were identified. Predicted functional consequence of WFS1 mutations correlated with age at WSD onset (P = 0.028). CONCLUSIONS Endoplasmic reticulum stress–mediated decline of β-cells in WSD occurs earlier in life than autoimmune-mediated β-cell destruction in type 1 diabetes. This study establishes a role for WFS1 in determining the age at onset of diabetes in Wolfram syndrome and identifies glucose toxicity as an accelerating feature in the progression of disease. PMID:21602428

  3. Stress-Induced Neurodegeneration: Mechanisms and Interventions

    National Research Council Canada - National Science Library

    Meyerhoff, James

    2000-01-01

    .... chronic stress in several species, including mouse, rat, tree shrew and monkey, have been reported to develop alterations in hippocampal morphology, including apical dendritic atrophy, depletion...

  4. Molecular mechanisms of HIV-1 associated neurodegeneration

    Indian Academy of Sciences (India)

    Since identification of the human immunodeficiency virus-1 (HIV-1), numerous studies suggest a link between neurological impairments, in particular dementia, with acquired immunodeficiency syndrome (AIDS) with alarming occurrence worldwide. Approximately, 60% of HIV-infected people show some form of neurological ...

  5. Molecular bases of methamphetamine-induced neurodegeneration.

    Science.gov (United States)

    Cadet, Jean Lud; Krasnova, Irina N

    2009-01-01

    Methamphetamine (METH) is a highly addictive psychostimulant drug, whose abuse has reached epidemic proportions worldwide. The addiction to METH is a major public concern because its chronic abuse is associated with serious health complications including deficits in attention, memory, and executive functions in humans. These neuropsychiatric complications might, in part, be related to drug-induced neurotoxic effects, which include damage to dopaminergic and serotonergic terminals, neuronal apoptosis, as well as activated astroglial and microglial cells in the brain. Thus, the purpose of the present paper is to review cellular and molecular mechanisms that might be responsible for METH neurotoxicity. These include oxidative stress, activation of transcription factors, DNA damage, excitotoxicity, blood-brain barrier breakdown, microglial activation, and various apoptotic pathways. Several approaches that allow protection against METH-induced neurotoxic effects are also discussed. Better understanding of the cellular and molecular mechanisms involved in METH toxicity should help to generate modern therapeutic approaches to prevent or attenuate the long-term consequences of psychostimulant use disorders in humans.

  6. Neuronal Sodium Channels in Neurodegeneration and Neuroprotection

    Science.gov (United States)

    2002-06-01

    12 A ppendices ...seizures (i.e., phenytoin and epileptic seizures have indicated an acute rise in glucose carbamezapine) but to date the prophylactic use of anticon...rats given acute subcutaneous injections using high-resolution 10-electrode topographic mapping in of RS100642 up to 600 mg/kg also provided no evidence

  7. Genetic pathways to Neurodegeneration Neurodegenerative diseases

    Indian Academy of Sciences (India)

    SN Suresh

    much attention as it involves immediate turnover of proteins and, thus, affects synaptic transmission. Mutations in ...... disease phenotype such as impaired motor coordination, cognitive deficit, axonal swelling with ...... hyperactivity? Neurology.

  8. Lipid Neuroprotectants and Traumatic Glaucomatous Neurodegeneration

    Science.gov (United States)

    2016-05-01

    not in individuals suffering from glaucoma (endogenous lipids ). The proposed research is to develop several such lipids as potential glaucoma...The proposed research will further assess the efficacy of the new lipids to lower IOP using mouse and monkeys that can develop glaucoma naturally or...of seminars and posters. Two high school students during summer (as part of their HHMI research program) learned hands-on about lipid analyses. A

  9. Genetic pathways to Neurodegeneration Models and mechanisms ...

    Indian Academy of Sciences (India)

    Paige Rudich

    Models and mechanisms of repeat expansion disorders: a worm's eye view ..... retardation 1 gene FMR1 gives rise to a spectrum of neurological disorders (Saul and Tarleton ... autism. Shorter repeat expansion lengths from 55-200 cause the.

  10. Stress-Induced Neurodegeneration: Mechanisms and Interventions

    National Research Council Canada - National Science Library

    Meyerhoff, James

    2000-01-01

    ...) memory function has been localized to the hippocampus. Humans exposed to extreme stress for sustained periods have suffered deterioration of memory and inability to concentrate, as well as CNS atrophy...

  11. Reprogramming neurodegeneration in the big data era.

    Science.gov (United States)

    Zhou, Lujia; Verstreken, Patrik

    2018-02-01

    Recent genome-wide association studies (GWAS) have identified numerous genetic risk variants for late-onset Alzheimer's disease (AD) and Parkinson's disease (PD). However, deciphering the functional consequences of GWAS data is challenging due to a lack of reliable model systems to study the genetic variants that are often of low penetrance and non-coding identities. Pluripotent stem cell (PSC) technologies offer unprecedented opportunities for molecular phenotyping of GWAS variants in human neurons and microglia. Moreover, rapid technological advances in whole-genome RNA-sequencing and epigenome mapping fuel comprehensive and unbiased investigations of molecular alterations in PSC-derived disease models. Here, we review and discuss how integrated studies that utilize PSC technologies and genome-wide approaches may bring new mechanistic insight into the pathogenesis of AD and PD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Molecular mechanisms of HIV-1 associated neurodegeneration

    Indian Academy of Sciences (India)

    Unknown

    progressive multiple symptoms of motor, cognitive dys- function and behavioural ..... using different types of neurons such as rodent cortical, hippocampal and ..... in the neocortex of rat via a mechanism involving CXCR4 chemokine receptor ...

  13. Pacing Lead-Induced Granuloma in the Atrium: A Foreign Body Reaction to Polyurethane

    Directory of Open Access Journals (Sweden)

    Shinagawa Yoko

    2013-01-01

    Full Text Available We described a case of an 82-year-old male who presented with a granuloma entrapping the polyurethane-coated pacing lead at the site of contact on the atrium. He had been paced for 8 years without symptoms or signs suggestive of an allergic reaction to the pacemaker system and died from thrombosis of the superior mesenteric artery and heart failure. A histological examination of the nodule showed an incidental granuloma with multinucleated giant cells. No granuloma was found in the heart or the lung.

  14. MicroRNA-target gene responses to lead-induced stress in cotton (Gossypium hirsutum L.).

    Science.gov (United States)

    He, Qiuling; Zhu, Shuijin; Zhang, Baohong

    2014-09-01

    MicroRNAs (miRNAs) play key roles in plant responses to various metal stresses. To investigate the miRNA-mediated plant response to heavy metals, cotton (Gossypium hirsutum L.), the most important fiber crop in the world, was exposed to different concentrations (0, 25, 50, 100, and 200 µM) of lead (Pb) and then the toxicological effects were investigated. The expression patterns of 16 stress-responsive miRNAs and 10 target genes were monitored in cotton leaves and roots by quantitative real-time PCR (qRT-PCR); of these selected genes, several miRNAs and their target genes are involved in root development. The results show a reciprocal regulation of cotton response to lead stress by miRNAs. The characterization of the miRNAs and the associated target genes in response to lead exposure would help in defining the potential roles of miRNAs in plant adaptation to heavy metal stress and further understanding miRNA regulation in response to abiotic stress.

