WorldWideScience

Sample records for abrasion resistant coatings

  1. Assessment of thermal spray coatings for wear and abrasion resistance applications

    Science.gov (United States)

    Karode, Ishaan Nitin

    Thermal spray cermet and metallic coatings are extensively used for wear, abrasion and corrosion control in a variety of industries. The first part of the thesis focuses mainly on testing of sand erosion resistance of thermal spray coatings on carbon composites used in the manufacture of helicopter rotor blades. The test set-up employed is a sand blasting machine and is an effort to duplicate the in-flight conditions especially those encountered in hot arid conditions. The technique adopted follows the Department of Defence test method standard. Carbon Composites have excellent stiffness, strength and low weight/density. The strength to weight ratio is high. Hence, these are used in aerospace applications to a large extent. However, the biggest problem encountered with carbon composites is its low abrasion resistance as its surface is very weak. Hence, thermal spray coatings are used to improve the surface properties of CFRP. Zinc bond coats and WC-Co coatings were tested. However, high amount of thermal stresses were developed between the substrate and the coating due to large differences in the CTE's of the both, leading to high mass losses within two minutes and just 130 grams of sand sprayed on to the coatings with the sand blasting machine built; and hence the coatings with CC as a substrate could not qualify for the application. The second part of the thesis focuses on the assessment of different thermal spray coatings used for manufacture of mechanical seals in pumps and analyze the best coating material for the wear resistance application through detail quantification of material loss by block-on-ring test set-up. A machine based on Block-on-ring test set-up following ASTM G77 (Measurement of Adhesive wear resistance of thermal spray coatings) standards was built to duplicate the pump conditions. Thermally sprayed coated materials were tested in different conditions (Load, time, abrasive). WC-Co had the highest wear resistance (lower volume losses) and

  2. Optical tools for high-throughput screening of abrasion resistance of combinatorial libraries of organic coatings

    Science.gov (United States)

    Potyrailo, Radislav A.; Chisholm, Bret J.; Olson, Daniel R.; Brennan, Michael J.; Molaison, Chris A.

    2002-02-01

    Design, validation, and implementation of an optical spectroscopic system for high-throughput analysis of combinatorially developed protective organic coatings are reported. Our approach replaces labor-intensive coating evaluation steps with an automated system that rapidly analyzes 8x6 arrays of coating elements that are deposited on a plastic substrate. Each coating element of the library is 10 mm in diameter and 2 to 5 micrometers thick. Performance of coatings is evaluated with respect to their resistance to wear abrasion because this parameter is one of the primary considerations in end-use applications. Upon testing, the organic coatings undergo changes that are impossible to quantitatively predict using existing knowledge. Coatings are abraded using industry-accepted abrasion test methods at single-or multiple-abrasion conditions, followed by high- throughput analysis of abrasion-induced light scatter. The developed automated system is optimized for the analysis of diffusively scattered light that corresponds to 0 to 30% haze. System precision of 0.1 to 2.5% relative standard deviation provides capability for the reliable ranking of coatings performance. While the system was implemented for high-throughput screening of combinatorially developed organic protective coatings for automotive applications, it can be applied to a variety of other applications where materials ranking can be achieved using optical spectroscopic tools.

  3. Abrasive Wear Resistance of the Iron- and WC-based Hardfaced Coatings Evaluated with Scratch Test Method

    Directory of Open Access Journals (Sweden)

    A. Vencl

    2013-06-01

    Full Text Available Abrasive wear is one of the most common types of wear, which makesabrasive wear resistance very important in many industries. Thehard facing is considered as useful and economical way to improve theperformance of components submitted to severe abrasive wear conditions, with wide range of applicable filler materials. The abrasive wear resistance of the three different hardfaced coatings (two iron‐based and one WC‐based, which were intended to be used for reparation of the impact plates of the ventilation mill, was investigated and compared. Abrasive wear tests were carried‐out by using the scratch tester under the dry conditions. Three normal loads of 10, 50 and 100 N and the constant sliding speed of 4 mm/s were used. Scratch test was chosen as a relatively easy and quick test method. Wear mechanism analysis showed significant influence of the hardfaced coatings structure, which, along with hardness, has determined coatings abrasive wear resistance.

  4. Abrasion-Resistant Aluminized-Coated Aramid Fabrics for Manufacture of Firefighters’ Protective Clothing

    Science.gov (United States)

    1985-05-01

    and radiacion are also produced at the cathode surface and may profoundly influence the quality of the substrate coating. These include secondary...14,265-378 (1979). Assink, R.A. Abrasion resistant polymer reflectors for solar applications. Solar Energy Mater vol. 3:263-75, (1980). Audet, N.F. Visor... solar reflectors. Solar Energy Mater vol. 3: No.1-2,277-83,(1981). *Gubareff, G.G., J.E. Janssen, and R.H. Torborg. Thermal radiation properties survey

  5. Development and Testing of Abrasion Resistant Hard Coats For Polymer Film Reflectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, G.; Gee, R.; DiGrazia, M.

    2010-10-01

    Reflective polymer film technology can significantly reduce the cost of solar reflectors and installed Concentrated Solar Power (CSP) plants by both reduced material cost and lower weight. One challenge of polymer reflectors in the CSP environment pertains to contact cleaning methods typically used with glass mirrors. Such contact cleaning methods can scratch the surface of polymer reflectors and thereby reduce specular reflectance. ReflecTech, Inc. (a subsidiary of SkyFuel, Inc.) and the National Renewable Energy Laboratory (NREL) initiated a cooperative research and development agreement (CRADA) to devise and develop an abrasion resistant coating (ARC) suitable for deposition onto polymer based mirror film. A number of candidate ARC products were identified as candidate formulations. Industrial collaborators prepared samples having their ARCs deposited onto ReflecTech Mirror Film pre-laminated to aluminum sheet substrates. Samples were provided for evaluation and subjected to baseline (unweathered) and accelerated exposure conditions and subsequently characterized for abrasion resistance and adhesion. An advanced ARC product has been identified that exhibits outstanding initial abrasion resistance and adhesion to ReflecTech Mirror Film. These properties were also retained after exposure to the various accelerated stress conditions. This material has been successfully manufactured as a 1.5 m wide roll-to-roll construction in a production environment.

  6. Hydrothermal treatment for TiN as abrasion resistant dental implant coating and its fibroblast response

    International Nuclear Information System (INIS)

    Shi, Xingling; Xu, Lingli; Munar, Melvin L.; Ishikawa, Kunio

    2015-01-01

    Dental implant made of pure titanium (Ti) is prone to scratch and abrasion during routine oral hygiene procedures. This results an increase in surface roughness and therefore, facilitates the adhesion of bacteria. In severe cases, this could lead to peri-implantitis. To overcome this problem, surface modification of Ti is necessary to improve its abrasion resistance. Besides, a strong implant–gingiva interface should also be guaranteed to prevent the adhesion of bacteria. In this study, titanium nitride (TiN) coating was first prepared with gas nitriding to increase surface hardness of pure the substrate. Then, the TiN was hydrothermally treated in CaCl 2 solution in order to improve its soft tissue biocompatibility. The effect of hydrothermal treatment temperature on surface properties of TiN was investigated and its biocompatibility was assessed in vitro using NIH3T3 fibroblast cell. It was determined that 120 °C was the critical temperature for the hydrothermal treatment condition. Treatment below 120 °C could incorporate Ca into TiN surface, oxidize TiN surface partially and then improve the wettability while preserving its morphology and hardness. Fibroblast cell attachment and proliferation were improved and cell spreading was enhanced on hydrothermally treated specimens compared with untreated ones. Improved wettability, Ca incorporation and negative surface due to interstitial N were believed to be the main reasons. Hydrothermal treatment is expected to make TiN a promising dental implant coating with excellent abrasion resistance and good soft tissue affinity. - Highlights: • Ca was incorporated into TiN surface while not sacrificing its hardness. • Interstitial N due to oxidation promoted Ca adsorption and cell adhesion. • Hydrothermal treatment makes TiN a promising coating for dental implant

  7. Hydrothermal treatment for TiN as abrasion resistant dental implant coating and its fibroblast response

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xingling, E-mail: shixingling1985@hotmail.com [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582 (Japan); Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003 (China); Xu, Lingli [School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Munar, Melvin L.; Ishikawa, Kunio [Department of Biomaterials, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582 (Japan)

    2015-04-01

    Dental implant made of pure titanium (Ti) is prone to scratch and abrasion during routine oral hygiene procedures. This results an increase in surface roughness and therefore, facilitates the adhesion of bacteria. In severe cases, this could lead to peri-implantitis. To overcome this problem, surface modification of Ti is necessary to improve its abrasion resistance. Besides, a strong implant–gingiva interface should also be guaranteed to prevent the adhesion of bacteria. In this study, titanium nitride (TiN) coating was first prepared with gas nitriding to increase surface hardness of pure the substrate. Then, the TiN was hydrothermally treated in CaCl{sub 2} solution in order to improve its soft tissue biocompatibility. The effect of hydrothermal treatment temperature on surface properties of TiN was investigated and its biocompatibility was assessed in vitro using NIH3T3 fibroblast cell. It was determined that 120 °C was the critical temperature for the hydrothermal treatment condition. Treatment below 120 °C could incorporate Ca into TiN surface, oxidize TiN surface partially and then improve the wettability while preserving its morphology and hardness. Fibroblast cell attachment and proliferation were improved and cell spreading was enhanced on hydrothermally treated specimens compared with untreated ones. Improved wettability, Ca incorporation and negative surface due to interstitial N were believed to be the main reasons. Hydrothermal treatment is expected to make TiN a promising dental implant coating with excellent abrasion resistance and good soft tissue affinity. - Highlights: • Ca was incorporated into TiN surface while not sacrificing its hardness. • Interstitial N due to oxidation promoted Ca adsorption and cell adhesion. • Hydrothermal treatment makes TiN a promising coating for dental implant.

  8. Improved Corrosion and Abrasion Resistance of Organic-Inorganic Composite Coated Electro-galvanized Steels for Digital TV Panels

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Du-Hwan; Noh, Sang-Geol; Park, Jong-Tae; Kang, Choon-Ho [POSCO Technical Research Laboratories, Pohang (Korea, Republic of)

    2015-10-15

    Recently, household electronic industries require environmentally-friendly and highly functional steels in order to enhance the quality of human life. Customers especially require both excellent corrosion and abrasion resistant anti-fingerprint steels for digital TV panels. Thus POSCO has developed new functional electro-galvanized steels, which have double coated layers with organic-inorganic composites on the zinc surface of the steel for usage as the bottom chassis panel of TVs. The inorganic solution for the bottom layer consists of inorganic phosphate, magnesium, and zirconium compounds with a small amount of epoxy binder, and affords both improved adhesion properties by chemical conversion reactions and corrosion resistance due to a self-healing effect. The composite solution for the top layer was prepared by fine dispersion of organic-inorganic ingredients that consist of a urethane modified polyacrylate polymer, hardener, silica sol and a titanium complex inhibitor in aqueous media. Both composite solutions were coated on the steel surface by using a roll coater and then cured through an induction furnace in the electro-galvanizing line. New anti-fingerprint steel was evaluated for quality performance through such procedures as the salt spray test for corrosion resistance, tribological test for abrasion resistance, and conductivity test for surface electric conductance regarding to both types of polymer resin and coating weight of composite solution. New composite coated anti-fingerprint steels afford both better corrosion resistance and abrasion properties compared to conventional anti-fingerprint steel that mainly consists of acrylate polymers. Detailed discussions of both composite solutions and experimental results suggest that urethane modifications of acrylate polymers of composite solutions play a key role in enhanced quality performances.

  9. Final Technical Report: Development of an Abrasion-Resistant Antisoiling Coating for Front-Surface Reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Gee, Randy C. [Sundog Solar Technology, Arvada, CO (United States)

    2017-07-18

    A high-performance reflective film has been successfully developed for Concentrating Solar Power (CSP) solar concentrators. Anti-soiling properties and abrasion resistance have been incorporated into the reflector to reduce reflector cleaning costs and to enhance durability. This approach has also resulted in higher reflectance and improved specularity. From the outset of this project we focused on the use of established high-volume roll-to-roll manufacturing techniques to achieve low manufacturing costs on a per ubit area basis. Roll-to-roll manufacturng equipment has a high capital cost so there is an entire industry devoted to roll-to-roll “toll” manufacturing, where the equipment is operated “around the clock” to produce a multitude of products for a large variety of uses. Using this approach, the reflective film can be manufactured by toll coaters/converters on an as-needed basis.

  10. Abrasive wear resistance optimization of three different carbide coatings by the Taguchi method

    Energy Technology Data Exchange (ETDEWEB)

    Guer, Ali Kaya [Firat Univ., Elazig (Turkey). Dept. of Metallurgy and Materials; Kaya, Sinan [Firat Univ., Elazig (Turkey). Faculty of Technology

    2017-06-01

    In this study, FeCrC, SiC and B{sub 4}C powders were alloyed on the surface of AISI 430 ferritic stainless steel by plasma arc welding. The mass losses of the abrasive wear of the AISI 430 substrate were examined under the loads of 6, 10 and 16 N and in the distances of 10, 20 and 30 m by using Taguchi design method. The results of abrasive wear test were optimized by the minimum optimal control characteristics of the Taguchi procedure and the results were analyzed by using graphical methods. The Taguchi procedure is an important approach to achieve high quality without increasing the cost during the optimization of process parameters. The orthogonal planes of maximum effects of the controllable process parameters and minimum effects of uncontrollable process parameters were employed in the Taguchi method.

  11. Electrical resistivity measurements to predict abrasion resistance

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 2. Electrical resistivity measurements to predict abrasion resistance of rock aggregates ... It was seen that correlation coefficients were increased for the rock classes. In addition ...

  12. Influence of the metallic matrix ratio on the wear resistance (dry and slurry abrasion) of plasma sprayed cermet (chromia / stainless steel) coatings

    Czech Academy of Sciences Publication Activity Database

    Ageorges, H.; Ctibor, Pavel; Medarhri, Z.; Touimi, S.; Fauchais, P.

    2006-01-01

    Roč. 201, č. 5 (2006), s. 2006-2011 ISSN 0257-8972 R&D Projects: GA AV ČR(CZ) 1QS200430560 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma spraying * composite coating * tribology * hardness * wear * abrasion * chromia/stainless steel Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.559, year: 2006

  13. Abrasion resistant low friction and ultra-hard magnetron sputtered AlMgB14 coatings

    Science.gov (United States)

    Grishin, A. M.

    2016-04-01

    Hard aluminum magnesium boride films were fabricated by RF magnetron sputtering from a single stoichiometric AlMgB14 ceramic target. X-ray amorphous AlMgB14 films are very smooth. Their roughness does not exceed the roughness of Si wafer and Corning glass used as the substrates. Dispersion of refractive index and extinction coefficient were determined within 300 to 2500 nm range for the film deposited onto Corning glass. Stoichiometric in-depth compositionally homogeneous 2 μm thick films on the Si(100) wafer possess the peak values of nanohardness 88 GPa and Young’s modulus 517 GPa at the penetration depth of 26 nm and, respectively, 35 GPa and 275 GPa at 200 nm depth. Friction coefficient was found to be 0.06. The coating scratch adhesion strength of 14 N was obtained as the first chipping of the coating whereas its spallation failure happened at 21 N. These critical loads and the work of adhesion, estimated as high as 18.4 J m-2, surpass characteristics of diamond like carbon films deposited onto tungsten carbide-cobalt (WC-Co) substrates.

  14. Electrical resistivity measurements to predict abrasion resistance of ...

    Indian Academy of Sciences (India)

    WINTEC

    increasing expansion of highway and other construction works and decreasing natural aggregate resources in the world, the demand for crushed stone aggregates has in- creased from day-to-day. One of the important properties of rock aggregates is abrasion resistance. The abrasion resistance of aggregates is generally ...

  15. Usage of abrasion-resistant materials in agriculture

    Directory of Open Access Journals (Sweden)

    J Votava

    2014-06-01

    Full Text Available Agricultural soil-processing machines are subject to an extensive abrasive wear. This paper analyses technical materials and their fitness to exchangeable parts of plough bottoms, such as edge-tools and whole plough cutting edges. There were tested abrasion-resistant steels with different microstructures: austenite, martensite-bainite, and carbide. Steel with the pearlite-ferrite structure was used as an etalon. Abrasion resistance tests were processed in compliance with the norm CSN 01 5084, which is a test of abrasion wear on abrasive cloth.

  16. Solidification structure and abrasion resistance of high chromium white irons

    Science.gov (United States)

    Doğan, Ö. N.; Hawk, J. A.; Laird, G.

    1997-06-01

    Superior abrasive wear resistance, combined with relatively low production costs, makes high Cr white cast irons (WCIs) particularly attractive for applications in the grinding, milling, and pumping apparatus used to process hard materials. Hypoeutectic, eutectic, and hypereutectic cast iron compositions, containing either 15 or 26 wt pct chromium, were studied with respect to the macrostructural transitions of the castings, solidification paths, and resulting microstructures when poured with varying superheats. Completely equiaxed macrostructures were produced in thick section castings with slightly hypereutectic compositions. High-stress abrasive wear tests were then performed on the various alloys to examine the influence of both macrostructure and microstructure on wear resistance. Results indicated that the alloys with a primarily austenitic matrix had a higher abrasion resistance than similar alloys with a pearlitic/bainitic matrix. Improvement in abrasion resistance was partially attributed to the ability of the austenite to transform to martensite at the wear surface during the abrasion process.

  17. Maintenance and preservation of concrete structures. Report 3: Abrasion-erosion resistance of concrete

    Science.gov (United States)

    Liu, T. C.

    1980-07-01

    This report describes a laboratory test program on abrasion-erosion resistance of concrete, including the development of a new underwater abrasion-erosion test method. This program was designed to evaluate the relative abrasion-erosion resistance of various materials considered for use in the repair of erosion-damaged concrete structures. The test program encompassed three concrete types (conventional concrete, fiber-reinforced concrete, and polymer concrete); seven aggregate types (limestone, chert, trap rock, quartzite, granite, siliceous gravel, and slag); three principal water-cement rations (0.72, 0.54, and 0.40); and six types of surface treatment (vacuum, polyurethane coating, acrylic mortar coating, epoxy mortar coating, furan resin mortar coating, and iron aggregate topping). A total of 114 specimens made from 41 batches of concrete was tested. Based on the test data obtained, a comprehensive evaluation of the effects of various parameters on the abrasion-erosion resistance of concrete was presented. Materials suitable for use in the repair of erosion-damaged concrete structures were recommended. Additional work to correlate the reported findings with field performance was formulated.

  18. FY 2000 report on the results of the technology development of energy use reduction of machine tools. Development of dry cutting use abrasion resistant/lubricous coated tools; 2000 nendo energy shiyo gorika kosaku kikai nado gijutsu kaihatsu seika hokokusho. Dry sessakuyo taimamo junkatsusei hifuku kogu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of energy conservation and reduction of environmental loads of machine tools, study was conducted on the dry cutting which is the cutting with no use of cutting oil, and the FY 2000 results were summed up. The study was made on dry cutting use abrasion resistance/lubricous coated tools coated with the composite membrane of which the cutting life become little lower than that of existing tools using coolant. In the survey of abrasion resistant/lubricous films, it was found out that in the adhesion to ultra-hard substrates, the DLC single-layer film consisting only of carbon indicated the same excellent adhesion as intermediate-layer inserts. As to the synthesis of abrasion resistant/lubricous films, the synthesis of the composite membrane (WC/C membrane) consisting of tungsten carbide (WC) and carbon (C) was made using arc ion plating device. The WC/C membrane is composed of W and C and has the structure in which at nm levels the layer with much W and the layer with less W were alternately piled. Study was made of devices necessary for the development of abrasion resistant/lubricous films and the film formation for drill. (NEDO)

  19. Formation of abrasion-resistant coatings of the AlSiFe{sub x}Mny intermetallic compound type on the AISI 304L alloy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Peralez, L. G.; Flores-Valdes, A.; Salinas-Rodriguez, A.; Ochoa-Palacios, R. M.; Toscano-giles, J. A.; Torres-Torres, J.

    2016-05-01

    The α-Al{sub 9}FeMnSi and α-Al{sub 9}FeMn{sub 2}Si intermetallics formed by reactive sintering of Al, Si, Mn, Fe, Cr and Ni powders have been used in AISI 304L steels to enhance microhardness. Processing variables of the reactive sintering treatment were temperature (600, 650, 700, 750 and 800 degree centigrade), pressure (5, 10 y 20 MPa) and holding time (3600, 5400 y 7200 seconds). Experimental results show that temperature is the most important variable affecting the substrate/coating formation, while pressure does not appear to have a significant effect. The results show the optimum conditions of the reactive sintering that favor the substrate/coating formation are 800 degree centigrade, 20 MPa and 7200 seconds. Under these conditions, the reaction zone between the substrate and coating is more compacted and well-adhered, with a microhardness of 1300 Vickers. The results of SEM and X-Ray diffraction confirmed the formation of β-Al{sub 9}FeMnSi and β-Al{sub 9}FeMn{sub 2}Si intermetallics in the substrate/coating interface as well as the presence of Cr and Ni, indicating diffusion of these two elements from the substrate to the interface. (Author)

  20. Formation of abrasion-resistant coatings of the AlSiFexMny intermetallic compound type on the AISI 304L alloy

    Directory of Open Access Journals (Sweden)

    Martínez-Perales, Laura G.

    2016-03-01

    Full Text Available The α-Al9FeMnSi and β-Al9FeMn2Si intermetallics formed by reactive sintering of Al, Si, Mn, Fe, Cr and Ni powders have been used in AISI 304L steels to enhance microhardness. Processing variables of the reactive sintering treatment were temperature (600, 650, 700, 750 and 800 °C, pressure (5, 10 y 20 MPa and holding time (3600, 5400 y 7200 seconds. Experimental results show that temperature is the most important variable affecting the substrate/coating formation, while pressure does not appear to have a significant effect. The results show the optimum conditions of the reactive sintering that favor the substrate/coating formation are 800 °C, 20 MPa and 7200 seconds. Under these conditions, the reaction zone between the substrate and coating is more compacted and well-adhered, with a microhardness of 1300 Vickers. The results of SEM and X-Ray diffraction confirmed the formation of α-Al9FeMnSi and β-Al9FeMn2Si intermetallics in the substrate/coating interface as well as the presence of Cr and Ni, indicating diffusion of these two elements from the substrate to the interface.Los intermetálicos α-Al9FeMnSi y β-Al9FeMn2Si formados por sinterización reactiva de polvos Al, Si, Mn, Fe, Cr, Ni se han utilizado en aceros AISI 304L para mejorar la microdureza. Las variables de procesamiento de sinterización reactiva fueron temperatura (600, 650, 700, 750, y 800 °C, presión (5, 10 y 20 MPa y el tiempo de retención (3600, 5400 7200 segundos. Los resultados experimentales muestran que la temperatura es la variable más importante que afecta a la formación del sustrato/recubrimiento, mientras que la presión no parece tener un efecto significativo una influencia significativa. Los resultados muestran las condiciones óptimas de la sinterización reactiva que favorecen la formación del sustrato/recubrimiento a 800 °C, 20 MPa y 7200 segundos. En estas condiciones, la zona de reacción entre el sustrato y el recubrimiento es más compacta y bien

  1. Photochemical surface modification of PP for abrasion resistance

    International Nuclear Information System (INIS)

    Bahners, Thomas; Haessler, Ruediger; Gao Shanglin; Maeder, Edith; Wego, Andreas; Schollmeyer, Eckhard

    2009-01-01

    The potential of a photo-chemical approach to increase the surface hardness of polypropylene (PP) has been studied. Using a 222 nm excimer lamp, fibers and film were irradiated in the presence of multi-functional substances diallylphthalate (DAP), tetraallyloxyethane (TAE), and pentaerithritoltriacylate (PETA) and characterized with regard to the resulting effect on abrasion resistance. AFM-based methods were employed to analyze thermo-mechanical surface properties. Nanoindentation and microthermal analyses of the outermost surface layers of UV treated fibers gave clear indications of an effective cross-linking of reactive substances present during irradiation. One may assume that the reactive media polymerize on top of the surface of the PP substrate and form a thin-layer. The abrasion resistance of the PP fibers was tested by applying stress through a rotating and axially oscillating roller of defined roughness and measuring the mass loss as a function of time. The abrasion resistance was found to be remarkably improved compared to the untreated fiber. Best effects were achieved using PETA as reactive substance. The experiments clearly showed the influence of processing conditions, namely with regard to homogeneous coverage of the substrate surface with the reactive medium.

  2. Resistance to abrasion of extrinsic porcelain esthetic characterization techniques.

    Science.gov (United States)

    Chi, Woo J; Browning, William; Looney, Stephen; Mackert, J Rodway; Windhorn, Richard J; Rueggeberg, Frederick

    2017-01-01

    A novel esthetic porcelain characterization technique involves mixing an appropriate amount of ceramic colorants with clear, low-fusing porcelain (LFP), applying the mixture on the external surfaces, and firing the combined components onto the surface of restorations in a porcelain oven. This method may provide better esthetic qualities and toothbrush abrasion resistance compared to the conventional techniques of applying color-corrective porcelain colorants alone, or applying a clear glaze layer over the colorants. However, there is no scientific literature to support this claim. This research evaluated toothbrush abrasion resistance of a novel porcelain esthetic characterization technique by subjecting specimens to various durations of simulated toothbrush abrasion. The results were compared to those obtained using the conventional characterization techniques of colorant application only or colorant followed by placement of a clear over-glaze. Four experimental groups, all of which were a leucite reinforced ceramic of E TC1 (Vita A1) shade, were prepared and fired in a porcelain oven according to the manufacturer's instructions. Group S (stain only) was characterized by application of surface colorants to provide a definitive shade of Vita A3.5. Group GS (glaze over stain) was characterized by application of a layer of glaze over the existing colorant layer as used for Group S. Group SL (stain+LFP) was characterized by application of a mixture of colorants and clear low-fusing add-on porcelain to provide a definitive shade of Vita A3.5. Group C (Control) was used as a control without any surface characterization. The 4 groups were subjected to mechanical toothbrushing using a 1:1 water-to-toothpaste solution for a simulated duration of 32 years of clinical use. The amount of wear was measured at time intervals simulating every 4 years of toothbrushing. These parameters were evaluated longitudinally for all groups as well as compared at similar time points among

  3. Standard Test Method for Abrasive Wear Resistance of Cemented

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the determination of abrasive wear resistance of cemented carbides. 1.2 The values stated in inch-pound units are to be regarded as the standard. The SI equivalents of inch-pound units are in parentheses and may be approximate. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  4. Development of abrasion resistant glass-ceramics from industrial waste products. Final report

    Energy Technology Data Exchange (ETDEWEB)

    von Roode, M.

    1983-05-26

    Slag-ceramics were produced from glass compositions using pelletized slag as the major ingredient. The abrasion resistance, fracture toughness and microstructure of the prepared glass and glass-ceramics were evaluated. Glas-ceramics with good abrasion resistance were obtained when iron oxide in conjunction with carbon was used as a nucleating agent. 5 figs., 11 tabs.

  5. A method for increase abrasive wear resistance parts by obtaining on methods casting on gasifying models

    Science.gov (United States)

    Sedukhin, V. V.; Anikeev, A. N.; Chumanov, I. V.

    2017-11-01

    Method optimizes hardening working layer parts’, working in high-abrasive conditions looks in this work: bland refractory particles WC and TiC in respect of 70/30 wt. % prepared by beforehand is applied on polystyrene model in casting’ mould. After metal poured in mould, withstand for crystallization, and then a study is carried out. Study macro- and microstructure received samples allows to say that thickness and structure received hardened layer depends on duration interactions blend harder carbides and liquid metal. Different character interactions various dispersed particles and matrix metal observed under the same conditions. Tests abrasive wear resistance received materials of method calculating residual masses was conducted in laboratory’ conditions. Results research wear resistance showed about that method obtaining harder coating of blend carbide tungsten and carbide titanium by means of drawing on surface foam polystyrene model before moulding, allows receive details with surface has wear resistance in 2.5 times higher, than details of analogy steel uncoated. Wherein energy costs necessary for transformation units mass’ substances in powder at obtained harder layer in 2.06 times higher, than materials uncoated.

  6. Report D : self-consolidating concrete (SCC) for infrastructure elements - creep, shrinkage and abrasion resistance.

    Science.gov (United States)

    2012-08-01

    Concrete specimens were fabricated for shrinkage, creep, and abrasion resistance : testing. Variations of self-consolidating concrete (SCC) and conventional concrete were : all tested. The results were compared to previous similar testing programs an...

  7. HYDRO-ABRASIVE RESISTANCE AND MECHANICAL PROPERTIES OF CONCRETE WITH ADDED FLY ASH

    OpenAIRE

    Ristić, Nenad; Grdić, Zoran; Topličić-Ćurčić, Gordana

    2015-01-01

    The durability of hydraulic engineering structures mostly depends on the resistance of their concrete surfaces to mechanical abrasion. In this paper, we study the hydro-abrasive resistance and mechanical properties of concrete in which cement is partially replaced with fly ash in various proportions. To evaluate these concretes, we measured their compressive strength, flexural strength, static modulus of elasticity, ultrasound velocity through concrete, and sclerometer rebound. The hydro-abra...

  8. Tribological properties of multifunctional coatings with Shape Memory Effect in abrasive wear

    Science.gov (United States)

    Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.

    2018-01-01

    The article gives research results of the abrasive wear process on samples made of Steel 1045, U10 and with applied composite surface layer "Nickel-Multicomponent material with Shape Memory Effect (SME) based on TiNi". For the tests we have chosen TiNiZr, which is in the martensite state and TiNiHfCu, which is in the austenitic state at the test temperature. The formation of the surface layer was carried out by high-speed oxygen-fuel deposition in a protective atmosphere of argon. In the wear test, Al2O3 corundum powder was used as an abrasive. It is shown that the wear rate of samples with a composite surface layer of multicomponent materials with SME is significantly reduced in comparison with the base, which is explained by reversible phase transformations of the surface layer with SME. After carrying out the additional surface plastic deformation (SPD), the resistance of the laminated composition to abrasion wear has greatly enhanced, due to the reinforcing effect of the SPD. It is recommended for products working in conditions of abrasive wear and high temperatures to use the complex formation technology of the surface composition "steel-nickel-material with high-temperature SME", including preparation of the substrate surface and the deposited material, high-speed spraying in the protective atmosphere of argon, followed by SPD.

  9. Abrasion Resistance and Mechanical Properties of Waste-Glass-Fiber-Reinforced Roller-compacted Concrete

    Science.gov (United States)

    Yildizel, S. A.; Timur, O.; Ozturk, A. U.

    2018-05-01

    The potential use of waste glass fibers in roller-compacted concrete (RCC) was investigated with the aim to improve its performance and reduce environmental effects. The research was focused on the abrasion resistance and compressive and flexural strengths of the reinforced concrete relative to those of reference mixes without fibers. The freeze-thaw resistance of RCC mixes was also examined. It was found that the use of waste glass fibers at a rate of 2 % increased the abrasion resistance of the RCC mixes considerably.

  10. Abrasion Resistance of as-Cast High-Chromium Cast Iron

    Directory of Open Access Journals (Sweden)

    Pokusová Marcela

    2014-12-01

    Full Text Available High chromium cast irons are widely used as abrasion resistant materials. Their properties and wear resistance depend on carbides and on the nature of the matrix supporting these carbides. The paper presents test results of irons which contain (in wt.% 18-22 Cr and 2-5 C, and is alloyed by 1.7 Mo + 5 Ni + 2 Mn to improve the toughness. Tests showed as-cast irons with mostly austenitic matrix achieved hardness 36-53 HRC but their relative abrasion-resistance was higher than the tool steel STN 19436 heat treated on hardness 60 HRC.

  11. Silane effects on the surface morphology and abrasion resistance of transparent SiO2/UV-curable resin nano-composites

    International Nuclear Information System (INIS)

    Hsiang, Hsing-I.; Chang, Yu-Lun; Chen, Chi-Yu; Yen, Fu-Su

    2011-01-01

    Transparent ultraviolet curable nano-composite coatings consisting of nano-sized SiO 2 and acrylate resin have been developed to improve the abrasion resistance of organic polymers. The nano-sized SiO 2 particles were surface-modified using various amounts of 3-methacryloxypropyltrimethoxysilane. The 3-methacryloxypropyltrimethoxysilane concentration effects on the surface morphology and abrasion resistance of the transparent SiO 2 /ultraviolet-curable resin nano-composites were investigated using scanning electron microscopy, atomic force microscopy, and ultraviolet-visible spectrophotometer. The results showed that as the 3-methacryloxypropyltrimethoxysilane/SiO 2 weight ratio increased from 0.2 to 0.6, the dispersion, compatibility and cross-linking density between the 3-methacryloxypropyltrimethoxysilane-modified SiO 2 particles and acrylate resin were improved, leading to an increase in abrasion resistance. However, as the 3-methacryloxypropyltrimethoxysilane/SiO 2 weight ratio was increased to 1.5, the additional 3-methacryloxypropyltrimethoxysilane may exceed that needed to fill the pores with the probability of SiO 2 nano-particles existing on the coating surface was lower than that for samples with a 3-methacryloxypropyltrimethoxysilane/SiO 2 weight ratio of 0.6. This produced a decrease in abrasion resistance.

  12. Micro-Abrasion Wear Resistance of Borided 316L Stainless Steel and AISI 1018 Steel

    Science.gov (United States)

    Reséndiz-Calderon, C. D.; Rodríguez-Castro, G. A.; Meneses-Amador, A.; Campos-Silva, I. E.; Andraca-Adame, J.; Palomar-Pardavé, M. E.; Gallardo-Hernández, E. A.

    2017-11-01

    The 316L stainless steel has high corrosion resistance but low tribological performance. In different industrial sectors (biomedical, chemical, petrochemical, and nuclear engineering), improvement upon wear resistance of 316L stainless steel components using accessible and inexpensive methods is critical. The AISI 1018 steel is widely used in industry, but its tribological performance is not the best among steels. Therefore, in this study the behavior of the borided 316L stainless steel and 1018 steel is evaluated under micro-abrasion wear. The boriding was carried out at 1223 K over 6 h of exposure time, resulting in a biphase layer composed of FeB/Fe2B phases. In order to evaluate Fe2B phase with no influence from FeB phase, AISI 1018 steel samples were borided at 1273 K for over 20 min and then diffusion annealed at 1273 K over 2 h to obtain a Fe2B mono-phase layer. Micro-abrasion wear resistance was evaluated by a commercial micro-abrasion testing rig using a mix of F-1200 SiC particles with deionized water as abrasive slurry. The obtained wear rates for FeB and Fe2B phases and for the 316L stainless steel were compared. Wear resistance of 316L stainless steel increases after boriding. The wear mechanisms for both phases and for the stainless steel were identified. Also, transient conditions for rolling and grooving abrasion were determined for the FeB and Fe2B phases.

  13. Influence of Heat Treatment on Abrasive Wear Resistance of Silumin Matrix Composite Castings

    Directory of Open Access Journals (Sweden)

    Gawdzińska K.

    2016-03-01

    Full Text Available The authors attempted at examining the effect of heat treatment on abrasive wear resistance of metal composite castings. Metal matrix composites were made by infiltrating preforms created from unordered short fibers (graphite or silumin with liquid aluminium alloy AlSi12(b. Thus prepared composites were subject to solution heat treatment at a temperature of 520°C for four hours, then aging at a temperature of 220°C for four hours. Abrasion resistance of the material was tested before and after thermal treatment.

  14. Development of a thin film vitreous bond based composite ceramic coating for corrosion and abrasion services

    International Nuclear Information System (INIS)

    Franke, B.

