WorldWideScience

Sample records for abrasive waterjet machining

  1. Abrasives and possibilities of increase in efficiency of abrasive waterjets

    Czech Academy of Sciences Publication Activity Database

    Sitek, Libor; Martinec, Petr

    2016-01-01

    Roč. 9, March 2016 (2016), s. 877-881 ISSN 1805-0476 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : high-speed waterjets * abrasive waterjets * abrasives * garnet * zirconia Subject RIV: JQ - Machines ; Tools http://www.mmscience.eu/content/file/archives/MM_Science_201603.pdf

  2. Performance Analysis of Abrasive Waterjet Machining Process at Low Pressure

    Science.gov (United States)

    Murugan, M.; Gebremariam, MA; Hamedon, Z.; Azhari, A.

    2018-03-01

    Normally, a commercial waterjet cutting machine can generate water pressure up to 600 MPa. This range of pressure is used to machine a wide variety of materials. Hence, the price of waterjet cutting machine is expensive. Therefore, there is a need to develop a low cost waterjet machine in order to make the technology more accessible for the masses. Due to its low cost, such machines may only be able to generate water pressure at a much reduced rate. The present study attempts to investigate the performance of abrasive water jet machining process at low cutting pressure using self-developed low cost waterjet machine. It aims to study the feasibility of machining various materials at low pressure which later can aid in further development of an effective low cost water jet machine. A total of three different materials were machined at a low pressure of 34 MPa. The materials are mild steel, aluminium alloy 6061 and plastics Delrin®. Furthermore, a traverse rate was varied between 1 to 3 mm/min. The study on cutting performance at low pressure for different materials was conducted in terms of depth penetration, kerf taper ratio and surface roughness. It was found that all samples were able to be machined at low cutting pressure with varied qualities. Also, the depth of penetration decreases with an increase in the traverse rate. Meanwhile, the surface roughness and kerf taper ratio increase with an increase in the traverse rate. It can be concluded that a low cost waterjet machine with a much reduced rate of water pressure can be successfully used for machining certain materials with acceptable qualities.

  3. Performance Enhancement of Abrasive Waterjet Cutting

    NARCIS (Netherlands)

    2008-01-01

    Abrasive Waterjet (AWJ) Machining is a recent non-traditional machining process. This technology is widely used in industry for cutting difficult-to-machine-materials, milling slots, polishing hard materials etc. AWJ machining has many advantages, e.g. it can cut net-shape parts, no heat is

  4. Sandstone Turning by Abrasive Waterjet

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Petr; Cárach, J.; Hloch, Sergej; Vasilko, K.; Klichová, Dagmar; Klich, Jiří; Lehocká, D.

    2015-01-01

    Roč. 48, č. 6 (2015), s. 2489-2493 ISSN 0723-2632 R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : turning away from the jet * conventional turning towards the jet * sandstone * abrasive water jet Subject RIV: JQ - Machines ; Tools Impact factor: 2.386, year: 2015 http://www.springerprofessional.de/sandstone-turning-by-abrasive-waterjet/6038028.html

  5. Topographical anomaly on surfaces created by abrasive waterjet

    Czech Academy of Sciences Publication Activity Database

    Hloch, S.; Valíček, Jan

    2012-01-01

    Roč. 59, 5-8 (2012), s. 593-604 ISSN 0268-3768 Institutional research plan: CEZ:AV0Z30860518 Keywords : abrasive waterjet * initial zone * surface topography Subject RIV: JQ - Machines ; Tools Impact factor: 1.205, year: 2012 http://www.springerlink.com/content/5701144k76v02372

  6. Analysis of acoustic emission during abrasive waterjet machining of sheet metals

    Science.gov (United States)

    Mokhtar, Nazrin; Gebremariam, MA; Zohari, H.; Azhari, Azmir

    2018-04-01

    The present paper reports on the analysis of acoustic emission (AE) produced during abrasive waterjet (AWJ) machining process. This paper focuses on the relationship of AE and surface quality of sheet metals. The changes in acoustic emission signals recorded by the mean of power spectral density (PSD) via covariance method in relation to the surface quality of the cut are discussed. The test was made using two materials for comparison namely aluminium 6061 and stainless steel 304 with five different feed rates. The acoustic emission data were captured by Labview and later processed using MATLAB software. The results show that the AE spectrums correlated with different feed rates and surface qualities. It can be concluded that the AE is capable of monitoring the changes of feed rate and surface quality.

  7. Preliminary results of experimental cutting of porcine bones by abrasive waterjet

    Czech Academy of Sciences Publication Activity Database

    Hloch, S.; Valíček, Jan; Kozak, D.

    2011-01-01

    Roč. 18, č. 3 (2011), s. 467-470 ISSN 1330-3651 Institutional research plan: CEZ:AV0Z30860518 Keywords : abrasive waterjet cutting * porcine bones * surface quality Subject RIV: JQ - Machines ; Tools Impact factor: 0.347, year: 2011 http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=107026

  8. Experimental Study of the Ultrasonic Vibration-Assisted Abrasive Waterjet Micromachining the Quartz Glass

    Directory of Open Access Journals (Sweden)

    Rongguo Hou

    2018-01-01

    Full Text Available The ultrasonic vibration is used to enhance the capability of the abrasive water micromachining glass. And, the ultrasonic vibration is activated on the abrasive waterjet nozzle. The quality of the flow is improved, and the velocity of the abrasive is increased because of the addition of the ultrasonic energy. The relevant experimental results indicate that the erosion depth and the material volume removal of the glass are obviously increased when ultrasonic vibration is working. As for the influence of process parameters on the material removal of the glass such as vibration amplitude, system pressure, distance of the standoff, and abrasive size, the experimental results indicate that the system pressure and vibration contribute greatly to the glass material removal. Also, the erosion depth and the volume of material removal are increased with the increase in the vibration amplitude and system pressure. There are some uplifts found at the edge of erosion pit. Then, it can be inferred that the plastic method is an important material removal method during the machining process of ultrasonic vibration-assisted abrasive waterjet.

  9. Experimental research on the machinability of Hardox steel by abrasive waterjet cutting

    Directory of Open Access Journals (Sweden)

    Filip Alexandru Catalin

    2017-01-01

    Full Text Available One of the main present industry challenges is finding the most efficient manufacturing process for a certain part. When parts are made of strong steels like Hardox, their fabrication method is usually difficult. Abrasive waterjet cutting (AWJ is one of the cutting processes which can be used in this case. This paper presents an experimental research on the machinability of Hardox steel by AWJ. The experiments were conducted using a factorial design model considering two of the main influence parameters like the traverse speed and the distance between the nozzle and the surface of the material. Based on the measurement of the dimensions and the roughness of the parts, the influence of the parameters was revealed and analyzed. The manufacturing time was also compared, as it directly influences the production cost. Further research is considered to develop a mathematical model which can be used for a proper choice of the process parameters depending on the initial requirements.

  10. CFD Based Erosion Modelling of Abrasive Waterjet Nozzle using Discrete Phase Method

    International Nuclear Information System (INIS)

    Kamarudin, Naqib Hakim; Prasada Rao, A K; Azhari, Azmir

    2016-01-01

    In Abrasive Waterjet (AWJ) machining, the nozzle is the most critical component that influences the performance, precision and economy. Exposure to a high speed jet and abrasives makes it susceptible to wear erosion which requires for frequent replacement. The present works attempts to simulate the erosion of the nozzle wall using computational fluid dynamics. The erosion rate of the nozzle was simulated under different operating conditions. The simulation was carried out in several steps which is flow modelling, particle tracking and erosion rate calculation. Discrete Phase Method (DPM) and K-ε turbulence model was used for the simulation. Result shows that different operating conditions affect the erosion rate as well as the flow interaction of water, air and abrasives. The simulation results correlates well with past work. (paper)

  11. Proposition of a Solution for the Setting of the Abrasive Waterjet Cutting Technology

    Czech Academy of Sciences Publication Activity Database

    Valíček, Jan; Harničárová, M.; Kušnerová, M.; Grznárik, R.; Zavadil, J.

    2013-01-01

    Roč. 13, č. 5 (2013), s. 279-285 ISSN 1335-8871 R&D Projects: GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : abrasive waterjet cutting of materials * surface topography function * correlation relations * surface roughness * optimization of technology Subject RIV: JQ - Machines ; Tools Impact factor: 1.162, year: 2013 http://www.degruyter.com/view/j/msr.2013.13.issue-5/msr-2013-0041/msr-2013-0041. xml

  12. Surface integrity in tangential turning of hybrid MMC A359/B4C/Al2O3by abrasive waterjet

    Czech Academy of Sciences Publication Activity Database

    Srivastava, A. K.; Naga, A.; Dixita, A. R.; Tiwaric, S.; Ščučka, Jiří; Zeleňák, Michal; Hloch, Sergej; Hlaváček, Petr

    2017-01-01

    Roč. 28, č. 28 (2017), s. 11-20 ISSN 1526-6125 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : metal matrix composite * abrasive waterjet turning * surface topography * surface roughness * residual stresses Subject RIV: JQ - Machines ; Tools OBOR OECD: Mechanical engineering Impact factor: 2.322, year: 2016 http://www.sciencedirect.com/science/article/pii/S1526612517301287

  13. Using waterjet in reverse logistic operations in discarded munitions processing

    Czech Academy of Sciences Publication Activity Database

    Hloch, S.; Tozan, H.; Yagimli, M.; Valíček, Jan; Rokosz, K.

    2011-01-01

    Roč. 18, č. 2 (2011), s. 267-271 ISSN 1330-3651 Institutional research plan: CEZ:AV0Z30860518 Keywords : abrasive waterjet * anti tank bullet * automatic line Subject RIV: JQ - Machines ; Tools Impact factor: 0.347, year: 2011 http://hrcak.srce.hr/search/?q=Using+waterjet+in+reverse+logistic+operations+in+discarded+munitions+processing

  14. Abrasive-waterjet cutting of thick concrete and waterjet cleaning for nuclear facility decommissioning and decontamination

    International Nuclear Information System (INIS)

    Echert, D.C.; Hashish, M.; Marvin, M.H.

    1987-01-01

    Two tools have been developed for use by the nuclear industry: the Deep Kerf tool and the Cleaner/Scarifier tool. The Deep Kerf tool is designed to cut through thick, reinforced concrete structures to facilitate their decommissioning. It employs the abrasive-waterjet (AWJ) cutting technology. The basis of the system is a rotary nozzle that makes a slot in the concrete wide enough to accommodate the cutting tool as it advances. In this program, concrete as thick as 1.5 m was cut through from one side. A shroud and vacuum system covers the opening of the slot during cutting to contain the spoils with greater than 99% efficiency. The Cleaner/Scarifier tool was designed for removing the surface layers of contaminated concrete and decontaminating metal surfaces. It uses ultrahigh-pressure waterjets mounted on a rotating arm to remove or clean the target surface. Spoils recovery with a shroud and vacuum system is over 99% complete for both horizontal and vertical surfaces

  15. Machining with abrasives

    CERN Document Server

    Jackson, Mark J

    2011-01-01

    Abrasive machining is key to obtaining the desired geometry and surface quality in manufacturing. This book discusses the fundamentals and advances in the abrasive machining processes. It provides a complete overview of developing areas in the field.

  16. Evaluation of abrasive waterjet produced titan surfaces topography by spectral analysis techniques

    Directory of Open Access Journals (Sweden)

    D. Kozak

    2012-01-01

    Full Text Available Experimental study of a titan grade 2 surface topography prepared by abrasive waterjet cutting is performed using methods of the spectral analysis. Topographic data are acquired by means of the optical profilometr MicroProf®FRT. Estimation of the areal power spectral density of the studied surface is carried out using the periodogram method combined with the Welch´s method. Attention is paid to a structure of the areal power spectral density, which is characterized by means of the angular power spectral density. This structure of the areal spectral density is linked to the fine texture of the surface studied.

  17. Study of quality of nine aluminium alloys surfaces created using abrasiv waterjet

    Czech Academy of Sciences Publication Activity Database

    Klichová, Dagmar; Klich, Jiří; Gurková, Lucie

    2016-01-01

    Roč. 2016, March 2016 (2016), s. 892-895 ISSN 1805-0476 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : abrasive waterjet * aluminium alloy * optical profilometer Subject RIV: JQ - Machines ; Tools http://www.mmscience.eu/content/file/archives/MM_Science_201608.pdf

  18. Turning of materials with high-speed abrasive waterjet

    Czech Academy of Sciences Publication Activity Database

    Sitek, Libor; Hlaváček, Petr

    -, October 2016 (2016), s. 1160-1165 ISSN 1805-0476 R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : abrasive water jet machining * turning * steel * rock * wood Subject RIV: JQ - Machines ; Tools http://www.mmscience.eu/content/file/archives/MM_Science_201692.pdf

  19. Cutting concrete with abrasion jet

    International Nuclear Information System (INIS)

    Yie, G.G.

    1982-01-01

    Fluidyne Corporation has developed a unique process and apparatus that allow selected abrasives to be introduced into high-speed waterjet to produce abrasive-entrained waterjet that has high material-cutting capabilities, which is termed by Fluidyne as the Abrasion Jet. Such Abrasion Jet has demonstrated capability in cutting hard rock and concrete at a modest pressure of less than 1360 bars (20,000 psi) and a power input of less than 45 kW (60 horsepower). Abrasion Jet cutting of concrete is characterized by its high rate of cutting, flexible operation, good cut quality, and relatively low costs. This paper presents a general description of this technology together with discussions of recent test results and how it could be applied to nuclear decontamination and decommissioning work. 8 references

  20. Experimental Study on Abrasive Waterjet Polishing of Hydraulic Turbine Blades

    International Nuclear Information System (INIS)

    Khakpour, H; Birglenl, L; Tahan, A; Paquet, F

    2014-01-01

    In this paper, an experimental investigation is implemented on the abrasive waterjet polishing technique to evaluate its capability in polishing of surfaces and edges of hydraulic turbine blades. For this, the properties of this method are studied and the main parameters affecting its performance are determined. Then, an experimental test-rig is designed, manufactured and tested to be used in this study. This test-rig can be used to polish linear and planar areas on the surface of the desired workpieces. Considering the number of parameters and their levels, the Taguchi method is used to design the preliminary experiments. All experiments are then implemented according to the Taguchi L 18 orthogonal array. The signal-to-noise ratios obtained from the results of these experiments are used to determine the importance of the controlled polishing parameters on the final quality of the polished surface. The evaluations on these ratios reveal that the nozzle angle and the nozzle diameter have the most important impact on the results. The outcomes of these experiments can be used as a basis to design a more precise set of experiments in which the optimal values of each parameter can be estimated

  1. Improvement of a separation method for the reduction of secondary waste from the water-jet abrasive suspension cutting technique

    International Nuclear Information System (INIS)

    Brandauer, M.; Gentes, S.; Heneka, A.; Krauss, C.O.; Geckeis, H.; Plaschke, M.; Schild, D.; Tobie, W.

    2017-01-01

    Full text of publication follows. Disassembling the reactor pressure vessel and its built-in components is a huge challenge in the deconstruction of a nuclear power plant. After being exposed to neutron irradiation for years, the activated components need to be disassembled and packed by remote controlled techniques. Underwater disassembling systems have the advantage of the shielding effect of water against radiation. To avoid the generation of aerosols, cold cutting processes are preferred. A cutting method that meets these requirements is the water-jet abrasive suspension cutting technique (WASS). This method provides high flexibility and is immune towards mechanical stress in the components. During the cutting process, a mixture of abrasive particles and radioactive steel particles from the cut components is generated. Depending on the operational conditions, the amount of this secondary waste increases substantially. Therefore, despite of its intrinsic technical benefits, WASS has a serious disadvantage towards other cutting techniques due to the huge disposal costs of secondary waste. During our previous joint research project between KIT and AREVA GmbH called NENAWAS ('New Disposal Methods for the Secondary Waste Treatment of the Water-jet Abrasive Suspension Cutting Technique', funded by the German ministry for education and research, BMBF), a prototype separation device for WASS secondary waste was developed and tested. Using a magnetic filter, steel particles could be successfully separated from the rest of the secondary waste. The separation process is examined using elemental analysis (ICP-OES) for quantification of the separation grade. Additionally, morphologies of particles and particle aggregates before and after the separation process were examined by scanning electron microscopy (SEM). In the abrasive particle fraction after separation of the steel particles a remaining contamination by tiny steel particles could be detected by elemental and

  2. WATER-JET CUTTING MACHINE NOW AVAILABLE FROM THE CERN RAW MATERIALS STORES

    CERN Multimedia

    2007-01-01

    The CERN Raw Materials Stores has recently acquired a new water-jet cutting machine. The machine is capable of cutting all types and shapes of materials up to 70 mm in thickness, with an accuracy of +/- 0.1mm/m. For the time being, users requiring materials to be cut should supply drawings in DXF, DWG or IGES (AutoCad) file format. The machine will be operational as of 1st October 2007. The Stores Team Paulo Dos Santos FI-LS-MM 72308

  3. Effect of Abrasive Waterjet Peening Surface Treatment of Steel Plates on the Strength of Single-Lap Adhesive Joints

    Directory of Open Access Journals (Sweden)

    Kamil Anasiewicz

    2017-09-01

    Full Text Available The paper presents results of comparative study of shear strength of single–lap adhesive joints, depending on the method of surface preparation of steel plates with increased corrosion resistance. The method of preparing adherend surfaces is often one of the most important factors determining the strength of adhesive joints. Appropriate geometric surface development and cleaning of the surface enhances adhesion forces between adherend material and adhesive. One of the methods of shaping engineering materials is waterjet cutting, which in the AWJP – abrasive waterjet peening variant, serves to shape flat surfaces of the material by changing the roughness and introducing stresses into the surface layer. These changes are valuable when preparing adhesive joints. In the study, surface roughness parameters obtained with AWJP treatment, were analyzed in direct relation to the strength of the adhesive joint. As a consequence of the experimental results analysis, the increase in the strength of the adhesive joints was observed in a certain range of parameters used for AWJP treatment. A decrease in shear strength of adhesive joint with the most modified topography of overlap surface was observed.

  4. Technology of magnetic abrasive finishing in machining of difficult-to-machine alloy complex surface

    Directory of Open Access Journals (Sweden)

    Fujian MA

    2016-10-01

    Full Text Available The technology of magnetic abrasive finishing is one of the important finishing technologies. Combining with low-frequency vibration and ultrasonic vibration, it can attain higher precision, quality and efficiency. The characteristics and the related current research of magnetic abrasive finishing, vibration assisted magnetic abrasive finishing and ultrasonic assisted magnetic abrasive finishing are introduced. According to the characteristics of the difficult-to-machine alloy's complex surface, the important problems for further study are presented to realize the finishing of complex surface with the technology of magnetic abrasive finishing, such as increasing the machining efficiency by enhancing the magnetic flux density of machining gap and compounding of magnetic energy and others, establishing of the control function during machining and the process planning method for magnetic abrasive finishing of complex surface under the space geometry restraint of complex surface on magnetic pole, etc.

  5. Comparison of surface roughness quality created by abrasive water jet and CO2 laser beam cutting

    Czech Academy of Sciences Publication Activity Database

    Zeleňák, M.; Valíček, Jan; Klich, Jiří; Židková, P.

    2012-01-01

    Roč. 19, č. 3 (2012), s. 481-485 ISSN 1330-3651 R&D Projects: GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : abrasive waterjet cut ting * CO2 laser beam cut ting * optical profilometry * titanium sample Subject RIV: JQ - Machines ; Tools Impact factor: 0.601, year: 2012 http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=129054

  6. Experimental Research into Technology of Abrasive Flow Machining Nonlinear Tube Runner

    Directory of Open Access Journals (Sweden)

    Junye Li

    2014-06-01

    Full Text Available In the fields of military and civil uses, some special passages exist in many major parts, such as non-linear tubes. The overall performance is usually decided by the surface quality. Abrasive flow machining (AFM technology can effectively improve the surface quality of the parts. In order to discuss the mechanism and technology of abrasive flow machining nonlinear tube, the nozzle is picked up as the researching object, and the self-designed polishing liquid is employed to make research on the key technological parameters of abrasive flow machining linear tube. Technological parameters’ impact on surface quality of the parts through the nozzle surface topography and scanning electron microscopy (SEM map is explored. It is experimentally confirmed that abrasive flow machining can significantly improve surface quality of nonlinear runner, and experimental results can provide technical reference to optimizing study of abrasive flow machining theory.

  7. Study of the rheological properties and the finishing behavior of abrasive gels in abrasive flow machining

    Energy Technology Data Exchange (ETDEWEB)

    Wang, A. C.; Liu, C. H.; Liang, K. Z.; Pai, S. H. [Ching Yun University, Taipei (China)

    2007-10-15

    Abrasive flow machining (AFM) is an effective method to finish the smooth surface in the complex holes. Abrasive media are key elements which dominate the polished results in AFM. But it is hard to develop the machining model of these abrasive gels because of its complicated mechanism. In this research, a non-Newtonian flow is used to set up the abrasive mechanism of the abrasive media in AFM. Power law is a main equation of the non-Newtonian flow to describe the motion of the abrasive media. Viscosities vs. shear rates of different abrasive gels are used to establish the power law in CFD-ACE{sup +} software first. And the working parameters of AFM were applied as input to study the properties of the abrasive gels in AFM. Finally, the relationships between the simulations and the experiments were found. And the abrasive mechanism of the abrasive gels was set up in AFM. The simulated results show that the abrasive gel with high viscosity can entirely deform in the complex hole than the abrasive gel with low viscosity. And the abrasive gel with high viscosity generates a larger shear force than the abrasive gel with low viscosity in the same area. Moreover, the strain rate is seriously changed when the abrasive gel cross over the narrow cross-section of the complex hole. It also means that abrasive gel will produce large finish force in that area. And these results indeed consist with the experiments in AFM.

  8. Synthesis CNTs Particle Based Abrasive Media for Abrasive Flow Machining Process

    International Nuclear Information System (INIS)

    Kumar, Sonu; Walia, R.S; Dhull, S.; Murtaza, Q.; Tyagi, P. K.

    2016-01-01

    Abrasive flow machining (AFM) is a modem fine finishing process used for intricate and internal finishing of components or parts. It is based on flowing of viscoelastic abrasive media over the surface to be fine finished. The abrasive media is the important parameter in the AFM process because of its ability to accurately abrade the predefined area along it flow path. In this study, an attempt is made to develop a new abrasive, alumina with Carbon nanotubes (CNTs) in viscoelastic medium. CNT s in house produced through chemical vapour deposition technique and characterize through TEM. Performance evaluation of the new abrasive media is carried out by increasing content of CNT s with fixed extrusion pressure, viscosity of media and media flow rate as process parameters and surface finish improvement and material removal as process responses in AFM setup. Significantly improvement has been observed in material removal and maximum improvement of 100% has been observed in the surface finish on the inner cylindrical surface of the cast iron work piece. (paper)

  9. Numerical analysis of special-shaped surface in abrasive flow machining

    Science.gov (United States)

    Li, Junye; Zhou, Zengwei; Wu, Guiling; Lu, Hui; Sun, Zhihuai

    2018-03-01

    Solid-liquid two-phase abrasive flow machining is a method to effectively polish the surface of Special-shaped surface parts. Based on the processing characteristics of the abrasive flow machining. The standard model and the pressure-coupled SIMPLEC algorithm are used. The shear force and velocity of the near-wall surface of the runner of the solid-liquid two-phase abrasive machining with different inlet pressure are analyzed. The numerical simulation results show that the inlet pressure has little effect on the velocity, and the shear force has a linear relationship with the inlet pressure. To obtain a better polishing effect, the outlet pressure can be appropriately increased.

  10. A Review on Parametric Analysis of Magnetic Abrasive Machining Process

    Science.gov (United States)

    Khattri, Krishna; Choudhary, Gulshan; Bhuyan, B. K.; Selokar, Ashish

    2018-03-01

    The magnetic abrasive machining (MAM) process is a highly developed unconventional machining process. It is frequently used in manufacturing industries for nanometer range surface finishing of workpiece with the help of Magnetic abrasive particles (MAPs) and magnetic force applied in the machining zone. It is precise and faster than conventional methods and able to produce defect free finished components. This paper provides a comprehensive review on the recent advancement of MAM process carried out by different researcher till date. The effect of different input parameters such as rotational speed of electromagnet, voltage, magnetic flux density, abrasive particles size and working gap on the performances of Material Removal Rate (MRR) and surface roughness (Ra) have been discussed. On the basis of review, it is observed that the rotational speed of electromagnet, voltage and mesh size of abrasive particles have significant impact on MAM process.

  11. Experiment and simulation study of laser dicing silicon with water-jet

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Jiading; Long, Yuhong, E-mail: longyuhong@guet.edu.cn; Tong, Youqun; Yang, Xiaoqing; Zhang, Bin; Zhou, Zupeng

    2016-11-30

    Highlights: • The explosive melt expulsion could be a dominant process for the laser ablating silicon in liquids with ns-pulsed laser of 1064 nm irradiating. • Self-focusing phenomenon was found and its causes are analyzed. • SPH modeling technique was employed to understand the effect of water and water-jet on debris removal during water-jet laser machining. - Abstract: Water-jet laser processing is an internationally advanced technique, which combines the advantages of laser processing with water jet cutting. In the study, the experiment of water-jet laser dicing are conducted with ns pulsed laser of 1064 nm irradiating, and Smooth Particle Hydrodynamic (SPH) technique by AUTODYN software was modeled to research the fluid dynamics of water and melt when water jet impacting molten material. The silicon surface morphology of the irradiated spots has an appearance as one can see in porous formation. The surface morphology exhibits a large number of cavities which indicates as bubble nucleation sites. The observed surface morphology shows that the explosive melt expulsion could be a dominant process for the laser ablating silicon in liquids with nanosecond pulse laser of 1064 nm irradiating. Self-focusing phenomenon was found and its causes are analyzed. Smooth Particle Hydrodynamic (SPH) modeling technique was employed to understand the effect of water and water-jet on debris removal during water-jet laser machining.

  12. Robotic edge machining using elastic abrasive tool

    Science.gov (United States)

    Sidorova, A. V.; Semyonov, E. N.; Belomestnykh, A. S.

    2018-03-01

    The article describes a robotic center designed for automation of finishing operations, and analyzes technological aspects of an elastic abrasive tool applied for edge machining. Based on the experimental studies, practical recommendations on the application of the robotic center for finishing operations were developed.

  13. Rapid prototyping of robotic platforms

    CSIR Research Space (South Africa)

    De Ronde, Willis

    2016-11-01

    Full Text Available of thickness up to 200mm can be cut to create prototype chassis/ bodies or even the final product. One of the few limitations is the cutting of certain laminated materials, as this tends to produce delaminated cutting edges or even fractures in the case... mine inspection robot (Shongololo). Shongololo’s frame is made from engineering plastics while the chassis of Dassie was made from aluminium and cut using abrasive waterjet machining. The advantage of using abrasive waterjet machining is the speed...

  14. Applicability of water-jet cutting technology to nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Abe, Tadashi; Nisizaki, Tadashi; Matumura, Hiroyuki; Ikemoto, Yosikazu; Simizu, Hideki

    1991-01-01

    In nuclear facilities there exist, besides relatively simple components, such as vessels and piping, numerous complex components including the multilayered plate with water layer in between, a bunch of thin tubes and composite lamination of dissimilar materials like metal/non-metal. In conventional development of reactor dismantling technology, the technology development has been made mainly for remote cutting of thick-walled structures like the reactor pressure vessel and the reactor internals. These techniques, however, are not always suitable in cutting the above-mentioned structures. As means of cutting such structures efficiently, these is available the abrasion water-jet cutting technology. This technology is now drawing attention for cutting or shaping new materials like composite material and ceramics in high precision and high efficiency. In the present report by way of its feasibility in nuclear facilities decommissioning the following are described. Principle and features of the water-jet cutting technology, system con-figuration, cutting or shaping performance, and some examples of the cutting and shaping. (author)

  15. Dimensionless Numerical Approaches for the Performance Prediction of Marine Waterjet Propulsion Units

    Directory of Open Access Journals (Sweden)

    Marco Altosole

    2012-01-01

    Full Text Available One of the key issues at early design stage of a high-speed craft is the selection and the performance prediction of the propulsion system because at this stage only few information about the vessel are available. The objective of this work is precisely to provide the designer, in the case of waterjet propelled craft, with a simple and reliable calculation tool, able to predict the waterjet working points in design and off-design conditions, allowing to investigate several propulsive options during the ship design process. In the paper two original dimensionless numerical procedures, one referred to jet units for naval applications and the other more suitable for planing boats, are presented. The first procedure is based on a generalized performance map for mixed flow pumps, derived from the analysis of several waterjet pumps by applying similitude principles of the hydraulic machines. The second approach, validated by some comparisons with current waterjet installations, is based on a complete physical approach, from which a set of non-dimensional waterjet characteristics has been drawn by the authors. The presented application examples show the validity and the degree of accuracy of the proposed methodologies for the performance evaluation of waterjet propulsion systems.

  16. Pure waterjet drilling of articular bone: an in vitro feasibility study.

    NARCIS (Netherlands)

    den Dunnen, Steven; Kraaij, Gert; Biskup, Christian; Kerkhoffs, Gino M. M. J.; Tuijthof, Gabriëlle J. M.

    2013-01-01

    The clinical application of waterjet technology for machining tough human tissues, such as articular bone, has advantages, as it produces clean sharp cuts without tissue heating. Additionally, water supply is possible via flexible tubing, which enables minimally invasive surgical access. This pilot

  17. CONTROL SYSTEM EVALUATION AND IMPLEMENTATION FOR THE ABRASIVE MACHINING PROCESS ON WOOD

    Directory of Open Access Journals (Sweden)

    Stephen Jackson

    2011-06-01

    Full Text Available Continuous process improvement and automation have proven to be powerful tools for the wood processing industries in order to obtain better final product quality and thus increase profits. Abrasive machining represents an important and relevant process in the manufacturing and processing of wood products, which also implies high cost of materials and labor; therefore, special attention to this process is necessary. The objective of this work was to evaluate and demonstrate a process control system for use in the abrasive machining of wood and wood-based products. A control system was created on LabView® to integrate the monitoring process and the actions required, depending on the abrasive machining process conditions. The system acquires information from the optical sensor to detect loading and activate the cleaning system. The system continuously monitors the condition of the abrasive belt (tool wear by using an acoustic emission sensor and alerts the operator of the status of the belt (green, yellow, and red lights indicating satisfactory, medium, and poor belt condition. The system also incorporates an additional safety device, which helps prevent permanent damage to the belt, equipment, or workpiece by alerting the operator when an excessive temperature has been reached. The process control system proved that automation permits enhancement in the consistency of the belt cleaning technique by the elimination of the human errors. Furthermore, this improvement also affects the cost by extending the life of the belt, which reduces setup time, belt cost, operation cost, as well as others.

  18. Abrasion of Polymeric Composites on Basis of Machining Splinters from Hardfacing Alloys – Usable in Agrocomplex

    Directory of Open Access Journals (Sweden)

    Petr Valášek

    2014-01-01

    Full Text Available A paper focuses on a description of two-body and three-body abrasion wear of polymeric particle composites with fillers on a basis of machining splinters from hardfacing alloys. The abrasive wear is typical for functional surfaces of agricultural machines processing the soil. One of possibilities of the functional surface renovation is an application of resistant layers in a form of composite systems. Just the inclusion of hard inorganic particles into a polymeric matrix significantly increases its wear resistance. So long as the primary filler is replaced by the waste – by particles from the material machining – the matrix in which the filler is dispersed is a bearer of a material recyclation. This way of the recyclation is inexpensive, economic and sensitive to environment. The paper focuses on the experimental description of the two-body and three-body abrasion and the composites hardness, it describes a production of a prototype for field tests with the functional surface on the basis of the investigated composite system at the same time.

  19. Testing of Alternative Abrasives for Water-Jet Cutting at C Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Krogstad, Eirik J.

    2013-08-01

    Legacy waste from defense-related activities at the Hanford Site has predominantly been stored in underground tanks, some of which have leaked; others may be at risk to do so. The U.S. Department of Energy’s goal is to empty the tanks and transform their contents into more stable waste forms. To do so requires breaking up, and creating a slurry from, solid wastes in the bottoms of the tanks. A technology developed for this purpose is the Mobile Arm Retrieval System. This system is being used at some of the older single shell tanks at C tank farm. As originally planned, access ports for the Mobile Arm Retrieval System were to be cut using a high- pressure water-jet cutter. However, water alone was found to be insufficient to allow effective cutting of the steel-reinforced tank lids, especially when cutting the steel reinforcing bar (“rebar”). The abrasive added in cutting the hole in Tank C-107 was garnet, a complex natural aluminosilicate. The hardness of garnet (Mohs hardness ranging from H 6.5 to 7.5) exceeds that of solids currently in the tanks, and was regarded to be a threat to Hanford Waste Treatment and Immobilization Plant systems. Olivine, an iron-magnesium silicate that is nearly as hard as garnet (H 6.5 to 7), has been proposed as an alternative to garnet. Pacific Northwest National Laboratory proposed to test pyrite (FeS2), whose hardness is slightly less (H 6 to 6.5) for 1) cutting effectiveness, and 2) propensity to dissolve (or disintegrate by chemical reaction) in chemical conditions similar to those of tank waste solutions. Cutting experiments were conducted using an air abrader system and a National Institute of Standards and Technology Standard Reference Material (SRM 1767 Low Alloy Steel), which was used as a surrogate for rebar. The cutting efficacy of pyrite was compared with that of garnet and olivine in identical size fractions. Garnet was found to be most effective in removing steel from the target; olivine and pyrite were less

  20. Investigation of sandwich material surface created by abrasive water jet (AWJ via vibration emission

    Directory of Open Access Journals (Sweden)

    P. Hreha

    2014-01-01

    Full Text Available The paper presents research a of abrasive waterjet cutting of heterogeneous “sandwich“ material with different Young modulus of elasticity of the cutted surface geometry by means of vibration emission. In order to confirm hypothetical assumptions about direct relation between vibration emission and surface quality an experiment in heterogeneous material consisting of stainless steel (DIN 1.4006 / AISI 410 and alloy AlCuMg2 has been provided.

  1. Recent Developments in Abrasive Hybrid Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Ruszaj Adam

    2017-06-01

    Full Text Available Recent dynamic development of abrasive hybrid manufacturing processes results from application of a new difficult for machining materials and improvement of technological indicators of manufacturing processes already applied in practice. This tendency also occurs in abrasive machining processes which are often supported by ultrasonic vibrations, electrochemical dissolution or by electrical discharges. In the paper we present the review of new results of investigations and new practical applications of Abrasive Electrodischarge (AEDM and Electrochemical (AECM Machining.

  2. Influence of Water-jet Nozzle Geometry on Cutting Ability of Soft Material

    Directory of Open Access Journals (Sweden)

    Irwansyah Irwansyah

    2012-06-01

    Full Text Available Hygiene is main reason for food processor to use waterjet cutting system. Traditionally food cutting process is low-quality, unsafe products, procedures and direct contact between product and labor. This paper introduced a low cost waterjet system for cutting soft material as identic food material. The low cost waterjet system has been developed by using a commercial pressure pump for cleaning purposes and modified nozzle. In order to enhance waterjet pressure for cutting products, a modified waterjet nozzle was designed. Paramater design of waterjet system was setup on nozzle orifice diameter 0.5 mm, standoff distance 15 mm, length of nozzle cylindrical tube 2.5 mm. Polycarbonate, polysterene, and polyethelene materials are used as sample product with thickness 2 mm, to represent similar properties with agriculture products. The experimental results indicate good possibilities of waterjet system to cut material in appropriate profile surface. The waterjet also can be used to improve cutting finished surface of food products. Therefore, utilizing a low cost commercial pump and modified nozzle for waterjet system reduces equipment price, operational cost and environmental hazards. It indicates viable technology applied to substitute traditional cutting technology in post harvest agriculture products. Keywords: cutting ability, modified nozzle, polymer material, water-jet system

  3. Numerical analysis of a waterjet propulsion system

    NARCIS (Netherlands)

    Bulten, N.W.H.

    2006-01-01

    A waterjet propulsion system is used to propel ships, using a pump which produces a high speed jet. A standard waterjet installation can be divided into an inlet, a pump and a nozzle. For manoeuvring and reversing purposes an additional steering device can be integrated into the installation. The

  4. Prediction Of Abrasive And Diffusive Tool Wear Mechanisms In Machining

    Science.gov (United States)

    Rizzuti, S.; Umbrello, D.

    2011-01-01

    Tool wear prediction is regarded as very important task in order to maximize tool performance, minimize cutting costs and improve the quality of workpiece in cutting. In this research work, an experimental campaign was carried out at the varying of cutting conditions with the aim to measure both crater and flank tool wear, during machining of an AISI 1045 with an uncoated carbide tool P40. Parallel a FEM-based analysis was developed in order to study the tool wear mechanisms, taking also into account the influence of the cutting conditions and the temperature reached on the tool surfaces. The results show that, when the temperature of the tool rake surface is lower than the activation temperature of the diffusive phenomenon, the wear rate can be estimated applying an abrasive model. In contrast, in the tool area where the temperature is higher than the diffusive activation temperature, the wear rate can be evaluated applying a diffusive model. Finally, for a temperature ranges within the above cited values an adopted abrasive-diffusive wear model furnished the possibility to correctly evaluate the tool wear phenomena.

  5. CONTROL SYSTEM EVALUATION AND IMPLEMENTATION FOR THE ABRASIVE MACHINING PROCESS ON WOOD

    OpenAIRE

    Stephen Jackson; Richard Lemaster; Daniel E. Saloni

    2011-01-01

    Continuous process improvement and automation have proven to be powerful tools for the wood processing industries in order to obtain better final product quality and thus increase profits. Abrasive machining represents an important and relevant process in the manufacturing and processing of wood products, which also implies high cost of materials and labor; therefore, special attention to this process is necessary. The objective of this work was to evaluate and demonstrate a process control s...

  6. Comparisons of Hydraulic Performance in Permanent Maglev Pump for Water-Jet Propulsion

    Directory of Open Access Journals (Sweden)

    Puyu Cao

    2014-08-01

    Full Text Available The operation of water-jet propulsion can generate nonuniform inflow that may be detrimental to the performance of the water-jets. To reduce disadvantages of the nonuniform inflow, a rim-driven water-jet propulsion was designed depending on the technology of passive magnetic levitation. Insufficient understanding of large performance deviations between the normal water-jets (shaft and permanent maglev water-jets (shaftless is a major problem in this paper. CFD was directly adopted in the feasibility and superiority of permanent maglev water-jets. Comparison and discussion of the hydraulic performance were carried out. The shaftless duct firstly has a drop in hydraulic losses (K1, since it effectively avoids the formation and evolution of the instability secondary vortex by the normalized helicity analysis. Then, the shaftless intake duct improves the inflow field of the water-jet pump, with consequencing the drop in the backflow and blocking on the blade shroud. So that the shaftless water-jet pump delivers higher flow rate and head to the propulsion than the shaft. Eventually, not only can the shaftless model increase the thrust and efficiency, but it has the ability to extend the working range and broaden the high efficiency region as well.

  7. Study of the Effect of Material Machinability on Quality of Surface Created by Abrasive Water Jet

    Czech Academy of Sciences Publication Activity Database

    Klichová, Dagmar; Klich, Jiří

    2016-01-01

    Roč. 149, č. 149 (2016), s. 177-182 E-ISSN 1877-7058. [International Conference on Manufacturing Engineering and Materials, ICMEM 2016. Nový Smokovec, 06.06.2016-10.06.2016] R&D Projects: GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : machinability * surface roughness * abrasive water jet * study of quality * aluminium alloy * optical profilometer Subject RIV: JQ - Machines ; Tools http://www.sciencedirect.com/science/article/pii/S1877705816311614

  8. Comparative study on the performance of Pod type waterjet by experiment and computation

    Directory of Open Access Journals (Sweden)

    Moon-Chan Kim

    2010-03-01

    Full Text Available A comparative study between a computation and an experiment has been conducted to predict the performance of a Pod type waterjet for an amphibious wheeled vehicle. The Pod type waterjet has been chosen on the basis of the required specific speed of more than 2500. As the Pod type waterjet is an extreme type of axial flow type waterjet, theoretical as well as experimental works about Pod type waterjets are very rare. The main purpose of the present study is to validate and compare to the experimental results of the Pod type waterjet with the developed CFD in-house code based on the RANS equations. The developed code has been validated by comparing with the experimental results of the well-known turbine problem. The validation also extended to the flush type waterjet where the pressures along the duct surface and also velocities at nozzle area have been compared with experimental results. The Pod type waterjet has been designed and the performance of the designed waterjet system including duct, impeller and stator was analyzed by the previously mentioned in-house CFD Code. The pressure distributions and limiting streamlines on the blade surfaces were computed to confirm the performance of the designed waterjets. In addition, the torque and momentum were computed to find the entire efficiency and these were compared with the model test results. Measurements were taken of the flow rate at the nozzle exit, static pressure at the various sections along the duct and also the nozzle, revolution of the impeller, torque, thrust and towing forces at various advance speeds for the prediction of performance as well as for comparison with the computations. Based on these measurements, the performance was analyzed according to the ITTC96 standard analysis method. The full-scale effective and the delivered power of the wheeled vehicle were estimated for the prediction of the service speed. This paper emphasizes the confirmation of the ITTC96 analysis method and

  9. Properties, structure and machnining capabilities sintered corundum abrasives

    Directory of Open Access Journals (Sweden)

    Cz.J. Niżankowski

    2010-07-01

    Full Text Available The diversity of sintered corundum abrasives used in both bonded and in the embankment of abrasive tools currently poses substantialproblems for their choice of technology to specific tasks. Therefore performed a comparative study of ownership structures and capacitiesof elected representatives machnining sintered corundum abrasives of different generations, and this is normal sintered alumina,submicrocrystalline alumina sintered and nanocrystalline alumina sintered. Were studied some properties of a set of abrasive particles,physicochemical properties and structural and mechanical and technological properties. The studies used the method of microscopicmeasurement to determine the shape of abrasive particles, the pycnometer to determine the density of abrasive, a spectrometer todetermine the chemical composition of the magnetic analyzer for determining the magnetic fraction, scanning electron microscope toanalysis of abrasive grains and a special position to designate the machining capacity abrasive grains. The results showed a significantincrease in machining capacity sintered corundum abrasives with increasing degree of fragmentation of the crystallites sintered corundum abrasives and distinctive bands in the emerging microchip. The originality of the development provides a comparative summary ofproperties of sintered corundum abrasives of different generations and functions obtained by the author making the change in value indexof machininhcapacity grit from cutting speeds for different generations of sintered corundum.

  10. Determination of vibration frequency depending on abrasive mass flow rate during abrasive water jet cutting

    Czech Academy of Sciences Publication Activity Database

    Hreha, P.; Radvanská, A.; Hloch, Sergej; Peržel, V.; Krolczyk, G.; Monková, K.

    2014-01-01

    Roč. 77, 1-4 (2014), s. 763-774 ISSN 0268-3768 Institutional support: RVO:68145535 Keywords : Abrasive water jet * Abrasive mass flow rate * Vibration Subject RIV: JQ - Machines ; Tools Impact factor: 1.458, year: 2014 http://link.springer.com/article/10.1007%2Fs00170-014-6497-9#page-1

  11. Ultrasonic Abrasive Removal Of EDM Recast

    Science.gov (United States)

    Mandel, Johnny L.; Jacobson, Marlowe S.

    1990-01-01

    Ultrasonic abrasive process removes layer of recast material generated during electrical-discharge machining (EDM) of damper pocket on turbine blade. Form-fitted tool vibrated ultrasonically in damper pocket from which material removed. Vibrations activate abrasive in pocket. Amount of material removed controlled precisely.

  12. Usage of abrasion-resistant materials in agriculture

    Directory of Open Access Journals (Sweden)

    J Votava

    2014-06-01

    Full Text Available Agricultural soil-processing machines are subject to an extensive abrasive wear. This paper analyses technical materials and their fitness to exchangeable parts of plough bottoms, such as edge-tools and whole plough cutting edges. There were tested abrasion-resistant steels with different microstructures: austenite, martensite-bainite, and carbide. Steel with the pearlite-ferrite structure was used as an etalon. Abrasion resistance tests were processed in compliance with the norm CSN 01 5084, which is a test of abrasion wear on abrasive cloth.

  13. Mixed-Flow Waterjet (MxWJ) Model 5662-1: Initial Study of Yaw Effects on Waterjet Powering and Transom Depth Effects on Waterjet Priming

    National Research Council Canada - National Science Library

    Cusanelli, Dominic S

    2007-01-01

    ...: (1) The effects of model yaw angles on waterjet powering. Model-scale rotor force measurements of thrust and torque at angles of yaw up to 3 degrees showed little variation compared to the equivalent forces measured at zero yaw angle...

  14. Progress in abrasive and grinding technology

    CERN Document Server

    Xu, Xipeng

    2009-01-01

    The grinding and abrasive processing of materials are machining techniques which use bonded or loose abrasives to remove material from workpieces. Due to the well-known advantages of grinding and abrasive processes, advances in abrasive and grinding technology are always of great import in enhancing both productivity and component quality. In order to highlight the recent progress made in this field, the editor invited 21 world-wide contributions with the aim of gathering together all of the achievements of leading researchers into a single publication. The authors of the 21 invited papers, of

  15. Experimental Research on the Specific Energy Consumption of Rock Breakage Using Different Waterjet-Assisted Cutting Heads

    Directory of Open Access Journals (Sweden)

    Hongxiang Jiang

    2018-01-01

    Full Text Available To investigate the specific energy consumption (SE of rock breakage by cutting heads assisted by different types of waterjet and to identify optimal waterjet parameters and assistance types, rock cutting with and without waterjets was carried on a rock fragmentation test bed. SE is a comprehensive evaluation index and was developed according to the applied load on cutting head, and the SE under different cutting conditions was compared and analyzed. The results show that the SE of rock breakage without waterjet assistance increased with the increasing of rock compressive strength (RCS but that the limited drilling depth decreased. The effect of the waterjet pressure on the SE of rock breakage by the cutting head I was marked, and SE decreased by 30∼40% when the ratio between RCS and waterjet pressure was less than 1. However, the function of the waterjet assistance was poor; therefore, a ratio of 1 could be used to distinguish the rock breakage effect of cutting head I. For cutting head II, the rock damage from the waterjet impact was limited due to the large waterjet standoff distance; thus the rock breakage performance of cutting head II was also limited. The waterjet impacting at the tip of the conical pick using cutting head III could enter into the cracks caused by the mechanical pick and fracture the rock. Therefore, the rock breakage performance of cutting head III was better than that of cutting head II.

  16. Breakthrough Energy Savings with Waterjet Technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee W. Saperstein; R. Larry Grayson; David A. Summers; Jorge Garcia-Joo; Greg Sutton; Mike Woodward; T.P. McNulty

    2007-05-15

    processing of the product in a cavitation chamber. Subsequent testing is also planned, to determine preferred methods for separating ore minerals from the waste. Tests with this system have included both the galena samples, and copper ores from Poland. The development of this tool lies within an expanding market for the use of high-pressure waterjet equipment across a broad spectrum of applications. As the industry develops new tools, it is anticipated that the research team will investigate the development of a prototype machine based on these tools, since this will simplify and speed up equipment development. It is hoped that once this is developed that can be taken into an active mine. Such a machine should be able to produce large enough samples to allow assessment of optimal operating conditions.

  17. Waterjet cutting of periprosthetic interface tissue in loosened hip prostheses: an in vitro feasibility study

    NARCIS (Netherlands)

    Kraaij, Gert; Tuijthof, Gabrielle J. M.; Dankelman, Jenny; Nelissen, Rob G. H. H.; Valstar, Edward R.

    2015-01-01

    Waterjet cutting technology is considered a promising technology to be used for minimally invasive removal of interface tissue surrounding aseptically loose hip prostheses. The goal of this study was to investigate the feasibility of waterjet cutting of interface tissue membrane. Waterjets with 0.2

  18. Waterjet cutting of periprosthetic interface tissue in loosened hip prostheses: an in vitro feasibility study.

    Science.gov (United States)

    Kraaij, Gert; Tuijthof, Gabrielle J M; Dankelman, Jenny; Nelissen, Rob G H H; Valstar, Edward R

    2015-02-01

    Waterjet cutting technology is considered a promising technology to be used for minimally invasive removal of interface tissue surrounding aseptically loose hip prostheses. The goal of this study was to investigate the feasibility of waterjet cutting of interface tissue membrane. Waterjets with 0.2 mm and 0.6 mm diameter, a stand-off distance of 5 mm, and a traverse speed of 0.5 mm/s were used to cut interface tissue samples in half. The water flow through the nozzle was controlled by means of a valve. By changing the flow, the resulting waterjet pressure was regulated. Tissue sample thickness and the required waterjet pressures were measured. Mean thickness of the samples tested within the 0.2 mm nozzle group was 2.3 mm (SD 0.7 mm) and within the 0.6 mm nozzle group 2.6 mm (SD 0.9 mm). The required waterjet pressure to cut samples was between 10 and 12 MPa for the 0.2 mm nozzle and between 5 and 10 MPa for the 0.6 mm nozzle. Cutting bone or bone cement requires about 3 times higher waterjet pressure (30-50 MPa, depending on used nozzle diameter) and therefore we consider waterjet cutting as a safe technique to be used for minimally invasive interface tissue removal. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  19. 29 CFR 1910.215 - Abrasive wheel machinery.

    Science.gov (United States)

    2010-07-01

    ... be securely fastened to the spindle and the bearing surface shall run true. When more than one wheel... 29 Labor 5 2010-07-01 2010-07-01 false Abrasive wheel machinery. 1910.215 Section 1910.215 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.215 Abrasive wheel machinery. (a...

  20. Hydrochromic molecular switches for water-jet rewritable paper

    Science.gov (United States)

    Sheng, Lan; Li, Minjie; Zhu, Shaoyin; Li, Hao; Xi, Guan; Li, Yong-Gang; Wang, Yi; Li, Quanshun; Liang, Shaojun; Zhong, Ke; Zhang, Sean Xiao-An

    2014-01-01

    The days of rewritable paper are coming, printers of the future will use water-jet paper. Although several kinds of rewritable paper have been reported, practical usage of them is rare. Herein, a new rewritable paper for ink-free printing is proposed and demonstrated successfully by using water as the sole trigger to switch hydrochromic dyes on solid media. Water-jet prints with various colours are achieved with a commercial desktop printer based on these hydrochromic rewritable papers. The prints can be erased and rewritten dozens of times with no significant loss in colour quality. This rewritable paper is promising in that it can serve an eco-friendly information display to meet the increasing global needs for environmental protection.

  1. Numerical simulation of internal flow in mixed-flow waterjet propulsion

    International Nuclear Information System (INIS)

    Wu, T T; Pan, Z Y; Zhang, D Q; Jia, Y Y

    2012-01-01

    In order to reveal the internal flow characteristic of a mixed-flow waterjet propulsion, a mixed-flow waterjet propulsion under different conditions was simulated based on multi-reference frame(MRF), the standard k − ε turbulent model and SIMPLEC algorithm. The relationship between pump performance instability and internal flow was obtained. The numerical results showed that characteristic instability occurred at 0.65-0.67Q BEP , the reason is that the backflow on the vaned diffuser hub-side blocks the downstream flow from the impeller. Therefore, the flow separates on the pressure surface of the impeller outlet and a strong vortex is generated, then the characteristic instability appeared due to the instability of internal flow. Backflow was found in diffuser passage at 0.65 Q BEP and 0.85 Q BEP , as flow rate decreases, the backflow region and velocity increases. Pressure fluctuation at diffuser inlet and diffuser passages was severe at at 0.65 Q BEP . According to the numerical simulation, the mixed-flow waterjet propulsion has characteristic instability at partial flow rate condition.

  2. Study of Effect of Impacting Direction on Abrasive Nanometric Cutting Process with Molecular Dynamics.

    Science.gov (United States)

    Li, Junye; Meng, Wenqing; Dong, Kun; Zhang, Xinming; Zhao, Weihong

    2018-01-11

    Abrasive flow polishing plays an important part in modern ultra-precision machining. Ultrafine particles suspended in the medium of abrasive flow removes the material in nanoscale. In this paper, three-dimensional molecular dynamics (MD) simulations are performed to investigate the effect of impacting direction on abrasive cutting process during abrasive flow polishing. The molecular dynamics simulation software Lammps was used to simulate the cutting of single crystal copper with SiC abrasive grains at different cutting angles (0 o -45 o ). At a constant friction coefficient, we found a direct relation between cutting angle and cutting force, which ultimately increases the number of dislocation during abrasive flow machining. Our theoretical study reveal that a small cutting angle is beneficial for improving surface quality and reducing internal defects in the workpiece. However, there is no obvious relationship between cutting angle and friction coefficient.

  3. A level set methodology for predicting the effect of mask wear on surface evolution of features in abrasive jet micro-machining

    International Nuclear Information System (INIS)

    Burzynski, T; Papini, M

    2012-01-01

    A previous implementation of narrow-band level set methodology developed by the authors was extended to allow for the modelling of mask erosive wear in abrasive jet micro-machining (AJM). The model permits the prediction of the surface evolution of both the mask and the target simultaneously, by representing them as a hybrid and continuous mask–target surface. The model also accounts for the change in abrasive mass flux incident to both the target surface and, for the first time, the eroding mask edge, that is brought about by the presence of the mask edge itself. The predictions of the channel surface and eroded mask profiles were compared with measurements on channels machined in both glass and poly-methyl-methacrylate (PMMA) targets at both normal and oblique incidence, using tempered steel and elastomeric masks. A much better agreement between the predicted and measured profiles was found when mask wear was taken into account. Mask wear generally resulted in wider and deeper glass target profiles and wider PMMA target profiles, respectively, when compared to cases where no mask wear was present. This work has important implications for the AJM of complex MEMS and microfluidic devices that require longer machining times. (paper)

  4. Machining of {gamma}-TiAl

    Energy Technology Data Exchange (ETDEWEB)

    Aust, E.; Niemann, H.-R. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1999-09-01

    Knowledge of the machining parameters for titanium aluminides of the type {gamma}-TiAl is essential for the acceptance and application of this new heat-resistant light-weight material for high performance components in automobile and aircraft engines. This work evaluates drilling, turning, sawing, milling, electroerosion, grinding, and high-pressure water-jetting of primary castings. The results indicate that there is a potential for each machining process, but a high quality of surface finish can only be achieved by some of the processes. (orig.)

  5. Basics of cutting and abrasive processes

    CERN Document Server

    Toenshoff, Hans Kurt

    2013-01-01

    Manufacturing is the basic industrial activity generating real value. Cutting and abrasive technologies are the backbone of precision production in machine, automotive and aircraft building as well as of production of consumer goods. We present the knowledge of modern manufacturing in these technologies on the basis of scientific research. The theory of cutting and abrasive processes and the knowledge about their application in industrial practice are a prerequisite for the studies of manufacturing science and an important part of the curriculum of the master study in German mechanical engineering. The basis of this book is our lecture “Basics of cutting and abrasive processes” (4 semester hours/3 credit hours) at the Leibniz University Hannover, which we offer to the diploma and master students specializing in manufacturing science.

  6. Study on design of light-weight super-abrasive wheel

    Science.gov (United States)

    Nohara, K.; Yanagihara, K.; Ogawa, M.

    2018-01-01

    Fixed-abrasive tool, also called a grinding wheel, is produced by furnacing abrasive compound which contains abrasive grains and binding powder such as vitrified materials or resins. Fixed-abrasive tool is installed on spindle of grinding machine. And it is given 1,800-2,000 min-1 of spindle rotation for the usage. The centrifugal fracture of the compound of fixed- abrasive tool is one of the careful respects in designing. In recent years, however, super-abrasive wheel as a fixed-abrasive tool has been developed and applied widely. One of the most characteristic respects is that metal is applied for the body of grinding-wheel. The strength to hold abrasive grain and the rigidity of wheel become stronger than those of general grinding wheel, also the lifespan of fixed-abrasive tool becomes longer. The weight of fixed-abrasive tool, however, becomes heavier. Therefore, when the super-abrasive wheel is used, the power consumption of spindle motor becomes larger. It also becomes difficult for the grinding-wheel to respond to sudden acceleration or deceleration. Thus, in order to reduce power consumption in grinding and to obtain quicker frequency response of super-abrasive wheel, the new wheel design is proposed. The design accomplishes 46% weight reduction. Acceleration that is one second quicker than that of conventional grinding wheel is obtained.

  7. A modeling of elementary passes taking into account the firing angle in abrasive water jet machining of titanium alloy

    Science.gov (United States)

    Bui, Van-Hung; Gilles, Patrick; Cohen, Guillaume; Rubio, Walter

    2018-05-01

    The use of titanium alloys in the aeronautical and high technology domains is widespread. The high strength and the low mass are two outstanding characteristics of titanium alloys which permit to produce parts for these domains. As other hard materials, it is challenging to generate 3D surfaces (e.g. pockets) when using conventional cutting methods. The development of Abrasive Water Jet Machining (AWJM) technology shows the capability to cut any kind of materials and it seems to be a good solution for such titanium materials with low specific force, low deformation of parts and low thermal shocks. Applying this technology for generating 3D surfaces requires to adopt a modelling approach. However, a general methodology results in complex models due to a lot of parameters of the machining process and based on numerous experiments. This study introduces an extended geometry model of an elementary pass when changing the firing angle during machining Ti-6AL-4V titanium alloy with a given machine configuration. Several experiments are conducted to observe the influence of major kinematic operating parameters, i.e. jet inclination angle (α) (perpendicular to the feed direction) and traverse speed (Vf). The material exposure time and the erosion capability of abrasives particles are affected directly by a variation of the traverse speed (Vf) and firing angle (α). These variations lead to different erosion rates along the kerf profile characterized by the depth and width of cut. A comparison demonstrated an efficiency of the proposed model for depth and width of elementary passes. Based on knowledge of the influence of both firing angle and traverse speed on the elementary pass shape, the proposed model allows to develop the simulation of AWJM process and paves a way for milling flat bottom pockets and 3D complex shapes.

  8. New Rock Abrasivity Test Method for Tool Life Assessments on Hard Rock Tunnel Boring: The Rolling Indentation Abrasion Test (RIAT)

    Science.gov (United States)

    Macias, F. J.; Dahl, F.; Bruland, A.

    2016-05-01

    The tunnel boring machine (TBM) method has become widely used and is currently an important presence within the tunnelling industry. Large investments and high geological risk are involved using TBMs, and disc cutter consumption has a great influence on performance and cost, especially in hard rock conditions. Furthermore, reliable cutter life assessments facilitate the control of risk as well as avoiding delays and budget overruns. Since abrasive wear is the most common process affecting cutter consumption, good laboratory tests for rock abrasivity assessments are needed. A new abrasivity test method by rolling disc named Rolling Indentation Abrasion Test (RIAT) has been developed. The goal of the new test design and procedure is to reproduce wear behaviour on hard rock tunnel boring in a more realistic way than the traditionally used methods. Wear by rolling contact on intact rock samples is introduced and several rock types, covering a wide rock abrasiveness range, have been tested by RIAT. The RIAT procedure indicates a great ability of the testing method to assess abrasive wear on rolling discs. In addition and to evaluate the newly developed RIAT test method, a comprehensive laboratory testing programme including the most commonly used abrasivity test methods and the mineral composition were carried out. Relationships between the achieved results from conventional testing and RIAT results have been analysed.

  9. Refueling machine with relative positioning capability

    International Nuclear Information System (INIS)

    Challberg, R.C.; Jones, C.R.

    1998-01-01

    A refueling machine is disclosed having relative positioning capability for refueling a nuclear reactor. The refueling machine includes a pair of articulated arms mounted on a refueling bridge. Each arm supports a respective telescoping mast. Each telescoping mast is designed to flex laterally in response to application of a lateral thrust on the end of the mast. A pendant mounted on the end of the mast carries an air-actuated grapple, television cameras, ultrasonic transducers and waterjet thrusters. The ultrasonic transducers are used to detect the gross position of the grapple relative to the bail of a nuclear fuel assembly in the fuel core. The television cameras acquire an image of the bail which is compared to a pre-stored image in computer memory. The pendant can be rotated until the television image and the pre-stored image match within a predetermined tolerance. Similarly, the waterjet thrusters can be used to apply lateral thrust to the end of the flexible mast to place the grapple in a fine position relative to the bail as a function of the discrepancy between the television and pre-stored images. 11 figs

  10. Refueling machine with relative positioning capability

    Science.gov (United States)

    Challberg, R.C.; Jones, C.R.

    1998-12-15

    A refueling machine is disclosed having relative positioning capability for refueling a nuclear reactor. The refueling machine includes a pair of articulated arms mounted on a refueling bridge. Each arm supports a respective telescoping mast. Each telescoping mast is designed to flex laterally in response to application of a lateral thrust on the end of the mast. A pendant mounted on the end of the mast carries an air-actuated grapple, television cameras, ultrasonic transducers and waterjet thrusters. The ultrasonic transducers are used to detect the gross position of the grapple relative to the bail of a nuclear fuel assembly in the fuel core. The television cameras acquire an image of the bail which is compared to a pre-stored image in computer memory. The pendant can be rotated until the television image and the pre-stored image match within a predetermined tolerance. Similarly, the waterjet thrusters can be used to apply lateral thrust to the end of the flexible mast to place the grapple in a fine position relative to the bail as a function of the discrepancy between the television and pre-stored images. 11 figs.

  11. Quantifying the Mechanical Properties of Materials and the Process of Elastic-Plastic Deformation under External Stress on Material

    Directory of Open Access Journals (Sweden)

    Jan Valíček

    2015-11-01

    Full Text Available The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ, especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ.

  12. Quantifying the Mechanical Properties of Materials and the Process of Elastic-Plastic Deformation under External Stress on Material

    Science.gov (United States)

    Valíček, Jan; Harničárová, Marta; Öchsner, Andreas; Hutyrová, Zuzana; Kušnerová, Milena; Tozan, Hakan; Michenka, Vít; Šepelák, Vladimír; Mitaľ, Dušan; Zajac, Jozef

    2015-01-01

    The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ), especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ. PMID:28793645

  13. Waterjet drilling in porcine bone: the effect of the nozzle diameter and bone architecture on the hole dimensions

    NARCIS (Netherlands)

    den Dunnen, Steven; Mulder, Lars; Kerkhoffs, Gino M. M. J.; Dankelman, Jenny; Tuijthof, Gabrielle J. M.