  15. Lead induced changes in growth and micronutrient uptake of Jatropha curcas L.

    Science.gov (United States)

    Shu, Xiao; Zhang, QuanFa; Wang, WeiBo

    2014-11-01

    Effects of lead treatment on growth and micronutrient uptake in Jatropha curcas L. seedlings were assessed by means of microcosm experiments. Results suggested that superoxide dismutase (SOD) activity increased with increasing lead concentration. There was significant positive correlation between lead treatment concentration and SOD and peroxidase activity. Catalase activity was initiated under lower lead stress but, was inhibited under higher lead exposure. Lead had a stimulating effect on seedlings height and leaf area at lower lead concentrations. The J. curcas can accumulate higher amounts of available lead from soil but can translocate only low amounts to the shoots. Results indicating SOD and peroxidase activity in J. curcas seedlings played an important role in resisting the oxidative stress induced by lead. The addition of lead significantly increased the content of zinc in plant tissue and enhanced the transport of iron from roots to shoots but contributed to a decrease in measured copper, iron, and manganese content.

  16. Lead induced changes in phosphorylation of PSII proteins in low light grown pea plants.

    Science.gov (United States)

    Wioleta, Wasilewska; Anna, Drożak; Ilona, Bacławska; Kamila, Kąkol; Elżbieta, Romanowska

    2015-02-01

    Light-intensity and redox-state induced thylakoid proteins phosphorylation involved in structural changes and in regulation of protein turnover. The presence of heavy metal ions triggers a wide range of cellular responses including changes in plant growth and photosynthesis. Plants have evolved a number of mechanisms to protect photosynthetic apparatus. We have characterized the effect of lead on PSII protein phosphorylation in pea (Pisum sativum L.) plants grown in low light conditions. Pb ions affected only slightly photochemical efficiency of PSII and had no effect on organization of thylakoid complexes. Lead activated strongly phosphorylation of PSII core D1 protein and dephosphorylation of this protein did not proceed in far red light. D1 protein was also not degraded in this conditions. However, phosphorylation of LHCII proteins was not affected by lead. These results indicate that Pb(2+) stimulate the phosphorylation of PSII core proteins and by disturbing the disassembly of supercomplexes play a role in PSII repair mechanism. LHCII phosphorylation could control the distribution of energy between the photosystems in low light conditions. This demonstrates that plants may respond to heavy metals by induction different pathways responsible for protein protection under stress conditions.

  17. Garlic ameliorates histological changes in the uterine epithelium of lead induced mice

    International Nuclear Information System (INIS)

    Waseem, N.; Butt, S.A.; Hamid, S.

    2015-01-01

    To evaluate the protective role of garlic extract on the histology of the uterine epithelium exposed to lead acetate in an animal model. Study Design: Laboratory based randomized control trial. Place and Duration of Study: Department of Anatomy, Army Medical College in collaboration with National Institute of health from April to June 2013. Material and Methods: Thirty female BALBc mice were selected. Ten animals were placed in each group. Group A being the control was given normal diet. Group B was given lead acetate at a dose of 30 mg/kg/day. Group C was given lead acetate 30 mg/kg/day and garlic extract 500 mg/kg/day through oral gavage tube for 60 days. Animals were sacrificed and dissected at the end of 60 days. Right uterine horn was processed, embedded and stained for histological study. Height of epithelium was measured. It was taken from apical to basal end of the cells. Results: There was increase in height of the lining epithelium of uterus in group B, mean value 19.70 ± 4.81 meu m when compared to Group A, with mean value 13.25 ± 2.37 meu m. The height of the epithelium was relatively reduced in group C, with mean value 14.50 ± 2.30 meu m when compared with group B. In group C results were same as Group A. The p values were 0.001 when group A was compared to group B, 0.688 when group A was compared to group C and 0.005 when group B was compared to group C. Conclusion: The height of epithelium was markedly increased in lead acetate treated group which returned to normal when co treated with garlic extract. Hence garlic ameliorated the changes induced by lead. (author)

  18. Perinatal exposure to lead induces morphological, ultrastructural and molecular alterations in the hippocampus

    International Nuclear Information System (INIS)

    Baranowska-Bosiacka, I.; Strużyńska, L.; Gutowska, I.; Machalińska, A.; Kolasa, A.; Kłos, P.; Czapski, G.A.; Kurzawski, M.; Prokopowicz, A.; Marchlewicz, M.

    2013-01-01

    Highlights: ► Pre- and neonatal Pb exposure decreased the number of hippocampal neurons. ► Lead caused ultrastructural alterations in CA1 region of hippocampus. ► Hippocampus is highly vulnerable to low level perinatal Pb exposure. ► Lead decreased BDNF level in the developing brain. ► Decreased Bax/Bcl2 ratio may protect hippocampus against Pb-induced apoptosis. -- Abstract: The aim of this paper is to examine if pre- and neonatal exposure to lead (Pb) may intensify or inhibit apoptosis or necroptosis in the developing rat brain. Pregnant experimental females received 0.1% lead acetate (PbAc) in drinking water from the first day of gestation until weaning of the offspring; the control group received distilled water. During the feeding of pups, mothers from the experimental group were still receiving PbAc. Pups were weaned at postnatal day 21 and the young rats of both groups then received only distilled water until postnatal day 28. This treatment protocol resulted in a concentration of Pb in rat offspring whole blood (Pb-B) below the threshold of 10 μg/dL, considered safe for humans.We studied Casp-3 activity and expression, AIF nuclear translocation, DNA fragmentation, as well as Bax, Bcl-2 mRNA and protein expression as well as BDNF concentration in selected structures of the rat brain: forebrain cortex (FC), cerebellum (C) and hippocampus (H). The microscopic examinations showed alterations in hippocampal neurons.Our data shows that pre- and neonatal exposure of rats to Pb, leading to Pb-B below 10 μg/dL, can decrease the number of hippocampus neurons, occurring concomitantly with ultrastructural alterations in this region. We observed no morphological or molecular features of severe apoptosis or necrosis (no active Casp-3 and AIF translocation to nucleus) in young brains, despite the reduced levels of BDNF. The potential protective factor against apoptosis was probably the decreased Bax/Bcl-2 ratio, which requires further investigation. Our findings contribute to further understanding of the mechanisms underlying Pb neurotoxicity and cognition impairment in a Pb-exposed developing brain.

  19. Eyes that bind us: Gaze leading induces an implicit sense of agency.

    Science.gov (United States)

    Stephenson, Lisa J; Edwards, S Gareth; Howard, Emma E; Bayliss, Andrew P

    2018-03-01

    Humans feel a sense of agency over the effects their motor system causes. This is the case for manual actions such as pushing buttons, kicking footballs, and all acts that affect the physical environment. We ask whether initiating joint attention - causing another person to follow our eye movement - can elicit an implicit sense of agency over this congruent gaze response. Eye movements themselves cannot directly affect the physical environment, but joint attention is an example of how eye movements can indirectly cause social outcomes. Here we show that leading the gaze of an on-screen face induces an underestimation of the temporal gap between action and consequence (Experiments 1 and 2). This underestimation effect, named 'temporal binding,' is thought to be a measure of an implicit sense of agency. Experiment 3 asked whether merely making an eye movement in a non-agentic, non-social context might also affect temporal estimation, and no reliable effects were detected, implying that inconsequential oculomotor acts do not reliably affect temporal estimations under these conditions. Together, these findings suggest that an implicit sense of agency is generated when initiating joint attention interactions. This is important for understanding how humans can efficiently detect and understand the social consequences of their actions. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Lithium attenuates lead induced toxicity on mouse non-adherent bone marrow cells.