    2003-01-01

    IPC has been involved with the Alberta Research Council in developing a vitreous bond (VB) - based composite ceramic fluoropolymer coating technology. Compared to the present state of the art which is based on a hard discontinuous phase (ceramic particles) suspended in a soft continuous matrix (fluoropolymer mix) the novelty of our approach consists of designing a composite system in which both the ceramic and the fluoropolymer phases are continuous. The ceramic matrix will provide the strength and the erosion resistance for the fluoropolymer matrix even at high temperatures. The ceramic formulation employed is not affected by temperatures up to 500 o F while the fluoropolymer matrix provides a corrosion protection seal for the ceramic matrix. The inherent flexibility of the polymer matrix will protect against brittle fractures that may develop by handling or impact. Therefore the composite coating is able to withstand the deformation of the substrate without chipping or disbanding. The fluoropolymer matrix also provides dry lubrication properties further enhancing the erosion resistance of the ceramic phase. The thickness of the coating is very thin, in the 25 to 100 micron range. In summary, the coating technology is able to provide the following features: Corrosion protection levels similar to those of fluoropolymer coatings; Erosion resistance similar to that of ceramic coatings; Price comparable to that of polymer coatings; Exceptional wear resistance properties; and Capability for coating complicated shapes internally or externally or both. This paper will discuss the theory and development of this new technology and the resultant coating and potential properties. (author)

  15. Microstructure and abrasive wear properties of M(Cr,Fe7C3 carbides reinforced high-chromium carbon coating produced by gas tungsten arc welding (GTAW process

    Directory of Open Access Journals (Sweden)

    Soner BUYTOZ

    2010-01-01

    Full Text Available In the present study, high-chromium ferrochromium carbon hypereutectic alloy powder was coated on AISI 4340 steel by the gas tungsten arc welding (GTAW process. The coating layers were analyzed by optical microscopy, X-ray diffraction (XRD, field-emission scanning electron microscopy (FE-SEM, X-ray energy-dispersive spectroscopy (EDS. Depending on the gas tungsten arc welding pa-rameters, either hypoeutectic or hypereutectic microstructures were produced. Wear tests of the coatings were carried out on a pin-on-disc apparatus as function of contact load. Wear rates of the all coating layers were decreased as a function of the loading. The improvement of abrasive wear resistance of the coating layer could be attributed to the high hardness of the hypereutectic M7C3 carbides in the microstruc-ture. As a result, the microstructure of surface layers, hardness and abrasive wear behaviours showed different characteristics due to the gas tungsten arc welding parameters.

  16. The Effect of Microstructure on the Abrasion Resistance of Low Alloyed Steels

    NARCIS (Netherlands)

    Xu, X.

    2016-01-01

    The thesis attempts to develop advanced high abrasion resistant steels with low hardness in combination with good toughness, processability and low alloying additions. For this purpose, a novel multi-pass dual-indenter (MPDI) scratch test approach has been developed to approach the real continuous

  17. Abrasive wear response of TIG-melted TiC composite coating: Taguchi approach

    Science.gov (United States)

    Maleque, M. A.; Bello, K. A.; Adebisi, A. A.; Dube, A.

    2017-03-01

    In this study, Taguchi design of experiment approach has been applied to assess wear behaviour of TiC composite coatings deposited on AISI 4340 steel substrates by novel powder preplacement and TIG torch melting processes. To study the abrasive wear behaviour of these coatings against alumina ball at 600° C, a Taguchi’s orthogonal array is used to acquire the wear test data for determining optimal parameters that lead to the minimization of wear rate. Composite coatings are developed based on Taguchi’s L-16 orthogonal array experiment with three process parameters (welding current, welding speed, welding voltage and shielding gas flow rate) at four levels. In this technique, mean response and signal-to-noise ratio are used to evaluate the influence of the TIG process parameters on the wear rate performance of the composite coated surfaces. The results reveal that welding voltage is the most significant control parameter for minimizing wear rate while the current presents the least contribution to the wear rate reduction. The study also shows the best optimal condition has been arrived at A3 (90 A), B4 (2.5 mm/s), C3 (30 V) and D3 (20 L/min), which gives minimum wear rate in TiC embedded coatings. Finally, a confirmatory experiment has been conducted to verify the optimized result and shows that the error between the predicted values and the experimental observation at the optimal condition lies within the limit of 4.7 %. Thus, the validity of the optimum condition for the coatings is established.

  18. Abrasive Wear Resistance of Tool Steels Evaluated by the Pin-on-Disc Testing

    Science.gov (United States)

    Bressan, José Divo; Schopf, Roberto Alexandre

    2011-05-01

    Present work examines tool steels abrasion wear resistance and the abrasion mechanisms which are one main contributor to failure of tooling in metal forming industry. Tooling used in cutting and metal forming processes without lubrication fails due to this type of wear. In the workshop and engineering practice, it is common to relate wear resistance as function of material hardness only. However, there are others parameters which influences wear such as: fracture toughness, type of crystalline structure and the occurrence of hard precipitate in the metallic matrix and also its nature. In the present investigation, the wear mechanisms acting in tool steels were analyzed and, by normalized tests, wear resistance performance of nine different types of tool steels were evaluated by pin-on-disc testing. Conventional tool steels commonly used in tooling such as AISI H13 and AISI A2 were compared in relation to tool steels fabricated by sintering process such as Crucible CPM 3V, CPM 9V and M4 steels. Friction and wear testing were carried out in a pin-on-disc automated equipment which pin was tool steel and the counter-face was a abrasive disc of silicon carbide. Normal load of 5 N, sliding velocity of 0.45 m/s, total sliding distance of 3000 m and room temperature were employed. The wear rate was calculated by the Archard's equation and from the plotted graphs of pin cumulated volume loss versus sliding distance. Specimens were appropriately heat treated by quenching and three tempering cycles. Percentage of alloying elements, metallographic analyses of microstructure and Vickers microhardness of specimens were performed, analyzed and correlated with wear rate. The work is concluded by the presentation of a rank of tool steel wear rate, comparing the different tool steel abrasion wear resistance: the best tool steel wear resistance evaluated was the Crucible CPM 9V steel.

  19. Morphologic and Chemical Properties of PMMA/ATH Layers with Enhanced Abrasion Resistance Realised by Cold Plasma Spraying at Atmospheric Pressure

    Directory of Open Access Journals (Sweden)

    L. Wallenhorst

    2018-01-01

    Full Text Available This study investigated the morphologic and chemical properties of coatings based on PMMA/ATH powder and deposited by cold plasma spraying on wood and glass. Since the deposition of pure PMMA/ATH powder with air as process gas yielded coatings with insufficient abrasion resistance, two modifications of the basic process were investigated. Previous studies showed that replacing air as process gas with forming gas did not enhance the abrasion resistance, but the addition of a phenol-formaldehyde resin (PF succeeded in stabilising the particle coatings. In this work, results from morphologic and chemical analysis suggested an encasement of the PMMA/ATH particles by plasma-modified PF and thus a fusion of individual particles, explaining the enhanced bonding. Moreover, adhesion tests confirmed an outstanding bonding between the coating and wood as well as glass, which is assumed to result from interactions between the PF’s hydroxyl groups and functional groups on the substrates’ surfaces. Studies on the wettability revealed a hydrophobic character of such coatings, therefore generally indicating a possible application, for example, to reduce water uptake by wooden materials.

  20. Predicting the Abrasion Resistance of Tool Steels by Means of Neurofuzzy Model

    Directory of Open Access Journals (Sweden)

    Dragutin Lisjak

    2013-07-01

    Full Text Available This work considers use neurofuzzy set theory for estimate abrasion wear resistance of steels based on chemical composition, heat treatment (austenitising temperature, quenchant and tempering temperature, hardness after hardening and different tempering temperature and volume loss of materials according to ASTM G 65-94. Testing of volume loss for the following group of materials as fuzzy data set was taken: carbon tool steels, cold work tool steels, hot work tools steels, high-speed steels. Modelled adaptive neuro fuzzy inference system (ANFIS is compared to statistical model of multivariable non-linear regression (MNLR. From the results it could be concluded that it is possible well estimate abrasion wear resistance for steel whose volume loss is unknown and thus eliminate unnecessary testing.

  1. Strength and gas-abrasive wear-resistance of zirconium carbide based cerments

    International Nuclear Information System (INIS)

    Samsonov, G.V.; Dan'kin, A.A.; Markov, A.A.; Bogomol, I.V.

    1976-01-01

    Results relating to a study of cermet strength and wear resistance by means of a gas-abrasive flow are presented. It has been found that with a higher amount of the metallic binder (over 25 at.%) in zirconium carbide-based cermets the bending and compression strength and also hardness and wear resistance within the systems ZrC-Nb, ZrC-Mo, ZrC-W become lower. The interrelation of the cermet wear resistance of the various systems and their bending and compression strengths, which, in turn, depend on the electronic structure is shown

  2. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  3. Nitriding the influence of plasma in resistance to wear micro abrasive tool steel AISI D2

    International Nuclear Information System (INIS)

    Gobbi, Vagner Joao; Gobb, Silvio Jose; Silva, Cosme Roberto Moreira da

    2010-01-01

    This work studies the influence of time of treatment in the formation of nitride layer of AISI D2 tool steel and the resistance to micro-abrasive wear from the technique of nitriding in plasma. The samples were nitrides at 400 ° C with a pressure of 4.5 mbar (450 Pa) and using a gas mixture of 80% vol.H2 and 20% vol.N2. The times of treatment were: 30, 60, 120, 180 and 360 minutes. The properties of the layers in the samples obtained nitrides were assessed by surface microhardness, profiles of microhardness, metallography analysis, X-ray diffraction and test for resistance to micro-abrasive wear. The best results for nitriding to 400 deg C, was obtained with the time of treatment of 360 minutes. In this case the increase in surface hardness was 94.6% and resistance to micro-abrasive wear of 15%. This increase in hardness may be associated with high concentration of nitrogen in the crystalline network of iron-α and additional training of nitrides. Low temperature of nitriding reduces between grain fragility to reduce the likelihood of precipitation of nitrides in a continuous manner in the austenite grain boundaries and the absence of previous ε'+ γ phases. (author)

  4. High temperature resistant cermet and ceramic compositions. [for thermal resistant insulators and refractory coatings

    Science.gov (United States)

    Phillips, W. M. (Inventor)

    1978-01-01

    High temperature oxidation resistance, high hardness and high abrasion and wear resistance are properties of cermet compositions particularly to provide high temperature resistant refractory coatings on metal substrates, for use as electrical insulation seals for thermionic converters. The compositions comprise a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride are also described.

  5. Design and evaluation of high-volume fly ash (HVFA) concrete mixes, report D : creep, shrinkage, and abrasion resistance of HVFA concrete.

    Science.gov (United States)

    2012-10-01

    The main objective of this study was to determine the effect on shrinkage, creep, : and abrasion resistance of high-volume fly ash (HVFA) concrete. The HVFA concrete : test program consisted of comparing the shrinkage, creep, and abrasion performance...

  6. Wet Slurry Abrasion Tests of Ceramic Coatings Deposited by Water-Stabilized Plasma Spraying

    Czech Academy of Sciences Publication Activity Database

    Nohava, Jiří

    2003-01-01

    Roč. 48, č. 2 (2003), s. 203-214 ISSN 0001-7043 R&D Projects: GA ČR GA106/01/0094 Institutional research plan: CEZ:AV0Z2043910 Keywords : plasma spraying, wear resistence, ceramic coating Subject RIV: BL - Plasma and Gas Discharge Physics

  7. Sustainable and long-time 'rejuvenation' of biomimetic water-repellent silica coating on polyester fabrics induced by rough mechanical abrasion.

    Science.gov (United States)

    Rosu, Cornelia; Lin, Haisheng; Jiang, Lu; Breedveld, Victor; Hess, Dennis W

    2018-04-15

    The economical use of water-repellent coatings on polymeric materials in commercial and industrial applications is limited by their mechanical wear robustness and long-term durability. In this study, we demonstrate that polyethylene terephthalate (PET) fabric modified with inorganic, methyltrimethoxysilane (MTMS)-based coatings shows excellent resistance against various types of wear damage, thereby mimicking superhydrophobic biological materials. These features were facilitated by the rational design of coating processing that also enabled tunable hierarchical surface structure. A series of custom and standard testing protocols revealed that coating-to-substrate adhesion was remarkably high, as was the resistance to various mechanical abradents. The most intriguing characteristic observed during aging and abrasion cycles was the enhancement in non-wettability or 'rejuvenation' reflected by water droplet roll-off behavior, a characteristic of self-cleaning materials. Water-repellent properties of coated polyester were also enhanced by prolonged thermal annealing and were maintained after custom laundry. The developed technology offers opportunities to design low cost, durable and functional textiles for both indoor and outdoor applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Abrasion Resistance of Nano Silica Modified Roller Compacted Rubbercrete: Cantabro Loss Method and Response Surface Methodology Approach

    Science.gov (United States)

    Adamu, Musa; Mohammed, Bashar S.; Shafiq, Nasir

    2018-04-01

    Roller compacted concrete (RCC) when used for pavement is subjected to skidding/rubbing by wheels of moving vehicles, this causes pavement surface to wear out and abrade. Therefore, abrasion resistance is one of the most important properties of concern for RCC pavement. In this study, response surface methodology was used to design, evaluate and analyze the effect of partial replacement of fine aggregate with crumb rubber, and addition of nano silica on the abrasion resistance of roller compacted rubbercrete (RCR). RCR is the terminology used for RCC pavement where crumb rubber was used as partial replacement to fine aggregate. The Box-Behnken design method was used to develop the mixtures combinations using 10%, 20%, and 30% crumb rubber with 0%, 1%, and 2% nano silica. The Cantabro loss method was used to measure the abrasion resistance. The results showed that the abrasion resistance of RCR decreases with increase in crumb rubber content, and increases with increase in addition of nano silica. The analysis of variance shows that the model developed using response surface methodology (RSM) has a very good degree of correlation, and can be used to predict the abrasion resistance of RCR with a percentage error of 5.44%. The combination of 10.76% crumb rubber and 1.59% nano silica yielded the best combinations of RCR in terms of abrasion resistance of RCR.

  9. Damage-resistant brittle coatings

    Energy Technology Data Exchange (ETDEWEB)

    Lawn, B.R.; Lee, K.S. [National Inst. of Stand. and Technol., Gaithersburg, MD (United States). Mater. Sci. and Eng. Lab.; Chai, H. [Tel Aviv Univ. (Israel). Faculty of Engineering; Pajares, A. [Universidad de Extremadura, Badajoz (Spain). Dept. de Fisica; Kim, D.K. [Korea Advanced Inst. of Science and Technolgy, Taejon (Korea). Dept. of Materials Science and Engineering; Wuttiphan, S. [National Metal and Materials Technology Center, Bangkok (Thailand); Peterson, I.M. [Corning Inc., NY (United States); Hu Xiaozhi [Western Australia Univ., Nedlands, WA (Australia). Dept. of Mechanical and Materials Engineering

    2000-11-01

    Laminate structures consisting of hard, brittle coatings and soft, tough substrates are important in a wide variety of engineering applications, biological structures, and traditional pottery. In this study the authors introduce a new approach to the design of damage-resistant brittle coatings, based on a combination of new and existing relations for crack initiation in well-defined contact-induced stress fields. (orig.)

  10. Fabricating superhydrophobic polymer surfaces with excellent abrasion resistance by a simple lamination templating method.

    Science.gov (United States)

    Xu, Qian Feng; Mondal, Bikash; Lyons, Alan M

    2011-09-01

    Fabricating robust superhydrophobic surfaces for commercial applications is challenging as the fine-scale surface features, necessary to achieve superhydrophobicity, are susceptible to mechanical damage. Herein, we report a simple and inexpensive lamination templating method to create superhydrophobic polymer surfaces with excellent abrasion resistance and water pressure stability. To fabricate the surfaces, polyethylene films were laminated against woven wire mesh templates. After cooling, the mesh was peeled from the polymer creating a 3D array of ordered polymer microposts on the polymer surface. The resulting texture is monolithic with the polymer film and requires no chemical modification to exhibit superhydrophobicity. By controlling lamination parameters and mesh dimensions, polyethylene surfaces were fabricated that exhibit static contact angles of 160° and slip angles of 5°. Chemical and mechanical stability was evaluated using an array of manual tests as well as a standard reciprocating abraser test. Surfaces remained superhydrophobic after more than 5500 abrasion cycles at a pressure of 32.0 kPa. In addition, the surface remains dry after immersing into water for 5 h at 55 kPa. This method is environmental friendly, as it employs no solvents or harsh chemicals and may provide an economically viable path to manufacture large areas of mechanically robust superhydrophobic surfaces from inexpensive polymers and reusable templates.

  11. Corrosion-resistant coating development

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Kupp, D.M.; Martin, R.L. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    SiC-based heat exchangers have been identified as the prime candidate material for use as heat exchangers in advanced combined cycle power plants. Unfortunately, hot corrosion of the SiC-based materials created by alkali metal salts present in the combustion gases dictates the need for corrosion-resistant coatings. The well-documented corrosion resistance of CS-50 combined with its low (and tailorable) coefficient of thermal expansion and low modulus makes CS-50 an ideal candidate for this application. Coatings produced by gelcasting and traditional particulate processing have been evaluated.

  12. Effects of Running Shoes with Abrasion Resistant Rubber Sole on the Exercise Capacity of the Human Body

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2017-10-01

    Full Text Available With the development of industrialization, rubber has been gradually used in the manufacture of sports equipment for its favourable properties. This study involved the addition of C5 petroleum resin into brominated isobutylene-isoprene rubber (BIIR and butadiene rubber (BR while manufacturing the sole of running shoes. The effects of running shoes with abrasion resistant rubber sole on the exercise capacity of the human body were investigated by analysing the skid resistance and abrasion resistance of the running shoes, and conducting biomechanical study on naked feet and feet wearing the shoes. The results demonstrated that the rubber sole had favourable slip resistance property and mechanical properties such as stretching, abrasion resistance, and hardness. Compared to naked feet, the peak pressure intensity of the whole step of feet wearing the newly developed shoes, was significantly lower than that of feet wearing ordinary shoes. In the future, rubber can bring more comfortable experience because of its favourable properties.

  13. A study on heat resistance of high temperature resistant coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liping; Wang, Xueying; Zhang, Qibin; Qin, Yanlong; Lin, Zhu [Research Institute of Engineering Technology of CNPC, Tianjin (China)

    2005-04-15

    A high temperature resistant coating has been developed, which is mainly for heavy oil production pipes deserved the serious corrosion. The coating has excellent physical and mechanical performance and corrosion resistance at room and high temperature. In order to simulate the underground working condition of heavy oil pipes,the heat resistance of the high temperature resistant coating has been studied. The development and a study on the heat resistance of the DHT high temperature resistance coating have been introduced in this paper

  14. A study on heat resistance of high temperature resistant coating

    International Nuclear Information System (INIS)

    Zhang, Liping; Wang, Xueying; Zhang, Qibin; Qin, Yanlong; Lin, Zhu

    2005-01-01

    A high temperature resistant coating has been developed, which is mainly for heavy oil production pipes deserved the serious corrosion. The coating has excellent physical and mechanical performance and corrosion resistance at room and high temperature. In order to simulate the underground working condition of heavy oil pipes,the heat resistance of the high temperature resistant coating has been studied. The development and a study on the heat resistance of the DHT high temperature resistance coating have been introduced in this paper

  15. Hard Coat Layers by PE-CVD Process for the Top Surface of Touch Panel

    International Nuclear Information System (INIS)

    Okunishi, T; Sato, N; Yazawa, K

    2013-01-01

    In order to protect surface from damages, the high pencil hardness and the high abrasion resistance are required for the hard coat layers on polyethylene telephthalate (PET) films for the application of touch panel surface. We have already found that the UV-curing-hard-coat-polymer (UHP) coated PET films show the poor abrasion resistance, while they have the high pencil hardness. It reveals that the abrasion resistance of hard coat layers of the UHP is not simply dependent on the pencil hardness. In this work, we have studied to improve the abrasion resistance of SiOC films as hard coat layers, which were formed by PE-CVD process on UHP coated PET. The abrasion resistance was evaluated by Taber abrasion test. PE-CVD hard coat layers which formed on UHP coater PET films have showed the better abrasion resistance and have the possibility of substitution to the thin glass sheets for touch panel application.

  16. Influence of Utilization of High-Volumes of Class F Fly Ash on the Abrasion Resistance of Concrete

    Directory of Open Access Journals (Sweden)

    William PRINCE

    2007-01-01

    Full Text Available Utilization of large volumes of fly ash in various concrete applications is a becoming a more general practice in an efforts towards using large quantities of fly ash. Around the world, Class C or Class F or both as available have been used in high volumes in cement-based materials. In India, majority of fly generated is of Class F type as per ASTM C 618. Yearly fly ash generation in India is approximately 95 million tonnes. Out of which around 15-20% is utilized in cement production and cement/concrete related activities. In order to increase its percentage utilization, an investigation was carried out to use it in concrete.In this paper, abrasion resistance of high volume fly ash (HVFA concretes made with 35, 45, 55, and 65% of cement replacement was evaluated in terms of its relation with compressive strength. Comparison was made between ordinary Portland cement and fly ash concrete. Test results indicated that abrasion resistance of concrete having cement replacement up to 35 percent was comparable to the normal concrete mix with out fly ash. Beyond 35% cement replacement, fly ash concretes exhibited slightly lower resistance to abrasion relative to non-fly ash concretes. Test results further indicated that abrasion resistance of concrete is closely related with compressive strength, and had a very good correlation between abrasion resistance and compressive strength (R2 value between 0.9018 and 0.9859 depending upon age.

  17. EFECTO DEL CONTENIDO DE CARBONO SOBRE LA RESISTENCIA AL DESGASTE ABRASIVO DE RECUBRIMIENTOS DE CrC DEPOSITADOS POR PULVERIZACIÓN CATÓDICA MAGNETRÓN EFEITO DO CONTEÚDO DE CARBONO SOBRE A RESISTÊNCIA AO DESGASTE ABRASIVO DE RECOBRIMENTOS DE CrC DEPOSITADOS POR PULVERIZAÇÃO CATÓDICA MAGNETRÃO EFFECT OF THE CARBON CONTENT IN ABRASIVE WEAR RESISTANCE OF CrC COATINGS DEPOSITED BY MAGNETRON SPUTTERING

    Directory of Open Access Journals (Sweden)

    Maryory Astrid Gómez

    2012-12-01

    diamante. O volume das impressões de abrasão mediu-se com as imagens obtidas no microscópio interferométrico e ademais se corroborou com o cálculo do volume geométrico baseado em seções medidas com o perfilômetro. O comportamento ao desgaste abrasivo mostrou uma marcada dependência com o conteúdo de carbono. O desgaste abrasivo mais baixo obtevese para os recobrimentos com o mais alto conteúdo de carbono.Chromium carbide coatings on steel are a good candidate for applications on forming and molding dies. The high mechanical strength, chemical resistance and high temperature stability of Cr3C2 phase can be compatible with the severe abrasive wear and corrosion found in those manufacture operations. In this work chromium carbide coatings deposited by means of RF magnetron sputtering showed carbon contents between 25 % and 58 % by EDS analysis. Hardness values of these coatings were between 15 and 24 GPa, being the hardest values in the samples with carbon content in the 39-53 % range. The abrasive wear behavior of the coatings was evaluated by using a dimple grinder with diamond powder. The volume of the abrasion craters was measured from the images obtained with the interferometric microscope, and further corroborated by geometrical volume calculation based in profilometer sections that were measured. Abrasive wear behavior showed a marked dependence with carbon content. The lowest abrasive wear was obtained for the coatings with the highest carbon content.

  18. Tunable resistance coatings

    Science.gov (United States)

    Elam, Jeffrey W.; Mane, Anil U.

    2015-08-11

    A method and article of manufacture of intermixed tunable resistance composite materials containing at least one of W:Al.sub.2O.sub.3, Mo:Al.sub.2O.sub.3 or M:Al.sub.2O.sub.3 where M is a conducting compound containing either W or Mo. A conducting material and an insulating material are deposited by such methods as ALD or CVD to construct composites with intermixed materials which do not have structure or properties like their bulk counterparts.

  19. Influence of the modes of laser cladding on bond strength and wear resistance of coatings

    Science.gov (United States)

    Birukov, V. P.; Tatarkin, D. Yu; Chriptovish, E. V.; Fichkov, A. A.

    2017-12-01

    The paper presents the results of metallographic studies and laboratory comparative tests on the adhesion strength of the coating to the substrate and abrasion on the scheme Brinell-Haworth cladding powder coatings on Nickel-based and samples of steel 40X. Strength of adhesion of the first coating layer with a hardness of HRC 38-42 was 400-480 MPa. It is shown that when the hardness of the deposited layer HRC 58-61 wear resistance of the coatings is higher than 40X steel in the normalized and improved in 10 and 4.6 times, respectively.

  20. Abrasion Wear Resistance, Hardness and Microstructure of Hard Linings Deposited by Means of a Submerged Arc. Dureza, microestructura y resistencia al desgaste por abrasion de recargues duros depositados con arco sumergido

    Energy Technology Data Exchange (ETDEWEB)

    Paranhos, R; Alcoforado, J M; Castillo, J A; Sauer, A

    1989-01-01

    Consumable materials for submerged arc welding of the types alloyed flux-neutral electrode and neutral flux-alloyed electrode were used to form, through multipass welding, a light alloy hard lining of the C-Mn type on ASTM A36 Type structural steel. Emphasis was put on microstructural characterization of the linings surveyed under electron scanning microscopy, and tests were performed to study their hardness and abrasion wear resistance at low pressures. As a result of these tests, a great influence of welding parameters on hardness and abrasion resistance properties of the combination active flux-neutral electrode was noticed. As the results showed no relationship between the hardness and the abrasion wear resistance of the linings surveyed, an attempt was made to relate the resulting microstructure with their abrasion wear resistance. (Author)

  1. The use of ion implantation for the improvement of abrasive wear resistance

    International Nuclear Information System (INIS)

    Delves, B.G.; Dearnaley, G.

    1979-01-01

    At the conclusion of the 1977 IPAT conference a practical problem was described which called for an economically feasible method of improving the resistance of tool steel, chromium and other alloys to abrasive wear sustained during the injection moulding of phenolic resin. This paper will describe subsequent work to investigate ion implantation as a possible means of treating steel taps, injection nozzles, feed wear pads, cavity moulds etc. Various problems were encountered and it will be described how most of these have now been overcome. Under favourable conditions factors of 4, and sometimes up to 10 times the normal life can be achieved. An attempt will be made to estimate some of the economic benefits of the process. (author)

  2. The role of the microfissuration of the rock matrix in the abrasion resistance of ornamental granitic rocks

    Science.gov (United States)

    Rodríguez-Rey, Angel; Sanchez-Delgado, Nuria; Camino, Clara; Calleja, Lope; Ruiz de Argandoña, Vicente G.; Setien, Alexia

    2015-04-01

    The microcrack density and the abrasion resistance of five ornamental granites (Albero, Gris Alba, Mondariz, Rosa Porriño and Traspieles) from Galicia (NW Spain) have been quantified as part of a research aimed to interpret the cuttability of the rocks in relation to the petrophysical properties of the rock matrix. Large blocks from the quarries have been cut with an industrial saw and the microcrack density and the abrasion resistance have been measured in two surfaces: H, parallel to the cut surface; T, perpendicular both to the cut surface and the cutting direction. Both planes are perpendicular to the rift plane, as it is known in quarry works. The microcrack density has been quantified following an stereological procedure applied to polished sections imaged under scanning electron microscopy. The magnification of the images allowed the study of microcracks as narrow as 2 microns in aperture. The density has been quantified in terms of length of microcrack traces per surface unit so possible anisotropies of the microcrack network could be detected. The obtained values are in the typical range for this type of rocks although the Traspieles granite shows a higher value due to its weathering degree (H: 5.11, T: 5.37 mm/mm2). The values measured in the two surfaces (H and T) are quite similar in four of the rocks; only the Albero granite shows a marked anisotropy (H: 2.76 T: 3.53 mm/mm2). The abrasion resistance of the rocks has been measured following the european standard EN 14157:2004 using the capon method. The rocks can be classified in two groups according to their abrasion resistance. Rosa Porriño, Gris Alba and Mondariz granites are the more resistant to abrasion with values around 16-17 mm. Albero and Traspieles granites are less resistant with values higher than 19 mm. The results show a good correlation between the microcrack density and the abrasion resistance. As can be expected the rocks with high microcrack density show low abrasion resistance. The

  3. Abrasive wear of WC-NiMoCrFeCo thermally sprayed coatings in dependence on different types of abrasive sands

    Czech Academy of Sciences Publication Activity Database

    Kašparová, M.; Zahálka, F.; Houdková, Š.; Ctibor, Pavel

    2010-01-01

    Roč. 48, č. 1 (2010), s. 75-85 ISSN 0023-432X R&D Projects: GA AV ČR 1QS200430560 Institutional research plan: CEZ:AV0Z20430508 Keywords : WC-Hastelloy * abrasive wear * Al2O3 sand * SiO2 sand * braun size * abrasive efficiency Subject RIV: JG - Metallurgy Impact factor: 0.471, year: 2010 http://kovmat.sav.sk/abstract.php?rr=48&cc=1&ss=73

  4. Abrasive wear resistance and microstructure of Ni-Cr-B-Si hardfacing alloys with additions of Al, Nb, Mo, Fe, Mn and C

    International Nuclear Information System (INIS)

    Berns, H.; Fischer, A.; Theisen, W.

    1987-01-01

    The development of new Ni-base hardfacing alloys for filler wire welding or metal spraying should result in materials with a good resistance against high temperature corrosion and abrasive wear. The first step is to design microstructures, which obtain a satisfactory abrasive wear behaviour at room temperature. Thus, different alloys are melted and scrutinized as to their microstructure and their abrasive wear resistance in laboratory. Compared to commercial Ni-base hardfacing alloys they show a higher volume fraction of coarse hard phases due to the additional, initial solidification of Nb-carbides and Cr-, and Mo-borides. Thus, the abrasive wear resistance is improved. For hard abrasive particles, such as corundum, the Ni-base alloys are more wear resistant than harder Fe-base alloys investigate earlier. This is due to the tougher Ni metal matrix that results in microcracking not to be the most significantly acting wear mechanism

  5. Effect of TiO2/Al2O3 film coated diamond abrasive particles by sol-gel technique

    Science.gov (United States)

    Hu, Weida; Wan, Long; Liu, Xiaopan; Li, Qiang; Wang, Zhiqi

    2011-04-01

    The diamond abrasive particles were coated with the TiO2/Al2O3 film by the sol-gel technique. Compared with the uncoated diamonds, the TiO2/Al2O3 film was excellent material for the protection of the diamonds. The results showed that the incipient oxidation temperature of the TiO2/Al2O3 film coated diamonds in air atmosphere was 775 °C, which was higher 175 °C than that of the uncoated diamonds. And the coated diamonds also had better the diamond's single particle compressive strength and the impact toughness than that of uncoated diamonds after sintering at 750 °C. For the vitrified bond grinding wheels, replacing the uncoated diamonds with the TiO2/Al2O3 film coated diamonds, the volume expansion of the grinding wheels decreased from 6.2% to 3.4%, the porosity decreased from 35.7% to 25.7%, the hardness increased from 61.2HRC to 66.5HRC and the grinding ratio of the vitrified bond grinding wheels to carbide alloy (YG8) increased from 11.5 to 19.1.

  6. Wear Resistant Thermal Sprayed Composite Coatings Based on Iron Self-Fluxing Alloy and Recycled Cermet Powders

    Directory of Open Access Journals (Sweden)

    Heikki SARJAS

    2012-03-01

    Full Text Available Thermal spray and WC-Co based coatings are widely used in areas subjected to abrasive wear. Commercial  cermet thermal spray powders for HVOF are relatively expensive. Therefore applying these powders in cost-sensitive areas like mining and agriculture are hindered. Nowadays, the use of cheap iron based self-fluxing alloy powders for thermal spray is limited. The aim of this research was to study properties of composite powders based on self-fluxing alloys and recycled cermets and to examine the properties of thermally sprayed (HVOF coatings from composite powders based on iron self-fluxing alloy and recycled cermet powders (Cr3C2-Ni and WC-Co. To estimate the properties of  recycled cermet powders, the sieving analysis, laser granulometry and morphology were conducted. For deposition of coatings High Velocity Oxy-Fuel spray was used. The structure and composition of powders and coatings were estimated by SEM and XRD methods. Abrasive wear performance of coatings was determined and compared with wear resistance of coatings from commercial powders. The wear resistance of thermal sprayed coatings from self-fluxing alloy and recycled cermet powders at abrasion is comparable with wear resistance of coatings from commercial expensive spray powders and may be an alternative in tribological applications in cost-sensitive areas.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1338

  7. Effects of mechanical cleaning by manual brushing and abrasive blasting on lime render coatings on Architectural Heritage

    Directory of Open Access Journals (Sweden)

    Iglesias-Campos, M. A.

    2014-12-01

    Full Text Available This research studies the effects of mechanical cleaning by brushing and by abrasive blasting on the lime render coating of a façade. After analysing the properties of the material, the deposits to be removed and their possible influence on the treatment, different cleaning tests were made by manual brushing and by blasting with three varieties of abrasives at 45° and 75° angles, keeping the other parameters constant. Taking the restorer’s perspective as a starting point, and in order to fulfil the practical requirements of an intervention, tests were evaluated with macro-photography, USB digital microscope and stereomicroscope with 3D visualization and measurement. From the results can be concluded that abrasives with low friability and greater grain size than the space between mortar aggregates blasted at a 75° angle reduce the differential erosion compared to other abrasives; although manual brushing has less impact on the surface.En este trabajo se estudian los efectos de las limpiezas mecánicas con cepillado y con proyección de abrasivos sobre un revestimiento exterior de cal. Tras documentar las propiedades del material, de los depósitos superficiales y de su posible influencia en el tratamiento, se realizaron diferentes catas de limpieza con cepillado manual y con proyección de tres abrasivos con ángulos de 45° y 75° manteniendo constantes el resto de parámetros. Partiendo de la visión del conservador-restaurador y de un carácter práctico según las necesidades reales de intervención, los ensayos se evaluaron con macrofotografía, microscopio digital USB y microscopio estereoscópico con visualización y medición en 3D. De los resultados se determina que los abrasivos de baja friabilidad y granulometría mayor que el espacio entre los áridos del mortero proyectados con un ángulo de 75° reducen la erosión diferencial en comparación a otros abrasivos, aunque el cepillado manual altera menos la superficie.

  8. Self-Organization of Friction Surface of Fe-Mn-C-B Coating With Increased Resistance to Abrasion / Samoorganizacja Powierzchni Tarcia Powłoki Fe-Mn-C-B O Zwiększonej Odporności Na Zużycie Ścierne

    Directory of Open Access Journals (Sweden)

    Barszcz M.

    2015-12-01

    Full Text Available The paper concerns the research on self-organization of the surface of coating of hypoeutectic alloy Fe-Mn-C-B modified Si, Ni, Cr, Cu with friction with C45 steel. The coatings were obtained by arc welding using a flux-cored wire. Tests of resistance to wear were carried out for hypoeutectic coatings with use of the friction pair pin-on-disc in the conditions of sliding friction, in model lubricating environments. The surface-active (glycerol oil and inactive (Vaseline grease lubricant was used. Tribological tests carried out showed that cooperation of hypoeutectic alloy coating with counterbody of C45 steel with lubrication with surface-active lubricant results in a significant improvement in tribological properties than in case of the lubrication with surface-inactive lubricant. The resulting effect is related to the self-organization of friction surface. After deposition and wear resistance tests, the friction surface microstructure was analysed, as well as the surface and depth distribution of the elements.

  9. Hydro-abrasive erosion on coated Pelton runners: Partial calibration of the IEC model based on measurements in HPP Fieschertal

    Science.gov (United States)

    Felix, D.; Abgottspon, A.; Albayrak, I.; Boes, R. M.

    2016-11-01

    At medium- and high-head hydropower plants (HPPs) on sediment-laden rivers, hydro-abrasive erosion on hydraulic turbines is a major economic issue. For optimization of such HPPs, there is an interest in equations to predict erosion depths. Such a semi-empirical equation suitable for engineering practice is proposed in the relevant guideline of the International Electrotechnical Commission (IEC 62364). However, for Pelton turbines no numerical values of the model's calibration parameters have been available yet. In the scope of a research project at the high-head HPP Fieschertal, Switzerland, the particle load and the erosion on the buckets of two hard-coated 32 MW-Pelton runners have been measured since 2012. Based on three years of field data, the numerical values of a group of calibration parameters of the IEC erosion model were determined for five application cases: (i) reduction of splitter height, (ii) increase of splitter width and (iii) increase of cut-out depth due to erosion of mainly base material, as well as erosion of coating on (iv) the splitter crests and (v) inside the buckets. Further laboratory and field investigations are recommended to quantify the effects of individual parameters as well as to improve, generalize and validate erosion models for uncoated and coated Pelton turbines.

  10. Laser Tailoring the Surface Chemistry and Morphology for Wear, Scale and Corrosion Resistant Superhydrophobic Coatings.