    2013-01-01

    Using waterjets instead of rigid drill bits for bone drilling can be beneficial due to the absence of thermal damage and a consequent sharp cut. Additionally, waterjet technology allows the development of flexible instruments that facilitate maneuvering through complex joint spaces. Controlling the

  14. Experimental Investigation on the Material Removal of the Ultrasonic Vibration Assisted Abrasive Water Jet Machining Ceramics

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2017-01-01

    Full Text Available The ultrasonic vibration activated in the abrasive water jet nozzle is used to enhance the capability of the abrasive water jet machinery. The experiment devices of the ultrasonic vibration assisted abrasive water jet are established; they are composed of the ultrasonic vibration producing device, the abrasive supplying device, the abrasive water jet nozzle, the water jet intensifier pump, and so on. And the effect of process parameters such as the vibration amplitude, the system working pressure, the stand-off, and the abrasive diameter on the ceramics material removal is studied. The experimental result indicates that the depth and the volume removal are increased when the ultrasonic vibration is added on abrasive water jet. With the increase of vibration amplitude, the depth and the volume of material removal are also increased. The other parameters of the ultrasonic vibration assisted abrasive water jet also have an important role in the improvement of ceramic material erosion efficiency.

  15. LITERATURE SURVEY ON ABRASION PROBLEM IN CHENILLE YARNS

    Directory of Open Access Journals (Sweden)

    Erhan Kenan ÇEVEN

    2006-01-01

    Full Text Available Chenille yarns are traditionally used in the manufacture of furnishing fabrics, fashion knitwear, and as decorative threads in many types of broad and narrow fabrics. Chenille yarn has a very distinct weakness-it does not have very good inherent abrasion resistance. When the yarns are in use, clearly the abrasion resistance of the chenille yarn is crucially important. Either during further processing or during the eventual end-use, any removal of the effect yarn forming the beard will expose the ground yarns, which in turn will result in a bare appearance. To avoid this undesirable result, several options are available. Therefore, the studies on this area are about the investigation of the influences of some material types and machine parameters on the abrasion resistance of chenille yarns and fabrics produced with these yarns. In this paper, the experimental studies about the abrasion properties of chenille yarns in yarn, knitted and woven fabric forms are summarized.

  16. Abrasive wear based predictive maintenance for systems operating in sandy conditions

    NARCIS (Netherlands)

    Woldman, M.; Tinga, T.; Heide, E. van der; Masen, M.A.

    2015-01-01

    Machines operating in sandy environments are damaged by the abrasive action of sand particles that enter the machine and become entrapped between components and contacting surfaces. In the case of the military services the combination of a sandy environment and the wide range of tasks to be

  17. Cleaning power and abrasivity of European toothpastes.

    Science.gov (United States)

    Wülknitz, P

    1997-11-01

    For 41 toothpastes available to European consumers in 1995, the cleaning efficacy was evaluated in comparison with abrasivity on dentin (RDA value). For cleaning power assessment, a modified pellicle cleaning ratio (PCR) measurement method was developed. The method is characterized by a five-day tea-staining procedure on bovine front teeth slabs on a rotating wheel, standardized brushing of the slabs in a V8 cross-brushing machine, and brightness measurement by a chromametric technique. All tested products were in accordance with the new DIN/ISO standard 11,609 for toothpastes in terms of dentin abrasivity. Not a single product exceeded an RDA value of 200. The majority of toothpastes (80%) had an RDA value below 100. Only three products surpassed the reference in cleaning power. Most products (73%) had a cleaning power (PCR value) between 20 and 80. The correlation between cleaning power and dentin abrasion was low (r = 0.66), which can be explained with the different influence on dentin and stains by factors like abrasive type, particle surface and size, as well as the chemical influence of other toothpaste ingredients. Some major trends could be shown on the basis of abrasive types. The ratio PCR to RDA was rather good in most silica-based toothpastes. A lower ratio was found in some products containing calcium carbonate or aluminum trihydrate as the only abrasive. The addition of other abrasives, such as polishing alumina, showed improved cleaning power. Some active ingredients, especially sequenstrants such as sodium tripolyphosphate or AHBP, also improve the PCR/RDA ratio by stain-dissolving action without being abrasive. The data for some special anti-stain products did not differ significantly from standard products. Compared with data measured in 1988, a general trend toward reduced abrasivity without loss of cleaning efficacy could be noticed on the European toothpaste market. This may be mostly due to the increased use of high-performance abrasives such

  18. Damage to the edge of steel stampings and abrasive during ultrasonic hydroabrasive machining

    International Nuclear Information System (INIS)

    Dokuchaeva, V.A.; Chernov, A.P.

    1976-01-01

    Principles have been established explaining the fracture of abrasive material in the process of ultrasonic hydroabrasive treatment, and a method is proposed suitable for the calculation of steel barb erosion in the hydroabrasive flux. It is assumed that fracture occurs along the entire edge surface and that the losses caused by plastic deformation are small. Conclusion has been made as to the governing the change of the abrasive particle size in the time of treatment. It is shown that the most serious fracture takes place at initial stage of the treatment, terminating practically after 60 minutes of operation. Curves showing the distribution of boron carbide abrasive particles are presented

  19. Multimedia Superabrasive, Laser Cladding, and Waterjet Technology Performance Support System

    International Nuclear Information System (INIS)

    Bohley, M.C.; Ciccateri, T.J.

    1998-01-01

    incorporated into the electronic information retrieval portion of the PSS. On-line reference manuals covering Operations, Maintenance, Mechanical, Electrical, and Peripherals provide text and illustrations to the machine operator in a traditional structure, but additionally offer the capability to search voluminous amounts of technical data and retrieve specific information on request. This project provided the project team with a detailed understanding of the knowledge and information required to produce and support advanced machine tools. In addition it resulted in the design and construction of a prototype Grinders PSS that contains all the logic and interfaces necessary to integrate product information from the Huffman Waterjets and Lasers product lines

  20. Cleaning, abrasion, and polishing effect of novel perlite toothpaste abrasive.

    Science.gov (United States)

    Wang, Bo

    2013-01-01

    This study was intended to optimize perlite particle size and morphology for better tooth cleaning and lower tooth abrasion, and to evaluate the performance of a whitening toothpaste containing the optimized perlite abrasive for tooth cleaning, abrasion, and polishing. Perlite toothpaste abrasive samples were prepared by air classifying a commercial expanded perlite product. The tooth cleaning and abrasion properties for these classified perlite samples were reported via the pellicle cleaning ratio (PCR) and relative dentin abrasion (RDA). Performance of the whitening toothpaste containing the optimized perlite abrasive in tooth cleaning, polishing, and abrasion was evaluated against a widely used synthetic high-cleaning silica. Air classification removes large perlite particles and also physically changes perlite particle morphology from mostly three dimensional and angular particles to mainly two dimensional and platy particles. All the classified samples show good tooth cleaning effect, but tooth abrasion decreases significantly with decreasing particle size. Compared to high-cleaning silica whitening toothpaste, the whitening toothpaste containing the optimized perlite abrasive (PerlClean) is slightly better at tooth cleaning, lower in tooth abrasion, and significantly better at tooth polishing. Fine platy perlite particles are effective in tooth cleaning with low tooth abrasion. The enhanced performance of optimized perlite toothpaste abrasive compared to high-cleaning silica in a whitening toothpaste is attributed to the optimized particle size distribution and the unique platy particle geometry.

  1. Research on axial thrust of the waterjet pump based on CFD under cavitation conditions

    International Nuclear Information System (INIS)

    Shen, Z H; Pan, Z Y

    2015-01-01

    Based on RANS equations, performance of a contra-rotating axial-flow waterjet pump without hydrodynamic cavitation state had been obtained combined with shear stress transport turbulence model. Its cavitation hydrodynamic performance was calculated and analysed with mixture homogeneous flow cavitation model based on Rayleigh-Plesset equations. The results shows that the cavitation causes axial thrust of waterjet pump to drop. Furthermore, axial thrust and head cavitation characteristic curve is similar. However, the drop point of the axial thrust is postponed by 5.1% comparing with one of head, and the critical point of the axial thrust is postponed by 2.6%

  2. Research on axial thrust of the waterjet pump based on CFD under cavitation conditions

    Science.gov (United States)

    Shen, Z. H.; Pan, Z. Y.

    2015-01-01

    Based on RANS equations, performance of a contra-rotating axial-flow waterjet pump without hydrodynamic cavitation state had been obtained combined with shear stress transport turbulence model. Its cavitation hydrodynamic performance was calculated and analysed with mixture homogeneous flow cavitation model based on Rayleigh-Plesset equations. The results shows that the cavitation causes axial thrust of waterjet pump to drop. Furthermore, axial thrust and head cavitation characteristic curve is similar. However, the drop point of the axial thrust is postponed by 5.1% comparing with one of head, and the critical point of the axial thrust is postponed by 2.6%.

  3. Controlled wear of vitrified abrasive materials for precision grinding ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    2Machining Research Group, Department of Engineering, University of ... ods are applied to analyse the cutting mechanism in grinding. .... (d) Chemical reaction between abrasive and workpiece material at elevated temperatures ... most common method used for measuring wear flat area employs an optical, or an electron.

  4. Research on operation mode of abrasive grain during grinding

    Science.gov (United States)

    Ivanova, T. N.; Dement’ev, V. B.; Nikitina, O. V.

    2018-03-01

    The processing of materials by cutting with an abrasive tool is carried out by means of thousands of grains bonded together as a single whole. The quality of the abrasive tool is defined by cutting properties of abrasive grains and depends on features of spreading the temperature field in time and in the abrasive grain volume. Grains are exposed to heating and cooling during work. It leads to undesired effects such as a decrease of durability of grain retention in the binder, hardness, intensification of diffusion and oxidation processes between the binder and the grain, the occurrence of considerable temperature stresses in the grain itself. The obtained equation which allows calculation of temperature field of grain for one rotation of grinding wheel shows that the temperature of the wheel depends on grinding modes and thermophysical properties of abrasive material. Thus, as the time of contact of grain with processed material increases, the temperature in the cutting area rises. As thermophysical properties increase, the temperature in cutting area decreases. Thermal working conditions are determined to be different from each other depending on contact time of the grain and the material. For example, in case of creep-feed grinding, the peak value of temperature is higher than during multistep grinding; the depth of expansion is greater. While the speed of the thermal process in creep-feed grinding is 2-3 times lower than in multistep grinding, the gradient reduces 3-4 times. The analysis of machining methods shows that creep-feed grinding ensures greater depth of grain heating, a smaller heating rate and a reduced velocity gradient. It causes a decrease of probable allotropic modifications and prevents from occurring of heat strokes - cracking of grains due to high temperature falls. Consequently, it is necessary to employ creep-feed grinding to increase the efficiency of abrasive tool employing. Three operation modes of grinding wheel including blunting, full

  5. Experimental Rock-on-Rock Abrasive Wear Under Aqueous Conditions: its Role in Subglacial Abrasion

    Science.gov (United States)

    Rutter, E. H.; Lee, A. G.

    2003-12-01

    We have determined experimentally the rate of abrasive wear of rock on rock for a range of rock types as a function of normal stress and shear displacement. Unlike abrasive wear in fault zones, where wear products accumulate as a thickening gouge zone, in our experiments wear particles were removed by flowing water. The experiments are thus directly pertinent to one of the most important processes in subglacial erosion, and to some extent in river incision. Wear was produced between rotating discs machined from rock samples and measured from the progressive approach of the disc axes towards each other under various levels of normal load. Shear displacements of several km were produced. Optical and scanning electron microscopy were used to study the worn rock surfaces, and particle size distributions in wear products were characterized using a laser particle size analyzer. Rock types studied were sandstones of various porosities and cement characteristics, schists and a granite. In all cases abrasion rate decreased logarithmically with displacement by up to 2 orders of magnitude until a steady state was approached, but only after at least 1 km displacement. The more porous, less-well cemented rocks wore fastest. Amount of abrasion could be characterized quantitatively using an exponentially decaying plus a steady-state term. Wear rate increased non-linearly with normal contact stress, apparently to an asymptote defined by the unconfined compressive strength. Microstructural study showed that the well-cemented and/or lowest porosity rocks wore by progressive abrasion of grains without plucking, whereas whole grains were plucked out of weakly-cemented and/or more porous rocks. This difference in behavior was reflected in wear-product particle size distributions. Where whole-grain plucking was possible, wear products were dominated by particles of the original grain size rather than finer rock flour. Comparison of our results to glacier basal abrasive wear estimated

  6. Dentifrice fluoride and abrasivity interplay on artificial caries lesions.

    Science.gov (United States)

    Nassar, Hani M; Lippert, Frank; Eckert, George J; Hara, Anderson T

    2014-01-01

    Incipient caries lesions on smooth surfaces may be subjected to toothbrushing, potentially leading to remineralization and/or abrasive wear. The interplay of dentifrice abrasivity and fluoride on this process is largely unknown and was investigated on three artificially created lesions with different mineral content/distribution. 120 bovine enamel specimens were randomly allocated to 12 groups (n = 10), resulting from the association of (1) lesion type [methylcellulose acid gel (MeC); carboxymethylcellulose solution (CMC); hydroxyethylcellulose gel (HEC)], (2) slurry abrasive level [low (REA 4/ RDA 69); high (REA 7/RDA 208)], and (3) fluoride concentration [0/275 ppm (14.5 mM) F as NaF]. After lesion creation, specimens were brushed in an automated brushing machine with the test slurries (50 strokes 2×/day). Specimens were kept in artificial saliva in between brushings and overnight. Enamel surface loss (SL) was determined by optical profilometry after lesion creation, 1, 3 and 5 days. Two enamel sections (from baseline and post-brushing areas) were obtained and analyzed microradiographically. Data were analyzed by analysis of variance and Tukey's tests (α = 5%). Brushing with high-abrasive slurry caused more SL than brushing with low-abrasive slurry. For MeC and CMC lesions, fluoride had a protective effect on SL from day 3 on. Furthermore, for MeC and CMC, there was a significant mineral gain in the remaining lesions except when brushed with high-abrasive slurries and 0 ppm F. For HEC, a significant mineral gain took place when low-abrasive slurry was used with fluoride. The tested lesions responded differently to the toothbrushing procedures. Both slurry fluoride content and abrasivity directly impacted SL and mineral gain of enamel caries lesions.

  7. Hardness and elasticity of abrasive particles measured by instrumented indentation

    Czech Academy of Sciences Publication Activity Database

    Hvizdoš, P.; Zeleňák, Michal; Hloch, Sergej

    2016-01-01

    Roč. 8, č. 1 (2016), s. 869-871 ISSN 1805-0476 Institutional support: RVO:68145535 Keywords : abrasive * garnet * hardness * elasticity * instrumental indentation Subject RIV: JQ - Machines ; Tools http://www.mmscience.eu/content/file/archives/MM_Science_201601.pdf

  8. Assessment of thermal spray coatings for wear and abrasion resistance applications

    Science.gov (United States)

    Karode, Ishaan Nitin

    Thermal spray cermet and metallic coatings are extensively used for wear, abrasion and corrosion control in a variety of industries. The first part of the thesis focuses mainly on testing of sand erosion resistance of thermal spray coatings on carbon composites used in the manufacture of helicopter rotor blades. The test set-up employed is a sand blasting machine and is an effort to duplicate the in-flight conditions especially those encountered in hot arid conditions. The technique adopted follows the Department of Defence test method standard. Carbon Composites have excellent stiffness, strength and low weight/density. The strength to weight ratio is high. Hence, these are used in aerospace applications to a large extent. However, the biggest problem encountered with carbon composites is its low abrasion resistance as its surface is very weak. Hence, thermal spray coatings are used to improve the surface properties of CFRP. Zinc bond coats and WC-Co coatings were tested. However, high amount of thermal stresses were developed between the substrate and the coating due to large differences in the CTE's of the both, leading to high mass losses within two minutes and just 130 grams of sand sprayed on to the coatings with the sand blasting machine built; and hence the coatings with CC as a substrate could not qualify for the application. The second part of the thesis focuses on the assessment of different thermal spray coatings used for manufacture of mechanical seals in pumps and analyze the best coating material for the wear resistance application through detail quantification of material loss by block-on-ring test set-up. A machine based on Block-on-ring test set-up following ASTM G77 (Measurement of Adhesive wear resistance of thermal spray coatings) standards was built to duplicate the pump conditions. Thermally sprayed coated materials were tested in different conditions (Load, time, abrasive). WC-Co had the highest wear resistance (lower volume losses) and

  9. Safety of stationary grinding machines - impact resistance of work zone enclosures.

    Science.gov (United States)

    Mewes, Detlef; Adler, Christian

    2017-09-01

    Guards on machine tools are intended to protect persons from being injured by parts ejected with high kinetic energy from the work zone of the machine. Stationary grinding machines are a typical example. Generally such machines are provided with abrasive product guards closely enveloping the grinding wheel. However, many machining tasks do not allow the use of abrasive product guards. In such cases, the work zone enclosure has to be dimensioned so that, in case of failure, grinding wheel fragments remain inside the machine's working zone. To obtain data for the dimensioning of work zone enclosures on stationary grinding machines, which must be operated without an abrasive product guard, burst tests were conducted with vitrified grinding wheels. The studies show that, contrary to widely held opinion, narrower grinding wheels can be more critical concerning the impact resistance than wider wheels although their fragment energy is smaller.

  10. Innovative decontamination technology by abrasion in vibratory vessels

    International Nuclear Information System (INIS)

    Fabbri, Silvio; Ilarri, Sergio

    2007-01-01

    Available in abstract form only. Full text of publication follows: The possibility of using conventional vibratory vessel technology as a decontamination technique is the motivation for the development of this project. The objective is to explore the feasibility of applying the vibratory vessel technology for decontamination of radioactively-contaminated materials such as pipes and metal structures. The research and development of this technology was granted by the U.S. Department of Energy (DOE). Abrasion processes in vibratory vessels are widely used in the manufacture of metals, ceramics, and plastics. Samples to be treated, solid abrasive media and liquid media are set up into a vessel. Erosion results from the repeated impact of the abrasive particles on the surface of the body being treated. A liquid media, generally detergents or surfactants aid the abrasive action. The amount of material removed increases with the time of treatment. The design and construction of the machine were provided by Vibro, Argentina private company. Tests with radioactively-contaminated aluminum tubes and a stainless steel bar, were performed at laboratory level. Tests showed that it is possible to clean both the external and the internal surface of contaminated tubes. Results show a decontamination factor around 10 after the first 30 minutes of the cleaning time. (authors)

  11. Tomographic particle image velocimetry of a water-jet for low volume harvesting of fat tissue for regenerative medicine

    Directory of Open Access Journals (Sweden)

    Drobek Christoph

    2015-09-01

    Full Text Available Particle Image Velocimetry (PIV measurements of a water-jet for water-assisted liposuction (WAL are carried out to investigate the distribution of velocity and therefore momentum and acting force on the human sub-cutaneous fat tissue. These results shall validate CFD simulations and force sensor measurements of the water-jet and support the development of a new WAL device that is able to harvest low volumes of fat tissue for regenerative medicine even gentler than regular WAL devices.

  12. Influence of Corrosion on the Abrasion of Cutter Steels Used in TBM Tunnelling

    Science.gov (United States)

    Espallargas, N.; Jakobsen, P. D.; Langmaack, L.; Macias, F. J.

    2015-01-01

    Abrasion on tunnel boring machine (TBM) cutters may be critical in terms of project duration and costs. Several researchers are currently studying the degradation of TBM cutter tools used for excavating hard rock, soft ground and loose soil. So far, the primary focus of this research has been directed towards abrasive wear. Abrasive wear is a very common process in TBM excavation, but with a view to the environment in which the tools are working, corrosion may also exert an influence. This paper presents a selection of techniques that can be used to evaluate the influence of corrosion on abrasion on TBM excavation tools. It also presents the influence of corrosion on abrasive wear for some initial tests, with constant steel and geomaterial and varying properties of the excavation fluids (soil conditioners, anti-abrasion additives and water). The results indicate that the chloride content in the water media greatly influences the amount of wear, providing evidence of the influence of corrosion on the abrasion of the cutting tools. The presence of conditioning additives tailored to specific rock or soil conditions reduces wear. However, when chloride is present in the water, the additives minimise wear rates but fail to suppress corrosion of the cutting tools.

  13. Effect of nanofillers' size on surface properties after toothbrush abrasion.

    Science.gov (United States)

    Cavalcante, Larissa M; Masouras, Konstantinos; Watts, David C; Pimenta, Luiz A; Silikas, Nick

    2009-02-01

    To investigate the effect of filler-particle size of experimental and commercial resin composites, undergoing toothbrush abrasion, on three surface properties: surface roughness (SR), surface gloss (G) and color stability (CS). Four model (Ivoclar/Vivadent) and one commercial resin composite (Tokuyama) with varying filler-size from 100-1000 nm were examined. Six discs (10 mm x 2 mm) from each product were prepared and mechanically polished. The samples were then submitted to 20,000 brushing strokes in a toothbrush abrasion machine. SR parameters (Ra, Rt and RSm), G, and CS were measured before and after toothbrush abrasion. Changes in SR and G were analyzed by 2-way ANOVA, with Bonferroni post hoc test. CS values were submitted to one-way ANOVA and Bonferroni post hoc test (alpha=0.05). Initial G values ranged between 73-87 gloss units (GU) and were reduced after toothbrush abrasion to a range of 8-64 GU. Toothbrush abrasion resulted in significant modifications in SR and G amongst the materials tested, attributed to filler sizes. There was statistically significant difference in color (delta E* ranged from 0.38-0.88). Filler size did not affect color stability. Toothbrush abrasion resulted in rougher and matte surfaces for all materials tested. Although the individual differences in surface roughness among filler sizes were not always significant, the correlation showed a trend that larger filler sizes resulted in higher surface roughness after abrasion for the SR parameters Ra and Rt (r = 0.95; r = 0.93, respectively). RSm showed an increase after toothbrush abrasion for all resin composites, however no significant correlation was detected (r = 0.21).There was a significant correlation between G and Ra ratios (r = - 0.95).

  14. Two-body, dry abrasive wear of Fe/Cr/C experimental alloys - relationship between microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Kwok, C.K.S.

    1982-01-01

    A systematic study of abrasive wear resistance of Fe/Cr/Mn based alloys has been carried out using a two body pin-on-disc wear machine. Abrasives used were silicon carbide, alumina and quartz. The objective of this study was to evaluate the abrasive wear resistance and to investigate the relationships between microstructure, mechanical properties, and abrasive wear resistance for these experimental alloys. Several commercial alloys were also tested to provide a basis for comparison. The goal of this study was to develop information so as to improve wear resistance of these experimental alloys by means of thermal treatments. Grain-refinement by double heat treatment was carried out in this research

  15. Numerical Simulation Analysis of Five-Step Variable-Diameter Pipe with Solid-Liquid Two-Phase Abrasive Flow Polishing

    Science.gov (United States)

    Li, Junye; Zhang, Hengfu; Wu, Guiling; Hu, Jinglei; Liu, Yang; Sun, Zhihui

    2018-01-01

    In many areas of precision machining abrasive flow polishing technology has an important role. In order to study the influence of abrasive flow on the polishing effect of variable diameter parts, the fifth step variable diameter tube was taken as the research object to analyze the dynamic pressure and turbulent kinetic energy distribution of inlet velocity on the fifth-order variable diameter tube influences. Through comparative analysis, the abrasive flow polished variable diameter pipe parts have very effective and significant polishing effect and the higher the inlet speed, the more significant the polishing effect.

  16. Air Abrasion

    Science.gov (United States)

    ... Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air ... will perform any procedures that use air-abrasion technology. Ask your dentist if he or she uses ...

  17. Performance tests of an abrasive cut-off systems for the finishing of high-precision casts

    Directory of Open Access Journals (Sweden)

    A. Fedoryszyn

    2008-10-01

    Full Text Available The paper summarizes the performance data of a newly designed and engineered grinding and cut-off system. The machine is used forseparation of models manufactured by the investment casting method. The machine comprises the following units:- base supporting other assemblies and elements: abrasive disc holder and drives; this solution enables an easy replacement and access toholding elements while a belt transmission allows the disc rpm to be varied,- mechanism moving the spindle in the horizontal, hence the abrasive disc position with respect to the batch can be precisely controlled,depending on the cast position and their shape,- holding and positioning-control of the batch to enable the fore and aft movements and rotations,- guide systems ensuring the travel of the batch in the specified direction and adjusting the travel speed to the required cutting rate,- centering, control, exhaust system, housing.Extensive tests were performed, including the tests of operating parameters of abrasive discs depending on the cast material, cyclograms ofthe applied treatment are obtained accordingly.

  18. Performance tests of an abrasive cut-off systems for the finishing of high-precision casts

    Directory of Open Access Journals (Sweden)

    A. Fedoryszyn

    2008-07-01

    Full Text Available The paper summarizes the performance data of a newly designed and engineered grinding and cut-off system. The machine is used for separation of models manufactured by the investment casting method. The machine comprises the following units:- base supporting other assemblies and elements: abrasive disc holder and drives; this solution enables an easy replacement and access to holding elements while a belt transmission allows the disc rpm to be varied,- mechanism moving the spindle in the horizontal, hence the abrasive disc position with respect to the batch can be precisely controlled, depending on the cast position and their shape,- holding and positioning-control of the batch to enable the fore and aft movements and rotations,- guide systems ensuring the travel of the batch in the specified direction and adjusting the travel speed to the required cutting rate,- centering, control, exhaust system, housingExtensive tests were performed, including the tests of operating parameters of abrasive discs depending on the cast material, cyclograms of the applied treatment are obtained accordingly.

  19. Design of a new abrasive slurry jet generator

    Science.gov (United States)

    Wang, F. C.; Shi, L. L.; Guo, C. W.

    2017-12-01

    With the advantages of a low system working pressure, good jet convergence and high cutting quality, abrasive slurry jet (ASJ) has broad application prospects in material cutting and equipment cleaning. Considering that the generator plays a crucial role in ASJ system, the paper designed a new type ASJ generator using an electric oil pump, a separate plunger cylinder, and a spring energized seal. According to the determining of structure shape, size and seal type, a new ASJ generator has been manufactured out and tested by a series of experiments. The new generator separates the abrasive slurry from the dynamic hydraulic oil, which can improve the service life of the ASJ system. And the new ASJ system can reach 40 MPa and has good performance in jet convergence, which deserves to popularization and application in materials machining.

  20. Trans-umbilical endoscopic cholecystectomy with a water-jet hybrid-knife: a pilot animal study.

    Science.gov (United States)

    Jiang, Sheng-Jun; Shi, Hong; Swar, Gyanendra; Wang, Hai-Xia; Liu, Xiao-Jing; Wang, Yong-Guang

    2013-10-28

    To investigate the feasibility and safety of Natural orifice trans-umbilical endoscopic cholecystectomy with a water-jet hybrid-knife in a non-survival porcine model. Pure natural orifice transluminal endoscopic surgery (NOTES) cholecystectomy was performed on three non-survival pigs, by transumbilical approach, using a water-jet hybrid-knife. Under general anesthesia, the following steps detailed the procedure: (1) incision of the umbilicus followed by the passage of a double-channel flexible endoscope through an overtube into the peritoneal cavity; (2) establishment of pneumoperitoneum; (3) abdominal exploration; (4) endoscopic cholecystectomy: dissection of the gallbladder performed using water jet equipment, ligation of the cystic artery and duct conducted using nylon loops; and (5) necropsy with macroscopic evaluation. Transumbilical endoscopic cholecystectomy was successfully completed in the first and third pig, with minor bleedings. The dissection times were 137 and 42 min, respectively. The total operation times were 167 and 69 min, respectively. And the lengths of resected specimen were 6.5 and 6.1 cm, respectively. Instillation of the fluid into the gallbladder bed produced edematous, distended tissue making separation safe and easy. Reliable ligation using double nylon loops insured the safety of cutting between the loops. There were no intraoperative complications or hemodynamic instability. Uncontrolled introperative bleeding occurred in the second case, leading to the operation failure. Pure NOTES trans-umbilical cholecystectomy with a water-jet hybrid-knife appears to be feasible and safe. Further investigation of this technique with long-term follow-up in animals is needed to confirm the preliminary observation.

  1. The measurement of the velocity of abrasive particlesat the suction part of the cutting head

    Czech Academy of Sciences Publication Activity Database

    Foldyna, Josef; Zeleňák, Michal; Klich, Jiří; Hlaváček, Petr; Sitek, Libor; Říha, Zdeněk

    2015-01-01

    Roč. 22, č. 6 (2015), s. 1441-1446 ISSN 1330-3651. [Vodní paprsek 2013 - výzkum, vývoj, aplikace. Soláň, Karolinka, 22.10.2013-24.10.2013] R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : abrasive water jet * velocity of abrasive particles * shadowgraphy Subject RIV: JQ - Machines ; Tools Impact factor: 0.464, year: 2015 http://www.tehnicki-vjesnik.com/web/public/archive

  2. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2010-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  3. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2012-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  4. Abrasive water jet drilling of cooling holes in aeroengines: preliminary experimental study

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Petr; Zlámal, T.; Sitek, Libor

    2018-01-01

    Roč. 1, č. 1 (2018), s. 2218-2222 ISSN 1803-1269 R&D Projects: GA MŠk(CZ) LO1406; GA MPO(CZ) FV10446 Institutional support: RVO:68145535 Keywords : abrasive water jet * drilling * thermal barrier coating Subject RIV: JQ - Machines ; Tools OBOR OECD: Mechanical engineering http://www.mmscience.eu/2018.html

  5. Comparative evaluation of enamel abrasivity of different commercially available dentifrices – An In vitro Study

    Directory of Open Access Journals (Sweden)

    Rupali Athawale

    2018-01-01

    Full Text Available Background: Toothbrushing with toothpaste is a major contributor to dental abrasion. A number of factors such as abrasivity and concentration of the toothpaste, brushing frequency, brushing duration, force of brushing, and toothbrush bristle stiffness have a potential impact on the abrasion process of dental hard tissue. However, the abrasivity of the toothpaste is the most important parameter that affects the abrasion process of dental hard tissue. Aims: This study aims to evaluate the maximum and mean enamel abrasivity of commercially available dentifrices such as Colgate total®, Pepsodent whitening®, Vicco vajradanti®, Dabur red® in primary and permanent teeth. Materials and Methods: Human extracted 60 primary and 60 permanent teeth were randomly selected based on the inclusion criteria. Teeth were sectioned at cementoenamel junction using diamond disc and mounted in an acrylic resin blocks. Baseline profilometric measurements were recorded for all the samples. Four commonly used dentifrices were selected and labeled as Group A (Colgate Total®, B (Pepsodent Whitening®, C (Vicco Vajradanti®, and D (Dabur Red®. Toothpaste slurry was prepared. Tooth specimens were brushed in vitro using a customized brushing machine. After toothbrushing, profilometric measurements were obtained, and the differences in readings served as proxy measure to assess surface abrasion. Data were collected and analyzed using student t-test and ANOVA test. Student t-test was used to compare the enamel abrasivity prebrushing and postbrushing, and ANOVA was used to compare the enamel abrasivity among the four different commercially available toothpastes. Results: In permanent teeth, all the toothpastes were found to cause significant enamel abrasion (P = 0.000 and a significant variation was observed when maximum (P = 0.008 and mean (P = 0.036 enamel abrasivity of these toothpastes were compared. In primary teeth also, all the toothpastes caused significant abrasion

  6. Comparative evaluation of tooth substance loss and its correlation with the abrasivity and chemical composition of different dentifrices.

    Science.gov (United States)

    Singh, Ram Prakash; Sharma, Sidhartha; Logani, Ajay; Shah, Naseem; Singh, Surendra

    2016-01-01

    In India, teeth cleaning with tooth powder is common in rural and semi-urban areas. These dentifrices may contain low-quality abrasives, which may have a deleterious effect on dental hard tissues. This study aims to evaluate the tooth substance loss caused by different dentifrices and to correlate it with chemical composition, size, and shape of abrasives used. An indigenously made automated machine was used for brushing the specimens. Sixty-four freshly extracted premolars were allocated to eight groups (n = 8). Colgate toothpaste was used as the control group. Each specimen was brushed in a vertical motion for 2½ h at 200 strokes/min with a constant applied load of 200 g corresponding to 6-month brushing. The difference in weight (pre- and post-brushing) was determined by an analytical weighing machine. Chemical analysis was done to determine the presence of iron oxide by Inductively Coupled Plasma Mass Spectrometry method. Shape and size of the abrasive particles was evaluated under scanning electron microscopy (SEM). One-way analysis of variance and Paired t-test were used to analyze the data. Tooth substance loss was maximum in the group brushed with red tooth powder, which was shown to contain the highest amount of iron oxide and also exhibited large, irregularly shaped abrasive particles under SEM. Tooth substance loss was documented to be correlated with chemical composition (iron oxide) and the size and shape of abrasive particles used in dentifrices.

  7. The effect of abrading and cutting instruments on machinability of dental ceramics.

    Science.gov (United States)

    Sakoda, Satoshi; Nakao, Noriko; Watanabe, Ikuya

    2018-03-16

    The aim was to investigate the effect of machining instruments on machinability of dental ceramics. Four dental ceramics, including two zirconia ceramics were machined by three types (SiC, diamond vitrified, and diamond sintered) of wheels with a hand-piece engine and two types (diamond and carbide) of burs with a high-speed air turbine. The machining conditions used were abrading speeds of 10,000 and 15,000 r.p.m. with abrading force of 100 gf for the hand-piece engine, and a pressure of 200 kPa and a cutting force of 80 gf for the air-turbine hand-piece. The machinability efficiency was evaluated by volume losses after machining the ceramics. A high-abrading speed had high-abrading efficiency (high-volume loss) compared to low-abrading speed in all abrading instruments used. The diamond vitrified wheels demonstrated higher volume loss for two zirconia ceramics than those of SiC and diamond sintered wheels. When the high-speed air-turbine instruments were used, the diamond points showed higher volume losses compared to the carbide burs for one ceramic and two zirconia ceramics with high-mechanical properties. The results of this study indicated that the machinability of dental ceramics depends on the mechanical and physical properties of dental ceramics and machining instruments. The abrading wheels show autogenous action of abrasive grains, in which ground abrasive grains drop out from the binder during abrasion, then the binder follow to wear out, subsequently new abrasive grains come out onto the instrument surface (autogenous action) and increase the grinding amount (volume loss) of grinding materials.

  8. Disc Bit Abrasion Parameters in TBM Tunnelling regarded exemplarily for the Gotthard Base Tunnel

    Directory of Open Access Journals (Sweden)

    Edmund a Wax

    2005-11-01

    Full Text Available In this article the author presents Amund Bruland’s empirical approach to determine the disc bit abrasion of TBMs (Tunnel Boring Machines, transforms the respective empirical dependencies into approximated mathematical relations and verifies them exemplarily for the currently constructed Gotthard Base Tunnel.

  9. Monitoring and control of fine abrasive finishing processes

    DEFF Research Database (Denmark)

    Lazarev, Ruslan

    In engineering, surfaces with specified functional properties are of high demand in various applications. Desired surface finish can be obtained using several methods. Abrasive finishing is one of the most important processes in the manufacturing of mould and dies tools. It is a principal method ...... was segmented using discretization methods. The applied methodology was proposed for implementation as an on-line system and is considered to be a part of the next generation of STRECON NanoRAP machine....... to remove unwanted material, obtain desired geometry, surface quality and surface functional properties. The automation and computerization of finishing processes involves utilisation of robots, specialized machines with several degrees of freedom, sensors and data acquisition systems. The focus...... of this work was to investigate foundations for process monitoring and control methods in application to semi-automated polishing machine based on the industrial robot. The monitoring system was built on NI data acquisition system with two sensors, acoustic emission sensor and accelerometer. Acquired sensory...

  10. On-line monitoring of technological process of material abrasive water jet cutting

    Czech Academy of Sciences Publication Activity Database

    Kinik, D.; Gánovská, B.; Hloch, Sergej; Monka, P.; Monková, K.; Hutyrová, Z.

    2015-01-01

    Roč. 22, č. 2 (2015), s. 351-357 ISSN 1330-3651 R&D Projects: GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : abrasive water jet * vibrations * monitoring Subject RIV: JQ - Machines ; Tools Impact factor: 0.464, year: 2015 http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=203519

  11. Abrasives and Grinding Machines; Machine Shop Work--Advanced: 9557.02.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The course outline has been prepared as a guide to assist the instructor in systematically planning and presenting a variety of meaningful lessons to facilitate the necessary training for the machine shop student. The material contained in the outline is designed to enable the student to learn the manipulative skills and related knowledge…

  12. Experimental Investigation on the Influence of a Double-Walled Confined Width on the Velocity Field of a Submerged Waterjet

    Directory of Open Access Journals (Sweden)

    Xiaolong Ding

    2017-12-01

    Full Text Available The current research on confined submerged waterjets mainly focuses on the flow field of the impinging jet and wall jet. The double-sided wall vertically confined waterjet, which is widely used in many fields such as mining, cleaning and surface strengthening, has rarely been studied so far. In order to explore the influence of a double-sided wall confined width on the velocity field of submerged waterjet, an experiment was conducted with the application of 2D particle image velocimetry (PIV technology. The distribution of mean velocity and turbulent velocity in both horizontal and vertical planes was used to characterize the flow field under various confined widths. The results show that the vertical confinement has an obvious effect on the decay rate of the mean centerline velocity. When the confined width changes from 15 to 5, the velocity is reduced by 20%. In addition, with the decrease of the confined width, the jet has a tendency to spread horizontally. The vertically confined region induces a space hysteresis effect which changes the location of the transition region moving downstream. There are local negative pressure zones separating the fluid and the wall. This study of a double-walled confined jet provides some valuable information with respect to its mechanism and industrial application.

  13. Energy transfer during the hydroentanglement of fibres

    CSIR Research Space (South Africa)

    Moyo, D

    2012-10-01

    Full Text Available .kashan.co.za] ABSTRACT The hydroentanglement of fibres is achieved by the energy of the high-velocity waterjets. This method is highly energy intensive and costly, hence the attempt to study the energy transfer during the process. Generally, the amount of energy used... in the nonwoven fabric strength were studied. In the study, the energies of the waterjets transferred to every fabric sample as a function of the waterjet pressure, machine speed, machine efficiency and the web area weight were quantified, and the resultant...

  14. The use of opto-digital microscope for analysis Of the PFA-based ...

    African Journals Online (AJOL)

    discontinuities in a form of grooves from 0.5 to 1.5 mm deep, shaped deliberately using abrasive water-jet technology. The measurements of these characteristic elements were made using an advanced opto-digital microscope DSX500 by ...

  15. Performance tests of an abrasive cut-off systems for the finishing of high-precision casts

    OpenAIRE

    A. Fedoryszyn; W. T. Meksa; G. Woźnicki

    2008-01-01

    The paper summarizes the performance data of a newly designed and engineered grinding and cut-off system. The machine is used for separation of models manufactured by the investment casting method. The machine comprises the following units:- base supporting other assemblies and elements: abrasive disc holder and drives; this solution enables an easy replacement and access to holding elements while a belt transmission allows the disc rpm to be varied,- mechanism moving the spindle in the horiz...

  16. Using of abrasive water jet for measurement of residual stress in railway wheels

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Petr; Brumek, J.; Horsák, L.

    2012-01-01

    Roč. 2, č. 19 (2012), s. 387-390 ISSN 1330-3651 R&D Projects: GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : abrasive water jet * railway wheel * residual stress Subject RIV: JQ - Machines ; Tools Impact factor: 0.601, year: 2012 http://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=124848

  17. Tangential turning of Incoloy alloy 925 using abrasive water jet technology

    Czech Academy of Sciences Publication Activity Database

    Cárach, J.; Hloch, S.; Hlaváček, Petr; Ščučka, Jiří; Martinec, Petr; Petrů, J.; Zlámal, T.; Zeleňák, Michal; Monka, P.; Lehocká, D.; Krolczyk, J.

    2016-01-01

    Roč. 82, č. 9 (2016), s. 1747-1752 ISSN 0268-3768 R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : incoloy alloy 925 * abrasive water jet turning * traverse speed Subject RIV: JQ - Machines ; Tools Impact factor: 2.209, year: 2016 http://link.springer.com/article/10.1007%2Fs00170-015-7489-0

  18. Assessment of abrasiveness for research of rock cutting

    Directory of Open Access Journals (Sweden)

    Milan Labaš

    2012-12-01

    Full Text Available Rock abrasiveness is ability of rock to wear down the working tool during the mutual interaction between the working indentorand the rock in the mechanical rock cutting process. The cutting indentor is worn down during the interaction, which changes itsgeometric dimensions causing the enlargement of a contact area between the tool and the rock surface. The changes in these dimensionsconsequently alter the rate of advance of the drilling machine and the specific cutting energy. We have determined the abrasivenessaccording to the norm ON 44 1121 (1982 on the testing device constructed at the Institute of Geotechnics SAS.

  19. Turning of wood plastic composites by water jet and abrasive water jet

    Czech Academy of Sciences Publication Activity Database

    Hutyrová, Z.; Ščučka, Jiří; Hloch, Sergej; Hlaváček, Petr; Zeleňák, Michal

    -, September 2015 (2015), s. 1-9 ISSN 0268-3768 R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : wood plastic composite * water jet * size of abrasive particles * surface quality * traverse speed Subject RIV: JQ - Machines ; Tools Impact factor: 1.568, year: 2015 http://link.springer.com/article/10.1007/s00170-015-7831-6

  20. Turning of wood plastic composites by water jet and abrasive water jet

    Czech Academy of Sciences Publication Activity Database

    Hutyrová, Z.; Ščučka, Jiří; Hloch, Sergej; Hlaváček, Petr; Zeleňák, Michal

    2016-01-01

    Roč. 84, 5-8 (2016), s. 1615-1623 ISSN 0268-3768 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : wood plastic composite * water jet * turning * traverse speed * size of abrasive particles Subject RIV: JQ - Machines ; Tools Impact factor: 2.209, year: 2016 http://link.springer.com/article/10.1007/s00170-015-7831-6

  1. Rotary Ultrasonic Machining of Poly-Crystalline Cubic Boron Nitride

    Directory of Open Access Journals (Sweden)

    Kuruc Marcel

    2014-12-01

    Full Text Available Poly-crystalline cubic boron nitride (PCBN is one of the hardest material. Generally, so hard materials could not be machined by conventional machining methods. Therefore, for this purpose, advanced machining methods have been designed. Rotary ultrasonic machining (RUM is included among them. RUM is based on abrasive removing mechanism of ultrasonic vibrating diamond particles, which are bonded on active part of rotating tool. It is suitable especially for machining hard and brittle materials (such as glass and ceramics. This contribution investigates this advanced machining method during machining of PCBN.

  2. The abrasive effect of commercial whitening toothpastes on eroded enamel.

    Science.gov (United States)

    Mosquim, Victor; Martines Souza, Beatriz; Foratori Junior, Gerson Aparecido; Wang, Linda; Magalhães, Ana Carolina

    2017-06-01

    To evaluate the in vitro abrasive effect of commercial whitening toothpastes on eroded bovine enamel samples in respect to erosive tooth wear. 72 bovine crowns were embedded, polished and subjected to the baseline profile analysis. The samples were then protected in 2/3 of the enamel surface and were randomly assigned to six groups (n= 12/group): G1: Oral-B 3D White, G2: Close-up Diamond Attraction Power White, G3: Sorriso Xtreme White 4D, G4: Colgate Luminous White, G5: Crest (conventional toothpaste), G6:erosion only (control). All samples were submitted to an erosive pH cycling (4 x 90 seconds in 0.1% citric acid, pH 2.5, per day) and abrasive challenges (2 x 15 seconds, per day) for 7 days. After the first and the last daily cycles, the samples were subjected to abrasive challenges, using a toothbrushing machine, soft toothbrushes and slurry of the tested toothpastes (1.5 N). Between the challenges, the samples were immersed in artificial saliva. The final profile was obtained and overlaid to the baseline profile for the calculation of the erosive tooth wear (μm). The data were subjected to Kruskal-Wallis/Dunn tests (Penamel wear (3.68±1.06 μm), similarly to G3 (3.17± 0.80 μm) and G4 (3.44± 1.29 μm). G3 and G4 performed similarly between them and compared with G5 (2.35± 1.44 μm). G2 (1.51± 0.95 μm) and G6 (0.85± 0.36 μm) showed the lowest enamel wear, which did not differ between them and from G5. Oral-B 3D White showed the highest abrasive potential while Close-up Diamond Attraction Power White showed the lowest abrasive potential on eroded enamel in vitro. This study showed that some commercial whitening toothpastes, especially those containing pyrophosphate associated with hydrated silica, enhanced enamel erosive wear.

  3. Abrasion Properties of Steel Fiber Reinforced Silica Fume Concrete According to Los Angeles and Water Abrasion Tests

    Directory of Open Access Journals (Sweden)

    Tsan-Ching CHENG

    2014-12-01

    Full Text Available The current study mainly investigated the influence of different tests on the abrasion resistance of concrete mixed with steel fibers and silica fume. The abrasion resistance was assessed at 28, 56 and 91 days on concretes with water-binder ratios of 0.35 and 0.55 where in some mixes silica fume was substituted by 5 % of cement by weight. Steel fibers of 0.5 % and 1.0 % of concrete volume were also added into the test concrete by replacement of coarse and fine aggregates. The results showed that concrete with higher compressive strength in Los Angeles abrasion tests also had better abrasion resistance. The inclusion of steel fibers into test concrete with a water-binder ratio of 0.35 resulted in a significant increase in compressive strength. This concrete also displayed better abrasion resistance and splitting tensile strength than reference concrete; in the test sample with a water-binder ratio of 0.55, the added steel fibers was unable to effectively produce cementation with the concrete. The inclusion of silica fume improved the abrasion resistance of concretes. In water abrasion testing, the abrasion resistance of concrete containing steel fiber was worse than that of concrete without steel fibers. In the water abrasion testing, the surface of steel fiber reinforced concrete was eroded by water and steel balls, and the impact caused the steel fibers to separate from the concrete and led to higher wear loss. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6460

  4. Sustainability of abrasive processes

    DEFF Research Database (Denmark)

    Aurich, J.C.; Linke, B.; Hauschild, Michael Zwicky

    2013-01-01

    , the content of technical presentations in STC G, and the results of a comprehensive literature study. The approach to sustainability includes environmental, social, and economic sustainability in accordance with the definition proposed in the Brundtland Report of the United Nations [156]. The main focus......This paper presents an overview of research on sustainability of abrasive processes. It incorporates results from a round robin study on ‘‘energy-efficiency of abrasive processes’’ which has been carried out within the scientific technical committee ‘‘abrasive processes’’ (STC G) of CIRP...... is on environmental and social sustainability. Economic sustainability will be considered as manufacturing productivity. © 2013 CIRP....

  5. Improvement of finishing antifriction treatment without abrasive of the rubbing parts surfaces of agricultural machineries

    Directory of Open Access Journals (Sweden)

    I.V. Shepelenk

    2014-06-01

    Full Text Available The wear of machines and mechanisms after rubbing is a major concern. The costs of manufacturing and restoration parts for agricultural machinery are enormous such as the trunnions pinions of hydraulic pumps. Finishing treatment antifriction without abrasive (FTAA is the existing method of manufacturing and restoration, but it has disadvantages like low work efficiency and the frequent replacement of the instrument. That is why a new method of FTAA parts type ''tree'' has been developed called vibratory finishing treatment antifriction without abrasive, (VFTAA method. The study was conducted at the laboratory of the State Technical University of Kirovograd (Ukraine where turn 16K20, the profilograph-profilometer "Talysurf-5", the scanning electron microscope REM-106I, friction machine MI-1M and the stand KI-28097-02M were used respectively for machining, study of micro relief before and after the VFTAA, microstructure, wear resistance and the determination of the break-in period of parts. The results showed that the VFTAA helped reduce the roughness Ra of the samples studied by half compared to the samples processed by polishing and 1.3 times compared to those treated with the FTAA, the break-in period has been reduced four times , this leads to an increase in the life of the hydraulic pump. This technology can be recommended for manufacturing and repair of hydraulic units of agricultural machineries.

  6. Nontraditional machining processes research advances

    CERN Document Server

    2013-01-01

    Nontraditional machining employs processes that remove material by various methods involving thermal, electrical, chemical and mechanical energy or even combinations of these. Nontraditional Machining Processes covers recent research and development in techniques and processes which focus on achieving high accuracies and good surface finishes, parts machined without burrs or residual stresses especially with materials that cannot be machined by conventional methods. With applications to the automotive, aircraft and mould and die industries, Nontraditional Machining Processes explores different aspects and processes through dedicated chapters. The seven chapters explore recent research into a range of topics including laser assisted manufacturing, abrasive water jet milling and hybrid processes. Students and researchers will find the practical examples and new processes useful for both reference and for developing further processes. Industry professionals and materials engineers will also find Nontraditional M...

  7. Numerical Thermodynamic Analysis of Two-Phase Solid-Liquid Abrasive Flow Polishing in U-Type Tube

    Directory of Open Access Journals (Sweden)

    Junye Li

    2014-08-01

    Full Text Available U-type tubes are widely used in military and civilian fields and the quality of the internal surface of their channel often determines the merits and performance of a machine in which they are incorporated. Abrasive flow polishing is an effective method for improving the channel surface quality of a U-type tube. Using the results of a numerical analysis of the thermodynamic energy balance equation of a two-phase solid-liquid flow, we carried out numerical simulations of the heat transfer and surface processing characteristics of a two-phase solid-liquid abrasive flow polishing of a U-type tube. The distribution cloud of the changes in the inlet turbulent kinetic energy, turbulence intensity, turbulent viscosity, and dynamic pressure near the wall of the tube were obtained. The relationships between the temperature and the turbulent kinetic energy, between the turbulent kinetic energy and the velocity, and between the temperature and the processing velocity were also determined to develop a theoretical basis for controlling the quality of abrasive flow polishing.

  8. An experimental investigation on the pressure characteristics of high speed self-resonating pulsed waterjets influenced by feeding pipe diameter

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dong; Kang, Dong; Ding, Xiao Long; Wang, Xiao Huan; Fang, Zhen Long [School of Power and Mechanical Engineering, Wuhan University, Hubei Province (China)

    2016-11-15

    The destructive power of a continuous waterjet issuing from a nozzle can be greatly enhanced by generating self-resonance in the nozzle assembly to produce a Self-resonating pulsed waterjet (SRPW). To further improve the performance of SRPW, effects of feeding pipe diameter on the pressure characteristics were experimentally investigated by measuring and analyzing the axial pressure oscillation peaks and amplitudes. Four organ-pipe nozzles of different chamber lengths and three feeding pipes of different diameters were employed. Results show that feeding pipe diameter cannot change the feature of SRPW of having an optimum standoff distance, but it slightly changes the oscillating frequency of the jet. It is also found that feeding pipe diameter significantly affects the magnitudes of pressure oscillation peak and amplitude, largely depending on the pump pressure and standoff distance. The enhancement or attenuation of the pressure oscillation peak and amplitude can be differently affected by the same feeding pipe diameter.

  9. Surface topography of cylindrical gear wheels after smoothing in abrasive mass, honing and shot peening

    International Nuclear Information System (INIS)

    Michalski, J; Pawlus, P; Zelasko, W

    2011-01-01

    The present paper presents the analysis of surface topography of gear teeth as the result of final machining processes. Teeth of multiple cylindrical gears shaped by grinding were smoothed in abrasive mass, honed or shot peened. The measurement of gears were made using coordinate measuring machine and 3D surface topography stylus instrument. The following deviations were studied; pitch deviation, total pitches deviations, variation of teeth thickness and deviation of gear radial run-out. Changes in teeth surface topography during machining process were determined. 3D surface topography parameters, surface directionality as well as areal autocorrelation and power spectral density functions were taken into consideration. As the results of the analysis, the best surface topography with regard to gear operational properties was recommended.

  10. Abrasive water jets for controlled demolition and dismantling

    International Nuclear Information System (INIS)

    Abudaka, M.; Crofton, P.S.J.

    1988-01-01

    Abrasive water jets offer an efficient high speed cutting tool for hard materials such as reinforced concrete, tool steel and armour plate. Cutting by abrasive water jets is often described as a cold cutting operation since no heat is developed and any increase in local temperature is immediately cooled by the water jet. Moreover no sparks are generated to ignite a potentially inflammable atmosphere. Mass flow rates of water and abrasive are small (typically 4 litres/min.water and 1 kg/min abrasive) and hence are easy to collect and to dispose of. For these reasons abrasive water jets offer certain advantages in cutting difficult materials in hazardous environments such as in the nuclear industry, offshore oil rigs and petrochemical plant. Available portable cutting systems are described and the advantages of using abrasive water jets are discussed as well as some of the parameters involved in the cutting operation. Finally a description is presented of some typical applications of abrasive water jet cutting. (author)

  11. Surface integrity analysis of abrasive water jet-cut surfaces of friction stir welded joints

    Czech Academy of Sciences Publication Activity Database

    Kumar, R.; Chattopadhyaya, S.; Dixit, A. R.; Bora, B.; Zeleňák, Michal; Foldyna, Josef; Hloch, Sergej; Hlaváček, Petr; Ščučka, Jiří; Klich, Jiří; Sitek, Libor; Vilaca, P.

    2017-01-01

    Roč. 88, č. 5 (2017), s. 1687-1701 ISSN 0268-3768 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : friction stir welding (FSW) * abrasive water jet (AWJ) * optical profilometer * topography * surface roughness Subject RIV: JQ - Machines ; Tools OBOR OECD: Mechanical engineering Impact factor: 2.209, year: 2016 http://link.springer.com/article/10.1007/s00170-016-8776-0

  12. Ceramic-bonded abrasive grinding tools

    Science.gov (United States)

    Holcombe, Jr., Cressie E.; Gorin, Andrew H.; Seals, Roland D.

    1994-01-01

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  13. Ceramic-bonded abrasive grinding tools

    Science.gov (United States)

    Holcombe, C.E. Jr.; Gorin, A.H.; Seals, R.D.

    1994-11-22

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  14. FY 2000 report on the results of the technology development of energy use reduction of machine tools. Development of dry cutting use abrasion resistant/lubricous coated tools; 2000 nendo energy shiyo gorika kosaku kikai nado gijutsu kaihatsu seika hokokusho. Dry sessakuyo taimamo junkatsusei hifuku kogu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of energy conservation and reduction of environmental loads of machine tools, study was conducted on the dry cutting which is the cutting with no use of cutting oil, and the FY 2000 results were summed up. The study was made on dry cutting use abrasion resistance/lubricous coated tools coated with the composite membrane of which the cutting life become little lower than that of existing tools using coolant. In the survey of abrasion resistant/lubricous films, it was found out that in the adhesion to ultra-hard substrates, the DLC single-layer film consisting only of carbon indicated the same excellent adhesion as intermediate-layer inserts. As to the synthesis of abrasion resistant/lubricous films, the synthesis of the composite membrane (WC/C membrane) consisting of tungsten carbide (WC) and carbon (C) was made using arc ion plating device. The WC/C membrane is composed of W and C and has the structure in which at nm levels the layer with much W and the layer with less W were alternately piled. Study was made of devices necessary for the development of abrasion resistant/lubricous films and the film formation for drill. (NEDO)

  15. Effect of filler type on 3-body abrasion of dental composite

    Directory of Open Access Journals (Sweden)

    Yasini E.

    2005-06-01

    Full Text Available Statement of Problem: The relatively poor wear resistance of dental composite in stress bearing posterior situations has restricted wider clinical application of this restorative material. Purpose: The aim of this study was to evaluate the three body abrasive wear of a dental composite based on a new filler (leucite: KAl Si2O6 and to compare it with the wear resistance of a composite based on commonly used Aluminium – Barium Silicate filler. Materials and Methods: This research was an interventional study done in Iran polymer institute. Five specimens were considered in each group. All ceramic IPS Empress® (Ivoclar- Vivadent ingots based on leucite crystals were ball milled, passed through an 800 sieve and used as filler. Experimental composites were prepared by mixing the silane- treated fillers with monomers (BisGMA and TEGDMA. Camphorquinone and amine were used as photoinitiator system. Degree of conversion of the light-cured and post-cured composites was measured using FTIR spectroscopy. The prepared pastes were inserted into plexy-glass mold and light cured (700 mw/cm2, 40 s. Then for maximum degree of conversion specimens were post- cured (120ºC, 5 hours. Three body abrasion wear testing was performed using a wear machine with 50 rpm rotational movement. In this machine, pumice (150 meshes was used as the third body. Weight loss of specimens in each group was measured by balance after each 50 hours. After wear testing SEM examination was made specimens in each group. The data were analyzed and compared using ANOVA and Tukey HSD tests (P<0.05. Tetric Ceram was tested as commercial composite. Results: There were significantly differences between three body abrasive wear of composites. The ranking from lowest to highest was as follows: leucite composite (19% < Tetric Ceram (22% < glass composite (28%. leucite composite showed the highest wear resistance value, propably due to the crystalliniy and hardness of filler. Conclusion

  16. Influence of Air Abrasion and Sonic Technique on Microtensile Bond Strength of One-Step Self-Etch Adhesive on Human Dentin

    Directory of Open Access Journals (Sweden)

    Baraba Anja

    2015-01-01

    Full Text Available The purpose of this in vitro study was to evaluate the microtensile bond strength of one-step self-etch adhesive to human dentin surface modified with air abrasion and sonic technique and to assess the morphological characteristics of the pretreated dentin surface. The occlusal enamel was removed to obtain a flat dentin surface for thirty-six human molar teeth. The teeth were randomly divided into three experimental groups (n = 12 per group, according to the pretreatment of the dentin: (1 control group, (2 air abrasion group, and (3 sonic preparation group. Microtensile bond strength test was performed on a universal testing machine. Two specimens from each experimental group were subjected to SEM examination. There was no statistically significant difference in bond strength between the three experimental groups (P > 0.05. Mean microtensile bond strength (MPa values were 35.3 ± 12.8 for control group, 35.8 ± 13.5 for air abrasion group, and 37.7 ± 12.0 for sonic preparation group. The use of air abrasion and sonic preparation with one-step self-etch adhesive does not appear to enhance or impair microtensile bond strength in dentin.

  17. Influence of abrasive machining on Fe3AI intermetal surface texture

    OpenAIRE

    A. Patejuk; M. Poniatowska

    2008-01-01

    Thc paper prcscnts the results of analyzing thc surfacc tcxtilrc of sarnplcs obtaincd in thc proccss or casting with thc usc of thc Fc7AIintcrmctollic phasc altcr sclccrcd abrasivc machining opt ions havc bccn applicd - milling. wct polishing, l'hc annIysis of ihc surracctcxturc aftcr machining was carricd out by examining such pararnctcrs as: Rn. Rz. RSm. and thc profitc fi~nction- thc lnatcrial ratio curvcand thc nmpli!udc dcnsity cunc.

  18. Influence of electrical discharge machining on the tribological characteristics of WC-Co alloys

    International Nuclear Information System (INIS)

    Casas, B.; Martinez, E.; Esteve, J.; Anglada, M.; Llanes, L.

    2001-01-01

    The influence of electrical discharge machining (EDM) on the abrasive wear resistance of two WC-10 % w tCo cemented carbides with different carbide grain size has been studied. Different surface finish conditions were evaluated corresponding to sequential EDM as well as grinding and polishing with diamond. The abrasive wear resistance was determined through microscratch measurements using a nano indentation system. Contrary to the results obtained from hardness measurements, this techniques allows to discern tribological differences among the distinct surface finish conditions studied. Finally, the abrasive wear resistance degradation associated with sequential EDM is discussed as a function of microstructure in terms of a damage parameters. (Author) 9 refs

  19. Comparing the Air Abrasion Cutting Efficacy of Dentine Using a Fluoride-Containing Bioactive Glass versus an Alumina Abrasive: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    Melissa H. X. Tan

    2015-01-01

    Full Text Available Air abrasion as a caries removal technique is less aggressive than conventional techniques and is compatible for use with adhesive restorative materials. Alumina, while being currently the most common abrasive used for cutting, has controversial health and safety issues and no remineralisation properties. The alternative, a bioactive glass, 45S5, has the advantage of promoting hard tissue remineralisation. However, 45S5 is slow as a cutting abrasive and lacks fluoride in its formulation. The aim of this study was to compare the cutting efficacy of dentine using a customised fluoride-containing bioactive glass Na0SR (38–80 μm versus the conventional alumina abrasive (29 μm in an air abrasion set-up. Fluoride was incorporated into Na0SR to enhance its remineralisation properties while strontium was included to increase its radiopacity. Powder outflow rate was recorded prior to the cutting tests. Principal air abrasion cutting tests were carried out on pristine ivory dentine. The abrasion depths were quantified and compared using X-ray microtomography. Na0SR was found to create deeper cavities than alumina (p<0.05 despite its lower powder outflow rate and predictably reduced hardness. The sharper edges of the Na0SR glass particles might improve the cutting efficiency. In conclusion, Na0SR was more efficacious than alumina for air abrasion cutting of dentine.

  20. Life cycle and sustainability of abrasive tools

    CERN Document Server

    Linke, Barbara

    2016-01-01

    This monograph focuses on abrasive tools for grinding, polishing, honing, and lapping operations. The book describes the life cycle of abrasive tools from raw material processing of abrasive grits and bonding, manufacturing of monolithic or multi-layered tools, tool use to tool end-of-life. Moreover, this work highlights sustainability challenges including economic, environmental, social and technological aspects. The target audience primarily comprises research and industry experts in the field of manufacturing, but the book may also be beneficial for graduate students.

  1. Anti-abrasive nanocoatings current and future applications

    CERN Document Server

    2015-01-01

    This book provides an overview of the fabrication methods for anti-abrasive nanocoatings. The connections among fabrication parameters, the characteristics of nanocoatings and the resulting properties (i.e. nanohardness, toughness, wear rate, load-bearing ability, friction coefficient, and scratch resistance) are discussed. Size-affected mechanical properties of nanocoatings are examined, including their uses. Anti-abrasive nanocoatings, including metallic-, ceramic-, and polymeric-based layers, as well as different kinds of nanostructures, such as multi-layered nanocomposites and thin films, are reviewed. * Provides a comprehensive overview of the fabrication methods for anti-abrasive nanocoatings* Discusses the connections among fabrication parameters, the characteristics of nanocoatings and the resulting properties* Reviews advantages and drawbacks of fabrication methods for anti-abrasive nanocoatings and clarifies the place of these nanocoatings in the world of nanotechnology

  2. Abrasive wear of intermetallics

    International Nuclear Information System (INIS)

    Hawk, J.A.; Alman, D.E.; Wilson, R.D.

    1995-01-01

    The US Bureau of Mines is investigating the wear behavior of a variety of advanced materials. Among the many materials under evaluation are intermetallic alloys based on the compounds: Fe 3 Al, Ti 3 Al, TiAl, Al 3 Ti, NiAl and MoSi 2 . The high hardness, high modulus, low density, and superior environmental stability of these compounds make them attractive for wear materials. This paper reports on the abrasive wear of alloys and composites based on the above compounds. The abrasive wear behavior of these alloys and composites are compared to other engineering materials used in wear applications

  3. Abrasive water jet: a complementary tool

    International Nuclear Information System (INIS)

    Duarte, J.P.; Pecas, P.; Nunes, E.; Gouveia, H.

