WorldWideScience

Sample records for abrasive wear resistance

  1. Polyurethanes from the crystalline prepolymers resistant to abrasive wear

    OpenAIRE

    Domańska Agata; Boczkowska Anna; Izydorzak-Woźniak Marta; Jaegermann Zbigniew; Grądzka-Dahlke Małgorzata

    2014-01-01

    The research aimed at the selection of polyurethanes synthesized from poly(tetramethylene ether) glycol (PTMEG), as well as from two different isocyanates 4,4′-methylenebis(cyclohexyl)isocyanate (HMDI) and 4.4′-methylenebis(phenyl isocyanate) (MDI) in order to obtain polyurethane with increased resistance to abrasive wear and degradation for bio-medical application. Polyurethanes were fabricated from crystalline prepolymers extended by water. The paper presents preliminary results on polyuret...

  2. Standard Test Method for Abrasive Wear Resistance of Cemented

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the determination of abrasive wear resistance of cemented carbides. 1.2 The values stated in inch-pound units are to be regarded as the standard. The SI equivalents of inch-pound units are in parentheses and may be approximate. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  3. Polyurethanes from the crystalline prepolymers resistant to abrasive wear

    Directory of Open Access Journals (Sweden)

    Domańska Agata

    2014-12-01

    Full Text Available The research aimed at the selection of polyurethanes synthesized from poly(tetramethylene ether glycol (PTMEG, as well as from two different isocyanates 4,4′-methylenebis(cyclohexylisocyanate (HMDI and 4.4′-methylenebis(phenyl isocyanate (MDI in order to obtain polyurethane with increased resistance to abrasive wear and degradation for bio-medical application. Polyurethanes were fabricated from crystalline prepolymers extended by water. The paper presents preliminary results on polyurethane surface wettability, friction coefficient for different couples of the co-working materials such as polyurethane-polyurethane, polyurethane-titanium alloy, polyurethane-alumina, in comparison to commonly used polyethylene-titanium alloy. Shear strength of polyurethane-alumina joint, as well as viscosity of prepolymers were also measured. The values of friction coefficient were compared to literature data on commercially available polyurethane with the trade name Pellethane. Polyurethanes obtained are characterized by low abrasive wear and low friction coefficient in couple with the titanium alloy, what makes them attractive as possible components of ceramic-polymer endoprosthesis joints.

  4. Abrasive Wear Resistance of Tool Steels Evaluated by the Pin-on-Disc Testing

    Science.gov (United States)

    Bressan, José Divo; Schopf, Roberto Alexandre

    2011-05-01

    Present work examines tool steels abrasion wear resistance and the abrasion mechanisms which are one main contributor to failure of tooling in metal forming industry. Tooling used in cutting and metal forming processes without lubrication fails due to this type of wear. In the workshop and engineering practice, it is common to relate wear resistance as function of material hardness only. However, there are others parameters which influences wear such as: fracture toughness, type of crystalline structure and the occurrence of hard precipitate in the metallic matrix and also its nature. In the present investigation, the wear mechanisms acting in tool steels were analyzed and, by normalized tests, wear resistance performance of nine different types of tool steels were evaluated by pin-on-disc testing. Conventional tool steels commonly used in tooling such as AISI H13 and AISI A2 were compared in relation to tool steels fabricated by sintering process such as Crucible CPM 3V, CPM 9V and M4 steels. Friction and wear testing were carried out in a pin-on-disc automated equipment which pin was tool steel and the counter-face was a abrasive disc of silicon carbide. Normal load of 5 N, sliding velocity of 0.45 m/s, total sliding distance of 3000 m and room temperature were employed. The wear rate was calculated by the Archard's equation and from the plotted graphs of pin cumulated volume loss versus sliding distance. Specimens were appropriately heat treated by quenching and three tempering cycles. Percentage of alloying elements, metallographic analyses of microstructure and Vickers microhardness of specimens were performed, analyzed and correlated with wear rate. The work is concluded by the presentation of a rank of tool steel wear rate, comparing the different tool steel abrasion wear resistance: the best tool steel wear resistance evaluated was the Crucible CPM 9V steel.

  5. Abrasive Wear Resistance of the Iron- and WC-based Hardfaced Coatings Evaluated with Scratch Test Method

    Directory of Open Access Journals (Sweden)

    A. Vencl

    2013-06-01

    Full Text Available Abrasive wear is one of the most common types of wear, which makesabrasive wear resistance very important in many industries. Thehard facing is considered as useful and economical way to improve theperformance of components submitted to severe abrasive wear conditions, with wide range of applicable filler materials. The abrasive wear resistance of the three different hardfaced coatings (two iron‐based and one WC‐based, which were intended to be used for reparation of the impact plates of the ventilation mill, was investigated and compared. Abrasive wear tests were carried‐out by using the scratch tester under the dry conditions. Three normal loads of 10, 50 and 100 N and the constant sliding speed of 4 mm/s were used. Scratch test was chosen as a relatively easy and quick test method. Wear mechanism analysis showed significant influence of the hardfaced coatings structure, which, along with hardness, has determined coatings abrasive wear resistance.

  6. Relationship among wear-resistance of three-body abrasion,substructure and property in martensite steels

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effects of subsurface hardness on wear-resistance of martensitic steel 20Cr, 40CrSi, 60Mn, T8 and T10 in three-body abrasion under static load was investigated. It shows that the characteristic ofthe subsurface hardness distribution and the abrasive wear resistanceis related to the substructure near the worn surface. The substructure of the tested martensite steel has an apparent relationship with thecarbon content and steels with moderate carbon content and hardness exhibit good resistance to abrasive wear. The competition of the work-hardening effect and the temper softening effect, which resulted from deformation and friction heat generating during abrasive wear is considered to be a main reason for the relation among wear-resistance, hardness and substructure. At the test conditions, the wear-resistance of 40CrSi is the best.

  7. Influence of alumina and titanium dioxide coatings on abrasive wear resistance of AISI 1045 steel

    Science.gov (United States)

    Santos, A.; Remolina, A.; Marulanda, J.

    2016-02-01

    This project aims to compare the behaviour of an AISI 1045 steel's abrasive wear resistance when is covered with aluminium oxide (Al2O3) or Titanium dioxide (TiO2), of nanometric size, using the technique of thermal hot spray, which allows to directly project the suspension particles on the used substrate. The tests are performed based on the ASTM G65-04 standard (Standard Test Method for Measuring Abrasion Using the Dry Sand/Rubber Apparatus). The results show that the amount of, lost material increases linearly with the travelled distance; also determined that the thermal treatment of hardening-tempering and the alumina and titanium dioxide coatings decrease in average a 12.9, 39.6 and 29.3% respectively the volume of released material during abrasive wear test.

  8. The structure and properties of steel with different pearlite morphology and its resistance to abrasive wear

    Directory of Open Access Journals (Sweden)

    J. Herian

    2008-06-01

    Full Text Available Purpose: The analyse of pearlite morphology changes as a result of hot rolling process and isothermal annealing.Design/methodology/approach: Physical modelling of isothermal annealing for a transition point of520-620°C was carried out using a Gleeble simulator. A scanning electron microscope was used for a quantitativeevaluation of the microstructure.Findings: The obtained test results confirm that these methods can be effectively used in shaping the pearliticstructure and properties of the steel. During numerical simulation of a ride of a rail-vehicle through a switch, theload acting on a block section being part of the vehicle structure was determined. The load values were used insimulation of the resistance to abrasive wear, which was carried out in physical simulation.Practical implications: In physical modelling of tests of resistance to abrasive wear for the steel grade R260after hot rolling and isothermal annealing it has been proved that this feature is a function of the steel structure andproperties in the given operation conditions (load and slide magnitude. Abrasive wear of the rail steel is the moreintensive, the larger the load at a constant slide is.Originality/value: An advantageous pearlitic morphology of steel (block sections with interlamellar distance inthe order of 0.12-0.13 μm, ensuring hardness of about 340-350 HB, is facilitated by a hot rolling process combinedwith isothermal annealing.

  9. The abrasive wear dependence research on chemical constitution, hardness and resistance of alloy cast steel Cr-Mo-V-Cu-Ni type

    International Nuclear Information System (INIS)

    In the work there are research program elements, alloying elements contents influence on abrasive wear for hot work. The aim of research is to define the hardness influence, resistance and contents of Cr, Mo, V on alloy cast steel abrasive wear Cr-Mo-V-Cu-Ni. (author)

  10. Analysis Of The Austenite Grain Growth In Low-Alloy Boron Steel With High Resistance To Abrasive Wear

    OpenAIRE

    Białobrzeska B.; Dudziński W.

    2015-01-01

    Today low-alloy steels with boron achieve high resistance to abrasive wear and high strength. These features are obtained by using advanced technology of manufacturing. This makes boron steels increasingly popular and their application more diverse. Application of these steels can extend the lifetime of very expensive machine construction in many industries such as mining, the automotive, and agriculture industries. An interesting subgroup of these materials is steel with boron intended for h...

  11. The structure, properties and a resistance to abrasive wear of railway sections of steel with a different pearlite morphology

    International Nuclear Information System (INIS)

    The article presents the characteristics of pearlite rail steels used in the construction of railways. The article discusses the influence of isothermal annealing process parameters on the pearlite morphology and properties of the R260 steel. The pearlite structure with a diverse pearlite morphology was obtained in the physical modeling of the isothermal annealing on the 3800 Gleeble Simulator. After the heat treatment, the existence of the pearlite microstructure with pearlite colonies was identified. They were smaller in relation to colonies after the hot rolling process. It was shown that the reduction of isothermal holding temperature influences the decrease of the interlamellar distance in the pearlite steel. On the basis of the received results, the dependences between the resistance to the abrasive wear and the pearlite morphology for operational conditions occurring in the switches were estimated. The resistance to the abrasive wear tests were conducted for steel with a different morphology of pearlite on the Amsler stand in conditions of rolling- sliding frictions. The resistance to the abrasive wear of R260 steel with a different pearlite morphology increases, when the interlamellar distance in cementite decreases and decreases as the load and slip increase.

  12. Improvement in Abrasion Wear Resistance and Microstructural Changes with Deep Cryogenic Treatment of Austempered Ductile Cast Iron (ADI)

    Science.gov (United States)

    Šolić, Sanja; Godec, Matjaž; Schauperl, Zdravko; Donik, Črtomir

    2016-10-01

    The application of a deep cryogenic treatment during the heat-treatment processes for different types of steels has demonstrated a significant influence on their mechanical and tribological properties. A great deal of research was conducted on steels, as well as on other kinds of materials, such as hard metal, gray cast iron, aluminum, aluminum alloys, etc., but not on austempered ductile iron (ADI). In this research the influence of a deep cryogenic treatment on the microstructure and abrasive wear resistance of austempered ductile iron was investigated. The ductile cast iron was austempered at the upper ausferritic temperature, deep cryogenically treated, and afterwards tempered at two different temperatures. The abrasion wear resistance was tested using the standard ASTM G65 method. The microstructure was characterized using optical microscopy, field-emission scanning electron microscopy, electron back-scattered diffraction, and X-ray diffraction in order to define the microstructural changes that influenced the properties of the ADI. The obtained results show that the deep cryogenic treatment, in combination with different tempering temperatures, affects the matrix microstructure of the austempered ductile iron, which leads to an increase in both the abrasion wear resistance and the hardness.

  13. Measurement of the Resistance of Treated Metal Foils to Scrubbing Abrasion Using a Modified Reciprocating Wear Test

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun [ORNL; Blau, Peter Julian [ORNL; Sikka, Vinod K [ORNL

    2007-01-01

    A reciprocating wear test method has been developed to evaluate the resistance of metal foils to scrubbing abrasion. Development included the definition of a quantitative measure of the scrubbing resistance. In order to test the ability of the new method to differentiate between surface treatments, four versions of Type 316 stainless steel foils were tested: annealed (A-NT), cold-worked (C-NT), annealed plus a case-hardened (A-T), and cold-worked plus case-hardened (C-T). Measurements were made of their scrubbing resistance using commercial kitchen scrub pads as the counterface material. Results showed that the case-hardening process significantly increased the scrubbing resistance both under dry conditions and with cleaning solutions to lubricate the contact. While this linearly-reciprocating method does not simulate the circular, overlapping motion commonly occurring in service, results indicated that the new test method could sufficiently discriminate levels of two-body abrasion behavior, and therefore can be useful for studying the effects of surface treatments on abrasion resistance.

  14. Impact-abrasion and abrasion of WC-Co: wear mechanisms in severe environments

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Wilson, Rick D.; Osara, K. (Outokumpu Research Oy)

    2003-10-01

    Hard and super-hard materials have very good abrasive wear resistance. However, in many severe wear environments that make use of these materials, impact is a significant component of that environment. Consequently, the behavior of many of these hard materials in impact-wear conditions need to be understood with respect to the mechanisms of material removal such small scale fracture and subsequent crack growth in the carbide. This study details the behavior of several ?hard? materials in abrasion and impact-abrasion focusing on the mechanisms of material removal due to impact and abrasion.

  15. Analysis Of The Austenite Grain Growth In Low-Alloy Boron Steel With High Resistance To Abrasive Wear

    Directory of Open Access Journals (Sweden)

    Białobrzeska B.

    2015-09-01

    Full Text Available Today low-alloy steels with boron achieve high resistance to abrasive wear and high strength. These features are obtained by using advanced technology of manufacturing. This makes boron steels increasingly popular and their application more diverse. Application of these steels can extend the lifetime of very expensive machine construction in many industries such as mining, the automotive, and agriculture industries. An interesting subgroup of these materials is steel with boron intended for heat treatment. These steels are supplied by the manufacturer after cold or hot rolling so that it is possible for them to be heat treated in a suitable manner by the purchaser for its specific application. Very important factor that determines the mechanical properties of final product is austenite grain growth occurring during hot working process such us quenching or hot rolling. Investigation of the effect of heating temperature and holding time on the austenite grain size is necessary to understand the growth behavior under different conditions. This article presents the result of investigation of austenite grain growth in selected low-allow boron steel with high resistance to abrasive wear and attempts to describe the influence of chemical composition on this process.

  16. Abrasive Wear Map of Polymer Tapes in Sand Dust Environment

    Institute of Scientific and Technical Information of China (English)

    WU Tong-hai; DIAO Dong-feng

    2006-01-01

    To make clear the wear conditions of ATM (Automatic Teller Machine) tribosystem when servicing in Chinese sand dust environment, abrasive wear of two kinds of polymer tapes specified for ATM, PI (Polyimide) and PEN (Polyethylene-2, 6-naphthalenedicarboxylate), was investigated in simulated sand dust environment with ATM tape-scraper tribosystem under various conditions of loads and sliding distances. The surface profiles of worn tape were measured with a surface profiler in order to calculating the wear cross-section areas and the wear volumes. The specific wear rates of polymer tapes were calculated under load conditions of 0.6, 1 and 1.5 N, and wear mechanisms were investigated with optical topography photos. As main results, the specific wear rates show stage variations in the wear process and the wear resistance of polymer tape shows good relationship with the mechanical deformation factors. In consideration of the service life, four wear models are generalized according to the magnitude of specific wear rates,which include no wear, mild wear, normal wear and severe wear model and the corresponding wear mechanisms for the four wear models are discussed with typical worn topographies. Based on the wear models and corresponding wear mechanisms, the abrasive wear maps of two polymer tapes servicing in sand dust environments are concluded for its industrial applications.

  17. Abrasive wear and surface roughness of contemporary dental composite resin.

    Science.gov (United States)

    Han, Jian-min; Zhang, Hongyu; Choe, Hyo-Sun; Lin, Hong; Zheng, Gang; Hong, Guang

    2014-01-01

    The purpose of this study was to evaluate the abrasive wear and surface roughness of 20 currently available commercial dental composite resins, including nanofilled, supra-nanofilled, nanohybrid and microhybrid composite resins. The volume loss, maximum vertical loss, surface roughness (R(a)) and surface morphology [Scanning electron microscopy (SEM)] were determined after wear. The inorganic filler content was determined by thermogravimetric analysis. The result showed that the volume loss and vertical loss varied among the materials. The coefficients of determination (R(2)) of wear volume loss and filler content (wt%) was 0.283. SEM micrographs revealed nanofilled composites displayed a relatively uniform wear surfaces with nanoclusters protrusion, while the performance of nanohybrid composites varied. The abrasive wear resistance of contemporary dental composite resins is material-dependent and cannot be deduced from its category, filler loading and composite matrix; The abrasive wear resistance of some flowable composites is comparable to the universal/posterior composite resins.

  18. Microstructure and Abrasive Wear Resistance of 18Cr-4Ni-2.5Mo Cast Steel

    Directory of Open Access Journals (Sweden)

    B. Kalandyk

    2012-12-01

    Full Text Available An influence of a decreased Cr content on the microstructure of the highly alloyed Cr-Ni cast steel, duplex type, melted under laboratoryconditions, was characterized in the paper. The microstructure investigations were performed in the initial state and after the heat treatment (solution annealing at 1060C as well as the phase transformation kinetics at continuous cooling was measured. The wear resistance of the investigated cast steel was tested and compared with the 24%Cr-5%Ni-2.5%Mo cast steel.The Cr content decrease, in ferritic-austenitic cast steels (duplex, from 24-26%Cr to 18% leads to the changes of the castingsmicrostructure and eliminating of a brittle  phase. In dependence of the casting cooling rate, apart from ferrite and austenite, also fine martensite precipitates occur in the casting structure. It was shown that the investigated cast steel is characterised by a slightly lower wear resistance than the typical cast steel duplex grades.

  19. Abrasive Wear of Digger Tooth Steel

    Directory of Open Access Journals (Sweden)

    Hussein Sarhan sarhan, Nofal Al-Araji, Rateb Issa , Mohammad Alia

    2011-08-01

    Full Text Available The influence of silicon carbide SiC abrasive particles of 20, 30, 40, 50 and60μm size on carburized digger tooth steel was studied. Four types of steel, withdifferent hardness, were tested at two constant linear sliding speeds and undervarious loads of 10, 20, 30, 40 and 50N. Tests were carried out for sliding time of0.5, 1.0, 1.5, 2.0 and 2.5min. Experimental results showed that there wasconsistent reduction in abrasive wear as the hardness of the materials wasincreased. It was found that wear increased with the increase of applied load,linear sliding speed and sliding time. Also, it was noticed that the wear increasedwith increase in abrasive particle size, and the most effective size was 40 μm.SEM observations of the worm surface showed that the cutting and ploughingwere the dominant abrasive wear mechanisms.

  20. Third abrasive wear mode: is it possible?

    Directory of Open Access Journals (Sweden)

    Ronaldo Câmara Cozza

    2014-04-01

    Full Text Available The objective of this paper is to propose an initial discussion on the characterization of a third abrasive wear mode. The results obtained in a previous work [1] under different test conditions revealed the occurrence of the superposition of the “rolling” and “grooving” abrasive wear modes. This phenomenon was denoted “micro-rolling abrasion” due to the observation that “rolling abrasion” was found to act on “grooving abrasion”.

  1. Development of the white cast iron with niobium alloy, heat treating, to wear of the abrasive resistance

    International Nuclear Information System (INIS)

    This work presents the heat treatment and abrasion tests results of a white cast iron with niobium alloy. The hardening heat treatment were made 950, 1000, 1050 e 110 deg C temperatures cooled by forced air. The tempering treatment were made at 450, 500 e 550 deg C temperatures. The heat treating alloy were compared, in the abrasive tests, with commercial alloys used as hardfacing by welding process in wear pieces. The abrasion tests was realized in pin on disk test. Additional tests were carried out for microstructural characterization to identify the different phases presents in the alloys. In a general way, the alloy studies showed the best wear rate for the heat treatments that results in higher hardness. It performance was superior than that of the commercial alloys. (author)

  2. Concrete ice abrasion rig and wear measurements

    NARCIS (Netherlands)

    Shamsutdinova, G.; Rike, P.B.; Hendriks, M.A.N.; Jacobsen, S.

    2015-01-01

    The wear of concrete material due to ice movement is a challenge for offshore and coastal structures. Concrete surfaces exposed to moving ice are subjected to wear at various rates depending on concrete and ice properties. At NTNU, Department of Structural Engineering, concrete ice abrasion phenomen

  3. Abrasive wear property of laser melting/deposited Ti2Ni/TiNi intermetallic alloy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A wear resistant intermetallic alloy consisting of TiNi primary dendrites and Ti2Ni matrix was fabricated by the laser melting deposition manufacturing process. Wear resistance of Ti2Ni/TiNi alloy was evaluated on an abrasive wear tester at room temperature under the different loads. The results show that the intermetallic alloy suffers more abrasive wear attack under low wear test load of 7, 13 and 25 N than high-chromium cast-iron. However, the intermetallic alloy exhibits better wear resistance under wear test load of 49 N. Abrasive wear of the laser melting deposition Ti2Ni/TiNi alloy is governed by micro-cutting and plowing.Pseudoelasticity of TiNi plays an active role in contributing to abrasive wear resistance.

  4. Characteristics and mechanism of abrasive wear for thermoplastic polymers

    Institute of Scientific and Technical Information of China (English)

    Xian Jia; Xiaomei Ling

    2003-01-01

    Abrasive wear characteristics of polyethylene, polystyrene, polymethylmethacrylate, nylon 1010 and polyvinyl chloride were investigated. The volume relative wear resistance coefficients of these thermoplastic polymers are 18%-35 % (hardened and low temperature tempered steel 45 was used as a comparing material), and have a linear correlation with square roots of their cohesive energy densities. The coefficients of linear correlation is 0.949. Wear morphologies were observed by scanning electron microscope (SEM). Main wear mechanism of the thermoplastic polymers includes brittle breaking for the hard and brittle polymers & plowing and fatiguing for the soft and tough ones.

  5. Comprehensive study of the abrasive wear and slurry erosion behavior of an expanded system of high chromium cast iron and microstructural modification for enhanced wear resistance

    Science.gov (United States)

    Chung, Reinaldo Javier

    High chromium cast irons (HCCIs) have been demonstrated to be an effective material for a wide range of applications in aggressive environments, where resistances to abrasion, erosion and erosion-corrosion are required. For instance, machinery and facilities used in mining and extraction in Alberta's oil sands suffer from erosion and erosion-corrosion caused by silica-containing slurries, which create challenges for the reliability and maintenance of slurry pumping systems as well as other processing and handling equipment. Considerable efforts have been made to determine and understand the relationship between microstructural features of the HCCIs and their wear performance, in order to guide the material selection and development for specific service conditions with optimal performance. The focus was previously put on a narrow group of compositions dictated by ASTM A532. However, with recent advances in casting technology, the HCCI compositional range can be significantly expanded, which potentially brings new alloys that can be superior to those which are currently employed. This work consists of three main aspects of study. The first one is the investigation of an expanded system of white irons with their composition ranging from 1 to 6 wt.% C and 5 to 45 wt.% Cr, covering 53 alloys. This work has generated wear and corrosion maps and established correlation between the performance and microstructural features for the alloys. The work was conducted in collaboration with the Materials Development Center of Weir Minerals in Australia, and the results have been collected in a database that is used by the company to guide materials selection for slurry pump components in Alberta oil sands and in other mining operations throughout the world. The second part consists of three case studies on effects of high chromium and high carbon, respectively, on the performance of the HCCIs. The third aspect is the development of an approach to enhance the wear resistance of

  6. Usage of abrasion-resistant materials in agriculture

    Directory of Open Access Journals (Sweden)

    J Votava

    2014-06-01

    Full Text Available Agricultural soil-processing machines are subject to an extensive abrasive wear. This paper analyses technical materials and their fitness to exchangeable parts of plough bottoms, such as edge-tools and whole plough cutting edges. There were tested abrasion-resistant steels with different microstructures: austenite, martensite-bainite, and carbide. Steel with the pearlite-ferrite structure was used as an etalon. Abrasion resistance tests were processed in compliance with the norm CSN 01 5084, which is a test of abrasion wear on abrasive cloth.

  7. Abrasive Wear Behavior of High Chromium Cast Iron and Hadfield Steel-- A Comparison

    Institute of Scientific and Technical Information of China (English)

    Mehdi Mazar Atabaki; Sajjad Jafari; Hassan Abdollah-pour

    2012-01-01

    Wear properties of two different crushers used for grinding raw materials of cement industry are compared using pin-on-disk wear test.The wear test was carried out with different loads on a pin.Abrasive wear behavior of two alloys was evaluated by comparing mass loss,wear resistance,microhardness and friction coefficient.The microstructure of the specimens was detected using optical microscope.The results showed that abrasive wear of high chromium cast iron is lower than that of Hadfield steel.Due to the presence of M7C3 carbides on the high chromium cast iron matrix,impact crushers exhibited higher friction coefficient

  8. Abrasive wear response of aluminium alloy-sillimanite particle reinforced composite under low stress condition

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M. [Regional Research Laboratory (CSIR), Hoshangabad Road, Near Habibganj Naka, Bhopal 462 026 (India)]. E-mail: mulayam_singh@hotmail.com; Mondal, D.P. [Regional Research Laboratory (CSIR), Hoshangabad Road, Near Habibganj Naka, Bhopal 462 026 (India); Das, S. [Regional Research Laboratory (CSIR), Hoshangabad Road, Near Habibganj Naka, Bhopal 462 026 (India)

    2006-03-15

    The abrasive wear behaviour of aluminium alloy-sillimanite particle reinforced composite under low stress condition has been reported and the results have been compared with the corresponding matrix alloy which was produced and cast under similar conditions. The study showed that wear resistance (inverse of wear rate) of the composite was higher than the matrix alloy. The wear rate decreased with sliding distance and increased with applied load irrespective of materials. The worn surfaces and subsurfaces of the tested samples were examined in the scanning electron microscope in order to understand the material removal mechanism during low stress abrasive wear process.

  9. Research on the abrasive wear resistance of YDCrMoV coating produced by CO2 shielded flux-cored wire surfacing

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Caterpillar construction machines play an important part in many fields such as hydraulic and electric engineering, the construction of highway, for its particular of structure. The walking system of caterpillar construction machines is always under the condition of three-body abrasive wear. The abrasive wear of walking system is very severe, which always results in damages of components or structures of walking system of caterpillar construction machines. It is very important to repair the walking system by cladding technique. The abrasive wear properties of four kinds coatings produced by the shielded flux-cored wire surfacing for the repair of the damaged components of walking system of caterpillar construction machines have been studied experimentally on an MLS-23 type wet sand rubber wheel abrasive tester. The surfaces morphologies of the abrasively worn specimens and their microstructures are investigated by transmitting electron microscopy (TEM) after wear testing. Results show that the wear mechanism of cladding metals of the flux-cored wire No.1 and the No.2 is micro-cutting while that of the No.3 and the No.4 is micro-ploughing. The four kinds of flux-cored wire coatings present great potential applications for the repairing of caterpillar construction machines in the Three Gorges Engineering.

  10. Optimization of tribological parameters in abrasive wear mode of carbon-epoxy hybrid composites

    International Nuclear Information System (INIS)

    Highlights: • Optimization of factors affecting abrasive wear of hybrid composite. • Experimental studies integrated with Taguchi based grey analysis and ANOVA. • Abrasive wear resistance improved with the addition of filler. • Wear rate depends on filler loading, grit of abrasive paper and type of filler. - Abstract: Abrasive wear performance of fabric reinforced composites filled with functional fillers is influenced by the properties of the constituents. This work is focused on identifying the factors such as filler type, filler loading, grit size of SiC paper, normal applied load and sliding distance on two-body abrasive wear behaviour of the hybrid composites. Abrasive wear tests were carried on carbon fabric reinforced epoxy composite (C-E) filled with filler alumina (Al2O3) and molybdenum disulphide (MoS2) separately in different proportions, using pin-on-disc apparatus. The experiments were planned according to Taguchi L18 orthogonal array by considering five factors, one at two levels and the remaining at three levels, affecting the abrasion process. Grey relational analysis (GRA) was employed to optimize the tribological parameters having multiple-response. Analysis of variance (ANOVA) was employed to determine the significance of factors influencing wear. Also, the comparative specific wear rates of all the composites under dry sliding and two-body abrasive wear were discussed. The analysis showed that the filler loading, grit size and filler type are the most significant factors in controlling the specific wear rate of the C-E composite. Optimal combination of the process parameters for multi performance characteristics of the composite under study is the set with filler type as MoS2, filler loading of 10 wt.%, grit size 320, load of 15 N and sliding distance of 30 m. Further, the optimal parameter setting for minimum specific wear rate, coefficient of friction and maximum hardness were corroborated with the help of scanning electron micrographs

  11. Abrasive wear behavior of heat-treated ABC-silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao Feng; Lee, Gun Y.; Chen, Da; Ritchie, Robert O.; De Jonghe, Lutgard C.

    2002-06-17

    Hot-pressed silicon carbide, containing aluminum, boron, and carbon additives (ABC-SiC), was subjected to three-body and two-body wear testing using diamond abrasives over a range of sizes. In general, the wear resistance of ABC-SiC, with suitable heat treatment, was superior to that of commercial SiC.

  12. Abrasive wear characteristics and mechanisms of Al2O3/PA1010 composite coatings

    Institute of Scientific and Technical Information of China (English)

    JIA Xian; LING Xiaomei

    2004-01-01

    The abrasive wear characteristics of Al2O3/PA1010 composite coatings on the surface of quenched and low-temperature temper steel 45 were tested on the mmplate abrasive wear testing machine and the same uncoated steel 45 was used as a reference material. Experimental results showed that the abrasive wear resistance of Al2O3//PAl010 composite coatings has a good linear relationship with the volume fraction of Al2O3 particles in Al2O3/PAl010 composite coatings, and the linear correlative coefficient is 0.979. Under the experimental conditions, the size of Al2O3 particles (40.5-161.0 μm) has little influence on the abrasive wear resistance of Al2O3/PA l010 composite coatings. By treating the surface of Al2O3 particles with a suitable bonding agent, the distribution of Al2O3 particles in matrix PAl010 is more homogeneous and the bonding state between Al2O3 particles and matrix PAl010 is better. Therefore, the ml2O3 particles in Al2O3/PA1010 composite coatings make the Al2O3/PAl010 composite coatings have better abrasive wear resistance than PA1010 coatings. The wear resistance of Al2O3/PA 1010 composite coatings is about 45% compared with that of steel 45.

  13. Wear characterization of abrasive waterjet nozzles and nozzle materials

    Science.gov (United States)

    Nanduri, Madhusarathi

    Parameters that influence nozzle wear in the abrasive water jet (AWJ) environment were identified and classified into nozzle geometric, AWJ system, and nozzle material categories. Regular and accelerated wear test procedures were developed to study nozzle wear under actual and simulated conditions, respectively. Long term tests, using garnet abrasive, were conducted to validate the accelerated test procedure. In addition to exit diameter growth, two new measures of wear, nozzle weight loss and nozzle bore profiles were shown to be invaluable in characterizing and explaining the phenomena of nozzle wear. By conducting nozzle wear tests, the effects of nozzle geometric, and AWJ system parameters on nozzle wear were systematically investigated. An empirical model was developed for nozzle weight loss rate. To understand the response of nozzle materials under varying AWJ system conditions, erosion tests were conducted on samples of typical nozzle materials. The effect of factors such as jet impingement angle, abrasive type, abrasive size, abrasive flow rate, water pressure, traverse speed, and target material was evaluated. Scanning electron microscopy was performed on eroded samples as well as worn nozzles to understand the wear mechanisms. The dominant wear mechanism observed was grain pullout. Erosion models were reviewed and along the lines of classical erosion theories a semi-empirical model, suitable for erosion of nozzle materials under AWJ impact, was developed. The erosion data correlated very well with the developed model. Finally, the cutting efficiency of AWJ nozzles was investigated in conjunction with nozzle wear. The cutting efficiency of a nozzle deteriorates as it wears. There is a direct correlation between nozzle wear and cutting efficiency. The operating conditions that produce the most efficient jets also cause the most wear in the nozzle.

  14. Effect of cerium on abrasive wear behaviour of hardfacing alloy

    Institute of Scientific and Technical Information of China (English)

    XING Shule; YU Shengfu; DENG Yu; DAI Minghui; YU Lu

    2012-01-01

    Hardfacing alloys with different amounts of ceria were prepared by self-shielded flux cored arc welding.The abrasion tests were carried out using the dry sand-rubber wheel machine according to JB/T 7705-1995 standard.The hardness of hardfacing deposits was measured by means of HR-150AL Rockwell hardness test and the fracture toughness was measured by the indentation method.Microstructure characterization and surface analysis were made using optical microscopy,scanning electron microscopy (SEM) and energy spectrum analysis.The results showed that the wear resistance was determined by the size and distribution of the carbides,as well as by the matrix microstructure.The main wear mechanisms observed at the surfaces included micro-cutting and micro-ploughing of the matrix.The addition of ceria improved the hardness and fracture toughness of hardfacing deposits,which would increase the resistance to plastic deformation and scratch,thus the wear resistance of hardfacing alloys was improved.

  15. Two-body, dry abrasive wear of Fe/Cr/C experimental alloys - relationship between microstructure and mechanical properties

    International Nuclear Information System (INIS)

    A systematic study of abrasive wear resistance of Fe/Cr/Mn based alloys has been carried out using a two body pin-on-disc wear machine. Abrasives used were silicon carbide, alumina and quartz. The objective of this study was to evaluate the abrasive wear resistance and to investigate the relationships between microstructure, mechanical properties, and abrasive wear resistance for these experimental alloys. Several commercial alloys were also tested to provide a basis for comparison. The goal of this study was to develop information so as to improve wear resistance of these experimental alloys by means of thermal treatments. Grain-refinement by double heat treatment was carried out in this research

  16. Dynamic Mechanical Analysis and Three-Body Abrasive Wear Behaviour of Thermoplastic Copolyester Elastomer Composites

    Directory of Open Access Journals (Sweden)

    Hemanth Rajashekaraiah

    2014-01-01

    Full Text Available Various amounts of short fibers (glass and carbon and particulate fillers like polytetrafluoroethylene (PTFE, silicon carbide (SiC, and alumina (Al2O3 were systematically introduced into the thermoplastic copolyester elastomer (TCE matrix for reinforcement purpose. The mechanical properties such as storage modulus, loss modulus, and Tan δ by dynamic mechanical analysis (DMA and three-body abrasive wear performance on a dry sand rubber wheel abrasion tester have been investigated. For abrasive wear study, the experiments were planned according to L27 orthogonal array by considering three factors and three levels. The complex moduli for TCE hybrid composites were pushed to a higher level relative to the TCE filled PTFE composite. At lower temperatures (in the glassy region, the storage modulus increases with increase in wt.% of reinforcement (fiber + fillers and the value is maximum for the composite with 40 wt.% reinforcement. The loss modulus and damping peaks were also found to be higher by the incorporation of SiC and Al2O3 microfillers. The routine abrasive wear test results indicated that TCE filled PTFE composite exhibited better abrasion resistance. Improvements in the abrasion resistance, however, have not been achieved by short-fiber and particlaute filler reinforcements. From the Taguchi’s experimental findings, optimal combination of control factors were obtained for minimum wear volume and also predictive correlations were proposed. Further, the worn surface morphology of the samples was discussed.

  17. Effect of Pearlite Interlamellar Spacing on Predominant Abrasive Wear Mechanism of Fully Pearlitic Steel

    Institute of Scientific and Technical Information of China (English)

    J. Ahmadi; M. Monirvaghefi; M. Salehi; B. Niroumand

    2004-01-01

    The aim of this investigation was the determination of the predominant wear mechanism on three-body abrasion of fully pearlitic low alloy steel. Furthermore, the effect of pearlite interlamellar spacing on wear behavior was investigated.For this purpose, the samples were subjected to the different heat treating to attaining different interlamellar spacing.Mechanical properties such as hardness, yield strength, tensile strength, elongation, and impact toughness were evaluated.Three body abrasion tests were conducted under ASTM standard condition using a rubber wheel abrasion test apparatus.Abraded surface and wear debris were investigated by light optical microscopy and scanning electron microscopy.The results showed that wear resistance of fully pearlitic steel depended to pearlite interlamellar spacing the and lower spacing has the greater wear resistance, so it may be due to subsurface work hardening and interlamellar spacing and cementite in fine and/or coarse pearlite, that influence on surface destruction during wear. Although during wear process the several mechanisms play roles, but study of surface and debris shows that with decreasing interlamellar spacing, the predominant mechanism wear changed from ploughing to cutting mode.

  18. Microstructure and abrasion wear behavior of Ni-based laser cladding alloy layer at high temperature

    Institute of Scientific and Technical Information of China (English)

    LIU Yong; LIU Su-qin; WANG Shun-xing

    2005-01-01

    Ni-based alloy coating on 21-4-N heat-resistant steel was prepared using CO2 laser, and the high-temperature abrasion wear was tested. The microstructure of this cladding layer and its abrasion wear behavior at high temperature by changing compositions and temperatures were investigated by means of optical microscope and scanning electron microscope. Among the three compositions of cladding layer, i.e. Ni21+20%WC+0.5%CeO2, Ni25+20%WC+0.5%CeO2 and Ni60+20%WC+0.5%CeO2, the experimental results show that Ni21+20%WC+0.5%CeO2 cladding layer is made up of finer grains, and presents the best abrasion wear behavior at high temperature. The wear pattern of laser cladding layer is mainly grain abrasion at lower temperature, and it would be changed to adhesive abrasion and oxide abrasion at higher temperature.

  19. 低压等离子喷涂MoB/CoCr涂层的组织及耐磨性%Microstructure and Abrasive Wear Resistance of MoB/CoCr Coatings by LPPS

    Institute of Scientific and Technical Information of China (English)

    陈枭; 纪岗昌; 王洪涛

    2012-01-01

    MoB/CoCr coatings were prepared by low pressure plasma spraying(I.PPS), the abrasive wear experiment was investigated. The surface and cross sectional morphologies of the MoB/CoCr coatings were observed by SEM. The properties of microhardness And bond strength of the MoB/CoCr coatings were iested. The abrasive wear properties were evaluated by MLS-225 wet sand rubber wheel tester. The results show that MoB/CoCr coatings are dense and have excellent mechanical properties with high microhardness(930HV0. 3) and bond strength(71 Mpa). The MoB/CoCr coatings have high abrasive wear resistance property.%采用低压等离子喷涂技术(LPPS)制备MoB/CoCr潦层,对涂层进行磨粒磨损试验研究.采用SEM观察涂层的表面和截面形貌,显微硬度计测试潦层的力学性能,湿式橡胶轮磨粒磨损试验机测试潦层的磨粒磨损性能.结果表明,涂层组织致密,呈层状结构;涂层具有良好的力学性能,显微硬度达到930HV0.3,结合强度在71MPa以上,具有较高的耐磨性能.

  20. Abrasive wear behaviour of bio-active glass ceramics containing apatite

    Indian Academy of Sciences (India)

    I Sevim; M K Kulekci

    2006-06-01

    In this study, abrasive wear behaviour of bio-active glass ceramic materials produced with two different processes is studied. Hot pressing process and conventional casting and controlled crystallization process were used to produce bio-active ceramics. Fracture toughness of studied material was calculated by fracture toughness equations using experimental hardness results of the bio-active glass ceramic material. Two fracture toughness equations in the literature were used to identify the wear behaviour of studied ceramics. Wear resistance results that identified with both of the equations were similar. The results showed that the abrasive wear resistance of the bio-active glass ceramics produced with hot pressing process was found to be higher than that of the ceramics produced by conventional casting and controlled crystallization process.

  1. Sliding and Abrasive Wear Behavior of WC-CoCr Coatings with Different Carbide Sizes

    Science.gov (United States)

    Thakur, Lalit; Arora, Navneet

    2013-02-01

    This study examines the sliding and abrasive wear behaviors of high-velocity oxy-fuel (HVOF)-sprayed WC-CoCr coatings with different WC grain sizes. The HVOF coating deposition was assisted by in-flight particle temperature and velocity measurement system. The powder feedstocks and their corresponding coatings were characterized by means of XRD and Field Emission Scanning Electron Microscope analysis. Hardness, porosity, and indentation fracture toughness of these coatings were calculated and compared with each other. Sliding wear resistance of these coatings was calculated using pin-on-disk tribometer (ASTM G99-90). The two-body abrasion was quantified by sliding the samples over silicon carbide (SiC) abrasive paper bonded to a rotating flat disk of auto-polisher. The mechanism of materials' removal in both the sliding and abrasive wears was studied and discussed on microstructural investigations. It was observed that fine grain WC-CoCr cermet coating exhibits higher sliding and abrasive wear resistances as compared with conventional cermet coating.

  2. Effects of hybrid composition of LCP and glass fibres on abrasive wear of reinforced LLDPE

    Indian Academy of Sciences (India)

    S A R Hashmi; Ajay Naik; Navin Chand

    2006-02-01

    The hybrid of liquid crystalline polymer (LCP) fibres and glass fibres (GF) provide a combination of modulus and toughness to semi-crystalline linear-low-density-polyethylene (LLDPE). LCP and GF fibres reinforced composites were studied using two-body abrasion tester under different applied loads. Two sets of fibre reinforced LLDPE, 10 and 20 vol%, were investigated. The contents of LCP and glass fibres were varied as 25, 50, 75 and 100 vol% of overall volume of fibres in LLDPE. The effect of replacing glass fibre with LCP fibre on wear is reported. Wear loss increased with the applied loads and glass fibre contents in LLDPE. The replacements of glass fibres with LCP fibres improved abrasive wear resistance of composite. The composite containing 20 vol% of glass fibres in LLDPE showed the specific wear rate nearly double to that of LCP fibre reinforced LLDPE. Incorporation of LCP fibre improved wear resistance of glass fibre reinforced LLDPE. Worn surfaces were studied using SEM. Glass fibres were broken in small debris and removed easily whereas LCP fibres yielded to fibrillation during abrasive action. The overall wear rate was governed by the composition and test conditions.

  3. Comparison between PEEK and Ti6Al4V concerning micro-scale abrasion wear on dental applications.

    Science.gov (United States)

    Sampaio, M; Buciumeanu, M; Henriques, B; Silva, F S; Souza, J C M; Gomes, J R

    2016-07-01

    In the oral cavity, abrasive wear is predictable at exposed tooth or restorative surfaces, during mastication and tooth brushing. Also, wear can occur at contacting surfaces between the Ti-based prosthetic structures and implants in presence of abrasive compounds from food or toothpaste. Thus, the aim of this work was to compare the abrasive wear resistance of PEEK and Ti6Al4V on three-body abrasion related to different hydrated silica content and loads. Surfaces of Ti6Al4V or PEEK cylinders (8mm diameter and 4mm height) were wet ground on SiC papers and then polished with 1µm diamond paste. After that, surfaces were ultrasonically cleaned in propyl alcohol for 15min and then in distilled water for 10min. Micro-scale abrasion tests were performed at 60rpm and on different normal loads (0.4, 0.8 or 1.2N) after 600 ball revolutions using suspensions with different weight contents of hydrated silica. After abrasive tests, wear scars on flat samples were measured to quantify the wear volume and characterized by scanning electron microscope (SEM) to identify the dominant wear mechanisms. Results showed a higher volume loss rate on PEEK than that recorded on Ti6Al4V,, when subjected to three-body abrasion tests involving hydrated silica suspensions. An increase in volume loss was noted on both tested materials when the abrasive content or load was increased. PEEK was characterized by less wear resistance than that on Ti6Al4V after micro-scale abrasion wear in contact with hydrated silica particles, as commonly found in toothpastes. PMID:26849309

  4. Abrasive Wear Behaviour of COPPER-SiC and COPPER-SiO2 Composites

    Science.gov (United States)

    Umale, Tejas; Singh, Amarjit; Reddy, Y.; Khatitrkar, R. K.; Sapate, S. G.

    The present paper reports abrasive wear behaviour of copper matrix composites reinforced with silicon carbide and silica particles. Copper - SiC (12%) and Copper-SiO2 (9%) composites were prepared by powder metallurgical technique. Metallography, image analysis and hardness studies were carried out on copper composites. The abrasive wear experiments were carried out using pin on disc apparatus. The effect of sliding distance and load was studied on Copper - SiC (12%) and Copper-SiO2 (9%) composites. The abrasive wear volume loss increased with sliding distance in both the composites although the magnitude of increase was different in each case. Copper - SiC (12%) composites exhibited relatively better abrasion resistance as compared to and Copper-SiO2 (9%) composites. The abraded surfaces were observed under scanning electron microscope to study the morphology of abraded surfaces and operating wear mechanism. The analysis of wear debris particles was also carried out to substantiate the findings of the investigation.

  5. Solutionizing temperature and abrasive wear behaviour of cast Al-Si-Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rajesh [Department of Mechanical Engineering, N.I.T. Hamirpur, HP 177 005 (India); Department of Mechanical and Industrial Engineering, I.I.T., Roorkee 247 667 (India); Anesh [Department of Mechanical Engineering, N.I.T. Hamirpur, HP 177 005 (India); Department of Mechanical and Industrial Engineering, I.I.T., Roorkee 247 667 (India); Dwivedi, D.K. [Department of Mechanical and Industrial Engineering, I.I.T., Roorkee 247 667 (India)]. E-mail: dkd04fme@iitr.ernet.in

    2007-07-01

    In the present paper, the influence of solutionizing temperature during artificial age hardening treatment (T{sub 6}) of cast Al-(8, 12, 16%)Si-0.3%Mg on abrasive wear behaviour has been reported. Alloys were prepared by controlled melting and casting. Cast alloys were given artificial age hardening treatment having a sequence of solutionizing, quenching and artificial aging. All the alloys were solutionized at 450 deg. C, 480 deg. C, 510 deg. C, and 550 deg. C for 8 h followed by water quenching (30 deg. C) and aging hardening at 170 deg. C for 12 h. Abrasive wear tests were conducted against 320 grade SiC polishing papers at 5 N and 10 N normal loads. It was observed that the silicon content and solution temperature affected the wear resistance significantly. Increase in solution temperature improved the wear resistance. Hypereutectic alloy showed better wear resistance than the eutectic and hypoeutectic alloys under identical conditions. Optical microstructure study of alloys revealed that the increase in solutionizing temperature improved distribution of silicon grains. Scanning electron microscopy (SEM) of wear surface was carried out to analyze the wear mechanism.

  6. Surface roughness and wear of resin cements after toothbrush abrasion

    Directory of Open Access Journals (Sweden)

    Sérgio Kiyoshi ISHIKIRIAMA

    2015-01-01

    Full Text Available Increased surface roughness and wear of resin cements may cause failure of indirect restorations. The aim of this study was to evaluate quantitatively the surface roughness change and the vertical wear of four resin cements subjected to mechanical toothbrushing abrasion. Ten rectangular specimens (15 × 5 × 4 mm were fabricated according to manufacturer instructions for each group (n = 10: Nexus 3, Kerr (NX3; RelyX ARC, 3M ESPE (ARC; RelyX U100, 3M ESPE (U100; and Variolink II, Ivoclar/Vivadent (VL2. Initial roughness (Ra, µm was obtained through 5 readings with a roughness meter. Specimens were then subjected to toothbrushing abrasion (100,000 cycles, and further evaluation was conducted for final roughness. Vertical wear (µm was quantified by 3 readings of the real profile between control and brushed surfaces. Data were subjected to analysis of variance, followed by Tukey’s test (p < 0.05. The Pearson correlation test was performed between the surface roughness change and wear (p < 0.05. The mean values of initial/final roughness (Ra, µm/wear (µm were as follows: NX3 (0.078/0.127/23.175; ARC (0.086/0.246/20.263; U100 (0.296/0.589/16.952; and VL2 (0.313/0.512/22.876. Toothbrushing abrasion increased surface roughness and wear of all resin cements tested, although no correlation was found between those variables. Vertical wear was similar among groups; however, it was considered high and may lead to gap formation in indirect restorations.

  7. Abrasive wear: The efects of fibres size on oil palm empty fruit bunch polyester composite

    Science.gov (United States)

    Kasolang, S.; Kalam, A.; Ahmad, M. A.; Rahman, N. A.; Suhadah, W. N.

    2012-06-01

    This paper presents an experimental investigation carried out to determine the effect of palm oil empty fruit bunch (OPEFB) fibre size in dry sliding testing of polyester composite. These composite samples were produced by mixing raw OPEFB fibre with resin. The samples were prepared at different sizes of fibre (100, 125, 180 and 250μm). Abrasion Resistance Tester (TR-600) was used to carried out abrasive wear tests in dry sliding conditions. These tests were performed at room temperature for two different loads (10 and 30N) and at a constant sliding velocity of 1.4m/s. The specific wear rates of OPEFB polyester composites were obtained. The morphology of composite surface before and after tests was also examined using 3D microscope imaging. Preliminary work on thermal distribution at the abrasive wheel point was also conducted for selected samples.

  8. Abrasive Wear Performance of Aluminium Modified Epoxy-Glass Fiber Composites

    Science.gov (United States)

    Kamble, Vikram G.; Mishra, Punyapriya; Al Dabbas, Hassan A.; Panda, H. S.; Fernandez, Johnathan Bruce

    2015-07-01

    For a long time, Aluminum filled epoxies molds have been used in rapid tooling process. These molds are very economical when applied in manufacturing of low volume of plastic parts. To improve the thermal conductivity of the material, the metallic filler material is added to it and the glass fiber improves the wear resistance of the material. These two important parameters establish the life of composites. The present work reports on abrasive wear behavior of Aluminum modified epoxy and glass fiber composite with 5 wt.% and 10 wt.% of aluminum particles. Through pin on disc wear testing machine, we studied the wear behaviors of composites, and all these samples were fabricated by using hand layup process. Epoxy resin was used as matrix material which was reinforced with Glass fiber and Aluminum as filler. The composite with 5 wt.% and 10 wt.% of Al was cast with dimensions 100 × 100 × 6 mm. The specimens were machined to a size of 6 × 6 × 4 mm for abrasive testing. Abrasive tests were carried out for different grit paper sizes, i.e., 150, 320, 600 at different sliding distance, i.e., 20, 40, 60 m at different loads of 5, 10 and 15 N and at constant speed. The weight loss due to wear was calculated along with coefficient of friction. Hardness was found using Rockwell hardness machine. The SEM morphology of the worn out surface wear was analyzed to understand the wear mechanism. Results showed that the addition of Aluminum particles was beneficial for low abrasive conditions.

  9. Effect of carbonitride precipitates on the abrasive wear behaviour of hardfacing alloy

    Science.gov (United States)

    Yang, Ke; Yu, Shengfu; Li, Yingbin; Li, Chenglin

    2008-06-01

    Hardfacing alloy of martensitic stainless steel expect higher abradability to be achieved through the addition of nitrogen being provided by the fine scale precipitation of complex carbonitride particles. Niobium and titanium as the most effective carbonitride alloying elements were added in the Fe-Cr13-Mn-N hardfacing alloy to get carbonitride precipitates. Carbonitride was systematically studied by optical microscopy, scanning electronic microscopy and energy spectrum analysis. Abrasive wear resistance of hardfacing alloy in as-welded and heat-treated conditions was tested by using the belt abrasion test apparatus where the samples slide against the abrasive belt. It is found that carbonitride particles in the hardfacing alloy are complex of Cr, Ti and Nb distributing on the grain boundary or matrix of the hardfacing alloy with different number and size in as-welded and heat-treated conditions. A large number of carbonitrides can be precipitated with very fine size (nanoscale) after heat treatment. As a result, the homogeneous distribution of very fine carbonitride particles can significantly improve the grain-abrasion wear-resisting property of the hardfacing alloy, and the mass loss is plastic deformation with minimum depth of grooving by abrasive particles and fine delamination.

  10. Wear Resistance of Piston Sleeve Made of Layered Material Structure: MMC A356R, Anti-Abrasion Layer and FGM Interface

    Directory of Open Access Journals (Sweden)

    Hernik Szymon

    2016-09-01

    Full Text Available The aim of this paper is the numerical analysis of the one of main part of car engine – piston sleeve. The first example is for piston sleeve made of metal matrix composite (MMC A356R. The second improved material structure is layered. Both of them are comparison to the classical structure of piston sleeve made of Cr-Ni stainless steel. The layered material structure contains the anti-abrasion layer at the inner surface of piston sleeve, where the contact and friction is highest, FGM (functionally graded material interface and the layer of virgin material on the outer surface made of A356R. The complex thermo-elastic model with Archard's condition as a wear law is proposed. The piston sleeve is modelling as a thin walled cylindrical axisymmetric shell. The coupled between the formulation of thermo-elasticity of cylindrical axisymmetric shell and the Archard’s law with functionally changes of local hardness is proposed.

  11. Abrasive wear of railway sections of steel with a different pearlite morphology in railroad switches

    OpenAIRE

    J. Herian; K. Aniołek

    2010-01-01

    Purpose: The analyse of pearlite morphology changes as a result of hot rolling process and isothermal annealing.Design/methodology/approach: Physical modelling of isothermal annealing for a transition point of 520-620°C was carried out using a Gleeble simulator. A scanning electron microscope was used for a quantitative evaluation of the microstructure. Tests of resistance to abrasive wear were carried out at the Amsler stand.Findings: The obtained test results confirm that these methods can ...

  12. Abrasive wear of railway sections of steel with a different pearlite morphology in railroad switches

    Directory of Open Access Journals (Sweden)

    J. Herian

    2010-11-01

    Full Text Available Purpose: The analyse of pearlite morphology changes as a result of hot rolling process and isothermal annealing.Design/methodology/approach: Physical modelling of isothermal annealing for a transition point of 520-620°C was carried out using a Gleeble simulator. A scanning electron microscope was used for a quantitative evaluation of the microstructure. Tests of resistance to abrasive wear were carried out at the Amsler stand.Findings: The obtained test results confirm that these methods can be effectively used in shaping the pearlitic structure and properties of the steel.Practical implications: In physical modelling of tests of resistance to abrasive wear for the steel grade R260 after hot rolling and isothermal annealing it has been proved that this feature is a function of the steel structure and properties in the given operation conditions. The resistance to abrasive wear of steel R260 with a pearlitic structure and different pearlite morphology decreases with the increase of load and slide.Originality/value: An advantageous pearlitic morphology of steel (block sections with interlamellar distance in the order of 0.12-0.13 μm, ensuring hardness of about 340-350 HB, is facilitated by a hot rolling process combined with isothermal annealing.

  13. A theoretical investigation on the abrasive wear prevention mechanism of ZDDP and ZP tribofilms

    Energy Technology Data Exchange (ETDEWEB)

    Onodera, Tasuku; Morita, Yusuke [Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-11-1302 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Suzuki, Ai [New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Sahnoun, Riadh; Koyama, Michihisa; Tsuboi, Hideyuki; Hatakeyama, Nozomu; Endou, Akira; Takaba, Hiromitsu; Kubo, Momoji; Del Carpio, Carlos A. [Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-11-1302 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Minfray, Clotilde; Martin, Jean-Michel [Laboratory of Tribology and Dynamical Systems, Ecole Centrale de Lyon, 36, avenue Guy de Collongue 69134, ECULLY Cedex (France); Miyamoto, Akira [Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-11-1302 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)], E-mail: miyamoto@aki.che.tohoku.ac.jp

    2008-09-30

    We investigated wear prevention mechanism of tribofilms generated from zinc dialkyldithiophosphate (ZDDP) and zinc dialkylphosphate (ZP) anti-wear additive using molecular dynamics simulations. The friction behavior of two model materials, zinc metathiophosphate and zinc metaphosphate, was studied. The results indicated that zinc metathiophosphate prevents the abrasive wear due to the atomistic digestion of the wear particles in the tribofilm. We also investigated wear prevention mechanism of zinc metaphosphate and found that it has a better wear prevention performance than zinc metathiophosphate as far as abrasive wear is concerned. Our study showed that zinc metaphosphate can achieve good wear prevention and reduce the environmental load since it does not contain sulfur.

  14. Influence of the Hardfacing Welds Structure on Their Wear Resistance

    Directory of Open Access Journals (Sweden)

    Janette Brezinová

    2016-02-01

    Full Text Available The contribution presents the research results of hardfacing metals’ resistance in conditions of abrasive wear. Two types of hardfacing electrodes with a different chemical composition were used in the creation of three layers of hardfacing metals. The chemical composition of electrodes determines the difference in a hardface deposit structure. We have investigated the influence of mixing the base metal and a filler metal and the influence of hardfacing welds structure on the resistance against abrasive wear. The results of the experiments have showed that the intensity of wear is very dependent on the parameters of wear as well as the morphology structure of hardfacing metals.

  15. Effects of ion implantation on the abrasive wear of WC-Co

    International Nuclear Information System (INIS)

    An explanation of the improved abrasive wear resistance of ion-implanted WC-Co components has been sought. X-ray analysis is reported of scratches produced on polished implanted and non-implanted WC-Co surfaces by a single pass scratch test. It can be inferred from the results that extrusion of cobalt from a WC-Co surface under the stress of an abrading diamond is easier in the non-implanted than in the implanted case; this is the first stage of the abrasion wear process. Transmission electron diffraction of a WC-Co foil, before and after implantation by nitrogen ions, indicated the formation of Co2N microprecipitates during implantation. Precipitation hardening, hindering cobalt extrusion, is offered therefore as the explanation of the improved service life of the components. (U.K.)

  16. Comparison of the abrasion wear resistance of the X40CrMoV5-1 and 55NiCrMoV7 hot work tool steel with their surface layer enriched with the ceramic powders

    OpenAIRE

    L.A. Dobrzański; E. Jonda; A. Polok

    2006-01-01

    Purpose: In the paper there are presented the results of the influence of laser remelting parameters on the properties of the surface layer of the X40CrMoV5-1 and 55NiCrMoV7 hot work steel, using the high power diode laser (HPDL).The aim of this work was to compare the abrasion wear resistance of the X40CrMoV5-1 and 55NiCrMoV7 hot work tool steel surface layers enriched with the TiC, WC and VC ceramic powders. The surface layers of hot work tool steel remelted with a diode laser beam have be...

  17. Aging temperature and abrasive wear behaviour of cast Al-(4%, 12%, 20%)Si-0.3% Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shah, K.B. [Department of Mechanical Engineering, N.I.T. Hamirpur (HP) 177 005 (India); Kumar, Sandeep [Department of Mechanical Engineering, N.I.T. Hamirpur (HP) 177 005 (India); Dwivedi, D.K. [Department of Mechanical and Industrial Engineering, I.I.T. Roorkee 247 667 (India)]. E-mail: dkd04fme@iitr.ernet.in

    2007-07-01

    In the present paper, influence of aging temperature during artificial age hardening treatment (T {sub 6}) of cast Al-(4, 12, 20%)Si-0.3% Mg on abrasive wear behaviour has been reported. Alloys were prepared by controlled melting and casting. Cast alloys were given age hardening treatment having sequence of solutionizing, quenching and artificial aging. All the alloys were solutionized at 510 deg. C for 8 h followed by water quenching (30 deg. C) and aging hardening at 150, 170, 190, 210 and 230 deg. C for 12 h. Abrasive wear tests were conducted against of 320 grade SiC abrasive medium at 5 and 10 N normal loads. It was observed that the silicon content and aging temperature significantly affect the wear resistance. Increase in aging temperature improves the wear resistance. Hypereutectic alloy showed better wear resistance than the eutectic alloy under identical conditions. Optical microstructure study of alloys under investigation has shown that cast dendritic structure is destroyed besides the spheroidization of eutectic silicon crystals after the heat treatment. The extent of change in structure depends on aging temperature. Scanning electron microscopy (SEM) of wear surface was carried to analyze the wear mechanism.

  18. Effect of abrasive grit size on wear of manganese-zinc ferrite under three-body abrasion

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1987-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and deformed layers produced in single-crystal Mn-Zn ferrites under three-body abrasion. The abrasion mechanism of Mn-Zn ferrite changes drastically with the size of abrasive grits. With 15-micron (1000-mesh) SiC grits, abrasion of Mn-Zn ferrite is due principally to brittle fracture; while with 4- and 2-micron (4000- and 6000-mesh) SiC grits, abrasion is due to plastic deformation and fracture. Both microcracking and plastic flow produce polycrystalline states on the wear surfaces of single-crystal Mn-Zn ferrites. Coefficient of wear, total thickness of the deformed layers, and surface roughness of the wear surfaces increase markedly with an increase in abrasive grit size. The total thicknesses of the deformed layers are 3 microns for the ferrite abraded by 15-micron SiC, 0.9 microns for the ferrite abraded by 4-micron SiC, and 0.8 microns for the ferrite abraded by 1-micron SiC.

  19. Effect of Heat Treatment on the Abrasive Wear Behavior of High Chromium Iron under Dry Sliding Condition

    Directory of Open Access Journals (Sweden)

    A.A. Ayeni

    2012-06-01

    Full Text Available The effect of heat treatment on the abrasive wear behavior of high chromium cast iron (NF253AHT under dry sliding condition has been investigated. Rectangular cross sectioned samples of the alloy were produced by sand casting. After casting, the samples were machined to equal dimensions of 50 mm x 15 mm x 10 mm and heat treated by annealing, hardening and tempering. Abrasive wear tests were carried out on the samples using the pin-on-disc wear test. The tests were carried out under restricted values of speed, load and time. Within this limit, the hardened sample displayed a superior wear resistance, while the annealed sample displayed the weakest wear resistance. A graphical model (wear map displaying all the wear regimes of the alloy, which may serve as a wear predictive tool was subsequently developed from the results of the wear tests. With the exception of the as-cast and annealed specimen, all other specimens (hardened and tempered have functioned adequately in wear prone environment, but with different degree of effectiveness. Hence, the hardened and tempered samples can be used in shot blast equipments and in the grinding of minerals.

  20. Preparation and Abrasion Performance Study of High-Temperature and Wear-Resisting Metal Substrate Compound Coatings%金属基体高温耐磨复合涂层的制备与磨损性能研究

    Institute of Scientific and Technical Information of China (English)

    程银健; 陈九磅; 王平; 桂老虎

    2011-01-01

    The heating surface wear of boiler metal wall is a difficult problem troubling power plant safe operation. By using modified inorganic silicon sol as bond, wearability excellent SiC, Al2O3 particles as the basic aggregate assisted by a few Cr2 O3 grain, adding a small amount of bentonite and inorganic fibers for reinforced materials, the adhesion between coatings and substrate are improved. The experimental coatings were obtained after curing at 500 ℃. In regerd to blunt angle of 15°, 25°, 45°, 35°, 60°, respectively, the corrosion-proof and wear resislance of the coatings are studied. Experiments have found: the abrasion resistance of SiC - Al2 O3 composite coatings with different particle sizes behave wear-resistance better than that with singre particle size. When the mass fraction of coarse SiC is 45%, the wear resistance is the bests In the erosion angle 45°, the coatings wear are the most.%锅炉受热面金属管壁的磨损问题是困扰电厂安全运行的一大难题.实验采用改性无机粘结剂,以耐磨性优良的SiC、Al2O3颗粒为基本骨料,辅以少量Cr2O3颗粒,再添加少量的膨润土和无机纤维为增强材料,提高涂层和基体间的结合力.在500℃下固化后得到实验涂层.分别在冲蚀角15°、25°、35°、45°、60°下研究了涂层耐冲蚀磨损特性.实验发现:不同粒径的SiC-Al2O3复合涂层结合紧密,比单一组分涂层耐磨性好.当粗SiC的质量分数为45%时,涂层耐磨损性能最好;在冲蚀角为45°时,涂层的磨损量最大.

  1. Development of the white cast iron with niobium alloy, heat treating, to wear of the abrasive resistance; Desenvolvimento de uma liga de ferro fundido branco alto cromo com niobio, tratada termicamente, para resistencia ao desgaste abrasivo

    Energy Technology Data Exchange (ETDEWEB)

    Farah, Alessandro Fraga

    1997-07-01

    This work presents the heat treatment and abrasion tests results of a white cast iron with niobium alloy. The hardening heat treatment were made 950, 1000, 1050 e 110 deg C temperatures cooled by forced air. The tempering treatment were made at 450, 500 e 550 deg C temperatures. The heat treating alloy were compared, in the abrasive tests, with commercial alloys used as hardfacing by welding process in wear pieces. The abrasion tests was realized in pin on disk test. Additional tests were carried out for microstructural characterization to identify the different phases presents in the alloys. In a general way, the alloy studies showed the best wear rate for the heat treatments that results in higher hardness. It performance was superior than that of the commercial alloys. (author)

  2. Analysis of abrasive wear behavior of PTFE composite using Taguchi’s technique

    Directory of Open Access Journals (Sweden)

    Yusuf Şahin

    2015-12-01

    Full Text Available Polymeric composites are widely used for structural, aerospace, and automobile sectors due to their good combination of high specific strength and specific modulus. These two main characteristics make these materials attractive, compared to conventional materials like metal or alloy ones. Some of their typical benefits include easy processing, corrosion resistance, low friction, and damping of noise and vibrations. Wear behavior of Polytetrafluoroethylenes (PTFE and its composites including glass-filled composites and carbon-filled composites are investigated using a pin-on-disc configuration. A plan of experiments in terms of Taguchi technique is carried out to acquire data in controlled way. An orthogonal array (L9 and the analysis of variance are employed to investigate the influence of process parameters on the wear of these composites. Volume loss increased with abrasive size, load, and distance. Furthermore, specific wear rate decreased with increasing grit size, load, sliding distance, whereas, slightly with compressive strength. Optimal process parameters, which minimize the volume loss, were the factor combinations of L1, G3, D1, and C3. Confirmation experiments were conducted to verify the optimal testing parameters. It was found that in terms of volume loss, there was a good agreement between the estimated and the experimental value of S/N ratio with an error of 1.604%. Moreover, abrasive size, load, and sliding distance exerted a great effect on the specific wear rate, at 51.14, 27.77, and 14.70%, respectively.

  3. Effect of the Carbides and Matrix on the Wear Resistance of Nodular Cast Iron

    Directory of Open Access Journals (Sweden)

    G. Gumienny

    2013-07-01

    Full Text Available This paper presents the results of the abrasive wear resistance of selected types of nodular cast iron, including ADI, cooperating with quartz sand and 100 grit abrasive paper. It has been shown that carbides in nodular cast iron cause an increase in wear resistance of 6 to 12% depending on the surface fraction of the carbides and type of the matrix. For the same unit pressure the mass loss of the cast iron cooperating with quartz sand is many times larger than the cast iron cooperating with abrasive paper. For both abrasives the highest wear resistance showed nodular cast iron with upper and lower bainite and carbides.

  4. Abrasion, Erosion and Cavitation Erosion Wear Properties of Thermally Sprayed Alumina Based Coatings

    Directory of Open Access Journals (Sweden)

    Ville Matikainen

    2014-01-01

    Full Text Available Thermally-sprayed alumina based materials, e.g., alumina-titania (Al2O3-TiO2, are commonly applied as wear resistant coatings in industrial applications. Properties of the coatings depend on the spray process, powder morphology, and chemical composition of the powder. In this study, wear resistant coatings from Al2O3 and Al2O3-13TiO2 powders were sprayed with plasma and high-velocity oxygen-fuel (HVOF spray processes. Both, fused and crushed, and agglomerated and sintered Al2O3-13TiO2 powders were studied and compared to pure Al2O3. The coatings were tested for abrasion, erosion, and cavitation resistances in order to study the effect of the coating structure on the wear behavior. Improved coating properties were achieved when agglomerated and sintered nanostructured Al2O3-13TiO2 powder was used in plasma spraying. Coatings with the highest wear resistance in all tests were produced by HVOF spraying from fused and crushed powders.

  5. Abrasion, erosion and scuffing resistance of carbide and oxide ceramic thermal sprayed coatings for different applications

    Science.gov (United States)

    Barbezat, G.; Nicoll, A. R.; Sickinger, A.

    1993-04-01

    In the area of antiwear coatings, carbide-containing coatings and oxide ceramic coatings are applied using different thermal spray processes in the form of individual layers. In many industries these coatings have become technically significant on components where wear and friction can cause critical damage in the form of abrasion, erosion and scuffing together with corrosion. Carbide-containing and ceramic coatings have been produced with different thermal spray processes for the determination of abrasive, adhesive and erosive wear resistance. Two types of abrasion test, namely an adhesion wear test and an erosion test in water at a high velocity, were used for the characterization of wear resistance under different conditions. The coatings were also characterized with regard to microstructure, composition and fracture toughness. The influence of the thermal spraying process parameters on the microstructure is presented together with the influence of the microstructure on the behavior of the coatings under simulated service conditions.

  6. Two-Body Abrasive Wear of the Surfaces of Pangolin Scales

    Institute of Scientific and Technical Information of China (English)

    Jin Tong; Tie-biao Lü; Yun-hai Ma; Heng-kun Wang; Lu-quan Ren; R. D. Arnell

    2007-01-01

    The Pangolin, a soil-burrowing animal, is covered with scales. These scales are often abraded by soil and rock and their surface is corrugated. The abrasive wear of the surface of the scales was examined. The scales were taken from a pangolin that had died of natural causes. The tests were run on a rotary disc abrasive wear tester. The abrasive material was quartz sand (96.5 wt.%) and bentonite (3.5 wt.%). The morphology of the abraded surfaces and the abrasion were examined by stereoscopic microscopy and scanning electron microscopy. The concepts are proposed of "Guiding-Effect" and "Rolling-Effect" on the textured surfaces under free abrasive wear conditions and the critical dimensions of the "Rolling-Effect" are discussed.