    Science.gov (United States)

    Boinovich, Ludmila B; Emelyanenko, Kirill A; Domantovsky, Alexander G; Emelyanenko, Alexandre M

    2018-06-04

    A strategy, combining laser chemical modification with laser texturing, followed by chemisorption of the fluorinated hydrophobic agent was used to fabricate the series of superhydrophobic coatings on an aluminum alloy with varied chemical compositions and parameters of texture. It was shown that high content of aluminum oxynitride and aluminum oxide formed in the surface layer upon laser treatment allows solving the problem of enhancement of superhydrophobic coating resistance to abrasive loads. Besides, the multimodal structure of highly porous surface layer leads to self-healing ability of fabricated coatings. Long-term behavior of designed coatings in "hard" hot water with an essential content of calcium carbonate demonstrated high antiscaling resistance with self-cleaning potential against solid deposits onto the superhydrophobic surfaces. Study of corrosion protection properties and the behavior of coatings at long-term contact with 0.5 M NaCl solution indicated extremely high chemical stability and remarkable anticorrosion properties.

  11. Laser cladding of Al-Si/SiC composite coatings : Microstructure and abrasive wear behavior

    NARCIS (Netherlands)

    Anandkumar, R.; Almeida, A.; Vilar, R.; Ocelik, V.; De Hosson, J.Th.M.

    2007-01-01

    Surface coatings of an Al-Si-SiC composite were produced on UNS A03560 cast Al-alloy substrates by laser cladding using a mixture of powders of Al-12 wt.% Si alloy and SiC. The microstructure of the coatings depends considerably on the processing parameters. For a specific energy of 26 MJ/m2 the

  12. Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review

    International Nuclear Information System (INIS)

    PalDey, S.; Deevi, S.C.

    2003-01-01

    We review the status of (Ti,Al)N based coatings obtained by various physical vapor deposition (PVD) techniques and compare their properties. PVD techniques based on sputtering and cathodic arc methods are widely used to deposit wear resistant (Ti,Al)N coatings. These techniques were further modified to improve the metal ionization rate and to eliminate macrodroplets from plasma streams. We summarize manufacture of target/cathode, substrate materials for deposition of coatings, deposition parameters, and the effect of deposition parameters on the physical and mechanical properties of (Ti,Al)N coatings. It is shown that (Ti,Al)N coatings by PVD enhance the wear, thermal, and oxidation resistance of a wide variety of tool materials. We discuss the wear resistant properties of (Ti,Al)N for various machining applications as compared with coatings such as TiN, Ti(C,N) and (Ti,Zr)N. High hardness (∼28-32 GPa), relatively low residual stress (∼5 GPa), superior oxidation resistance, high hot hardness, and low thermal conductivity make (Ti,Al)N coatings most desirable in dry machining and machining of abrasive alloys at high speeds. Multicomponent coatings based on different metallic and nonmetallic elements combine the benefit of individual components leading to a further refinement of coating properties. Alloying additions such as Cr and Y drastically improve the oxidation resistance, Zr and V improve the wear resistance, whereas, Si increases the hardness and resistance to chemical reactivity of the film. Addition of boron improves the abrasive wear behavior of Ti-Al based coatings due to the formation of TiB 2 and BN phases depending on the deposition conditions. Hafnium based nitrides and carbides have potential for resistance to flank and crater wear. The presence of a large number of interfaces between individual layers of a multilayered structure results in a drastic increase in hardness and strength. (Ti,Al)N multilayer super lattice coatings with lattice

  13. Microstructure, Wear Behavior and Corrosion Resistance of WC-FeCrAl and WC-WB-Co Coatings

    Directory of Open Access Journals (Sweden)

    Janette Brezinová

    2018-05-01

    Full Text Available The paper is focused on investigating the quality of two grades of thermally sprayed coatings deposited by high-velocity oxygen fuel (HVOF technology. One grade contains WC hard particles in an environmentally progressive Ni- and Co-free FeCrAl matrix, while the second coating contains WC and WB hard particles in a cobalt matrix. The aim of the experimental work was to determine the effect of thermal cyclic loading on the coatings’ resistance to adhesive, abrasive and erosive wear. Abrasive wear was evaluated using abrasive cloth of two grit sizes, and erosive wear was evaluated by a dry-pot wear test in a pin mill at two sample angles. Adhesion wear resistance of the coatings was determined by a sliding wear test under dry friction conditions and in a 1 mol water solution of NaCl. Corrosion resistance of the coatings was evaluated using potentiodynamic polarization tests. Metallographic cross-sections were used for measurement of the microhardness and thickness and for line energy-dispersive X-ray (EDX analysis. The tests proved the excellent resistance of both coatings against adhesive, abrasive, and erosive wear, as well as the ability of the WC-WB-Co coating to withstand alternating temperatures of up to 600 °C. The “green carbide” coating (WC-FeCrAl can be recommended as an environmentally friendly replacement for Ni- and Co-containing coatings, but its operating temperature is strictly limited to 500 °C in air.

  14. Abrasion-resistant concrete mix designs for precast bridge deck panels.

    Science.gov (United States)

    2010-08-01

    The report documents laboratory investigations undertaken to develop high performance concrete (HPC) for precast and pre-stressed bridge deck components that would reduce the life-cycle cost of bridges by improving the studded tire wear (abrasion) re...

  15. Air Abrasion

    Science.gov (United States)

    ... Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air ... will perform any procedures that use air-abrasion technology. Ask your dentist if he or she uses ...

  16. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance

    Science.gov (United States)

    Peng, Chaoyi; Chen, Zhuyang; Tiwari, Manish K.

    2018-03-01

    Superhydrophobicity is a remarkable evolutionary adaption manifested by several natural surfaces. Artificial superhydrophobic coatings with good mechanical robustness, substrate adhesion and chemical robustness have been achieved separately. However, a simultaneous demonstration of these features along with resistance to liquid impalement via high-speed drop/jet impact is challenging. Here, we describe all-organic, flexible superhydrophobic nanocomposite coatings that demonstrate strong mechanical robustness under cyclic tape peels and Taber abrasion, sustain exposure to highly corrosive media, namely aqua regia and sodium hydroxide solutions, and can be applied to surfaces through scalable techniques such as spraying and brushing. In addition, the mechanical flexibility of our coatings enables impalement resistance to high-speed drops and turbulent jets at least up to 35 m s-1 and a Weber number of 43,000. With multifaceted robustness and scalability, these coatings should find potential usage in harsh chemical engineering as well as infrastructure, transport vehicles and communication equipment.

  17. Study on abrasion resisting material for apron of dam; Dam apron bu no taimamo sozai ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, H.; Hiraki, M.; Miyamoto, T. [Hokuriku Electric Power Co. Inc., Toyama (Japan)

    1995-01-25

    A `laminated rubber tile` and a `shock absorbing holed-in anchor` were devised in connection with the apron of a dam for a hydroelectric power plant. As the result of a survey on the hydroelectric power plants, ten plus places were observed where a general kind of concrete was severely worn in the company territory; but, there were substantial number of rubber materials that had still been sound for over ten years after the installation. In spite of the soundness of the rubber tiles, however, it was observed that their anchor supports had been cut and separated. An abrasion comparison test of concrete and rubber materials revealed that the rubber materials were considerably superior in abrasion resistance. Various rubber tiles were tested for abrasion resistance, tear strength, tensile strength, impact strength, etc.; and methods for fixing rubber tiles were also tested such as a holed-in anchor, chemical anchor and adhesives. As a result, a laminated rubber tile was designed with its upper layer constituted of a rubber sold on the market and its lower layer of a fiber reinforced rubber also on the market, and so was a shock absorbing type holed-in anchor. 1 ref., 11 figs., 4 tabs.

  18. Wear- and heat resistance of vacuum-arc TiN and TiAlN based coatings with Si and Y additives

    International Nuclear Information System (INIS)

    Aksenov, I.I.; Belous, V.A.; Grigor'ev, A.N.; Ermolenko, I.G.; Zadneprovskij, Yu.A.; Kovalenko, V.I.; Lomino, N.S.; Marinin, V.G.; Tolmacheva, G.N.; Sobol', O.V.

    2011-01-01

    It is shown, that insertion of silicon additives into TiN coatings and of yttrium into TiAlN coatings in explored limits (to a few wht. %) leads to increasing of resistance against abrasive friction wear. At the same time silicon or yttrium presence in the coatings leads to loos of their columnar structure and demonstrate decrease in the cavitation resistance. It is supposed, that such distinction in behaviour of the given working performances is a consequence of that mechanisms of the coating surface fracture at action of cavitation and abrasive friction are different. All explored coatings of (Ti-Si)N composition are not oxidised up to 600 o C, and of (Ti-Al-Y)N coatings - up to 800 o C.

  19. Heat-resistant hydrophobic-oleophobic coatings

    OpenAIRE

    Uyanik, Mehmet; Arpac, Ertugrul; Schmidt, Helmut K.; Akarsu, Murat; Sayilkan, Funda; Sayilkan, Hikmet

    2006-01-01

    Thermally and chemically durable hydrophobic oleophobic coatings, containing different ceramic particles such as SiO2, SiC, Al 2O3, which can be alternative instead of Teflon, have been developed and applied on the aluminum substrates by spin-coating method. Polyimides, which are high-thermal resistant heteroaromatic polymers, were synthesized, and fluor oligomers were added to these polymers to obtain hydrophobic-oleophobic properties. After coating, Al surface was subjected to Taber-abrasio...

  20. Methods of data analysis for the micro-scale abrasion test on coated substrates

    DEFF Research Database (Denmark)

    Kusano, Y.; Acker, K. Van; Hutchings, I.M.

    2004-01-01

    is proposed for plotting the experimental results, termed the double intercept method, which provides a clear graphical representation of the data and usually gives reliable values for kappa(c) and kappa(s). However, for the analysis of typical experimental data to obtain values for the specific wear rates...... available for data analysis in this test and proposes some new approaches. The wear volumes of the coating and the substrate can be described by two parameters chosen from among the inner and outer crater diameters, the coating thickness, and the penetration depth. The inner crater diameter can usually...... another method, termed the KVH plot, is shown to be somewhat more consistently accurate. Detailed guidelines are proposed for analysing the data by this method. (C) 2003 Elsevier B.V. All rights reserved....

  1. Self-cleaning performance of superhydrophobic hybrid nanocomposite coatings on Al with excellent corrosion resistance

    International Nuclear Information System (INIS)

    Raj, V.; Mohan Raj, R.

    2016-01-01

    Highlights: • Ceramic-poly(Ani-co-oPD) coatings were formed on Al by anodization and electro-polymerisation techniques. • The superhydrophobic coating was fabricated on copolymer by electrodeposition of zinc stearate. • The superhydrophobicity mechanism relies on morphologies and chemical components on surface is the key factor. • Ceramic-poly(Ani-co-oPD)-zinc stearate coated Al has excellent corrosion resistance and good self-cleaning performance. - Abstract: Protective ceramic-PANI, ceramic-poly(Ani-co-oPD) and ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coatings were formed on Al surface by the processes involving anodization, electropolymerisation and electrodeposition under optimum conditions. The prepared nanocomposite coatings were evaluated by ATR-IR and XRD studies. SEM studies performed on nanocomposite coatings reveal that ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coating shows a cauliflower-like cluster with crack-free morphology compared to ceramic-PANI and ceramic-poly(Ani-co-oPD) nanocomposite coatings. The mechanical properties of different nanocomposite coatings were measured using Vicker microhardness tester and Taber Abrasion tester. The ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite has higher mechanical stability. The corrosion resistance of the coatings measured by Tafel polarization and electrochemical impedance spectroscopy, shows that ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coated aluminum has higher corrosion resistance than other coatings and bare Al. Wettability studies prove that superhydrophobic nature of ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coating with contact angle of 155.8° is responsible for good self-cleaning property and excellent corrosion resistance of aluminum.

  2. Self-cleaning performance of superhydrophobic hybrid nanocomposite coatings on Al with excellent corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Raj, V., E-mail: alaguraj2@rediffmail.com; Mohan Raj, R., E-mail: chem_mohan@rediffmail.com

    2016-12-15

    Highlights: • Ceramic-poly(Ani-co-oPD) coatings were formed on Al by anodization and electro-polymerisation techniques. • The superhydrophobic coating was fabricated on copolymer by electrodeposition of zinc stearate. • The superhydrophobicity mechanism relies on morphologies and chemical components on surface is the key factor. • Ceramic-poly(Ani-co-oPD)-zinc stearate coated Al has excellent corrosion resistance and good self-cleaning performance. - Abstract: Protective ceramic-PANI, ceramic-poly(Ani-co-oPD) and ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coatings were formed on Al surface by the processes involving anodization, electropolymerisation and electrodeposition under optimum conditions. The prepared nanocomposite coatings were evaluated by ATR-IR and XRD studies. SEM studies performed on nanocomposite coatings reveal that ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coating shows a cauliflower-like cluster with crack-free morphology compared to ceramic-PANI and ceramic-poly(Ani-co-oPD) nanocomposite coatings. The mechanical properties of different nanocomposite coatings were measured using Vicker microhardness tester and Taber Abrasion tester. The ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite has higher mechanical stability. The corrosion resistance of the coatings measured by Tafel polarization and electrochemical impedance spectroscopy, shows that ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coated aluminum has higher corrosion resistance than other coatings and bare Al. Wettability studies prove that superhydrophobic nature of ceramic-poly(Ani-co-oPD)-zinc stearate nanocomposite coating with contact angle of 155.8° is responsible for good self-cleaning property and excellent corrosion resistance of aluminum.

  3. Improving the Wear Resistance of Moulds for the Injection of Glass Fibre–Reinforced Plastics Using PVD Coatings: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Francisco Silva

    2017-02-01

    Full Text Available It is well known that injection of glass fibre–reinforced plastics (GFRP causes abrasive wear in moulds’ cavities and runners. Physical vapour deposition (PVD coatings are intensively used to improve the wear resistance of different tools, also being one of the most promising ways to increase the moulds’ lifespan, mainly when used with plastics strongly reinforced with glass fibres. This work compares four different thin, hard coatings obtained using the PVD magnetron sputtering process: TiAlN, TiAlSiN, CrN/TiAlCrSiN and CrN/CrCN/DLC. The first two are monolayer coatings while the last ones are nanostructured and consist of multilayer systems. In order to carry out the corresponding tribological characterization, two different approaches were selected: A laboratorial method, using micro-abrasion wear tests based on a ball-cratering configuration, and an industrial mode, analysing the wear resistance of the coated samples when inserted in a plastic injection mould. As expected, the wear phenomena are not equivalent and the results between micro-abrasion and industrial tests are not similar due to the different means used to promote the abrasion. The best wear resistance performance in the laboratorial wear tests was attained by the TiAlN monolayer coating while the best performance in the industrial wear tests was obtained by the CrN/TiAlCrSiN nanostructured multilayer coating.

  4. Hydrogen permeation resistant phosphate coatings

    International Nuclear Information System (INIS)

    McGuire, J.C.

    1979-01-01

    A method for reducing hydrogen diffusion through metal wherein the metal is coated with a phosphate-radical-containing, phosphate-glass-forming material on at least one surface thereof. The coating is then heated to at least 350 0 C to form a phosphate glass. This method is especially applicable to nuclear reactors to minimize tritium diffusion. The coating is preferably formed with a solution of phosphoric acid which may also contain compounds such as MnSO 4 , SiO 2 and Na 2 Cr 2 0 7 . (author)

  5. Hydrogen permeation resistant phosphate coatings

    International Nuclear Information System (INIS)

    McGuire, J.C.

    1979-01-01

    A method for reducing hydrogen diffusion through metal is described. The metal is coated with a phosphate-radical-containing, phosphate-glass-forming material on at least one surface. The coating is then heated to at least 350 0 C to form a phosphate glass. This method is especially applicable to nuclear reactors to minimize tritium diffusion. The coating is preferably formed with a solution of phosphoric acid which may also contain compounds such as MnSO 4 , SiO 2 and Na 2 Cr 2 O 7 . (author)

  6. Researches concerning the ultasonic energy influence on the resistence to the abrasive wear of loaded welded parts

    Directory of Open Access Journals (Sweden)

    Gh. Amza

    2013-01-01

    Full Text Available The researches presented in the paper refer to the effect of ultrasounds propagation in the liquid metal bath on the process of transferring the additive material through the electric arch and on the crystallization process, and all these effects are analyzed for loaded welded parts solicited at the abrasive wear. All these influences are conferred to these two basic phenomena due to the ultrasounds propagation in liquid environments, namely, ultra-acoustic cavitation and acceleration of the diffusion process. The results concerns the resistance to the wear obtained for the loaded parts through manual welding with electric arch and classically covered electrode and ultrasonically activated.

  7. Sputter deposition of wear-resistant coatings within the system Zr-B-N

    Energy Technology Data Exchange (ETDEWEB)

    Mitterer, C; Uebleis, A; Ebner, R [Inst. fuer Metallkunde und Werkstoffpruefung, Montanuniv., Leoben (Austria)

    1991-07-07

    Wear-resistant coatings of zirconium boride and zirconium boron nitride were deposited on steel and molybdenum substrates employing non-reactive as well as reactive d.c. magnetron sputtering using zirconium diboride targets. The characterization of the coatings was done by means of scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The results are discussed in connection with measured mechanical coating properties such as microhardness and adhesion. The optical properties of the coatings were determined using a CIE-L{sup *}a{sup *}b{sup *} colorimeter and specialized corrosion and abrasion tests. Non-reactive sputtering using ZrB{sub 2} targets results in the formation of coatings with a columnar structure and predominantly (001)-orientated ZrB{sub 2} crystals. Coatings deposited at low nitrogen flow rates exhibit very fine-grained or even fracture amorphous structures with a hexagonal Zr-B-N phase derived from the ZrB{sub 2} lattice. A further increase of the nitrogen flow leads to an amorphous film growth. The maximum Vickers microhardness of the coatings was found to be approximately 2300 HV 0.02. Zr-B and Zr-B-N coatings offer a wide range of interesting colours as well as good corrosion and wear resistance. (orig.).

  8. Overview of PVD wear resistant coatings

    International Nuclear Information System (INIS)

    Teeter, F.J.

    1999-01-01

    The combined functionality of wear-resistant and low-friction multilayer coatings has widened application possibilities for a new generation of coated tools. For the first time tool wear mechanisms are comprehensively addressed both at the cutting edge and contact areas away from the edge where chip evacuation is facilitated. Since its recent market introduction a combined TiA1N and WC/C PVD coating has been proven to increase cutting performance in various metal cutting operations, notably drilling and tapping of steels and aluminum alloys. Significant improvements have been obtained under dry as well as with coolant conditions. The results of laboratory metal cutting tests and field trials to date will be described. Correlations between chip formation / wear mechanisms and coating properties are given to explain the effectiveness of this coating. (author)

  9. Biocompatible wear-resistant thick ceramic coating

    Directory of Open Access Journals (Sweden)

    Vogt Nicola

    2016-09-01

    Full Text Available Sensitisation to immunologically active elements like chromium, cobalt or nickel and debris particle due to wear are serious problems for patients with metallic implants. We tested the approach of using a hard and thick ceramic coating as a wear-resistant protection of titanium implants, avoiding those sensitisation and foreign body problems. We showed that the process parameters strongly influence the coating porosity and, as a consequence, also its hardness.

  10. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method.

    Science.gov (United States)

    Su, Fenghua; Yao, Kai

    2014-06-11

    A novel method for controllable fabrication of a superhydrophobic surface with a water contact angle of 162 ± 1° and a sliding angle of 3 ± 0.5° on copper substrate is reported in this Research Article. The facile and low-cost fabrication process is composed from the electrodeposition in traditional Watts bath and the heat-treatment in the presence of (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane (AC-FAS). The superhydrophobicity of the fabricated surface results from its pine-cone-like hierarchical micro-nanostructure and the assembly of low-surface-energy fluorinated components on it. The superhydrophobic surface exhibits high microhardness and excellent mechanical abrasion resistance because it maintains superhydrophobicity after mechanical abrasion against 800 grit SiC sandpaper for 1.0 m at the applied pressure of 4.80 kPa. Moreover, the superhydrophobic surface has good chemical stability in both acidic and alkaline environments. The potentiodynamic polarization and electrochemical impedance spectroscopy test shows that the as-prepared superhydrophobic surface has excellent corrosion resistance that can provide effective protection for the bare Cu substrate. In addition, the as-prepared superhydrophobic surface has self-cleaning ability. It is believed that the facile and low-cost method offer an effective strategy and promising industrial applications for fabricating superhydrophobic surfaces on various metallic materials.

  11. Influence of Surface Pretreatment on the Corrosion Resistance of Cold-Sprayed Nickel Coatings in Acidic Chloride Solution

    Science.gov (United States)

    Scendo, Mieczyslaw; Zorawski, Wojciech; Staszewska-Samson, Katarzyna; Makrenek, Medard; Goral, Anna

    2018-03-01

    Corrosion resistance of the cold-sprayed nickel coatings deposited on the Ni surface (substrate) without and with abrasive grit-blasting treatment of the substrate was investigated. The corundum powder with different grain sizes was used. The corrosive environment contained an acidic chloride solution. The mechanism of the corrosion of nickel was suggested and discussed. Corrosion electrochemical parameters were determined by electrochemical methods. The corrosion effect of a nickel coating depends on the grain size used to prepare the substrate. The nickel coating after the medium grit-blasting treatment of the substrate was found to be the most corrosion resistant. However, the smallest resistance on the corrosion effect should be attributed to the nickel coating on the substrate after the coarse grit-blasting treatment.

  12. Research into properties of wear resistant ceramic metal plasma coatings

    Science.gov (United States)

    Ivancivsky, V. V.; Skeeba, V. Yu; Zverev, E. A.; Vakhrushev, N. V.; Parts, K. A.

    2018-03-01

    The study considers one of the promising ways to improve the quality of wear resistant plasma ceramic coatings by implementing various powder mixtures. The authors present the study results of the nickel-ceramic and cobalt-ceramic coating properties and describe the specific character of the investigated coatings composition. The paper presents the results of the coating microhardness, chemical and adhesive strength studies. The authors conducted wear resistance tests of composite coatings in comparison with the plasma coatings of initial powder components.

  13. The Abrasive Wear Resistance of the Segmented Linear Polyurethane Elastomers Based on a Variety of Polyols as Soft Segments

    Directory of Open Access Journals (Sweden)

    Konrad Kwiatkowski

    2017-12-01

    Full Text Available The presented results make an original contribution to the development of knowledge on the prediction and/or modeling of the abrasive wear properties of polyurethanes. A series of segmented linear polyurethane elastomers (PUR—In which the hard segments consist of 4,4′-methylene bis(phenylisocyanate and 1,4-butanodiol, whilst polyether, polycarbonate, or polyester polyols constitute the soft segments—Were synthesized and characterized. The hardness and wear performance as functions of the variable chemical composition of polyurethane elastomers were evaluated in order to define the relationship between studied factors. The microstructure was characterized in detail, including analysis of the hydrogen bonding by Fourier transformed infrared (FT-IR spectroscopy and the phase structure by X-ray scattering (WAXS and differential scanning calorimetry (DSC methods. The presented studies provide the key features of the polymer composition affecting the abrasive resistance as well as attempts to explain the origin of the differences in the polyurethane elastomers’ performance.

  14. Studies on broad spectrum corrosion resistant oxide coatings

    Indian Academy of Sciences (India)

    Unknown

    Corrosion resistant coating materials and their application ... technology demand such corrosion resistant coatings having a ... mill additives used are as follows: China clay, 3⋅0–10⋅0; .... stage involves modification in processing of the deve-.

  15. Evaluation of Resistance to Los Angeles Abrasion and Physical Factors with Grindability Properties of Some Aggregate Materials

    Directory of Open Access Journals (Sweden)

    C. Sensogut

    2017-01-01

    Full Text Available In recent years, the usage of aggregate materials has increased both in Turkey and the entire world. It can be said that the main reason of this rise is the population growth together with the demand towards the more qualitative life. Therefore, the usability of some aggregate materials was investigated in the present paper. The properties of Los Angeles abrasion resistance, freezing-thaw resistance, slake durability strength and frost resistance of basalt and andesite samples obtained from Karaman and Ankara regions were studied at the first stage. In the second order, the grindability performance of these materials was also determined from the discontinuous grinding tests and the obtained results were correlated. Whereas the Los Angeles resistance of the basalt sample was higher than the andesite sample, the mass losses after the freezing-thaw and the frost tests for the andesite sample were superior. Both of the basalt and andesite samples were classified as ‘very high’ for their slake durability strength (Id-2 values. The material percentage of the andesite sample, which is passing through the sub-size ( %90 was greater than the value obtained for the basalt sample during the same grinding time. The resistance to the crushing process was obtained to be maximum at -850+600 µm of feed size for the basalt and the andesite samples.

  16. Wear Resistance Properties Reinforcement Using Nano-Al/Cu Composite Coating in Sliding Bearing Maintenance.

    Science.gov (United States)

    Liu, Hongtao; Li, Zhixiong; Wang, Jianmei; Sheng, Chenxing; Liu, Wanli

    2018-03-01

    Sliding bearing maintenance is crucial for reducing the cost and extending the service life. An efficient and practical solution is to coat a restorative agent onto the worn/damaged bearings. Traditional pure-copper (Cu) coating results in a soft surface and poor abrasion resistance. To address this issue, this paper presents a nano-composite repairing coating method. A series of nano-Al/Cu coatings were prepared on the surface of 45 steel by composite electro-brush plating (EBP). Their micro-hardness was examined by a MHV-2000 Vickers hardness tester, and tribological properties by a UMT-2M Micro-friction tester, 3D profiler and SEM. Then, the influence of processing parameters such as nano-particle concentration and coating thickness on the micro-hardness of nano-Al/Cu coating was analyzed. The experimental analysis results demonstrate that, when the nano-Al particle concentration in electrolyte was 10 g/L, the micro-hardness of the composite coating was 1.1 times as much as that of pure-Cu coating. When the Al nano-particle concentration in electrolyte was 20 g/L, the micro-hardness of the composite coating reached its maximum value (i.e., 231.6 HV). Compared with the pure-Cu coating, the hardness and wear resistance of the nano-composite coating were increased, and the friction coefficient and wear volume were decreased, because of the grain strengthening and dispersion strengthening. The development in this work may provide a feasible and effective nano-composite EBP method for sliding bearing repair.

  17. Thermally-treated Pt-coated silicon AFM tips for wear resistance in ferroelectric data storage

    International Nuclear Information System (INIS)

    Bhushan, Bharat; Palacio, Manuel; Kwak, Kwang Joo

    2008-01-01

    In ferroelectric data storage, a conductive atomic force microscopy (AFM) probe with a noble metal coating is placed in contact with a lead zirconate titanate (PZT) film. The understanding and improvement of probe tip wear, particularly at high velocities, is needed for high data rate recording. A commercial Pt-coated silicon AFM probe was thermally treated in order to form platinum silicide at the near-surface. Nanoindentation, nanoscratch and wear experiments were performed to evaluate the mechanical properties and wear performance at high velocities. The thermally treated tip exhibited lower wear than the untreated tip. The tip wear mechanism is adhesive and abrasive wear with some evidence of impact wear. The enhancement in mechanical properties and wear resistance in the thermally treated film is attributed to silicide formation in the near-surface. Auger electron spectroscopy and electrical resistivity measurements confirm the formation of platinum silicide. This study advances the understanding of thin film nanoscale surface interactions

  18. Impact strength and abrasion resistance of high strength concrete with rice husk ash and rubber tires

    Directory of Open Access Journals (Sweden)

    M. B. Barbosa

    Full Text Available The paper discusses the application of High Strength Concrete (HSC technology for concrete production with the incorporation of Rice Husk Ash (RHA residues by replacing a bulk of the material caking and rubber tires with partial aggregate volume, assessing their influence on the mechanical properties and durability. For concrete with RHA and rubber, it was possible to reduce the brittleness by increasing the energy absorbing capacity. With respect to abrasion, the RHA and rubber concretes showed lower mass loss than the concrete without residues, indicating that this material is attractive to be used in paving. It is thus hoped that these residues may represent a technological and ecological alternative for the production of concrete in construction works.

  19. The structure of abrasion-resisting castings made of chromium cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2011-01-01

    Full Text Available In this study presents the analyse of chrome iron cast structure (as-cast condition which are used in rugged conditions abrasion-percussive and high temperature. While producing the casts of chrome iron major influence has been preserve the structure of technologi cal process parameters. The addition to Fe-C-Cr alloy Ni, Mo or Cu and then proper heat treatment leads to the improvement of functional and mechanical cast qualities. Then it is possible to develop high mechanical properties which are recommended by PN-EN12513. As can it be seen from the above research silicon is an adverse chemical element in this kind of alloy cast iron. However, the reason of cracksappearing in chrome iron casts are phosphorus eutectic microareas. When the compound of Si and P reach the critical point, described inPN-88/H-83144 outdated standard, the microareas might appear.

  20. Preparation and Properties of Superamphiphobic Wear-resistance PPS-based Coating

    Directory of Open Access Journals (Sweden)

    WANG Huai-yuan

    2017-01-01

    Full Text Available Superamphiphobic wear-resistance PPS-based coatings were prepared by a simple spraying method with a pore-forming reagent of NH4HCO3 and nano-filler of carbon nanotubes (CNTs.The surface morphology and the hydrophobicity,oleophobicity of the coating were analyzed by scanning electron microscope (SEM and contact angle meter.The wear-resistance of the coating was verified by sanding method with given load.The results indicate that a rough surface is obtained after pore-forming,and the porous structures in combination with the CNTs construct the special micro/nano-scale network structures.When the mass fraction of NH4HCO3 is 5%,the contact angles of the coating for water,glycerine and ethylene glycol are 162°,158° and 152°,showing superamphiphobic property.After polished 10000 times by abrasive paper,the coating shows slight friction marks and remains high hydrophobicity,exhibiting excellent wear-resistance.

  1. Empirical ranking of a wide range of WC-Co grades in terms of their abrasion resistance measured by the ASTM standard B 611-85 test

    CSIR Research Space (South Africa)

    O'Quigley, DGF

    1997-01-01

    Full Text Available This paper reports the results of a comprehensive investigation into the abrasion resistance of WC-Co alloys, as measured by the ASTM Standard B 611-85 test. The alloys ranged from 3 to 50 wt% and from 0.6 to 5 mu-m average grain size. Careful...

  2. Influence of Plasma Transferred Arc Process Parameters on Structure and Mechanical Properties of Wear Resistive NiCrBSi-WC/Co Coatings

    Directory of Open Access Journals (Sweden)

    Eitvydas GRUZDYS

    2011-07-01

    Full Text Available Self-fluxing NiCrBSi and related coatings received considerable interest due to their good wear as well as corrosion resistance at moderate and elevated temperatures. Hard tungsten carbide (WC particles can be included in NiCrBSi for further increase of the coating hardness and abrasive wear resistance. Flame spray technique is widely used for fabrication of NiCrBSi films. However, in such a case, subsequent remelting of the deposited coatings by flame, arc discharge or high power laser beam is necessary. In present study NiCrBSi-WC/Co coatings were formed using plasma transferred arc process. By adjusting plasma parameters, such as current, plasma gas flow, shielding gas flow, a number of coatings were formed on steel substrates. Structure of the coatings was investigated using X-ray diffractometry. Microstructure of cross-sectioned coatings was examined using scanning electron microscopy. Hardness of the coating was evaluated by means of the Vickers hardness tests. Wear tests were also performed on specimens to determine resistance to abrasive wear. Acquired results allowed estimating the influence of the deposition process parameters on structure and mechanical properties of the coatings.http://dx.doi.org/10.5755/j01.ms.17.2.482

  3. Adhesive, abrasive and oxidative wear in ion-implanted metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1985-01-01

    Ion implantation is increasingly being used to provide wear resistance in metals and cemented tungsten carbides. Field trials and laboratory tests indicate that the best performance is achieved in mild abrasive wear. This can be understood in terms of the classification of wear modes (adhesive, abrasive, oxidative etc.) introduced by Burwell. Surface hardening and work hardenability are the major properties to be enhanced by ion implantation. The implantation of nitrogen or dual implants of metallic and interstitial species are effective. Recently developed techniques of ion-beam-enhanced deposition of coatings can further improve wear resistance by lessening adhesion and oxidation. In order to support such hard coatings, ion implantation of nitrogen can be used as a preliminary treatment. There is thus emerging a versatile group of related hard vacuum treatments involving intense beams of nitrogen ions for the purpose of tailoring metal surfaces to resist wear. (Auth.)

  4. Thermal Barrier Coatings Resistant to Glassy Deposits

    Science.gov (United States)

    Drexler, Julie Marie

    Engineering of alloys has for years allowed aircraft turbine engines to become more efficient and operate at higher temperatures. As advancements in these alloy systems have become more difficult, ceramic thermal barrier coatings (TBCs), often yttria (7 wt %) stabilized zirconia (7YSZ), have been utilized for thermal protection. TBCs have allowed for higher engine operating temperatures and better fuel efficiency but have also created new engineering problems. Specifically, silica based particles such as sand and volcanic ash that enter the engine during operation form glassy deposits on the TBCs. These deposits can cause the current industrial 7YSZ thermal barrier coatings to fail since the glass formed penetrates and chemically interacts with the TBC. When this occurs, coating failure may occur due to a loss of strain tolerance, which can lead to fracture, and phase changes of the TBC material. There have been several approaches used to stop calcium-magnesium aluminio-silcate (CMAS) glasses (molten sand) from destroying the entire TBC, but overall there is still limited knowledge. In this thesis, 7YSZ and new TBC materials will be examined for thermochemical and thermomechanical performance in the presence of molten CMAS and volcanic ash. Two air plasma sprayed TBCs will be shown to be resistant to volcanic ash and CMAS. The first type of coating is a modified 7YSZ coating with 20 mol% Al2O3 and 5 mol% TiO2 in solid solution (YSZ+20Al+5Ti). The second TBC is made of gadolinium zirconate. These novel TBCs impede CMAS and ash penetration by interacting with the molten CMAS or ash and drastically changing the chemistry. The chemically modified CMAS or ash will crystallize into an apatite or anorthite phase, blocking the CMAS or ash from further destroying the coating. A presented mechanism study will show these coatings are effective due to the large amount of solute (Gd, Al) in the zirconia structure, which is the key to creating the crystalline apatite or

  5. Corrosion resistance of Cu-Al coatings produced by thermal spray

    Directory of Open Access Journals (Sweden)

    Laura Marcela Dimaté Castellanos

    2012-01-01

    Full Text Available Many components in the shipbuilding industry are made of copper-based alloys. These pieces tend to break due to corrosion generated by a marine environment; such components can be salvaged through surface engineering, through deposition of suitable coatings. This paper studied the influence of three surface preparation methods involving phosphor bronze substrates concerning the corrosion resistance of commercial coatings having Al-Cu +11% Fe chemical composition. The surface was prepared using three methods: sand blasting, shot blasting and metal polishing with an abrasive disk (with and without a base layer. The deposited coatings were micro-structurally characterised by x-ray diffraction (XRD, optical microscopy and scanning electron microscopy (SEM. Corrosion resistance was evaluated by electrochemical test electrochemical impedance spectroscopy (EIS. Surfaces prepared by sandblasting showed the best resistance to corrosion, so these systems could be a viable alternative for salvaging certain parts in the marine industry. The corrosion mechanisms for the coatings produced are discussed in this research.

  6. Wear resistance and structural changes in nitrogen-containing high-chromium martensitic steels under conditions of abrasive wear and sliding friction

    International Nuclear Information System (INIS)

    Makarov, A.V.; Korshunov, L.G.; Schastlivtsev, V.M.; Chernenko, N.L.

    1998-01-01

    Martensitic nitrogen-containing steels Kh17N2A0.14, Kh13A0.14, Kh14G4A0.22 as well as steel 20Kh13 were studied for their wear resistance under conditions of friction and abrasion. Metallography, X ray diffraction analysis and electron microscopy were used to investigate the structural changes taking place in a thin surface layer on wearing. It is shown that an increase of nitrogen content of 0.14 to 0.22% promotes an enhancement of steel resistance to abrasive and adhesive wear, especially after tempering in the range of 500-550 deg C. Typically, the nitrogen-containing steels exhibit lower resistance to various types of wear in comparison with the steels with high-carbon martensite due to their lower deformability under conditions of friction loading

  7. Evaluation of Erosion Resistance of Advanced Turbine Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Kuczmarski, Maria A.; Miller, Robert A.; Cuy, Michael D.