    1998-01-01

    The abrasive water jet is a powerful cutting tool, whose main advantages lie in the absence of thermal effects and the capability of cutting highly thick materials. Compared with Laser, the abrasive water jet allows the cutting of a larger range of thicknesses and a wider variety of materials such as: ornamental stones, metals, polymers, composites, wood, glass ceramics. The application of this technology has suffered and extensive growth, with successful applications in varied industrial sectors like the automotive, aerospace, textile, metalworking, ornamental stones, etc. The present communication aims at introducing the abrasive water jet as a complementary tool to laser cutting, presenting its advantages by showing some documented examples of pieces cut for different industries. (Author) 5 refs

  4. Wire electric-discharge machining and other fabrication techniques

    Science.gov (United States)

    Morgan, W. H.

    1983-01-01

    Wire electric discharge machining and extrude honing were used to fabricate a two dimensional wing for cryogenic wind tunnel testing. Electric-discharge cutting is done with a moving wire electrode. The cut track is controlled by means of a punched-tape program and the cutting feed is regulated according to the progress of the work. Electric-discharge machining involves no contact with the work piece, and no mechanical force is exerted. Extrude hone is a process for honing finish-machined surfaces by the extrusion of an abrasive material (silly putty), which is forced through a restrictive fixture. The fabrication steps are described and production times are given.

  5. Assessment of mechanical and three-body abrasive wear peculiarity ...

    Indian Academy of Sciences (India)

    The three-body abrasive wear characteristic of fabricated composites has been assessed under different operating conditions. For this, the three-body abrasion test is done on dry abrasion test rig (TR-50)and analysed using Taguchi's experimental design scheme and analysis of variance. The results obtained from these ...

  6. An experimental modeling and acoustic emission monitoring of abrasive wear in a steel/diabase pair

    Science.gov (United States)

    Korchuganov, M. A.; Filippov, A. V.; Tarasov, S. Yu.; Podgornyh, O. A.; Shamarin, N. N.; Filippova, E. O.

    2016-11-01

    The earthmoving of permafrost soil is a critical task for excavation of minerals and construction on new territories. Failure by abrasive wear is the main reason for excavation parts of earthmoving and soil cutting machines. Therefore investigation of this type of wear is a challenge for developing efficient and wear resistant working parts. This paper is focused on conducting tribological experiments with sliding the steel samples over the surface of diabase stone sample where abrasive wear conditions of soil cutting are modeled experimentally. The worn surfaces of all samples have been examined and transfer of metal and stone particles revealed. The acoustic emission (AE) signals have been recorded and related to the results of worn surface analysis. he acoustic emission (AE) signals have been recorded and related to the results of worn surface analysis. As shown the wear intensity correlates to that of acoustic emission. Both acoustic emission signal median frequency and energy are found to be sensitive to the wear mode.

  7. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oral cavity abrasive polishing agent. 872.6030... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing agent. (a) Identification. An oral cavity abrasive polishing agent is a device in paste or powder form...

  8. Abrasion of 6 dentifrices measured by vertical scanning interference microscopy.

    Science.gov (United States)

    Pascaretti-Grizon, Florence; Mabilleau, Guillaume; Chappard, Daniel

    2013-01-01

    The abrasion of dentifrices is well recognized to eliminate the dental plaque. The aims of this study were to characterize the abrasive powders of 6 dentifrices (3 toothpastes and 3 toothpowders) and to measure the abrasion on a test surface by Vertical Scanning Interference microscopy (VSI). Bright field and polarization microscopy were used to identify the abrasive particles on the crude dentifrices and after prolonged washes. Scanning electron microscopy and microanalysis characterized the shape and nature of the particles. Standardized and polished blocks of poly(methylmethacrylate) were brushed with a commercial electric toothbrush with the dentifrices. VSI quantified the mean roughness (Ra) and illustrated in 3D the abraded areas. Toothpastes induced a limited abrasion. Toothpowders induced a significantly higher roughness linked to the size of the abrasive particles. One powder (Gencix® produced a high abrasion when used with a standard testing weight. However, the powder is based on pumice particles covered by a plant homogenate that readily dissolves in water. When used in the same volume, or after dispersion in water, Ra was markedly reduced. Light and electron microscopy characterize the abrasive particles and VSI is a new tool allowing the analysis of large surface of abraded materials.

  9. Machinability of cast commercial titanium alloys.

    Science.gov (United States)

    Watanabe, I; Kiyosue, S; Ohkubo, C; Aoki, T; Okabe, T

    2002-01-01

    This study investigated the machinability of cast orthopedic titanium (metastable beta) alloys for possible application to dentistry and compared the results with those of cast CP Ti, Ti-6Al-4V, and Ti-6Al-7Nb, which are currently used in dentistry. Machinability was determined as the amount of metal removed with the use of an electric handpiece and a SiC abrasive wheel turning at four different rotational wheel speeds. The ratios of the amount of metal removed and the wheel volume loss (machining ratio) were also evaluated. Based on these two criteria, the two alpha + beta alloys tested generally exhibited better results for most of the wheel speeds compared to all the other metals tested. The machinability of the three beta alloys employed was similar or worse, depending on the speed of the wheel, compared to CP Ti. Copyright 2002 Wiley Periodicals, Inc.

  10. Performance Evaluation of Abrasive Grinding Wheel Formulated ...

    African Journals Online (AJOL)

    This paper presents a study on the formulation and manufacture of abrasive grinding wheel using locally formulated silicon carbide abrasive grains. Six local raw material substitutes were identified through pilot study and with the initial mix of the identified materials, a systematic search for an optimal formulation of silicon ...

  11. Effect of Abrasive Machining on the Electrical Properties Cu86Mn12Ni₂ Alloy Shunts.

    Science.gov (United States)

    Misti, Siti Nabilah; Birkett, Martin; Penlington, Roger; Bell, David

    2017-07-29

    This paper studies the effect of abrasive trimming on the electrical properties of Cu 86 Mn 12 Ni₂ Manganin alloy shunt resistors. A precision abrasive trimming system for fine tuning the resistance tolerance of high current Manganin shunt resistors is proposed. The system is shown to be capable of reducing the resistance tolerance of 100 μΩ shunts from their standard value of ±5% to <±1% by removing controlled amounts of Manganin material using a square cut trim geometry. The temperature coefficient of resistance (TCR), high current, and high temperature performance of the trimmed shunts was compared to that of untrimmed parts to determine if trimming had any detrimental effect on these key electrical performance parameters of the device. It was shown that the TCR value was reduced following trimming with typical results of +106 ppm/°C and +93 ppm/°C for untrimmed and trimmed parts respectively. When subjected to a high current of 200 A the trimmed parts showed a slight increase in temperature rise to 203 °C, as compared to 194 °C for the untrimmed parts, but both had significant temporary increases in resistance of up to 1.3 μΩ. The results for resistance change following high temperature storage at 200 °C for 168 h were also significant for both untrimmed and trimmed parts with shifts of 1.85% and 2.29% respectively and these results were related to surface oxidation of the Manganin alloy which was accelerated for the freshly exposed surfaces of the trimmed part.

  12. Anisotropy abrasive wear behavior of bagasse fiber reinforced ...

    African Journals Online (AJOL)

    parallel orientation (APO) and normal orientation (NO) by using a two body abrasion wear tester. Three different types of abrasives wear behaviour have been observed in the composite in three orientations and follow the following trends: WNO ...

  13. Transition metal carbide and boride abrasive particles

    International Nuclear Information System (INIS)

    Valdsaar, H.

    1978-01-01

    Abrasive particles and their preparation are discussed. The particles consist essentially of a matrix of titanium carbide and zirconium carbide, at least partially in solid solution form, and grains of crystalline titanium diboride dispersed throughout the carbide matrix. These abrasive particles are particularly useful as components of grinding wheels for abrading steel. 1 figure, 6 tables

  14. Abrasive water jet: a complementary tool

    OpenAIRE

    Duarte, J. P.; Peças, P.; Nunes, E.; Gouveia, H.

    1998-01-01

    The abrasive water jet is a powerful cutting tool, whose main advantages lie in the absence of thermal effects and the capability of cutting highly thick materials. Compared with Laser, the abrasive water jet allows the cutting of a larger range of thicknesses and a wider variety of materials such as: ornamental stones, metals, polymers, composites, wood, glass and ceramics. The application of this technology has suffered an extensive growth, with successful applications in varied industrial ...

  15. Wear of dentine in vitro by toothpaste abrasives and detergents alone and combined.

    Science.gov (United States)

    Moore, C; Addy, M

    2005-12-01

    To measure in vitro the abrasion of dentine by toothpaste detergents and abrasives alone and combined. Detergents used were tego betain, sodium lauryl sulphate (SLS), adinol and pluronic diluted to 1% w/v. Abrasives were three artificial silicas, tixosil 73 and 123 and Zeodent 113, and calcium carbonate used at 2.5% w/v. Flat human dentine specimens were brushed with aqueous detergent solutions or abrasive slurries, detergent abrasive slurries and water for 20,000 brush strokes. Dentine loss was measured by non-contacting profilometry at 10,000 and 20,000 strokes. Silica particle size distribution was measured by laser deflection. Loss of dentine occurred with all detergents, abrasives and detergent abrasion combinations, but was not linear with number of brush strokes. Water appeared to remove the smear layer only, but all detergents exceeded the predicted smear layer thickness. The silica abrasives differed in abrasion properties despite similar particle size distribution. Different detergents modulated the abrasives actions in mainly positive or mainly negative directions. Detergents appear able to attack the dentine surface to produce wear. Abrasives vary considerably in wear produced under similar conditions. Detergents modulate the effect of abrasives in a way that may reflect the rheological properties of the mixture.

  16. Machining of Fibre Reinforced Plastic Composite Materials

    Science.gov (United States)

    2018-01-01

    Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented. PMID:29562635

  17. Machining of Fibre Reinforced Plastic Composite Materials

    Directory of Open Access Journals (Sweden)

    Alessandra Caggiano

    2018-03-01

    Full Text Available Fibre reinforced plastic composite materials are difficult to machine because of the anisotropy and inhomogeneity characterizing their microstructure and the abrasiveness of their reinforcement components. During machining, very rapid cutting tool wear development is experienced, and surface integrity damage is often produced in the machined parts. An accurate selection of the proper tool and machining conditions is therefore required, taking into account that the phenomena responsible for material removal in cutting of fibre reinforced plastic composite materials are fundamentally different from those of conventional metals and their alloys. To date, composite materials are increasingly used in several manufacturing sectors, such as the aerospace and automotive industry, and several research efforts have been spent to improve their machining processes. In the present review, the key issues that are concerning the machining of fibre reinforced plastic composite materials are discussed with reference to the main recent research works in the field, while considering both conventional and unconventional machining processes and reporting the more recent research achievements. For the different machining processes, the main results characterizing the recent research works and the trends for process developments are presented.

  18. Surface and subsurface cracks characteristics of single crystal SiC wafer in surface machining

    Energy Technology Data Exchange (ETDEWEB)

    Qiusheng, Y., E-mail: qsyan@gdut.edu.cn; Senkai, C., E-mail: senkite@sina.com; Jisheng, P., E-mail: panjisheng@gdut.edu.cn [School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006 (China)

    2015-03-30

    Different machining processes were used in the single crystal SiC wafer machining. SEM was used to observe the surface morphology and a cross-sectional cleavages microscopy method was used for subsurface cracks detection. Surface and subsurface cracks characteristics of single crystal SiC wafer in abrasive machining were analysed. The results show that the surface and subsurface cracks system of single crystal SiC wafer in abrasive machining including radial crack, lateral crack and the median crack. In lapping process, material removal is dominated by brittle removal. Lots of chipping pits were found on the lapping surface. With the particle size becomes smaller, the surface roughness and subsurface crack depth decreases. When the particle size was changed to 1.5µm, the surface roughness Ra was reduced to 24.0nm and the maximum subsurface crack was 1.2µm. The efficiency of grinding is higher than lapping. Plastic removal can be achieved by changing the process parameters. Material removal was mostly in brittle fracture when grinding with 325# diamond wheel. Plow scratches and chipping pits were found on the ground surface. The surface roughness Ra was 17.7nm and maximum subsurface crack depth was 5.8 µm. When grinding with 8000# diamond wheel, the material removal was in plastic flow. Plastic scratches were found on the surface. A smooth surface of roughness Ra 2.5nm without any subsurface cracks was obtained. Atomic scale removal was possible in cluster magnetorheological finishing with diamond abrasive size of 0.5 µm. A super smooth surface eventually obtained with a roughness of Ra 0.4nm without any subsurface crack.

  19. Method of forming an abrasive compact of cubic boron nitride

    International Nuclear Information System (INIS)

    Bell, F.R.

    1976-01-01

    This patent concerns an abrasive compact comprising diamond or cubic boron nitride or mixtures thereof held in a matrix of a refractory substance and a substance which dissolves the abrasive particle to at least a limited extent. The compact may be made by subjecting a powdered mixture of the ingredients to conditions of temperature and pressure at which the abrasive particle is crystallographically stable and the solvent substance acts to dissolve the abrasive particle. The refractory substance and solvent substance are preferably so chosen that during compact manufacture there is interaction resulting in the formation of a hard material

  20. Control technology for crystalline silica exposures in construction: wet abrasive blasting.

    Science.gov (United States)

    Golla, Vijay; Heitbrink, William

    2004-03-01

    This study was designed to document the effect that wet abrasive blasting has on reducing worker exposure to crystalline silica, which has been associated with silicosis and premature death. In this study, worker exposure to respirable crystalline silica was monitored during wet abrasive blasting on the exterior walls of a parking garage to remove surface concrete and expose the underlying aggregate. In this process a wet sand mix comprised of 80% dry sand and 20% water was used. Sampling and analysis revealed that the geometric mean respirable quartz concentration was 0.2 mg/m(3) for workers conducting abrasive blasting and 0.06 mg/m(3) for helpers. When abrasive blasting was conducted in areas that apparently had reduced natural ventilation, dust exposures appeared to increase. When compared with other published data, this case study suggests that wet abrasive blasting causes less exposure to crystalline silica than dry abrasive blasting.

  1. Electrical resistivity measurements to predict abrasion resistance of ...

    Indian Academy of Sciences (India)

    WINTEC

    increasing expansion of highway and other construction works and decreasing natural aggregate resources in the world, the demand for crushed stone aggregates has in- creased from day-to-day. One of the important properties of rock aggregates is abrasion resistance. The abrasion resistance of aggregates is generally ...

  2. Submerged cutting characteristics of abrasive suspension jet

    International Nuclear Information System (INIS)

    Shimizu, Seiji; Peng, Guoyi; Oguma, Yasuyuki; Nishikata, Hiroki

    2015-01-01

    An abrasive suspension jet (ASJ) formed by propelling abrasive suspension through a nozzle has a greater cutting capability than the conventional abrasive water jet. However the cutting capability of submerged ASJs decreases drastically with increasing the standoff distance and the pressure around the jet. A sheathed nozzle nozzle with ventilation for ASJs has been developed as a mean of extending the effective stand-off distance and improving the cutting capabilities under submerged condition. In the present investigation, cutting tests by ASJs in air and under submerged condition are conducted with specimens of aluminum alloy. Air coated ASJs are formed by using a sheathed nozzle with ventilation. The relative cutting depth is defined as the cutting depth is arranged effectually by the cavitation number based on the cavity pressure measured at the sheath. (author)

  3. Abrasive wear of ceramic wear protection at ambient and high temperatures

    Science.gov (United States)

    Varga, M.; Adam, K.; Tumma, M.; Alessio, K. O.

    2017-05-01

    Ceramic wear protection is often applied in abrasive conditions due to their excellent wear resistance. This is especially necessary in heavy industries conveying large amounts of raw materials, e.g. in steel industry. Some plants also require material transport at high temperatures and velocities, making the need of temperature stable and abrasion resistant wear protection necessary. Various types and wear behaviour of ceramic protection are known. Hence, the goal of this study is to identify the best suitable ceramic materials for abrasive conditions in harsh environments at temperatures up to 950°C and severe thermal gradients. Chamottes, known for their excellent thermal shock resistance are compared to high abrasion resistant ceramic wear tiles and a cost efficient cement-bounded hard compound. Testing was done under high-stress three-body abrasion regime with a modified ASTM G65 apparatus enabling for investigations up to ~950°C. Thereto heated abrasive is introduced into the wear track and also preheated ceramic samples were used and compared to ambient temperature experiments. Results indicate a significant temperature influence on chamottes and the hard compound. While the chamottes benefit from temperature increase, the cement-bounded hard compound showed its limitation at abrasive temperatures of 950°C. The high abrasion resistant wear tiles represented the materials with the best wear resistance and less temperature influence in the investigated range.

  4. Influence of martensitic phase in abrasion behaviour of stainless steel 304 L

    International Nuclear Information System (INIS)

    Ruzzante, J.; Alvarez, P.; Hey, A.; Gestido, G.D.; Vosen, J.H.; Fernandez, H.A.

    1986-01-01

    Abrasion behaviour is studied in commercial stainless steels of different class compositions by standard. The work achieved guieds in structural analysis of superficial coat formed and its relation with abrasion variables, load and velocity. The abrasion is made in an equipment LF WK of high velocity with friction powers, abrasion velocity and temperature variation registered on the tested piece. The abrasion zone is studied with scanning electron microscope (SEM). The deformed superficial zone nature is studied relationing its microstructure with profile corresponding of microhardness. (C.M.C.T.R.) [pt

  5. Effect of Abrasive Machining on the Electrical Properties Cu86Mn12Ni2 Alloy Shunts

    Directory of Open Access Journals (Sweden)

    Siti Nabilah Misti

    2017-07-01

    Full Text Available This paper studies the effect of abrasive trimming on the electrical properties of Cu86Mn12Ni2 Manganin alloy shunt resistors. A precision abrasive trimming system for fine tuning the resistance tolerance of high current Manganin shunt resistors is proposed. The system is shown to be capable of reducing the resistance tolerance of 100 μΩ shunts from their standard value of ±5% to <±1% by removing controlled amounts of Manganin material using a square cut trim geometry. The temperature coefficient of resistance (TCR, high current, and high temperature performance of the trimmed shunts was compared to that of untrimmed parts to determine if trimming had any detrimental effect on these key electrical performance parameters of the device. It was shown that the TCR value was reduced following trimming with typical results of +106 ppm/°C and +93 ppm/°C for untrimmed and trimmed parts respectively. When subjected to a high current of 200 A the trimmed parts showed a slight increase in temperature rise to 203 °C, as compared to 194 °C for the untrimmed parts, but both had significant temporary increases in resistance of up to 1.3 μΩ. The results for resistance change following high temperature storage at 200 °C for 168 h were also significant for both untrimmed and trimmed parts with shifts of 1.85% and 2.29% respectively and these results were related to surface oxidation of the Manganin alloy which was accelerated for the freshly exposed surfaces of the trimmed part.

  6. The project and technical study on the track of vertical axis linkage abrasive belt grinding of turbine blade

    International Nuclear Information System (INIS)

    Ma Yujian; Tang Xiaoqi; Chen Jihong; Yang Jianzhong

    2010-01-01

    A method of CNC turbine blade profile abrasive belt grinding is introduced based on optimum grinding effect, where the direction of the axis of trolley wheel is consistent with that of minimum principal curvature on the contact point of turbine blade. And the cutter location path is determined, and then the NC code is derived from post-processing. A virtual machine model is built in VERICUT software to simulate actual grinding process and applied in practice, which yielded satisfactory results. (authors)

  7. Solidification structure and abrasion resistance of high chromium white irons

    Science.gov (United States)

    Doğan, Ö. N.; Hawk, J. A.; Laird, G.

    1997-06-01

    Superior abrasive wear resistance, combined with relatively low production costs, makes high Cr white cast irons (WCIs) particularly attractive for applications in the grinding, milling, and pumping apparatus used to process hard materials. Hypoeutectic, eutectic, and hypereutectic cast iron compositions, containing either 15 or 26 wt pct chromium, were studied with respect to the macrostructural transitions of the castings, solidification paths, and resulting microstructures when poured with varying superheats. Completely equiaxed macrostructures were produced in thick section castings with slightly hypereutectic compositions. High-stress abrasive wear tests were then performed on the various alloys to examine the influence of both macrostructure and microstructure on wear resistance. Results indicated that the alloys with a primarily austenitic matrix had a higher abrasion resistance than similar alloys with a pearlitic/bainitic matrix. Improvement in abrasion resistance was partially attributed to the ability of the austenite to transform to martensite at the wear surface during the abrasion process.

  8. Modeling of Micro Deval abrasion loss based on some rock properties

    Science.gov (United States)

    Capik, Mehmet; Yilmaz, Ali Osman

    2017-10-01

    Aggregate is one of the most widely used construction material. The quality of the aggregate is determined using some testing methods. Among these methods, the Micro Deval Abrasion Loss (MDAL) test is commonly used for the determination of the quality and the abrasion resistance of aggregate. The main objective of this study is to develop models for the prediction of MDAL from rock properties, including uniaxial compressive strength, Brazilian tensile strength, point load index, Schmidt rebound hardness, apparent porosity, void ratio Cerchar abrasivity index and Bohme abrasion test are examined. Additionally, the MDAL is modeled using simple regression analysis and multiple linear regression analysis based on the rock properties. The study shows that the MDAL decreases with the increase of uniaxial compressive strength, Brazilian tensile strength, point load index, Schmidt rebound hardness and Cerchar abrasivity index. It is also concluded that the MDAL increases with the increase of apparent porosity, void ratio and Bohme abrasion test. The modeling results show that the models based on Bohme abrasion test and L type Schmidt rebound hardness give the better forecasting performances for the MDAL. More models, including the uniaxial compressive strength, the apparent porosity and Cerchar abrasivity index, are developed for the rapid estimation of the MDAL of the rocks. The developed models were verified by statistical tests. Additionally, it can be stated that the proposed models can be used as a forecasting for aggregate quality.

  9. Machining and characterization of self-reinforced polymers

    Science.gov (United States)

    Deepa, A.; Padmanabhan, K.; Kuppan, P.

    2017-11-01

    This Paper focuses on obtaining the mechanical properties and the effect of the different machining techniques on self-reinforced composites sample and to derive the best machining method with remarkable properties. Each sample was tested by the Tensile and Flexural tests, fabricated using hot compaction test and those loads were calculated. These composites are machined using conventional methods because of lack of advanced machinery in most of the industries. The advanced non-conventional methods like Abrasive water jet machining were used. These machining techniques are used to get the better output for the composite materials with good mechanical properties compared to conventional methods. But the use of non-conventional methods causes the changes in the work piece, tool properties and more economical compared to the conventional methods. Finding out the best method ideal for the designing of these Self Reinforced Composites with and without defects and the use of Scanning Electron Microscope (SEM) analysis for the comparing the microstructure of the PP and PE samples concludes our process.

  10. Neuro - Fuzzy Analysis for Silicon Carbide Abrasive Grains ...

    African Journals Online (AJOL)

    Grinding wheels are made of very small, sharp and hard abrasive materials or grits held together by strong porous bond. Abrasive materials are materials of extreme hardness that are used to shape other materials by a grinding or abrading action and they are used either as loose grains, as grinding wheels, or as coatings ...

  11. Third abrasive wear mode: is it possible?

    Directory of Open Access Journals (Sweden)

    Ronaldo Câmara Cozza

    2014-04-01

    Full Text Available The objective of this paper is to propose an initial discussion on the characterization of a third abrasive wear mode. The results obtained in a previous work [1] under different test conditions revealed the occurrence of the superposition of the “rolling” and “grooving” abrasive wear modes. This phenomenon was denoted “micro-rolling abrasion” due to the observation that “rolling abrasion” was found to act on “grooving abrasion”.

  12. Abrasive water jet cutting

    International Nuclear Information System (INIS)

    Leist, K.J.; Funnell, G.J.

    1988-01-01

    In the process of selecting a failed equipment cut-up tool for the process facility modifications (PFM) project, a system using an abrasive water jet (AWJ) was developed and tested for remote disassembly of failed equipment. It is presented in this paper

  13. Atmospheric particulate emissions from dry abrasive blasting using coal slag

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskar Kura; Kalpalatha Kambham; Sivaramakrishnan Sangameswaran; Sandhya Potana [University of New Orleans, New Orleans, LA (United States). Department of Civil and Environmental Engineering

    2006-08-15

    Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions. 40 refs., 5 figs., 2 tabs.

  14. Submerged cutting characteristics of abrasive suspension jet

    International Nuclear Information System (INIS)

    Shimizu, Seiji; Peng, Guoyi; Oguma, Yasuyuki; Nishikata, Hiroyuki

    2015-01-01

    An abrasive suspension jet (ASJ) formed by propelling abrasive suspension through a nozzle has a greater cutting capability than the conventional abrasive water jet. However the cutting capability of submerged ASJs decreases drastically with increasing the standoff distance and the pressure around the jet. A sheathed nozzle with ventilation for ASJs has been developed as a mean of extending the effective stand-off distance and improving the cutting capabilities under submerged condition. In the present investigation, cutting tests by ASJs in air and under submerged condition are conducted with specimens of aluminum alloy. Air coated ASJs are formed by using a sheathed nozzle with ventilation. The relative cutting depth is defined as the cutting depth under submerged condition divided by the cutting depth in air at the same standoff distance. The relative cutting depth is arranged effectually by the cavitation number based on the cavity pressure measured at the sheath. (author)

  15. Analysis of coarse aggregate performance based on the modified Micro Deval abrasion test

    Directory of Open Access Journals (Sweden)

    Jiangfeng Wu

    2018-03-01

    Full Text Available The anti-abrasion property of aggregate significantly affects the performance of the pavement. In this research, the quartzite and gneiss which were produced in Lincheng County, Xingtai City, Hebei Province were selected as test samples. According to the American Society for Testing and Materials standard, the Micro-Deval abrasion test was taken every 1000 rotation times until 20,000 times, and the change trend of the Micro-Deval abrasion value was obtained. Results showed that the abrasion values were in the exponential growth rate rather than linear rate. Their R-Square coefficient was 0.99142 and 0.99916 respectively. The gravel information such as area, roundness, diameter, perimeter and so on were calculated and analyzed by Image-Pro Plus software, which provided a rapid way for the 2D morphology characteristics analysis of the coarse aggregate. Keywords: Micro-Deval abrasion test, Coarse aggregate, Anti-abrasion property, Abrasion values

  16. Abrasive wear of WC-NiMoCrFeCo thermally sprayed coatings in dependence on different types of abrasive sands

    Czech Academy of Sciences Publication Activity Database

    Kašparová, M.; Zahálka, F.; Houdková, Š.; Ctibor, Pavel

    2010-01-01

    Roč. 48, č. 1 (2010), s. 75-85 ISSN 0023-432X R&D Projects: GA AV ČR 1QS200430560 Institutional research plan: CEZ:AV0Z20430508 Keywords : WC-Hastelloy * abrasive wear * Al2O3 sand * SiO2 sand * braun size * abrasive efficiency Subject RIV: JG - Metallurgy Impact factor: 0.471, year: 2010 http://kovmat.sav.sk/abstract.php?rr=48&cc=1&ss=73

  17. Mangrove Cultivation For Dealing With Coastal Abrasion Case Study Of Karangsong

    Science.gov (United States)

    Fatimatuzzahroh, Feti; Hadi, Sudharto P.; Purnaweni, Hartuti

    2018-02-01

    Coastal abrasion is consequence from destructive waves and sea current. One of cause is human intervention. The effort to solve of abrasion is by mangrove cultivation. Mangroves are halophyte plant that can restrain the sea wave. Mangrove cultivation required participation community that give awareness the importance of mangrove in coastal sustainability. Mangroves in coastal Karangsong, Indramayu west java, in 2007 was through abrasion approximately 127.30 ha. Mangrove cultivation in Karangsong has been replanting since 1998 to 2003, but there was no maintenance and management. In 2007 until 2015 Karangsong replanting mangroves and has been succeed. Karangsong became the center of mangrove study for west java area in 2015. This achievement is result of cooperation between community, NGO, and local government. In addition, this effort made not only overcome the abrasion problem but also give community awareness about the importance of mangrove cultivation in preventing coastal abrasion throughout community development. This paper reviews abrasion in Karangsong and the impact for local community and empowerment in mangrove cultivation. To achieve the success mangrove cultivation required community development approach from planning process, planting, maintenance and management.

  18. Decontamination of Steam Generator tube using Abrasive Blasting Technology

    International Nuclear Information System (INIS)

    Min, B. Y.; Kim, G. N.; Choi, W. K.; Lee, K. W.; Kim, D. H.; Kim, K. H.; Kim, B. T.

    2010-01-01

    As a part of a technology development of volume reduction and self disposal for large metal waste project, We at KAERI and our Sunkwang Atomic Energy Safety (KAES) subcontractor colleagues are demonstrating radioactively contaminated steam generator tube by abrasive blasting technology at Kori-1 NPP. A steam generator is a crucial component in a PWR (pressurized Water Reactor). It is the crossing between the primary, contaminated, circuit and the secondary waste-steam circuit. The heat from the primary reactor coolant loop is transferred to the secondary side in thousands of small tubes. Due to several problems in the material of those tube, like SCC (Stress Corrosion Cracking), insufficient control in water chemistry, which can be cause of tube leakage, more and more steam generators are replaced today. Only in Korea, already 2 of them are replaced and will be replaced in the near future. The retired 300 ton heavy Steam generator was stored at the storage waste building of Kori NPP site. The steam generator waste has a large volume, so that it is necessary to reduce its volume by decontamination. A waste reduction effect can be obtained through decontamination of the inner surface of a steam generator. Therefore, it is necessary to develop an optimum method for decontamination of the inner surface of bundle tubes. The dry abrasive blasting is a very interesting technology for the realization of three-dimensional microstructures in brittle materials like glass or silicon. Dry abrasive blasting is applicable to most surface materials except those that might be shattered by the abrasive. It is most effective on flat surface and because the abrasive is sprayed and can also applicable on 'hard to reach' areas such as inner tube ceilings or behind equipment. Abrasive decontamination techniques have been applied in several countries, including Belgium, the CIS, France, Germany, Japan, the UK and the USA

  19. Surface texturing of Si3N4–SiC ceramic tool components by pulsed laser machining

    CSIR Research Space (South Africa)

    Tshabalala, LC

    2016-03-01

    Full Text Available Traditional abrasive techniques such as grinding and lapping have long been used in the surface conditioning of engineering materials. However, in the processing of hard and brittle materials like silicon nitride (Si(sub3)N(sub4)), machining...

  20. Abrasive wear of enamel by bioactive glass-based toothpastes.

    Science.gov (United States)

    Mahmood, Asad; Mneimne, Mohammed; Zou, Li Fong; Hill, Robert G; Gillam, David G

    2014-10-01

    To determine the abrasivity of a 45S5 bioactive glass based toothpaste on enamel as a function of the particle size and shape of the glass. 45S5 glass was synthesized ground and sieved to give various particle sized fractions toothpastes and their tooth brush abrasivity measured according to BS EN ISO11609 methodology. Enamel loss increased with increasing particle size. The percussion milled powder exhibited particles that had sharp edges and the pastes were significantly more abrasive than the pastes made with round ball milled powders. One interesting observation made during the present study was that there was preferential wear of the enamel at the dentin-enamel junction (DEJ), particularly with the coarse particle sized pastes.

  1. Pleurectomy versus pleural abrasion for primary spontaneous pneumothorax in children.

    Science.gov (United States)

    Joharifard, Shahrzad; Coakley, Brian A; Butterworth, Sonia A

    2017-05-01

    Primary spontaneous pneumothorax (PSP) represents a common indication for urgent surgical intervention in children. First episodes are often managed with thoracostomy tube, whereas recurrent episodes typically prompt surgery involving apical bleb resection and pleurodesis, either via pleurectomy or pleural abrasion. The purpose of this study was to assess whether pleurectomy or pleural abrasion was associated with lower postoperative recurrence. The records of patients undergoing surgery for PSP between February 2005 and December 2015 were retrospectively reviewed. Recurrence was defined as an ipsilateral pneumothorax requiring surgical intervention. Bivariate logistic regressions were used to identify factors associated with recurrence. Fifty-two patients underwent 64 index operations for PSP (12 patients had surgery for contralateral pneumothorax, and each instance was analyzed separately). The mean age was 15.7±1.2years, and 79.7% (n=51) of patients were male. In addition to apical wedge resection, 53.1% (n=34) of patients underwent pleurectomy, 39.1% (n=25) underwent pleural abrasion, and 7.8% (n=5) had no pleural treatment. The overall recurrence rate was 23.4% (n=15). Recurrence was significantly lower in patients who underwent pleurectomy rather than pleural abrasion (8.8% vs. 40%, p<0.01). In patients who underwent pleural abrasion without pleurectomy, the relative risk of recurrence was 2.36 [1.41-3.92, p<0.01]. Recurrence of PSP is significantly reduced in patients undergoing pleurectomy compared to pleural abrasion. Level III, retrospective comparative therapeutic study. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. High speed dry machining of MMCs with diamond tools

    International Nuclear Information System (INIS)

    Collins, J.L.

    2001-01-01

    The increasing use of metal matrix composites (MMCs) has raised new issues in their machining. Industrial demands for higher speed and dry machining of MMCs with improved component production to closer tolerances have driven the development of new tool materials. In particular, the wear characteristics of synthetic diamond tooling satisfy many of the requirements imposed in cutting these highly abrasive workpieces. The use of diamond tool materials, such as polycrystalline diamond (PCD), has resulted in tool life improvements which, allied with environmental considerations, show great potential for the development of dry cutting. This paper explores the wear characteristics of PCD, which is highly suited to the dry machining of particulate silicon carbide MMCs. Also, two further diamond tool materials are evaluated - chemical vapor deposition (CVD) thick layer diamond and synthetic single crystal diamond. Their suitability for the efficient machining of high volume fraction MMC materials is shown and their potential impact an the subsequent acceptance and integration of MMCs into engineering components is discussed. (author)

  3. Projectile Nose Mass Abrasion of High-Speed Penetration into Concrete

    Directory of Open Access Journals (Sweden)

    Haijun Wu

    2012-01-01

    Full Text Available Based on the dynamic spherical cavity expansion theory of concrete and the analysis of experimental data, a mass abrasion model of projectile considering the hardness of aggregates, the relative strength of target and projectile, and the initial impact velocity is constructed in this paper. Furthermore, the effect of mass abrasion on the penetration depth of projectile and the influence of hardness of aggregates and strength of projectile on penetration depth and mass loss are also analyzed. The results show that, for the ogive-nose projectile with the CRH of 3 and aspect ratio of 7 penetrating the concrete of 35 MPa, the “rigid-body penetration” model is available when the initial impact velocity is lower than 800 m/s. However, when the initial impact velocity is higher than 800 m/s, the “deforming/eroding body penetration” model should be adopted. Through theoretical analysis and numerical calculation, the results indicate that the initial impact velocity is the most important factor of mass abrasion. The hardness of aggregates and the strength of projectile are also significant factors. But relatively speaking, the sensitivity of strength of projectile to mass abrasion is higher, which indicates that the effect of projectile material on mass abrasion is more dramatic than the hardness of aggregates.

  4. Surface characterization of current composites after toothbrush abrasion.

    Science.gov (United States)

    Takahashi, Rena; Jin, Jian; Nikaido, Toru; Tagami, Junji; Hickel, Reinhard; Kunzelmann, Karl-Heinz

    2013-01-01

    The present study was designed to evaluate the surface roughness and the gloss of current composites before and after toothbrush abrasion. We assessed forty dimensionally standardized composite specimens (n=8/group) from five composites: two nanohybrids (i. e., IPS Empress Direct Enamel and IPS Empress Direct Dentin), two microhybrids (i. e., Clearfil AP-X and Filtek Z250) and one organically modified ceramics (Admira). All of the specimens were polished with 4000-grid silicon carbide papers. Surface roughness was measured with a profilometer and gloss was measured with a glossmeter before and after powered toothbrush abrasion with a 1:1 slurry (dentifrice/tap water) at 12,000 strokes in a toothbrush simulator. There was a significant increase in the surface roughness and a reduction in gloss after toothbrush abrasion in all of the composites except Clearfil AP-X (pgloss (R(2)=0.191, p<0.001).

  5. Baking soda as an abrasive in toothpastes: Mechanism of action and safety and effectiveness considerations.

    Science.gov (United States)

    Hara, Anderson T; Turssi, Cecilia P

    2017-11-01

    Toothpastes can be formulated with different abrasive systems, depending on their intended clinical application. This formulation potentially affects their effectiveness and safety and, therefore, requires proper understanding. In this article, the authors focused on abrasive aspects of toothpastes containing sodium bicarbonate (baking soda), which have gained considerable attention because of their low abrasivity and good compatibility, while providing clinical effectiveness (further detailed in the other articles of this special issue). The authors first appraised the role of toothpaste abrasivity on tooth wear, exploring some underlying processes and the existing methods to determine toothpaste abrasivity. The authors reviewed the available data on the abrasivity of toothpastes containing baking soda and reported a summary of findings highlighting the clinical implications. On the basis of the collected evidence, baking soda has an intrinsic low-abrasive nature because of its comparatively lower hardness in relation to enamel and dentin. Baking soda toothpastes also may contain other ingredients, which can increase their stain removal effectiveness and, consequently, abrasivity. Even those formulations have abrasivity well within the safety limit regulatory agencies have established and, therefore, can be considered safe. Copyright © 2017 American Dental Association. Published by Elsevier Inc. All rights reserved.

  6. Abrasive Wear of Four Direct Restorative Materials by Standard and Whitening Dentifrices

    Science.gov (United States)

    2013-06-01

    Weader, E., Liscombe, C., & Holt, J.S. (2005). The measurement of enamel and dentine abrasion by tooth - whitening products using an in situ model...ABRASION OF TOOTH STRUCTURE Hard tissue abrasion is a familiar consequence of toothbrushing. Enamel , dentin, and cementum differ in their...LESIONS Cervical enamel wear is common; however, relatively few epidemiologic studies have distinguished between cervical enamel wear and tooth wear in

  7. Demonstration experience with an abrasive blasting technique for decontaminating concrete pads

    International Nuclear Information System (INIS)

    Devgun, J.S.; Land, R.R.; Doane, R.W.

    1990-01-01

    A demonstration was performed for decontaminating a radioactivity contaminated concrete pad with a portable abrasive blasting system. The system utilizes a rotating blast wheel that scours the concrete surface with metal abrasive. The metal abrasive, pulverized concrete dust, and contaminants rebound into a separator chamber. The reusable metal abrasive is recycled, and the pulverized media are removed to an integral dust collection system. The exhaust is HEPA filtered to minimize release of airborne contaminants. However, the technique had limited success in reducing contamination around the cracks and seams in the concrete where the higher activity levels of contamination were detected during the radiological survey before the cleanup. The technique can be successful and cost-effective in decontaminating large areas of low contamination; however, careful characterization and planning are necessary. 3 refs., 3 figs., 1 tabs

  8. Abrasion behavior of graphite pebble in lifting pipe of pebble-bed HTR

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ke; Su, Jiageng [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Zhou, Hongbo [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Chinergy Co., LTD., Beijing 100193 (China); Peng, Wei; Liu, Bing [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Yu, Suyun, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Educations, Tsinghua University, Beijing 10084 (China)

    2015-11-15

    Highlights: • Quantitative determination of abrasion rate of graphite pebbles in different lifting velocities. • Abrasion behavior of graphite pebble in helium, air and nitrogen. • In helium, intensive collisions caused by oscillatory motion result in more graphite dust production. - Abstract: A pebble-bed high-temperature gas-cooled reactor (pebble-bed HTR) uses a helium coolant, graphite core structure, and spherical fuel elements. The pebble-bed design enables on-line refueling, avoiding refueling shutdowns. During circulation process, the pebbles are lifted pneumatically via a stainless steel lifting pipe and reinserted into the reactor. Inevitably, the movement of the fuel elements as they recirculate in the reactor produces graphite dust. Mechanical wear is the primary source of graphite dust production. Specifically, the sources are mechanisms of pebble–pebble contact, pebble–wall (structural graphite) contact, and fuel handling (pebble–metal abrasion). The key contribution to graphite dust production is from the fuel handling system, particularly from the lifting pipe. During pneumatic lift, graphite pebbles undergo multiple collisions with the stainless steel lifting pipe, thereby causing abrasion of the graphite pebbles and producing graphite dust. The present work explored the abrasion behavior of graphite pebble in the lifting pipe by measuring the abrasion rate at different lifting velocities. The abrasion rate of the graphite pebble in helium was found much higher than those in air and nitrogen. This gas environment effect could be explained by either tribology behavior or dynamic behavior. Friction testing excluded the possibility of tribology reason. The dynamic behavior of the graphite pebble was captured by analysis of the audio waveforms during pneumatic lift. The analysis results revealed unique dynamic behavior of the graphite pebble in helium. Oscillation and consequently intensive collisions occur during pneumatic lift, causing

  9. Behaviour of alloys by abrasive erosion and carbide formation by welding; Comportamiento frente al desgaste abrasivo de las aleaciones con tendencias a la formacion de carburos aplicadas por soldadura

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The abrasion of the mechanic elements for cut and extraction of minerals implies high cost because the replacement of the damaged elements and shutdown of the machines high cost because the replacement of the damaged elements and shutdown of the machines. The present article abstracts the results obtained in a project of investigation where the variables determining the quality of antiabrasive recharges have been obtained, and a method of evaluation of the different products of this type of recharges existing in the market have been evaluated. (Author) 9 refs.

  10. Lung scintigraphy evaluation in workers exposed to abrasive dusts

    International Nuclear Information System (INIS)

    Terra Filho, Mario

    1995-01-01

    The production process of abrasives use aluminium, or silicon carbide a synthetic material with a hardness only slightly less than that of a diamond. It is popularly known as carborundum since it was first manufactured as an abrasive in 1891, produced by the fusion of high grade silica and petroleum coke with sawdust. For many years silicon carbide was thought not to give rise to pulmonary lesions. Recently several researchers suggested the existence of a carborundum pneumoconiosis. The aim of this study was to evaluate the role of the pulmonary clearance of 99m Technetium chelated to diethylene-triamine penta-acetate ( 99m Tc DTPA), and 67 Gallium lung scanning in workers exposed to abrasive dusts. Thirty seven subjects, 13 smokers and 24 nonsmokers and ex smokers were studied. In 32 (86,48%) 67 Gallium lung scanning was positive including 13 (40,62%) retired workers. We conclude that non smoking workers of abrasives plants have a pulmonary alveolar epithelial permeability disturbance similar as observed in smoking workers and smoking controls. Most workers, ex-workers of these industries and in patients with carborundum pneumoconiosis there is an evidence of pulmonary inflammation measured with abnormal 67 Gallium lung scan. (author)

  11. Measurement of nanoparticle removal by abrasion

    International Nuclear Information System (INIS)

    Guiot, Arnaud; Golanski, Luana; Tardif, Francois

    2009-01-01

    A strong release limitation of single nanoparticles from commercial manufactured 'nanoproducts' is necessary to decrease potential exposure risks of consumers and represents also a pragmatic way to facilitate acceptance for nanomaterial commercialization before obtaining definitive toxicological results. So, it is of prime importance to know how to characterize the release of small materials during usage solicitations such as mechanical, thermal, UV stress: are they single nanoparticles, aggregates or nanoparticles included in a bigger piece of the matrix? In the frame of NanoSafe2 project, CEA developed and qualified a specific bench test where the material to be tested is mechanically solicited by abrasion using a normalized Taber equipment. The first results show that nanofillers can be released in usage by abrasion for non optimised nanoproducts.

  12. Shoe heel abrasion and its possible biomechanical cause: a transversal study with infantry recruits.

    Science.gov (United States)

    Baumfeld, Daniel; Raduan, Fernando C; Macedo, Benjamim; Silva, Thiago Alexandre Alves; Baumfeld, Tiago; Favato, Danilo Fabrino; de Andrade, Marco Antonio Percope; Nery, Caio

    2015-11-19

    Excessive shoe heel abrasion is of concern to patients and shoe manufacturers, but little scientific information is available about this feature and its possible causes. The purpose of this study was to relate this phenomenon with biomechanical factors that could predispose to shoe heel abrasion. Ninety-seven recruits (median age 25) were enrolled in this study. Shoe abrasion was assessed manually with a metric plastic tape on the posterior part of the heel that comes in contact with the ground. The number of sprains, foot alignment, and calf muscle shortening (Silfverskiold test) was also assessed in order to relate it with shoe heel abrasion. After using our exclusion criteria, 86 recruits and 172 were considered for this study. The most common abrasion site was the lateral portion of the heel surface (50 %). Forty-four percent of the participants had neutral hind-foot alignment and 39 % had valgus alignment. Twenty-six (30 %) patients have had previous ankle or foot sprains. Neutral foot was related with less calf muscle shortening. On the other hand, valgus hind-foot alignment was more associated with Achilles shortening (p study was able to correlate shoe heel abrasion with biomechanical causes (neutral alignment-uniform abrasion/varus alignment-central and lateral abrasion). More effort has to be done to continue evaluating outsole abrasion with its possible biomechanical cause in order to predict and treat possible associated injuries.

  13. Particulate matter mass concentrations produced from pavement surface abrasion

    Directory of Open Access Journals (Sweden)

    Fullova Dasa

    2017-01-01

    Full Text Available According to the latest findings particulate matter belong to the most significant pollutants in Europe together with ground-level ozone O3 and nitrogen dioxide NO2. Road traffic is one of the main sources of particulate matter. Traffic volume has unpleasant impact on longevity of the pavements and also on the environment. Vehicle motions cause mechanical wearing of the asphalt pavement surface - wearing course by vehicle tyres. The paper deals with abrasion of bituminous wearing courses of pavements. The asphalt mixtures are compared in terms of mechanically separated particulate matter. The samples of asphalt mixtures were rutted in wheel tracking machine. The particulate matter measurements were performed in laboratory conditions. The experimental laboratory measurements make it possible to sample particulates without contamination from exhaust emissions, abraded particles from vehicles, resuspension of road dust and climate affects. The paper offers partial results of measurements on six trial samples of asphalt mixtures with different composition. It presents particulate matter morphology and the comparison of rutted asphalt samples in terms of PM mass concentrations and chemical composition.

  14. Submerged cutting of steel by abrasive water jets

    International Nuclear Information System (INIS)

    Haferkamp, H.; Louis, H.; Meier, G.

    1990-01-01

    A special cutting head for underwater use was designed and built. Tests were carried out to find out useful parameters for submerged cutting. With regard to the production of secondary waste the abrasive flow rate had to be minimized. This was achieved by using a small water jet nozzle (up to 0.4 mm diameter) and a high pressure (up to 4000 bar) with an optimal abrasive flow rate of about 5 g/s. In the case of a higher ambient pressure a decrease of the cutting performance was measured. But this decrease is not important regarding decommissioning because the ambient pressure is less than 2 bar. An air mantle nozzle was adapted to the cutting head to improve the working distance under water. The air mantle surrounding the abrasive jet lowers the friction between jet and surrounding water and increases the cutting efficiency in the case of greater working distances. (author)

  15. High precision laser processing of sensitive materials by Microjet

    Science.gov (United States)

    Sibailly, Ochelio D.; Wagner, Frank R.; Mayor, Laetitia; Richerzhagen, Bernold

    2003-11-01

    Material laser cutting is well known and widely used in industrial processes, including micro fabrication. An increasing number of applications require nevertheless a superior machining quality than can be achieved using this method. A possibility to increase the cut quality is to opt for the water-jet guided laser technology. In this technique the laser is conducted to the work piece by total internal reflection in a thin stable water-jet, comparable to the core of an optical fiber. The water jet guided laser technique was developed originally in order to reduce the heat damaged zone near the cut, but in fact many other advantages were observed due to the usage of a water-jet instead of an assist gas stream applied in conventional laser cutting. In brief, the advantages are three-fold: the absence of divergence due to light guiding, the efficient melt expulsion, and optimum work piece cooling. In this presentation we will give an overview on several industrial applications of the water-jet guided laser technique. These applications range from the cutting of CBN or ferrite cores to the dicing of thin wafers and the manufacturing of stencils, each illustrates the important impact of the water-jet usage.

  16. Influence of electrical discharge machining on the tribological characteristics of WC-Co alloys; Influencia de la electroerosion sobre las caracteristicas tribologicas de materiales compuestos WC-Co

    Energy Technology Data Exchange (ETDEWEB)

    Casas, B.; Martinez, E.; Esteve, J.; Anglada, M.; Llanes, L.

    2001-07-01

    The influence of electrical discharge machining (EDM) on the abrasive wear resistance of two WC-10 %{sub w}tCo cemented carbides with different carbide grain size has been studied. Different surface finish conditions were evaluated corresponding to sequential EDM as well as grinding and polishing with diamond. The abrasive wear resistance was determined through microscratch measurements using a nano indentation system. Contrary to the results obtained from hardness measurements, this techniques allows to discern tribological differences among the distinct surface finish conditions studied. Finally, the abrasive wear resistance degradation associated with sequential EDM is discussed as a function of microstructure in terms of a damage parameters. (Author) 9 refs.

  17. Fissure sealants: in vitro evaluation of abrasion wear and superficial roughness

    Directory of Open Access Journals (Sweden)

    Vanessa Pardi

    2008-06-01

    Full Text Available The aim of this study was to compare the in vitro wear and superficial roughness of four materials (Delton Dyract Flow, Dentsply; Filtek Flow, Vitremer, 3M ESPE used as fissure sealant in 32 extracted human molars divided in four groups (n = 8 after abrasion with toothbrush/dentifrice. Impressions of each occlusal surface were made to analyze wear and circular specimens were prepared to analyze the roughness. Teeth and specimens were mounted in a toothbrushing machine. The replicas were observed using a SEM to determine the superficial wear. Wear: there were no statistically significant differences either between Delton and Filtek Flow or between Dyract Flow and Vitremer. Roughness: there were no statistical differences between Filtek Flow and Dyract Flow, Dyract Flow and Vitremer, Vitremer and Delton., Considering the clinical practice, if caries activity is present the use of Vitremer is suggested not only for its well known fluoride release, but it presented good roughness results.

  18. Towards a durability test for washing-machines.

    Science.gov (United States)

    Stamminger, Rainer; Tecchio, Paolo; Ardente, Fulvio; Mathieux, Fabrice; Niestrath, Phoebe

    2018-04-01

    Durability plays a key role in enhancing resource conservation and contributing to waste minimization. The washing-machine product group represents a relevant case study for the development of a durability test and as a potential trigger to systematically address durability in the design of products. We developed a procedure to test the durability performance of washing-machines as a main objective of this research. The research method consisted of an analysis of available durability standards and procedures to test products and components, followed by an analysis of relevant references related to frequent failures. Finally, we defined the criteria and the conditions for a repeatable, relatively fast and relevant endurance test. The durability test considered the whole product tested under conditions of stress. A series of spinning cycles with fixed imbalanced loads was run on two washing-machines to observe failures and performance changes during the test. Even though no hard failures occurred, results clearly showed that not all washing-machines can sustain such a test without abrasion or performance deterioration. However, the attempt to reproduce the stress induced on a washing-machine by carrying out a high number of pure spinning cycles with fixed loads did not allow equal testing conditions: the actions of the control procedure regarding imbalanced loads differ from machine to machine. The outcomes of this research can be used as grounds to develop standardised durability tests and to, hence, contribute to the development of future product policy measures.

  19. Separation and reconstruction of high pressure water-jet reflective sound signal based on ICA

    Science.gov (United States)

    Yang, Hongtao; Sun, Yuling; Li, Meng; Zhang, Dongsu; Wu, Tianfeng

    2011-12-01

    The impact of high pressure water-jet on the different materials target will produce different reflective mixed sound. In order to reconstruct the reflective sound signals distribution on the linear detecting line accurately and to separate the environment noise effectively, the mixed sound signals acquired by linear mike array were processed by ICA. The basic principle of ICA and algorithm of FASTICA were described in detail. The emulation experiment was designed. The environment noise signal was simulated by using band-limited white noise and the reflective sound signal was simulated by using pulse signal. The reflective sound signal attenuation produced by the different distance transmission was simulated by weighting the sound signal with different contingencies. The mixed sound signals acquired by linear mike array were synthesized by using the above simulated signals and were whitened and separated by ICA. The final results verified that the environment noise separation and the reconstruction of the detecting-line sound distribution can be realized effectively.

  20. Quantitative characterization of agglomerate abrasion in a tumbling blender by using the Stokes number approach.

    Science.gov (United States)

    Willemsz, Tofan A; Nguyen, Tien Thanh; Hooijmaijers, Ricardo; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2013-03-01

    Removal of microcrystalline cellulose agglomerates in a dry-mixing system (lactose, 100 M) predominantly occurs via abrasion. The agglomerate abrasion rate potential is estimated by the Stokes abrasion (StAbr) number of the system. The StAbr number equals the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. Basically, the StAbr number concept describes the blending condition of the dry-mixing system. The concept has been applied to investigate the relevance of process parameters on agglomerate abrasion in tumbling blenders. Here, process parameters such as blender rotational speed and relative fill volumes were investigated. In this study, the StAbr approach revealed a transition point between abrasion rate behaviors. Below this transition point, a blending condition exists where agglomerate abrasion is dominated by the kinetic energy density of the powder blend. Above this transition point, a blending condition exists where agglomerates show (undesirable) slow abrasion rates. In this situation, the blending condition is mainly determined by the high fill volume of the filler.

  1. Impact Capacity Reduction in Railway Prestressed Concrete Sleepers with Surface Abrasions

    Science.gov (United States)

    Ngamkhanong, Chayut; Li, Dan; Kaewunruen, Sakdirat

    2017-10-01

    Railway sleepers (also called ‘railroad tie’ in North America) embedded in ballasted railway tracks are a main part of railway track structures. Its important role is to transfer the loads evenly from the rails to a wider area of ballast bed and to secure rail gauge and enable safe passages of rolling stocks. By nature, railway infrastructure is nonlinear, evidenced by its behaviours, geometry and alignment, wheel-rail contact and operational parameters such as tractive efforts. Based on our critical review, the dynamic behaviour of railway sleepers has not been fully investigated, especially when the sleepers are deteriorated by excessive wears. In fact, the ballast angularity causes differential abrasions on the soffit or bottom surface of sleepers (especially at railseat zone). Furthermore, in sharp curves and rapid gradient change, longitudinal and lateral dynamics of rails increase the likelihood of railseat abrasions in concrete sleepers due to the unbalanced loading conditions. This paper presents a structural capacity of concrete sleepers under dynamic transient loading. The modified compression field theory for ultimate strength design of concrete sleepers under impact loading will be highlighted in this study. The influences of surface abrasions, including surface abrasion and soffit abrasion, on the dynamic behaviour of prestressed concrete sleepers, are firstly highlighted. The outcome of this study will improve the rail maintenance and inspection criteria in order to establish appropriate and sensible remote track condition monitoring network in practice. Moreover, this study will also improve the understanding of the fundamental dynamic behaviour of prestressed concrete sleepers with surface abrasions. The insight into these behaviours will not only improve safety and reliability of railway infrastructure but will enhance the structural safety of other concrete structures.

  2. Refractory, Abrasive and Other Industrial Mineral Operations

    Data.gov (United States)

    Department of Homeland Security — This map layer includes refractory, abrasive, and other industrial minerals operations in the United States. The data represent commodities covered by the Minerals...

  3. Neural network approximation of tip-abrasion effects in AFM imaging

    International Nuclear Information System (INIS)

    Bakucz, Peter; Dziomba, Thorsten; Koenders, Ludger; Krüger-Sehm, Rolf; Yacoot, Andrew

    2008-01-01

    The abrasion (wear) of tips used in scanning force microscopy (SFM) directly influences SFM image quality and is therefore of great relevance to quantitative SFM measurements. The increasing implementation of automated SFM measurement schemes has become a strong driving force for increasing efforts towards the prediction of tip wear, as it needs to be ensured that the probe is exchanged before a level of tip wear is reached that adversely affects the measurement quality. In this paper, we describe the identification of tip abrasion in a system of SFM measurements. We attempt to model the tip-abrasion process as a concatenation of a mapping from the measured AFM data to a regression vector and a nonlinear mapping from the regressor space to the output space. The mapping is formed as a basis function expansion. Feedforward neural networks are used to approximate this mapping. The one-hidden layer network gave a good quality of fit for the training and test sets for the tip-abrasion system. We illustrate our method with AFM measurements of both fine periodic structures and randomly oriented sharp features and compare our neural network results with those obtained using other methods

  4. Neural network approximation of tip-abrasion effects in AFM imaging

    Science.gov (United States)

    Bakucz, Peter; Yacoot, Andrew; Dziomba, Thorsten; Koenders, Ludger; Krüger-Sehm, Rolf

    2008-06-01

    The abrasion (wear) of tips used in scanning force microscopy (SFM) directly influences SFM image quality and is therefore of great relevance to quantitative SFM measurements. The increasing implementation of automated SFM measurement schemes has become a strong driving force for increasing efforts towards the prediction of tip wear, as it needs to be ensured that the probe is exchanged before a level of tip wear is reached that adversely affects the measurement quality. In this paper, we describe the identification of tip abrasion in a system of SFM measurements. We attempt to model the tip-abrasion process as a concatenation of a mapping from the measured AFM data to a regression vector and a nonlinear mapping from the regressor space to the output space. The mapping is formed as a basis function expansion. Feedforward neural networks are used to approximate this mapping. The one-hidden layer network gave a good quality of fit for the training and test sets for the tip-abrasion system. We illustrate our method with AFM measurements of both fine periodic structures and randomly oriented sharp features and compare our neural network results with those obtained using other methods.

  5. Laboratory Measurements of Particulate Matter Concentrations from Asphalt Pavement Abrasion

    Directory of Open Access Journals (Sweden)

    Fullová Daša

    2016-12-01

    Full Text Available The issue of emissions from road traffic is compounded by the fact that the number of vehicles and driven kilometres increase each year. Road traffic is one of the main sources of particulate matter and traffic volume is still increasing and has unpleasant impact on longevity of the pavements and the environment. Vehicle motions cause mechanical wearing of the asphalt pavement surface - wearing course by vehicle tyres. The contribution deals with abrasion of bituminous wearing courses of pavements. The asphalt mixtures of wearing courses are compared in terms of mechanically separated particulate matter. The samples of asphalt mixtures were rutted in wheel tracking machine. The particulate matter measurements were performed in laboratory conditions. The experimental laboratory measurements make it possible to sample particulates without contamination from exhaust emissions, abraded particles from vehicles, resuspension of road dust and climate affects. The contribution offers partial results of measurements on six trial samples of asphalt mixtures with different composition. It presents particulate matter morphology and the comparison of rutted asphalt samples in terms of PM mass concentrations and chemical composition.

  6. Feasibility Study on Cutting HTPB Propellants with Abrasive Water Jet

    Science.gov (United States)

    Jiang, Dayong; Bai, Yun

    2018-01-01

    Abrasive water jet is used to carry out the experiment research on cutting HTPB propellants with three components, which will provide technical support for the engineering treatment of waste rocket motor. Based on the reliability theory and related scientific research results, the safety and efficiency of cutting sensitive HTPB propellants by abrasive water jet were experimentally studied. The results show that the safety reliability is not less than 99.52% at 90% confidence level, so the safety is adequately ensured. The cooling and anti-friction effect of high-speed water jet is the decisive factor to suppress the detonation of HTPB propellant. Compared with pure water jet, cutting efficiency was increased by 5% - 87%. The study shows that abrasive water jets meet the practical use for cutting HTPB propellants.

  7. Quantitative characterization of agglomerate abrasion in a tumbling blender by using the Stokes number approach

    NARCIS (Netherlands)

    Willemsz, Tofan A.; Nguyen, Tien Thanh; Hooijmaijers, Ricardo; Frijlink, Henderik W.; Vromans, Herman; van der Voort Maarschalk, Kees

    2013-01-01

    Removal of microcrystalline cellulose agglomerates in a dry-mixing system (lactose, 100 M) predominantly occurs via abrasion. The agglomerate abrasion rate potential is estimated by the Stokes abrasion (StAbr) number of the system. The StAbrnumber equals the ratio between the kinetic energy density

  8. On the abrasion of heat-treated 2.8C21Cr1Mo white cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rubaie, Kassim S.; Preti, Orlando [Centro Universitario SOCIESC, Joinville (Brazil). Engenharia Mecanica; Pohl, Michael [Bochum Univ. (Germany). Inst. fuer Werkstoffe

    2016-09-15

    The abrasion behaviour of heat-treated 2.8C21Cr1Mo cast iron was studied. The specimens were destabilised at two temperatures, 980 and 1050 C, for 4 h, air hardened, and then tempered at five temperatures, 220, 320, 400, 500, and 620 C, for 2 h followed by air cooling. Using a pin-on-plate abrasion apparatus, the specimens were abraded on four types of bonded abrasives (silicon carbide, corundum, flint, and glass). The effect of work hardening on the abrasion resistance was investigated. It was found that the increase in alloy hardness produced by heat treatment had little effect on the abrasion resistance against silicon carbide or corundum; the inverse was true against flint or glass. The as-hardened structure containing 40% retained austenite gave the best abrasion resistance, whereas the hardened and tempered at 620 C showed the worst. Both bulk hardness and matrix hardness before wear correlated poorly with the abrasion resistance. Therefore, a general model ''equivalent hardness'' was developed, in which the hardness of the abraded matrix was considered. With this model, the abrasion behaviour can be clearly analysed.

  9. Developing a trend prediction model of subsurface damage for fixed-abrasive grinding of optics by cup wheels.

    Science.gov (United States)

    Dong, Zhichao; Cheng, Haobo

    2016-11-10

    Fixed-abrasive grinding by cup wheels plays an important role in the production of precision optics. During cup wheel grinding, we strive for a large removal rate while maintaining fine integrity on the surface and subsurface layers (academically recognized as surface roughness and subsurface damage, respectively). This study develops a theoretical model used to predict the trend of subsurface damage of optics (with respect to various grinding parameters) in fixed-abrasive grinding by cup wheels. It is derived from the maximum undeformed chip thickness model, and it successfully correlates the pivotal parameters of cup wheel grinding with the subsurface damage depth. The efficiency of this model is then demonstrated by a set of experiments performed on a cup wheel grinding machine. In these experiments, the characteristics of subsurface damage are inspected by a wedge-polishing plus microscopic inspection method, revealing that the subsurface damage induced in cup wheel grinding is composed of craterlike morphologies and slender cracks, with depth ranging from ∼6.2 to ∼13.2  μm under the specified grinding parameters. With the help of the proposed model, an optimized grinding strategy is suggested for realizing fine subsurface integrity as well as high removal rate, which can alleviate the workload of subsequent lapping and polishing.

  10. Design of experiments in production engineering

    CERN Document Server

    2016-01-01

    This book covers design of experiments (DoE) applied in production engineering as a combination of manufacturing technology with applied management science. It presents recent research advances and applications of design experiments in production engineering and the chapters cover metal cutting tools, soft computing for modelling and optmization of machining, waterjet machining of high performance ceramics, among others.