  7. Coupling behavior between adhesive and abrasive wear mechanism of aero-hydraulic spool valves

    Institute of Scientific and Technical Information of China (English)

    Chen Yunxia; Gong Wenjun; Kang Rui

    2016-01-01

    Leakage due to wear is one of the main failure modes of aero-hydraulic spool valves. This paper established a practical coupling wear model for aero-hydraulic spool valves based on dynamic system modelling theory. Firstly, the experiment for wear mechanism verification proved that adhesive wear and abrasive wear did coexist during the working process of spool valves. Sec-ondly coupling behavior of each wear mechanism was characterized by analyzing actual time-variation of model parameters during wear evolution process. Meanwhile, Archard model and three-body abrasive wear model were utilized for adhesive wear and abrasive wear, respectively. Furthermore, their coupling wear model was established by calculating the actual wear volume. Finally, from the result of formal test, all the required parameters for our model were obtained. The relative error between model prediction and data of pre-test was also presented to verify the accuracy of model, which demonstrated that our model was useful for providing accurate prediction of spool valve’s wear life.

  8. Recent progress of abrasion-resistant materials: learning from nature.

    Science.gov (United States)

    Meng, Jingxin; Zhang, Pengchao; Wang, Shutao

    2016-01-21

    Abrasion-resistant materials have attracted great attention for their broad applications in industry, biomedicine and military. However, the development of abrasion-resistant materials that have with unique features such as being lightweight and flexible remains a great challenge in order to satisfy unmet demands. The outstanding performance of natural abrasion-resistant materials motivates the development of new bio-inspired abrasion-resistant materials. This review summarizes the recent progress in the investigation of natural abrasion-resistant materials to explore their general design principles (i.e., the correlation between chemical components and structural features). Following natural design principles, several artificial abrasion-resistant materials have shown unique abrasion-resistant properties. The potential challenges in the future and possible solutions for designing bio-inspired abrasion-resistant materials are also briefly discussed. PMID:26335377

  9. A review on nozzle wear in abrasive water jet machining application

    Science.gov (United States)

    Syazwani, H.; Mebrahitom, G.; Azmir, A.

    2016-02-01

    This paper discusses a review on nozzle wear in abrasive water jet machining application. Wear of the nozzle becomes a major problem since it may affect the water jet machining performance. Design, materials, and life of the nozzle give significance effect to the nozzle wear. There are various parameters that may influence the wear rate of the nozzle such as nozzle length, nozzle inlet angle, nozzle diameter, orifice diameter, abrasive flow rate and water pressure. The wear rate of the nozzle can be minimized by controlling these parameters. The mechanism of wear in the nozzle is similar to other traditional machining processes which uses a cutting tool. The high pressure of the water and hard abrasive particles may erode the nozzle wall. A new nozzle using a tungsten carbide-based material has been developed to reduce the wear rate and improve the nozzle life. Apart from that, prevention of the nozzle wear has been achieved using porous lubricated nozzle. This paper presents a comprehensive review about the wear of abrasive water jet nozzle.

  10. Mechanical and Abrasive Wear Properties of Anodic Oxide Layers Formed on Aluminium

    Institute of Scientific and Technical Information of China (English)

    W.Bensalah; K.Elleuch; M.Feki; M.Wery; H.F.Ayedi

    2009-01-01

    Aluminium oxide coatings were formed on aluminium substrates in oxalic acid-sulphuric acid bath. Abrasion tests of the obtained anodic layers were carried out on a pin-on-disc machine in accordance with the ISO/DP 825 specifications. The Vickers microhardness, D (HV0.2). and the abrasion weight loss, Wa (mg) were measured. Influence of oxalic acid concentration (Cox), bath temperature (T) and anodic current density (J) on D and Wa has been examined, and the sulphuric acid concentration (Caul) was maintained at 160 g.L-1. It was found that high microhardness and abrasive wear resistance of oxide layers were produced under low temperatures and high current densities with the addition of oxalic acid. The morphology and the composition of the anodic oxide layer were examined by scanning electron microscopy (SEM), atomic force microscopy (AFM), optical microscopy and glow-discharge optical emission spectroscopy (GDOES). It was found that the chemistry of the anodizing electrolyte, temperature, and current density are the controlling factors of the mechanical properties of the anodic oxide layer.

  11. Impact–abrasion wear characteristics of in-situ VC-reinforced austenitic steel matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Moghaddam, E.G., E-mail: emad_g_moghaddam@alum.sharif.edu [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, Tehran (Iran, Islamic Republic of); Karimzadeh, N. [Department of Materials Engineering, Islamic Azad University, Najafabad Branch, Isfahan (Iran, Islamic Republic of); Varahram, N.; Davami, P. [Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Azadi Avenue, Tehran (Iran, Islamic Republic of)

    2013-11-15

    In this investigation, in-situ precipitation of vanadium carbides was employed to reinforce Fe–13Mn and Fe–13Mn–3W alloys by means of conventional melting and casting route. Microstructures were characterized by optical and scanning electron microscopy techniques. Mechanical properties of the materials were determined by hardness, impact toughness and tension tests. It was observed that tungsten improved the strength of the matrix and the reinforcements as well as tensile properties and work hardening rate of the VC-reinforced composite. Ball mill abrasion test was utilized to simulate impact–abrasion wear condition using two types of abrasive minerals. The results showed that the degree of benefit to be gained by the use of in-situ VC-reinforced composite materials depends strongly on crush strength of the abrasives. It was found that the studied particle-reinforced composite materials were only advantageous when the abrasives were relatively soft, providing low-stress abrasion condition.

  12. Abrasive wear of BA1055 bronze with additives of Si, Cr, Mo and/or W

    Directory of Open Access Journals (Sweden)

    B. P. Pisarek

    2008-10-01

    Full Text Available Aluminium bronzes belong to the high-grade constructional materials applied on the put under strongly load pieces of machines, aboutgood sliding, resistant properties on corrosion both in the cast state how and after the thermal processing. It moves to them Cr and Si in the aim of the improvement of their usable proprieties. The additions Mo and/or W were not applied so far. It was worked out therefore the new kind of bronzes casting including these elements. Make additions to the Cu-Al-Fe-Ni bronze of Si, Cr, Mo and/or W in the rise of these properties makes possible. The investigations of the surface distribution of the concentration of elements in the microstructure of the studied bronze on X-ray microanalyzer were conducted. It results from conducted investigations, that in the aluminium bronze BA1055 after makes additions Si, Cr, Mo and/or W the phases of the type κFe, κNi crystallize, probably as complex silicides. Elements such as: Fe and Si dissolve first of all in phases κ, in smaller stage in the matrix of the bronze; Mn, Ni and W they dissolve in matrix and phases κ. It dissolves Cr and Mo in the larger stage in phases κ than in the matrix. The sizes of the abrasive wear were compared in the state cast multicomponentnew casting Cu-Al-Fe-Ni bronzes with the additives Cr, Mo or W with the wear of the bronze CuAl10Fe5Ni5Si. The investigations of thewear were conducted on the standard device. It results from conducted investigations, that make additions to bronze BA1055 of the additives of Si, Cr, Mo, and/or W it influences the rise of the hardness (HB of the bronze in the cast state, in the result of the enlarged quantity separates of hard phases κ, and in the consequence the decrease of the abrasive wear. The addition of molybdenum made possible obtainment of the microhardness of the phase α and γ 2 on the comparable level. From the microstructure of the bronze CuAl10Fe5Ni5MoSi is characterizes the smallest abrasive wear among

  13. Wear resistance and corrosion resistance of VCp particle reinforced stainless steel composites

    Institute of Scientific and Technical Information of China (English)

    YAO Xiu-rong; HAN Jie-cai; ZUO Hong-bo; LIU Zhao-jing; LI Feng-zhen; REN Shan-zhi

    2005-01-01

    The VCp reinforced stainless steel composite was produced by in-situ reaction casting. The composite was tested for its wear resistance under the wet abrasive condition and corrosion resistance, compared with the wear-resistant white iron and stainless steel. The results show that the wear resistance of the composite is slightly inferior to that of the white iron, but much better than that of the stainless steel under the wet grinding abrasive condition. The corrosion resistance of the composite is much better than that of the white iron in the acid medium,and a little worse than that of the stainless steel. Thus the composite exhibits superior properties of wear resistance and corrosion resistance.

  14. Corrosion and wear resistant metallic layers produced by electrochemical methods

    DEFF Research Database (Denmark)

    Christoffersen, Lasse; Maahn, Ernst Emanuel

    1999-01-01

    . Determination of polarisation resistance during 100 hours followed by stepwise anodic polarisation seems to be a promising technique to obtain steady state data on slowly corroding coatings with transient kinetics. A slurry test enables determination of simultaneous corrosion and abrasive wear. Comparison...

  15. Multiphase Flow and Wear in the Cutting Head of Ultra-high Pressure Abrasive Water Jet

    Institute of Scientific and Technical Information of China (English)

    YANG Minguan; WANG Yuli; KANG Can; YU Feng

    2009-01-01

    Abrasive water jet cutting technology is widely applied in the materials processing today and attracts great attention from scholars, but many phenomena concerned are not well understood, especially in the internal jet flow of the cutting head at the condition of ultra-high pressure. The multiphase flow in the cutting head is numerically simulated to study the abrasive motion mechanism and wear inside the cutting head at the pressure beyond 300 Mpa. Visible predictions of the particles trajectories and wear rate in the cutting head are presented. The influences of the abrasive physical properties, size of the jewel orifice and the operating pressure on the trajectories are discussed. Based on the simulation, a wear experiment is carried out under the corresponding pressures. The simulation and experimental results show that the flow in the mixing chamber is composed of the jet core zone and the disturbance zone, both affect the particles trajectories. The mixing efficiency drops with the increase of the abrasive granularity. The abrasive density determines the response of particles to the effects of different flow zones, the abrasive with medium density gives the best general performance. Increasing the operating pressure or using the jewel with a smaller orifice improves the coherency of particles trajectories but increases the wear rate of the jewel holder at the same time. Walls of the jewel holder, the entrance of the mixing chamber and the convergence part of the mixing tube are subject to wear out. The computational and experimental results give a qualitative consistency which proves that this numerical method can provide a reliable and visible cognition of the flow characteristics of ultra-high pressure abrasive water jet. The investigation is benefit for improving the machining properties of water jet cutting systems and the optimization design of the cutting head.

  16. Resistance of weldclads made by flux-cored arc welding technology against erosive wear

    OpenAIRE

    Pernis, I.; J. Kasala; Žabecká, D.

    2013-01-01

    The paper deals with the tribological properties of investigated types of hardfacing materials at erosive wear process. Influence of impact angle of abrasive grains on wear resistance and microhardness changes of hardfacing layer were investigated too. From quantitative aspect weldclads wear resistance were evaluated on the base of weight loss. Results achieved showed that impact angle is one of determining factors of material’s wear measure.

  17. Abrasion Resistance of as-Cast High-Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Pokusová Marcela

    2014-12-01

    Full Text Available High chromium cast irons are widely used as abrasion resistant materials. Their properties and wear resistance depend on carbides and on the nature of the matrix supporting these carbides. The paper presents test results of irons which contain (in wt.% 18-22 Cr and 2-5 C, and is alloyed by 1.7 Mo + 5 Ni + 2 Mn to improve the toughness. Tests showed as-cast irons with mostly austenitic matrix achieved hardness 36-53 HRC but their relative abrasion-resistance was higher than the tool steel STN 19436 heat treated on hardness 60 HRC.

  18. Effect of Load on Dry Abrasive Wear in Blades of Hand Hacksaw.

    Directory of Open Access Journals (Sweden)

    Mohd Saad Saleem

    2015-07-01

    Full Text Available In this study, the abrasive wear is calculated in the High Carbon Steel (HCS blades of Hand Hacksaw at different Loads. The wear is calculated by Mass Loss of blade before and after cutting the prepared specimen of Mild steel. The Wear is calculated for different specimen of blades at different Loads ie. 5N,10N,15N and 20N with the help of the experimental Setup prepared. The result indicates that the wear in the blades increases with the increase in load.

  19. Effect of Load on Dry Abrasive Wear in Blades of Hand Hacksaw.

    OpenAIRE

    Mohd Saad Saleem; Mohd Shadab Khan

    2015-01-01

    In this study, the abrasive wear is calculated in the High Carbon Steel (HCS) blades of Hand Hacksaw at different Loads. The wear is calculated by Mass Loss of blade before and after cutting the prepared specimen of Mild steel. The Wear is calculated for different specimen of blades at different Loads ie. 5N,10N,15N and 20N with the help of the experimental Setup prepared. The result indicates that the wear in the blades increases with the increase in load.

  20. Abrasion Resistance Comparison between Rotor and Ring Spun Yarn

    Institute of Scientific and Technical Information of China (English)

    YANG Jian-ping; YU Chong-wen

    2002-01-01

    On the base of literature review and the analysis of yarn properties, yarn structure and some other facts, the abrasion resistance of both rotor spun yarn and ring spun yarns are discussed. The results show that with the same raw material and twist, the rotor spun yarn has lower abrasion resistance than that of ring spun yarn, because of the higher twist employed, the abrasion resistance of rotor spun yarn is higher than that of ring spun yarn.

  1. ANN & ANFIS Models for Prediction of Abrasive Wear of 3105 Aluminium Alloy with Polyurethane Coating

    Directory of Open Access Journals (Sweden)

    H. Alimam

    2016-06-01

    Full Text Available The quest for safety and reliability has increased significantly after Industrial revolution, so is the case for coating industries. In this paper 3105 Aluminium alloy sheet is coated with organic polyurethane coating. After the implementation of coating, various processes are undergone to check its reliability under elevated conditions. ANN & ANFIS model were developed and trained with an objective to find abrasive wear during the process. ANN & ANFIS model were compared with the experimental results. It is observed that the abrasive wear of a coated specimen can be predicted accurately and precisely using ANN and ANFIS models.

  2. Wear resistant of Al{sub 2}O{sub 3}/heat-resistant steel at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Bao Chonggao [Graduate school at Shenzhen, Tsinghua Univ., Shenzhen (China); School of Material Sci. and Eng., Xi' an Jiaotong Univ., Xi' an (China); Xing Jiandong; Gao Yimin; Wang Enze [School of Material Sci. and Eng., Xi' an Jiaotong Univ., Xi' an (China)

    2005-07-01

    The high temperature abrasive wear resistant of the composites with different Al{sub 2}O{sub 3} volume fractions, particle coating and size were investigated and the failure action of composites under different conditions at high temperature was analyzed. The results showed that the high temperature abrasive wear resistant of composite with Ni coating and wide size and 39% volume fraction of particle is the best among all composites examined. (orig.)

  3. The Abrasion-resistance Investigation of Rubberized Concrete

    Institute of Scientific and Technical Information of China (English)

    KANG Jingfu; ZHANG Bo; LI Guangyu

    2012-01-01

    The abrasion resistance properties of rubberized concrete were comparatively studied by taking silica fume and crumb tire rubber as the additives.The abrasion tests were conducted in accordance with the Chinese standard test method DL/T 5150-2001,two recommended test methods:under water method and ring method,were used.The crumb tire rubbers with the sieve size of 8-mesh and 16-mesh were incorporated into the concrete by replacing same volume of sand and as an additive.The abrasion resistance of concrete was evaluated according to the abrasion resistance strength and the mass loss.Test results show that the addition of silica fume enhanced both compressive strength and abrasion resistance of concrete,and the addition of crumb rubber reduced the compressive strength but increased notably the abrasion resistance of the concrete.Silica fume concrete performed a better abrasion resistance than control concrete,and the rubberized concrete performed a much better abrasion resistance than silica fume concrete.The abrasion resistance of rubberized concrete increased with the increase of rubber content.

  4. The influence of aluminum and carbon on the abrasion resistance of high manganese steels

    Science.gov (United States)

    Buckholz, Samuel August

    Abrasive wear testing of lightweight, austenitic Fe-Mn-Al-C cast steel has been performed in accordance with ASTM G65 using a dry sand, rubber wheel, abrasion testing apparatus. Testing was conducted on a series of Fe-30Mn-XAl-YC-1Si-0.5Mo chemistries containing aluminum levels from 2.9 to 9.5 wt.% and carbon levels from 0.9 to 1.83 wt.%. Solution treated materials having an austenitic microstructure produced the highest wear resistance. Wear resistance decreased with higher aluminum, lower carbon, and higher hardness after age hardening. In the solution treated condition the wear rate was a strong function of the aluminum to carbon ratio and the wear rate increased with a parabolic dependence on the Al/C ratio, which ranged from 1.8 to 10.2. Examination of the surface wear scar revealed a mechanism of plowing during abrasion testing and this method of material removal is sensitive to work hardening rate. Work hardening behavior was determined from tensile tests and also decreased with increasing Al/C ratio and after aging hardening. The loss of wear resistance is related to short range ordering of Al and C in the solution treated materials and kappa-carbide precipitation in age hardened materials and both contribute to planar slip and lower work hardening rates. A high carbon tool steel (W1) and a bainitic low alloy steel (SAE 8620) were also tested for comparison. A lightweight steel containing 6.5 wt.% Al and 1.2 wt.% C has wear resistance comparable to within 5% of the bainitic SAE 8620 steel forging currently used for the Bradley Fighting Vehicle track shoe and this cast Fe-Mn-Al-C steel, at equivalent tensile properties, would be 10% lighter.

  5. The importance of extractives and abrasives in wood materials on the wearing of cutting tools

    Directory of Open Access Journals (Sweden)

    Wayan Darmawan

    2012-11-01

    Full Text Available For many wood cutting processes, the interest of high-speed tool steels and tungsten carbides remains very important because of their good tool edge accuracy and easy grinding. The wear of high-speed steel and tungsten carbide is an important economic parameter. Wood extractives and silica have a potential adverse effect on tool wear. Rapid chemical wearing due to corrosion and mechanical wearing has been attributed to the presence of extractives and silica in wood and wood composites. This paper presents the wear characteristics of SKH51 high-speed steel and K10 tungsten carbide caused by extractive and abrasive materials present in the lesser-known Tapi-Tapi wood and wood composites of wood cement board, particleboard, MDF, and oriented strand board (OSB. Experimental results showed that wearing of the cutting tools tested was determined by extractives and silica contained in the wood and wood composites. Wood cement board, which is high in silica content, caused severe damage to the cutting edge of the high-speed steel. A corrosion/oxidation mechanism was found to contribute to the wear of SKH51 and K10 when cutting the Tapi-Tapi wood, MDF, particleboard, wood cement board, and OSB. The silica and extractives determined the abrasion and corrosion wear mechanism to a varying degree.

  6. Abrasion Resistant Refractory Materials GB/T 23294-2009

    Institute of Scientific and Technical Information of China (English)

    Yu Lingyuan

    2009-01-01

    @@ 1 Scope This standard specifies the definition, classification, technical requirements, test methods, quality appraisal procedure, packing, marking, transportation, storage, and quality certificate of abrasion resistant refractory materials. This standard is applicable to abrasion resistant refractory materials for circulating fluidized bed boilers, daily waste incinerator, industrial waste incinerator, medical waste incinerator, ordinary solid waste incinerator, hazardous waste incinerator, etc.

  7. Electrical resistivity measurements to predict abrasion resistance of rock aggregates

    Indian Academy of Sciences (India)

    Sair Kahraman; Mustafa Fener

    2008-04-01

    The prediction of Los Angeles (LA) abrasion loss from some indirect tests is useful for practical applications. For this purpose, LA abrasion, electrical resistivity, density and porosity tests were carried out on 27 different rock types. LA abrasion loss values were correlated with electrical resistivity and a good correlation between the two parameters was found. To see the effect of rock class on the correlation, regression analysis was repeated for igneous rocks, metamorphic rocks and sedimentary rocks, respectively. It was seen that correlation coefficients were increased for the rock classes. In addition, the data were divided into two groups according to porosity and density, respectively. After repeating regression analysis for these porosity and density groups, stronger correlations were obtained compared to the equation derived for all rocks. The validity of the derived equations was statistically tested and it was shown that all derived equations were significant. Finally, it can be said that all derived equations can alternatively be used for the estimation of LA abrasion loss from electrical resistivity.

  8. Modelling of structure and properties of pearlitic steel and abrasive wear of the turnout frog in the cyclic loading conditions

    Directory of Open Access Journals (Sweden)

    J. Herian

    2011-11-01

    Full Text Available Purpose: Analysis of pearlite morphology changes as a result of hot rolling process and isothermal annealing.Design/methodology/approach: Physical modelling of isothermal annealing for a transition point of 520-620°C was carried out using a Gleeble simulator. A scanning electron microscope was used for a quantitative evaluation of the microstructure. In numerical estimations there were marked distributions of the loads and then distributions of the contact stresses and the strains in places of contact wheel-switch components. Tests of resistance to abrasive wear were carried out at the Amsler stand.Findings: The obtained test results confirm that these methods can be effectively used in shaping the pearlitic structure and properties of the steel.Practical implications: In physical modelling of tests of resistance to abrasive wear for the steel grade R260 after hot rolling and isothermal annealing it has been proved that this feature is a function of the steel structure and properties in the given operation conditions. The resistance to abrasive wear of steel R260 with a pearlitic structure and different pearlite morphology decreases with the increase of load and slide. From conducted numerical calculations result that the biggest dynamic load is in the moment of a drive of a wheel set on a frog of the turnout. The value of the vertical force depends on speed and mass of the railway vehicle.Originality/value: An advantageous pearlitic morphology of steel (block sections with interlamellar distance in the order of 0.12-0.13 μm, ensuring hardness of about 340-350 HB, is facilitated by a hot rolling process combined with isothermal annealing.

  9. Abrasive Wear Modes in Ball-Cratering Test Conducted on Fe73Si15 Ni10Cr2 Alloy Deposited Specimen

    Directory of Open Access Journals (Sweden)

    M.S. Priyan

    2014-03-01

    Full Text Available The objective of this study was to develop a theoretical model and associated wear mode map to identify the regimes in which two body abrasion (grooving abrasion and three body abrasion (rolling abrasion dominate in the micro-abrasive wear test (also known as the ball cratering wear test. This test is generally considered to be a three body wear test. The wear mechanisms and wear rates were investigated using diamond abrasive over a range of loads (0.05, 0.1 and 0.2 N, and slurry concentrations (0.05, 0.1, and 0.2 volume fraction abrasive. It was found that during abrasion wear, a transition from grooving to rolling wear could be identified for a load with respect to time. The critical condition for the transition between two-body and three-body abrasion was determined from a continuum mechanics model for the penetration of the abrasive particles into the surfaces of the ball and the specimen, coupled with considerations of equilibrium. Two wear modes are usually observed in this type of test: ‘rolling abrasion’ results when the abrasive particles roll on the surface of the tested specimen, while ‘grooving abrasion’ is observed when the abrasive particles slide; the type of wear mode has a significant effect on the overall behaviour of a tribological system. Wear rates of metallic samples were determined and the worn surfaces were examined by optical microscopy, SEM and Talysurf profilometry.

  10. Abrasive Wear Behaviors of Light-weight Austenitic Fe-24Mn-7Al-1C Steel and Mn13Cr2 Steel

    Institute of Scientific and Technical Information of China (English)

    Shi-guang PENG; Ren-bo SONG; Zhi-dong TAN; Chang-hong CAI; Ke GUO; Zhong-hong WANG

    2016-01-01

    The impact abrasive wear behaviors of light-weight austenitic Fe-24Mn-7Al-1C steel with increasing impact wear conditions were studied by comparing with the modified Hadfield (Mn13Cr2)steel.Wear tests were performed with the MLD-10 abrasive wear testing machine.Main parameters such as impact energy,impacting frequency and wear time were evaluated.To explore the abrasive wear behaviors under different impact energies,the parameters in-cluding mass loss,wear resistance and hardness were evaluated in detail.The microstructures of the steels were fur-ther analyzed using optical microscopy (OM),scanning electron microscopy (SEM),transmission electron micros-copy (TEM)and X-ray diffraction (XRD).Results showed that the light-weight austenitic Fe-24Mn-7Al-1C steel had a better wear resistance than Mn13Cr2 steel under the impact energy tested.The wear resistance of light-weight austenitic Fe-24Mn-7Al-1C steel was about 1.09-1.17 times as high as that of Mn13Cr2 steel under low and medi-um impact energy (0.5-2.0 J)conditions,and 1.41 times under high impact energy (4.0 J)condition.In Mn13Cr2 steel,the evolution of dislocation substructure with increasing impact energy showed typical stacking fault,interac-tion of twins and dislocations,as well as mechanical twins.The high work-hardening rate in Fe-24Mn-7Al-1C steel was caused by Taylor lattice and high density of dislocation tangles.

  11. Modeling of Tool Wear in Vibration Assisted Nano Impact-Machining by Loose Abrasives

    Directory of Open Access Journals (Sweden)

    Sagil James

    2014-01-01

    Full Text Available Vibration assisted nano impact-machining by loose abrasives (VANILA is a novel nanomachining process that combines the principles of vibration assisted abrasive machining and tip-based nanomachining, to perform target specific nanoabrasive machining of hard and brittle materials. An atomic force microscope (AFM is used as a platform in this process wherein nanoabrasives, injected in slurry between the workpiece and the vibrating AFM probe which is the tool, impact the workpiece and cause nanoscale material removal. The VANILA process are conducted such that the tool tip does not directly contact the workpiece. The level of precision and quality of the machined features in a nanomachining process is contingent on the tool wear which is inevitable. Initial experimental studies have demonstrated reduced tool wear in the VANILA process as compared to indentation process in which the tool directly contacts the workpiece surface. In this study, the tool wear rate during the VANILA process is analytically modeled considering impacts of abrasive grains on the tool tip surface. Experiments are conducted using several tools in order to validate the predictions of the theoretical model. It is seen that the model is capable of accurately predicting the tool wear rate within 10% deviation.

  12. The effect of heat treatment on the gouging abrasion resistance of alloy white cast irons

    Science.gov (United States)

    Are, I. R. S.; Arnold, B. K.

    1995-02-01

    A series of heat treatments was employed to vary the microstructure of four commercially important alloy white cast irons, the wear resistance of which was then assessed by the ASTM jaw-crusher gouging abrasion test. Compared with the as-cast condition, standard austenitizing treatments produced a substantial increase in hardness, a marked decrease in the retained aus-tenite content in the matrix, and, in general, a significant improvement in gouging abrasion resistance. The gouging abrasion resistance tended to decline with increasing austenitizing tem-perature, although the changes in hardness and retained austenite content varied, depending on alloy composition. Subcritical heat treatment at 500 ° following hardening reduced the retained austenite content to values less than 10 pct, and in three of the alloys it caused a significant fall in both hardness and gouging abrasion resistance. The net result of the heat treatments was the development of optimal gouging abrasion resistance at intermediate levels of retained aus-tenite. The differing responses of the alloys to both high-temperature austenitizing treatments and to subcritical heat treatments at 500 ° were related to the effects of the differing carbon and alloying-element concentrations on changes in the M s temperature and secondary carbide precipitation.

  13. DEVELOPMENT OF A SOIL ABRASION TESTS AND ANALYSIS OF IMPACT OF SOILCONDITIONING OM TOOL WEAR FOR SOFTGROUND MECHANIZAED TUNNELING

    OpenAIRE

    2016-01-01

    The wear issue in soft-ground tunneling using various types of shields has a major impact on machine operation, utilization, and tunneling costs. The interaction between abrasive soils and cutters, as well as other components of the machine that are involved in excavation process can cause the wear. For tool wear estimation and understanding of soil conditioning effect on wear, there is no accepted test that can address this issue clearly. The primary objective of this thesis was to develop a...

  14. Study of abrasive resistance of composites for dental restoration by ball-cratering

    OpenAIRE

    Antunes, P. Vale; Ramalho, A

    2003-01-01

    Two-body abrasion occurs in the mouth whenever there is tooth-to-tooth contact. This is what most dentists call attrition. Abrasive wear may also occur when there is an abrasive slurry interposed between two surfaces, such that the two solid surfaces are not actually in contact, this is called three-body abrasion, with food acting as the abrasive agent, and occurs in the mouth during mastication. Abrasion is the key physiological wear mechanism that is present in dental materials during norma...

  15. Minimal alterations on the enamel surface by micro-abrasion: in vitro roughness and wear assessments

    Directory of Open Access Journals (Sweden)

    Marcela Charantola Rodrigues

    2013-04-01

    Full Text Available Objective: To evaluate the in vitro changes on the enamel surface after a micro-abrasion treatment promoted by different products. Material and Methods: Fifty (50 fragments of bovine enamel (15 mm × 5 mm were randomly assigned to five groups (n=10 according to the product utilized: G1 (control= silicone polisher (TDV, G2= 37% phosphoric acid (3M/ESPE + pumice stone (SS White, G3= Micropol (DMC Equipment, G4= Opalustre (Ultradent and G5= Whiteness RM (FGM Dental Products. Roughness and wear were the responsible variables used to analyze these surfaces in four stages: baseline, 60 s and 120 s after the micro-abrasion and after polishing, using a Hommel Tester T1000 device. After the tests, a normal distribution of data was verified, with repeated ANOVA analyses (p≤0.05 which were used to compare each product in different stages. One-way ANOVA and Tukey tests were applied for individual comparisons between the products in each stage (p≤0.05. Results: Means and standard deviations of roughness and wear (µm after all the promoted stages were: G1=7.26(1.81/13.16(2.67, G2=2.02(0.62/37.44(3.33, G3=1.81(0.91/34.93(6.92, G4=1.92(0.29/38.42(0.65 and G5=1.98(0.53/33.45(2.66. At 60 seconds, all products tended to produce less surface roughness with a variable gradual decrease over time. After polishing, there were no statistically significant differences between the groups, except for G1. Independent of the product utilized, the enamel wear occurred after the micro-abrasion. Conclusions: In this in vitro study, enamel micro-abrasion presented itself as a conservative approach, regardless of the type of the paste compound utilized. These products promoted minor roughness alterations and minimal wear. The use of phosphoric acid and pumice stone showed similar results to commercial products for the micro-abrasion with regard to the surface roughness and wear.

  16. Increasing the wear resistance of ultra-high molecular weight polyethylene by adding solid lubricating fillers

    Energy Technology Data Exchange (ETDEWEB)

    Panin, S. V., E-mail: svp@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Kornienko, L. A.; Poltaranin, M. A.; Ivanova, L. R. [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Suan, T. Nguen [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2014-11-14

    In order to compare effectiveness of adding solid lubricating fillers for polymeric composites based on ultra-high molecular weight polyethylene (UHMWPE) with graphite, molybdenum disulfide and polytetrafluoroethylene, their tribotechnical characteristics under dry friction, boundary lubrication and abrasive wearing were investigated. The optimal weight fractions of fillers in terms of improving wear resistance have been determined. The supramolecular structure and topography of wear track surfaces of UHMWPE-based composites with different content of fillers have been studied.

  17. Improvements of harrows wear resistance

    Directory of Open Access Journals (Sweden)

    Warouma Arifa

    2015-12-01

    Full Text Available Wear is the main reason for the loss of performance of the parts for agricultural machinery. It leads to the degradation of the soil working quality. This work aims to highlight the wear resistance of the harrows discs manufactured, consolidated and sharpened differently. The tests were conducted in the laboratory and the field of the Faculty of Exploitation and Repair of Agricultural Machinery of the State Technical University of Kirovograd (Ukraine in 2015. The technical equipment consists of devices for consolidation by electric discharge and for measurement the linear wear of discs, a harrow, a sand test bed, a tractor and discs made of different materials and technologies. Some parameterized were collected during the laboratory test each 5 ha and up to 20 ha of operation and in the fields each 30 ha until the time limit of exploitation. The Laboratory tests have shown that after twenty (20 ha of operation, the wear resistance of the experimental discs made of steel 65G and consolidated by electric discharge with simultaneous grinding (sharpening angle of 30° is 2.95 times higher than the discs in series made of steel 28MnB5. The field experiment gave the following results: According to agro technical requirements, the plowing depth limit of serial discs made of steel 28MnB5 was reached after an operating duration of 120 ha while for experimental discs made of steel 65G and consolidated by electric discharge with simultaneous grinding (sharpening angle of 30 degrees this duration is of 156 ha. The diameter wear limit of experimental discs was reached after an operating duration of 179 ha against 154 ha for the serial ones. Therefore, the new technology can be applied during the manufacture and / or the repair of the discs.

  18. Wear resistance of TiAlSiN thin coatings.

    Science.gov (United States)

    Silva, F J G; Martinho, R P; Alexandre, R J D; Baptista, A P M

    2012-12-01

    In the last decades TiAIN coatings deposited by PVD techniques have been extensively investigated but, nowadays, their potential development for tribological applications is relatively low. However, new coatings are emerging based on them, trying to improve wear behavior. TiAlSiN thin coatings are now investigated, analyzing if Si introduction increases the wear resistance of PVD films. Attending to the application, several wear test configurations has been recently used by some researchers. In this work, TiAISiN thin coatings were produced by PVD Unbalanced Magnetron Sputtering technique and they were conveniently characterized using Scanning Electron Microscopy (SEM) provided with Energy Dispersive Spectroscopy (EDS), Atomic Force Microscopy (AFM), Electron Probe Micro-Analyzer (EPMA), Micro Hardness (MH) and Scratch Test Analysis. Properties as morphology, thickness, roughness, chemical composition and structure, hardness and film adhesion to the substrate were investigated. Concerning to wear characterization, two very different ways were chosen: micro-abrasion with ball-on-flat configuration and industrial non-standardized tests based on samples inserted in a feed channel of a selected plastic injection mould working with 30% (wt.) glass fiber reinforced polypropylene. TiAISiN coatings with a small amount of about 5% (wt.) Si showed a similar wear behavior when compared with TiAIN reported performances, denoting that Si addition does not improve the wear performance of the TiAIN coatings in these wear test conditions. PMID:23447962

  19. Effect of heat treatment on strength and abrasive wear behaviour of Al6061–SiCp composites

    Indian Academy of Sciences (India)

    N R Prabhu Swamy; C S Ramesh; T Chandrashekar

    2010-02-01

    In recent years, aluminum alloy based metal matrix composites (MMC) are gaining importance in several aerospace and automobile applications. Aluminum 6061 has been used as matrix material owing to its excellent mechanical properties coupled with good formability and its wide applications in industrial sector. Addition of SiCp as reinforcement in Al6061 alloy system improves its hardness, tensile strength and wear resistance. In the present investigation Al6061–SiCp composites was fabricated by liquid metallurgy route with percentages of SiCp varying from 4 wt% to 10 wt% in steps of 2 wt%. The cast matrix alloy and its composites have been subjected to solutionizing treatment at a temperature of 530°C for 1 h followed by quenching in different media such as air, water and ice. The quenched samples are then subjected to both natural and artificial ageing. Microstructural studies have been carried out to understand the nature of structure. Mechanical properties such as microhardness, tensile strength, and abrasive wear tests have been conducted both on matrix Al6061 and Al6061–SiCp composites before and after heat treatment. However, under identical heat treatment conditions, adopted Al6061–SiCp composites exhibited better microhardness and tensile strength reduced wear loss when compared with Al matrix alloy.

  20. Corrosive wear. Evaluation of wear and corrosive resistant materials; Noetningskorrosion. Utvaerdering av noetnings- och korrosionsbestaendiga material

    Energy Technology Data Exchange (ETDEWEB)

    Persson, H.; Hjertsen, D.; Waara, P.; Prakash, B.; Hardell, J.

    2007-12-15

    With a new purchase of a waste conveyer screw at hand, for the 'A-warehouse' at the combined power and heating plant at E.ON Norrkoeping, the request for improved construction materials was raised. The previous screw required maintenance with very short intervals due to the difficult operation conditions. With the new screw the expectation is to manage 6 months of operation without interruption. The environment for the screw has two main components that sets the demand on the materials, on one hand the corrosive products that comes along and which forms at digestion of the waste and on the other hand the abrasive content in the waste. The term of the mechanism is wear-corrosion and can give considerably higher material loss than the two mechanisms wear and corrosion separately. Combination of a strong corrosive environment together with extensive wear is something that we today have limited knowledge about. The overall objective of the project has been to establish better wear and corrosive resistant construction materials for a waste conveyer screw that will lead to reduced operational disturbance costs. The evaluation has been performed in both controlled laboratory environments and in field tests, which has given us a better understanding of what materials are more suitable in this tough environment and has given us a tool for future predictions of the wear rate of the different material. The new conveyer screw, installed in February 2007 and with which the field test have been performed, has considerably reduced the wear of the construction and the target of 6 month maintenance-free operation is met with this screw for all the evaluated materials. The wear along the screw varies very much and with a clear trend for all the materials to increase towards the feeding direction of the screw. As an example, the wear plate SS2377 (stainless duplex steel) has a useful life at the most affected areas that is calculated to be 1077 days of operation with the

  1. Assessment of Abrasive Wear of Nanostructured WC-Co and Fe-Based Coatings Applied by HP-HVOF, Flame, and Wire Arc Spray

    Science.gov (United States)

    Lima, C. R. C.; Libardi, R.; Camargo, F.; Fals, H. C.; Ferraresi, V. A.

    2014-10-01

    Thermal spray processes have been widely used to minimize losses caused by wear mechanisms. Sprayed deposits using conventional wire and powder materials have been long solving tribological problems in engineering equipment. More recently, the option for new different technologies and consumables like nanostructured powder materials and nanocomposite cored wires have expanded the possibilities for technical solutions. Cored wire technology allows the use of compositions that cannot be drawn into wire form like carbides in metallic matrix and high-temperature materials, thus, intensifying the use of spraying processes with low operating cost to demanding wear and corrosion applications. The objective of this work was to study the mechanical characteristics and wear performance of coatings obtained by Flame, Wire Arc, and HVOF spraying using selected nanostructured WC10Co4Cr, WC12Co, and Fe-based 140 MXC powder and wire materials. Abrasive wear performance of the coatings was determinate following the ASTM G-65 standard. Based on the results, a higher abrasive wear resistance was found for the HVOF-sprayed WC10Co4Cr nanostructured coating.

  2. Caracterização in Situ de Propriedades Mecânicas de Materiais Resistentes ao Desgaste Abrasivo Usando o Método da Indentação In Situ Determination of Mechanical Properties of Abrasive Wear Resistant Materials Using the Indentation Method

    Directory of Open Access Journals (Sweden)

    Hans Berns

    1997-08-01

    Full Text Available O desempenho de materiais polifásicos em sistemas tribológicos envolvendo desgaste abrasivo é função de uma série de fatores, a saber: condições de operação, características de projeto e das propriedades do abrasivo e dos microconstituintes do material utilizado. Neste trabalho são apresentados resultados de ensaios de indentação em diferentes microconstituintes e partículas duras, através dos quais as propriedades mais importantes para o fenômeno abrasivo são determinadas in situ. Dentre essas destacam-se a dureza H, a tenacidade à fratura K IC, o módulo de elasticidade E, a relação trabalho plástico / trabalho elástico Wp / We e a relação de durezas entre o microconstituinte e o agente abrasivo. Em muitas situações práticas esses sistemas encontram-se em temperaturas elevadas. Assim, neste trabalho, é também apresentada a influência da temperatura sobre algumas dessas propriedades. Os resultados obtidos mostram a grande potencialidade dessa técnica no processo de seleção e desenvolvimento de materiais resistentes ao desgaste.The wear resistance is not an intrinsic property of materials but depends on the operating conditions, design properties, type of abrasive and material properties. In this work the results of microindentation tests in different hard particles of wear resistant alloys and composites, as well as in bulk materials are presented. Continuous monitoring the load and the indenter penetration depth it is possible to obtain in situ important properties in the wear process of the alloy microconstituents. With this technique it was possible to determine the hardness H, the fracture toughness K IC, the Young modulus E and the relationship between the plastic and elastic work of deformation Wp / We. Since in many practical situations the process temperature is an important parameter, its influence on some of these properties is also considered. The results show that this technique may constitute a

  3. Fissure sealant materials: Wear resistance of flowable composite resins

    Science.gov (United States)

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm2 and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm2of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics. PMID:27651887

  4. Fissure sealant materials: Wear resistance of flowable composite resins.

    Science.gov (United States)

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm(2) and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm(2)of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  5. Sliding wear resistance of iron aluminides

    Indian Academy of Sciences (India)

    Garima Sharma; M Sundararaman; N Prabhu; G L Goswami

    2003-04-01

    Room temperature dry sliding wear behaviour of iron aluminides containing 28% aluminium and various amounts of chromium has been investigated using pin on disk wear tester. The aluminides were heat treated to have ordered 3 structure. It was found that wear rate of the aluminides increased with the increase of applied normal load and sliding speed. Wear resistance of the aluminides increased with increase in chromium content. SEM observation of the worn surface showed that the microcutting and microploughing were the dominant sliding wear mechanisms.

  6. Effect of Experimental Variables of Abrasive Wear on 3D Surface Roughness and Wear Rate of Al-4.5 % Cu Alloy

    Science.gov (United States)

    Ghosh, Debashis; Mallik, Manab; Mandal, Nilrudra; Dutta, Samik; Roy, Himadri; Lohar, Aditya Kumar

    2016-05-01

    This investigation was primarily carried out to examine the abrasive wear behavior of as cast Al-4.5 % Cu alloy. Wear tests have been carried out using an abrasive wear machine with emery paper embedded with SiC particles acting as abrasive medium. The experiments were planned using central composite design, with, load, cycle and grit size as input variables, whereas wear rate and 3D roughness were considered as output variable. Analysis of variance was applied to check the adequacy of the mathematical model and their respective parameters. Microstructural investigations of the worn surfaces have been carried out to explain the observed results and to understand the wear micro-mechanisms as per the planned experiments. Desirability function optimization technique was finally employed to optimize the controlling factors. The observed results revealed that, grit size plays a significant role in the variation of wear rate and 3D roughness as compared to load and cycles. Based on the significance of interactions, the regression equations were derived and verified further with a number of confirmation runs to assess the adequacy of the model. A close agreement (±10 %) between the predicted and experimentally measured results was obtained from this investigation.

  7. Laser cladding of Zr-based coating on AZ91D magnesium alloy for improvement of wear and corrosion resistance

    Indian Academy of Sciences (India)

    Kaijin Huang; Xin Lin; Changsheng Xie; T M Yue

    2013-02-01

    To improve the wear and corrosion resistance of AZ91D magnesium alloy, Zr-based coating made of Zr powder was fabricated on AZ91D magnesium alloy by laser cladding. The microstructure of the coating was characterized by XRD, SEM and TEM techniques. The wear resistance of the coating was evaluated under dry sliding wear test condition at room temperature. The corrosion resistance of the coating was tested in simulated body fluid. The results show that the coating mainly consists of Zr, zirconium oxides and Zr aluminides. The coating exhibits excellent wear resistance due to the high microhardness of the coating. The main wear mechanism of the coating and the AZ91D sample are different, the former is abrasive wear and the latter is adhesive wear. The coating compared to AZ91D magnesium alloy exhibits good corrosion resistance because of the good corrosion resistance of Zr, zirconium oxides and Zr aluminides in the coating.

  8. The role of abrasion and corrosion in grinding media wear: Annual technical progress report. [Taconite; molybdenite; quartzite

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J.J.; Iwasaki, I.

    1984-06-12

    Aim of this research program is to establish the effect of mill size and batch or continuous operation on the role of corrosive and abrasive wear during mineral grinding operations. Grinding ball wear tests are being conducted on the laboratory, pilot plant and industrial scale. This report gives the results of the first year's work of the two year research program and are discussed under the following headings: Wear Tests in an 8-inch Laboratory Mill (Using Three Different Ball Chemistries for Both Taconite and Molybdenite Ore); Wear Tests in a 36-inch Batch Mill (Using High Carbon Low Alloy Steel Balls with Taconite); Mechanisms of Erosive Wear in Taconite Grinding (Using Mild Steel Balls); The Effect of Slurry Rheology on Grinding Media Wear (Using Mild Steel Balls - Quartzite Combination); and Pilot Plant continuous Grinding Tests (Using High Carbon Low Alloy Steel Balls with Taconite Ore).

  9. Microstructure and abrasive wear properties of M(Cr,Fe7C3 carbides reinforced high-chromium carbon coating produced by gas tungsten arc welding (GTAW process

    Directory of Open Access Journals (Sweden)

    Soner BUYTOZ

    2010-01-01

    Full Text Available In the present study, high-chromium ferrochromium carbon hypereutectic alloy powder was coated on AISI 4340 steel by the gas tungsten arc welding (GTAW process. The coating layers were analyzed by optical microscopy, X-ray diffraction (XRD, field-emission scanning electron microscopy (FE-SEM, X-ray energy-dispersive spectroscopy (EDS. Depending on the gas tungsten arc welding pa-rameters, either hypoeutectic or hypereutectic microstructures were produced. Wear tests of the coatings were carried out on a pin-on-disc apparatus as function of contact load. Wear rates of the all coating layers were decreased as a function of the loading. The improvement of abrasive wear resistance of the coating layer could be attributed to the high hardness of the hypereutectic M7C3 carbides in the microstruc-ture. As a result, the microstructure of surface layers, hardness and abrasive wear behaviours showed different characteristics due to the gas tungsten arc welding parameters.

  10. The influence of chemical constitution on abrasive wear of alloy cast steel Cr, Mo, V, Cu, Ni type

    International Nuclear Information System (INIS)

    In the work were presented some elements of a wide research programme of the influence of alloying element contents such as Cr, Mo, V on the abrasive wear of hot working cast steel. The dependence between the mass decrement quantity and the element contents on cast steel structure were shown. (author)

  11. Controlled wear of vitrified abrasive materials for precision grinding applications

    Indian Academy of Sciences (India)

    M J Jackson; B Mills; M P Hitchiner

    2003-10-01

    The study of bonding hard materials such as aluminium oxide and cubic boron nitride (BN) and the nature of interfacial cohesion between these materials and glass is very important from the perspective of high precision grinding. Vitrified grinding wheels are typically used to remove large volumes of metal and to produce components with very high tolerances. It is expected that the same grinding wheel is used for both rough and finish machining operations. Therefore, the grinding wheel, and in particular its bonding system, is expected to react differently to a variety of machining operations. In order to maintain the integrity of the grinding wheel, the bonding system that is used to hold abrasive grains in place reacts differently to forces that are placed on individual bonding bridges. This paper examines the role of vitrification heat treatment on the development of strength between abrasive grains and bonding bridges, and the nature of fracture and wear in vitrified grinding wheels that are used for precision grinding applications.

  12. Abrasive Wear of Laser Surface Hardened 9SiCr in Soils%激光硬化9SiCr表面土壤磨损研究

    Institute of Scientific and Technical Information of China (English)

    陈卓君; 张祖立

    2011-01-01

    Abrasive wear tests of laser treated 9SiCr blade were conducted using three kinds of abrasives ( loam soil, sand soil and clay soil). The parameters of laser treatment (e. g. laser power 1 200 W, scanning velocity 14 mm/s, laser power 1 500 W, scanning velocity 16 mm/s) were optimized to obtain the hard and wear resistant surface on 9SiCr blade. Wear resistances of laser treated 9SiCr blade in three kinds of soils were measured and compared. The wear resistance of laser hardened 9SiCr steel blade was 5 times as high as that of quenched 9SiCr steel blade. The main wear mechanism of laser hardened 9SiCr blade in soil was abrasive wear. By improving the hardness, the wear lifetime of laser hardened 9SiCr blade was prompted.%在壤土、沙土和黏土3种土壤中对激光处理的9SiCr材料进行磨损试验,考察了激光硬化工艺参数对9SiCr旋耕刀基体显微硬度的影响,获得9SiCr旋耕刀基体激光硬化处理的最佳工艺参数.结果表明:在激光功率为1 200 W、扫描速度为14 mm/s和激光功率1 500 W、扫描速度16 mm/s的条件下,磨损率较小.激光处理表面在3种土壤条件下进行了耐磨性比较,沙土对试件的磨损率影响最小.9SiCr经过激光处理其表面耐磨性比一般淬火表面的耐磨性提高约5倍.9Sicr表面磨损形式主要是磨粒磨损.激光处理9SiCr表面提高了表面硬化层的硬度,从而提高了材料的耐磨性,增加了9SiCr的使用寿命.

  13. Effect of Nd on microstructure and wear resistance of hypereutectic Al-20%Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Shi, W.X. [School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning Province 110004 (China); Gao, B., E-mail: surfgao@yahoo.com.c [School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning Province 110004 (China); Tu, G.F.; Li, S.W. [School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning Province 110004 (China)

    2010-10-22

    Research highlights: Firstly, the sizes of primary silicon of hypereutectic Al-20%Si alloy after modified were apparently refined. Secondly, wear resistance of hypereutectic Al-20%Si alloy modified by Nd was significantly improved. Thirdly, the dominant wear mechanisms for the alloy before after modification were different. Finally, a new ternary Al-Si-Nd phase forms after 0.3wt.%Nd modification. - Abstract: In this paper, pure Nd was adopted to modify hypereutectic aluminum-silicon alloy (Al-20%Si). The morphology of eutectic and primary silicon phases was analyzed by OM and SEM. OM and SEM results show that pure Nd (0.3 wt.%) can significantly refine both eutectic and primary silicon of hypereutectic Al-20%Si alloy. Morphology of primary silicon was transformed from star-shaped and irregular morphology to fine polyhedral and grain size of primary silicon was refined from 80-120 {mu}m to 20-50 {mu}m. TEM results show that a new needle shape ternary phase (AlSi{sub x}Nd{sub y}) forms in modified alloy. XRD results show that three little unknown diffraction peaks appear after Nd modification and it is induced that they should be diffraction peaks of ternary AlSi{sub x}Nd{sub y} intermetallic phase in the modified alloy by analyzing both TEM and XRD results. Friction and wear resistance tests show that friction coefficient of Al-20%Si alloy decreases after Nd modification. Wear resistance of Al-20%Si alloy after 0.3 wt.%Nd modification was significantly improved as compared to the initial sample. The improvement of wear resistance was mainly attributed to change of morphology, size and distribution of eutectic silicon and primary silicon after Nd modification. The dominant wear mechanism for 0.3 wt.%Nd modified alloy was abrasive wear, adhesive wear and oxidative wear mechanism, but wear mechanism for unmodified alloy was abrasive wear and adhesive wear mechanism.

  14. Effect of Microstructure on Impact Fatigue Resistance and Impact Wear Resistance of Medium Cr-Si Cast Iron

    Institute of Scientific and Technical Information of China (English)

    LI Wei

    2007-01-01

    A great amount of iron grinding balls in tube mills have been consumed. Under this impact abrasive wear working condition, the failure of wear resistant alloying white irons grinding balls is mainly caused by fatigue spalling. The impact wear resistance of martensitic high chromium cast iron (Cr of 15 %) is not high sometimes, but its cost is not low. Thus, medium Cr-Si wear resistant cast iron is recommended. The influence of the iron on impact fatigue resistance and impact wear resistance is pronounced. Ball-on-ball impact fatigue test and high stress impact wear test of the grinding balls have been carried out. The results show that the impact fatigue resistance (IFR) and impact wear resistance (IWR) of medium Cr-Si cast iron are superior to those of martensitic high chromium cast iron (Cr of 15%). The main reasons are that (1) the stress in medium Cr-Si cast iron is released in the as-cast state; (2)the matrix is fine pearlite with better toughness and plasticity; (3) the pearlite is more stable compared with a retained austenite under repeated impact load and less phase transformation can take place; (4) high silicon content improves the morphology of eutectic carbide; (5) there is no secondary carbide which results in less crack sources. All these factors are beneficial to improvement of impact fatigue spalling resistance. The eutectic carbide M7C3 is the main constituent to resist wear.

  15. The influence of linear velocity on the wear behaviour of thermal sprayed coatings under dynamic abrasion test conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, D.M. [Carlow RTC (Ireland); Hashmi, M.S.J. [Dublin City Univ. (Ireland)

    1997-11-25

    Surface coatings applied by a high-velocity oxy fuel (HVOF) thermal spray process were subjected to a newly developed dynamic abrasion test. The test consists of combined impact and abrasion. Impact of samples with a round nose stylus was conducted at two specified linear velocities. The wear rates corresponding with the linear velocities were recorded and compared for a number of test cycles. Different substrate materials were used for the test and a number of coating thicknesses were examined. Uncoated samples were subjected to identical tests. Unlike many wear test processes currently in use, the wear test developed and used here is severe and fast acting, making it suitable for thick coatings and situations involving combined wear. The results of the wear tests show the effects of the linear velocity prior to impact on the surfaces in term of material loss and crater depth caused by dynamic wear testing. The influence of rebound following impact, combined with the linear velocity of the reciprocating stylus, has a major effect on the wear rates of the samples tested. (orig.) 11 refs.

  16. Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cook, B. A.; Harringa, J. L.; Russel, A. M.

    2012-12-01

    This report summarizes the work performed by an Ames-led project team under a 4-year DOE-ITP sponsored project titled, 'Advanced Wear-resistant Nanocomposites for Increased Energy Efficiency.' The Report serves as the project deliverable for the CPS agreement number 15015. The purpose of this project was to develop and commercialize a family of lightweight, bulk composite materials that are highly resistant to degradation by erosive and abrasive wear. These materials, based on AlMgB{sub 14}, are projected to save over 30 TBtu of energy per year when fully implemented in industrial applications, with the associated environmental benefits of eliminating the burning of 1.5 M tons/yr of coal and averting the release of 4.2 M tons/yr of CO{sub 2} into the air. This program targeted applications in the mining, drilling, machining, and dry erosion applications as key platforms for initial commercialization, which includes some of the most severe wear conditions in industry. Production-scale manufacturing of this technology has begun through a start-up company, NewTech Ceramics (NTC). This project included providing technical support to NTC in order to facilitate cost-effective mass production of the wear-resistant boride components. Resolution of issues related to processing scale-up, reduction in energy intensity during processing, and improving the quality and performance of the composites, without adding to the cost of processing were among the primary technical focus areas of this program. Compositional refinements were also investigated in order to achieve the maximum wear resistance. In addition, synthesis of large-scale, single-phase AlMgB{sub 14} powder was conducted for use as PVD sputtering targets for nanocoating applications.

  17. Evaluation Of Saltstone Mixer Paddle Configuration For Improved Wear Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. M.; Fowley, M. D.; Pickenheim, B. R.

    2012-09-27

    A soft metal with low wear resistance (6000 series aluminum), was used to minimize run time while maximizing wear rate. Two paddle configurations were tested, with the first four paddles after the augers replaced by the wear paddles. The first configuration was all flat paddles, with the first paddle not aligned with the augers and is consistent with present SPF mixer. The second configuration had helical paddles for the first three stages after the augers and a flat paddle at the fourth stage. The first helical paddle was aligned with the auger flight for the second configuration. The all flat paddle configuration wear rate was approximately double the wear rate of the helical paddles for the first two sets of paddles after the augers. For both configurations, there was little or no wear on the third and fourth paddle sets based on mass change, indicating that the fully wetted premix materials are much less abrasive than the un-wetted or partially wetted premix. Additionally, inspection of the wear surface of the paddles at higher magnification showed the flat paddles were worn much more than the helical and is consistent with the wear rates. Aligning the auger discharge flight with the first set of helical paddles was effective in reducing the wear rate as compared to the flat paddle configuration. Changing the paddle configuration from flat to helical resulted in a slight increase in rheological properties. Although, both tests produced grout-like material that is within the processing rage of the SPF, it should be noted that cement is not included in the premix and water was used rather than salt solution, which does affect the rheology of the fresh grout. The higher rheological properties from the helical wear test are most likely due to the reduced number of shearing paddles in the mixer. In addition, there is variation in the rheological data for each wear test. This is most likely due to the way that the dry feeds enter the mixer from the dry feeder. The

  18. Tool wear mechanism in turning of novel wear-resisting aluminum bronze

    Institute of Scientific and Technical Information of China (English)

    倪东惠; 夏伟; 张大童; 郭国文; 邵明

    2003-01-01

    Tool wear and wear mechanism during the turning of a wear-resisting aluminum bronze have been stud-ied. Tool wear samples were prepared by using M2 high-speed steel and YW1 cemented carbide tools to turn a novelhigh strength, wear resisting aluminum bronze without coolant and lubricant. Adhesion of workpiece materials wasfound on tool's surface. Under the turning condition used in this study major wear mechanisms for turning aluminumbronze using M2 high-speed steel tool are diffusion wear, adhesive wear and plastic deformation and shear on thecrater. Partial melting of high-speed steel on the rake plays a role in the tool wear also. Major wear mechanisms forturning aluminum bronze using YW1 cemented carbide tool are diffusion wear, attrition wear and sliding wear. Tocontrol the machining temperature is essential to reduce tool wear.

  19. Microstructure and wear resistance of spray-formed supermartensitic stainless steel

    Directory of Open Access Journals (Sweden)

    Guilherme Zepon

    2013-06-01

    Full Text Available Since the early 90's the oil industry has been encouraging the development of corrosion and wear resistant alloys for onshore and offshore pipeline applications. In this context supermartensitic stainless steel was introduced to replace the more expensive duplex stainless steel for tubing applications. Despite the outstanding corrosion resistance of stainless steels, their wear resistance is of concern. Some authors reported obtaining material processed by spray forming, such as ferritic stainless steel, superduplex stainless steel modified with boron, and iron-based amorphous alloys, which presented high wear resistance while maintaining the corrosion performance1,2. The addition of boron to iron-based alloys promotes the formation of hard boride particles (M2B type which improve their wear resistances3-9. This work aimed to study the microstructure and wear resistance of supermartensitic stainless steel modified with 0.3 wt. (% and 0.7 wt. (% processed by spray forming (SF-SMSS 0.3%B and SF-SMSS 0.7%B, respectively. These boron contents were selected in order to improve the wear resistance of supermartensitic stainless steel through the formation of uniformly distributed borides maintaining the characteristics of the corrosion resistant matrix. SF-SMSS 0.7%B presents an abrasive wear resistance considerably higher than spray-formed supermartensitic stainless steel without boron addition (SF-SMSS.

  20. Abrasion and fatigue resistance of PDMS containing multiblock polyurethanes after accelerated water exposure at elevated temperature.

    Science.gov (United States)

    Chaffin, Kimberly A; Wilson, Charles L; Himes, Adam K; Dawson, James W; Haddad, Tarek D; Buckalew, Adam J; Miller, Jennifer P; Untereker, Darrel F; Simha, Narendra K

    2013-11-01

    Segmented polyurethane multiblock polymers containing polydimethylsiloxane and polyether soft segments form tough and easily processed thermoplastic elastomers (PDMS-urethanes). Two commercially available examples, PurSil 35 (denoted as P35) and Elast-Eon E2A (denoted as E2A), were evaluated for abrasion and fatigue resistance after immersion in 85 °C buffered water for up to 80 weeks. We previously reported that water exposure in these experiments resulted in a molar mass reduction, where the kinetics of the hydrolysis reaction is supported by a straight forward Arrhenius analysis over a range of accelerated temperatures (37-85 °C). We also showed that the ultimate tensile properties of P35 and E2A were significantly compromised when the molar mass was reduced. Here, we show that the reduction in molar mass also correlated with a reduction in both the abrasion and fatigue resistance. The instantaneous wear rate of both P35 and E2A, when exposed to the reciprocating motion of an ethylene tetrafluoroethylene (ETFE) jacketed cable, increased with the inverse of the number averaged molar mass (1/Mn). Both materials showed a change in the wear surface when the number-averaged molar mass was reduced to ≈ 16 kg/mole, where a smooth wear surface transitioned to a 'spalling-like' pattern, leaving the wear surface with ≈ 0.3 mm cracks that propagated beyond the contact surface. The fatigue crack growth rate for P35 and E2A also increased in proportion to 1/Mn, after the molar mass was reduced below a critical value of ≈30 kg/mole. Interestingly, this critical molar mass coincided with that at which the single cycle stress-strain response changed from strain hardening to strain softening. The changes in both abrasion and fatigue resistance, key predictors for long term reliability of cardiac leads, after exposure of this class of PDMS-urethanes to water suggests that these materials are susceptible to mechanical compromise in vivo.

  1. Effect of Volume Fraction of Particle on Wear Resistance of Al2O3/Steel Composites at Elevated Temperature

    Institute of Scientific and Technical Information of China (English)

    BAO Chong-gao; WANG En-ze; GAO Yi-min; XING Jian-dong

    2005-01-01

    Based on previous work,abrasive wear resistance of Al2 O3/steel composites with different Al2 O3 parti cle volume fraction (VOF) at 900 C was investigated.The experimental results showed that a suitable particle VOF is important to protect the metal matrix from wear at elevated temperature.Both too high and too low particle VOF lead to a poor abrasive wear because a bulk matrix is easily worn off by grits when it exceeds the suitable VOF and also because when VOF is low,the Al2O3 particles are easily dug out by grits during wearing as well.When the particle VOF is 39%,the wear resistance of tested composites is excellent.

  2. Abrasive wear behaviour of conventional and large-particle tungsten carbide-based cermet coatings as a function of abrasive size and type

    OpenAIRE

    Kamdi, Z.; Shipway, P.H.; Voisey, K.T.; Sturgeon, A.J.

    2011-01-01

    Abrasive wear behaviour of materials can be assessed using a wide variety of testing methods, and the relative performance of materials will tend to depend upon the testing procedure employed. In this work, two cermet type coatings have been examined, namely (i) a conventional tungsten carbide-cobalt thermally sprayed coating with a carbide size of between ∼0.3 – 5 μm and (ii) a tungsten carbide-nickel alloy weld overlay with large spherical carbides of the order of ∼50 – 140 μm in diameter (...

  3. Prediction of wear rates in comminution equipment

    DEFF Research Database (Denmark)

    Jensen, Lucas Roald Dörig; Fundal, Erling; Møller, Per;

    2010-01-01

    that a wear map can give eye-opening information on the wear behavior. A wear map provides insight into the interaction between the abrasive and the wear part material being studied. In this paper, three wear maps with highly different properties are compared. Testing was performed on an abrasion......-resistant high chromium white cast iron (21988/JN/HBW555XCr21), a heat-treated wear resistant steel (Hardox 400) and a plain carbon construction steel (S235). Quartz, which accounts for the largest wear loss in the cement industry, was chosen as abrasive. Other process parameters such as velocity (1–7 m....../s) and pressure (70–1400 kPa) were chosen to closely imitate real industrial processes. The authors are aware that a number of wear mechanisms such as erosion, fatigue and abrasion may occur simultaneously in comminution equipment. Nonetheless, this paper aims at discussing abrasion only due to its large...

  4. Abrasive and sliding wear characteristics of Al-Si cast alloys before and after coating by plasma electrolytic oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, H.; Bayram, A. [Uludag Univ., Bursa (Turkey). Dept. of Mechanical Engineering; Uguz, A. [Science Park Ulutek (Turkey)

    2008-07-01

    The wear resistance of a series of Al-Si cast alloys with 5%, 8% and 11% silicon contents have been investigated after spheroidising heat treatments, and after coating these alloys by a plasma electrolytic oxidation (PEO) process for comparison. The alloys were subjected to wear tests by using SiC and steel counterfaces. The most remarkable observation is the increase in the wear resistance of the 5% Si containing alloy against SiC counterface, which is 70 times. However, the increase in the wear resistance is 5 times in the 11% Si containing alloy under same conditions, and only about 50% increase is observed when the counterface is steel. It is argued that, coating of these alloys by plasma electrolytic oxidation improves the wear resistance more effectively if the silicon content of the alloy is low, since the silicates (or aluminosilicates) in the coating layer has deleterious effect on wear resistance. (orig.)

  5. Effect of porosity on wear resistance of SiCp/Cu composites prepared by pressureless infiltration

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lin; QU Xuan-hui; DUAN Bo-hua; HE Xin-bo; QIN Ming-li

    2008-01-01

    The influence of porosity on the wear behavior of high volume fraction (61%) SiCp/Cu composite produced by pressureless infiltration was studied using a sliding, reciprocating and vibrating(SRV) machine. SiCp/Cu composites slid against hardened GCr15 bearing steel ball in the load range of 40-200 N. The results show that the wear rate increases with increasing porosity. The composite containing low porosity shows excellent wear resistance, which is attributed to the presence of mechanically mixed layer on the worn surface. In this case, the dominant wear mechanism is oxidative wear. Comparatively, the composite containing high porosity exhibits inferior wear resistance. Fracture and spalling of the particles are considered as the main causes of severe wear. Third body abrasion is the controlling wear mechanism. In addition, porosity has more important influence on wear rate at high load than at low load. This is associated with the fact that the fracture and spalling of particles is a process of crack initiation and propagation. At lower load, the pores beneath the worn surface can not propagate significantly, while the pores become unstable and easily propagate under high load, which results in a higher wear rate.

  6. Abrasion test of flexible protective materials on hydraulic structures

    Institute of Scientific and Technical Information of China (English)

    Xin WANG; Shao-ze LUO; Guang-sheng LIU; Lu-chen ZHANG; Yong WANG

    2014-01-01

    In this study, several kinds of flexible protective materials sprayed with polyurea elastomers (hereinafter referred to as polyurea elastomer protective material) were adopted to meet the abrasion resistance requirement of hydraulic structures, and their abrasion resistances against the water flow with suspended load or bed load were studied systematically through tests. Natural basalt stones were adopted as the abrasive for simulation of the abrasion effect of the water flow with bed load, and test results indicate that the basalt stone is suitable for use in the abrasion resistance test of the flexible protective material. The wear process of the polyurea elastomer protective material is stable, and the wear loss is linear with the time of abrasion. If the wear thickness is regarded as the abrasion resistance evaluation factor, the abrasion resistance of the 351 pure polyurea is about twice those of pure polyurea with a high level of hardness and aliphatic polyurea, and over five times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with suspended load. It is also about 50 times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with bed load. Overall, the abrasion resistance of pure polyurea presented a decreasing trend with increasing hardness. Pure polyurea with a Shore hardness of D30 has the best abrasion resistance, which is 60 to 70 times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with bed load, and has been recommended, among the five kinds of pure polyurea materials with different hardness, in anti-abrasion protection of hydraulic structures.

  7. Abrasion test of flexible protective materials on hydraulic structures

    Directory of Open Access Journals (Sweden)

    Xin WANG

    2014-01-01

    Full Text Available In this study, several kinds of flexible protective materials sprayed with polyurea elastomers (hereinafter referred to as polyurea elastomer protective material were adopted to meet the abrasion resistance requirement of hydraulic structures, and their abrasion resistances against the water flow with suspended load or bed load were studied systematically through tests. Natural basalt stones were adopted as the abrasive for simulation of the abrasion effect of the water flow with bed load, and test results indicate that the basalt stone is suitable for use in the abrasion resistance test of the flexible protective material. The wear process of the polyurea elastomer protective material is stable, and the wear loss is linear with the time of abrasion. If the wear thickness is regarded as the abrasion resistance evaluation factor, the abrasion resistance of the 351 pure polyurea is about twice those of pure polyurea with a high level of hardness and aliphatic polyurea, and over five times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with suspended load. It is also about 50 times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with bed load. Overall, the abrasion resistance of pure polyurea presented a decreasing trend with increasing hardness. Pure polyurea with a Shore hardness of D30 has the best abrasion resistance, which is 60 to 70 times that of high-performance abrasion-resistant concrete under the abrasion of the water flow with bed load, and has been recommended, among the five kinds of pure polyurea materials with different hardness, in anti-abrasion protection of hydraulic structures.

  8. Wear Resistance and Structure of Electrodeposited RE-Ni-W-P-SiC-PTFE Composite Materials

    Institute of Scientific and Technical Information of China (English)

    GuoZhongcheng; ZhuXiaoyun; YangXianwan

    2004-01-01

    Effects of heat treatment temperature and time on hardness and wear resistance of RE-Ni-W-P-SiC-PTFE and RE-Ni-W-P-SiC composite coatings were studied. The results indicated that the hardness of the composite coatings as-deposited was lower and the mass loss (i.e. rate of abrasion) was higher, while the hardness increased and the rate of abrasion decreased with the increase of heat treatment temperature. The rate of abrasion was the lowest and hardness was the highest at 400℃ . The hardness decreased and the rate of abrasion increased with the temperature increasing continuously. Both the hardness and wear resistance also increased with the prolongation of heat treatment time, reaching their peak values when the heat treatment time was 2 h. The experimental results also showed that the hardness of the coatings decreased with PTFE quantity enhancing, but the wear rate diminished correspondingly. X-ray diffraction analysis indicated that the structure of RE-Ni-W-P-SiC-PTFE composite coating as-deposited is amorphous, and it partly became crystal when heat treatment temperature was over 3000℃.

  9. Heat Treatment Effect on Microstructure, Hardness and Wear Resistance of Cr26 White Cast Iron

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shaoping; SHEN Yehui; ZHANG Hao; CHEN Dequan

    2015-01-01

    High chromium cast iron(HCCI) is taken as material of coal water slurry pump impeller, but it is susceptible to produce serious abrasive wear and erosion wear because of souring of hard coal particles. The research on optimization of heat treatments to improve abrasive wear properties of HCCI is insufficient, so effect of heat treatments on the microstructure, hardness, toughness, and wear resistance of Cr26 HCCI is investigated to determine the optimal heat treatment process for HCCI. A series of heat treatments are employed. The microstructures of HCCI specimens are examined by using optical microscopy and scanning electron microscopy. The hardness and impact fracture toughness of as-cast and heat treated specimens are measured. The wear tests are assessed by a Type M200 ring-on block wear tester. The results show the following: With increase of the quenching temperature from 950℃ to 1050℃, the hardness of Cr26 HCCI increased to a certain value, kept for a time and then decreased. The optimal heat treatment process is 2 h quenching treatment at 1000℃, followed by a subsequent 2 h tempering at 400℃. The hardness of HCCI is related to the precipitation and redissolution of secondary carbides in the process of heat treatment. The subsequent tempering treatment would result in a slight decrease of hardness but increase of toughness. The wear resistance is much related to the “supporting” effect of the matrix and the“protective” effect of the hard carbide embedded in the matrix, and the wear resistance is further dependent on the hardness and the toughness of the matrix. This research can provide an important insight on developing an optimized heat treatment method to improve the wear resistance of HCCI.