    2007-01-01

    The erosion resistant turbine thermal barrier coating system is critical to aircraft engine performance and durability. By demonstrating advanced turbine material testing capabilities, we will be able to facilitate the critical turbine coating and subcomponent development and help establish advanced erosion-resistant turbine airfoil thermal barrier coatings design tools. The objective of this work is to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and/or thermal gradient environments, validating advanced turbine airfoil thermal barrier coating systems based on nano-tetragonal phase toughening design approaches.

  8. Scratch resistance of SiO2 and SiO2 - ZrO2 sol-gel coatings on glass-ceramic obtained by sintering

    International Nuclear Information System (INIS)

    Soares, V. O.; Soares, P.; Peitl, O.; Zanotto, E. D.; Duran, A.; Castro, Y.

    2013-01-01

    The sol-gel process is widely used to obtain coatings on glass-ceramic substrates in order to improve the scratch and abrasion resistance, also providing a bright and homogeneous appearance of a glaze avoiding expensive final polishing treatments. This paper describes the preparation of silica and silica / zirconia coatings by sol-gel method on Li 2 O-Al 2 O3-SiO 2 (LAS) glassceramic substrates produced by sintering. The coatings were deposited by dip-coating on LAS substrates and characterized by optical microscopy and spectral ellipsometry. On the other hand, hardness and elastic modulus, coefficient of friction and abrasion and scratch resistance of the coatings were determined and compared with the substrate properties. Coatings deposited on LAS glass-ceramic confere the substrate a bright and homogeneous aspect, similar to a glaze, improving the appearance and avoiding the final polishing. However these coatings do not increase the scratch resistance of the substrate only equaling the properties of the glass-ceramic. (Author)

  9. Wear Resistant Amorphous and Nanocomposite Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Racek, O

    2008-03-26

    Glass forming materials (critical cooling rate <10{sup 4}K.s{sup -1}) are promising for their high corrosion and wear resistance. During rapid cooling, the materials form an amorphous structure that transforms to nanocrystalline during a process of devitrification. High hardness (HV 1690) can be achieved through a controlled crystallization. Thermal spray process has been used to apply coatings, which preserves the amorphous/nanocomposite structure due to a high cooling rate of the feedstock particles during the impact on a substrate. Wear properties have been studied with respect to process conditions and feedstock material properties. Application specific properties such as sliding wear resistance have been correlated with laboratory tests based on instrumented indentation and scratch tests.

  10. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion

    Energy Technology Data Exchange (ETDEWEB)

    Gajek, M; Lis, J; Partyka, J; Wojczyk, M, E-mail: mgajek@agh.edu.pl [AGH University of Science and Technology, Faculty of Materials Science and Ceramic, al. Mickiewicza 30, 30-059 Cracow (Poland)

    2011-10-29

    The results of research aimed at the study on frits and glass-ceramic glazes for floor tiles, based on compositions located in the primary field of cordierite crystallization within the system MgO-Al{sub 2}O{sub 3}-SiO{sub 2}, have been presented. The results comprise investigations on the frits crystallization abilities, stability of the crystallizing phase under conditions of single-stage a fast firing cycle (time below 60 minutes) depending on their chemical composition and the influence of the nucleation agents. The influence of the nucleating agents namely TiO{sub 2}, ZrO{sub 2}, V{sub 2}O{sub 5} on phase composition of obtained crystalline glazes, mechanical parameters and microstructure, has been examined. The strength tests proved increased mechanical resistance of crystalline glazes. Obtained glazes are characterized by high microhardness in range 6{approx}8 GPa, as well as the increased wear resistance measured by the loss of weight below 100 mg / 55 cm{sup 2} (PN-EN ISO 10545-7). Significant increase of these parameters as compared with non-crystalline glazes, where micro-hardness values range between 5{approx}6 GPa and the wear resistance values range from 120 to 200 mg, has been proved. Starting glasses (frits) and glazes of the ternary system MgO-SiO{sub 2}-Al{sub 2}O{sub 3}, were examined with use of DTA, XRD and SEM methods.

  11. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion

    Science.gov (United States)

    Gajek, M.; Lis, J.; Partyka, J.; Wójczyk, M.

    2011-10-01

    The results of research aimed at the study on frits and glass-ceramic glazes for floor tiles, based on compositions located in the primary field of cordierite crystallization within the system MgO-Al2O3-SiO2, have been presented. The results comprise investigations on the frits crystallization abilities, stability of the crystallizing phase under conditions of single-stage a fast firing cycle (time below 60 minutes) depending on their chemical composition and the influence of the nucleation agents. The influence of the nucleating agents namely TiO2, ZrO2, V2O5 on phase composition of obtained crystalline glazes, mechanical parameters and microstructure, has been examined. The strength tests proved increased mechanical resistance of crystalline glazes. Obtained glazes are characterized by high microhardness in range 6~8 GPa, as well as the increased wear resistance measured by the loss of weight below 100 mg / 55 cm2 (PN-EN ISO 10545-7). Significant increase of these parameters as compared with non-crystalline glazes, where micro-hardness values range between 5~6 GPa and the wear resistance values range from 120 to 200 mg, has been proved. Starting glasses (frits) and glazes of the ternary system MgO-SiO2-Al2O3, were examined with use of DTA, XRD and SEM methods.

  12. Floor tile glass-ceramic glaze for improvement of the resistance to surface abrasion

    International Nuclear Information System (INIS)

    Gajek, M; Lis, J; Partyka, J; Wojczyk, M

    2011-01-01

    The results of research aimed at the study on frits and glass-ceramic glazes for floor tiles, based on compositions located in the primary field of cordierite crystallization within the system MgO-Al 2 O 3 -SiO 2 , have been presented. The results comprise investigations on the frits crystallization abilities, stability of the crystallizing phase under conditions of single-stage a fast firing cycle (time below 60 minutes) depending on their chemical composition and the influence of the nucleation agents. The influence of the nucleating agents namely TiO 2 , ZrO 2 , V 2 O 5 on phase composition of obtained crystalline glazes, mechanical parameters and microstructure, has been examined. The strength tests proved increased mechanical resistance of crystalline glazes. Obtained glazes are characterized by high microhardness in range 6∼8 GPa, as well as the increased wear resistance measured by the loss of weight below 100 mg / 55 cm 2 (PN-EN ISO 10545-7). Significant increase of these parameters as compared with non-crystalline glazes, where micro-hardness values range between 5∼6 GPa and the wear resistance values range from 120 to 200 mg, has been proved. Starting glasses (frits) and glazes of the ternary system MgO-SiO 2 -Al 2 O 3 , were examined with use of DTA, XRD and SEM methods.

  13. Low cost sic coated erosion resistant graphite

    International Nuclear Information System (INIS)

    Zafar, M.F.; Nicholls, J.R.

    2007-01-01

    The development of materials with unique and improved properties using low cost processes is essential to increase performance and reduce cost of the solid rocket motors. Specifically advancements are needed for boost phase nozzle. As these motors operate at very high pressure and temperatures, the nozzle must survive high thermal stresses with minimal erosion to maintain performance. Currently three material choices are being exploited; which are refractory metals, graphite and carbon-carbon composites. Of these three materials graphite is the most attractive choice because of its low cost, light weight, and easy forming. However graphite is prone to erosion, both chemical and mechanical, which may affect the ballistic conditions and mechanical properties of the nozzle. To minimize this erosion high density graphite is usually preferred; which is again very expensive. Another technique used to minimize the erosion is Pyrolytic Graphite (PG) coating inside the nozzle. However PG coating is prone to cracking and spallation along with very cumbersome deposition process. Another possible methodology to avoid this erosion is to convert the inside surface of the rocket nozzle to Silicon Carbide (SiC), which is very erosion resistant and have much better thermal stability compared to graphite and even PG. Due to its functionally gradient nature such a layer will be very adherent and resistant to spallation. The current research is focused on synthesizing, characterizing and oxidation testing of such a converted SiC layer on commercial grade graphite. (author)

  14. Reduction of aesthetical properties of organic coatings caused by mechanical damage

    International Nuclear Information System (INIS)

    Rossi, S.; Deflorian, F.; Scrinzi, E.

    2009-01-01

    Organic coatings are the most commonly used system for protection from corrosion. In many applications, the protective properties against corrosion are associated with several other properties, including resistance to abrasion and good aesthetic appearance. This is particularly important for the automotive and transport industry, building trade, domestic products, packaging. To evaluate the abrasion resistance of organic coatings the Taber Abraser test is frequently used. The aim of this work is to evaluate the reduction of aesthetical properties, caused by abrasion by Taber test, using different abrasive pastes. The level of damage was evaluated through gloss measurements; 20 deg. was the most sensitive angle to gloss changes, with this geometry different samples could be compared. The correlation between the changes of gloss and the damage was investigated using optical microscopy and environmental scanning electron microscopy. With increase of grain dimensions, the paste became more abrasive with negative effect on the aesthetical aspect of the organic coating

  15. Effect of denture cleaning on abrasion resistance and surface topography of polymerized CAD CAM acrylic resin denture base.

    Science.gov (United States)

    Shinawi, Lana Ahmed

    2017-05-01

    The application of computer-aided design computer-aided manufacturing (CAD CAM) technology in the fabrication of complete dentures, offers numerous advantages as it provides optimum fit and eliminates polymerization shrinkage of the acrylic base. Additionally, the porosity and surface roughness of CAD CAM resins is less compared to conventionally processed resins which leads to a decrease in the adhesion of bacteria on the denture base, which is associated with many conditions including halitosis and aspiration pneumonia in elderly denture wearers. To evaluate the influence of tooth brushing with dentifrices on CAD CAM resin blocks in terms of abrasion resistance, surface roughness and scanning electron photomicrography. This experimental study was carried out at the Faculty of Dentistry of King Abdulaziz University during 2016. A total of 40 rectangular shaped polymerized CAD CAM resin samples were subjected to 40.000 and 60.000 brushing strokes under a 200-gram vertical load simulating three years of tooth brushing strokes using commercially available denture cleaning dentifrice. Data were analyzed by SPSS version 20, using descriptive statistics and ANOVA. ANOVA test revealed a statistical significant weight loss of CAD CAM acrylic resin denture base specimens following 40.000 and 60.000 brushing strokes as well as a statistical significant change (p=0.0.5) in the surface roughness following brushing. The CAD CAM resin samples SEM baseline imaging revealed a relatively smooth homogenous surface, but following 40,000 and 60,000 brushing strokes, imaging displayed the presence of small scratches on the surface. CAD CAM resin displayed a homogenous surface initially with low surface roughness that was significantly affected following simulating three years of manual brushing, but despite the significant weight loss, the findings are within the clinically acceptable limits.

  16. Ultraviolet damage resistance of laser coatings

    International Nuclear Information System (INIS)

    Newnam, B.E.; Gill, D.H.

    1978-01-01

    The damage resistance of several thin-film materials used in ultraviolet laser optics was measured at 266 and 355 nm. The coatings included single, quarterwave (QW) layers of NaF, LaF 3 , MgF 2 , ThO 2 , Al 2 O 3 , HfO 2 , ZrO 2 , Y 2 O 3 and SiO 2 , plus multilayer reflectors composed of some of these materials. The substrates were uv-grade fused silica. Single-shot thresholds were obtained with 22 ns and 27 ns (FWHM) pulses at 266 and 355 nm, respectively. One of the samples had previously been tested using 20-ps pulses, providing a pulsewidth comparison. At 266 nm the coating with the highest damage threshold was a QW layer of NaF at 10.8 J/cm 2 (450 MW/cm 2 ), whereas for a maximum reflector of Al 2 O 3 /NaF the value was 3.6 J/cm 2 (154 MW/cm 2 ), and the threshold of the maximum reflector was 12.2 J/cm 2 (470 MW/cm 2 ). The results were analyzed to determine correlations with standing-wave electric fields and linear and two-photon absorption. Scaling relationships for wavelength, refractive index and atomic density, and pulsewidth were found

  17. Simple Coatings to Render Polystyrene Protein Resistant

    Directory of Open Access Journals (Sweden)

    Marcelle Hecker

    2018-02-01

    Full Text Available Non-specific protein adsorption is detrimental to the performance of many biomedical devices. Polystyrene is a commonly used material in devices and thin films. Simple reliable surface modification of polystyrene to render it protein resistant is desired in particular for device fabrication and orthogonal functionalisation schemes. This report details modifications carried out on a polystyrene surface to prevent protein adsorption. The trialed surfaces included Pluronic F127 and PLL-g-PEG, adsorbed on polystyrene, using a polydopamine-assisted approach. Quartz crystal microbalance with dissipation (QCM-D results showed only short-term anti-fouling success of the polystyrene surface modified with F127, and the subsequent failure of the polydopamine intermediary layer in improving its stability. In stark contrast, QCM-D analysis proved the success of the polydopamine assisted PLL-g-PEG coating in preventing bovine serum albumin adsorption. This modified surface is equally as protein-rejecting after 24 h in buffer, and thus a promising simple coating for long term protein rejection of polystyrene.

  18. Development of the white cast iron with niobium alloy, heat treating, to wear of the abrasive resistance

    International Nuclear Information System (INIS)

    Farah, Alessandro Fraga

    1997-01-01

    This work presents the heat treatment and abrasion tests results of a white cast iron with niobium alloy. The hardening heat treatment were made 950, 1000, 1050 e 110 deg C temperatures cooled by forced air. The tempering treatment were made at 450, 500 e 550 deg C temperatures. The heat treating alloy were compared, in the abrasive tests, with commercial alloys used as hardfacing by welding process in wear pieces. The abrasion tests was realized in pin on disk test. Additional tests were carried out for microstructural characterization to identify the different phases presents in the alloys. In a general way, the alloy studies showed the best wear rate for the heat treatments that results in higher hardness. It performance was superior than that of the commercial alloys. (author)

  19. Characterisation of WC-12Co thermal spray powders and HPHVOF wear resistant coatings

    CSIR Research Space (South Africa)

    Lovelock, HDL

    1998-01-01

    Full Text Available were selected for the deposition of thermal spray coatings using the JP 5000 high pressure high velocity oxyfuel (HPHVOF) system. Dry sand rubber wheel abrasion tests were performed on the coatings in order to determine the effect of powder...

  20. Fabrication of ZIF-8@SiO2 Micro/Nano Hierarchical Superhydrophobic Surface on AZ31 Magnesium Alloy with Impressive Corrosion Resistance and Abrasion Resistance.

    Science.gov (United States)

    Wu, Cuiqing; Liu, Qi; Chen, Rongrong; Liu, Jingyuan; Zhang, Hongsen; Li, Rumin; Takahashi, Kazunobu; Liu, Peili; Wang, Jun

    2017-03-29

    Superhydrophobic coatings are highly promising for protecting material surfaces and for wide applications. In this study, superhydrophobic composites, comprising a rhombic-dodecahedral zeolitic imidazolate framework (ZIF-8@SiO 2 ), have been manufactured onto AZ31 magnesium alloy via chemical etching and dip-coating methods to enhance stability and corrosion resistance. Herein, we report on a simple strategy to modify hydrophobic hexadecyltrimethoxysilan (HDTMS) on ZIF-8@SiO 2 to significantly improve the property of repelling water. We show that various liquids can be stable on its surface and maintain a contact angle higher than 150°. The morphologies and chemical composition were characterized by means of scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FI-IR). In addition, the anticorrosion and antiattrition properties of the film were assessed by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization and HT, respectively. Such a coating shows promising potential as a material for large-scale fabrication.

  1. Hydroxyapatite/poly(epsilon-caprolactone) double coating on magnesium for enhanced corrosion resistance and coating flexibility.

    Science.gov (United States)

    Jo, Ji-Hoon; Li, Yuanlong; Kim, Sae-Mi; Kim, Hyoun-Ee; Koh, Young-Hag

    2013-11-01

    Hydroxyapatite was deposited on pure magnesium (Mg) with a flexible poly(ε-caprolactone) interlayer to reduce the corrosion rate of Mg and enhance coating flexibility. The poly(ε-caprolactone) interlayer was uniformly coated on Mg by a spraying method, followed by hydroxyapatite deposition on the poly(ε-caprolactone) using an aerosol deposition method. In scanning electron microscopy observations, inorganic/organic composite-like structure was observed between the hydroxyapatite and poly(ε-caprolactone) layers, resulting from the collisions of hydroxyapatite particles into the poly(ε-caprolactone) matrix at the initial stage of the aerosol deposition. The corrosion resistance of the coated Mg was examined using potentiodynamic polarization tests. The hydroxyapatite/poly(ε-caprolactone) double coating remarkably improved the corrosion resistance of Mg in Hank's solution. In the in vitro cell tests, the coated Mg showed better cell adhesion compared with the bare Mg due to the reduced corrosion rate and enhanced biocompatibility. The stability and flexibility of hydroxyapatite/poly(ε-caprolactone) double coating was investigated by scanning electron microscopy inspections after the coated Mg was deformed. The hydroxyapatite coating on the poly(ε-caprolactone) interlayer revealed enhanced coating stability and flexibility without cracking or delamination during bending and stretching compared with the hydroxyapatite single coating. These results demonstrated that the hydroxyapatite/poly(ε-caprolactone) double coating significantly improved the surface corrosion resistance of Mg and enhanced coating flexibility for use of Mg as a biodegradable implant.

  2. Wear and impact resistance of HVOF sprayedceramic matrix composites coating

    Science.gov (United States)

    Prawara, B.; Martides, E.; Priyono, B.; Ardy, H.; Rikardo, N.

    2016-02-01

    Ceramic coating has the mechanical properties of high hardness and it is well known for application on wear resistance, but on the other hand the resistance to impact load is low. Therefore its use is limited to applications that have no impact loading. The aim of this research was to obtain ceramic-metallic composite coating which has improved impact resistance compared to conventional ceramic coating. The high impact resistance of ceramic-metallic composite coating is obtained from dispersed metallic alloy phase in ceramic matrix. Ceramic Matrix Composites (CMC) powder with chrome carbide (Cr3C2) base and ceramic-metal NiAl-Al2O3 with various particle sizes as reinforced particle was deposited on mild steel substrate with High Velocity Oxygen Fuel (HVOF) thermal spray coating. Repeated impact test showed that reinforced metallic phase size influenced impact resistance of CMC coating. The ability of CMC coating to absorb impact energy has improved eight times and ten times compared with original Cr3C2 and hard chrome plating respectively. On the other hand the high temperature corrosion resistance of CMC coating showed up to 31 cycles of heating at 800°C and water quenching cooling.

  3. Laser cladding of wear resistant metal matrix composite coatings

    International Nuclear Information System (INIS)

    Yakovlev, A.; Bertrand, Ph.; Smurov, I.

    2004-01-01

    A number of coatings with wear-resistant properties as well as with a low friction coefficient are produced by laser cladding. The structure of these coatings is determined by required performance and realized as metal matrix composite (MMC), where solid lubricant serves as a ductile matrix (e.g. CuSn), reinforced by appropriate ceramic phase (e.g. WC/Co). One of the engineered coating with functionally graded material (FGM) structure has a dry friction coefficient 0.12. Coatings were produced by coaxial injection of powder blend into the zone of laser beam action. Metallographic and tribological examinations were carried out confirming the advanced performance of engineered coatings

  4. Analyses on Silicide Coating for LOCA Resistant Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sweidan, Faris B.; Lee, You Ho; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    A particular focus of accident-tolerant fuel has been cladding due to the rapid high-temperature oxidation of zirconium-based cladding with the evolution of H2 when steam is a reactant. Some key features of the coated cladding include high-temperature resistance to oxidation, lower processing temperatures, and a high melting point of the coating. Zirconium alloys exhibit a reasonably high melting temperature, so a coating for the cladding is appealing if the coating increases the high-temperature resistance to oxidation. In this case, the cladding is protected from complete oxidation. The cladding coating involves the application of zirconium silicide onto Zr-based cladding. Zirconium silicide coating is expected to produce a glassy layer that becomes more protective at elevated temperature. For this reason, silicide coatings on cladding offer the potential for improved reliability at normal operating temperatures and at the higher transient temperatures encountered during accidents. Although ceramic coatings are brittle and may have weak points to be used as coating materials, several ceramic coatings were successful and showed adherent behavior and high resistance to oxidation. In this study, the oxidation behavior of zirconium silicide and its oxidation kinetics are analyzed. Zirconium silicide is a new suggested material to be used as coatings on existing Zr-based cladding alloys, the aim of this study is to evaluate if zirconium silicide is applicable to be used, so they can be more rapidly developed using existing cladding technology with some modifications. These silicide coatings are an attractive alternative to the use of coatings on zirconium claddings or to the lengthy development of monolithic ceramic or ceramic composite claddings and coatings.

  5. Analyses on Silicide Coating for LOCA Resistant Cladding

    International Nuclear Information System (INIS)

    Sweidan, Faris B.; Lee, You Ho; Ryu, Ho Jin

    2015-01-01

    A particular focus of accident-tolerant fuel has been cladding due to the rapid high-temperature oxidation of zirconium-based cladding with the evolution of H2 when steam is a reactant. Some key features of the coated cladding include high-temperature resistance to oxidation, lower processing temperatures, and a high melting point of the coating. Zirconium alloys exhibit a reasonably high melting temperature, so a coating for the cladding is appealing if the coating increases the high-temperature resistance to oxidation. In this case, the cladding is protected from complete oxidation. The cladding coating involves the application of zirconium silicide onto Zr-based cladding. Zirconium silicide coating is expected to produce a glassy layer that becomes more protective at elevated temperature. For this reason, silicide coatings on cladding offer the potential for improved reliability at normal operating temperatures and at the higher transient temperatures encountered during accidents. Although ceramic coatings are brittle and may have weak points to be used as coating materials, several ceramic coatings were successful and showed adherent behavior and high resistance to oxidation. In this study, the oxidation behavior of zirconium silicide and its oxidation kinetics are analyzed. Zirconium silicide is a new suggested material to be used as coatings on existing Zr-based cladding alloys, the aim of this study is to evaluate if zirconium silicide is applicable to be used, so they can be more rapidly developed using existing cladding technology with some modifications. These silicide coatings are an attractive alternative to the use of coatings on zirconium claddings or to the lengthy development of monolithic ceramic or ceramic composite claddings and coatings

  6. Resistive coating for current conductors in cryogenic applications

    International Nuclear Information System (INIS)

    Hirayama, C.; Wagner, G.R.

    1982-01-01

    This invention relates to a resistive or semiconducting coating for use on current conductors in cryogenic applications. This includes copper-clad superconductor wire, copper wire used for stabilizing superconductor magnets, and for hyperconductors. The coating is a film of cuprous sulfide (Cu2S) that has been found not to degrade the properties of the conductors. It is very adherent to the respective conductors and satisfies the mechanical, thermal and electrical requirements of coatings for the conductors

  7. Corrosion resistant coatings suitable for elevated temperature application

    Science.gov (United States)

    Chan, Kwai S [San Antonio, TX; Cheruvu, Narayana Sastry [San Antonio, TX; Liang, Wuwei [Austin, TX

    2012-07-31

    The present invention relates to corrosion resistance coatings suitable for elevated temperature applications, which employ compositions of iron (Fe), chromium (Cr), nickel (Ni) and/or aluminum (Al). The compositions may be configured to regulate the diffusion of metals between a coating and a substrate, which may then influence coating performance, via the formation of an inter-diffusion barrier layer. The inter-diffusion barrier layer may comprise a face-centered cubic phase.

  8. Plasma-Arc Deposited Elemental Boron Film for use as a Durable Nonstick Coating

    National Research Council Canada - National Science Library

    Klepper, C. C

    2007-01-01

    Report developed under Small Business Innovation Research Contract. Under this Phase I SBIR contract, HY-Tech Research performed development of an abrasion resistant, non-stick coating for cookware used by the U.S. Army in the field...

  9. Electrodeposition and Corrosion Resistance of Ni-Graphene Composite Coatings

    Science.gov (United States)

    Szeptycka, Benigna; Gajewska-Midzialek, Anna; Babul, Tomasz

    2016-08-01

    The research on the graphene application for the electrodeposition of nickel composite coatings was conducted. The study assessed an important role of graphene in an increased corrosion resistance of these coatings. Watts-type nickel plating bath with low concentration of nickel ions, organic addition agents, and graphene as dispersed particles were used for deposition of the composite coatings nickel-graphene. The results of investigations of composite coatings nickel-graphene deposited from the bath containing 0.33, 0.5, and 1 g/dm3 graphene and one surface-active substance were shown. The contents of particles in coatings, the surface morphology, the cross-sectional structures of the coated samples, and their thickness and the internal stresses were studied. Voltammetric method was used for examination of the corrosion resistance of samples of composite coatings in 0.5 M NaCl. The obtained results suggest that the content of incorporated graphene particles increases with an increasing amount of graphene in plating bath. The application of organic compounds was advantageous because it caused compressive stresses in the deposited coatings. All of the nickel-graphene composite layers had better corrosion resistance than the nickel coating.

  10. Electrolytic deposition and corrosion resistance of Zn–Ni coatings

    Indian Academy of Sciences (India)

    Zn–Ni coatings were deposited under galvanostatic conditions on steel substrate (OH18N9). The influence of current density of deposition on the surface morphology, chemical and phase composition was investigated. The corrosion resistance of Zn–Ni coatings obtained at current density 10–25 mA cm-2 are measured, ...

  11. Ion implantation and ion assisted coatings for wear resistance in metals

    International Nuclear Information System (INIS)

    Dearnaley, G.

    1986-01-01

    The implantation of electrically accelerated ions of chosen elements into the surface of material provides a method for improving surface properties such as wear resistance. High concentrations of nitrogen implanted into metals create obstacles to dislocation movement, and certain combinations of metallic and non-metallic species will also strengthen the surface. The process is best applied to situations involving mild abrasive wear and operating temperatures that are not too high. Some dramatic increases in life have been reported under such favourable conditions. A more recent development has been the combination of a thin coating with reactive ion bombardment designed to enhance adhesion by ion mixing at the interface and so provide hardness by the formation of finely dispersed nitrides, including cubic boron nitride. These coatings often possess vivid and decorative colours as an added benefit. Developments in the equipment for industrial ion implantation now offer more attractive costs per unit area and a potentially greater throughput of work. A versatile group of related hard vacuum treatments is now emerging, involving the use of intense beams of nitrogen ions for the purpose of tailoring metal surfaces to resist wear. (author)

  12. Effect of Nanosilica Particle Size on the Water Permeability, Abrasion Resistance, Drying Shrinkage, and Repair Work Properties of Cement Mortar Containing Nano-SiO2

    Directory of Open Access Journals (Sweden)

    Sattawat Haruehansapong

    2017-01-01

    Full Text Available This work presents the effect of nanosilica particle sizes on durability properties and repair work properties of cement mortar containing nanosilica (NS. Three different NS particle sizes of 12, 20, and 40 nm were used and compared with those of cement mortar without NS and cement mortar with silica fume (SF. Interesting results were obtained in which the particle size of NS affected directly the abrasion resistance and water permeability. NS with particle size of 40 nm is the optimum size and gave the highest abrasion resistance and water permeability. For repair work properties, cement mortars containing NS (12 and 20 nm and SF experienced higher drying shrinkage than that of cement mortar without NS and then presented cracking behavior and debonding between the cement mortars and concrete substrate. Cement mortar containing 40 nm of NS gave the lowest drying shrinkage, the lowest crack number, and the highest adhesive strength. These results indicate that the particle size of NS affected not only the durability properties but also the repair work properties of cement mortar.

  13. Radiation curable resistant coatings and their preparation

    International Nuclear Information System (INIS)

    Brack, K.

    1976-01-01

    A prepolymer containing unsaturated hydrocarbon groups is prepared and mixed on a roller mill with one or more acrylic ester monomers and various additives to make a coating formulation of a desired viscosity. In general, low viscosity formulations are used for overprint varnishes, on paper or foil, or with pigments, for certain types of printing inks. Higher viscosity formulations are used to apply thick films on panels, tiles, or other bodies. Thin films are cured to hardness by brief exposure to ultraviolet light. Thicker films require more energetic radiation such as plasma arc and electron beam radiation. The prepolymers particularly useful for making such radiation curable coatings are the reaction products of polyether polyols and bis- or polyisocyanates and hydroxy alkenes or acrylic (or methacrylic) hydroxy esters, and, likewise, reactive polyamides modified with dicarboxy alkenes, their anhydrides or esters. A small amount of wax incorporated in the coating formulations results in coatings with release characteristics similar to those of PTFE coatings. 10 claims

  14. Porosity and wear resistance of flame sprayed tungsten carbide coatings

    Science.gov (United States)

    Winarto, Winarto; Sofyan, Nofrijon; Rooscote, Didi

    2017-06-01

    Thermal-sprayed coatings offer practical and economical solutions for corrosion and wear protection of components or tools. To improve the coating properties, heat treatment such as preheat is applied. The selection of coating and substrate materials is a key factor in improving the quality of the coating morphology after the heat treatment. This paper presents the experimental results regarding the effect of preheat temperatures, i.e. 200°C, 300°C and 400°C, on porosity and wear resistance of tungsten carbide (WC) coating sprayed by flame thermal coating. The powders and coatings morphology were analyzed by a Field Emission Scanning Electron Microscope equipped with Energy Dispersive Spectrometry (FE-SEM/EDS), whereas the phase identification was performed by X-Ray diffraction technique (XRD). In order to evaluate the quality of the flame spray obtained coatings, the porosity, micro-hardness and wear rate of the specimens was determined. The results showed that WC coating gives a higher surface hardness from 1391 HVN up to 1541 HVN compared to that of the non-coating. Moreover, the wear rate increased from 0.072 mm3/min. to 0.082 mm3/min. when preheat temperature was increased. Preheat on H13 steel substrate can reduce the percentage of porosity level from 10.24 % to 3.94% on the thermal spray coatings.

  15. Transforming Anaerobic Adhesives into Highly Durable and Abrasion Resistant Superhydrophobic Organoclay Nanocomposite Films: A New Hybrid Spray Adhesive for Tough Superhydrophobicity

    Science.gov (United States)

    Bayer, Ilker S.; Brown, Andrea; Steele, Adam; Loth, Eric

    2009-12-01

    The authors report fabrication of tough nanostructured self-cleaning superhydrophobic polymer-organoclay films from anaerobic acrylic adhesives displaying strong adhesion to metal surfaces. Both industrial and bio-grade anaerobic adhesives such as bone cements could be used. Montmorillonite clay filled anaerobic adhesives were modified by blending with a water dispersed fluoro-methacrylic latex in solution to form abrasion resistant interpenetrating polymer network films upon spray casting. The adhesive films could cure by thermosetting in oxygen-rich environments. Very high contact angles with low hysteresis were also measured for acidic (pH 2) and basic (pH 11) aqueous buffer solutions indicating resistance to acidic and basic media.

  16. Testing of abrasion materials

    International Nuclear Information System (INIS)

    Hummert, G.

    1983-01-01

    A method of abrasion testing according to ASTM C 704-76 a is presented for steel fibre concrete mortar, fusion-cast basalt and a surface coating material and results of practical interest are mentioned. Due to the high technical demands on these materials and their specific fields of application, the very first test already supplied interesting findings. From the user's point of view, the method is an interesting alternative to the common test methods, e.g. according to DIN 52 108 (wheel test according to Boehme). In English-speaking countries, testing according to ASTM is often mandatory in the refractory industry in order to assure constant quality of refractory materials after setting. The method is characterized by good comparability and high accuracy of measurement. Only the test piece is exchanged while the test conditions remain constant, so that accurate information on the material studied is obtained. (orig.) [de

  17. Multilayer oxidation resistant coating for SiC coated carbon/carbon composites at high temperature

    International Nuclear Information System (INIS)

    Li Hejun; Jiao Gengsheng; Li Kezhi; Wang Chuang

    2008-01-01

    To prevent carbon/carbon (C/C) composites from oxidation, a multilayer coating based on molybdenum disilicide and titanium disilicide was formed using a two-step pack cementation technique in argon atmosphere. XRD and SEM analysis showed that the internal coating was a bond SiC layer that acts as a buffer layer, and that the external multilayer coating formed in the two-step pack cementation was composed of two MoSi 2 -TiSi 2 -SiC layers. This coating, which is characterized by excellent thermal shock resistance, could effectively protect the composites from exposure to an oxidizing atmosphere at 1773 K for 79 h. The oxidation of the coated C/C composites was primarily due to the reaction of C/C matrix and oxygen diffusing through the penetrable cracks in the coating

  18. Drag Reducing and Cavitation Resistant Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pease, Leonard F.

    2016-12-28

    Client, Green Building Systems (GBS), presented PNNL a coating reported to reduce drag and prevent cavitation damage on marine vessels, turbines and pumps. The composition of the coating remains proprietary but has as constituents including silicon oxides, aliphatic carbon chains, and fluorine rich particles. The coating is spray applied to surfaces. Prior GBS testing and experiments suggest reduction of both drag and cavitation on industrial scale propellers, but the underlying mechanism for these effects remains unclear. Yet, the application is compelling because even modest reductions in drag to marine vessels and cavitation to propellers and turbines present a significant economic and environmental opportunity. To discern among possible mechanisms, PNNL considered possible mechanisms with the client, executed multiple experiments, and completed one theoretical analysis (see appendix). The remainder of this report first considers image analysis to gain insight into drag reduction mechanisms and then exposes the coating to cavitation to explore its response to an intensely cavitating environment. Although further efforts may be warranted to confirm mechanisms, this report presents a first investigation into these coatings within the scope and resources of the technology assistance program (TAP).

  19. Machining with abrasives

    CERN Document Server

    Jackson, Mark J

    2011-01-01

    Abrasive machining is key to obtaining the desired geometry and surface quality in manufacturing. This book discusses the fundamentals and advances in the abrasive machining processes. It provides a complete overview of developing areas in the field.

  20. Electrically resistive coating for remediation (regeneration) of a diesel particulate filter and method

    Science.gov (United States)

    Phelps, Amanda C [Malibu, CA; Kirby, Kevin K [Calabasas Hills, CA; Gregoire, Daniel J [Thousand Oaks, CA

    2012-02-14

    A resistively heated diesel particulate filter (DPF). The resistively heated DPF includes a DPF having an inlet surface and at least one resistive coating on the inlet surface. The at least one resistive coating is configured to substantially maintain its resistance in an operating range of the DPF. The at least one resistive coating has a first terminal and a second terminal for applying electrical power to resistively heat up the at least one resistive coating in order to increase the temperature of the DPF to a regeneration temperature. The at least one resistive coating includes metal and semiconductor constituents.

  1. Splitting strength and abrasion resistance of concrete paving blocks as a function of dry bulk specific gravity and ultrasonic pulse velocity

    Directory of Open Access Journals (Sweden)

    Haktanir, T.

    2005-06-01

    Full Text Available Artificial Portland cement concrete paving blocks are widely used in many countries. These paving blocks come in a variety of designs with names such as "Interlocking" and "Italian Flower", and are manufactured with special machinery using rather high quality concrete having a compressive strength of about 50 MPa. Concrete blocks are employed instead of natural cobble stones for essentially economic reasons. The laboratoiy equipment required to measure paving block splitting strength and abrasion resistance, two of the chief properties to be tested in quality checks, is costly and the tests are time-consuming and labour-intensive. The present paper reports on a detailed experimental study performed to relate the splitting strength and abrasion resistance of concrete paving blocks to "dry bulk specific gravity" (DBSG and "ultrasonic pulse velocity" (UPV, respectively. Statistically significant regression equations describing the dependence of splitting strength on DBSG and abrasion resistance on UPV were obtained with data from random samples of material provided by seven different manufacturers.

    RESUMEN Los bloques para pavimentos (adoquines elaborados con hormigón se utilizan habitualmente en numerosos países. Estos bloques de pavimentación se diseñan de diversas formas, como por ejemplo "Entrelazado " ("Interlocking " o "Flor Italiana " ("Italian Flower"; se fabrican con maquinaria especial y con frecuencia se utiliza hormigón de la más alta calidad, con resistencia a la compresión de alrededor de 50 MPa. La razón de utilizar bloques de hormigón en lugar de bloques de piedra natural es básicamente económica. Los equipos de laboratorio necesarios para medir la resistencia a la compresión y a la abrasión -dos de las propiedades más importantes para determinar la calidad de los bloques en estudio- son costosos y los ensayos requieren tiempo y mano de obra considerables. En el presente trabajo se exponen ensayos experimentales

  2. Corrosion Resistance of Zinc Coatings With Aluminium Additive

    Directory of Open Access Journals (Sweden)

    Votava Jiří

    2014-08-01

    Full Text Available This paper is focused on evaluation of anticorrosion protection of inorganic metal coatings such as hot-dipped zinc and zinc-galvanized coatings. The thickness and weight of coatings were tested. Further, the evaluation of ductile characteristics in compliance with the norm ČSN EN ISO 20482 was processed. Based on the scratch tests, there was evaluated undercorrosion in the area of artificially made cut. Corrosion resistance was evaluated in compliance with the norm ČSN EN ISO 9227 (salt-spray test. Based on the results of the anticorrosion test, there can be stated corrosion resistance of each individual protective coating. Tests were processed under laboratory conditions and may vary from tests processed under conditions of normal atmosphere.