    Science.gov (United States)

    Banijamali, Mahsan; Rabbani-Chadegani, Azra; Shahhoseini, Maryam

    2016-07-01

    Lead is a poisonous heavy metal that occurs in all parts of environment and causes serious health problems in humans. The aim of the present study was to investigate the possible protective effect of lithium against lead nitrate induced toxicity in non-adherent bone marrow stem cells. Trypan blue and MTT assays represented that exposure of the cells to different concentrations of lead nitrate decreased viability in a dose dependent manner, whereas, pretreatment of the cells with lithium protected the cells against lead toxicity. Lead reduced the number and differentiation status of bone marrow-derived precursors when cultured in the presence of colony stimulating factor (CSF), while the effect was attenuated by lithium. The cells treated with lead nitrate exhibited cell shrinkage, DNA fragmentation, anion superoxide production, but lithium prevented lead action. Moreover, apoptotic indexes such as PARP cleavage and release of HMGB1 induced by lead, were protected by lithium, suggesting anti-apoptotic effect of lithium. Immunoblot analysis of histone H3K9 acetylation indicated that lithium overcame lead effect on acetylation. In conclusion, lithium efficiently reduces lead toxicity suggesting new insight into lithium action which may contribute to increased cell survival. It also provides a potentially new therapeutic strategy for lithium and a cost-effective approach to minimize destructive effects of lead on bone marrow stem cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Protective Effect of Vitamin E Against Lead-induced Memory and Learning Impairment in Male Rats

    Directory of Open Access Journals (Sweden)

    Salehi

    2015-02-01

    Full Text Available Background Lead (Pb2+ is a neurotoxin substance that has been known for its adverse effects on central nervous system and memory. Previous studies reported the potential effect of vitamin E as a memory enhancer. Objectives The purpose of the present study was to assess the protective effects of vitamin E against Pb-induced amnesia. Materials and Methods Forty-eight male Wistar rats (200-250 g were divided equally into the saline, Pb, Pb + vitamin E, and vitamin E alone groups. To induce Pb toxicity, rats received water that contained 0.2% Pb instead of regular water for 1 month. Rats pretreated, treated or post treated with vitamin E (150 mg/kg for 2 months. Passive avoidance learning was assessed using Shuttle-Box after two months. Retention was tested 24 and 48 hours after training. Results The results showed that Pb caused impairment in acquisition and retrieval processes in passive avoidance learning. Vitamin E reversed learning and memory deficits in pre, post or co- exposure with Pb (P < 0.001. Conclusions According to the results of this study, administration of vitamin E to rats counteracts the negative effects of Pb on learning and memory. To more precisely extrapolate these findings to humans, future clinical studies are warranted.

  2. Attenuated Lead Induced Apoptosis in Rat Hepatocytes in the Presence of Lycopersicon Esculentum

    Directory of Open Access Journals (Sweden)

    Hamidreza Ahmadi Ashtiani

    2016-05-01

    Full Text Available Lead (Pb, has, for decades, being known for its adverse effects on various body organs and systems. In the present study, the damage of Pb on the Liver tissue apoptosis was investigated, and Lycopersicon esculentum as an antioxidants source was administered orally to prevent the adverse effects of Pb. Eighteen Wistar rats, randomized into three groups (n=6, were used for this study. Animals in Group A served as the control and were drinking distilled water. Animals in Groups B and C were drinking 1%Lead acetate (LA. Group C animals were, in addition to drinking LA, treated with 1.5 ml/day of Lycopersicon esculentum. Treatments were for three months. The obtained results showed that lead acetate caused significant reductions in the liver weight, plasma and tissue superoxide dismutase and catalase activity, but a significant increase in plasma and tissue malondialdehyde concentration but Lycopersicon esculentum have an inhibitory effect on LA liver adverse effect. So, it can be concluded that Lycopersicon esculentum have a significant protective effect on liver lead acetate adverse effects as well as, lead acetate -induced oxidative stress.

  3. Melatonin protects against lead-induced hepatic and renal toxicity in male rats

    International Nuclear Information System (INIS)

    El-Sokkary, Gamal H.; Abdel-Rahman, Gamal H.; Kamel, Esam S.

    2005-01-01

    The present study was designed to investigate the potential protective effect of melatonin against the hepatic and renal toxicity of lead in male rats. Three groups of animals were used in this study (control, lead acetate-treated (100 mg/kg), and lead acetate plus melatonin (10 mg/kg) for 30 days. Levels of lipid peroxidation (LPO) products, superoxide dismutase (SOD) activity, total glutathione (GSH), histopathological changes in the liver and kidneys were investigated. In addition, nuclear area (NA), nuclear volume (NV) and the ratio of nuclear volume/cellular volume (N/C) were measured in the liver. The results revealed increased LPO and decreased SOD, GSH, NA, NV and N/C in the studied organs of lead-treated rats. Histopathological observations showed severe damage in the liver and kidneys. Melatonin co-treatment to the lead-administered rats attenuated the increase of LPO and restored the activity of SOD and levels of GSH as well as the mean values of NA, NV and N/C. Also, the morphological damage in the liver and kidneys was reduced and the tissues appeared like those of controls. The present study suggests that melatonin may be useful in combating free radical-induced damage due to lead toxicity

  4. Thymoquinone supplementation ameliorates lead-induced testis function impairment in adult rats.

    Science.gov (United States)

    Mabrouk, Aymen; Ben Cheikh, Hassen

    2016-06-01

    This study was realized to investigate the possible beneficial effect of thymoquinone (TQ), the major active component of volatile oil of Nigella sativa seeds, against lead (Pb)-induced inhibition of rat testicular functions. Adult rats were randomized into four groups: a control group receiving no treatment; a Pb group exposed to 2000 parts per million (ppm) of Pb acetate in drinking water; a Pb-TQ group co-treated with Pb (as in Pb group) plus TQ (5 mg/kg body weight (b.w.)/day, per orally (p.o.)); and a TQ group receiving TQ (5 mg/kg b.w./day, p.o.). All treatments were for 5 weeks. No significant differences were observed for the body weight gain or for relative testes weight among the four groups of animals. Testicular Pb content significantly increased in metal-intoxicated rats compared with that in control rats. TQ supplementation had no effect on this testicular Pb accumulation. Interestingly, when coadministrated with Pb, TQ significantly improved the low plasma testosterone level and the decreased epididymal sperm count caused by Pb. In conclusion, the results suggest, for the first time, that TQ protects against Pb-induced impairment of testicular steroidogenic and spermatogenic functions. This study will open new perspectives for the clinical use of TQ in Pb intoxication. © The Author(s) 2014.