  10. Heat treatment effect on microstructure, hardness and wear resistance of Cr26 white cast iron

    Science.gov (United States)

    Zhou, Shaoping; Shen, Yehui; Zhang, Hao; Chen, Dequan

    2015-01-01

    High chromium cast iron(HCCI) is taken as material of coal water slurry pump impeller, but it is susceptible to produce serious abrasive wear and erosion wear because of souring of hard coal particles. The research on optimization of heat treatments to improve abrasive wear properties of HCCI is insufficient, so effect of heat treatments on the microstructure, hardness, toughness, and wear resistance of Cr26 HCCI is investigated to determine the optimal heat treatment process for HCCI. A series of heat treatments are employed. The microstructures of HCCI specimens are examined by using optical microscopy and scanning electron microscopy. The hardness and impact fracture toughness of as-cast and heat treated specimens are measured. The wear tests are assessed by a Type M200 ring-on block wear tester. The results show the following: With increase of the quenching temperature from 950 °C to 1050 °C, the hardness of Cr26 HCCI increased to a certain value, kept for a time and then decreased. The optimal heat treatment process is 2 h quenching treatment at 1000 °C, followed by a subsequent 2 h tempering at 400 °C. The hardness of HCCI is related to the precipitation and redissolution of secondary carbides in the process of heat treatment. The subsequent tempering treatment would result in a slight decrease of hardness but increase of toughness. The wear resistance is much related to the "supporting" effect of the matrix and the "protective" effect of the hard carbide embedded in the matrix, and the wear resistance is further dependent on the hardness and the toughness of the matrix. This research can provide an important insight on developing an optimized heat treatment method to improve the wear resistance of HCCI.

  11. Wear resistance of coke-crushing hammers

    OpenAIRE

    Zupanič, Franc

    2015-01-01

    This work investigated several methods for improving the wear resistance of the 42CrMo4 tool steel used for coke-crushing hammers. The methods embraced heat treatment for obtaining different combinations of strength and ductility of the bulk steel, and surface-engineering processes comprising TiN thin-film deposition using magnetron-sputtering, nitriding and WC/Ni weld deposit surfaced by gas metal arc (GMA) method. The wear-resistance was tested under industrial conditions. Oil quenching and...

  12. Application of polymer-powder slurry for fabrication of abrasion resistant coatings on tool materials

    Directory of Open Access Journals (Sweden)

    G. Matula

    2011-03-01

    Full Text Available Purpose: Development of a new generation tool materials on the basis of M2 high speed-steel or 41Cr4 steel covered with the carbides. Application of pressureless forming of powder as a manufacturing method of anti-wear coatings gives the possibility to produce this materials with relative low cost of production.Design/methodology/approach: Powder metallurgy, pressureless forming of powder, sintering, microstructure examination, X-ray dispersive energy examination, hardness examination.Findings: Putting down coatings with this method does not call for using the costly equipment for the physical or chemical deposition of coatings from the gaseous phase. Coating thickness may be easily regulated by applying the powder-binder slurry layer once or several times on the prepared substrate surface. Hardness of coatings in the sintered state is higher compared to the HS6-5-2 and 41Cr4 steels by about 400 and 700 HV respectively. It is expected that hardness of the coatings and substrate will grow after their heat treatment.Practical implications: Application of powder metallurgy and especially pressureless forming of powder to manufacturing of steel covered with anti-wear coatings gives the possibility to obtain tool materials with the relative high ductility characteristic of steel and high hardness and wear resistance typical for cemented carbides.Originality/value: One can state, based on the investigations carried out, that the pressureless forming of the powder may be used for depositing the anti-wear coatings onto the tool materials and other elements in the abrasion wear service conditions.

  13. Microstructure, Impact Fatigue Resistance and Impact Wear Resistance of Wear Resistant Low Cr-Si Cast Iron

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A great amount of iron and steel has been consumed in impact wear resistance parts such as grinding balls and lining plates in tube mills. Under this working conditions, the failure of wear resistant white irons is generally caused by fatigue spalling. The martensitic high chromium cast iron (WCr=15 %) has good wear resistance, but its cost is higher. The impact wear resistance of low chromium cast iron sometimes is not good. In the present paper ,a new wear resistant material-low Cr-Si cast iron was introduced. The influence of microstructure of cast iron on impact fatigue resistance and impact wear resistance was discussed. The ball-on-ball impact fatigue test, the high stress impact wear test and the field test of the grinding balls have been carried out. The results showed that the impact fatigue resistance (IFR) and impact wear resistance (IWR) of low Cr-Si cast iron are superior to typical low chromium cast irons and close to the martensitic high chromium cast iron. The main reasons are: ① The as-cast matrix of the low Cr-Si cast iron with stress released is pearlite with better plasticity and toughness; ② The high Si content improves the morphology of eutectic carbide, and has no secondary carbide resulting in less crack sources. All these factors are beneficial to the improvement of impact fatigue spalling resistance and impact wear resistance.

  14. A novel corrosion and abrasion resistant internal coating method with improved adhesion using hollow cathode PECVD (Plasma Enhanced Chemical Vapor Deposition) technology

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, B.; Boinapally, K.; Casserly, T.; Upadhyaya, D.; Gupta, M.; Dornfest, C. [SubOne Technology, Pleasanton, CA (United States)

    2008-07-01

    A new enabling technology for coating the internal surfaces of pipes with a hard, corrosion, wear resistant diamond-like-carbon (DLC) coating is described. The importance of proper surface preparation and optimized interface and adhesion layer is shown. Corrosion resistance is measured based on exposure to HCl, NaCl environments and autoclave with H{sub 2}S. Mechanical properties include high hardness, high adhesion, and excellent wear resistance including sand abrasion resistance. The coating is optimized for high hardness and deposition rate based on selection on the proper hydrocarbon precursor. This new technology enables wide spread use of DLC based coating to increase component life in applications where internal surface of pipes are exposed to corrosive and abrasive environment especially in the oil and gas industry. (author)

  15. Effect of Heat Treatment on Wear Resistance of Nickel Aluminide Coatings Deposited by HVOF and PTA

    Science.gov (United States)

    Benegra, M.; Santana, A. L. B.; Maranho, O.; Pintaude, G.

    2015-08-01

    This study aims to compare the wear resistance of nickel aluminide coatings deposited using plasma transferred arc (PTA) and high-velocity oxygen fuel (HVOF) processes. Wear resistance was measured in rubber wheel abrasion tests. In both deposition processes, the same raw material (nickel aluminide powder) was atomized and deposited on a 316L steel plate substrate. After deposition, specimens were subjected to thermal cycling, aiming solubilization and precipitation. Coatings deposited using PTA developed different microstructures as a result of the incorporation of substrate elements. However, despite the presence of these microstructures, they performed better than coatings processed using HVOF before the heat treatment. After thermal cycling, the superficial hardness after the wear tests for both processes was similar, resulting in similar mass losses.

  16. Wear Resistant Thermal Sprayed Composite Coatings Based on Iron Self-Fluxing Alloy and Recycled Cermet Powders

    Directory of Open Access Journals (Sweden)

    Heikki SARJAS

    2012-03-01

    Full Text Available Thermal spray and WC-Co based coatings are widely used in areas subjected to abrasive wear. Commercial  cermet thermal spray powders for HVOF are relatively expensive. Therefore applying these powders in cost-sensitive areas like mining and agriculture are hindered. Nowadays, the use of cheap iron based self-fluxing alloy powders for thermal spray is limited. The aim of this research was to study properties of composite powders based on self-fluxing alloys and recycled cermets and to examine the properties of thermally sprayed (HVOF coatings from composite powders based on iron self-fluxing alloy and recycled cermet powders (Cr3C2-Ni and WC-Co. To estimate the properties of  recycled cermet powders, the sieving analysis, laser granulometry and morphology were conducted. For deposition of coatings High Velocity Oxy-Fuel spray was used. The structure and composition of powders and coatings were estimated by SEM and XRD methods. Abrasive wear performance of coatings was determined and compared with wear resistance of coatings from commercial powders. The wear resistance of thermal sprayed coatings from self-fluxing alloy and recycled cermet powders at abrasion is comparable with wear resistance of coatings from commercial expensive spray powders and may be an alternative in tribological applications in cost-sensitive areas.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1338

  17. Comparison of methods for quantifying dental wear caused by erosion and abrasion.

    Science.gov (United States)

    Passos, Vanara F; Melo, Mary A S; Vasconcellos, Andréa Araújo; Rodrigues, Lidiany K A; Santiago, Sérgio L

    2013-02-01

    Various methods have been applied to evaluate the effect of erosion and abrasion. So, the aim of this study was to check the applicability of stylus profilometry (SP), surface hardness (SH) and focus-variation 3D microscopy (FVM) to the analysis of human enamel and dentin subjected to erosion/abrasion. The samples were randomly allocated into four groups (n = 10): G1-enamel/erosion, G2-enamel/erosion plus abrasion, G3-dentin/erosion, and G4-dentin/erosion plus abrasion. The specimens were selected by their surface hardness, and they were subjected to cycles of demineralization (Coca-Cola®-60 s) and remineralization (artificial saliva-60 min). For groups G2 and G4, the remineralization procedures were followed by toothbrushing (150 strokes). The above cycle was repeated 3×/day during 5 days. The samples were assessed using SH, SP, and FVM. For each substrate, the groups were compared using an unpaired t-test, and Pearson correlation coefficients were calculated (α = 5%). For enamel, both profilometry technique showed greater surface loss when the erosion and abrasion processes were combined (P <0.05). The correlation analysis did not reveal any relationships among SH, SP, and FVM to G2 and G4. There were significant correlation coefficients (-0.70 and -0.67) for the comparisons between the FVM and SH methods in enamel and dentin, respectively, in G1 and G3. Choosing the ideal technique for the analysis of erosion depends on the type of dental substrate. SP was not sufficiently sensitive to measure the effects on dentin of erosion or erosion/abrasion. However, SP, FVM and SH were adequate for the detection of tissue loss and demineralization in enamel. PMID:23129538

  18. Abrasive wear based predictive maintenance for systems operating in sandy conditions

    NARCIS (Netherlands)

    Woldman, M.; Tinga, T.; Heide, E. van der; Masen, M.A.

    2015-01-01

    Machines operating in sandy environments are damaged by the abrasive action of sand particles that enter the machine and become entrapped between components and contacting surfaces. In the case of the military services the combination of a sandy environment and the wide range of tasks to be fulfille

  19. Microstructure, mechanical properties and wear resistance of WC/Co nanocomposites

    International Nuclear Information System (INIS)

    The microstructure, mechanical properties, abrasion and wear resistance of WC-Co nanocomposites synthesized by the spray conversion technique by McCaundlish, Kear and Kim have been investigated. The binder phase of WC-Co nanocomposites is enriched in W and C, compared to conventional cermets. Small amorphous regions exist in the binder despite the slow cooling after liquid phase sintering. Few dislocations are found in the WC grains. The increased WC content and the amorphous regions modify (i.e. strengthen) the binder phase of the composites. Vickers indentation measurements show a hardness of the nanocomposites reaching 2,310 kg/mm2. While the toughness of conventional cermets decreases with increasing hardness, the toughness does not decrease further as the WC grain size decreases from 0.7 to 0.07 microm but remains constant at 8 MPam1/2. Scratches caused by a diamond indenter are small, commensurate with their hardness. These scratches are ductile, devoid of the grain fracture that is observed with conventional materials. The abrasions resistance of nanocomposites is about double that of conventional materials, although their hardness is larger by 23% only. This is due to the lack of WC grain fragmentation and removal which takes place in conventional cermets. Sliding wear resistance of WC/Co is proportional to their hardness; no additional benefit of nanostructure is obtained. This results from the very small size of adhesive wear events in even large WC grains

  20. Effect of thermal fatigue on the wear resistance of graphite cast iron with bionic units processed by laser cladding WC

    Science.gov (United States)

    Jing, Zhengjun; Zhou, Hong; Zhang, Peng; Wang, Chuanwei; Meng, Chao; Cong, Dalong

    2013-04-01

    Thermal fatigue and wear exist simultaneously during the service life of brake discs. Previous researchers only studied thermal fatigue resistance or abrasion resistance of compact graphite cast iron (CGI), rather than combining them together. In this paper, wear resistance after thermal fatigue of CGI was investigated basing on the principle of bionics, which was close to actual service condition of the brake discs. In the meanwhile, the effect of thermal fatigue on wear resistance was also discussed. Non-smooth bionic units were fabricated by laser cladding WC powder with different proportions (50 wt.%, 60 wt.%, 70 wt.%). Microstructure and microhardness of the units were investigated, and wear mass losses of the samples were also compared. The results indicate that thermal fatigue has a negative effect on the wear resistance. After the same thermal fatigue cycles times, the wear resistance of laser cladding WC samples is superior to that of laser remelting ones and their wear resistance enhances with the increase of WC content.

  1. Correlation between Wear Resistance and Lifetime of Electrical Contacts

    Directory of Open Access Journals (Sweden)

    Jian Song

    2012-01-01

    Full Text Available Electrical contacts are usually plated in order to prevent corrosion. Platings of detachable electrical contacts experience wear because of the motion between contacts. Once the protecting platings have been worn out, electrical contacts will fail rapidly due to corrosion or fretting corrosion. Therefore the wear resistance of the platings is a very important parameter for the long lifetime of electrical contacts. Many measures which improve the wear resistance can diminish the conductivity of the platings. Due to the fact that platings of electrical contacts must have both a high wear resistance and a high electrical conductivity, the manufacturing of high performance platings of electrical contacts poses a great challenge. Our study shows firstly the correlation between the wear resistance of platings and lifetime of electrical contacts and then the measures, which improve the wear resistance without impairing the electrical performance of the contacts.

  2. Abrasion resistance of biaxially oriented polypropylene films coated with nanocomposite hard coatings

    Science.gov (United States)

    Wang, Jing; Zhu, Yaofeng; Fu, Yaqin

    2013-11-01

    KMnO4-treated, functionalized, biaxially oriented polypropylene (BOPP) films coated with nano-silica hybrid material were synthesized. The abrasion resistance of the films was examined using a reciprocating fabric abrasion tester. Functional groups were confirmed by Fourier-transform infrared spectroscopy. Contact angle measurements were performed on the BOPP film surface to quantify the effectiveness of the functionalization. Results indicate that the abrasion resistance and roughness of the composite film were significantly affected by the modification of the BOPP film. Water surface contact angle of the modified BOPP films decreased from 90.1° to 71.4°,when KMnO4 concentration increased from 0 M to 0.25 M. Wettability of the BOPP films clearly improved after KMnO4 treatment. Abrasion resistance of the functionalized films coated with hybrid materials improved by 27.4% compared with that of the original film.

  3. Effect of pressing temperature on the wear resistance of a Co-based Cr-Mo powder alloy produced by hot pressing

    Energy Technology Data Exchange (ETDEWEB)

    Somunkiran, Ilyas [Firat Univ., Elazig (Turkey). Metallurgical and Materials Engineering Dept.; Balin, Ahmet [Siirt Univ. (Turkey). Dept. of Vocational High School

    2016-02-01

    In this study, Co-based Cr-Mo powder alloy was produced at different pressing temperatures by using hot pressing technique and abrasive wear behaviors of the produced specimens were examined. Produced specimens were exposed to abrasive wear experiment using block on disc wear test device by applying a load of 50 N with 100-mesh SiC abrasive paper. Each specimen was investigated at 25, 50, 75 and 100 m. At the end of the experiment, abrasive wear results of the specimens were determined by calculating their mass losses. Microstructural properties of the specimens which were produced at different pressing temperatures were investigated by optical and SEM examinations and their wear resistances were examined by abrasive wear experiments. Consequently, it was observed that in Co-based Cr-Mo powder alloy produced by hot pressing technique; as sintering temperature increased, size of neck formations between the powder grains increased, porosity decreased and abrasive wear resistance increased. [German] In diesem Beitrag zugrunde liegenden Studie wurde eine Co-basierte Cr-Mo-Legierung mittels Heisspressens hergestellt und der Abrasivverschleisswiderstand dieser Proben untersucht. Die hergestellten Proben wurden dem Abrasivverschleissversuch durch einen Block-Scheibe-Versuchsaufbau unterzogen, wobei eine Kraft von 50 N mit einem SiC-Papier (100 mesh) verwendet wurde. Jede Probe wurde ueber eine Distanz von 25, 50, 75 und 100 m untersucht. Am Ende der jeweiligen Experimente wurden die Abrasivverschleissergebnisse ermittelt, indem die Massenverluste berechnet wurden. Die mikrostrukturellen Eigenschaften der Proben, die bei verschiedenen Presstemperaturen hergestellt wurden, wurden mittels optischer und Rasterelektronenmikroskopie bestimmt und ihr Verschleisswiderstand anhand der Verschleissversuche ermittelt. Schliesslich wurde beobachtet, dass bei steigender Sintertemperatur der heissgespressten Co-basierten Cr-Mo-Pulverlegierung die Groesse der Einschnuerungen zwischen den

  4. RESISTANCE OF COATED ELECTRODES SUITABLE FOR RENOVATION OF TILLAGE TOOLS

    Directory of Open Access Journals (Sweden)

    Martin Kotus

    2013-12-01

    Full Text Available This article deals with the abrasive wear resistance of additional materials. The resistance of individual materials was figured out by determining a proportional wear resistance on a grinding fabric. Results of the experiment confirmed an increase in welds abrasive wear resistance. Chosen coated electrodes are suitable for the renovation of tillage tools of agricultural machines.

  5. Effect of flame conditions on abrasive wear performance of HVOF sprayed nanostructured WC-12Co coatings

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-yue; LI Chang-jiu; MA Jian; YANG Guan-jun

    2004-01-01

    Nanostructured WC-12Co coatings were deposited by high velocity oxy-fuel (HVOF) spraying with an agglomerated powder. The effect of flame conditions on the microstructure of the nanostructured coatings was investigated. The wear properties of the coatings were characterized using a dry rubber-wheel wear test. The results show that the nanostructured WC-Co coatings consist of WC, W2C, W and an amorphous binder phase. The microstructure of the coating is significantly influenced by the ratio of oxygen flow to fuel flow. Under the lower ratio of oxygen/fuel flow, the nanostructured coating presents a relative dense microstructure and severe decarburization of WC phase occurs during spraying. With increasing ratio of oxygen/fuel flow, the bonding of WC particles in the coating becomes loose resulting from the original structure of feedstock and the decarburization of WC becomes less owing to limited heating to the powder. Both the decarburization of WC particles in spraying and the bonding among WC particles in the coatings affect the wear performance. The examination of the worn surfaces of the nanostructured coatings reveals that the dominant wear mechanisms would be spalling from the interface of WCCo splats when spray particles undergo a limited melting. While the melting state of the spray particles is improved,the dominant wear mechanisms become the plastic deformation and plowing of the matrix and spalling of WC particles from the matrix.

  6. Influence of silicon content and heat treatment on wear resistance of white chromium cast irons under high speed solidification conditions; Influencia del contenido de silicio y el tratamiento termico en la resistencia al desgaste de fundiciones blancas al cromo en condiciones de rapida solidificacion

    Energy Technology Data Exchange (ETDEWEB)

    Goyo, L.; Varela, A.; Verhaege, M.; Garcia, A.; Mier, J.; Moors, M.

    2012-11-01

    The influence of silicon content and heat treatment on microstructure, abrasive and dry friction wear resistance of a 3 % C, 12 % Cr cast iron, under fast solidification conditions is studied. The fast solidification condition diminishes the carbide volume and the silicon content increases their dispersion and finesses. All matrixes obtained were perlitics, whit different finesses. No intermediate transformation products were noticed. Hardness had little variation. Austenization treatment show little effectivity, with tendency to increase wear in reference to as cast and maintenance treatments. Behavior under dry friction and abrasive wear were similar under test conditions applied whit more influence of carbide morphology in the abrasive wear conditions. (Author) 32 refs.

  7. Development of a new wear resistant coating by arc spraying of a steel-based cored wire

    Institute of Scientific and Technical Information of China (English)

    Lidong ZHAO; Binyou FU; Dingyong HE; Pia KUTSCHMANN

    2009-01-01

    In the present study, a cored wire of 304 L stainless steel as sheath material and NiB and WC-12Co as filler materials was designed and deposited to produce a new wear resistant coating containing amorphous phase by arc spraying. The microstructure of the coating was investigated. The porosity and hardness of the coating were determined. The wear performance of the coating was evaluated. The XRD and TEM analyses showed that there are high volume of amorphous phase and very fine crystalline grains in the coating. DTA measurements revealed that the crystallization of the amorphous phase occurred at 579.2℃. Because metallurgical processes for single droplets were non-homogenous during spraying, the lamellae in the coating have different hardness values, which lie between about 700 and 1250HV10og. The abrasive wear test showed that the new Fe-based coating was very wear resistant.

  8. A Laser Processing Technique for Improving the Wear Resistance of Metals

    Science.gov (United States)

    Ayers, J. D.; Schaefer, R. J.; Robey, W. P.

    1981-08-01

    This paper describes a process whereby the surface of a wide variety of metals and alloys can be impregnated with hard, wear-resisting particles. In experiments to date, particles of TiC or WC have been injected into thin laser melted surface layers of iron, nickel, titanium, aluminum, and copper base alloys. Many other metal/particle combinations appear to be feasible, for the only fundamental limitation on the process evident to date is that the metal must not exhibit an excessive vapor pressure under the conditions of laser melting. Despite the wide range of alloy compositions experimented with, the processing conditions necessary to achieve good volume fractions of carbide are surprisingly constant. This similarity in processing conditions results in part from carrying out the carbide injection under soft vacuum conditions, thus eliminating oxidation problems without introducing problems associated with the use of shielding gases. Work in progress1 has demonstrated that several of the metal/carbide combinations produced to date exhibit good resistance to abrasive wear. It is expected that resistance to most other types of wear will also be good. Preliminary results suggest that in addition to applications involving the production of wear-resisting metal surfaces, the process may be suited to the manufacture of carbide hardened cutting tools. Furthermore, the simplicity of the process recommends it for surface alloying applications.

  9. An experimental and theoretical investigation into three-body abrasive wear

    NARCIS (Netherlands)

    Woldman, Martijn

    2014-01-01

    When machines operate under extreme conditions, they often need to perform to maximum capacity. The high demands cause the amount of wear to increase relative to ‘the normal’ situation. Moreover, the extreme conditions are typically variable, making it impossible to define fixed maintenance interval

  10. Study on dry friction and wear resistance of a WC-Co particle reinforced iron matrix composite material

    Directory of Open Access Journals (Sweden)

    Zhang Peng

    2013-05-01

    Full Text Available In order to select a suitable material for the rolling mill guide application, the dry sliding friction and wear resistance of a tungsten carbide combining cobalt (WC-Co particle reinforced chromium cast iron composite material were studied. In particular, the wear resistance was discussed in detail. The results showed that the composite material demonstrates 25 times the wear resistance of high Cr cast iron, and 9 times the wear resistance of heat resistant steel. However, the average friction factor in the stable friction stage showed a relationship of μComposites/45 # steel > μHigh chromium cast iron/45 # steel > μHeat resistant steel/45 # steel. The wear resistance mechanism of the composite material was associated with the reinforcing particles, which protruded from the worn surface to bear the friction load when the matrix material surface was worn, thereby reducing the abrasive and adhesive wear. In addition, the matrix material possessed suitable hardness and toughness, providing a support to the reinforcements.

  11. Comparative Study of Wear Resistance of Sewing Needles

    Institute of Scientific and Technical Information of China (English)

    FEI Dong-ye; ZHU Shi-gen

    2002-01-01

    Poor wearability is the most serious problem of domestic sewing needle, which is the main reason for their short service lives. The influences of needle materials,microstructures and manufacturing technologies on the wear resistance are analyzed in comparison with foreign sewing needles. A series of suitable measures are proposed to improve the wear resistance.

  12. Effect of filler size on wear resistance of resin cement.

    Science.gov (United States)

    Shinkai, K; Suzuki, S; Katoh, Y

    2001-11-01

    The purpose of this study was to evaluate the effect of filler size on the wear of resin cements. Materials tested included four experimental dual-cure resin cements (Kuraray) consisting of different-sized filler particles. A rectangular box cavity was prepared on the flattened occlusal surface of extracted human molars. Ceramic inlays for the cavities were fabricated using the Cerec 2 system. The Cerec inlays were cemented with the respective cements and adhesive systems according to the manufacturer's directions. The restored surface was finished by wet-grinding with an 800-grit silicon carbide paper. Six specimens were prepared for each resin cement. Half of the specimens were subjected to a three-body wear test for 200,000 cycles, and the others were subjected to a toothbrush abrasion test for 30,000 cycles. The worn surface of each restoration was scanned by a profilometer (Surfcom 475 A) at eight different points for each restoration. The wear value was determined by measuring the vertical gap depth on the profilometric tracings. The data were statistically analyzed by one-way analysis of variance (ANOVA) and Scheffe's test. The results showed that, with increase of filler size, the wear value decreased in the toothbrush test and increased in the three-body wear test. The cement with 0.04-microm filler exhibited the lowest wear value among the materials in the three-body wear test, and the same wear value as the cement with 0.97-microm filler in the toothbrush test. Based upon the results of this study, it is concluded that the wear of resin cements was affected by the filler size as well as the mode of wear test.

  13. Microstructure, microhardness and wear resistance of VCp/Fe surface composites fabricated in situ

    International Nuclear Information System (INIS)

    Graphical The vanadium carbide particles (VCp)/Fe surface composites were in situ fabricated by a technique combining infiltration casting with subsequent heat treatment. The effects of different heat treatment times on the phase evolution, microstructure, microhardness and wear resistance of the composite were studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), Vickers hardness tester and wear resistance testing instrument, respectively. The results show that only graphite, α-Fe and V8C7 phases dominate in the composite after being heat treated at 1164 °C for 3 h. The amount of V8C7 decreases gradually from the top surface of the composite to the matrix mainly composed of gray cast iron. The average microhardness of the VCp/Fe surface composites varies according to the different reaction zones as follows: 505 HV0.1 (vanadium plate), 1096 HV0.1 (composite region), and 235 HV0.1 (iron matrix). The microhardness of the composite region is four times higher than that of the iron matrix and two times higher than that of the vanadium plate. This is attributed to the formation of vanadium carbide (V2C and V8C7) crystallites as reinforcement phases within the iron matrix. The VCp/Fe surface composites exhibit a good wear resistance under two-body abrasive wear test.

  14. Effects of increase extent of voltage on wear and corrosion resistance of micro-arc oxidation coatings on AZ91D alloy

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The effects of increase extent of voltage on the wear resistance and corrosion resistance of micro-arc oxidation(MAO)coatings on AZ91D magnesium alloy were investigated in silicate electrolyte.The results show that with increasing extent of voltage,both of the thickness and bonding force of MAO coatings first increase,and then decrease.These parameters are all up to their maximum values when the increase extent of voltage is 20 V.The roughness of the coatings always increases.The coating has the best corrosion resistance when the increase extent of voltage is not below 25 V,and the coating has the best wear resistance when the increase extent of voltage is 10 V.The wear mechanisms for the micro-arc oxidation are abrasive wear and micromachining wear.These are related to their microstructures.

  15. Wear resistance of a metal surface modified with minerals

    Science.gov (United States)

    Kislov, S. V.; Kislov, V. G.; Balasch, P. V.; Skazochkin, A. V.; Bondarenko, G. G.; Tikhonov, A. N.

    2016-02-01

    The article describes the advantages of the new technology of mineral coating of metal products for the friction pair of mechanical systems. It presents the research results of the wear rate of the samples made of 12X13 steel (X12Cr13) with mineral layers, in the experiments with a piston ring sliding inside a cylinder liner with grease. The wear rate of the samples with mineral layers is lower almost by two factors than that of the samples made of grey foundry iron and untreated samples. As the result of slip/rolling abrasion tests of parts with mineral layers under conditions of high contact pressure, a suggestion was made concerning probable mechanics of surface wear.

  16. Research on abrasion resistance technique for sinter single-roll crusher%烧结矿单辊破碎机抗磨损技术研究

    Institute of Scientific and Technical Information of China (English)

    陈方述; 聂松辉; 周卓林

    2011-01-01

    Sinter single-roll crusher is an important component of the sinter production line ,which operating environment and nature decides that it must possess properties of high-temperature resistance and abrasion resistance.First the invalid reasons and abrasive wear mechanism are studied aim at the problems of easy worn and short service life of the single-roll crusher.A conclusion is made that the abrasion pattern is abrasive wear happens under high-temperature environment with forms of chiseling and cutting.Then a structural design with abrasion resistance is studied ,simultaneously its materials selection and hardfacing technics are also analyzed and discussed.Afterwards ,one single-roll crusher with characteristics of long service life and abrasion resistance is designed.which is proved in the engineering practice that the proposed anti-wear technology for single-roll crusher is viable and effective.%单辊破碎机是烧结矿生产线上一个重要的部件,其工作环境与性质决定其必须具有抗高温与耐磨损的特性.针对目前单辊破碎机易磨损、寿命短的问题,首先,对其失效原因与磨损机理等方面进行了研究,得出其主要磨损形式是高温环境下带有凿削形式磨损的磨粒磨损.然后,研究了其抗磨损结构设计的方法,并对其材料选择与耐磨堆焊工艺等进行了详细分析与探讨,设计了一种抗磨损的长寿命烧结矿单辊破碎机.最后,通过工程实际使用验证了提出的单辊破碎枳抗磨损技术是可行且有效的.

  17. Investigation of improving wear performance of hypereutectic 15%Cr-2%Mo white irons

    OpenAIRE

    Reda, R.; A. Nofal; Kh. Ibrahim

    2010-01-01

    This study aimed at optimizing impact toughness and abrasion wear resistance of 15%Cr-2%Mo hypereutectic abrasion-resistant white irons. The effects of dynamic solidification, niobium addition, combined action of them and heat treatment have been investigated. Investigations were performed by means of the image analyzer, scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS) and X-ray diffraction. Impact toughness and abrasion wear resistance tests were conducted. Fracture a...

  18. Influence Of Lubricants On Wear Resistance Of Aluminum Alloy Strips Series 2XXX

    Directory of Open Access Journals (Sweden)

    Żaba K.

    2015-09-01

    Full Text Available The article presents a properly planned and designed tests of the abrasive wear resistance 2024 aluminum alloy strips under friction conditions involving various lubricants. Test were focused on the selection of the best lubricant for use in industrial environment, especially for sheet metal forming. Three lubricants of the Orlen Oil Company and one used in the sheet metal forming industry, were selected for tests. Tests without the use of lubricant were performed for a comparison. The tester T-05 was used for testing resistance to wear. As the counter samples were used tool steel - NC6 and steel for hot working - WCL, which are typical materials used for tools for pressing. The results are presented in the form of the force friction, abrasion depth, weight loss and coefficient of friction depending on the lubricant used and the type of counter samples. The results allowed for predicting set lubricant-material for tools which can be applied to sheet metal made of aluminum alloy 2024.

  19. 苜蓿草粉对金属材料的磨料磨损试验%Experiment of Metal Materials Abrasive Wear for Alfalfa Powder

    Institute of Scientific and Technical Information of China (English)

    张炜; 吴劲锋; 马国军; 黄晓鹏

    2009-01-01

    The abrasive testing machine with operation process similar to the pelleting circular mold was used, taking the alfalfa grass powder as abrasive material. The influences of alfalfa powder on the abrasive properties of four kind of metal materials were examined, by measuring the rigidity and chemical components of the abraded surfaces and analyzing of the microstructures and surface morphologies of the abraded surfaces. It is shown that the abrasive quantities of four samples as below are orderly increased, 3Cr13, 9SiCr, 45~# steel, and HT200, some physical and chemical changes take place on the abraded surfaces, and "the soft abrasive wear" is accompanied by "the hard abrasive wear" feature due to the micro-cutting and strain fatigue.%选用与环模制粒工况相似的磨料磨损试验机,以首蓿草粉为磨料对试样进行磨料磨损试验.通过磨后表面的硬度和化学成分测定、微观结构和表面形貌观察,考察了苜蓿草粉对4种金属材料的磨料磨损.结果表明,4种材料的体积磨损量由小到大依次为3Cr13、9SiCr、45号钢、HT200,试样的磨损表面发生了物理和化学变化."软磨料磨损"中伴有"硬磨料磨损"的特征,显微切削和应变疲劳剥落为其主要磨损形式.

  20. Research in Polyurea Elastomer Material Abrasion Resistance%聚脲弹性体材料耐磨性能的探讨

    Institute of Scientific and Technical Information of China (English)

    崔洪犁; 吴文文; 孟庆莉

    2014-01-01

    由不同二元醇与二异氰酸酯合成不同NCO含量的半预聚体( A组分)与端氨基聚醚、胺扩链剂等原料组成的R组分经喷涂设备喷涂成型聚脲弹性体。讨论了在不同摩擦工况下NCO含量、异氰酸酯指数、预聚物类型、耐磨助剂等对聚脲弹性体耐磨性能的影响。结果表明,不同NCO含量在不同摩擦工况下对聚脲耐磨性能的影响不同,干摩擦工况下NCO含量越高,耐磨性能越佳,湿摩擦工况下则是NCO质量分数为15%耐磨性最佳,异氰酸酯指数对聚脲耐磨性能的影响较小,使用聚四氢呋喃二元醇、TDI预聚物和耐磨助剂,可提高不同摩擦工况下聚脲的耐磨性能。%The spraying polyurea elastomer system was synthetized by A component and R component. The A component was a kind of quasi⁃prepolymer with different NCO content, synthesized by polyether diol and isocya⁃nate. The R component was composed of amino terminated polyether, amine extender and other additives. The in⁃fluence on abrasion performance under different wear conditions was discussed, such as different NCO content, iso⁃cyanate index, type of prepolymer and different wearable additives. The result was that different NCO content had different wear influence under different wear conditions. With the NCO content of the prepolymer increase, the bet⁃ter abrasion resistance the polyurea had under dry wear condition. The abrasion performance was the best when NCO content was 15% under wet wear condition. The isocyanate index had a few effects on the abrasion perform⁃ance. The application of polytetrahydrofuran diol, TDI perpolymer and wearable additives could improve the abra⁃sion resistance of polyurea under different wear conditions.

  1. Selection of Heat Treatment Process and Wear Mechanism of High Wear Resistant Cast Hot-Forging Die Steel

    Institute of Scientific and Technical Information of China (English)

    WEI Min-xian; WANG Shu-qi; WANG Lan; CUI Xiang-hong; CHEN Kang-min

    2012-01-01

    Dry sliding wear tests of a Cr-Mo-V cast hot-forging die steel was carried out within a load range of 50--300 N at 400℃ by a pin-on-disc high temperature wear machine. The effect of heat treatment process on wear resistance was systematically studied in order to select heat treatment processes of the steel with high wear resistance. The morphology, structure and composition were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) ; wear mechanism was also discussed. Tribo-oxide layer was found to form on worn surfaces to reduce wear under low loads, but appear inside the matrix to increase wear under high loads. The tribo-oxides were mainly consisted of Fe3O4 and Fe2O3, FeO only appeared under a high load. Oxidative mild wear, transition of mild-severe wear in oxidative wear and extrusive wear took turns to operate with increasing the load. The wear resistance strongly depended on the selection of heat treatment processes or microstructures. It was found that bainite presented a better wear resistance than martensite plus bainite duplex structure, martensite structure was of the poorest wear resistance. The wear resistance increased with increasing austenizing temperature in the range of 920 to 1 120 ℃, then decreased at up to 1 220 ℃. As for tempering temperature and microstructure, the wear resistance increased in following order: 700℃ (tempered sorbite), 200 ℃ (tempered martensite), 440 to 650 ℃ (tempered troostite). An appropriate combination of hardness, toughness, microstructural thermal stability was re- quired for a good wear resistance in high-temperature wear. The optimized heat treatment process was suggested for the cast hot-forging steel to be austenized at 1020 to 1 120 ℃, quenched in oil, then tempered at 440 to 650℃ for 2 h.

  2. WEAR-RESISTANCE OF CHROMIC CAST IRONS OF EUTECTIC COMPOSITION

    Directory of Open Access Journals (Sweden)

    K. E. Baranovskij

    2009-01-01

    Full Text Available Casting of wear-resistant chrome cast irons in combined molds and iron chills is studied. Application of these ways of casting results in blending of carbides and increasing of hardness of castings.

  3. The Effect of Microstructure on the Abrasion Resistance of Low Alloyed Steels

    NARCIS (Netherlands)

    Xu, X.

    2016-01-01

    The thesis attempts to develop advanced high abrasion resistant steels with low hardness in combination with good toughness, processability and low alloying additions. For this purpose, a novel multi-pass dual-indenter (MPDI) scratch test approach has been developed to approach the real continuous a

  4. Effect of Annealing Temperature on Hardness and Wear Resistance of Electroless Ni-B-Mo Coatings

    Science.gov (United States)

    Serin, Ihsan Gökhan; Göksenli, Ali

    2015-06-01

    Formation of nickel-boron-molybdenum (Ni-B-Mo) coating on steel by electroless plating and evaluation of their morphology, hardness and tribological properties post heat treatment at different temperatures for 1 h is investigated. The 25 μm thick coating is uniform and adhesion between the substrate and coating is good. Ni-B-Mo coating was amorphous-like structure in their as-plated condition and by 400°C heat-treated coating, nickel fully crystallized and nickel borides and molybdenum carbide were formed. All coatings exhibited higher hardness than the substrate steel. Hardness values of all coatings up to 400°C did not change distinctively but decreased partly beyond 400°C. Friction coefficient reached lowest value post heat treatment at 300°C but later increased with increasing tempering temperature. Wear resistance was lowest in as-plated coating; however it reached the highest value at 300°C. Worn surface of the coatings showed the abrasive wear as the dominant wear mechanism. An additional adhesive wear mechanism was detected in coating tempered at 550°C. Moreover, our results confirmed that the molybdenum addition improved the thermal stability of the resulting coating. Therefore, Ni-B-Mo coating has potential for application in precision mould, optical parts mould or bipolar plates, where thermal stability is essential.

  5. A level set methodology for predicting the effect of mask wear on surface evolution of features in abrasive jet micro-machining

    International Nuclear Information System (INIS)

    A previous implementation of narrow-band level set methodology developed by the authors was extended to allow for the modelling of mask erosive wear in abrasive jet micro-machining (AJM). The model permits the prediction of the surface evolution of both the mask and the target simultaneously, by representing them as a hybrid and continuous mask–target surface. The model also accounts for the change in abrasive mass flux incident to both the target surface and, for the first time, the eroding mask edge, that is brought about by the presence of the mask edge itself. The predictions of the channel surface and eroded mask profiles were compared with measurements on channels machined in both glass and poly-methyl-methacrylate (PMMA) targets at both normal and oblique incidence, using tempered steel and elastomeric masks. A much better agreement between the predicted and measured profiles was found when mask wear was taken into account. Mask wear generally resulted in wider and deeper glass target profiles and wider PMMA target profiles, respectively, when compared to cases where no mask wear was present. This work has important implications for the AJM of complex MEMS and microfluidic devices that require longer machining times. (paper)

  6. Development of (fe–b–c-based filler for wear-resistant composite coatings

    Directory of Open Access Journals (Sweden)

    О. V. Sukhovа

    2014-12-01

    Full Text Available Purpose. Development of multi-alloyed filler for abrasive wear-resistant composites. Methodology. The methods of microstructural, X-ray and energy-dispersive X-ray analyses were used to achieve research purpose. Micro-mechanical properties of structural constituents and abrasive wear-resistance of composites were determined. Findings. The complete dissolution of chromium and vanadium in the borides of Fe2В and FeВ that are initial structural constituents of Fe–В–С peritectic alloys has been established. These elements primarily dissolve in iron monoboride. Dissolution of molybdenum and niobium is not practically observed. As a result the phases of Мо2В, Мо2(В,С or NbВ2 can be seen in the structure. Alloying with chromium and vanadium increases compression strength and crack resistance coefficient, but that with molybdenum and niobium enhances total microhardness and hardness of the alloys. Structure formation of the interfaces between the filler and the binder of the composites based on МNМts 20-20 binder is governed by dissolution and diffusion processes when multi-alloyed (Fe–В–С alloy is applied as filler of the composites. The phase and the structural composition of contact interaction zones can be explained by re-crystallization of the filler surface layers after dissolution caused by contact with the molten binder. Consequently the macroheterogeneous structure of the composites is free of defects and strong adhesion between the filler and the binder is assured. Contact interaction intensity can be controlled by the choice of temperature- and-time infiltration regimes. Originality. The peculiarities in the formation of structure and properties of Fe2В- and FeВ-based solid solutions observed in the structure of the Fe–В–С peritectic alloys were investigated that allowed us to recommend composition of multicomponent alloy to be applied as filler of (Cu–Ni–Mn-matrix macroheterogeneous composites. Practical

  7. Wear resistance of micro-arc oxidation coatings on biomedical NiTi alloy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, F., E-mail: ryuufuku@hotmail.co [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xu, J.L. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Yu, D.Z. [Stomatological Medicine Center, Harbin Institute of Technology, Harbin 150001 (China); Wang, F.P. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Zhao, L.C. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2009-11-13

    Protective coatings were successfully formed on biomedical NiTi alloy by micro-arc oxidation (MAO) using pulsed bipolar power supply. The coating surface exhibits a typical MAO porous structure, and the coating mainly consists of O, Al, Ti and Ni, with the atomic concentration of 65.11%, 27.77%, 2.20% and 2.8%, respectively. The thickness of MAO coating is about 24.0 {mu}m when the duration time of the MAO treatment was 90 min at 400 V constant voltage treatment. XRD analysis showed that micro-arc oxidation coating is composed of {gamma}-Al{sub 2}O{sub 3} and {alpha}-Al{sub 2}O{sub 3}. The wear resistance of the coatings was investigated by ball-on-disk friction test. The microhardness of the NiTi alloy is greatly enhanced due to the formation of Al{sub 2}O{sub 3} coating after micro-arc oxidation treatment. The friction coefficient of the coated NiTi is stable at 0.85 and the wear resistance is increased by 9 times compared with uncoated NiTi. The wear mechanism transforms from abrasive-dominant for the uncoated sample to adhesive-dominant for the coated sample.

  8. Influence of titanium content on wear resistance of electrolytic low-titanium eutectic Al-Si piston alloys

    Institute of Scientific and Technical Information of China (English)

    Wang Jiefang; Xie Jingpei; Yan Shuqing; Liu Zhongxia; Weng Yonggang; Wang Mingxing; Song Tianfu

    2008-01-01

    The wear resistance of six kinds of the electrolytic low-titanium eutectic Al-Si piston alloys with various Ti content ranging from 0.00wt.% to 0.21wt.% has been studied. A new method of adding Ti is adopted in the electrolytic low-titanium aluminum alloy ingots. The electrolytic low-titanium eutectic AI-Si piston alloys are produced by remelting the electrolytic low-titanium aluminum alloy, crystal silicon, pure magnesium, Al-50%Cu and Al-10%Mn master alloy. The wear experiments are conducted using MM200 wear testing machine under lubricating condition. The results indicate that the better wear resistance and the less weight loss are achieved in the study for the eutectic AI-Si piston alloys with 0.08wt.%-0.12wt.% Ti content. The highest ultimate tensile strength of 135.94 MPa at 300℃ and HV141.70 hardness of the alloys are obtained at 0.12wt.% and 0.08wt.% Ti content, respectively. The wear mechanism of the eutectic Al-Si piston alloys under lubricating condition is abrasive wear.

  9. Influence of titanium content on wear resistance of electrolytic low-titanium eutectic Al-Si piston alloys

    Directory of Open Access Journals (Sweden)

    Yan Shuqing

    2008-11-01

    Full Text Available The wear resistance of six kinds of the electrolytic low-titanium eutectic Al-Si piston alloys with various Ti content ranging from 0.00wt.% to 0.21wt.% has been studied. A new method of adding Ti is adopted in the electrolytic low-titanium aluminum alloy ingots. The electrolytic low-titanium eutectic Al-Si piston alloys are produced by remelting the electrolytic low-titanium aluminum alloy, crystal silicon, pure magnesium, Al-50%Cu and Al-10%Mn master alloy. The wear experiments are conducted using MM200 wear testing machine under lubricating condition. The results indicate that the better wear resistance and the less weight loss are achieved in the study for the eutectic Al-Si piston alloys with 0.08wt.%–0.12wt.% Ti content. The highest ultimate tensile strength of 135.94 MPa at 300℃ and HV141.70 hardness of the alloys are obtained at 0.12wt.% and 0.08wt.% Ti content, respectively. The wear mechanism of the eutectic Al-Si piston alloys under lubricating condition is abrasive wear.

  10. Influence of mechanical abrasion of carbon adsorbents on aerodynamic resistance of filters of system of ventilation of NPS

    International Nuclear Information System (INIS)

    Influence of mechanical abrasion of granules on aerodynamic resistance of different carbon adsorbents at conditions similar to work of filters AU-1500 is studied. The change of fractional composition of the probed adsorbents by abrasion is determined. The obtained experimental data allow making conclusion about practicability using mixture of adsorbent Norit with different fractional composition for renewal of adsorbers of ventilation system of NPS.

  11. ABOUT ABRASION RESISTANCE OF FABRICS WITH STRATEGIC DESTINATION PART I

    OpenAIRE

    Adina Bucevschi; Alexandru Popa; Monica Pustianu; Erzsebet Airinei; Ionel Barbu

    2011-01-01

    This paper is part of a research agreement between "Aurel Vlaicu" University and The NationalResearch - Development Institute for Textile and Leather, Bucharest, about the relationship of interdependencebetween the yarns' characteristics and fabric's characteristics for the installation of ventilation and heating pipesof the military helicopter[5]. Fabrics for strategic areas must have certain characteristics such resistance at hightemperatures, breaking and tearing strength, shock resistance...

  12. Wear resistance of experimental titanium alloys for dental applications.

    Science.gov (United States)

    Faria, Adriana Cláudia Lapria; Rodrigues, Renata Cristina Silveira; Claro, Ana Paula Rosifini Alves; da Gloria Chiarello de Mattos, Maria; Ribeiro, Ricardo Faria

    2011-11-01

    The present study evaluated microstructure, microhardness and wear resistance of experimental titanium alloys containing zirconium and tantalum. Alloys were melted in arc melting furnace according to the following compositions: Ti-5Zr, Ti-5Ta and Ti-5Ta-5Zr (%wt). Hemispheres and disks were obtained from wax patterns that were invested and cast by plasma. Microstructures were evaluated using optical microscopy and X-ray diffraction (XRD) analysis and also Vickers microhardness was measured. Hemispherical samples and disks were used for 2-body wear tests, performed by repeated grinding of the samples. Wear resistance was assessed as height loss after 40,000 cycles. The data were compared using ANOVA and post-hoc Tukey test. Ti-5Zr presented a Widmanstätten structure and the identified phases were α and α' while Ti-5Ta and Ti-5Ta-5Zr presented α, β, α' and α" phases, but the former presented a lamellar structure, and the other, acicular. The microhardness of Ti-5Zr was significantly greater than other materials and cp Ti presented wear resistance significantly lower than experimental alloys. It was concluded that wear resistance was improved when adding Ta and Zr to titanium and Zr increased microhardness of Ti-5Zr alloy.

  13. Abrasive Performance of Chromium Carbide Reinforced Ni3Al Matrix Composite Cladding

    Institute of Scientific and Technical Information of China (English)

    LI Shang-ping; LUO He-li; FENG Di; CAO Xu; ZHANG Xi-e

    2009-01-01

    The Microstructure and room temperature abrasive wear resistance of chromium carbide reinforced NiM3Al matrix composite cladding at different depth on nickel base alloy were investigated. The results showed that there is a great difference in microstructure and wear resistance of the Ni3 Al matrix composite at different depth. Three kinds of tests, designed for different load and abrasive size, were used to understand the wear behaviour of this material. Under all three wear conditions, the abrasion resistance of the composite cladding at the depth of 6 mm, namely NC-M2, was much higher than that of the composite cladding at the depth of 2 mm, namely NC-M1. In addition, the wear-resistant advantage of NC-M2 was more obvious when the size of the abrasive was small. The relative wear resistance of NC-M2 increased from 1.63 times to 2.05 times when the size of the abrasive decreased from 180 μm to 50μm. The mierostructure of the composite cladding showed that the size of chromium carbide particles, which was mainly influenced by cooling rate of melting pool, was a function of distance from the interface between the coating and substrate varied gradually. The chromium carbide particles near the interface were finer than that far from inter-face, which was the main reason for the different wear resistance of the composite cladding at different depth.

  14. ABOUT ABRASION RESISTANCE OF FABRICS WITH STRATEGIC DESTINATION PART II

    OpenAIRE

    Adina Bucevschi; Alexandru Popa; Monica Pustianu; Erzsebet Airinei; Ionel Barbu

    2011-01-01

    This paper is part of a research agreement between "Aurel Vlaicu" University and The National Research - Development Institute for Textile and Leather, Bucharest, about the relationship of interdependence between the yarns' characteristics and fabric's characteristics for the installation of ventilation and heating pipesof the military helicopter[5]. Fabrics for strategic areas must have certain characteristics such resistance at high temperatures, breaking and tearing strength, shock resista...

  15. Engineering wear-resistant surfaces in automotive aluminum

    Science.gov (United States)

    Kavorkijan, V.

    2003-02-01

    Inadequate wear resistance and low seizure loads prevent the direct use of aluminum alloys in automotive parts subject to intensive friction combined with high thermal and mechanical loading, such as brake discs, pistons, and cylinder liners. To enable the use of aluminum alloys in the production of automotive brake discs and other wear-resistant products, the insertion of a monolithic friction cladding rather than surface coating has been considered in this work. Three experimental approaches, two based on the pressure-less infiltration of porous ceramic preforms and one based on the subsequent hot rolling of aluminum and metal-matrix composite strips, are currently under investigation.

  16. Porous alumina based ordered nanocomposite coating for wear resistance

    Science.gov (United States)

    Yadav, Arti; Muthukumar, M.; Bobji, M. S.

    2016-08-01

    Uniformly dispersed nanocomposite coating of aligned metallic nanowires in a matrix of amorphous alumina is fabricated by pulsed electrodeposition of copper into the pores of porous anodic alumina. Uniform deposition is obtained by controlling the geometry of the dendritic structure at the bottom of pores through stepwise voltage reduction followed by mild etching. The tribological behaviour of this nanocomposite coating is evaluated using a ball on flat reciprocating tribometer under the dry contact conditions. The nanocomposite coating has higher wear resistance compared to corresponding porous alumina coating. Wear resistant nanocomposite coating has wide applications especially in protecting the internal surfaces of aluminium internal combustion engines.

  17. Development and Testing of Abrasion Resistant Hard Coats For Polymer Film Reflectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, G.; Gee, R.; DiGrazia, M.

    2010-10-01

    Reflective polymer film technology can significantly reduce the cost of solar reflectors and installed Concentrated Solar Power (CSP) plants by both reduced material cost and lower weight. One challenge of polymer reflectors in the CSP environment pertains to contact cleaning methods typically used with glass mirrors. Such contact cleaning methods can scratch the surface of polymer reflectors and thereby reduce specular reflectance. ReflecTech, Inc. (a subsidiary of SkyFuel, Inc.) and the National Renewable Energy Laboratory (NREL) initiated a cooperative research and development agreement (CRADA) to devise and develop an abrasion resistant coating (ARC) suitable for deposition onto polymer based mirror film. A number of candidate ARC products were identified as candidate formulations. Industrial collaborators prepared samples having their ARCs deposited onto ReflecTech Mirror Film pre-laminated to aluminum sheet substrates. Samples were provided for evaluation and subjected to baseline (unweathered) and accelerated exposure conditions and subsequently characterized for abrasion resistance and adhesion. An advanced ARC product has been identified that exhibits outstanding initial abrasion resistance and adhesion to ReflecTech Mirror Film. These properties were also retained after exposure to the various accelerated stress conditions. This material has been successfully manufactured as a 1.5 m wide roll-to-roll construction in a production environment.

  18. Relations of abrasion resistance and hardness of 16Cr-3C white irons with retained austenite content

    Institute of Scientific and Technical Information of China (English)

    Zhiping Sun; Rulin Zuo; Cong Li; Baoluo Shen; Shengji Gao; Sijiu Huang

    2004-01-01

    The relationship between the retained austenite content of the matrix in 16Cr-3C white irons and the abrasion resistance was investigated. The results show that: (1) the abrasion resistance can be improved by sub-critical heat treatment, which could be attributed to the decrease of the retained austenite content; (2) both the abrasion resistance and hardness can be improved by controlling the retained austenite content below 20%-30% and arrive at the maximum when the retained austenite content is reduced to about 10%; (3) the abrasion resistance decreases abruptly once the retained austenite content is lower than 10%, which stems from both the in situ transformation of (Fe, Cr)23C6 to M3C carbides and the formation of pearlitic matrix.

  19. Inventions in the nanotechnological area considerably increase wear- and chemical resistance of construction products

    Directory of Open Access Journals (Sweden)

    VLASOV Vladimir Alexeevich

    2014-08-01

    Full Text Available The invention «Reinforced flaked element made of natural or conglomerate stone and its multilayer protective coating (RU 2520193» is referred to construction materials. Reinforced flaked element made of natural or conglomerate stone consists of: natural or conglomerate materials as the basis; multilayer coating which protects the mentioned basis from chemical substances and wearing mechanical factors influencing on this element where the multilayer coating includes at least three layers formed by one or many film-forming compositions which comprise top layer with scratch-resistant nanoparticles and encircled with polyester, melamine, phenolic, acryl or epoxy resin (or any combination of them which provides protection against scratches; damper intermediate layer made of epoxy and/or acryl resin which provides impact resistant; lower layer adjoining to the basis and containing particles of Al2O3 or silicon carbide plus acryl polymer and providing resistance to abrasive wear. Technical result is increased wear- and chemical resistance of flaked elements from natural or conglomerate materials. The invention «Fine organic suspension of carbon metal-containing nanostructures and the method to produce it (RU 2515858» is referred to the area of physical and colloid chemistry and can be used to obtain polymer compositions. Fine organic suspension of carbon metal-containing nanostructures is produced by interaction between nanostructures and polyethylenepolyamine. At first the powder of carbon metalcontaining nanostructures (which are nanoparticles of 3d-metal such as copper, cobalt, nickel stabilized in carbon nanostructures is mechanically milled, then it is mechanically ground with polyethylenepolyamine introduced portionally unless and until the content of nanostructures is less 1 g/ml. The invention results in decreased power inputs as the obtained fine organic suspension of carbon and metal-containing nanostructures is able to recover due to

  20. Aligned composite structures for mitigation of impact damage and resistance to wear in dynamic environments

    Energy Technology Data Exchange (ETDEWEB)

    Mulligan, Anthony C.; Rigali, Mark J.; Sutaria, Manish P.; Popovich, Dragan; Halloran, Joseph P.; Fulcher, Michael L.; Cook, Randy C.

    2005-12-13

    Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.

  1. Aligned composite structures for mitigation of impact damage and resistance to wear in dynamic environments

    Energy Technology Data Exchange (ETDEWEB)

    Mulligan, Anthony C. (Tucson, AZ); Rigali, Mark J. (Tucson, AZ); Sutaria, Manish P. (Malden, MA); Popovich, Dragan (Redmond, WA); Halloran, Joseph P. (Tucson, AZ); Fulcher, Michael L. (Tucson, AZ); Cook, Randy C. (Tucson, AZ)

    2009-04-14

    Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.

  2. Aligned composite structures for mitigation of impact damage and resistance to wear in dynamic environments

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J.; Sutaria, Manish P.; Mulligan, Anthony C.; Popovich, Dragan

    2004-03-23

    Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.

  3. Assessment of wear resistance of tin and tin alloy coatings

    OpenAIRE

    Lam, Wayne Pui-Wing

    2007-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Tin alloy coatings have traditionally been used as corrosion resistant bamens due to their inert nature and comprehensive coverage, and have seldom been considered in physically demanding applications, such as wear resistant coatings owing to misconceptions associated with the soft nature of tin metal. The alloying of tin with copper has already been shown to significantly increase its mechan...

  4. Research on the Friction and Wear Behavior at Elevated Temperature of Plasma-Sprayed Nanostructured WC-Co Coatings

    Science.gov (United States)

    Chen, Hui; Gou, Guoqing; Tu, Mingjing; Liu, Yan

    2010-02-01

    Nanostructured and ultra-fine WC-Co coatings were prepared by plasma spray. The friction and wear behavior at elevated temperature and failure mechanism were investigated. The results indicated that the sliding wear resistance of nanostructured coating is better than that of ultra-fine coating at high temperature. The wear mechanism is different between ultra-fine coating and nanostructured coating. Brittle fracture and adhesive wear dominate in ultra-fine coating followed with abrasive wear. Toughness fracture and abrasive wear dominate in nanostructured coating followed with adhesive wear.

  5. WC-Co and Cr3C2-NiCr Coatings in Low- and High-Stress Abrasive Conditions

    Science.gov (United States)

    Kašparová, Michaela; Zahálka, František; Houdková, Šárka

    2011-03-01

    The article deals with the evaluation of abrasive wear resistance and adhesive strength of thermally sprayed coatings. The main attention was paid to differences between low- and high-stress abrasive conditions of the measuring. Conclusions include the evaluation of specific properties of the WC-Co and the Cr3C2-NiCr High Velocity Oxygen Fuel coatings and the evaluation of the changes in the behavior of the abrasive media. Mainly, the relationship between the low- and high-stress abrasion conditions and the wear mechanism in the tested materials was described. For the wear test, the abrasive media of Al2O3 and SiO2 sands were chosen. During wear tests, the volume loss of the tested materials and the surface roughness of the wear tracks were measured. The wear tracks on the tested materials and abrasive sands' morphologies were observed using Scanning Electron Microscopy. It was found that high-stress abrasive conditions change the coatings' behavior very significantly, particularly that of the Cr3C2-NiCr coating. Adhesive-cohesive properties of the coatings and relationships among individual structure particles were evaluated using tensile testing. It was found that the weak bond strength among the individual splats, structure particles, and phases plays a role in the poor wear resistance of the coatings.

  6. Abrasion of ultrafine WC-Co by fine abrasive particles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Abrasive wear of a series of WC-(5%-14%, mass fiaction)Co hardmetals was investigated employing coarse and fine SiC abrasive under two-body dry abrasion conditions with pin-on-disc and edge-on-disc test arrangements. Unexpectedly, it is found that submicron grades demonstrate substantially higher wear rates comparing with the coarse grades if fine abrasive is utilized in pin-on-disc tests. Such a behavior is attributed to changes in a ratio of abrasive size to size of hard phase as finer abrasive is used.The edge-on-disc test demonstrates that edge wear may be described in two stages with the highest wear rates at the beginning stage.This behavior is associated with a transition of wear mechanisms as edge is wider due to wear. Compared with the ultrafine grades of the same Co content, the coarse grades demonstrate higher wear rates at the beginning, but lower wear rates at the final stage. Wear rates and mechanisms observed at final stage correlate well to the results observed for pin-on-disc tests employing fine abrasive.

  7. Influence of Plasma Intensity on Wear and Erosion Resistance of Conventional and Nanometric WC-Co Coatings Deposited by APS

    Science.gov (United States)

    Bonache, V.; Salvador, M. D.; García, J. C.; Sánchez, E.; Bannier, E.

    2011-03-01

    The effects of plasma intensity and powder particle size on wear and erosion resistance have been evaluated for WC-12 wt.%Co coatings deposited by Air Plasma Spraying. Coatings were deposited from micrometric and nanostructured powders. SEM and XRD characterization showed the presence of WC, W2C, W, and an amorphous Co-rich matrix. The performance of the different coatings was compared in sliding wear tests (ball-on-disk), under dry friction conditions. Wear debris and tracks were analyzed by SEM. The debris generated during the test was found to have a great influence on the sliding properties. Wear follows a "three-body abrasive mechanism" and is dominated by coating spallation because of sub-surface cracking. In order to evaluate erosion behavior, solid particle erosion tests were conducted. Eroded coatings were analyzed by SEM, and erosion mainly occurs by a "cracking and chipping mechanism." The study shows that wear and erosion behavior is strongly affected by plasma arc intensity.

  8. Effect of filler type on 3-body abrasion of dental composite

    OpenAIRE

    Yasini E.; Ataei M; Amini M

    2005-01-01

    Statement of Problem: The relatively poor wear resistance of dental composite in stress bearing posterior situations has restricted wider clinical application of this restorative material. Purpose: The aim of this study was to evaluate the three body abrasive wear of a dental composite based on a new filler (leucite: KAl Si2O6) and to compare it with the wear resistance of a composite based on commonly used Aluminium – Barium Silicate filler. Materials and Methods: This research was an interv...

  9. An Research on Abrasion Resistance of Muzzle Shunt Rail Gun Rail Boronized with Self-protecting B4C Paste

    Institute of Scientific and Technical Information of China (English)

    HU Jin-suo; CHENG Shu-kang; ZHENG Zhen-zhong; MA Yuan; LI Zhi-yuan

    2004-01-01

    Based on large numbers of experiments, together with some theoretic support such as equations related to the experiment, thermodynamic principles and so on, one useful and reasonable self-protecting boron formulation is got to reinforce the muzzle shunt rail gun rail. The preliminary friction and abrasion test results show that the formulation is acceptable and the abrasion resistance of the steel rail enhances to some extent after the surface reinforcement.

  10. An Research on Abrasion Resistance of Muzzle Shunt Rail Gun Rail Boronized with Self-protecting B4C Paste

    Institute of Scientific and Technical Information of China (English)

    HUJin-suo; CHENGShu-kang; ZHENGZhen-zhong; MAYuan; LIZhi-yuan

    2004-01-01

    Based on large numbers of experiments, together with some theoretic support such as equations related to the experiment, thermodynamic principles and so on, one useful and reasonable self-protecting boron formulation is got to reintorce the muzzle shunt rail gun rail. The preliminary friction and abrasion test results show that the formulation is acceptable and the abrasion resistance of the steel rail enhances to some extent after the surface reinforcement.

  11. Comparação dos valores de desgaste abrasivo e de microdureza de 13 resinas compostas usadas em odontologia através do método do disco retificado Comparing abrasive wear and microhardness of 13 dental composite resins

    Directory of Open Access Journals (Sweden)

    Eduardo C. Bianchi

    2007-06-01

    Full Text Available Atualmente tem-se buscado simplificar a tarefa de caracterização da vida útil de restaurações dentárias realizadas por resinas compostas através de métodos laboratoriais, que são mais rápidos e não sofrem influência de variáveis pessoais inerentes às análises clínicas. Com este propósito, este trabalho apresenta uma nova metodologia de ensaio laboratorial para a avaliação do desgaste abrasivo de resinas compostas através do método do disco retificado. Realizaram-se ensaios de resistência ao desgaste abrasivo com 13 resinas compostas odontológicas e buscou-se analisar o comportamento da resistência ao desgaste abrasivo em relação à microdureza dessas resinas. Com a análise dos resultados concluiu-se que o método de discos retificados é eficiente para a obtenção da resistência ao desgaste abrasivo. Notou-se também ser extremamente pequeno o nível de correlação entre microdureza e desgaste abrasivo o que indica que cada resina composta tem características próprias e que o desgaste é dependente também de outros fatores.It is now commonplace to search for methods to assess the useful lifetime of dental restorations made of resins, which are quicker and less subjective than clinical analyses. With this purpose, this work presents a new methodology based on the grinding disk for evaluating the abrasive wear of composed resins. Resistance tests to the abrasive wear were made with 13 composed resins used as dental material, and a comparison was done with the hardness of those resins. From the data analysis, we concluded that the method of rectified disks is efficient for obtaining the resistance to the abrasive wear. Furthermore, the correlation between hardness and abrasive wear was very small, which indicates that each composed resin has its own characteristics and that the wear also depends on other factors.

  12. Studies on the Structure and Properties of Multiphase Al2O3 Abrasion-resistant Ceramics

    Institute of Scientific and Technical Information of China (English)

    WU Ren-Ping; YU Yan; RUAN Yu-Zhong

    2006-01-01

    The Al2O3 abrasion-resistant ceramics is successfully prepared by using waste aluminum sludge as the main raw material with the addition of a little clay, talc and barium carbonate. The crystal structure and microstructure of ceramic are characterized by means of XRD,SEM, etc., and the physical and mechanical properties are also tested. The results show that besides the phase of corundum, a little mullite, Mg-Al spinel and hyalophane phases also exist in the product. These phases are produced via reaction in-situ, which can inhibit the overgrowth of Al2O3grain in grain boundary, and improve the integral property of the material.

  13. Influence of Plasma Transferred Arc Process Parameters on Structure and Mechanical Properties of Wear Resistive NiCrBSi-WC/Co Coatings

    Directory of Open Access Journals (Sweden)

    Eitvydas GRUZDYS

    2011-07-01

    Full Text Available Self-fluxing NiCrBSi and related coatings received considerable interest due to their good wear as well as corrosion resistance at moderate and elevated temperatures. Hard tungsten carbide (WC particles can be included in NiCrBSi for further increase of the coating hardness and abrasive wear resistance. Flame spray technique is widely used for fabrication of NiCrBSi films. However, in such a case, subsequent remelting of the deposited coatings by flame, arc discharge or high power laser beam is necessary. In present study NiCrBSi-WC/Co coatings were formed using plasma transferred arc process. By adjusting plasma parameters, such as current, plasma gas flow, shielding gas flow, a number of coatings were formed on steel substrates. Structure of the coatings was investigated using X-ray diffractometry. Microstructure of cross-sectioned coatings was examined using scanning electron microscopy. Hardness of the coating was evaluated by means of the Vickers hardness tests. Wear tests were also performed on specimens to determine resistance to abrasive wear. Acquired results allowed estimating the influence of the deposition process parameters on structure and mechanical properties of the coatings.http://dx.doi.org/10.5755/j01.ms.17.2.482

  14. Influence of Utilization of High-Volumes of Class F Fly Ash on the Abrasion Resistance of Concrete

    Directory of Open Access Journals (Sweden)

    William PRINCE

    2007-01-01

    Full Text Available Utilization of large volumes of fly ash in various concrete applications is a becoming a more general practice in an efforts towards using large quantities of fly ash. Around the world, Class C or Class F or both as available have been used in high volumes in cement-based materials. In India, majority of fly generated is of Class F type as per ASTM C 618. Yearly fly ash generation in India is approximately 95 million tonnes. Out of which around 15-20% is utilized in cement production and cement/concrete related activities. In order to increase its percentage utilization, an investigation was carried out to use it in concrete.In this paper, abrasion resistance of high volume fly ash (HVFA concretes made with 35, 45, 55, and 65% of cement replacement was evaluated in terms of its relation with compressive strength. Comparison was made between ordinary Portland cement and fly ash concrete. Test results indicated that abrasion resistance of concrete having cement replacement up to 35 percent was comparable to the normal concrete mix with out fly ash. Beyond 35% cement replacement, fly ash concretes exhibited slightly lower resistance to abrasion relative to non-fly ash concretes. Test results further indicated that abrasion resistance of concrete is closely related with compressive strength, and had a very good correlation between abrasion resistance and compressive strength (R2 value between 0.9018 and 0.9859 depending upon age.

  15. Hydrothermal treatment for TiN as abrasion resistant dental implant coating and its fibroblast response

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xingling, E-mail: shixingling1985@hotmail.com [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582 (Japan); Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003 (China); Xu, Lingli [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Munar, Melvin L.; Ishikawa, Kunio [Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582 (Japan)

    2015-04-01

    Dental implant made of pure titanium (Ti) is prone to scratch and abrasion during routine oral hygiene procedures. This results an increase in surface roughness and therefore, facilitates the adhesion of bacteria. In severe cases, this could lead to peri-implantitis. To overcome this problem, surface modification of Ti is necessary to improve its abrasion resistance. Besides, a strong implant–gingiva interface should also be guaranteed to prevent the adhesion of bacteria. In this study, titanium nitride (TiN) coating was first prepared with gas nitriding to increase surface hardness of pure the substrate. Then, the TiN was hydrothermally treated in CaCl{sub 2} solution in order to improve its soft tissue biocompatibility. The effect of hydrothermal treatment temperature on surface properties of TiN was investigated and its biocompatibility was assessed in vitro using NIH3T3 fibroblast cell. It was determined that 120 °C was the critical temperature for the hydrothermal treatment condition. Treatment below 120 °C could incorporate Ca into TiN surface, oxidize TiN surface partially and then improve the wettability while preserving its morphology and hardness. Fibroblast cell attachment and proliferation were improved and cell spreading was enhanced on hydrothermally treated specimens compared with untreated ones. Improved wettability, Ca incorporation and negative surface due to interstitial N were believed to be the main reasons. Hydrothermal treatment is expected to make TiN a promising dental implant coating with excellent abrasion resistance and good soft tissue affinity. - Highlights: • Ca was incorporated into TiN surface while not sacrificing its hardness. • Interstitial N due to oxidation promoted Ca adsorption and cell adhesion. • Hydrothermal treatment makes TiN a promising coating for dental implant.