  3. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2010-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  4. Reduced abrasion drilling fluid

    NARCIS (Netherlands)

    2012-01-01

    A reduced abrasion drilling fluid system and method of drilling a borehole by circulating the reduced abrasion drilling fluid through the borehole is disclosed. The reduced abrasion drilling fluid comprises a drilling fluid, a first additive and a weighting agent, wherein the weighting agent has a

  5. Influence of expandable graphite on fire resistance and water resistance of flame-retardant coatings

    International Nuclear Information System (INIS)

    Wang, Zhenyu; Han, Enhou; Ke, Wei

    2007-01-01

    Expandable graphite (EG) coating and ammonium polyphosphate-pentaerythritol-melamine (APP-PER-MEL) coating were prepared. Thermal degradation and char formation of the coatings were investigated by differential thermal analysis (DTA), thermogravimetry (TG), X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results have shown that the anti-oxidation and fire-resistant properties of expandable graphite coating containing EG with size of 74 μm are better than those of APP-PER-MEL coating. The static immersion test was applied to study water resistance of the coatings, and the fire protection test and mechanical test were used to analyse heat insulation and mechanical properties of coatings before and after water immersion. The fire-resistant and mechanical properties of APP-PER-MEL coating were severely damaged by water immersion, whereas EG coating containing 8.5% EG with size of 74 μm could retain the good fire resistance even after 500 h water immersion

  6. Special conditions for the application of coating materials in nuclear power plants

    International Nuclear Information System (INIS)

    Boetius, I.

    1980-01-01

    Proceeding from the special conditions for the application of coating materials in nuclear power plants the following factors influencing the decontamination of surface coatings are discussed from the point of view of radiation protection: abrasion resistance, waterproofness, mechanical and adhesion strength, and permeability. For practical use it is recommended to test the surface tightness of coatings with radiation-exposed specimens

  7. Fire Resistance Tests of Various Fire Protective Coatings

    Directory of Open Access Journals (Sweden)

    Mindaugas GRIGONIS

    2011-03-01

    Full Text Available Tests were carried out on more than 14 different samples of fire protective coatings in order to investigate a relation between the thickness of the intumescent fire protection coating and the time of exposure to heat. A number of coatings of different chemical composition enabled to determine the fire resistance behaviour patterns. During test the one-side and volumetric methods were employed in observance of the standard temperature-time curves. For one-side method, the coating was applied on one side and all edges of the specimen, whereas for volumetric test the specimens were completely covered with fire protective coating. It is shown that a layer of coating protects the specimen's surface from heat exposure for a certain period of time until full oxidation of the coating occurs. The efficiency of fire protective coatings also depends on thickness of the charred layer of the side exposed to heat.http://dx.doi.org/10.5755/j01.ms.17.1.257

  8. Corrosion Resistant Coatings for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Besman, T.M.; Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Vaubert, V.M.

    1998-12-01

    Efforts to increase efficiency of energy conversion devices have required their operation at ever higher temperatures. This will force the substitution of higher-temperature structural ceramics for lower temperature materials, largely metals. Yet, many of these ceramics will require protection from high temperature corrosion caused by combustion gases, atmospheric contaminants, or the operating medium. This paper discusses examples of the initial development of such coatings and materials for potential application in combustion, aluminum smelting, and other harsh environments.

  9. Application of thermal spray coatings for jet engines. Kokuki sangyo eno yosha no oyo

    Energy Technology Data Exchange (ETDEWEB)

    Muto, Y [All Nippon Airways Co. Ltd., Tokyo (Japan)

    1992-10-31

    Application condition of spray coating on jet engine parts and characteristics of spray reparing process are explained. Spray coating used for jet engine is classified as recovery of dimension, crevice adjustment, improvement of resistance to friction, improvement of fretting resistance and heat resistance. Titanium alloy having better adhesion and acid resistance, is used as coating for dimensional recovery, where as nickel-crome-aluminium coating is used for the improvement of heat resistance of stainless steel, etc. Crevice adjustment coatings are used in rotating parts of jet engines, and they are of two types are; gel-double coating of aluminium, nickel-aluminium, etc., abrasive coating of aluminium oxide. Tungsten carbide and cobalt are used as coatings for the friction improvement. Nickel and indium, etc., are used as fretting resistance coating. Various types of ceramics together with heat resistance steels like HS-188 are used as coating for heat resistance improvement. 4 figs., 3 tabs.

  10. Oxidation resistant coatings for ceramic matrix composite components

    Energy Technology Data Exchange (ETDEWEB)

    Vaubert, V.M.; Stinton, D.P. [Oak Ridge National Lab., TN (United States); Hirschfeld, D.A. [New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Dept. of Materials and Metallurgical Engineering

    1998-11-01

    Corrosion resistant Ca{sub 0.6}Mg{sub 0.4}Zr{sub 4}(PO{sub 4}){sub 6} (CMZP) and Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}(PO{sub 4}){sub 6} (CS-50) coatings for fiber-reinforced SiC-matrix composite heat exchanger tubes have been developed. Aqueous slurries of both oxides were prepared with high solids loading. One coating process consisted of dipping the samples in a slip. A tape casting process has also been created that produced relatively thin and dense coatings covering a large area. A processing technique was developed, utilizing a pre-sintering step, which produced coatings with minimal cracking.

  11. Oxidation resistance coating for niobium base structural composites

    International Nuclear Information System (INIS)

    Tabaru, T.; Shobu, K.; Kim, J.H.; Hirai, H.; Hanada, S.

    2003-01-01

    Oxidation behavior of Al-rich Mo(Si,Al) 2 base alloys, which is a candidate material for the oxidation resistance coating on Nb base structural composites, were investigated by thermogravimetry. The Mo(Si,Al) 2 base alloys containing Mo 5 (Si,Al) 3 up to about 10 vol% exhibits excellent oxidation resistance at temperatures ranging from 780 to 1580 K, particularly at 1580 K due to continuous Al 2 O 3 layer development. To evaluate the applicability of the Mo(Si,Al) 2 base coating, plasma spraying on Nb base composites were undertaken. However, interface reaction layer was found to form during the following heat treatment. Preparation of Mo(Si,Al) 2 /Al 2 O 3 /Nb layered structures via powder metallurgical process was attempted to preclude diffusion reaction between coating and substrate. (orig.)

  12. Hard coatings by plasma CVD on polycarbonate for automotive and optical applications

    International Nuclear Information System (INIS)

    Schmauder, T.; Nauenburg, K.-D.; Kruse, K.; Ickes, G.

    2006-01-01

    In many applications, plastic surfaces need coatings as a protection against abrasion or weathering. Leybold Optics is developing Plasma CVD processes and machinery for transparent hard coatings (THC) for polycarbonate parts. In this paper we present the current features and remaining challenges of this technique. The coatings generally show excellent adhesion. Abrasion resistance is superior to commonly used lacquers. Climate durability of the coating has been improved to pass the tests demanded by automotive specifications. Current activities are focused on improving the durability under exposure to UV radiation. Estimations show that our high-rate plasma CVD hard coating process is also economically competitive to lacquering

  13. Microhardness and wear resistance of PEO-coated 5754 aluminum alloy

    Science.gov (United States)

    Vyaliy, I. E.; Egorkin, V. S.; Sinebryukhov, S. L.; Minaev, A. N.; Gnedenkov, S. V.

    2017-09-01

    We present results of the study aimed at assessing the effect of duty cycle (D) during plasma electrolytic oxidation (PEO) on protective properties of the coatings produced on 5754 aluminum alloy. It is shown that increasing the duty cycle of a microsecond current pulses leads to increased hardness and reduced abrasive wear of the PEO-layers, improving mechanical properties. The obtained data allowed confirming, that increasing the amount of energy consumed for coating growth leads to the formation of thicker PEO-layers with improved tribological properties. The effect of duty cycle during plasma electrolytic oxidation on protective properties of the produced coatings was assessed.

  14. Fouling-resistant polymer brush coatings

    KAUST Repository

    Thérien-Aubin, Héloïse

    2011-11-01

    A major problem to be addressed with thin composite films used in processes such as coatings or water purification is the biofouling of the surface. To address this problem in a model system, functionalized polyaramide membranes containing an atom transfer radical polymerization (ATRP) initiator were synthesized as a versatile approach to easily modify the surface properties of the polyaramide. Poly(methacrylic acid) brushes were grown using surface initiated ATRP followed by the functionalization of the poly(methacrylic acid) brushes with different side-chains chosen to reduce adhesion between the membrane and foulant. The relation between membrane fouling and the physicochemical properties of the surface was investigated in detail. © 2011 Elsevier Ltd. All rights reserved.

  15. Fouling-resistant polymer brush coatings

    KAUST Repository

    Thé rien-Aubin, Hé loï se; Chen, Lin; Ober, Christopher K.

    2011-01-01

    A major problem to be addressed with thin composite films used in processes such as coatings or water purification is the biofouling of the surface. To address this problem in a model system, functionalized polyaramide membranes containing an atom transfer radical polymerization (ATRP) initiator were synthesized as a versatile approach to easily modify the surface properties of the polyaramide. Poly(methacrylic acid) brushes were grown using surface initiated ATRP followed by the functionalization of the poly(methacrylic acid) brushes with different side-chains chosen to reduce adhesion between the membrane and foulant. The relation between membrane fouling and the physicochemical properties of the surface was investigated in detail. © 2011 Elsevier Ltd. All rights reserved.

  16. Neuro - Fuzzy Analysis for Silicon Carbide Abrasive Grains ...

    African Journals Online (AJOL)

    Grinding wheels are made of very small, sharp and hard abrasive materials or grits held together by strong porous bond. Abrasive materials are materials of extreme hardness that are used to shape other materials by a grinding or abrading action and they are used either as loose grains, as grinding wheels, or as coatings ...

  17. Fire resistance properties of ceramic wool fiber reinforced intumescent coatings

    Energy Technology Data Exchange (ETDEWEB)

    Amir, N., E-mail: norlailiamir@petronas.com.my; Othman, W. M. S. W., E-mail: wamosa@gmail.com; Ahmad, F., E-mail: faizahmad@petronas.com.my [Mechanical Engineering Department, Universiti Teknologi PETRONAS Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted to inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating.

  18. Fire resistance properties of ceramic wool fiber reinforced intumescent coatings

    International Nuclear Information System (INIS)

    Amir, N.; Othman, W. M. S. W.; Ahmad, F.

    2015-01-01

    This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted to inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating

  19. Fire resistance properties of ceramic wool fiber reinforced intumescent coatings

    Science.gov (United States)

    Amir, N.; Othman, W. M. S. W.; Ahmad, F.

    2015-07-01

    This research studied the effects of varied weight percentage and length of ceramic wool fiber (CWF) reinforcement to fire retardant performance of epoxy-based intumescent coating. Ten formulations were developed using ammonium polyphosphate (APP), expandable graphite (EG), melamine (MEL) and boric acid (BA). The mixing was conducted in two stages; powdered materials were grinded in Rocklabs mortar grinder and epoxy-mixed using Caframo mixer at low speed mixing. The samples were applied on mild steel substrate and exposed to 500°C heat inside Carbolite electric furnace. The char expansion and its physical properties were observed. Scanning electron microscopy (SEM) analyses were conducted to inspect the fiber dispersion, fiber condition and the cell structure of both coatings and chars produced. Thermogravimetric analyses (TGA) were conducted to study the thermal properties of the coating such as degradation temperature and residual weight. Fire retardant performance was determined by measuring backside temperature of substrate in 1-hour, 1000°C Bunsen burner test according to UL 1709 fire regime. The results showed that intumescent coating reinforced with CWF produced better fire resistance performance. When compared to unreinforced coating, formulation S6-15 significantly reduced steel temperature at approximately 34.7% to around 175°C. However, higher fiber weight percentage had slightly decreased fire retardant performance of the coating.

  20. The Properties of Arc-Sprayed Aluminum Coatings on Armor-Grade Steel

    Directory of Open Access Journals (Sweden)

    Marcin Adamiak

    2018-02-01

    Full Text Available This article presents the results of an examination of the properties of arc-sprayed aluminum on alloyed armor-grade steel. Thermal arc spraying was conducted with a EuTronic Arc Spray 4 wire arc sprayer. Aluminum wire 1.6 mm in diameter was used to produce dense, abrasion- and erosion-resistant coatings approx. 1.0 mm thick with and without nickel/5% aluminum-buffered subcoating. Aluminum coatings were characterized in accordance with ASTM G 65-00 abrasion resistance test, ASTM G 76-95 erosion resistance tests, ASTM C 633-01 adhesion strength, HV0.1 hardness tests and metallographic analyses. Results demonstrate properties of arc-sprayed aluminum and aluminum-nickel material coatings that are especially promising in industrial applications where erosion-, abrasion- and corrosion-resistant coating properties are required.

  1. Impact of metal matrix composite on the evolution and erosion performance characteristics of non lubricated-dry abrasive degradation of ternary composite coating for refineries system

    Science.gov (United States)

    Anawe, Paul Apeye Lucky; Fayomi, Ojo Sunday Isaac

    2018-06-01

    The application of rational design principles and process in electrodeposition can eliminate many engineering catastrophes related to corrosion and micromechanical failure in service. This has led to appreciate the need of surface modification on component for enhance life span. Admixed Zn-30Al-13Ti-chloride composite bath was electrolytically prepared and successfully deposited on UNS G10150 mild steel substrate by zinc dual anode deposition processes within an interval of applied current density, particle concentration and constant time. The codeposition of Zn-Al-Ti coating was studied in the presence of other bath ingredient. The effect of deposition current and particle concentration on structural property, adhesion behaviour, ideal crystal orientation, surface topography and electrochemical properties of Zn-Al-Ti alloy coating series on mild steel were analytically examined. The wear stability of the developed composite materials was examined via sliding reciprocating rig. The structural integrity was examined with scanning electron microscope equipped with EDS, X-ray diffraction; Atomic force microscope, dura scan micro-hardness tester and 3 μ metrohm Potentiostat/galvanostat. Interestingly the induced activity of the Zn-Al-Ti chloride composite alloy results into excellent structural modification and stable crystal precipitation within the structural interface as a result of Zn3Al, Zn2Ti and ZnAl3Ti2 intermetallic phase. The obtained results showed that the introduction of Ti particles in the presence of other bath additive in the plating bath mostly modified the surface and brings an increase in the microhardness, corrosion resistance and reduce wear deformation of Zn-Al-Ti chloride composite alloy.

  2. Radiation resistant polymers and coatings for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.; Mallika, C.; Lawrence, Falix

    2014-01-01

    Polymer based materials are extensively used in the nuclear industry for the reprocessing of spent fuels in highly radioactive and corrosive environment. Hence, these polymer materials are susceptible to damage by ionizing radiation, resulting in the degradation in properties. Polymers containing aromatic molecules generally possess higher resistance to radiation degradation than the aliphatic polymers. For improving the radiation resistance of polymers various methods are reported in the literature. Among the aromatic polymers, polyetheretherketone (PEEK) has the radiation tolerance up to 10 Mega Grey (MGy). To explore the possibility of enhancing the radiation resistance of PEEK, a study was initiated to develop PEEK - ceramic composites and evaluate the effect of radiation on the properties of the composites. PEEK and PEEK - alumina (micron size) composites were irradiated in a gamma chamber using 60 Co source and the degradation in mechanical, structural, electrical and thermal properties, gel fraction, coefficient of friction and morphology were investigated. The degradation in the mechanical properties owing to radiation could be reduced by adding alumina filler to PEEK. Nano alumina filler was observed to be more effective in suppressing the damage caused by radiation on the polymer, when compared to micron alumina filler. For the protection of aluminium components in the manipulators and the rotors and stators of the motors of the centrifugal extractors employed in the plant from the attack by nitric acid vapour, PEEK coating based on liquid dispersion was developed, which has resistance to radiation, chemicals and wear. The effect of radiation and chemical vapour on the properties of the PEEK coating was estimated. The performance of the coating in the plant was evaluated and the coating was found to give adequate protection to the motors of centrifugal extractors against corrosion. (author)

  3. Radiation curable polymer coatings. January 1972-October 1989 (Citations from the US Patent data base). Report for January 1972-October 1989

    International Nuclear Information System (INIS)

    1989-12-01

    This bibliography contains citations of selected patents concerning methods and compositions used in radiation-curable polymer coatings. Protective and decorative coatings on metallic and non-metallic substrates curable with light, including ultraviolet, are disclosed. Abrasion-resistant coating techniques are presented. (This updated bibliography contains 186 citations, 16 of which are new entries to the previous edition.)

  4. Radiation-curable polymer coatings. January 1970-October 1988 (Citations from the US Patent data base). Report for January 1970-October 1988

    International Nuclear Information System (INIS)

    1988-11-01

    This bibliography contains citations of selected patents concerning methods and compositions used in radiation curable polymer coatings. Protective and decorative coatings on metallic and nonmetallic substrates curable with light, including ultraviolet, are disclosed. Abrasion-resistant coating techniques are presented. (This updated bibliography contains 170 citations, 11 of which are new entries to the previous edition.)

  5. Erosion resistance and adhesion of composite metal/ceramic coatings produced by plasma spraying

    International Nuclear Information System (INIS)

    Ramm, D.A.J.; Hutchings, I.M.; Clyne, T.W.

    1993-01-01

    Ceramic coatings can exhibit greater erosion resistance than most metallic coatings. Such coatings are conveniently produced by thermal spraying. Unfortunately, thermally sprayed ceramic coatings often exhibit poor adhesion, partly as a consequence of the development of residual stresses during spraying and subsequent cooling. Composite coatings have been studied using aluminium/alumina deposits on steel substrates. The incorporation of ceramics within a ductile matrix has potential for sharply reducing the erosive wear at high erodent impact angles, whilst retaining the good erosion resistance of ceramics at low angles. It is shown that the proportion of metal and ceramic at the free surface can be specified so as to optimise the erosion resistance. Experiments have also been carried out on the resistance of the coatings to debonding during four-point bending of the coated substrate. Progress is being made towards the tailoring of composition profiles in graded coatings so as to optimise the combination of erosion resistance and adhesion. (orig.)

  6. A study on the effect of 60Co gamma ray irradiation on the abrasion of dental polymethylmethacrylate, (3)

    International Nuclear Information System (INIS)

    Kimura, Hiroshi

    1981-01-01

    This report intends to clarify the relationship between the total exposure dose and scratch resistance to the specimens SF, SH, MF and MH, giving coating treatments to P.M.M.A. (dental polymethylmethacrylate) and exposing to the irradiation of 60 Co gamma ray at each dose rate. And based on the results, it is intended to develop coated P.M.M.A. with excellent scratch resistance give by irradiation of radioactive ray. From this study, the following results have been obtained. Irradiation of 60 Co gamma ray would give the best results at the exposure at 1 x 10 6 R. The SF and SH specimens in wet condition exposed to 60 Co gamma ray irradiation at 1 x 10 6 R showed a quantity of abrasion of only 17% that of untreated P.M.M.A. and the barrel test revealed outstanding abrasion and scratch resistance. Abrasion and scratch resistance of coated specimens are better utilized in wet conditions performing three times better than those in dry conditions. (author)

  7. Improving the packing density of calcium phosphate coating on a magnesium alloy for enhanced degradation resistance.

    Science.gov (United States)

    Kannan, M Bobby

    2013-05-01

    In this study, an attempt was made to improve the packing density of calcium phosphate (CaP) coating on a magnesium alloy by tailoring the coating solution for enhanced degradation resistance of the alloy for implant applications. An organic solvent, ethanol, was added to the coating solution to decrease the conductivity of the coating solution so that hydrogen bubble formation/bursting reduces during the CaP coating process. Experimental results confirmed that ethanol addition to the coating solution reduces the conductivity of the solution and also decreases the hydrogen evolution/bubble bursting. In vitro electrochemical experiments, that is, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization showed that CaP coating produced in 30% (v/v) ethanol containing coating solution (3E) exhibits significantly higher degradation resistance (i.e., ~50% higher polarization resistance and ~60% lower corrosion current) than the aqueous solution coating. Scanning electron microscope (SEM) analysis of the coatings revealed that the packing of 3E coating was denser than that of aqueous coating, which can be attributed to the lower hydrogen evolution in the former than in the latter. Further increase in the ethanol content in the coating solution was not beneficial; in fact, the coating produced in 70% (v/v) ethanol containing solution (7E) showed degradation resistance much inferior to that of the aqueous coating, which is due to low thickness of 7E coating. Copyright © 2012 Wiley Periodicals, Inc.

  8. Preparation and characterization of the micro-arc oxidation composite coatings on magnesium alloys

    OpenAIRE

    Yanfeng Ge; Bailing Jiang; Ming Liu; Congjie Wang; Wenning Shen

    2014-01-01

    The magnesium alloys attract the light-weight manufacture due to its high strength to weight ratio, however the poor corrosion resistance limits the application in automobile industry. The Micro-arc Composite Ceramic (MCC) coatings on AZ91D magnesium alloys were prepared by Micro-arc Oxidation (MAO) and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance and adhesion of MCC coatings were studied respectively. The cross section m...

  9. Effect of the post heat treatment on the sliding wear resistance of a nickel base coating deposited by high velocity oxyl-fuel (HVOF)

    International Nuclear Information System (INIS)

    Cadenas, P.; Rodriguez, M.; Staia, M. H.

    2007-01-01

    In the present research, a nickel base coating was deposited on an AISI 1020 substrate by using high velocity oxy-fuel technique (HVOF). The coating was subsequently post heat-treated by means of an oxyacetylene flame. For the conditions evaluated in the present study, it was found that the CTT coating coating has 1,15 better wear resistance for the smaller level of the applied load and nearly 50 times for the highest level of the applied load when compared to the STT coatings. These results have been attributed to a better distribution of the hard phases, better cohesion between particles and an increase in hardness, as consequence of the post heat treatment process. A severe wear regime was found for all the samples since the wear rates presented values which were higher tan 1.10''-5 mm''3/m. For the CT T coatings, the wear mechanisms was mainly due to the adhesion and oxidation phenomena, meanwhile for the steel counterpart mechanisms such oxidation, grooving and three body abrasion were observed. (Author) 22 refs

  10. Corrosion resistance of zinc-magnesium coated steel

    International Nuclear Information System (INIS)

    Hosking, N.C.; Stroem, M.A.; Shipway, P.H.; Rudd, C.D.

    2007-01-01

    A significant body of work exists in the literature concerning the corrosion behaviour of zinc-magnesium coated steel (ZMG), describing its enhanced corrosion resistance when compared to conventional zinc-coated steel. This paper begins with a review of the literature and identifies key themes in the reported mechanisms for the attractive properties of this material. This is followed by an experimental programme where ZMG was subjected to an automotive laboratory corrosion test using acidified NaCl solution. A 3-fold increase in time to red rust compared to conventional zinc coatings was measured. X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy were used to characterize the corrosion products formed. The corrosion products detected on ZMG included simonkolleite (Zn 5 Cl 2 (OH) 8 . H 2 O), possibly modified by magnesium uptake, magnesium hydroxide (Mg(OH) 2 ) and a hydroxy carbonate species. It is proposed that the oxygen reduction activity at the (zinc) cathodes is reduced by precipitation of alkali-resistant Mg(OH) 2 , which is gradually converted to more soluble hydroxy carbonates by uptake of atmospheric carbon dioxide. This lowers the surface pH sufficiently to allow thermodynamically for general precipitation of insoluble simonkolleite over the corroding surface thereby retarding the overall corrosion reactions, leaving only small traces of magnesium corrosion products behind. Such a mechanism is consistent with the experimental findings reported in the literature

  11. Submerged cutting characteristics of abrasive suspension jet

    International Nuclear Information System (INIS)

    Shimizu, Seiji; Peng, Guoyi; Oguma, Yasuyuki; Nishikata, Hiroyuki

    2015-01-01

    An abrasive suspension jet (ASJ) formed by propelling abrasive suspension through a nozzle has a greater cutting capability than the conventional abrasive water jet. However the cutting capability of submerged ASJs decreases drastically with increasing the standoff distance and the pressure around the jet. A sheathed nozzle with ventilation for ASJs has been developed as a mean of extending the effective stand-off distance and improving the cutting capabilities under submerged condition. In the present investigation, cutting tests by ASJs in air and under submerged condition are conducted with specimens of aluminum alloy. Air coated ASJs are formed by using a sheathed nozzle with ventilation. The relative cutting depth is defined as the cutting depth under submerged condition divided by the cutting depth in air at the same standoff distance. The relative cutting depth is arranged effectually by the cavitation number based on the cavity pressure measured at the sheath. (author)

  12. Submerged cutting characteristics of abrasive suspension jet

    International Nuclear Information System (INIS)

    Shimizu, Seiji; Peng, Guoyi; Oguma, Yasuyuki; Nishikata, Hiroki

    2015-01-01

    An abrasive suspension jet (ASJ) formed by propelling abrasive suspension through a nozzle has a greater cutting capability than the conventional abrasive water jet. However the cutting capability of submerged ASJs decreases drastically with increasing the standoff distance and the pressure around the jet. A sheathed nozzle nozzle with ventilation for ASJs has been developed as a mean of extending the effective stand-off distance and improving the cutting capabilities under submerged condition. In the present investigation, cutting tests by ASJs in air and under submerged condition are conducted with specimens of aluminum alloy. Air coated ASJs are formed by using a sheathed nozzle with ventilation. The relative cutting depth is defined as the cutting depth is arranged effectually by the cavitation number based on the cavity pressure measured at the sheath. (author)

  13. Low-Cost Repairable Oxidation Resistant Coatings for Carbon-Carbon Composites via CCVD

    National Research Council Canada - National Science Library

    Hendrick, Michelle

    2000-01-01

    ...) thin film process to yield oxidation resistant coatings on carbon-carbon (C-C) composites. Work was on simple coatings at this preliminary stage of investigation, including silicon dioxide, platinum and aluminum oxide...

  14. Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure and method of processing

    Science.gov (United States)

    Brown, Jr., Jesse J.; Hirschfeld, Deidre A.; Li, Tingkai

    1993-12-07

    Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure are created using sol-gel processes. The processes have particular application in creating calcium magnesium zirconium phosphate, CMZP, coatings and foams.

  15. Organo-Aluminate Polymeric Materials as Advanced Erosion/Corrosion Resistant Thin Film Coatings

    National Research Council Canada - National Science Library

    Cook, Ronald

    1997-01-01

    ...) and hazardous air pollutants (HAPs). The coating system is based on the development of carboxylato- alumoxane precursors for fabrication of corrosion resistant oxide barrier layers and alumoxane-epoxy based primer coats...

  16. Corrosion resistance of biomimetic calcium phosphate coatings on magnesium due to varying pretreatment time

    Energy Technology Data Exchange (ETDEWEB)

    Waterman, J., E-mail: jay.waterman@pg.canterbury.ac.nz [Department of Mechanical Engineering, University of Canterbury, Christchurch (New Zealand); Pietak, A. [Department of Anatomy and Structural Biology, University of Otago, Dunedin (New Zealand); Birbilis, N. [Department of Materials Engineering, Monash University (Australia); Woodfield, T. [Department of Mechanical Engineering, University of Canterbury, Christchurch (New Zealand); Department of Orthopaedic Surgery, University of Otago, Christchurch (New Zealand); Dias, G. [Department of Anatomy and Structural Biology, University of Otago, Dunedin (New Zealand); Staiger, M.P., E-mail: mark.staiger@canterbury.ac.nz [Department of Mechanical Engineering, University of Canterbury, Christchurch (New Zealand)

    2011-12-15

    Calcium phosphate coatings were prepared on magnesium substrates via a biomimetic coating process. The effects of a magnesium hydroxide pretreatment on the formation and the ultimate corrosion protection of the coatings were studied. The pretreatment layer was found to affect the amount of defects present in the coatings. Corrosion resistance of the coatings was studied in vitro using two simulated body fluids, 0.8% NaCl and Hanks solution. In NaCl, the resistance to corrosion of all samples decreases with time as corrosion proceeded through cracks and other defects in the coatings. Samples with no pretreatment displayed the highest corrosion resistance as these samples had the fewest defects in the coating. However, in Hanks solution, corrosion resistance increased with time due to additional nucleation of calcium phosphate from the fluid on to the substrate. In this solution, additional pretreatment time was beneficial to the overall corrosion resistance.

  17. Effect of coating density on oxidation resistance and Cr vaporization from solid oxide fuel cell interconnects

    DEFF Research Database (Denmark)

    Talic, Belma; Falk-Windisch, Hannes; Venkatachalam, Vinothini

    2017-01-01

    •Protective action of dense and porous spinel coatings on Crofer 22 APU was compared. •Reduction and re-oxidation produces denser coatings than heat treating in air only. •Coating density has minor influence on oxidation resistance at 800 °C in air. •Dense coating resulted in three times lower Cr...... evaporation rate than porous coating....

  18. Erosion resistance and adhesion of composite metal/ceramic coatings produced by plasma spraying

    OpenAIRE

    Ramm , D.; Hutchings , I.; Clyne , T.

    1993-01-01

    Ceramic coatings can exhibit greater erosion resistance than most metallic coatings. Such coatings are conveniently produced by thermal spraying. Unfortunately, thermally sprayed ceramic coatings often exhibit poor adhesion, partly as a consequence of the development of residual stresses during spraying and subsequent cooling. Composite coatings have been studied using aluminium/alumina deposits on steel substrates. The incorporation of ceramics within a ductile matrix has potential for sharp...

  19. Drag resistance measurements for newly applied antifouling coatings and welding seams on ship hull surface

    DEFF Research Database (Denmark)

    Wang, Xueting; Olsen, S. M.; Andres, E.

    Drag resistances of newly applied antifouling coatings and welding seams on ship hull surface have been investigated using a pilot-scale rotary setup. Both conventional biocide-based antifouling (AF) coatings and silicone-based fouling release (FR) coatings have been studied and compared in their......Drag resistances of newly applied antifouling coatings and welding seams on ship hull surface have been investigated using a pilot-scale rotary setup. Both conventional biocide-based antifouling (AF) coatings and silicone-based fouling release (FR) coatings have been studied and compared...

  20. Cellulose acetate/hydroxyapatite/chitosan coatings for improved corrosion resistance and bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Zhenyu; Qin, Jinli [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Ma, Jun, E-mail: caltary@gmail.com [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-04-01

    Cellulose acetate (CA) nanofibers were deposited on stainless steel plates by electrospinning technique. The composite of hydroxyapatite (HAP) nanoparticles and chitosan (CHI) was coated subsequently by dip-coating. The structure and morphology of the obtained coatings were investigated by Fourier transform infrared spectroscopy and scanning electron microscopy. The stability of the coatings in physiological environment was studied using electrochemical polarization and impedance spectroscopy. The CA nanofibers were embedded in the HAP/CHI coating and the resulted composite film was densely packed and uniform on the substrate. The in vitro biomineralization study of the coated samples immersed in simulated body fluid (SBF) confirmed the formation ability of bone-like apatite layer on the surface of HAP-containing coatings. Furthermore, the coatings could provide corrosion resistance to the stainless steel substrate in SBF. The electrochemical results suggested that the incorporation of CA nanofibers could improve the corrosion resistance of the HAP/CHI coating. Thus, biocompatible CA/HAP/CHI coated metallic implants could be very useful in the long-term stability of the biomedical applications. - Highlights: • The composite coatings were prepared by electrospinning and dip-coating. • Good in vitro bioactivity of the CA/HAP/CHI coating was confirmed. • Electrochemical behaviors in SBF of the coatings have been studied. • The CA/HAP/CHI coating shows better resistance property than HAP/CHI.

  1. Scratch resistance of SiO{sub 2} and SiO{sub 2} - ZrO{sub 2} sol-gel coatings on glass-ceramic obtained by sintering; Resistencia al desgaste de recubrimientos sol-gel de SiO{sub 2} y SiO{sub 2} - ZrO{sub 2} sobre materiales vitroceramicos obtenidos por sinterizacion

    Energy Technology Data Exchange (ETDEWEB)

    Soares, V. O.; Soares, P.; Peitl, O.; Zanotto, E. D.; Duran, A.; Castro, Y.

    2013-10-01

    The sol-gel process is widely used to obtain coatings on glass-ceramic substrates in order to improve the scratch and abrasion resistance, also providing a bright and homogeneous appearance of a glaze avoiding expensive final polishing treatments. This paper describes the preparation of silica and silica / zirconia coatings by sol-gel method on Li{sub 2}O-Al{sub 2}O3-SiO{sub 2} (LAS) glassceramic substrates produced by sintering. The coatings were deposited by dip-coating on LAS substrates and characterized by optical microscopy and spectral ellipsometry. On the other hand, hardness and elastic modulus, coefficient of friction and abrasion and scratch resistance of the coatings were determined and compared with the substrate properties. Coatings deposited on LAS glass-ceramic confere the substrate a bright and homogeneous aspect, similar to a glaze, improving the appearance and avoiding the final polishing. However these coatings do not increase the scratch resistance of the substrate only equaling the properties of the glass-ceramic. (Author)

  2. Comparison study on resistance to wear and abrasion of high-temperature sliding strike of laser and plasma spray layer on the stainless steel surface

    International Nuclear Information System (INIS)

    Shi Shihong; Zheng Qiguang; Fu Geyan; Wang Xinlin

    2004-01-01

    In this paper, the effect of coatings, which are formed with laser cladding and plasma spray welding on 1Cr18Ni9Ti base metal of nuclear valve seats, on wear resistance is studied. A 5-kW transverse-flowing CO 2 laser is used for cladding Co base alloy powder pre-placed on the substrate. Comparing with the plasma spray coatings, the laser-cladding layer have lower rate of spoiled products and higher rate of finished products. Their microstructure is extremely fine. They have close texture and small-size grain. Their dilution diluted by the compositions of their base metal and hot-effect on base metal are less. The hardness, toughness, and strength of the laser-cladding layers are higher. The grain size is 11-12th grade in the laser-cladding layer and 9-10th in the plasma spray layer. The width of combination zone between laser-cladding layer and substrate is 10-45 μm but that between plasma spray layer and substrate is 120-160 μm. The wear test shows that the laser layers have higher property of anti-friction, anti-scour, and high-temperature sliding strike. The wear resistance of laser-cladding layer is about one time higher than that of plasma spray welding layer

  3. Development of bacterially resistant polyurethane for coating medical devices

    International Nuclear Information System (INIS)

    Roohpour, Nima; Moshaverinia, Alireza; Wasikiewicz, Jaroslaw M; Paul, Deepen; Vadgama, Pankaj; Wilks, Mark; Millar, Michael

    2012-01-01

    Polyurethanes have been widely used in medicine for coating and packaging implantable and other medical devices. Polyether-urethanes, in particular, have superior mechanical properties and are biocompatible, but in common with other medical materials they are susceptible to microbial film formation. In this study, polyether-urethane was end-capped with silver lactate and silver sulfadiazine functional groups to produce a bacterially resistant polymer without sacrificing the useful mechanical properties of the polyether-polyurethane. The silver ions were covalently incorporated into the polymer during chain extension of the prepolymer. The functionalized polymers were structurally characterized by light scattering, electron microscopy, NMR, FTIR and Raman spectroscopy. Mechanical properties, hydrophilicity, in vitro stability and antibacterial action of polymers were also investigated. Results indicate that both silver salts were successfully incorporated into the polymer structure without significant effect on mechanical properties, whilst conferring acceptable bacterial resistance.

  4. Radiation Resistant Hybrid Lotus Effect Photoelectrocatalytic Self-Cleaning Anti-Contamination Coatings, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop radiation resistant hybrid Lotus Effect photoelectrocatalytic self-cleaning anti-contamination coatings for application to Lunar...