  5. Protective effect of thymoquinone against lead-induced hepatic toxicity in rats.

    Science.gov (United States)

    Mabrouk, Aymen; Bel Hadj Salah, Imen; Chaieb, Wafa; Ben Cheikh, Hassen

    2016-06-01

    Lead (Pb) intoxication is a worldwide health problem which frequently affects the liver. This study was carried out to investigate the potential protective effect of thymoquinone (TQ), the major active ingredient of volatile oil of Nigella sativa seeds, against Pb-induced liver damage. Adult male rats were randomized into four groups: Control group received no treatment, Pb group was exposed to 2000 ppm Pb acetate in drinking water, Pb-TQ group was cotreated with Pb plus TQ (5 mg/kg/day, per orally), and TQ group receiving only TQ. All treatments were applied for 5 weeks. Results indicated that Pb exposure increased hepatic Pb content, damaged hepatic histological structure (necrotic foci, hepatic strands disorganization, hypertrophied hepatocytes, cytoplasmic vacuolization, cytoplasmic loss, chromatin condensation, mononuclear cell infiltration, congestion, centrilobular swelling), and changed liver function investigated by plasma biochemical parameters (AST, ALT, ALP, γ-GT, LDH). Pb treatment also decreased total antioxidant status level and increased lipid peroxidation in the liver. Supplementation with TQ remarkably improved the Pb-induced adverse effects without significantly reducing the metal accumulation in the liver. In conclusion, our results indicate, for the first time, a protective effect of TQ against Pb-induced hepatotoxicity and suggest that this component might be clinically useful in Pb intoxication.

  6. Effects of vitamin E on lead-induced impairments in hippocampal synaptic plasticity.

    Science.gov (United States)

    Salehi, Iraj; Karamian, Ruhollah; Komaki, Alireza; Tahmasebi, Lida; Taheri, Masoumeh; Nazari, Masoumeh; Shahidi, Siamak; Sarihi, Abdolrahman

    2015-12-10

    Lead (Pb) exposure during development is associated with impaired cognitive function and long-term potentiation (LTP). Vitamin E (VE) is an antioxidant that could have protective effects against Pb intoxication. In this study, we examined the protective effects of vitamin E against Pb-induced LTP impairments. Forty-six adult male Wistar rats were randomly divided into 6 treatment groups: (1) control; (2) Pb exposure; (3) VE; (4) Pb +VE; (5) Pb exposure followed by VE 2 months after exposure; (6) VE followed by Pb exposure 1 month after treatment. Rats were exposed to Pb through daily consumption of Pb-contaminated distilled water; VE was administered by daily gavage for 3 months. After this period, the population spike (PS) amplitudes and the slopes of excitatory postsynaptic potentials (EPSPs) were measured in the dentate gyrus (DG) area of the hippocampus in adult rats in response to electrical stimulation applied to the perforant pathway in vivo. Blood samples were also collected to evaluate malondialdehyde (MDA) levels, total antioxidant capacity (TAC), and total oxidant status (TOS). Biochemical analyses demonstrated significant increases in plasma MDA and TOS levels in the Pb-exposed group compared to the control group. VE-protected groups revealed significant increases in TAC levels. Our results demonstrate that Pb decreased EPSP slopes and PS amplitudes compared to the control group, whereas VE increased these parameters compared to the control group. Co-administration of VE with Pb exposure inhibited Pb-induced effects. These findings suggest that VE via its antioxidant activity reverses Pb-induced impairments of synaptic plasticity in the DG. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Spirulina exhibits hepatoprotective effects against lead induced oxidative injury in newborn rats.

    Science.gov (United States)

    Gargouri, M; Ben Saad, H; Ben Amara, I; Magné, C; El Feki, A

    2016-08-31

    Lead is a toxic metal that induces a wide range of biochemical and physiological effects. The present investigation was designed at evaluating the toxic effects of a prenatal exposure to lead of mothers on hepatic tissue of newborn rats, and potent protective effects of spirulina. Female rats were randomly divided into 4 groups which were given a normal diet (control),a diet enriched with spirulina (S), lead acetate administered through drinking water (Pb), or a diet enriched with spirulina and lead contaminated water (S Pb), respectively. The duration of treatments was from the 5th day of gestation to 14 days postpartum. Lead toxicity was assessed by measuring body and liver weights, blood and stomach lead levels, hepatic DNA, RNA and protein amounts, blood enzyme activities (AST and ALT), as well as lipid peroxidation level and activities of antioxidant enzymes in hepatic tissues of neonates. Lead intoxication of mothers caused reduction of liver weight as well as of hepatic DNA, mRNA and protein levels in newborns. Moreover, oxidative stress and changes in antioxidant enzyme activities were recorded. Conversely, supplementation of mothers with spirulina mitigated these effects induced by lead. These results substantiated the potential hepatoprotective and antioxidant activity of spirulina.

  8. Effect of Glycine on Lead Mobilization, Lead-Induced Oxidative Stress, and Hepatic Toxicity in Rats

    Directory of Open Access Journals (Sweden)

    Yolanda Alcaraz-Contreras

    2011-01-01

    Full Text Available The effectiveness of glycine in treating experimental lead intoxication was examined in rats. Male Wistar rats were exposed to 3 g/L lead acetate in drinking water for 5 weeks and treated thereafter with glycine (100 and 500 mg/kg, orally once daily for 5 days or glycine (1000 mg/kg, orally once daily for 28 days. The effect of these treatments on parameters indicative of oxidative stress (glutathione and malondialdehyde levels, the activity of blood -aminolevulinic acid dehydratase, and lead concentration in blood, liver, kidney, brain, and bone were investigated. Liver samples were observed for histopathological changes. Glycine was found to be effective in (1 increasing glutathione levels; (2 reducing malondialdehyde levels; (3 decreasing lead levels in bone with the highest dose. However, glycine had no effect on lead mobilization when 100 and 500 mg/kg glycine were administered. In microscopic examination, glycine showed a protective effect against lead intoxication.

  9. Permanent Pacemaker Lead Induced Severe Tricuspid Regurgitation in Patient Undergoing Multiple Valve Surgery

    Directory of Open Access Journals (Sweden)

    Jung Hee Lee

    2015-04-01

    Full Text Available Severe and permanent tricuspid regurgitation induced by pacemaker leads is rarely reported in the literature. The mechanism of pacemaker-induced tricuspid regurgitation has been identified, but its management has not been well established. Furthermore, debate still exists regarding the proper surgical approach. We present the case of a patient with severe tricuspid regurgitation induced by a pacemaker lead, accompanied by triple valve disease. The patient underwent double valve replacement and tricuspid valve repair without removal of the pre-existing pacemaker lead. The operation was successful and the surgical procedure is discussed in detail.

  10. Permanent pacemaker lead induced severe tricuspid regurgitation in patient undergoing multiple valve surgery.

    Science.gov (United States)

    Lee, Jung Hee; Kim, Tae Ho; Kim, Wook Sung

    2015-04-01

    Severe and permanent tricuspid regurgitation induced by pacemaker leads is rarely reported in the literature. The mechanism of pacemaker-induced tricuspid regurgitation has been identified, but its management has not been well established. Furthermore, debate still exists regarding the proper surgical approach. We present the case of a patient with severe tricuspid regurgitation induced by a pacemaker lead, accompanied by triple valve disease. The patient underwent double valve replacement and tricuspid valve repair without removal of the pre-existing pacemaker lead. The operation was successful and the surgical procedure is discussed in detail.

  11. Effect of testosterone administration on lead induced zincprotoporphyrin in blood concentration in castrated male rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Wibowo, A.A.E.; Zielhuis, R.L.