  16. Hydrothermal treatment for TiN as abrasion resistant dental implant coating and its fibroblast response

    International Nuclear Information System (INIS)

    Dental implant made of pure titanium (Ti) is prone to scratch and abrasion during routine oral hygiene procedures. This results an increase in surface roughness and therefore, facilitates the adhesion of bacteria. In severe cases, this could lead to peri-implantitis. To overcome this problem, surface modification of Ti is necessary to improve its abrasion resistance. Besides, a strong implant–gingiva interface should also be guaranteed to prevent the adhesion of bacteria. In this study, titanium nitride (TiN) coating was first prepared with gas nitriding to increase surface hardness of pure the substrate. Then, the TiN was hydrothermally treated in CaCl2 solution in order to improve its soft tissue biocompatibility. The effect of hydrothermal treatment temperature on surface properties of TiN was investigated and its biocompatibility was assessed in vitro using NIH3T3 fibroblast cell. It was determined that 120 °C was the critical temperature for the hydrothermal treatment condition. Treatment below 120 °C could incorporate Ca into TiN surface, oxidize TiN surface partially and then improve the wettability while preserving its morphology and hardness. Fibroblast cell attachment and proliferation were improved and cell spreading was enhanced on hydrothermally treated specimens compared with untreated ones. Improved wettability, Ca incorporation and negative surface due to interstitial N were believed to be the main reasons. Hydrothermal treatment is expected to make TiN a promising dental implant coating with excellent abrasion resistance and good soft tissue affinity. - Highlights: • Ca was incorporated into TiN surface while not sacrificing its hardness. • Interstitial N due to oxidation promoted Ca adsorption and cell adhesion. • Hydrothermal treatment makes TiN a promising coating for dental implant

  17. Hydrothermal treatment for TiN as abrasion resistant dental implant coating and its fibroblast response.

    Science.gov (United States)

    Shi, Xingling; Xu, Lingli; Munar, Melvin L; Ishikawa, Kunio

    2015-04-01

    Dental implant made of pure titanium (Ti) is prone to scratch and abrasion during routine oral hygiene procedures. This results an increase in surface roughness and therefore, facilitates the adhesion of bacteria. In severe cases, this could lead to peri-implantitis. To overcome this problem, surface modification of Ti is necessary to improve its abrasion resistance. Besides, a strong implant-gingiva interface should also be guaranteed to prevent the adhesion of bacteria. In this study, titanium nitride (TiN) coating was first prepared with gas nitriding to increase surface hardness of pure the substrate. Then, the TiN was hydrothermally treated in CaCl2 solution in order to improve its soft tissue biocompatibility. The effect of hydrothermal treatment temperature on surface properties of TiN was investigated and its biocompatibility was assessed in vitro using NIH3T3 fibroblast cell. It was determined that 120°C was the critical temperature for the hydrothermal treatment condition. Treatment below 120°C could incorporate Ca into TiN surface, oxidize TiN surface partially and then improve the wettability while preserving its morphology and hardness. Fibroblast cell attachment and proliferation were improved and cell spreading was enhanced on hydrothermally treated specimens compared with untreated ones. Improved wettability, Ca incorporation and negative surface due to interstitial N were believed to be the main reasons. Hydrothermal treatment is expected to make TiN a promising dental implant coating with excellent abrasion resistance and good soft tissue affinity. PMID:25686920

  18. Surface-gradient cross-linked polyethylene acetabular cups: oxidation resistance and wear against smooth and rough femoral balls.

    Science.gov (United States)

    Shen, Fu-Wen; McKellop, Harry

    2005-01-01

    Two methods were developed and evaluated for cross-linking the bearing surface of a polyethylene acetabular cup to a limited depth, in order to improve its resistance to wear without degrading the mechanical properties of the bulk of the component. In the first method, low-energy electron beams were used to cross-link only the bearing surface of the cups to a maximum depth of about 2 mm. The cups then were annealed at 100 degrees C in vacuum for 3 or 6 days to reduce the residual free radicals, and the resultant resistance to oxidation was compared by artificially aging the cups at 80 degrees C in air. Chemically cross-linked surface layers were produced by coating the bearing surfaces of the cups with a thin layer of polyethylene powder mixed with 1% weight peroxide, and compressing them at 6.9 MPa (1000 psi) and 170 degrees C. This resulted in a cross-linked surface layer that extended about 3 mm deep, with a gradual transition to conventional (noncross-linked) polyethylene in the bulk of the implant. In hip simulator wear tests with highly polished (implant quality) femoral balls, both types of surface cross-linking were found to improve markedly the wear resistance of the acetabular cups. In tests with roughened femoral balls, the wear rates were much higher and were comparable to those obtained with similarly roughened balls against noncross-linked polyethylene cups in a previous study, indicating that the full benefit of cross-linking may not be realized under conditions of severe third-body abrasion. Nevertheless, these results show a promising approach for optimizing the wear resistance and the bulk mechanical properties of polyethylene components in total joint arthroplasty.

  19. Antifriction and wear resistance of tin diffusion coating on brass

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    After brass is coated with tin, heat treatment makes the coating metal Sn and the substrate metal lic elements Cu and Zn diffuse with each other. This causes the c oating composition to be changed and the interface to be strengthened. The diffusion coating with a multiphase structure formed by this process has excellent properties of antifriction and wear resistance. With the aid of scanning electron microscopy, electronic probe microanalysis and X-ray diffraction, the mechanism of the properties is discussed.

  20. Assessment of mechanical and three-body abrasive wear peculiarity of TiO$_2$- and ZnO-filled bi-directional E-glass fibre-based polyester composites

    Indian Academy of Sciences (India)

    AKANT KUMAR SINGH; SIDDHARTHA; DEEPAK

    2016-08-01

    This paper is about the development of bi-directional E-glass fibre-based polyester composites filled with zinc oxide (ZnO) and titanium dioxide (TiO$_2$) fillers, respectively. The mechanical characterization of these composites is performed. The three-body abrasive wear characteristic of fabricated composites has been assessed under different operating conditions. For this, the three-body abrasion test is done on dry abrasion test rig (TR-50)and analysed using Taguchi’s experimental design scheme and analysis of variance. The results obtained from these experiments are also validated against existing microscopic models of Ratner–Lancaster and Wang. A good linear relationship is obtained between specific wear rate and the reciprocal of ultimate strength and strain at tensile fracture of these composites. It indicates that the experimentally obtained results are in good agreement with theseexisting models. It is found that the tensile strength decreases with filler loading, while hardness, flexural strength, inter-laminar shear strength and impact strength are increased. TiO$_2$-filled composites were observed to performbetter than ZnO-filled composites under abrasive wear situations. The wear mechanism is studied in correlation with the SEM micrograph of the worn-out surface of composites. Performance optimization of composites is doneby using VIKOR method.

  1. Effect of Heat Treatment of Wild Cherry Wood on Abrasion Resistance and Withdrawal Capacity of Screws

    Directory of Open Access Journals (Sweden)

    Ayhan Aytin

    2016-01-01

    Full Text Available In its wise use, many properties of wood are important. Among these properties, wood abrasion resistance (AR and withdrawal capacity of screws (WCS are deemed to be relatively signifi cant. It is well know that heat treatment changes the resistance features of wooden materials by changing the structural characteristics of wood. Within the scope of this study, the effects were investigated of the temperature and duration of heat treatment of Wild Cherry (Cerasus avium (L. Monench on its AR and its WCS in the radial direction and tangential direction. The test results indicated that weight loss (WL and thickness reduction (TR remained almost the same in the radial direction specimen, but there was significant TR in the tangential direction specimen. As a result of these changes, the abrasion effect of the S-42 abrader diminished based on the increase in the number of cycles. However, in both the radial and tangential direction, the WCS decreased to a significantly greater extent in the heat-treated specimens than in the control specimens.

  2. Dry wear behaviors of wear resistant composite coatings produced by laser cladding

    Institute of Scientific and Technical Information of China (English)

    Jiang Xu; Wenjin Liu; Minlin Zhong

    2004-01-01

    Using different proportional mixtures of Ni-coated MoS2, TiC and pure Ni powders, new typical wear resistant and selflubricant coatings were formed on low carbon steel by laser cladding process. The microstructures and phase composition of the composite coatings were studied by SEM and XRD. The typical microstructure of the composite coating is composed of multisulfide phases including binary element sulfide and ternary element sulfide, γ-Ni, TiC and Mo2C. Wear tests were carried out using an FALEX-6 type pin-on-disc machine. The friction coefficient and mass loss of three kinds of MoS2/TiC/Ni laser clad coatings are lower than those of quenched 45 steel, and the worn surfaces of the laser cladding coatings are very smooth. Because of high hardness combined with low friction, the laser cladding composite coating with a mixture of 70% Ni-coated MoS2, 20%TiC and 10%pure Ni powder presents better wear behaviors than the composite coating with other powder blends. The composition analysis of the worn surface of GCr15 bearing steel shows that the transferred film from the laser cladding coating to the opposite surface of GCr15beating steel contains an amount of sulfide, which can change the micro-friction mechanism and lead to a reduced friction coefficient.

  3. 再生骨料混凝土路面耐磨性的研究%Research on Abrasion Resistance of Recycled Aggregate Concrete by Response Surface Methodology

    Institute of Scientific and Technical Information of China (English)

    杨宁; 赵美霞

    2011-01-01

    采用单因素扫描法系统考察了再生粗骨料的取代率、水胶比、砂率、胶凝材料的总用量等因素对再生混凝土耐磨性能的影响,分析了其产生的原因.在单因素试验的基础上,通过响应面法对影响再生混凝土耐磨性能的显著因素进行了更进一步的研究,并建立了相应的预测模型.结果表明:再生骨料的取代率和水胶比对再生混凝土耐磨性影响最为显著,砂率和胶凝材料的总用量对再生混凝土耐磨性有一定的影响,且再生骨料取代率为43%、水胶比为0.38、砂率为35%时再生混凝土耐磨性能最佳,研究结果为再生混凝土耐磨性的深入研究提供了一定的借鉴和参考.%The single factor scanning method was used to analyze the effects of replacement ratio of recycled coarse aggregate, water-binder ratio, sand-coarse aggregate ratio, the total amount of gelled material on the wear resistance of recycled aggregate concrete, and its reasons were analyzed. On the basis of the single-factor test, the significant influence factors of the wear resistance of recycled aggregate concrete were further studied by the response surface methodology ( RSM ) , and a correlation model on the optimized wear resistance of recycled aggregate concrete was presented. The analysis results show that replacement ratio of recycled coarse aggregate, water-binder ratio exert tremendous influence on wear resistance of recycled aggregate concrete, sand-coarse aggregate ratio and the total amount of gelled material exert certain influence. Wear resistance of recycled aggregate concrete is best when replacement ratio of recycled coarse aggregate is 43% , water-binder ratio is 0. 38, sand-coarse aggregate ratio is 0. 35. The test results also can provide a reference for future further study on abrasion resistance of recycled aggregate concrete.

  4. THE MECHANISM OF STRUCTURE FORMATION IN SPARINGLY ALLOYED WEAR RESISTANT IRONS

    OpenAIRE

    A. I. Garost

    2012-01-01

    The results of researches of macro - and microstructure, the structure, formed at primary crystallization of abrasion-resistant irons, and peculiarities of their change in process of thermal processing are given. 

  5. Wear Resistance of 3Cr2W8V Rough Surfaces

    Institute of Scientific and Technical Information of China (English)

    Zhou Hong; Wang Wei; Ren Lu-quan; Li Yue; Li Chen

    2005-01-01

    Three types of rough surface were processed by laser irradiation on the 3Cr2W8V material hot-work die steel surface.The wear experiments with smooth surface and rough surface samples were repeated on the pin-tray wear machine. According to the wear results, we studied the regularity of wear resistance of different rough surface samples. The results indicated that bionic rough surface can improve the wear resistance of the material and the wear resistance can be increased 1 -2times, compared with the smooth surface. Also, the wear resistance of the rough surface was affected by laser current and duration of impulse. The bigger the laser current or the impulse duration, the better is the wear resistance. When the distance between the same kind of units which are distributed on the surfaces is changed, the wear resistance changes. The wear resistance of a bionic rough surface on which the grid units were distributed at spacing of 1 mm was the best. And we designed the wear models.

  6. Micro-scale abrasion behaviour of electroless Ni-P-SiC coating on aluminium alloy

    OpenAIRE

    Franco, M.; Sha, Wei; Malinov, Savko

    2014-01-01

    Electroless nickel (EN) and electroless nickel composite (ENC) coatings were deposited on aluminium alloy substrate, LM24. The micro abrasion test was conducted to study the wear behaviour of the coatings with the effect of SiC concentration. Microhardness of the coatings was tested also. The wear scars were analysed using optical microscope and scanning electron microscope (SEM). The wear resistance was found to be improved in composite coating that has higher microhardness as compared to pa...

  7. Enhancement of wear and ballistic resistance of armour grade AA7075 aluminium alloy using friction stir processing

    Directory of Open Access Journals (Sweden)

    I. Sudhakar

    2015-03-01

    Full Text Available Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter the surface morphology of base metal. Preliminary studies reveal that the coating and layering of aluminium alloys with ceramic particles enhance the ballistic resistance. Furthermore, among aluminium alloys, 7075 aluminium alloy exhibits high strength which can be compared to that of steels and has profound applications in the designing of lightweight fortification structures and integrated protection systems. Having limitations such as poor bond integrity, formation of detrimental phases and interfacial reaction between reinforcement and substrate using fusion route to deposit hard particles paves the way to adopt friction stir processing for fabricating surface composites using different sizes of boron carbide particles as reinforcement on armour grade 7075 aluminium alloy as matrix in the present investigation. Wear and ballistic tests were carried out to assess the performance of friction stir processed AA7075 alloy. Significant improvement in wear resistance of friction stir processed surface composites is attributed to the change in wear mechanism from abrasion to adhesion. It has also been observed that the surface metal matrix composites have shown better ballistic resistance compared to the substrate AA7075 alloy. Addition of solid lubricant MoS2 has reduced the depth of penetration of the projectile to half that of base metal AA7075 alloy. For the first time, the friction stir processing technique was successfully used to improve the wear and ballistic resistances of armour grade high strength AA7075 alloy.

  8. Enhancement of wear and ballistic resistance of armour grade AA7075 aluminium alloy using friction stir processing

    Institute of Scientific and Technical Information of China (English)

    I. SUDHAKAR; V. MADHU; G. MADHUSUDHAN REDDY; K. SRINIVASA RAO

    2015-01-01

    Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter the surface morphology of base metal. Preliminary studies reveal that the coating and layering of aluminium alloys with ceramic particles enhance the ballistic resistance. Furthermore, among aluminium alloys, 7075 aluminium alloy exhibits high strength which can be compared to that of steels and has profound applications in the designing of lightweight fortification structures and integrated protection systems. Having limitations such as poor bond integrity, formation of detrimental phases and interfacial reaction between reinforcement and substrate using fusion route to deposit hard particles paves the way to adopt friction stir processing for fabricating surface composites using different sizes of boron carbide particles as reinforcement on armour grade 7075 aluminium alloy as matrix in the present investigation. Wear and ballistic tests were carried out to assess the performance of friction stir processed AA7075 alloy. Significant improvement in wear resistance of friction stir processed surface composites is attributed to the change in wear mechanism from abrasion to adhesion. It has also been observed that the surface metal matrix composites have shown better ballistic resistance compared to the substrate AA7075 alloy. Addition of solid lubricant MoS2 has reduced the depth of penetration of the projectile to half that of base metal AA7075 alloy. For the first time, the friction stir processing technique was successfully used to improve the wear and ballistic resistances of armour grade high strength AA7075 alloy.

  9. Corrosion and Wear Resistance Characterization of Environmentally Friendly Sol-gel Hybrid Nanocomposite Coating on AA5083

    Institute of Scientific and Technical Information of China (English)

    Hamed Rahimi; Reza Mozaffarinia; Akbar Hojjati Najafabadi

    2013-01-01

    Environmentally friendly organic-inorganic hybrid nanocomposite films have been developed by sol-gel method for corrosion protection of AA5083 alloy.The hybrid nanocomposite coatings have been synthesized from tetraethylorthosilicate (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) precursors.The multilayer coatings were prepared by dip-coating technique.Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy was carried out to show the formation of the Si-O-Si structural backbone of the hybrid coatings.Structure and surface morphology of the coatings were studied by optical microscopy (OM),scanning electron microscopy (SEM) and atomic force microscopy (AFM).Characterization of the coatings with respect to pencil scratch hardness,adhesive and abrasion resistance was performed.The corrosion protection performance of these coatings was examined by using cyclic potentiodynamic polarization technique in Persian Gulf water.The results revealed that crack-free films with smooth surface were obtained.With increasing the number of sol-gel coated layers,corrosion resistance increased from 81 to 419 kΩ cm2,while the abrasion wear resistance did not change significantly.However,the triple sol-gel coated layer offered excellent protection against corrosion.

  10. Preparation of Wear Resistant Materials by Melting and Diffusion Process

    Institute of Scientific and Technical Information of China (English)

    YU Shihao; WEI Xueping; ZENG Hui

    2012-01-01

    A wear-resistant material reinforced with VCp was manufactured by the in-mold melting process,in which the high-vanadium alloy-rods were melted by high temperature liquid steel and elements diffused into the liquid.Microstructure of the material was examined by OM,SEM,and XRD,and alloy elements in the diffusion layer were studied by EDS,and the hardness of the material was tested by HRS.The experimental results show that the material gradually changes hardness,which is due to the uniformly existents of carbide particles on martensite matrix and the gradient distribution of vanadium and carbide.

  11. Titanium aluminide intermetallic alloys with improved wear resistance

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun; Lin, Hua-Tay; Blau, Peter J.; Sikka, Vinod K.

    2014-07-08

    The invention is directed to a method for producing a titanium aluminide intermetallic alloy composition having an improved wear resistance, the method comprising heating a titanium aluminide intermetallic alloy material in an oxygen-containing environment at a temperature and for a time sufficient to produce a top oxide layer and underlying oxygen-diffused layer, followed by removal of the top oxide layer such that the oxygen-diffused layer is exposed. The invention is also directed to the resulting oxygen-diffused titanium aluminide intermetallic alloy, as well as mechanical components or devices containing the improved alloy composition.

  12. The role of the microfissuration of the rock matrix in the abrasion resistance of ornamental granitic rocks

    Science.gov (United States)

    Rodríguez-Rey, Angel; Sanchez-Delgado, Nuria; Camino, Clara; Calleja, Lope; Ruiz de Argandoña, Vicente G.; Setien, Alexia

    2015-04-01

    The microcrack density and the abrasion resistance of five ornamental granites (Albero, Gris Alba, Mondariz, Rosa Porriño and Traspieles) from Galicia (NW Spain) have been quantified as part of a research aimed to interpret the cuttability of the rocks in relation to the petrophysical properties of the rock matrix. Large blocks from the quarries have been cut with an industrial saw and the microcrack density and the abrasion resistance have been measured in two surfaces: H, parallel to the cut surface; T, perpendicular both to the cut surface and the cutting direction. Both planes are perpendicular to the rift plane, as it is known in quarry works. The microcrack density has been quantified following an stereological procedure applied to polished sections imaged under scanning electron microscopy. The magnification of the images allowed the study of microcracks as narrow as 2 microns in aperture. The density has been quantified in terms of length of microcrack traces per surface unit so possible anisotropies of the microcrack network could be detected. The obtained values are in the typical range for this type of rocks although the Traspieles granite shows a higher value due to its weathering degree (H: 5.11, T: 5.37 mm/mm2). The values measured in the two surfaces (H and T) are quite similar in four of the rocks; only the Albero granite shows a marked anisotropy (H: 2.76 T: 3.53 mm/mm2). The abrasion resistance of the rocks has been measured following the european standard EN 14157:2004 using the capon method. The rocks can be classified in two groups according to their abrasion resistance. Rosa Porriño, Gris Alba and Mondariz granites are the more resistant to abrasion with values around 16-17 mm. Albero and Traspieles granites are less resistant with values higher than 19 mm. The results show a good correlation between the microcrack density and the abrasion resistance. As can be expected the rocks with high microcrack density show low abrasion resistance. The

  13. FIBROUS MONOLITH WEAR RESISTANT COMPONENTS FOR THE MINING INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Mike L. Fulcher; Kenneth L. Knittel

    2004-06-08

    The work performed on this program was to develop wear resistant, tough FM composite materials with efforts focused on WC-Co based FM systems. The materials were developed for use in mining industry wear applications. Components of interest were drill bit inserts for drilling blast holes. Other component applications investigated included wear plates for a variety of equipment such as pit shovels, wear surfaces for conveyors, milling media for ball milling operations, hydrocyclone cones, grader blades and dozer teeth. Cross-cutting technologies investigated included hot metal extrusion dies, drill bits for circuit board fabrication, cutting tools for cast iron and aluminum machining. An important part of the work was identification of the standard materials used in drilling applications. A materials trade study to determine those metals and ceramics used for mining applications provided guidance for the most important materials to be investigated. WC-Co and diamond combinations were shown to have the most desirable properties. Other considerations such as fabrication technique and the ability to consolidate shifted the focus away from diamond materials and toward WC-Co. Cooperating partners such as Kennametal and Kyocera assisted with supplies, evaluations of material systems, fabricated parts and suggestions for cross-cutting technology applications for FM architectures. Kennametal provided the raw materials (WC-Co and Al-TiCN powders) for the extent of the material evaluations. Kyocera shared their research into various FM systems and provided laboratory testing of fabricated materials. Field testing provided by partners Superior Rock Bit and Brady Mining and Construction provided insight into the performance of the fabricated materials under actual operational conditions. Additional field testing of cross-cutting technology, the extrusion of hot metals, at Extruded Metals showed the potential for additional market development.

  14. Abrasion-resistant solgel antireflective films with a high laser-induced damage threshold for inertial confinement fusion

    Science.gov (United States)

    Xu, Yao; Zhang, Lei; Wu, Dong; Sun, Yu Han; Huang, Zu Xing; Jiang, Xiao Dong; Wei, Xiao Feng; Li, Zhi Hong; Dong, Bao Zhong; Wu, Zhong Hua

    2005-09-01

    To prepare abrasion-resistant antireflective (AR) films for inertial confinement fusion, four solgel routes have been investigated on polysiloxane-modified and polyvinylalcohol- (PVA-) modified SiO2 sols. As confirmed with a transmissive electron microscope, different fractal structure characteristics of the modified SiO2 particles are disclosed by small-angle x-ray scattering technology. And it is these special fractal characteristics that determine the performance of AR films on the level of internal microstructure. A 29Si magic angle spinning and nuclear magnetic resonance study has been successfully applied in explaining the fractal microstructure and its relation to the laser-induced damage threshold (LIDT) of AR films. The films modified by PVA120000 or acetic acid-catalyzed polysiloxane have higher LIDTs than those films modified by PVA16000 or hydrochloride acid-catalyzed polysiloxane. The films from PVA-modified SiO2 sols have a stronger abrasion resistance but lower antireflection than those films from polysiloxane-modified SiO2 sols. In addition, the films from polysiloxane-modified SiO2 sols can possess high transmittance and high LIDT if the polysiloxane synthesis condition is appropriately chosen, but the abrasion resistance is not as good as that from PVA modification. If strong abrasion resistance is necessary, a possible resolution may be to choose a more appropriate hydrophilic polymer than PVA. If not, polysiloxane-modified silica sol can also work when polysiloxane is synthesized under acetic acid catalysis.

  15. Deposition of TiC film on titanium for abrasion resistant implant material by ion-enhanced triode plasma CVD

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Yuhe, E-mail: zyh1120@hotmail.co.jp [School of Stomatology, China Medical University, Shen Yang (China); Wang Wei; Jia Xingya [School of Stomatology, China Medical University, Shen Yang (China); Akasaka, Tsukasa [Department of Health Science, School of Dental Medicine Hokkaido University, Sapporo (Japan); Liao, Susan [School of Materials Science and Engineering, Nanyang Technological University (Singapore); Watari, Fumio [Department of Health Science, School of Dental Medicine Hokkaido University, Sapporo (Japan)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer Deposition of Titanium Carbide (TiC) layer on titanium (Ti) surface has been demonstrated by an ion-enhanced triode plasma chemical vapor deposition (CVD) method. Black-Right-Pointing-Pointer The Vickers hardness of surface carbide was more than 2000, which confirmed its high abrasion resistance. Black-Right-Pointing-Pointer Physical and mechanical properties of the deposited TiC film on Ti were investigated to examine its potential application as an abrasion resistant implant material. - Abstract: Deposition of titanium carbide (TiC) layer on titanium (Ti) surface has been demonstrated by an ion-enhanced triode plasma chemical vapor deposition (CVD) method using a TiCl{sub 4} + CH{sub 4} + H{sub 2} gas mixture. Physical and mechanical properties of the deposited TiC film on Ti were investigated to examine its potential application as an abrasion resistant implant material. X-ray diffraction (XRD) showed that the specimen was consisted of TiC and Ti. Carbide layer of about 6 {mu}m thickness was observed on the cross section of the specimen by scanning electron microscopy (SEM). The Vickers hardness of surface carbide was more than 2000, which confirmed its high abrasion resistance.

  16. Deposition of TiC film on titanium for abrasion resistant implant material by ion-enhanced triode plasma CVD

    International Nuclear Information System (INIS)

    Highlights: ► Deposition of Titanium Carbide (TiC) layer on titanium (Ti) surface has been demonstrated by an ion-enhanced triode plasma chemical vapor deposition (CVD) method. ► The Vickers hardness of surface carbide was more than 2000, which confirmed its high abrasion resistance. ► Physical and mechanical properties of the deposited TiC film on Ti were investigated to examine its potential application as an abrasion resistant implant material. - Abstract: Deposition of titanium carbide (TiC) layer on titanium (Ti) surface has been demonstrated by an ion-enhanced triode plasma chemical vapor deposition (CVD) method using a TiCl4 + CH4 + H2 gas mixture. Physical and mechanical properties of the deposited TiC film on Ti were investigated to examine its potential application as an abrasion resistant implant material. X-ray diffraction (XRD) showed that the specimen was consisted of TiC and Ti. Carbide layer of about 6 μm thickness was observed on the cross section of the specimen by scanning electron microscopy (SEM). The Vickers hardness of surface carbide was more than 2000, which confirmed its high abrasion resistance.

  17. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, M; Lis, J; Partyka, J; Wojczyk, M, E-mail: mgajek@agh.edu.pl [AGH University of Science and Technology, Faculty of Materials Science and Ceramic, al. Mickiewicza 30, 30-059 Cracow (Poland)

    2011-10-29

    The results of research aimed at the study on frits and glass-ceramic glazes for floor tiles, based on compositions located in the primary field of cordierite crystallization within the system MgO-Al{sub 2}O{sub 3}-SiO{sub 2}, have been presented. The results comprise investigations on the frits crystallization abilities, stability of the crystallizing phase under conditions of single-stage a fast firing cycle (time below 60 minutes) depending on their chemical composition and the influence of the nucleation agents. The influence of the nucleating agents namely TiO{sub 2}, ZrO{sub 2}, V{sub 2}O{sub 5} on phase composition of obtained crystalline glazes, mechanical parameters and microstructure, has been examined. The strength tests proved increased mechanical resistance of crystalline glazes. Obtained glazes are characterized by high microhardness in range 6{approx}8 GPa, as well as the increased wear resistance measured by the loss of weight below 100 mg / 55 cm{sup 2} (PN-EN ISO 10545-7). Significant increase of these parameters as compared with non-crystalline glazes, where micro-hardness values range between 5{approx}6 GPa and the wear resistance values range from 120 to 200 mg, has been proved. Starting glasses (frits) and glazes of the ternary system MgO-SiO{sub 2}-Al{sub 2}O{sub 3}, were examined with use of DTA, XRD and SEM methods.

  18. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion

    Science.gov (United States)

    Gajek, M.; Lis, J.; Partyka, J.; Wójczyk, M.

    2011-10-01

    The results of research aimed at the study on frits and glass-ceramic glazes for floor tiles, based on compositions located in the primary field of cordierite crystallization within the system MgO-Al2O3-SiO2, have been presented. The results comprise investigations on the frits crystallization abilities, stability of the crystallizing phase under conditions of single-stage a fast firing cycle (time below 60 minutes) depending on their chemical composition and the influence of the nucleation agents. The influence of the nucleating agents namely TiO2, ZrO2, V2O5 on phase composition of obtained crystalline glazes, mechanical parameters and microstructure, has been examined. The strength tests proved increased mechanical resistance of crystalline glazes. Obtained glazes are characterized by high microhardness in range 6~8 GPa, as well as the increased wear resistance measured by the loss of weight below 100 mg / 55 cm2 (PN-EN ISO 10545-7). Significant increase of these parameters as compared with non-crystalline glazes, where micro-hardness values range between 5~6 GPa and the wear resistance values range from 120 to 200 mg, has been proved. Starting glasses (frits) and glazes of the ternary system MgO-SiO2-Al2O3, were examined with use of DTA, XRD and SEM methods.

  19. Tantalum-based thin film coatings for wear resistant arthroprostheses.

    Science.gov (United States)

    Balagna, C; Faga, M G; Spriano, S

    2011-10-01

    Cobalt-chromium-molybdenum alloys with high carbon content (HC-CoCrMo) are widely used as materials for arthroprosthesis, in particular in metal-on-metal (MoM) hip joints. In spite of their good wear and corrosion resistance, production of metallic wear particles and metal ion release will occur on a large time-scale. An enhancement of the metal ion level in the patient's blood and urine is often reported in clinical data. Hypersensitivity, inflammatory response and cell necrosis can occur as consequence. So implants on young patients and women on childbearing age are not so widespread. The aim of this research is the realization of a thin film coating in order to improve the biocompatibility of Co-based alloys and to reduce debris production, ion release and citotoxicity. The innovative process consists of a thermal treatment in molten salts, in order to obtain a tantalum enriched thin film coating. Tantalum is chosen because it is considered a biocompatible metal with high corrosion resistance and low ion release. Three HC-CoCrMo alloys, produced by different manufacturing processes, are tested as substrates. The coating is a thin film of TaC or it can be composed by a multilayer of two tantalum carbides and metallic tantalum, depending on the temperature of the treatment and on the carbon content of the substrate. The thin films as well the substrates are characterized from the structural, chemical and morphological point of view. Moreover mechanical behaviour of treated and untreated materials is analyzed by means of nanohardness, scratch and ball-on-disc wear tests. The coating increases the mechanical and tribological properties of HC-CoCrMo. PMID:22400292

  20. Microstructure, microhardness and wear resistance of VC{sub p}/Fe surface composites fabricated in situ

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Fangxia [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Institute of Wear Resistant Materials, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Hojamberdiev, Mirabbos [Institute of Wear Resistant Materials, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Xu, Yunhua, E-mail: yunhuaxu@yahoo.com.cn [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Institute of Wear Resistant Materials, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Zhong, Lisheng [Institute of Wear Resistant Materials, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Zhao, Nana [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Li, Yaping [Institute of Wear Resistant Materials, Xi’an University of Architecture and Technology, Xi’an 710055 (China); Huang, Xing [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China)

    2013-09-01

    Graphical The vanadium carbide particles (VC{sub p})/Fe surface composites were in situ fabricated by a technique combining infiltration casting with subsequent heat treatment. The effects of different heat treatment times on the phase evolution, microstructure, microhardness and wear resistance of the composite were studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), Vickers hardness tester and wear resistance testing instrument, respectively. The results show that only graphite, α-Fe and V{sub 8}C{sub 7} phases dominate in the composite after being heat treated at 1164 °C for 3 h. The amount of V{sub 8}C{sub 7} decreases gradually from the top surface of the composite to the matrix mainly composed of gray cast iron. The average microhardness of the VC{sub p}/Fe surface composites varies according to the different reaction zones as follows: 505 HV{sub 0.1} (vanadium plate), 1096 HV{sub 0.1} (composite region), and 235 HV{sub 0.1} (iron matrix). The microhardness of the composite region is four times higher than that of the iron matrix and two times higher than that of the vanadium plate. This is attributed to the formation of vanadium carbide (V{sub 2}C and V{sub 8}C{sub 7}) crystallites as reinforcement phases within the iron matrix. The VC{sub p}/Fe surface composites exhibit a good wear resistance under two-body abrasive wear test.

  1. Air Abrasion

    Science.gov (United States)

    ... delivered directly to your desktop! more... What Is Air Abrasion? Article Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air Abrasion for Everyone? print full article print this ...

  2. Development of wear-resistant coatings for cobalt-base alloys

    International Nuclear Information System (INIS)

    The level of nuclear plant radiation exposure due to activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. Laboratory pin-on-disc and rolling contact wear tests were used to evaluate the wear performance of several coatings. Based on the results of these tests, multilayer Cr-nitride coatings and ion nitriding are the most promising approaches

  3. Wear resistance and fracture mechanics of WC-Co composites

    International Nuclear Information System (INIS)

    Manufacturing of WC-Co composites using the electroless precipitation method at different sintering temperatures of 1 100, 1 250, 1 350 and 1 500 C was successfully achieved. The chemical composition of the investigated materials was 90 wt.% WC with 10 wt.% Co, and 80 wt.% WC with 20 wt.% Co. The specific density, densification, and Vickers microhardness measurements were found to increase with increased sintering temperature for both the WC-Co compositions. The composites of tungsten carbide with 10 wt.% Co had a higher specific density and Vickers microhardness measurements than those for the composites of tungsten carbide with 20 wt.% Co. Composites with WC-10 wt.% Co had better wear resistance. The stress-strain and transverse rupture strength increased monotonically with the increase in sintering temperatures, agreeing with the material hardness and wear resistance behavior. Fractographical scanning electron microscopy analysis of the fracture surface demonstrated a rough characteristic conical shape failure in the direction of the maximum shear stress. A proposed mechanism for the formation of the conical fracture surface under compression testing is presented. (orig.)

  4. Wear resistance and fracture mechanics of WC-Co composites

    Energy Technology Data Exchange (ETDEWEB)

    Kaytbay, Saleh [Benha Univ. (Egypt). Dept. of Mechanical Engineering; El-Hadek, Medhat [Port-Said Univ. (Egypt). Dept. of Production and Mechanical Design

    2014-06-15

    Manufacturing of WC-Co composites using the electroless precipitation method at different sintering temperatures of 1 100, 1 250, 1 350 and 1 500 C was successfully achieved. The chemical composition of the investigated materials was 90 wt.% WC with 10 wt.% Co, and 80 wt.% WC with 20 wt.% Co. The specific density, densification, and Vickers microhardness measurements were found to increase with increased sintering temperature for both the WC-Co compositions. The composites of tungsten carbide with 10 wt.% Co had a higher specific density and Vickers microhardness measurements than those for the composites of tungsten carbide with 20 wt.% Co. Composites with WC-10 wt.% Co had better wear resistance. The stress-strain and transverse rupture strength increased monotonically with the increase in sintering temperatures, agreeing with the material hardness and wear resistance behavior. Fractographical scanning electron microscopy analysis of the fracture surface demonstrated a rough characteristic conical shape failure in the direction of the maximum shear stress. A proposed mechanism for the formation of the conical fracture surface under compression testing is presented. (orig.)

  5. Effect of bionic coupling units' forms on wear resistance of gray cast iron under dry linear reciprocating sliding condition

    Science.gov (United States)

    Pang, Zuobo; Zhou, Hong; Xie, Guofeng; Cong, Dalong; Meng, Chao; Ren, Luquan

    2015-07-01

    In order to get close to the wear form of guide rails, the homemade linear reciprocating wear testing machine was used for the wear test. In order to improve the wear-resistance of gray cast iron guide rail, bionic coupling units of different forms were manufactured by a laser. Wear behavior of gray-cast-iron with bionic-coupling units has been studied under dry sliding condition at room temperature using the wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that bionic coupling unit could improve the wear resistance of gray cast iron. The wear resistance of gray cast iron with reticulation bionic coupling unit is the best. When the load and speed changed, reticulation bionic coupling unit still has excellent performance in improving the wear resistance of gray cast iron.

  6. Abrasion Properties of Steel Fiber Reinforced Silica Fume Concrete According to Los Angeles and Water Abrasion Tests

    Directory of Open Access Journals (Sweden)

    Tsan-Ching CHENG

    2014-12-01

    Full Text Available The current study mainly investigated the influence of different tests on the abrasion resistance of concrete mixed with steel fibers and silica fume. The abrasion resistance was assessed at 28, 56 and 91 days on concretes with water-binder ratios of 0.35 and 0.55 where in some mixes silica fume was substituted by 5 % of cement by weight. Steel fibers of 0.5 % and 1.0 % of concrete volume were also added into the test concrete by replacement of coarse and fine aggregates. The results showed that concrete with higher compressive strength in Los Angeles abrasion tests also had better abrasion resistance. The inclusion of steel fibers into test concrete with a water-binder ratio of 0.35 resulted in a significant increase in compressive strength. This concrete also displayed better abrasion resistance and splitting tensile strength than reference concrete; in the test sample with a water-binder ratio of 0.55, the added steel fibers was unable to effectively produce cementation with the concrete. The inclusion of silica fume improved the abrasion resistance of concretes. In water abrasion testing, the abrasion resistance of concrete containing steel fiber was worse than that of concrete without steel fibers. In the water abrasion testing, the surface of steel fiber reinforced concrete was eroded by water and steel balls, and the impact caused the steel fibers to separate from the concrete and led to higher wear loss. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6460

  7. Preparation, characterization and wear behavior of carbon coated magnesium alloy with electroless plating nickel interlayer

    Science.gov (United States)

    Mao, Yan; Li, Zhuguo; Feng, Kai; Guo, Xingwu; Zhou, Zhifeng; Dong, Jie; Wu, Yixiong

    2015-02-01

    Poor wear resistance of rare earth magnesium alloys has prevented them from wider application. In this study, composite coating (PVD carbon coating deposited on electroless plating nickel interlayer) is prepared to protect GW83 magnesium alloys against wear. The Ni + C composite coating has a dense microstructure, improved adhesion strength and hardness due to the effective support of Ni interlayer. The wear test result shows that the Ni + C composite coating can greatly prolong the wear life of the magnesium alloy. The wear track of the Ni + C coated magnesium alloy is obviously narrower and shows less abrasive particles as compared with the bare one. Abrasive wear is the wear mechanism of the coatings at the room temperature. In conclusion, the wear resistance of the GW83 magnesium alloy can be greatly improved by the Ni + C composite coating.

  8. Control of Wear-Resistance Properties in Ti-added Hypereutectic High Chromium Cast Iron

    OpenAIRE

    Liu, Qiang

    2012-01-01

    High chromium cast iron (HCCI) is considered as one of the most useful wear resistance materials and their usage are widely spread in industry. The wear resistance and mechanical properties of HCCI mainly depend on type, size, number, morphology of hard carbides and the matrix structure (γ or α). The Hypereutectic HCCI with large volume fractions of hard carbides is preferred to apply in wear applications. However, the coarser and larger primary M7C3 carbides will be precipitated during the s...

  9. Micro-scale Abrasion and Medium Load Multiple Scratch Tests of PVD Coatings.

    Institute of Scientific and Technical Information of China (English)

    S. Poulat; H. Sun & D.G. Teer

    2004-01-01

    Micro-scale abrasion testing is widely used to determine the abrasion resistance of thin film coatings; it is a simple technique that can easily be used as part of a quality control procedure, but it has got the disadvantage of not allowing an easy study of the wear mechanisms involved: it is difficult to estimate the load applied on each abrasive particles in the contact between the loaded ball and the specimen. The possibility of using progressive loading scratch testing, a method widely used to assess the adhesion of thin film coatings, to model the abrasive wear of coatings has been studied in the past; the use of multiple scratch tests to study the wear mechanisms corresponding to a single abrasion scratch event has also been studied in the case of bulk materials (ceramics and hard metals). Two coatings, deposited by Closed Field Unbalanced Magnetron Sputter Ion Plating (CFUBMSIP) on ASP23 powder metallurgy steel substrate are chosen to be representative of the use of protective coatings in industry: titanium nitride, which is widely used to prevent tool wear, and TCL Graphit-iCTM, which is widely used as a wear resistant solid lubricant coating. The two coatings are first characterised by using a standard quality control procedure: their thickness is determined by the cap grinding method, their adhesion by progressive loading scratch. Then micro-scale abrasion tests performed with a slurry at a concentration which promotes grooving wear, and medium load multiple scratch tests performed with diamond indenters are completed; the results of these tests are analysed and compared to determine if there is any correlation between the two sets of results; the multiple scratch tests wear tracks are also observed to determine the wear mechanisms involved.

  10. FIBROUS MONOLITH WEAR RESISTANT COMPONENTS FOR THE MINING INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Mark J. Rigali; Kenneth L. Knittel; Mike L. Fulcher

    2002-03-01

    During this reporting period, work continued on development of formulations using the materials identified as contenders for the fibrous monolith wear resistant components. The FM structures fabricated were: diamond/WC-Co, B{sub 4}C/WC-Co, TiB{sub 2}/WC-Co, WC-Co/Co, WC-Co/WC-Co. Results of our consolidation densification studies on these systems lead to the down-selection of WC-Co/WC-Co, WC-Co/Co and diamond/WC-Co for further development for mining applications including drill bit inserts, roof bit inserts, radial tools conical tools and wear plates (WC-Co based system only) for earth moving equipment. Prototype component fabrication focused on the fabrication of WC-Co/WC-Co FM conical tools, diamond/WC-Co coated drill bit insert prototypes. Fabrication of WC-Co/WC-Co FM insert prototypes for a grader blade is also underway. ACR plans to initiate field-testing of the drill bit insert prototypes and the grader blade insert this summer (2002). The first WC-Co/WC-Co FM conical tool prototypes were sent to Kennametal for evaluation towards the end of the current reporting period.

  11. Influence of Cycle Temperature on the Wear Resistance of Vermicular Iron Derivatized with Bionic Surfaces

    Science.gov (United States)

    Sui, Qi; Zhang, Peng; Zhou, Hong; Liu, Yan; Ren, Luquan

    2016-11-01

    Depending on their applications, such as in brake discs, camshafts, etc., the wear behavior of vermicular iron is influenced by the thermal cycling regime. The failure of a working part during its service life is a consequence of both thermal fatigue and wear. Previously, the wear and thermal fatigue resistance properties of vermicular iron were separately investigated by researchers, rather than a study combining these two factors. In the present work, the effect of cycle temperature on the wear resistance of specimens with bionic units processed by laser has been investigated experimentally. The wear behavior pre- and post-thermal cycling has also been investigated, and the influence of different cycle temperatures on the wear resistance is discussed. The results indicate that the thermal cycling regime brought about negative influences with varying degrees, on the material properties, such as the microstructures, micro-hardness, cracks, and oxidation resistance properties. All these factors synergistically reduced the wear resistance of vermicular iron. In particular, the negative influence apparently increased with an increase in cycle temperature. Nevertheless, the post-thermal-cycle wear resistance of the specimens with bionic units was superior to those without bionic units. Hence, the laser bionic process is an effective way to improve the performance of vermicular iron in combined thermal cycling and wear service conditions.

  12. Influence of Cycle Temperature on the Wear Resistance of Vermicular Iron Derivatized with Bionic Surfaces

    Science.gov (United States)

    Sui, Qi; Zhang, Peng; Zhou, Hong; Liu, Yan; Ren, Luquan

    2016-08-01

    Depending on their applications, such as in brake discs, camshafts, etc., the wear behavior of vermicular iron is influenced by the thermal cycling regime. The failure of a working part during its service life is a consequence of both thermal fatigue and wear. Previously, the wear and thermal fatigue resistance properties of vermicular iron were separately investigated by researchers, rather than a study combining these two factors. In the present work, the effect of cycle temperature on the wear resistance of specimens with bionic units processed by laser has been investigated experimentally. The wear behavior pre- and post-thermal cycling has also been investigated, and the influence of different cycle temperatures on the wear resistance is discussed. The results indicate that the thermal cycling regime brought about negative influences with varying degrees, on the material properties, such as the microstructures, micro-hardness, cracks, and oxidation resistance properties. All these factors synergistically reduced the wear resistance of vermicular iron. In particular, the negative influence apparently increased with an increase in cycle temperature. Nevertheless, the post-thermal-cycle wear resistance of the specimens with bionic units was superior to those without bionic units. Hence, the laser bionic process is an effective way to improve the performance of vermicular iron in combined thermal cycling and wear service conditions.

  13. Study on dry friction and wear resistance of a WC-Co particle reinforced iron matrix composite material

    OpenAIRE

    Zhang Peng; Zeng Shaolian; Zhang Zhiguo

    2013-01-01

    In order to select a suitable material for the rolling mill guide application, the dry sliding friction and wear resistance of a tungsten carbide combining cobalt (WC-Co) particle reinforced chromium cast iron composite material were studied. In particular, the wear resistance was discussed in detail. The results showed that the composite material demonstrates 25 times the wear resistance of high Cr cast iron, and 9 times the wear resistance of heat resistant steel. However, the average frict...

  14. Wear resistance of composite coatings produced by thermal spraying

    International Nuclear Information System (INIS)

    Injection of refractory additions (carbides, borides, oxides etc.) into self-fluxing alloys is a well-known technique for their hardening. Nevertheless the matter of influence of refractory components on the structure and characteristics of composite coatings is not studied well enough. This paper presents the results of investigations of gas thermal coatings (plasma and detonation ones) on the base of stellite with refractory components in the form of borides such as CrB2, TiB2, (TiCr)B2. This study is concerned with the influence of refractory additions (carbides, borides, oxides) on the wear resistance sprayed coatings based on self-fluxing alloys NiCrBSi and CoCrBSi

  15. Fe–0.4 wt.%C–6.5 wt.%Cr hardfacing coating: Microstructures and wear resistance with La{sub 2}O{sub 3} additive

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xiaoru [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Zhao, Bin [Jiangsu Xuzhou Construction Machinery Research Institute, Xuzhou 221004 (China); Yang, Jian; Xing, Xiaolei; Zhou, Yefei; Yang, Yulin [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Yang, Qingxiang, E-mail: qxyang@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2014-10-30

    Highlights: • Fe–0.4 wt.%C–6.5 wt.%Cr hardfacing coatings with different La{sub 2}O{sub 3} additives were developed. • The grain size of the hardfacing coating decreases with the increase of the La{sub 2}O{sub 3} additives. • The unidirectional wear resistance of the hardfacing coating is increased with the increase of the La{sub 2}O{sub 3} additives. • The friction coefficient is decreased and the reciprocating wear resistance is increased with the increase of the La{sub 2}O{sub 3} additives. - Abstract: Flux-cored wires with different La{sub 2}O{sub 3} additives were developed. The microstructures of the hardfacing coatings were observed by optical microscopy (OM) and field emission scanning electron microscope (FESEM). The phase structures were determined by X-ray diffraction (XRD). The hardness, wear resistance and friction coefficient of the hardfacing coatings were measured by Rockwell hardness tester, unilateral abrasive belt wear testing machine and CETR reciprocating wear testing machine, respectively. At last, the worn morphologies of the hardfacing coatings were observed by FESEM. The results indicate that, the microstructures of the hardfacing coatings consist of needle-like martensite, high alloy matensite and retained austenite. With the increase of La{sub 2}O{sub 3} additive, the high alloy matensite dissolves in the matrix gradually and the amount of retained austenite is not changed basically after it is increased firstly. When La{sub 2}O{sub 3} addition is 0.70 wt.%, the grain size of the hardfacing coating is the smallest, which is 18 μm and the average hardness is the highest. Unidirectional abrasive belt wear test shows that the high alloy martensite can be as wear-resistance phase during the wear process of the hardfacing coatings. When the La{sub 2}O{sub 3} addition is 0.35 wt.%, the unidirectional wear resistance of the hardfacing coating is the highest. Reciprocating wear test shows that with the increase of the La{sub 2}O

  16. Anti-abrasive nanocoatings current and future applications

    CERN Document Server

    2015-01-01

    This book provides an overview of the fabrication methods for anti-abrasive nanocoatings. The connections among fabrication parameters, the characteristics of nanocoatings and the resulting properties (i.e. nanohardness, toughness, wear rate, load-bearing ability, friction coefficient, and scratch resistance) are discussed. Size-affected mechanical properties of nanocoatings are examined, including their uses. Anti-abrasive nanocoatings, including metallic-, ceramic-, and polymeric-based layers, as well as different kinds of nanostructures, such as multi-layered nanocomposites and thin films, are reviewed. * Provides a comprehensive overview of the fabrication methods for anti-abrasive nanocoatings* Discusses the connections among fabrication parameters, the characteristics of nanocoatings and the resulting properties* Reviews advantages and drawbacks of fabrication methods for anti-abrasive nanocoatings and clarifies the place of these nanocoatings in the world of nanotechnology

  17. Selected fretting-wear-resistant coatings for Ti-6 pct Al-4 pct V alloy

    Science.gov (United States)

    Bill, R. C.

    1985-01-01

    The ability of several wear-resistant coatings to reduce fretting in the Ti-6Al-4V alloy is investigated. The experimental apparatus and procedures for evaluating fretting in uncoated Ti-6Al-4V alloy and in the alloy with plasma-sprayed coatings, polymer-bonded coating, and surface treatments are described. The wear volume and wear rate for the alloys are measured and compared. It is concluded that Al2O3 with 13 percent TiO2, preoxidation and nitride surface treatments, and MoS2 sputtering result in wear-resistant surfaces; however, the polyimide coating is the most wear resistant coating in both dry and moist air, and it causes the least wear to the uncoated alloy surface.

  18. Enhancement of wear resistance of ductile iron surface alloyed by stellite 6

    International Nuclear Information System (INIS)

    Research highlights: → This paper deals with the improvement of the wear resistance of ductile iron surface alloyed by stellite 6 hardfacing alloy. → The microstructure of the surface alloyed layer consisted of carbides dispersed in a Co-based solid solution matrix with dendritic structure. → The higher wear resistance of the coated sample than that of uncoated sample attributed to the hardness of the surface alloyed layer. → The dominant mechanism of the wear in the coated and uncoated samples was delamination wear. -- Abstract: This paper deals with the improvement of the wear resistance of ductile iron surface alloyed by a hypoeutectic stellite 6 alloy. In this regard, the surface alloyed layer with 3 mm thickness deposited on ductile iron using tungsten inert gas (TIG) surface processing. The microstructure, hardness and wear resistance of surface alloyed layer were investigated using optical microscopy, scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction analysis, Vickers hardness (HV0.3) and pin-on-plate tests. The results showed that the microstructure of the surface alloyed layer consisted of carbides dispersed in a Co-based solid solution matrix with dendritic structure. This microstructure was responsible for the improvement of the hardness and wear resistance of the coating. Further investigations showed that the dominant mechanism of the wear in the coated and uncoated samples was delamination wear.

  19. CASTING OF DETAILS OF WEAR-RESISTANT CHROME CAST IRONS FOR CHROMIC MILLS IN COMBINED MOLDS AND CHILLS

    Directory of Open Access Journals (Sweden)

    K. E. Baranovskij

    2009-01-01

    Full Text Available Relative wear resistance of chrome cast irons of eutectic composition is determined in laboratory and industry conditions. Complex alloyed eutectic cast iron with increased wear resistance and mechanical characteristics is developed.

  20. Effect of sodium bicarbonate air abrasive polishing on resistance to sliding during tooth alignment and leveling: An in vitro study

    Directory of Open Access Journals (Sweden)

    Jorge C. B. L. Filho

    2012-01-01

    Full Text Available Objective: The aim of this in vitro study was to evaluate the Resistance to Sliding (RS provided by metallic brackets and 3 types of orthodontic wires (TMA, SS and NiTi, before and after the use of sodium bicarbonate airborne particle abrasion, in an experimental model with 3 non leveled brackets. Materials and Methods: The bicarbonate airborne abrasion was applied perpendicularly to the bracket slots at a distance of 2 mm, for 5 seconds (T2 and 10 seconds (T3 on each bracket slot. In a universal testing machine, the wires were pulled through a set of 3 non leveled brackets at a cross head speed of 50 mm/min for a distance of 10 mm, and static and kinetic friction readings were registered at T1 (no airborne abrasion, T2 and T3. Results: For all tested wires, a significant RS increase between T1 and T3 (P<0.001 was seen. For SS and TMA wires, there was a statistically significant RS increase between T1 and T2 (P<0.001. Between T2 and T3, RS increase was significant for TMA (P<0.001 and NiTiwires (P<0.05. Conclusions: Sodium bicarbonate air abrasive polishing during orthodontic treatment is not recommended, once this procedure promoted a significant RS increase between the metallic brackets and all the three types of wires tested.

  1. Analysis of the structure of castings made from chromium white cast iron resistant to abrasive wear

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2009-10-01

    Full Text Available It has been proved that an addition of boron carbide and disintegrated steel scrap introduced as an inoculant to the chromium white cast iron changes the structure of castings. The said operation increases the number of crystallization nuclei for dendrites of the primary austenite. In this case, the iron particles act as substrates for the nucleation of primary austenite due to a similar crystallographic lattice. The more numerous are the dendrites of primary austenite and the structure more refined and the mechanical properties higher. Castings after B4C inoculation revealed a different structure of fine grained fracture. Primary precipitates of chromium carbide also appeared, reducing the mechanical properties of as-cast parts. Properly established heat treatment regime makes chromium iron castings regain their, originally high, mechanical properties.

  2. The structure and properties of steel with different pearlite morphology and its resistance to abrasive wear

    OpenAIRE

    J. Herian; K. Aniołek

    2008-01-01

    Purpose: The analyse of pearlite morphology changes as a result of hot rolling process and isothermal annealing.Design/methodology/approach: Physical modelling of isothermal annealing for a transition point of520-620°C was carried out using a Gleeble simulator. A scanning electron microscope was used for a quantitativeevaluation of the microstructure.Findings: The obtained test results confirm that these methods can be effectively used in shaping the pearliticstructure and properties of the s...

  3. Surface Design and Engineering Toward Wear-Resistant, Self-Lubricating Diamond Films and Coatings

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1999-01-01

    The tribological properties of chemical-vapor-deposited (CVD) diamond films vary with the environment, possessing a Jekyll-and-Hyde character. CVD diamond has low coefficient of friction and high wear resistance in air but high coefficient of friction and low wear resistance in vacuum. Improving the tribological functionality of materials (such as achieving low friction and good wear resistance) was an aim of this investigation. Three studies on the surface design, surface engineering, and tribology of CVD diamond have shown that its friction and wear are significantly reduced in ultrahigh vacuum. The main criteria for judging whether diamond films are an effective wear-resistant, self-lubricating material were coefficient of friction and wear rate, which must be less than 0.1 and on the order of 10(exp 6) cu mm/N(dot)m, respectively. In the first study the presence of a thin film (less than 1 micron thick) of amorphous, nondiamond carbon (hydrogenated carbon, also called diamondlike carbon or DLC) on CVD diamond greatly decreased the coefficient of friction and the wear rate. Therefore, a thin DLC film on CVD diamond can be an effective wear-resistant, lubricating coating in ultrahigh vacuum. In the second study the presence of an amorphous, nondiamond carbon surface layer formed on CVD diamond by ion implantation significantly reduced the coefficient of friction and the wear rate in ultrahigh vacuum. Therefore, such surface layers are acceptable for effective self-lubricating, wear-resistant applications of CVD diamond. In the third study CVD diamond in contact with cubic boron nitride exhibited low coefficient of friction in ultra high vacuum. Therefore, this materials combination can provide an effective self-lubricating, wear-resistant couple in ultrahigh vacuum.

  4. Characteristics of electrode wear in resistance spot welding dual-phase steels

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.Q. [Body Manufacturing Technology Center, School of Mechanical Engineering, Shanghai JiaoTong University, ShangHai 200030 (China)], E-mail: zhangxvqiang@163.com; Chen, G.L.; Zhang, Y.S. [Body Manufacturing Technology Center, School of Mechanical Engineering, Shanghai JiaoTong University, ShangHai 200030 (China)

    2008-07-01

    Hot galvanization dual-phase steel is a newly developed steel to be used in auto body to meet automobile light weight and safety requirement, which has high strength and good corrosion resistance. But welding of galvanization steels led to serious and uncertain electrode wear, which resulted in short electrode life and inconsistent weld quality. Experiment was carried out to study characteristics of electrode wear in welding 0.8 mm thickness galvanization dual-phase steels with 600 MPa strength (DP600) by servo weld gun. The characteristics of electrode radial wear and axial wear were compared with between DP600 and uncoated steels. The results showed that when welding DP600, more alloy products and electrode deformation were produced to make electrode diameter increase at earlier wear stage, which took higher electrode wear rate at this stage. Growth of pitting on electrode-tip face accelerated electrode invalidation. Undersized nugget was formed because of electrodes wearing out.

  5. Friction and wear with a single-crystal abrasive grit of silicon carbide in contact with iron base binary alloys in oil: Effects of alloying element and its content

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with various iron-base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a rider of 0.025-millimeter-radius, single-crystal silicon carbide in mineral oil. Results indicate that atomic size and content of alloying element play a dominant role in controlling the abrasive-wear and -friction properties of iron-base binary alloys. The coefficient of friction and groove height (wear volume) general alloy decrease, and the contact pressure increases in solute content. There appears to be very good correlation of the solute to iron atomic radius ratio with the decreasing rate of coefficient of friction, the decreasing rate of groove height (wear volume), and the increasing rate of contact pressure with increasing solute content C. Those rates increase as the solute to iron atomic radius ratio increases from unity.

  6. Estimation of the operational reliability determined with Weibull modulus based on the abrasive wear in a cylinder-piston ring system

    Directory of Open Access Journals (Sweden)

    J. Piątkowski

    2012-12-01

    Full Text Available Purpose: The main purpose of the study was to determine methodology for estimation of the operational reliability based on the statistical results of abrasive wear testing.Design/methodology/approach: For research, a traditional tribological system, i.e. a friction pair of the AlSi17CuNiMg silumin in contact with the spheroidal graphite cast iron of EN-GJN-200 grade, was chosen. Conditions of dry friction were assumed. This system was chosen based on mechanical cooperation between the cylinder (silumin and piston rings (spheroidal graphite cast iron in conventional internal combustion piston engines with spark ignition.Findings: Using material parameters of the cylinder and piston rings, nominal losses qualifying the cylinder for repair and the maximum weight losses that can be smothered were determined. Based on the theoretical number of engine revolutions to repair and stress acting on the cylinder bearing surface, the maximum distance that the motor vehicle can travel before the seizure of the cylinder occurs was calculated. These results were the basis for statistical analysis carried out with the Weibull modulus, the end result of which was the estimation of material reliability (the survival probability of tribological system and the determination of a pre-operation warranty period of the tribological system.Research limitations/implications: The analysis of Weibull distribution modulus will estimate the reliability of a tribological cylinder-ring system enabled the determination of an approximate theoretical time of the combustion engine failure-free running.Originality/value: The results are valuable statistical data and methodology proposed in this paper can be used to determine a theoretical life time of the combustion engine.

  7. Microstructure and wear resistance of spray-formed supermartensitic stainless steel

    OpenAIRE

    Guilherme Zepon; Claudio Shyinti Kiminami; Walter José Botta Filho; Claudemiro Bolfarini

    2013-01-01

    Since the early 90's the oil industry has been encouraging the development of corrosion and wear resistant alloys for onshore and offshore pipeline applications. In this context supermartensitic stainless steel was introduced to replace the more expensive duplex stainless steel for tubing applications. Despite the outstanding corrosion resistance of stainless steels, their wear resistance is of concern. Some authors reported obtaining material processed by spray forming, such as ferritic stai...

  8. FIBROUS MONOLITH WEAR RESISTANT COMPONENTS FOR THE MINING INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth L. Knittel

    2005-05-09

    The work performed on this program was to develop wear resistant, tough FM composite materials with efforts focused on WC-Co based FM systems. The materials were developed for use in mining industry wear applications. Components of interest were drill bit inserts for drilling blast holes. Other component applications investigated included wear plates for a variety of equipment such as pit shovels, wear surfaces for conveyors, milling media for ball milling operations, hydrocyclone cones, grader blades and dozer teeth. Cross-cutting technologies investigated included hot metal extrusion dies, drill bits for circuit board fabrication, cutting tools for cast iron and aluminum machining. An important part of the work was identification of the standard materials used in drilling applications. A materials trade study to determine those metals and ceramics used for mining applications provided guidance for the most important materials to be investigated. WC-Co and diamond combinations were shown to have the most desirable properties. Other considerations such as fabrication technique and the ability to consolidate shifted the focus away from diamond materials and toward WC-Co. Cooperating partners such as Kennametal and Kyocera assisted with supplies, evaluations of material systems, fabricated parts and suggestions for cross-cutting technology applications for FM architectures. Kennametal provided the raw materials (WC-Co and Al-TiCN powders) for the extent of the material evaluations. Kyocera shared their research into various FM systems and provided laboratory testing of fabricated materials. Kyocera also continued research of the FM systems with the intention of developing commercial markets for a variety of applications. The continued development of FM technology by Kyocera is seen as a direct result of the cooperation established under this funding. Kyocera has a specific interest in the commercial development of the FM technology and have licensed it and have paid

  9. An instrument for measuring abrasive water jet diameter

    OpenAIRE

    Junkar, Mihael; Lebar, Andrej; Orbanić, Henri

    2015-01-01

    In order to improve the accuracy of abrasive water jet (AW) machining the precise value of the jet diameter has to be known. Because of an aggressive environment caused by high velocity abrasive grains, the diameter is not easily measured. That is why a measuring device consisting of a load cell and a wear resistant probe was developed. The device measures the force of the jet while it passes over the edge of the probe. If the feed rate of the jet is constant and the time needed for jet to pa...

  10. Enhancing the wear resistance of case carburized steel (En 353) by cryogenic treatment

    Science.gov (United States)

    Bensely, A.; Prabhakaran, A.; Mohan Lal, D.; Nagarajan, G.

    2005-12-01

    All mechanical components that undergo sliding or rolling contact are subject to some degree of wear. So wear is an important tribological phenomenon while studying the failure of components. The observed frequent failure of crown and pinion due to wear and fatigue lead to this study on effect of cryogenic treatment on the wear resistance of case carburized steel (En 353). This paper deals with the pin on disk wear test without lubrication as per ASTM standard, designation: G 99-95A. The test was carried out for three different load conditions and seven sliding speeds for the samples, which has undergone three different treatment conditions namely conventional heat treatment (CHT), shallow cryogenic treatment (SCT) and deep cryogenic treatment (DCT). It has been found that the wear resistance has been considerably increased due to shallow cryogenic treatment and deep cryogenic treatment includes much more improvement in wear resistance when compared to conventional heat treatment. Also it is concluded that for better wear resistance, it is advisable to go for deep cryogenic treatment. The results are consistent with the previous studies reported in the literature on cryogenic treatments for other materials.

  11. Effect of the microhardness difference between base metal and bionic coupling unit on wear resistance of gray cast iron

    Science.gov (United States)

    Pang, Zuobo; Zhou, Hong; Chang, Fang; Zhang, Peng; Cong, Dalong; Meng, Chao; Wang, Chuanwei; Ren, Luquan

    2015-12-01

    In order to improve the wear resistance of gray cast iron guide rail, the samples with different microhardness difference between bionic coupling units and base metal were manufactured by laser surface remelting. Wear behavior of gray cast iron with bionic coupling units has been studied under dry sliding condition at room temperature using a homemade liner reciprocating wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that when the microhardness difference is 561 HV0.2, the wear resistance of sample is the best.

  12. FIBROUS MONOLITH WEAR RESISTANT COMPONENTS FOR THE MINING INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Mark J. Rigali; Mike L. Fulcher; Kenneth L. Knittel

    2002-10-01

    During the reporting period, work continued on development of formulations using the materials down-selected from the initially identified contenders for the fibrous monolith wear resistant components. The FM systems studied were: WC-Co/WC-Co, WC-Co/Co, diamond/WC-Co, and Al{sub 2}O{sub 3}/Al{sub 2}O{sub 3}-TiCN. Extrudable formulations for the materials listed were developed during the first twelve months of this effort, and work during the reporting period was focused on the development of optimized binder removal processes. A two stage binder removal process was developed that resulted in prototype parts free of voids and other internal defects. In addition, changes in the binder removal atmosphere resulted in the apparent elimination of residual carbon, an important consideration when consolidating WC-Co containing systems. Using the improved binder removal processes, parts were consolidated by both sintering and hot pressing to >99% theoretical density. Samples of these materials were sent to Kyocera for mechanical evaluations. Fabrication of drill bit inserts was begun, and binder removal begun during the reporting period. A total of 24 green inserts were fabricated, and will be consolidated and delivered for field testing during the upcoming reporting period.

  13. Improved Corrosion and Abrasion Resistance of Organic-Inorganic Composite Coated Electro-galvanized Steels for Digital TV Panels

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Du-Hwan; Noh, Sang-Geol; Park, Jong-Tae; Kang, Choon-Ho [POSCO Technical Research Laboratories, Pohang (Korea, Republic of)

    2015-10-15

    Recently, household electronic industries require environmentally-friendly and highly functional steels in order to enhance the quality of human life. Customers especially require both excellent corrosion and abrasion resistant anti-fingerprint steels for digital TV panels. Thus POSCO has developed new functional electro-galvanized steels, which have double coated layers with organic-inorganic composites on the zinc surface of the steel for usage as the bottom chassis panel of TVs. The inorganic solution for the bottom layer consists of inorganic phosphate, magnesium, and zirconium compounds with a small amount of epoxy binder, and affords both improved adhesion properties by chemical conversion reactions and corrosion resistance due to a self-healing effect. The composite solution for the top layer was prepared by fine dispersion of organic-inorganic ingredients that consist of a urethane modified polyacrylate polymer, hardener, silica sol and a titanium complex inhibitor in aqueous media. Both composite solutions were coated on the steel surface by using a roll coater and then cured through an induction furnace in the electro-galvanizing line. New anti-fingerprint steel was evaluated for quality performance through such procedures as the salt spray test for corrosion resistance, tribological test for abrasion resistance, and conductivity test for surface electric conductance regarding to both types of polymer resin and coating weight of composite solution. New composite coated anti-fingerprint steels afford both better corrosion resistance and abrasion properties compared to conventional anti-fingerprint steel that mainly consists of acrylate polymers. Detailed discussions of both composite solutions and experimental results suggest that urethane modifications of acrylate polymers of composite solutions play a key role in enhanced quality performances.

  14. Comparison of Wear Resistance of Hawley and Vacuum Formed Retainers: An in-vitro Study

    Directory of Open Access Journals (Sweden)

    Moshkelgosha V

    2016-06-01

    Full Text Available Statement of Problem: As a physical property, wear resistance of the materials used in the fabrication of orthodontic retainers play a significant role in the stability and long term use of the appliances. Objectives: To evaluate the wear resistance of two commonly used materials for orthodontic retainers: Acropars OP, i.e. a polymethyl methacrylate based material, and 3A-GS060, i.e. a polyethylene based material. Materials and Methods: For each material, 30 orthodontic retainers were made according to the manufacturers’ instructions and a 30×30×2 mm block was cut out from the mid- palatal area of each retainer. Each specimen underwent 1000 cycles of wear stimulation in a pin on disc machine. The depth of wear of each specimen was measured using a Nano Wizard II atomic force microscope in 3 random points of each specimen’s wear trough. The average of these three measurements was calculated and considered as mean value wear depth of each specimen (µm. Results: The mean wear depth was 6.10µm and 2.15µm for 3A-GS060 and Acropars OP groups respectively. Independent t-test showed a significant difference between the two groups (p < 0.001. The results show Polymethyl methacrylate base (Acropars is more wear resistance than the polyethylene based material (3A-GS060. Conclusions: As the higher wear resistance of the fabrication material can improve the retainers’ survival time and its cost-effectiveness, VFRs should be avoided in situations that the appliance needs high wear resistance such as bite blocks opposing occlusal forces.

  15. EVALUATION AND RECOMMENDATION OF SALTSTONE MIXER AUGER/PADDLES MATERIALS OF CONSTRUCTION FOR IMPROVED WEAR RESISTANCE

    Energy Technology Data Exchange (ETDEWEB)

    Mickalonis, J.; Torres, R.

    2012-08-15

    Wear and corrosion testing were conducted to evaluate alternate materials of construction for the Saltstone mixer auger and paddles. These components have been degraded by wear from the slurry processed in the mixer. Material test options included PVD coatings (TiN, TiCN, and ZrN), weld overlays (Stellite 12 and Ultimet) and higher hardness steels and carbides (D2 and tungsten carbide). The corrosion testing demonstrated that the slurry is not detrimental to the current materials of construction or the new candidates. The ASTM G75 Miller wear test showed that the high hardness materials and the Stellite 12 weld overlay provide superior wear relative to the Astralloy and CF8M stainless steel, which are the current materials of construction, as well as the PVD coatings and Ultimet. The following recommendations are made for selecting new material options and improving the overall wear resistance of the Saltstone mixer components: A Stellite 12 weld overlay or higher hardness steel (with toughness equivalent to Astralloy) be used to improve the wear resistance of the Saltstone mixer paddles; other manufacturing specifications for the mixer need to be considered in this selection. The current use of the Stellite 12 weld overlay be evaluated so that coverage of the 316 auger can be optimized for improved wear resistance of the auger. The wear surfaces of the Saltstone mixer auger and paddles be evaluated so that laboratory data can be better correlated to actual service. The 2-inch Saltstone mixer prototype be used to verify material performance.