  5. Comprehensive study of the abrasive wear and slurry erosion behavior of an expanded system of high chromium cast iron and microstructural modification for enhanced wear resistance

    Science.gov (United States)

    Chung, Reinaldo Javier

    High chromium cast irons (HCCIs) have been demonstrated to be an effective material for a wide range of applications in aggressive environments, where resistances to abrasion, erosion and erosion-corrosion are required. For instance, machinery and facilities used in mining and extraction in Alberta's oil sands suffer from erosion and erosion-corrosion caused by silica-containing slurries, which create challenges for the reliability and maintenance of slurry pumping systems as well as other processing and handling equipment. Considerable efforts have been made to determine and understand the relationship between microstructural features of the HCCIs and their wear performance, in order to guide the material selection and development for specific service conditions with optimal performance. The focus was previously put on a narrow group of compositions dictated by ASTM A532. However, with recent advances in casting technology, the HCCI compositional range can be significantly expanded, which potentially brings new alloys that can be superior to those which are currently employed. This work consists of three main aspects of study. The first one is the investigation of an expanded system of white irons with their composition ranging from 1 to 6 wt.% C and 5 to 45 wt.% Cr, covering 53 alloys. This work has generated wear and corrosion maps and established correlation between the performance and microstructural features for the alloys. The work was conducted in collaboration with the Materials Development Center of Weir Minerals in Australia, and the results have been collected in a database that is used by the company to guide materials selection for slurry pump components in Alberta oil sands and in other mining operations throughout the world. The second part consists of three case studies on effects of high chromium and high carbon, respectively, on the performance of the HCCIs. The third aspect is the development of an approach to enhance the wear resistance of

  6. Development of wear resistant ceramic coatings for diesel engine components

    Energy Technology Data Exchange (ETDEWEB)

    Haselkorn, M.H. (Caterpillar, Inc., Peoria, IL (United States))

    1992-04-01

    Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at these more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.

  7. Aluminide protective coatings on high–temperature creep resistant cast steel

    Directory of Open Access Journals (Sweden)

    J. Kubicki

    2009-10-01

    Full Text Available This paper presents the results of research on aluminide protective coatings manufactured on high–temperature creep resistant cast steel. The main purpose of these coatings is protection against the high temperature corrosion, especially at high carburizing potential atmosphere. Coatings were obtained on cast steel type G–XNiCrSi36–18 with the following methods: pack cementation, paste method, cast method and slurry cementation. The phase composition, thickness and morphology of coatings were determined. Coatings capacity of carbon diffusion inhibition and thermal shocks resistance of coatings were determined with different methods. It was found, that all of the coatings reduce carbon diffusion in different degree and all coatings liable to degradation in consequence cracking and oxidation. Coating life time is mainly dependent on morphology, phase composition and service condition (thermal shocks first of all.

  8. Dependence of the surface resistance of niobium coated copper cavities on the coating temperature

    International Nuclear Information System (INIS)

    Darriulat, P.; Durand, C.; Janot, P.; Rensing, N.; Weingarten, W.; Bosland, P.; Gobin, J.; Martignac, J.

    1996-01-01

    Six hydro-formed copper 1.5 GHz cavities have been baked and coated with niobium at different temperatures between 100 deg C and 200 deg C, while keeping the other discharge parameters unchanged. Their surface resistance has been measured as a function RF field and trapped magnetic field. Its dependence on deposition temperature confirms earlier indications obtained using 350 MHz LEP cavities that 150 deg C leads to optimal performances. The critical temperatures of Nb/Cu and bulk niobium cavities have also been measured. (author)

  9. Cleaning, abrasion, and polishing effect of novel perlite toothpaste abrasive.

    Science.gov (United States)

    Wang, Bo

    2013-01-01

    This study was intended to optimize perlite particle size and morphology for better tooth cleaning and lower tooth abrasion, and to evaluate the performance of a whitening toothpaste containing the optimized perlite abrasive for tooth cleaning, abrasion, and polishing. Perlite toothpaste abrasive samples were prepared by air classifying a commercial expanded perlite product. The tooth cleaning and abrasion properties for these classified perlite samples were reported via the pellicle cleaning ratio (PCR) and relative dentin abrasion (RDA). Performance of the whitening toothpaste containing the optimized perlite abrasive in tooth cleaning, polishing, and abrasion was evaluated against a widely used synthetic high-cleaning silica. Air classification removes large perlite particles and also physically changes perlite particle morphology from mostly three dimensional and angular particles to mainly two dimensional and platy particles. All the classified samples show good tooth cleaning effect, but tooth abrasion decreases significantly with decreasing particle size. Compared to high-cleaning silica whitening toothpaste, the whitening toothpaste containing the optimized perlite abrasive (PerlClean) is slightly better at tooth cleaning, lower in tooth abrasion, and significantly better at tooth polishing. Fine platy perlite particles are effective in tooth cleaning with low tooth abrasion. The enhanced performance of optimized perlite toothpaste abrasive compared to high-cleaning silica in a whitening toothpaste is attributed to the optimized particle size distribution and the unique platy particle geometry.

  10. Sustainability of abrasive processes

    DEFF Research Database (Denmark)

    Aurich, J.C.; Linke, B.; Hauschild, Michael Zwicky

    2013-01-01

    , the content of technical presentations in STC G, and the results of a comprehensive literature study. The approach to sustainability includes environmental, social, and economic sustainability in accordance with the definition proposed in the Brundtland Report of the United Nations [156]. The main focus......This paper presents an overview of research on sustainability of abrasive processes. It incorporates results from a round robin study on ‘‘energy-efficiency of abrasive processes’’ which has been carried out within the scientific technical committee ‘‘abrasive processes’’ (STC G) of CIRP...... is on environmental and social sustainability. Economic sustainability will be considered as manufacturing productivity. © 2013 CIRP....

  11. Evaluation of micro-abrasion-corrosion on SiO2-TiO2-ZrO2 coatings synthesized by the sol-gel method

    Science.gov (United States)

    Bautista Ruiz, J.; Aperador, W.; Caballero Gómez, J.

    2016-02-01

    The medical science and the engineering, work to improve the materials used in the manufacture of joint implants, since they have a direct impact on the quality of people life. The surgical interventions are increasing worldwide with a high probability of a second or even a third intervention. Around these circumstances, it was evaluated the behaviour against microabrasion-corrosion phenomena on SiO2 TiO2 ZrO2 coatings, synthesized by the sol-gel method with concentration of the Si/Ti/Zr precursors: 10/70/20 and 10/20/70. The coatings were deposited on AISI 316 LVM stainless steel substrates. The morphological characterization of the wear was made by AFM techniques. It was observed that the coatings with higher levels of titanium have a good response to the phenomena of microabrasion-corrosion.

  12. Abrasive wear of intermetallics

    International Nuclear Information System (INIS)

    Hawk, J.A.; Alman, D.E.; Wilson, R.D.

    1995-01-01

    The US Bureau of Mines is investigating the wear behavior of a variety of advanced materials. Among the many materials under evaluation are intermetallic alloys based on the compounds: Fe 3 Al, Ti 3 Al, TiAl, Al 3 Ti, NiAl and MoSi 2 . The high hardness, high modulus, low density, and superior environmental stability of these compounds make them attractive for wear materials. This paper reports on the abrasive wear of alloys and composites based on the above compounds. The abrasive wear behavior of these alloys and composites are compared to other engineering materials used in wear applications

  13. Structure Analysis Of Corrosion Resistant Thermal Sprayed Coatings On Low Alloy Steels

    Science.gov (United States)

    Chaliampalias, D.; Vourlias, G.; Pistofidis, N.; Pavlidou, E.; Stergiou, A.; Stergioudis, G.; Polychroniadis, E. K.

    2007-04-01

    Metallic coatings have been proved to reduce the rate of corrosion of steel in various atmospheres. In this work the structure of Al, Cu-Al and Zn thermal sprayed coatings is examined. The as formed coatings are extremely rough, and they are composed of several phases which increase corrosion resistance as it was determined Salt Spray Chamber tests.

  14. Influence of martensitic phase in abrasion behaviour of stainless steel 304 L

    International Nuclear Information System (INIS)

    Ruzzante, J.; Alvarez, P.; Hey, A.; Gestido, G.D.; Vosen, J.H.; Fernandez, H.A.

    1986-01-01

    Abrasion behaviour is studied in commercial stainless steels of different class compositions by standard. The work achieved guieds in structural analysis of superficial coat formed and its relation with abrasion variables, load and velocity. The abrasion is made in an equipment LF WK of high velocity with friction powers, abrasion velocity and temperature variation registered on the tested piece. The abrasion zone is studied with scanning electron microscope (SEM). The deformed superficial zone nature is studied relationing its microstructure with profile corresponding of microhardness. (C.M.C.T.R.) [pt

  15. One-step spray-coating process for the fabrication of colorful superhydrophobic coatings with excellent corrosion resistance.

    Science.gov (United States)

    Li, Jian; Wu, Runni; Jing, Zhijiao; Yan, Long; Zha, Fei; Lei, Ziqiang

    2015-10-06

    A simple method was used to generate colorful hydrophobic stearate particles via chemical reactions between inorganic salts and sodium stearate. Colored self-cleaning superhydrophobic coatings were prepared through a facile one-step spray-coating process by spraying the stearate particle suspensions onto stainless steel substrates. Furthermore, the colorful superhydrophobic coating maintains excellent chemical stability under both harsh acidic and alkaline circumstances. After being immersed in a 3.5 wt % NaCl aqueous solution for 1 month, the as-prepared coatings remained superhydrophobic; however, they lost their self-cleaning property with a sliding angle of about 46 ± 3°. The corrosion behavior of the superhydrophobic coatings on the Al substrate was characterized by the polarization curve and electrochemical impedance spectroscopy (EIS). The electrochemical corrosion test results indicated that the superhydrophobic coatings possessed excellent corrosion resistance, which could supply efficient and long-term preservation for the bare Al substrate.

  16. Resistance to Corrosion of Zirconia Coatings Deposited by Spray Pyrolysis in Nitrided Steel

    Science.gov (United States)

    Cubillos, G. I.; Olaya, J. J.; Bethencourt, M.; Cifredo, G.; Blanco, G.

    2013-10-01

    Coatings of zirconium oxide were deposited onto three types of stainless steel, AISI 316L, 2205, and tool steel AISI D2, using the ultrasonic spray pyrolysis method. The effect of the flux ratio on the process and its influence on the structure and morphology of the coatings were investigated. The coatings obtained, 600 nm thick, were characterized using x-ray diffraction, scanning electron microscopy, confocal microscopy, and atomic force microscopy. The resistance to corrosion of the coatings deposited over steel (not nitrided) and stainless steel nitrided (for 2 h at 823 K) in an ammonia atmosphere was evaluated. The zirconia coating enhances the stainless steel's resistance to corrosion, with the greatest increase in corrosion resistance being observed for tool steel. When the deposition is performed on previously nitrided stainless steel, the morphology of the surface improves and the coating is more homogeneous, which leads to an improved corrosion resistance.

  17. Abrasive water jet cutting

    International Nuclear Information System (INIS)

    Leist, K.J.; Funnell, G.J.

    1988-01-01

    In the process of selecting a failed equipment cut-up tool for the process facility modifications (PFM) project, a system using an abrasive water jet (AWJ) was developed and tested for remote disassembly of failed equipment. It is presented in this paper

  18. Aluminide protective coatings on high–temperature creep resistant cast steel

    OpenAIRE

    J. Kubicki; A. Kochmańska

    2009-01-01

    This paper presents the results of research on aluminide protective coatings manufactured on high–temperature creep resistant cast steel. The main purpose of these coatings is protection against the high temperature corrosion, especially at high carburizing potential atmosphere. Coatings were obtained on cast steel type G–XNiCrSi36–18 with the following methods: pack cementation, paste method, cast method and slurry cementation. The phase composition, thickness and morphology of coatings were...

  19. Abrasion Properties of Steel Fiber Reinforced Silica Fume Concrete According to Los Angeles and Water Abrasion Tests

    Directory of Open Access Journals (Sweden)

    Tsan-Ching CHENG

    2014-12-01

    Full Text Available The current study mainly investigated the influence of different tests on the abrasion resistance of concrete mixed with steel fibers and silica fume. The abrasion resistance was assessed at 28, 56 and 91 days on concretes with water-binder ratios of 0.35 and 0.55 where in some mixes silica fume was substituted by 5 % of cement by weight. Steel fibers of 0.5 % and 1.0 % of concrete volume were also added into the test concrete by replacement of coarse and fine aggregates. The results showed that concrete with higher compressive strength in Los Angeles abrasion tests also had better abrasion resistance. The inclusion of steel fibers into test concrete with a water-binder ratio of 0.35 resulted in a significant increase in compressive strength. This concrete also displayed better abrasion resistance and splitting tensile strength than reference concrete; in the test sample with a water-binder ratio of 0.55, the added steel fibers was unable to effectively produce cementation with the concrete. The inclusion of silica fume improved the abrasion resistance of concretes. In water abrasion testing, the abrasion resistance of concrete containing steel fiber was worse than that of concrete without steel fibers. In the water abrasion testing, the surface of steel fiber reinforced concrete was eroded by water and steel balls, and the impact caused the steel fibers to separate from the concrete and led to higher wear loss. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6460

  20. Microstructure and Wear Resistance of TIG Remelted NiCrBSi Thick Coatings

    Directory of Open Access Journals (Sweden)

    Guo-lu Li

    2018-01-01

    Full Text Available The self-fluxing NiCrBSi coatings with 800 μm thickness were prepared on the surface of AISI1045 steel substrate by plasma spraying. And the remelted coating was obtained using by the tungsten inert gas (TIG arc process. The microstructure, surface roughness, hardness, phase composition, and wear resistance of the sprayed coating and remelted coating were systematically investigated. The results demonstrate that TIG remelted treatment can significantly eliminate the microscopic defects in thick coating and improve its density. The surface roughness (Ra of the remelted coating is only 18.9% of the sprayed coating. The hardness of the remelted coating is 26.8% higher than that of the sprayed coating. The main phases in the sprayed coating are changed from γ-Ni, Cr7C3, and Cr2B to γ-Ni, Cr23C6, CrB, Ni3B, and Fe3C. The wear mass loss of the remelted coating is only 17.1% of the sprayed coating. Therefore, a Ni-based thick coating with good wear resistance can be obtained by plasma spraying and remelted technique.

  1. High Temperature Dry Sliding Friction and Wear Performance of Laser Cladding WC/Ni Composite Coating

    Directory of Open Access Journals (Sweden)

    YANG Jiao-xi

    2016-06-01

    Full Text Available Two different types of agglomerate and angular WC/Ni matrix composite coatings were deposited by laser cladding. The high temperature wear resistance of these composite coatings was tested with a ring-on-disc MMG-10 apparatus. The morphologies of the worn surfaces were observed using a scanning electron microscopy (SEM equipped with an energy dispersive spectroscopy (EDS for elemental composition. The results show that the high temperature wear resistance of the laser clad WC/Ni-based composite coatings is improved significantly with WC mass fraction increasing. The 60% agglomerate WC/Ni composite coating has optimal high temperature wear resistance. High temperature wear mechanism of 60% WC/Ni composite coating is from abrasive wear of low temperature into composite function of the oxidation wear and abrasive wear.

  2. Nano zinc phosphate coatings for enhanced corrosion resistance of mild steel

    International Nuclear Information System (INIS)

    Tamilselvi, M.; Kamaraj, P.; Arthanareeswari, M.; Devikala, S.

    2015-01-01

    Highlights: • Nano zinc phosphate coating on mild steel was developed. • Nano zinc phosphate coatings on mild steel showed enhanced corrosion resistance. • The nano ZnO increases the number of nucleating sites for phosphating. • Faster attainment of steady state during nano zinc phosphating. - Abstract: Nano crystalline zinc phosphate coatings were developed on mild steel surface using nano zinc oxide particles. The chemical composition and morphology of the coatings were analyzed by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The particles size of the nano zinc phosphate coating developed was also characterized by TEM analysis. Potentiodynamic polarization and electrochemical impedance studies were carried out in 3.5% NaCl solution. Significant variations in the coating weight, morphology and corrosion resistance were observed as nano ZnO concentrations were varied from 0.25 to 2 g/L in the phosphating baths. The results showed that nano ZnO particles in the phosphating solution yielded phosphate coatings of higher coating weight, greater surface coverage and enhanced corrosion resistance than the normal zinc phosphate coatings (developed using normal ZnO particles in the phosphating baths). Better corrosion resistance was observed for coatings derived from phosphating bath containing 1.5 g/L nano ZnO. The activation effect brought about by the nano ZnO reduces the amount of accelerator (NaNO 2 ) required for phosphating

  3. The High-Temperature Resistance Properties of Polysiloxane/Al Coatings with Low Infrared Emissivity

    Directory of Open Access Journals (Sweden)

    Jun Zhao

    2018-03-01

    Full Text Available High-temperature-resistant coatings with low infrared emissivity were prepared using polysiloxane resin and flake aluminum as the adhesive and pigment, respectively. The heat resistance mechanisms of the polysiloxane/Al coating were systematically investigated. The composition, surface morphology, infrared reflectance spectra, and thermal expansion dimension (ΔL of the coatings were characterized by X-ray photoelectron spectroscopy (XPS, field emission scanning electron microscopy (FE-SEM, Fourier transform infrared spectroscopy, and thermal mechanical analysis (TMA, respectively. The results show that thermal decomposition of the resin and mismatch of ΔL between the coating and the substrate facilitate the high temperature failure of the coating. A suitable amount of flake aluminum pigments could restrain the thermal decomposition of the resin and could increase the match degree of ΔL between the coating and substrate, leading to an enhanced thermal resistance of the coating. Our results find that a coating with a pigment to binder ratio (P/B ratio of 1.0 could maintain integrity until 600 °C, and the infrared emissivity was as low as 0.27. Hence, a coating with high-temperature resistance and low emissivity was obtained. Such coatings can be used for infrared stealth technology or energy savings in high-temperature equipment.

  4. Development and Life Prediction of Erosion Resistant Turbine Low Conductivity Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2010-01-01

    Future rotorcraft propulsion systems are required to operate under highly-loaded conditions and in harsh sand erosion environments, thereby imposing significant material design and durability issues. The incorporation of advanced thermal barrier coatings (TBC) in high pressure turbine systems enables engine designs with higher inlet temperatures, thus improving the engine efficiency, power density and reliability. The impact and erosion resistance of turbine thermal barrier coating systems are crucial to the turbine coating technology application, because a robust turbine blade TBC system is a prerequisite for fully utilizing the potential coating technology benefit in the rotorcraft propulsion. This paper describes the turbine blade TBC development in addressing the coating impact and erosion resistance. Advanced thermal barrier coating systems with improved performance have also been validated in laboratory simulated engine erosion and/or thermal gradient environments. A preliminary life prediction modeling approach to emphasize the turbine blade coating erosion is also presented.

  5. Bioactive glass–ceramic coating for enhancing the in vitro corrosion resistance of biodegradable Mg alloy

    International Nuclear Information System (INIS)

    Ye Xinyu; Cai Shu; Dou Ying; Xu Guohua; Huang Kai; Ren Mengguo; Wang Xuexin

    2012-01-01

    Highlights: ► Sol–gel derived 45S5 glass–ceramic coating was prepared on Mg alloy substrate. ► The corrosion resistance of glass–ceramic coated Mg alloy was markedly improved. ► The corrosion behavior of the coated sample varied due to the cracking of coating. - Abstract: In this work, a bioactive 45S5 glass–ceramic coating was synthesized on magnesium (Mg) alloy substrate by using a sol–gel dip-coating method, to improve the initial corrosion resistance of AZ31 Mg alloy. The surface morphology and phase composition of the glass–ceramic coating were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The coating composed of amorphous phase and crystalline phase Na 2 Ca 2 Si 3 O 9 , with the thickness of ∼1.0 μm, exhibited a uniform and crack-free surface morphology. The corrosion behavior of the uncoated and coated Mg alloy substrates was investigated by the electrochemical measurements and immersion tests in simulated body fluid (SBF). Potentiodynamic polarization tests recorded an increase of potential (E corr ) form −1.60 V to −1.48 V, and a reduction of corrosion current density (i corr ) from 4.48 μA cm −2 to 0.16 μA cm −2 , due to the protection provided by the glass–ceramic coating. Immersion tests also showed the markedly improved corrosion resistance of the coated sample over the immersion period of 7 days. Moreover, after 14 days of immersion in SBF, the corrosion resistance of the coated sample declined due to the cracking of the glass–ceramic coating, which was confirmed by electrochemical impedance spectroscopy (EIS) analysis. The results suggested that the 45S5 glass–ceramic coated Mg alloy could provide a suitable corrosion behavior for use as degradable implants.

  6. Tribological Characteristics of Tungsten Carbide Reinforced Arc Sprayed Coatings using Different Carbide Grain Size Fractions

    Directory of Open Access Journals (Sweden)

    W. Tillmann

    2017-06-01

    Full Text Available Tungsten carbide reinforced coatings play an important role in the field of surface engineering to protect stressed surfaces against wear. For thermally sprayed coatings, it is already shown that the tribological properties get mainly determined by the carbide grain size fraction. Within the scope of this study, the tribological characteristics of iron based WC-W2C reinforced arc sprayed coatings deposited using cored wires consisting of different carbide grain size fractions were examined. Microstructural characteristics of the produced coatings were scrutinized using electron microscopy and x-ray diffraction analyses. Ball-on-disk test as well as Taber Abraser and dry sand rubber wheel test were employed to analyze both the dry sliding and the abrasive wear behavior. It was shown that a reduced carbide grain size fraction as filling leads to an enhanced wear resistance against sliding. In terms of the Taber Abraser test, it is also demonstrated that a fine carbide grain size fraction results in an improved wear resistant against abrasion. As opposed to that, a poorer wear resistance was found within the dry sand rubber wheel tests. The findings show that the operating mechanisms for both abrasion tests affect the stressed surface in a different way, leading either to microcutting or microploughing.

  7. LITERATURE SURVEY ON ABRASION PROBLEM IN CHENILLE YARNS

    Directory of Open Access Journals (Sweden)

    Erhan Kenan ÇEVEN

    2006-01-01

    Full Text Available Chenille yarns are traditionally used in the manufacture of furnishing fabrics, fashion knitwear, and as decorative threads in many types of broad and narrow fabrics. Chenille yarn has a very distinct weakness-it does not have very good inherent abrasion resistance. When the yarns are in use, clearly the abrasion resistance of the chenille yarn is crucially important. Either during further processing or during the eventual end-use, any removal of the effect yarn forming the beard will expose the ground yarns, which in turn will result in a bare appearance. To avoid this undesirable result, several options are available. Therefore, the studies on this area are about the investigation of the influences of some material types and machine parameters on the abrasion resistance of chenille yarns and fabrics produced with these yarns. In this paper, the experimental studies about the abrasion properties of chenille yarns in yarn, knitted and woven fabric forms are summarized.

  8. Examination of Wetting by Liquid Zinc of Steel Sheets Following Various Kinds of Abrasive Blasting

    Directory of Open Access Journals (Sweden)

    Cecotka M.

    2016-06-01

    Full Text Available Abrasive blasting is one of the methods of surface working before hot-dip zinc-coating. It allows not only to remove products of corrosion from the surface, but it also affects the quality of the zinc coating applied later, thereby affecting wettability of surface being zinc-coated. The surface working can be done with different types of abrasive material.

  9. Development of wear-resistant coatings for cobalt-base alloys

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    The costs and hazards resulting from nuclear plant radiation exposure with activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. However, the hardnesses of many cobalt-base wear alloys are significantly lower than conventional PVD hard coatings, and mechanical support of the hard coating is a concern. Four approaches have been taken to minimize the hardness differences between the substrate and PVD hard coating: (1) use a thin Cr-nitride hard coating with layers that are graded with respect to hardness, (2) use a thicker, multilayered coating (Cr-nitride or Zr-nitride) with graded layers, (3) use nitriding to harden the alloy subsurface followed by application of a multilayered coating of Cr-nitride, and (4) use of nitriding alone. Since little work has been done on application of PVD hard coatings to cobalt-base alloys, some details on process development and characterization of the coatings is presented. Scratch testing was used to evaluate the adhesion of the different coatings. A bench-top rolling contact test was used to evaluate the wear resistance of the coatings. The test results are discussed, and the more desirable coating approaches are identified

  10. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    International Nuclear Information System (INIS)

    Dhandapani, Vishnu Shankar; Subbiah, Ramesh; Thangavel, Elangovan; Arumugam, Madhankumar; Park, Kwideok; Gasem, Zuhair M.; Veeraragavan, Veeravazhuthi; Kim, Dae-Eun

    2016-01-01

    Highlights: • a-C:Ti nanocomposite coatings were prepared on 316L stainless steel by using R.F. magnetron sputtering method. • Properties of the nanocomposite coatings were analyzed with respect to titanium content. • Corrosion resistance, biocompatibility and hydrophobicity of nanocomposite coating were enhanced with increasing titanium content. • Coating with 2.33 at.% titanium showed superior tribological properties compared to other coatings. - Abstract: Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp"2 bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  11. Study of Thermal Fatigue Resistance of a Composite Coating Made by a Vacuum Fusion Sintering Method

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Thermal fatigue behavior of a Ni-base alloy chromium carbide composite coating made by a vacuum fusion sintering method are discussed. Results show that thermal fatigue behavior is associated with cyclic upper temperature and coating thickness. As the thickness of the coating decreases, the thermal fatigue resistance increases. The thermal fatigue resistance cuts down with the thermal cyclic upper temperature rising. The crack growth rate decreases with the increase in cyclic number until crack arrests. Thermal fatigue failure was not found along the interface of the coating/matrix. The tract of thermal fatigue crack cracks along the interfaces of phases.

  12. Corrosion resistant coatings for uranium and uranium alloys

    International Nuclear Information System (INIS)

    Weirick, L.J.; Lynch, C.T.

    1977-01-01

    Coatings to prevent the corrosion of uranium and uranium alloys are considered in two military applications: kinetic energy penetrators and aircraft counterweights. This study, which evaluated organic films and metallic coatings, demonstrated that the two most promising coatings are based on an electrodeposited nickel system and a galvanized zinc system

  13. Effect of manufacturing process sequence on the corrosion resistance characteristics of coated metallic bipolar plates

    Science.gov (United States)

    Dur, Ender; Cora, Ömer Necati; Koç, Muammer

    2014-01-01

    Metallic bipolar plate (BPP) with high corrosion and low contact resistance, durability, strength, low cost, volume, and weight requirements is one of the critical parts of the PEMFC. This study is dedicated to understand the effect of the process sequence (manufacturing then coating vs. coating then manufacturing) on the corrosion resistance of coated metallic bipolar plates. To this goal, three different PVD coatings (titanium nitride (TiN), chromium nitride (CrN), zirconium nitride (ZrN)), with three thicknesses, (0.1, 0.5, 1 μm) were applied on BPPs made of 316L stainless steel alloy before and after two types of manufacturing (i.e., stamping or hydroforming). Corrosion test results indicated that ZrN coating exhibited the best corrosion protection while the performance of TiN coating was the lowest among the tested coatings and thicknesses. For most of the cases tested, in which coating was applied before manufacturing, occurrence of corrosion was found to be more profound than the case where coating was applied after manufacturing. Increasing the coating thickness was found to improve the corrosion resistance. It was also revealed that hydroformed BPPs performed slightly better than stamped BPPs in terms of the corrosion behavior.

  14. Microstructure and corrosion resistance of Ce–V conversion coating on AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Jiang, Xiao; Guo, Ruiguang; Jiang, Shuqin

    2015-01-01

    Highlights: • Through simple chemical conversion process, a Ce–V conversion coating is prepared on AZ31 magnesium alloy. The coating (∼2 μm thick) has a duplex structure and is composed of Mg, Al, Ce, V and O in the outer layer and Mg, Al, V, F and O in the inner layer. • The Ce–V conversion coating can increase the E corr by 157 mV and decrease the i corr by 80 times compared to AZ31 magnesium alloy substrate. Moreover, the performance of the Ce–V conversion coating excels the chromate conversion coating on AZ31 magnesium alloy. • The EIS results of Ce–V conversion coating indicate an increase of 10× in the corrosion resistance and a delay in the corrosion process kinetics compared to uncoated AZ31 magnesium alloy in 3.5 wt.% NaCl solution. • The ball cratering is a simple and effective technique of thickness measurement for chemical conversion coating. - Abstract: A Ce–V conversion coating was developed to improve the corrosion resistance of AZ31 magnesium alloy. Scanning electronic microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectrometer (XPS), grazing incidence X-ray diffraction (GIXRD) and the ball cratering test were adopted to study the morphology, chemical composition, structure and thickness of the coating. The coating has duplex structure with network and its thickness is about 2 μm. The coating contains high contents of Ce and V, which exhibits amorphous structure. Potentiodynamic polarization shows the coating can increase the corrosion potential and reduce the corrosion current density of AZ31 magnesium alloy. Moreover, the electrochemical impedance spectra exhibit the coating significantly improves the corrosion resistance of AZ31 magnesium alloy. Results indicate that the Ce–V conversion coating can provide effective protection to AZ31 magnesium alloy

  15. Microstructure and corrosion resistance of Ce–V conversion coating on AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiao, E-mail: xiaoxiao217@126.com; Guo, Ruiguang; Jiang, Shuqin

    2015-06-30

    Highlights: • Through simple chemical conversion process, a Ce–V conversion coating is prepared on AZ31 magnesium alloy. The coating (∼2 μm thick) has a duplex structure and is composed of Mg, Al, Ce, V and O in the outer layer and Mg, Al, V, F and O in the inner layer. • The Ce–V conversion coating can increase the E{sub corr} by 157 mV and decrease the i{sub corr} by 80 times compared to AZ31 magnesium alloy substrate. Moreover, the performance of the Ce–V conversion coating excels the chromate conversion coating on AZ31 magnesium alloy. • The EIS results of Ce–V conversion coating indicate an increase of 10× in the corrosion resistance and a delay in the corrosion process kinetics compared to uncoated AZ31 magnesium alloy in 3.5 wt.% NaCl solution. • The ball cratering is a simple and effective technique of thickness measurement for chemical conversion coating. - Abstract: A Ce–V conversion coating was developed to improve the corrosion resistance of AZ31 magnesium alloy. Scanning electronic microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectrometer (XPS), grazing incidence X-ray diffraction (GIXRD) and the ball cratering test were adopted to study the morphology, chemical composition, structure and thickness of the coating. The coating has duplex structure with network and its thickness is about 2 μm. The coating contains high contents of Ce and V, which exhibits amorphous structure. Potentiodynamic polarization shows the coating can increase the corrosion potential and reduce the corrosion current density of AZ31 magnesium alloy. Moreover, the electrochemical impedance spectra exhibit the coating significantly improves the corrosion resistance of AZ31 magnesium alloy. Results indicate that the Ce–V conversion coating can provide effective protection to AZ31 magnesium alloy.

  16. Optically transparent and durable Al2O3 coatings for harsh environments by ultra short pulsed laser deposition

    Science.gov (United States)

    Korhonen, Hannu; Syväluoto, Aki; Leskinen, Jari T. T.; Lappalainen, Reijo

    2018-01-01

    Nowadays, an environmental protection is needed for a number of optical applications in conditions quickly impairing the clarity of optical surfaces. Abrasion resistant optical coatings applied onto plastics are usually based on alumina or polysiloxane technology. In many applications transparent glasses and ceramics need a combination of abrasive and chemically resistant shielding or other protective solutions like coatings. In this study, we intended to test our hypothesis that clear and pore free alumina coating can be uniformly distributed on glass prisms by ultra short pulsed laser deposition (USPLD) technique to protect the sensitive surfaces against abrasives. Abrasive wear tests were carried out by the use of SiC emery paper using specified standard procedures. After the wear tests the measured transparencies of coated prisms turned out to be close those of the prisms before coating. The coating on sensitive surfaces consistently displayed enhanced wear resistance exhibiting still high quality, even after severe wear testing. Furthermore, the coating modified the surface properties towards hydrophobic nature in contrast to untreated prisms, which became very hydrophilic especially due to wear.

  17. CrN-based wear resistant hard coatings for machining and forming tools

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S; Cooke, K E; Teer, D G [Teer Coatings Ltd, West Stone House, Berry Hill Industrial Estate, Droitwich, Worcestershire WR9 9AS (United Kingdom); Li, X [School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT (United Kingdom); McIntosh, F [Rolls-Royce plc, Inchinnan, Renfrewshire PA4 9AF, Scotland (United Kingdom)

    2009-05-21

    Highly wear resistant multicomponent or multilayer hard coatings, based on CrN but incorporating other metals, have been developed using closed field unbalanced magnetron sputter ion plating technology. They are exploited in coated machining and forming tools cutting and forming of a wide range of materials in various application environments. These coatings are characterized by desirable properties including good adhesion, high hardness, high toughness, high wear resistance, high thermal stability and high machining capability for steel. The coatings appear to show almost universal working characteristics under operating conditions of low and high temperature, low and high machining speed, machining of ordinary materials and difficult to machine materials, and machining under lubricated and under minimum lubricant quantity or even dry conditions. These coatings can be used for cutting and for forming tools, for conventional (macro-) machining tools as well as for micromachining tools, either as a single coating or in combination with an advanced, self-lubricating topcoat.

  18. DEVELOPMENT OF LASER CLADDING WEAR-RESISTANT COATING ON TITANIUM ALLOYS

    OpenAIRE

    RUILIANG BAO; HUIJUN YU; CHUANZHONG CHEN; BIAO QI; LIJIAN ZHANG

    2006-01-01

    Laser cladding is an advanced surface modification technology with broad prospect in making wear-resistant coating on titanium alloys. In this paper, the influences of laser cladding processing parameters on the quality of coating are generalized as well as the selection of cladding materials on titanium alloys. The microstructure characteristics and strengthening mechanism of coating are also analyzed. In addition, the problems and precaution measures in the laser cladding are pointed out.

  19. Rhodium and Hafnium Influence on the Microstructure, Phase Composition, and Oxidation Resistance of Aluminide Coatings

    OpenAIRE

    Maryana Zagula-Yavorska; Małgorzata Wierzbińska; Jan Sieniawski

    2017-01-01

    A 0.5 μm thick layer of rhodium was deposited on the CMSX 4 superalloy by the electroplating method. The rhodium-coated superalloy was hafnized and aluminized or only aluminized using the Chemical vapour deposition method. A comparison was made of the microstructure, phase composition, and oxidation resistance of three aluminide coatings: nonmodified (a), rhodium-modified (b), and rhodium- and hafnium-modified (c). All three coatings consisted of two layers: the additive layer and the interdi...

  20. Development of wear-resistant coatings for cobalt-base alloys

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    The level of nuclear plant radiation exposure due to activated cobalt wear debris could potentially be reduced by covering the cobalt-base materials with a wear resistant coating. Laboratory pin-on-disc and rolling contact wear tests were used to evaluate the wear performance of several coatings. Based on the results of these tests, multilayer Cr-nitride coatings and ion nitriding are the most promising approaches

  1. Microstructure and corrosive wear resistance of plasma sprayed Ni-based coatings after TIG remelting

    Science.gov (United States)

    Tianshun, Dong; Xiukai, Zhou; Guolu, Li; Li, Liu; Ran, Wang

    2018-02-01

    Ni based coatings were prepared on steel substrate by means of plasma spraying, and were remelted by TIG (tungsten inert gas arc) method subsequently. The microstructure, microhardness, electrochemical corrosion and corrosive wear resistance under PH = 4, PH = 7 and PH = 10 conditions of the coatings before and after remelting were investigated. The results showed that the TIG remelting obviously reduced the defects and dramatically decreased the coating’s porosity from 7.2% to 0.4%. Metallurgical bonding between the remelted coating and substrate was achieved. Meanwhile, the phase compositions of as-sprayed coating were γ-Ni, Mn5Si2 and Cr2B, while the phase compositions of the remelting coating were Fe3Ni, Cr23C6, Cr2B and Mn5Si2. The microhardness of the coating decreased from 724 HV to 608 HV, but the fracture toughness enhanced from 2.80 MPa m1/2 to 197.3 MPa m1/2 after remelting. After corrosive wear test, the average wear weight loss and 3D morphology of wear scar of two coatings indicated that the wear resistance of the remelted coating was remarkably higher than that of as-sprayed coating. Therefore, TIG remelting treatment was a feasible method to improve the coating’s microstructure and enhance its corrosive wear resistance.

  2. Corrosion Resistance Of Electroless Ni-P/Cu/Ni-P Multilayer Coatings

    Directory of Open Access Journals (Sweden)

    Zhao G.L.