    1981-11-01

    The influence of testosterone propionate on the concentration of zincprotoporphyrin in blood (ZPP) of castrated lead treated rabbits was investigated. The experimental design allowed comparison of the relative ZPP increase (RZI) in testosterone treated and non testosterone treated rabbits. Testosterone was administered by subcutaneous injection of 3 mg/kg body weight/day for 7 consecutive days directly prior to the lead exposure, which was performed by subcutaneous injection of 0.50 mg lead acetate/kg body weight, three times a week for 7 weeks. No effect was found on the hemoglobin concentration (Hb) and hematocrit (Ht) and on the increase of body weight during the experiment. But the increase of RZI in the non testosterone treated rabbits was significantly steeper and earlier than in the testosterone treated group. The possible consequences of the findings had been further commented on.

  12. Amelioration of lead induced changes in ovary of mice, by garlic extract

    International Nuclear Information System (INIS)

    Waseem, N.; Butt, S. A.; Hamid, S.

    2014-01-01

    Objective: To observe the effects of lead acetate and protective role of garlic extract on the histomorphology of the ovary in an animal model. Methods: The experimental trial was conducted at the Department of Anatomy, Army Medical College Rawalpindi, in association with the National Institute of Health (NIH), Islamabad, from April to June 2013. It comprised 30 adult non-pregnant female mice (BALBc strain) weighing 25-27gms. They were divided into three equal groups of 10 mice each. Group A, taken as control, was given normal diet. Group B was given lead acetate at a dose of 30mg/kg/day. Group C was given lead acetate 30mg/kg/day and garlic extract 500mg/kg/day through oral gavage tube for two months. Animals were dissected a day after the last dose. Size, shape, colour and consistency of the ovary was observed. The right ovary was processed, embedded and stained for histological study. Primary follicles were counted and noted. SPSS 18 was used for statistical analysis. Results: The primary follicular count decreased significantly in Group B while it relatively increased in Group C. Morphology of the ovary was affected after exposure to lead acetate in Group B, while in Group C results were the same as in the Group A controls regarding gross architecture of the ovary. Conclusion: Lead alters the normal histology and affects the physiology of the ovary. It interferes with the development of growing follicles in the ovary. Lead, being a reproductive toxicant, can be a cause of infertility in exposed females. (author)

  13. Involvement of microglia activation in the lead induced long-term potentiation impairment.

    Directory of Open Access Journals (Sweden)

    Ming-Chao Liu

    Full Text Available Exposure of Lead (Pb, a known neurotoxicant, can impair spatial learning and memory probably via impairing the hippocampal long-term potentiation (LTP as well as hippocampal neuronal injury. Activation of hippocampal microglia also impairs spatial learning and memory. Thus, we raised the hypothesis that activation of microglia is involved in the Pb exposure induced hippocampal LTP impairment and neuronal injury. To test this hypothesis and clarify its underlying mechanisms, we investigated the Pb-exposure on the microglia activation, cytokine release, hippocampal LTP level as well as neuronal injury in in vivo or in vitro model. The changes of these parameters were also observed after pretreatment with minocycline, a microglia activation inhibitor. Long-term low dose Pb exposure (100 ppm for 8 weeks caused significant reduction of LTP in acute slice preparations, meanwhile, such treatment also significantly increased hippocampal microglia activation as well as neuronal injury. In vitro Pb-exposure also induced significantly increase of microglia activation, up-regulate the release of cytokines including tumor necrosis factor-alpha (TNF-α, interleukin-1β (IL-1β and inducible nitric oxide synthase (iNOS in microglia culture alone as well as neuronal injury in the co-culture with hippocampal neurons. Inhibiting the microglia activation with minocycline significantly reversed the above-mentioned Pb-exposure induced changes. Our results showed that Pb can cause microglia activation, which can up-regulate the level of IL-1β, TNF-α and iNOS, these proinflammatory factors may cause hippocampal neuronal injury as well as LTP deficits.

  14. Amelioration of lead induced hepatotoxicity by Allium sativum extracts in Swiss albino mice

    Directory of Open Access Journals (Sweden)

    Sharma A

    2010-01-01

    Full Text Available Lead is a blue-gray and highly toxic divalent metal that occurs naturally in the earth crust and isspread throughout the environment by various human activities. The efficacy of garlic (Allium sativumto reduce hepatotoxicity induced by lead nitrate was evaluated experimentally in male mice. Oraltreatment with lead nitrate at a dose of 50 mg/ kg body weight daily for 40 days (1/45 of LD50 induceda significant increase in the levels of hepatic aspartate aminotransferase (AST, alanineaminotransferase (ALT, alkaline phosphatase (ALP, acid phosphatase (ALP, cholesterol, lipidperoxidation (LPO and lead nitrate. In parallel, hepatic protein levels in lead exposed mice weresignificantly depleted. Lead nitrate exposure also produced detrimental effects on the redox status ofthe liver indicated by a significant decline in the levels of liver antioxidants such as superoxidedismutase (SOD, catalase (CAT and glutathione (GSH. After exposure to lead nitrate (50 mg/kgbody weight for 10 days, the animals received aqueous garlic extract (250 mg/ kg body weight and500 mg/ kg body weight and ethanolic garlic extract (100 mg/ kg body weight and 250 mg/ kg bodyweight and partially restored the deranged parameters significantly Histological examination of theliver also revealed pathophysiological changes in lead nitrate exposed group and treatment with garlicimproved liver histology. Our data suggest that garlic is a phytoantioxidant that can counteract thedeleterious effects of lead nitrate.

  15. Effect of aqueous seed extract of Nigella sativa on lead-induced ...

    African Journals Online (AJOL)

    It is used in the manufacture of batteries, metal products, paints and other domestic substances. This study investigated the effect of aqueous seed extract of Nigella sativa on leadinduced cerebral cortex toxicity in Long Evan's rats. Twenty five Long Evans rats divided into five groups of five animals were used for the study.

  16. Mitigating effects of Jambul against lead induced toxicity in epididymis and vas deferens of mice

    Directory of Open Access Journals (Sweden)

    Tahir Abbas

    2015-11-01

    Full Text Available Background: Precious fruits like jambul are neglected and wasted while environmental pollutants like lead intake remain overlooked. Objective: The aim of this study was to investigate the effects of the Jambul pulp extract on lead detrimental effects in pseudostratified epithelium and the stereocilia of mice epididymis and vas deferens. Materials and Methods: Thirty young males mice (Mus musculus were distributed randomly in 3 groups (n= 10 called control, Pb (Lead and Pb-J (Lead-Jambul. The Pb and Pb-J were provided 50ppm Pb in drinking water ad libitum for 15 days and Pb free water for the next 5 days. The Pb-J group received 0.2ml jambul pulp extract on 12 hourly bases. Control group was not given any treatment. Organs (epididymis and vas deference were recovered on 21st day after euthanasia. The organs were finally processed for histological and micrometric studies. Results: Marked histologic and micrometric changes in both organs were noted in Pb group. These include significant (P ≤ 0.05 decrease in cross sectional area of caput and cauda epididymis folding tubing along with evident alterations of their endothelial thickness. Prominent signs of apoptosis (vacuolations in the corpus pseudostratified endothelium and the destruction of stereocilia of the epididymis and vas deferens in Pb compared to control group were observed. Evident signs of recovery, in both organs, such as proliferation and rearrangements in pseudostratified endothelium and the stereocilia along with convincing recovery in micrometric parameters were observed in Pb-J group. Conclusion: The results indicate that epididymis and vas deferens are highly sensitive to Pb exposure while Jambul pulp extract has shown rich mitigating potentials against such histopathologies.