  16. Studies on Wear and Corrosion Resistances of Carbon Nitride Thin Films on Ti Alloy

    Institute of Scientific and Technical Information of China (English)

    Li Jin-chai; Guo Huai-xi; Lu Xian-feng; Zhang Zhi-hong; Ye Ming-sheng

    2003-01-01

    CNx/SiCN composite films were prepared on titanium ( Ti ) alloy substrates by Radio Frequency Plasma Enhanced Chemical Vapor Deposition ( RF-PECVD ). As a buffer layer, SiCN ensured the adhesion of the CNx thin films on Ti substrates. X-ray diffraction (XRD) measurement revealed that the composite films possessed α-C3N4 structure.The microhardness of the films was 48 to 50 GPa. In order to test the characteristics of wear and corrosion resistances, we prepared Ti alloy samples with and without CNx/SiCN composite films. Also for strengthening the effect of wear and corrosion, the wear tests were carried out under high load (12 MPa) and in 0. 9% NaCl solution. Results of the wear tests and the corrosive electrochemical measurements showed that the samples coated with CNx films had excellent characteristics of wear and corrosion resistances compared with Ti alloy substrate samples.

  17. Characterization and wear resistance of macro-arc oxidation coating on magnesium alloy AZ91 in simulated bedy fluids

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The mechanical characteristics ofthe macro-arc oxidation(MAO) coating on Mg alloy AZ91 were examined by means of nano scratch tester.The corrosion and erosion corrosion behavior of AZ91 with and without MAO coating were investigated by using potentiodynamic electrochemical technique and micro-abrasion tribometer in simulated body fluids,respectively.The influence of HCO3-ions on the erosion corrosion was discussed.The results show that the coating and its substrate are in a pronounced bond.The MAO coating inereases1-2 orders of magnitude of the corrosion resistance of AZ91 alloy.HCO3-ions enhance the corrosion rates of the AZ91 alloys more significantly than the alloys with MAO coating.However,there exists an obvious passivation process of AZ91 without coating in the HCO3-solutions.Moreover,an MgCO3 film formed in HCO3-containing solutions leads to an enhancement in micro-wear resistance.MAO coating deteriorates the erosion corrosion resistance of AZ91 alloy due to the formation of oxidation debris resulted from the broken MAO coating.

  18. 多孔复合结合剂立方氮化硼砂轮磨损特性%Wear Behavior of Porous Composite-bonded CBN Abrasive Wheels

    Institute of Scientific and Technical Information of China (English)

    陈珍珍; 徐九华; 丁文锋; 马昌玉

    2014-01-01

    针对难加工材料高效磨削砂轮难以满足高气孔率与高强度要求问题,基于氧化铝空心陶瓷球颗粒造孔与增强,开发了一种新型多孔复合结合剂立方氮化硼(Cubic boron nitride, CBN)砂轮。开展了镍基高温合金磨削试验,分别从磨削力、砂轮径向磨损量、磨损形貌过程等方面分析多孔砂轮的磨损特性,并与白刚玉砂轮进行对比。研究表明:多孔复合结合剂CBN砂轮磨削高温合金的磨削力和磨削温度均小于白刚玉砂轮;当单位材料去除率为4 mm3/(mm·s)时,多孔复合结合剂CBN砂轮的磨削比是白刚玉砂轮的6倍;多孔复合结合剂CBN砂轮磨削高温合金的磨损形式主要是磨粒磨耗磨损、磨粒及结合剂破碎磨损及黏附磨损,磨损过程伴随新磨粒与气孔的出露。相比之下,白刚玉砂轮黏附堵塞现象严重,砂轮磨损快,工件表面质量难以保证。%In order to meet the wheel requirement of high porosity and high strength for the high efficiency grinding process of difficult-to-cut materials, a new type of porous composite-bonded cubic boron nitride (CBN) abrasive wheel is developed based on alumina bubble particles as pore-forming agent. The grinding experiments are conducted on nickel-based alloy respectively with the developed porous CBN wheel and white corundum grinding wheel. The grinding forces, radial wear and wheel wear forms are measured and investigated. Results show that, the grinding forces and grinding temperatures of porous CBN wheel are smaller than that of white corundum grinding wheel, and the grinding ratio is about 6 times higher when the material remove rate is 4 mm3/(mm·s). The primary wear forms of porous composite-boned CBN wheel include abrasive abrasion wear, abrasive and bond fracture, and adhesion wear. Accompanied by the wear, new abrasives and pores are exposed. Serious wheel adhesion and loading phenomena are found during grinding with white

  19. Standard test method for ranking resistance of materials to sliding wear using block-on-ring wear test

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers laboratory procedures for determining the resistance of materials to sliding wear. The test utilizes a block-on-ring friction and wear testing machine to rank pairs of materials according to their sliding wear characteristics under various conditions. 1.2 An important attribute of this test is that it is very flexible. Any material that can be fabricated into, or applied to, blocks and rings can be tested. Thus, the potential materials combinations are endless. However, the interlaboratory testing has been limited to metals. In addition, the test can be run with various lubricants, liquids, or gaseous atmospheres, as desired, to simulate service conditions. Rotational speed and load can also be varied to better correspond to service requirements. 1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. Wear test results are reported as the volume loss in cubic millimetres for both the block and ring. Materials...

  20. Microstructure and wear resistance of electro-thermal explosion sprayed stellite coating used for remanufacturing

    Institute of Scientific and Technical Information of China (English)

    JIN Guo; XU Bin-shi; WANG Hai-dou; LI Qing-fen; WEI Shi-cheng

    2005-01-01

    Electro-thermal explosion directional spraying was used to prepare the stellite coating on substrate of the AISI 1045 steel. The morphologies of cross-section and worn scar, porosity, distribution of elements, microhardness and wear resistance of the coating were determined by means of SEM, EDAX, micro-hardness tester and sliding wear tester. Because of the compact construction, good bonding and high hardness, the coating is characterized by good wear resistance. The results show that the mainly failure mode of the stellite coating is microplowing.

  1. Improvement of wear resistance of sprayed layer on 52100 steel by friction stir processing

    Science.gov (United States)

    Rahbar-kelishami, A.; Abdollah-zadeh, A.; Hadavi, M. M.; Seraj, R. A.; Gerlich, A. P.

    2014-10-01

    The influence of friction stir processing (FSP) on wear resistance is studied on a thermally sprayed coating in terms of microstructure and mechanical properties. A high-chromium steel coating sprayed on AISI 52100 steel has been processed, and it is shown that FSP can improve the sprayed layer wear resistance compared to the as-sprayed and quenched and tempered condition. It is suggested that improved toughness is the main contribution to wear performance rather than hardness. It is observed that FSP provides increased hardness and toughness simultaneously, while tempering of the quenched AISI 52100 steel increases toughness while hardness decreases.

  2. FIBROUS MONOLITH WEAR RESISTANT COMPONENTS FOR THE MINING INDUSTRY

    Energy Technology Data Exchange (ETDEWEB)

    Mark J. Rigali; Mike L. Fulcher

    2003-03-25

    During the reporting period, work continued on development of formulations using the materials down-selected from the initially identified contenders for the fibrous monolith wear resistant components. In the previous reporting period, a two-stage binder removal process was developed that resulted in prototype parts free of voids and other internal defects. During the current reporting period, work was performed to characterize the two-stage binder removal process for WC-Co based FM material systems. Use of this process has resulted in the fabrication of defect free sintered WC-Co FM bodies, with minimal free carbon porosity and densities approaching 100% theoretical. With the elimination of free carbon porosity and other binder removal process related defects, development work focused on optimizing the densification and eliminating defects observed in WC-Co based FM consolidated by pressureless sintering. Shrinkage of the monolithic core and shell materials used in the WC-Co based FM system was measured, and differences in material shrinkage were identified as a potential cause of cell boundary cracking observed in sintered parts. Re-formulation of material blends for this system was begun, with the goal of eliminating mechanical stresses during sintering by matching the volumetric shrinkage of the core and shell materials. Thirty-three 7/8 inch drill bit inserts (WC-Co(6%)/WC-Co(16%) FM) were hot pressed during the reporting period. Six of these inserts were delivered for field-testing by Superior Rock Bit during the upcoming reporting period. In addition, Al{sub 2}O{sub 3}/Al{sub 2}O{sub 3}-TiCN FM cutting tool inserts were fabricated, and cutting tests performed.

  3. Wear mechanism for spray deposited Al-Si/SiCp composites under dry sliding condition

    Institute of Scientific and Technical Information of China (English)

    滕杰; 李华培; 陈刚

    2015-01-01

    Al-Si/15%SiCp (volume fraction) composites with different silicon contents were fabricated by spray deposition technique, and typical microstructures of these composites were studied by optical microscopy (OM). Dry sliding wear tests were carried out using a block-on-ring wear machine to investigate the effect of applied load range of 10−220 N on the wear and friction behavior of these composites sliding against SAE 52100 grade bearing steel. Scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDAX) were utilized to examine the morphologies of the worn surfaces in order to observe the wear characteristics and investigate the wear mechanism. The results show that the wear behavior of these composites is dependent on the silicon content in the matrix alloy and the applied load. Al-Si/15%SiCp composites with higher silicon content exhibit better wear resistance in the applied load range. Under lower loads, the major wear mechanisms are oxidation wear and abrasive wear for all tested composites. Under higher loads, severe adhesive wear becomes the main wear mechanisms for Al-7Si/15%SiCp and Al-13Si/15%SiCp composites, while Al-20Si/15%SiCp presents a compound wear mechanism, consisting of oxidation, abrasive wear and adhesion wear.

  4. In vitro wear resistance of three types of polymethyl methacrylate denture teeth

    Directory of Open Access Journals (Sweden)

    Katia Rodrigues Reis

    2008-06-01

    Full Text Available The wear resistance of denture teeth is important to the longevity of removable prostheses of edentulous patients. The ability of denture teeth to maintain a stable occlusal relationship over time may be influenced by this property. The purpose of this in vitro study was to evaluate the wear resistance of polymethyl methacrylate (PMMA denture teeth based on their chemical composition when opposed by a ceramic antagonist. The maxillary canines (n=10 of 3 PMMA denture teeth (Trubyte Biotone, cross-linked PMMA; Trilux, highly cross-linked IPN (interpenetrating polymer network-PMMA; and Vivodent, highly cross-linked PMMA were secured in an in vitro 2-body wear-testing apparatus that produced sliding contact of the specimens (4.5 cycles/s, sliding distance of 20 mm, under 37°C running water against glazed or airborne particle abraded ceramic. Wear resistance was measured as height loss (mm under 300 g (sliding force after 100,000 cycles, using a digital measuring microscope. Mean values were analyzed by 2-way ANOVA and Tukey's test (a=0.05. The wear of Trubyte Biotone (0.93 ± 0.14 mm was significantly higher than that of both other types of teeth tested against abraded ceramic (p0.05 in wear among the 3 denture teeth evaluated against glazed ceramic. Trilux and Vivodent teeth tested against either glazed or airborne particle abraded ceramic did not differ significantly from each other (p<0.05. All teeth showed significantly more wear against airborne particle abraded ceramic than against glazed ceramic (p<0.05. In conclusion, the three types of PMMA denture teeth presented significantly different wear resistance against the abraded ceramic. The high-strength PMMA denture teeth were more wear-resistant than the conventional PMMA denture tooth.

  5. Influence of secondary carbide precipitation and transformation on abrasion resistance of a 3Cr15Mo1V1.5 white iron

    Institute of Scientific and Technical Information of China (English)

    Haohuai Liu; Jun Wang; Baoluo Shen; Hongshan Yang; Shengji Gao; Sijiu Huang

    2007-01-01

    The relationship between the secondary carbide precipitation and transformation of the 3Cr15Mo1V1.5 white iron and abrasion resistance was investigated by using optical microscope (OM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results show that the properties of secondary carbides precipitated at holding stage play an important role in the abrasion resistance. After certain holding time at 833 K subcritical treatment, the grainy (Fe, Cr)23C6 carbide precipitated and the fresh martensite transformed at the holding stage for 3Cr15Mo1V1.5 white iron improve the bulk hardness and abrasion resistance of the alloy. Prolonging holding time, MoC and (Cr, V)2C precipitations cause the secondary hardening peak and the corresponding better abrasion resistance. Finally, granular (Fe, Cr)23C6 carbide in situ transforms into laminar M3C carbide and the matrix structure transforms into pearlitic matrix. These changes weaken hardness and abrasion resistance of the alloy sharply.

  6. Investigation of improving wear performance of hypereutectic 15%Cr-2%Mo white irons

    Directory of Open Access Journals (Sweden)

    R. Reda

    2010-11-01

    Full Text Available This study aimed at optimizing impact toughness and abrasion wear resistance of 15%Cr-2%Mo hypereutectic abrasion-resistant white irons. The effects of dynamic solidification, niobium addition, combined action of them and heat treatment have been investigated. Investigations were performed by means of the image analyzer, scanning electron microscopy (SEM, energy-dispersive spectrometry (EDS and X-ray diffraction. Impact toughness and abrasion wear resistance tests were conducted. Fracture and worn surfaces were studied. Results indicated that microstructural control during solidification is the most valuable tool to attain the optimum combination between impact toughness and wear resistance in hypereutectic iron. Combined action of Nb addition and dynamic solidification improves impact toughness and wear resistance even more than the action of each individual factor. In the as-cast condition, impact toughness and abrasion resistance were increased after dynamic solidification compared to statically solidified one by 71.4% and 10%, respectively. This enhancement was increased to 114.3 % and 28.8 % by adding 2% Nb. Lower tempering temperature of 260°C exhibits better impact and abrasion resistance than the sub-critical tempering temperature of 500°C.

  7. High vitamin E content, impact resistant UHMWPE blend without loss of wear resistance.

    Science.gov (United States)

    Oral, Ebru; Neils, Andrew; Muratoglu, Orhun K

    2015-05-01

    Antioxidant stabilization of radiation cross-linked ultrahigh molecular weight polyethylene (UHMWPE) has been introduced to improve the oxidative stability of total joint implant bearing surfaces. Blending of antioxidants (most commonly vitamin E) with UHMWPE resin powder followed by consolidation and uniform radiation cross-linking is currently available for use in both total hips and total knees. It was previously shown that the fatigue resistance of vitamin E-blended and irradiated UHMWPEs could be further improved by spatially manipulating the vitamin E concentration throughout the implant and limiting cross-linking to the surface of the implant where it is necessary for wear resistance. This was possible by designing a low concentration of vitamin E on the surface and higher concentration in the bulk of the implant because cross-linking is hindered in UHMWPE as a function of increasing vitamin E concentration. In this study, we hypothesized that such a surface cross-linked UHMWPE with low wear rate and high fatigue strength could be obtained by limiting the penetration of radiation into UHMWPE with uniform vitamin E concentration. Our hypothesis tested positive; we were able to obtain control of the surface cross-linked region by manipulating the energy of the irradiation, resulting in extremely low wear, and high impact strength. In addition, we discussed alternatives of improving the oxidation resistance of such a material by using additional vitamin E reservoirs. These results are significant because this material may allow increased use of antioxidant-stabilized, cross-linked UHMWPEs in high stress applications and in more active patients.

  8. Variations in Wear Resistance of a Novel Triboalloy-Pseudoelastic TiNi Alloy - with Respect to its Pseudoelasticity and Hardness

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    It has recently been found that TiNi shape memory alloy has another attractive property: high resistance to wear. The wear resistance of this alloy benefits from its pseudoelasticity (PE). It has, however, been noticed that other mechanical properties also affect the wear resistance, especially the hardness. Research was conducted to investigate the correlation between the wear resistance and both the PE and hardness. It has been demonstrated that when the PE is high, lower hardness leads to higher wear resistance.

  9. Effect of La2O3 content on wear resistance of alumina ceramics

    Institute of Scientific and Technical Information of China (English)

    WU Tingting; ZHOU Jian; WU Bolin; LI Wenjie

    2016-01-01

    In order to improve the wear resistance, a kind of alumina ceramic with good wear resistance was created in an Al2O3-CaCO3-SiO2-MgO-La2O3 (ACSML) system. The effects of La2O3 content on sintering temperature, bulk density, and wear rate were investigated. The wear rate of sample was as low as 0.0393‰. The wear resistance of the sample containing La2O3 has im-proved 43% than that of the sample without La2O3. Appropriate La2O3 doping could inhibit grain growth, enhance density, and purify grain boundary. La2O3 could diffuse into Al2O3 to form a solid solution and react with Al2O3 to form high-aluminum low-lanthanum complex oxides. The combination among Al2O3, the solid solution layer, and the layer of high-aluminum low-lanthanum complex oxides combined closely, which could improve grain boundary cohesion. Besides, the homogeneous distributions of elements made uniform structure. Finally, the wear resistance of alumina ceramic was improved.

  10. Development of Abrasion-Resistant Coating for Solar Reflective Films. Cooperative Research and Development Final Report, CRADA Number CRD-07-247

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-10-01

    The purpose of this CRADA is to develop an abrasion-resistant coating, suitable for use on polymeric-based reflective films (e.g., the ReflecTech reflective film), that allows for improved scratch resistance and enables the use of aggressive cleaning techniques (e.g., direct contact methods like brushing) without damaging the specular reflectance properties of the reflective film.

  11. Effect of the CaF2-fraction in the glass-ceramic with abrasion resistance on crystallization

    Institute of Scientific and Technical Information of China (English)

    HU Bin-liang; Zhao Yun-cai

    2005-01-01

    Investigated the effect of an addition of CaF2 on the crystallization of a glass-ceramic with abrasion resistance. X-ray diffraction, differential thermal analysis and scanning electron microscopy were used to determine the effect. The results showed that a suitable addition of CaF2 promoted crystallization by forming an intermediate crystalline phase. CaF2 can decrease the temperature and active energy of the base-glass for crystallization. When 4 mass-% of CaF2-fraction is added in the glass, the crystallization temperature and active energy is 936℃and 172.75 k J/mol respectively.When CaF2 is increased to 6 mass-%, the temperature and active energy decrease to 890℃ and 88.81 kJ/mol. CaF2 is an efficient nucleating agent for the glass-ceramics with abrasion resistant, the optimal content of CaF2 is about 6 mass-%.

  12. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method.

    Science.gov (United States)

    Su, Fenghua; Yao, Kai

    2014-06-11

    A novel method for controllable fabrication of a superhydrophobic surface with a water contact angle of 162 ± 1° and a sliding angle of 3 ± 0.5° on copper substrate is reported in this Research Article. The facile and low-cost fabrication process is composed from the electrodeposition in traditional Watts bath and the heat-treatment in the presence of (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane (AC-FAS). The superhydrophobicity of the fabricated surface results from its pine-cone-like hierarchical micro-nanostructure and the assembly of low-surface-energy fluorinated components on it. The superhydrophobic surface exhibits high microhardness and excellent mechanical abrasion resistance because it maintains superhydrophobicity after mechanical abrasion against 800 grit SiC sandpaper for 1.0 m at the applied pressure of 4.80 kPa. Moreover, the superhydrophobic surface has good chemical stability in both acidic and alkaline environments. The potentiodynamic polarization and electrochemical impedance spectroscopy test shows that the as-prepared superhydrophobic surface has excellent corrosion resistance that can provide effective protection for the bare Cu substrate. In addition, the as-prepared superhydrophobic surface has self-cleaning ability. It is believed that the facile and low-cost method offer an effective strategy and promising industrial applications for fabricating superhydrophobic surfaces on various metallic materials. PMID:24796223

  13. Halogen-Free Phosphonate Ionic Liquids as Precursors of Abrasion Resistant Surface Layers on AZ31B Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Tulia Espinosa

    2015-01-01

    Full Text Available Surface coatings formed by immersion in the ionic liquids (ILs 1,3-dimethylimidazolium methylphosphonate (LMP101, 1-ethyl-3-methylimidazolium methylphosphonate (LMP102 and 1-ethyl-3-methylimidazolium ethylphosphonate (LEP102 on magnesium alloy AZ31B at 50 °C have been studied. The purpose of increasing the temperature was to reduce the immersion time, from 14 days at room temperature, to 48 hours at 50 °C. The abrasion resistance of the coated alloy was studied by microscratching under progressively increasing load, and compared with that of the uncoated material. The order of abrasion resistance as a function of the IL is LEP102 > LMP101 > LMP102, which is in agreement with the order obtained for the coatings grown at room temperature. The maximum reduction in penetration depth with respect to the uncovered alloy, of a 44.5%, is obtained for the sample treated with the ethylphosphonate LEP102. However, this reduction is lower than that obtained when the coating is grown at room temperature. This is attributed to the increased thickness and lower adhesion of the coatings obtained at 50 °C, particularly those obtained from methylphosphonate ionic liquids. The results are discussed from SEM-EDX and profilometry.

  14. Studies on abrasion resistance of the NR/OMMT nanocomposites%天然橡胶/有机蒙脱土纳米复合材料的耐磨耗性能研究

    Institute of Scientific and Technical Information of China (English)

    赵伟; 宋国君; 李培耀; 单春鹏; 亓彬; 孙春鹏; 马培育; 陈林

    2012-01-01

    采用4种不同牌号的有机化蒙脱土(OMMT),利用机械共混法制备出了NR/OMMT纳米复合材料,研究了复合材料的力学性能和耐磨性能,进行了透射电镜(TEM)和扫描电镜(SEM)分析.结果表明复合材料的力学性能和耐磨性都有不同程度的提高.TEM结果表明制备出了分散均匀的剥离型NR/OMMT纳米复合材料,通过纳米复合材料磨耗后的磨耗图纹及SEM表面形貌进行对比分析来探讨OMMT在橡胶中的耐磨机理.%NR/OMMT nanocomposites were prepared by mechanical blending with four different kinds of homemade OMMT,and the mechanical properties and abrasion resisitence were comparatively analyzed as well as the structure of nanocomposite was characterized by TEM and SEM. The results showed that composite mechanical properties and wear resistance are improved to some extent. The completely exfoliated NR/OMMT nanocomposites with uniform dispersion in NR matrix were confirmed by TEM,and nanocomposites by SEM after the wear surface morphology were analyzed to explore OMMT in rubber in the wear mechanism.

  15. Development of new type of wear and crack resistant hardfacing electrode

    Institute of Scientific and Technical Information of China (English)

    王新洪; 宋思利; 邹增大; 曲仕尧

    2004-01-01

    By using H08A bare electrode and the coating fluxes of ferrotitanium, rutile, graphite, calcium carbonate and calcium fluoride, a new type of wear and crack resistant hardfacing electrode was developed. The microstructure and wear properties of deposited layer were studied by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometry(XRD) and wear test. The results indicate that TiC particles are produced by direct metallurgical reaction between ferrotitanium or rutile and graphite during welding process. TiC particles with sizes in the range of 3 - 5 μtm are dispersed in the matrix of lath martensite and retained austenite. The deposited layer of the new type of hardfacing electrode possesses better wear and crack resistance than that of D618 and D667 hardfacing electrodes.

  16. Wear Resistance of H13 and a New Hot-Work Die Steel at High temperature

    Science.gov (United States)

    Li, Shuang; Wu, Xiaochun; Chen, Shihao; Li, Junwan

    2016-07-01

    The friction and wear behaviors of a new hot-work die steel, SDCM-SS, were studied at high temperature under dry air conditions. The wear mechanism and microstructural characteristics of the SDCM-SS steel were also investigated. The results showed that the SDCM-SS steel had greater wear resistance compared with H13 steel; this was owed to its high oxidizability and temper stability. These features facilitate the generation, growth, and maintenance of a tribo-oxide layer at high temperature under relatively stable conditions. The high oxidizability and thermal stability of the SDCM-SS steel originate from its particular alloy design. No chromium is added to the steel; this ensures that the material has high oxidizability, and facilitates the generation of tribo-oxides during the sliding process. Molybdenum, tungsten, and vanadium additions promote the high temper resistance and stability of the steel. Many fine Mo2C and VC carbides precipitate during the tempering of SDCM-SS steel. During sliding, these carbides can delay the recovery process and postpone martensitic softening. The high temper stability postpones the transition from mild to severe wear and ensures that conditions of mild oxidative wear are maintained. Mild oxidative wear is the dominant wear mechanism for SDCM-SS steel between 400 and 700 °C.

  17. Mixing proportion design and construction technology of abrasion resistant concrete%抗冲磨混凝土配合比设计与施工工艺

    Institute of Scientific and Technical Information of China (English)

    苏满红; 李俊华; 刘慧民

    2011-01-01

    According to the design standards of Tanghe hydropower station dam,spillway gate abrasion resistant concrete,through the on-site mixing proportion test,gained the construction technology and parameters of abrasion resistant concrete,so as to further improve the performance of concrete,provide guidance to the hydropower station dam spillway gate pier,plunge pool abrasion resistant concrete pouring construction.%针对唐河水电站重力坝、泄洪闸抗冲磨混凝土设计标准,通过现场配合比试验,取得抗冲磨混凝土施工工艺及参数,使混凝土性能得到进一步改善,为水电站大坝泄洪闸闸墩、消力池抗冲磨混凝土浇筑施工提供指导。

  18. Nanocomposite TiSiBC Hard Coatings with High Resistance to Wear, Fracture and Scratching

    Science.gov (United States)

    Mahato, P.; Nyati, G.; Singh, R. J.; Mishra, S. K.

    2016-09-01

    The sliding wear under fretting condition, scratch adhesion, deformation behavior during micro- and nanoscratch studies have been studied for nanocomposite TiSiBC hard coating deposited on steel substrate by magnetron sputtering. The nanocomposite coatings having hardness and modulus around 30 and 300 GPa, respectively, showed a very significant decrease in fretting wear as compared to the uncoated steel. Pileup occurred along the sides of the scratch track due to plastic deformation of the substrate at the scratch load; however, cracks were not seen in films. The coefficient of friction remained scratch, higher wear resistance, higher toughness and low coefficient of friction.

  19. EVALUATION OF EROSIVE WEAR RESISTANCE OF TiN COATINGS BY A SLURRY JET IMPACT TEST

    OpenAIRE

    Iwai, Y.; Miyajima, T.; Honda, T.; Matsubara, T.; Kanda, K; Hogmark, S

    2006-01-01

    In this paper, it is proposed to use a new type of solid particle impact test (slurry jet) to swiftly evaluate wear properties of thin, single layered or multilayered coatings. By the slurry jet, 1.2 µm alumina particles were impacted at high velocity perpendicular to thin PVD coatings of TiN deposited on high speed steel substrate materials under various substrate temperatures.Since the coatings have a much higher wear resistance than the substrate material, the wear rate increases significa...

  20. The comparative studies of ADI versus Hadfield cast steel wear resistance

    Directory of Open Access Journals (Sweden)

    Mieczysław Kaczorowski

    2011-04-01

    Full Text Available The results of comparative studies of wear resistance of ADI versus high manganese Hadfield cast steel are presented. For evaluation ofwear resistance three type of ADI were chosen. Two of them were of moderate strength ADI with 800 and 1000MPa tensile strength whilethe third was 1400MPa tensile strength ADI. The specimens were cut from ADI test YII type casting poured and heat treated in Institute ofFoundry in Krakow. The pin on disc method was used for wear resistance experiment. The specimens had a shape of 40mm long rod withdiameter 6mm. The load and speed were 100N and 0,54m/s respectively. It was concluded that the wear resistance of ADI is comparablewith high manganese cast steel and in case of low tensile grade ADI and is even better for high strength ADI than Hadfield steel.

  1. The comparative studies of ADI versus Hadfield cast steel wear resistance

    OpenAIRE

    Mieczysław Kaczorowski; Anna Krzyńska; Paweł Skoczylas

    2011-01-01

    The results of comparative studies of wear resistance of ADI versus high manganese Hadfield cast steel are presented. For evaluation ofwear resistance three type of ADI were chosen. Two of them were of moderate strength ADI with 800 and 1000MPa tensile strength whilethe third was 1400MPa tensile strength ADI. The specimens were cut from ADI test YII type casting poured and heat treated in Institute ofFoundry in Krakow. The pin on disc method was used for wear resistance experiment. The specim...

  2. Microstructure Evaluation and Wear-Resistant Properties of Ti-alloyed Hypereutectic High Chromium Cast Iron

    OpenAIRE

    Liu, Qiang

    2013-01-01

    High chromium cast iron (HCCI) is considered as one of the most useful wear resistance materials and their usage are widely spread in industry. The mechanical properties of HCCI mainly depend on type, size, number, morphology of hard carbides and the matrix structure (γ or α). The hypereutectic HCCI with large volume fractions of hard carbides is preferred to apply in wear applications. However, the coarser and larger primary M7C3 carbides will be precipitated during the solidification of the...

  3. Wear Resistance of TiN Coating Prepared by Multi-arc Ion Plating on Aluminum Alloy Surface%铝合金表面多弧离子镀TiN涂层的耐磨性能

    Institute of Scientific and Technical Information of China (English)

    谭银元; 潘应君

    2009-01-01

    Wear resistance of TiN coating prepared by multi-arc ion plating on ZL109 aluminum alloy surface has been examined. The results show that wear resist-ance of the ZL109 aluminum alloy with multi-arc ion plating TiN coating can be significantly improved. With applying 1N and wearing for 90min, the abrasive width of the samples without TiN coating makes ap-proximately 2 times of that with TiN coating, and av-erage frictional coefficient of the samples with TiN coating makes approximately 50% of that without coating. With applying 2N, the morphology and abra-sive width are varied as time increases. The wear mor-phology of the ZL109 alloy samples with TiN coating is characterized by adhesive abrasion in early stage and by abrasive abrasion in last stage.%采用多弧离子镀在ZL109铝合金表面进行了TiN涂层处理,并对涂层的载荷耐磨性进行了分析和讨论.结果表明,ZL109铝合金表面多弧离子镀TiN涂层后,其耐磨性得到明显提高.在1 N的载荷下,连续磨损90 min时,未镀膜试样的磨痕宽度几乎是TiN试样的2倍,镀有TiN膜试样的平均摩擦因数几乎是未镀样的50%.在2 N的载荷下,由磨痕的形貌和宽度随时间的变化可见,镀有TiN涂层的试样在磨损前期,主要以粘着磨损为主,在磨损后期以磨粒磨损为主.

  4. Effects on Structure and Abrasion Resistance of GCr15 Steel by Surface Gas-Phase RE Diffused Permeation with Laser Melting Solidification

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effects on abrasion resistance and the microstructure of GCr15 steel surface by the compound technology of permeating RE combined with laser melting modification was studied. The results show that after compound treatment, the abrasion resistance of samples has been improved significantly and the weight loss has been reduced to 14% of blank sample; the microstructure has been denser and more uniform than that of untreated; meanwhile, the grain has been refined and the concentration gradients of the elements permeated have been decreased obviously.

  5. Study on quantitative relation between characteristics of striature bionic coupling unit and wear resistance of gray cast iron

    Science.gov (United States)

    Pang, Zuobo; Zhou, Hong; Zhang, Peng; Cong, Dalong; Meng, Chao; Wang, Chuanwei; Ren, Luquan

    2015-03-01

    In order to improve the wear resistance of gray cast iron guide rail, striature bionic coupling units of different characteristics were manufactured by laser surface remelting. Wear behavior of gray cast iron with striature bionic coupling units has been studied under dry sliding condition at room temperature using a homemade linear reciprocating wear testing machine. The wear resistance was evaluated by means of weight loss measurement and wear morphology. The results indicated that there is a relationship between weight loss and the area of striature bionic coupling units and α: Δm = Δm0 - 0.0212S × cos α - 0.0241S × sin α.

  6. Alternate paddle configuration for improved wear resistance in the saltstone mixer

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fowley, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-09-23

    The Saltstone Production Facility has a 10-inch Readco-Kurimoto continuous mixer that mixes the premix dry feeds and low-level waste salt solution to make fresh (uncured) saltstone. Inspection of the mixer in January 2013 showed significant wear on the third, fourth and fifth paddle pairs after the conveying augers. A 2-inch Readco-Kurimoto continuous mixer was used to test alternate paddle configurations for use in the 10-inch mixer to decrease the wear rate on the paddles. Two wear tests were conducted to investigate a method of reducing wear on the mixer paddles. The first test (wear test 2a) had a paddle configuration similar to the currently installed 10-inch mixer in the SPF. This test established baseline wear. The second test (wear test 2b) had a reconfigured paddle arrangement that replaced the flat paddles with helical paddles for paddle pairs 2 - 6 and aligned paddle pair 1 with the augers. The intent of the reconfiguration was to more effectively convey the partially wetted dry feeds through the transition region and into the liquid feed where paddle wear is reduced due to dry feeds and salt solution being mixed at the intended water to premix ratio. The design of the helical paddles provides conveyance through the transition region to the liquid feed inlet. The alignment with the auger is aimed to provide a smoother transition (minimizing the discontinuity between the auger and paddle pair 1) into the downstream paddles. A soft metal with low wear resistance (6000 series aluminum) was used for the wear testing paddles to determine wear patterns while minimizing run time and maximizing wear rate. For the two paddle configurations tested using the scaled 2-inch Readco-Kurimoto continuous mixer, with the first six paddles after the augers replaced by the wear paddles and the remaining paddles were stainless steel. Since the 10-inch SPF mixer is designed with the liquid inlet centered over paddle pairs 5 and 6, the scaled 2-inch mixer was configured the

  7. Efecto del conteo de nódulos en la resistencia al desgaste por abrasión de los hierros dúctiles austemperados. // Effect of nodules count in the abrasive wear of austempered ductile irons.

    Directory of Open Access Journals (Sweden)

    C. J. Diez Cicero

    2009-05-01

    Full Text Available Entre los materiales metálicos de mayor demanda, la producción de hierro con grafito nodular,ocupa en la actualidad, uno de los lugares más importantes entre los hierros fundidos de altaresistencia, y con la introducción del tratamiento térmico de austemperado, aplicado a estasfundiciones, se da lugar a una nueva familia de materiales, caracterizados por su alta resistenciamecánica y elevada tenacidad, que mantienen la economía y facilidad de producción de lasfundiciones nodulares.Este trabajo, hace una valoración del comportamiento de hierros nodulares, con diferentes conteosde nódulos, a los que les fue aplicado el tratamiento de austemperado, y posteriormente se lessometió a ensayos de desgaste abrasivo.Con los resultados obtenidos, se hace un análisis de la influencia del conteo de nódulos en dichaspropiedades, así como también, de la interrelación del conteo de nódulos, con las variables detratamiento térmico utilizadas en las muestras ensayadas.Palabras claves: hierro nodular, conteo de nódulos, austemperado.__________________________________________________________________________AbstractBetween the metallic materials of greater demand, the iron production with nódular graphiteoccupies at the present time, one of the most important places between fused irons of highresistance, and with the introduction of the austemperado heat treatment of, applied to thesesmeltings, gives rise to a new family of materials, characterized by its high resistance mechanicaland elevated tenacity, that the economy and facility of production of the smeltings maintainnodulares. This work, makes a valuation of the iron behavior nodulares, with different counts fromnodules, to which the austemperado was applied treatment to them of, and later it was put underto them tests of abrasive wearing down. Of the obtained results, an analysis takes control of theinfluence of the count of nodules in these properties, as well as, of the interrelation of

  8. Dry sliding wear behavior of Al 2219/SiCp-Gr hybrid metal matrix composites

    Science.gov (United States)

    Basavarajappa, S.; Chandramohan, G.; Mukund, K.; Ashwin, M.; Prabu, M.

    2006-12-01

    The dry sliding wear behavior of Al 2219 alloy and Al 2219/SiCp/Gr hybrid composites are investigated under similar conditions. The composites are fabricated using the liquid metallurgy technique. The dry sliding wear test is carried out for sliding speeds up to 6 m/s and for normal loads up to 60 N using a pin on disc apparatus. It is found that the addition of SiCp and graphite reinforcements increases the wear resistance of the composites. The wear rate decreases with the increase in SiCp reinforcement content. As speed increases, the wear rate decreases initially and then increases. The wear rate increases with the increase in load. Scanning electron microscopy micrographs of the worn surface are used to predict the nature of the wear mechanism. Abrasion is the principle wear mechanism for the composites at low sliding speeds and loads. At higher loads, the wear mechanism changes to delamination.

  9. On the Problem of Wear Resistant Coatings Separation From Tools and Machine Elements

    Science.gov (United States)

    Petrushin, S. I.; Gubaidulina, R. H.; Gruby, S. V.; Likholat, A. V.

    2015-09-01

    The article considers separation of wear resistant coatings of tool and engineering materials which arises both during coating fabrication and use of the product. The cause of this phenomenon is assumed to be related to thermal residual stresses generating on the coating- substrate border. These stresses have been analyzed and methods are provided to calculate it after produced composite material is cooled down from the temperature of coating synthesis to the ambient temperature. A no-fracture condition has been stated in relation to coating- substrate thicknesses, temperature differences and physical and mechanical properties of combined materials. The issue of intermediate layer incorporation with pre-set parameters has been discussed. A co-effect of thermal residual and functional stresses on the strength of the boundary layer has been considered when heating, tension and compression of a product with wear resistant coating. Conclusions have been made, as well as recommendations to improve fracture strength of products with thin wear resistant coatings.

  10. Microstructure and wear resistance of high chromium cast iron containing niobium

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhiguo; Yang Chengkai; Zhang Peng; Li Wei

    2014-01-01

    In the paper, the effect of niobium addition on the microstructure, mechanical properties and wear resistance of high chromium cast iron has been studied. The results show that the microstructure of the heat-treated aloys is composed of M7C3 and M23C6 types primary carbide, eutectic carbide, secondary carbide and a matrix of martensite and retained austenite. NbC particles appear both inside and on the edge of the primary carbides. The hardness of the studied alloys maintains around 66 HRC, not significantly affected by the Nb content within the selected range of 0.48%-0.74%. The impact toughness of the aloys increases with increasing niobium content. The wear resistance of the specimens presents little variation in spite of the increase of Nb content under a light load of 40 N. However, when heavier loads of 70 and 100 N are applied, the wear resistance increases with increasing Nb content.

  11. Microstructure and wear resistance of high chromium cast iron containing niobium

    Directory of Open Access Journals (Sweden)

    Zhang Zhiguo

    2014-05-01

    Full Text Available In the paper, the effect of niobium addition on the microstructure, mechanical properties and wear resistance of high chromium cast iron has been studied. The results show that the microstructure of the heat-treated alloys is composed of M7C3 and M23C6 types primary carbide, eutectic carbide, secondary carbide and a matrix of martensite and retained austenite. NbC particles appear both inside and on the edge of the primary carbides. The hardness of the studied alloys maintains around 66 HRC, not significantly affected by the Nb content within the selected range of 0.48%-0.74%. The impact toughness of the alloys increases with increasing niobium content. The wear resistance of the specimens presents little variation in spite of the increase of Nb content under a light load of 40 N. However, when heavier loads of 70 and 100 N are applied, the wear resistance increases with increasing Nb content.

  12. Elements inter-diffusion in the turning of wear-resistance aluminum bronze

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Inter-diffusion of elements between the tool and the workpiece during the turning of aluminum bronze using high-speed steel and cemented carbide tools have been studied. The tool wear samples were prepared by using M2 high-speed steel and YW1 cemented carbide tools to turn a novel high strength, wear-resistance aluminum bronze without coolant and lubricant. Adhesion of workpiece materials was found on all tools' surface. The diffusion couples made of tool materials and aluminum bronze were prepared to simulate the inter-diffusion during the machining. The results obtained from tool wear samples were compared with those obtained from diffusion couples. Strong inter-diffusion between the tool materials and the aluminum bronze was observed in all samples. It is concluded that diffusion plays a significant role in the tool wear mechanism.

  13. Numerical Simulation of Wear Resistance of Ni-SiC Composite Coatings Deposited by Electrodeposition

    OpenAIRE

    Jinwu Wang; Fafeng Xia

    2014-01-01

    In order to research effect of plating parameters on wear resistance of Ni-SiC composite coatings, Ni coatings and Ni-SiC composite coatings were synthesized on steel substrates by electrodeposition method. The results indicate that the contents of SiC particles increase with density of pulse current and on-duty ratio of pulse current increasing. The wear resistance of Ni-SiC composite coatings predicted using ANN model has the similar shapes with the measured curve and the maximum error is a...

  14. Wear resistance and hot corrosion behaviour of laser cladding Co-based alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    2Cr13 stainless steel was surface cladded with Co-based alloy using a high power carbon dioxide laser. The microstructure, wear resistance and corrosion properties of the clad layer were investigated. It is found that the high temperature corrosion behavior and wearing resistant property of the clad layer are 3 and 2.5 times higher than those of the parent metal. Under the high temperature molten lead sulphate salt corrosion condition, the clad layer fails by spalling which is caused by intergrannular corrosion within the clad layer. The fine dendritic structure and the oxide help to retard the penetration of the sulphur ion that induces the intergrannular corrosion.

  15. Application of polymer-powder slurry for fabrication of abrasion resistant coatings on tool materials

    OpenAIRE

    G. Matula

    2011-01-01

    Purpose: Development of a new generation tool materials on the basis of M2 high speed-steel or 41Cr4 steel covered with the carbides. Application of pressureless forming of powder as a manufacturing method of anti-wear coatings gives the possibility to produce this materials with relative low cost of production.Design/methodology/approach: Powder metallurgy, pressureless forming of powder, sintering, microstructure examination, X-ray dispersive energy examination, hardness examination.Finding...

  16. The Effect of Silane on the Microstructure, Corrosion, and Abrasion Resistances of the Anodic Films on Ti Alloy

    Science.gov (United States)

    Wang, Jinwei; Chen, Jiali

    2016-04-01

    Anodic oxide films on Ti-6Al-4V alloy are prepared using sodium hydroxide as the base electrolyte containing aminopropyl trimethoxysilane (APS) as an additive. Some APS undergo hydrolysis, adsorption, and chemical reaction with the TiO x to form Ti-O-Si bond as confirmed by ATR-FTIR and XPS spectra, and in turn their surface appearance and roughness are greatly changed with the addition of APS as observed by their SEM images. These amino anodic films possess much higher corrosive resistances since the formation of Ti-O-Si complex enhances the compactness of the anodic films and the existence of aminopropyl groups inside the pores provides additional blocking effects. Besides, their improvement in anti-abrasive capability is attributed to the toughening effect of the chemically bonded silanes and the lubrication functions from both the chemically bonded and physically absorbed silanes between the touched interfaces.

  17. Analysis and Modelling of Electrode Wear in Resistance Spot Welding

    DEFF Research Database (Denmark)

    Madsen, Anders; Pedersen, Kim; Friis, Kasper Storgaard;

    2010-01-01

    A model describing electrode wear as a function of weld number, initial tip diameter, truncated cone angle, welding current and electrode force is proposed. Excellent agreement between the model and experimental results is achieved, showing that the model can describe the change in electrode tip...... a central cavity is formed and one where smaller pits are formed randomly across the electrode face. The influence of these two types of surface pits on the nugget size are investigated using the FE code SORPAS, revealing ring welds and undersized weld nuggets....

  18. A wear and corrosion resistant α-ferrite toughened Fe9Cr9Si2 ternary intermetallic alloy

    International Nuclear Information System (INIS)

    Mechanical moving components working under corrosion or elevated temperature aggressive service conditions demand tribological materials having excellent combinations of wear and corrosion resistance. Most conventional high-performance wear resistant materials such as high Cr cast irons lack adequate corrosion resistance, while most corrosion resistant materials such as stainless steels are poor in resisting wear. In this paper, a novel α-ferrite toughened Fe9Cr9Si2 wear and corrosion resistant ternary intermetallic alloy was developed with a microstructure consisting of small amount of dispersive α particles well distributed in the continuous matrix of Fe9Cr9Si2 (referred as α/Fe9Cr9Si2 alloy). Corrosion properties were evaluated using the anodic polarization methods in H2SO4 and NaCl water solutions. Wear resistance was tested under room-temperature block-on-wheel dry sliding wear test conditions. Due to the unique chemical composition of both the Cr and Si highly alloyed α and the σ-phase Fe9Cr9Si2, the α/Fe9Cr9Si2 alloy exhibited outstanding corrosion resistance. Due to the excellent combination of high hardness and the strong covalent-dominant atomic bonds of σ-Fe9Cr9Si2, the excellent toughness and ductility of α and the unique chemical composition induced oxidation wear, the α-toughened Fe9Cr9Si2 σ-based alloy exhibited outstanding dry sliding wear resistance

  19. Nanocrystallization of aluminized surface of carbon steel for enhanced resistances to corrosion and corrosive wear

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C. [Dept. of Materials Physical and Chemical, University of Science and Technology Beijing, Beijing 100083 (China); Dept. of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); Li, D.Y., E-mail: dongyang.li@ualberta.c [Dept. of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4 (Canada); Shang, C.J. [Dept. of Materials Physical and Chemical, University of Science and Technology Beijing, Beijing 100083 (China)

    2009-12-15

    Aluminizing is often used to improve steel's resistances to corrosion, oxidation and wear. This article reports our recent attempts to further improve aluminized carbon steel through surface nanocrystallization for higher resistances to corrosion and corrosive wear. The surface nanocrystallization was achieved using a process combining sandblasting and recovery heat treatment. The entire surface modification process includes dipping carbon steel specimens into a molten Al pool to form an Al coat, subsequent diffusion treatment at elevated temperature to form an aluminized layer, sandblasting to generate dislocation network or cells, and recovery treatment to turn the dislocation cells into nano-sized grains. The grain size of the nanocrystallized aluminized surface layer was in the range of 20-100 nm. Electrochemical properties, electron work function (EWF), and corrosive wear of the nanocrystalline alloyed surfaces were investigated. It was demonstrated that the nanocrystalline aluminized surface of carbon steel exhibited improved resistances to corrosion, wear and corrosive wear. The passive film developed on the nanocrystallized aluminized surface was also evaluated in terms of its mechanical properties and adherence to the substrate.

  20. Preparation and wear resistance of Ti-Zr-Ni quasicrystal and polyamide composite materials

    Science.gov (United States)

    Wang, Xinlu; Li, Xuesong; Zhang, Zhenjiang; Zhang, Shanshan; Liu, Wanqiang; Wang, Limin

    2011-07-01

    Ti-Zr-Ni icosahedral quasicrystal powders (Ti-QC), prepared by mechanical alloying and then annealing in a vacuum furnace, were used as a novel filler material in polyamide 12 (PA12). The melt processability of the composite was studied using a Haake torque rheometer. This indicates that PA12/Ti-QC composites can be melt-processed into a wear-resistant material. Further, these composites, fabricated by compression molding, were tested in sliding wear against a polished bearing steel counterface. The results from wear testing show that the addition of Ti-QC filler to PA12 enhances wear resistance and reduces volume loss by half compared with neat PA12. Furthermore, it is found that the hardness of the composite increases with increasing content of Ti-QC filler. In addition, PA12/Ti-QC composites exhibit a slightly higher crystallization temperature and better thermal stability than PA12. These combined results demonstrate that Ti-QC filler may be a desirable alternative when attempting to increase the wear resistance of PA12.

  1. Influence of solid contaminants in oil on wear characteristics of nano-Al2O3/Ni composite coating

    Institute of Scientific and Technical Information of China (English)

    杜令忠; 徐滨士; 董世运; 杨华; 吴毅雄

    2004-01-01

    Solid contaminants in lubrication system will cause severe wear of sliding components. In order to improve the wear resistance of the material in oil containing solid contaminants, the brush plated nano-A12 O3/Ni composite coating was prepared and the influence of the sand content and sand size on the tribological property of the coating in oil containing solid contaminants was tested with ball-on-disc tester. The results show that the wear volume increases with increasing the sand content and sand size, and the wear resistance of the composite coating is 20% higher than that of the high-speed plain nickel coating. The main wear mechanisms of the coatings are abrasive wear and adhesive wear. And due to the nano-particle strengthening effect, the wear resistance of the composite coating is improved.

  2. Producing cobalt–graphene composite coating by pulse electrodeposition with excellent wear and corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cansen; Su, Fenghua, E-mail: fhsu@scut.edu.cn; Liang, Jizhao

    2015-10-01

    Graphical abstract: - Highlights: • Graphene oxide/cobalt coatings are synthesized by pulse electrodeposition. • Incorporating GO refines the grain size and changes the microstructure of the coating. • Incorporating GO greatly improves the friction reduction and wear resistance of the coating. • The corrosion resistance is enhanced by the incorporation of GO. - Abstract: Cobalt (Co) and graphene oxide/cobalt (GO/Co) composite coatings were fabricated by pulse electrodeposition technique from an aqueous bath containing cobalt sulfate and GO, etc. Effect of the incorporations of GO on morphology, phase structure, average grain size and corrosion and wear resistance of the resulting composite coatings were evaluated in detail. Scanning electron microscope (SEM) and energy dispersed X-ray (EDX) show that the GO nanosheets disperse homogeneously in the composite coating and the incorporations of GO change the morphologies of the deposit from conical shaped structure to protruding structure. In addition, the co-deposition GO with Co ions favor the formation of hcp (1 0 0), (0 0 2) and (1 0 1) textures in the composite coating and have functions of grain refining and hardness enhancement. The wear tests show that the incorporations of GO in the coating improve the wear resistance and friction reduction of the deposit. The electrochemical corrosion tests using potentiodynamic polarization and electrochemical impedance spectroscopy show that the GO/Co composite coating possesses better corrosion resistance than the pure Co coating.

  3. THE INVESTIGATION OF WEAR BEHAVIOURS OF SiC(p) BASED COATINGS PRODUCED BY GTA WELDING PROCESS

    OpenAIRE

    Islak, Serkan

    2009-01-01

    In this study, the silicon carbide (SiC) powder has been coated by using of GTA process on the surface of a substrate material from 45Mn5 steel. The abrasive wear behaviours of samples which had different amounts of coating powders were determined by pin-on-disc test apparatus. The effects of the formed microstructures and the production parameters on abrasive wear properties of samples in coated zone were investigated. The highest wear resistance was observed at 41.3 kJ/cm energy input, 0.44...

  4. DIFFUSION COUPLE BETWEEN HIGH STRENGTH WEAR-RESISTING ALUMINUM BRONZE AND MACHINING TOOLS MATERIALS

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Diffusion couples of tool materials (prepared from commercially available high speed steel and YW1 carbide tools) and the wear-resisting aluminum bronze (KK) were prepared by casting to study the diffusion pattern and phase formation sequence in order to clarify the diffusion wear of the tools during the turning of the wear-resisting aluminum bronze. Optical micrographs show that good contact was obtained at the tool material-KK interface. After annealed at 900 ℃ for 6 h, strong inter-diffusion across the interface was observed. Microprobe analysis was used to study the elemental distribution across the interface and X-ray diffractometry was used to study the phases formed at the interface.

  5. Numerical Simulation of Wear Resistance of Ni-SiC Composite Coatings Deposited by Electrodeposition

    Directory of Open Access Journals (Sweden)

    Jinwu Wang

    2014-06-01

    Full Text Available In order to research effect of plating parameters on wear resistance of Ni-SiC composite coatings, Ni coatings and Ni-SiC composite coatings were synthesized on steel substrates by electrodeposition method. The results indicate that the contents of SiC particles increase with density of pulse current and on-duty ratio of pulse current increasing. The wear resistance of Ni-SiC composite coatings predicted using ANN model has the similar shapes with the measured curve and the maximum error is about 9.6%. The wear losses decrease when current density increases from 30 to 50 A/dm2. SiC particles in Ni-SiC composite coating are much greater in number and are dispersed homogeneously in the deposit and the coating exhibited a dense structure.

  6. Comparative of wear resistance of low carbon steel pack carburizing using different media

    Directory of Open Access Journals (Sweden)

    Kharia Salman Hassan

    2015-01-01

    Full Text Available In this study, various carburizing compounds charcoal, cow bone, CaCO3 were added as energizer for the carburizing compounds in percentage of 10%. To produce another compound to pack carburized mild steel 1020 AISI for investigates the influence of these compounds on wear resistance. Many Cylindrical specimens for the adhesion wear tests were prepared from the used metal with dimensions (10x20mm according to ASTM (G99-04 specifications Three Heat Treatment process namely pack Carburizing Quenching, and Tempering were done. Firstly the mild steels specimens are carburized at 925° C for 2hr as soaking time and slow cooling in furnace then carburizing specimens were re heating to 870 °C for half hr. and water Quenching .Tempering was done at 160°C for 1 hour and air cooled. the Carburized and Tempered mild steels are subjected for different kind of test such as Adhesive Wear Test with pin on desk method, Hardness Test were taken using Vickers micro-hardness tester and optical microscope is used for microstructure examination X-ray diffraction for phases observation. The result showed that all carburizing compound were contributed in increasing wear resistance and the compound of cow bone with 10% CaCO3 as energizer had a carburizing case depth of 2.32 mm which gives the highest wear resistance while charcoal compound gives a case depth of 1.1 mm .The work shows that cow bone can be used as compounds and energizer in pack carburization of mild steel. The hardness profile plot of the 90 wt.% 10% caco3 cow bone carburized mild steel was also higher than the other compositions and this value contributed on improvements of wear resistance.

  7. Preparation, characterization and wear behavior of carbon coated magnesium alloy with electroless plating nickel interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Yan [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Academician Expert Office Workstation (Jiansheng Pan), Lin’an, Zhejiang Province (China); Feng, Kai, E-mail: fengkai@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Academician Expert Office Workstation (Jiansheng Pan), Lin’an, Zhejiang Province (China); Guo, Xingwu [National Engineering Research Center of Light Alloys Net Forming (LAF), School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhou, Zhifeng [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Dong, Jie [National Engineering Research Center of Light Alloys Net Forming (LAF), School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wu, Yixiong [Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Academician Expert Office Workstation (Jiansheng Pan), Lin’an, Zhejiang Province (China)

    2015-02-01

    Highlights: • The carbon film with nickel interlayer (Ni + C coating) is deposited on GW83. • In Ni + C composite coating the carbon coating has good adhesion with the nickel interlayer. • The wear track of Ni + C coating is narrower compared to the bare one. • The wear resistance of GW83 is greatly improved by the Ni + C coating. - Abstract: Poor wear resistance of rare earth magnesium alloys has prevented them from wider application. In this study, composite coating (PVD carbon coating deposited on electroless plating nickel interlayer) is prepared to protect GW83 magnesium alloys against wear. The Ni + C composite coating has a dense microstructure, improved adhesion strength and hardness due to the effective support of Ni interlayer. The wear test result shows that the Ni + C composite coating can greatly prolong the wear life of the magnesium alloy. The wear track of the Ni + C coated magnesium alloy is obviously narrower and shows less abrasive particles as compared with the bare one. Abrasive wear is the wear mechanism of the coatings at the room temperature. In conclusion, the wear resistance of the GW83 magnesium alloy can be greatly improved by the Ni + C composite coating.

  8. Development of wear and corrosion resistant surface systems; Entwicklungen von verschleiss- und korrosionsbestaendigen Oberflaechensystemen

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, H. [Technische Univ. Braunschweig (Germany). Inst. fuer Oberflaechentechnik und Plasmatechnische Werkstoffentwicklung; Pfohl, C. [Technische Univ. Braunschweig (Germany). Inst. fuer Oberflaechentechnik und Plasmatechnische Werkstoffentwicklung; Woehle, J. [Technische Univ. Braunschweig (Germany). Inst. fuer Oberflaechentechnik und Plasmatechnische Werkstoffentwicklung; Gebauer, A. [Fraunhofer-Institut fuer Schicht- und Oberflaechentechnik, Braunschweig (Germany); Biemer, S. [Technische Univ. Braunschweig (Germany). Inst. fuer Oberflaechentechnik und Plasmatechnische Werkstoffentwicklung; Bulak, A. [Technische Univ. Braunschweig (Germany). Inst. fuer Oberflaechentechnik und Plasmatechnische Werkstoffentwicklung; Menthe, E. [Technische Univ. Braunschweig (Germany). Inst. fuer Oberflaechentechnik und Plasmatechnische Werkstoffentwicklung; Rodriguez Cabeo, E. [Volkswagenwerk AG, Wolfsburg (Germany). Zentrallaboratorium; Stucky, T. [Technische Univ. Braunschweig (Germany). Inst. fuer Oberflaechentechnik und Plasmatechnische Werkstoffentwicklung

    1996-12-01

    In this study two methods are described to realize wear and corrosion resistant surface systems: plasma diffusion treatment (PDT) and plasma assisted CVD (PACVD). Plasma nitriding, plasma nitrocarburizing and plasma boriding are used to treat different kinds of substrates. The advances of PACVD and the development of low temperature PACVD and industrial applications of these techniques are explained. (orig.)

  9. Processing of Homogeneous Zirconia-Toughened Alumina Ceramics with High Dry-Sliding Wear Resistance

    NARCIS (Netherlands)

    Kerkwijk, Bas; Winnubst, Louis; Mulder, Elmer J.; Verweij, Henk

    1999-01-01

    The preparation of dense homogeneous zirconia-toughened alumina (ZTA) with high dry-sliding wear resistance is described. These ZTA ceramics are obtained by sintering green compacts, made by colloidal filtration of well-defined ZrO2-Al2O3 particle suspensions, for 2 h at 1400°C. The optimum solid an

  10. Structural-phase states and wear resistance of surface formed on steel by surfacing

    Energy Technology Data Exchange (ETDEWEB)

    Kapralov, Evgenie V.; Raykov, Sergey V.; Vaschuk, Ekaterina S.; Budovskikh, Evgenie A., E-mail: gromov@physics.sibsiu.ru; Gromov, Victor E., E-mail: gromov@physics.sibsiu.ru [Siberian State Industrial University, Novokuznetsk, 654007 (Russian Federation); Ivanov, Yuri F., E-mail: yufi55@mail.ru [Institute of High-Current Electronics SB RAS, Tomsk, 634055, Russia and National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2014-11-14

    Investigations of elementary and phase structure, state of defect structure and tribological characteristics of a surfacing, formed on a low carbon low-alloy steel by a welding method were carried out. It was revealed that a surfacing, formed on a steel surface is accompanied by the multilayer formation, and increases the wear resistance of the layer surfacing as determined.

  11. Tribological behavior and wear mechanism of resin-matrix contact strip against copper with electrical current

    Institute of Scientific and Technical Information of China (English)

    TU Chuan-jun; CHEN Zhen-hua; CHEN Ding; YAN Hong-ge; HE Feng-yi

    2008-01-01

    The resin-matrix pantograph contact strip (RMPCS), which has excellent abrasion resistance with electrical current and friction-reducing function, was developed in view of the traditional contact strips with high maintenance cost, high wear rate with electrical current and severe damage to the copper conducting wire. The characteristics of worn surfaces, cross-section and typical elemental distributions of RMPCS were studied by scanning electron microscopy (SEM) and energy dispersion spectrometry (EDS).The wear behavior and arc discharge of RMPCS against copper were investigated with self-made electrical wear tester. The results show that the electrical current plays a critical role in determining the wear behavior, and the wear rate of the RMPCS against copper with electrical current is 2.7-5.8 times higher than the value without electrical current. The wear rate of the contact strip increases with the increase of the sliding speed and electrical current density. The main wear mechanism of RMPCS against copper without electrical current is low stress grain abrasive and slightly adhesive wear, while arc erosion wear and oxidation wear are the dominate mechanism with electrical current, which is accompanied by adhesive wear during the process of wear.

  12. Effect of Residual Stress on the Wear Resistance of Thermal Spray Coatings

    Science.gov (United States)

    Luo, W.; Selvadurai, U.; Tillmann, W.

    2016-01-01

    The wear resistance of thermal spray coatings mainly depends on coating properties such as the microstructure, hardness, and porosity, as well as on the residual stress in the coating. The residual stress is induced by a variety of influences e.g., temperature gradients, difference of the thermal expansion coefficient of the coating/substrate materials, and the geometry of the components. To investigate the residual stress, the impulse excitation technique was employed to measure the Young's and shear moduli. The residual stress was determined by the hole-drilling method and x-ray diffraction. Pin-on-Disk and Pin-on-Tube tests were used to investigate the wear behavior. After the wear tests, the wear volume was measured by means of a 3D-profilometer. The results show that the value of the residual stress can be modified by varying the coating thickness and the substrate geometry. The compressive stress in the HVOF-sprayed WC-Co coatings has a significant positive influence on the wear resistance whereas the tensile stress has a negative effect.

  13. Study on comprehensive properties of duplex austenitic surfacing alloys for impacting abrasion

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, comprehensive property crack resistance, work hardening and abrasion resistance of a series of double-phases austenitic alloys(FAW) has been studied by means of SEM, TEM and type MD-10 impacting wear test machine. FAW alloys are of middle chromium and low manganese, including Fe-Cr-Mo-C alloy,Fe-Cr-Mn-C alloy and Fe-Cr-Mn-Ni-C alloy, that are designed for working in condition of impacting abrasion resistance hardfacing.Study results show that the work hardening mechanism of FAW alloys are mainly deformation high dislocation density and dynamic carbide aging, the form of wearing is plastic chisel cutting. Adjusting the amount of carbon, nickel, manganese and other elements in austenitic phase area, the FAW alloy could fit different engineering conditions of high impacting, high temperature and so on.

  14. Microstructural Evolution and Wear Resistance of Friction Stir-Processed AISI 52100 Steel

    Science.gov (United States)

    Seraj, R. A.; Abdollah-zadeh, A.; Hajian, M.; Kargar, F.; Soltanalizadeh, R.

    2016-07-01

    Friction stir processing (FSP) was successfully applied on AISI 52100 steel. The influence of process parameters on the microstructure and mechanical properties of the material was evaluated. It was observed that the initial ferritic-pearlitic microstructure of the base metal is transformed to the martensitic microstructure with retained austenite in the stir zone. The results also showed that microhardness and wear resistance of the FSP samples are, respectively, at least 2 and 15 times higher than those of the base metal. The improvement of the mechanical properties of FSP samples was attributed to their microstructural characteristics. The mechanisms controlling the wear behavior of the base metal and FSP samples were also discussed.

  15. Study on Abrasive Wear Properties of MoB/CoCr Cermet Coating%MoB/CoCr金属陶瓷涂层的磨粒磨损性能研究

    Institute of Scientific and Technical Information of China (English)

    陈枭; 纪岗昌

    2012-01-01

    在310S基体表面采用低压等离子喷涂(LPPS)技术制备MoB/CoCr金属陶瓷涂层.用扫描电镜观察涂层的组织结构:测试了MoB/CoCr涂层的显微硬度和结合强度;用湿式橡胶轮磨粒磨损试验机测试涂层的磨损性能.结果显示:MoB/CoCr涂层组织为层状结构,涂层与310S基体之间、表面涂层与过渡涂层之间结合良好.MoB/CoCr涂层具有较高的硬度值和结合强度,且具有良好的抗磨粒磨损性能.%MoB/CoCr cermet coating was deposited by low pressure plasma spraying (LPPS) on 310S steel. The microstructure of the MoB/CoCr coating was observed by SEM. The microhardness and bonding strength of the MoB/CoCr coating were tested. The abrasive wear properties were evaluated by wet sand rubber wheel tester. The results show that MoB/CoCr coating is dense and has excellent combination with 310S steel substrate. MoB/CoCr coating has high hardness and excellent wear properties.

  16. Deposition of wear-resistant steel surfaces by the plasma rotating electrode coating process

    Science.gov (United States)

    Kim, Michael Robert

    A high-deposition rate thermal spray method was investigated for the purpose of coating aluminum cylinder bores with a wear resistant surface. This method, the plasma rotating electrode coating system (PROTEC) utilized transferred-arc melting of a rapidly rotating consumable electrode to create a droplet stream via centrifugal atomization. A cylindrical substrate was placed around the rotating rod, in the flight path of the droplets, to deposit a coating onto the internal surface of the cylinder. Selected coatings of 1045 steel deposited by the PROTEC coating method exhibited lower wear loss in lubricated sliding than wire-arc sprayed carbon steel coatings and gray cast iron. Splat cohesion was shown to be a significant factor in the wear resistance of PROTEC coatings. The relationship between deposition enthalpy and cooling rate of the coating was found to have the greatest effect on coating microstructure, and the coating cohesion. The most rapidly solidified coatings showed inferior splat cohesion in comparison to coatings that cooled more slowly. The increase in splat cohesion with decreased cooling rate was accompanied by the formation of a directionally oriented coating microstructure, likely formed during cellular solidification of the coating. A model describing the thermal state of the deposition process was used to predict the deposition conditions that would result in a cellular structure, and the level of splat cohesion required to produce a wear resistant coating.

  17. Processing Parameters Influence on Wear Resistance Behaviour of Friction Stir Processed Al-TiC Composites

    Directory of Open Access Journals (Sweden)

    E. T. Akinlabi

    2014-01-01

    Full Text Available Friction stir processing (FSP being a novel process is employed for the improvement of the mechanical properties of a material and the production of surface layer composites. The vital role of the integrity of surface characteristics in the mechanical properties of materials has made the research studies into surface modification important in order to improve the performance in practical applications. This study investigates the effect of processing parameters on the wear resistance behavior of friction stir processed Al-TiC composites. This was achieved through microstructural characterization by using both the optical and scanning electron microscope (SEM, microhardness profiling, and tribological characterization by means of the wear. The microhardness profiling of the processed samples revealed an increased hardness value, which was a function of the TiC particles incorporated when compared to the parent material. The wear resistance property was also found to increase as a result of the TiC powder addition. The right combination of processing parameters was found to improve the wear resistance property of the composites produced.

  18. Wear Characteristics of Metallic Biomaterials: A Review

    Directory of Open Access Journals (Sweden)

    Mohamed A. Hussein

    2015-05-01

    Full Text Available Metals are extensively used in a variety of applications in the medical field for internal support and biological tissue replacements, such as joint replacements, dental roots, orthopedic fixation, and stents. The metals and alloys that are primarily used in biomedical applications are stainless steels, Co alloys, and Ti alloys. The service period of a metallic biomaterial is determined by its abrasion and wear resistance. A reduction in the wear resistance of the implant results in the release of incompatible metal ions into the body that loosen the implant. In addition, several reactions may occur because of the deposition of wear debris in tissue. Therefore, developing biomaterials with high wear resistance is critical to ensuring a long life for the biomaterial. The aim of this work is to review the current state of knowledge of the wear of metallic biomaterials and how wear is affected by the material properties and conditions in terms of the type of alloys developed and fabrication processes. We also present a brief evaluation of various experimental test techniques and wear characterization techniques that are used to determine the tribological performance of metallic biomaterials.

  19. Effect of Inter Critical Annealing on Microstructure and Wear Behaviour of En-8 Steel

    Directory of Open Access Journals (Sweden)

    S. Narkhede

    2012-06-01

    Full Text Available The objective of the present work is to study effect of microstructure on abrasive wear resistance of EN-8 steel which were given inter-critical annealing heat treatment. The samples were heat treated to produce dual phased structure of hard martensite islands embedded in soft ferrite matrix. The results of the indicated that abrasive wear loss increased with decrease in hardness as well as increase in grain size of initial microstructure. The wear loss also increased with applied load. The phase analysis of wear debris revealed the presence of Fe₂O₃ indicating a tendency towards oxidative mechanism. The variation in wear loss with sliding length and applied load was correlated with microstructure of the material and distribution of phases.

  20. Diamond and diamondlike carbon as wear-resistant, self-lubricating coatings for silicon nitride

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1995-01-01

    Recent work on the friction and wear properties of as-deposited fine-grain diamond, polished coarse-grain diamond, and as-deposited diamondlike carbon (DLC) films in humid air at a relative humidity of approximately 40 percent and in dry nitrogen is reviewed. Two types of chemical vapor deposition (CVD) processes are used to deposit diamond films on silicon nitride (Si3N4) substrates: microwave-plasma and hot-filament. Ion beams are used to deposit DLC films of Si3N4 substrates. The diamond and DLC films in sliding contact with hemispherical bare Si3N4 pins have low steady-state coefficients of friction (less than 0.2) and low wear rates (less than 10(exp -7) mm(exp 2)/N-m), and thus, can be used effectively as wear-resistant, self-lubricating coatings for Si3N4 in the aforementioned two environments.

  1. Wear resistance analysis of the aluminum 7075 alloy and the nanostructured aluminum 7075 - silver nanoparticles composites

    Directory of Open Access Journals (Sweden)

    Estrada-Ruiz R.H.

    2016-01-01

    Full Text Available Nanostructured composites of the aluminum 7075 alloy and carbon-coated silver nanoparticles were synthetized by the mechanical milling technique using a high-energy mill SPEX 8000M; the powders generated were compacted, sintered and hot-extruded to produce 1 cm-diameter bars. The composites were then subjected to a wear test using a pin-on-disc device to validate the hypothesis that second phase-ductile nanometric particles homogenously distributed throughout the metalmatrix improve the wear resistance of the material. It was found that silver nanoparticles prevent the wear of the material by acting as an obstacle to dislocations movement during the plastic deformation of the contact surface, as well as a solid lubricant when these are separated from the metal-matrix.

  2. Wear resistance of ceramic coating on AZ91 magnesium alloy by micro-arc oxidation

    Institute of Scientific and Technical Information of China (English)

    ZHAO Hui; LIU Zheng; CHEN Li-jia; CHEN Ji; HAN Zhong

    2006-01-01

    The ceramic coating formed on AZ91 magnesium alloy by micro-arc oxidation (MAO) was characterized. The results show that the ceramic coating(3.4-23 μm in thickness)on the surface of AZ91 alloy was attained under different micro-arc oxidation treatment conditions, which consist mainly of MgO, Mg2SiO4 and MgSiO3 phases. Nano-hardness in a cross-sectional specimen was determined by nano-indentation experiment. The MAO coatings exhibit higher hardness than the substrate. Dry sliding wear tests for the MAO coatings and AZ91 alloy were also carried out using an oscillating friction and wear tester in a ball-on-disc contact configuration. The wear resistance of the MAO coatings is improved respectively under different treatment time as a result of different structures of ceramic coatings formed on AZ91 alloy.