  11. Photochemical surface modification of PP for abrasion resistance

    International Nuclear Information System (INIS)

    Bahners, Thomas; Haessler, Ruediger; Gao Shanglin; Maeder, Edith; Wego, Andreas; Schollmeyer, Eckhard

    2009-01-01

    The potential of a photo-chemical approach to increase the surface hardness of polypropylene (PP) has been studied. Using a 222 nm excimer lamp, fibers and film were irradiated in the presence of multi-functional substances diallylphthalate (DAP), tetraallyloxyethane (TAE), and pentaerithritoltriacylate (PETA) and characterized with regard to the resulting effect on abrasion resistance. AFM-based methods were employed to analyze thermo-mechanical surface properties. Nanoindentation and microthermal analyses of the outermost surface layers of UV treated fibers gave clear indications of an effective cross-linking of reactive substances present during irradiation. One may assume that the reactive media polymerize on top of the surface of the PP substrate and form a thin-layer. The abrasion resistance of the PP fibers was tested by applying stress through a rotating and axially oscillating roller of defined roughness and measuring the mass loss as a function of time. The abrasion resistance was found to be remarkably improved compared to the untreated fiber. Best effects were achieved using PETA as reactive substance. The experiments clearly showed the influence of processing conditions, namely with regard to homogeneous coverage of the substrate surface with the reactive medium.

  12. A new method to test rock abrasiveness based on physico-mechanical and structural properties of rocks

    Directory of Open Access Journals (Sweden)

    V.N. Oparin

    2015-06-01

    Full Text Available A new method to test rock abrasiveness is proposed based upon the dependence of rock abrasiveness on their structural and physico-mechanical properties. The article describes the procedure of presentation of properties that govern rock abrasiveness on a canonical scale by dimensionless components, and the integrated estimation of the properties by a generalized index. The obtained results are compared with the known classifications of rock abrasiveness.

  13. Kinetic energy density and agglomerate abrasion rate during blending of agglomerates into powders.

    Science.gov (United States)

    Willemsz, Tofan A; Hooijmaijers, Ricardo; Rubingh, Carina M; Tran, Thanh N; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2012-01-23

    Problems related to the blending of a cohesive powder with a free flowing bulk powder are frequently encountered in the pharmaceutical industry. The cohesive powder often forms lumps or agglomerates which are not dispersed during the mixing process and are therefore detrimental to blend uniformity. Achieving sufficient blend uniformity requires that the blending conditions are able to break up agglomerates, which is often an abrasion process. This study was based on the assumption that the abrasion rate of agglomerates determines the required blending time. It is shown that the kinetic energy density of the moving powder bed is a relevant parameter which correlates with the abrasion rate of agglomerates. However, aspects related to the strength of agglomerates should also be considered. For this reason the Stokes abrasion number (St(Abr)) has been defined. This parameter describes the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. The St(Abr) number is shown to predict the abrasion potential of agglomerates in the dry-mixing process. It appeared possible to include effects of filler particle size and impeller rotational rate into this concept. A clear relationship between abrasion rate of agglomerates and the value of St(Abr) was demonstrated. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Electrical resistivity measurements to predict abrasion resistance

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 2. Electrical resistivity measurements to predict abrasion resistance of rock aggregates ... It was seen that correlation coefficients were increased for the rock classes. In addition ...

  15. Abrasion Wear Resistance, Hardness and Microstructure of Hard Linings Deposited by Means of a Submerged Arc. Dureza, microestructura y resistencia al desgaste por abrasion de recargues duros depositados con arco sumergido

    Energy Technology Data Exchange (ETDEWEB)

    Paranhos, R; Alcoforado, J M; Castillo, J A; Sauer, A

    1989-01-01

    Consumable materials for submerged arc welding of the types alloyed flux-neutral electrode and neutral flux-alloyed electrode were used to form, through multipass welding, a light alloy hard lining of the C-Mn type on ASTM A36 Type structural steel. Emphasis was put on microstructural characterization of the linings surveyed under electron scanning microscopy, and tests were performed to study their hardness and abrasion wear resistance at low pressures. As a result of these tests, a great influence of welding parameters on hardness and abrasion resistance properties of the combination active flux-neutral electrode was noticed. As the results showed no relationship between the hardness and the abrasion wear resistance of the linings surveyed, an attempt was made to relate the resulting microstructure with their abrasion wear resistance. (Author)

  16. Characterization of Conventional and High-Translucency Y-TZP Dental Ceramics Submitted to Air Abrasion.

    Science.gov (United States)

    Tostes, Bhenya Ottoni; Guimarães, Renato Bastos; Noronha-Filho, Jaime Dutra; Botelho, Glauco Dos Santos; Guimarães, José Guilherme Antunes; Silva, Eduardo Moreira da

    2017-01-01

    This study evaluated the effect of air-abrasion on t®m phase transformation, roughness, topography and the elemental composition of three Y-TZP (Yttria-stabilized tetragonal zirconia polycrystal) dental ceramics: two conventional (Lava Frame and IPS ZirCad) and one with high-translucency (Lava Plus). Plates obtained from sintered blocks of each ceramic were divided into four groups: AS (as-sintered); 30 (air-abrasion with 30 mm Si-coated Al2O3 particles); 50 (air-abrasion with 50 mm Al2O3 particles) and 150 (air-abrasion with 150 mm Al2O3 particles). After the treatments, the plates were submitted to X-ray diffractometry; 3-D profilometry and SEM/EDS. The AS surfaces were composed of Zr and t phases. All treatments produced t®m phase transformation in the ceramics. The diameter of air-abrasion particles influenced the roughness (150>50>30>AS) and the topography. SEM analysis showed that the three treatments produced groove-shaped microretentions on the ceramic surfaces, which increased with the diameter of air-abrasion particles. EDS showed a decrease in Zr content along with the emergence of O and Al elements after air-abrasion. Presence of Si was also detected on the plates air-abraded with 30 mm Si-coated Al2O3 particles. It was concluded that irrespective of the type and diameter of the particles, air-abrasion produced t®m phase transformation, increased the roughness and changed the elemental composition of the three Y-TZP dental ceramics. Lava Plus also behaved similarly to the conventional Y-TZP ceramics, indicating that this high translucency ceramic could be more suitable to build monolithic ceramic restorations in the aesthetic restorative dentistry field.

  17. Preliminary study on rotary ultrasonic machining of Bk-7 optical glass rod

    International Nuclear Information System (INIS)

    Hamzah, E.; Izman, S.; Khoo, C.Y.; Zainal Abidin, N.N.

    2007-01-01

    This paper presents an experimental observation on rotary ultrasonic machining (RUM) of BK7 optical glass rod. BK7 is a common technical optical glass for high quality optical components due to its high linear optical transmission in the visible range and is chemically stable. RUM is a hybrid machining process that combines the material removal mechanisms of diamond grinding and ultrasonic machining (USM) and it is non-thermal, non-chemical, creates no change in the microstructure, chemical or physical properties of the work piece. In the RUM, a controlled static load is applied to the rotating core drill with metal bonded diamond abrasive and is ultrasonically vibrated in the axial direction. A water-soluble coolant was used to cool the tool and sample during machining processes. By using DOE (Design of Experiment) approach, the effect of spindle speed and feed rate to the ultrasonic machinability had been developed. The main effects and two-factor interactions of process parameters (spindle speed) and feed rate) on output variables (MRR, surface roughness, opaqueness, chipping thickness and chipping size) are studied. (author)

  18. Combination of water-jet dissection and needle-knife as a hybrid knife simplifies endoscopic submucosal dissection.

    Science.gov (United States)

    Lingenfelder, Tobias; Fischer, Klaus; Sold, Moritz G; Post, Stefan; Enderle, Markus D; Kaehler, Georg F B A

    2009-07-01

    The safety and efficacy of endoscopic submucosal dissection (ESD) is very dependent on an effective injection beneath the submucosal lamina and on a controlled cutting technique. After our study group demonstrated the efficacy of the HydroJet in needleless submucosal injections under various physical conditions to create a submucosal fluid cushion (Selective tissue elevation by pressure = STEP technique), the next step was to develop a new instrument to combine the capabilities of an IT-Knife with a high-pressure water-jet in a single instrument. In this experimental study, we compared this new instrument with a standard ESD technique. Twelve gastric ESD were performed in six pigs under endotracheal anesthesia. Square areas measuring 4-cm x 4-cm were marked out on the anterior and posterior wall in the corpus-antrum transition region. The HybridKnife was used as an standard needle knife with insulated tip (i.e., the submucosal injection was performed with an injection needle and only the radiofrequency (RF) part of the HybridKnife was used for cutting (conventional technique)) or the HybridKnife was used in all the individual stages of the ESD, making use of the HybridKnife's combined functions (HybridKnife technique). The size of the resected specimens, the operating time, the frequency with which instruments were changed, the number of bleeding episodes, and the number of injuries to the gastric wall together with the subjective overall assessment of the intervention by the operating physician were recorded. The resected specimens were the same size, with average sizes of 16.96 cm(2) and 15.85 cm(2) resp (p = 0.8125). Bleeding episodes have been less frequent in the HybridKnife group (2.83 vs. 3.5; p = 0.5625). The standard knife caused more injuries to the lamina muscularis propria (0.17 vs. 1.33; p = 0.0313). The operating times had a tendency to be shorter with the HybridKnife technique (47.18 vs. 58.32 minute; p = 0.0313). The combination of a needle

  19. Abrasive water jet: a complementary tool

    Directory of Open Access Journals (Sweden)

    Duarte, J. P.

    1998-04-01

    Full Text Available The abrasive water jet is a powerful cutting tool, whose main advantages lie in the absence of thermal effects and the capability of cutting highly thick materials. Compared with Laser, the abrasive water jet allows the cutting of a larger range of thicknesses and a wider variety of materials such as: ornamental stones, metals, polymers, composites, wood, glass and ceramics. The application of this technology has suffered an extensive growth, with successful applications in varied industrial sectors like the automotive, aerospace, textile, metalworking, ornamental stones, etc. The present communication aims at introducing the abrasive water jet as a complementary tool to laser cutting, presenting its advantages by showing some documented examples of pieces cut for different industries.

    O jacto de água abrasivo é uma poderosa ferramenta de corte, tendo como principais vantagens a ausência de processo térmico e permitir o corte de elevadas espessuras. Comparativamente com o laser o jacto de água abrasivo permite cortar uma maior gama de espessuras, e uma maior diversidade de materiais: rochas ornamentais, metais, polimeros, compósitos, madeiras, vidro e cerâmicos. A aplicação desta tecnologia tem sofrido um crescimento acentuado, existindo aplicações de sucesso nos mais variados sectores industriáis como a indústria automóvel, aeroespacial, têxtil, metalomecânica e rochas ornamentáis. Esta comunição pretende apresentar o corte por jacto de agua abrasivo como uma ferramenta de corte complementar ao corte por laser, apresentando as suas vantagens documentadas através de alguns exemplos de peças executadas para as diferentes indústrias.

  20. Development of a test method for sowing machines concerning the drift of dust abrasion

    Directory of Open Access Journals (Sweden)

    Bahmer, Roland

    2014-02-01

    Full Text Available For a long time the seed treatment was regarded as the most effective and in terms of the impact of the natural environment as the safest form of plant protection. Since the serious damage of bees, caused by dust of abraded seed treatment in the Rhine Valley five years ago, the admission of seed treatment products containing insecticide is in the discussion. To evaluate the emission characteristics of sowing machines during sowing based on secure data, the technical basis for a test method for measuring the drift of abraded seed-dust in sowing machines were developed at the Centre for Agricultural Technology Augustenberg. An indoor test bench was created and a standardized test method by which it is possible to evaluate the drift behavior of sowing machines in comparison was developed. A granulate which is stained with a fluorescent Tracer is used as test seed. The „tracer technique“ allows a reproducible, rapid and inexpensive assessment of the drift behavior of the sowing technology, which is commonly used. To classify the obtained drift values in the test bench, measurements in the field were carried out for comparison. The determined drift volumes of those measurements were at a similar level as the measured values in the test stand. Therefore the standardized measurement of drift in the test stand is suitable for the calculation of exposure scenarios for the sowing of treated seeds.

  1. Release of carbon nanotubes from an epoxy-based nanocomposite during an abrasion process.

    Science.gov (United States)

    Schlagenhauf, Lukas; Chu, Bryan T T; Buha, Jelena; Nüesch, Frank; Wang, Jing

    2012-07-03

    The abrasion behavior of an epoxy/carbon nanotube (CNT) nanocomposite was investigated. An experimental setup has been established to perform abrasion, particle measurement, and collection all in one. The abraded particles were characterized by particle size distribution and by electron microscopy. The abrasion process was carried out with a Taber Abraser, and the released particles were collected by a tube for further investigation. The particle size distributions were measured with a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS) and revealed four size modes for all measured samples. The mode corresponding to the smallest particle sizes of 300-400 nm was measured with the SMPS and showed a trend of increasing size with increasing nanofiller content. The three measured modes with particle sizes from 0.6 to 2.5 μm, measured with the APS, were similar for all samples. The measured particle concentrations were between 8000 and 20,000 particles/cm(3) for measurements with the SMPS and between 1000 and 3000 particles/cm(3) for measurements with the APS. Imaging by transmission electron microscopy (TEM) revealed that free-standing individual CNTs and agglomerates were emitted during abrasion.

  2. Erosion wear of boron carbide ceramic nozzles by abrasive air-jets

    International Nuclear Information System (INIS)

    Deng Jianxin

    2005-01-01

    Boron carbide nozzles were produced by hot pressing. The erosion wear of this nozzle caused by abrasive particle impact was investigated by abrasive air-jets. Silica, silicon carbide and alumina powders with different hardness were used as the erodent abrasive particles. Results showed that the hardness of the erodent particles played an important role with respect to the erosion wear of the boron carbide nozzles. As the hardness of the erodent particles increases, there is a dramatic increase in erosion rate of the nozzles. The nozzle entrance area suffered from severe abrasive impact under large impact angles, and generated maximum tensile stresses. The wear mechanisms of boron carbide nozzle at this area appeared to be entirely brittle in nature with the evidence of large scale-chipping, and exhibited a brittle fracture induced removal process. While at the nozzle center wall section, most of the particles traveled parallel to the nozzle wall, and showed minimum tensile stresses. The wear mode in this area of the nozzle changed from impact to sliding erosion, and the wear mechanisms appeared to be the lateral cracking owing to a surface fatigue fracture mechanism

  3. Effect of dried sunflower seeds on incisal edge abrasion: A rare case report.

    Science.gov (United States)

    Rath, Avita; Ramamurthy, Priyadarshini H; Fernandes, Bennete Aloysius; Sidhu, Preena

    2017-01-01

    Tooth surface loss (TSL) is a complex phenomenon characterized by the loss of hard tooth structure at various locations of the teeth, usually due to more than one factor. TSL due to abrasion can be significant in patients consuming coarse, abrasive diet. The present case reports an interesting incisal edge abrasion in a female patient, attributed to a particular dietary behavior of long-term consumption of sunflower seeds. All her family members and most of the people from her native place were also reported to have similar lesions by the patient. Larger epidemiological studies to assess the prevalence and severity of such abrasive lesions in geographic areas with this particular dietary habit need to be carried out so that people may be made aware and educated about alternative ways of eating sunflower seeds that will not cause any form of tooth wear.

  4. 29 CFR 1915.134 - Abrasive wheels.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Abrasive wheels. 1915.134 Section 1915.134 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... wheels shall fit freely on the spindle and shall not be forced on. The spindle nut shall be tightened...

  5. Review of Artificial Abrasion Test Methods for PV Module Technology

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Muller, Matt T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpson, Lin J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    This review is intended to identify the method or methods--and the basic details of those methods--that might be used to develop an artificial abrasion test. Methods used in the PV literature were compared with their closest implementation in existing standards. Also, meetings of the International PV Quality Assurance Task Force Task Group 12-3 (TG12-3, which is concerned with coated glass) were used to identify established test methods. Feedback from the group, which included many of the authors from the PV literature, included insights not explored within the literature itself. The combined experience and examples from the literature are intended to provide an assessment of the present industry practices and an informed path forward. Recommendations toward artificial abrasion test methods are then identified based on the experiences in the literature and feedback from the PV community. The review here is strictly focused on abrasion. Assessment methods, including optical performance (e.g., transmittance or reflectance), surface energy, and verification of chemical composition were not examined. Methods of artificially soiling PV modules or other specimens were not examined. The weathering of artificial or naturally soiled specimens (which may ultimately include combined temperature and humidity, thermal cycling and ultraviolet light) were also not examined. A sense of the purpose or application of an abrasion test method within the PV industry should, however, be evident from the literature.

  6. An investigation of two-body abrasive wear of laser processed surfaces

    International Nuclear Information System (INIS)

    Abass, G.

    1995-01-01

    This paper reports two body abrasive wear studies of alloy and composite deposits produced with a 2 kW continuous wave CO/sub 2/ laser. Stellite alloy 6, Alloy 4815, Stainless steel and SiC powders were used to produce alloy and composite deposits on an En 3b mild steel substrate. The cladding material was injected into the laser produced melt pool by means of a pneumatic powder delivery system. In the present studies instead of using the conventional pin-on-disc method of wear measurement, a more realistic and practical wear testing procedure was adopted. The wear testing machine used was capable of measuring wear of three comparatively larger (30 x 30 x 10 mm) clad samples by abrading simultaneously against a revolving alumina disc. A comparative study of microstructure, hardness and wear of alloy and composite clads was made. The clad deposits were found sound and continuous. The hardness and wear resistance of the composites were markedly higher than that of the alloy clads. (author) 9 figs

  7. Liquid abrasive pressure pot scoping tests report

    International Nuclear Information System (INIS)

    Archibald, K.E.

    1996-01-01

    The primary initiatives of the LITCO Decontamination Development group at the Idaho Chemical Process Plant (ICPP) are the development of methods to eliminate the use of sodium bearing decontamination chemicals and minimization of the amount of secondary waste generated during decontamination activities. In July of 1994, a Commerce Business Daily (CBD) announcement was issued by the INEL to determine commercial interest in the development of an in-situ liquid abrasive grit blasting system. As a result of the CBD announcement, Klieber ampersand Schulz issued an Expression of Interest letter which stated they would be interested in testing a prototype Liquid Abrasive Pressure Pot (LAPP). LITCO's Decontamination group and Kleiber ampersand Schulz entered into a Cooperative Research and Development Agreement (CRADA) in which the Decontamination Development group tested the prototype LAPP in a non-radioactive hot cell mockup. Test results are provided

  8. Abrasion Resistance of as-Cast High-Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Pokusová Marcela

    2014-12-01

    Full Text Available High chromium cast irons are widely used as abrasion resistant materials. Their properties and wear resistance depend on carbides and on the nature of the matrix supporting these carbides. The paper presents test results of irons which contain (in wt.% 18-22 Cr and 2-5 C, and is alloyed by 1.7 Mo + 5 Ni + 2 Mn to improve the toughness. Tests showed as-cast irons with mostly austenitic matrix achieved hardness 36-53 HRC but their relative abrasion-resistance was higher than the tool steel STN 19436 heat treated on hardness 60 HRC.

  9. Capacitive Sensing for Contact-less Proximity Detection in Industrial Marble Machines

    Directory of Open Access Journals (Sweden)

    Sergio Saponara

    2010-02-01

    Full Text Available The paper presents the design and experimental characterization of capacitive sensors, plus the relevant front-end acquisition circuitry, for process control in industrial marble machines. The new developed sensing system allows detecting, in real-time and without any contact, the presence of stone samples under the abrasive/cutting heads in an industrial machine. The obtained detection signal is needed as a feedback to improve the automatic control of the polishing/cutting process in marble industry. Different types of sensors are proposed whose performances are assessed through experimental test campaigns considering real industrial working conditions. Compared to state-of-art sensors the proposed solutions allow for a reliable detection while being of low complexity and robust to harsh environment conditions.

  10. Effect of air-abrasion on the retention of zirconia ceramic crowns luted with different cements before and after artificial aging.

    Science.gov (United States)

    Shahin, Ramez; Kern, Matthias

    2010-09-01

    The purpose of this in vitro study was to evaluate the effect of intaglio surface air-abrasion on the retention of CAD/CAM produced zirconia ceramic crowns cemented with three different types of cement. In addition the influence of artificial aging in masticatory simulator and thermocycling was tested. Extracted human premolars were prepared for all-ceramic crowns (12 degrees taper, 3 mm axial length). CAD/CAM zirconia crowns were manufactured. Half of the crowns were air-abraded with 50 microm alumina particles at 0.25 MPa, the rest was left as machined. The crowns were luted with zinc phosphate cement (Hoffmann), glass ionomer cement (Ketac Cem), or composite resin (Panavia 21), subgroups were either stored for 3 days in 37 degrees water bath or stored for 150 days in 37 degrees water bath, with additional 37,500 thermal cycles (5-55 degrees) and 300,000 cycles dynamic loading with 5 kg in a masticatory simulator. Then crown retention was measured in tension at a crosshead speed of 2 mm/min using a universal testing machine. Statistical analysis was performed with three-way ANOVA. Mean retention values were ranged from 2.8 to 7.1 MPa after 3 days and from 1.6 to 6.1 MPa after artificial aging. Air-abrasion significantly increased crown retention (partificial aging decreased retention (p=0.017). In addition, the luting material had a significant influence on retention (p<0.001) with the adhesive luting resin providing the highest retention. The use of phosphate monomer containing composite resin on air-abraded zirconia ceramic can be recommended as most retentive luting method. Copyright 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. A study on the abundance of quartz in thermal coals of India and its relation to abrasion index: Development of predictive model for abrasion

    Energy Technology Data Exchange (ETDEWEB)

    Bandopadhyay, A.K. [Central Institute of Mining and Fuel Research Digwadih Campus, P.O.-FRI, Dhanbad-828108, Jharkhand (India)

    2010-10-01

    The quartz content of each of the 61 thermal coals used in power stations in India has been determined using Fourier Transform Infra-Red (FTIR) Spectroscopy. It has been observed that quartz is abundant in the thermal coals and its proportion varies from 5 to 20% by wt. The abrasion index (AI), a measure of abrasion caused by coals, has been determined for each coal according to the procedure laid down in Indian Standard IS: 9949-1986. The data generated on abrasion together with ash and quartz percentages of the coals studied have been subjected to regression and correlation analysis. Positive correlations have been found between AI and quartz content and between AI and ash yield, but the correlation between AI and ash (A) and quartz (Q) percentages has been observed to be the most significant (R{sup 2} = 0.86). The linear regression model AI = 1.00A + 1.35Q thus developed has the ability to predict AI of the thermal coals within {+-} 10 mg/kg at 95.5% confidence level. Results of application of the model to predicting abrasion of a limited number of foreign coals with different origins have been found to be encouraging. Integration of other variables like the size and the shape of the abrading particles along with other physical properties of coal, like the bulk density and the grindability, with the model, in addition to the variables already considered, has been suggested for improved prediction. (author)

  12. Tool wear of a single-crystal diamond tool in nano-groove machining of a quartz glass plate

    International Nuclear Information System (INIS)

    Yoshino, Masahiko; Nakajima, Satoshi; Terano, Motoki

    2015-01-01

    Tool wear characteristics of a diamond tool in ductile mode machining are presented in this paper. Nano-groove machining of a quartz glass plate was conducted to examine the tool wear rate of a single-crystal diamond tool. Effects of lubrication on the tool wear rate were also evaluated. A numerical simulation technique was developed to evaluate the tool temperature and normal stress acting on the wear surface. From the simulation results it was found that the tool temperature does not increase during the machining experiment. It is also demonstrated that tool wear is attributed to the abrasive wear mechanism, but the effect of the adhesion wear mechanism is minor in nano-groove machining. It is found that the tool wear rate is reduced by using water or kerosene as a lubricant. (paper)

  13. Prepolishing on a CNC platform with bound abrasive contour tools

    Science.gov (United States)

    Schoeffler, Adrienne E.; Gregg, Leslie L.; Schoen, John M.; Fess, Edward M.; Hakiel, Michael; Jacobs, Stephen D.

    2003-05-01

    Deterministic microgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-5μm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an Optipro CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.

  14. Development of abrasion resistant glass-ceramics from industrial waste products. Final report

    Energy Technology Data Exchange (ETDEWEB)

    von Roode, M.

    1983-05-26

    Slag-ceramics were produced from glass compositions using pelletized slag as the major ingredient. The abrasion resistance, fracture toughness and microstructure of the prepared glass and glass-ceramics were evaluated. Glas-ceramics with good abrasion resistance were obtained when iron oxide in conjunction with carbon was used as a nucleating agent. 5 figs., 11 tabs.

  15. Characterization of abrasion-induced nanoparticle release from paints into liquids and air

    Science.gov (United States)

    Golanski, L.; Gaborieau, A.; Guiot, A.; Uzu, G.; Chatenet, J.; Tardif, F.

    2011-07-01

    Two standard methods for the characterization of the abrasion nanoparticle release into air and liquid from coatings containing nanoparticles were developed. Details of the abrasion processes and the measurement methods are shown. Paints were formulated in an industrial facility. Standard abrasion conditions in wet environments were simulated. The size distribution of the particles abraded into liquid was analyzed by a laser granulometer: submicrometric and micrometric particles were observed, but no nanometric particles. The nanoparticles released in liquid were deposited on filters for SEM (Scanning Electron Microscopy) analysis. No free or agglomerated nanoparticles were observed by SEM: nanoparticles seem to remain embedded in the paint matrix. The same coatings were abraded in the air using another standard method. The ELPI (Electrical Low Pressure Impactor) was used to determine the number size distribution of the dust generated. Abrasion is found to produce submicrometric and micrometric particles in the air but no nanoparticles. Further characterizations by SEM confirmed that no free or agglomerated nanoparticles were emitted: nanoparticles seem to remain embedded in the paint matrix.

  16. Characterization of abrasion-induced nanoparticle release from paints into liquids and air

    International Nuclear Information System (INIS)

    Golanski, L; Guiot, A; Uzu, G; Tardif, F; Gaborieau, A; Chatenet, J

    2011-01-01

    Two standard methods for the characterization of the abrasion nanoparticle release into air and liquid from coatings containing nanoparticles were developed. Details of the abrasion processes and the measurement methods are shown. Paints were formulated in an industrial facility. Standard abrasion conditions in wet environments were simulated. The size distribution of the particles abraded into liquid was analyzed by a laser granulometer: submicrometric and micrometric particles were observed, but no nanometric particles. The nanoparticles released in liquid were deposited on filters for SEM (Scanning Electron Microscopy) analysis. No free or agglomerated nanoparticles were observed by SEM: nanoparticles seem to remain embedded in the paint matrix. The same coatings were abraded in the air using another standard method. The ELPI (Electrical Low Pressure Impactor) was used to determine the number size distribution of the dust generated. Abrasion is found to produce submicrometric and micrometric particles in the air but no nanoparticles. Further characterizations by SEM confirmed that no free or agglomerated nanoparticles were emitted: nanoparticles seem to remain embedded in the paint matrix.

  17. Rotary ultrasonic machining of CFRP: a mechanistic predictive model for cutting force.

    Science.gov (United States)

    Cong, W L; Pei, Z J; Sun, X; Zhang, C L

    2014-02-01

    Cutting force is one of the most important output variables in rotary ultrasonic machining (RUM) of carbon fiber reinforced plastic (CFRP) composites. Many experimental investigations on cutting force in RUM of CFRP have been reported. However, in the literature, there are no cutting force models for RUM of CFRP. This paper develops a mechanistic predictive model for cutting force in RUM of CFRP. The material removal mechanism of CFRP in RUM has been analyzed first. The model is based on the assumption that brittle fracture is the dominant mode of material removal. CFRP micromechanical analysis has been conducted to represent CFRP as an equivalent homogeneous material to obtain the mechanical properties of CFRP from its components. Based on this model, relationships between input variables (including ultrasonic vibration amplitude, tool rotation speed, feedrate, abrasive size, and abrasive concentration) and cutting force can be predicted. The relationships between input variables and important intermediate variables (indentation depth, effective contact time, and maximum impact force of single abrasive grain) have been investigated to explain predicted trends of cutting force. Experiments are conducted to verify the model, and experimental results agree well with predicted trends from this model. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Development of a novel bioactive glass for air-abrasion to selectively remove orthodontic adhesives.

    Science.gov (United States)

    Taha, Ayam A; Hill, Robert G; Fleming, Padhraig S; Patel, Mangala P

    2018-05-01

    To develop a novel, bioactive glass for removing residual orthodontic adhesive via air-abrasion, following bracket debonding, and to evaluate its effectiveness against a proprietary bioactive glass 45S5(Sylc™)-air-abrasion, and a slow-speed tungsten carbide (TC) bur. Three glasses were prepared and their bioactivity was proved. One novel glass (QMAT3) was selected due to its appropriate hardness, lower than that of enamel/45S5(Sylc™). Sixty extracted human premolars were randomly assigned to adhesive removal using: (a) QMAT3-air-abrasion, (b) 45S5(Sylc™)-air-abrasion, and (c) TC bur, which were further subdivided (n = 10) based on the adhesive used (Transbond XT™ or Fuji Ortho LC™). Enamel roughness was assessed using scanning electron microscopy (SEM) and non-contact profilometry before bracket bonding, after removing residual adhesive following bracket debonding and after polishing. QMAT3 formed apatite faster (6 h) than 45S5(Sylc™) (24 h) in Tris solution. QMAT3-air-abrasion gave the lowest enamel roughness (Ra) after removing the adhesives. SEM images showed a pitted, roughened enamel surface in the TC bur group and to a lesser extent with 45S5(Sylc™), while a virtually smooth surface without any damage was observed in the QMAT3-air-abrasion group. The time taken for adhesive removal with QMAT3 was comparable to 45S5(Sylc™) but was twice as long with the TC bur. QMAT3-air-abrasion is a promising technique for selective removal of adhesives without inducing tangible enamel damage. A novel bioactive glass has been developed as an alternative to the use of TC burs for orthodontic adhesive removal.

  19. Experimental investigation of surface quality in ultrasonic machining of WC-Co composites through Taguchi method

    Directory of Open Access Journals (Sweden)

    B. S. Pabla

    2016-08-01

    Full Text Available In manufacturing industries, the demand of WC-Co composite is flourishing because of the distinctive characteristics it offers such as: toughness (with hardness, good dimensional stability, higher mechanical strength etc. However, the difficulties in its machining restrict the application and competitiveness of this material. The current article has been targeted at evaluation of the effect of process conditions (varying power rating, cobalt content, tool material, part thickness, tool geometry, and size of abrasive particle on surface roughness in ultrasonic drilling of WC-Co composite. Results showed that abrasive grit size is most influential factor. From the microstructure analysis, the mode of material deformation has been observed and the parameters, i.e. work material properties, grit size, and power rating was revealed as the most crucial for the deformation mode.

  20. High resolution micro ultrasonic machining for trimming 3D microstructures

    International Nuclear Information System (INIS)

    Viswanath, Anupam; Li, Tao; Gianchandani, Yogesh

    2014-01-01

    This paper reports on the evaluation of a high resolution micro ultrasonic machining (HR-µUSM) process suitable for post fabrication trimming of complex 3D microstructures made from fused silica. Unlike conventional USM, the HR-µUSM process aims for low machining rates, providing high resolution and high surface quality. The machining rate is reduced by keeping the micro-tool tip at a fixed distance from the workpiece and vibrating it at a small amplitude. The surface roughness is improved by an appropriate selection of abrasive particles. Fluidic modeling is performed to study interaction among the vibrating micro-tool tip, workpiece, and the slurry. Using 304 stainless steel (SS304) tool tips of 50 µm diameter, the machining performance of the HR-µUSM process is characterized on flat fused silica substrates. The depths and surface finish of machined features are evaluated as functions of slurry concentrations, separation between the micro-tool and workpiece, and machining time. Under the selected conditions, the HR-µUSM process achieves machining rates as low as 10 nm s −1  averaged over the first minute of machining of a flat virgin sample. This corresponds to a mass removal rate of ≈20 ng min −1 . The average surface roughness, S a , achieved is as low as 30 nm. Analytical and numerical modeling are used to explain the typical profile of the machined features as well as machining rates. The process is used to demonstrate trimming of hemispherical 3D shells made of fused silica. (paper)

  1. Abrasion Testing of Critical Components of Hydrokinetic Devices

    Energy Technology Data Exchange (ETDEWEB)

    Worthington, Monty [ORPC Alaska; Ali, Muhammad [Ohio University; Ravens, Tom [University of Alaska Anchorage

    2013-12-06

    The objective of the Abrasion Testing of Critical Components of Hydrokinetic Devices (Project) was to test critical components of hydrokinetic devices in waters with high levels of suspended sediment – information that is widely applicable to the hydrokinetic industry. Tidal and river sites in Alaska typically have high suspended sediment concentrations. High suspended sediment also occurs in major rivers and estuaries throughout the world and throughout high latitude locations where glacial inputs introduce silt into water bodies. In assessing the vulnerability of technology components to sediment induced abrasion, one of the greatest concerns is the impact that the sediment may have on device components such as bearings and seals, failures of which could lead to both efficiency loss and catastrophic system failures.

  2. To Evaluate Effect of Airborne Particle Abrasion using Different Abrasives Particles and Compare Two Commercial Available Zirconia on Flexural Strength on Heat Treatment

    Science.gov (United States)

    Prasad, Hari A.; Pasha, Naveed; Hilal, Mohammed; Amarnath, G. S.; Kundapur, Vinaya; Anand, M; Singh, Sumeet

    2017-01-01

    specimens each. Heat treatment after airborne-particle abrasion using 50 µm Al2O3 particles and 50 µm silica coated Al2O3 are applied to the upper and lower surfaces of the specimens. Each specimen is held under a pressure of 30 psi for 15 seconds at a direction perpendicular to the surface and at a distance of 30mm with an airborne particle abrasion device for the specimens in the airborne particle abraded groups. Heat treatments were performed at a starting temperature of 500°C, heating rate of 100°c/ min, ending at a temperature of 1000°C and 15 minutes holding time without vacuum for the specimens in the group 4, 5, 9 and 10. Airborne-particle abrasion mimicking the preparation for cementation was applied to the lower surfaces with 50 µm alumina and silica coated alumina particles for the specimens in the groups 6, 7, 8, 9 and 10. The specimens were cleaned for 15 minutes in an ultrasonic bath containing distilled water. To determine the fracture strength, a disc of 10 mm diameter was used to place 3 hardened steel balls of 3 mm diameter separated each other by 120 degrees (described in the ISO standard 6872 for dental ceramics). Each specimen was centrally placed on this disc. The lower surface mimicking the internal surface of zirconia was the tension side, facing the supporting device testing, while the upper surface mimicking the external surface of the zirconia core was loaded with a flat punch (1 mm in diameter). A universal testing machine was used to perform the test at a cross head speed of 1mm/min. The failure stress was calculated with the equation listed in ISO 6872. The results were then statistically analyzed. A post hoc test was used for pair wise comparisons. Result: The mean fracture strength of commercially available Zirconia Ceramill (AMANNGIRBACH) showed a significant higher value compared to the ZR-White (UPCERA) Zirconia (Pcementing surface (50 µm Al2O3) was significantly higher than the heat treated and the control group. Airborne particle

  3. Investigation of cutting-induced damage in CMC bend bars

    Directory of Open Access Journals (Sweden)

    Neubrand A.

    2015-01-01

    Full Text Available Ceramic matrix composites (“CMC” with a strong fibre-matrix interface can be made damage-tolerant by introducing a highly porous matrix. Such composites typically have only a low interlaminar shear strength, which can potentially promote damage when preparing specimens or components by cutting. In order to investigate the damage induced by different cutting methods, waterjet cutting with and without abrasives, laser-cutting, wire eroding and cutoff grinding were used to cut plates of two different CMCs with a matrix porosity up to 35 vol.-%. For each combination of cutting method and composite, the flexural and interlaminar shear strength of the resulting specimens was determined. Additionally, the integrity of the regions near the cut surfaces was investigated by high-resolution x-ray computer tomography. It could be shown that the geometrical quality of the cut is strongly affected by the cutting method employed. Laser cut and waterjet cut specimens showed damage and delaminations near the cut surface leading to a reduced interlaminar shear strength of short bend bars in extreme cases.

  4. Finishing of display glass for mobile electronics using 3M Trizact diamond tile abrasive pads

    Science.gov (United States)

    Zheng, Lianbin; Fletcher, Tim; Na, Tee Koon; Sventek, Bruce; Romero, Vince; Lugg, Paul S.; Kim, Don

    2010-10-01

    This paper will describe a new method being used during the finishing of glass displays for mobile electronics including mobile hand held devices and notebook computers. The new method consists of using 3M TrizactTM Diamond Tile Abrasive Pads. TrizactTM Diamond Tile is a structured fixed abrasive grinding technology developed by 3M Company. The TrizactTM Diamond Tile structured abrasive pad consists of an organic (polymeric binder) - inorganic (abrasive mineral, i.e., diamond) composite that is used with a water-based coolant. TrizactTM Diamond Tile technology can be applied in both double and single side grinding applications. A unique advantage of TrizactTM Diamond Tile technology is the combination of high stock removal and low sub-surface damage. Grinding results will be presented for both 9 micron and 20 micron grades of TrizactTM Diamond Tile abrasive pads used to finish several common display glasses including Corning GorillaTM glass and Soda Lime glass.

  5. Cryogenically assisted abrasive jet micromachining of polymers

    International Nuclear Information System (INIS)

    Getu, H; Papini, M; Spelt, J K

    2008-01-01

    The abrasive jet micromachining (AJM) of elastomers and polymers such as polydimethylsiloxane (PDMS), acrylonitrile butadiene styrene (ABS) and polytetrafluoroethylene (PTFE) for use in micro-fluidic devices was found to be very slow or impossible at room temperature. To enhance the material removal rate in such materials, a stream of liquid nitrogen (LN 2 ) was injected into the abrasive jet, cooling the target to cryogenic temperatures. Erosion rate measurements on the three polymeric materials (PDMS, ABS and PTFE) with and without the use of LN 2 were compared along with the profiles of micromachined channels and holes. It was found that the use of LN 2 cooling caused brittle erosion in PDMS, allowing it to be micromachined successfully. An erosion rate increase was also observed in PTFE and ABS at high and intermediate impact angles. The use of LN 2 also was found to reduce particle embedding

  6. Finishing aeronautical planetary herringbone gear wheels in container vibrating smoothing machine

    Directory of Open Access Journals (Sweden)

    Jacek MICHALSKI

    2015-12-01

    Full Text Available The paper presents the technological process of abrasive-chemical machining wheel bearing surface of the cylindrical herringbone gears planetary gear in vibrating container smoothing machine according to Isotropic Finishing ISF® technology of the REM Chemicals Inc. company. Gear wheels are made of stainless Pyrowear 53 and subjected to carburizing, hardening, cold working and low tempering. The change in value of deviation indicators for the kinematic accuracy, smoothness and geometric structure of the machined surfaces of the gear teeth after smoothing compared with the contoured grinding were analyzed. The findings are different a characteristic performance on the surface of the tooth side along the outline, especially with a higher value at the head of the tooths. This creates a need for appropriate modification of the lateral surface of the teeth in the process of contoured grinding. The results of the mechanical strength of the samples gear wheel after the smoothing process and evaluating the hydrogen embrittlement are presented.

  7. Validation of Proposed Metrics for Two-Body Abrasion Scratch Test Analysis Standards

    Science.gov (United States)

    Street, Kenneth W., Jr.; Kobrick, Ryan L.; Klaus, David M.

    2013-01-01

    Abrasion of mechanical components and fabrics by soil on Earth is typically minimized by the effects of atmosphere and water. Potentially abrasive particles lose sharp and pointed geometrical features through erosion. In environments where such erosion does not exist, such as the vacuum of the Moon, particles retain sharp geometries associated with fracturing of their parent particles by micrometeorite impacts. The relationship between hardness of the abrasive and that of the material being abraded is well understood, such that the abrasive ability of a material can be estimated as a function of the ratio of the hardness of the two interacting materials. Knowing the abrasive nature of an environment (abrasive)/construction material is crucial to designing durable equipment for use in such surroundings. The objective of this work was to evaluate a set of standardized metrics proposed for characterizing a surface that has been scratched from a two-body abrasion test. This is achieved by defining a new abrasion region termed Zone of Interaction (ZOI). The ZOI describes the full surface profile of all peaks and valleys, rather than just measuring a scratch width. The ZOI has been found to be at least twice the size of a standard width measurement; in some cases, considerably greater, indicating that at least half of the disturbed surface area would be neglected without this insight. The ZOI is used to calculate a more robust data set of volume measurements that can be used to computationally reconstruct a resultant profile for de tailed analysis. Documenting additional changes to various surface roughness par ameters also allows key material attributes of importance to ultimate design applications to be quantified, such as depth of penetration and final abraded surface roughness. Further - more, by investigating the use of custom scratch tips for specific needs, the usefulness of having an abrasion metric that can measure the displaced volume in this standardized

  8. Bio-active glass air-abrasion has the potential to remove resin composite restorative material selectively

    International Nuclear Information System (INIS)

    Milly, Hussam; Andiappan, Manoharan; Thompson, Ian; Banerjee, Avijit

    2014-01-01

    The aims of this study were to assess: (a) the chemistry, morphology and bioactivity of bio-active glass (BAG) air-abrasive powder, (b) the effect of three air-abrasion operating parameters: air pressure, powder flow rate (PFR) and the abrasive powder itself, on the selective removal of resin composite and (c) the required “time taken”. BAG abrasive particles were characterised using scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and Fourier-transform infrared spectroscopy (FTIR). Standardised resin composite restorations created within an enamel analogue block (Macor™) in vitro, were removed using air-abrasion undersimulated clinical conditions. 90 standardised cavities were scanned before and after resin composite removal using laser profilometry and the volume of the resulting 3D images calculated. Multilevel linear model was used to identify the significant factors affecting Macor™ removal. BAG powder removed resin composite more selectively than conventional air-abrasion alumina powder using the same operating parameters (p < 0.001) and the effect of altering the unit's operating parameters was significant (p < 0.001). In conclusion, BAG powder is more efficient than alumina in the selective removal of resin composite particularly under specific operating parameters, and therefore may be recommended clinically as a method of preserving sound enamel structure when repairing and removing defective resin composite restorations.

  9. Dynamic Mechanical Analysis and Three-Body Abrasive Wear Behaviour of Thermoplastic Copolyester Elastomer Composites

    Directory of Open Access Journals (Sweden)

    Hemanth Rajashekaraiah

    2014-01-01

    Full Text Available Various amounts of short fibers (glass and carbon and particulate fillers like polytetrafluoroethylene (PTFE, silicon carbide (SiC, and alumina (Al2O3 were systematically introduced into the thermoplastic copolyester elastomer (TCE matrix for reinforcement purpose. The mechanical properties such as storage modulus, loss modulus, and Tan δ by dynamic mechanical analysis (DMA and three-body abrasive wear performance on a dry sand rubber wheel abrasion tester have been investigated. For abrasive wear study, the experiments were planned according to L27 orthogonal array by considering three factors and three levels. The complex moduli for TCE hybrid composites were pushed to a higher level relative to the TCE filled PTFE composite. At lower temperatures (in the glassy region, the storage modulus increases with increase in wt.% of reinforcement (fiber + fillers and the value is maximum for the composite with 40 wt.% reinforcement. The loss modulus and damping peaks were also found to be higher by the incorporation of SiC and Al2O3 microfillers. The routine abrasive wear test results indicated that TCE filled PTFE composite exhibited better abrasion resistance. Improvements in the abrasion resistance, however, have not been achieved by short-fiber and particlaute filler reinforcements. From the Taguchi’s experimental findings, optimal combination of control factors were obtained for minimum wear volume and also predictive correlations were proposed. Further, the worn surface morphology of the samples was discussed.

  10. Material Abrasive Water Jet Cutting Investigation by Means Accompanying Physical Phenomena

    OpenAIRE

    Kinik, D.; Gánovská, B.; Hloch, S. (Sergej); Cárach, J.; Lehocká, D.

    2013-01-01

    The paper deals with the indirect ways of on-line monitoring of technological processes of cutting. The objective of the study is a design of on-line monitoring system for the cutting technology through an abrasive water jet. In cutting by the abrasive water jet two parallel phenomena are formed. The phenomena are represented by generated surface and vibrations. For the purpose of proving of the hypothetical assumptions on dependence of generated surface quality on vibrations the ex...

  11. Parametric optimization of ultrasonic machining process using gravitational search and fireworks algorithms

    Directory of Open Access Journals (Sweden)

    Debkalpa Goswami

    2015-03-01

    Full Text Available Ultrasonic machining (USM is a mechanical material removal process used to erode holes and cavities in hard or brittle workpieces by using shaped tools, high-frequency mechanical motion and an abrasive slurry. Unlike other non-traditional machining processes, such as laser beam and electrical discharge machining, USM process does not thermally damage the workpiece or introduce significant levels of residual stress, which is important for survival of materials in service. For having enhanced machining performance and better machined job characteristics, it is often required to determine the optimal control parameter settings of an USM process. The earlier mathematical approaches for parametric optimization of USM processes have mostly yielded near optimal or sub-optimal solutions. In this paper, two almost unexplored non-conventional optimization techniques, i.e. gravitational search algorithm (GSA and fireworks algorithm (FWA are applied for parametric optimization of USM processes. The optimization performance of these two algorithms is compared with that of other popular population-based algorithms, and the effects of their algorithm parameters on the derived optimal solutions and computational speed are also investigated. It is observed that FWA provides the best optimal results for the considered USM processes.

  12. Chemical mechanical polishing of hard disk substrate with {alpha}-alumina-g-polystyrene sulfonic acid composite abrasive

    Energy Technology Data Exchange (ETDEWEB)

    Lei Hong, E-mail: hong_lei2005@yahoo.com.c [Research Center of Nano-science and Nano-technology, Shanghai University, Shanghai 200444 (China); Bu Naijing; Chen Ruling; Hao Ping [Research Center of Nano-science and Nano-technology, Shanghai University, Shanghai 200444 (China); Neng Sima; Tu Xifu; Yuen Kwok [Shenzhen Kaifa Magnetic Recording Co., LTD, Shenzhen, 518035 (China)

    2010-05-03

    {alpha}-Alumina-g-polystyrene sulfonic acid ({alpha}-Al{sub 2}O{sub 3}-g-PSS) composite abrasive was prepared by surface activation, graft polymerization and sulfonation, successively. The composition, dispersibility and morphology of the product were characterized by Fourier transformed infrared spectroscopy, laser particle size analysis and scanning electron microscopy, respectively. The chemical mechanical polishing (CMP) performances of the composite abrasive on hard disk substrate with nickel-phosphorous plating were investigated. The microscopy images of the polished surfaces show that {alpha}-Al{sub 2}O{sub 3}-g-PSS composite abrasive results in improved CMP and post-CMP cleaning performances than pure {alpha}-alumina abrasive under the same testing conditions.

  13. Experimental Evidence that Abrasion of Carbonate Sand is a Significant Source of Carbonate Mud

    Science.gov (United States)

    Trower, L.; Kivrak, L.; Lamb, M. P.; Fischer, W. W.

    2017-12-01

    Carbonate mud is a major sedimentary component of modern and ancient tropical carbonate environments, yet its enigmatic origin remains debated. Early views on the origin of carbonate mud considered the abrasion of carbonate sand during sediment transport as a possible mechanism. In recent decades, however, prevailing thought has generally settled on a binary explanation: 1) precipitation of aragonite needles within the water column, and 2) post-mortem dispersal of biological aragonite, in particular from algae, and perhaps aided by fish. To test these different hypotheses, we designed a model and a set of laboratory experiments to quantify the rates of mud production associated with sediment transport. We adapted a recent model of ooid abrasion rate to predict the rate of mud production by abrasion of carbonate sand as a function of grain size and sediment transport mode. This model predicts large mud production rates, ranging from 103 to 104 g CaCO3/m2/yr for typical grain sizes and transport conditions. These rate estimates are at least one order of magnitude more rapid than the 102 g CaCO3/m2/yr estimates for other mechanisms like algal biomineralization, indicating that abrasion could produce much larger mud fluxes per area as other mechanisms. We tested these estimates using wet abrasion mill experiments; these experiments generated mud through mechanical abrasion of both ooid and skeletal carbonate sand for grain sizes ranging from 250 µm to >1000 µm over a range of sediment transport modes. Experiments were run in artificial seawater, including a series of controls demonstrating that no mud was produced via homogenous nucleation and precipitation in the absence of sand. Our experimental rates match the model predictions well, although we observed small systematic differences in rates between abrasion ooid sand and skeletal carbonate sand that likely stems from innate differences in grain angularity. Electron microscopy of the experimental products revealed

  14. Liquid abrasive grit blasting literature search and decontamination scoping tests report

    International Nuclear Information System (INIS)

    Ferguson, R.L.

    1993-10-01

    Past decontamination and solvent recovery activities at the Idaho Chemical Processing Plant (ICPP) have resulted in the accumulation of 1.5 million gallons of radioactively contaminated sodium-bearing liquid waste. Future decontamination activities at the ICPP could result in the production of 5 million gallons or more of sodium-bearing waste using the current decontamination techniques of chemical/water flushes and steam jet cleaning. With the curtailment of reprocessing at the ICPP, the focus of decontamination is shifting from maintenance for continued operation of the facilities to decommissioning. As decommissioning plans are developed, new decontamination methods must be used which result in higher decontamination factors and generate lower amounts of sodium-bearing secondary waste. The primary initiative of the WINCO Decontamination Development Program is the development of methods to eliminate/minimize the use of sodium-bearing decontamination chemicals. One method that was chosen for cold scoping studies during FY-93 was abrasive grit blasting. Abrasive grit blasting has been used in many industries and a vast amount of research and development has already been conducted. However, new grits, process improvements and ICPP applicability was investigated. This evaluation report is a summary of the research efforts and scoping tests using the liquid abrasive grit blasting decontamination technique. The purpose of these scoping tests was to determine the effectiveness of three different abrasive grits: plastic beads, glass beads and alumina oxide

  15. Bio-active glass air-abrasion has the potential to remove resin composite restorative material selectively

    Energy Technology Data Exchange (ETDEWEB)

    Milly, Hussam [Biomaterials, Biomimetics and Biophotonics Research Group, Kings College London Dental Institute at Guy' s Hospital, King' s Health Partners, London (United Kingdom); Andiappan, Manoharan [Unit of Dental Public Health, Kings College London Dental Institute at Guy' s Hospital, King' s Health Partners, London (United Kingdom); Thompson, Ian [Biomaterials, Biomimetics and Biophotonics Research Group, Kings College London Dental Institute at Guy' s Hospital, King' s Health Partners, London (United Kingdom); Banerjee, Avijit, E-mail: avijit.banerjee@kcl.ac.uk [Biomaterials, Biomimetics and Biophotonics Research Group, Kings College London Dental Institute at Guy' s Hospital, King' s Health Partners, London (United Kingdom); Unit of Conservative Dentistry, King' s College London Dental Institute at Guy' s Hospital, King' s Health Partners, London (United Kingdom)

    2014-06-01

    The aims of this study were to assess: (a) the chemistry, morphology and bioactivity of bio-active glass (BAG) air-abrasive powder, (b) the effect of three air-abrasion operating parameters: air pressure, powder flow rate (PFR) and the abrasive powder itself, on the selective removal of resin composite and (c) the required “time taken”. BAG abrasive particles were characterised using scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and Fourier-transform infrared spectroscopy (FTIR). Standardised resin composite restorations created within an enamel analogue block (Macor™) in vitro, were removed using air-abrasion undersimulated clinical conditions. 90 standardised cavities were scanned before and after resin composite removal using laser profilometry and the volume of the resulting 3D images calculated. Multilevel linear model was used to identify the significant factors affecting Macor™ removal. BAG powder removed resin composite more selectively than conventional air-abrasion alumina powder using the same operating parameters (p < 0.001) and the effect of altering the unit's operating parameters was significant (p < 0.001). In conclusion, BAG powder is more efficient than alumina in the selective removal of resin composite particularly under specific operating parameters, and therefore may be recommended clinically as a method of preserving sound enamel structure when repairing and removing defective resin composite restorations.

  16. Maintenance and preservation of concrete structures. Report 3: Abrasion-erosion resistance of concrete

    Science.gov (United States)

    Liu, T. C.

    1980-07-01

    This report describes a laboratory test program on abrasion-erosion resistance of concrete, including the development of a new underwater abrasion-erosion test method. This program was designed to evaluate the relative abrasion-erosion resistance of various materials considered for use in the repair of erosion-damaged concrete structures. The test program encompassed three concrete types (conventional concrete, fiber-reinforced concrete, and polymer concrete); seven aggregate types (limestone, chert, trap rock, quartzite, granite, siliceous gravel, and slag); three principal water-cement rations (0.72, 0.54, and 0.40); and six types of surface treatment (vacuum, polyurethane coating, acrylic mortar coating, epoxy mortar coating, furan resin mortar coating, and iron aggregate topping). A total of 114 specimens made from 41 batches of concrete was tested. Based on the test data obtained, a comprehensive evaluation of the effects of various parameters on the abrasion-erosion resistance of concrete was presented. Materials suitable for use in the repair of erosion-damaged concrete structures were recommended. Additional work to correlate the reported findings with field performance was formulated.

  17. Abrasive Wear Resistance of the Iron- and WC-based Hardfaced Coatings Evaluated with Scratch Test Method

    Directory of Open Access Journals (Sweden)

    A. Vencl

    2013-06-01

    Full Text Available Abrasive wear is one of the most common types of wear, which makesabrasive wear resistance very important in many industries. Thehard facing is considered as useful and economical way to improve theperformance of components submitted to severe abrasive wear conditions, with wide range of applicable filler materials. The abrasive wear resistance of the three different hardfaced coatings (two iron‐based and one WC‐based, which were intended to be used for reparation of the impact plates of the ventilation mill, was investigated and compared. Abrasive wear tests were carried‐out by using the scratch tester under the dry conditions. Three normal loads of 10, 50 and 100 N and the constant sliding speed of 4 mm/s were used. Scratch test was chosen as a relatively easy and quick test method. Wear mechanism analysis showed significant influence of the hardfaced coatings structure, which, along with hardness, has determined coatings abrasive wear resistance.

  18. Pre-polishing on a CNC platform with bound abrasive contour tools

    Science.gov (United States)

    Schoeffer, Adrienne E.

    2003-05-01

    Deterministic micorgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-51.tm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an OptiproTM CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.

  19. Experimental Study on Layered Ice Bonded Abrasive Polishing of Glass-ceramics

    Directory of Open Access Journals (Sweden)

    Yuli SUN

    2014-12-01

    Full Text Available Layered ice bonded abrasive tools (LIBAT is a new kind of one which not only has the ability of lapping and polishing but also has the effect of self-dressing. In this paper, two kinds of layered ice bonded abrasive tools were designed and manufactured. Experimental studies on layered ice bonded abrasive (LIBA polishing of glass-ceramics were conducted. The results show that the surface topography of glass-ceramics polished by micro α-Al2O3-nano α-Al2O3 LIBAT is better than that of polished by micro α-Al2O3-nano SiO2 LIBAT. The surface roughness Sa of glass-ceramics polished by the two kinds of LIBAT is at the nanometer scale. The reasons of this phenomenon were analyzed. The experimental results illustrate that the LIBAT shows good effect and can be used in production practice. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6149

  20. HYDRO-ABRASIVE RESISTANCE AND MECHANICAL PROPERTIES OF CONCRETE WITH ADDED FLY ASH

    OpenAIRE

    Ristić, Nenad; Grdić, Zoran; Topličić-Ćurčić, Gordana

    2015-01-01

    The durability of hydraulic engineering structures mostly depends on the resistance of their concrete surfaces to mechanical abrasion. In this paper, we study the hydro-abrasive resistance and mechanical properties of concrete in which cement is partially replaced with fly ash in various proportions. To evaluate these concretes, we measured their compressive strength, flexural strength, static modulus of elasticity, ultrasound velocity through concrete, and sclerometer rebound. The hydro-abra...

  1. Effects of hardness of abrasive grains on surface roughness of work piece in PVA bonded grinding wheel

    International Nuclear Information System (INIS)

    Nitta, S.; Takata, A.; Ishizaki, K.

    2000-01-01

    The purpose of this study is to clarify relation between hardness of abrasive grains and surface roughness of work piece in the case of PVA (Polyvinyl alcohol) bonded grinding wheels. Two PVA bonded grinding wheels; with diamond or silicon carbide as abrasive grains and grinding of glass and aluminum alloy was performed. The PVA bonded grinding wheels The PVA bonded grinding wheel with silicon carbide could not grind the glass. Because insufficiency in hardness, the PVA bonded grinding wheel with the diamond abrasive grains caused deep scratch on the aluminum alloy. It was found that the final surface roughness of the work piece was not proportional to the hardness of abrasive grains. The suitable hardness of abrasive grains will be obtained by the hardness of work piece. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  2. Machining of high performance workpiece materials with CBN coated cutting tools

    International Nuclear Information System (INIS)

    Uhlmann, E.; Fuentes, J.A. Oyanedel; Keunecke, M.

    2009-01-01

    The machining of high performance workpiece materials requires significantly harder cutting materials. In hard machining, the early tool wear occurs due to high process forces and temperatures. The hardest known material is the diamond, but steel materials cannot be machined with diamond tools because of the reactivity of iron with carbon. Cubic boron nitride (cBN) is the second hardest of all known materials. The supply of such PcBN indexable inserts, which are only geometrically simple and available, requires several work procedures and is cost-intensive. The development of a cBN coating for cutting tools, combine the advantages of a thin film system and of cBN. Flexible cemented carbide tools, in respect to the geometry can be coated. The cBN films with a thickness of up to 2 μm on cemented carbide substrates show excellent mechanical and physical properties. This paper describes the results of the machining of various workpiece materials in turning and milling operations regarding the tool life, resultant cutting force components and workpiece surface roughness. In turning tests of Inconel 718 and milling tests of chrome steel the high potential of cBN coatings for dry machining was proven. The results of the experiments were compared with common used tool coatings for the hard machining. Additionally, the wear mechanisms adhesion, abrasion, surface fatigue and tribo-oxidation were researched in model wear experiments.

  3. Effects of Load and Speed on Wear Rate of Abrasive Wear for 2014 Al Alloy

    Science.gov (United States)

    Odabas, D.

    2018-01-01

    In this paper, the effects of the normal load and sliding speed on wear rate of two-body abrasive wear for 2014 Al Alloy were investigated in detail. In order to understand the variation in wear behaviour with load and speed, wear tests were carried out at a sliding distance of 11 m, a speed of 0.36 m/s, a duration of 30 s and loads in the range 3-11 N using 220 grit abrasive paper, and at a speed range 0.09-0.90 m/s, a load of 5 N and an average sliding distance of 11 m using abrasive papers of 150 grit size under dry friction conditions. Before the wear tests, solution treatment of the 2014 Al alloy was carried out at temperatures of 505 and 520 °C for 1 h in a muffle furnace and then quenched in cold water at 15 °C. Later, the ageing treatment was carried out at 185 °C for 8 h in the furnace. Generally, wear rate due to time increased linearly and linear wear resistance decreased with increasing loads. However, the wear rate was directly proportional to the load up to a critical load of 7 N. After this load, the slope of the curves decreased because the excessive deformation of the worn surface and the instability of the abrasive grains began to increase. When the load on an abrasive grain reaches a critical value, the groove width is about 0.17 of the abrasive grain diameter, and the abrasive grains begin to fail. The wear rate due to time increased slightly as the sliding speed increased in the range 0.09-0.90 m/s. The reason for this is that changes arising from strain rate and friction heating are expected with increasing sliding speeds.

  4. Controls on wind abrasion patterns through a fractured bedrock landscape

    Science.gov (United States)

    Perkins, J. P.; Finnegan, N. J.

    2017-12-01

    Wind abrasion is an important geomorphic process for understanding arid landscape evolution on Earth and interpreting the post-fluvial history of Mars. Both the presence and orientation of wind-abraded landforms provide potentially important constraints on paleo-climatic conditions; however, such interpretations can be complicated by lithologic and structural heterogeneity. To explore the influence of pre-existing structure on wind abrasion, we exploit a natural experiment along the 10.2 Ma Lower Rio San Pedro ignimbrite in northern Chile. Here, a 3.2 Ma andesite flow erupted from Cerro de las Cuevas and deposited atop the ignimbrite, supplying wind-transportable sediment and initiating a phase of downwind abrasion. Additionally, the lava flow provides a continually varying degree of upwind topographic shielding along the ignimbrite that is reflected in a range of surface morphologies. Where fully shielded the ignimbrite surface is partially blanketed by sediment. However, as relief decreases the surface morphology shifts from large polygonal structures that emerge due to the concentration of wind abrasion along pre-existing fracture sets, to polygons that are bisected by wind-parallel grooves that cross-cut fracture sets, to linear sets of yardangs. We reconstruct the ignimbrite surface using a high-resolution digital elevation model, and calculate erosion rates ranging from 0.002 to 0.45 mm/kyr that vary strongly with degree of topographic shielding (R2 = 0.97). We use measured abrasion rates together with nearby weather station data to estimate the nondimensional Rouse number and Inertial Parameter for a range of particle sizes. From these calculations, we hypothesize that the change from fracture-controlled to flow-controlled morphology reflects increases in the grain size and inertia of particles in the suspension cloud. Where the ignimbrite experiences persistent high winds, large particles may travel in suspension and are largely insensitive to topographic

  5. PARAMETER DETERMINATION FOR ADDITIONAL OPERATING FORCE MECHANISM IN DEVICE FOR PNEUMO-CENTRIFUGAL MACHINING OF BALL-SHAPED WORKPIECES

    Directory of Open Access Journals (Sweden)

    A. A. Sukhotsky

    2014-01-01

    Full Text Available The paper describes development of the methodology for optimization of parameters for an additional operating force mechanism in a device for pneumo-centrifugal machining of glass balls. Specific feature in manufacturing glass balls for micro-optics in accordance with technological process for obtaining ball-shaped workpieces is grinding and polishing of spherical surface in a free state. In this case component billets of future balls are made in the form of cubes and the billets are given preliminary a form of ball with the help of rough grinding. An advanced method for obtaining ball-shaped work-pieces from brittle materials is a pneumocentrifugal machining. This method presupposes an application of two conic rings with abrasive working surfaces which are set coaxially with large diameters to each other and the billets are rolled along these rings. Rotation of the billets is conveyed by means of pressure medium.The present devices for pneumo-centrifugal machining are suitable for obtaining balls up to 6 mm. Machining of the work-pieces with full spherical surfaces and large diameter is non-productive due to impossibility to ensure a sufficient force on the billet in the working zone. For this reason the paper proposes a modified device where an additional force on the machined billet is created by upper working disc that is making a reciprocating motion along an axis of abrasive conic rings. The motion is realized with the help of a cylindrical camshaft mechanism in the form of a ring with a profile working end face and the purpose of present paper is to optimize parameters of the proposed device.The paper presents expressions for calculation of constitutive parameters of the additional operating force mechanism including parameters of loading element motion, main dimensions of the additional operating force mechanism and parameters of a profile element in the additional operating force mechanism.Investigation method is a mathematical

  6. Nuclear-chemical methods in a hard tooth tissue abrasion study

    International Nuclear Information System (INIS)

    Gosman, A.; Spevacek, V.; Konicek, J.; Vopalka, D.; Housova, D.; Dolezalova, L.