    2015-06-01

    Full Text Available Ni-P/Cu/Ni-P multilayer coatings were prepared by deposition of Cu layer between two Ni–P layers. The Cu layer was deposited by metal displacement reaction between Cu2+ and Fe atoms. Corrosion behavior of single-layer Ni-P coatings, double-layer Ni-P/Cu coatings, and three-layer Ni-P/Cu/Ni-P coatings were investigated by electrochemical tests in 3.5% NaCl solution. The three-layer coatings exhibited more positive Ecorr and decreased Icorr compared with conventional single-layer Ni-P coatings, which indicated an improved corrosion resistance. The polarization curves of the three-layer coatings were characterized by two passive regions. The improved corrosion resistance was not only attributed to the function of the blocked pores of Cu. The Cu interlayer also acted as a sacrificial layer instead of a barrier in the coatings, which altered the corrosion mechanism and further improved the corrosion resistance of the coatings.

  3. Ultrasonic irradiation and its application for improving the corrosion resistance of phosphate coatings on aluminum alloys.

    Science.gov (United States)

    Sheng, Minqi; Wang, Chao; Zhong, Qingdong; Wei, Yinyin; Wang, Yi

    2010-01-01

    In this paper, ultrasonic irradiation was utilized for improving the corrosion resistance of phosphate coatings on aluminum alloys. The chemical composition and morphology of the coatings were analyzed by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The effect of ultrasonic irradiation on the corrosion resistance of phosphate coatings was investigated by polarization curves and electrochemical impedance spectroscopy (EIS). Various effects of the addition of Nd(2)O(3) in phosphating bath on the performance of the coatings were also investigated. Results show that the composition of phosphate coating were Zn(3)(PO(4))(2).4H(2)O(hopeite) and Zn crystals. The phosphate coatings became denser with fewer microscopic holes by utilizing ultrasonic irradiation treatment. The addition of Nd(2)O(3) reduced the crystallinity of the coatings, with the additional result that the crystallites were increasingly nubby and spherical. The corrosion resistance of the coatings was also significantly improved by ultrasonic irradiation treatment; both the anodic and cathodic processes of corrosion taking place on the aluminum alloy substrate were suppressed consequently. In addition, the electrochemical impedance of the coatings was also increased by utilizing ultrasonic irradiation treatment compared with traditional treatment.

  4. Crack resistance of pvd coatings : Influence of surface treatment prior to deposition

    NARCIS (Netherlands)

    Zoestbergen, E; de Hosson, J.T.M.

    The crack resistance of three different PVD coatings, TiN, Ti(C,N), and a multilayer system of alternating TiN and TiAlN, have been investigated. The three coating systems were deposited onto substrates with a different surface roughness to study the influence of this pretreatment on the crack

  5. Corrosion resistance and cytocompatibility of biodegradable surgical magnesium alloy coated with hydrogenated amorphous silicon.

    Science.gov (United States)

    Xin, Yunchang; Jiang, Jiang; Huo, Kaifu; Tang, Guoyi; Tian, Xiubo; Chu, Paul K

    2009-06-01

    The fast degradation rates in the physiological environment constitute the main limitation for the applications of surgical magnesium alloys as biodegradable hard-tissue implants. In this work, a stable and dense hydrogenated amorphous silicon coating (a-Si:H) with desirable bioactivity is deposited on AZ91 magnesium alloy using magnetron sputtering deposition. Raman spectroscopy and Fourier transform infrared spectroscopy reveal that the coating is mainly composed of hydrogenated amorphous silicon. The hardness of the coated alloy is enhanced significantly and the coating is quite hydrophilic as well. Potentiodynamic polarization results show that the corrosion resistance of the coated alloy is enhanced dramatically. In addition, the deterioration process of the coating in simulated body fluids is systematically investigated by open circuit potential evolution and electrochemical impedance spectroscopy. The cytocompatibility of the coated Mg is evaluated for the first time using hFOB1.19 cells and favorable biocompatibility is observed. 2008 Wiley Periodicals, Inc.

  6. Microstructures, mechanical properties and corrosion resistance of Hastelloy C22 coating produced by laser cladding

    International Nuclear Information System (INIS)

    Wang, Qin-Ying; Zhang, Yang-Fei; Bai, Shu-Lin; Liu, Zong-De

    2013-01-01

    Highlights: ► Hastelloy C22 coatings were prepared by diode laser cladding technique. ► Higher laser speed resulted in smaller grain size. ► Size-effect played the key role in the hardness measurements by different ways. ► Coating with higher laser scanning speed displayed higher nano-scratch resistance. ► Small grain size was beneficial for improvement of coating corrosion resistance. -- Abstract: The Hastelloy C22 coatings H1 and H2 were prepared by laser cladding technique with laser scanning speeds of 6 and 12 mm/s, respectively. Their microstructures, mechanical properties and corrosion resistance were investigated. The microstructures and phase compositions were studied by metallurgical microscope, scanning electron microscope and X-ray diffraction analysis. The hardness and scratch resistance were measured by micro-hardness and nanoindentation tests. The polarization curves and electrochemical impedance spectroscopy were tested by electrochemical workstation. Planar, cellular and dendritic solidifications were observed in the coating cross-sections. The coatings metallurgically well-bonded with the substrate are mainly composed of primary phase γ-nickel with solution of Fe, W, Cr and grain boundary precipitate of Mo 6 Ni 6 C. The hardness and corrosion resistance of steel substrate are significantly improved by laser cladding Hastelloy C22 coating. Coating H2 shows higher micro-hardness than that of H1 by 34% and it also exhibits better corrosion resistance. The results indicate that the increase of laser scanning speed improves the microstuctures, mechanical properties and corrosion resistance of Hastelloy C22 coating

  7. Coated steel rebar for enhanced concrete-steel bond strength and corrosion resistance.

    Science.gov (United States)

    2010-10-01

    This report summarizes the findings and recommendations on the use of enamel coating in reinforced concrete structures both for bond strength and : corrosion resistance of steel rebar. Extensive laboratory tests were conducted to characterize the pro...

  8. Infrared spectroscopy, nano-mechanical properties, and scratch resistance of esthetic orthodontic coated archwires.

    Science.gov (United States)

    da Silva, Dayanne Lopes; Santos, Emanuel; Camargo, Sérgio de Souza; Ruellas, Antônio Carlos de Oliveira

    2015-09-01

    To evaluate the material composition, mechanical properties (hardness and elastic modulus), and scratch resistance of the coating of four commercialized esthetic orthodontic archwires. The coating composition of esthetic archwires was assessed by Fourier-transform infrared spectroscopy (FTIR). Coating hardness and elastic modulus were analyzed with instrumented nano-indentation tests. Scratch resistance of coatings was evaluated by scratch test. Coating micromorphologic characteristics after scratch tests were observed in a scanning electron microscope. Statistical differences were investigated using analysis of variance and Tukey post hoc test. The FTIR results indicate that all analyzed coatings were markedly characterized by the benzene peak at about 1500 cm(-1). The coating hardness and elastic modulus average values ranged from 0.17 to 0.23 GPa and from 5.0 to 7.6 GPa, respectively. Scratch test showed a high coating elasticity after load removal with elastic recoveries >60%, but different failure features could be observed along the scratches. The coatings of esthetic archwires evaluated are probably a composite of polyester and polytetrafluoroethylene. Delamination, crack propagation, and debris generation could be observed along the coating scratches and could influence its durability in the oral environment.

  9. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    Science.gov (United States)

    Dhandapani, Vishnu Shankar; Subbiah, Ramesh; Thangavel, Elangovan; Arumugam, Madhankumar; Park, Kwideok; Gasem, Zuhair M.; Veeraragavan, Veeravazhuthi; Kim, Dae-Eun

    2016-05-01

    Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp2 bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  10. Preparation, characterization and wear behavior of carbon coated magnesium alloy with electroless plating nickel interlayer

    International Nuclear Information System (INIS)

    Mao, Yan; Li, Zhuguo; Feng, Kai; Guo, Xingwu; Zhou, Zhifeng; Dong, Jie; Wu, Yixiong

    2015-01-01

    Highlights: • The carbon film with nickel interlayer (Ni + C coating) is deposited on GW83. • In Ni + C composite coating the carbon coating has good adhesion with the nickel interlayer. • The wear track of Ni + C coating is narrower compared to the bare one. • The wear resistance of GW83 is greatly improved by the Ni + C coating. - Abstract: Poor wear resistance of rare earth magnesium alloys has prevented them from wider application. In this study, composite coating (PVD carbon coating deposited on electroless plating nickel interlayer) is prepared to protect GW83 magnesium alloys against wear. The Ni + C composite coating has a dense microstructure, improved adhesion strength and hardness due to the effective support of Ni interlayer. The wear test result shows that the Ni + C composite coating can greatly prolong the wear life of the magnesium alloy. The wear track of the Ni + C coated magnesium alloy is obviously narrower and shows less abrasive particles as compared with the bare one. Abrasive wear is the wear mechanism of the coatings at the room temperature. In conclusion, the wear resistance of the GW83 magnesium alloy can be greatly improved by the Ni + C composite coating

  11. Oxidation protection of austenite steels by heat-resisting glass-and-enamel coatings

    International Nuclear Information System (INIS)

    Lobzhanidze, V.N.; Korchagin, V.S.

    1977-01-01

    The use of glass-enamel coatings for corrosion protection of austenitic steels during heat treatment has been investigated. When working out the composition of the protective coating, the method of mathematical planning of experiments has been used. It is shown that the coating under investigation can best be used in heat treatment of items with a prolonged time of heating to 1050 deg C (18-20 hr). The savings resulting from the introduction of the heat-resistant glass-enamel coating exceed 30000 roubles

  12. Influence of Zeolite Coating on the Corrosion Resistance of AZ91D Magnesium Alloy.

    Science.gov (United States)

    Banerjee, P Chakraborty; Woo, Ren Ping; Grayson, Sam Matthew; Majumder, Amrita; Raman, R K Singh

    2014-08-22

    The protective performance of zeolite coating on AZ91D magnesium alloy was evaluated using potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) in 0.1 M sodium chloride solution (NaCl). Electrical equivalent circuit (EEC) was developed based upon hypothetical corrosion mechanisms and simulated to correspond to the experimental data. The morphology and the chemical nature of the coating were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. Post corrosion morphologies of the zeolite coated and the uncoated AZ91D alloy were investigated using SEM. The corrosion resistance of the zeolite coated specimen was at least one order of magnitude higher than the uncoated specimen.

  13. Formation and oxidation resistance of NbSi2 coatings on niobium by pack cementation

    International Nuclear Information System (INIS)

    Li Ming; Song Lixin; Le Jun; Zhang Xiaowei; Pei Baogen; Hu Xingfang

    2005-01-01

    NbSi 2 coatings were formed on niobium by halide-activated pack cementation process. The as-coated niobium samples were oxidized in air up to 1723 K by thermogravimetry method. The surface and cross-sectional morphology, phase composition and element distribution of the NbSi 2 coatings before and after oxidation were characterized by SEM, XRD and EPMA. The results show that the as-formed coatings consist of single phase of hexagonal NbSi 2 and the oxidation resistance of pure niobium can be greatly improved by pack siliconizing. (orig.)

  14. Titanium Carbides Coatings for Wear Resistant Biomedical Devices: Manufacturing and Modeling

    International Nuclear Information System (INIS)

    Contro, R.; Vena, P.; Gastaldi, D.; Masante, S.; Cavallotti, P. L.; Nobili, L.; Bestetti, M.

    2008-01-01

    Deposition of Titanium Carbide coatings on Ti6Al4V substrate, through the reactive magnetron sputtering technique is here presented. The mechanical characterization of the coatings has been carried out through a set of indentation tests at different maximum applied loads. The elastic stiffness as well as the hardness of the coating-substrate system indicate that these coatings are suitable candidates for wear resistance applications in the orthopaedic field. Numerical simulation of the indentation tests allowed the identification of the constitutive parameters of the titanium carbide. Good agreement was achieved between experimental and numerical results

  15. Investigation on wear resistance and corrosion resistance of electron beam cladding co-alloy coating on Inconel617

    Science.gov (United States)

    Liu, Hailang; Zhang, Guopei; Huang, Yiping; Qi, Zhengwei; Wang, Bo; Yu, Zhibiao; Wang, Dezhi

    2018-04-01

    To improve surface properties of Inconel 617 alloy (referred to as 617 alloy), co-alloy coating metallurgically bonded to substrate was prepared on the surface of 617 alloy by electron beam cladding. The microstructure, phase composition, microhardness, tribological properties and corrosion resistance of the coatings were investigated. The XRD results of the coatings reinforced by co-alloy (Co800) revealed the presence of γ-Co, CoCx and Cr23C6 phase as matrix and new metastable phases of Cr2Ni3 and Co3Mo2Si. These hypoeutectic structures contain primary dendrites and interdendritic eutectics. The metallurgical bonding forms well between the cladding layer and the matrix of 617 alloy. In most studied conditions, the co-alloy coating displays a better hardness, tribological performance, i.e., lower coefficient of frictions and wear rates, corrosion resistance in 1 mol L‑1 HCl solution, than the 617 alloy.

  16. Wear resistance increase of the modified coatings, deposited in the beam of relativistic electrons

    International Nuclear Information System (INIS)

    Poletika, I.M.; Perovskaya, M.V.; Balushkina, M.A.

    2015-01-01

    The 1.5-3 mm thickness coatings have been obtained by vacuum - free electron beam cladding of tungsten carbide on low - carbon steel sub state. The coatings have an increased hardness but low wear resistance. Adding both nickel and titanium carbide to the tungsten carbide results in essentially improving the wear resistance of the coatings due to austenite-promoting effect of nickel and precipitation of fine Tic particles resulting in the formation of the final and nano grain structure. In the layer of weld one can find 30-100 nm grain - size structures. (authors)

  17. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings

    International Nuclear Information System (INIS)

    Farmer, J; Choi, J; Haslam, J; Day, S; Yang, N; Headley, T; Lucadamo, G; Yio, J; Chames, J; Gardea, A; Clift, M; Blue, G; Peters, W; Rivard, J; Harper, D; Swank, D; Bayles, R; Lemieux, E; Brown, R; Wolejsza, T; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Lavernia, E; Schoenung, J; Ajdelsztajn, L; Dannenberg, J; Graeve, O; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Boudreau, J

    2007-01-01

    or inhibitor. Comparable metallic alloys such as SAM2X5 and SAM1651 may also experience crevice corrosion under sufficiently harsh conditions. Accelerated crevice corrosion tests are now being conducted to intentionally induce crevice corrosion, and to determine those environmental conditions where such localized attack occurs. Such materials are extremely hard, and provide enhanced resistance to abrasion and gouges (stress risers) from backfill operations, and possibly even tunnel boring. The hardness of Type 316L Stainless Steel is approximately 150 VHN, that of Alloy C-22 is approximately 250 VHN, and that of HVOF SAM2X5 ranges from 1100-1300 VHN. These new materials provide a viable coating option for repository engineers. SAM2X5 and SAM1651 coatings can be applied with thermal spray processes without any significant loss of corrosion resistance. Both Alloy C-22 and Type 316L stainless lose their resistance to corrosion during thermal spraying. Containers for the transportation, storage and disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) with corrosion resistant coatings are envisioned. For example, an enhanced multi-purpose container (MPC) could be made with such coatings, leveraging existing experience in the fabrication of such containers. These coating materials could be used to protect the final closure weld on SNF/HLW disposal containers, eliminate need for stress mitigation. Integral drip shield could be produced by directly spraying it onto the disposal container, thereby eliminating the need for an expensive titanium drip shield. In specific areas where crevice corrosion is anticipated, such as the contact point between the disposal container and pallet, HVOF coatings could be used to buildup thickness, thereby selectively adding corrosion life where it is needed. Both SAM2X5 and SAM1651 have high boron content which enable them to absorb neutrons and therefore be used for criticality control in baskets. Alloy C-22 and 316L

  18. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J; Choi, J; Haslam, J; Day, S; Yang, N; Headley, T; Lucadamo, G; Yio, J; Chames, J; Gardea, A; Clift, M; Blue, G; Peters, W; Rivard, J; Harper, D; Swank, D; Bayles, R; Lemieux, E; Brown, R; Wolejsza, T; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Aprigliano, L; Branagan, D; Marshall, M; Meacham, B; Lavernia, E; Schoenung, J; Ajdelsztajn, L; Dannenberg, J; Graeve, O; Lewandowski, J; Perepezko, J; Hildal, K; Kaufman, L; Boudreau, J

    2007-09-20

    or inhibitor. Comparable metallic alloys such as SAM2X5 and SAM1651 may also experience crevice corrosion under sufficiently harsh conditions. Accelerated crevice corrosion tests are now being conducted to intentionally induce crevice corrosion, and to determine those environmental conditions where such localized attack occurs. Such materials are extremely hard, and provide enhanced resistance to abrasion and gouges (stress risers) from backfill operations, and possibly even tunnel boring. The hardness of Type 316L Stainless Steel is approximately 150 VHN, that of Alloy C-22 is approximately 250 VHN, and that of HVOF SAM2X5 ranges from 1100-1300 VHN. These new materials provide a viable coating option for repository engineers. SAM2X5 and SAM1651 coatings can be applied with thermal spray processes without any significant loss of corrosion resistance. Both Alloy C-22 and Type 316L stainless lose their resistance to corrosion during thermal spraying. Containers for the transportation, storage and disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) with corrosion resistant coatings are envisioned. For example, an enhanced multi-purpose container (MPC) could be made with such coatings, leveraging existing experience in the fabrication of such containers. These coating materials could be used to protect the final closure weld on SNF/HLW disposal containers, eliminate need for stress mitigation. Integral drip shield could be produced by directly spraying it onto the disposal container, thereby eliminating the need for an expensive titanium drip shield. In specific areas where crevice corrosion is anticipated, such as the contact point between the disposal container and pallet, HVOF coatings could be used to buildup thickness, thereby selectively adding corrosion life where it is needed. Both SAM2X5 & SAM1651 have high boron content which enable them to absorb neutrons and therefore be used for criticality control in baskets. Alloy C-22 and 316L have

  19. Forming of protective nanostructure coatings on metals and glasses and their properties investigation

    International Nuclear Information System (INIS)

    Deshkovskaya, A.; Lynkov, L.; Nagibarov, A.; Glybin, V.; Richter, E.; Pham, M.

    2013-01-01

    Transparent heat-resistant coatings of 10-30 nm thickness described by (ZrO 2 ) x •(Y 2 O 3 ) y composition are formed on the surface of metals and glasses by thermolysis technique. Produced coatings possess high adhesive strength, high corrosive and abrasive resistance. Nanocrystalline formations are revealed on samples surface, with quantity of these formations depending on basic solution concentration, formed layers number and thermal treatment mode. Ion-beam modification of obtained coatings under mixing mode enables said properties enhancing owing to zirconium oxiboride formation at substrate-coating interface as a result of ion-beam synthesis. (authors)

  20. Degradation rates and mechanisms of acid-resistant coatings in copper-leaching tanks

    DEFF Research Database (Denmark)

    Møller, Victor Buhl

    coating where the lifetime was estimated to 1:6 ± 0:2 and 1:4 ± 0:1 years, respectively. Part IV A series of newly designed and constructed diffusion cells were used to measure sulfuric acid diffusion rates through the coatings. A mathematical model was developed to simulate the experimental data...... potential in the mineral industry has not yet been thoroughly investigated. This particular industry poses unique challenges, with high operational temperatures (around 75 °C) and combined acidicerosive environments. The use of organic coatings to protect tanks, pipes, and secondary exposure areas, may....... Part I An in-depth literature study was performed to uncover and review uses and limitations ofacid-resistant coatings in the chemical industry, with a comparison to alternative resistant materialsbased on metals and ceramics. In addition, coating degradation phenomena caused by acid exposure, were...

  1. THE STRUCTURE AND PROPERTIES OF COMPOSITE LASER CLAD COATINGS WITH Ni BASED MATRIX WITH WC PARTICLES

    Directory of Open Access Journals (Sweden)

    Zita Iždinská

    2010-09-01

    Full Text Available In this work, the influence of the processing conditions on the microstructure and abrasive wear behavior of composite laser clad coatings with Ni based matrix reinforced with 50% WC particles is analyzed. Composite powder was applied in the form of coatings onto a mild steel substrate (Fe–0.17% C by different laser powers and cladding speeds. The microstructure of the coatings was analyzed by scanning electron microscopy (SEM. Tribological properties of coatings were evaluated by pin-on-disc wear test. It appeared that the hardness of the matrix of composite coatings decreases with increasing cladding speed. However, wear resistance of composite coatings with decreasing hardness of Ni based matrix increases. Significantly enhanced wear resistance of WC composite coatings in comparison with Ni based coatings is attributed to the hard phase structures in composite coatings.

  2. Evaluation of High Temperature Particle Erosion Resistance of Vanadium-Boride Coating

    International Nuclear Information System (INIS)

    Lee, E. Y.; Kim, J. H.; Jeong, S. I.; Lee, S. H.; Eum, G. W.

    2015-01-01

    The components in ultra super critical (USC) steam turbine, which is under development for high efficient power generation, are encountering harsher solid particle erosion by iron oxide scales than ones in the existing steam turbines. Therefore, the currently used boride coating will not be able to hold effective protection from particle erosion in USC system and should be replaced by new particle erosion resistant coatings. One of the best protective coatings developed for USC steam turbine parts was found to be vanadium-boride (V-boride) coating which has a hardness of about 3000 HV, much higher than that of boride, 1600∼2000 HV. In order to evaluate particle erosion resistance of the various coatings such as V-boride, boride and Cr-carbide coatings at high temperature, particle erosion test equipment were designed and manufactured. In addition, erosion particle velocity was simulated using FLUENT software based on semi-implicity method for pressure linked equations revised (SIMPLER). Based on experimental results of this work, the vanadium-boride coating was found to be superior to others and to be a candidate coating to replace the boride coating

  3. Evaluation of High Temperature Particle Erosion Resistance of Vanadium-Boride Coating

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E. Y.; Kim, J. H.; Jeong, S. I. [Andong National University, Andong (Korea, Republic of); Lee, S. H.; Eum, G. W. [Corporate R and D Institute Doosan Heavy Industries and Construction Co., Changwon (Korea, Republic of)

    2015-04-15

    The components in ultra super critical (USC) steam turbine, which is under development for high efficient power generation, are encountering harsher solid particle erosion by iron oxide scales than ones in the existing steam turbines. Therefore, the currently used boride coating will not be able to hold effective protection from particle erosion in USC system and should be replaced by new particle erosion resistant coatings. One of the best protective coatings developed for USC steam turbine parts was found to be vanadium-boride (V-boride) coating which has a hardness of about 3000 HV, much higher than that of boride, 1600∼2000 HV. In order to evaluate particle erosion resistance of the various coatings such as V-boride, boride and Cr-carbide coatings at high temperature, particle erosion test equipment were designed and manufactured. In addition, erosion particle velocity was simulated using FLUENT software based on semi-implicity method for pressure linked equations revised (SIMPLER). Based on experimental results of this work, the vanadium-boride coating was found to be superior to others and to be a candidate coating to replace the boride coating.

  4. EFFECT OF ALUMINIUM AND MAGNESIUM ON THE CORROSION RESISTANCE OF ZINC COATINGS

    Directory of Open Access Journals (Sweden)

    Leszek Klimek

    2017-06-01

    Full Text Available This article presents the research on corrosion resistance of Zn-Al-Mg coatings with varying aluminium and magnesium content. Aluminium and magnesium were added directly to the zinc bath at 10:1 rate. There was found more than sixfold increase in corrosion resistance of zinc coatings with aluminium content at the level of 4% of weight and magnesium content at the level of 0.4% of weight. In contrast to the amounts applied in the literature, such content of these alloy additives in the zinc bath limits to a significant extent the amount of intermetallic phases in zinc coatings obtained from such baths. This, in consequence, results in high resistance to corrosion with simultaneous retention of high plasticity of these coatings.

  5. Oxidation resistant chromium coating on Zircaloy-4 for accident tolerant fuel cladding

    International Nuclear Information System (INIS)

    Park, Jung-Hwan; Kim, Eui-Jung; Jung, Yang-Il; Park, Dong-Jun; Kim, Hyun-Gil; Park, Jeong-Yong; Koo, Yang-Hyun

    2015-01-01

    The attributes of such a fuel are approved reaction kinetics with steam, a slower hydrogen generation rate, and good cladding thermo-mechanical properties. Many researchers have tried to modify zirconium alloys to improve their oxidation resistance in the early stages of the ATF development. Corrosion resistant coating on cladding is one of the candidate technologies to improve the oxidation resistance of zirconium cladding. By applying coating technology to zirconium cladding, it is easy to obtain corrosion resistance without a change in the base materials. Among the surface coating methods, arc ion plating (AIP) is a coating technology to improve the adhesion owing to good throwing power, and a dense deposit (Fig. 1). Owing to these advantages, AIP has been widely used to efficiently form protective coatings on cutting tools, dies, bearings, etc. In this study, The AIP technique for the protection of zirconium claddings from the oxidation in a high-temperature steam environment was studied. The homogeneous Cr film with a high adhesive ability to the cladding was deposited by AIP and acted as a protection layer to enhance the corrosion resistance of the zirconium cladding. It was concluded that the AIP technology is effective for coating a protective layer on claddings

  6. Oxidation resistant chromium coating on Zircaloy-4 for accident tolerant fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung-Hwan; Kim, Eui-Jung; Jung, Yang-Il; Park, Dong-Jun; Kim, Hyun-Gil; Park, Jeong-Yong; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The attributes of such a fuel are approved reaction kinetics with steam, a slower hydrogen generation rate, and good cladding thermo-mechanical properties. Many researchers have tried to modify zirconium alloys to improve their oxidation resistance in the early stages of the ATF development. Corrosion resistant coating on cladding is one of the candidate technologies to improve the oxidation resistance of zirconium cladding. By applying coating technology to zirconium cladding, it is easy to obtain corrosion resistance without a change in the base materials. Among the surface coating methods, arc ion plating (AIP) is a coating technology to improve the adhesion owing to good throwing power, and a dense deposit (Fig. 1). Owing to these advantages, AIP has been widely used to efficiently form protective coatings on cutting tools, dies, bearings, etc. In this study, The AIP technique for the protection of zirconium claddings from the oxidation in a high-temperature steam environment was studied. The homogeneous Cr film with a high adhesive ability to the cladding was deposited by AIP and acted as a protection layer to enhance the corrosion resistance of the zirconium cladding. It was concluded that the AIP technology is effective for coating a protective layer on claddings.

  7. Cutting concrete with abrasion jet

    International Nuclear Information System (INIS)

    Yie, G.G.

    1982-01-01

    Fluidyne Corporation has developed a unique process and apparatus that allow selected abrasives to be introduced into high-speed waterjet to produce abrasive-entrained waterjet that has high material-cutting capabilities, which is termed by Fluidyne as the Abrasion Jet. Such Abrasion Jet has demonstrated capability in cutting hard rock and concrete at a modest pressure of less than 1360 bars (20,000 psi) and a power input of less than 45 kW (60 horsepower). Abrasion Jet cutting of concrete is characterized by its high rate of cutting, flexible operation, good cut quality, and relatively low costs. This paper presents a general description of this technology together with discussions of recent test results and how it could be applied to nuclear decontamination and decommissioning work. 8 references

  8. Moisture resistant and anti-reflection optical coatings produced by plasma polymerization of organic compounds

    Science.gov (United States)

    Hollahan, J. R.; Wydeven, T.

    1975-01-01

    The need for protective coatings on critical optical surfaces, such as halide crystal windows or lenses used in spectroscopy, has long been recognized. It has been demonstrated that thin, one micron, organic coatings produced by polymerization of flourinated monomers in low temperature gas discharge (plasma) exhibit very high degrees of moisture resistence, e.g., hundreds of hours protection for cesium iodide vs. minutes before degradation sets in for untreated surfaces. The index of refraction of these coatings is intermediate between that of the halide substrate and air, a condition for anti-reflection, another desirable property of optical coatings. Thus, the organic coatings not only offer protection, but improved transmittance as well. The polymer coating is non-absorbing over the range 0.4 to 40 microns with an exception at 8.0 microns, the expected absorption for C-F bonds.

  9. TiO{sub 2} coated multi-wall carbon nanotube as a corrosion inhibitor for improving the corrosion resistance of BTESPT coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuping; Zhu, Hongzheng; Zhuang, Chen [Institute of Materials Science and Engineering, Ocean University of China, Songling Road 238, Qingdao, 266100 (China); Chen, Shougang, E-mail: sgchen@ouc.edu.cn [Institute of Materials Science and Engineering, Ocean University of China, Songling Road 238, Qingdao, 266100 (China); Wang, Longqiang [Institute of Materials Science and Engineering, Ocean University of China, Songling Road 238, Qingdao, 266100 (China); Dong, Lihua [Institute of Ocean Materials and Engineering, Shanghai Maritime University, Shanghai, 200135 (China); Yin, Yansheng, E-mail: ysyin@shmtu.edu.cn [Institute of Ocean Materials and Engineering, Shanghai Maritime University, Shanghai, 200135 (China)

    2016-08-15

    The composite coatings of TiO{sub 2} coated multi-wall carbon nanotube (MWCNTs)/bis-[triethoxysilylpropyl]tetrasulfide (BTESPT) with different components were prepared on AA 2024 by the cathodic electrophoretic deposition technique and the experimental conditions were optimized to attain the appropriate volume ratio. The modified MWCNTs obviously improved the corrosion resistance of BTESPT and BTESPT/TiO{sub 2} coatings, especially for the long-term corrosion resistance ability because of the good dispersion of MWCNTs. The geometry of composite coatings were explored by scanning electron microscopy, fourier transform infrared spectra and the surface coverage rate (θ), the results indicate that the composite coatings produce good cross-linked structure at the interfacial layer, the coating compactness increases gradually with the addition of TiO{sub 2} and/or MWCNTs, and the composite coating effectively postpones the production of cracks with the addition of MWCNTs. - Highlights: • The composite coatings with different components were prepared on AA 2024 by the cathodic electrophoretic deposition technology. • The formation of composite coating on AA 2024 surface considerably improved the corrosion resistance ability. • The composite coating with a TiO{sub 2} to MWCNTs volume ratio of 4/1 shows the best corrosion resistance. • The kinetic evaluation of inhibitive behavior for different coatings against immersion time was explored.

  10. Scratch- and mar-resistant refinish two-pack clear coats – linear versus branched acrylics

    Czech Academy of Sciences Publication Activity Database

    Huybrechts, J.; Vaes, A.; Dušek, Karel; Dušková, Miroslava; Barsotti, R. J.

    2006-01-01

    Roč. 89, B4 (2006), s. 275-283 ISSN 1476-4865 Institutional research plan: CEZ:AV0Z40500505 Keywords : scratch resistance * mar resistance * refinishing two-pack clear coats Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.338, year: 2006

  11. Electrolytic deposition and corrosion resistance of Zn–Ni coatings ...

    Indian Academy of Sciences (India)

    Administrator

    Electrodeposition of the Ni and Zn–Ni coatings was carried out using galvanic unit MAG (IMP-BUD 5,. Poland). Deposited coatings were subjected to a passivation treatment of 10 s duration in the following solution (con- centration in g dm. –3. ): K2Cr2O7 – 70, H2SO4 – 8. The XRD patterns were measured using the Philips.

  12. Nanostructured wear resistant coating for reversible cultivator shovels: An experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Dave, V., E-mail: vdaditya1000@gmail.com [Department of Electrical Engineering,College of Technology and Engineerin, MPUAT Udaipur, 313001,India (India); Rao, G. P., E-mail: ragrao38@gmail.com; Tiwari, G. S., E-mail: tiwarigsin@yahoo.com [Department of Farm Machinery and Power Engineering, MPUAT Udaipur, 313001,India (India); Sanger, A., E-mail: amitsangeriitr@gmail.com; Kumar, A., E-mail: 01ashraj@gmail.com; Chandra, R., E-mail: ramesfic@gmail.com [Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Roorkee 247667 (India)

    2016-04-13

    Cultivator, one of the agriculture farm tool, extensively suffers from the wear problem. In this paper, we report nanostructured chromium nitrite (CrN) coating for the cultivator shovels to mitigate wear problem. The (CrN) coating was developed using DC magnetron sputtering technique at 200 °C. The structural, morphological, hydrophobic and wear properties were investigated using X-ray diffractometer, scanning electron microscope, contact angle goniometer and custom designed soil bin assembly. The XRD reveals that the deposited coating was polycrystalline in nature with cubic structure. Also, The deposited coating was found to be anti wear resistant as well as hydrophobic in nature. The gravimetric wear for the coating developed at 200 °C coated was found out to be 8.15 gm and for non coated it was 14.48 gm tested for 100 hrs. The roughness of the coating plays an important role in determining the hydrophobicity of the coated film. Roughness and contact angle measured for 200 °C coated shovel was found out to be 11.17 nm and 105 ° respectively.

  13. Nanostructured wear resistant coating for reversible cultivator shovels: An experimental investigation

    International Nuclear Information System (INIS)

    Dave, V.; Rao, G. P.; Tiwari, G. S.; Sanger, A.; Kumar, A.; Chandra, R.

    2016-01-01

    Cultivator, one of the agriculture farm tool, extensively suffers from the wear problem. In this paper, we report nanostructured chromium nitrite (CrN) coating for the cultivator shovels to mitigate wear problem. The (CrN) coating was developed using DC magnetron sputtering technique at 200 °C. The structural, morphological, hydrophobic and wear properties were investigated using X-ray diffractometer, scanning electron microscope, contact angle goniometer and custom designed soil bin assembly. The XRD reveals that the deposited coating was polycrystalline in nature with cubic structure. Also, The deposited coating was found to be anti wear resistant as well as hydrophobic in nature. The gravimetric wear for the coating developed at 200 °C coated was found out to be 8.15 gm and for non coated it was 14.48 gm tested for 100 hrs. The roughness of the coating plays an important role in determining the hydrophobicity of the coated film. Roughness and contact angle measured for 200 °C coated shovel was found out to be 11.17 nm and 105 ° respectively.

  14. Nanostructured wear resistant coating for reversible cultivator shovels: An experimental investigation

    Science.gov (United States)

    Dave, V.; Rao, G. P.; Tiwari, G. S.; Sanger, A.; Kumar, A.; Chandra, R.

    2016-04-01

    Cultivator, one of the agriculture farm tool, extensively suffers from the wear problem. In this paper, we report nanostructured chromium nitrite (CrN) coating for the cultivator shovels to mitigate wear problem. The (CrN) coating was developed using DC magnetron sputtering technique at 200 °C. The structural, morphological, hydrophobic and wear properties were investigated using X-ray diffractometer, scanning electron microscope, contact angle goniometer and custom designed soil bin assembly. The XRD reveals that the deposited coating was polycrystalline in nature with cubic structure. Also, The deposited coating was found to be anti wear resistant as well as hydrophobic in nature. The gravimetric wear for the coating developed at 200 °C coated was found out to be 8.15 gm and for non coated it was 14.48 gm tested for 100 hrs. The roughness of the coating plays an important role in determining the hydrophobicity of the coated film. Roughness and contact angle measured for 200 °C coated shovel was found out to be 11.17 nm and 105 ° respectively.

  15. Improvement of corrosion resistance of Ni−Mo alloy coatings: Effect of heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, R., E-mail: mousavi@scu.ac.ir [Department of Materials Science and Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Bahrololoom, M.E. [Department of Materials Science and Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Deflorian, F.; Ecco, L. [Department of Industrial Engineering, University of Trento, via Sommarive 9, Trento (Italy)

    2016-02-28

    Graphical abstract: - Highlights: • Conjunction between SEM, EIS, and Tafel measurements to obtain a coat with dense morphology and without crack. • An inverse Hall-Petch effect is observed after annealing the coatings, i.e. the coatings get harder as the grain size is increased by increasing annealing temperature up to 600 {sup o}C. • Heat treatment can improve the mechanical and corrosion properties of coatings. - Abstract: In this paper, Ni−Mo alloy coatings were deposited from bath containing sodium citrate, nickel sulphate, and sodium molybdate. Essentially, this work is divided into two mains parts: (i) the optimization on the coatings deposition parameters and (ii) the effect of the heat treatment. Polarization curves and electrochemical impedance spectroscopy were acquired using potentiostat/galvanostat and a frequency response analyzer, respectively. Morphology and chemical composition of the coatings were investigated by scanning electron microscopy and energy dispersive spectroscopy, respectively. Polarization curves at different condition revealed that electroplating at temperature 40 {sup o}C, pH 9 provides a dense coating with high efficiency. Following the optimization of the deposition parameters, the coatings were annealed at 200, 400, and 600 {sup o}C for 25 min. The results showed that the coatings obtained at temperature 40 {sup o}C, pH 9, and annealing at 600 {sup o}C has the highest corrosion resistance and microhardness.