  3. Study on Abrasion Properties of Common Materials for Fluid Mechanical Impeller at Interactive Erosion and Cavitation Wear%流体机械叶轮常用材料冲蚀与空蚀交互磨损特性研究

    Institute of Scientific and Technical Information of China (English)

    庞佑霞; 李彬; 刘厚才; 唐勇

    2013-01-01

    模拟流体机械冲蚀与空蚀交互磨损工况,通过对比材料的绝对失重量与试验时间的变化曲线、24 h 试验的磨痕演变规律以及 SEM微观形貌,研究 Q235、45#和40Cr 钢及 HT200铸铁4种叶轮常用金属材料的磨蚀特性。结果表明:在冲蚀与空蚀交互磨损下,材料的失重量与磨损时间接近正比;试件的磨痕沿水流方向,在空蚀孔两边呈彗星状分布;沙粒对 Q235等塑性材料微切削过程中,动能转化为材料的塑性变形功,使材料产生塑性流动,形成犁沟状磨痕;对于脆性材料 HT200,空泡溃灭和沙粒的冲击超过其弹塑性变形极限,使材料产生微裂纹、微体积疲劳剥落,形成蜂窝状蚀坑。相同硬度下,塑性材料耐交互磨蚀性能优于脆性材料。%Through simulating turbine working condition on interactive erosion and cavitation wear,the abrasion charac-teristics of Q235,45 and 40Cr steel,and HT200 cast iron were studied,and the change curves between material’s abso-lute weight loss with experimental time were obtained.The wear scar evolution of four materials during the 24 h experiment was compared and the specimen microstructure was observed by SEM.The results show that the weight loss of material is a-bout in direct proportion to the abrasion time under interactive wear;the specimen wear scar along the flow direction takes a comet formation distribution on both sides of the cavitation hole;during the process of sand micro-cutting on plastic mate-rial such as Q235 steel,the kinetic energy is converted to plastic deformation work,which causes material plastic flow and forms furrow-like wear scar;brittle material like HT200 cast iron,the bubble collapse and sand impact exceeds its elastic-plastic deformation limit,as a result,micro-cracks,fatigue spalling and honeycomb pits are generated for material;the wear resistance of plastic material is better than that of brittle material at the same

  4. On The Enhancement of Wear Resistance of Hardened Carbon Tool Steel (AISI 1095) With Cryogenic Quenching

    Institute of Scientific and Technical Information of China (English)

    V.Soundararajan; N.Alagurmurthi; K.Palaniradja

    2004-01-01

    Many experimental investigations reveal that it is very difficult to have a completely martensitic structure by any hardening process. Some amount of austenite is generally present in the hardened steel. This austenite existing along with martensite is normally referred as the retained austenite. The presence of retained austenite greatly reduces the mechanical properties and such steels do not develop maximum hardness even after cooling at rates higher than the critical cooling rates.Strength can be improved in hardened steels containing retained austenite by a process known as cryogenic quenching.Untransformed austenite is converted into martensite by this treatment. This conversion of retained austenite into martensite results in increased hardness, wear resistance and dimensional stability of steel. Wear can be defined as the progressive loss of materials from the operating surface of a body occurring as a result of relative motion at the surface. Hardness, load,speed, surface roughness, temperature are the major factors which influences wear. Many studies on wear indicate that increasing hardness decreases the wear of a material. With this in mind, to study the surface wear on a surface modified(Cryogenic treated) steel material an attempt has been made in this paper. In this study as a Part -I Hardening was carried out on carbon tool steel (AISI 1095) of different L/D ratio with conventional quenchants like purified water, aqueous solution and Hot mineral oil. As a Part -Ⅱ hardening was followed by quenching was carried out as said in Part- I and the hardened specimen were quenched in liquid Nitrogen which is at sub zero condition. The specimens were tested for its microstructure, hardness and wear loss. The results were compared and analyzed. The alloying elements increases the content of retained austenite hence the material used was AISI1095 (Carbon 0.9%, Si 0.2%, Mn0.4% and the rest Iron)

  5. Effect of the powder particle size on the wear behavior of boronized AISI 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Guenen, Ali [Mustafa Kemal Univ., Hatay (Turkey). Dept. of Metallurgy and Material Engineering; Kuecuek, Yilmaz; Oege, Mecit; Goek, M. Sabri [Bartin Univ. (Turkey). Dept. of Mechanical Engineering; Er, Yusuf [Firat Univ., Elazig (Turkey); Cay, V. Veli [Dicle Univ., Diyarbakir (Turkey). Civil Aviation Higher School

    2015-06-01

    In this study, the AISI 304 steel specimens were boronized with nanoboron of the size of 10 50 nm and commercial Ekabor 3 powders (<1400 μm) at 950 C to 1000 C for 2 h and 4 h. Boronized steel specimens were characterized via SEM, microhardness and XRD analyses. Abrasive wear behavior of the specimens, boronized at different temperatures and treatment durations, were examined. The fixed ball micro-abrasion tests were carried out using the abrasive slurry, prepared with different SiC powder particle sizes on the boronized specimens at different rotational speeds. The specimens boronized with nanoboron powders exhibited a higher hardness and abrasive wear resistance than the samples boronized with the Ekabor 3 powders.

  6. Nanostructured wear resistant coating for reversible cultivator shovels: An experimental investigation

    Science.gov (United States)

    Dave, V.; Rao, G. P.; Tiwari, G. S.; Sanger, A.; Kumar, A.; Chandra, R.

    2016-04-01

    Cultivator, one of the agriculture farm tool, extensively suffers from the wear problem. In this paper, we report nanostructured chromium nitrite (CrN) coating for the cultivator shovels to mitigate wear problem. The (CrN) coating was developed using DC magnetron sputtering technique at 200 °C. The structural, morphological, hydrophobic and wear properties were investigated using X-ray diffractometer, scanning electron microscope, contact angle goniometer and custom designed soil bin assembly. The XRD reveals that the deposited coating was polycrystalline in nature with cubic structure. Also, The deposited coating was found to be anti wear resistant as well as hydrophobic in nature. The gravimetric wear for the coating developed at 200 °C coated was found out to be 8.15 gm and for non coated it was 14.48 gm tested for 100 hrs. The roughness of the coating plays an important role in determining the hydrophobicity of the coated film. Roughness and contact angle measured for 200 °C coated shovel was found out to be 11.17 nm and 105 ° respectively.

  7. Study on the Thermal Fatigue Behavior of Hot Deformed Wear Resistance Cast Iron and Effect of Carbide

    Institute of Scientific and Technical Information of China (English)

    Dong Litao; Liu Rongchang; Li Xingyuan; Chen Xiuhong

    2007-01-01

    The thermal fatigue behavior of wear resistance cast iron with different quantity of deformation has been investigated. The results show that eutectic carbide is the main location and passage for initiation and extension of thermal fatigue cracks, approving that the more serious, the carbide breaks. The higher thermal fatigue resistance of wear resistance cast iron will be and thermal fatigue fracture belongs mainly to brittleness.

  8. Effect of post-welding heat treatment on wear resistance of cast-steel die with surfacing layer

    Directory of Open Access Journals (Sweden)

    Xu Wujiao

    2015-01-01

    Full Text Available The wear resistance capability of die surfacing layer under different Post-Welding Heat Treatments (PWHT was analysed by Finite Element (FE simulation and experiments. Taking hot forging process of a crankshaft as an example, a wear model of the hot forging die coated with surfacing layer was established using FE software DEFORM-3D. The simulation results indicated that the wear resistance capability of the die surfacing layer is optimal when tempering temperature and holding time are 550 °C and 4 h respectively. To verify the wear computational results, 16 groups of PWHT orthogonal wear tests were performed at a temperature of 400 °C, which is a similar temperature to that occurs in an actual hot forging die. The wear-test result showed a good agreement with the FE simulation. SEM observation of the wear debris on 16 specimens showed that oxidative wear is dominant when the temperature was in 400 °C. Furthermore, when tempering temperature and holding time were 550 °C and 4 h respectively, the carbide alloy dispersively distributes in the metallographic structure, which helps to improve the wear resistance of the surfacing layer.

  9. Effect of post weld heat treatment on wear resistance of hot forging cast steel die coated with surfacing layer

    Directory of Open Access Journals (Sweden)

    Xu Wujiao

    2015-01-01

    Full Text Available The wear resistance capability of die surfacing layer under different Post Weld Heat Treatments (PWHT was analysed by Finite Element Method (FEM simulation and experiments. Taking the hot forging process of crankshaft as example, a wear model of hot forging die coated with surfacing layer was established by the software DEFORM-3D. The simulation results indicate that the wear resistance capability of the die surfacing layer is optimal when tempering temperature and holding time are 550 ∘C and 4h respectively. To verify the wear calculation result, 16 groups of different PWHT orthogonal wear tests were performed under atmospheric condition at 400 ∘C. The wear test result shows a good agreement with the FEM simulation result. SEM observation of the wear debris shows that oxidative wear plays a dominant role in 400 ∘C among 16 specimens. Furthermore, when tempering temperature and holding time are 550 ∘C and 4h respectively, the alloy carbide dispersively distributes in the metallographic structure, which can improve the wear resistance of the surfacing.

  10. The friction and wear of metals and binary alloys in contact with an abrasive grit of single-crystal silicon carbide

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with various metals and iron-base binary alloys (alloying elements Ti, Cr, Mn, Ni, Rh, and W) in contact with single-crystal silicon carbide riders. Results indicate that the coefficient of friction and groove height (corresponding to the wear volume) decrease linearly as the shear strength of the bulk metal increases. The coefficient of friction and groove height generally decrease with an increase in solute content of binary alloys. A separate correlation exists between the solute to iron atomic radius ratio and the decreasing rates of change of coefficient of friction and groove height with increasing solute content. These rates of change are minimum at a solute to iron radius ratio of unity. They increase as the atomic ratio increases or decreases linearly from unity. The correlations indicate that atomic size is an important parameter in controlling friction and wear of alloys.

  11. Microstructure and abrasive wear properties of M(Cr,Fe)7C3 carbides reinforced high-chromium carbon coating produced by gas tungsten arc welding (GTAW) process

    OpenAIRE

    Buytoz, Soner; M.Mustafa YILDIRIM

    2010-01-01

    In the present study, high-chromium ferrochromium carbon hypereutectic alloy powder was coated on AISI 4340 steel by the gas tungsten arc welding (GTAW) process. The coating layers were analyzed by optical microscopy, X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray energy-dispersive spectroscopy (EDS). Depending on the gas tungsten arc welding pa-rameters, either hypoeutectic or hypereutectic microstructures were produced. Wear tests of the coatings were c...

  12. Development of wear-resistant coatings for cobalt-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Cockeram, B.V.

    1999-03-01

    The costs and hazards resulting from nuclear plant radiation exposure with activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. However, the hardnesses of many cobalt-base wear alloys are significantly lower than conventional PVD hard coatings, and mechanical support of the hard coating is a concern. Four approaches have been taken to minimize the hardness differences between the substrate and PVD hard coating: (1) use a thin Cr-nitride hard coating with layers that are graded with respect to hardness, (2) use a thicker, multilayered coating (Cr-nitride or Zr-nitride) with graded layers, (3) use nitriding to harden the alloy subsurface followed by application of a multilayered coating of Cr-nitride, and (4) use of nitriding alone. Since little work has been done on application of PVD hard coatings to cobalt-base alloys, some details on process development and characterization of the coatings is presented. Scratch testing was used to evaluate the adhesion of the different coatings. A bench-top rolling contact test was used to evaluate the wear resistance of the coatings. The test results are discussed, and the more desirable coating approaches are identified.

  13. Comparison of the structure, properties and wear resistance of the TiN PVD coatings

    Directory of Open Access Journals (Sweden)

    M. Polok-Rubiniec

    2008-03-01

    Full Text Available Purpose: The aim of the paper was to compare the structure, mechanical propeties, adhesion and wear resistance of the monolayer TiN PVD coatings deposited onto heat treated and plasma nitrided hot work tool steel X37CrMoV5-1.Design/methodology/approach: The microhardness tests of the PVD coatings were made with use of a dynamic ultra-microhardness tester. The topography of the surface and the structure of the PVD coatings was observed with use of scanning electron microscopy.The evaluation of the adhesion of coatings to the substrate was made with use of the scratch test. The wear and friction tests were performed with use of a pin-on-disc device at the room temperature and at the temperature of 500°C.Findings: IIn case of the TiN coating deposited onto the nitrided hot work steel X37CrMoV5-1 a very good adhesion to the substrate has been revealed in comparison with the TiN coating deposited onto the heat treated hot work steel. Taking into account the results of measurements, one can state that the lowest wear at certain conditions at both room and elevated temperatures is characteristic for the TiN coating deposited onto plasma nitrided hot work steel type X37CrMoV5-1.Practical implications: The results of the investigations provide useful information for applying the plasma nitriding and the TiN PVD coating for the improvement of the mechanical properties and wear resistance of tools made from hot work steels.Originality/value: The paper contributes to better understanding of the adhesion and wear resistance at the elevated temperature up to 500°C of the monolayer TiN PVD coating deposited onto the heat treated and plasma nitrided hot work tool steel.

  14. Contribution of human osteoblasts and macrophages to bone matrix degradation and proinflammatory cytokine release after exposure to abrasive endoprosthetic wear particles.

    Science.gov (United States)

    Jonitz-Heincke, Anika; Lochner, Katrin; Schulze, Christoph; Pohle, Diana; Pustlauk, Wera; Hansmann, Doris; Bader, Rainer

    2016-08-01

    One of the major reasons for failure after total joint arthroplasty is aseptic loosening of the implant. At articulating surfaces, defined as the interface between implant and surrounding bone cement, wear particles can be generated and released into the periprosthetic tissue, resulting in inflammation and osteolysis. The aim of the present study was to evaluate the extent to which osteoblasts and macrophages are responsible for the osteolytic and inflammatory reactions following contact with generated wear particles from Ti‑6Al‑7Nb and Co‑28Cr‑6Mo hip stems. To this end, human osteoblasts and THP‑1 monocytic cells were incubated with the experimentally generated wear particles as well as reference particles (0.01 and 0.1 mg/ml) for 48 h under standard culture conditions. To evaluate the impact of these particles on the two cell types, the release of different bone matrix degrading matrix metalloproteinases (MMPs), tissue inhibitors of MMPs (TIMPs), and relevant cytokines were determined by multiplex enzyme‑linked immunosorbent assays. Following incubation with wear particles, human osteoblasts showed a significant upregulation of MMP1 and MMP8, whereas macrophages reacted with enhanced MMP3, MMP8 and MMP10 production. Moreover, the synthesis of TIMPs 1 and 2 was inhibited. The osteoblasts and macrophages also responded with modified expression of the inflammatory mediators interleukin (IL)‑6, IL‑8, monocyte chemoattractant protein‑1 and vascular endothelial growth factor. These results demonstrate that the release of wear particles affects the release of proinflammatory cytokines and has a negative impact on bone matrix formation during the first 48 h of particle exposure. Human osteoblasts are directly involved in the proinflammatory cascade of bone matrix degradation. The simultaneous activation and recruitment of monocytes/macrophages boosted osteolytic processes in the periprosthetic tissue. By the downregulation of TIMP production and the

  15. Effect of graphite particle size on wear property of graphite and Al2O3 reinforced AZ91D-0.8%Ce composites

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The graphite particles and Al2O3 short fibers reinforced AZ91D-0.8%Ce composites were fabricated by squeeze-infiltration technique.The researches about the effects of different graphite particle sizes on the microstructure and wear property of the composites were performed under the condition of constant contents of graphite particles and Al2O3 short fibers.The results reveal that the grain size of the composites changes less when the graphite particle size descends.Moreover,Ce enriches around the graphite particle and Al2O3 short fibers and forms Al3Ce phase with A1 element.The graphite that works as lubricant decreases the wear loss.The wear resistance of the composites increases as the graphite particle size increases.At low load the composites have similar wear loss;at high load the composite with the largest graphite particle size has the best wear resistance.The wear mechanism of all the composites at low load is abrasive wear and oxidation wear;at high load,except the composites with the particle size of 240 μm whose wear mechanism is still abrasive wear and oxicIation wear,the wear mechanism of othcrs changes to delamination wear.

  16. Friction and Wear Behaviors of Nanostructured Metals

    Institute of Scientific and Technical Information of China (English)

    Zhong HAN; Yusheng ZHANG; Ke LU

    2008-01-01

    Nanostructured (ns) materials, i.e., polycrystalline materials with grain sizes in the nanometer regime (typically below 100 nm), have drawn considerable attention in the past decades due to their unique properties such as high strength and hardness. Wear resistance of ns materials, one of the most important properties for engineering materials, has been extensively investigated in the past decades. Obvious differences have been identified in friction and wear behaviors Between the ns materials and their corresponding coarse-grained (cg) counterparts, consistently correlating with their unique structure characteristics and mechanical properties. On the other hand, the superior tribological properties of ns materials illustrate their potential applications under contact loads. The present overview will summarize the important progresses achieved on friction and wear behaviors of ns metallic materials, including ultrafine-grained (ufg) materials in recent years. Tribological properties and effects on friction and wear behaviors of ns materials will be discussed under different wear conditions including abrasive wear, sliding wear, and fretting wear. Their correlations with mechanical properties will be analyzed. Perspectives on development of this field will be highlighted as well.

  17. An abrasion-resistant and broadband antireflective silica coating by block copolymer assisted sol-gel method.

    Science.gov (United States)

    Zou, Liping; Li, Xiaoguang; Zhang, Qinghua; Shen, Jun

    2014-09-01

    A double-layer broadband antireflective (AR) coating was prepared on glass substrate via sol-gel process using two kinds of acid-catalyzed TEOS-derived silica sols. The relative dense layer with a porosity of ∼10% was obtained from an as-prepared sol, while the porous layer with a porosity of ∼55% was from a modified one with block copolymer (BCP) Pluronic F127 as template which results in abundant ordered mesopores. The two layers give rise to a reasonable refractive index gradient from air to the substrate and thus high transmittance in a wide wavelength range, and both of them have the same tough skeleton despite different porosity, for which each single-layer and the double-layer coatings all behaved well in the mechanical property tests. The high transmittance and the strong ability of resisting abrasion make this coating promising for applications in some harsh conditions. In addition, the preparation is simple, low-cost, time-saving, and flexible for realizing the optical property. PMID:25117300

  18. Wear Performance of Ni/ZrO2 Infiltrated Composite Layer

    Institute of Scientific and Technical Information of China (English)

    SUN Xianming; YANG Guirong; SONG Wenming; LI Jian; MA Ying; ZHOU You

    2012-01-01

    The Ni/ZrO2 was used as raw materials to fabricate the surface infiltrated composite layer with 1-4 mm thickness on cast steel substrate through vacuum infiltrated casting technology.The microstructure indicated that the infiltrated composite layer included surface composite layer and transition layer.Wear property was investigated under room temperature and 450 ℃.The results indicated that the abrasion volume of substrate was 8 times that of the infiltrated composite layer at room temperature.The friction coefficient of infiltrated composite layer decreased with the increasing load.The wear resistance of infiltrated composite layer with different ZrO2 contents had been improved obviously under high temperature.The friction coefficient of infiltrated composite layer was decreased comparing with that at room temperature.The oxidation,abrasive and fatigue abrasion was the main wear mechanism at room temperature.Oxidation abrasion,fatigue wear and adhesive wear dominated the wearing process under elevated temperature.

  19. Wear-Resistance Performance of ZA-27 Alloys Reinforced by Rare Earth Compounds

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The morphology of ZA-27 alloy reinforced by RE compounds and its wear-resistance were studied. It is found that some nodular second phases appear due to the addition of Si and RE, which can disperse in grain boundaries or between dendrite crystals so that the alloy has been refined. Energy spectrum analysis of scanning electron microscope shows that the second phases are complex compounds containing RE, Al, Zn and Si. The micro-hardness test indicates that micro-hardness values of the compounds are higher than those of the matrix. The wear-resistance of ZA-27 alloy reinforced by RE compounds is 4 times as high as that of ZA-27 alloy and also higher than that of ZA-27 alloy containing Si phase. The impact toughness of the alloy containing RE and Si is higher than that of the alloy containing Si.

  20. Wear and Corrosion Resistance of Electroless Plating Ni-P Coating on P110 Steel

    Institute of Scientific and Technical Information of China (English)

    LIN Naiming; ZHOU Peng; ZOU Jiaojuan; XIE Faqin; TANG Bin

    2015-01-01

    In order to improve the surface performance and increase the lifetime of P110 oil casing tube steel during operation, electroless plating was conducted to form Ni-P coating onto its surface. The surface morphology/element distribution and phase constitution of the Ni-P coating were analyzed using scanning electron microscope (SEM) equipped with energy dispersive spectrometry (EDS) and X-ray diffraction (XRD). Tribological and electrochemical measurement tests were applied to investigate the wear and corrosion resistance of P110 steel and the Ni-P coating. The results showed that a uniform and compact, high phosphorous Ni-P coating was formed. The obtained Ni-P coating indicated certain friction-reduction effect and lower mass loss during friction-wear tests. The Ni-P coating also exhibited higher corrosion resistance in comparison with bared P110 steel. The obtained Ni-P coating has signifi cantly improved the surface performance of P110 steel.

  1. Effects of heat treatment on properties of multi-element low alloy wear-resistant steel

    Institute of Scientific and Technical Information of China (English)

    SONG Xu-ding; FU Han-guang

    2007-01-01

    The paper has studied the mechanical properties and heat treatment effects on multi-element low alloy wear-resistant steel (MLAWS) used as a material for the liner of rolling mill torii. The results show that when quenched at 900-920 ℃ and tempered at 350-370 ℃, the MLAWS has achieved hardness above 60 HRC, tensile strength When the quenching temperature is lower than 900℃, the hardness of the MLAWS increases with the temperature.When the quenching temperature is higher than 900℃, the hardness decreases with the increase of temperature. At a quenching temperature below 920℃, the effect of quenching temperature on the impact toughness is not obvious.In quenching at above 920℃, impact toughness decreases as the temperature increases. When the tempering temperature is exceeding 450℃, the hardness begins to decrease significantly. Tempering at 350℃ has produced the best wear resistance on the MLAWS.

  2. RESEARCH AND APPLICATION OF AS-CAST WEAR RESISTANCE HIGH CHROMIUM CAST IRON

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The influence of alloy elements, such as boron and silicon, on the microstructure and properties of as-cast high chromium cast iron is studied. The results show that boron and silicon have a great effect on the mechanical properties and the wear resistance. Through proper addition of boron and silicon, the properties of as-cast high chromium cast iron can be improved effectively. Through analyzing the distribution of elements by scanning electron microscope, it has been shown that the addition of boron and silicon lowers the mass fraction of chromium saturated in as-cast austenite, and makes it unstable and liable to be transformed into martensite. The as-cast high chromium cast iron with proper content of boron and silicon is suitable for the manufacture of lining for asphalt concrete mixer and its wear resistance is 14 times that of lining made of low alloy white cast iron.

  3. Nitriding of Hard Fe Electrodeposition and Its Effects on Wear Resistance

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Nitriding is employed for the hard Fe electrodeposition toproduce a hard-facing and antiwear coating. It only takes 1 h for the hard Fe coating, which is much shorter than nitriding the Fe and steel. The results showed that the nitriding can increase the microhardness, wear resistance of the coating, as well as the bonding strength of the coating with the substrate. Additionally it can eliminate the brittleness, turn the internal stress of the coating from tension to compression.The wear resistance of the nitrided Fe coating is 4.6 times as high as that of Cr coating. It is simple and economic to combine hard Fe electroplating and nitriding, which is a good technology of the tribological surface modification.

  4. Influence of loading on wear resistance properties of Ti-Zr-Nb-Sn alloy for dental restoration%加载载荷对钛锆铌锡合金摩擦磨损性能的影响

    Institute of Scientific and Technical Information of China (English)

    胡欣; 李长义; 刘亚林; 李宏捷; 韩华; 张连云

    2011-01-01

    Objective:To study the influence of load on wear resistance properties of Ti-Zr-Nb-Sn alloy for dental restoration Methods: A loading wear test was performed under an artificial saliva environment at 37 ℃ by MMV-1 Vertical universal friction and wear testing machine. Ti-Zr-Nb-Sn alloy was two-body wear tested in vitro using steatite as the grinding material. Test loads were set as 20, SO and 100 N. Quality wear loss was measured by electronic balance and wear surface morphology was observed with electron microscope. Results: As loads increased, the wear loss of the Ti-Zr-Nb-Sn alloy increased. Under 20, SO and 100 N loads, the dominant wear form was abrasive wear, adhesion wear accompanied with abrasive wear, and adhesion wear respectively. Conclusions: Increasing loads could enlarge the wear loss of Ti-Zr-Nb-Sn alloy and change its dominant wear form. Serious adhesion wear occurs under high loading conditions and the lifetime of Ti-Zr-Nb-Sn alloy would therefore be shortened.%目的:探讨载荷变化对钛锆铌锡合金与滑石瓷对磨时摩擦磨损性能的影响.方法:使用MMV-1立式万能摩擦磨损试验机,以滑石瓷为对磨物,载荷设置为20、50、100 N,在37℃人工唾液润滑的试验工况下,对口腔修复用钛锆铌锡合金进行二体摩擦磨损试验.采用扫描电镜观察表面磨损形貌,电子天平得出磨损量.结果:钛锆铌锡合金与对磨物滑石瓷的磨损量随载荷的增加而增大.载荷20N,钛锆铌锡合金的磨损机制主要为磨粒磨损; 50N时,磨损机制是粘着磨损伴发磨粒磨损;100N时,钛锆铌锡合金磨损机制以粘着磨损为主.结论:载荷增加可增大钛锆铌锡合金的磨损量,导致磨损机制改变,在高载荷条件下可发生严重粘着磨损,缩短修复体的使用寿命.

  5. IMPROVEMENT OF WEAR-RESISTANCE AND SERVICE LIFE OF MULTI-DISK BRAKE MECHANISMS OF «BELARUS» TRACTOR BY LASER THERMAL HARDENING OF FAST WEARING PARTS

    Directory of Open Access Journals (Sweden)

    O. S. Kobjakov

    2008-01-01

    Full Text Available Problems concerning wear resistance improvement of «Belarus» tractor brake mechanism parts are considered in the paper. Properties of ВЧ-50-pig iron are investigated as a result of laser thermal hardening by various technological methods.

  6. DEVELOPMENT OF LASER CLADDING WEAR-RESISTANT COATING ON TITANIUM ALLOYS

    OpenAIRE

    RUILIANG BAO; HUIJUN YU; CHUANZHONG CHEN; BIAO QI; LIJIAN ZHANG

    2006-01-01

    Laser cladding is an advanced surface modification technology with broad prospect in making wear-resistant coating on titanium alloys. In this paper, the influences of laser cladding processing parameters on the quality of coating are generalized as well as the selection of cladding materials on titanium alloys. The microstructure characteristics and strengthening mechanism of coating are also analyzed. In addition, the problems and precaution measures in the laser cladding are pointed out.

  7. Influence of Vanadium and Boron Additions on the Microstructure, Fracture Toughness, and Abrasion Resistance of Martensite-Carbide Composite Cast Steel

    Directory of Open Access Journals (Sweden)

    Waleed Elghazaly

    2016-01-01

    Full Text Available High chromium cast steel alloys are being used extensively in many industrial services where dry or wet abrasion resistance is required. Such steel castings are demanded for cement, stoneware pipes, and earth moving industries. In this research, five steel heats were prepared in 100 kg and one-ton medium frequency induction furnaces and then sand cast in both Y-block and final impact arm spare parts, respectively. Vanadium (0.5–2.5% and boron (120–150 ppm were added to the 18Cr-1.9C-0.5Mo steel heats to examine their effects on the steel microstructure, mechanical properties especially impact, fracture toughness and abrasion resistance. Changes in the phase transformation after heat treatment were examined using inverted, SEM-EDX microscopy; however, the abrasion resistance was measured in dry basis using the real tonnage of crushed and milled stoneware clay to less than 0.1 mm size distribution.

  8. Comparison of Wear Resistance Mechanisms of Die Steel Implanted with C and mo Ions

    Science.gov (United States)

    Cheng, M. F.; Yang, J. H.; Luo, X. D.; Zhang, T. H.

    Mo and C ions extracted from a metal vapor vacuum arc ion source were implanted into the surface of die steel (H13) to compare the wear resistance mechanisms of the implanted samples, respectively. The concentration depth profiles of implanted ions were measured using Rutherford backscattering spectroscopy and calculated by a code called TRIDYN. The structures of the implanted steel were observed by X-ray photoelectron spectroscopy and grazing-angle X-ray diffraction, respectively. It was found that the conventional heat-treated H13 steel could not be further hardened by the subsequent implanted C ions, and the thickness of the implanted layer was not an important factor for the Mo and C ion implantation to improve the wear resistance of the H13 steel. Mo ion implantation could obviously improve the wear resistance of the steel at an extraction voltage of 48 kV and a dose of 5 × 1017cm-2 due to formation of a modification layer of little oxidation with Mo2C in the implanted surface.

  9. Enhancement of wear and corrosion resistance of beta titanium alloy by laser gas alloying with nitrogen

    Science.gov (United States)

    Chan, Chi-Wai; Lee, Seunghwan; Smith, Graham; Sarri, Gianluca; Ng, Chi-Ho; Sharba, Ahmed; Man, Hau-Chung

    2016-03-01

    The relatively high elastic modulus coupled with the presence of toxic vanadium (V) in Ti6Al4V alloy has long been a concern in orthopaedic applications. To solve the problem, a variety of non-toxic and low modulus beta-titanium (beta-Ti) alloys have been developed. Among the beta-Ti alloy family, the quaternary Ti-Nb-Zr-Ta (TNZT) alloys have received the highest attention as a promising replacement for Ti6Al4V due to their lower elastic modulus and outstanding long term stability against corrosion in biological environments. However, the inferior wear resistance of TNZT is still a problem that must be resolved before commercialising in the orthopaedic market. In this work, a newly developed laser surface treatment technique was employed to improve the surface properties of Ti-35.3Nb-7.3Zr-5.7Ta alloy. The surface structure and composition of the laser-treated TNZT surface were examined by grazing incidence X-ray diffraction (GI-XRD) and X-ray photoelectron spectroscopy (XPS). The wear and corrosion resistance were evaluated by pin-on-plate sliding test and anodic polarisation test in Hanks' solution. The experimental results were compared with the untreated (or base) TNZT material. The research findings showed that the laser surface treatment technique reported in this work can effectively improve the wear and corrosion resistance of TNZT.

  10. Wear resistance and wear mechanism of hot-forging die steels%热锻模具钢的耐磨性及磨损机理研究

    Institute of Scientific and Technical Information of China (English)

    王树奇; 朱韬; 茅奕苏

    2012-01-01

    Wear tests were performed for a new-type cast steel,H13 and H21 steels on a pin-on-disk high-temperature wear tester.Their wear resistances were compared,and wear mechanism discussed.Compared with the cast steel and H13 steel,high wear resistance of H21 steel at room temperature is attributed to many unsolved carbides.At 200-300 ℃,the cast steel and H13 steel present a lower wear rate and increased rate with an increase of load,while the wear rate of H21 steel abruptly increases as the load reaches 200 N.At 400 ℃,the cast steel posseses much lower wear rate than those of H13 and H21 steels.It can be suggested that the the cast steel presents markedly higher elevated-temperature wear resistance than the conventional hot-forging die steels.%采用销盘式高温摩擦磨损实验机,针对一种新型铸钢、H13和H21钢在25-400℃下进行磨损试验,对比研究各种钢的耐磨性,并探讨了磨损机制.研究表明:室温下H21钢由于具有较多的未溶碳化物,比H13钢和铸钢具有高的耐磨性;在200-300℃下铸钢和H13钢随载荷的增加一直具有较低的磨损率和增长率,而H21钢当载荷达到200 N时磨损率忽然升高;在400℃下铸钢具有持续低的磨损率,明显低于H21和H13钢.可见,新型铸钢具有比常用热锻模具钢显著高的高温耐磨性.

  11. Improve Wear Resistance on Al 332 Alloy Matrix- Micro -Nano Al2O3 Particles Reinforced Composite

    Directory of Open Access Journals (Sweden)

    Rawnaq Ahmed Mohamed

    2014-03-01

    Full Text Available The wear behavior of alumina particulate reinforced A332 aluminium alloy composites produced by a stir casting process technique were investigated. A pin-on-disc type apparatus was employed for determining the sliding wear rate in composite samples at different grain size (1 µm, 12µm, 50 nm and different weight percentage (0.05-0.1-0.5-1 wt% of alumina respectively. Mechanical properties characterization which strongly depends on microstructure properties of reinforcement revealed that the presence of ( nano , micro alumina particulates lead to simultaneous increase in hardness, ultimate tensile stress (UTS, wear resistances. The results revealed that UTS, Hardness, Wear resistances increases with the increase in the percentage of reinforcement of Al2O3 when compared to the base alloy A332. The wear rates of the composites were considerably less than that of the aluminum alloy at all applied loads with increasing percentage of reinforcement when compared to the base alloy A332.

  12. Wear resistance and surface roughness of a newly devised adhesive patch for sealing smooth enamel surfaces.

    Science.gov (United States)

    Schmidlin, Patrick R; Göhring, Till N; Roos, Malgorzata; Zehnder, Matthias

    2006-01-01

    A laboratory study assessed the wear resistance and surface roughness after chemical and mechanical wear of a newly devised adhesive patch when used as a smooth surface sealant. Forty-eight enamel discs were prepared from bovine lower central incisors. Sixteen specimens were treated with one of two sealing options: the prototype of an adhesive patch or a flowable resin. Unsealed enamel served as the positive control. Wear and surface roughness was measured at baseline and after all the samples were immersed in saliva or lactic acid (n=8 per treatment group) for up to 21 days, during which the experimental and control enamel surfaces were exposed to 10 double-stroke toothbrush cycles per day. In saliva and lactic acid, the sealed specimens showed no significant wear during the observation period (p=0.1841). Only untreated specimens exposed to lactic acid showed a significant substance loss after 14 and 21 days (p=0.0186). The patch and flowable resin showed no differences in surface roughness values at respective times (p=0.385); whereas the surface roughness of the unsealed specimens in lactic acid was significantly higher (psealant for smooth enamel surfaces. PMID:16536202

  13. Comparison of the adhesion and wear resistance of the PVD coatings

    Directory of Open Access Journals (Sweden)

    M. Polok-Rubiniec

    2007-01-01

    Full Text Available Purpose: of the paper was comparison of the adhesion and antiwear properties of the multilayer TiN/(Ti,AlNPVD coatings deposited onto heat treated and plasma nitrited X37CrMoV5-1 type hot work tool steel.Design/methodology/approach: Hardness test of the investigated specimens from hot work steel in the heattreated state has been made using Rockwell method. The distribution of microhardness in the nitriding layermeasured using Vickers micro-hardness testing method. The evaluation of the adhesion of coatings to thesubstrate was made using the scratch test. Wear resistance tests with the pin-on-disc method were carried out onthe CSEM THT (High Temperature Tribometer device at the room temperature and at the temperature of 500˚C.The friction coefficient between the ball and disc was measured during the test.Findings: In case of the TiN/(Ti,AlN coating deposited onto the X37CrMoV5-1 nitrided hot work steel show avery good adhesion which has been revealed to the substrate material is comparison to the TiN/(Ti,AlN coatingdeposited onto heat treated hot work steel. Taking into account the results of measurements, one can state thatthe lowest wear at certain conditions in both room and elevated temperatures show TiN/(Ti,AlN deposited ontoplasma nitrited X37CrMo V5-1 hot work steel type.Practical implications: The investigation results will provide useful information to applying of the TiN/(Ti,AlNPVD coating for the improvement of wear resistance of tools made from hot work steels.Originality/value: The paper contributes to better understanding the wear resistance at the elevated temperatureto 500ºC of the multilayer TiN/(Ti,AlN PVD coating deposited onto heat treated and plasma nitrited hot worktool steel

  14. Carbide Precipitation Behavior and Wear Resistance of a Novel Roller Steel

    Science.gov (United States)

    Guo, Jing; Li, Qiang; Qu, Hongwei; Liu, Ligang; Yang, Qingxiang

    2013-06-01

    High speed steel, which contains more alloy elements, cannot be used to manufacture the forged work roll. Therefore, a novel roller steel was designed on the basis of W6Mo5Cr4V2 (M2) steel. In this study, the carbide precipitation behavior and wear resistance of the novel roller steel were investigated. The Fe-C isopleths were calculated by Thermo-Calc to determine the carbide types, which were precipitated at different temperatures. The phase transformation temperatures were measured by differential scanning calorimeter and then the characteristic temperatures were designed. The phase structures quenched from the characteristic temperatures were measured by x-ray diffraction and transmission electron microscopy. The typical microstructures were observed by field emission scanning electron microscopy with Energy Disperse Spectroscopy. The hardness and wear resistance of the novel roller steel were measured. The results show that the precipitation temperatures of austenite, MC, M6C, M23C6, and ferrite are 1360, 1340, 1230, 926, and 843 °C respectively. When the specimen is quenched from 1300 °C, only MC precipitates from the matrix. At 1220 °C, MC and M2C precipitate. At 1150 °C, all of MC, M2C and M6C precipitate. Relationship between mass fraction of different phases and temperature were also simulated by Thermo-Calc. The hardness of the novel roller steel is a little lower than that of M2 steel, however, the wear resistance of the novel roller steel is a little higher than that of M2 steel with the increase of wear time.

  15. Friction and wear behavior of electrodeposited amorphous Fe-Co-W alloy deposits

    Institute of Scientific and Technical Information of China (English)

    何凤姣; 雷惊天; 陆欣; 黄宇宁

    2004-01-01

    The microstructures, friction and wear behavior under dry sliding condition of electrodeposited amorphous Fe-Co-W alloy deposits heat treated at different temperatures were studied. A comparative study of hard chrome deposit under the same testing condition was also made. The experimental results show that the hardness and wear resistance of amorphous Fe-Co-W alloy deposits are improved with the increasing of heat treatment temperature, and reach the maximum value at 800 ℃, then decrease above 800 ℃. Under 40 N load, the wear resistance properties of the alloy deposits heat treated at 800 ℃ are superior to those of hard chrome deposit. The main wear mechanisms of amorphous Fe-Co-W alloy deposits heat treated below 600 ℃ are peeling, plastic and flowing deformation; when the deposits are heat treated above 700 ℃, they are plastic and flowing deformation. While the main wear mechanisms of hard chrome are abrasive wear, fatigue and peeling.

  16. Improvement of the wear resistance of electroplated Au-Ni coatings by Zr ion bombardment of Ni-B sublayer

    Energy Technology Data Exchange (ETDEWEB)

    Lyazgin, Alexander, E-mail: lyazgin@list.ru; Shugurov, Artur, E-mail: shugurov@ispms.tsc.ru; Sergeev, Viktor, E-mail: retc@ispms.tsc.ru; Neufeld, Vasily [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Panin, Alexey, E-mail: pav@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Shesterikov, Evgeny, E-mail: evgen@micran.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Research and Production Company “Micran”, Tomsk, 634034 (Russian Federation)

    2015-10-27

    The effect of bombardment of the Ni-B sublayer by Zr ion beams on the surface morphology and tribomechanical properties of Au-Ni coatings was investigated. It was found that the treatment has no significant effect on the surface roughness and grain size of the Au-Ni coatings, while it provides essential reducing of their friction coefficient and improvement of wear resistance. It is shown that increased wear resistance of these coatings was caused by their strain hardening resulted from localization of plastic strain. The optimal Zr fluence were determined that provide the maximum reduction of linear wear of the coatings.

  17. The Tribological Performance of Hardfaced/ Thermal Sprayed Coatings for Increasing the Wear Resistance of Ventilation Mill Working Parts

    Directory of Open Access Journals (Sweden)

    A. Vencl

    2015-09-01

    Full Text Available During the coal pulverizing, the working parts of the ventilation mill are being worn by the sand particles. For this reason, the working parts are usually protected with materials resistant to wear (hardfaced/thermal sprayed coatings. The aim of this study was to evaluate the tribological performance of four different types of coatings as candidates for wear protection of the mill’s working parts. The coatings were produced by using the filler materials with the following nominal chemical composition: NiFeBSi-WC, NiCrBSiC, FeCrCTiSi, and FeCrNiCSiBMn, and by using the plasma arc welding and flame and electric arc spraying processes. The results showed that Ni-based coatings exhibited higher wear resistance than Fe-based coatings. The highest wear resistance showed coating produced by using the NiFeBSi-WC filler material and plasma transferred arc welding deposition process. The hardness was not the only characteristic that affected the wear resistance. In this context, the wear rate of NiFeBSi-WC coating was not in correlation with its hardness, in contrast to other coatings. The different wear performance of NiFeBSi-WC coating was attributed to the different type and morphological features of the reinforcing particles (WC.

  18. A nanometric cushion for enhancing scratch and wear resistance of hard films.

    Science.gov (United States)

    Gotlib-Vainshtein, Katya; Girshevitz, Olga; Sukenik, Chaim N; Barlam, David; Cohen, Sidney R

    2014-01-01

    Scratch resistance and friction are core properties which define the tribological characteristics of materials. Attempts to optimize these quantities at solid surfaces are the subject of intense technological interest. The capability to modulate these surface properties while preserving both the bulk properties of the materials and a well-defined, constant chemical composition of the surface is particularly attractive. We report herein the use of a soft, flexible underlayer to control the scratch resistance of oxide surfaces. Titania films of several nm thickness are coated onto substrates of silicon, kapton, polycarbonate, and polydimethylsiloxane (PDMS). The scratch resistance measured by scanning force microscopy is found to be substrate dependent, diminishing in the order PDMS, kapton/polycarbonate, Si/SiO2. Furthermore, when PDMS is applied as an intermediate layer between a harder substrate and titania, marked improvement in the scratch resistance is achieved. This is shown by quantitative wear tests for silicon or kapton, by coating these substrates with PDMS which is subsequently capped by a titania layer, resulting in enhanced scratch/wear resistance. The physical basis of this effect is explored by means of Finite Element Analysis, and we suggest a model for friction reduction based on the "cushioning effect" of a soft intermediate layer.

  19. Development of New Wear-Resistant Surface Coating at Elevated Temperature

    Institute of Scientific and Technical Information of China (English)

    LI Shang-ping; FENG Di; LUO He-li; ZHANG Xi-e; CAO Xu

    2006-01-01

    Because of good oxidation resistance at high temperature and excellent mechanical properties of Ni3Al and high hot hardness, and good oxidation resistance of chromium carbide, chromium carbide particle reinforced Ni3Al matrix composite would possess excellent wear resistance at elevated temperature. Cr3C2-NiAl-Ni welding wire was produced by pressureless sintering process in vacuum. When the welding wire was welded on the surface of carbon steel, under the action of the physical heat of arc, NiAl reacted with nickel to form Ni3Al and carbide particle reinforced Ni3Al matrix composite was formed on the welding layers. Cr3C2 was dissolved during welding and dispersed Cr7C3 was formed, which strengthened the Ni3Al matrix significantly. The Cr7C3-Ni3Al interface was broadened, and a zone of interdiffusion and a new phase M23C6 were formed, indicating that a good bond has been formed. The hardness of Cr7C3/Ni3Al composite at room and elevated temperatures is much higher than that of stellite alloys. In addition, Cr7C3/Ni3Al composite possesses better high temperature oxidation resistance than stellite 12 alloy. So Cr7C3/ Ni3Al composite can become an attractive potential candidate for elevated temperature wear-resistant surface material.

  20. A nanometric cushion for enhancing scratch and wear resistance of hard films

    Directory of Open Access Journals (Sweden)

    Katya Gotlib-Vainshtein

    2014-07-01

    Full Text Available Scratch resistance and friction are core properties which define the tribological characteristics of materials. Attempts to optimize these quantities at solid surfaces are the subject of intense technological interest. The capability to modulate these surface properties while preserving both the bulk properties of the materials and a well-defined, constant chemical composition of the surface is particularly attractive. We report herein the use of a soft, flexible underlayer to control the scratch resistance of oxide surfaces. Titania films of several nm thickness are coated onto substrates of silicon, kapton, polycarbonate, and polydimethylsiloxane (PDMS. The scratch resistance measured by scanning force microscopy is found to be substrate dependent, diminishing in the order PDMS, kapton/polycarbonate, Si/SiO2. Furthermore, when PDMS is applied as an intermediate layer between a harder substrate and titania, marked improvement in the scratch resistance is achieved. This is shown by quantitative wear tests for silicon or kapton, by coating these substrates with PDMS which is subsequently capped by a titania layer, resulting in enhanced scratch/wear resistance. The physical basis of this effect is explored by means of Finite Element Analysis, and we suggest a model for friction reduction based on the "cushioning effect” of a soft intermediate layer.

  1. Transparent, superhydrophobic, and wear-resistant surfaces using deep reactive ion etching on PDMS substrates.

    Science.gov (United States)

    Ebert, Daniel; Bhushan, Bharat

    2016-11-01

    Surfaces that simultaneously exhibit superhydrophobicity, low contact angle hysteresis, and high transmission of visible light are of interest for many applications, such as optical devices, solar panels, and self-cleaning windows. Superhydrophobicity could also find use in medical devices where antifouling characteristics are desirable. These applications also typically require mechanical wear resistance. The fabrication of such surfaces is challenging due to the competing goals of superhydrophobicity and transmittance in terms of the required degree of surface roughness. In this study, deep reactive ion etching (DRIE) was used to create rough surfaces on PDMS substrates using a O2/CF4 plasma. Surfaces then underwent an additional treatment with either octafluorocyclobutane (C4F8) plasma or vapor deposition of perfluorooctyltrichlorosilane (PFOTCS) following surface activation with O2 plasma. The effects of surface roughness and the additional surface modifications were examined with respect to the contact angle, contact angle hysteresis, and optical transmittance. To examine wear resistance, a sliding wear experiment was performed using an atomic force microscope (AFM). PMID:27454031

  2. Microstructure and Wear Resistance of Laser Clad Cobalt-Based Alloy/SiCp Composite Coating

    Institute of Scientific and Technical Information of China (English)

    LI Ming-xi; SI Song-hua; HE Yi-zhu; SUN Guo-xiong

    2004-01-01

    The SiCp (20 %) reinforced cobalt-based alloy composite coatings deposited by laser cladding on IF steel were introduced. The microstructure across the whole section of such coatings was examined using optical microscope, scanning electron microscope (SEM) and X-ray diffractometer (XRD), and the wear resistance of the coatings was measured by MM-200 type wear testing machine. The results show that the SiCp is completely dissolved during laser cladding and the primary phase in the coatings is γ-Co. The other phases, such as Si2W, CoWSi, Cr3Si and CoSi2, are formed by carbon, silicon reacting with other elements existing in the melting pool. There are various crystallization morphologies in different zones, such as planar crystallization at the interface, followed by cellular and dendrite crystallization from interface to the surface. The direction of solidification changes from one direction perpendicular to interface to multi-directions at the central and upper regions of the clad. The wear resistance of the clad is improved by adding SiCp.

  3. Transparent, superhydrophobic, and wear-resistant surfaces using deep reactive ion etching on PDMS substrates.

    Science.gov (United States)

    Ebert, Daniel; Bhushan, Bharat

    2016-11-01

    Surfaces that simultaneously exhibit superhydrophobicity, low contact angle hysteresis, and high transmission of visible light are of interest for many applications, such as optical devices, solar panels, and self-cleaning windows. Superhydrophobicity could also find use in medical devices where antifouling characteristics are desirable. These applications also typically require mechanical wear resistance. The fabrication of such surfaces is challenging due to the competing goals of superhydrophobicity and transmittance in terms of the required degree of surface roughness. In this study, deep reactive ion etching (DRIE) was used to create rough surfaces on PDMS substrates using a O2/CF4 plasma. Surfaces then underwent an additional treatment with either octafluorocyclobutane (C4F8) plasma or vapor deposition of perfluorooctyltrichlorosilane (PFOTCS) following surface activation with O2 plasma. The effects of surface roughness and the additional surface modifications were examined with respect to the contact angle, contact angle hysteresis, and optical transmittance. To examine wear resistance, a sliding wear experiment was performed using an atomic force microscope (AFM).

  4. Highly wear-resistant and biocompatible carbon nanocomposite coatings for dental implants.

    Science.gov (United States)

    Penkov, Oleksiy V; Pukha, Vladimir E; Starikova, Svetlana L; Khadem, Mahdi; Starikov, Vadym V; Maleev, Maxim V; Kim, Dae-Eun

    2016-09-01

    Diamond-like carbon coatings are increasingly used as wear-protective coatings for dental implants, artificial joints, etc. Despite their advantages, they may have several weak points such as high internal stress, poor adhesive properties or high sensitivity to ambient conditions. These weak points could be overcome in the case of a new carbon nanocomposite coating (CNC) deposited by using a C60 ion beam on a Co/Cr alloy. The structure of the coatings was investigated by Raman and XPS spectroscopy. The wear resistance was assessed by using a reciprocating tribotester under the loads up to 0.4 N in both dry and wet sliding conditions. Biocompatibility of the dental implants was tested in vivo on rabbits. Biocompatibility, bioactivity and mechanical durability of the CNC deposited on a Co/Cr alloy were investigated and compared with those of bulk Co/Cr and Ti alloys. The wear resistance of the CNC was found to be 250-650 fold higher compared to the Co/Cr and Ti alloys. Also, the CNC demonstrated much better biological properties with respect to formation of new tissues and absence of negative morphological parameters such as necrosis and demineralization. Development of the CNC is expected to aid in significant improvement of lifetime and quality of implants for dental applications. PMID:27336185

  5. Development of wear-resistant ceramic coatings for diesel engine components

    Energy Technology Data Exchange (ETDEWEB)

    Naylor, M.G.S. (Cummins Engine Co., Inc., Columbus, IN (United States))

    1992-06-01

    The tribological properties of a variety of advanced coating materials have been evaluated under conditions which simulate the piston ring -- cylinder liner environment near top ring reversal in a heavy duty diesel engine. Coated ring'' samples were tested against a conventional pearlitic grey cast iron liner material using a high temperature reciprocating wear test rig. Tests were run with a fresh CE/SF 15W40lubricant at 200 and 350{degrees}C, with a high-soot, engine-tested oil at 200{degrees}C and with no lubrication at 200{degrees}C. For lowest wear under boundary lubricated conditions, the most promising candidates to emerge from this study were high velocity oxy-fuel (HVOF) Cr{sub 3} C{sub 2} - 20% NiCr and WC - 12% Co cermets, low temperature arc vapor deposited (LTAVD) CrN and plasma sprayed chromium oxides. Also,plasma sprayed Cr{sub 2}O{sub 3} and A1{sub 2}O{sub 3}-ZrO{sub 2} materials were found to give excellent wear resistance in unlubricated tests and at extremely high temperatures (450{degrees}C) with a syntheticoil. All of these materials would offer substantial wear reductions compared to the conventional electroplated hard chromium ring facing and thermally sprayed metallic coatings, especially at high temperatures and with high-soot oils subjected to degradation in diesel environments. The LTAVD CrN coating provided the lowest lubricated wear rates of all the materials evaluated, but may be too thin (4 {mu}m) for use as a top ring facing. Most of the coatings evaluated showed higher wear rates with high-soot, engine-tested oil than with fresh oil, with increases of more than a factor of ten in some cases. Generally, metallic materials were found to be much more sensitive to soot/oil degradation than ceramic and cermet coatings. Thus, decreased soot sensitivity'' is a significant driving force for utilizing ceramic or cermet coatings in diesel engine wear applications.

  6. Wear-resistance and anti-scuffing of multi-arc ion plating molybdenum films

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-dou; XU Bin-shi; LIU Jia-jun; ZHUANG Da-ming

    2004-01-01

    The multi-arc ion plating technology was employed to prepare the molybdenum films with thickness of 3 μm on the AISI 1045 steel. The wear and scuffing tests were carried out on the ball-on-disc tester. AFM and SEM equipped with EDS were adopted to observe and analyze the morphologies and element compositions of surface,cross-section and worn scar of the Mo film. The phase structure was studied by XRD and the bonding strength between Mo film and substrate was measured by scratching tester. The tribological experiments show that the Mo film possesses a good wear-resistance and an excellent anti-scuffing property. The failure mechanism of Mo film under extreme condition is flaking off.

  7. The Effect of Shielding Gas Composition on Microstructure and Abrasive Wear Resistance Fabricated with PTA Alloying Technique

    Directory of Open Access Journals (Sweden)

    Çay V.V.

    2013-12-01

    Full Text Available Powierzchnie stalowe SAE 1020 były oddzielnie stopowane z wcześniej nałożonymi proszkami wysokowęglowego żelazo- chromu (FeCr, żelazo-molibdenu (FeMo i żelazo-tytanu (FeTi za pomocą techniki PTA. Dzięki zastosowaniu trzech różnych typów gazu osłonowego w trakcie procesu wytwarzania stopu, badano wpływ modyfikacji składu gazu osłonowego na mikro- strukturę, twardość i odporność na ścieranie próbek. Najbardziej jednorodną mikrostrukturę i najwyższą odporność na ścieranie otrzymuje się w środowisku gazowym, które zawiera 3% H2. Zwiększenie zawartości H2 do 5% w składzie gazu osłonowego spowodowało powstanie luk i porów w mikrostrukturze oraz spadek odporności na ścieranie. Badania dyfrakcji rentgenowskiej próbek pozwoliły zidentyfikować roztwory stałe żelazo-molibdenu i żelazo-tytanu, ferryt, austenit i martenzyt jako pierwszą fazę w ich mikrostrukturze, oraz FeC. Cr7C3, G3C2, Fe3C, Fe7C3. MoC i TiC jako drugą fazę. W związku z tym stwierdzono, że zmiany w składu gazu osłonowego w procesie stopowania wpłynęły na mikrostrukturę próbek i właściwości ścierne.

  8. Investigations of the effects of particle properties on the wear resistance of the particle reinforced composites using a novel wear model

    Science.gov (United States)

    Prabhu, T. Ram

    2016-08-01

    A wear model is developed based on the discrete lattice spring-mass approach to study the effects of particle volume fraction, size, and stiffness on the wear resistance of particle reinforced composites. To study these effects, we have considered three volume fractions (10%, 20% and 30%), two sizes (10 × 10 and 4 × 4 sites), and two different stiffness of particles embedded in the matrix in a regular pattern. In this model, we have discretized the composite system (400 × 100 sites) into the lumped masses connected with interaction spring elements in two dimensions. The interaction elements are assumed as linear elastic and ideal plastic under applied forces. Each mass is connected to its first and second nearest neighbors by springs. The matrix and particles sites are differentiated by choosing the different stiffness values. The counter surface is simulated as a rigid body that moves on the composite material at a constant sliding speed along the horizontal direction. The governing equations are formed by equating the spring force between the pair of sites given by Hooke’s law plus external contact forces and the force due to the motion of the site given by the equation of motion. The equations are solved for the plastic strain accumulated in the springs using an explicit time stepping procedure based on a finite difference form of the above equations. If the total strain accumulated in the spring elements connected to a lump mass site exceeds the failure strain, the springs are considered to be broken, and the mass site is removed or worn away from the lattice and accounts as a wear loss. The model predicts that (i) increasing volume fraction, reducing particle size and increasing particle stiffness enhance the wear resistance of the particle reinforced composites, (ii) the particle stiffness is the most significant factor affecting the wear resistance of the composites, and (iii) the wear resistance reduced above the critical volume fraction (Vc), and Vc

  9. Dry Sliding Wear Behavior of a Novel 6351 Al-Al4SiC4 Composite

    Science.gov (United States)

    Mondal, Manas Kumar; Biswas, Koushik; Saha, Atanu; Maity, Joydeep

    2015-02-01

    In this research work the dry sliding wear behavior of 6351 Al alloy and 6351 Al based composites possessing varying amount of (2-7 vol.%) in situ Al4SiC4 reinforcement was investigated at low sliding speed (1 m/s) against a hardened EN 31 disk at different loads. In general, the wear mechanism involved adhesion and microcutting abrasion. Under selected loads (9.8 and 24.5 N), the overall wear resistance increased with increasing content of Al4SiC4 particles since particles stood tall against the process of wear. Besides, strain hardening of the matrix played an additional role to provide wear resistance. Therefore, the newly developed 6351Al-Al4SiC4 composite can be used as light weight wear resistance component in industry.

  10. Assessment of variations in wear test methodology.

    Science.gov (United States)

    Gouvêa, Cresus V D; Weig, Karin; Filho, Thales R M; Barros, Renata N

    2010-01-01

    The properties of composite resin for dental fillings were improved by development, but its weakness continues to be its wear strength. Several tests have been proposed to evaluate wear in composite resin materials. The aim of this study was to verify how polishing and the type of abrasive can influence the wear rate of composite resin. The test was carried out on two groups. In one group we employed an ormocer and a hybrid composite that was polished group the composite was polished with the same abrasive paper plus a 1 microm and 0.25 microm grit diamond paste. A three-body wear test was performed using the metal sphere of the wear test machine, the composite and an abrasive. A diamond paste and aluminum oxide dispersion were used as abrasive. Analysis of the results showed that there was no difference between polishing techniques, but revealed a difference between abrasives.

  11. Assessment of exposures and potential risks to the US adult population from wear (attrition and abrasion) of gold and ceramic dental restorations.

    Science.gov (United States)

    Richardson, G Mark; Clemow, Scott R; Peters, Rachel E; James, Kyle J; Siciliano, Steven D

    2016-01-01

    Little has been published on the chemical exposures and risks of dental restorative materials other than from dental amalgam and composite resins. Here we provide the first exposure and risk assessment for gold (Au) alloy and ceramic restorative materials. Based on the 2001-2004 US National Health and Nutrition Examination Survey (NHANES), we assessed the exposure of US adults to the components of Au alloy and ceramic dental restorations owing to dental material wear. Silver (Ag) is the most problematic component of Au alloy restorations, owing to a combination of toxicity and proportional composition. It was estimated that adults could possess an average of four tooth surfaces restored with Au alloy before exceeding, on average, the reference exposure level (REL) for Ag. Lithium (Li) is the most problematic component of dental ceramics. It was estimated that adults could possess an average of 15 tooth surfaces restored with ceramics before exceeding the REL for Li. Relative risks of chemical exposures from dental materials decrease in the following order: Amalgam>Au alloys>ceramics>composite resins. PMID:25805253

  12. 多元低合金耐磨锤头制造工艺%Manufacturing Process for Complex Low-alloyed Wear-resisting Hammers

    Institute of Scientific and Technical Information of China (English)

    李正伟; 李永堂; 曹建新; 贾璐

    2013-01-01

    锤头的耐磨性和工作寿命直接影响着破碎机的工作效率和生产成本,因此锤头要求有良好的力学性能、冲击韧性和耐磨性。在分析了锤头工况和失效机理的基础上,设计了多元低合金耐磨锤头材料的化学成分,提出了铸造工艺和热处理工艺,进行了工业试验,并对试件进行了检测分析,获得了满意的结果。%The operation efficiency and production cost of crusher were directly affected by the performance and service life of hammers .Therefore ,hammers were requested to have good mechanical properties ,impact toughness and abrasive resistance .Based on the analysis of working condition of the hammers and the failure mechanism ,the chemical composition of multi-element low-alloy wear-resistant material for hammers was designed ,the program of casting process and heat treatment process were proposed ,the industrial test was carried out ,and the satisfactory results were obtained .

  13. Development and Selection of Wear Resistant Materials for Hammer Crusher%破碎机锤头耐磨材料的研制与选择

    Institute of Scientific and Technical Information of China (English)

    毛静波

    2012-01-01

    分析了近年来国内外破碎机锤头耐磨材料的研究及应用情况,指出破碎机锤头材料普遍存在的问题:硬度和韧性偏低、耐磨性差,且容易断裂。着重介绍了大型破碎机超强高锰钢锤头、耐磨合金钢锤头、高韧性合金耐磨铸铁锤头的研制和使用效果。%The development and application of wear resistant materials for hammer crusher in recent years is analyzed. It is pointed out that the common problems of hammer crusher materials are lower hardness and toughness, bad abrasion resistant and easy to fracture. The manufacture and using effects of superhigh manganese steel, wearresistant alloy steel and high toughness abrasionresistant alloy cast iron hammers for large crusher are emphasized.

  14. Microstructure and wear resistance of the hypereutectic Fe-Cr-C alloy hardfacing metals with different La2O3 additives

    Science.gov (United States)

    Yang, Jian; Tian, Jianjun; Hao, Feifei; Dan, Ting; Ren, Xuejun; Yang, Yulin; Yang, Qingxiang

    2014-01-01

    Hardfacing (harden-surface-welding) metal of the hypereutectic Fe-Cr-C alloy with different La2O3 additives was developed. The microstructure of the hardfacing metal was observed by optical microscopy. The phase structure was determined by X-ray diffraction. The hardness and wear resistance of the hardfacing metal were measured by hardness tester and dry sand rubber wheel abrasive tester, respectively. The worn surface morphology was observed by field emission scanning electron microscope equipped with energy dispersive X-ray spectrometry. The solidification curve of the hardfacing metal and the relationship between the content of each phase and the temperature were calculated by thermodynamics software Thermo-Calc and Jmatpro, respectively. The results indicate that, with the increase of the La2O3 additives, the dimension of the primary M7C3 carbide in the hypereutectic Fe-Cr-C alloy hardfacing metal decreases gradually. When the La2O3 additive is 0.78 wt.%, it reaches minimum, which is 11.37 μm. The amount of M7C3 carbide (including the primary carbide and the eutectic carbide) decreases firstly then increases. The hardness of the hardfacing metal increases smally, while the wear resistance of it increases firstly then decreases and reaches the most excellent when the La2O3 additive is 0.78 wt.%. The formation temperature of M7C3 carbide is higher than that of austenite in the hypereutectic Fe-Cr-C alloy hardfacing metal. Austenite precipitated in the liquid phase can improve the precipitation rate of M7C3 carbide in a certain extent. As the temperature of the molten pool drops from 870 °C to 840 °C, γ-Fe transforms into α-Fe completely, so a large number of C atoms precipitate, which promotes the growth of the M7C3 carbide in short period.

  15. Effect of biomimetic coupling units' morphologies on rolling contact fatigue wear resistance of steel from machine tool rolling tracks

    Science.gov (United States)

    Yang, Wanshi; Zhou, Hong; Sun, Liang; Wang, Chuanwei; Chen, Zhikai

    2014-04-01

    The rolling contact fatigue wear resistance plays an important role on ensuring machining precision of machine tool using rolling tracks. Bio-inspired wearable surfaces with the alternated hardness were prepared on the specimen of steel material from machine tool rolling tracks by biomimetic coupling laser remelting method to imitate biological coupling principle. The microstructures and micromorphologies of bionic units in different sizes were characterized by optical microscope. The specimens with bionic units in different sizes and distributions were tested for rolling contact fatigue wear resistance. Combining the finite element analysis and the results of wear tests, a discussion on rolling contact fatigue wear was had. The specimens with bionic units had better rolling contact fatigue wear resistance than the untreated one, while the specimens with bionic units in the alternative depth's distributions present a better rolling contact fatigue wear resistance than the ones with bionic units in the single depth's distribution. It attributed to the alternative distribution made further improvement on the dispersion of depth of stress concentration.

  16. Effect of filler type on 3-body abrasion of dental composite

    Directory of Open Access Journals (Sweden)

    Yasini E.

    2005-06-01

    Full Text Available Statement of Problem: The relatively poor wear resistance of dental composite in stress bearing posterior situations has restricted wider clinical application of this restorative material. Purpose: The aim of this study was to evaluate the three body abrasive wear of a dental composite based on a new filler (leucite: KAl Si2O6 and to compare it with the wear resistance of a composite based on commonly used Aluminium – Barium Silicate filler. Materials and Methods: This research was an interventional study done in Iran polymer institute. Five specimens were considered in each group. All ceramic IPS Empress® (Ivoclar- Vivadent ingots based on leucite crystals were ball milled, passed through an 800 sieve and used as filler. Experimental composites were prepared by mixing the silane- treated fillers with monomers (BisGMA and TEGDMA. Camphorquinone and amine were used as photoinitiator system. Degree of conversion of the light-cured and post-cured composites was measured using FTIR spectroscopy. The prepared pastes were inserted into plexy-glass mold and light cured (700 mw/cm2, 40 s. Then for maximum degree of conversion specimens were post- cured (120ºC, 5 hours. Three body abrasion wear testing was performed using a wear machine with 50 rpm rotational movement. In this machine, pumice (150 meshes was used as the third body. Weight loss of specimens in each group was measured by balance after each 50 hours. After wear testing SEM examination was made specimens in each group. The data were analyzed and compared using ANOVA and Tukey HSD tests (P<0.05. Tetric Ceram was tested as commercial composite. Results: There were significantly differences between three body abrasive wear of composites. The ranking from lowest to highest was as follows: leucite composite (19% < Tetric Ceram (22% < glass composite (28%. leucite composite showed the highest wear resistance value, propably due to the crystalliniy and hardness of filler. Conclusion

  17. High Density Infrared (HDI) Transient Liquid Coatings for Improved Wear and Corrosion Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Ronald W. Smith

    2007-07-05

    This report documents a collaborative effort between Oak Ridge National Laboratory (ORNL), Materials Resources International and an industry team of participants to develop, evaluate and understand how high density infrared heating technology could be used to improve infiltrated carbide wear coatings and/or to densify sprayed coatings. The research included HDI fusion evaluations of infiltrated carbide suspensions such (BrazeCoat® S), composite suspensions with tool steel powders, thermally sprayed Ni-Cr- B-Si (self fluxing alloy) and nickel powder layers. The applied work developed practical HDI / transient liquid coating (TLC) procedures on test plates that demonstrated the ability to fuse carbide coatings for industrial applications such as agricultural blades, construction and mining vehicles. Fundamental studies helped create process models that led to improved process understanding and control. The coating of agricultural blades was demonstrated and showed the HDI process to have the ability to fuse industrial scale components. Sliding and brasive wear tests showed that high degree of wear resistance could be achieved with the addition of tool steel powders to carbide particulate composites.

  18. Scratch, wear and corrosion resistant organic inorganic hybrid materials for metals protection and barrier

    International Nuclear Information System (INIS)

    Highlights: • Polysiloxane coatings as protective barriers to delay erosion/corrosion of Fe 430 B metal substrates. • Methyl groups feature a very small steric hindrance and confer ductility to the Si–O–Si backbone. • Phenyl groups feature a larger steric hindrance, but they ensure stability and high chemical inertness. • Remarkable adhesion to the substrate, good scratch resistance and high wear endurance. • Innovative ways to design of long lasting protective barriers against corrosion and aggressive chemicals. - Abstract: Polysiloxanes are widely used as protective barriers to delay erosion/corrosion and increase chemical inertness of metal substrates. In the present work, a high molecular weight methyl phenyl polysiloxane resin was designed to manufacture a protective coating for Fe 430 B structural steel. Methyl groups feature very small steric hindrance and confer ductility to the Si–O–Si backbone of the organic inorganic hybrid resin, thus allowing the achievement of high thickness. Phenyl groups feature larger steric hindrance, but they ensure stability and high chemical inertness. Visual appearance and morphology of the coatings were studied by field emission scanning electron microscopy and contact gauge surface profilometry. Micro-mechanical response of the coatings was analyzed by instrumented progressive load scratch, while wear resistance by dry sliding linear reciprocating tribological tests. Lastly, chemical inertness and corrosion endurance of the coatings were evaluated by linear sweep voltammetry and chronoamperometry in aggressive acid environment. The resulting resins yielded protective materials, which feature remarkable adhesion to the substrate, good scratch resistance and high wear endurance, thus laying the foundations to manufacture long lasting protective barriers against corrosion and, more in general, against aggressive chemicals

  19. Low friction and wear resistant coating systems on Ti6Al4V alloy

    Directory of Open Access Journals (Sweden)

    B.G. Wendler

    2008-02-01

    Full Text Available Purpose: Development of an original multiplex hybrid treatment of Ti6Al4V alloy: diffusion hardening+intermediate hard gradient TiCxNy layer with use of continuous CAE+top low friction and wear resistant hard amorphous a-C layer with use of pulsed CAE method.Design/methodology/approach: Ti6Al4V substrates were diffusion hardened with interstitial O or N atoms with use of glow discharge plasma in the atmosphere Ar+O2 or Ar+N2. Next they were deposited with a hard gradient TiCxNy layer and with a hard amorphous a-C coating as the top one. The morphology, microstructure, chemical and phase composition, chemical bonds, microhardness and tribological properties during dry friction of the alloy after multiplex treatment have been investigated with use of SEM, EDS, XRD, XPS, Vickers diamond indenter and ball-on-plate test.Findings: An important increase of hardness of the near surface zone of the Ti6Al4V alloy has been achieved (from ~350VHN to ~1000 VHN, good adhesion between the gradient TiCxNy coating and the Ti6Al4V substrate as well as an important decrease of dry friction coefficient (down to ~0.15 and a substantial increase of the resistance to wear (up to two orders of magnitude in comparison with non treated Ti alloy.Research limitations/implications: The research will be continued on greater number of specimens and against other counterbodies.Practical implications: It looks like that the Ti alloys can be used as mobile parts of machines due to high resistance to wear and low friction.Originality/value: A novel original multiplex hybrid treatment of Ti alloys has been developed at the Lodz University of Technology.