    1999-01-01

    The advanced method consists in implantation-labelling of the thin surface layers of the solid objects, e.g. hard tooth tissue, by atoms of suitable natural or artificial radionuclides. Nuclides from the uranium series were implanted into the surface by using nuclear recoil effect at alpha decay of 226 Ra to 222 Rn, alpha decay of 222 Rn to RaA, alpha decay of RaA to RaB (beta-emitter) and further alpha or beta emitters. With regard to chosen alpha detection and to the half-lives of the radionuclides, there was actually measured the activity of 222 Rn, RaA and RaC' in the thin surface layer. This was followed by the laboratory simulation of the abrasion in the system of 'toothbrush - various suspensions of the tooth-pastes - hard tooth tissue (or material standard - ivory)' in specially designed device - the dentoabrasion meter. The activities of the tissue surface measured before and after abrasion were used for calculations of the relative drop of the surface activity. On this basis the influence of various tooth-pastes containing various abrasive substances was determined. (author)

  7. Microscopic machining mechanism of polishing based on vibrations of liquid

    International Nuclear Information System (INIS)

    Huang, Z G; Guo, Z N; Chen, X; Yu, Z Q; Yu, T M; Lee, W B

    2007-01-01

    A molecular dynamics method has been applied to study the mechanism of polishing based on vibrations of liquid. Movements of polishing particles and formations of impact dents are simulated and discussed. The abrasive effect between particle and machined substrate is evaluated empirically. Polishing qualities, including roughness and fractal character under multiple impacts, are obtained by numerical methods. Results show that the particle will vibrate and roll viscously on the substrate. Press, tear and self-organization effects will be responsible for the formation of impact dents. Simulation results are compared with experimental data to verify the conclusions

  8. Air-propelled abrasive grit can damage the perennial weed, quackgrass, Elytrigia repens (L.) Nevski

    Science.gov (United States)

    New techniques are needed to control quackgrass in organic crops. With greater than or equal to 2 applications of abrasive air-propelled (800 kPa) corncob grit to 15 cm tall quackgrass tillers, regrowth was minimal at 5 weeks after treatment. Abrasive grits may be effective tools to help manage pere...

  9. Thermal annealing and ionic abrasion in ZnTe

    International Nuclear Information System (INIS)

    Bensahel, D.

    1975-01-01

    Thermal annealing of the ZnTe crystal is studied first in order to obtain information on the aspect of the penetration profile. Ionic abrasion is then investigated to find out whether it produces the same effects as ionic implantation, especially for luminescence [fr

  10. Assessment of mechanical and three-body abrasive wear peculiarity ...

    Indian Academy of Sciences (India)

    directional fabric reinforcement offers a unique solution for ... showed good performance to the three-body abrasive wear. .... plied by the Pioneer Chemical Company, Delhi, India. ..... Theoretical and measured densities of composites, along.

  11. Numerical simulation of polishing U-tube based on solid-liquid two-phase

    Science.gov (United States)

    Li, Jun-ye; Meng, Wen-qing; Wu, Gui-ling; Hu, Jing-lei; Wang, Bao-zuo

    2018-03-01

    As the advanced technology to solve the ultra-precision machining of small hole structure parts and complex cavity parts, the abrasive grain flow processing technology has the characteristics of high efficiency, high quality and low cost. So this technology in many areas of precision machining has an important role. Based on the theory of solid-liquid two-phase flow coupling, a solid-liquid two-phase MIXTURE model is used to simulate the abrasive flow polishing process on the inner surface of U-tube, and the temperature, turbulent viscosity and turbulent dissipation rate in the process of abrasive flow machining of U-tube were compared and analyzed under different inlet pressure. In this paper, the influence of different inlet pressure on the surface quality of the workpiece during abrasive flow machining is studied and discussed, which provides a theoretical basis for the research of abrasive flow machining process.

  12. Turning of wood plastic composites by water jet and abrasive water jet

    OpenAIRE

    Hutyrová, Z.; Ščučka, J. (Jiří); Hloch, S. (Sergej); Hlaváček, P. (Petr); Zeleňák, M. (Michal)

    2015-01-01

    The paper deals with the verification of suitability of water jet and abrasive water jet application for the disintegration of rotating samples of wood plastic composites (WPCs) with diameter d=36 mm. The influence of selected technological factors (traverse speed of cutting head v [mm/ min] and size of abrasive particles [MESH]) on the topography of resulting surfaces has in particular been studied. Surface topography and quality have been assessed using the methods of optical and co...

  13. Monitoring of the Abrasion Processes (by the Example of Alakol Lake, Republic of Kazakhstan)

    Science.gov (United States)

    Abitbayeva, Ainagul; Valeyev, Adilet; Yegemberdiyeva, Kamshat; Assylbekova, Aizhan; Ryskeldieva, Aizhan

    2016-01-01

    The purpose of the study is to analyze the abrasion processes in the regions of dynamically changing Alakol lake shores. Using the field method, methods of positioning by the GPS receiver and interpretation of remote sensing data, the authors determined that abrasion processes actively contributed to the formation the modern landscape, causing the…

  14. Gingival abrasion and recession in manual and oscillating-rotating power brush users.

    Science.gov (United States)

    Rosema, N A M; Adam, R; Grender, J M; Van der Sluijs, E; Supranoto, S C; Van der Weijden, G A

    2014-11-01

    To assess gingival recession (GR) in manual and power toothbrush users and evaluate the relationship between GR and gingival abrasion scores (GA). This was an observational (cross-sectional), single-centre, examiner-blind study involving a single-brushing exercise, with 181 young adult participants: 90 manual brush users and 91 oscillating-rotating power brush users. Participants were assessed for GR and GA as primary response variables. Secondary response variables were the level of gingival inflammation, plaque score reduction and brushing duration. Pearson correlation was used to describe the relationship between number of recession sites and number of abrasions. Prebrushing (baseline) and post-brushing GA and plaque scores were assessed and differences analysed using paired tests. Two-sample t-test was used to analyse group differences; ancova was used for analyses of post-brushing changes with baseline as covariate. Overall, 97.8% of the study population had at least one site of ≥1 mm of gingival recession. For the manual group, this percentage was 98.9%, and for the power group, this percentage was 96.7% (P = 0.621). Post-brushing, the power group showed a significantly smaller GA increase than the manual group (P = 0.004); however, there was no significant correlation between number of recession sites and number of abrasions for either group (P ≥ 0.327). Little gingival recession was observed in either toothbrush user group; the observed GR levels were comparable. Lower post-brushing gingival abrasion levels were seen in the power group. There was no correlation between gingival abrasion as a result of brushing and the observed gingival recession following use of either toothbrush. © 2014 The Authors International Journal of Dental Hygiene Published by John Wiley & Sons Ltd.

  15. Selection of parameters for advanced machining processes using firefly algorithm

    Directory of Open Access Journals (Sweden)

    Rajkamal Shukla

    2017-02-01

    Full Text Available Advanced machining processes (AMPs are widely utilized in industries for machining complex geometries and intricate profiles. In this paper, two significant processes such as electric discharge machining (EDM and abrasive water jet machining (AWJM are considered to get the optimum values of responses for the given range of process parameters. The firefly algorithm (FA is attempted to the considered processes to obtain optimized parameters and the results obtained are compared with the results given by previous researchers. The variation of process parameters with respect to the responses are plotted to confirm the optimum results obtained using FA. In EDM process, the performance parameter “MRR” is increased from 159.70 gm/min to 181.6723 gm/min, while “Ra” and “REWR” are decreased from 6.21 μm to 3.6767 μm and 6.21% to 6.324 × 10−5% respectively. In AWJM process, the value of the “kerf” and “Ra” are decreased from 0.858 mm to 0.3704 mm and 5.41 mm to 4.443 mm respectively. In both the processes, the obtained results show a significant improvement in the responses.

  16. Assessment of Rail Seat Abrasion Patterns and Environment

    Science.gov (United States)

    2012-05-01

    Rail seat abrasion (RSA) of concrete ties is manifested by the loss of material under the rail seat area and, in extreme cases, results in loss of rail clip holding power, reverse rail cant, and gauge widening. RSA was measured in several curves on t...

  17. Tribological properties of multifunctional coatings with Shape Memory Effect in abrasive wear

    Science.gov (United States)

    Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.

    2018-01-01

    The article gives research results of the abrasive wear process on samples made of Steel 1045, U10 and with applied composite surface layer "Nickel-Multicomponent material with Shape Memory Effect (SME) based on TiNi". For the tests we have chosen TiNiZr, which is in the martensite state and TiNiHfCu, which is in the austenitic state at the test temperature. The formation of the surface layer was carried out by high-speed oxygen-fuel deposition in a protective atmosphere of argon. In the wear test, Al2O3 corundum powder was used as an abrasive. It is shown that the wear rate of samples with a composite surface layer of multicomponent materials with SME is significantly reduced in comparison with the base, which is explained by reversible phase transformations of the surface layer with SME. After carrying out the additional surface plastic deformation (SPD), the resistance of the laminated composition to abrasion wear has greatly enhanced, due to the reinforcing effect of the SPD. It is recommended for products working in conditions of abrasive wear and high temperatures to use the complex formation technology of the surface composition "steel-nickel-material with high-temperature SME", including preparation of the substrate surface and the deposited material, high-speed spraying in the protective atmosphere of argon, followed by SPD.

  18. Resistance to abrasion of extrinsic porcelain esthetic characterization techniques.

    Science.gov (United States)

    Chi, Woo J; Browning, William; Looney, Stephen; Mackert, J Rodway; Windhorn, Richard J; Rueggeberg, Frederick

    2017-01-01

    A novel esthetic porcelain characterization technique involves mixing an appropriate amount of ceramic colorants with clear, low-fusing porcelain (LFP), applying the mixture on the external surfaces, and firing the combined components onto the surface of restorations in a porcelain oven. This method may provide better esthetic qualities and toothbrush abrasion resistance compared to the conventional techniques of applying color-corrective porcelain colorants alone, or applying a clear glaze layer over the colorants. However, there is no scientific literature to support this claim. This research evaluated toothbrush abrasion resistance of a novel porcelain esthetic characterization technique by subjecting specimens to various durations of simulated toothbrush abrasion. The results were compared to those obtained using the conventional characterization techniques of colorant application only or colorant followed by placement of a clear over-glaze. Four experimental groups, all of which were a leucite reinforced ceramic of E TC1 (Vita A1) shade, were prepared and fired in a porcelain oven according to the manufacturer's instructions. Group S (stain only) was characterized by application of surface colorants to provide a definitive shade of Vita A3.5. Group GS (glaze over stain) was characterized by application of a layer of glaze over the existing colorant layer as used for Group S. Group SL (stain+LFP) was characterized by application of a mixture of colorants and clear low-fusing add-on porcelain to provide a definitive shade of Vita A3.5. Group C (Control) was used as a control without any surface characterization. The 4 groups were subjected to mechanical toothbrushing using a 1:1 water-to-toothpaste solution for a simulated duration of 32 years of clinical use. The amount of wear was measured at time intervals simulating every 4 years of toothbrushing. These parameters were evaluated longitudinally for all groups as well as compared at similar time points among

  19. The effect of fiber treatment on abrasive wear properties of palm fiber reinforced epoxy composite

    Science.gov (United States)

    Razak, Muhammad Firdaus Abdul; Bakar, Mimi Azlina Abu; Kasolang, Salmiah; Ahmad, Mohamad Ali

    2017-12-01

    Oil palm industries generate at least 30 million tons of lignocellulosic biomass annually in the form of oil palm trunks (OPT), empty fruit bunches (EFB), oil palm fronds (OPF) and palm pressed fibres (PPF). The palm fiber is one of the natural fibers used as reinforcement in composite materials in order to decrease environmental issues and promotes utilization of renewable resources. This paper presents a study on the effect of alkaline treatment on wear properties of palm fiber reinforced epoxy resin composite. Abrasive wear testing was deployed to investigate the wear profile of the composite surfaces. Testing was carried out which focused on the effect of alkaline treatment to the palm fiber under different amounts of fiber loading i.e. 1 wt%, 3 wt%, 5 wt% and 7 wt%. The palm fibers were soaked into 6 % of alkaline solution or natrium hydroxide (NaOH) for 12 hours. The fiber was treated in order to remove amorphous materials such as hemicelluloses, lignins and pectins of the fiber. The wear test samples were fabricated using hand lay-up technique and cured at room temperature for 24 hours. Surface roughness of the composite material was also measured using the surface measuring instrument. Dry sliding wear test was performed at room temperature at a constant velocity of 1.4 m/s with a constant load of 10 N by using the Abrasion Test Machine. Result shows that 5 wt% and 7 wt% treated palm fiber loadings have better specific wear rate compared to lower fiber loadings. The finding of this study contributes towards material development and utilization in promoting `waste into wealth' which is in line with national aspiration.

  20. Abrasive wear behaviour of bio-active glass ceramics containing ...

    Indian Academy of Sciences (India)

    Unknown

    Technical Education Faculty, Mersin University, 33480 Tarsus, Turkey. MS received 18 October 2005; revised 22 March 2006. Abstract. In this study, abrasive ... process were used to produce bio-active ceramics. Fracture toughness of studied ...

  1. Multi-response optimization of machining characteristics in ultrasonic machining of WC-Co composite through Taguchi method and grey-fuzzy logic

    Directory of Open Access Journals (Sweden)

    Ravi Pratap Singh

    2018-01-01

    Full Text Available This article addresses the application of grey based fuzzy logic coupled with Taguchi’s approach for optimization of multi performance characteristics in ultrasonic machining of WC-Co composite material. The Taguchi’s L-36 array has been employed to conduct the experimentation and also to observe the influence of different process variables (power rating, cobalt content, tool geometry, thickness of work piece, tool material, abrasive grit size on machining characteristics. Grey relational fuzzy grade has been computed by converting the multiple responses, i.e., material removal rate and tool wear rate obtained from Taguchi’s approach into a single performance characteristic using grey based fuzzy logic. In addition, analysis of variance (ANOVA has also been attempted in a view to identify the significant parameters. Results revealed grit size and power rating as leading parameters for optimization of multi performance characteristics. From the microstructure analysis, the mode of material deformation has been observed and the critical parameters (i.e., work material properties, grit size, and power rating for the deformation mode have been established.

  2. New decontamination techniques: chemical gels, electropolishing and abrasives

    International Nuclear Information System (INIS)

    Brunel, G.; Gauchon, J.P.; Kervegant, Y.; Josso, F.

    1991-01-01

    The decommissioning of nuclear installations requires decontamination techniques that are efficient, simple to apply and producing a small amount of wastes, which are easy to process. With a view to this, three decontamination methods, which appear to be particularly suited to decommissioning, have been studied. These three methods are: - spraying of gels carrying chemical decontaminating agents, - electropolishing with a swab device, - abrasives blasting. After parametric tests on non-radioactive and active samples, the industrial application of these methods in the dismantling of installations was studied. These industrial applications concern: - decontamination of pieces coming from the German BWR ISAR by immersion and gel spraying, - decontamination, mainly by gel spraying, and dismantling of the BRENNILIS bituminisation plant, - decontamination of part of the cooling circuit of the graphite gas reactor G2 by gel spraying, - decontamination of a component of the FBR SuperPhenix, using dry abrasives blasting. During the first three applications, generated secondary wastes volume and form were determined. 33 tabs., 16 figs., 12 refs

  3. Micro-Abrasion Wear Resistance of Borided 316L Stainless Steel and AISI 1018 Steel

    Science.gov (United States)

    Reséndiz-Calderon, C. D.; Rodríguez-Castro, G. A.; Meneses-Amador, A.; Campos-Silva, I. E.; Andraca-Adame, J.; Palomar-Pardavé, M. E.; Gallardo-Hernández, E. A.

    2017-11-01

    The 316L stainless steel has high corrosion resistance but low tribological performance. In different industrial sectors (biomedical, chemical, petrochemical, and nuclear engineering), improvement upon wear resistance of 316L stainless steel components using accessible and inexpensive methods is critical. The AISI 1018 steel is widely used in industry, but its tribological performance is not the best among steels. Therefore, in this study the behavior of the borided 316L stainless steel and 1018 steel is evaluated under micro-abrasion wear. The boriding was carried out at 1223 K over 6 h of exposure time, resulting in a biphase layer composed of FeB/Fe2B phases. In order to evaluate Fe2B phase with no influence from FeB phase, AISI 1018 steel samples were borided at 1273 K for over 20 min and then diffusion annealed at 1273 K over 2 h to obtain a Fe2B mono-phase layer. Micro-abrasion wear resistance was evaluated by a commercial micro-abrasion testing rig using a mix of F-1200 SiC particles with deionized water as abrasive slurry. The obtained wear rates for FeB and Fe2B phases and for the 316L stainless steel were compared. Wear resistance of 316L stainless steel increases after boriding. The wear mechanisms for both phases and for the stainless steel were identified. Also, transient conditions for rolling and grooving abrasion were determined for the FeB and Fe2B phases.

  4. Design and Analysis of Elliptical Nozzle in AJM Process using ...

    African Journals Online (AJOL)

    Abrasive jet machining (AJM) is a micromachining process, where material is removed from the work piece by the erosion effect of a high speed stream of abrasive particles carried in a gas medium, which are emerging from a nozzle. Abrasive machining includes grinding super finishing honing, lapping polishing etc.

  5. The use of abrasive polishing and laser processing for developing polyurethane surfaces for controlling fibroblast cell behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Irving, Michael; Murphy, Mark F; Lilley, Francis; French, Paul W; Burton, David R [General Engineering Research Institute, Liverpool John Moores University, Liverpool, L3 3AF (United Kingdom); Dixon, Simon [Biomer Technology LTD, 10 Seymour Court, Tudor Road, Manor Park, Runcorn, Cheshire, WA7 1SY (United Kingdom); Sharp, Martin C [General Engineering Research Institute, Liverpool John Moores University, Liverpool, L3 3AF (United Kingdom)

    2017-02-01

    Studies have shown that surfaces having micro and nano-scale features can be used to control cell behaviours including; cell proliferation, migration and adhesion. The aim of this work was to compare the use of laser processing and abrasive polishing to develop micro/nano-patterned polyurethane substrates for controlling fibroblast cell adhesion, migration and proliferation. Laser processing in a directional manner resulted in polyurethane surfaces having a ploughed field effect with micron-scale features. In contrast, abrasive polishing in a directional and random manner resulted in polyurethane surfaces having sub-micron scale features orientated in a linear or random manner. Results show that when compared with flat (non-patterned) polymer, both the laser processed and abrasive polished surface having randomly organised features, promoted significantly greater cell adhesion, while also enhancing cell proliferation after 72 h. In contrast, the abrasive polished surface having linear features did not enhance cell adhesion or proliferation when compared to the flat surface. For cell migration, the cells growing on the laser processed and abrasively polished random surface showed decreased levels of migration when compared to the flat surface. This study shows that both abrasive polishing and laser processing can be used to produce surfaces having features on the nano-scale and micron-scale, respectively. Surfaces produced using both techniques can be used to promote fibroblast cell adhesion and proliferation. Thus both methods offer a viable alternative to using lithographic techniques for developing patterned surfaces. In particular, abrasive polishing is an attractive method due to it being a simple, rapid and inexpensive method that can be used to produce surfaces having features on a comparable scale to more expensive, multi-step methods. - Highlights: • Abrasive polishing can generate nano-scratches on stainless steel to cast polymer films for cell

  6. The use of abrasive polishing and laser processing for developing polyurethane surfaces for controlling fibroblast cell behaviour

    International Nuclear Information System (INIS)

    Irving, Michael; Murphy, Mark F; Lilley, Francis; French, Paul W; Burton, David R; Dixon, Simon; Sharp, Martin C

    2017-01-01

    Studies have shown that surfaces having micro and nano-scale features can be used to control cell behaviours including; cell proliferation, migration and adhesion. The aim of this work was to compare the use of laser processing and abrasive polishing to develop micro/nano-patterned polyurethane substrates for controlling fibroblast cell adhesion, migration and proliferation. Laser processing in a directional manner resulted in polyurethane surfaces having a ploughed field effect with micron-scale features. In contrast, abrasive polishing in a directional and random manner resulted in polyurethane surfaces having sub-micron scale features orientated in a linear or random manner. Results show that when compared with flat (non-patterned) polymer, both the laser processed and abrasive polished surface having randomly organised features, promoted significantly greater cell adhesion, while also enhancing cell proliferation after 72 h. In contrast, the abrasive polished surface having linear features did not enhance cell adhesion or proliferation when compared to the flat surface. For cell migration, the cells growing on the laser processed and abrasively polished random surface showed decreased levels of migration when compared to the flat surface. This study shows that both abrasive polishing and laser processing can be used to produce surfaces having features on the nano-scale and micron-scale, respectively. Surfaces produced using both techniques can be used to promote fibroblast cell adhesion and proliferation. Thus both methods offer a viable alternative to using lithographic techniques for developing patterned surfaces. In particular, abrasive polishing is an attractive method due to it being a simple, rapid and inexpensive method that can be used to produce surfaces having features on a comparable scale to more expensive, multi-step methods. - Highlights: • Abrasive polishing can generate nano-scratches on stainless steel to cast polymer films for cell

  7. Metallic particles into mechanical and hydraulic systems in agricultural and construction machines

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jair Rosas da; Silva, Deise Paula da [Instituto Agronomico de Campinas (IAC), Campinas, SP (Brazil). Centro de Engenharia Agricola; Bormio, Marcos Roberto [Universidade Estadual Paulista (UNESP), Bauru, SP (Brazil). Fac. de Engenharia

    2008-07-01

    The lubricant oil analysis are an indicator of the conditions how the lubricant is, may to allow the prevision of damages that occurred into machine due to the internal abrasion of hydraulic and mechanical components of the machines. The present study had the objective to determine the kind and quantity of the metallic particles that occurred into the lubricant oil of the mechanical and hydraulic compartments of the energy transmission systems of three kinds of machines: a tracked-tractor, a sugarcane harvester and a group of power-shovels. The metallic particles presents into these compartments were determined under laboratory tests and concerning to the following elements: iron, copper, chromium, lead, nickel, aluminum, silex, tin and molybdenum. About to the tracked-tractor, the metallic contaminators into to the oil charges surpasses the tolerate levels, considering the technical standards adopted in this evaluation. In the sugarcane harvester only a metallic element in excess was identified and, in a power-shovel group it was showed the need to correct air false entrances in the hydraulic or mechanical systems due the high presence of silex element. (author)

  8. Abrasion Resistance of Nano Silica Modified Roller Compacted Rubbercrete: Cantabro Loss Method and Response Surface Methodology Approach

    Science.gov (United States)

    Adamu, Musa; Mohammed, Bashar S.; Shafiq, Nasir

    2018-04-01

    Roller compacted concrete (RCC) when used for pavement is subjected to skidding/rubbing by wheels of moving vehicles, this causes pavement surface to wear out and abrade. Therefore, abrasion resistance is one of the most important properties of concern for RCC pavement. In this study, response surface methodology was used to design, evaluate and analyze the effect of partial replacement of fine aggregate with crumb rubber, and addition of nano silica on the abrasion resistance of roller compacted rubbercrete (RCR). RCR is the terminology used for RCC pavement where crumb rubber was used as partial replacement to fine aggregate. The Box-Behnken design method was used to develop the mixtures combinations using 10%, 20%, and 30% crumb rubber with 0%, 1%, and 2% nano silica. The Cantabro loss method was used to measure the abrasion resistance. The results showed that the abrasion resistance of RCR decreases with increase in crumb rubber content, and increases with increase in addition of nano silica. The analysis of variance shows that the model developed using response surface methodology (RSM) has a very good degree of correlation, and can be used to predict the abrasion resistance of RCR with a percentage error of 5.44%. The combination of 10.76% crumb rubber and 1.59% nano silica yielded the best combinations of RCR in terms of abrasion resistance of RCR.

  9. Recovery and recycling of aluminum, copper, and precious metals from dismantled weapon components

    International Nuclear Information System (INIS)

    Gundiler, I.H.; Lutz, J.D.; Wheelis, W.T.

    1994-01-01

    Sandia National Laboratories (SNL) is tasked to support The Department of Energy in the dismantlement and disposal of SNL designed weapon components. These components are sealed in a potting compound, and contain heavy metals, explosive, radioactive, and toxic materials. SNL developed a process to identify and remove the hazardous sub-components utilizing real-time radiography and abrasive water-jet cutting. The components were then crushed, granulated, screened, and separated into an aluminum and a precious-and-base-metals fraction using air-tables. Plastics were further cleaned for disposal as non-hazardous waste. New Mexico Bureau of Mines and Mineral Resources assisted SNL in investigation of size-reduction and separation technologies

  10. 29 CFR 1926.303 - Abrasive wheels and tools.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Abrasive wheels and tools. 1926.303 Section 1926.303 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... freely on the spindle and shall not be forced on. The spindle nut shall be tightened only enough to hold...

  11. Abrasive wear of BA1055 bronze with additives of Si, Cr, Mo and/or W

    Directory of Open Access Journals (Sweden)

    B. P. Pisarek

    2008-10-01

    Full Text Available Aluminium bronzes belong to the high-grade constructional materials applied on the put under strongly load pieces of machines, aboutgood sliding, resistant properties on corrosion both in the cast state how and after the thermal processing. It moves to them Cr and Si in the aim of the improvement of their usable proprieties. The additions Mo and/or W were not applied so far. It was worked out therefore the new kind of bronzes casting including these elements. Make additions to the Cu-Al-Fe-Ni bronze of Si, Cr, Mo and/or W in the rise of these properties makes possible. The investigations of the surface distribution of the concentration of elements in the microstructure of the studied bronze on X-ray microanalyzer were conducted. It results from conducted investigations, that in the aluminium bronze BA1055 after makes additions Si, Cr, Mo and/or W the phases of the type κFe, κNi crystallize, probably as complex silicides. Elements such as: Fe and Si dissolve first of all in phases κ, in smaller stage in the matrix of the bronze; Mn, Ni and W they dissolve in matrix and phases κ. It dissolves Cr and Mo in the larger stage in phases κ than in the matrix. The sizes of the abrasive wear were compared in the state cast multicomponentnew casting Cu-Al-Fe-Ni bronzes with the additives Cr, Mo or W with the wear of the bronze CuAl10Fe5Ni5Si. The investigations of thewear were conducted on the standard device. It results from conducted investigations, that make additions to bronze BA1055 of the additives of Si, Cr, Mo, and/or W it influences the rise of the hardness (HB of the bronze in the cast state, in the result of the enlarged quantity separates of hard phases κ, and in the consequence the decrease of the abrasive wear. The addition of molybdenum made possible obtainment of the microhardness of the phase α and γ 2 on the comparable level. From the microstructure of the bronze CuAl10Fe5Ni5MoSi is characterizes the smallest abrasive wear among

  12. Numerical study of agglomerate abrasion in a tumbling mixer

    NARCIS (Netherlands)

    Thanh Nguyen, [No Value; Willemsz, Tofan; Frijlink, Henderik; Maarschalk, Kees van der Voort

    2014-01-01

    A numerical simulation using the Discrete Element Method (DEM) was performed to investigate the phenomena concerning the abrasion and breakage of agglomerates in a diffusion powder mixer. Agglomerates were created by defining a single structure of particles with bonds of different strengths using

  13. Release of particles by abrasion of CNT composites using a belt sander

    International Nuclear Information System (INIS)

    Matsui, Yasuto; Nobuyuki, Kato; Ishibashi, Tomonori; Nagaya, Taiki; Yoneda, Minoru

    2017-01-01

    There have been many reports on the effect of exposure to nanomaterials such as titanium dioxide, silver, and carbon nanotube (CNT) on human health. Several experiments have examined the abrasion of CNT composites, in which CNT nanoparticles are embedded within a resin or rubber matrix, yielding varying results. Separate study of free CNTs and CNT nanoparticles in relation to health is important due to the different physicochemical characteristics of the two types of material. This study investigated the abrasion of CNT composites using a belt sander inside an enclosed chamber, with variation in the applied load and belt sander speed. At lower speeds, the population of particles with diameters of ∼100 nm was observed to increase (cf. mode values of ∼10 nm), and we found a relationship between the amount of the raising dust and the abrasion conditions. From these results, we propose a robust and widely applicable method to create particles of nanomaterial-containing composite materials of various types in order to conduct accelerated exposure assessment studies. (paper)

  14. Adhesive, abrasive and oxidative wear in ion-implanted metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1985-01-01

    Ion implantation is increasingly being used to provide wear resistance in metals and cemented tungsten carbides. Field trials and laboratory tests indicate that the best performance is achieved in mild abrasive wear. This can be understood in terms of the classification of wear modes (adhesive, abrasive, oxidative etc.) introduced by Burwell. Surface hardening and work hardenability are the major properties to be enhanced by ion implantation. The implantation of nitrogen or dual implants of metallic and interstitial species are effective. Recently developed techniques of ion-beam-enhanced deposition of coatings can further improve wear resistance by lessening adhesion and oxidation. In order to support such hard coatings, ion implantation of nitrogen can be used as a preliminary treatment. There is thus emerging a versatile group of related hard vacuum treatments involving intense beams of nitrogen ions for the purpose of tailoring metal surfaces to resist wear. (Auth.)

  15. Abrasion Testing of Products Containing Nanomaterials, SOP-R-2: Scientific Operating Procedure Series: Release (R)

    Science.gov (United States)

    2016-04-01

    Nanotechnologies -- Terminology and definitions for nano-objects -- Nanoparticle, nanofibre and nanoplate Definitions Abrasion - wearing away...ER D C SR -1 6- 2 Environmental Consequences of Nanotechnologies Abrasion Testing of Products Containing Nanomaterials, SOP-R-2...ERDC online library at http://acwc.sdp.sirsi.net/client/default. Environmental Consequences of Nanotechnologies ERDC SR-16-2 April 2016

  16. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel.

    Directory of Open Access Journals (Sweden)

    Alireza Eshghi

    2014-12-01

    Full Text Available Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG or alumina using etch-and-rinse and self-etch adhesives.Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12. Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05. Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation.No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987. There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1. Also, decalcified or intact enamel groups had no significant difference (P=0.918. However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion.Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives.

  17. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel

    Science.gov (United States)

    Eshghi, Alireza; Khoroushi, Maryam; Rezvani, Alireza

    2014-01-01

    Objective: Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG) or alumina using etch-and-rinse and self-etch adhesives. Materials and Methods: Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12). Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05). Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation. Results: No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987). There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1). Also, decalcified or intact enamel groups had no significant difference (P=0.918). However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion. Conclusion: Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives. PMID:25628694

  18. Investigating selective transport and abrasion on an alluvial fan using quantitative grain size and shape analysis

    Science.gov (United States)

    Litwin, K. L.; Jerolmack, D. J.

    2011-12-01

    Selective sorting and abrasion are the two major fluvial processes that are attributed to the downstream fining of sediments in rivers and alluvial fans. Selective transport is the process by which smaller grains are preferentially transported downstream while larger grains are deposited closer to the source. Abrasion is defined by the production of fine sediments and sand that occurs by saltation of gravel, where particle-to-particle collisions supply the energy required to break apart grains. We hypothesize that abrasion results in the gradual fining of large grains and the production of fine sands and silts, while sorting accounts for the differences in transport of these two grain-size fractions produced from abrasion, thereby creating the abrupt gravel-sand transition observed in many channel systems. In this research, we explore both selective transport and abrasion processes on the Dog Canyon alluvial fan near Alamogordo, New Mexico. We complete an extensive grain size analysis down the main channel of the fan employing an image-based technique that utilizes an autocorrelation process. We also characterize changes in grain shape using standard shape parameters, as well as Fourier analysis, which allows the study of contributions of grain roughness on a variety of length scales. Sorting appears to dominate the upper portion of the fan; the grain-size distribution narrows moving downstream until reaching a point of equal mobility, at which point sorting ceases. Abrasion exerts a subtle but persistent effect on grains during transport down the fan. Shape analysis reveals that particles become more rounded by the removal of small-scale textural features, a process that is expected to only modestly influence grain size of gravel, but should produce significant quantities of sand. This study provides a better understanding of the importance of grain abrasion and sorting on the downstream fining of channel grains in an alluvial fan, as well as an improved knowledge

  19. Sliding-gate valve for use with abrasive materials

    Science.gov (United States)

    Ayers, Jr., William J.; Carter, Charles R.; Griffith, Richard A.; Loomis, Richard B.; Notestein, John E.

    1985-01-01

    The invention is a flow and pressure-sealing valve for use with abrasive solids. The valve embodies special features which provide for long, reliable operating lifetimes in solids-handling service. The valve includes upper and lower transversely slidable gates, contained in separate chambers. The upper gate provides a solids-flow control function, whereas the lower gate provides a pressure-sealing function. The lower gate is supported by means for (a) lifting that gate into sealing engagement with its seat when the gate is in its open and closed positions and (b) lowering the gate out of contact with its seat to permit abrasion-free transit of the gate between its open and closed positions. When closed, the upper gate isolates the lower gate from the solids. Because of this shielding action, the sealing surface of the lower gate is not exposed to solids during transit or when it is being lifted or lowered. The chamber containing the lower gate normally is pressurized slightly, and a sweep gas is directed inwardly across the lower-gate sealing surface during the vertical translation of the gate.

  20. Study on mineral processing technology for abrasive minerals

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Woong; Yang, Jung Il; Hwang, Seon Kook; Choi, Yeon Ho; Cho, Ken Joon; Shin, Hee Young [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    Buyeo Materials in Buyeogun, Choongnam province is a company producing feldspar concentrate, but does not yet utilize the garnet as abrasive material and other useful heavy minerals wasted out from the process of feldspar ore. The purpose of this study is to develop technology and process for the recovery of garnet concentrate. As results, the garnet is defined as ferro manganese garnet. The optimum process for recovery of garnet concentrate is to primarily concentrate heavy minerals from tailings of feldspar processing. And secondly the heavy minerals concentrated is dried and separated garnet concentrate from other heavy minerals. At this time, the garnet concentrate is yield by 0.176%wt from 0.31%wt of heavy minerals in head ore. The garnet concentrate contains 33.35% SiO{sub 2}, 12.20% Al{sub 2}O{sub 3}, 28.47% Fe{sub 2}O{sub 3}, 11.96% MnO. As for utilization of abrasive materials, a fundamental data was established on technology of grinding and classification. (author). 13 refs., 47 figs., 24 tabs.

  1. FY 1998 annual report on the development of laser-aided, noncontacting, realtime, in-process dressing method using a grinding stone with ultrafine abrasive grains, and study on techniques for applying the method to grinding stone of superthin blades; 1998 nendo laser wo mochiita choteiryu toishi no hisesshoku real time inprocess dressing ho no kaihatsu oyobi gokuusuha toishi eno tekiyo gijutsu ni kansuru kenkyu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A new noncontacting dressing method using a laser as a tool has been studied and developed, in order to develop environment-compatible, energy-saving type machining machines. In this study, a cup-shaped grinding stone is developed for grinding performance testing by micron-order diamond abrasive powder, used for producing a grinding stone of superthin blades, is mixed with a cast iron binder, molded and sintered. In the grinding performance test, zirconia as a work is ground at a constant pressure to the grinding stone working surface before and after the laser-aided dressing, to analyze grinding/removal efficiency and grinding resistance. The grinding stone working surface conditions are observed by a scanning electron microscope after the laser-aided dressing, to correlate the surface conditions with the grinding data. It is found that the laser-aided dressing method needs no lubricant, is clean, cutting grinding time when incorporated in the machining process, suitable for grinding stone of low stiffness and ultrathin blades by use of ultrafine abrasive grains, suffering no exfoliation of the diamond grains, and hence economical. (NEDO)

  2. Examination of Wetting by Liquid Zinc of Steel Sheets Following Various Kinds of Abrasive Blasting

    Directory of Open Access Journals (Sweden)

    Cecotka M.

    2016-06-01

    Full Text Available Abrasive blasting is one of the methods of surface working before hot-dip zinc-coating. It allows not only to remove products of corrosion from the surface, but it also affects the quality of the zinc coating applied later, thereby affecting wettability of surface being zinc-coated. The surface working can be done with different types of abrasive material.

  3. Abrasion Resistance and Mechanical Properties of Waste-Glass-Fiber-Reinforced Roller-compacted Concrete

    Science.gov (United States)

    Yildizel, S. A.; Timur, O.; Ozturk, A. U.

    2018-05-01

    The potential use of waste glass fibers in roller-compacted concrete (RCC) was investigated with the aim to improve its performance and reduce environmental effects. The research was focused on the abrasion resistance and compressive and flexural strengths of the reinforced concrete relative to those of reference mixes without fibers. The freeze-thaw resistance of RCC mixes was also examined. It was found that the use of waste glass fibers at a rate of 2 % increased the abrasion resistance of the RCC mixes considerably.

  4. Abrasive wear behaviour of bio-active glass ceramics containing ...

    Indian Academy of Sciences (India)

    In this study, abrasive wear behaviour of bio-active glass ceramic materials produced with two different processes is studied. Hot pressing process and conventional casting and controlled crystallization process were used to produce bio-active ceramics. Fracture toughness of studied material was calculated by fracture ...

  5. Abrasion-resistant concrete mix designs for precast bridge deck panels.

    Science.gov (United States)

    2010-08-01

    The report documents laboratory investigations undertaken to develop high performance concrete (HPC) for precast and pre-stressed bridge deck components that would reduce the life-cycle cost of bridges by improving the studded tire wear (abrasion) re...

  6. Erosion and abrasion on dental structures undergoing at-home bleaching

    Directory of Open Access Journals (Sweden)

    Tarquinio SBC

    2011-07-01

    Full Text Available Flávio Fernando Demarco1, Sônia Saeger Meireles2, Hugo Ramalho Sarmento1, Raquel Venâncio Fernandes Dantas1, Tatiana Botero3, Sandra Beatriz Chaves Tarquinio11Graduate Program in Dentistry, School of Dentistry, Federal University of Pelotas, Brazil; 2Department of Operative Dentistry, Federal University of Paraíba, Brazil; 3Cariology, Restorative Science, and Endodontics Department, School of Dentistry, University of Michigan, MI, USAAbstract: This review investigates erosion and abrasion in dental structures undergoing at-home bleaching. Dental erosion is a multifactorial condition that may be idiopathic or caused by a known acid source. Some bleaching agents have a pH lower than the critical level, which can cause changes in the enamel mineral content. Investigations have shown that at-home tooth bleaching with low concentrations of hydrogen or carbamide peroxide have no significant damaging effects on enamel and dentin surface properties. Most studies where erosion was observed were in vitro. Even though the treatment may cause side effects like sensitivity and gingival irritation, these usually disappear at the end of treatment. Considering the literature reviewed, we conclude that tooth bleaching agents based on hydrogen or carbamide peroxide have no clinically significant influence on enamel/dentin mineral loss caused by erosion or abrasion. Furthermore, the treatment is tolerable and safe, and any adverse effects can be easily reversed and controlled.Keywords: peroxide, tooth bleaching, enamel, dentin, erosion, abrasion

  7. Influence of Heat Treatment on Abrasive Wear Resistance of Silumin Matrix Composite Castings

    Directory of Open Access Journals (Sweden)

    Gawdzińska K.

    2016-03-01

    Full Text Available The authors attempted at examining the effect of heat treatment on abrasive wear resistance of metal composite castings. Metal matrix composites were made by infiltrating preforms created from unordered short fibers (graphite or silumin with liquid aluminium alloy AlSi12(b. Thus prepared composites were subject to solution heat treatment at a temperature of 520°C for four hours, then aging at a temperature of 220°C for four hours. Abrasion resistance of the material was tested before and after thermal treatment.

  8. A mathematical model for surface roughness of fluidic channels produced by grinding aided electrochemical discharge machining (G-ECDM

    Directory of Open Access Journals (Sweden)

    Ladeesh V. G.

    2017-01-01

    Full Text Available Grinding aided electrochemical discharge machining is a hybrid technique, which combines the grinding action of an abrasive tool and thermal effects of electrochemical discharges to remove material from the workpiece for producing complex contours. The present study focuses on developing fluidic channels on borosilicate glass using G-ECDM and attempts to develop a mathematical model for surface roughness of the machined channel. Preliminary experiments are conducted to study the effect of machining parameters on surface roughness. Voltage, duty factor, frequency and tool feed rate are identified as the significant factors for controlling surface roughness of the channels produced by G-ECDM. A mathematical model was developed for surface roughness by considering the grinding action and thermal effects of electrochemical discharges in material removal. Experiments are conducted to validate the model and the results obtained are in good agreement with that predicted by the model.

  9. Metal segmenting using abrasive and reciprocating saws

    International Nuclear Information System (INIS)

    Allen, R.P.; Fetrow, L.K.; Haun, F.E. Jr.

    1987-06-01

    This paper evaluates a light-weight, high-power abrasive saw for segmenting radioactively contaminated metal components. A unique application of a reciprocating mechanical saw for the remote disassembly of equipment in a hot cell also is described. The results of this work suggest that use of these techniques for selected remote sectioning applications could minimize operational and access problems and be very cost effective in comparison with other inherently faster sectioning methods. 2 refs., 7 figs

  10. Adhesive interfaces of enamel and dentin prepared by air-abrasion at different distances

    International Nuclear Information System (INIS)

    Chinelatti, Michelle Alexandra; Andreolli do Amaral, Thais Helena; Borsatto, Maria Cristina; Palma-Dibb, Regina Guenka; Corona, Silmara Aparecida Milori

    2007-01-01

    The purpose of this study was to analyse, by scanning electron microscopy (SEM), the morphology of enamel and dentin/adhesive interfaces in cavities prepared by air-abrasion at different working distances. Thirty sound third human molars were selected and, on both their buccal and lingual surfaces, class V cavities were prepared by air-abrasion, at 2-, 4-, 6-, 8- and 10-mm working distances, or high-speed bur (control group). After preparation, all cavities were etched with 35% phosphoric acid gel and restored with Single Bond/Filtek Z-250. Buccal and lingual surfaces were separated and restorations sectioned in a buccolingual direction, providing two sections of each cavity, which were analysed by scanning electron microscopy. It was observed that the distances of 6 and 8 mm promoted more homogeneous dentin/adhesive interfaces, with tags formation, and more uniform for enamel, which were similar to the control group. It may be concluded that the air-abrasion working distance can influence the morphology of enamel and dentin/adhesive interfaces, and the intermediate distances provided better adhesive interfaces

  11. Abrasive wear behavior of heat-treated ABC-silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao Feng; Lee, Gun Y.; Chen, Da; Ritchie, Robert O.; De Jonghe, Lutgard C.

    2002-06-17

    Hot-pressed silicon carbide, containing aluminum, boron, and carbon additives (ABC-SiC), was subjected to three-body and two-body wear testing using diamond abrasives over a range of sizes. In general, the wear resistance of ABC-SiC, with suitable heat treatment, was superior to that of commercial SiC.

  12. Effects of different lasers and particle abrasion on surface characteristics of zirconia ceramics.

    Directory of Open Access Journals (Sweden)

    Sakineh Arami

    2014-04-01

    Full Text Available The aim of this study was to assess the surface of yttrium-stabilized tetragonal zirconia (Y-TZP after surface treatment with lasers and airborne-particle abrasion.First, 77 samples of presintered zirconia blocks measuring 10 × 10 × 2 mm were made, sintered and polished. Then, they were randomly divided into 11 groups (n=7 and received surface treatments namely, Er:YAG laser irradiation with output power of 1.5, 2 and 2.5 W, Nd:YAG laser with output power of 1.5, 2 and 2.5 W, CO2 laser with output power of 3, 4 and 5 W, AL2O3 airborne-particle abrasion (50μ and no treatment (controls. Following treatment, the parameters of surface roughness such as Ra, Rku and Rsk were evaluated using a digital profilometer and surface examination was done by SEM.According to ANOVA and Tukey's test, the mean surface roughness (Ra after Nd:YAG laser irradiation at 2 and 2.5 W was significantly higher than other groups. Roughness increased with increasing output power of Nd:YAG and CO2 lasers. Treated surfaces by Er:YAG laser and air abrasion showed similar surface roughness. SEM micrographs showed small microcracks in specimens irradiated with Nd:YAG and CO2 lasers.Nd:YAG laser created a rough surface on the zirconia ceramic with many microcracks; therefore, its use is not recommended. Air abrasion method can be used with Er:YAG laser irradiation for the treatment of zirconia ceramic.

  13. Mechanical and abrasive wear characterization of bidirectional and chopped E-glass fiber reinforced composite materials

    International Nuclear Information System (INIS)

    Siddhartha,; Gupta, Kuldeep

    2012-01-01

    Highlights: ► Bi-directional and chopped E-glass fiber reinforced epoxy composites are fabricated. ► Three body abrasive wear behavior of fabricated composites has been assessed. ► Results are validated against existing microscopic models of Lancaster and Wang. ► Tensile strength of bi-directional E-glass fiber reinforced composites increases. ► Chopped glass fiber composites are found better in abrasive wear situations. -- Abstract: Bi-directional and chopped E-glass fiber reinforced epoxy composites are fabricated in five different (15, 20, 25, 30 and 35) wt% in an epoxy resin matrix. The mechanical characterization of these composites is performed. The three body abrasive wear behavior of fabricated composites has been assessed under different operating conditions. Abrasive wear characteristics of these composites are successfully analysed using Taguchi’s experimental design scheme and analysis of variance (ANOVA). The results obtained from these experiments are also validated against existing microscopic models of Ratner-Lancaster and Wang. It is observed that quite good linear relationships is held between specific wear rate and reciprocal of ultimate strength and strain at tensile fracture of these composites which is an indicative that the experimental results are in fair agreement with these existing models. Out of all composites fabricated it is found that tensile strength of bi-directional E-glass fiber reinforced composites increases because of interface strength enhancement. Chopped glass fiber reinforced composites are observed to perform better than bi-directional glass fiber reinforced composites under abrasive wear situations. The morphology of worn composite specimens has been examined by scanning electron microscopy (SEM) to understand about dominant wear mechanisms.

  14. Three body abrasion of laser surface alloyed aluminium AA1200

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2012-06-01

    Full Text Available Laser surface alloying of aluminium AA1200 was performed with a 4 kW Nd:YAG laser to improve the abrasion wear resistance. Aluminium surfaces reinforced with metal matrix composites and intermetallic phases were achieved. The phases present depended...

  15. Optical tools for high-throughput screening of abrasion resistance of combinatorial libraries of organic coatings

    Science.gov (United States)

    Potyrailo, Radislav A.; Chisholm, Bret J.; Olson, Daniel R.; Brennan, Michael J.; Molaison, Chris A.

    2002-02-01

    Design, validation, and implementation of an optical spectroscopic system for high-throughput analysis of combinatorially developed protective organic coatings are reported. Our approach replaces labor-intensive coating evaluation steps with an automated system that rapidly analyzes 8x6 arrays of coating elements that are deposited on a plastic substrate. Each coating element of the library is 10 mm in diameter and 2 to 5 micrometers thick. Performance of coatings is evaluated with respect to their resistance to wear abrasion because this parameter is one of the primary considerations in end-use applications. Upon testing, the organic coatings undergo changes that are impossible to quantitatively predict using existing knowledge. Coatings are abraded using industry-accepted abrasion test methods at single-or multiple-abrasion conditions, followed by high- throughput analysis of abrasion-induced light scatter. The developed automated system is optimized for the analysis of diffusively scattered light that corresponds to 0 to 30% haze. System precision of 0.1 to 2.5% relative standard deviation provides capability for the reliable ranking of coatings performance. While the system was implemented for high-throughput screening of combinatorially developed organic protective coatings for automotive applications, it can be applied to a variety of other applications where materials ranking can be achieved using optical spectroscopic tools.

  16. Predicting the Performance of Chain Saw Machines Based on Shore Scleroscope Hardness

    Science.gov (United States)

    Tumac, Deniz

    2014-03-01

    Shore hardness has been used to estimate several physical and mechanical properties of rocks over the last few decades. However, the number of researches correlating Shore hardness with rock cutting performance is quite limited. Also, rather limited researches have been carried out on predicting the performance of chain saw machines. This study differs from the previous investigations in the way that Shore hardness values (SH1, SH2, and deformation coefficient) are used to determine the field performance of chain saw machines. The measured Shore hardness values are correlated with the physical and mechanical properties of natural stone samples, cutting parameters (normal force, cutting force, and specific energy) obtained from linear cutting tests in unrelieved cutting mode, and areal net cutting rate of chain saw machines. Two empirical models developed previously are improved for the prediction of the areal net cutting rate of chain saw machines. The first model is based on a revised chain saw penetration index, which uses SH1, machine weight, and useful arm cutting depth as predictors. The second model is based on the power consumed for only cutting the stone, arm thickness, and specific energy as a function of the deformation coefficient. While cutting force has a strong relationship with Shore hardness values, the normal force has a weak or moderate correlation. Uniaxial compressive strength, Cerchar abrasivity index, and density can also be predicted by Shore hardness values.

  17. Abrasive water jet cutting technique for biological shield concrete dismantlement

    International Nuclear Information System (INIS)

    Konno, T.; Narazaki, T.; Yokota, M.; Yoshida, H.; Miura, M.; Miyazaki, Y.

    1987-01-01

    The Japan Atomic Energy Research Institute (JAERI) is developing the abrasive-water jet cutting system to be applied to dismantling the biological shield walls of the JPDR as a part of the reactor dismantling technology development project. This is a total system for dismantling highly activated concrete. The concrete biological shield wall is cut into blocks by driving the abrasive-water jet nozzle, which is operated with a remote, automated control system. In this system, the concrete blocks are removed to a container, while the slurry and dust/mist which are generated during cutting are collected and treated, both automatically. It is a very practical method and will quite probably by used for actual dismantling of commercial power reactors in the future because it can minimize workers' exposure to radioactivity during dismantling, contributes to preventing diffusion of radiation, and reduces the volume of contaminated secondary waste

  18. Micro-scale abrasive wear behavior of medical implant material Ti-25Nb-3Mo-3Zr-2Sn alloy on various friction pairs.

    Science.gov (United States)

    Wang, Zhenguo; Huang, Weijiu; Ma, Yanlong

    2014-09-01

    The micro-scale abrasion behaviors of surgical implant materials have often been reported in the literature. However, little work has been reported on the micro-scale abrasive wear behavior of Ti-25Nb-3Mo-3Zr-2Sn (TLM) titanium alloy in simulated body fluids, especially with respect to friction pairs. Therefore, a TE66 Micro-Scale Abrasion Tester was used to study the micro-scale abrasive wear behavior of the TLM alloy. This study covers the friction coefficient and wear loss of the TLM alloy induced by various friction pairs. Different friction pairs comprised of ZrO2, Si3N4 and Al2O3 ceramic balls with 25.4mm diameters were employed. The micro-scale abrasive wear mechanisms and synergistic effect between corrosion and micro-abrasion of the TLM alloy were investigated under various wear-corrosion conditions employing an abrasive, comprised of SiC (3.5 ± 0.5 μm), in two test solutions, Hanks' solution and distilled water. Before the test, the specimens were heat treated at 760°C/1.0/AC+550°C/6.0/AC. It was discovered that the friction coefficient values of the TLM alloy are larger than those in distilled water regardless of friction pairs used, because of the corrosive Hanks' solution. It was also found that the value of the friction coefficient was volatile at the beginning of wear testing, and it became more stable with further experiments. Because the ceramic balls have different properties, especially with respect to the Vickers hardness (Hv), the wear loss of the TLM alloy increased as the ball hardness increased. In addition, the wear loss of the TLM alloy in Hanks' solution was greater than that in distilled water, and this was due to the synergistic effect of micro-abrasion and corrosion, and this micro-abrasion played a leading role in the wear process. The micro-scale abrasive wear mechanism of the TLM alloy gradually changed from two-body to mixed abrasion and then to three-body abrasion as the Vickers hardness of the balls increased. Copyright

  19. Laser cutting or water-jet cutting. Laser setsudan ka water-jet setsudan ka

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, T. (Shibuya Kogyo Co. Ltd., Ishikawa (Japan))

    1991-05-01

    The recent spread of carbon oxide laser cutter is so startlingly fast, but at the same time, water jet cutting using ultra high pressure water stream is drawing attention as it has identical characteristics, and opens the way to cutting materials that have been hitherto difficult to cut. The authors, who are fabricators of cutters of both types, gave the comparisons and explanations on several examples referring to materials that can be cut, cutting accuracy, speed, shape and thermal effects to cut face, and running cost in detail. However, simple comparison is difficult. For instance, cutting 6 mm thick SUS sheet costs a running cost of 65 yen per meter in laser cutting, and 535 yen per meter in water jet cutting, but this situation is often reversed when other material or sheet thickness is selected. The actual situation in the sheet metal processing industry at the present time is that it uses by far more laser processing machines, and uses water jet cutters to supplement for cutting materials more difficult to cut. 10 figs., 3 tabs.

  20. Development and assessment of two decontamination processes: closed electropolishing system for decontamination of underwater surfaces -vibratory decontamination with abrasives

    International Nuclear Information System (INIS)

    Benavides, E.; Fajardo, M.

    1992-01-01

    Two decontamination processes have been developed to decontaminate the stainless steel components of nuclear power plants. The first process uses an underwater closed electropolishing system for the decontamination of large stainless steel surfaces in flooded systems without loss of electrolyte. Large underwater contaminated areas can be treated with an electropolishing head covering an area of 2 m 2 in one step. The decontamination factors achieved with this technique range between 100 and 1000. The second process consists in the decontamination of nuclear components using vibratory equipment with self-cleaning abrasives generating a minimum quantity of waste. This technique may reach contamination factors similar to those obtained with other abrasive methods (brush abrasion, abrasive blasting, etc...). The obtained decontamination factors range between 5 and 50. Only a small quantity of waste is generated, which is treated and reduced in volume by filtration and evaporation

  1. The model of the dependence of the abrasive wear value on the maximal linear wear

    Directory of Open Access Journals (Sweden)

    О.А. Вишневський

    2004-01-01

    Full Text Available  The relation of the contact area of the rubber roll with a sample and the maximal linear wear value is found. The mathematical model of the dependence of the wear volume weight value on the maximal dimple depth is presented with the friction on abrasive particles fixed nonrigidly. The relation of volume weight wear with the rubber roll contact surface area with a sample with the friction on abrasive particles fixed nonrigidly is established.

  2. Testing of abrasion materials

    International Nuclear Information System (INIS)

    Hummert, G.

    1983-01-01

    A method of abrasion testing according to ASTM C 704-76 a is presented for steel fibre concrete mortar, fusion-cast basalt and a surface coating material and results of practical interest are mentioned. Due to the high technical demands on these materials and their specific fields of application, the very first test already supplied interesting findings. From the user's point of view, the method is an interesting alternative to the common test methods, e.g. according to DIN 52 108 (wheel test according to Boehme). In English-speaking countries, testing according to ASTM is often mandatory in the refractory industry in order to assure constant quality of refractory materials after setting. The method is characterized by good comparability and high accuracy of measurement. Only the test piece is exchanged while the test conditions remain constant, so that accurate information on the material studied is obtained. (orig.) [de

  3. Superficial characterization of titanium league when submitted to abrasive blasting

    International Nuclear Information System (INIS)

    Suzuki, L.Y.; Leite, I.V.; Szesz, E.M.; Siqueira, C.J.M.

    2010-01-01

    Commercially pure titanium and some of its alloys exhibit a good biocompatibility. These characteristics are frequently used in the manufacture of orthopedic and dental implants. It is possible to modify its surface making it the bioactive using various methods, such as deposition of hydroxyapatite by plasma spray and increasing the roughness of the surface by abrasive blasting. This work is to modify the surface of titanium alloy Ti6Al4V ELI (ASTM F136: 02a) for abrasive blasting and study the morphology, crystallographic phases and the mechanical characteristics of the surface obtained. For such purpose, SEM images, diffraction of X-rays and tests of risk produced by nanoindenter. The sandblasting was done using alumina powder and blasting time of 6s. The morphology of the surfaces of Ti6Al4V ELI changed after sandblasting with increased roughness. It is possible to conclude that after sandblasting the titanium surface do not have a ductile behavior. (author)

  4. Influence of Utilization of High-Volumes of Class F Fly Ash on the Abrasion Resistance of Concrete

    Directory of Open Access Journals (Sweden)

    William PRINCE

    2007-01-01

    Full Text Available Utilization of large volumes of fly ash in various concrete applications is a becoming a more general practice in an efforts towards using large quantities of fly ash. Around the world, Class C or Class F or both as available have been used in high volumes in cement-based materials. In India, majority of fly generated is of Class F type as per ASTM C 618. Yearly fly ash generation in India is approximately 95 million tonnes. Out of which around 15-20% is utilized in cement production and cement/concrete related activities. In order to increase its percentage utilization, an investigation was carried out to use it in concrete.In this paper, abrasion resistance of high volume fly ash (HVFA concretes made with 35, 45, 55, and 65% of cement replacement was evaluated in terms of its relation with compressive strength. Comparison was made between ordinary Portland cement and fly ash concrete. Test results indicated that abrasion resistance of concrete having cement replacement up to 35 percent was comparable to the normal concrete mix with out fly ash. Beyond 35% cement replacement, fly ash concretes exhibited slightly lower resistance to abrasion relative to non-fly ash concretes. Test results further indicated that abrasion resistance of concrete is closely related with compressive strength, and had a very good correlation between abrasion resistance and compressive strength (R2 value between 0.9018 and 0.9859 depending upon age.

  5. Nd{sup 3+}-doped colloidal SiO{sub 2} composite abrasives: Synthesis and the effects on chemical mechanical polishing (CMP) performances of sapphire wafers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tingting; Lei, Hong, E-mail: hong_lei2005@aliyun.com

    2017-08-15

    Highlights: • The novel Nd{sup 3+}-doped colloidal SiO{sub 2} abrasives were synthesized by seed-introduced method. • The Nd{sup 3+}-doped colloidal SiO{sub 2} abrasives exhibited lower Ra and higher MRR on sapphire during CMP. • The cores SiO{sub 2} were coated by the shells (SiO{sub 2}, Nd{sub 2}Si{sub 2}O{sub 7} and Nd(OH){sub 3}) via chemical bonds and hydrogen bonds. • XPS analysis revealed the solid-state chemical reaction between Nd{sup 3+}-doped colloidal SiO{sub 2} abrasives and sapphire during CMP. - Abstract: Abrasive is one of the most important factors in chemical mechanical polishing (CMP). In order to improve the polishing qualities of sapphire substrates, the novel Nd{sup 3+}-doped colloidal SiO{sub 2} composite abrasives were prepared by seed-induced growth method. In this work, there were a series of condensation reactions during the synthesis process of Nd{sup 3+}-doped colloidal SiO{sub 2} composite abrasives and the silica cores were coated by shells (which contains SiO{sub 2}, Nd{sub 2}Si{sub 2}O{sub 7} and Nd(OH){sub 3}) via chemical bonds and hydrogen bonds in the Nd{sup 3+}-doped colloidal SiO{sub 2} composite abrasives, which made the composite abrasives’ core-shell structure more sTable Scanning electron microscopy (SEM) showed that Nd{sup 3+}-doped colloidal SiO{sub 2} composite abrasives were spherical and uniform in size. And the acting mechanisms of Nd{sup 3+}-doped colloidal SiO{sub 2} composite abrasives on sapphire in CMP were investigated. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) analysis and X-ray photoelectron spectroscopy (XPS) analysis demonstrated that the solid-state chemical reactions between the shells (which contained SiO{sub 2}, Nd{sub 2}Si{sub 2}O{sub 7} and Nd(OH){sub 3}) of Nd{sup 3+}-doped colloidal SiO{sub 2} composite abrasives and the sapphire occurred during the CMP process. Furthermore, Nd{sup 3+}-doped colloidal SiO{sub 2} composite abrasives exhibited lower surface roughness and

  6. Small-Scale Morphological Features on a Solid Surface Processed by High-Pressure Abrasive Water Jet

    Directory of Open Access Journals (Sweden)

    Can Kang

    2013-08-01

    Full Text Available Being subjected to a high-pressure abrasive water jet, solid samples will experience an essential variation of both internal stress and physical characteristics, which is closely associated with the kinetic energy attached to the abrasive particles involved in the jet stream. Here, experiments were performed, with particular emphasis being placed on the kinetic energy attenuation and turbulent features in the jet stream. At jet pressure of 260 MPa, mean velocity and root-mean-square (RMS velocity on two jet-stream sections were acquired by utilizing the phase Doppler anemometry (PDA technique. A jet-cutting experiment was then carried out with Al-Mg alloy samples being cut by an abrasive water jet. Morphological features and roughness on the cut surface were quantitatively examined through scanning electron microscopy (SEM and optical profiling techniques. The results indicate that the high-pressure water jet is characterized by remarkably high mean flow velocities and distinct velocity fluctuations. Those irregular pits and grooves on the cut surfaces indicate both the energy attenuation and the development of radial velocity components in the jet stream. When the sample is positioned with different distances from the nozzle outlet, the obtained quantitative surface roughness varies accordingly. A descriptive model highlighting the behaviors of abrasive particles in jet-cutting process is established in light of the experimental results and correlation analysis.

  7. Small-Scale Morphological Features on a Solid Surface Processed by High-Pressure Abrasive Water Jet.

    Science.gov (United States)

    Kang, Can; Liu, Haixia

    2013-08-14

    Being subjected to a high-pressure abrasive water jet, solid samples will experience an essential variation of both internal stress and physical characteristics, which is closely associated with the kinetic energy attached to the abrasive particles involved in the jet stream. Here, experiments were performed, with particular emphasis being placed on the kinetic energy attenuation and turbulent features in the jet stream. At jet pressure of 260 MPa, mean velocity and root-mean-square (RMS) velocity on two jet-stream sections were acquired by utilizing the phase Doppler anemometry (PDA) technique. A jet-cutting experiment was then carried out with Al-Mg alloy samples being cut by an abrasive water jet. Morphological features and roughness on the cut surface were quantitatively examined through scanning electron microscopy (SEM) and optical profiling techniques. The results indicate that the high-pressure water jet is characterized by remarkably high mean flow velocities and distinct velocity fluctuations. Those irregular pits and grooves on the cut surfaces indicate both the energy attenuation and the development of radial velocity components in the jet stream. When the sample is positioned with different distances from the nozzle outlet, the obtained quantitative surface roughness varies accordingly. A descriptive model highlighting the behaviors of abrasive particles in jet-cutting process is established in light of the experimental results and correlation analysis.

  8. Abrasive wear mechanisms and surface layer structure of refractory materials after mechanical working

    International Nuclear Information System (INIS)

    Milman, Y.V.; Lotsko, D.V.