  17. Iron supplement prevents lead-induced disruption of the blood-brain barrier during rat development

    International Nuclear Information System (INIS)

    Wang Qiang; Luo Wenjing; Zheng Wei; Liu Yiping; Xu Hui; Zheng Gang; Dai Zhongming; Zhang Wenbin; Chen Yaoming; Chen Jingyuan

    2007-01-01

    Children are known to be venerable to lead (Pb) toxicity. The blood-brain barrier (BBB) in immature brain is particularly vulnerable to Pb insults. This study was designed to test the hypothesis that Pb exposure damaged the integrity of the BBB in young animals and iron (Fe) supplement may prevent against Pb-induced BBB disruption. Male weanling Sprague-Dawley rats were divided into four groups. Three groups of rats were exposed to Pb in drinking water containing 342 μg Pb/mL as Pb acetate, among which two groups were concurrently administered by oral gavage once every other day with 7 mg Fe/kg and 14 mg Fe/kg as FeSO 4 solution as the low and high Fe treatment group, respectively, for 6 weeks. The control group received sodium acetate in drinking water. Pb exposure significantly increased Pb concentrations in blood by 6.6-folds (p < 0.05) and brain tissues by 1.5-2.0-folds (p < 0.05) as compared to controls. Under the electron microscope, Pb exposure in young animals caused an extensive extravascular staining of lanthanum nitrate in brain parenchyma, suggesting a leakage of cerebral vasculature. Western blot showed that Pb treatment led to 29-68% reduction (p < 0.05) in the expression of occludin as compared to the controls. Fe supplement among Pb-exposed rats maintained the normal ultra-structure of the BBB and restored the expression of occludin to normal levels. Moreover, the low dose Fe supplement significantly reduced Pb levels in blood and brain tissues. These data suggest that Pb exposure disrupts the structure of the BBB in young animals. The increased BBB permeability may facilitate the accumulation of Pb. Fe supplement appears to protect the integrity of the BBB against Pb insults, a beneficial effect that may have significant clinical implications

  18. Lead induced modifications of the response to X-rays in human cells in culture

    International Nuclear Information System (INIS)

    Skreb, Y.; Habazin-Novak, V.

    1977-01-01

    The rate of 3 H-thymidine uptake by HeLa cells submitted to X-ray irradiation is reduced if the cells are treated with lead chloride. The inhibitory effects of the two agents were found additive. After irradiation no new incorporation appears while lead is present in the medium. If after four hours the medium containing lead is substituted by a fresh one, the 3 H-thymidine uptake is resumed after a short delay. (author)

  19. Efficacy of the chelating agent CaEDTA in reversing lead-induced changes in behavior.

    Science.gov (United States)

    Cory-Slechta, D A; Weiss, B

    1989-01-01

    The chelating agent CaEDTA has been reported to reverse the deficits in intellectual function and performance associated with Pb (lead) exposure in children. However, such studies have not included rigorous controls for the intervention procedures per se. The experiments reported here examined reversibility of performance changes in a rat model based on behavior sensitive to low-level Pb exposure. Rats were exposed to 50 ppm sodium or Pb acetate in drinking water from weaning. Performance maintained under a Fixed-Interval schedule of food reinforcement began at 55 days of age. Following the onset of the characteristic increase in short interresponse times (IRTs) associated with low-level Pb exposure after 35 experimental sessions, Pb treatment was terminated. Animals within both the control and Pb groups were then matched on the basis of performance indices and injected daily for 5 days with either saline, 75 mg/kg or 150 mg/kg CaEDTA. Subsequent changes in F1 performance were monitored for 35-60 sessions. No consistent effects of CaEDTA were detected in control animals. CaEDTA treatment failed to reverse the behavioral effects in Pb-exposed animals. If anything, it tended to further increase the proportion of short IRTs. These data suggest that better controlled clinical studies are warranted to evaluate the efficacy of CaEDTA in reversing Pb-induced behavioral effects before its application for these purposes becomes widespread.

  20. Potential Alleviation of Chlorella vulgaris and Zingiber officinale on Lead-Induced Testicular Toxicity: an Ultrastructural Study.

    Science.gov (United States)

    Mustafa, Hesham Noaman

    2015-01-01

    Natural, products were studied to combat reproductive alterations of lead. The current work aimed to disclose the efficacy of Chlorella vulgaris and Zingiber officinale to alleviate lead acetate induced toxicity. Sixty adult male Wistar rats were distributed into four groups. Group 1 was considered control, group 2 received 200 mg/l PbAc water, group 3 received 50 mg/kg/rat of C. vulgaris extract and 200 mg/l PbAc water, and group 4 received 100 mg/kg/rat of Z. officinale and 200 mg/l PbAc water for 90 days. Testis samples were subjected to ultrastructural examination. It was observed that PbAc caused degenerative alterations in the spermatogenic series in many tubules, with a loss of germ cells and vacuoles inside the cytoplasm and between the germ cells. Mitochondria exhibited ballooning, with lost cristae and widening of the interstitial tissue, while nuclear envelopes of primary spermatocytes were broken up, and axonemes of the mid-pieces of the sperms were distorted. With the treatment with C. vulgaris or Z. officinale, there were noticeable improvements in these modifications. It was concluded that both C. vulgaris and Z. officinale represent convincing medicinal components that may be used to ameliorate testicular toxicity in those exposed to lead in daily life with superior potentials revealed by C. vulgaris due to its chelating action.

  1. Lead induces chondrogenesis and alters transforming growth factor-beta and bone morphogenetic protein signaling in mesenchymal cell populations.

    Science.gov (United States)

    Zuscik, Michael J; Ma, Lin; Buckley, Taylor; Puzas, J Edward; Drissi, Hicham; Schwarz, Edward M; O'Keefe, Regis J

    2007-09-01

    It has been established that skeletal growth is stunted in lead-exposed children. Because chondrogenesis is a seminal step during skeletal development, elucidating the impact of Pb on this process is the first step toward understanding the mechanism of Pb toxicity in the skeleton. The aim of this study was to test the hypothesis that Pb alters chondrogenic commitment of mesenchymal cells and to assess the effects of Pb on various signaling pathways. We assessed the influence of Pb on chondrogenesis in murine limb bud mesenchymal cells (MSCs) using nodule formation assays and gene analyses. The effects of Pb on transforming growth factor-beta (TGF-beta) and bone morphogenetic protein (BMP) signaling was studied using luciferase-based reporters and Western analyses, and luciferase-based assays were used to study cyclic adenosine monophosphate response element binding protein (CREB), beta-catenin, AP-1, and nuclear factor-kappa B (NF-kappaB) signaling. We also used an ectopic bone formation assay to determine how Pb affects chondrogenesis in vivo. Pb-exposed MSCs showed enhanced basal and TGF-beta/BMP induction of chondrogenesis, evidenced by enhanced nodule formation and up-regulation of Sox-9, type 2 collagen, and aggrecan, all key markers of chondrogenesis. We observed enhanced chondrogenesis during ectopic bone formation in mice preexposed to Pb via drinking water. In MSCs, Pb enhanced TGF-beta but inhibited BMP-2 signaling, as measured by luciferase reporter assays and Western analyses of Smad phosphorylation. Although Pb had no effect on basal CREB or Wnt/beta-catenin pathway activity, it induced NFkappaB signaling and inhibited AP-1 signaling. The in vitro and in vivo induction of chondrogenesis by Pb likely involves modulation and integration of multiple signaling pathways including TGF-beta, BMP, AP-1, and NFkappaB.