  20. Wearing Quality of Austenitic, Duplex Cast Steel, Gray and Spheroidal Graphite Iron

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2012-04-01

    Full Text Available The current work presents the research results of abrasion wear and adhesive wear at rubbing and liquid friction of new austenitic, austenitic-ferritic (“duplex” cast steel and gray cast iron EN-GJL-250, spheroidal graphite iron EN-GJS-600-3, pearlitic with ledeburitic carbides and spheroidal graphite iron with ledeburitic carbides with a microstructure of the metal matrix: pearlitic, upper bainite, mixture of upper and lower bainite, martensitic with austenite, pearlitic-martensitic-bainitic-ausferritic obtained in the raw state. The wearing quality test was carried out on a specially designed and made bench. Resistance to abrasion wear was tested using sand paper P40. Resistance to adhesive wear was tested in interaction with steel C55 normalized, hardened and sulfonitrided. The liquid friction was obtained using CASTROL oil. It was stated that austenitic cast steel and “duplex” are characterized by a similar value of abrasion wear and adhesive wear at rubbing friction. The smallest decrease in mass was shown by the cast steel in interaction with the sulfonitrided steel C55. Austenitic cast steel and “duplex��� in different combinations of friction pairs have a higher wear quality than gray cast iron EN-GJL- 250 and spheroidal graphite iron EN-GJS-600-3. Austenitic cast steel and “duplex” are characterized by a lower wearing quality than the spheroidal graphite iron with bainitic-martensitic microstructure. In the adhesive wear test using CASTROL oil the tested cast steels and cast irons showed a small mass decrease within the range of 1÷2 mg.

  1. Low friction and wear resistant coating systems on Ti6Al4V alloy

    OpenAIRE

    Wendler, B.G.; W. Pawlak

    2008-01-01

    Purpose: Development of an original multiplex hybrid treatment of Ti6Al4V alloy: diffusion hardening+intermediate hard gradient TiCxNy layer with use of continuous CAE+top low friction and wear resistant hard amorphous a-C layer with use of pulsed CAE method.Design/methodology/approach: Ti6Al4V substrates were diffusion hardened with interstitial O or N atoms with use of glow discharge plasma in the atmosphere Ar+O2 or Ar+N2. Next they were deposited with a hard gradient TiCxNy layer and with...

  2. Саvitation-erosion wear resistance composite electrolytic coatings in neutral medium

    OpenAIRE

    Білик, Юрій Мирославович; Стечишин, Мирослав Степанович; Мартинюк, Андрій Віталійович

    2013-01-01

    The work presented technology of wear-resistant composite electrolytic coatings on nickel base. Composite coatings containing a filler consisting of silicon carbide powders of different factions nanopowders of up to 50 nm, 5 (M5) mk, 20/28 mk, 40/50 mk and amorphous B  particle size of about 1 micron to form during the subsequent heat treatment of solid solutions. Accordingly, in the accepted designation: Ni-SiCnano; Ni-SiC5; Ni-SiC28; Ni-SiC50.To form the CEP was established setting that let...

  3. Spark anodizing of β-Ti alloy for wear-resistant coating

    OpenAIRE

    Habazaki, H.; Onodera, T.; Fushimi, K; Konno, H.; Toyotake, K.

    2007-01-01

    Spark anodizing of a bcc solid solution Ti–15% V–3% Al–3% Cr–3% Sn alloy has been performed in an alkaline electrolyte containing aluminate and phosphate using dc-biased ac anodizing to form a wear-resistant coating on the alloy. The coating consists mainly of Al2TiO5, with rutile and γ-Al2O3 being present as minor oxide phases. Depth profiles of the coating, examined by glow discharge optical emission spectroscopy, have revealed that aluminium species, highly enriched in the coating, distrib...

  4. Comparison of the structure, properties and wear resistance of the TiN PVD coatings

    OpenAIRE

    M. Polok-Rubiniec; L.A. Dobrzański; K. Lukaszkowicz; M. Adamiak

    2008-01-01

    Purpose: The aim of the paper was to compare the structure, mechanical propeties, adhesion and wear resistance of the monolayer TiN PVD coatings deposited onto heat treated and plasma nitrided hot work tool steel X37CrMoV5-1.Design/methodology/approach: The microhardness tests of the PVD coatings were made with use of a dynamic ultra-microhardness tester. The topography of the surface and the structure of the PVD coatings was observed with use of scanning electron microscopy.The evaluation of...

  5. Estimation of Wear Resistance in Acid Solution of Dental Ceramics by Neural Network

    OpenAIRE

    Lisjak, D.; Čurković, L.; Živko-Babić, J.; Jakovac, M.

    2002-01-01

    It is known that exposure to acid causes damage to the glass surface. The aim of this study was to examine wear resistance, measuring the mass change of dental ceramics after contact with 10-3 mol dm-3 HCl at temperature of 50°C. Four samples of dental ceramics were analyzed: feldspatic ceramic, hydrothermal ceramic, glass ceramic for staining and glass ceramic for layering. The mass concentrations of eluted Na+, K+ and Ca2+ were determined by ion chromatography (IC) and mass concentration...

  6. Diode laser surface modification of Ti6Al4V alloy to improve erosion wear resistance

    OpenAIRE

    A. Lisiecki; Klimpel, A

    2008-01-01

    Purpose: Purpose of this paper : The purpose of the study was to develop new laser alloying technologyproviding high erosion wear resistance of the working surfaces of blades made of titanium alloy Ti6Al4V.Design/methodology/approach: High power diode laser HPDL with a rectangular laser beam spot ofmultimode and uniform intensity of laser radiation was applied in the process of laser surface modification of thetitanium alloy Ti6Al4V. During the laser surface remelting and alloying of the tita...

  7. Effects of heat treatment on properties of multi-element low alloy wear-resistant steel

    Directory of Open Access Journals (Sweden)

    SONG Xu-ding

    2007-02-01

    Full Text Available The paper has studied the mechanical properties and heat treatment effects on multi-element low alloy wear-resistant steel (MLAWS used as a material for the liner of rolling mill torii. The results show that when quenched at 900-920℃ and tempered at 350-370℃, the MLAWS has achieved hardness above 60 HRC, tensile strength greater than 1 600 MPa, impact toughness higher than 18J/cm2 and fracture toughness greater than 37 MPa

  8. Microstructure and wear resistance of high chromium cast iron containing niobium

    OpenAIRE

    Zhang Zhiguo; Yang Chengkai; Zhang Peng

    2014-01-01

    In the paper, the effect of niobium addition on the microstructure, mechanical properties and wear resistance of high chromium cast iron has been studied. The results show that the microstructure of the heat-treated alloys is composed of M7C3 and M23C6 types primary carbide, eutectic carbide, secondary carbide and a matrix of martensite and retained austenite. NbC particles appear both inside and on the edge of the primary carbides. The hardness of the studied alloys maintains around 66 HRC, ...

  9. Reciprocating wear resistance of Al–SiC nano-composite fabricated by accumulative roll bonding process

    International Nuclear Information System (INIS)

    Highlights: • The behaviour of Al–SiC nano-composite was characterized using a pin-on-flat wear-testing machine. • Micro-hardness and reciprocating wear test were carried out. • Morphology of the worn surfaces of this nano-composite was examined. • The wear resistance of this composite increased by increasing the cycle number. - Abstract: In this work the wear behaviour of Al–SiC nano-composite, produced by accumulative roll bonding process was characterized using a pin-on-flat wear-testing machine. Hence various tests such as micro-hardness and reciprocating wear test were carried out. Morphology of the worn surfaces of this nano-composite was examined using scanning electron microscope. Experimental results have been revealed that the wear resistance of this nano-composite increased by increasing the cycle number due to SiC particles act as a solid lubricant. Also by increasing the cycle’s number the size of SiC particle becomes less than 100 nm and nano-composite was formed

  10. Deposition of a-C:H films on UHMWPE substrate and its wear-resistance

    Science.gov (United States)

    Xie, Dong; Liu, Hengjun; Deng, Xingrui; Leng, Y. X.; Huang, Nan

    2009-10-01

    In prosthetic hip replacements, ultrahigh molecular weight polyethylene (UHMWPE) wear debris is identified as the main factor limiting the lifetime of the artificial joints. Especially UHMWPE debris from the joint can induce tissue reactions and bone resorption that may lead to the joint loosening. The diamond like carbon (DLC) film has attracted a great deal of interest in recent years mainly because of its excellent tribological property, biocompatibility and chemically inert property. In order to improve the wear-resistance of UHMWPE, a-C:H films were deposited on UHMWPE substrate by electron cyclotron resonance microwave plasma chemical vapor deposition (ECR-PECVD) technology. During deposition, the working gases were argon and acetylene, the microwave power was set to 800 W, the biased pulsed voltage was set to -200 V (frequency 15 kHz, duty ratio 20%), the pressure in vacuum chamber was set to 0.5 Pa, and the process time was 60 min. The films were analysed by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, nano-indentation, anti-scratch and wear test. The results showed that a typical amorphous hydrogenated carbon (a-C:H) film was successfully deposited on UHMWPE with thickness up to 2 μm. The nano-hardness of the UHMWPE coated with a-C:H films, measured at an applied load of 200 μN, was increased from 10 MPa (untreated UHMWPE) to 139 MPa. The wear test was carried out using a ball (Ø 6 mm, SiC) on disk tribometer with an applied load of 1 N for 10000 cycles, and the results showed a reduction of worn cross-sectional area from 193 μm 2 of untreated UHMWPE to 26 μm 2 of DLC coated sample. In addition the influence of argon/acetylene gas flow ratio on the growth of a-C:H films was studied.

  11. Improvement on wear resistance property of polyurethane film by compositing plasma-treated multi-walled carbon nanotubes

    Science.gov (United States)

    Ogawa, Daisuke; Nakamura, Keiji

    2016-01-01

    We investigated the effect of plasma-treated multi-walled carbon nanotubes (CNTs) that are composited into a polyurethane (PU) film. In this journal article, we especially focused on one of mechanical properties of PU film, the wear resistance, to find how the plasma-treated CNTs give contributions to improve the resistance. Our experimental results showed that plasma-treated CNTs enhanced the wear resistance, in particular, when the CNTs treated with the plasma that was made of nitrogen-oxygen mixture gas. Then, we made measurements with infrared absorption spectroscopy to find the possible causes of the improvement. The measurement showed that the surface of the CNTs treated with nitrogen-oxygen plasma had an indication of isocyanate group, which generally hardens PU film. The plasma likely attached the functional group on CNTs, and then the CNTs added extra wear resistance of a polyurethane film.

  12. Effect of Contact Temperature Rise During Sliding on the Wear Resistance of TiNi Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    S.K. Roy Chowdhury

    2013-03-01

    Full Text Available The high wear resistance of TiNi shape memory alloys has generally been attributed to its pseudoelastic nature. In the present work the hardening effect due to its phase transformation from martensite to austenite due to frictional heating during sliding has been considered. Based on existing constitutive models that represent the experimental results of TiNi shape memory alloys a theoretical model of the dependence of wear-resistance on the contact temperature rise has been developed. The analysis was further extended to include the operating and surface roughness parameters. The model essentially indicates that for these alloys wear decreases with the rise in contact temperature over a wide range of load, speed and surface roughness combination during sliding. This means that the wear resistance of these alloys results from the very cause that is normally responsible for the increased wear and seizure of common engineering materials. Preliminary wear tests were carried out with TiNi alloys at varying ambient temperature and varying load-speed combinations and the results agree well with the theoretical predictions.

  13. A review of micro-scale abrasion testing

    International Nuclear Information System (INIS)

    Micro-scale abrasion (commonly referred to as 'ball cratering') is a small-scale tribological test method which can be operated on a desktop. It offers the possibility of providing a quick, cheap, localized abrasion test that can be used with small samples. In principle its operation is simple, but in practice there are issues with wear scar measurement, wear mode and its applicability to a wide variety of monolithic materials and coatings. (topical review)

  14. Research on Wear Behavior of ATC Cermet Material

    Institute of Scientific and Technical Information of China (English)

    ZHULiu; LINGGuo-ping; LIJian; WANGYou-wen

    2004-01-01

    By electroless chemical deposition process, a layer of metal cobalt film was coated on the surface of nano-ceramic powders of Al2O3 and TiC. The mixture of the two kinds of Co-coated power (about 70wt.% Al2O3-Co+30wt.%TiC-Co) was hot-pressed into ATC (Al2O3-TiC-Co8wt% ) cermet samples. The wear test was carried out under dry sliding wear condition by the pin-on-disk rig. The volume-loss of the samples in three sliding pairs, ATC/Steel, ATC/SiC and ATC/artificial diamond (AD) were investigated. The wear morphologies were examined by SEM. The wear-resistance between ATC cermet and Co-cemented WC were compared. The results show that the effect of fracture toughness is better than that of hardness to the wear resistance of high hardness materials. The wear mechanisms of ATC cermet samples were found that abrasion predominated in the wear process. The wear surface of ATC cermet samples became smoother with fine asperities spalling off and the volume loss was decreased.

  15. Research on Wear Behavior of ATC Cermet Material

    Institute of Scientific and Technical Information of China (English)

    ZHU Liu; LING Guo-ping; LI Jian; WANG You-wen

    2004-01-01

    By electroless chemical deposition process, a layer of metal cobalt film was coated on the surface of nano-ceramic powders of Al203 and TiC. The mixture of the two kinds of Co-coated power (about 70wt.%Al2O3-Co+30wt.%TiC-Co) was hot-pressed into ATC (Al2O3-TiC-Co8wt%) cermet samples. The wear test was carried out under dry sliding wear condition by the pin-on-disk rig. The volume-loss of the samples in three sliding pairs,ATC/Steel, ATC/SiC and ATC/artificial diamond (AD) were investigated. The wear morphologies were examined by SEM.The wear-resistance between ATC cermet and Co-cemented WC were compared. The results show that the effect of fracture toughness is better than that of hardness to the wear resistance of high hardness materials. The wear mechanisms of ATC cermet samples were found that abrasion predominated in the wear process. The wear surface of ATC cermet samples became smoother with fine asperities spalling off and the volume loss was decreased.

  16. Impact of toothpaste slurry abrasivity and toothbrush filament stiffness on abrasion of eroded enamel - an in vitro study

    OpenAIRE

    Wiegand, Annette; Schwerzmann, Martina; Sener, Beatrice; Magalhães, Ana C.; Roos, Malgorzata; Ziebolz, Dirk; Imfeld, Thomas; Attin, Thomas

    2008-01-01

    OBJECTIVE: Toothbrush abrasion is significant in the development of tooth wear, particularly when combined with erosion. This in vitro study aimed to evaluate the impact of toothpaste slurry abrasivity and toothbrush filament stiffness on abrasion of eroded enamel. MATERIAL AND METHODS: Eroded enamel samples (hydrochloric acid, pH: 2.6, 15 s) were brushed with 40 strokes in an automatic brushing machine using manual toothbrushes with different filament stiffness (filament diameter: 0.15, 0.20...

  17. RESEARCH OF PROCESSES ON FORMATION AND TRIBOTECHNICAL PROPERTIES OF WEAR-RESISTANT COMPOSITE GAS THERMAL COATINGS BEING DISPERSIVELY STRENGTHENED BY SYNTHETIC DIAMONDS AND ELECTRO-CORUNDUM

    OpenAIRE

    O. S. Kobjakov; N. V. Spiridonov

    2011-01-01

    Formation processes, tribotechnical and wear-resistant properties of composite gas thermal coatings being dispersively strengthened by synthetic diamonds and electro-corundum are investigated in the paper.

  18. Effect of SiO2 on the Abrasion Resistance of E-coatings on Magnesium Alloy%SiO2对镁合金阴极电泳涂层耐磨性的影响

    Institute of Scientific and Technical Information of China (English)

    朱阮利; 张津; 高帅; 倪娜

    2015-01-01

    ABSTRACT:Objective To improve the abrasion resistance of organic coating on magnesium alloys. Methods In this paper, SiO2 powders were modified with KH450 silane and dispersed in electrophoretic paint. The surface of magnesium alloys was modified by KH460 silane,and then composite cathode electrophoresis coatings were prepared on it. The pencil hardness test, friction and wear test, circle adhesion method,NMP ( n methyl pyrrolidone) test and Machu test were taken to value the hardness, wear resistance, adhesion, anti-swelling properties of NMP and corrosion resistance of electrophoresis cathode coatings, respectively. Their morphol-ogies were studied by SEM and optical microscopy ( OM) . Results The pencil hardness of the coating,which was prepared on the magnesium alloy modified with KH460, was improved from 4H to 5H by adding SiO2 powders and the corrosion resistance was also increased. And their adhesion and anti-swelling properties of NMP were still kept at 1 class and >120 h respectively. The original coating and the coating containing Nano SiO2 powder, both prepared on the magnesium alloy modified with KH460, had good wear resistance, and their ratios of wear scar depth and coating thickness were 0. 47 and 0. 475 respectively, their friction coefficients were lower than 0. 4. The coating prepared directly on magnesium alloy and the coating containing Micron SiO2 powder prepared on the magnesium alloy modified with KH460 had poor wear resistance, and their ratios of wear scar depth and coating thickness were 0. 665 and 0. 673 respectively, friction coefficients of them were higher than 0. 7. The mainly wear failure mechanism of the four coatings was fatigue failure. Conclusion The addition of SiO2 powder can improve the corrosion resistance and pencil hardness of coatings effectively, and did not decrease adhesion and anti-swelling properties of NMP. The pretreatment of magnesium alloy with silane and the addition of Nano SiO2 in the electrophoretic paint can

  19. RESEARCH ON CONTAMINANT WEAR OF DISTRIBUTOR OF THE SHEARER'S MAIN PUMP

    Institute of Scientific and Technical Information of China (English)

    汪茹; 荆元昌; 赵健

    1995-01-01

    Several damaged distributors of the shearer's main pump have been analyzed. Lubricated abrasive wear was found to be the cause of distributor failure. On the basis of selecting reasonably materials and surface strenthening methods of distributors, pump's function tests under the condition of contamination were performed with actual distributors. The results showed that wear resistance and contaminant wear lifetime of TIN coated high-speed steel W18Cr4V distributor is the best and TiN coating technology can be used in manufacturing of pump's distributor.

  20. Wear-Resistant Ultrahigh-Molecular-Weight Polyethylene-Based Nano- and Microcomposites for Implants

    Directory of Open Access Journals (Sweden)

    S. V. Panin

    2012-01-01

    Full Text Available The influence of modification by hydroxyapatite (HA nano- and microparticles on tribotechnical properties of ultrahigh-molecular-weight polyethylene (UHMWPE was investigated to develop polymer implants for endoprosthesis. It was shown that modification of UHMWPE by hydroxyapatite nanoparticles within range of 0.1–0.5 wt.% results in increase of wear resistance at dry sliding by 3 times. On the other hand adding of 20 wt.% of micron size HA gives rise to the same effect. The effect of increasing wear resistance is not substantially changed at surface treatment of the nano- and microcomposites by N+ ion beams as compared with nonirradiated blends. Preliminary joint mechanical activation of UHMWPE powder and fillers results in more uniform distribution of nanofillers in the matrix and, as a result, formation of more ordered structure. Structure within bulk material and surface layers was studied by means of optical profilometry, scanning electron microscopy, infrared spectroscopy, and differential scanning calorimetry. It is shown that adding of hydroxyapatite nanoparticles and high-energy surface treatment of the composite by N+ ion implantation improve tribotechnical properties of UHMWPE due to formation of chemical bonds in the composite (crosslinking and ordering of permolecular structure.

  1. Microstructure and Wear Resistance of Chromium Carbide Coating IN SITU Synthesized by VEB

    Science.gov (United States)

    Lu, Binfeng; Li, Liping; Lu, Fenggui; Tang, Xinhua

    2014-08-01

    In this paper, (Cr, Fe)7C3(M7C3)/γ-Fe composite layer has been in situ fabricated on a low carbon steel surface by vacuum electron beam irradiation (VEB). Three kinds of powder mixtures were placed on a low carbon steel substrate, which was then irradiated with electron beam in vacuum condition. The microstructure and wear resistance of the composite layers has been studied by means of optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM), microhardness tester and tribological tester. The chemical composition of all specimens were carefully analyzed using energy-dispersive X-ray spectroscopy (EDAX) technique. Depending on three different powder mixtures, hypereutectic and hypoeutectic microstructures were obtained on surface composite layers. No pores and cracks were found on the coatings. The amount of carbides formed in the surface composite layer was mainly determined by carbon concentration. The microstructure close to the fusion line was largely primary austenite dendrite. The hardness and wear resistance of the surface composite layer has been greatly improved due to the extensive distribution of carbides.

  2. Formation Wear Resistant Coatings on Martensite Steel Hardox 450 by Welding Methods

    Science.gov (United States)

    Konovalov, S. V.; Kormyshev, V. E.; Nevskii, S. A.; Ivanov, Yu F.; Gromov, V. E.

    2016-08-01

    By methods of modern physical materials science the investigations analysis of phase composition, defect substructure, mechanical and tribological properties of Cr-Nb-C-V containing coatings formed in surfacing on martensitic wear resistant steel Hardox 450 were carried out. It was shown that surfacing resulted in the formation of high strength surface layer 6 mm in thinness. This layer had wear resistance 138 times greater than that of the base and friction coefficient 2.5 times less. Having analyzed the deflected mode of the deposited material in conditions of friction, a conclusion is drawn that plastic shear deformation is localized in the surface layer due to the high friction factor, as the result, scratches are formed. The maximum of tangential stress is deflected deep into the material provided that friction factor is low. On the basis of the investigations by methods of X-ray structural analysis and transmission diffraction electron microscopy it was shown that increase strength and tribological properties of surfacing metal were caused by its phase composition and state of defect substructure, namely, availability of interstitial phases (more than 36%) and martensitic type of a-phase structure.

  3. Wear Resistance of Mo-Implanted H13 Steel by a Metal Vapour Vacuum Arc Source

    Institute of Scientific and Technical Information of China (English)

    杨建华; 张通和

    2003-01-01

    Pulsed molybdenum ion beams extracted from a metal vapour vacuum arc ion source at voltage of 25kV or 48kV were implanted into H13 steel with a high implantation dose of 5×1017 inons·cm-2 and a time-averaged ion beam current density of about 300μA·cm-2. We have investigated the steel implanted for wear resistance by an optical interference microscope and a pin-on-disc apparatus. The Rutherford backscattering spectroscopy demonstrated that rather low-energy ions could penetrate quite deep into the substrates. It was observed by x-ray photoelectron spectroscopy and transmission-electron microscopy that carbide of molybdenum appeared in the doped region. The results showed that dramatically improved wear resistance of H13 steel after molybdenum ion implantation at 48 kV was attributed to the development of Mo2 C precipitates in the doped zone and to the formation of the implantation affected zone below the doped zone.

  4. Wear Resistance of Mo-Implanted H13 Steel by a Metal Vapour Vacuum Arc Source

    Science.gov (United States)

    Yang, Jian-Hua; Zhang, Tong-He

    2003-10-01

    Pulsed molybdenum ion beams extracted from a metal vapour vacuum arc ion source at voltage of 25 kV or 48 kV were implanted into H13 steel with a high implantation dose of 5×1017 ions·cm-2 and a time-averaged ion beam current density of about 300 µA·cm-2. We have investigated the steel implanted for wear resistance by an optical interference microscope and a pin-on-disc apparatus. The Rutherford backscattering spectroscopy demonstrated that rather low-energy ions could penetrate quite deep into the substrates. It was observed by x-ray photoelectron spectroscopy and transmission-electron microscopy that carbide of molybdenum appeared in the doped region. The results showed that dramatically improved wear resistance of H13 steel after molybdenum ion implantation at 48 kV was attributed to the development of Mo2C precipitates in the doped zone and to the formation of the implantation affected zone below the doped zone.

  5. Mesenchymal stem cell interaction with ultra-smooth nanostructured diamond for wear-resistant orthopaedic implants.

    Science.gov (United States)

    Clem, William C; Chowdhury, Shafiul; Catledge, Shane A; Weimer, Jeffrey J; Shaikh, Faheem M; Hennessy, Kristin M; Konovalov, Valery V; Hill, Michael R; Waterfeld, Alfred; Bellis, Susan L; Vohra, Yogesh K

    2008-01-01

    Ultra-smooth nanostructured diamond (USND) can be applied to greatly increase the wear resistance of orthopaedic implants over conventional designs. Herein we describe surface modification techniques and cytocompatibility studies performed on this new material. We report that hydrogen (H)-terminated USND surfaces supported robust mesenchymal stem cell (MSC) adhesion and survival, while oxygen- (O) and fluorine (F)-terminated surfaces resisted cell adhesion, indicating that USND can be modified to either promote or prevent cell/biomaterial interactions. Given the favorable cell response to H-terminated USND, this material was further compared with two commonly used biocompatible metals, titanium alloy (Ti-6Al-4V) and cobalt chrome (CoCrMo). MSC adhesion and proliferation were significantly improved on USND compared with CoCrMo, although cell adhesion was greatest on Ti-6Al-4V. Comparable amounts of the pro-adhesive protein, fibronectin, were deposited from serum on the three substrates. Finally, MSCs were induced to undergo osteoblastic differentiation on the three materials, and deposition of a mineralized matrix was quantified. Similar amounts of mineral were deposited onto USND and CoCrMo, whereas mineral deposition was slightly higher on Ti-6Al-4V. When coupled with recently published wear studies, these in vitro results suggest that USND has the potential to reduce debris particle release from orthopaedic implants without compromising osseointegration. PMID:18490051

  6. Improving the wear resistance of titanium alloys under high contact loads

    Energy Technology Data Exchange (ETDEWEB)

    Ivasishin, O.M.; Markovskii, P.E.; Mikulyak, O.V. [Inst. of Metal Physics, Kiev (Ukraine)] [and others

    1992-01-01

    One of the basic shortcomings of titanium alloys is their poor antifriction properties. The wear resistance of titanium alloys can be improved by applying special coatings to their surface by various methods. However, the formation of surface layers whose properties differ greatly from the properties of the metallic substrate is accompanied, as a rule, by considerable impairment of the ductile and fatigue characteristics of the alloy. Besides, the material of the coating or the technology of its application are not always able to ensure the required resistance under large contact loads, both of the coating itself and of the adjacent zones of the material of the substrate (which are often weakened by thermal or thermochemical effects). 8 refs., 1 fig.

  7. Review on Improving Wear and Corrosion Resistance of Steels via Plasma Electrolytic Saturation Technology

    Science.gov (United States)

    Lin, Naiming; Xie, Ruizhen; Zhou, Peng; Zou, Jiaojuan; Ma, Yong; Wang, Zhenxia; Han, Pengju; Wang, Zhihua; Tang, Bin; Tian, Wei

    2016-03-01

    Plasma electrolytic saturation (PES) technique which holds the advantages of short treating time and limited heating influence and immediate quenching effect is conducted under high voltage power supply in some electrolyte has been extensively applied to enhance the surface performance of metallic materials. Steel is widely used in various fields thanks to its promising merits of easy workability, plasticity, toughness and weldability. It accounts for a large proportion in the application scope of the metal materials. Steel surfaces with good corrosion resistance, promising wear resistance and high hardness would be obtained by PES. Meanwhile, uniformed coatings can be formed without special requirements for substrate geometries using the PES. This paper first presents a brief introduction of the technological principle of PES. The status on studies and applications of PES for improving surface performance of steels has been reviewed.

  8. The evaluation of tribo-corrosion synergy for WC-Co hardmetals in low stress abrasion

    Energy Technology Data Exchange (ETDEWEB)

    Gant, A.J.; Gee, M.G.; May, A.T. [National Physics Lab., Teddington (United Kingdom)

    2004-03-01

    WC-based hardmetals are materials that are widely used in applications where abrasion resistance is required. This paper describes the results of tests that were performed using a modified ASTM G65 rubber wheel test system incorporating an abrasive (silica sand) and media (sulphuric acid, deionised water, and calcium hydroxide solution). The first of these media was used in order to simulate conditions found in ash disposal equipment found in coal-fired power stations. The calcium hydroxide solution was intended to simulate conditions found in forming tools used in the manufacture of ceramic roofing tiles. Under very acidic conditions (pH 1.1), undermining of WC grains by binder dissolution appeared to be the rate-governing step in determining volume loss. Under mildly acidic conditions (pH 2.6 and 6.3) there was more evidence of WC grain fracture and correspondingly less of binder dissolution. Exposure to the alkali (pH 13 Ca(OH){sub 2} solution) caused the least wear. Results were correlated with physical and microstructural and parameters commonly used for quality assurance in the hardmetal industry. Corrosion-abrasion synergies were also evaluated using the same test rig in conjunction with the respective acidic solutions, but omitting the silica sand. These results are complemented by SEM examination of wear surfaces and of metallographically polished cross-sections of wear surfaces, and by bend strength evaluation of samples after simultaneous exposure to the various media and silica sand and the media in isolation.

  9. Research on Wear-resisting Performance of 9SiCr Steel after Heat Treatment%热处理对9SiCr钢耐磨性能影响的研究

    Institute of Scientific and Technical Information of China (English)

    谢晓利

    2016-01-01

    对9SiCr钢试件进行了热处理,对比分析了试件热处理前后的金相组织、硬度及韧性等特征,以湿砂为磨料进行了磨料磨损试验,通过磨损失重、磨损表面形貌分析了9SiCr钢热处理前后的磨损性能.结果表明,9SiCr钢经热处理后,其组织形态由合金渗碳体为主变为以马氏体和下贝氏体为主,硬度及韧性显著加强,以磨损失重为指标的耐磨性提高了20.6%,磨损表面磨沟、凹坑、剥落等磨损特征减弱.%The heat treatment for 9SiCr steel has been deal,and the microstructure,hardness and ductile were compared and analyzed,the abrasive wear test was conducted by wet sand in order to research the change in wear behavior.The results show that,after heat treatment,the structure form of 9SiCr steel turns alloying cementite into martensite and lower bainite,the hardness and ductile improves significantly,the wear resistance characterized by wear weight loss is increased by 20.6%,the grinding groove,indentation,and peeling on wear surface is reduceed.

  10. A Study on Wear Resistance of HVOF-Sprayed Ni-MoS2 Self-Lubricating Composite Coatings

    Science.gov (United States)

    Liu, Y. L.; Jeng, M. C.; Hwang, J. R.; Chang, C. H.

    2015-02-01

    Composite coating techniques are becoming increasingly popular owing to their peculiar performances. In this study, the wear resistance of thermally sprayed Ni-MoS2 composite coatings on an AISI 1020 steel substrate was investigated. Ni-MoS2 composite powder (size: 60-90 μm) containing 25 wt.% of dispersed MoS2 was prepared by electroless plating. Ni-MoS2 composite coatings were then prepared by HVOF thermal spraying. The coatings were characterized by structural, surface morphological, and compositional analyses by means of microhardness tests, SEM/EDS, XRD, and ICP-AES. For the evaluation of their anti-wear properties, the composites were subjected to ball-on-disk dry wear tests based on the ASTM G99 standard at room temperature. Experimental results showed that some of the MoS2 content dispersed in the Ni-based composite coating burnt away during the high-temperature spraying process, thereby reducing the MoS2 concentration in the coating. In the wear test, the weight loss in the Ni-MoS2 composite coating was minimal under a low load (30 N). The average wear rate of the coatings was found to be ~1/40 times that of a Ni coating, showing that the wear resistance of the composite coatings was significantly improved by MoS2 addition.

  11. Microstructure and Wear Resistance of Plasma-Sprayed Molybdenum Coating Reinforced by MoSi2 Particles

    Science.gov (United States)

    Yan, Jianhui; He, Zheyu; Wang, Yi; Qiu, Jingwen; Wang, Yueming

    2016-08-01

    Mo coatings with or without incorporated MoSi2 were fabricated by atmospheric plasma spraying, and their microstructure, microhardness, bond strength, and wear resistance were compared. Two kinds of spray powder, i.e., pure Mo and a blend of Mo and MoSi2, were sprayed onto low-carbon steel. Microstructural analysis of the MoSi2-Mo coating showed MoSi2 homogeneously distributed in a Mo matrix. Addition of MoSi2 particles increased the microhardness of the as-sprayed Mo coating. The adhesion strength of the Mo coating was better than that of the MoSi2-Mo coating. Wear test results showed that the wear rate and friction coefficient of the two coatings increased with increasing load, and the friction coefficient of the MoSi2-Mo coating was lower than that of the Mo coating. The MoSi2-Mo composite coating exhibited better wear resistance than the Mo coating. The wear failure mechanisms of the two coatings were local plastic deformation, delamination, oxidation, and adhesion wear.

  12. Corrosive-wear resistance of stainless steels for the impeller of slurry pump used in zinc hydrometallurgy process

    OpenAIRE

    Li, Ping; Qizhou CAI; Bokang WEI

    2005-01-01

    This paper presents corrosive-wear (C-W) behaviors of three kinds of steels under the simulating condition of traditional zinc hydrometallurgy process by using a self-made rotating disk apparatus. Result shows that pure wear loss rate is significantly larger than pure corrosion loss rate. Under this C-W condition, the ranking of C-W resistance is S2 > S3 > S1 (S1: austenite stainless steel; S2: CD-4MCu duplex stainless steel; S3 :17-4PH stainless steel). S2 has excellent C-W resistance due to...

  13. Film Layer Structure and Wear Resistance on High Strength Room Temperature Blackening of Cu-Se-P System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-feng; ZHOU Hou-qiang; WANG Jian-cheng

    2004-01-01

    In this paper,the high strength room temperature blackening film on steel surface were prepared, the structure and the forming principle of the film were studied. The Cu-Se-P system with high strength composition blackening was researched, and the factors that affect the wear resistance of the film were analyzed. The experiment shows that the procedure have many advantages, such as short treatment time, high efficiency, low cost, high adhesive strength, perfect wear resistance, which posed a new approach for blackening of machine parts.

  14. Ultrananocrystalline diamond film as a wear resistant and protective coating for mechanical seal applications

    International Nuclear Information System (INIS)

    Mechanical shaft seals used in pumps are critically important to the safe operation of the paper, pulp, and chemical process industry, as well as petroleum and nuclear power plants. Specifically, these seals prevent the leakage of toxic gases and hazardous chemicals to the environment and final products from the rotating equipment used in manufacturing processes. Diamond coatings have the potential to provide negligible wear, ultralow friction, and high corrosion resistance for the sliding surfaces of mechanical seals, because diamond exhibits outstanding tribological, physical, and chemical properties. However, diamond coatings produced by conventional chemical vapor deposition (CVD) exhibit high surface roughness (Ra ≥ 1 μm), which results in high wear of the seal counterface, leading to premature seal failure. To avoid this problem, we have developed an ultrananocrystalline diamond (UNCD) film formed by a unique CH4/Ar microwave plasma CVD method. This method yields extremely smooth diamond coatings with surface roughness Ra = 20-30 nm and an average grain size of 2-5 nm. We report the results of a systematic test program involving uncoated and UNCD-coated SiC shaft seals. Results confirmed that the UNCD-coated seals exhibited neither measurable wear nor any leakage during long-duration tests that took 21 days to complete. In addition, the UNCD coatings reduced the frictional torque for seal rotation by five to six times compared with the uncoated seals. This work promises to lead to rotating shaft seals with much improved service life, reduced maintenance cost, reduced leakage of environmentally hazardous materials, and increased energy savings. This technology may also have many other tribological applications involving rolling or sliding contacts.

  15. Avaliação do desgaste abrasivo causado pelas cerâmicas Duceram e Vita em resinas compostas pelo método do disco retificado Evaluation of the abrasive wear caused by the ceramics Duceram and Vita in composite resins by the method of the ground disk

    Directory of Open Access Journals (Sweden)

    T. V. França

    2004-06-01

    Full Text Available O presente trabalho apresenta uma metodologia confiável e de execução rápida para a avaliação do desgaste abrasivo entre as cerâmicas Duceram e Vita nas resinas compostas Z-100 e Charisma. Estes materiais são amplamente utilizados nos consultórios e clínicas dentais para restaurações funcionais e estéticas dos dentes. Para avaliar o desgaste abrasivo entre os materiais, um disco dinâmico revestido com porcelana foi utilizado sobre um disco estático revestido com resina. Os resultados indicaram que a cerâmica Vita apresenta desgaste inferior a Duceram nas resinas analisadas.This work presents a fast and trustworthy methodology for the evaluation of the abrasive wear between the ceramics Duceram and Vita and the composites resins Z-100 and Charisma. These materials are widely used in dental clinics to restoration of function and aesthetics of the teeth. To evaluate the abrasive wear between the materials, a dynamic disk covered with ceramic was used contrary to a static disk covered with resin. The results showed that Vita presents an inferior wear against Duceram in the resins tested.

  16. Influence of Orientations of Bionic Unit Fabricated by Laser Remelting on Fatigue Wear Resistance of Gray Cast Iron

    Science.gov (United States)

    Chen, Zhi-Kai; Zhou, Ti; Zhang, Hai-feng; Yang, Wan-shi; Zhou, Hong

    2015-06-01

    Fatigue wear resistance improvements were researched by studying experimental samples with gray cast iron fabricated with bionic units in different orientations. Experimental samples were modified by laser surface remelting, including parallel, vertical, and gradient units to the wear direction. The remelting pool was then studied to determine the micro-hardness, microstructure, alteration of phase, and etc. Lab-control fatigue wear test method was applied with the treated and untreated samples tested under the laboratorial conditions. Wear resistance result was considered as the rolling contact fatigue (RCF) resistance and mechanisms of the modified samples were experimentally investigated and discussed. Results suggested that all treated samples demonstrated the beneficial effect on the RCF improvement due to lack of graphite and reinforcement of treated region. Results also indicated the sample with fastigiated units was more effective than that with vertical units or parallel units to the wear direction. Influence of the sample unit's angle which intensely depended on the conditions of actual application, however, was not identified.

  17. Plastic deformation wear in modified medium manganese steel

    Directory of Open Access Journals (Sweden)

    YUAN Hai-lun

    2007-08-01

    Full Text Available A medium manganese steel with high wear-resistance, strength and toughness has been produced with addition of a complex modifier (or refining agent containing Nb, N, RE and Si-Ca. The results showed that the wear resistance, strength and toughness of the modified medium manganese steel are respectively 1.92 times, 1.45 times and 3.63 times as high as that of the referenced unmodified medium manganese steel. The plastic deformation characteristic involved in the wear mechanism of the modified medium manganese steel was investigated by means of plastic-elasticity calculation and TEM electro-microscopy. The relationship between wear resistance and yield strength of the steel was established. Since the wear volume W is proportional to the square of the loading and to the numbers of the abrasives, and inversely proportional to the square of the yield strength of the materials, the wear resistance can be substantially improved by the enhancement of yield strength of the materials. The calculation results generally agreed with the experimental results.

  18. Sand-wear resistance of brush electroplated nanocomposite coating in oil and its application to remanufacturing

    Institute of Scientific and Technical Information of China (English)

    DONG Shi-yun; XU Bin-shi; DU Ling-zhong; YANG Hua

    2005-01-01

    Sand-wear resistance of nano scale alumina particle reinforced nickel matrix composite coating (n-Al2O3/ Ni) prepared by brush electroplating technique was investigated via wear tests in sand-contaminated oil lubricant,comparing with that of AISI1045 steel and brush electroplated Ni coating. Effects of testing load, sand content and sand size on worn volume of the three materials, and also coating surface roughness on worn volume of the brush electroplated coatings were accessed. Results show that the worn volume of all the three materials increases with increasing of testing load, sand content and sand size. In the same conditions, n-Al2 O3/Ni composite coating has the smallest worn volume while AISI1045 steel has the largest because of the n-Al2 O3 particle effects. As to n-Al2 O3/Ni and Ni coatings, the surface-polished coatings have obviously lower worn volume than the as-plated coatings. The brush electroplated n-Als O3/Ni composite coating was employed to remanufacture the sand-worn bearing seats of a heavy vehicle and good results were gained.

  19. Wear properties of Fe-Cr-C and B{sub 4}C powder coating on AISI 316 stainless steel analyzed by the Taguchi method

    Energy Technology Data Exchange (ETDEWEB)

    Gur, Ali Kaya; Ozay, Cetin; Orhan, Ayhan; Buytoz, Soner; Caligulu, Ugur; Yigitturk, Necmettin [Firat Univ., Elazig (Turkey). Faculty of Technical Education

    2014-06-01

    In this study, the plasma arc welded cladding of FeCrC and B{sub 4}C powder mixtures alloyed with 70 wt.-% Cr on the surface of AISI 316 stainless steel was investigated. Application of the Taguchi method revealed respective effects on the abrasive wear resistance of the cladding layer on the stainless steel. The abrasive wear behaviour of the AISI 316 stainless steel surfaces coated with Fe-Cr-C and with 10 wt.-%, 15 wt.-%, 20 wt.-%, and 25 wt.-% B{sub 4}C was investigated by using four loads and four distances for the 220 mesh SiC abrasive. Results were analyzed by variance analysis using ANOVA, and effects of parameters on the wear rate were determined as percentage rate. Furthermore, the error ratio was statistically evaluated. The experimental results were analyzed by the respective analysis of means and variance which is discussed in detail. (orig.)

  20. Residual stress and wear resistance of WC particle reinforced Ni-based coating%W C颗粒增强 Ni基涂层的残余应力及耐磨性能

    Institute of Scientific and Technical Information of China (English)

    郭华锋; 李菊丽; 孙涛; 杨海峰

    2014-01-01

    Microstructure of WC particle reinforced Ni-based plasma-sprayed coating was observed by scanning electron microscope (SEM). Surface residual stress of the coating with different WC content and the bonding layer were tested by X -ray diffraction ( XRD) method. Microhardness and wear mechanism of the coating were studied by friction and wear test machine and confocal laser scanning microscope .The results show that the surface residual stress of the coatings are compressive stress and decreased with the increase of WC content .However, residual stress increase with the increase of thickness of coatings and when thickness is 1000 μm, the coating appears delamination failure . The thermal stress is the largest contributive factor to residual stress of the bonding layer .A certain amplitude of compressive stress is beneficial to improve abrasion resistance of the coating .The wear loss of the coating is only about 0.135 times of that of the substrate under the same loading .The wear mechanism of the coating is mainly abrasive wear .%用扫描电子显微镜( SEM)观察了等离子喷涂WC颗粒增强Ni涂层的显微结构,用X射线衍射法( XRD)测试了不同WC含量下涂层及粘结层表面残余应力,利用摩擦磨损试验机和共聚焦激光扫描显微镜研究了涂层的磨损机制。结果表明:涂层表面残余应力为压应力,且随着WC含量的增加先增大后减小,随着涂层厚度的增加而增大,厚度为1000μm时出现分层失效,热应力对粘结层残余应力的贡献最大。一定幅值的压应力有利于涂层耐磨性的提高,同载荷下磨损量仅为基体的0.135倍,涂层磨损机制主要为磨粒磨损。

  1. Improvement of Wear Resistance of Magnesium Alloy AZ91HP by High Current Pulsed Electron Beam Treatment

    Institute of Scientific and Technical Information of China (English)

    GAO Bo; HAO Sheng-zhi; ZOU Jian-xin; JIANG Li-min; ZHOU Ji-yang; DONG Chuang

    2004-01-01

    Surface modification of magnesium alloy AZ91HP (9wt%Al, 0.5wt%Zn, 0.5wt%Mn, Mg remaining percentage) by high current pulsed electron beam (HCPEB) treatment was studied in this paper. The secondary phase Mg17Al12 is nearly completely dissolved and as a result, a super-saturated solid solution forms on the re-melted surface.The microhardness is increased both in and far beyond the heat-affected zone (HAZ), reaching about 250μm.Measurements on sliding wear have shown that the wear resistance of the treated samples was improved by a factor of about 2.4 as compared to the as-received sample. It is also found that the sliding wear resistance can be further improved by surface alloying with TiN.

  2. Wear resistance of nano- and micro-crystalline diamond coatings onto WC-Co with Cr/CrN interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Polini, Riccardo [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 1, Rome, 00133 (Italy); Barletta, Massimiliano, E-mail: barletta@ing.uniroma2.i [Dipartimento di Ingegneria Meccanica, Universita di Roma Tor Vergata, Via del Politecnico, 1, Rome, 00133 (Italy); Cristofanilli, Giacomo [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 1, Rome, 00133 (Italy)

    2010-12-30

    Cr/CrN bi-layers have been used recently to promote the growth of high quality Hot Filament Chemical Vapour Deposition (HFCVD) diamond coatings onto Co-cemented tungsten carbide (WC-6 wt.%Co) substrates. In the present investigation, the influence of the crystalline size of the diamond coatings on their wear endurance is looked into. Nano- (NDC) and micro-crystalline Diamond Coatings (MDC) were deposited by HFCVD onto untreated and Fluidized Bed (FB) treated Cr/CrN interlayers. NDCs, characterized by a cauliflower-like morphology, showed improved wear resistance. However, the superimposition of NDCs onto Cr/CrN interlayers micro-corrugated by FB treatment was found to be the most promising choice, leading to the formation of highly adherent and wear resistant coatings.

  3. The Effects of Austenitizing Conditions on the Microstructure and Wear Resistance of a Centrifugally Cast High-Speed Steel Roll

    Science.gov (United States)

    Kang, Minwoo; Lee, Young-Kook

    2016-07-01

    The influences of austenitizing conditions on the microstructure and wear resistance of a centrifugally cast high-speed steel roll were investigated through thermodynamic calculation, microstructural analysis, and high-temperature wear tests. When the austenitizing temperature was between 1323 K and 1423 K (1050 °C and 1150 °C), coarse eutectic M2C plates were decomposed into a mixture of MC and M6C particles. However, at 1473 K (1200 °C), the M2C plates were first replaced by both new austenite grains and MC particles without M6C particles, and then remaining M2C particles were dissolved during the growth of MC particles. The wear resistance of the HSS roll was improved with increasing austenitizing temperature up to 1473 K (1200 °C) because the coarse eutectic M2C plates, which are vulnerable to crack propagation, changed to disconnected hard M6C and MC particles.

  4. Surface Design and Engineering Toward Wear-Resistant, Self-Lubricant Diamond Films and Coatings. Chapter 10

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1999-01-01

    This chapter describes three studies on the surface design, surface engineering, and tribology of chemical-vapor-deposited (CVD) diamond films and coatings toward wear-resistant, self-lubricating diamond films and coatings. Friction mechanisms and solid lubrication mechanisms of CVD diamond are stated. Effects of an amorphous hydrogenated carbon on CVD diamond, an amorphous, nondiamond carbon surface layer formed on CVD diamond by carbon and nitrogen ion implantation, and a materials combination of cubic boron nitride and CVD diamond on the adhesion, friction, and wear behaviors of CVD diamond in ultrahigh vacuum are described. How surface modification and the selected materials couple improved the tribological functionality of coatings, giving low coefficient of friction and good wear resistance, is explained.

  5. Wear behavior of nanostructured Al/Al2O3 composite fabricated via accumulative roll bonding (ARB) process

    International Nuclear Information System (INIS)

    Highlights: • ARB process led to the increase in wear weight loss of the samples. • Wear resistance was decreased with the increase in the number of ARB cycles. • At the higher number of ARB cycles, delamination was the dominant wear mechanism. • In the composite sample, both delamination and spalling mechanisms occurred. • Intense Rotated Cube texture of composite helped crack nucleation and propagation. - Abstract: In the present work, wear behavior of nanostructured aluminum and composite performed by accumulative roll bonding (ARB) process was investigated. The wear characteristics were studied by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). Also, transmission electron microscopy (TEM) and crystallographic texture investigations were performed. The results indicated that the ARB process led to the decrease in wear resistance of the monolithic and composite samples compared with as-received aluminum strip. The adhesive, abrasive and delaminating wear mechanisms occurred in the monolithic and composite samples simultaneously. At higher number of ARB cycles, delamination was the dominant wear mechanism. It was found that the surface damage of the composite was more extensive than that of the monolithic sample due to the occurrence of spalling mechanism. It was suggested that the intense Rotated Cube {0 0 1}〈1 1 0〉 texture component of composite helped to crack nucleation and propagation greatly. The role of delamination and especially, spalling in decreasing the wear resistance of composite was very important such that it eliminated the role of reinforcing particles and grain size on the wear resistance

  6. Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates.

    Science.gov (United States)

    Kehagia, Fotini

    2009-05-01

    Metallurgical slags are by-products of the iron and steel industry and are subdivided into blast furnace slag and steel slag according to the different steel-producing processes. In Greece, slags are mostly produced from steelmaking using the electric arc furnace process, and subsequently are either disposed in a random way or utilized by the cement industry. Steel slag has been recently used, worldwide, as hard aggregates in wearing courses in order to improve the skidding resistance of asphalt pavements. At the Highway Laboratory, Department of Civil Engineering of Aristotle University of Thessaloniki research has been carried out in the field of steel slags, and especially in electric arc furnace (EAF) slag, to evaluate their possible use in highway engineering. In this paper, the recent results of anti-skidding performance of steel slag aggregates in highway pavements are presented. PMID:19423603

  7. Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates.

    Science.gov (United States)

    Kehagia, Fotini

    2009-05-01

    Metallurgical slags are by-products of the iron and steel industry and are subdivided into blast furnace slag and steel slag according to the different steel-producing processes. In Greece, slags are mostly produced from steelmaking using the electric arc furnace process, and subsequently are either disposed in a random way or utilized by the cement industry. Steel slag has been recently used, worldwide, as hard aggregates in wearing courses in order to improve the skidding resistance of asphalt pavements. At the Highway Laboratory, Department of Civil Engineering of Aristotle University of Thessaloniki research has been carried out in the field of steel slags, and especially in electric arc furnace (EAF) slag, to evaluate their possible use in highway engineering. In this paper, the recent results of anti-skidding performance of steel slag aggregates in highway pavements are presented.

  8. Enhancing Fracture and Wear Resistance of Dentures/Overdentures Utilizing Digital Technology: A Case Series Report.

    Science.gov (United States)

    Afify, Ahmed; Haney, Stephan

    2016-08-01

    Since it was first introduced into the dental world, computer-aided design/computer-aided manufacturing (CAD/CAM) technology has improved dramatically in regards to both data acquisition and fabrication abilities. CAD/CAM is capable of providing well-fitting intra- and extraoral prostheses when sound guidelines are followed. As CAD/CAM technology encompasses both surgical and prosthetic dental applications as well as fixed and removable aspects, it could improve the average quality of dental prostheses compared with the results obtained by conventional manufacturing methods. The purpose of this article is to provide an introduction into the methods in which this technology may be used to enhance the wear and fracture resistance of dentures and overdentures. This article will also showcase two clinical reports in which CAD/CAM technology has been implemented. PMID:26916680

  9. Evaluation of Two Total Hip Bearing Materials for Resistance to Wear Using a Hip Simulator

    Directory of Open Access Journals (Sweden)

    Kenneth R. St. John

    2015-06-01

    Full Text Available Electron beam crosslinked ultra high molecular weight polyethylene (UHMWPE 32 mm cups with cobalt alloy femoral heads were compared with gamma-irradiation sterilized 26 mm cups and zirconia ceramic heads in a hip wear simulator. The testing was performed for a total of ten million cycles with frequent stops for cleaning and measurement of mass losses due to wear. The results showed that the ceramic on UHMWPE bearing design exhibited higher early wear than the metal on highly crosslinked samples. Once a steady state wear rate was reached, the wear rates of the two types of hip bearing systems were similar with the ceramic on UHMPWE samples continuing to show a slightly higher rate of wear than the highly crosslinked samples. The wear rates of each of the tested systems appear to be consistent with the expectations for low rates of wear in improved hip replacement systems.

  10. New Rock Abrasivity Test Method for Tool Life Assessments on Hard Rock Tunnel Boring: The Rolling Indentation Abrasion Test (RIAT)

    Science.gov (United States)

    Macias, F. J.; Dahl, F.; Bruland, A.

    2016-05-01

    The tunnel boring machine (TBM) method has become widely used and is currently an important presence within the tunnelling industry. Large investments and high geological risk are involved using TBMs, and disc cutter consumption has a great influence on performance and cost, especially in hard rock conditions. Furthermore, reliable cutter life assessments facilitate the control of risk as well as avoiding delays and budget overruns. Since abrasive wear is the most common process affecting cutter consumption, good laboratory tests for rock abrasivity assessments are needed. A new abrasivity test method by rolling disc named Rolling Indentation Abrasion Test (RIAT) has been developed. The goal of the new test design and procedure is to reproduce wear behaviour on hard rock tunnel boring in a more realistic way than the traditionally used methods. Wear by rolling contact on intact rock samples is introduced and several rock types, covering a wide rock abrasiveness range, have been tested by RIAT. The RIAT procedure indicates a great ability of the testing method to assess abrasive wear on rolling discs. In addition and to evaluate the newly developed RIAT test method, a comprehensive laboratory testing programme including the most commonly used abrasivity test methods and the mineral composition were carried out. Relationships between the achieved results from conventional testing and RIAT results have been analysed.

  11. Improved wear resistance of functional diamond like carbon coated Ti-6Al-4V alloys in an edge loading conditions.

    Science.gov (United States)

    Choudhury, Dipankar; Lackner, Jürgen M; Major, Lukasz; Morita, Takehiro; Sawae, Yoshinori; Bin Mamat, Azuddin; Stavness, Ian; Roy, Chanchal K; Krupka, Ivan

    2016-06-01

    This study investigates the durability of functional diamond-like carbon (DLC) coated titanium alloy (Ti-6Al-4V) under edge loading conditions for application in artificial hip joints. The multilayered (ML) functional DLC coatings consist of three key layers, each of these layers were designed for specific functions such as increasing fracture strength, adapting stress generation and enhancing wear resistance. A 'ball-on-disk' multi-directional wear tester was used in the durability test. Prior to the wear testing, surface hardness, modulus elasticity and Raman intensity were measured. The results revealed a significant wear reduction to the DLC coated Ti-6Al-4V disks compared to that of non-coated Ti-6Al-4V disks. Remarkably, the counterpart Silicon Nitride (Si3N4) balls also yielded lowered specific wear rate while rubbed against the coated disks. Hence, the pairing of a functional multilayered DLC and Si3N4 could be a potential candidate to orthopedics implants, which would perform a longer life-cycle against wear caused by edge loading. PMID:27085502

  12. EFECT OF PLASMA IMMERSION ION IMPLANTATION TREATEMENT IN THE WEAR RESISTANCE OF Ti-6Al-4V ALLOY

    Directory of Open Access Journals (Sweden)

    Zepka, Susana

    2015-07-01

    Full Text Available The objective of this work was the evaluation of wear resistance of Ti-6Al-4V alloy after plasma immersion ion implantation (PIII in different immersion times. The goal of this process was the modification of surface properties of the alloy to obtain better tribology properties. In this process, atoms can be injected on the material´s surface changing the mechanical properties in the region near the surface independently of thermodynamics variables, as solubility and difusivity. The samples were submitted to 120 e 180 minutes of implantation at 250°C in the three samples for each condition. The wear analyses were made by pin-on-disk process, where the lost volumes and wear coefficients were compared in the samples. It was observed the decreasing of attrite coefficient and the lost volume of the material during wear test. The implanted sample by 180 minutes has showed the wear coefficient 35.12% lower in comparison of the sample without treatment, and 11.09% lower in comparison of implanted sample by 120 minutes. It can be observed that the sample implanted by 180 minutes showed lower wear coefficient.

  13. Preparation and Wear Resistance of Aluminum Composites Reinforced with In Situ Formed TiO/Al2O3

    Science.gov (United States)

    Qin, Q. D.; Huang, B. W.; Li, W.; Zeng, Z. Y.

    2016-05-01

    An in situ TiO/Al2O3-reinforced Al composite is successfully prepared using a powder metallurgy route by the reaction of Ti2CO and Al powder. The Ti2CO powder is produced by carrying out a carbothermic reduction of titanium dioxide at 1000 °C. XRD results show that the final product is composed of Al, TiO, Al2O3, and Al3Ti. Morphology examination of the composite reveals the presence of bigger blocks of TiO and fine particles of Al2O3 and the volume fraction of reinforcement is found to range between 18 and 55%. As the volume fraction of the reinforced materials approaches 50%, the particles start to agglomerate. Dry sliding wear tests conducted using a conventional pin-on-disk testing machine show that the wear resistance of the composite is higher than that of the pure aluminum ingot. The wear rate of the composite increases almost linearly with the increase in the wear distance. The sliding wear test shows that as the volume fraction of the reinforced phase increases, the coefficient of friction decreases. The wear mechanism is also discussed.

  14. Improved wear resistance of Al-15Si alloy with a high current pulsed electron beam treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Y. [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Gao, B., E-mail: surfgao@yahoo.com.cn [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Tu, G.F.; Li, S.W. [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China); Dong, C. [Key Laboratory of the Ministry of Education of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024 (China); Zhang, Z.G. [School of Materials and Metallurgy, Northeastern University, Shenyang 110004 (China)

    2011-07-01

    Highlights: > Firstly, Raman spectra are used to research the variation of Si structure before and after HCPEB treatment for the first time. > Secondly, a fine structure, namely the precipitation of nanocrystalline Si particles, is formed in the surface layer of the HCPEB-treated sample. > Thirdly, the relative wear resistance of an Al-15Si alloy surface is effectively enhanced by a factor of 9 after 15 pulse treatment. - Abstract: A hypereutectic Al-15Si alloy (Si 15 wt.%, Al balance) was irradiated by high current pulsed electron beam (HCPEB). The HCPEB treatment causes ultra-rapid heating, melting and cooling at the top surface layer. As a result, the special 'halo' microstructure centering on the primary Si phase is formed on the surface due to interdiffusion of Al and Si elements. The composition of the 'halo' microstructure is distributed continuously from the center to the edge of the 'halo'. Compared to an untreated matrix, the remelted layer underneath the surface presents single contrast because of the compositional homogeneity after HCPEB treatment. The thickness of the remelted layer increases slightly from 4.4 {mu}m (5 pulses) to 5.6 {mu}m (25 pulses). HCPEB treatment broadens and shifts the diffraction peaks of Al and Si. The lattice parameters of Al decreases due to the formation of a supersaturated solid solution of Al in the melted layer. Through analysis of Raman spectra and transmission electron microscopy (TEM), the amorphous Si (a-Si) and nanocrystalline Si are formed in the near-surface region under multiple bombardments of HCPEB. The relative wear resistance of a 15-pulse sample is effectively improved by a factor of 9, which can be attributed to the formation of metastable structures.

  15. Laser-Assisted Cold-Sprayed Corrosion- and Wear-Resistant Coatings: A Review

    Science.gov (United States)

    Olakanmi, E. O.; Doyoyo, M.

    2014-06-01

    Laser-assisted cold spray (LACS) process will be increasingly employed for depositing coatings because of its unique advantages: solid-state deposition of dense, homogeneous, and pore-free coatings onto a range of substrates; and high build rate at reduced operating costs without the use of expensive heating and process inert gases. Depositing coatings with excellent performance indicators via LACS demands an accurate knowledge and control of processing and materials' variables. By varying the LACS process parameters and their interactions, the functional properties of coatings can be manipulated. Moreover, thermal effect due to laser irradiation and microstructural evolution complicate the interpretation of LACS mechanical deformation mechanism which is essential for elucidating its physical phenomena. In order to provide a basis for follow-on-research that leads to the development of high-productivity LACS processing of coatings, this review focuses on the latest developments in depositing corrosion- and wear-resistant coatings with the emphasis on the composition, structure, and mechanical and functional properties. Historical developments and fundamentals of LACS are addressed in an attempt to describe the physics behind the process. Typical technological applications of LACS coatings are also identified. The investigations of all process sequences, from laser irradiation of the powder-laden gas stream and the substrate, to the impingement of thermally softened particles on the deposition site, and subsequent further processes, are described. Existing gaps in the literature relating to LACS-dependent microstructural evolution, mechanical deformation mechanisms, correlation between functional properties and process parameters, processing challenges, and industrial applications have been identified in order to provide insights for further investigations and innovation in LACS deposition of wear- and corrosion-resistant coatings.

  16. 铌对喷射成形 M3∶2高速钢组织和耐磨性的影响%Effect of Nb on microstructure and wear resistance of spray-formed M 3∶2 high speed steel

    Institute of Scientific and Technical Information of China (English)

    张程; 黄进峰; 吴健安; 连勇; 王和斌; 张济山; 李书开; 王宏亮

    2016-01-01

    研究了Nb对喷射成形高速钢M 3∶2组织和硬度的影响,并对含Nb喷射成形高速钢在不同温度下的摩擦行为进行了研究。结果表明,Nb可以使一次MC型碳化物变得更细小、球形度更好,M2 C片层厚度变薄,有利于高速钢回火过程中的二次析出,提高其回火硬度。0.5%Nb的添加可显著提高喷射成形M3∶2高速钢的耐磨性。常温(20℃)时高速钢的磨损机制主要为磨粒磨损;中温(300℃)时,磨损机制则以粘着磨损为主,氧化磨损增加;高温(500℃)时,主要以氧化磨损为主。%Effect of niobium on microstructure and hardness of spray formed M3∶2 high speed steel was investigated. And the wear behavior of M3∶2 high speed steel with Nb at different temperature is also discussed.The results show that the addition of niobium can make MC carbides smaller and more spherical, and M2 C lamellar more thinner, which is helpful for secondary precipitation of high speed steel during tempering and improving the hardness after tempering.With the temperature increased, the M3-0.5Nb high speed steel presents better wear resistance than that of the M3 steel.Wear mechanism of the high speed steels is depends on the temperature.At room temperature, abrasive wear dominates;near 300℃, it transfer to adhesive wear, and the oxidation wear gradually increases.At higher temperature, near 500℃, the wear mechanism is oxidation wear accompanied with some abrasive wear and adhesive wear.

  17. Microstructure and Abrasive Mechanism of Surfacing Welding Based on TiC-VC Particle

    Institute of Scientific and Technical Information of China (English)

    YANGShang-lei; LUXue-qin; ZOUZeng-da; LOUSong-nian

    2004-01-01

    Ultrahard titanium and vanadium carbides (TiC-VC) particles are combined among ferrotitanium (Fe-Ti), ferrovanadium (Pe-V), graphite, ruffle, etc. by means of high temperature arc metallurgic reaction in deposited metal. The mierostructure, properties and wear mechanism of surfacing metal were systemically studied. The results show carbides particles are embedded in Fe matrix, Microstructure of which is lath martensite. The carbides mixed in the lath martensite provide a combination of good hardness and toughness. The residual austenite transforms to martensite, which is caused by the press stress, strengthens the matrix and releases the stress. The surface layers have high abrasive resistance and cracking resistance. The integration of dispersedly distributed carbides, lath martensite and residual austenite of the surface layer results in satisfactory wear resistance.

  18. The Comparative Effect of Sugarcane Juice on the Abrasion-Corrosion Behavior of Fe-Cr-B Electric Arc Sprayed and Fe-Cr-C Weld Coatings

    Science.gov (United States)

    Buchanan, Vernon E.

    2012-02-01

    Abrasion-corrosion tests were conducted on two commonly Fe-Cr-C shielded metal arc welding (SMAW) hardfacings used in the sugar industry and an arc sprayed Fe-Cr-based coating. The tests were performed on a modified block-on-ring tester with the coatings sliding against compressed sugarcane fiber in the presence of abrasive slurry. The findings showed that, in the presence of sugarcane juice and sand slurry, the SMAW coatings had similar wear performance while the abrasive wear of the arc-sprayed coating was superior to the SMAW coatings. In the presence of a neutral solution, the material loss from the arc-sprayed coating was similar to that obtained in the sugarcane juice while the SMAW coatings showed a marked decrease; this demonstrated that the arc-sprayed coating was more desirable in an abrasive-corrosion environment. The study also showed that the resistance to material does not follow the expected trend, in which wear resistance increases with increasing hardness.

  19. Splitting strength and abrasion resistance of concrete paving blocks as a function of dry bulk specific gravity and ultrasonic pulse velocity

    Directory of Open Access Journals (Sweden)

    Haktanir, T.

    2005-06-01

    Full Text Available Artificial Portland cement concrete paving blocks are widely used in many countries. These paving blocks come in a variety of designs with names such as "Interlocking" and "Italian Flower", and are manufactured with special machinery using rather high quality concrete having a compressive strength of about 50 MPa. Concrete blocks are employed instead of natural cobble stones for essentially economic reasons. The laboratoiy equipment required to measure paving block splitting strength and abrasion resistance, two of the chief properties to be tested in quality checks, is costly and the tests are time-consuming and labour-intensive. The present paper reports on a detailed experimental study performed to relate the splitting strength and abrasion resistance of concrete paving blocks to "dry bulk specific gravity" (DBSG and "ultrasonic pulse velocity" (UPV, respectively. Statistically significant regression equations describing the dependence of splitting strength on DBSG and abrasion resistance on UPV were obtained with data from random samples of material provided by seven different manufacturers.

    RESUMEN Los bloques para pavimentos (adoquines elaborados con hormigón se utilizan habitualmente en numerosos países. Estos bloques de pavimentación se diseñan de diversas formas, como por ejemplo "Entrelazado " ("Interlocking " o "Flor Italiana " ("Italian Flower"; se fabrican con maquinaria especial y con frecuencia se utiliza hormigón de la más alta calidad, con resistencia a la compresión de alrededor de 50 MPa. La razón de utilizar bloques de hormigón en lugar de bloques de piedra natural es básicamente económica. Los equipos de laboratorio necesarios para medir la resistencia a la compresión y a la abrasión -dos de las propiedades más importantes para determinar la calidad de los bloques en estudio- son costosos y los ensayos requieren tiempo y mano de obra considerables. En el presente trabajo se exponen ensayos experimentales

  20. Wear resistance of thick diamond like carbon coatings against polymeric materials used in single screw plasticizing technology

    Science.gov (United States)

    Zitzenbacher, G.; Liu, K.; Forsich, C.; Heim, D.

    2015-05-01

    Wear on the screw and barrel surface accompany polymer single screw plasticizing technology from the beginning. In general, wear on screws can be reduced by using nitrided steel surfaces, fused armour alloys on the screw flights and coatings. However, DLC-coatings (Diamond Like Carbon) comprise a number of interesting properties such as a high hardness, a low coefficient of friction and an excellent corrosion resistance due to their amorphous structure. The wear resistance of about 50 µm thick DLC-coatings against polyamide 6.6, polybutylene terephthalate and polypropylene is investigated in this paper. The tribology in the solids conveying zone of a single screw extruder until the beginning of melting is evaluated using a pin on disc tribometer and a so called screw tribometer. The polymeric pins are pressed against coated metal samples using the pin on disc tribometer and the tests are carried out at a defined normal force and sliding velocity. The screw tribometer is used to perform tribological experiments between polymer pellets and rotating coated metal shafts simulating the extruder screw. Long term experiments were performed to evaluate the wear resistance of the DLC-coating. A reduction of the coefficient of friction can be observed after a frictional distance of about 20 kilometers using glass fibre reinforced polymeric materials. This reduction is independent on the polymer and accompanied by a black layer on the wear surface of the polymeric pins. The DLC-coated metal samples show an up to 16 µm deep wear track after the 100 kilometer test period against the glass fiber filled materials only.

  1. Abrasion and deformed layer formation of manganese-zinc ferrite in sliding contact with lapping tapes

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.; Tanaka, K.

    1986-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and the deformed layers produced in single-crystal Mn-Zn ferrite simulated heads during contact with lapping tapes. The crystaline state of the head is changed drastically during the abrasion process. Crystalline states ranging from nearly amorphous to highly textured polycrystalline can be produced on the wear surface of a single-crystal Mn-Zn ferrite head. The total thickness of the deformed layer was approximately 0.8 microns. This thickness increased as the load and abrasive grit size increased. The anisotropic wear of the ferrite was found to be inversely proportional to the hardness of the wear surface. The wear was lower in the order 211 111 10 0110. The wear of the ferrite increased markedly with an increase in sliding velocity and abrasive grit size.

  2. Mechanical Properties and Friction/Wear Behavior of Copper Alloyed Powder Composites

    Institute of Scientific and Technical Information of China (English)

    DENG Chen-hong; CHEN Guang-zhi; GE Qi-lu

    2005-01-01

    Copper alloyed powder composites containing nanoparticles were developed by hot pressing. Effects of nanoscale activated sintering aid and fine ceramic particles Al2O3 on hardness, working quality, and behaviors of friction and wear of the composites have been studied, compared with the composites including microscale activated sintering aid and microscale ceramic particles. The microstructures of the samples were analyzed by SEM. The results show that the materials with nanoscale sintering aid and fine ceramic particles have better mechanical properties and abrasive resistance than the materials with microscale activated sintering aid and microceramic particles. Moreover, element mutual transfer occurs between samples (strip) and abrasive wheel (ring).

  3. Influence of titanium content on wear resistance of electrolytic low-titanium eutectic Al-Si piston alloys

    OpenAIRE

    Yan Shuqing; Xie Jingpei; Wang Jiefang

    2008-01-01

    The wear resistance of six kinds of the electrolytic low-titanium eutectic Al-Si piston alloys with various Ti content ranging from 0.00wt.% to 0.21wt.% has been studied. A new method of adding Ti is adopted in the electrolytic low-titanium aluminum alloy ingots. The electrolytic low-titanium eutectic Al-Si piston alloys are produced by remelting the electrolytic low-titanium aluminum alloy, crystal silicon, pure magnesium, Al-50%Cu and Al-10%Mn master alloy. The wear experiments are conducte...