    1989-01-01

    The mechanisms of abrasive wear and surface layer structure formation after different kinds of mechanical working are considered in terms of fracture and plastic deformation mechanisms for various refractory materials. The principles for classification of abrasive wear mechanisms are proposed, the four types of wear mechanisms are distinguished for various combinations of fractures and plastic deformation types. The concept of characteristic deformation temperature t * (knee temperature) is used. Detailed examples are given of investigating the surface layer structures in grinded crystals of sapphire and molybdenum. The amorphisation tendency of the thinnest surface layer while mechanical polishing is discussed separately. 19 refs., 11 figs., 2 tabs. (Author)

  9. A study on practical use of underwater abrasive water jet cutting

    Science.gov (United States)

    Yamaguchi, Hitoshi; Demura, Kenji

    1993-09-01

    The practicality of underwater abrasive water jet cutting technology was studied in experiments. A study of abrasives in slurried form showed that optimum polymer concentration can be selected to suit underwater conditions. For the long-distance transport of slurry from the ocean surface to the ocean floor, a direct supply system by hose proved to be practical. This system takes advantage of the insolubility of the slurry in water due to a difference in specific gravity. For cutting thick steel plate at great ocean depths, a simulation with a pressurized container revealed the requirements for actual cutting. Confirmation of remote cutting operations will become the most important technology in field applications. Underwater sound vibration characteristics were found to change significantly in direct response to modifications in cutting conditions. This will be important basic data to develop an effective sensoring method.

  10. Predicting the Abrasion Resistance of Tool Steels by Means of Neurofuzzy Model

    Directory of Open Access Journals (Sweden)

    Dragutin Lisjak

    2013-07-01

    Full Text Available This work considers use neurofuzzy set theory for estimate abrasion wear resistance of steels based on chemical composition, heat treatment (austenitising temperature, quenchant and tempering temperature, hardness after hardening and different tempering temperature and volume loss of materials according to ASTM G 65-94. Testing of volume loss for the following group of materials as fuzzy data set was taken: carbon tool steels, cold work tool steels, hot work tools steels, high-speed steels. Modelled adaptive neuro fuzzy inference system (ANFIS is compared to statistical model of multivariable non-linear regression (MNLR. From the results it could be concluded that it is possible well estimate abrasion wear resistance for steel whose volume loss is unknown and thus eliminate unnecessary testing.

  11. FE simulation of the indentation deformation of SiC modified vinylester composites in respect to their abrasive wear performance

    Directory of Open Access Journals (Sweden)

    2008-10-01

    Full Text Available The abrasive sliding friction and wear behaviours of silicon carbide (SiC filled vinylester (VE composites were investigated. The average grain size of the incorporated SiC particles was varied, holding the volume content of them in every case at 16 vol%. Mechanical properties (hardness, compression modulus, yield stress of the filled and neat VE were determined. The tribological properties were investigated in block (composite – on – ring (steel test configuration. The steel counter bodies were covered with abrasive papers of different graining. Coefficient of friction (COF and specific wear rate of the VE + SiC composites were determined. It was observed that the wear resistance increases with increasing average filler grain size and with decreasing abrasiveness of the counter surface. The COF of the VE + SiC composites is independent of the size of the incorporated particles, but it is strongly influenced by the abrasiveness of the counter body. The worn surfaces of the VE + SiC systems were analysed in scanning electron microscope (SEM to deduce the typical wear mechanisms. The size effect of the SiC filler particles onto the abrasive wear characteristics was investigated by assuming that the roughness peaks of the abrasive paper and the indenter of the microhardness test cause similar micro scaled contact deformations in the composites. Therefore FE method was used to simulate the micro scaled deformation process in the VE + SiC systems during microindentation tests. The FE results provided valuable information on how to explain the size effect of the incorporated SiC filler.

  12. Three-body abrasive wear behaviour of metastable spheroidal carbide cast irons with different chromium contents

    Energy Technology Data Exchange (ETDEWEB)

    Efremenko, Vasily; Pastukhova, Tatiana; Chabak, Yuliia; Efremenko, Alexey [Pryazovskyi State Technical Univ., Mariupol (Ukraine); Shimizu, Kazumichi; Kusumoto, Kenta [Muroran Institute of Technology, Hokkaido (Japan); Brykov, Michail [Zaporozhye National Technical Univ., Zaporozhye (Ukraine)

    2018-02-15

    The effect of heat treatment and chromium contents (up to 9.1 wt.%) on the wear resistance of spheroidal carbide cast iron (9.5 wt.% V) was studied using optical and scanning electron microscopy, X-ray diffractometry, dilatometry and three-body abrasive testing. It was found that quenching from 760 C and 920 C improved the alloys' wear resistance compared to the as-cast state due to the formation of metastable austenite transforming into martensite under abrasion. The wear characteristics of alloys studied are 1.6 - 2.3 times higher than that of reference cast iron (12 wt.% V) having stable austenitic matrix. Chromium addition decreases surface damage due to the formation of M{sub 7}C{sub 3} carbides, while it reduces wear resistance owing to austenite stabilization to abrasion-induced martensite transformation. The superposition of these factors results in decreasing the alloys' wear behaviour with chromium content increase.

  13. Abrasive wear resistance and microstructure of Ni-Cr-B-Si hardfacing alloys with additions of Al, Nb, Mo, Fe, Mn and C

    International Nuclear Information System (INIS)

    Berns, H.; Fischer, A.; Theisen, W.

    1987-01-01

    The development of new Ni-base hardfacing alloys for filler wire welding or metal spraying should result in materials with a good resistance against high temperature corrosion and abrasive wear. The first step is to design microstructures, which obtain a satisfactory abrasive wear behaviour at room temperature. Thus, different alloys are melted and scrutinized as to their microstructure and their abrasive wear resistance in laboratory. Compared to commercial Ni-base hardfacing alloys they show a higher volume fraction of coarse hard phases due to the additional, initial solidification of Nb-carbides and Cr-, and Mo-borides. Thus, the abrasive wear resistance is improved. For hard abrasive particles, such as corundum, the Ni-base alloys are more wear resistant than harder Fe-base alloys investigate earlier. This is due to the tougher Ni metal matrix that results in microcracking not to be the most significantly acting wear mechanism

  14. Randomized Controlled Trial to Explore the Effect of Experimental Low Abrasivity Dentifrices on Enamel Gloss and Smoothness, and the Build-up of Extrinsic Tooth Stain.

    Science.gov (United States)

    Milleman, Kimberly R; Milleman, Jeffery L; Young, Sarah; Parkinson, Charles

    2017-06-01

    To evaluate and compare examiner-assessed changes in enamel gloss, extrinsic dental stain, and surface smoothness following one, two, four, and eight weeks of twice-daily use of an experimental low abrasivity desensitizing dentifrice (relative dentin abrasivity [RDA] ~40) containing 5% sodium tripolyphosphate (STP) chemical cleaning agent and 1% aluminum trioxide abrasive. This was compared with an ultra-low abrasivity dentifrice (5% STP only; RDA ~13), a moderate abrasivity fluoride dentifrice (RDA ~80), and a higher abrasivity marketed whitening dentifrice (RDA ~142). This was a single-center, examiner-blind, randomized, controlled, parallel group study in healthy adults stratified by gloss score and age. Following a washout period with a conventional silica abrasive dentifrice, subjects received a dental scale and polish and were randomized to treatment. Subjects brushed their teeth for two minutes, twice daily, with their assigned dentifrice. Enamel gloss was assessed visually by comparing the facial surfaces of the maxillary incisors to the Sturzenberger gloss standards. Extrinsic dental stain was measured on the 12 anterior teeth (facial and lingual) using the Macpherson modification of the Lobene Stain Index (MLSI). Tooth smoothness was assessed using scanning electron microscope (SEM) analysis of a silicone impression of the central incisors. Of 120 screened subjects, 95 were randomized to the study. Subjects using the low abrasivity aluminum trioxide/STP dentifrice demonstrated statistically significant (p tooth smoothness, at Week 8, statistically significant increases in surface smoothness were observed for most treatment groups compared to baseline (p tooth gloss compared to a non-alumina ultra-low abrasivity STP-containing dentifrice, and moderate and high abrasivity dentifrices, over an eight-week period.

  15. Abrasive Wear Resistance of Tool Steels Evaluated by the Pin-on-Disc Testing

    Science.gov (United States)

    Bressan, José Divo; Schopf, Roberto Alexandre

    2011-05-01

    Present work examines tool steels abrasion wear resistance and the abrasion mechanisms which are one main contributor to failure of tooling in metal forming industry. Tooling used in cutting and metal forming processes without lubrication fails due to this type of wear. In the workshop and engineering practice, it is common to relate wear resistance as function of material hardness only. However, there are others parameters which influences wear such as: fracture toughness, type of crystalline structure and the occurrence of hard precipitate in the metallic matrix and also its nature. In the present investigation, the wear mechanisms acting in tool steels were analyzed and, by normalized tests, wear resistance performance of nine different types of tool steels were evaluated by pin-on-disc testing. Conventional tool steels commonly used in tooling such as AISI H13 and AISI A2 were compared in relation to tool steels fabricated by sintering process such as Crucible CPM 3V, CPM 9V and M4 steels. Friction and wear testing were carried out in a pin-on-disc automated equipment which pin was tool steel and the counter-face was a abrasive disc of silicon carbide. Normal load of 5 N, sliding velocity of 0.45 m/s, total sliding distance of 3000 m and room temperature were employed. The wear rate was calculated by the Archard's equation and from the plotted graphs of pin cumulated volume loss versus sliding distance. Specimens were appropriately heat treated by quenching and three tempering cycles. Percentage of alloying elements, metallographic analyses of microstructure and Vickers microhardness of specimens were performed, analyzed and correlated with wear rate. The work is concluded by the presentation of a rank of tool steel wear rate, comparing the different tool steel abrasion wear resistance: the best tool steel wear resistance evaluated was the Crucible CPM 9V steel.

  16. Air abrasion experiments in U-Pb dating of zircon

    Science.gov (United States)

    Goldich, S.S.; Fischer, L.B.

    1986-01-01

    Air abrasion of zircon grains can remove metamict material that has lost radiogenic Pb and zircon overgrowths that were added during younger events and thereby improve the precision of the age measurements and permit closer estimates of the original age. Age discordance that resulted from a single disturbance of the U-Pb isotopic decay systems, as had been demonstrated by T.E. Krogh, can be considerably reduced, and, under favorable conditions, the ages brought into concordancy. Two or more events complicate the U-Pb systematics, but a series of abrasion experiments can be helpful in deciphering the geologic history and in arriving at a useful interpretation of the probable times of origin and disturbances. In east-central Minnesota, U.S.A., Penokean tonalite gneiss is dated at 1869 ?? 5 Ma, and sheared granite gneiss is shown to have been a high-level granite intrusion at 1982 ?? 5 Ma in the McGrath Gneiss precursor. Tonalite gneiss and a mafic granodiorite in the Rainy Lake area, Ontario, Canada, are dated at 2736 ?? 16 and 2682 ?? 4 Ma, respectively. The tonalitic phase of the Morton Gneiss, southwestern Minnesota, is dated at 3662 ?? 42 Ma. ?? 1986.

  17. Spent coffee grounds as air-propelled abrasive grit for weed control

    Science.gov (United States)

    Spent coffee grounds (SCG) represent a significant food waste residue. Value-added uses for this material would be beneficial. Gritty agricultural residues, such as corncob grit, can be employed as abrasive air-propelled agents for organically-compatible postemergence shredding of weed seedlings sel...

  18. Bonding to new CAD/CAM resin composites: influence of air abrasion and conditioning agents as pretreatment strategy.

    Science.gov (United States)

    Reymus, Marcel; Roos, Malgorzata; Eichberger, Marlis; Edelhoff, Daniel; Hickel, Reinhard; Stawarczyk, Bogna

    2018-04-27

    Because of their industrially standardized process of manufacturing, CAD/CAM resin composites show a high degree of conversion, making a reliable bond difficult to achieve. The purpose of this experiment was to investigate the tensile bond strength (TBS) of luting composite to CAD/CAM resin composite materials as influenced by air abrasion and pretreatment strategies. The treatment factors of the present study were (1) brand of the CAD/CAM resin composite (Brilliant Crios [Coltene/Whaledent], Cerasmart [GC Europe], Shofu Block HC [Shofu], and Lava Ultimate [3M]); (2) air abrasion vs. no air abrasion; and (3) pretreatment using a silane primer (Clearfil Ceramic Primer, Kuraray) vs. a resin primer (One Coat 7 Universal, Coltene/Whaledent). Subsequently, luting composite (DuoCem, Coltene/Whaledent) was polymerized onto the substrate surface using a mold. For each combination of the levels of the three treatment factors (4 (materials) × 2 (air abrasion vs. no air abrasion; resin) × 2 (primer vs. silane primer)), n = 15, specimens were prepared. After 24 h of water storage at 37 °C and 5000 thermo-cycles (5/55 °C), TBS was measured and failure types were examined. The resulting data was analyzed using Kaplan-Meier estimates of the cumulative failure distribution function with Breslow-Gehan tests and non-parametric ANOVA (Kruskal-Wallis test) followed by the multiple pairwise Mann-Whitney U test with α-error adjustment using the Benjamini-Hochberg procedure and chi-square test (p CAD/CAM resin composites, the restorations should be air abraded and pretreated using a resin primer containing methyl-methacrylate to successfully bond to the luting composite. The pretreatment of the CAD/CAM resin composite using merely a silane primer results in deficient adhesion. For a reliable bond of CAD/CAM resin composites to the luting composite, air abrasion and a special pretreatment strategy are necessary in order to achieve promising long-term results.

  19. The role of the microfissuration of the rock matrix in the abrasion resistance of ornamental granitic rocks

    Science.gov (United States)

    Rodríguez-Rey, Angel; Sanchez-Delgado, Nuria; Camino, Clara; Calleja, Lope; Ruiz de Argandoña, Vicente G.; Setien, Alexia

    2015-04-01

    The microcrack density and the abrasion resistance of five ornamental granites (Albero, Gris Alba, Mondariz, Rosa Porriño and Traspieles) from Galicia (NW Spain) have been quantified as part of a research aimed to interpret the cuttability of the rocks in relation to the petrophysical properties of the rock matrix. Large blocks from the quarries have been cut with an industrial saw and the microcrack density and the abrasion resistance have been measured in two surfaces: H, parallel to the cut surface; T, perpendicular both to the cut surface and the cutting direction. Both planes are perpendicular to the rift plane, as it is known in quarry works. The microcrack density has been quantified following an stereological procedure applied to polished sections imaged under scanning electron microscopy. The magnification of the images allowed the study of microcracks as narrow as 2 microns in aperture. The density has been quantified in terms of length of microcrack traces per surface unit so possible anisotropies of the microcrack network could be detected. The obtained values are in the typical range for this type of rocks although the Traspieles granite shows a higher value due to its weathering degree (H: 5.11, T: 5.37 mm/mm2). The values measured in the two surfaces (H and T) are quite similar in four of the rocks; only the Albero granite shows a marked anisotropy (H: 2.76 T: 3.53 mm/mm2). The abrasion resistance of the rocks has been measured following the european standard EN 14157:2004 using the capon method. The rocks can be classified in two groups according to their abrasion resistance. Rosa Porriño, Gris Alba and Mondariz granites are the more resistant to abrasion with values around 16-17 mm. Albero and Traspieles granites are less resistant with values higher than 19 mm. The results show a good correlation between the microcrack density and the abrasion resistance. As can be expected the rocks with high microcrack density show low abrasion resistance. The

  20. Investigation of machining damage and tool wear resulting from drilling powder metal aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Fell, H.A. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States)

    1997-05-01

    This report documents the cutting of aluminum powder metallurgy (PM) parts for the North Carolina Manufacturing Extension Partnership. The parts, an aluminum powder metal formulation, were supplied by Sinter Metals Inc., of Conover, North Carolina. The intended use of the alloy is for automotive components. Machining tests were conducted at Y-12 in the machine shop of the Skills Demonstration Center in Building 9737. Testing was done on June 2 and June 3, 1997. The powder metal alloy tested is very abrasive and tends to wear craters and produce erosion effects on the chip washed face of the drills used. It also resulted in huge amounts of flank wear and degraded performance on the part of most drills. Anti-wear coatings on drills seemed to have an effect. Drills with the coating showed less wear for the same amount of cutting. The usefulness of coolants and lubricants in reducing tool wear and chipping/breakout was not investigated.

  1. Development of the white cast iron with niobium alloy, heat treating, to wear of the abrasive resistance

    International Nuclear Information System (INIS)

    Farah, Alessandro Fraga

    1997-01-01

    This work presents the heat treatment and abrasion tests results of a white cast iron with niobium alloy. The hardening heat treatment were made 950, 1000, 1050 e 110 deg C temperatures cooled by forced air. The tempering treatment were made at 450, 500 e 550 deg C temperatures. The heat treating alloy were compared, in the abrasive tests, with commercial alloys used as hardfacing by welding process in wear pieces. The abrasion tests was realized in pin on disk test. Additional tests were carried out for microstructural characterization to identify the different phases presents in the alloys. In a general way, the alloy studies showed the best wear rate for the heat treatments that results in higher hardness. It performance was superior than that of the commercial alloys. (author)

  2. Development and Testing of Abrasion Resistant Hard Coats For Polymer Film Reflectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, G.; Gee, R.; DiGrazia, M.

    2010-10-01

    Reflective polymer film technology can significantly reduce the cost of solar reflectors and installed Concentrated Solar Power (CSP) plants by both reduced material cost and lower weight. One challenge of polymer reflectors in the CSP environment pertains to contact cleaning methods typically used with glass mirrors. Such contact cleaning methods can scratch the surface of polymer reflectors and thereby reduce specular reflectance. ReflecTech, Inc. (a subsidiary of SkyFuel, Inc.) and the National Renewable Energy Laboratory (NREL) initiated a cooperative research and development agreement (CRADA) to devise and develop an abrasion resistant coating (ARC) suitable for deposition onto polymer based mirror film. A number of candidate ARC products were identified as candidate formulations. Industrial collaborators prepared samples having their ARCs deposited onto ReflecTech Mirror Film pre-laminated to aluminum sheet substrates. Samples were provided for evaluation and subjected to baseline (unweathered) and accelerated exposure conditions and subsequently characterized for abrasion resistance and adhesion. An advanced ARC product has been identified that exhibits outstanding initial abrasion resistance and adhesion to ReflecTech Mirror Film. These properties were also retained after exposure to the various accelerated stress conditions. This material has been successfully manufactured as a 1.5 m wide roll-to-roll construction in a production environment.

  3. Abrasiveness and hardness of rocks of Cretaceous deposits of Chechen-Ingushetiya. Ob abrazivnosti i tverdosti gornykh porod melovykh otlozhenii Checheno-Ingushetii

    Energy Technology Data Exchange (ETDEWEB)

    Trofimenko, Yu.P.

    1981-01-01

    Presented are results of studies of the abrasiveness and hardness of core material taken from Upper Cretaceous deposits in the process of drilling deep boreholes in the areas of Chechen-Ingushetiya. Based on the studies it is established that the abrasiveness of rock is mainly influenced by the coarseness of the mineral grains in the rock, their mineralogical composition, and the composition of the cement. Given is a system of clasification of the investigated core material with respect to abrasiveness and hardness.

  4. Effect of heat treatment on strength and abrasive wear behaviour of ...

    Indian Academy of Sciences (India)

    Administrator

    Aluminum 6061 has been used as matrix material owing to its ... Mechanical properties such as microhardness, tensile strength, and abrasive wear tests have been ... heat treatment conditions, adopted Al6061–SiCp composites exhibited better microhardness and tensile ... corrosion resistance (Ramesh et al 2005).

  5. Minimal alterations on the enamel surface by micro-abrasion: in vitro roughness and wear assessments

    Directory of Open Access Journals (Sweden)

    Marcela Charantola Rodrigues

    2013-04-01

    Full Text Available Objective: To evaluate the in vitro changes on the enamel surface after a micro-abrasion treatment promoted by different products. Material and Methods: Fifty (50 fragments of bovine enamel (15 mm × 5 mm were randomly assigned to five groups (n=10 according to the product utilized: G1 (control= silicone polisher (TDV, G2= 37% phosphoric acid (3M/ESPE + pumice stone (SS White, G3= Micropol (DMC Equipment, G4= Opalustre (Ultradent and G5= Whiteness RM (FGM Dental Products. Roughness and wear were the responsible variables used to analyze these surfaces in four stages: baseline, 60 s and 120 s after the micro-abrasion and after polishing, using a Hommel Tester T1000 device. After the tests, a normal distribution of data was verified, with repeated ANOVA analyses (p≤0.05 which were used to compare each product in different stages. One-way ANOVA and Tukey tests were applied for individual comparisons between the products in each stage (p≤0.05. Results: Means and standard deviations of roughness and wear (µm after all the promoted stages were: G1=7.26(1.81/13.16(2.67, G2=2.02(0.62/37.44(3.33, G3=1.81(0.91/34.93(6.92, G4=1.92(0.29/38.42(0.65 and G5=1.98(0.53/33.45(2.66. At 60 seconds, all products tended to produce less surface roughness with a variable gradual decrease over time. After polishing, there were no statistically significant differences between the groups, except for G1. Independent of the product utilized, the enamel wear occurred after the micro-abrasion. Conclusions: In this in vitro study, enamel micro-abrasion presented itself as a conservative approach, regardless of the type of the paste compound utilized. These products promoted minor roughness alterations and minimal wear. The use of phosphoric acid and pumice stone showed similar results to commercial products for the micro-abrasion with regard to the surface roughness and wear.

  6. Machinability of titanium metal matrix composites (Ti-MMCs)

    Science.gov (United States)

    Aramesh, Maryam

    Titanium metal matrix composites (Ti-MMCs), as a new generation of materials, have various potential applications in aerospace and automotive industries. The presence of ceramic particles enhances the physical and mechanical properties of the alloy matrix. However, the hard and abrasive nature of these particles causes various issues in the field of their machinability. Severe tool wear and short tool life are the most important drawbacks of machining this class of materials. There is very limited work in the literature regarding the machinability of this class of materials especially in the area of tool life estimation and tool wear. By far, polycrystalline diamond (PCD) tools appear to be the best choice for machining MMCs from researchers' point of view. However, due to their high cost, economical alternatives are sought. Cubic boron nitride (CBN) inserts, as the second hardest available tools, show superior characteristics such as great wear resistance, high hardness at elevated temperatures, a low coefficient of friction and a high melting point. Yet, so far CBN tools have not been studied during machining of Ti-MMCs. In this study, a comprehensive study has been performed to explore the tool wear mechanisms of CBN inserts during turning of Ti-MMCs. The unique morphology of the worn faces of the tools was investigated for the first time, which led to new insights in the identification of chemical wear mechanisms during machining of Ti-MMCs. Utilizing the full tool life capacity of cutting tools is also very crucial, due to the considerable costs associated with suboptimal replacement of tools. This strongly motivates development of a reliable model for tool life estimation under any cutting conditions. In this study, a novel model based on the survival analysis methodology is developed to estimate the progressive states of tool wear under any cutting conditions during machining of Ti-MMCs. This statistical model takes into account the machining time in

  7. Design and evaluation of high-volume fly ash (HVFA) concrete mixes, report D : creep, shrinkage, and abrasion resistance of HVFA concrete.

    Science.gov (United States)

    2012-10-01

    The main objective of this study was to determine the effect on shrinkage, creep, : and abrasion resistance of high-volume fly ash (HVFA) concrete. The HVFA concrete : test program consisted of comparing the shrinkage, creep, and abrasion performance...

  8. Incidence of lameness and abrasions in piglets in identical farrowing pens with four different types of floor

    Directory of Open Access Journals (Sweden)

    Nilsson Ebba

    2009-05-01

    Full Text Available Abstract Background Lameness in piglets is a major animal welfare issue. Floor abrasiveness is a common cause of superficial injury in piglets in farrowing pens. The abrasion achieved may act as a gate for infections, which in turn may induce development of infectious arthritis. In this study, the influence of improvements of the floor quality and of increased ratios of straw in identical farrowing pens was measured. Methods The study was carried out at a herd with four identical farrowing units with solid concrete floor bedded with 1 kg chopped straw per sow and 1 hg per piglet and day. Nothing was changed in the management of the four identical farrowing units, but four experimental groups were created: Group I – control, Group II – the amount of bedding was doubled. The surface of the floor was repaired in two units, Group III – Piglet Floor®, Flowcrete Sweden AB, Perstorp, Sweden and Group IV – Thorocrete SL®, Växa Halland, Sweden. Three farrowing batches were studies in each unit. In total, 93 litters (1,073 piglets were examined for foot and skin lesions until the age of 3 weeks. The occurrence of lameness was registered until weaning at an average age of 4.5 weeks. Twenty seven lame piglets were culled instead of medicinally treated and subjected to necropsy including histopathological and microbiological examinations. Isolates of streptococci, staphylococci and E. coli were tested with respect to antimicrobial resistance. Results Piglet born on the repaired floors had the lowest prevalences of abrasions at carpus. Also the doubled straw ration decreased the abrasions. Skin lesions at carpus decreased significantly in magnitude in all four systems from day 10. At day 3, the sole bruising scores of the control unit were greater than the other three units (p Streptococcus dysgalactiae subsp. equisimilis (60%, Staphylococcus hyicus subsp. hyicus (35% and Escherichia coli (5%. These isolates were sensitive to all antibiotics

  9. The effect of daily fluoride mouth rinsing on enamel erosive/abrasive wear in situ.

    Science.gov (United States)

    Stenhagen, K R; Hove, L H; Holme, B; Tveit, A B

    2013-01-01

    It is not known whether application of fluoride agents on enamel results in lasting resistance to erosive/abrasive wear. We investigated if one daily mouth rinse with sodium fluoride (NaF), stannous fluoride (SnF(2)) or titanium tetrafluoride (TiF(4)) solutions protected enamel against erosive/abrasive wear in situ (a paired, randomised and blind study). Sixteen molars were cut into 4 specimens, each with one amalgam filling (measurement reference surface). Two teeth (2 × 4 specimens) were mounted bilaterally (buccal aspects) on acrylic mandibular appliances and worn for 9 days by 8 volunteers. Every morning, the specimens were brushed manually with water (30 s) extra-orally. Then fluoride solutions (0.4% SnF(2) pH 2.5; 0.15% TiF(4) pH 2.1; 0.2% NaF pH 6.5, all 0.05 M F) were applied (2 min). Three of the specimens from each tooth got different treatment, and the fourth served as control. At midday, the specimens were etched for 2 min in 300 ml fresh 0.01 M hydrochloric acid and rinsed in tap water. This etch procedure was repeated in the afternoon. Topographic measurements were performed by a white-light interferometer. Mean surface loss (±SD) for 16 teeth after 9 days was: SnF(2) 1.8 ± 1.9 µm, TiF(4) 3.1 ± 4.8 µm, NaF 26.3 ± 4.7 µm, control 32.3 ± 4.4 µm. Daily rinse with SnF(2), TiF(4) and NaF resulted in 94, 90 and 18% reduction in enamel erosive/abrasive wear, respectively, compared with control (p < 0.05). The superior protective effect of daily rinse with either stannous or titanium tetrafluoride solutions on erosive/abrasive enamel wear is promising. Copyright © 2012 S. Karger AG, Basel.

  10. Abrasive Wear of Alloyed Cast Steels Applied for Heavy Machinery

    Directory of Open Access Journals (Sweden)

    Studnicki A.

    2015-03-01

    Full Text Available In the paper the results and analysis of abrasive wear studies were shown for two grades of cast steels: low-alloyed cast steel applied for heavy machinery parts such as housing, covers etc. and chromium cast steels applied for kinetic nodes of pin-sleeve type. Studies were performed using the modified in Department of Foundry pin-on-disc method.

  11. Technology Demonstration of Wet Abrasive Blasting for Removal of Lead- and Asbestos-Containing Paint

    National Research Council Canada - National Science Library

    Race, Timothy

    2003-01-01

    ...). This technology demonstration showed that wet blasting using an engineered abrasive can safely and effectively remove lead- and asbestos-containing paint from exterior concrete masonry unit walls...

  12. Fabricating superhydrophobic polymer surfaces with excellent abrasion resistance by a simple lamination templating method.

    Science.gov (United States)

    Xu, Qian Feng; Mondal, Bikash; Lyons, Alan M

    2011-09-01

    Fabricating robust superhydrophobic surfaces for commercial applications is challenging as the fine-scale surface features, necessary to achieve superhydrophobicity, are susceptible to mechanical damage. Herein, we report a simple and inexpensive lamination templating method to create superhydrophobic polymer surfaces with excellent abrasion resistance and water pressure stability. To fabricate the surfaces, polyethylene films were laminated against woven wire mesh templates. After cooling, the mesh was peeled from the polymer creating a 3D array of ordered polymer microposts on the polymer surface. The resulting texture is monolithic with the polymer film and requires no chemical modification to exhibit superhydrophobicity. By controlling lamination parameters and mesh dimensions, polyethylene surfaces were fabricated that exhibit static contact angles of 160° and slip angles of 5°. Chemical and mechanical stability was evaluated using an array of manual tests as well as a standard reciprocating abraser test. Surfaces remained superhydrophobic after more than 5500 abrasion cycles at a pressure of 32.0 kPa. In addition, the surface remains dry after immersing into water for 5 h at 55 kPa. This method is environmental friendly, as it employs no solvents or harsh chemicals and may provide an economically viable path to manufacture large areas of mechanically robust superhydrophobic surfaces from inexpensive polymers and reusable templates.

  13. Geological Hazards analysis in Urban Tunneling by EPB Machine (Case study: Tehran subway line 7 tunnel

    Directory of Open Access Journals (Sweden)

    Hassan Bakhshandeh Amnieh

    2016-06-01

    Full Text Available Technological progress in tunneling has led to modern and efficient tunneling methods in vast underground spaces even under inappropriate geological conditions. Identification and access to appropriate and sufficient geological hazard data are key elements to successful construction of underground structures. Choice of the method, excavation machine, and prediction of suitable solutions to overcome undesirable conditions depend on geological studies and hazard analysis. Identifying and investigating the ground hazards in excavating urban tunnels by an EPB machine could augment the strategy for improving soil conditions during excavation operations. In this paper, challenges such as geological hazards, abrasion of the machine cutting tools, clogging around these tools and inside the chamber, diverse work front, severe water level fluctuations, existence of water, and fine-grained particles in the route were recognized in a study of Tehran subway line 7, for which solutions such as low speed boring, regular cutter head checks, application of soil improving agents, and appropriate grouting were presented and discussed. Due to the presence of fine particles in the route, foam employment was suggested as the optimum strategy where no filler is needed.

  14. Clinical study on the removal of gingival melanin pigmentation: comparison between Nd:YAG laser ablation and mechanical abrasion

    International Nuclear Information System (INIS)

    Lopes, Luis Mario de Melo

    2002-01-01

    Melanin pigmentation occurs as a result of excessive deposition of melanin, produced by the melanocytes present in the basal layer of the epithelium. This study compares clinical parameters such as inflammation and/or hemorrhage, healing process and re-pigmentation, caused by the Nd:YAG laser ablation and the mechanical abrasion of the melanin, by means of photographic images, taken during the first 30 days after the treatment. The patients comfort was monitored during the first ten days after the treatment using the method of the Visual Analog Scale to measure the pain. Six patients with gingival melanin pigmentation were selected. The left upper gingival quadrant was treated with the Nd:YAG laser using 125 mJ per pulse and 20 Hz, the right upper gingival quadrant received mechanical abrasion and the lower quadrants served for control. Both techniques did not result in inflammation and/or hemorrhage. The healing process was slower with the laser. Using mechanical abrasion, ali patients showed remaining pigmentation or re-pigmentation of varying intensity after a period of 30 days. With the laser 50 % of the patients did not show any re-pigmentation after this period. The pain analysis showed that the pain sensed 24 hours after the treatment with the laser is higher than using mechanical abrasion. (author)

  15. Lung scintigraphy evaluation in workers exposed to abrasive dusts; Avaliacao cintilografica pulmonar em trabalhadores de industria de abrasivos

    Energy Technology Data Exchange (ETDEWEB)

    Terra Filho, Mario

    1996-12-31

    The production process of abrasives use aluminium, or silicon carbide a synthetic material with a hardness only slightly less than that of a diamond. It is popularly known as carborundum since it was first manufactured as an abrasive in 1891, produced by the fusion of high grade silica and petroleum coke with sawdust. For many years silicon carbide was thought not to give rise to pulmonary lesions. Recently several researchers suggested the existence of a carborundum pneumoconiosis. The aim of this study was to evaluate the role of the pulmonary clearance of {sup 99m} Technetium chelated to diethylene-triamine penta-acetate ({sup 99m} Tc DTPA), and {sup 67} Gallium lung scanning in workers exposed to abrasive dusts. Thirty seven subjects, 13 smokers and 24 nonsmokers and ex smokers were studied. In 32 (86,48%) {sup 67} Gallium lung scanning was positive including 13 (40,62%) retired workers. We conclude that non smoking workers of abrasives plants have a pulmonary alveolar epithelial permeability disturbance similar as observed in smoking workers and smoking controls. Most workers, ex-workers of these industries and in patients with carborundum pneumoconiosis there is an evidence of pulmonary inflammation measured with abnormal {sup 67} Gallium lung scan. (author) 101 refs., 2 figs., 11 tabs.

  16. Lung scintigraphy evaluation in workers exposed to abrasive dusts; Avaliacao cintilografica pulmonar em trabalhadores de industria de abrasivos

    Energy Technology Data Exchange (ETDEWEB)

    Terra Filho, Mario

    1995-12-31

    The production process of abrasives use aluminium, or silicon carbide a synthetic material with a hardness only slightly less than that of a diamond. It is popularly known as carborundum since it was first manufactured as an abrasive in 1891, produced by the fusion of high grade silica and petroleum coke with sawdust. For many years silicon carbide was thought not to give rise to pulmonary lesions. Recently several researchers suggested the existence of a carborundum pneumoconiosis. The aim of this study was to evaluate the role of the pulmonary clearance of {sup 99m} Technetium chelated to diethylene-triamine penta-acetate ({sup 99m} Tc DTPA), and {sup 67} Gallium lung scanning in workers exposed to abrasive dusts. Thirty seven subjects, 13 smokers and 24 nonsmokers and ex smokers were studied. In 32 (86,48%) {sup 67} Gallium lung scanning was positive including 13 (40,62%) retired workers. We conclude that non smoking workers of abrasives plants have a pulmonary alveolar epithelial permeability disturbance similar as observed in smoking workers and smoking controls. Most workers, ex-workers of these industries and in patients with carborundum pneumoconiosis there is an evidence of pulmonary inflammation measured with abnormal {sup 67} Gallium lung scan. (author) 101 refs., 2 figs., 11 tabs.

  17. The Effect of Microstructure on the Abrasion Resistance of Low Alloyed Steels

    NARCIS (Netherlands)

    Xu, X.

    2016-01-01

    The thesis attempts to develop advanced high abrasion resistant steels with low hardness in combination with good toughness, processability and low alloying additions. For this purpose, a novel multi-pass dual-indenter (MPDI) scratch test approach has been developed to approach the real continuous

  18. Silane effects on the surface morphology and abrasion resistance of transparent SiO2/UV-curable resin nano-composites

    International Nuclear Information System (INIS)

    Hsiang, Hsing-I.; Chang, Yu-Lun; Chen, Chi-Yu; Yen, Fu-Su

    2011-01-01

    Transparent ultraviolet curable nano-composite coatings consisting of nano-sized SiO 2 and acrylate resin have been developed to improve the abrasion resistance of organic polymers. The nano-sized SiO 2 particles were surface-modified using various amounts of 3-methacryloxypropyltrimethoxysilane. The 3-methacryloxypropyltrimethoxysilane concentration effects on the surface morphology and abrasion resistance of the transparent SiO 2 /ultraviolet-curable resin nano-composites were investigated using scanning electron microscopy, atomic force microscopy, and ultraviolet-visible spectrophotometer. The results showed that as the 3-methacryloxypropyltrimethoxysilane/SiO 2 weight ratio increased from 0.2 to 0.6, the dispersion, compatibility and cross-linking density between the 3-methacryloxypropyltrimethoxysilane-modified SiO 2 particles and acrylate resin were improved, leading to an increase in abrasion resistance. However, as the 3-methacryloxypropyltrimethoxysilane/SiO 2 weight ratio was increased to 1.5, the additional 3-methacryloxypropyltrimethoxysilane may exceed that needed to fill the pores with the probability of SiO 2 nano-particles existing on the coating surface was lower than that for samples with a 3-methacryloxypropyltrimethoxysilane/SiO 2 weight ratio of 0.6. This produced a decrease in abrasion resistance.

  19. Effects of Running Shoes with Abrasion Resistant Rubber Sole on the Exercise Capacity of the Human Body

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2017-10-01

    Full Text Available With the development of industrialization, rubber has been gradually used in the manufacture of sports equipment for its favourable properties. This study involved the addition of C5 petroleum resin into brominated isobutylene-isoprene rubber (BIIR and butadiene rubber (BR while manufacturing the sole of running shoes. The effects of running shoes with abrasion resistant rubber sole on the exercise capacity of the human body were investigated by analysing the skid resistance and abrasion resistance of the running shoes, and conducting biomechanical study on naked feet and feet wearing the shoes. The results demonstrated that the rubber sole had favourable slip resistance property and mechanical properties such as stretching, abrasion resistance, and hardness. Compared to naked feet, the peak pressure intensity of the whole step of feet wearing the newly developed shoes, was significantly lower than that of feet wearing ordinary shoes. In the future, rubber can bring more comfortable experience because of its favourable properties.

  20. Abrasion and algal fouling of coarse material on the Murman littoral

    Directory of Open Access Journals (Sweden)

    Malavenda S. V.

    2017-03-01

    Full Text Available On the Murmansk coast of the Barents Sea the boulder littoral zone is widely spread mostly covered by Fucus communities. This is one of the most productive benthic communities of the Barents Sea. The studies of intertidal communities have the long history, but the dynamics of intertidal ecosystems due to surf and storms is not clear. The goal of the work is to identify the leading factors that determine the rate of abrasion of coarse material and fouling algae-macrophytes of the intertidal zone of Murman. The study has been conducted in the Zelenetskaya Bay of the Barents Sea on the basis of the biological station of the MMBI KSC RAS. The rate of abrasion has been carried out during 2004–2013, phyto-overgrowing – 2009–2013. In three pilot landfills 12 samples of coarse material have been exposed during the year (from July to next July. The weight change of the sample as well as species composition and biomass of algae of fouling communities have been investigated. The influence of the surf intensity, temperature of water and air has been analyzed (univariate analysis of variance ANOVA has been applied. It has been shown that on the littoral of the Murmansk coast the abrasion of coarse material is determined primarily by the number of storms, so the storm rate has been proposed. It has been revealed that the density of fouling boulders with macroalgae depends primarily on the intensity of the surf and the average gradient of air temperature. The basis for the emerging communities of annual species are green (Acrosiphonia arcta, Blidingia minima, Spongomorpha aeruginosa and brown algae (Pylaiella littoralis, Dictyosiphon chordaria. These algae groups are found everywhere in Fucus communities of the boulder intertidal zone of the Murman coast and probably they are the intermediate stage of fouling the coarse-grained material

  1. Simplified Abrasion Test Methodology for Candidate EVA Glove Lay-Ups

    Science.gov (United States)

    Rabel, Emily; Aitchison, Lindsay

    2015-01-01

    During the Apollo Program, space suit outer-layer fabrics were badly abraded after performing just a few extravehicular activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots that penetrated the outer-layer fabric into the thermal protection layers after less than 8 hrs of surface operations. Current plans for the exploration planetary space suits require the space suits to support hundreds of hours of EVA on a lunar or Martian surface, creating a challenge for space suit designers to utilize materials advances made over the last 40 years and improve on the space suit fabrics used in the Apollo Program. Over the past 25 years the NASA Johnson Space Center Crew and Thermal Systems Division has focused on tumble testing as means of simulating wear on the outer layer of the space suit fabric. Most recently, in 2009, testing was performed on 4 different candidate outer layers to gather baseline data for future use in design of planetary space suit outer layers. In support of the High Performance EVA Glove Element of the Next Generation Life Support Project, testing a new configuration was recently attempted in which require 10% of the fabric per replicate of that need in 2009. The smaller fabric samples allowed for reduced per sample cost and flexibility to test small samples from manufacturers without the overhead to have a production run completed. Data collected from this iteration was compared to that taken in 2009 to validate the new test method. In addition the method also evaluated the fabrics and fabric layups used in a prototype thermal micrometeoroid garment (TMG) developed for EVA gloves under the NASA High Performance EVA Glove Project. This paper provides a review of previous abrasion studies on space suit fabrics, details methodologies used for abrasion testing in this particular study, results of the validation study, and results of the TMG testing.

  2. Abrasive wear resistance optimization of three different carbide coatings by the Taguchi method

    Energy Technology Data Exchange (ETDEWEB)

    Guer, Ali Kaya [Firat Univ., Elazig (Turkey). Dept. of Metallurgy and Materials; Kaya, Sinan [Firat Univ., Elazig (Turkey). Faculty of Technology

    2017-06-01

    In this study, FeCrC, SiC and B{sub 4}C powders were alloyed on the surface of AISI 430 ferritic stainless steel by plasma arc welding. The mass losses of the abrasive wear of the AISI 430 substrate were examined under the loads of 6, 10 and 16 N and in the distances of 10, 20 and 30 m by using Taguchi design method. The results of abrasive wear test were optimized by the minimum optimal control characteristics of the Taguchi procedure and the results were analyzed by using graphical methods. The Taguchi procedure is an important approach to achieve high quality without increasing the cost during the optimization of process parameters. The orthogonal planes of maximum effects of the controllable process parameters and minimum effects of uncontrollable process parameters were employed in the Taguchi method.

  3. Influence of the microstructure of WC-Co cemented carbides on the fracture toughness and abrasive wear

    International Nuclear Information System (INIS)

    Zum Gahr, K.H.; Fischer, A.

    1981-01-01

    Fracture toughness and abrasive wear resistance of WC-Co cemented carbides were investigated by using the indentation cracking test (Palmqvist test) and the pin-on-disk method respectively. Size distribution of tungsten carbides and means free path between them were found to be important microstructural parameters related to the mechanical behavior. Results showed that selection of cemented carbides for heavy wear loading is complicated by contradictory influence of microstructural parameters on fracture toughness and abrasion resistance. Knowledge of the relation between microstructure and resistance to fracture or wear is necessary for optimum use of cemented carbides. (orig.) [de

  4. Research status in ultra-precision machining of silicon carbide parts by oxidation-assisted polishing

    Directory of Open Access Journals (Sweden)

    Xinmin SHEN

    2016-10-01

    Full Text Available Oxidation-assisted polishing is an important machining method for obtaining SiC parts with high precision. Through plasma oxidation, thermal oxidation, and anodic oxidation, soft oxide can be obtained on the RS-SiC substrate. With the assistance of abrasive polishing to remove the oxide rapidly, the material removal rate can be increased and the surface quality can be improved. The research results indicate that the surface roughness root-mean-square (RMS and roughness-average (Ra can reach 0.626 nm and 0.480 nm by plasma oxidation-assisted polishing; in thermal oxidation-assisted polishing, the RMS and Ra can be 0.920 nm and 0.726 nm; in anodic oxidation, the calculated oxidation rate is 5.3 nm/s based on Deal-Grove model, and the RMS and Ra are 4.428 nm and 3.453 nm respectively in anodic oxidation-assisted polishing. The oxidation-assisted polishing can be propitious to improve the process level in machining RS-SiC, which would promote the application of SiC parts in optics and ceramics fields.

  5. Thickness-Independent Ultrasonic Imaging Applied to Abrasive Cut-Off Wheels: An Advanced Aerospace Materials Characterization Method for the Abrasives Industry. A NASA Lewis Research Center Technology Transfer Case History

    Science.gov (United States)

    Roth, Don J.; Farmer, Donald A.

    1998-01-01

    Abrasive cut-off wheels are at times unintentionally manufactured with nonuniformity that is difficult to identify and sufficiently characterize without time-consuming, destructive examination. One particular nonuniformity is a density variation condition occurring around the wheel circumference or along the radius, or both. This density variation, depending on its severity, can cause wheel warpage and wheel vibration resulting in unacceptable performance and perhaps premature failure of the wheel. Conventional nondestructive evaluation methods such as ultrasonic c-scan imaging and film radiography are inaccurate in their attempts at characterizing the density variation because a superimposing thickness variation exists as well in the wheel. In this article, the single transducer thickness-independent ultrasonic imaging method, developed specifically to allow more accurate characterization of aerospace components, is shown to precisely characterize the extent of the density variation in a cut-off wheel having a superimposing thickness variation. The method thereby has potential as an effective quality control tool in the abrasives industry for the wheel manufacturer.

  6. Evaluation of Parameters Affecting Magnetic Abrasive Finishing on Concave Freeform Surface of Al Alloy via RSM Method

    Directory of Open Access Journals (Sweden)

    Mehrdad Vahdati

    2016-01-01

    Full Text Available The attempts of researchers in industries to obtain accurate and high quality surfaces led to the invention of new methods of finishing. Magnetic abrasive finishing (MAF is a relatively new type of finishing in which the magnetic field is used to control the abrasive tools. Applications such as the surface of molds are ones of the parts which require very high surface smoothness. Usually this type of parts has freeform surface. In this study, the effect of magnetic abrasive process parameters on freeform surfaces of parts made of aluminum is examined. This method is obtained through combination of magnetic abrasive process and Control Numerical Computer (CNC. The use of simple hemisphere for installation on the flat area of the magnets as well as magnets’ spark in curve form is a measure done during testing the experiments. The design of experiments is based on response surface methodology. The gap, the rotational speed of the spindle, and the feed rate are found influential and regression equations governing the process are also determined. The impact of intensity of the magnetic field is obtained using the finite element software of Maxwell. Results show that in concave areas of the surface, generally speaking, the surface roughness decreases to 0.2 μm from its initial 1.3 μm roughness. However, in some points the lowest surface roughness of 0.08 μm was measured.

  7. Original Researc Original Research

    African Journals Online (AJOL)

    RAGHAVENDRA

    Abrasive jet machining (AJM) is a micromachining p the work piece by the erosion effect of a high speed ... INTRODUCTION. Abrasive water jets, namely water jets con abrasive particles, have a considerable niche .... cleaning, such as removal of smudges from antique documents, is also possible with AJM. Circular Nozzle.

  8. Report D : self-consolidating concrete (SCC) for infrastructure elements - creep, shrinkage and abrasion resistance.

    Science.gov (United States)

    2012-08-01

    Concrete specimens were fabricated for shrinkage, creep, and abrasion resistance : testing. Variations of self-consolidating concrete (SCC) and conventional concrete were : all tested. The results were compared to previous similar testing programs an...

  9. The grain-size distribution of pyroclasts: Primary fragmentation, conduit sorting or abrasion?

    Science.gov (United States)

    Kueppers, U.; Schauroth, J.; Taddeucci, J.

    2013-12-01

    Explosive volcanic eruptions expel a mixture of pyroclasts and lithics. Pyroclasts, fragments of the juvenile magma, record the state of the magma at fragmentation in terms of porosity and crystallinity. The grain size distribution of pyroclasts is generally considered to be a direct consequence of the conditions at magma fragmentation that is mainly driven by gas overpressure in bubbles, high shear rates, contact with external water or a combination of these factors. Stress exerted by any of these processes will lead to brittle fragmentation by overcoming the magma's relaxation timescale. As a consequence, most pyroclasts exhibit angular shapes. Upon magma fragmentation, the gas pyroclast mixture is accelerated upwards and eventually ejected from the vent. The total grain size distribution deposited is a function of fragmentation conditions and transport related sorting. Porous pyroclasts are very susceptible to abrasion by particle-particle or particle-conduit wall interaction. Accordingly, pyroclastic fall deposits with angular clasts should proof a low particle abrasion upon contact to other surfaces. In an attempt to constrain the degree of particle interaction during conduit flow, monomodal batches of washed pyroclasts have been accelerated upwards by rapid decompression and subsequently investigated for their grain size distribution. In our set-up, we used a vertical cylindrical tube without surface roughness as conduit. We varied grain size (0.125-0.25; 0.5-1; 1-2 mm), porosity (0; 10; 30 %), gas-particle ratio (10 and 40%), conduit length (10 and 28 cm) and conduit diameter (2.5 and 6 cm). All ejected particles were collected after settling at the base of a 3.3 m high tank and sieved at one sieve size below starting size (half-Φ). Grain size reduction showed a positive correlation with starting grain size, porosity and overpressure at the vent. Although milling in a volcanic conduit may take place, porous pyroclasts are very likely to be a primary product

  10. The influence of varnish and high fluoride on erosion and abrasion in a laboratory investigation.

    Science.gov (United States)

    Sar Sancakli, H; Austin, R S; Al-Saqabi, F; Moazzez, R; Bartlett, D

    2015-03-01

    The aim of this study was to investigate the potential of concentrated fluoride varnishes to reduce enamel loss from repeated cycles of citric acid erosion and toothbrush abrasion in vitro. Polished human enamel samples were exposed to fluoride varnishes: Bifluorid10® (NaF&CaF2- 45,200 ppmF), Duraphat® (NaF 22,600 ppmF), Fluor-Protector® (difluorsilane 1000 ppmF) and a control coating of copal ether varnish (0 ppmF) group and a deionized water group. For each group of 16 samples, nine cycles of erosion and nine cycles of erosion-abrasion [1 cycle=erosion (0.3% citric acid, pH 3.2, 5 min)+artificial saliva (1 h, pH 7.0)+abrasion (120 linear strokes in artificial saliva from Oral B medium soft brushes 300 g loading]. The change in the enamel surface was evaluated using optical profilometry. Duraphat® and Bifluorid10® applications had a median (IQR) step height of 4.21 um (1.59) and 5.01 um (1.02). This was statistically significantly less than Fluor-Protector® 6.83 um (1.25), copal ether 7.22 um (1.97) and water 7.39 um (1.96) (pDental Association.

  11. Monitoring of Acoustic Emission During the Disintegration of Rock

    Czech Academy of Sciences Publication Activity Database

    Tripathi, R.; Srivastava, M.; Hloch, Sergej; Adamčík, P.; Chattopadhyaya, S.; Das, A. K.

    2016-01-01

    Roč. 149, č. 149 (2016), s. 481-488 E-ISSN 1877-7058. [International Conference on Manufacturing Engineering and Materials, ICMEM 2016. Nový Smokovec, 06.06.2016-10.06.2016] R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : acoustic emission * rock disintegration * waterjet Subject RIV: JQ - Machines ; Tools http://www.sciencedirect.com/science/article/pii/S1877705816312127

  12. Vodní paprsky ve Velkých Losinách

    Czech Academy of Sciences Publication Activity Database

    Sitek, Libor

    2015-01-01

    Roč. 12, č. 12 (2015), s. 22-22 ISSN 1212-2572. [Vodní paprsek 2015 - výzkum, vývoj, aplikace. Velké Losiny, 06.10.2015-08.10.2015] R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : waterjet technology * research * application Subject RIV: JQ - Machines ; Tools http://www.mmspektrum.com/clanek/vodni-paprsky-ve-velkych-losinach.html

  13. Wear behavior of carbon fiber/aluminium-composites during abrasive loading; Verschleissverhalten von Kohlenstoffaser/Aluminium-Verbunden unter abrasiver Beanspruchung

    Energy Technology Data Exchange (ETDEWEB)

    Wielage, B.; Dorner, A. [Technische Univ. Chemnitz (Germany). Lehrstuhl fuer Verbundwerkstoffe

    1998-07-01

    Abrasive wear resistance of aluminium is significantly improved by the reinforcement with a high volume percentage of carbon fibres. The wear of unreinforced aluminium after scratching by a diamond indenter can be described as pure microgrooving without any micro-chipping. After integration of 70 vol.-% carbon fibers the damage mechanism is considerably altered and a great amount of micro-chipping occurs. The abrasive wear is strongly influenced by the fiber orientation. The best wear resistance is observed when the fibers are orientated perpendicular to the wear surface. (orig.) [Deutsch] Die Verstaerkung von Aluminium mit einem hohen Volumengehalt endloser Kohlenstoffasern verbessert erkennbar dessen Resistenz gegenueber Abrasionsverschleiss. Der Verschleiss von unverstaerktem Aluminium infolge des Ritzens mit einem Diamantindenter erfolgt in Form von reinem Mikrofurchen ohne Spanbildung. Aufgrund der Integration von 70 Vol.-% Kohlenstoffasern wird eine erhebliche Zunahme des Schaedigungsmechanismus Mikrospanen festgestellt. Die Faserorientierung hat merklichen Einfluss auf die Sensibilitaet gegenueber Abrasion. Orientierung der anisotropen Kohlenstoffasern senkrecht zur Verschleissoberflaeche bedingt den geringsten Abrasionsverschleiss. (orig.)

  14. Application of Hard Metal Weld Deposit in the Area of Mixing Organic Materials

    Directory of Open Access Journals (Sweden)

    Jiří Votava

    2014-01-01

    Full Text Available Any machine part is subject to degradation processes. Intensive wear occurs either when two bearing surfaces come into contact or when loose particles rub the function surface of a machine part. Soil processing machines are a good example. A similar process of abrasive wear occurs also in mixing machines or lines for material transport, such as worm-conveyors. The experiment part of this paper analyses hard metal weld deposit dedicated for renovation of abrasive stressed surfaces. In order to prolong the service life of a blade disc in a mixing machine Kreis-Biogas-Dissolver, the technology of hard surfacing by an electric arc was used. Tested hard metal electrodes were applied on a steel tape class 11 373. To eliminate mixing with the base material, weld beads were applied in two layers. Firstly, the weld bead was visually analyzed on a binocular microscope. Further, weld bead as well as the base material was analyzed from the metallographic point of view, whose aim was to identify the structure of weld metal and the origin of microcracks in weld bead. Moreover, there was also measured microhardness of weld metal. Abrasive resistance was tested according to the norm ČSN 01 5084, which is an abrasive cloth test. As in the mixing process also erosion wear occurs, there was also processed a test on a Bond device simulating stress of test samples by loose abrasive particles. The abrading agents were formed by broken stones of 8–16 mm in size. Based on the results of the individual tests, the recommendation of usage hard metal electrodes for prolonging service life of machine parts will be made.

  15. Investigations on mechanical and two-body abrasive wear behaviour of glass/carbon fabric reinforced vinyl ester composites

    International Nuclear Information System (INIS)

    Suresha, B.; Kumar, Kunigal N. Shiva

    2009-01-01

    The aim of the research article is to study the mechanical and two-body abrasive wear behaviour of glass/carbon fabric reinforced vinyl ester composites. The measured wear volume loss increases with increase in abrading distance/abrasive particle size. However, the specific wear rate decreases with increase in abrading distance and decrease in abrasive particle size. The results showed that the highest specific wear rate is for glass fabric reinforced vinyl ester composite with a value of 10.89 x 10 -11 m 3 /Nm and the lowest wear rate is for carbon fabric reinforced vinyl ester composite with a value of 4.02 x 10 -11 m 3 /Nm. Mechanical properties were evaluated and obtained values are compared with the wear behaviour. The worn surface features have been examined using scanning electron microscope (SEM). Photomicrographs of the worn surfaces revealed higher percentage of broken glass fiber as compared to carbon fiber. Also better interfacial adhesion between carbon and vinyl ester in carbon reinforced vinyl ester composite was observed.

  16. Effect of nitrogen alloying on the microstructure and abrasive wear of stainless steels

    International Nuclear Information System (INIS)

    Hawk, J.A.; Simmons, J.W.; Rawers, J.C.

    1994-01-01

    Alloying stainless steels with nitrogen has distinct advantages. Nitrogen is a strong austenite stabilizer and a potent solid-solution strengthener, and nitrogen has greater solubility than carbon iron. This study investigates the relationship among nitrogen concentration, precipitate microstructure, and abrasive wear using two high-nitrogen stainless steel alloys: Fe-19Cr-5Mn-5Ni-3Mo (SS1) and Fe-16Cr-7Mn-5Ni(SS2). Alloy SS1 contained 0.7 wt% N and was solution annealed at 1,150 C, thereby dissolving the nitrogen interstitially in the austenite. Subsequent aging, or cold work and aging, at 900 C led to the grain-boundary, cellular, and transgranular precipitation of Cr 2 N. Alloy SS2 was remelted in a high-pressure (200 MPa) N 2 atmosphere, leading to a spatial gradient of nitrogen in the alloy in the form of interstitial nitrogen and Cr 2 N and CrN precipitates. Nitrogen contents varied from a low of approximately 0.7 wt% at the bottom of the billet to a high of 3.6 wt% at the top. Nitrogen in excess of approximately 0.7 wt% formed increasingly coarser and more numerous Cr 2 N and CrN precipitates. The precipitate morphology created in alloy SS1 due to aging, or cold work and aging, had little effect on the abrasive wear of the alloy. However, a decrease in the abrasive wear rate in alloy SS2 was observed to correspond to the increase in number and size of the Cr 2 N and CrN precipitates

  17. The influence of the waterjet propulsion system on the ships' energy consumption and emissions inventories.

    Science.gov (United States)

    Durán-Grados, Vanesa; Mejías, Javier; Musina, Liliya; Moreno-Gutiérrez, Juan

    2018-08-01

    In this study we consider the problems associated with calculating ships' energy and emission inventories. Various related uncertainties are described in many similar studies published in the last decade, and applying to Europe, the USA and Canada. However, none of them have taken into account the performance of ships' propulsion systems. On the one hand, when a ship uses its propellers, there is no unanimous agreement on the equations used to calculate the main engines load factor and, on the other, the performance of waterjet propulsion systems (for which this variable depends on the speed of the ship) has not been taken into account in any previous studies. This paper proposes that the efficiency of the propulsion system should be included as a new parameter in the equation that defines the actual power delivered by a ship's main engines, as applied to calculate energy consumption and emissions in maritime transport. To highlight the influence of the propulsion system on calculated energy consumption and emissions, the bottom-up method has been applied using data from eight fast ferries operating across the Strait of Gibraltar over the course of one year. This study shows that the uncertainty about the efficiency of the propulsion system should be added as one more uncertainty in the energy and emission inventories for maritime transport as currently prepared. After comparing four methods for this calculation, the authors propose a new method for eight cases. For the calculation of the Main Engine's fuel oil consumption, differences up to 22% between some methods were obtained at low loads. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. A laser-abrasive method for the cutting of enamel and dentin.

    Science.gov (United States)

    Altshuler, G B; Belikov, A V; Sinelnik, Y A

    2001-01-01

    This paper introduced a new method for the removal of hard dental tissue based upon the use of particles accelerated by laser irradiation, which the authors have called the laser-abrasive method. The particles used were sapphire as powder or an aqueous suspension. The effect of the products of enamel ablation was also investigated. The particles were accelerated using submillisecond pulses of Er:YAG and Nd:YAG lasers. A strobing CCD camera was used to measure the speed of the ejected particles. The additional contribution of these particles to the efficiency of laser ablation of enamel and dentin was also investigated. The results showed that the enamel particles produced by the beam-tissue interaction were also accelerated by this process of ablation and were effective in the removal of enamel and dentin. The use of an aqueous suspension of sapphire particles increased the efficiency of enamel removal threefold when compared with the use of an Er:YAG laser with water spray. The laser-abrasive method allowed for the removal of enamel and dentin at speeds approaching those of the high-speed turbine. Copyright 2001 Wiley-Liss, Inc.

  19. Standard Test Method for Abrasive Wear Resistance of Cemented

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the determination of abrasive wear resistance of cemented carbides. 1.2 The values stated in inch-pound units are to be regarded as the standard. The SI equivalents of inch-pound units are in parentheses and may be approximate. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  20. Behavior and biological action of 239Pu while getting into skin abrasions

    International Nuclear Information System (INIS)

    Bazhin, A.G.; Lyubchanskij, Eh.R.; Nifatov, A.N.; Sinyakov, E.G.

    1983-01-01

    The levels of the radionuclide resorption are given through abrasions in applying 224-906 kBk of 239 Pu on them (0.6=1.5 % for 600 days), the nature of distribution and parameters of its exchange in the test skin area, skeleton and liver. Data of morphological studies are presented. The influence of prolonged complexon therapy on 239 Pu content in organs and tissues, mean life span, the frequency of appearance of morphological changes in test skin areas with the contamination density of 40; 184 and 722 kBk of 239 Pu/cm 2 and the frequency of tumor development including malignancy in case of applying 224 and 906 kBk of 239 Pu to abrasions is evaluated. It has been established that as a result of complexon therapy dosage exposure of the skeleton lessened by 4-5 times, the mean life span of rats with tumors increased, the development of osteosarcomas caused by Pu reduced from 23.6-36.2 to 4.4-6.2 % but the therapy did not influence the frequency of pathological changes in the test skin area

  1. Comparative Efficacy of a Soft Toothbrush with Tapered-tip Bristles to an ADA Reference Toothbrush on Gingival Abrasion over a 12-Week Period.

    Science.gov (United States)

    Gallob, John; Petrone, Dolores M; Mateo, Luis R; Chaknis, Patricia; Morrison, Boyce M; Panagakos, Foti; Williams, Malcolm

    2016-06-01

    Evaluation of the impact of a soft toothbrush with tapered-tip (Test Toothbrush) bristles and an ADA reference toothbrush (ADA Toothbrush) on gingival abrasion over a 12-week period. This was a randomized, single-center, examiner-blind, two-cell, parallel clinical research study and used the Danser Gingival Abrasion Index to assess the level of gingival abrasion after a single brushing, as well as after six weeks and 12 weeks of twice-daily brushing. Adult male and female subjects from the Central New Jersey, USA area refrained from all oral hygiene procedures for 24 hours. They reported to the study site after refraining from eating, drinking, and smoking for four hours. Following a qualifying examination using plaque and gingivitis scores along with a baseline gingival abrasion examination, subjects were randomized into two balanced groups, each group using one of the two study toothbrushes. Subjects were instructed to brush their teeth for one minute, under supervision, with their assigned toothbrush and a commercially available fluoride toothpaste (Colgate© Cavity Protection Toothpaste), after which they were again evaluated for gingival abrasion. Subjects were dismissed from the study site with their assigned toothbrush and toothpaste, and instructed to brush twice daily at home for the next 12 weeks. The subjects were instructed to brush for one minute during each tooth brushing. The subjects reported to the study site after six weeks and 12 weeks of product use, at which time they were evaluated for gingival abrasion. Seventy-one (71) subjects complied with the protocol and completed the clinical study. The results of this study showed that the Test Toothbrush provided statistically significantly (p ADA Toothbrush after a single tooth brushing, after six weeks, and after 12 weeks of product use (75.0%, 85.5%, 73.9%, respectively). The soft toothbrush with tapered-tip bristles produced significantly less gingival abrasion after 12 weeks of product use as

  2. Influence of Surface Abrasion on Creep and Shrinkage of Railway Prestressed Concrete Sleepers

    Science.gov (United States)

    Li, Dan; Ngamkhanong, Chayut; Kaewunruen, Sakdirat

    2017-10-01

    Ballasted railway track is very suitable for heavy-rail networks because of its many superior advantages in design, construction, short- and long-term maintenance, sustainability, and life-cycle cost. The sleeper, which supports rail and distributes loads from rail to ballast, is a very important component of rail track system. Prestressed concrete is very popular used in manufacturing sleepers. Therefore, improved knowledge about design techniques for prestressed concrete (PC) sleepers has been developed. However, the ballast angularity causes differential abrasions on the soffit or bottom surface of sleepers. Furthermore, in sharp curves and rapid gradient change, longitudinal and lateral dynamics of rails increase the likelihood of abrasions in concrete sleepers. This paper presents a comparative investigation using a variety of methods to evaluate creep and shrinkage effects in railway prestressed concrete sleepers. The outcome of this study will improve the material design, which is very critical to the durability of railway track components.