  2. Lead induces DNA damage and alteration of ALAD and antioxidant genes mRNA expression in construction site workers.

    Science.gov (United States)

    Akram, Zertashia; Riaz, Sadaf; Kayani, Mahmood Akhtar; Jahan, Sarwat; Ahmad, Malik Waqar; Ullah, Muhammad Abaid; Wazir, Hizbullah; Mahjabeen, Ishrat

    2018-01-16

    Oxidative stress and DNA damage are considered as possible mechanisms involved in lead toxicity. To test this hypothesis, DNA damage and expression variations of aminolevulinic acid dehydratase (ALAD), superoxide dismutase 2 (SOD2), and 8-oxoguanine DNA glycosylase 2a (OGG1-2a) genes was studied in a cohort of 100 exposed workers and 100 controls with comet assay and real-time polymerse chain reaction (PCR). Results indicated that increased number of comets was observed in exposed workers versus controls (p gene.

  3. Chronic exposure to low concentrations of lead induces metabolic disorder and dysbiosis of the gut microbiota in mice.

    Science.gov (United States)

    Xia, Jizhou; Jin, Cuiyuan; Pan, Zihong; Sun, Liwei; Fu, Zhengwei; Jin, Yuanxiang

    2018-08-01

    Lead (Pb) is one of the most prevalent toxic, nonessential heavy metals that can contaminate food and water. In this study, effects of chronic exposure to low concentrations of Pb on metabolism and gut microbiota were evaluated in mice. It was observed that exposure of mice to 0.1mg/L Pb, supplied via drinking water, for 15weeks increased hepatic TG and TCH levels. The levels of some key genes related to lipid metabolism in the liver increased significantly in Pb-treated mice. For the gut microbiota, at the phylum level, the relative abundance of Firmicutes and Bacteroidetes changed obviously in the feces and the cecal contents of mice exposed to 0.1mg/L Pb for 15weeks. In addition, 16s rRNA gene sequencing further discovered that Pb exposure affected the structure and richness of the gut microbiota. Moreover, a 1 H NMR metabolic analysis unambiguously identified 31 metabolites, and 15 metabolites were noticeably altered in 0.1mg/L Pb-treated mice. Taken together, the data indicate that chronic Pb exposure induces dysbiosis of the gut microbiota and metabolic disorder in mice. Chronic Pb exposure induces metabolic disorder, dysbiosis of the gut microbiota and hepatic lipid metabolism disorder in mice. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Lead-Induced Atypical Parkinsonism in Rats: Behavioral, Electrophysiological, and Neurochemical Evidence for a Role of Noradrenaline Depletion

    Directory of Open Access Journals (Sweden)

    Mariam Sabbar

    2018-03-01

    Full Text Available Background: Lead neurotoxicity is a major health problem known as a risk factor for neurodegenerative diseases, including the manifestation of parkinsonism-like disorder. While lead is known to preferentially accumulate in basal ganglia, the mechanisms underlying behavioral disorders remain unknown. Here, we investigated the neurophysiological and biochemical correlates of motor deficits induced by sub-chronic injections of lead.Methods: Sprague Dawely rats were exposed to sub-chronic injections of lead (10 mg/kg, i.p. or to a single i.p. injection of 50 mg/kg N-(2-chloroethyl-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4, a drug known to induce selective depletion of noradrenaline. Rats were submitted to a battery of behavioral tests, including the open field for locomotor activity and rotarod for motor coordination. Electrophysiological recordings were carried out in three major basal ganglia nuclei, the subthalamic nucleus (STN, globus pallidus (GP, and substantia nigra pars reticulata (SNr. At the end of experiments, post-mortem tissue level of the three monoamines (dopamine, noradrenaline, and serotonin and their metabolites has been determined using HPLC.Results: Lead intoxication significantly impaired exploratory and locomotor activity as well as motor coordination. It resulted in a significant reduction in the level of noradrenaline in the cortex and dopamine and its metabolites, DOPAC, and HVA, in the striatum. The tissue level of serotonin and its metabolite 5-HIAA was not affected in the two structures. Similarly, DSP-4, which induced a selective depletion of noradrenaline, significantly decreased exploratory, and locomotor activity as well as motor coordination. L-DOPA treatment did not improve motor deficits induced by lead and DSP-4 in the two animal groups. Electrophysiological recordings showed that both lead and DSP-4 did not change the firing rate but resulted in a switch from the regular normal firing to irregular and bursty discharge patterns of STN neurons. Neither lead nor DSP-4 treatments changed the firing rate and the pattern of GP and SNr neurons.Conclusions: Our findings provide evidence that lead represents a risk factor for inducing parkinsonism-like deficits. As the motor deficits induced by lead were not improved by L-DOPA, we suggest that the deficits may be due to the depletion of noradrenaline and the parallel disorganization of STN neuronal activity.

  5. Cellular and Molecular Basis of Neurodegeneration in Parkinson Disease

    Directory of Open Access Journals (Sweden)

    Xian-Si Zeng

    2018-04-01

    Full Text Available It has been 200 years since Parkinson disease (PD was described by Dr. Parkinson in 1817. The disease is the second most common neurodegenerative disease characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Although the pathogenesis of PD is still unknown, the research findings from scientists are conducive to understand the pathological mechanisms. It is well accepted that both genetic and environmental factors contribute to the onset of PD. In this review, we summarize the mutations of main seven genes (α-synuclein, LRRK2, PINK1, Parkin, DJ-1, VPS35 and GBA1 linked to PD, discuss the potential mechanisms for the loss of dopaminergic neurons (dopamine metabolism, mitochondrial dysfunction, endoplasmic reticulum stress, impaired autophagy, and deregulation of immunity in PD, and expect the development direction for treatment of PD.

  6. Brain metabolism in health, aging, and neurodegeneration.

    Science.gov (United States)

    Camandola, Simonetta; Mattson, Mark P

    2017-06-01

    Brain cells normally respond adaptively to bioenergetic challenges resulting from ongoing activity in neuronal circuits, and from environmental energetic stressors such as food deprivation and physical exertion. At the cellular level, such adaptive responses include the "strengthening" of existing synapses, the formation of new synapses, and the production of new neurons from stem cells. At the molecular level, bioenergetic challenges result in the activation of transcription factors that induce the expression of proteins that bolster the resistance of neurons to the kinds of metabolic, oxidative, excitotoxic, and proteotoxic stresses involved in the pathogenesis of brain disorders including stroke, and Alzheimer's and Parkinson's diseases. Emerging findings suggest that lifestyles that include intermittent bioenergetic challenges, most notably exercise and dietary energy restriction, can increase the likelihood that the brain will function optimally and in the absence of disease throughout life. Here, we provide an overview of cellular and molecular mechanisms that regulate brain energy metabolism, how such mechanisms are altered during aging and in neurodegenerative disorders, and the potential applications to brain health and disease of interventions that engage pathways involved in neuronal adaptations to metabolic stress. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  7. 1 S.I. : Genetic pathways to Neurodegeneration Parkinson's Disease ...

    Indian Academy of Sciences (India)

    Dorit Trudler

    Parkinson's Disease: What the Model Systems Have Taught Us So Far? .... triggered by the finding that the protein α-synuclein (encoded by the SNCA gene) is a ... lower dopamine levels in the GI tract in severely constipated PD patients ..... related genetic defects even in healthy carriers, as well as the variable age of onset ...