  4. Sustainability of abrasive processes

    DEFF Research Database (Denmark)

    Aurich, J.C.; Linke, B.; Hauschild, Michael Zwicky;

    2013-01-01

    This paper presents an overview of research on sustainability of abrasive processes. It incorporates results from a round robin study on ‘‘energy-efficiency of abrasive processes’’ which has been carried out within the scientific technical committee ‘‘abrasive processes’’ (STC G) of CIRP...

  5. Research on microstructure and wear resistance of coatings obtained by adding nanoparticles of refractory compounds in laser cladding

    Science.gov (United States)

    Murzakov, M. A.; Chirikov, S. N.; Markushov, Y. V.

    2016-09-01

    The paper is aimed at research of coatings, which are achieved by means of laser cladding with additives of nanoparticles of high-melting compounds in form of tungsten carbide and tantalum (WC and TaC). In the course of experiment, various ceramic powder concentrations were tested. Main technological characteristics were determined. Power density amounted to 0.68-0.98 MW/cm2. During the coating wear resistance measurement, it was discovered that increase in nanopowder concentration extended wear resistance of coating 2-6 times. Wear resistance measurement and wear coefficient calculation were performed using Brinell-Howarth method. The load was 15 N, load time was 10 minutes. Optical metallographic microscope Neophot-30 was used to study microstructure of the deposited coatings. To reveal microstructure of the deposited coatings, the samples were exposed to chemical etching. Elemental composition of the samples was determined by the methods of X- ray microanalysis in testing solution using electron microscope EVO-50 under acceleration voltage 10-20 kV (probe current 5-50 nA) using energy- and wavelength-dispersive spectrometers.

  6. Investigation on Interface Structure and Wear-resistant Properties of HVOF Sprayed Carbides Coating onto Copper Substrate

    Institute of Scientific and Technical Information of China (English)

    HOU Li-feng; ZHANG Heng-jin; WEI Ying-hui; YAN Kai; HU Lan-qing; XU Bing-she

    2004-01-01

    In this paper, we deposited carbides on copper substrate by High velocity oxy-fuel (HVOF) spraying. The structure of the coating and microstructure of the substrate-coating interface have been investigated by means of scanning electron microscope (SEM) and transmission electron microscopy (TEM). We observed the worn surface of the coating and investigated the wear mechanism. The results show that the microstructure of the interface between HVOF sprayed coating and substrate which consists of the amorphous layers, nanocrystalls in the coating and dislocation cells in copper substrate,etc. is complex. The amorphous layers are formed from heated adhesion after rapidly cooling, while the nanocrystalls come from the fragmentation of half-molten carbides. At the same time we found that the wear-resistant properties of the WC-Co coating is better than that of Cr3C2-NiCr coating at room temperature. The early wear-resistance of the HVOF sprayed coating is poor because of the roughness of its surface or bad bond of hard composite particles. The high velocity of molten droplets is propitious to fill up the interspaces between carbides, so as to make the coating more compact and reduce its porosities, thus the wear-resistance of carbides coatings is improved.

  7. Investigation on Interface Structure and Wear-resistant Properties of HVOF Sprayed Carbides Coating onto Copper Substrate

    Institute of Scientific and Technical Information of China (English)

    HOULi-feng; ZHANGHeng-jin; WEIYing-hui; YANKai; HULan-qing; XUBing-she

    2004-01-01

    In this paper, we deposited carbides on copper substrate by High velocity oxy-fuel (HVOF) spraying. The structure of the coating and microstructure of the substrate-coating interface have been investigated by means of scanning electron microscope (SEM) and transmission electron microscopy (TEM). We observed the worn surface of the coating and investigated the wear mechanism. The results show that the microstructure of the interface between HVOF sprayed coating and substrate which consists of the amorphous layers, nanocrystalls in the coating and dislocation cells in copper substrate, etc. is complex. The amorphous layers are formed from heated adhesion after rapidly cooling, while the nanocrystalls come from the fragmentation of half-molten carbides. At the same time we found that the wear-resistant properties of the WC-Co coating is better than that of Cr3C2-NiCr coating at room temperature. The early wear-resistance of the HVOF sprayed coating is poor because of the roughness of its surface or bad bond of hard composite particles. The high velocity of molten droplets is propitious to fill up the interspaces between carbides, so as to make the coating more compact and reduce its porosities, thus the wear-resistance of carbides coatings is improved.

  8. Machinability and scratch wear resistance of carbon-coated WC inserts

    International Nuclear Information System (INIS)

    Highlights: • Cemented WC inserts were coated with carbon by CVD. • The deposits were either loosely held MWCNTs or adherent carbides. • Co-efficient of friction (ramp load; 1–13 N); 0.2 and 0.1 μ, respectively, for the uncoated and carbide-coated inserts. • The carbide-coated insert exhibited better machinability and surface finish than a commercial TiCN-coated insert. - Abstract: In this work, cemented tungsten carbide (WC) inserts were coated with nanocarbons/carbides by chemical vapor deposition (CVD) and their machinability and scratch wear resistance were investigated. The hardness and surface conditions of the WC substrate were studied before and after coating. The CVD-generated nanocarbons on the insert surfaces were examined by SEM, FE-SEM and TEM. The electron microscopic images revealed that the carbons generated were multi-walled carbon nanotubes (MWCNTs) or carbides depending on the experimental conditions. In both the cases, the cutting edges of the inserts had dense deposits. Scratch wear test with the coated inserts showed that the co-efficient of friction was 0.1 μ as against 0.2 μ for the uncoated inserts under a ramp load of 1–13 N. The machinability characteristics of commercially available TiCN-coated inserts and the carbon-coated WC inserts were compared by using a CNC machine and a Rapid I vision inspection system. It was found that the carbide-coated inserts exhibited machinability with better surface finish comparable to that of the TiCN-coated inserts while the MWCNT-coated inserts showed inferior adhesion properties

  9. Effect of Zr addition on the mechanical characteristics and wear resistance of Al grain refined by Ti after extrusion

    Science.gov (United States)

    Zaid, Adnan I. O.; Al-Qawabah, S. M. A.

    2016-08-01

    Aluminum and its alloys are normally grain refined by Ti or Ti+B to transfer their columnar structure during solidification into equiaxed one which improves their mechanical behavior and surface quality. In this paper, the effect of addition of Zr on the metallurgical, and mechanical aspects, hardness, ductility and wear resistance of commercially pure aluminum grain refined by Ti after extrusion is investigated. Zr was added at a level of 0.1% which corresponds to the peretectic limit at the Al-Zr phase diagram. The experimental work was carried out on the specimens after direct extrusion. It was found that addition of Ti resulted in decrease of Al grain size, whereas addition of Zr alone or in the presence of Ti, resulted in reduction of Al grain size. This led to increase of Al hardness. The effect of the addition of Ti or Zr alone resulted almost in the same enhancement of Al mechanical characteristics. As for the strain hardening index,n, increase was obtained when Zr was added alone or in the presence of Ti. Hence pronounced improvement of its formability. Regarding the effect of Zr addition on the wear resistance of aluminum; it was found that at small loads and speeds addition of Ti or Zr or both together resulted in deterioration of its wear resistance whereas at higher loads and speeds resulted in pronounced improvement of its wear resistance. Finally, the available Archard model and the other available models which consider only the mass loss failed to describe the wear mechanism of Al and its micro-alloys because they do not consider the mushrooming effect at the worn end.

  10. Effect of dry cryogenic treatment on Vickers hardness and wear resistance of new martensitic shape memory nickel-titanium alloy

    Science.gov (United States)

    Vinothkumar, Thilla Sekar; Kandaswamy, Deivanayagam; Prabhakaran, Gopalakrishnan; Rajadurai, Arunachalam

    2015-01-01

    Objectives: The aim of this study is to investigate the role of dry cryogenic treatment (CT) temperature and time on the Vickers hardness and wear resistance of new martensitic shape memory (SM) nickel-titanium (NiTi) alloy. The null hypothesis tested was that there is no difference in Vickers hardness and wear resistance between SM NiTi alloys following CT under two soaking temperatures and times. Materials and Methods: The composition and the phase transformation behavior of the alloy were examined by X-ray energy dispersive spectroscopy and differential scanning calorimetry, respectively. Fifteen cylindrical specimens and 50 sheet specimens were subjected to different CT conditions: Deep cryogenic treatment (DCT) 24 group: −185°C, 24 h; DCT six group: −185°C, 6 h; shallow cryogenic treatment (SCT) 24 group: −80°C, 24 h; SCT six group: −80°C, 6 h; and control group. Wear resistance was assessed from weight loss before and after reciprocatory wet sliding wear. Results: The as-received SM NiTi alloy contained 50.8 wt% nickel and possessed austenite finish temperature (Af) of 45.76°C. Reduction in Vickers hardness of specimens in DCT 24 group was highly significant (P < 0.01; Tukey's honest significant difference [HSD]). The weight loss was significantly higher in DCT 24 group (P < 0.05; Tukey's HSD). Conclusion: Deep dry CT with 24 h soaking period significantly reduces the hardness and wear resistance of SM NiTi alloy. PMID:26929689

  11. Improving wear resistance of magnesium alloy AZ91D by TiN-CrN multilayer coating

    Institute of Scientific and Technical Information of China (English)

    MIAO Qiang; CUI Cai-e; PAN Jun-de; ZHANG Ping-ze

    2006-01-01

    Applying a novel method of arc-glow plasma depositing, a 2 μm-thick coating with 12 sub-layers of TiN and CrN was deposited alternately on the surface of magnesium alloy AZ91D to improve its wear resistance. The wear behavior was investigated by test of ball on disc sliding. The composition and microstructure of the coating were also analyzed by means of X-ray diffraction (XRD) and glow discharge spectrum (GDS), and the morphology of TiN-CrN film was surveyed through scanning electronic microscopy (SEM) and atom force microscopy (AFM).The adhesion strength between film and matrix was evaluated by ways of stick-peeling test. The surface micro-hardness of the coating is above HK0.011 433, and the specific wear ratio of specimens coated with TiN-CrN films tested decreases greatly compared to that of the bare metal.

  12. Microstructure and wear resistance of the hypereutectic Fe–Cr–C alloy hardfacing metals with different La{sub 2}O{sub 3} additives

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jian [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Tian, Jianjun [Beijing Beiye Functional Materials Co., Ltd., Beijing 100192 (China); Hao, Feifei; Dan, Ting [Capital Aerospace Machinery Corporation, Beijing 100076 (China); Ren, Xuejun [School of Engineering, Liverpool John Moores University, Liverpool L3 3AF (United Kingdom); Yang, Yulin [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Yang, Qingxiang, E-mail: qxyang@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2014-01-15

    Hardfacing (harden-surface-welding) metal of the hypereutectic Fe–Cr–C alloy with different La{sub 2}O{sub 3} additives was developed. The microstructure of the hardfacing metal was observed by optical microscopy. The phase structure was determined by X-ray diffraction. The hardness and wear resistance of the hardfacing metal were measured by hardness tester and dry sand rubber wheel abrasive tester, respectively. The worn surface morphology was observed by field emission scanning electron microscope equipped with energy dispersive X-ray spectrometry. The solidification curve of the hardfacing metal and the relationship between the content of each phase and the temperature were calculated by thermodynamics software Thermo-Calc and Jmatpro, respectively. The results indicate that, with the increase of the La{sub 2}O{sub 3} additives, the dimension of the primary M{sub 7}C{sub 3} carbide in the hypereutectic Fe–Cr–C alloy hardfacing metal decreases gradually. When the La{sub 2}O{sub 3} additive is 0.78 wt.%, it reaches minimum, which is 11.37 μm. The amount of M{sub 7}C{sub 3} carbide (including the primary carbide and the eutectic carbide) decreases firstly then increases. The hardness of the hardfacing metal increases smally, while the wear resistance of it increases firstly then decreases and reaches the most excellent when the La{sub 2}O{sub 3} additive is 0.78 wt.%. The formation temperature of M{sub 7}C{sub 3} carbide is higher than that of austenite in the hypereutectic Fe–Cr–C alloy hardfacing metal. Austenite precipitated in the liquid phase can improve the precipitation rate of M{sub 7}C{sub 3} carbide in a certain extent. As the temperature of the molten pool drops from 870 °C to 840 °C, γ-Fe transforms into α-Fe completely, so a large number of C atoms precipitate, which promotes the growth of the M{sub 7}C{sub 3} carbide in short period.

  13. Effect of RE Modification and Heat Treatment on Impact Fatigue Property of a Wear Resistant White Cast Iron

    Institute of Scientific and Technical Information of China (English)

    常立民; 刘建华; 张瑞军; 王继东

    2004-01-01

    The morphology of carbides, as well as the generation and propagation of fatigue cracks in a wear resistant white cast iron after impact fatigue test were observed by means of optical microscope and SEM, and the relationship among the content of RE (rare earths) in the wear resistant white cast iron and the heating temperature as well as the length and propagation speed of the fatigue cracks were determined. Based on the obtained results, the effect of RE modification and heat treatment on the impact fatigue property was further studied. Experimental results show that addition of RE can defer the time required for the generation of fatigue cracks, reduce their propagation speed and increase the impact fatigue resistance. The aforesaid effect is more noticeable in case of combined RE modification with heat treatment, which can be attributed to the variation in morphology and the distribution of the eutectic carbide network.

  14. Wear property of high-resistivity carbon brushes made with and without MoS2 in variable humidity

    Institute of Scientific and Technical Information of China (English)

    HU Zhong-liang; CHEN Zhen-hua; XIA Jin-tong; DING Guo-yun

    2008-01-01

    Four kinds of high-resistivity carbon brushes with MoS2 contents of 0%, 2%, 4% and 6% (mass fraction) were prepared, respectively. Wear tests of brushes were conducted on an alternate current(AC) motor. Scanning electron microscopy(SEM) and energy dispersive X-ray analysis(EDS) were used to analyze the worn surface of brushes, and a thermocouple was used to measure the bulk temperature of the brush. The results show that wear rate of brush made without MoS2 in 10% relative humidity(RH) is two times larger than that in 50% RH, whereas the wear rates change little for the brushes made with MoS2. The wear of brushes has much to do with the surface film. In low humidity, the surface film can not be formed for the former brush while a sulfur layer can be formed for the latter brushes,which can reduce sparks, frictional heat and wear rate, and play a role like the water film in high humidity.

  15. Enhancement of the Wear Resistance and Microhardness of Aluminum Alloy by Nd:YaG Laser Treatment

    Directory of Open Access Journals (Sweden)

    Haitham T. Hussein

    2014-01-01

    Full Text Available Influence of laser treatment on mechanical properties, wear resistance, and Vickers hardness of aluminum alloy was studied. The specimens were treated by using Nd:YaG laser of energy 780 mj, wavelength 512 nm, and duration time 8 ns. The wear behavior of the specimens was studied for all specimens before and after treatment by Nd:YaG laser and the dry wear experiments were carried out by sing pinon-disc technique. The specimens were machined as a disk with diameter of 25 mm and circular groove in depth of 3 mm. All specimens were conducted by scanning electron microscopy (SEM, energy-dispersive X-ray florescence analysis (EDS, optical microscopy, and Vickers hardness. The results showed that the dry wear rate was decreased after laser hardening and increased Vickers hardness values by ratio of 2.4 : 1. The results showed that the values of wear rate for samples having circular grooves are less than samples without grooves after laser treatment.

  16. Enhancement of the wear resistance and microhardness of aluminum alloy by Nd:YaG laser treatment.

    Science.gov (United States)

    Hussein, Haitham T; Kadhim, Abdulhadi; Al-Amiery, Ahmed A; Kadhum, Abdul Amir H; Mohamad, Abu Bakar

    2014-01-01

    Influence of laser treatment on mechanical properties, wear resistance, and Vickers hardness of aluminum alloy was studied. The specimens were treated by using Nd:YaG laser of energy 780 mj, wavelength 512 nm, and duration time 8 ns. The wear behavior of the specimens was studied for all specimens before and after treatment by Nd:YaG laser and the dry wear experiments were carried out by sing pinon-disc technique. The specimens were machined as a disk with diameter of 25 mm and circular groove in depth of 3 mm. All specimens were conducted by scanning electron microscopy (SEM), energy-dispersive X-ray fluorescence analysis (EDS), optical microscopy, and Vickers hardness. The results showed that the dry wear rate was decreased after laser hardening and increased Vickers hardness values by ratio of 2.4:1. The results showed that the values of wear rate for samples having circular grooves are less than samples without grooves after laser treatment.

  17. Orthogonal experiment investigation on wear resistance of MoSi2

    Institute of Scientific and Technical Information of China (English)

    CHEN Ping; TANG Guoning; ZHANG Hou'an; LIU Houcai

    2003-01-01

    The influence of lubricant conditions, wear loads, and counterparts on the friction and wear characteristics of an MoSi2 material was investigated by means of orthogonal analysis. Orthogonal experiment results show that the order of influencing degree of the factors is lubricant condition > load > counterpart. MoSi2 has excellent friction-wear comprehensive properties against higher-hardness counterparts on the higher load and 20 oil lubricant conditions.

  18. Hybrid composites – a better choice for high wear resistant materials

    OpenAIRE

    Dora Siva Prasad; Chintada Shoba

    2014-01-01

    This investigation, studies the dry sliding wear behavior of aluminum (Al) matrix hybrid composites reinforced with rice husk ash (RHA) and silicon carbide (SiC) particulates up to 8% (in equal proportions) fabricated by vortex method. Pin-on disk wear test was carried out for both unreinforced alloy and hybrid composites. Scanning electron microscopy is used to study the wear characteristics of the unreinforced Al alloy and the hybrid composites. The results showed that the hybrid composites...

  19. Effect of B4 C content on wear resistance of argon arc clad layer with in situ reactive alloy powder%B4C含量对原位反应型合金粉末氩弧熔覆层耐磨性的影响

    Institute of Scientific and Technical Information of China (English)

    马壮; 谭士海

    2014-01-01

    Argon arc cladding test was carried out on Q 235 steel with reduced iron powder , boron carbide powder and borax .Effects of boron carbide content (6%, 8%, 10%and 12%, mass fraction) on microstructure and wear resistance of the clad layers were investigated .The results show that when the boron carbide content is 12%, there is new phase Fe 2 B existing in the clad layer .With the increase of boron carbide content , the hardness , abrasive wear , adhesive wear and erosion wear resistance of the clad layer are gradually improved , when the boron carbide content reaches 12%, the hardness is 3.2 times of the matrix, and the relative abrasive wear , adhesive wear and erosion wear resistances are 5.4, 3.7 and 4.3 times of the matrix, respectively.%采用还原铁粉、碳化硼粉末、硼砂在基体金属材料Q235钢板上进行氩弧熔覆,并研究了6%、8%、10%、12%(质量分数)四种不同碳化硼含量对熔覆层组织和耐磨性的影响。结果表明,当碳化硼含量达到12%时熔覆层有新形成的Fe2 B,随碳化硼含量的增加熔覆层硬度、抗磨粒磨损性能、抗黏着磨损性能、抗冲蚀磨损性能逐渐提高,当碳化硼含量达到12%时,硬度是基体的3.2倍,相对耐磨粒磨损、黏着磨损、冲蚀磨损性能都大幅度提高,分别是基体的5.4、3.7、4.3倍。

  20. Wear of hard materials by hard particles

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.

    2003-10-01

    Hard materials, such as WC-Co, boron carbide, titanium diboride and composite carbide made up of Mo2C and WC, have been tested in abrasion and erosion conditions. These hard materials showed negligible wear in abrasion against SiC particles and erosion using Al2O3 particles. The WC-Co materials have the highest wear rate of these hard materials and a very different material removal mechanism. Wear mechanisms for these materials were different for each material with the overall wear rate controlled by binder composition and content and material grain size.

  1. RESEARCH ABOUT RESULTS REPRODUTIBILITY AND ABRASIVE PARTICLES FRAGMENTATION IN BALL-CRATERING TESTS

    Directory of Open Access Journals (Sweden)

    Ronaldo Câmara Cozza

    2013-06-01

    Full Text Available The micro-abrasive wear tests by rotating ball (crater wear have played an important role in abrasive wear researches. In this type of test, the contact between a specimen and a ball on rotating motion and abrasive particles supplied between these two elements, results in a crater on the specimen, based on which the abrasive wear behaviour is analysed. The purpose of this work is to study results the reprodutibility and the silicon carbide (SiC abrasive particles fragmentation during micro-abrasive wear tests. Tests were conducted with carburized AISI 1010 steel balls and high speed steel specimens, “with” and “without” titanium nitride (TiN coatings. The abrasive slurry was prepared with black silicon carbide (average particle size of 5 µm and distilled water. Grooving abrasion is related with lower reprodutibility results. For the test conditions of this work, no abrasive particles fragmentation was observed, independently of the sliding distance, what is justified, among others factors, by the low normal force applied.

  2. Wear Assessment of Fe-TiC/ZrC Hardfacing Produced from Oxides

    Directory of Open Access Journals (Sweden)

    S. Corujeira-Gallo

    2015-03-01

    Full Text Available The direct conversion of oxides into carbides during plasma transferred arc welding is a promising processing route to produce wear resistant overlays at low cost. In the present study, Fe-TiC and Fe-ZrC composite overlays were produced by carbothermic reduction of TiO2 and ZrO2 during plasma transferred arc deposition. The overlays were characterised by optical microscopy, electron microscopy and X-ray diffraction. The microstructure consisted of small TiC and ZrC evenly dispersed in a pearlitic matrix. The Vickers microhardness was measured and low-stress abrasion tests were conducted. The results showed increased hardness and promising wear resistance under low-stress abrasion conditions.

  3. Structurally Integrated Coatings for Wear and Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Beardsley, M. Brad; Sebright, Jason L.

    2008-11-18

    Wear and corrosion of structures cuts across industries and continues to challenge materials scientists and engineers to develop cost effective solutions. Industries typically seek mature technologies that can be implemented for production with rapid or minimal development and have little appetite for the longer-term materials research and development required to solve complex problems. The collaborative work performed in this project addressed the complexity of this problem in a multi-year program that industries would be reluctant to undertake without government partnership. This effort built upon the prior development of Advanced Abrasion Resistant Materials conduct by Caterpillar Inc. under DOE Cooperative Agreement No. DE-FC26-01NT41054. In this referenced work, coatings were developed that exhibited significant wear life improvements over standard carburized heat treated steel in abrasive wear applications. The technology used in this referenced work, arc lamp fusing of thermal spray coatings, was one of the primary technical paths in this work effort. In addition to extending the capability of the coating technology to address corrosion issues, additional competitive coating technologies were evaluated to insure that the best technology was developed to meet the goals of the program. From this, plasma transferred arc (PTA) welding was selected as the second primary technology that was investigated. Specifically, this project developed improved, cost effective surfacing materials and processes for wear and corrosion resistance in both sliding and abrasive wear applications. Materials with wear and corrosion performance improvements that are 4 to 5 times greater than heat treated steels were developed. The materials developed were based on low cost material systems utilizing ferrous substrates and stainless steel type matrix with hard particulates formed from borides and carbides. Affordability was assessed against other competing hard surfacing or coating

  4. Effect of Temper Temperature on Microstructures and Wear Resistance of Surfacing Deposits of Ferro-Base with Cr-W-MO Alloy

    Institute of Scientific and Technical Information of China (English)

    Liu Jianhua; Xu Liang; Yang Qingxiang; Zhang Ruijun

    2007-01-01

    In the paper, the effect of temper temperature on microstructures and wear resistance of surfacing deposits of Ferro-base with Cr-W-MO alloy were investigated. The results show that the secondary hardening call be obtained when the surfacing deposits is tempered. Temper temperature is lower than 400℃, the hardness of surfacing deposits of Ferro-base with Cr-W-MO alloy has little change, when it exceeded 600℃, the hardness decreases obviously, the surfacing deposits tempering at 560℃ for 2h has excellent wear resistance. As a result, the microstructure of surfacing deposits is in relation to its wear resistance.

  5. Estudo comparativo da resistência ao desgaste abrasivo do revestimento de três ligas metálicas utilizadas na indústria, aplicadas por soldagem com arames tubulares Comparative study of the wear resistance of three metal cored wire welded coatings used in industry

    Directory of Open Access Journals (Sweden)

    Ricardo Vinícius de Melo Leite

    2009-12-01

    Full Text Available As ligas metálicas aplicadas por soldagem em superfícies, objetivando a proteção contra o desgaste e o conseqüente aumento da vida útil de peças e equipamentos, têm sido utilizadas em larga escala nas indústrias de bens de consumo e nos setores de mineração e sucroalcooleiro. O desgaste abrasivo em peças e equipamentos representa, nestas industriais, um dos principais fatores de depreciação de capital e uma importante fonte de despesas com manutenção. Para a aplicação do revestimento por soldagem, os arames tubulares têm sido uma alternativa cada vez mais viável, devido à sua alta produtividade e qualidade de solda, substituindo, em parte, o uso do eletrodo revestido. O objetivo deste trabalho é fazer um estudo comparativo da resistência ao desgaste abrasivo do revestimento aplicado por soldagem com arames tubulares autoprotegidos de três ligas metálicas utilizadas na indústria, uma do tipo Fe-Cr-C, outra do tipo Fe-Cr-C com adição de nióbio e boro e a terceira, do tipo Fe-Cr-C com adição de nióbio. Os revestimentos anti-desgaste, conhecidos como revestimento duro, foram aplicados em chapas de aço carbono, com os mesmos parâmetros e procedimentos de soldagem. Os corpos de prova foram obtidos por corte e retificação e foram submetidos a ensaios de desgaste abrasivo, em um abrasômero Roda de Borracha, conforme procedimento estabelecido pela norma ASTM G65-91. Os resultados obtidos demonstraram que a liga Fe-Cr-C com adição de Nióbio e Boro apresentou desempenho superior em relação ao desgaste abrasivo.The metal alloys deposited by welding on the components surface, with the objective of protection against wear and the consequent increase in the lifetime of parts and equipments, have been used extensively in the consumer products industry and sectors of Mining and Sugar & alcohol. The abrasive wear on parts and equipments represents one of the main depreciation factors of capital and the major source of

  6. Use of dentifrices to prevent erosive tooth wear: harmful or helpful?

    Directory of Open Access Journals (Sweden)

    Ana Carolina Magalhães

    2014-01-01

    Full Text Available Dental erosion is the loss of dental hard tissues caused by non-bacterial acids. Due to acid contact, the tooth surface becomes softened and more prone to abrasion from toothbrushing. Dentifrices containing different active agents may be helpful in allowing rehardening or in increasing surface resistance to further acidic or mechanical impacts. However, dentifrices are applied together with brushing and, depending on how and when toothbrushing is performed, as well as the type of dentifrice and toothbrush used, may increase wear. This review focuses on the potential harmful and helpful effects associated with the use of dentifrices with regard to erosive wear. While active ingredients like fluorides or agents with special anti-erosive properties were shown to offer some degree of protection against erosion and combined erosion/abrasion, the abrasive effects of dentifrices may increase the surface loss of eroded teeth. However, most evidence to date comes from in vitro and in situ studies, so clinical trials are necessary for a better understanding of the complex interaction of active ingredients and abrasives and their effects on erosive tooth wear.

  7. Improved wear resistance of Al-15Si alloy with a high current pulsed electron beam treatment

    Science.gov (United States)

    Hao, Y.; Gao, B.; Tu, G. F.; Li, S. W.; Dong, C.; Zhang, Z. G.

    2011-07-01

    A hypereutectic Al-15Si alloy (Si 15 wt.%, Al balance) was irradiated by high current pulsed electron beam (HCPEB). The HCPEB treatment causes ultra-rapid heating, melting and cooling at the top surface layer. As a result, the special "halo" microstructure centering on the primary Si phase is formed on the surface due to interdiffusion of Al and Si elements. The composition of the "halo" microstructure is distributed continuously from the center to the edge of the "halo". Compared to an untreated matrix, the remelted layer underneath the surface presents single contrast because of the compositional homogeneity after HCPEB treatment. The thickness of the remelted layer increases slightly from 4.4 μm (5 pulses) to 5.6 μm (25 pulses). HCPEB treatment broadens and shifts the diffraction peaks of Al and Si. The lattice parameters of Al decreases due to the formation of a supersaturated solid solution of Al in the melted layer. Through analysis of Raman spectra and transmission electron microscopy (TEM), the amorphous Si (a-Si) and nanocrystalline Si are formed in the near-surface region under multiple bombardments of HCPEB. The relative wear resistance of a 15-pulse sample is effectively improved by a factor of 9, which can be attributed to the formation of metastable structures.

  8. Hardness and wear resistance of carbon nanotube reinforced aluminum-copper matrix composites.

    Science.gov (United States)

    Nam, Dong Hoon; Kim, Jae Hwang; Cha, Seung Il; Jung, Seung Il; Lee, Jong Kook; Park, Hoon Mo; Park, Hyun Dal; Hong, Hyung

    2014-12-01

    Recently, carbon nanotubes (CNTs) have been attracted to reinforcement of composite materials due to their extraordinary mechanical, thermal and electrical properties. Many researchers have attempted to develop CNT reinforced metal composites with various fabrication methods and have shown possibilities for structural and functional applications. Among them, CNT reinforced Al matrix composites have become very attractive due to their huge structural application in industry. In this study, CNT reinforced Al-Cu matrix composites with a microstructure of homogeneous dispersion of CNTs in the Al-Cu matrix are investigated. The CNT/Al-Cu composites are fabricated by mixing of CNT/Cu composite powders and Al powders by high energy ball mill process followed by hot extrusion process. The hardness and wear resistance of the CNT/Al-Cu composites are enhanced by 1.4 and 3 times, respectively, compared to those values for the Al-Cu matrix. This remarkable enhancement mainly originates from the homogeneous dispersion of CNTs in Al-Cu matrix and self-lubricant effect of CNTs. PMID:25971024

  9. Effect of microstructure on the wear resistance of borided Fe-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dybkov, Vasyl I. [Institute of Problems of Materials Science, Kyiv (Ukraine)

    2013-07-15

    Two boride layers were found to form at the interface between reacting phases in the course of boriding of Fe-Cr alloys (10, 15, 25 and 30% Cr) and chromium steels (13 and 25% Cr) in the temperature range of 850-950 C and reaction times 3600-43200 s (1-12h). In the case of Fe-10%Cr and Fe-15%Cr alloys and 13% Cr steel, the outer boride layer bordering the boriding agent consists of the (Fe,Cr)B phase, whereas the inner boride layer adjacent to the solid substrate consists of the (Fe,Cr)2B phase. Each layer is thus a homogeneous phase (type I microstructure). In contrast, on the surface of Fe-25%Cr and Fe-30%Cr alloys and 25% Cr steel each of the two boride layers consists of two phases and has a peculiar network-platelet morphology. The outer boride layer comprises the (Fe,Cr)B and (Cr,Fe)B phases, while the inner consists of the (Fe,Cr){sub 2}B and (Cr,Fe){sub 2}B phases (type II microstructure). It is such boride layers that exhibit the highest wear resistance. (orig.)

  10. Study on wear resistant cast B-containing 1Cr18Ni9Ti stainless steel

    Institute of Scientific and Technical Information of China (English)

    Kuang Jiacai; Jiang Zhiqiang; Zhang Shiyin; Ye Chang; Liu Qicheng

    2009-01-01

    The developed 1Cr18Ni9Ti austenitic stainless steel containing 1.63 wt.%B have been characterized by X-ray diffraction (XRD), electron probe microanalyzer (EPMA), optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and Vickers microhardness measurement. The microstructural evolution and property of high boron stainless steel after solution treatment at the temperature of 1050℃ are also investigated. The results show that the main compositions of borides are Fe, Cr and B, and with small amount of Ni, Mn and C elements. Silicon is insoluble in the borides. The hardness of borides is over 1,500 HV. It has been found that borides do not decompose during solution treatment, but part of borides dissolves into the matrix. The effect of increasing the solubility of boron element in the austenitic matrix favours the hardness enhancement by 8.54%. High boron stainless steel has excellent wear resistance in corrosive environment. Lifetime of transfer pipe made of high boron-containing stainless steel is 1.5-1.8 times longer than that of boron-free 1Cr18Ni9Ti stainless steel.

  11. Wear-resistant and antismudge superoleophobic coating on polyethylene terephthalate substrate using SiO2 nanoparticles.

    Science.gov (United States)

    Wang, Yongxin; Bhushan, Bharat

    2015-01-14

    It is of interest to create superoleophobic surfaces that exhibit high oil contact angle, low contact angle hysteresis, high wear resistance, antismudge properties, and optical transparency for industrial applications. In the superoleophobic surfaces developed to date, the mechanical durability data is lacking. By dip-coating polyethylene terephthalate substrate with hydrophobic SiO2 nanoparticles and methylphenyl silicone resin, followed by O2 plasma treatment and vapor deposition of 1H,1H,2H,2H-perfluorooctyltrichlorosilane, a durable superoleophobic surface was fabricated. The degree of superoleophobicity was found to be dependent on the particle-to-binder ratio. The coatings were found to exhibit wear resistance on microscale and macroscale, antismudge properties, and transparency.

  12. Mechanical Properties and Erosive Wear Resistance of Zirconia Toughened Al2O3-TiC Ceramics

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The effect of ZrO2 content on the fracture toughness, flexural strength and Vickers hardness as well as the erosive wear resistant properties of zirconia toughened Al2O3-TiC ceramic composites has been investigated. The results showed that the improvement in fracture toughness and flexure strength of composites with the content of zirconia less than 50% and 10% in mass fraction respectively, is primarily attributed to stress-induced transformation toughening by the analyse of X-ray diffraction. The dependance of erosion wear resistance on the attack angle and the content of ZrO2 particles of the composites was also revealed. It is found that the erosion rate of the composites has a sharp rise at a attack angle over 65€?. This phenomenon is due to a brittle response to the erosion test by microstructural observation on eroded surface.

  13. Study and Application of Heat Treatment of Multi-Element Wear-Resistant Low-Alloy Steel

    Institute of Scientific and Technical Information of China (English)

    JIANG Zhi-qiang; DU Jian-ming; FENG Xi-lan

    2006-01-01

    The effects of heat treatment on the properties of multi-element wear-resistant low-alloy steel (MLAWS) which is used to make the liner of rolling mill torus were researched. The results show that when quenching temperature is lower than 900 ℃, the hardness increases with the increase of temperature, and when quenching temperature is higher than 900 ℃, the hardness decreases with the increase of temperature. As quenching temperature is lower than 920 ℃, the effect of quenching temperature on the impact toughness is not obvious. When quenching temperature is higher than 920 ℃, impact toughness decreases with the increase of temperature. When tempering temperature is higher than 450 ℃, the hardness begins to decrease obviously. After tempering at 350 ℃, the best wear resistance was obtained. According to the service condition of rolling mill torus liner, the MLAWS is quenched from 900-920 ℃ and tempered at 350-370 ℃.

  14. Mechanical And Microstructural Evaluation Of A Wear Resistant Steel; Avaliacao mecanica e microestrutural de um aco resistente ao desgaste

    Energy Technology Data Exchange (ETDEWEB)

    Santos, F.L.F. dos; Vieira, A.G.; Correa, E.C.S.; Pinheiro, I.P., E-mail: falletti@hotmail.co [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET/MG), Belo Horizonte, MG (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    In the present work, the analysis of the mechanical properties and the microstructural features of a high strength low alloy steel, containing chromium, molybdenum and boron, subjected to different heat treatments, was conducted. After austenitizing at 910 deg C for 10 minutes, three operations were carried out: oil quenching, oil quenching followed by tempering at 200 deg C for 120 minutes and austempering at 400 deg C for 5 minutes followed by water cooling. The analysis was performed through tensile and hardness tests, optical microscopy and X-ray diffraction. The bainitic structure led to high strength and toughness, both essential mechanical properties for wear resistant steels. The occurrence of allotriomorphic ferrite and retained austenite in the samples also increased the wear resistance. This phenomenon is related to the fact that both structures are able to be deformed and, in the case of the retained austenite, the transformation induced plasticity TRIP effect may take place as the material is used. (author)

  15. Microstructure and high temperature wear resistance of laser quenching and ion sulphidizing composite layer on cylinder inwall%缸套内壁激光渗硫复合层的组织与抗高温磨损性能

    Institute of Scientific and Technical Information of China (English)

    蔡志海; 何嘉武; 底月兰; 张平

    2011-01-01

    针对大功率密度柴油机缸套高温磨损失效问题,利用低温离子渗硫技术在42MnCr52钢激光淬火表面制备了渗硫层,采用扫描电子显微镜(SEM)、X射线衍射(XRD)、纳米硬度仪、划痕仪和台架试验装置分析了复合层的形貌组成、组织结构、力学性能与高温磨损性能.结果表明,复合层表面疏松多孔,其相组成主要为FeS,厚度约为5 μm,与基底结合紧密.在发动机台架试验条件下,激光渗硫复合处理能降低缸套的磨损量,同时减轻了对磨活塞环的磨损,其主要原因是复合层表面的固体润滑硫化物有效抑制了高温粘着磨损和磨粒磨损,改善了缸套/活塞环摩擦副表面的匹配性能,使缸套的抗高温磨损性能得到提高.%In view of worn failure at high temperature for cylinder of high-power density diesel engine, the sulfurizing layer was prepared on the laser quenched 42MnCr52 steel surface by low temperature ion sulphurizing technology. The surface morphologies, phase structures,mechanical properties and high temperature wear resistance at the composite treated layer were analyzed by scanning electron microscope, Xray diffraction,nano-hardness tester, scratch instrument and bench test instrument. The experimental results show that the surface of the composite layer is loose and porous, and the phase structure of which is mainly FeS phase with thickness of about 5 μm, tightly combined with substrate. The sulfide layer on laser quenching surface can reduce the wearing capacity of the cylinder and the opposite piston rings under engine bench testing conditions. The main reason for which is that the lubrication sulfide films of the composite treatment layer surface effectively restrain the abrasive wear and adhesive wear at high temperature, and improve the match property between cylinder and the opposite piston rings, and hence inerease the wear resistance at high temperature for cylinder.

  16. Microstructure and Dry-Sliding Wear Behavior of B4C Ceramic Particulate Reinforced Al 5083 Matrix Composite

    Directory of Open Access Journals (Sweden)

    Qian Zhao

    2016-09-01

    Full Text Available B4C ceramic particulate–reinforced Al 5083 matrix composite with various B4C content was fabricated successfully via hot-press sintering under Argon atmosphere. B4C particles presented relative high wettability, bonding strength and symmetrical distribution in the Al 5083 matrix. The hardness value, friction coefficient and wear resistance of the composite were higher than those of the Al 5083 matrix. The augment of the B4C content resulted in the increase of the friction coefficient and decrease of the wear mass loss, respectively. The 30 wt % B4C/Al 5083 composite exhibited the highest wear resistance. At a low load of 50 N, the dominant wear mechanisms of the B4C/Al 5083 composite were micro-cutting and abrasive wear. At a high load of 200 N, the dominant wear mechanisms were micro-cutting and adhesion wear associated with the formation of the delamination layer which protected the composite from further wear and enhanced the wear resistance under the condition of high load.

  17. Study on torsional fretting wear behavior of a ball-on-socket contact configuration simulating an artificial cervical disk

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Wang, Fei [School of Material Science and Engineering, China University of Mining and Technology, Xuzhou 221116 (China); Liao, Zhenhua [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Wang, Qingliang [School of Material Science and Engineering, China University of Mining and Technology, Xuzhou 221116 (China); Liu, Yuhong [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China); Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Liu, Weiqiang, E-mail: weiqliu@hotmail.com [Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2015-10-01

    A ball-on-socket contact configuration was designed to simulate an artificial cervical disk in structure. UHMWPE (ultra high molecular weight polyethylene) hot pressed by powders and Ti6Al4V alloy were selected as the material combination of ball and socket. The socket surface was coated by a ~ 500 nm C-DLC (carbon ion implantation-diamond like carbon) mixed layer to improve its surface nano hardness and wear resistance. The torsional fretting wear behavior of the ball-on-socket model was tested at different angular displacements under 25% bovine serum lubrication with an axial force of 100 N to obtain more realistic results with that in vivo. The fretting running regimes and wear damage characteristics as well as wear mechanisms for both ball and socket were studied based on 2D (two dimension) optical microscope, SEM (scanning electron microscope) and 3D (three dimension) profiles. With the increase of angular displacement amplitude from 1° to 7°, three types of T-θ (Torsional torque-angular displacement amplitude) curves (i.e., linear, elliptical and parallelogram loops) corresponding to running regimes of PSR (partial slip regime), MR (mixed regime) and SR (slip regime) were observed and analyzed. Both the central region and the edge zone of the ball and socket were damaged. The worn surfaces were characterized by wear scratches and wear debris. In addition, more severe wear damage and more wear debris appeared on the central region of the socket at higher angular displacement amplitude. The dominant damage mechanism was a mix of surface scratch, adhesive wear and abrasive wear for the UHMWPE ball while that for the coated socket was abrasive wear by PE particles and some polishing and rolling process on the raised overgrown DLC grains. The frictional kinetic behavior, wear type, damage region and damage mechanism for the ball-on-socket model revealed significant differences with those of a ball-on-flat contact while showing better consistency with that of in

  18. Development of low-friction and wear-resistant surfaces for low-cost Al hot stamping tools

    OpenAIRE

    Dong Y; Formosa D.; Fernandez J.; Li X; Fuentes G.; Zoltan K.; Dong H.

    2015-01-01

    In this study, advanced surfaces and coatings have been developed using plasma thermochemical treatment, PVD coating, electroless Ni-BN plating and duplex surface engineering to produce low-friction and wear-resistant surfaces for cast iron stamping tools. Their microstructural and nano-mechanical properties were systematically analysed and the tribological behaviour of these new surfaces and coatings were evaluated. The experimental results have shown that under dry sliding condition, the tr...

  19. Effect of La2O3 on granular bainite microstructure and wear resistance of hardfacing layer metal

    Institute of Scientific and Technical Information of China (English)

    王亚军; 陈继刚; 杨健; 郝飞飞; 淡婷; 杨育林; 杨庆祥

    2014-01-01

    The purpose of this work was to investigate the effect of La2O3 on the granular bainite microstructure and wear resistance of hardfacing layer metal. The hardfacing layer metals with different contents of La2O3 were prepared. The microstructures of the hardfacing layer metals were observed by field emission scanning electron microscopy (FESEM) and transmission electron micros-copy (TEM). The hardness and wear resistance of the hardfacing layer metals were measured respectively. The results indicated that with the increasing content of La2O3, the amount of granular bainite increased, while that of martensite decreased and that of retained austenite did not change obviously. When the content of La2O3 was 2.55 wt.%, the volume fraction of the granular bainite in the hardfacing layer metal was 73.2%. Meanwhile, the wear resistance of the hardfacing layer metal was the largest, which was 12100 min/g. The mismatch between the face (100) of LaAlO3 and the face (100) ofδ-Fe was 7.1%. Therefore, LaAlO3 could act as moder-ate effective heterogeneous nuclei ofδ-Fe and the granular bainite could be refined.

  20. Efecto del conteo de nódulos en la resistencia al desgaste por abrasión de los hierros dúctiles austemperados. // Effect of nodules count in the waste by abrasion resistance for ductile austempering irons.

    Directory of Open Access Journals (Sweden)

    C. J. Diez Cicero

    2004-05-01

    Full Text Available Entre los materiales metálicos de mayor demanda, la producción de hierro con grafito nodular, ocupa en la actualidad unode los lugares más importantes entre los hierros fundidos de alta resistencia, y con la introducción del tratamiento térmicode austemperado aplicado a estas fundiciones, se da lugar a una nueva familia de materiales, caracterizados por su altaresistencia mecánica y elevada tenacidad, que mantienen la economía y facilidad de producción de las fundicionesnodulares.Este trabajo, hace una valoración del comportamiento de hierros nodulares, con diferentes conteos de nódulos, a los que lesfue aplicado el tratamiento de austemperado y posteriormente se les sometió a ensayos de desgaste abrasivo.Con los resultados obtenidos se hace un análisis de la influencia del conteo de nódulos en dichas propiedades, así comotambién de la interrelación del conteo de nódulos con las variables de tratamiento térmico utilizadas en las muestrasensayadas.Palabras claves: Hierro nodular, conteo de nódulos, austemperado.____________________________________________________________________________Abstract.Between the metallic materials of greater demand, the iron production with nódular graphite occupies at the present time,one of the most important places between fused irons of high resistance, and with the introduction of the austempering heattreatment, applied to these meltings, brings a new family of materials, characterized by its high mechanical resistance andelevated tenacity, that maintain the economy and facility of production of the nodular smeltings.This work makes a valuation of the nodular irons behaviors, with different counts from nodules, to which the austemperingtreatment was applied, and later they were put under tests of abrasive wearing.Of the obtained results, takes control of the influence the nodules count in these properties, as well as, of the interrelation ofthe nodules count, with the used variables of heat

  1. Microstructure and wear resistance of composite layers on a ductile iron with multicarbide by laser surface alloying

    International Nuclear Information System (INIS)

    Multicarbide reinforced metal matrix composite (MMC) layers on a ductile iron (QT600-3) were fabricated by laser surface alloying (LSA) using two types of laser: a 5 kW continuous wave (CW) CO2 laser and a 400 W pulsed Nd:YAG laser, respectively. The research indicated that LSA of the ductile iron with multicarbide reinforced MMC layers demonstrates sound alloying layers free of cracks and porosities. The microstructure, phase structure and wear properties of MMC layers were investigated by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), as well as dry sliding wear testing. The microstructure of the alloyed layer is composed of pre-eutectic austenite, ledeburite, spherical TiC, Cr7C3 and Cr23C6 with various morphologies. TiC particles are dispersed uniformly in the upper region of MMC layers. The average hardness of LSA layers by CO2 laser and pulsed Nd:YAG laser is 859 HV0.2 and 727 HV0.2, respectively. The dry sliding wear testing shows the wear resistance of ductile iron is significantly improved after LSA with multicarbide.

  2. Mechanical modelling of tooth wear.

    Science.gov (United States)

    Karme, Aleksis; Rannikko, Janina; Kallonen, Aki; Clauss, Marcus; Fortelius, Mikael

    2016-07-01

    Different diets wear teeth in different ways and generate distinguishable wear and microwear patterns that have long been the basis of palaeodiet reconstructions. Little experimental research has been performed to study them together. Here, we show that an artificial mechanical masticator, a chewing machine, occluding real horse teeth in continuous simulated chewing (of 100 000 chewing cycles) is capable of replicating microscopic wear features and gross wear on teeth that resemble wear in specimens collected from nature. Simulating pure attrition (chewing without food) and four plant material diets of different abrasives content (at n = 5 tooth pairs per group), we detected differences in microscopic wear features by stereomicroscopy of the chewing surface in the number and quality of pits and scratches that were not always as expected. Using computed tomography scanning in one tooth per diet, absolute wear was quantified as the mean height change after the simulated chewing. Absolute wear increased with diet abrasiveness, originating from phytoliths and grit. In combination, our findings highlight that differences in actual dental tissue loss can occur at similar microwear patterns, cautioning against a direct transformation of microwear results into predictions about diet or tooth wear rate. PMID:27411727

  3. Flux cored wire for hardfacing of wear resistant band on drill pipe%钻杆接头耐磨带堆焊药芯焊丝的研究

    Institute of Scientific and Technical Information of China (English)

    刘希学; 贺定勇; 蒋建敏; 周正; 王智慧; 崔丽; 赵秋颖

    2013-01-01

    A kind of flux cored wire was developed to deposited the wear resistant band on drill pipe. The deposited alloys of Fe-B-Nb-Ni were prepared by CO2 gas shielded flux cored arc welding. The microstructures of the Fe-B-Nb-Ni alloys were investigated by optical microscopy, scanning electron microscopy,X-ray diffraction,etc. At the same times,its hardness and the wear resistance of the surfacing layer were tested. The results show that the Fe-B-Nb-Ni alloy exhibits, excellent wear resistance which is higher 37% than the imported flux-cored wire. The hardness value of the Fe-B-Nb-Ni alloy is up to HRC60. 5 ~ 62. 2. The microstructure of the Fe-B-Nb-Ni alloy consists of ferrite + martensite + Fe3C + NbC + eutectic structure Fe3 ( B,C) + Fe23 (B,C)6 + Fe2B. A large number of fine niobium carbides are randomly dispersed in the microstructure of the alloys. The martensite as wear skeleton shows well strength and wear resistance. The wear mechanism of Fe-B-Nb-Ni abrasive wear resistant layer was mainly plough and brittle peeling.%研制一种Fe-B-Nb-Ni系钻杆耐磨带堆焊药芯焊丝,采用CO2气体保护堆焊方法,制备Fe-B-Nb-Ni耐磨堆焊合金,利用OM,SEM,XRD等方法对堆焊合金的显微组织进行了观察分析,对堆焊层的硬度及耐磨性能进行了测试分析.结果表明,Fe-B-Nb-Ni堆焊合金耐磨性能比国外某进口药芯焊丝提高了约37%,其宏观硬度值达到HRC60.5~62.2.Fe-B-Nb-Ni堆焊合金的显微组织为马氏体+铁素体+少量渗碳体+颗粒状NbC+包晶Fe3(B,C)+共晶Fe23(B,C)6、Fe3(B,C)+少量共晶Fe2B相,其中NbC硬质颗粒弥散的分布于基体中,基体中的马氏体组织具有优异的强度和耐磨性,起到了很好的耐磨骨架的作用.Fe-B-Nb-Ni堆焊合金的磨损机理主要是犁沟式微切削和局部的硬质相剥落.

  4. High wear resistance white ceramic glaze containing needle like zircon single crystals by the addition of sepiolite n-ZrO2

    OpenAIRE

    Pina-Zapardiel, R.; Esteban-Cubillo, A.; Bartolomé, J. F.; Pecharromán, Carlos; J.S. Moya

    2013-01-01

    Sepiolite with homogeneous zirconia nanoparticles distribution has been added to a transparent ceramic glaze to study opacification, mechanical and wear resistance properties. It has been observed that monodispersed zircon single crystals with needle-like shape have been formed in the ceramic glaze. These in situ zircon single crystals give white color and increase opacification (L= 94 vs L= 90), mechanical properties (hardness and toughness) and wear resistance by a factor of 4 compared to t...

  5. Influence of Corrosion on the Abrasion of Cutter Steels Used in TBM Tunnelling

    Science.gov (United States)

    Espallargas, N.; Jakobsen, P. D.; Langmaack, L.; Macias, F. J.

    2015-01-01

    Abrasion on tunnel boring machine (TBM) cutters may be critical in terms of project duration and costs. Several researchers are currently studying the degradation of TBM cutter tools used for excavating hard rock, soft ground and loose soil. So far, the primary focus of this research has been directed towards abrasive wear. Abrasive wear is a very common process in TBM excavation, but with a view to the environment in which the tools are working, corrosion may also exert an influence. This paper presents a selection of techniques that can be used to evaluate the influence of corrosion on abrasion on TBM excavation tools. It also presents the influence of corrosion on abrasive wear for some initial tests, with constant steel and geomaterial and varying properties of the excavation fluids (soil conditioners, anti-abrasion additives and water). The results indicate that the chloride content in the water media greatly influences the amount of wear, providing evidence of the influence of corrosion on the abrasion of the cutting tools. The presence of conditioning additives tailored to specific rock or soil conditions reduces wear. However, when chloride is present in the water, the additives minimise wear rates but fail to suppress corrosion of the cutting tools.

  6. Ti(C,N and (Ti,AlN hard wear resistant coatings

    Directory of Open Access Journals (Sweden)

    K. Gołombek

    2010-04-01

    Full Text Available Purpose: Investigation the influence of kind of PVD coatings structure (homogenous or gradient on properties of deposited tool materials: cemented carbides and cermets.Design/methodology/approach: Analysis of the structure, analysis of the mechanical and functional properties: surface roughness, microhardness tests, scratch tests, cutting tests. The Ti(C,N gradient coating was investigated by XPS method with multifunctional PHI 5700/660 spectrometer. The characteristic of surface region coating were determined from XPS depth profile. X-ray qualitative phase analysis and the grazing incidence X-ray diffraction method (GIXRD was employed to collect the detailed information about phase composition of investigated material’s surface layer. Microstructural of investigations substrates and coatings by transmission electron miocroscopy (TEM were done.Findings: Results of the investigation the influence of PVD coatings structure (homogenous or gradient and kind on properties of coated tool materials: cemented carbides and cermets are given in the paper. Coatings are characterized by dense, compact structure, there have been identified no pores, fractures and discontinuities. The coatings were deposited uniformly onto the investigated substrate materials and show a characteristic columnar, fine-graded structure. The results of roughness, microhardness and cutting tests confirm the advantages of the PVD coatings. The coatings deposited onto the investigated substrates are characterised by good adhesion and causes increasing of wear resistance. The grazing incidence X-ray diffraction method (GIXRD in the investigated coatings were used to describe the structure and gradient character of the coatings.Practical implications: Deposition of hard, thin, gradient coatings on materials surface by PVD method features one of the most intensely developed directions of improvement of the working properties of materials.Originality/value: New techniques of gradient

  7. Effect of tetrahedral amorphous carbon coating on the resistivity and wear of single-walled carbon nanotube network

    Science.gov (United States)

    Iyer, Ajai; Kaskela, Antti; Novikov, Serguei; Etula, Jarkko; Liu, Xuwen; Kauppinen, Esko I.; Koskinen, Jari

    2016-05-01

    Single walled carbon nanotube networks (SWCNTNs) were coated by tetrahedral amorphous carbon (ta-C) to improve the mechanical wear properties of the composite film. The ta-C deposition was performed by using pulsed filtered cathodic vacuum arc method resulting in the generation of C+ ions in the energy range of 40-60 eV which coalesce to form a ta-C film. The primary disadvantage of this process is a significant increase in the electrical resistance of the SWCNTN post coating. The increase in the SWCNTN resistance is attributed primarily to the intrinsic stress of the ta-C coating which affects the inter-bundle junction resistance between the SWCNTN bundles. E-beam evaporated carbon was deposited on the SWCNTNs prior to the ta-C deposition in order to protect the SWCNTN from the intrinsic stress of the ta-C film. The causes of changes in electrical resistance and the effect of evaporated carbon thickness on the changes in electrical resistance and mechanical wear properties have been studied.

  8. Corrosive-wear resistance of stainless steels for the impeller of slurry pump used in zinc hydrometallurgy process

    Directory of Open Access Journals (Sweden)

    Ping LI

    2005-08-01

    Full Text Available This paper presents corrosive-wear (C-W behaviors of three kinds of steels under the simulating condition of traditional zinc hydrometallurgy process by using a self-made rotating disk apparatus. Result shows that pure wear loss rate is significantly larger than pure corrosion loss rate. Under this C-W condition, the ranking of C-W resistance is S2 > S3 > S1 (S1: austenite stainless steel; S2: CD-4MCu duplex stainless steel; S3 :17-4PH stainless steel. S2 has excellent C-W resistance due to strong surface deformation strengthening effect of high-density dislocations of the γ phase. S3 also has excellent C-W resistance owing to high hardness and strength. However, S1 does not show good C-W resistance under strong erosion of liquid-solid slurry because of its single-phase austenitic structure and very low hardness. As a result, duplex stainless steels as well as 17-4 PH stainless steel can be used as impeller candidate materials in the zinc hydrometallurgy process due to their excellent C-W resistance and lower cost.

  9. Corrosive-wear resistance of stainless steels for the impeller of slurry pump used in zinc hydrometallurgy process

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This paper presents corrosive-wear (C-W) behaviors of three kinds of steels under the simulating condition of traditional zinc hydrometallurgy process by using a self-made rotating disk apparatus. Result shows that pure wear loss rate is significantly larger than pure corrosion loss rate. Under this C-W condition, the ranking of C-W resistance is S2 > S3 > S1 (S1: austenite stainless steel; S2: CD-4MCu duplex stainless steel; S3:17-4PH stainless steel). S2 has excellent C-W resistance due to strong surface deformation strengthening effect of high-density dislocations of the γphase. S3 also has excellent C-W resistance owing to high hardness and strength. However, S1 does not show good C-W resistance under strong erosion of liquid-solid slurry because of its single-phase austenitic structure and very low hardness. As a result, duplex stainless steels as well as 17-4 PH stainless steel can be used as impeller candidate materials in the zinc hydrometallurgy process due to their excellent C-W resistance and lower cost.

  10. [Dependence of the dentinal abrasion of human teeth on their microhardness].

    Science.gov (United States)

    Remizov, S M; Pruzhanskiĭ, L Iu

    1989-01-01

    The dentin resistance against abrasion was studied as related to its microhardness. Sections of 15 intact teeth were investigated (central upper incisors). Water suspensions (40% weight-to weight) of dicalcium phosphate (DCP, FRG; and DKF-1 and DKF-2, USSR) were used as abrasives. Dentin microhardness was measured with a PMT-3 device, and abrasion assessed with profilographic technique. Dentin abrasion was related to its microhardness and to the kind of abrasive used. Dentin abrasion increased as its microhardness decreased. DCF showed minimal abrasive effect, DKF-2 had maximal effect with DKF-1 keeping the intermediate position.

  11. Effect of scanning speed during PTA remelting treatment on the microstructure and wear resistance of nodular cast iron

    Institute of Scientific and Technical Information of China (English)

    Hua-tang Cao; Xuan-pu Dong; Qi-wen Huang; Zhang Pan; Jian-jun Li; Zi-tian Fan

    2014-01-01

    The surface of nodular cast iron (NCI) with a ferrite substrate was rapidly remelted and solidified by plasma transferred arc (PTA) to induce a chilled structure with high hardness and favorable wear resistance. The effect of scanning speed on the microstructure, micro-hardness distribution, and wear properties of PTA-remelted specimens was systematically investigated. Microstructural characterization in-dicated that the PTA remelting treatment could dissolve most graphite nodules and that the crystallized primary austenite dendrites were transformed into cementite, martensite, an interdendritic network of ledeburite eutectic, and certain residual austenite during rapid solidifica-tion. The dimensions of the remelted zone and its dendrites increase with decreased scanning speed. The microhardness of the remelted zone varied in the range of 650 HV0.2 to 820 HV0.2, which is approximately 2.3-3.1 times higher than the hardness of the substrate. The wear re-sistance of NCI was also significantly improved after the PTA remelting treatment.

  12. 聚醚醚酮复合材料耐磨性能的研究进展%RESEARCH DEVELOPMENT ON THE WEAR-RESISTING PERFORMANCE OF PEEK COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    张志丹; 徐娟; 孙克原; 宁冲冲; 吴银财; 崔益华; 杨文光; 陈佩民; 靳予

    2013-01-01

    mechanical properties of PEEK plastic alloy and PEEK composites are obtained by adding fibers, crystal whisker, inorganic, organic fibers and other fillers. The fillers contain carbon fibers, carbon nano fibers, calcium titanate whisker, potassium titanate whisker, SiO2, ZrO2, SiC, CuS and so on. The improvement in wear resistance of composites was attributed to the smoothing of the counter surface, the developing of a transfer film, improved handness of modulus. However, the smoothness, hardness, and stiffness are not only the factore controlling the wear behavior, but also the nature and stability of the transfer film . The abrasion mechanism of PEEK composites and some traditional methods of improving the friction and wear behaviour were reviewed in this study.e

  13. Wear Assessment of Conical Pick used in Coal Cutting Operation

    Science.gov (United States)

    Dewangan, Saurabh; Chattopadhyaya, Somnath; Hloch, Sergej

    2015-09-01

    Conical pick is a widely used tool for cutting coal in mines. It has a cemented carbide tip inserted in a steel body. Cemented carbide has been in use for many years for coal/rock cutting because it has the optimum combination of hardness, toughness and resistance against abrasive wear. As coal/rock is a heterogeneous substance, the cutting tool has to undergo various obstructions at the time of excavation that cause the tool to wear out. The cracks and fractures developing in the cemented carbide limit the life of the tool. For a long time, different wear mechanisms have been studied to develop improved grades of cemented carbide with high wear resistance properties. The research is still continuing. Moreover, due to the highly unpredictable nature of coal/rock, it is not easy to understand the wear mechanisms. In the present work, an attempt has been made to understand the wear mechanisms in four conical picks, which were used in a continuous miner machine for underground mining of coal. The wearing pattern of the conical pick indicates damage in its cemented carbide tip as well as the steel body. The worn out parts of the tools have been critically examined using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) point analysis. Mainly four types of wear mechanisms, namely, coal/rock intermixing, plastic deformation, rock channel formation and crushing and cracking, have been detected. The presence of coal/rock material and their respective concentrations in the selected area of worn out surface were observed using the spectra generated by EDX analysis.

  14. Optimization of the Formula on Silicone Modified Epoxy Resins Based Wear Resistant Coating by Response Surface Methodology%响应曲面法优化有机硅改性环氧树脂基耐磨涂料配方

    Institute of Scientific and Technical Information of China (English)

    汪明球; 闫军; 杜仕国; 崔海萍

    2011-01-01

    A 2K silicone modified epoxy resin wear resistant coating was prepared, in which component A was composed of nano - TiO2/μm - SiC,γ - glycidoxypropyltrimethoxy silane ( KH - 560 ), molybdenum disulfide ( MoS2 ) and silicone modified epoxy resin, eompont B was polyamide curing agent.With the weight loss percentage as criterial, the formula of wear resistant coating was optimized according to the response surface methodology.The results showed that the lowest abrasion weight loss (0.42% ) could be achieved in a formula 70.60% filler, 0.80% coupling agent, 1.40% MoS2.The morphorlogy of weared surface was observed by SEM, and the wearing mechanism of coatings were discussed preliminarily.It was concluded that the wear behavior of coatings filled with composite particles showed the characteristics of abrasive powder wearing mechanism.%研制了一种有机硅改性环氧树脂双组分耐磨涂料,其中A组分由自制的纳米TiO2/微米SiC复合颗粒(TiO2/SiC)、MoS2、γ-缩水甘油醚氧丙基硅烷(KH-560)和有机硅改性环氧树脂组成,固化剂聚酰胺作为B组分.以耐磨失质量比为指标,利用响应曲面法优化了涂料的制备工艺参数,结果表明:涂料优化的工艺参数中填料所占质量比例为70.60%,偶联剂0.80%,MoS21.40%,此时最低磨损失质量比可至0.42%.通过SEM观察涂料磨损形貌并初步探索其磨损机理,研究认为:添加复合粒子的耐磨涂料磨损机理呈粉状磨粒磨损特性.

  15. STUDY ON THE WEAR CHARACTERISTICS OF Ni-P BRUSH-PLATING COATING

    Institute of Scientific and Technical Information of China (English)

    WuWenyue; HuangJinruo; QuJinxin; ShaoHesheng

    1996-01-01

    This paper studied the wear characteristics as well as the wear mechanismof the Ni-P alloy brush-plating coating by means of sliding-wear tests, SEM and X-Ray analyses. The results show that Ni-Palloy coating has excellent wear-ability inhigh temperature, and the wear mechanism of the coating is that both the adhesivewear and abrasive wear exist in a boundary lubrication condition. The wear model wasbuilt up.

  16. Microstructure and wear resistance of Fe -based hardfacing alloys reinforced by borides%硼化物强化铁基堆焊合金显微组织与耐磨性

    Institute of Scientific and Technical Information of China (English)

    宗琳; 宁建荣

    2012-01-01

    为了提高在严峻工况条件下工作的机械零件的耐磨性,采用等离子弧堆焊技术,制备硼化物强化铁基堆焊合金.借助OM,SEM和XRD等分析手段对合金组织和硼化物相形貌进行分析,并与未加入硼的Fe-Cr-C的堆焊合金进行对比.结果表明:堆焊合金中加入w(B)45%可改变基体的组织组成及硼化物的数量和分布形态,从而改善耐磨性.硼化物由大量菊花状M23(C,B)6和少量块状M7(C,B)3相组成,BC4与Cr2B的数量较少.耐磨粒磨损试验结果表明:堆焊合金的耐磨性随着硼含量的增加而先增大后下降,加入w(B)4.5%的堆焊层中形成的大量高硬度硼化物分布在具有较高强韧性的马氏体和奥氏体基体上,使其具有最佳的耐磨性,其磨损量仅为未加入硼时的1/6.%In order to improve the wear resistance of parts of machines in enviroments where they undergo severe conditions, Fe-based hardfacing alloy reinforced with borides were prepared under plasma transferred arc weld-surfacing process (PTA). The microstructure and borides morphology were investigated by means of OM, SEM and XRD, which was compared to the Fe-Cr-C hardfacing alloy. The results showed that the microstructure of the matrix and contents and distribution were changed as a result of the addition of 4.5% B in hardfacing alloys, which led to the improvement of wear resistance significantly. The borides consisted of high volume fraction of rosette M23(C,B)6 and little volume fraction of blocky M7(C B)3, the content of BC4 and Cr2B was very little. The abrasion experimental results showed that the wear resistance firstly increased and afterwards decreased as the B content increased, the microstructure characteristic with a high volume fraction of borides with high microhardness were distributed in the martensite and austenite matrix with high strength and toughness as the addition of 4.5%B in Fe-Cr-C hardfacing alloy, which suggested that the hardfacing layers had a

  17. Wear resistance and friction reduction in acrylo nitrile butadiene rubber through hybrid combination of graphite flakes and nano tungsten disulphide

    Science.gov (United States)

    Agrawal, Neha; Pandey, Akanksha; Parihar, A. S.; Mishra, A. K.; Gandhi, M. N.; Bhattacharyya, A. R.; Mukhopadhyay, K.; Prasad, N. E.

    2016-05-01

    Friction and wear have considerable role in the life span of two interacting parts. Incorporation of nanofillers in polymers/elastomers matrix causes commendable changes in its tribologicalproperties. The main purpose of this work is to reduce the coefficient of friction and wear rate of Acrylo Nitrile Butadiene rubber (NBR). To achieve such objective traditionally well knownlubricants graphite(G), tungsten disulphide (WS2) and there hybrid combination was incorporated in NBR matrix. Effect of applied load (force) and concentration of fillers on tribological properties of NBR had been studied. The filler incorporation enhanced the hardnessby 8%, showed resistance to hydraulic oil and aging effect also got improved significantly. A particular optimized concentration of NBR with hybrid combination of 2% WS2 and 4% Graphite showed minimum coefficient of friction as well as wear rate. A hypothesis could be attributed that similar lamellar structure of WS2 and Graphite along with formation of a stable nanoscale disulfide tribofilmcould result in lowering of friction. These substantially improved properties of nanoreinforced rubber materials would definitely pave promising path for plethora of potential technological applications.

  18. Microstructure and Wear Behavior of FeBSiNbCr Metallic Glass Coatings

    Institute of Scientific and Technical Information of China (English)

    Jiangbo Cheng; Xiubing Liang; Binshi Xu; Yixiong Wu

    2009-01-01

    In this paper, FeBSiNbCr metallic glass coatings were prepared onto AISI 1045 steel substrate by using wire arc spraying process. The phase and structure of the coating were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and scanning election microscopy (SEM) equipped with energy dispersive X-ray analysis (EDX). The microstructure of the coating consists of full amorphous phase. The coating has high hardness and low porosity. Full density and little oxides are detected in the coating. The mechanical properties, especially wear resistance, were investigated. The relationship between wear behavior and structure of the coatings were analyzed in detail. The main failure mechanism of the metallic glass coating is brittle breaking and fracture. The results indicate that FeBSiNbCr metallic glass coating has excellent resistance to abrasive wear.

  19. Ultrasonic magnetic abrasive finishing

    Institute of Scientific and Technical Information of China (English)

    LU Ya-ping; MA Ji; ZHANG Jun-qiang; WANG Long-shan

    2006-01-01

    Put forward a new kind of polishing method, ultrasonic magnetic abrasive finishing (UMAF), and studied its mechanism of improving polishing efficiency. By analyzing all kind of forces acting on single abrasive particle in the polishing process and calculating the size of the composition of forces, get the conclusion that UMAF will enhance the efficiency of the normal magnetic abrasive finishing(MAF) due to the ultrasonic vibration increases the cutting force and depth. At last the idea of designing the UMAF system based on numerical control milling machine is put forward which is convenient to setup and will accelerate the practical application of MAF.

  20. Sliding Wear Behavior of TiC-Reinforced Cu-4 wt.% Ni Matrix Composites

    Science.gov (United States)

    Jha, Pushkar; Gautam, R. K.; Tyagi, Rajnesh; Kumar, Devendra

    2016-10-01

    The present investigation explores the effect of TiC content on the sliding wear properties of Cu-4 wt.% Ni matrix composites. Cu-4 wt.% Ni - x wt.% TiC ( x = 0, 2, 4 and 8 wt.%) metal matrix composites were developed by powder metallurgy route. Their friction and wear was studied under dry sliding at different loads of 5, 7.5 and 10 N and constant sliding speed of 2 m/s using a pin-on-disk machine. The metallographic observations showed an almost uniform distribution of TiC particles in the matrix. Hardness of the composites increased with increasing TiC content (up to 4 wt.%). Friction and wear results of TiC-reinforced composites show better wear resistance than unreinforced matrix alloy. However, the optimum wear resistance was observed for 4 wt.% TiC-reinforced composites. Worn surfaces of specimens indicated the abrasion as the primary mechanism of wear in all the materials investigated in the study. The observed behavior has been explained on the basis of (1) the hardness which results in a decrease in real area of contact in composites containing TiC particles and (2) the formation of a transfer layer of wear debris on the surface of the composites which protects underlying substrate by inhibiting metal-metal contact.