  3. Efficient Havinga–Kondepudi resolution of conglomerate amino acid derivatives by slow cooling and abrasive grinding

    NARCIS (Netherlands)

    Leeman, Michel; Noorduin, Wim L.; Millemaggi, Alessia; Vlieg, Elias; Meekes, Hugo; Enckevort, Willem J.P. van; Kaptein, Bernard; Kellogg, Richard M.

    2010-01-01

    The complete resolution of the conglomerate racemates of two amino acid derivatives susceptible to racemization in solution was achieved by slow crystallization from a supersaturated solution accompanied by cooling and abrasive grinding.

  4. Adaptation of high pressure water jets with abrasives for nuclear installations dismantling

    International Nuclear Information System (INIS)

    Rouviere, R.; Pinault, M.; Gasc, B.; Guiadeur, R.; Pilot, M.

    1989-01-01

    This report presents the work realized for adjust the cutting technology with high pressure water jet with abrasives for nuclear installation dismantling. It has necessited the conception and the adjustement of a remote tool and the realization of cutting tests with waste produce analysis. This technic can be ameliorated with better viewing systems and better fog suction systems

  5. Influence of sodium content on the properties of bioactive glasses for use in air abrasion.

    Science.gov (United States)

    Farooq, Imran; Tylkowski, Maxi; Müller, Steffen; Janicki, Tomasz; Brauer, Delia S; Hill, Robert G

    2013-12-01

    Air abrasion is used in minimally invasive dentistry for preparing cavities, while removing no or little sound dentine or enamel, and the use of bioactive glass (rather than alumina) as an abrasive could aid in tooth remineralization. Melt-derived bioactive glasses (SiO2-P2O5-CaO-CaF2-Na2O) with low sodium content (0 to 10 mol% Na2O in exchange for CaO) for increased hardness, high phosphate content for high bioactivity and fluoride content for release of fluoride and formation of fluorapatite were produced, and particles between 38 and 80 µm in size were used for cutting soda-lime silicate glass microscope slides and human enamel. Vickers hardness increased with decreasing Na2O content, owing to a more compact silicate network in low sodium content glasses, resulting in shorter cutting times. Cutting times using bioactive glass were significantly longer than using the alumina control (29 µm) when tested on microscope slides; however, glasses showed more comparable results when cutting human enamel. The bioactive glasses formed apatite in Tris buffer within 6 h, which was significantly faster than Bioglass® 45S5 (24 h), suggesting that the hardness of the glasses makes them suitable for air abrasion application, while their high bioactivity and fluoride content make them of interest for tooth remineralization.

  6. Study of abrasive wear process of lining of grinding chamber of vortex-acoustic disperser

    Science.gov (United States)

    Perelygin, D. N.

    2018-03-01

    The theoretical and experimental studies of the process of gas-abrasive wear of the lining of a vortex-acoustic disperser made it possible to establish the conditions and patterns of their occurrence and also to develop proposals for its reduction.

  7. Nitriding the influence of plasma in resistance to wear micro abrasive tool steel AISI D2

    International Nuclear Information System (INIS)

    Gobbi, Vagner Joao; Gobb, Silvio Jose; Silva, Cosme Roberto Moreira da

    2010-01-01

    This work studies the influence of time of treatment in the formation of nitride layer of AISI D2 tool steel and the resistance to micro-abrasive wear from the technique of nitriding in plasma. The samples were nitrides at 400 ° C with a pressure of 4.5 mbar (450 Pa) and using a gas mixture of 80% vol.H2 and 20% vol.N2. The times of treatment were: 30, 60, 120, 180 and 360 minutes. The properties of the layers in the samples obtained nitrides were assessed by surface microhardness, profiles of microhardness, metallography analysis, X-ray diffraction and test for resistance to micro-abrasive wear. The best results for nitriding to 400 deg C, was obtained with the time of treatment of 360 minutes. In this case the increase in surface hardness was 94.6% and resistance to micro-abrasive wear of 15%. This increase in hardness may be associated with high concentration of nitrogen in the crystalline network of iron-α and additional training of nitrides. Low temperature of nitriding reduces between grain fragility to reduce the likelihood of precipitation of nitrides in a continuous manner in the austenite grain boundaries and the absence of previous ε'+ γ phases. (author)

  8. Artificial evolutionary approaches to produce smoother surface in magnetic abrasive finishing of hardened AISI 52100 steel

    Energy Technology Data Exchange (ETDEWEB)

    Teimouri, Reza; Baseri, Hamid [Babol University of Technology, Babol (Iran, Islamic Republic of)

    2013-02-15

    In this work, two models of feed forward back-propagation neural network (FFBP-NN) and adaptive neuro-fuzzy inference system (ANFIS) have been developed to predict the performance of magnetic abrasive finishing process, based on experimental data of literature. Input parameters of process are electromagnet's voltage, mesh number of abrasive particles, poles rotational speed and weight percent of abrasive particles, and also the output is percentage of surface roughness variation. In order to select the best model, a comparison between developed models has been done based on their mean absolute error (MAE) and root mean square error (RMSE). Moreover, optimization methods based on simulated annealing (SA) and particle swarm optimization (PSO) algorithms were used to maximize the percent of surface roughness variation and select the optimal process parameters. Results indicated that the models based on artificial intelligence predict much more precise values with respect to predictive regression model developed in main literature. Also, the ANFIS model had a lowest value of MAE and RMSE with respect to others. So it was used as an objective function to maximize the surface roughness variation by using SA and PSO. Comparison between the obtained optimal solutions and analysis of results in main literature indicated that SA and PSO could find the optimal answers logically and precisely.

  9. A study on the effect of 60Co gamma ray irradiation on the abrasion of dental polymethylmethacrylate, (3)

    International Nuclear Information System (INIS)

    Kimura, Hiroshi

    1981-01-01

    This report intends to clarify the relationship between the total exposure dose and scratch resistance to the specimens SF, SH, MF and MH, giving coating treatments to P.M.M.A. (dental polymethylmethacrylate) and exposing to the irradiation of 60 Co gamma ray at each dose rate. And based on the results, it is intended to develop coated P.M.M.A. with excellent scratch resistance give by irradiation of radioactive ray. From this study, the following results have been obtained. Irradiation of 60 Co gamma ray would give the best results at the exposure at 1 x 10 6 R. The SF and SH specimens in wet condition exposed to 60 Co gamma ray irradiation at 1 x 10 6 R showed a quantity of abrasion of only 17% that of untreated P.M.M.A. and the barrel test revealed outstanding abrasion and scratch resistance. Abrasion and scratch resistance of coated specimens are better utilized in wet conditions performing three times better than those in dry conditions. (author)

  10. Aging temperature and abrasive wear behaviour of cast Al-(4%, 12%, 20%)Si-0.3% Mg alloys

    International Nuclear Information System (INIS)

    Shah, K.B.; Kumar, Sandeep; Dwivedi, D.K.

    2007-01-01

    In the present paper, influence of aging temperature during artificial age hardening treatment (T 6 ) of cast Al-(4, 12, 20%)Si-0.3% Mg on abrasive wear behaviour has been reported. Alloys were prepared by controlled melting and casting. Cast alloys were given age hardening treatment having sequence of solutionizing, quenching and artificial aging. All the alloys were solutionized at 510 deg. C for 8 h followed by water quenching (30 deg. C) and aging hardening at 150, 170, 190, 210 and 230 deg. C for 12 h. Abrasive wear tests were conducted against of 320 grade SiC abrasive medium at 5 and 10 N normal loads. It was observed that the silicon content and aging temperature significantly affect the wear resistance. Increase in aging temperature improves the wear resistance. Hypereutectic alloy showed better wear resistance than the eutectic alloy under identical conditions. Optical microstructure study of alloys under investigation has shown that cast dendritic structure is destroyed besides the spheroidization of eutectic silicon crystals after the heat treatment. The extent of change in structure depends on aging temperature. Scanning electron microscopy (SEM) of wear surface was carried to analyze the wear mechanism

  11. ADVANCED 3D LASER MICROSCOPY FOR MEASUREMENTS AND ANALYSIS OF VITRIFIED BONDED ABRASIVE TOOLS

    Directory of Open Access Journals (Sweden)

    WOJCIECH KAPLONEK

    2012-12-01

    Full Text Available In many applications, when a precise non-contact assessment of an abrasive tools’ surface is required, alternative measurement methods are often used. Their use offers numerous advantages (referential method as they introduce new qualities into routinely realized measurements. Over the past few years there has been a dynamic increase in the interest for using new types of classical confocal microscopy. These new types are often defined as 3D laser microscopy. This paper presents select aspects of one such method’s application – confocal laser scanning microscopy – for diagnostic analysis of abrasive tools. In addition this paper also looks at the basis for operation, the origins and the development of this measurement technique.The experimental part of this paper presents the select results of tests carried out on grinding wheel active surfaces with sintered microcrystalline corundum grains SG™ bound with glass-crystalline bond. The 3D laser measuring microscopes LEXT OLS3100 and LEXT OLS4000 by Olympus were used in the experiments. Analysis of the obtained measurement data was carried out in dedicated OLS 5.0.9 and OLS4100 2.1 programs, supported by specialist TalyMap Platinum 5.0 software. The realized experiments confirmed the possibility of using the offered measurement method. This concerns both the assessment of grinding wheel active surfaces and their defects, as well as the internal structures of the tools (grain-bond connections. The method presented is an interesting alternative to the typical methods used in the diagnostics of abrasive tools.

  12. Solutionizing temperature and abrasive wear behaviour of cast Al-Si-Mg alloys

    International Nuclear Information System (INIS)

    Sharma, Rajesh; Anesh; Dwivedi, D.K.

    2007-01-01

    In the present paper, the influence of solutionizing temperature during artificial age hardening treatment (T 6 ) of cast Al-(8, 12, 16%)Si-0.3%Mg on abrasive wear behaviour has been reported. Alloys were prepared by controlled melting and casting. Cast alloys were given artificial age hardening treatment having a sequence of solutionizing, quenching and artificial aging. All the alloys were solutionized at 450 deg. C, 480 deg. C, 510 deg. C, and 550 deg. C for 8 h followed by water quenching (30 deg. C) and aging hardening at 170 deg. C for 12 h. Abrasive wear tests were conducted against 320 grade SiC polishing papers at 5 N and 10 N normal loads. It was observed that the silicon content and solution temperature affected the wear resistance significantly. Increase in solution temperature improved the wear resistance. Hypereutectic alloy showed better wear resistance than the eutectic and hypoeutectic alloys under identical conditions. Optical microstructure study of alloys revealed that the increase in solutionizing temperature improved distribution of silicon grains. Scanning electron microscopy (SEM) of wear surface was carried out to analyze the wear mechanism

  13. Evaluation of planarization performance for a novel alkaline copper slurry under a low abrasive concentration

    International Nuclear Information System (INIS)

    Jiang Mengting; Liu Yuling; Yuan Haobo; Chen Guodong; Liu Weijuan

    2014-01-01

    A novel alkaline copper slurry that possesses a relatively high planarization performance is investigated under a low abrasive concentration. Based on the action mechanism of CMP, the feasibility of using one type of slurry in copper bulk elimination process and residual copper elimination process, with different process parameters, was analyzed. In addition, we investigated the regular change of abrasive concentration effect on copper and tantalum removal rate and within wafer non-uniformity (WIWNU) in CMP process. When the abrasive concentration is 3 wt%, in bulk elimination process, the copper removal rate achieves 6125 Å/min, while WIWNU is 3.5%, simultaneously. In residual copper elimination process, the copper removal rate is approximately 2700 Å/min, while WIWNU is 2.8%. Nevertheless, the tantalum removal rate is 0 Å/min, which indicates that barrier layer isn't eliminated in residual copper elimination process. The planarization experimental results show that an excellent planarization performance is obtained with a relatively high copper removal rate in bulk elimination process. Meanwhile, after residual copper elimination process, the dishing value increased inconspicuously, in a controllable range, and the wafer surface roughness is only 0.326 nm (sq < 1 nm) after polishing. By comparison, the planarization performance and surface quality of alkaline slurry show almost no major differences with two kinds of commercial acid slurries after polishing. All experimental results are conducive to research and improvement of alkaline slurry in the future. (semiconductor technology)

  14. Influence of sodium content on the properties of bioactive glasses for use in air abrasion

    International Nuclear Information System (INIS)

    Farooq, Imran; Brauer, Delia S; Hill, Robert G; Tylkowski, Maxi; Müller, Steffen; Janicki, Tomasz

    2013-01-01

    Air abrasion is used in minimally invasive dentistry for preparing cavities, while removing no or little sound dentine or enamel, and the use of bioactive glass (rather than alumina) as an abrasive could aid in tooth remineralization. Melt-derived bioactive glasses (SiO 2 –P 2 O 5 –CaO–CaF 2 –Na 2 O) with low sodium content (0 to 10 mol% Na 2 O in exchange for CaO) for increased hardness, high phosphate content for high bioactivity and fluoride content for release of fluoride and formation of fluorapatite were produced, and particles between 38 and 80 µm in size were used for cutting soda-lime silicate glass microscope slides and human enamel. Vickers hardness increased with decreasing Na 2 O content, owing to a more compact silicate network in low sodium content glasses, resulting in shorter cutting times. Cutting times using bioactive glass were significantly longer than using the alumina control (29 µm) when tested on microscope slides; however, glasses showed more comparable results when cutting human enamel. The bioactive glasses formed apatite in Tris buffer within 6 h, which was significantly faster than Bioglass® 45S5 (24 h), suggesting that the hardness of the glasses makes them suitable for air abrasion application, while their high bioactivity and fluoride content make them of interest for tooth remineralization. (paper)

  15. Colour improvement and stability of white spot lesions following infiltration, micro-abrasion, or fluoride treatments in vitro.

    Science.gov (United States)

    Yetkiner, Enver; Wegehaupt, Florian; Wiegand, Annette; Attin, Rengin; Attin, Thomas

    2014-10-01

    White spot lesions (WSLs) are unwelcome side effects of fixed appliances that compromise the treatment outcome. Recently, infiltration of WSLs has been introduced as a viable treatment alternative. The objective was to evaluate the colour improvement of WSLs and their stability against discolouration following infiltration, fluoride, or micro-abrasion treatments in vitro. Artificial WSLs were created in bovine enamel (N = 96) using acidic buffer solution (pH 5, 10 days) and were randomly allocated to four groups. Specimens were treated with infiltration (Icon, DMG), fluoride (Elmex Caries Protection, GABA), and micro-abrasion (Opalustre, Ultradent) or remained untreated (control). Groups were discoloured for 24 hours in tea or tea + citric acid. Colour components and visible colour change (L*, a*, b*, ΔE) were measured spectrophotometrically on following time points: baseline, after WSL formation, after treatment, and during discolouration (8, 16, and 24 hours). Data were analysed using Kruskal-Wallis and Mann-Whitney tests. WSL formation increased (L*) in all groups. Only infiltration reduced this effect to baseline. Highest ΔE improvement was obtained by infiltration and micro-abrasion followed by fluoride. This improvement was stable only for infiltration during discolouration. L*, a*, and b* changed significantly during discolouration in all groups except infiltration. Within the same treatment group, discolouration solutions did not differ significantly. In vitro testing cannot replicate the actual mode of colour improvement or stability but can be used for ranking materials and techniques. Infiltration and micro-abrasion treatments were capable of diminishing the whitish appearance of WSLs. Only infiltrated WSLs were stable following discolouration challenge. © The Author 2014. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. U-Pb dating by zircon dissolution method using chemical abrasion

    Energy Technology Data Exchange (ETDEWEB)

    Takehara, Lucy, E-mail: lucytakehara@gmail.com.br [Servico Geologico do Brasil (CPRM), Brasilia, DF (Brazil); Chemale Junior, Farid [Universidade de Brasilia (UnB), Brasilia, DF (Brazil). Inst. de Geociencias. Lab. de Geocronologia; Hartmann, Leo A. [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil). Inst. de Geociencias; Dussin, Ivo A.; Kawashita, Koji [Universidade de Sao Paulo (USP), SP, (Brazil). Centro de Pesquisa Geocronologicas

    2012-06-15

    Chemical abrasion was carried out on zircons grains of the Temora II standard for U-Pb dating prior to analyses using in situ Laser Ablation-Multi Collector Ion Coupled Plasma Mass Spectrometer (LA-ICPMS) followed by the Isotope Dissolution Thermal Ionization Mass Spectrometer (ID-TIMS) method. The proposed methodology was herein applied in order to reduce primarily the effects of secondary Pb loss, the presence of common lead and/or silicate impurities. Nine Temora II zircon grains were analyzed by the laser ablation method yielding an age of 418.3 +- 4.3 Ma. Zircon grains of a same population were separated for chemical abrasion before dissolution and mass spectrometry analyses. Six fractions of them were separated for isotope dissolution using {sup 235}U-{sup 205}Pb mixed spike after we have checked and assured the laboratory conditions of low blank values for total Pb of less than 2 pg/g. The obtained U-Pb zircon age by the ID-TIMS method was 415.7 +- 1.8 Ma (error 0.43 %) based on four successful determinations. The results are consistent with the published ages for the Temora diorite (Temora I - 416.75 +- 1.3 Ma; Temora II - 416.78 +- 0.33 Ma) and established as 416 +- 0.33 Ma. The technique is thus recommended for high precision U-Pb zircon analyses (error < 1 %), mainly for high resolution stratigraphic studies of Phanerozoic sequences. (author)

  17. Rock Abrasion and Ventifact Formation on Mars from Field Analog, Theoretical, and Experimental Studies

    Science.gov (United States)

    Bridges, N. T.; Laity, J. E.

    2001-01-01

    Rocks observed by the Viking Landers and Pathfinder Lander/Sojourner rover exhibit a suite of perplexing rock textures. Among these are pits, spongy textures, penetrative flutes, lineaments, crusts, and knobs Fluvial, impact, chemical alteration, and aeolian mechanisms have been proposed for many of these. In an effort to better understand the origin and characteristics of Martian rock textures, abraded rocks in the Mojave Desert and other regions have been studied. We find that most Martian rock textures, as opposed to just a few, bear close resemblance to terrestrial aeolian textures and can most easily be explained by wind, not other, processes. Flutes, grooves, and some pits on Mars are consistent with abrasion by saltating particles, as described previously. However, many other rock textures probably also have an aeolian origin. Sills at the base of rocks that generally lie at high elevations, such as Half Dome, are consistent with such features on Earth that are related to moats or soil ramps that shield the basal part of the rock from erosion. Crusts consisting of fluted fabrics, such as those on Stimpy and Chimp, are similar to fluted crusts on Earth that spall off over time. Knobby and lineated rocks are similar to terrestrial examples of heterogeneous rocks that differentially erode. The location of specific rock textures on Mars also gives insight into their origin. Many of the most diagnostic ventifacts found at the Pathfinder site are located on rocks that lie near the crests or the upper slopes of ridges. On Earth, the most active ventifact formation occurs on sloped or elevated topography, where windflow is accelerated and particle kinetic energy and flux are increased. Integrated 0 together, these observations point to significant aeolian 0 modification of rocks on Mars and cast doubt on whether many primary textures resulting from other processes are preserved. Experimental simulations of abrasion in the presence of abundant sand indicate that

  18. The Optimum Production Method for Quality Improvement of Recycled Aggregates Using Sulfuric Acid and the Abrasion Method

    Directory of Open Access Journals (Sweden)

    Haseog Kim

    2016-07-01

    Full Text Available There has been increased deconstruction and demolition of reinforced concrete structures due to the aging of the structures and redevelopment of urban areas resulting in the generation of massive amounts of construction. The production volume of waste concrete is projected to increase rapidly over 100 million tons by 2020. However, due to the high cement paste content, recycled aggregates have low density and high absorption ratio. They are mostly used for land reclamation purposes with low added value instead of multiple approaches. This study was performed to determine an effective method to remove cement paste from recycled aggregates by using the abrasion and substituting the process water with acidic water. The aim of this study is to analyze the quality of the recycled fine aggregates produced by a complex method and investigate the optimum manufacturing conditions for recycled fine aggregates based on the design of experiment. The experimental parameters considered were water ratio, coarse aggregate ratio, and abrasion time and, as a result of the experiment, data concerning the properties of recycled sand were obtained. It was found that high-quality recycled fine aggregates can be obtained with 8.57 min of abrasion-crusher time and a recycled coarse aggregate ratio of over 1.5.

  19. Effect of cuticular abrasion and recovery on water loss rates in queens of the desert harvester ant Messor pergandei.

    Science.gov (United States)

    Johnson, Robert A; Kaiser, Alexander; Quinlan, Michael; Sharp, William

    2011-10-15

    Factors that affect water loss rates (WLRs) are poorly known for organisms in natural habitats. Seed-harvester ant queens provide an ideal system for examining such factors because WLRs for mated queens excavated from their incipient nests are twofold to threefold higher than those of alate queens. Indirect data suggest that this increase results from soil particles abrading the cuticle during nest excavation. This study provides direct support for the cuticle abrasion hypothesis by measuring total mass-specific WLRs, cuticular abrasion, cuticular transpiration, respiratory water loss and metabolic rate for queens of the ant Messor pergandei at three stages: unmated alate queens, newly mated dealate queens (undug foundresses) and mated queens excavated from their incipient nest (dug foundresses); in addition we examined these processes in artificially abraded alate queens. Alate queens had low WLRs and low levels of cuticle abrasion, whereas dug foundresses had high WLRs and high levels of cuticle abrasion. Total WLR and cuticular transpiration were lowest for alate queens, intermediate for undug foundresses and highest for dug foundresses. Respiratory water loss contributed ~10% of the total WLR and was lower for alate queens and undug foundresses than for dug foundresses. Metabolic rate did not vary across stages. Total WLR and cuticular transpiration of artificially abraded alate queens increased, whereas respiratory water loss and metabolic rate were unaffected. Overall, increased cuticular transpiration accounted for essentially all the increased total water loss in undug and dug foundresses and artificially abraded queens. Artificially abraded queens and dug foundresses showed partial recovery after 14 days.

  20. Vibratory Machining Effect on the Properties of the Aaluminum Alloys Surface

    Directory of Open Access Journals (Sweden)

    Bańkowski D.

    2017-12-01

    Full Text Available The article presents an example of finishing treatment for aluminum alloys with the use of vibration machining, with loose abrasive media in a closed tumbler. For the analysis of selected properties of the surface layer prepared flat samples of aluminum alloy PA6/2017 in the state after recrystallization. The samples in the first stage were subjected to a treatment of deburring using ceramic media. In a second step polishing process performed with a strengthening metal media. In addition, for comparative purposes was considered. only the case of metal polishing. The prepared samples were subjected to hardness tests and a tangential tensile test. As a result of finishing with vibratory machining, it was possible to remove burrs, flash, rounding sharp edges, smoothing and lightening the surface of objects made. The basic parameters of the surface geometry were obtained using the Talysurf CCI Lite - Taylor Hobson optical profiler. As a result of the tests it can be stated that the greatest reduction of surface roughness and mass loss occurs in the first minutes of the process. Mechanical tests have shown that the most advantageous high values of tensile strength and hardness are obtained with two-stage vibration treatment, - combination of deburring and polishing. Moreover the use of metal media resulted in the strengthening of the surface by pressure deburring with metal media.

  1. Particulate Matter from the Road Surface Abrasion as a Problem of Non-Exhaust Emission Control

    Directory of Open Access Journals (Sweden)

    Magdalena Penkała

    2018-01-01

    Full Text Available Along with house heating and industry, emissions from road traffic (exhaust and tire, brake, car body or road surface abrasions are one of the primary sources of particulate matter (PM in the atmosphere in urban areas. Though numerous regulations and vehicle-control mechanisms have led to a significant decline of PM emissions from vehicle exhaust gases, other sources of PM remain related to road and car abrasion are responsible for non-exhaust emissions. Quantifying these emissions is a hard problem in both laboratory and field conditions. First, we must recognize the physicochemical properties of the PM that is emitted by various non-exhaust sources. In this paper, we underline the problem of information accessibility with regards to the properties and qualities of PM from non-exhaust sources. We also indicate why scarce information is available in order to find the possible solution to this ongoing issue.

  2. Mathematical model of temperature field distribution in thin plates during polishing with a free abrasive

    Directory of Open Access Journals (Sweden)

    Avilov Alex

    2017-01-01

    Full Text Available The purpose of this paper is to estimate the dynamic characteristics of the heating process of thin plates during polishing with a free abrasive. A mathematical model of the temperature field distribution in space and time according to the plate thickness is based on Lagrange equation of the second kind in the thermodynamics of irreversible processes (variation principle Bio. The research results of thermo elasticity of thin plates (membranes will allow to correct the modes of polishing with a free abrasive to receive the exact reflecting surfaces of satellites reflector, to increase temperature stability and the ability of radio signal reflection, satellite precision guidance. Calculations of temperature fields in thin plates of different thicknesses (membranes is held in the Excel, a graphical characteristics of temperature fields in thin plates (membranes show non-linearity of temperature distribution according to the thickness of thin plates (membranes.

  3. A comparison of the tribological behaviour of Y-TZP in tea and coffee under micro-abrasion conditions

    International Nuclear Information System (INIS)

    Sharifi, S; Stack, M M

    2013-01-01

    The micro-abrasion of Y-TZP, a candidate dental restorative material, was investigated in a range of caffeine-containing solutions which included tea and coffee. Additions of sugar and milk were used to test the effects of viscosity and pH on the wear rate. The results indicated a significant increase in wear rate in the various solutions, with some correlation between wear rate and increases in viscosity and this was linked to enhance particle entrainment in the more viscous solutions. The generally lower wear rate in tea compared to coffee was associated with a longer ageing period in this solution before uniform wear was observed. Micro-abrasion maps were used to characterize the differences in performance for the material in the environments studied. (paper)

  4. A comparison of the tribological behaviour of Y-TZP in tea and coffee under micro-abrasion conditions

    Science.gov (United States)

    Sharifi, S.; Stack, M. M.

    2013-10-01

    The micro-abrasion of Y-TZP, a candidate dental restorative material, was investigated in a range of caffeine-containing solutions which included tea and coffee. Additions of sugar and milk were used to test the effects of viscosity and pH on the wear rate. The results indicated a significant increase in wear rate in the various solutions, with some correlation between wear rate and increases in viscosity and this was linked to enhance particle entrainment in the more viscous solutions. The generally lower wear rate in tea compared to coffee was associated with a longer ageing period in this solution before uniform wear was observed. Micro-abrasion maps were used to characterize the differences in performance for the material in the environments studied.

  5. Application of response surface methodology on investigating flank wear in machining hardened steel using PVD TiN coated mixed ceramic insert

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Sahoo

    2013-10-01

    Full Text Available The paper presents the development of flank wear model in turning hardened EN 24 steel with PVD TiN coated mixed ceramic insert under dry environment. The paper also investigates the effect of process parameter on flank wear (VBc. The experiments have been conducted using three level full factorial design techniques. The machinability model has been developed in terms of cutting speed (v, feed (f and machining time (t as input variable using response surface methodology. The adequacy of model has been checked using correlation coefficients. As the determination coefficient, R2 (98% is higher for the model developed; the better is the response model fits the actual data. In addition, residuals of the normal probability plot lie reasonably close to a straight line showing that the terms mentioned in the model are statistically significant. The predicted flank wear has been found to lie close to the experimental value. This indicates that the developed model can be effectively used to predict the flank wear in the hard turning. Abrasion and diffusion has been found to be the dominant wear mechanism in machining hardened steel from SEM micrographs at highest parametric range. Machining time has been found to be the most significant parameter on flank wear followed by cutting speed and feed as observed from main effect plot and ANOVA study.

  6. A new eye gel containing sodium hyaluronate and xanthan gum for the management of post-traumatic corneal abrasions

    Directory of Open Access Journals (Sweden)

    Faraldi F

    2012-05-01

    Full Text Available Francesco Faraldi,1 Vincenzo Papa,2 Debora Santoro,2 Daria Rasà,2 Annamaria L Mazza,2 Maria M Rabbione,1 Simona Russo21Department of Ophthalmology III, Presidio Ospedaliero Oftalmico, Torino, Italy; 2SIFI SpA, Catania, ItalyPurpose: The aim of this study was to investigate the effects of an ophthalmic gel containing sodium hyaluronate and xanthan gum in addition to the antibiotic netilmicin in the management of traumatic corneal abrasions.Patients and methods: Patients with traumatic corneal abrasions were randomly treated as follows: Group A (n = 20 with an occlusive patching for 12 hours plus one drop of an eye gel containing 0.15% sodium hyaluronate, 1% xanthan gum and 0.3% netilmicin qid for 5 days; and Group B (n = 20 with an occlusive patching for 2–3 days plus one application of 0.3% netilmicin ophthalmic ointment qid for 5 days. All patients were evaluated after the third and seventh day by slit-lamp examination, fluorescein staining, and corneal defect photograph in order to assess corneal re-epithelialization. Conjunctival hyperaemia, lid oedema, subjective symptoms of discomfort, and conjunctival swabs were also evaluated.Results: No statistically significant difference was observed between the groups in terms of the extent of corneal healing after 3 days of treatment. Both treatments were also highly effective in decreasing the erosion score and the conjunctival hyperemia (P < 0.0001, P < 0.005, respectively without any significant difference between the two types of treatment. Subjective symptoms of discomfort and conjunctival swabs were also evaluated.Conclusion: In the management of traumatic corneal abrasions, the administration of an eye gel containing sodium hyaluronate and xanthan gum is able to reduce the length of occlusive patching. In addition, the presence of netilmicin guarantees good antibiotic prophylaxis during the wound repair process.Keywords: netilmicin, xanthan gum, wound healing, patching, corneal abrasion

  7. Analysis of machining and machine tools

    CERN Document Server

    Liang, Steven Y

    2016-01-01

    This book delivers the fundamental science and mechanics of machining and machine tools by presenting systematic and quantitative knowledge in the form of process mechanics and physics. It gives readers a solid command of machining science and engineering, and familiarizes them with the geometry and functionality requirements of creating parts and components in today’s markets. The authors address traditional machining topics, such as: single and multiple point cutting processes grinding components accuracy and metrology shear stress in cutting cutting temperature and analysis chatter They also address non-traditional machining, such as: electrical discharge machining electrochemical machining laser and electron beam machining A chapter on biomedical machining is also included. This book is appropriate for advanced undergraduate and graduate mechani cal engineering students, manufacturing engineers, and researchers. Each chapter contains examples, exercises and their solutions, and homework problems that re...

  8. Effect of using nano and micro airborne abrasive particles on bond strength of implant abutment to prosthesis.

    Science.gov (United States)

    Rismanchian, Mansour; Davoudi, Amin; Shadmehr, Elham

    2015-01-01

    Connecting prostheses to the implant abutments has become a concern and achieving a satisfactory retention has been focused in cement-retention prostheses recently. Sandblasting is a method to make a roughened surface for providing more retention. The aim of this study was to compare effects of nano and micro airborne abrasive particles (ABAP) in roughening surface of implant abutments and further retention of cemented copings. Thirty Xive abutments and analogues (4.5 D GH1) were mounted vertically in self-cured acrylic blocks. Full metal Ni-Cr copings with a loop on the top were fabricated with appropriate marginal adaptation for each abutment. All samples were divided into 3 groups: first group (MPS) was sandblasted with 50 µm Al2O3 micro ABAP, second group (NSP) was sandblasted with 80 nm Al2O3 nano ABAP, and the third group (C) was assumed as control. The samples were cemented with provisional cement (Temp Bond) and tensile bond strength of cemented copings was evaluated by a universal testing machine after thermic cycling. The t test for independent samples was used for statistical analysis by SPSS software (version 15) at the significant level of 0.05. Final result showed significant difference among all groups (pmicro ABAP is an efficient way for increasing bond strengths significantly, but it seems that micro ABAP was more effective.

  9. Study on Abrasive Wear of Brake Pad in the Large-megawatt Wind Turbine Brake Based on Deform Software

    Science.gov (United States)

    Zhang, Shengfang; Hao, Qiang; Sha, Zhihua; Yin, Jian; Ma, Fujian; Liu, Yu

    2017-12-01

    For the friction and wear issues of brake pads in the large-megawatt wind turbine brake during braking, this paper established the micro finite element model of abrasive wear by using Deform-2D software. Based on abrasive wear theory and considered the variation of the velocity and load in the micro friction and wear process, the Archard wear calculation model is developed. The influence rules of relative sliding velocity and friction coefficient in the brake pad and disc is analysed. The simulation results showed that as the relative sliding velocity increases, the wear will be more serious, while the larger friction coefficient lowered the contact pressure which released the wear of the brake pad.

  10. Standardization of a Volumetric Displacement Measurement for Two-Body Abrasion Scratch Test Data Analysis

    Science.gov (United States)

    Street, K. W. Jr.; Kobrick, R. L.; Klaus, D. M.

    2011-01-01

    A limitation has been identified in the existing test standards used for making controlled, two-body abrasion scratch measurements based solely on the width of the resultant score on the surface of the material. A new, more robust method is proposed for analyzing a surface scratch that takes into account the full three-dimensional profile of the displaced material. To accomplish this, a set of four volume- displacement metrics was systematically defined by normalizing the overall surface profile to denote statistically the area of relevance, termed the Zone of Interaction. From this baseline, depth of the trough and height of the plowed material are factored into the overall deformation assessment. Proof-of-concept data were collected and analyzed to demonstrate the performance of this proposed methodology. This technique takes advantage of advanced imaging capabilities that allow resolution of the scratched surface to be quantified in greater detail than was previously achievable. When reviewing existing data analysis techniques for conducting two-body abrasive scratch tests, it was found that the ASTM International Standard G 171 specified a generic metric based only on visually determined scratch width as a way to compare abraded materials. A limitation to this method was identified in that the scratch width is based on optical surface measurements, manually defined by approximating the boundaries, but does not consider the three-dimensional volume of material that was displaced. With large, potentially irregular deformations occurring on softer materials, it becomes unclear where to systematically determine the scratch width. Specifically, surface scratches on different samples may look the same from a top view, resulting in an identical scratch width measurement, but may vary in actual penetration depth and/or plowing deformation. Therefore, two different scratch profiles would be measured as having identical abrasion properties, although they differ

  11. Study on abrasion resisting material for apron of dam; Dam apron bu no taimamo sozai ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, H.; Hiraki, M.; Miyamoto, T. [Hokuriku Electric Power Co. Inc., Toyama (Japan)

    1995-01-25

    A `laminated rubber tile` and a `shock absorbing holed-in anchor` were devised in connection with the apron of a dam for a hydroelectric power plant. As the result of a survey on the hydroelectric power plants, ten plus places were observed where a general kind of concrete was severely worn in the company territory; but, there were substantial number of rubber materials that had still been sound for over ten years after the installation. In spite of the soundness of the rubber tiles, however, it was observed that their anchor supports had been cut and separated. An abrasion comparison test of concrete and rubber materials revealed that the rubber materials were considerably superior in abrasion resistance. Various rubber tiles were tested for abrasion resistance, tear strength, tensile strength, impact strength, etc.; and methods for fixing rubber tiles were also tested such as a holed-in anchor, chemical anchor and adhesives. As a result, a laminated rubber tile was designed with its upper layer constituted of a rubber sold on the market and its lower layer of a fiber reinforced rubber also on the market, and so was a shock absorbing type holed-in anchor. 1 ref., 11 figs., 4 tabs.

  12. Investigation of Sandwich Material Surface Created by Abrasive Water Jet (AWJ) via Vibration Emission

    Czech Academy of Sciences Publication Activity Database

    Hreha, P.; Hloch, S.; Monka, P.; Monková, K.; Knapčíková, L.; Hlaváček, Petr; Zeleňák, Michal; Samardžič, I.; Kozak, D.

    2013-01-01

    Roč. 53, č. 1 (2013), s. 29-32 ISSN 0543-5846 Institutional support: RVO:68145535 Keywords : sandwich material * stainless steel * abrasive water jet cutting Subject RIV: JJ - Other Materials Impact factor: 0.755, year: 2013 http://public.carnet.hr/metalurg/Metalurgija/2014_vol_53/No_1/MET_53_1_29-32_Hreha.pdf

  13. A Study on Abrasive Wear Behavior of Spacer Grid Materials for Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. M.; Kim, J. H. [Chungnam National University, Daejeon (Korea, Republic of); Park, J. K.; Jeon, K. L. [Korea Nuclear Fuel, Daejeon (Korea, Republic of)

    2010-10-15

    Spacer grid is one of the key components of a light water reactor (LWR) fuel assembly. The most important function of it is to hold the fuel rods to maintain the distance between the fuel rods inside a fuel assembly. At the reactor core in operating power plants, a fretting damage has been frequently reported between a nuclear fuel rod and its supporting spring/dimple of the fuel assemblies. This is due to a flow induced vibration (FIV), Which results from the primary coolant that rapidly passes around the fuel rod to remove the excess heat generated by the nuclear reaction. Fretting damage is generally caused by fretting wear, which includes various wear mechanisms such as an oxidative, adhesive, abrasive wear, etc., or fretting fatigue, which includes a surface or bulk fatigue. The purpose of the present work are to investigate the variation of the materials with increasing number of cycles and sliding velocity under abrasive wear test and to examine the wear mechanism at each test condition

  14. Treatment of Gingival Recessions Associated to Cervical Abrasion Lesions with Subepithelial Connective Tissue Graft: A Case Report

    Science.gov (United States)

    Deliberador, Tatiana M.; Bosco, Alvaro F.; Martins, Thiago M.; Nagata, Maria J. H.

    2009-01-01

    Extensive gingival recessions associated with cervical abrasions are common among the population. Several different surgical and/or restorative therapies have been proposed to correct these lesions. This manuscript reports the treatment of multiple gingival recessions associated to cervical abrasions. The procedure involved the utilization of subepithelial connective tissue graft (SCTG) combined with coronally advanced flap onto a previously restored root surface. At the postoperative follow-up visits, the success of the restorative/surgical approach was confirmed by the absence of bleeding to probing and periodontal pockets as well as presence of gingival tissue with normal color, texture and contouring. After 18 months of follow-up, the clinical conditions are stable with satisfactory root coverage and periodontal health. An excellent esthetical outcome was achieved and the patient is satisfied with case resolution. PMID:19826605

  15. Numerical simulation of the combination effect of external magnetic field and rotating workpiece on abrasive flow finishing

    Energy Technology Data Exchange (ETDEWEB)

    Kheradmand, Saeid; Esmailian, Mojtaba; Fatahy, A. [Malek-Ashtar University of Technology (MUT), Isfahan (Iran, Islamic Republic of)

    2017-04-15

    Finishing of a workpiece is a main process in the production. This affects the quality and lifetime. Finishing in order of nanometer, nowadays, is a main demand of the industries. Thus, some new finishing process, such as abrasive flow finishing, is introduced to respond this demand. This may be aided by rotating workpiece and imposing a magnetic field. Numerical simulation of this process can be beneficial to reduce the expense and predict the result in a minimum time. Accordingly, in this study, magnetorheological fluid finishing is numerically simulated. The working medium contains magnetic and abrasive particles, blended in a base fluid. Some hydrodynamic parameters and surface roughness variations are studied. It is found that combination of rotating a workpiece and imposing a magnetic field can improve the surface roughness up to 15 percent.

  16. NK cells modulate the inflammatory response to corneal epithelial abrasion and thereby support wound healing

    Science.gov (United States)

    Natural killer cells are lymphocytes of the innate immune system that have crucial cytotoxic and regulatory roles in adaptive immunity and inflammation. Herein, we consider a role for these cells in corneal wound healing. After a 2-mm central epithelial abrasion of the mouse cornea, a subset of clas...

  17. The influence of rock strength on erosion processes and river morphology in central Arizona: the accumulation of damage from macro-abrasion

    Science.gov (United States)

    Larimer, J. E.; Yanites, B.

    2017-12-01

    River morphology reflects the interaction between the driving forces of erosion and the resisting properties of bedrock that limit erosion. Changes in energy dissipation at the riverbed are indicated by differences in channel geometry. To erode at the same rate, stronger rocks require more energy, and thus, an adjustment in river slope or width is necessary to accomplish this work. Therefore, morphological changes should reflect differences in the rock strength properties most relevant to the dominant erosion process. We investigate this hypothesis by comparing river morphology and rock-strength properties of reaches subject to different processes. Streams in Prescott National Forest, AZ expose bedrock through a variety of lithologies, which provides a natural testing ground. Measurements include channel geometry, surface P-wave velocity, fracture spacing, and bedload grain size distribution of 150 individual reaches, as well as 260 tensile and compressive-strength tests and P-wave velocity of cores up to depths of 20 cm. Based on observations, we infer that fluvial erosion processes in this region generally fall into three domains: (1) grain by grain abrasion, (2) progressive failure by damage accumulation due to bedload impacts or `macro-abrasion', and (3) `plucking' of jointed rocks. We focus analyses on the accumulation of damage from sub-critical stresses that weakens the surface of the bedrock, potentially leading to macroscopic fractures, fatigue, and rock failure. This plays a dual role facilitating the ease with which abrasion removes material and increasing the rate of production of pluck-able particles. We estimate the `damage potential' of saltating bedload using water discharge time-series, sediment transport models and grain size distribution. To determine the resistance to damage accumulation among different rocks, we measure the evolution of damage in core samples under uniaxial loading using strain energy and inherent flaw theory. Preliminary

  18. The possible use of Bayer process cyclone fines for manufacture of abrasives

    OpenAIRE

    Sancho, J.; García, M. P.; García, M. F.; Ayala, J.; Verdeja, L. E.

    2002-01-01

    This paper deals with the feasibihty of producing synthetic abrasives from a by-product of the Bayer process: the cyclone fines, through synthesis aided by mineralizers addition. The main result has been the production of a low temperature (1200-1300 °C) polish by adding fluoride mineralizers, that could be in clear competence with synthetic corundum obtained also in this work by a more traditional way: sodium removal, using of magnesium oxide as mineralizer, and high calcination temperatures...

  19. Bonding of composite resins to PEEK: the influence of adhesive systems and air-abrasion parameters.

    Science.gov (United States)

    Stawarczyk, Bogna; Taufall, Simon; Roos, Malgorzata; Schmidlin, Patrick R; Lümkemann, Nina

    2018-03-01

    The objective of the study was to investigate the tensile bond strength (TBS) to polyaryletheretherketone (PEEK) after different pretreatment and conditioning methods. Four hundred PEEK specimens were fabricated and allocated to the following air-abrasion methods (n 1  = 80/pretreatment): (i) 50 μm Al 2 O 3 (0.05 MPa); (ii) 50 μm Al 2 O 3 (0.35 MPa); (iii) 110 μm Al 2 O 3 (0.05 MPa); (iv) 110 μm Al 2 O 3 (0.35 MPa); and (v) Rocatec 110 μm (0.28 MPa). These pretreatments were combined with the following conditioning methods (n 2  = 20/pretreatment/conditioning): (a) visio.link (VL); (b) Monobond Plus/Heliobond (MH); (c) Scotchbond Universal (SU); and (d) dialog bonding fluid (DB). After veneering of all specimens with dialog occlusal and aging (28 days H 2 O, 37 °C + 20,000 thermal cycles, 5/55 °C), TBS was measured. Data was analysed using Kaplan-Meier survival analysis with Breslow-Gehan test and Cox-regressions. The major impact on TBS showed the conditioning, followed by the air-abrasion-pressure, while the grain size of the air-abrasion powder did not show any effect. Specimens air-abraded at 0.35 MPa showed the highest survival rates. However, within VL groups, this observation was not statistically significant. Within MH groups, pretreatment using 110 μm Al 2 O 3 and 0.05 MPa resulted in higher survival rates compared to groups treated with 50 and 110 μm Al 2 O 3 using a pressure of 0.35 MPa. The use of VL showed the highest survival rates between the adhesive systems and the TBS values higher than 25 MPa independent of the pretreatment method. As an exception, only VL showed significantly higher survival rates when compared to MH. The adequate choice of the adhesive system and higher pressures improved the TBS between PEEK and veneering resin composite. The particle size had no major impact. According to this study, best veneering of PEEK with dialog occlusal can be achieved by conditioning with visio.link in combination with

  20. Strength and gas-abrasive wear-resistance of zirconium carbide based cerments

    International Nuclear Information System (INIS)

    Samsonov, G.V.; Dan'kin, A.A.; Markov, A.A.; Bogomol, I.V.

    1976-01-01

    Results relating to a study of cermet strength and wear resistance by means of a gas-abrasive flow are presented. It has been found that with a higher amount of the metallic binder (over 25 at.%) in zirconium carbide-based cermets the bending and compression strength and also hardness and wear resistance within the systems ZrC-Nb, ZrC-Mo, ZrC-W become lower. The interrelation of the cermet wear resistance of the various systems and their bending and compression strengths, which, in turn, depend on the electronic structure is shown

  1. Modelling detrital coral grain-size and age: Insights from sediment abrasion process of Yongle Atoll of South China Sea

    Science.gov (United States)

    Li, Y.; Zou, X.; Ge, C.; Tan, M.; Wang, C.

    2017-12-01

    Reef islands situated on the rims of atolls are composed almost exclusively of bioclastic materials locally supplied from adjacent coral reefs. Major skeletal component of these islands include coral, coralline algae, mollusks and foraminifera, produced in adjacent reefs. As the island builder, the bioclastic material is the sedimentary products, which also is the point of penetration to decipher the process. The bioclast of coral islands decrease in size with the transportation process. The grain-size provides a proxy record for the abrasion history of the unconsolidated sediment. The 230Th age of coral record the abrasion time. We hereby present a model to calculate the abrasion rate based on the data of 230Th age and grain-size of Yongle Atoll of Xisha Island, South China Sea. The grain size pattern in Yongle Atoll environment have confirm that the coral article diminution behave exponentially. The sediment composition of Yongle Atoll is identified, coral is dominant sediment constituent and the Th230 age is shown to exert an age distribution characteristics of coral detritus. We illustrate this approach by calculate the coral debris age of Xude Atoll, which located near the Yongle Atoll and then by comparing actual measured age and calculated age and to explore the dependence of the model. Observed 230 Th ages are well matched by predicted ages for medium age sediment. A poorer match for young and old sediment may result from some combination of large analytical uncertainties in the detrital ages and inhomogeneous erosion rates within the atoll. Such mismatches emphasize the need for more accurate kinematic models and for sampling strategies that are adapted to atoll-specific geologic and geomorphic conditions. Results presented constitute important new insights into regional sediment abrasion processed and on the evolution of coral atoll islands.

  2. Machining the Integral Impeller and Blisk of Aero-Engines: A Review of Surface Finishing and Strengthening Technologies

    Science.gov (United States)

    Fu, Youzhi; Gao, Hang; Wang, Xuanping; Guo, Dongming

    2017-05-01

    The integral impeller and blisk of an aero-engine are high performance parts with complex structure and made of difficult-to-cut materials. The blade surfaces of the integral impeller and blisk are functional surfaces for power transmission, and their surface integrity has significant effects on the aerodynamic efficiency and service life of an aero-engine. Thus, it is indispensable to finish and strengthen the blades before use. This paper presents a comprehensive literature review of studies on finishing and strengthening technologies for the impeller and blisk of aero-engines. The review includes independent and integrated finishing and strengthening technologies and discusses advanced rotational abrasive flow machining with back-pressure used for finishing the integral impeller and blisk. A brief assessment of future research problems and directions is also presented.

  3. Machine rates for selected forest harvesting machines

    Science.gov (United States)

    R.W. Brinker; J. Kinard; Robert Rummer; B. Lanford

    2002-01-01

    Very little new literature has been published on the subject of machine rates and machine cost analysis since 1989 when the Alabama Agricultural Experiment Station Circular 296, Machine Rates for Selected Forest Harvesting Machines, was originally published. Many machines discussed in the original publication have undergone substantial changes in various aspects, not...

  4. Hydrothermal treatment for TiN as abrasion resistant dental implant coating and its fibroblast response

    International Nuclear Information System (INIS)

    Shi, Xingling; Xu, Lingli; Munar, Melvin L.; Ishikawa, Kunio

    2015-01-01

    Dental implant made of pure titanium (Ti) is prone to scratch and abrasion during routine oral hygiene procedures. This results an increase in surface roughness and therefore, facilitates the adhesion of bacteria. In severe cases, this could lead to peri-implantitis. To overcome this problem, surface modification of Ti is necessary to improve its abrasion resistance. Besides, a strong implant–gingiva interface should also be guaranteed to prevent the adhesion of bacteria. In this study, titanium nitride (TiN) coating was first prepared with gas nitriding to increase surface hardness of pure the substrate. Then, the TiN was hydrothermally treated in CaCl 2 solution in order to improve its soft tissue biocompatibility. The effect of hydrothermal treatment temperature on surface properties of TiN was investigated and its biocompatibility was assessed in vitro using NIH3T3 fibroblast cell. It was determined that 120 °C was the critical temperature for the hydrothermal treatment condition. Treatment below 120 °C could incorporate Ca into TiN surface, oxidize TiN surface partially and then improve the wettability while preserving its morphology and hardness. Fibroblast cell attachment and proliferation were improved and cell spreading was enhanced on hydrothermally treated specimens compared with untreated ones. Improved wettability, Ca incorporation and negative surface due to interstitial N were believed to be the main reasons. Hydrothermal treatment is expected to make TiN a promising dental implant coating with excellent abrasion resistance and good soft tissue affinity. - Highlights: • Ca was incorporated into TiN surface while not sacrificing its hardness. • Interstitial N due to oxidation promoted Ca adsorption and cell adhesion. • Hydrothermal treatment makes TiN a promising coating for dental implant

  5. Hydrothermal treatment for TiN as abrasion resistant dental implant coating and its fibroblast response

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xingling, E-mail: shixingling1985@hotmail.com [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582 (Japan); Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003 (China); Xu, Lingli [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Munar, Melvin L.; Ishikawa, Kunio [Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582 (Japan)

    2015-04-01

    Dental implant made of pure titanium (Ti) is prone to scratch and abrasion during routine oral hygiene procedures. This results an increase in surface roughness and therefore, facilitates the adhesion of bacteria. In severe cases, this could lead to peri-implantitis. To overcome this problem, surface modification of Ti is necessary to improve its abrasion resistance. Besides, a strong implant–gingiva interface should also be guaranteed to prevent the adhesion of bacteria. In this study, titanium nitride (TiN) coating was first prepared with gas nitriding to increase surface hardness of pure the substrate. Then, the TiN was hydrothermally treated in CaCl{sub 2} solution in order to improve its soft tissue biocompatibility. The effect of hydrothermal treatment temperature on surface properties of TiN was investigated and its biocompatibility was assessed in vitro using NIH3T3 fibroblast cell. It was determined that 120 °C was the critical temperature for the hydrothermal treatment condition. Treatment below 120 °C could incorporate Ca into TiN surface, oxidize TiN surface partially and then improve the wettability while preserving its morphology and hardness. Fibroblast cell attachment and proliferation were improved and cell spreading was enhanced on hydrothermally treated specimens compared with untreated ones. Improved wettability, Ca incorporation and negative surface due to interstitial N were believed to be the main reasons. Hydrothermal treatment is expected to make TiN a promising dental implant coating with excellent abrasion resistance and good soft tissue affinity. - Highlights: • Ca was incorporated into TiN surface while not sacrificing its hardness. • Interstitial N due to oxidation promoted Ca adsorption and cell adhesion. • Hydrothermal treatment makes TiN a promising coating for dental implant.

  6. Abrasion-Resistant Aluminized-Coated Aramid Fabrics for Manufacture of Firefighters’ Protective Clothing

    Science.gov (United States)

    1985-05-01

    and radiacion are also produced at the cathode surface and may profoundly influence the quality of the substrate coating. These include secondary...14,265-378 (1979). Assink, R.A. Abrasion resistant polymer reflectors for solar applications. Solar Energy Mater vol. 3:263-75, (1980). Audet, N.F. Visor... solar reflectors. Solar Energy Mater vol. 3: No.1-2,277-83,(1981). *Gubareff, G.G., J.E. Janssen, and R.H. Torborg. Thermal radiation properties survey

  7. Effects of mechanical cleaning by manual brushing and abrasive blasting on lime render coatings on Architectural Heritage

    Directory of Open Access Journals (Sweden)

    Iglesias-Campos, M. A.

    2014-12-01

    Full Text Available This research studies the effects of mechanical cleaning by brushing and by abrasive blasting on the lime render coating of a façade. After analysing the properties of the material, the deposits to be removed and their possible influence on the treatment, different cleaning tests were made by manual brushing and by blasting with three varieties of abrasives at 45° and 75° angles, keeping the other parameters constant. Taking the restorer’s perspective as a starting point, and in order to fulfil the practical requirements of an intervention, tests were evaluated with macro-photography, USB digital microscope and stereomicroscope with 3D visualization and measurement. From the results can be concluded that abrasives with low friability and greater grain size than the space between mortar aggregates blasted at a 75° angle reduce the differential erosion compared to other abrasives; although manual brushing has less impact on the surface.En este trabajo se estudian los efectos de las limpiezas mecánicas con cepillado y con proyección de abrasivos sobre un revestimiento exterior de cal. Tras documentar las propiedades del material, de los depósitos superficiales y de su posible influencia en el tratamiento, se realizaron diferentes catas de limpieza con cepillado manual y con proyección de tres abrasivos con ángulos de 45° y 75° manteniendo constantes el resto de parámetros. Partiendo de la visión del conservador-restaurador y de un carácter práctico según las necesidades reales de intervención, los ensayos se evaluaron con macrofotografía, microscopio digital USB y microscopio estereoscópico con visualización y medición en 3D. De los resultados se determina que los abrasivos de baja friabilidad y granulometría mayor que el espacio entre los áridos del mortero proyectados con un ángulo de 75° reducen la erosión diferencial en comparación a otros abrasivos, aunque el cepillado manual altera menos la superficie.

  8. The effectiveness of dentifrices without and with sodium lauryl sulfate on plaque, gingivitis and gingival abrasion--a randomized clinical trial.

    Science.gov (United States)

    Sälzer, S; Rosema, N A M; Martin, E C J; Slot, D E; Timmer, C J; Dörfer, C E; van der Weijden, G A

    2016-04-01

    The aim of this study was to compare the efficacy of a dentifrice without sodium lauryl sulfate (SLS) to a dentifrice with SLS in young adults aged 18-34 years on gingivitis. One hundred twenty participants (non-dental students) with a moderate gingival inflammation (bleeding on probing at 40-70 % of test sites) were included in this randomized controlled double blind clinical trial. According to randomization, participants had to brush their teeth either with dentifrice without SLS or with SLS for 8 weeks. The primary outcome was bleeding on marginal probing (BOMP). The secondary outcomes were plaque scores and gingival abrasion scores (GA) as well as a visual analogue scale (VAS) score at exit survey. Baseline and end differences were analysed by univariate analysis of covariance (ANCOVA) test, between group differences by independent t test and within groups by paired sample t test. BOMP improved within groups from on average 0.80 at baseline to 0.60 in the group without SLS and to 0.56 in the group with SLS. No statistical difference for BOMP, plaque and gingival abrasion was found between both groups. VAS scores for taste, freshness and foaming effect were significantly in favour of the SLS-containing dentifrice. The test dentifrice without SLS was as effective as a regular SLS dentifrice on gingival bleeding scores and plaque scores. There was no significant difference in the incidence of gingival abrasion. In patients diagnosed with gingivitis, a dentifrice without SLS seems to be equally effective compared to a dentifrice with SLS and did not demonstrate any significant difference in gingival abrasion. In patient with recurrent aphthous ulcers, the absence of SLS may even be beneficial. However, participants indicate that they appreciate the foaming effect of a dentifrice with SLS more.

  9. [A new machinability test machine and the machinability of composite resins for core built-up].

    Science.gov (United States)

    Iwasaki, N

    2001-06-01

    A new machinability test machine especially for dental materials was contrived. The purpose of this study was to evaluate the effects of grinding conditions on machinability of core built-up resins using this machine, and to confirm the relationship between machinability and other properties of composite resins. The experimental machinability test machine consisted of a dental air-turbine handpiece, a control weight unit, a driving unit of the stage fixing the test specimen, and so on. The machinability was evaluated as the change in volume after grinding using a diamond point. Five kinds of core built-up resins and human teeth were used in this study. The machinabilities of these composite resins increased with an increasing load during grinding, and decreased with repeated grinding. There was no obvious correlation between the machinability and Vickers' hardness; however, a negative correlation was observed between machinability and scratch width.

  10. The abrasive blasting technique. Matching the waste minimisation precept

    International Nuclear Information System (INIS)

    Welbers, Philipp; Noll, Thomas; Braehler, Georg; Sohnius, Bern

    2010-01-01

    Nowadays main challenges in the nuclear industry are, besides the development and design of new facilities, the dismantling of outlived nuclear installations and subsequent waste handling. Not only Germany but all countries and institutions which are involved in our business face similar problems: A large quantity of slightly contaminated waste, equipment and civil structures, arise inevitably during operation and, especially, during dismantling. This waste occurs in a huge amount due to its bulky nature, e.g. pipe-work. Storage of bulky items is very expensive and would not be compatible with the waste minimisation precept. Treatment in an ecological correct and economical beneficial way is the key factor in dealing with this waste. This means decontamination of the waste up to clearance levels where possible. A suitable solution is the Abrasive Blasting Technique. (orig.)

  11. Analysis of abrasive wear behavior of PTFE composite using Taguchi’s technique

    Directory of Open Access Journals (Sweden)

    Yusuf Şahin

    2015-12-01

    Full Text Available Polymeric composites are widely used for structural, aerospace, and automobile sectors due to their good combination of high specific strength and specific modulus. These two main characteristics make these materials attractive, compared to conventional materials like metal or alloy ones. Some of their typical benefits include easy processing, corrosion resistance, low friction, and damping of noise and vibrations. Wear behavior of Polytetrafluoroethylenes (PTFE and its composites including glass-filled composites and carbon-filled composites are investigated using a pin-on-disc configuration. A plan of experiments in terms of Taguchi technique is carried out to acquire data in controlled way. An orthogonal array (L9 and the analysis of variance are employed to investigate the influence of process parameters on the wear of these composites. Volume loss increased with abrasive size, load, and distance. Furthermore, specific wear rate decreased with increasing grit size, load, sliding distance, whereas, slightly with compressive strength. Optimal process parameters, which minimize the volume loss, were the factor combinations of L1, G3, D1, and C3. Confirmation experiments were conducted to verify the optimal testing parameters. It was found that in terms of volume loss, there was a good agreement between the estimated and the experimental value of S/N ratio with an error of 1.604%. Moreover, abrasive size, load, and sliding distance exerted a great effect on the specific wear rate, at 51.14, 27.77, and 14.70%, respectively.

  12. Feasibility demonstration of using wire electrical-discharge machining, abrasive flow honing, and laser spot welding to manufacture high-precision triangular-pitch Zircaloy-4 fuel-rod-support grids

    International Nuclear Information System (INIS)

    Horwood, W.A.

    1982-05-01

    Results are reported supporting the feasibility of manufacturing high precision machined triangular pitch Zircaloy-4 fuel rod support grids for application in water cooled nuclear power reactors. The manufacturing processes investigated included wire electrical discharge machining of the fuel rod and guide tube cells in Zircaloy plate stock to provide the grid body, multistep pickling of the machined grid to provide smooth and corrosion resistant surfaces, and laser welding of thin Zircaloy cover plates to both sides of the grid body to capture separate AM-350 stainless steel insert springs in the grid body. Results indicated that dimensional accuracy better than +- 0.001 and +- 0.002 inch could be obtained on cell shape and position respectively after wire EDM and surface pickling. Results on strength, corrosion resistance, and internal quality of laser spot welds are provided

  13. Machinability of Al-SiC metal matrix composites using WC, PCD and MCD inserts

    Energy Technology Data Exchange (ETDEWEB)

    Beristain, J.; Gonzalo, O.; Sanda, A.

    2014-04-01

    The aim of this work is the study of the machinability of aluminium-silicon carbide Metal Matrix Composites (MMC) in turning operations. The cutting tools used were hard metal (WC) with and without coating, different grades and geometries of Poly-Crystalline Diamond (PCD) and Mono-Crystalline Diamond (MCD). The work piece material was AMC225xe, composed of aluminium-copper alloy AA 2124 and 25% wt of SiC, being the size of the SiC particles around 3 {mu}m. Experiments were conducted at various cutting speeds and cutting parameters in facing finishing operations, measuring the surface roughness, cutting forces and tool wear. The worn surface of the cutting tool was examined by Scanning Electron Microscope (SEM). It was observed that the Built Up Edge (BUE) and stuck material is higher in the MCD tools than in the PCD tools. The BUE acts as a protective layer against abrasive wear of the tool. (Author)

  14. The Machine within the Machine

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    Although Virtual Machines are widespread across CERN, you probably won't have heard of them unless you work for an experiment. Virtual machines - known as VMs - allow you to create a separate machine within your own, allowing you to run Linux on your Mac, or Windows on your Linux - whatever combination you need.   Using a CERN Virtual Machine, a Linux analysis software runs on a Macbook. When it comes to LHC data, one of the primary issues collaborations face is the diversity of computing environments among collaborators spread across the world. What if an institute cannot run the analysis software because they use different operating systems? "That's where the CernVM project comes in," says Gerardo Ganis, PH-SFT staff member and leader of the CernVM project. "We were able to respond to experimentalists' concerns by providing a virtual machine package that could be used to run experiment software. This way, no matter what hardware they have ...