  8. S.I. : Genetic pathways to Neurodegeneration Pathways to ...

    Indian Academy of Sciences (India)

    proteopathies) (Sweeney · et al. ... study of human diseases using forward and reverse genetics approaches (Lenz et al. 2013). The ... neuronal health and synapse development (Mehta et al. 2005) in ...... meta-analysis of neurodegenerative diseases.

  9. Pin1 and neurodegeneration: a new player for prion disorders?

    Directory of Open Access Journals (Sweden)

    Elisa Isopi

    2015-07-01

    Full Text Available Pin1 is a peptidyl-prolyl isomerase that catalyzes the cis/trans conversion of phosphorylated proteins at serine or threonine residues which precede a proline. The peptidyl-prolyl isomerization induces a conformational change of the proteins involved in cell signaling process. Pin1 dysregulation has been associated with some neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Proline-directed phosphorylation is a common regulator of these pathologies and a recent work showed that it is also involved in prion disorders. In fact, prion protein phosphorylation at the Ser-43-Pro motif induces prion protein conversion into a disease-associated form. Furthermore, phosphorylation at Ser-43-Pro has been observed to increase in the cerebral spinal fluid of sporadic Creutzfeldt-Jakob Disease patients. These findings provide new insights into the pathogenesis of prion disorders, suggesting Pin1 as a potential new player in the disease. In this paper, we review the mechanisms underlying Pin1 involvement in the aforementioned neurodegenerative pathologies focusing on the potential role of Pin1 in prion disorders.

  10. S.I. Genetic pathways to Neurodegeneration Advances in the ...

    Indian Academy of Sciences (India)

    NONU YADAV

    analysis of putative determinants with translation potential for the complex forms being minimal, stem ...... lateral sclerosis: a systematic review and meta-analysis. ...... diabetes mellitus, hypothalamic dysfunctions. Pathology -. Macroscopic –.

  11. In vitro dopaminergic neurotoxicity of pesticides; a link with neurodegeneration?

    NARCIS (Netherlands)

    Heusinkveld, H.J.

    2014-01-01

    Ever since people culture crops for food- and feed production, they use chemical compounds to destroy and repel plagues threatening production. Based on their primary target these compounds are classified as e.g. insecticides, herbicides or fungicides. In epidemiological studies, pesticide exposure

  12. Metal-based neurodegeneration: from molecular mechanisms to therapeutic strategies

    National Research Council Canada - National Science Library

    Crichton, Robert R; Ward, Roberta J

    2006-01-01

    ... and signal transduction 2.10 Molecules involved in the inflammatory pathway References 21 21 22 25 27 30 35 36 38 41 44 51 3 Parkinson's Disease 3.1 Proteins involved in Parkinson's disease 3....

  13. Interaction of Synuclein and Inflammation in Dopaminergic Neurodegeneration

    Science.gov (United States)

    2014-06-01

    induces degeneration of dopaminergic neurons: implications for progression of Parkinson’s disease. Neurotox Res. 19: 63-72, (2011). Kalia, L. V., S...1998). Zhang J, Niu N, Wang M, McNutt MA, Zhang D, Zhang B, Lu S, Liu Y, Liu Z. Neuron-derived IgG protects dopaminergic neurons from insult by 6...AD_________________ Award Number: W81XWH-08-1-0465 TITLE: Interaction of Synuclein and Inflammation in Dopaminergic

  14. Protective Mechanisms of Nitrone Antioxidants in Kanic Acid Induced Neurodegeneration

    Science.gov (United States)

    2004-01-01

    Shin, E.J., Suh, J.H., Floyd, R.A., Bing, G. (1999) Protection of methamphetamine nigrostriatal toxicity by dietary selenium. Brain Res. 851:76-86...HC, and Bing, GY. (2004) Interleukin-10 protects against lipopolysaccharide-mediated neurotoxicity in substantia nigra Neurosci. Abstr. 29:677.18. 71...2004) Roles of the cyclooxygenase-2 and oxidative stress in the methamphetamine - induced neurotoxicity Neurosci. Abstr. 29:235.4.

  15. Food, nutrigenomics, and neurodegeneration--neuroprotection by what you eat!

    Science.gov (United States)

    Virmani, Ashraf; Pinto, Luigi; Binienda, Zbigniew; Ali, Syed

    2013-10-01

    Diet in human health is no longer simple nutrition, but in light of recent research, especially nutrigenomics, it is linked via evolution and genetics to cell health status capable of modulating apoptosis, detoxification, and appropriate gene response. Nutritional deficiency and disease especially lack of vitamins and minerals is well known, but more recently, epidemiological studies suggest a role of fruits and vegetables, as well as essential fatty acids and even red wine (French paradox), in protection against disease. In the early 1990s, various research groups started considering the use of antioxidants (e.g., melatonin, resveratrol, green tea, lipoic acid) and metabolic compounds (e.g., nicotinamide, acetyl-L-carnitine, creatine, coenzyme Q10) as possible candidates in neuroprotection. They were of course considered on par with snake oil salesman (women) at the time. The positive actions of nutritional supplements, minerals, and plant extracts in disease prevention are now mainstream and commercial health claims being made are subject to regulation in most countries. Apart from efficacy and finding, the right dosages, the safety, and especially the level of purification and lack of contamination are all issues that are important as their use becomes widespread. From the mechanistic point of view, most of the time these substances replenish the body's deficiency and restore normal function. However, they also exert actions that are not sensu stricto nutritive and could be considered pharmacological especially that, at times, higher intake than recommended (RDA) is needed to see these effects. Free radicals and neuroinflammation processes underlie many neurodegenerative conditions, even Parkinson's disease and Alzheimer's disease. Curcumin, carotenoids, acetyl-L-carnitine, coenzyme Q10, vitamin D, and polyphenols and other nutraceuticals have the potential to target multiple pathways in these conditions. In summary, augmenting neuroprotective pathways using diet and finding new natural substances that can be more efficacious, i.e., induction of health-promoting genes and reduction of the expression of disease-promoting genes, could be incorporated into neuroprotective strategies of the future.

  16. Alpha-Synuclein: From Early Synaptic Dysfunction to Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Veronica Ghiglieri

    2018-05-01

    Full Text Available Over the last two decades, many experimental and clinical studies have provided solid evidence that alpha-synuclein (α-syn, a small, natively unfolded protein, is closely related to Parkinson’s disease (PD pathology. To provide an overview on the different roles of this protein, here we propose a synopsis of seminal and recent studies that explored the many aspects of α-syn. Ranging from the physiological functions to its neurodegenerative potential, the relationship with the possible pathogenesis of PD will be discussed. Close attention will be paid on early cellular and molecular alterations associated with the presence of α-syn aggregates.

  17. Genetics Home Reference: beta-propeller protein-associated neurodegeneration

    Science.gov (United States)

    ... signs and symptoms, affected individuals can live into middle age. Death may result from complications of dementia or ... What is precision medicine? What is newborn screening? New Pages RAB18 deficiency Depression Pelizaeus-Merzbacher-like disease ...

  18. Protective Mechanisms of Nitrone Antioxidants in Kainic Acid Induced Neurodegeneration

    National Research Council Canada - National Science Library

    Bing, Guoying

    2001-01-01

    .... This model has been widely used as a model for studying human temporal lobe epilepsy. The delayed neuronal degeneration induced by kainic acid resembles CNS neuronal injury, repair, and plasticity...