  15. Tribological behavior of an austenitic stainless steel AISI 316L nitrurated by DC-pulsed plasma

    International Nuclear Information System (INIS)

    De Las Heras, E; Walther, F; Corengia, P.A; Quinteiro, M.O; Cabo, A; Bruhl, S; Sommadossi, S

    2004-01-01

    Austenitic stainless steels are widely used in different applications because they withstands corrosion. Ionic nitruration has proven to be an adequate technique for modifying this type of steel, in order to improve its resistance to wear without diminishing its resistance to corrosion. While many publications have reported improvements in the tribological properties of the nitrurated AISI 316, systematic studies that evaluate this behavior using industrial equipment for its thermochemical treatment are of interest. This work studied the tribological behavior of an AISI 316L steel nitrurated by DC pulsed plasma in an industrial machine in an atmosphere of 25% N 2 and 75% H 2 for 20 h at 400 o C by means of abrasion tests under different conditions in an A 135 Amsler-disk machine. In order to characterize the abraded samples microhardness, optic and scanning electron microscopy profiles to determine the abrasion mechanisms were performed. The results showed substantial improvement in the abrasion resistance of the nitrurated samples compared to the non nitrurated ones and the different abrasion mechanisms are discussed to explain the test results (CW)

  16. MODIFIED KACHUGIN METHOD OF ALTERNATIVE SOFTWARE-BASED PROJECTION OF THE PATTERN OF REORGANIZATION OF ABRASION SHORES OF WATER RESERVOIRS IN THE FLAT TERRAIN

    Directory of Open Access Journals (Sweden)

    Sobol' Il'ya Stanislavovich

    2012-10-01

    Full Text Available Presently, effective regulations employed in the Russian Federation recommend the use of the methods developed by E.G. Kachuchin, G.S. Zolotarev, I.A. Pecherkin, etc. for the projection of patterns of reorganization of coastlines of water reservoirs. One of these methods, developed by E.G. Kachugin, belongs to the group of power methods based on the hypothesis that the amplitudes of destruction of the coast are proportionate to the total wave energy alongside the coastline. The Kachugin method was reworked into a computer-based two-dimensional engineering model of reorganization of the abrasion shore. The model generates alternative projections. It simulates the processes of washout and accumulation of soil in the coastal area and solves the problem of predicting the potential profile of the shore within a pre-set time period or until the abrasion is smoothed away in the course of formation of coastal shallows. The model testing has proven its efficiency in solving the engineering problems of projecting the line of reservoir abrasion shores with a high degree of reliability.

  17. A method for increase abrasive wear resistance parts by obtaining on methods casting on gasifying models

    Science.gov (United States)

    Sedukhin, V. V.; Anikeev, A. N.; Chumanov, I. V.

    2017-11-01

    Method optimizes hardening working layer parts’, working in high-abrasive conditions looks in this work: bland refractory particles WC and TiC in respect of 70/30 wt. % prepared by beforehand is applied on polystyrene model in casting’ mould. After metal poured in mould, withstand for crystallization, and then a study is carried out. Study macro- and microstructure received samples allows to say that thickness and structure received hardened layer depends on duration interactions blend harder carbides and liquid metal. Different character interactions various dispersed particles and matrix metal observed under the same conditions. Tests abrasive wear resistance received materials of method calculating residual masses was conducted in laboratory’ conditions. Results research wear resistance showed about that method obtaining harder coating of blend carbide tungsten and carbide titanium by means of drawing on surface foam polystyrene model before moulding, allows receive details with surface has wear resistance in 2.5 times higher, than details of analogy steel uncoated. Wherein energy costs necessary for transformation units mass’ substances in powder at obtained harder layer in 2.06 times higher, than materials uncoated.

  18. Effects of enamel abrasion, salivary pellicle, and measurement angle on the optical assessment of dental erosion

    Science.gov (United States)

    Lussi, Adrian; Bossen, Anke; Höschele, Christoph; Beyeler, Barbara; Megert, Brigitte; Meier, Christoph; Rakhmatullina, Ekaterina

    2012-09-01

    The present study assessed the effects of abrasion, salivary proteins, and measurement angle on the quantification of early dental erosion by the analysis of reflection intensities from enamel. Enamel from 184 caries-free human molars was used for in vitro erosion in citric acid (pH 3.6). Abrasion of the eroded enamel resulted in a 6% to 14% increase in the specular reflection intensity compared to only eroded enamel, and the reflection increase depended on the erosion degree. Nevertheless, monitoring of early erosion by reflection analysis was possible even in the abraded eroded teeth. The presence of the salivary pellicle induced up to 22% higher reflection intensities due to the smoothing of the eroded enamel by the adhered proteins. However, this measurement artifact could be significantly minimized (pmeasurement angles from 45 to 60 deg did not improve the sensitivity of the analysis at late erosion stages. The applicability of the method for monitoring the remineralization of eroded enamel remained unclear in a demineralization/remineralization cycling model of early dental erosion in vitro.

  19. The study of sub-surface damage distributions during grinding process on different abrasion materials

    Science.gov (United States)

    Kuo, Ching-Hsiang; Huang, Chien-Yao; Yu, Zong-Ru; Shu, Shyu-Cheng; Chang, Keng-Shou; Hsu, Wei-Yao

    2017-10-01

    The grinding process is the primary technology for curvature generation (CG) on glass optics. The higher material removal rate (MRR) leads to deeper sub-surface damage (SSD) on lens surface. The SSD must be removed by following lapping and polishing processes to ensure the lens quality. However, these are not an easy and an efficient process to remove the SSD from ground surface directly for aspheric surfaces with tens or hundreds microns departure from bestfit- sphere (BFS). An efficient fabrication procedure for large aspheric departure on glass materials must be considered. We propose 3-step fabrication procedures for aspheric surface with larger departure. 1st step is to generate a specific aspheric surface with depth less than 10 μm of SSD residual. 2nd step is to remove SSD and keep the aspheric form by using Zeeko polisher with higher MRR pad. Final step is to figure and finish the aspheric surface by using QED MRF machine. In this study, we focus on the 1st step to investigate the residual depth of SSD after grinding process on different abrasion materials. The materials of tested part are fused silica, S-NPH2, and S-PHM52. The cross grinding would be configured and depth of SSD/surface roughness would be evaluated in this study. The characteristic of SSD could be observed after etching by confocal microscope. The experimental results show the depth of SSD below 31.1 μm with #400 grinding wheel. And the near 10 μm depth of SSD would be achieved with #1,000 grinding wheel. It means the aspherization polishing on large parts with large departure from best fit sphere would be replaced. The fabrication of large aspheric part would be efficient.

  20. Improved Corrosion and Abrasion Resistance of Organic-Inorganic Composite Coated Electro-galvanized Steels for Digital TV Panels

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Du-Hwan; Noh, Sang-Geol; Park, Jong-Tae; Kang, Choon-Ho [POSCO Technical Research Laboratories, Pohang (Korea, Republic of)

    2015-10-15

    Recently, household electronic industries require environmentally-friendly and highly functional steels in order to enhance the quality of human life. Customers especially require both excellent corrosion and abrasion resistant anti-fingerprint steels for digital TV panels. Thus POSCO has developed new functional electro-galvanized steels, which have double coated layers with organic-inorganic composites on the zinc surface of the steel for usage as the bottom chassis panel of TVs. The inorganic solution for the bottom layer consists of inorganic phosphate, magnesium, and zirconium compounds with a small amount of epoxy binder, and affords both improved adhesion properties by chemical conversion reactions and corrosion resistance due to a self-healing effect. The composite solution for the top layer was prepared by fine dispersion of organic-inorganic ingredients that consist of a urethane modified polyacrylate polymer, hardener, silica sol and a titanium complex inhibitor in aqueous media. Both composite solutions were coated on the steel surface by using a roll coater and then cured through an induction furnace in the electro-galvanizing line. New anti-fingerprint steel was evaluated for quality performance through such procedures as the salt spray test for corrosion resistance, tribological test for abrasion resistance, and conductivity test for surface electric conductance regarding to both types of polymer resin and coating weight of composite solution. New composite coated anti-fingerprint steels afford both better corrosion resistance and abrasion properties compared to conventional anti-fingerprint steel that mainly consists of acrylate polymers. Detailed discussions of both composite solutions and experimental results suggest that urethane modifications of acrylate polymers of composite solutions play a key role in enhanced quality performances.

  1. Abrasive slurry jet cutting model based on fuzzy relations

    Science.gov (United States)

    Qiang, C. H.; Guo, C. W.

    2017-12-01

    The cutting process of pre-mixed abrasive slurry or suspension jet (ASJ) is a complex process affected by many factors, and there is a highly nonlinear relationship between the cutting parameters and cutting quality. In this paper, guided by fuzzy theory, the fuzzy cutting model of ASJ was developed. In the modeling of surface roughness, the upper surface roughness prediction model and the lower surface roughness prediction model were established respectively. The adaptive fuzzy inference system combines the learning mechanism of neural networks and the linguistic reasoning ability of the fuzzy system, membership functions, and fuzzy rules are obtained by adaptive adjustment. Therefore, the modeling process is fast and effective. In this paper, the ANFIS module of MATLAB fuzzy logic toolbox was used to establish the fuzzy cutting model of ASJ, which is found to be quite instrumental to ASJ cutting applications.

  2. Novel CNC Grinding Process Control for Nanometric Surface Roughness for Aspheric Space Optical Surfaces

    Directory of Open Access Journals (Sweden)

    Jeong-Yeol Han

    2004-06-01

    Full Text Available Optics fabrication process for precision space optical parts includes bound abrasive grinding, loose abrasive lapping and polishing. The traditional bound abrasive grinding with bronze bond cupped diamond wheel leaves the machine marks of about 20 μm rms in height and the subsurface damage of about 1 μm rms in height to be removed by subsequent loose abrasive lapping. We explored an efficient quantitative control of precision CNC grinding. The machining parameters such as grain size, work-piece rotation speed and feed rate were altered while grinding the work-piece surfaces of 20-100 mm in diameter. The input grinding variables and the resulting surface quality data were used to build grinding prediction models using empirical and multi-variable regression analysis. The effectiveness of such grinding prediction models was then examined by running a series of precision CNC grinding operation with a set of controlled input variables and predicted output surface quality indicators. The experiment achieved the predictability down to ±20 nm in height and the surface roughness down to 36 nm in height. This study contributed to improvement of the process efficiency reaching directly the polishing and figuring process without the need for the loose abrasive lapping stage.

  3. Effect of Machining Velocity in Nanoscale Machining Operations

    International Nuclear Information System (INIS)

    Islam, Sumaiya; Khondoker, Noman; Ibrahim, Raafat

    2015-01-01

    The aim of this study is to investigate the generated forces and deformations of single crystal Cu with (100), (110) and (111) crystallographic orientations at nanoscale machining operation. A nanoindenter equipped with nanoscratching attachment was used for machining operations and in-situ observation of a nano scale groove. As a machining parameter, the machining velocity was varied to measure the normal and cutting forces. At a fixed machining velocity, different levels of normal and cutting forces were generated due to different crystallographic orientations of the specimens. Moreover, after machining operation percentage of elastic recovery was measured and it was found that both the elastic and plastic deformations were responsible for producing a nano scale groove within the range of machining velocities from 250-1000 nm/s. (paper)

  4. Management of Retrograde Peri-Implantitis Using an Air-Abrasive Device, Er,Cr:YSGG Laser, and Guided Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Nikolaos Soldatos

    2018-01-01

    Full Text Available Background. The placement of an implant in a previously infected site is an important etiologic factor contributing to implant failure. The aim of this case report is to present the management of retrograde peri-implantitis (RPI in a first maxillary molar site, 2 years after the implant placement. The RPI was treated using an air-abrasive device, Er,Cr:YSGG laser, and guided bone regeneration (GBR. Case Description. A 65-year-old Caucasian male presented with a draining fistula associated with an implant at tooth #3. Tooth #3 revealed periapical radiolucency two years before the implant placement. Tooth #3 was extracted, and a ridge preservation procedure was performed followed by implant rehabilitation. A periapical radiograph (PA showed lack of bone density around the implant apex. The site was decontaminated with an air-abrasive device and Er,Cr:YSGG laser, and GBR was performed. The patient was seen every two weeks until suture removal, followed by monthly visits for 12 months. The periapical X-rays, from 6 to 13 months postoperatively, showed increased bone density around the implant apex, with no signs of residual clinical or radiographic pathology and probing depths ≤4 mm. Conclusions. The etiology of RPI in this case was the placement of an implant in a previously infected site. The use of an air-abrasive device, Er,Cr:YSGG, and GBR was utilized to treat this case of RPI. The site was monitored for 13 months, and increased radiographic bone density was noted.

  5. Prediction of Machine Tool Condition Using Support Vector Machine

    International Nuclear Information System (INIS)

    Wang Peigong; Meng Qingfeng; Zhao Jian; Li Junjie; Wang Xiufeng

    2011-01-01

    Condition monitoring and predicting of CNC machine tools are investigated in this paper. Considering the CNC machine tools are often small numbers of samples, a condition predicting method for CNC machine tools based on support vector machines (SVMs) is proposed, then one-step and multi-step condition prediction models are constructed. The support vector machines prediction models are used to predict the trends of working condition of a certain type of CNC worm wheel and gear grinding machine by applying sequence data of vibration signal, which is collected during machine processing. And the relationship between different eigenvalue in CNC vibration signal and machining quality is discussed. The test result shows that the trend of vibration signal Peak-to-peak value in surface normal direction is most relevant to the trend of surface roughness value. In trends prediction of working condition, support vector machine has higher prediction accuracy both in the short term ('One-step') and long term (multi-step) prediction compared to autoregressive (AR) model and the RBF neural network. Experimental results show that it is feasible to apply support vector machine to CNC machine tool condition prediction.

  6. Wear resistance and structural changes in nitrogen-containing high-chromium martensitic steels under conditions of abrasive wear and sliding friction

    International Nuclear Information System (INIS)

    Makarov, A.V.; Korshunov, L.G.; Schastlivtsev, V.M.; Chernenko, N.L.

    1998-01-01

    Martensitic nitrogen-containing steels Kh17N2A0.14, Kh13A0.14, Kh14G4A0.22 as well as steel 20Kh13 were studied for their wear resistance under conditions of friction and abrasion. Metallography, X ray diffraction analysis and electron microscopy were used to investigate the structural changes taking place in a thin surface layer on wearing. It is shown that an increase of nitrogen content of 0.14 to 0.22% promotes an enhancement of steel resistance to abrasive and adhesive wear, especially after tempering in the range of 500-550 deg C. Typically, the nitrogen-containing steels exhibit lower resistance to various types of wear in comparison with the steels with high-carbon martensite due to their lower deformability under conditions of friction loading

  7. Environmentally Friendly Machining

    CERN Document Server

    Dixit, U S; Davim, J Paulo

    2012-01-01

    Environment-Friendly Machining provides an in-depth overview of environmentally-friendly machining processes, covering numerous different types of machining in order to identify which practice is the most environmentally sustainable. The book discusses three systems at length: machining with minimal cutting fluid, air-cooled machining and dry machining. Also covered is a way to conserve energy during machining processes, along with useful data and detailed descriptions for developing and utilizing the most efficient modern machining tools. Researchers and engineers looking for sustainable machining solutions will find Environment-Friendly Machining to be a useful volume.

  8. Friction and Wear of Metals With a Single-Crystal Abrasive Grit of Silicon Carbide - Effect of Shear Strength of Metal

    National Research Council Canada - National Science Library

    Miyoshi, Kazuhisa

    1978-01-01

    An investigation was conducted to examine the removal and plastic deformation of metal as a function of the metal properties when the metal is in sliding contact with a single-crystal abrasive grit of silicon carbide...

  9. Hydro-abrasive erosion of hydraulic turbines caused by sediment - a century of research and development

    Science.gov (United States)

    Felix, D.; Albayrak, I.; Abgottspon, A.; Boes, R. M.

    2016-11-01

    Hydro-abrasive erosion of hydraulic turbines is an economically important issue due to maintenance costs and production losses, in particular at high- and medium-head run-of- river hydropower plants (HPPs) on sediment laden rivers. In this paper, research and development in this field over the last century are reviewed. Facilities for sediment exclusion, typically sand traps, as well as turbine design and materials have been improved considerably. Since the 1980s, hard-coatings have been applied on Francis and Pelton turbine parts of erosion-prone HPPs and became state-of-the-art. These measures have led to increased times between overhauls and smaller efficiency reductions. Analytical, laboratory and field investigations have contributed to a better processes understanding and quantification of sediment-related effects on turbines. More recently, progress has been made in numerical modelling of turbine erosion. To calibrate, validate and further develop prediction models, more measurements from both physical model tests in laboratories and real-scale data from HPPs are required. Significant improvements to mitigate hydro-abrasive erosion have been achieved so far and development is ongoing. A good collaboration between turbine manufacturers, HPP operators, measuring equipment suppliers, engineering consultants, and research institutes is required. This contributes to the energy- and cost-efficient use of the worldwide hydropower potential.

  10. Hybrid machining processes perspectives on machining and finishing

    CERN Document Server

    Gupta, Kapil; Laubscher, R F

    2016-01-01

    This book describes various hybrid machining and finishing processes. It gives a critical review of the past work based on them as well as the current trends and research directions. For each hybrid machining process presented, the authors list the method of material removal, machining system, process variables and applications. This book provides a deep understanding of the need, application and mechanism of hybrid machining processes.

  11. Arthroscopic management of temporomandibular joint disc perforations and associated advanced chondromalacia by discoplasty and abrasion arthroplasty: a supplemental report.

    Science.gov (United States)

    Quinn, J H; Stover, J D

    1998-11-01

    This article describes the results of treating temporomandibular joint (TMJ) articular disc perforation and advanced chondromalacia arthroscopically by the use of discoplasty and abrasion arthroplasty. Forty-four joints were treated in 25 patients (23 females and 2 males). Twenty-nine disc perforations were present, 24 joints had grade III chondromalacia (fibrillated cartilage), and 14 joints had grade IV chondromalacia (exposed bone). Surgical procedures included 14 abrasion arthroplasties and 24 motorized shavings or holmium laser vaporizations. Holmium laser discoplasty with mobilization was used in 29 joints. Patients were followed-up for an average of 40.8 months (11 to 74 months). Preoperative pain on the visual analog scale (VAS) (1 to 10 cm) ranged from 5 to 10 cm, with an average of 7.4 cm. Postoperatively, nine patients had no pain and 16 patients had an average VAS of 2.7 cm (range, 1 to 5 cm). Preoperatively, 30 joints had clicking, and 14 joints had crepitation. Postoperatively, 25 joints had no noise, 12 joints had slight intermittent clicking, and seven joints had crepitation. The preoperative range of motion averaged 29.7 mm. Postoperatively, the range of motion averaged 37.7 mm (range, 33 to 42 mm). All patients could masticate a regular diet except hard food after an average of 40.8 months (11 to 74 months). These findings seem to justify the arthroscopic surgical procedures of discoplasty for disc perforations, motorized shaving, or holmium laser vaporization of grade III chondromalacia, and abrasion arthroplasty for bone exposure. The results also question the need for discectomy in the treatment of disc perforation.

  12. Strong feedbacks between hillslope sediment production and channel incision by saltation-abrasion

    Science.gov (United States)

    Lundbek Egholm, David; Faurschou Knudsen, Mads; Sandiford, Mike

    2013-04-01

    While it is well understood that rivers erode mountain ranges by incising the bedrock and by transporting sediments away from the ranges, the basic physical mechanisms that drive long-term bedrock erosion and control the lifespan of mountain ranges remain uncertain. A particularly challenging paradox is reconciling the dichotomy associated with the high incision rates observed in active mountain belts, and the long-term (108 years) preservation of significant topographic reliefs in inactive orogenic belts (e.g. von Blankenburg, 2005). We have performed three-dimensional computational experiments with a landscape evolution model that couples bedrock landslides and sediment flux-dependent river erosion by saltation-abrasion (Sklar & Dietrich, 2004). The coupled model experiments show strong feedbacks between the channel erosion and the hillslope delivery of sediments. The feedbacks point to hillslope sediment production rate as the main control on channel erosion rates where saltation-abrasion dominates over other fluvial erosion processes. Our models results thus highlight the importance of hillslope sediment production controlled by climate and tectonic activity for scaling erosion rates in fluvial systems. Because of variations in landslide frequency, the feedbacks make tectonic activity a primary driver of fluvial erosion and help clarifying the long-standing paradox associated with the persistence of significant relief in old orogenic belts, up to several hundred-million-years after tectonic activity has effectively ceased. References F. von Blankenburg. The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. Earth Planet. Sci. Lett. 237, 462-479 (2005). L. S. Sklar, W. E. Dietrich. A mechanistic model for river incision into bedrock by saltating bed load. Water Resour. Res. 40, W06301 (2004).

  13. Effect of Fe content on the friction and abrasion properties of copper base overlay on steel substrate by TIG welding

    Institute of Scientific and Technical Information of China (English)

    Lü Shixiong; Song Jianling; Liu Lei; Yang Shiqin

    2009-01-01

    Copper base alloy was overlaid onto 35CrMnSiA steel plate by tungsten inert gas (TIG) welding method. The heat transfer process was simulated, the microstructures of the copper base overlay were analyzed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), and the friction and abrasion properties of the overlay were measured. The results show that the Fe content increases in the overlay with increasing the welding current. And with the increase of Fe content in the overlay, the friction coefficient increases and the wear mechanism changes from oxidation wear to abrasive wear and plough wear, which is related to the size and quantity of Fe grains in the overlay. While with the increase of Fe content in the overlay, the protection of oxidation layer against the oxidation wear on the melted metal decreases.

  14. The Effect of Air Density on Sand Transport Structures and the Adobe Abrasion Profile: A Field Wind-Tunnel Experiment Over a Wide Range of Altitude

    Science.gov (United States)

    Han, Qingjie; Qu, Jianjun; Dong, Zhibao; Zu, Ruiping; Zhang, Kecun; Wang, Hongtao; Xie, Shengbo

    2014-02-01

    Aeolian sand transport results from interactions between the surface and the airflow above. Air density strongly constrains airflow characteristics and the resulting flow of sand, and therefore should not be neglected in sand transport models. In the present study, we quantify the influence of air density on the sand flow structure, sand transport rate, adobe abrasion profiles, and abrasion rate using a portable wind-tunnel in the field. For a given wind speed, the flow's ability to transport sand decreases at low air density, so total sand transport decreases, but the saltation height increases. Thus, the damage to human structures increases compared with what occurs at lower altitudes. The adobe abrasion rate by the cloud of blowing sand decreases exponentially with increasing height above the surface, while the wind erosion and dust emission intensity both increase with increasing air density. Long-term feedback processes between air density and wind erosion suggest that the development of low-altitude areas due to long-term deflation plays a key role in dust emission, and will have a profound significance for surface Aeolian processes and geomorphology.

  15. HYDRO-ABRASIVE JET CLEANING TECHNOLOGY OF STEEL SHEETS DESIGNED FOR LASER CUTTING

    Directory of Open Access Journals (Sweden)

    I. V. Kachanov

    2013-01-01

    Full Text Available Investigations executed by the BNTU “Shipbuilding and hydraulics” department have shown that rather efficient implementation of the requirements to the metal sheet surface designed for laser cutting can be achieved by using hydro-abrasive jet cleaning while applying water pump equipment with the range of pressure – 20–40 MPa. Type of working fluid plays a significant role for obtaining surface of the required quality. The conducted experiments have demonstrated that the efficient solution of the assigned problems can be ensured by using a working fluid containing bentonite clay, surface-active agent polyacrylamide, soda ash and the rest water.

  16. STUDY OF POLISHING AISI 316L WITH STRUCTURED ABRASIVE

    Directory of Open Access Journals (Sweden)

    François GOOSSENS

    2015-05-01

    Full Text Available Finishing process like polishing is usually used to obtain high quality mechanical surface characteristics such as texture and roughness. These operations are mainly handmade and need highly trained operators thus limiting their repeatability and profitability. To optimize the industrialization of the polishing process, it is therefore necessary to modelize the process to built efficient parameter database. The aim of this study is to characterise the polishing of 316L stainless steel with structured abrasive belts. The geometric data of the belts are given, and we then propose a model to determine material removal. An experimental test bench is set up to test this model and characterise the polishing process in terms of forces. It produces samples for different polishing conditions. The different polished surfaces are then analyzed thanks to the roughness and the wettability. Using experimental designs, we are able to validate the proposed model and identify the parameters that influence a polishing operation.

  17. The Abrasive Wear Resistance of the Segmented Linear Polyurethane Elastomers Based on a Variety of Polyols as Soft Segments

    Directory of Open Access Journals (Sweden)

    Konrad Kwiatkowski

    2017-12-01

    Full Text Available The presented results make an original contribution to the development of knowledge on the prediction and/or modeling of the abrasive wear properties of polyurethanes. A series of segmented linear polyurethane elastomers (PUR—In which the hard segments consist of 4,4′-methylene bis(phenylisocyanate and 1,4-butanodiol, whilst polyether, polycarbonate, or polyester polyols constitute the soft segments—Were synthesized and characterized. The hardness and wear performance as functions of the variable chemical composition of polyurethane elastomers were evaluated in order to define the relationship between studied factors. The microstructure was characterized in detail, including analysis of the hydrogen bonding by Fourier transformed infrared (FT-IR spectroscopy and the phase structure by X-ray scattering (WAXS and differential scanning calorimetry (DSC methods. The presented studies provide the key features of the polymer composition affecting the abrasive resistance as well as attempts to explain the origin of the differences in the polyurethane elastomers’ performance.

  18. Machine terms dictionary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-04-15

    This book gives descriptions of machine terms which includes machine design, drawing, the method of machine, machine tools, machine materials, automobile, measuring and controlling, electricity, basic of electron, information technology, quality assurance, Auto CAD and FA terms and important formula of mechanical engineering.

  19. A Study on Accuracy Improvement of Dual Micro Patterns Using Magnetic Abrasive Deburring

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Dong-Hyun; Kwak, Jae-Seob [Pukyong Nat’l Univ., Busan (Korea, Republic of)

    2016-11-15

    In recent times, the requirement of a micro pattern on the surface of products has been increasing, and high precision in the fabrication of the pattern is required. Hence, in this study, dual micro patterns were fabricated on a cylindrical workpiece, and deburring was performed by magnetic abrasive deburring (MAD) process. A prediction model was developed, and the MAD process was optimized using the response surface method. When the predicted values were compared with the experimental results, the average prediction error was found to be approximately 7%. Experimental verification shows fabrication of high accuracy dual micro pattern and reliability of prediction model.

  20. Some relations between quantum Turing machines and Turing machines

    OpenAIRE

    Sicard, Andrés; Vélez, Mario

    1999-01-01

    For quantum Turing machines we present three elements: Its components, its time evolution operator and its local transition function. The components are related with the components of deterministic Turing machines, the time evolution operator is related with the evolution of reversible Turing machines and the local transition function is related with the transition function of probabilistic and reversible Turing machines.

  1. Contact pressure distribution during the polishing process of ceramic tiles: A laboratory investigation

    International Nuclear Information System (INIS)

    Sani, A S A; Hamedon, Z; Azhari, A; Sousa, F J P

    2016-01-01

    During the polishing process of porcelain tiles the difference in scratching speed between innermost and peripheral abrasives leads to pressure gradients linearly distributed along the radial direction of the abrasive tool. The aim of this paper is to investigate such pressure gradient in laboratory scale. For this purpose polishing tests were performed on ceramic tiles according to the industrial practices using a custom-made CNC tribometer. Gradual wear on both abrasives and machined surface of the floor tile were measured. The experimental results suggested that the pressure gradient tends to cause an inclination of the abraded surfaces, which becomes stable after a given polishing period. In addition to the wear depth of the machined surface, the highest value of gloss and finest surface finish were observed at the lowest point of the worn out surface of the ceramic floor tile corresponding to the point of highest pressure and lowest scratching speed. (paper)

  2. Temperature of Heating and Cooling of Massive, Thin, and Wedge-Shaped Plates from Hard-to-Machine Steels During Their Grinding

    Science.gov (United States)

    Dement‧ev, V. B.; Ivanova, T. N.; Dolginov, A. M.

    2017-01-01

    Grinding of flat parts occurs by solid abrasive particles due to the physicomechanical process of deformation and to the action of a process liquid at high temperatures in a zone small in volume and difficult for observation. The rate of heating and cooling depends on the change in the intensity of the heat flux and in the velocity and time of action of the heat source. A study has been made of the regularities of the influence of each of these parameters on the depth and character of structural transformations during the grinding of flat parts from hard-to-machine steels. A procedure to calculate temperature in grinding massive, thin, and wedge-shaped parts has been developed with account taken of the geometric and thermophysical parameters of the tool and the treated part, and also of cutting regimes. The procedure can be used as a constituent part in developing a system for automatic design of the technological process of grinding of flat surfaces. A relationship between the temperature in the grinding zone and the regimes of treatment has been established which makes it possible to control the quality of the surface layer of massive, thin, and wedge-shaped plates from hard-to-machine steels. The rational boundaries of shift of cutting regimes have been determined.

  3. Experimental study on variations in Charpy impact energies of low carbon steel, depending on welding and specimen cutting method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaorui; Kang, Hansaem; Lee, Young Seog [Chung-Ang University, Seoul (Korea, Republic of)

    2016-05-15

    This paper presents an experimental study that examines variations of Charpy impact energy of a welded steel plate, depending upon the welding method and the method for obtaining the Charpy specimens. Flux cored arc welding (FCAW) and Gas tungsten arc welding (GTAW) were employed to weld an SA516 Gr. 70 steel plate. The methods of wire cutting and water-jet cutting were adopted to take samples from the welded plate. The samples were machined according to the recommendations of ASTM SEC. II SA370, in order to fit the specimen dimension that the Charpy impact test requires. An X-ray diffraction (XRD) method was used to measure the as-weld residual stress and its redistribution after the samples were cut. The Charpy impact energy of specimens was considerably dependent on the cutting methods and locations in the welded plate where the specimens were taken. The specimens that were cut by water jet followed by FCAW have the greatest resistance-to-fracture (Charpy impact energy). Regardless of which welding method was used, redistributed transverse residual stress becomes compressive when the specimens are prepared using water-jet cutting. Meanwhile, redistributed transverse residual stress becomes tensile when the specimens are prepared using wire cutting.

  4. Support vector machine in machine condition monitoring and fault diagnosis

    Science.gov (United States)

    Widodo, Achmad; Yang, Bo-Suk

    2007-08-01

    Recently, the issue of machine condition monitoring and fault diagnosis as a part of maintenance system became global due to the potential advantages to be gained from reduced maintenance costs, improved productivity and increased machine availability. This paper presents a survey of machine condition monitoring and fault diagnosis using support vector machine (SVM). It attempts to summarize and review the recent research and developments of SVM in machine condition monitoring and diagnosis. Numerous methods have been developed based on intelligent systems such as artificial neural network, fuzzy expert system, condition-based reasoning, random forest, etc. However, the use of SVM for machine condition monitoring and fault diagnosis is still rare. SVM has excellent performance in generalization so it can produce high accuracy in classification for machine condition monitoring and diagnosis. Until 2006, the use of SVM in machine condition monitoring and fault diagnosis is tending to develop towards expertise orientation and problem-oriented domain. Finally, the ability to continually change and obtain a novel idea for machine condition monitoring and fault diagnosis using SVM will be future works.

  5. Manufacturing processes 2 grinding, honing, lapping

    CERN Document Server

    Klocke, Fritz

    2009-01-01

    Presents a view of the most common machining and non-machining manufacturing processes. This volume describes the characteristics of abrasive tools, their design and manufacturing, followed by the fundamentals of grinding fluids. It also discusses grinding of different materials (steel, cast iron, hard and brittle materials, nickel and titanium).

  6. Cuttable Ruled Surface Strips for Milling

    DEFF Research Database (Denmark)

    Steenstrup, Kasper Hornbak; Nørbjerg, Toke Bjerge; Søndergaard, Asbjørn

    2016-01-01

    This paper proposes a novel pre-processing method for industrial robotic CNC-milling. The method targets a hybrid machining process, in which the main bulk of material is removed through robotic hot or abrasive wire cutting, after which regular CNC-machining is employed for removal of the remaining...

  7. Management of gingiva hyperpigmentasi with combine of scalpel scraping technique and gingivo abrasion technique (Case report

    Directory of Open Access Journals (Sweden)

    Shek Wendy

    2016-06-01

    Full Text Available Aesthetic factor is an important factor in supporting the person's appearance, especially when a person smiles. Beautifull smiles form of harmonization between the teeth and gums as part of the oral cavity. One of overall aspect that has an important role in providing the overall aesthetic impression is normal gum color that pink coral. Brown or black gums are often become the complaint that interfere with appearance, especially in patients who have a habit of smoking. Pigmentation caused by melanin hyperpigmentation and usually does not present a medical problems, so patients are not aware of it. Surgical method with the scalpel scraping technique and gingivo abrasion technique using high speed carbide bur has been widely used as a method of gingival depigmentation. This method is easily done, simple and can be done in a relatively short time. In this case report presented regarding the management of patients with gingival hyperpigmentation of the maxilla and mandible were treated with surgical method using a scalpel scraping technique combined with gingivo abrasion technique using high speed carbide bur. The result, after 4 weeks follow up, color of the patient's gingival was pink and there is none recurrence of the pigmentation.

  8. The use of ion implantation for the improvement of abrasive wear resistance

    International Nuclear Information System (INIS)

    Delves, B.G.; Dearnaley, G.

    1979-01-01

    At the conclusion of the 1977 IPAT conference a practical problem was described which called for an economically feasible method of improving the resistance of tool steel, chromium and other alloys to abrasive wear sustained during the injection moulding of phenolic resin. This paper will describe subsequent work to investigate ion implantation as a possible means of treating steel taps, injection nozzles, feed wear pads, cavity moulds etc. Various problems were encountered and it will be described how most of these have now been overcome. Under favourable conditions factors of 4, and sometimes up to 10 times the normal life can be achieved. An attempt will be made to estimate some of the economic benefits of the process. (author)

  9. Simulations of Quantum Turing Machines by Quantum Multi-Stack Machines

    OpenAIRE

    Qiu, Daowen

    2005-01-01

    As was well known, in classical computation, Turing machines, circuits, multi-stack machines, and multi-counter machines are equivalent, that is, they can simulate each other in polynomial time. In quantum computation, Yao [11] first proved that for any quantum Turing machines $M$, there exists quantum Boolean circuit $(n,t)$-simulating $M$, where $n$ denotes the length of input strings, and $t$ is the number of move steps before machine stopping. However, the simulations of quantum Turing ma...

  10. Possibilities of rotary ultrasonic machining in order to give a boost to technical ceramics in the actual Spanish market; Posibilidades del mecanizado por ultrasonidos rotatorio para fomentar el uso de las ceramicas tecnicas en el mercado Espanol actual

    Energy Technology Data Exchange (ETDEWEB)

    Arriola, I.; Gonzalo, O.; Bengoetxea, I.

    2012-11-01

    The advanced properties of engineering ceramics are suitable to meet the requirements of several engineering applications such as medical (prosthesis), automotive (bearing...), aerospace (tiles,...), optics (lasers,) and so on, where high hardness, high wear resistance and thermo chemical stability are needed. However, the processing of these materials is difficult and costly, in some cases up to 90% of the price, which leads ceramics to limited applications. Rotary Ultrasonic Machining (RUM) is presented as a non conventional environmental-friendly and cost effective process that enables to obtain complex 3D shape ceramic products. A rotating tool with metal-bonded diamond abrasives is ultrasonically vibrated (typically 20KHz) and fed toward to the fixed work piece at a constant pressure or a constant feed rate This process combines conventional grinding and ultrasonic machining, offering the possibility of increased material removal rates while keeping the machining forces low. Thus, the limitations of actually used conventional processes are overcome introducing more accurate, flexible and cost effective process capabilities. On balance, RUM is a promising process for primary machining operations on structural ceramic components. Its features will lead to enhance the use of ceramics in more industrial applications by increasing product development/design capabilities, high added value products and sustainable process. (Author) 43 refs.

  11. Machine tool structures

    CERN Document Server

    Koenigsberger, F

    1970-01-01

    Machine Tool Structures, Volume 1 deals with fundamental theories and calculation methods for machine tool structures. Experimental investigations into stiffness are discussed, along with the application of the results to the design of machine tool structures. Topics covered range from static and dynamic stiffness to chatter in metal cutting, stability in machine tools, and deformations of machine tool structures. This volume is divided into three sections and opens with a discussion on stiffness specifications and the effect of stiffness on the behavior of the machine under forced vibration c

  12. Phase transformations during machining and properties of surface layers in zirconium dioxide ceramics

    International Nuclear Information System (INIS)

    Grigor'ev, O.N.; Krivoshej, G.S.; Stel'mashenko, N.A.; Trefilov, V.I.; Shevchenko, A.V.

    1991-01-01

    The methods of X-ray allow studying phase composition and inner stresses in the surface layers of partially stabilized zirconium dioxide after mashining. It is shown that under conditions of abrasive treatment transitions from tetragonal into rhomboedric and monoclinic phases initiate. As a result of phase transitions fields of compressible stresses achieving 900 MPa under grinding with ACM abrasive are created on the surface. An essential increase of hardness due to growth of the brittle fauilure resistance and deformation hardening is revealed

  13. Electricity of machine tool

    International Nuclear Information System (INIS)

    Gijeon media editorial department

    1977-10-01

    This book is divided into three parts. The first part deals with electricity machine, which can taints from generator to motor, motor a power source of machine tool, electricity machine for machine tool such as switch in main circuit, automatic machine, a knife switch and pushing button, snap switch, protection device, timer, solenoid, and rectifier. The second part handles wiring diagram. This concludes basic electricity circuit of machine tool, electricity wiring diagram in your machine like milling machine, planer and grinding machine. The third part introduces fault diagnosis of machine, which gives the practical solution according to fault diagnosis and the diagnostic method with voltage and resistance measurement by tester.

  14. Machine medical ethics

    CERN Document Server

    Pontier, Matthijs

    2015-01-01

    The essays in this book, written by researchers from both humanities and sciences, describe various theoretical and experimental approaches to adding medical ethics to a machine in medical settings. Medical machines are in close proximity with human beings, and getting closer: with patients who are in vulnerable states of health, who have disabilities of various kinds, with the very young or very old, and with medical professionals. In such contexts, machines are undertaking important medical tasks that require emotional sensitivity, knowledge of medical codes, human dignity, and privacy. As machine technology advances, ethical concerns become more urgent: should medical machines be programmed to follow a code of medical ethics? What theory or theories should constrain medical machine conduct? What design features are required? Should machines share responsibility with humans for the ethical consequences of medical actions? How ought clinical relationships involving machines to be modeled? Is a capacity for e...

  15. Humanizing machines: Anthropomorphization of slot machines increases gambling.

    Science.gov (United States)

    Riva, Paolo; Sacchi, Simona; Brambilla, Marco

    2015-12-01

    Do people gamble more on slot machines if they think that they are playing against humanlike minds rather than mathematical algorithms? Research has shown that people have a strong cognitive tendency to imbue humanlike mental states to nonhuman entities (i.e., anthropomorphism). The present research tested whether anthropomorphizing slot machines would increase gambling. Four studies manipulated slot machine anthropomorphization and found that exposing people to an anthropomorphized description of a slot machine increased gambling behavior and reduced gambling outcomes. Such findings emerged using tasks that focused on gambling behavior (Studies 1 to 3) as well as in experimental paradigms that included gambling outcomes (Studies 2 to 4). We found that gambling outcomes decrease because participants primed with the anthropomorphic slot machine gambled more (Study 4). Furthermore, we found that high-arousal positive emotions (e.g., feeling excited) played a role in the effect of anthropomorphism on gambling behavior (Studies 3 and 4). Our research indicates that the psychological process of gambling-machine anthropomorphism can be advantageous for the gaming industry; however, this may come at great expense for gamblers' (and their families') economic resources and psychological well-being. (c) 2015 APA, all rights reserved).

  16. Intermittent therapy with terbinafine and nail abrasion for dermatophyte toe onychomycosis: a pilot study.

    Science.gov (United States)

    Succi, Isabella B; Bernardes-Engemann, Andréa R; Orofino-Costa, Rosane

    2013-05-01

    Onychomycosis constitutes up to 50% of all nail disorders. Toenails are generally affected, mostly due to dermatophytes. Terbinafine is the most potent antifungal agent in vitro against dermatophytes. There are few randomised controlled trials using a non-continuous dose of terbinafine. The aim of this open-label pilot study was to reduce the total drug amount, the collateral effects and, specially, the costs; albeit maintaining the same efficacy of the standard regimens. Compare the outcomes of two different intermittent regimens with the same total amount of the medication (42 tablets in 6 months). Forty-one patients were divided into the following groups: terbinafine 250 mg day(-1) , for 7 days, monthly or terbinafine 500 mg day(-1) , once daily, for 7 days, every 2 months, both plus nail abrasion during 6 months. The efficacy was evaluated at months 6, 12 and 18 using the disease free nail criteria. Total cure = group I: eight patients (44.4%) and group II: eight patients (44.4%). Partial cure = group I: five patients (27.8%) and group II: four patients (22.2%). Treatment failure = group I: five patients (27.8%) and group II: three patients (16.7%). Recurrence = group I: zero patients (0.0%) and group II: three patients (16.7%). Two intermittent dosing regimens of terbinafine plus nail abrasion proved to be an alternative statistically effective, safe and with reduced drug costs for dermatophytes toenail onychomycosis. © 2012 Blackwell Verlag GmbH.

  17. Code-expanded radio access protocol for machine-to-machine communications

    DEFF Research Database (Denmark)

    Thomsen, Henning; Kiilerich Pratas, Nuno; Stefanovic, Cedomir

    2013-01-01

    The random access methods used for support of machine-to-machine, also referred to as Machine-Type Communications, in current cellular standards are derivatives of traditional framed slotted ALOHA and therefore do not support high user loads efficiently. We propose an approach that is motivated b...... subframes and orthogonal preambles, the amount of available contention resources is drastically increased, enabling the massive support of Machine-Type Communication users that is beyond the reach of current systems.......The random access methods used for support of machine-to-machine, also referred to as Machine-Type Communications, in current cellular standards are derivatives of traditional framed slotted ALOHA and therefore do not support high user loads efficiently. We propose an approach that is motivated...... by the random access method employed in LTE, which significantly increases the amount of contention resources without increasing the system resources, such as contention subframes and preambles. This is accomplished by a logical, rather than physical, extension of the access method in which the available system...

  18. Abrasive blasting, a technique for the industrial decontamination of metal components and concrete blocks from decommissioning to unconditional release levels

    International Nuclear Information System (INIS)

    Gills, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2007-01-01

    When decommissioning nuclear installations, large quantities of metal components are produced as well as significant amounts of other radioactive materials, which mostly show low surface contamination. Having been used or having been brought for a while in a controlled area marks them as 'suspected material'. In view of the very high costs for radioactive waste processing and disposal, alternatives have been considered, and much effort has gone to recycling through decontamination, melting and unconditional release of metals. In a broader context, recycling of materials can considered to be a first order ecological priority in order to limit the quantities of radioactive wastes for final disposal and to reduce the technical and economic problems involved with the management of radioactive wastes. It will help as well to make economic use of primary material and to conserve natural resources of basic material for future generations. In a demonstration programme, Belgoprocess has shown that it is economically interesting to decontaminate metal components to unconditional release levels using dry abrasive blasting techniques, the unit cost for decontamination being only 30 % of the global cost for radioactive waste treatment, conditioning, storage and disposal. As a result, an industrial dry abrasive blasting unit was installed in the Belgoprocess central decontamination infrastructure. At the end of December 2006, more than 1,128 Mg of contaminated metal has been treated as well as 313 Mg of concrete blocks. The paper gives an overview of the experience relating to the decontamination of metal material and concrete blocks at the decommissioning of the Eurochemic reprocessing plant in Dessel, Belgium as well from the decontamination of concrete containers by abrasive blasting. (authors)

  19. APPLICATION OF GIS AND SATELLITE DATA IN THE INVESTIGATION OF BAYS AND ESTUARIAL ABRASION-ACCUMULATIVE JUMPERS OF THE VOLGOGRAD RESERVOIR

    Directory of Open Access Journals (Sweden)

    M. S. Baranova

    2017-01-01

    Full Text Available The paper presents some results of Volgograd reservoir bays investigation and their abrasion-accumulative jumpers in the estuarial alignments during field expeditionary researching and with the application of geoinformation systems and satellite data. Based on the results of long-term field observations and satellite data, it was founded that most of small and medium-sized bays have natural jumpers of abrasion-accumulative genesis now. The paper contains short characteristics of such bays as Dlinniy Lipoviy, Zharkova, Korotkiy Lipoviy, Bolshoy, Rostoviy, Mostovoy, Drugalka. The authors have created bathymetric maps and graphs of longitudinal profiles for the water areas of some of the bays on the right bank, calculated the areas of estuarial jumpers and the areas of the shallow water zone inside the bays. The bays, characterized in the entry gate by depths from 9 m to 16 m, do not have a predisposition to being overlapped by jumpers, and a number of bays are currently in the stage of separation. In the course of the investigation it was determined that the maximum depth of the break-away bays does not exceed six and half meters; the active process of detachment covers both small and medium-sized bays; among the studied bays considerable areas are occupied by shallow waters with depths of up to 2 meters; geoinformation systems and satellite data allow one to analyze, complete and generalize field research data and receive visual cartographic materials. Based on the results of bathymetric survey, there was revealed a fairly active accumulation of sediments in the abrasion-accumulative forms of the underwater and above-water relief of all the investigated reservoir bays.

  20. Thermal Investigation of Interaction between High-power CW-laser Radiation and a Water-jet

    Science.gov (United States)

    Brecher, Christian; Janssen, Henning; Eckert, Markus; Schmidt, Florian

    The technology of a water guided laser beam has been industrially established for micro machining. Pulsed laser radiation is guided via a water jet (diameter: 25-250 μm) using total internal reflection. Due to the cylindrical jet shape the depth of field increases to above 50 mm, enabling parallel kerfs compared to conventional laser systems. However higher material thicknesses and macro geometries cannot be machined economically viable due to low average laser powers. Fraunhofer IPT has successfully combined a high-power continuous-wave (CW) fiber laser (6 kW) and water jet technology. The main challenge of guiding high-power laser radiation in water is the energy transferred to the jet by absorption, decreasing its stability. A model of laser water interaction in the water jet has been developed and validated experimentally. Based on the results an upscaling of system technology to 30 kW is discussed, enabling a high potential in cutting challenging materials at high qualities and high speeds.

  1. Erosion and corrosion resistance of laser cladded AISI 420 stainless steel reinforced with VC

    Science.gov (United States)

    Zhang, Zhe; Yu, Ting; Kovacevic, Radovan

    2017-07-01

    Metal Matrix Composites (MMC) fabricated by the laser cladding process have been widely applied as protective coatings in industries to improve the wear, erosion, and corrosion resistance of components and prolong their service life. In this study, the AISI 420/VC metal matrix composites with different weight percentage (0 wt.%-40 wt.%) of Vanadium Carbide (VC) were fabricated on a mild steel A36 by a high power direct diode laser. An induction heater was used to preheat the substrate in order to avoid cracks during the cladding process. The effect of carbide content on the microstructure, elements distribution, phases, and microhardness was investigated in detail. The erosion resistance of the coatings was tested by using the abrasive waterjet (AWJ) cutting machine. The corrosion resistance of the coatings was studied utilizing potentiodynamic polarization. The results showed that the surface roughness and crack susceptibility of the laser cladded layer were increased with the increase in VC fraction. The volume fraction of the precipitated carbides was increased with the increase in the VC content. The phases of the coating without VC consisted of martensite and austenite. New phases such as precipitated VC, V8C7, M7C3, and M23C6 were formed when the primary VC was added. The microhardness of the clads was increased with the increase in VC. The erosion resistance of the cladded layer was improved after the introduction of VC. The erosion resistance was increased with the increase in the VC content. No obvious improvement of erosion resistance was observed when the VC fraction was above 30 wt.%. The corrosion resistance of the clads was decreased with the increase in the VC content, demonstrating the negative effect of VC on the corrosion resistance of AISI 420 stainless steel

  2. Effects of Nanodiamond Abrasive Friability in Experimental MR Fluids with Phosphate Laser Glass LHG-8 and Other Optical Glasses

    Energy Technology Data Exchange (ETDEWEB)

    DeGroote, J.E.; Marino, A.E.; Wilson, J.P.; Spencer, K.E.; Jacobs, S.D.

    2005-09-22

    Research is currently being conducted to better understand the role that nanodiamond abrasives play in the removal process of Magnetorheological Finishing (MRF). The following presents removal rate data for a set of six optical glasses that were spotted (not polished out) with four different MR fluids, as well as texturing/smoothing data for phosphate laser glass LHG-8.

  3. Simple machines

    CERN Document Server

    Graybill, George

    2007-01-01

    Just how simple are simple machines? With our ready-to-use resource, they are simple to teach and easy to learn! Chocked full of information and activities, we begin with a look at force, motion and work, and examples of simple machines in daily life are given. With this background, we move on to different kinds of simple machines including: Levers, Inclined Planes, Wedges, Screws, Pulleys, and Wheels and Axles. An exploration of some compound machines follows, such as the can opener. Our resource is a real time-saver as all the reading passages, student activities are provided. Presented in s

  4. Machine performance assessment and enhancement for a hexapod machine

    Energy Technology Data Exchange (ETDEWEB)

    Mou, J.I. [Arizona State Univ., Tempe, AZ (United States); King, C. [Sandia National Labs., Livermore, CA (United States). Integrated Manufacturing Systems Center

    1998-03-19

    The focus of this study is to develop a sensor fused process modeling and control methodology to model, assess, and then enhance the performance of a hexapod machine for precision product realization. Deterministic modeling technique was used to derive models for machine performance assessment and enhancement. Sensor fusion methodology was adopted to identify the parameters of the derived models. Empirical models and computational algorithms were also derived and implemented to model, assess, and then enhance the machine performance. The developed sensor fusion algorithms can be implemented on a PC-based open architecture controller to receive information from various sensors, assess the status of the process, determine the proper action, and deliver the command to actuators for task execution. This will enhance a hexapod machine`s capability to produce workpieces within the imposed dimensional tolerances.

  5. Superconducting rotating machines

    International Nuclear Information System (INIS)

    Smith, J.L. Jr.; Kirtley, J.L. Jr.; Thullen, P.

    1975-01-01

    The opportunities and limitations of the applications of superconductors in rotating electric machines are given. The relevant properties of superconductors and the fundamental requirements for rotating electric machines are discussed. The current state-of-the-art of superconducting machines is reviewed. Key problems, future developments and the long range potential of superconducting machines are assessed

  6. Sustainable machining

    CERN Document Server

    2017-01-01

    This book provides an overview on current sustainable machining. Its chapters cover the concept in economic, social and environmental dimensions. It provides the reader with proper ways to handle several pollutants produced during the machining process. The book is useful on both undergraduate and postgraduate levels and it is of interest to all those working with manufacturing and machining technology.

  7. Effect of simulated chairside grinding procedures using commercially available abrasive agents on the surface properties of zirconia

    OpenAIRE

    Sandhu, Ramandeep; Kheur, Mohit; Kheur, Supriya

    2017-01-01

    Aim: The aim of the present study was to assess the change in physical properties (surface roughness, surface hardness and phase transformation) after surface grinding of zirconia by using three commercially available abrasives. Materials and Methods: Thirty sintered zirconia specimens were prepared and divided into three groups namely Group M (grinded using Mani Dia diamond bur standard grit), Group T (grinded using Tri Hawk diamond bur coarse grit) and Group P (grinded using Predator car...

  8. Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Ming Cheng

    2015-09-01

    Full Text Available The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs. Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator permanent magnet (stator-PM motor, a hybrid-excitation motor, a flux memory motor and a redundant motor structure. Then, it illustrates advanced electric drive systems, such as the magnetic-geared in-wheel drive and the integrated starter generator (ISG. Finally, three machine-based implementations of the power split devices are expounded, built up around the dual-rotor PM machine, the dual-stator PM brushless machine and the magnetic-geared dual-rotor machine. As a conclusion, the development trends in the field of electric machines and machine-based systems for EVs are summarized.

  9. Asynchronized synchronous machines

    CERN Document Server

    Botvinnik, M M

    1964-01-01

    Asynchronized Synchronous Machines focuses on the theoretical research on asynchronized synchronous (AS) machines, which are "hybrids” of synchronous and induction machines that can operate with slip. Topics covered in this book include the initial equations; vector diagram of an AS machine; regulation in cases of deviation from the law of full compensation; parameters of the excitation system; and schematic diagram of an excitation regulator. The possible applications of AS machines and its calculations in certain cases are also discussed. This publication is beneficial for students and indiv

  10. Machine Shop Lathes.

    Science.gov (United States)

    Dunn, James

    This guide, the second in a series of five machine shop curriculum manuals, was designed for use in machine shop courses in Oklahoma. The purpose of the manual is to equip students with basic knowledge and skills that will enable them to enter the machine trade at the machine-operator level. The curriculum is designed so that it can be used in…

  11. An Electrosurgical Endoknife with a Water-Jet Function (Flushknife Proves Its Merits in Colorectal Endoscopic Submucosal Dissection Especially for the Cases Which Should Be Removed En Bloc

    Directory of Open Access Journals (Sweden)

    Yoji Takeuchi

    2013-01-01

    Full Text Available Background. Previously, we reported that the Flushknife (electrosurgical endoknife with a water-jet function could reduce the operation time of colorectal endoscopic submucosal dissection (ESD however, suitable situation for the Flushknife was obscure. This subgroup analysis of a prospective randomized controlled trial was aimed to investigate the suitable situation for the Flushknife. Methods. A total of 48 superficial colorectal neoplasms that underwent ESD using either the Flexknife or the Flushknife in a referral center were enrolled. The differences of operation time between the Flexknife and the Flushknife groups in each subgroup (tumor size, location, and macroscopic type were analyzed. Results. Median (95% CI operation time calculated using survival curves was significantly shorter in the Flushknife group than in the Flexknife group (55.5 min [41, 78] versus 74.0 [57, 90] min; , Hazard Ratio HR: 0.53; 95% CI (0.29–0.97. In particular, the HR in patients with laterally spreading tumors-nongranular type (LST-NG in the Flushknife group was significantly smaller than in the Flexknife group (HR: 0.1650.17; 95% CI (0.04–0.66. There was a trend of decreasing HRs according to larger lesion size. Conclusions. The Flushknife proved its merits in colorectal ESD especially for the lesions which should be removed en bloc (LST-NG and large lesion.

  12. Specific Features of Chip Making and Work-piece Surface Layer Formation in Machining Thermal Coatings

    Directory of Open Access Journals (Sweden)

    V. M. Yaroslavtsev

    2016-01-01

    Full Text Available A wide range of unique engineering structural and performance properties inherent in metallic composites characterizes wear- and erosion-resistant high-temperature coatings made by thermal spraying methods. This allows their use both in manufacturing processes to enhance the wear strength of products, which have to operate under the cyclic loading, high contact pressures, corrosion and high temperatures and in product renewal.Thermal coatings contribute to the qualitative improvement of the technical level of production and product restoration using the ceramic composite materials. However, the possibility to have a significantly increased product performance, reduce their factory labour hours and materials/output ratio in manufacturing and restoration is largely dependent on the degree of the surface layer quality of products at their finishing stage, which is usually provided by different kinds of machining.When machining the plasma-sprayed thermal coatings, a removing process of the cut-off layer material is determined by its distinctive features such as a layered structure, high internal stresses, low ductility material, high tendency to the surface layer strengthening and rehardening, porosity, high abrasive properties, etc. When coatings are machined these coating properties result in specific characteristics of chip formation and conditions for formation of the billet surface layer.The chip formation of plasma-sprayed coatings was studied at micro-velocities using an experimental tool-setting microscope-based setup, created in BMSTU. The setup allowed simultaneous recording both the individual stages (phases of the chip formation process and the operating force factors.It is found that formation of individual chip elements comes with the multiple micro-cracks that cause chipping-off the small particles of material. The emerging main crack in the cut-off layer of material leads to separation of the largest chip element. Then all the stages

  13. Abrasion-set limits on Himalayan gravel flux.

    Science.gov (United States)

    Dingle, Elizabeth H; Attal, Mikaël; Sinclair, Hugh D

    2017-04-26

    Rivers sourced in the Himalayan mountain range carry some of the largest sediment loads on the planet, yet coarse gravel in these rivers vanishes within approximately 10-40 kilometres on entering the Ganga Plain (the part of the North Indian River Plain containing the Ganges River). Understanding the fate of gravel is important for forecasting the response of rivers to large influxes of sediment triggered by earthquakes or storms. Rapid increase in gravel flux and subsequent channel bed aggradation (that is, sediment deposition by a river) following the 1999 Chi-Chi and 2008 Wenchuan earthquakes reduced channel capacity and increased flood inundation. Here we present an analysis of fan geometry, sediment grain size and lithology in the Ganga Basin. We find that the gravel fluxes from rivers draining the central Himalayan mountains, with upstream catchment areas ranging from about 350 to 50,000 square kilometres, are comparable. Our results show that abrasion of gravel during fluvial transport can explain this observation; most of the gravel sourced more than 100 kilometres upstream is converted into sand by the time it reaches the Ganga Plain. These findings indicate that earthquake-induced sediment pulses sourced from the Greater Himalayas, such as that following the 2015 Gorkha earthquake, are unlikely to drive increased gravel aggradation at the mountain front. Instead, we suggest that the sediment influx should result in an elevated sand flux, leading to distinct patterns of aggradation and flood risk in the densely populated, low-relief Ganga Plain.

  14. Process and device for fabrication of ice beads and application to abrasive blasting with ice beads for surface treatments

    International Nuclear Information System (INIS)

    Barnier, M.; Manificat, A.; Perroud, P.

    1989-01-01

    A device is described for cleaning and decontamination by abrasive blasting with ice beads. It comprises a water injector, with many holes, at the top of a column feeded with cold gas where solidification of water droplets begins, solidification is completed in a cooling liquids, ice is extracted by a screw and pushed to the projection nozzle with cold gas [fr

  15. Microtensile bond strength and scanning electron microscopic evaluation of zirconia bonded to dentin using two self-adhesive resin cements; effect of airborne abrasion and aging

    Directory of Open Access Journals (Sweden)

    Reem Gamal

    2017-12-01

    Conclusions: Airborne abrasion-surface treatment of zirconia significantly enhanced the μTBS of both cements adhered to dentin while aging had an adverse effect. MS showed higher insignificant μTBS.

  16. Morphologic and Chemical Properties of PMMA/ATH Layers with Enhanced Abrasion Resistance Realised by Cold Plasma Spraying at Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    L. Wallenhorst

    2018-01-01

    Full Text Available This study investigated the morphologic and chemical properties of coatings based on PMMA/ATH powder and deposited by cold plasma spraying on wood and glass. Since the deposition of pure PMMA/ATH powder with air as process gas yielded coatings with insufficient abrasion resistance, two modifications of the basic process were investigated. Previous studies showed that replacing air as process gas with forming gas did not enhance the abrasion resistance, but the addition of a phenol-formaldehyde resin (PF succeeded in stabilising the particle coatings. In this work, results from morphologic and chemical analysis suggested an encasement of the PMMA/ATH particles by plasma-modified PF and thus a fusion of individual particles, explaining the enhanced bonding. Moreover, adhesion tests confirmed an outstanding bonding between the coating and wood as well as glass, which is assumed to result from interactions between the PF’s hydroxyl groups and functional groups on the substrates’ surfaces. Studies on the wettability revealed a hydrophobic character of such coatings, therefore generally indicating a possible application, for example, to reduce water uptake by wooden materials.

  17. Machining of Machine Elements Made of Polymer Composite Materials

    Science.gov (United States)

    Baurova, N. I.; Makarov, K. A.

    2017-12-01

    The machining of the machine elements that are made of polymer composite materials (PCMs) or are repaired using them is considered. Turning, milling, and drilling are shown to be most widely used among all methods of cutting PCMs. Cutting conditions for the machining of PCMs are presented. The factors that most strongly affect the roughness parameters and the accuracy of cutting PCMs are considered.

  18. The structure of abrasion-resisting castings made of chromium cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2011-01-01

    Full Text Available In this study presents the analyse of chrome iron cast structure (as-cast condition which are used in rugged conditions abrasion-percussive and high temperature. While producing the casts of chrome iron major influence has been preserve the structure of technologi cal process parameters. The addition to Fe-C-Cr alloy Ni, Mo or Cu and then proper heat treatment leads to the improvement of functional and mechanical cast qualities. Then it is possible to develop high mechanical properties which are recommended by PN-EN12513. As can it be seen from the above research silicon is an adverse chemical element in this kind of alloy cast iron. However, the reason of cracksappearing in chrome iron casts are phosphorus eutectic microareas. When the compound of Si and P reach the critical point, described inPN-88/H-83144 outdated standard, the microareas might appear.

  19. The application of automatic chemiluminescence machine in rapid immune detection

    International Nuclear Information System (INIS)

    Lin Aizhen; Li Xuanwei; Chen Binhong; Li Zhenqian; Chen Zhaoxuan

    2004-01-01

    mixture used to mix reagent, thus the reagents can be fully mixed outside the machine, saving time, reducing the abrasion of motor and tape and elongating the life-span of the machine. Conclusion: rapid immune detection is initially established by our department, which has never been reported by others all over the world, with an effort to promote social benefit, medical benefit and economical benefit concurrently. 1. To save time and cost: the result will be got within an hour of blood withdrawal, making diagnosis and administration quickly. Therefore, the medical cost of patient as well as expenditure including leaving for seeing a doctor, relatives' company, traffic cost and registration fee are reduced. 2. To promote economic benefit: 'rapid immune detection' can be used in clinical diagnosis of more than twenty experiments including thyroid, carcinoma, cardiovascular diseases, reproduction and healthy birth. Income per month can reach up to more than 500,000, and production value can exceed 10 million. 3. Satisfactory social and medical benefit: 'rapid immune detection' has its own characteristic with results obtained within an hour, meeting the requirement of doctors and patients, especially those patients who are in urgent conditions, of better economic status or coming from distant place. Frequently it is patients who require the rapid detection, implicating its potential value of attracting patients to visit again. Many hospitals from distant place such as Xinjiang and Wuhan or from proximal place such as Taishan and the municipal second hospital come to learn and carry it out with a good outcome. There are specialized comments on publication issued by provincial center for clinical laboratory. 4. Complementary to radio-immunity methods and prompt the development of new experiments: new radio-immunity items will be developed and the previous popular items will be kept, and the two items act as a supplement to each other and providing an alternative for doctors

  20. Improving Machining Accuracy of CNC Machines with Innovative Design Methods

    Science.gov (United States)

    Yemelyanov, N. V.; Yemelyanova, I. V.; Zubenko, V. L.

    2018-03-01

    The article considers achieving the machining accuracy of CNC machines by applying innovative methods in modelling and design of machining systems, drives and machine processes. The topological method of analysis involves visualizing the system as matrices of block graphs with a varying degree of detail between the upper and lower hierarchy levels. This approach combines the advantages of graph theory and the efficiency of decomposition methods, it also has visual clarity, which is inherent in both topological models and structural matrices, as well as the resiliency of linear algebra as part of the matrix-based research. The focus of the study is on the design of automated machine workstations, systems, machines and units, which can be broken into interrelated parts and presented as algebraic, topological and set-theoretical models. Every model can be transformed into a model of another type, and, as a result, can be interpreted as a system of linear and non-linear equations which solutions determine the system parameters. This paper analyses the dynamic parameters of the 1716PF4 machine at the stages of design and exploitation. Having researched the impact of the system dynamics on the component quality, the authors have developed a range of practical recommendations which have enabled one to reduce considerably the amplitude of relative motion, exclude some resonance zones within the spindle speed range of 0...6000 min-1 and improve machining accuracy.