  16. Electroless Ni-P/Ni-B duplex coatings: preparation and evaluation of microhardness, wear and corrosion resistance

    International Nuclear Information System (INIS)

    Narayanan, T.S.N. Sankara; Krishnaveni, K.; Seshadri, S.K.

    2003-01-01

    The present work deals with the formation of Ni-P/Ni-B duplex coatings by electroless plating process and evaluation of their hardness, wear resistance and corrosion resistance. The Ni-P/Ni-B duplex coatings were prepared using dual baths (acidic hypophosphite- and alkaline borohydride-reduced electroless nickel baths) with both Ni-P and Ni-B as inner layers and with varying single layer thickness. Scanning electron microscopy (SEM) was used to assess the duplex interface. The microhardness, wear resistance and corrosion resistance of electroless nickel duplex coatings were compared with electroless Ni-P and Ni-B coatings of similar thickness. The study reveals that the Ni-P and Ni-B coatings are amorphous in their as-plated condition and upon heat-treatment at 450 deg. C for 1 h, both Ni-P and Ni-B coatings crystallize and produce nickel, nickel phosphide and nickel borides in the respective coatings. All the three phases are formed when Ni-P/Ni-B and Ni-B/Ni-P duplex coatings are heat-treated at 450 deg. C for 1 h. The duplex coatings are uniform and the compatibility between the layers is good. The microhardness, wear resistance and corrosion resistance of the duplex coating is higher than Ni-P and Ni-B coatings of similar thickness. Among the two types of duplex coatings studied, hardness and wear resistance is higher for coatings having Ni-B coating as the outer layer whereas better corrosion resistance is offered by coatings having Ni-P coating as the outer layer

  17. Anti-abrasive nanocoatings current and future applications

    CERN Document Server

    2015-01-01

    This book provides an overview of the fabrication methods for anti-abrasive nanocoatings. The connections among fabrication parameters, the characteristics of nanocoatings and the resulting properties (i.e. nanohardness, toughness, wear rate, load-bearing ability, friction coefficient, and scratch resistance) are discussed. Size-affected mechanical properties of nanocoatings are examined, including their uses. Anti-abrasive nanocoatings, including metallic-, ceramic-, and polymeric-based layers, as well as different kinds of nanostructures, such as multi-layered nanocomposites and thin films, are reviewed. * Provides a comprehensive overview of the fabrication methods for anti-abrasive nanocoatings* Discusses the connections among fabrication parameters, the characteristics of nanocoatings and the resulting properties* Reviews advantages and drawbacks of fabrication methods for anti-abrasive nanocoatings and clarifies the place of these nanocoatings in the world of nanotechnology

  18. Method of producing oxidation resistant coatings for molybdenum

    International Nuclear Information System (INIS)

    Timmons, G.A.

    1989-01-01

    A method is described for producing a molybdenum element having adherently bonded thereto a thermally self-healing plasma-sprayed coating consisting essentially of a composite of molybdenum and a refactory oxide material capable of reacting with molybdenum oxide under oxidizing conditions to form a substantially thermally stable refractory compound of molybdenum, the method comprising plasma-spraying a coating formed by the step-wise application of a plurality of interbonded plasma-sprayed layers of a composite of molybdenum/refractory oxide material produced from a particulate mixture thereof. The coating comprises a first layer of molybdenum plasma-sprayed bonded to the substrate of the molybdenum element, a second layer of plasma-sprayed mixture of particulate molybdenum/refactory oxide consisting essentially of predominantly molybdenum bonded to the first layer, and succeeding layers of this mixture. The next step is heating the coated molybdenum element under oxidizing conditions to an elevated temperature sufficient to cause oxygen to diffuse into the surface of the multi-layered coating to react with dispersed molybdenum therein to form molybdenum oxide and effect healing of the coating by reaction of the molybdenum oxide with the contained refractory oxide and thereby protect the substrate of the molybdenum element against oxidation

  19. Polyglycerol coatings of glass vials for protein resistance.

    Science.gov (United States)

    Höger, Kerstin; Becherer, Tobias; Qiang, Wei; Haag, Rainer; Friess, Wolfgang; Küchler, Sarah

    2013-11-01

    Proteins are surface active molecules which undergo non-specific adsorption when getting in contact with surfaces such as the primary packaging material. This process is critical as it may cause a loss of protein content or protein aggregation. To prevent unspecific adsorption, protein repellent coatings are of high interest. We describe the coating of industrial relevant borosilicate glass vials with linear methoxylated polyglycerol, hyperbranched polyglycerol, and hyperbranched methoxylated polyglycerol. All coatings provide excellent protein repellent effects. The hyperbranched, non-methoxylated coating performed best. The protein repellent properties were maintained also after applying industrial relevant sterilization methods (≥200 °C). Marginal differences in antibody stability between formulations stored in bare glass vials and coated vials were detected after 3 months storage; the protein repellent effect remained largely stable. Here, we describe a new material suitable for the coating of primary packaging material of proteins which significantly reduces the protein adsorption and thus could present an interesting new possibility for biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Bioactive glass-ceramic coating for enhancing the in vitro corrosion resistance of biodegradable Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ye Xinyu [Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Cai Shu, E-mail: caishu@tju.edu.cn [Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Dou Ying [Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Xu Guohua [Shanghai Changzheng Hospital, Shanghai 200003 (China); Huang Kai; Ren Mengguo; Wang Xuexin [Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Sol-gel derived 45S5 glass-ceramic coating was prepared on Mg alloy substrate. Black-Right-Pointing-Pointer The corrosion resistance of glass-ceramic coated Mg alloy was markedly improved. Black-Right-Pointing-Pointer The corrosion behavior of the coated sample varied due to the cracking of coating. - Abstract: In this work, a bioactive 45S5 glass-ceramic coating was synthesized on magnesium (Mg) alloy substrate by using a sol-gel dip-coating method, to improve the initial corrosion resistance of AZ31 Mg alloy. The surface morphology and phase composition of the glass-ceramic coating were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The coating composed of amorphous phase and crystalline phase Na{sub 2}Ca{sub 2}Si{sub 3}O{sub 9}, with the thickness of {approx}1.0 {mu}m, exhibited a uniform and crack-free surface morphology. The corrosion behavior of the uncoated and coated Mg alloy substrates was investigated by the electrochemical measurements and immersion tests in simulated body fluid (SBF). Potentiodynamic polarization tests recorded an increase of potential (E{sub corr}) form -1.60 V to -1.48 V, and a reduction of corrosion current density (i{sub corr}) from 4.48 {mu}A cm{sup -2} to 0.16 {mu}A cm{sup -2}, due to the protection provided by the glass-ceramic coating. Immersion tests also showed the markedly improved corrosion resistance of the coated sample over the immersion period of 7 days. Moreover, after 14 days of immersion in SBF, the corrosion resistance of the coated sample declined due to the cracking of the glass-ceramic coating, which was confirmed by electrochemical impedance spectroscopy (EIS) analysis. The results suggested that the 45S5 glass-ceramic coated Mg alloy could provide a suitable corrosion behavior for use as degradable implants.

  1. Correlation of microstructure and wear resistance of molybdenum blend coatings fabricated by atmospheric plasma spraying

    International Nuclear Information System (INIS)

    Hwang, Byoungchul; Lee, Sunghak; Ahn, Jeehoon

    2004-01-01

    The correlation of microstructure and wear resistance of various molybdenum blend coatings applicable to automotive parts was investigated in this study. Five types of spray powders, one of which was pure molybdenum powder and the others were blends of brass, bronze, and aluminum alloy powders with molybdenum powder, were deposited on a low-carbon steel substrate by atmospheric plasma spraying (APS). Microstructural analysis of the coatings showed that they consisted of a curved lamellar structure formed by elongated splats, with hard phases that formed during spraying being homogeneously distributed in the molybdenum matrix. The wear test results revealed that the blend coatings showed better wear resistance than the pure molybdenum coating because they contained a number of hard phases. In particular, the molybdenum coating blended with bronze and aluminum alloy powders and the counterpart material showed an excellent wear resistance due to the presence of hard phases, such as CuAl 2 and Cu 9 Al 4 . In order to improve overall wear properties for the coating and the counterpart material, appropriate spray powders should be blended with molybdenum powders to form hard phases in the coatings

  2. Bioactive glass-ceramic coating for enhancing the in vitro corrosion resistance of biodegradable Mg alloy

    Science.gov (United States)

    Ye, Xinyu; Cai, Shu; Dou, Ying; Xu, Guohua; Huang, Kai; Ren, Mengguo; Wang, Xuexin

    2012-10-01

    In this work, a bioactive 45S5 glass-ceramic coating was synthesized on magnesium (Mg) alloy substrate by using a sol-gel dip-coating method, to improve the initial corrosion resistance of AZ31 Mg alloy. The surface morphology and phase composition of the glass-ceramic coating were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The coating composed of amorphous phase and crystalline phase Na2Ca2Si3O9, with the thickness of ∼1.0 μm, exhibited a uniform and crack-free surface morphology. The corrosion behavior of the uncoated and coated Mg alloy substrates was investigated by the electrochemical measurements and immersion tests in simulated body fluid (SBF). Potentiodynamic polarization tests recorded an increase of potential (Ecorr) form -1.60 V to -1.48 V, and a reduction of corrosion current density (icorr) from 4.48 μA cm-2 to 0.16 μA cm-2, due to the protection provided by the glass-ceramic coating. Immersion tests also showed the markedly improved corrosion resistance of the coated sample over the immersion period of 7 days. Moreover, after 14 days of immersion in SBF, the corrosion resistance of the coated sample declined due to the cracking of the glass-ceramic coating, which was confirmed by electrochemical impedance spectroscopy (EIS) analysis. The results suggested that the 45S5 glass-ceramic coated Mg alloy could provide a suitable corrosion behavior for use as degradable implants.

  3. Diffusion barrier coatings for high temperature corrosion resistance of advanced carbon/carbon composites

    International Nuclear Information System (INIS)

    Singh Raman, K.S.

    2000-01-01

    Carbon possesses an excellent combination of mechanical and thermal properties, viz., excellent creep resistance at temperatures up to 2400 deg C in non-oxidizing environment and a low thermal expansion coefficient. These properties make carbon a potential material for very high temperature applications. However, the use of carbon materials at high temperatures is considerably restricted due to their extremely poor oxidation resistance at temperatures above 400 deg C. The obvious choice for improving high temperature oxidation resistance of such materials is a suitable diffusion barrier coating. This paper presents an overview of recent developments in advanced diffusion- and thermal-barrier coatings for ceramic composites, with particular reference to C/C composites. The paper discusses the development of multiphase and multi-component ceramic coatings, and recent investigations on the oxidation resistance of the coated C/C composites. The paper also discusses the cases of innovative engineering solutions for traditional problems with the ceramic coatings, and the scope of intelligent processing in developing coatings for the C/C composites. Copyright (2000) AD-TECH - International Foundation for the Advancement of Technology Ltd

  4. Design and characterization of non-toxic nano-hybrid coatings for corrosion and fouling resistance

    Directory of Open Access Journals (Sweden)

    P. Saravanan

    2016-09-01

    Full Text Available Epoxy resin modified with nano scale fillers offers excellent combination of properties such as enhanced dimensional stability, mechanical and electrical properties, which make them ideally suitable for a wide range of applications. However, the studies about functionalized nano-hybrid for coating applications still require better insight. In the present work we have developed silane treated nanoparticles and to reinforce it with diglycidyl epoxy resin to fabricate surface functionalized nano-hybrid epoxy coatings. The effect of inorganic nano particles on the corrosion and fouling resistance properties was studied by various (1, 3, 5 and 7 wt% filler loading concentrations. Diglycidyl epoxy resin (DGEBA commonly was used for coating. 3-Aminopropyltriethoxysilane (APTES was used as a coupling agent to surface treats the TiO2 nanoparticles. The corrosion and fouling resistant properties of these coatings were evaluated by electrochemical impedance and static immersion tests, respectively. Nano-hybrid coating (3 wt% of APTES–TiO2 showed corrosion resistance up to 108 Ω cm2 after 30 days immersion in 3.5% NaCl solution indicating an excellent corrosion resistance. Static immersion test was carried out in Bay of Bengal (Muttukadu which has reflected good antifouling efficiency of the 3 wt% APTES–TiO2 loaded nano-hybrid coating up to 6 months.

  5. The corrosion resistance of 140MXC, 530AS and 560AS coatings produced by thermal spraying

    Directory of Open Access Journals (Sweden)

    Edwin Alexis López Covaleda

    2013-01-01

    Full Text Available Three commercial materials were deposited using electric arc thermal spraying: 140MXC (with Fe, W, Cr, Nb, 530AS (AISI 1015 steel and 560AS (AISI 420 steel on AISI 4340 steel. The aim of this paper was to evaluate the best strategy for improving a coating-substrate system’s corrosion resistance, using the following combinations: homogeneous single coatings, bilayers consisting of 530AS or 560AS under 140MXC and 140MXC + 530AS and 140MXC + 560AS coatings deposited simultaneously. The coatings were characterised using optical microscopy, scanning electron microscopy and X-ray diffraction. Corrosion resistance was evaluated through potentiodynamic polarisation and hardness by using the Vickers test. Corrosion resistance depends on the amount of microstructure defects, the deposition strategy and the alloy elements. However, corrosion resistance was similar in single coatings of 140MXC and bilayers, having -630 V corrosion potential and 708 nA corrosion current. The details and corrosion mechanism of the coatings so produced are described in this paper.

  6. Characterization of boride-based powders and detonation gun sprayed cermet coatings

    International Nuclear Information System (INIS)

    Keraenen, J.; Stenberg, T.; Maentylae, T.

    1995-01-01

    Detonation gun sprayed (DGS) cermet coatings containing complex ternary transition metal boride as hard particles dispersed in a stainless steel or nickel based superalloy matrix have been characterized. Microstructure of the coatings, as well as powders, were studied with optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and analytical transmission electron microscopy (AEM). X-ray microanalysis of the coatings were carried out using energy dispersive X-ray spectrometer (EDS) attached to the SEM and AEM. Moreover, abrasion wear resistance of the coatings was evaluated with a rubber wheel abrasion test equipment. The general microstructure of studied coatings appeared to be heterogeneous in the terms of the distribution, size and crystallographic nature of the phases. Nonetheless, very low porosities were obtained and in the coatings the oxide phase as well as the unmelted particles and the formation of oxide phase were avoided by optimization of DGS parameters. So far the abrasive wear resistance of boride-based cermet coatings is not so good as that of the WC-12Co coatings

  7. Wear Resistance of Piston Sleeve Made of Layered Material Structure: MMC A356R, Anti-Abrasion Layer and FGM Interface

    Directory of Open Access Journals (Sweden)

    Hernik Szymon

    2016-09-01

    Full Text Available The aim of this paper is the numerical analysis of the one of main part of car engine – piston sleeve. The first example is for piston sleeve made of metal matrix composite (MMC A356R. The second improved material structure is layered. Both of them are comparison to the classical structure of piston sleeve made of Cr-Ni stainless steel. The layered material structure contains the anti-abrasion layer at the inner surface of piston sleeve, where the contact and friction is highest, FGM (functionally graded material interface and the layer of virgin material on the outer surface made of A356R. The complex thermo-elastic model with Archard's condition as a wear law is proposed. The piston sleeve is modelling as a thin walled cylindrical axisymmetric shell. The coupled between the formulation of thermo-elasticity of cylindrical axisymmetric shell and the Archard’s law with functionally changes of local hardness is proposed.

  8. Enhanced ductility in thermally sprayed titania coating synthesized using a nanostructured feedstock

    International Nuclear Information System (INIS)

    Lima, R.S.; Marple, B.R.

    2005-01-01

    Nanostructured and conventional titania (TiO 2 ) feedstock powders were thermally sprayed via high velocity oxy-fuel (HVOF). The microstructure, porosity, Vickers hardness, crack propagation resistance, bond strength (ASTM C633), abrasion behavior (ASTM G65) and the wear scar characteristics of these two types of coatings were analyzed and compared. The coating made from the nanostructured feedstock exhibited a bimodal microstructure, with regions containing particles that were fully molten (conventional matrix) and regions with embedded particles that were semi-molten (nanostructured zones) during the thermal spraying process. The bimodal coating also exhibited higher bond strength and higher wear resistance when compared to the conventional coating. By comparing the wear scars of both coatings (via scanning electron microscopy and roughness measurements) it was observed that when the coatings were subjected to the same abrasive conditions the wear scar of the bimodal coating was smoother, with more plastically deformed regions than the conventional coating. It was concluded that this enhanced ductility of the bimodal coating was caused by its higher toughness. The results suggest that nanostructured zones randomly distributed in the microstructure of the bimodal coating act as crack arresters, thereby enhancing toughness and promoting higher critical depth of cut, which provides a broader plastic deformation range than that exhibited by the conventional coating. This work provides evidence that the enhanced ductility of the bimodal coating is a nanostructured-related property, not caused by any other microstructural artifact

  9. Abrasive wear of ceramic wear protection at ambient and high temperatures

    Science.gov (United States)

    Varga, M.; Adam, K.; Tumma, M.; Alessio, K. O.

    2017-05-01

    Ceramic wear protection is often applied in abrasive conditions due to their excellent wear resistance. This is especially necessary in heavy industries conveying large amounts of raw materials, e.g. in steel industry. Some plants also require material transport at high temperatures and velocities, making the need of temperature stable and abrasion resistant wear protection necessary. Various types and wear behaviour of ceramic protection are known. Hence, the goal of this study is to identify the best suitable ceramic materials for abrasive conditions in harsh environments at temperatures up to 950°C and severe thermal gradients. Chamottes, known for their excellent thermal shock resistance are compared to high abrasion resistant ceramic wear tiles and a cost efficient cement-bounded hard compound. Testing was done under high-stress three-body abrasion regime with a modified ASTM G65 apparatus enabling for investigations up to ~950°C. Thereto heated abrasive is introduced into the wear track and also preheated ceramic samples were used and compared to ambient temperature experiments. Results indicate a significant temperature influence on chamottes and the hard compound. While the chamottes benefit from temperature increase, the cement-bounded hard compound showed its limitation at abrasive temperatures of 950°C. The high abrasion resistant wear tiles represented the materials with the best wear resistance and less temperature influence in the investigated range.

  10. Zn-10.2% Fe coating over carbon steel atmospheric corrosion resistance. Comparison with zinc coating

    International Nuclear Information System (INIS)

    Arnau, G.; Gimenez, E.; Rubio, M.V.; Saura, J.J.; Suay, J.J.

    1998-01-01

    Zn-10.2% Fe galvanized coating versus hot galvanized coating over carbon steel corrosion performance has been studied. Different periods of atmospheric exposures in various Valencia Community sites, and salt spray accelerated test have been done. Carbon steel test samples have been used simultaneously in order to classify exposure atmosphere corrosivity, and environmental exposure atmosphere characteristics have been analyzed. Corrosion Velocity versus environmental parameters has been obtained. (Author) 17 refs

  11. Abrasives and possibilities of increase in efficiency of abrasive waterjets

    Czech Academy of Sciences Publication Activity Database

    Sitek, Libor; Martinec, Petr

    2016-01-01

    Roč. 9, March 2016 (2016), s. 877-881 ISSN 1805-0476 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : high-speed waterjets * abrasive waterjets * abrasives * garnet * zirconia Subject RIV: JQ - Machines ; Tools http://www.mmscience.eu/content/file/archives/MM_Science_201603.pdf

  12. TiN-Coating Effects on Stainless Steel Tribological Behavior Under Dry and Lubricated Conditions

    Science.gov (United States)

    Zhang, Liqiang; Yang, Huisheng; Pang, Xiaolu; Gao, Kewei; Tran, Hai T.; Volinsky, Alex A.

    2014-04-01

    The tribological properties of magnetron sputtered titanium nitride coating on 316L steel, sliding against Si3N4 ceramic ball under dry friction and synthetic perspiration lubrication, were investigated. The morphology of the worn surface and the elemental composition of the wear debris were examined by scanning electron microscopy and energy dispersive spectroscopy. TiN coatings and 316L stainless steel had better tribological properties under synthetic perspiration lubrication than under dry friction. Among the three tested materials (316L, 1.6 and 2.4 μm TiN coatings), 2.4 μm TiN coating exhibits the best wear resistance. The difference in wear damage of the three materials is essentially due to the wear mechanisms. For the TiN coating, the damage is attributed to abrasive wear under synthetic perspiration lubrication and the complex interactive mechanisms, including abrasive and adhesive wear, along with plastic deformation, under dry friction.

  13. A preliminary study of oxidation-resistant coatings on refractory-metal thermocouple sheaths

    International Nuclear Information System (INIS)

    Wilkins, S.C.

    1985-01-01

    The need to make reliable temperature measurements up to 2200 0 C or higher in steam environments during in-pile nuclear fuel damage tests led to a search for oxidation-resistant coatings for the refractory-metal sheaths used to enclose and protect thermocouples used for such measurements. Iridium, thoria, and thoria-over-iridium coatings were separately sputter-deposited on molybdenum-rhenium alloy protection tubes for evaluation. The coated samples were individually heated in flowing steam in an induction furnace. An extension tube welded to each sample was connected to a vacuum pump and gauge; failure of the sample was detected by noting the degradation of the vacuum maintained in the sample. Relatively heavy coatings of iridium provided a modest degree of oxidation protection at the temperatures of interest. Thoria coatings provided no significant protection at those temperatures, compared to uncoated control samples

  14. A durability test rig and methodology for erosion-resistant blade coatings in turbomachinery

    Science.gov (United States)

    Leithead, Sean Gregory

    A durability test rig for erosion-resistant gas turbine engine compressor blade coatings was designed, completed and commissioned. Bare and coated 17-4PH steel V103-profile blades were rotated at up to 11500 rpm and impacted with Garnet sand for 5 hours at an average concentration of 2.51 gm3of air , at a blade leading edge Mach number of 0.50. The rig was determined to be an acceptable first stage axial compressor representation. Two types of 16 microm-thick coatings were tested: Titanium Nitride (TiN) and Chromium-Aluminum-Titanium Nitride (CrAlTiN), both applied using an Arc Physical Vapour Deposition technique at the National Research Council in Ottawa, Canada. A Leithead-Allan-Zhao (LAZ) score was created to compare the durability performance of uncoated and coated blades based on mass-loss and blade dimension changes. The bare blades' LAZ score was set as a benchmark of 1.00. The TiN-coated and CrAlTiN-coated blades obtained LAZ scores of 0.69 and 0.41, respectively. A lower score meant a more erosion-resistant coating. Major modes of blade wear included: trailing edge, leading edge and the rear suction surface. Trailing edge thickness was reduced, the leading edge became blunt, and the rear suction surface was scrubbed by overtip and recirculation zone vortices. It was found that the erosion effects of vortex flow were significant. Erosion damage due to reflected particles was not present due to the low blade solidity of 0.7. The rig is best suited for studying the performance of erosion-resistant coatings after they are proven effective in ASTM standardized testing. Keywords: erosion, compressor, coatings, turbomachinery, erosion rate, blade, experimental, gas turbine engine

  15. The corrosion resistance of zinc coatings in the presence of boron-doped detonation nanodiamonds (DND)

    Science.gov (United States)

    Burkat, G. K.; Alexandrova, G. S.; Dolmatov, V. Yu; Osmanova, E. D.; Myllymäki, V.; Vehanen, A.

    2017-02-01

    The effect of detonation nanodiamonds, doped with boron (boron-DND) in detonation synthesis on the process of zinc electrochemical deposition from zincate electrolyte is investigated. It is shown that the scattering power (coating uniformity) increases 2-4 times (depending on the concentration of DND-boron electrolyte conductivity does not change, the corrosion resistance of Zn- DND -boron coating increases 2.6 times in 3% NaCl solution (corrosion currents) and 3 times in the climatic chamber.

  16. Machinability and scratch wear resistance of carbon-coated WC inserts

    Energy Technology Data Exchange (ETDEWEB)

    Pazhanivel, B., E-mail: palcecri@yahoo.co.in; Kumar, T. Prem; Sozhan, G.

    2015-03-15

    Highlights: • Cemented WC inserts were coated with carbon by CVD. • The deposits were either loosely held MWCNTs or adherent carbides. • Co-efficient of friction (ramp load; 1–13 N); 0.2 and 0.1 μ, respectively, for the uncoated and carbide-coated inserts. • The carbide-coated insert exhibited better machinability and surface finish than a commercial TiCN-coated insert. - Abstract: In this work, cemented tungsten carbide (WC) inserts were coated with nanocarbons/carbides by chemical vapor deposition (CVD) and their machinability and scratch wear resistance were investigated. The hardness and surface conditions of the WC substrate were studied before and after coating. The CVD-generated nanocarbons on the insert surfaces were examined by SEM, FE-SEM and TEM. The electron microscopic images revealed that the carbons generated were multi-walled carbon nanotubes (MWCNTs) or carbides depending on the experimental conditions. In both the cases, the cutting edges of the inserts had dense deposits. Scratch wear test with the coated inserts showed that the co-efficient of friction was 0.1 μ as against 0.2 μ for the uncoated inserts under a ramp load of 1–13 N. The machinability characteristics of commercially available TiCN-coated inserts and the carbon-coated WC inserts were compared by using a CNC machine and a Rapid I vision inspection system. It was found that the carbide-coated inserts exhibited machinability with better surface finish comparable to that of the TiCN-coated inserts while the MWCNT-coated inserts showed inferior adhesion properties.

  17. Electrically Conductive, Corrosion-Resistant Coatings Through Defect Chemistry for Metallic Interconnects

    International Nuclear Information System (INIS)

    Anil V. Virkar

    2006-01-01

    The principal objective of this work was to develop oxidation protective coatings for metallic interconnect based on a defect chemistry approach. It was reasoned that the effectiveness of a coating is dictated by oxygen permeation kinetics; the slower the permeation kinetics, the better the protection. All protective coating materials investigated to date are either perovskites or spinels containing metals exhibiting multiple valence states (Co, Fe, Mn, Cr, etc.). As a result, all of these oxides exhibit a reasonable level of electronic conductivity; typically at least about ∼0.05 S/cm at 800 C. For a 5 micron coating, this equates to a maximum ∼0.025 (Omega)cm 2 area specific resistance due to the coating. This suggests that the coating should be based on oxygen ion conductivity (the lower the better) and not on electronic conductivity. Measurements of ionic conductivity of prospective coating materials were conducted using Hebb-Wagner method. It was demonstrated that special precautions need to be taken to measure oxygen ion conductivity in these materials with very low oxygen vacancy concentration. A model for oxidation under a protective coating is presented. Defect chemistry based approach was developed such that by suitably doping, oxygen vacancy concentration was suppressed, thus suppressing oxygen ion transport and increasing effectiveness of the coating. For the cathode side, the best coating material identified was LaMnO 3 with Ti dopant on the Mn site (LTM). It was observed that LTM is more than 20 times as effective as Mn-containing spinels. On the anode side, LaCrO3 doped with Nb on the Cr site (LNC) was the material identified. Extensive oxidation kinetics studies were conducted on metallic alloy foils with coating ∼1 micron in thickness. From these studies, it was projected that a 5 micron coating would be sufficient to ensure 40,000 h life

  18. Materials and coatings to resist high temperature oxidation and corrosion

    International Nuclear Information System (INIS)

    1977-01-01

    Object of the given papers are the oxidation and corrosion behaviour of several materials (such as stainless steels, iron-, or nickel-, or cobalt-base alloys, Si-based ceramics) used at high temperatures and various investigations on high-temperature protective coatings. (IHoe) [de

  19. Development of a Long-Life-Cycle, Highly Water-Resistant Solar Reflective Retrofit Roof Coating

    Energy Technology Data Exchange (ETDEWEB)

    Polyzos, Georgios [ORNL; Hunter, Scott Robert [ORNL; Sharma, Jaswinder K [ORNL; Cheng, Mengdawn [ORNL; Chen, Sharon S [Lawrence Berkeley National Laboratory (LBNL); Demarest, Victoria [Dow Chemical Company; Fabiny, William [Dow Chemical Company; Destaillats, Hugo [Lawrence Berkeley National Laboratory (LBNL); Levinson, Ronnen [Lawrence Berkeley National Laboratory (LBNL)

    2016-03-04

    Highly water-resistant and solar-reflective coatings for low-slope roofs are potentially among the most economical retrofit approaches to thermal management of the building envelope. Therefore, they represent a key building technology research program within the Department of Energy. Research efforts in industry and the Department of Energy are currently under way to increase long-term solar reflectance on a number of fronts. These include new polymer coatings technologies to provide longer-lasting solar reflectivity and improved test methodologies to predict long-term soiling and microbial performance. The focus on long-term improvements in soiling and microbial resistance for maximum reflectance does not address the single most important factor impacting the long-term sustainability of low-slope roof coatings: excellent water resistance. The hydrophobic character of asphaltic roof products makes them uniquely suitable for water resistance, but their low albedo and poor exterior durability are disadvantages. A reflective coating that maintains very high water resistance with increased long-term resistance to soiling and microbial activity would provide additional energy savings and extend roof service life.

  20. Acid-resistant organic coatings for the chemical industry: a review

    DEFF Research Database (Denmark)

    Møller, Victor Buhl; Dam-Johansen, Kim; Frankær, Sarah Maria Grundahl

    2017-01-01

    Industries that work with acidic chemicals in their processes need to make choices on how to properly contain the substances and avoid rapid corrosion of equipment. Certain organic coatings and linings can be used in such environments, either to protect vulnerable construction materials, or......, in combination with fiber reinforcement, to replace them. However, degradation mechanisms of organic coatings in acid service are not thoroughly understood and relevant quantitative investigations are scarce. This review describes the uses and limitations of acid-resistant coatings in the chemical industry...

  1. Biocorrosion resistance of coated magnesium alloy by microarc oxidation in electrolyte containing zirconium and calcium salts

    Science.gov (United States)

    Wang, Ya-Ming; Guo, Jun-Wei; Wu, Yun-Feng; Liu, Yan; Cao, Jian-Yun; Zhou, Yu; Jia, De-Chang

    2014-09-01

    The key to use magnesium alloys as suitable biodegradable implants is how to adjust their degradation rates. We report a strategy to prepare biocompatible ceramic coating with improved biocorrosion resistance property on AZ91D alloy by microarc oxidation (MAO) in a silicate-K2ZrF6 solution with and without Ca(H2PO4)2 additives. The microstructure and biocorrosion of coatings were characterized by XRD and SEM, as well as electrochemical and immersion tests in simulated body fluid (SBF). The results show that the coatings are mainly composed of MgO, Mg2SiO4, m-ZrO2 phases, further Ca containing compounds involve the coating by Ca(H2PO4)2 addition in the silicate-K2ZrF6 solution. The corrosion resistance of coated AZ91D alloy is significantly improved compared with the bare one. After immersing in SBF for 28 d, the Si-Zr5-Ca0 coating indicates a best corrosion resistance performance.

  2. Crack behavior of oxidation resistant coating layer on Zircaloy-4 for accident tolerant fuel claddings

    International Nuclear Information System (INIS)

    Park, Jung Hwan; Kim, Eui Jung; Jung, Yang Il; Park, Dong Jun; Kim, Hyun Gil; Park, Jeong Yong; Yang, Jae Ho

    2016-01-01

    Terrani et al. reported the oxidation resistance of Fe-based alloys for protecting zirconium alloys from the rapid oxidation in a high-temperature steam environment. Kim and co-workers also reported the corrosion behavior of Cr coated zirconium alloy using a plasma spray and laser beam scanning. Cracks are developed by tensile stress, and this significantly deteriorates the oxidation resistance. This tensile stress is possibly generated by the thermal cycle or bending or the irradiation growth of zirconium. In this study, Cr was deposited by AIP on to Zircaloy-4 plate, and the crack behavior of Cr coated Zircaloy-4 under uni-axial tensile strain was observed. In addition, the strain of the as-deposited state was calculated by iso-inclination method. Coating began to crack at 8% of applied strain. It is assumed that a well-densified structure by AIP tends to be resistant to cracking under tensile strain.

  3. Crack behavior of oxidation resistant coating layer on Zircaloy-4 for accident tolerant fuel claddings

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Hwan; Kim, Eui Jung; Jung, Yang Il; Park, Dong Jun; Kim, Hyun Gil; Park, Jeong Yong; Yang, Jae Ho [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Terrani et al. reported the oxidation resistance of Fe-based alloys for protecting zirconium alloys from the rapid oxidation in a high-temperature steam environment. Kim and co-workers also reported the corrosion behavior of Cr coated zirconium alloy using a plasma spray and laser beam scanning. Cracks are developed by tensile stress, and this significantly deteriorates the oxidation resistance. This tensile stress is possibly generated by the thermal cycle or bending or the irradiation growth of zirconium. In this study, Cr was deposited by AIP on to Zircaloy-4 plate, and the crack behavior of Cr coated Zircaloy-4 under uni-axial tensile strain was observed. In addition, the strain of the as-deposited state was calculated by iso-inclination method. Coating began to crack at 8% of applied strain. It is assumed that a well-densified structure by AIP tends to be resistant to cracking under tensile strain.

  4. Sandstone Turning by Abrasive Waterjet

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Petr; Cárach, J.; Hloch, Sergej; Vasilko, K.; Klichová, Dagmar; Klich, Jiří; Lehocká, D.

    2015-01-01

    Roč. 48, č. 6 (2015), s. 2489-2493 ISSN 0723-2632 R&D Projects: GA MŠk ED2.1.00/03.0082; GA MŠk(CZ) LO1406 Institutional support: RVO:68145535 Keywords : turning away from the jet * conventional turning towards the jet * sandstone * abrasive water jet Subject RIV: JQ - Machines ; Tools Impact factor: 2.386, year: 2015 http://www.springerprofessional.de/sandstone-turning-by-abrasive-waterjet/6038028.html

  5. Metal nitride coatings by physical vapor deposition (PVD) for a wear resistant aluminum extrusion die.

    Science.gov (United States)

    Lee, Su Young; Kim, Sang Ho

    2014-12-01

    The purpose of this study is to investigate the friction and wear behaviors of CrN, TiN, CrAlN, and TiAIN coated onto SKD61 for application to Al 7000 series extrusion dies. On the wear test, the experimental parameters are the load and the counter material's temperature. The results showed that the friction coefficient increased with load but decreased with the counter material's temperature, and the friction coefficients of CrN and CrAIN were lower than the friction coefficients of TiAIN and TIN, especially at a higher temperature. The wear track with different coatings identified different wear behaviors; the wear behavior of CrAIN was found to be abrasive, but the wear behavior of TiN, CrN, and TiAIN was adhesive. Therefore, CrAIN showed the least wear loss with a lower friction coefficient and less adhesion with counter materials at the highest range of wear load and temperature. This resulted in the easy formation of aluminum oxide in the wear track and less Al adhesion; moreover during the hard second phase, AIN dispersed in the film during deposition.

  6. Metal Matrix Composite Coatings of Cupronickel Embedded with Nanoplatelets for Improved Corrosion Resistant Properties

    Directory of Open Access Journals (Sweden)

    Casey R. Thurber

    2018-01-01

    Full Text Available The deterioration of metals under the influence of corrosion is a costly problem faced by many industries. Therefore, particle-reinforced composite coatings are being developed in different technological fields with high demands for corrosion resistance. This work studies the effects of nanoplatelet reinforcement on the durability, corrosion resistance, and mechanical properties of copper-nickel coatings. A 90 : 10 Cu-Ni alloy was coelectrodeposited with nanoplatelets of montmorillonite (Mt embedded into the metallic matrix from electrolytic baths containing 0.05, 0.10, and 0.15% Mt. X-ray diffraction of the coatings indicated no disruption of the crystal structure with addition of the nanoplatelets into the alloy. The mechanical properties of the coatings improved with a 17% increase in hardness and an 85% increase in shear adhesion strength with nanoplatelet incorporation. The measured polarization resistance increased from 11.77 kΩ·cm2 for pure Cu-Ni to 33.28 kΩ·cm2 for the Cu-Ni-0.15% Mt coating after soaking in a simulated seawater environment for 30 days. The incorporation of montmorillonite also stabilized the corrosion potential during the immersion study and increased resistance to corrosion.

  7. The aesthetic and functional properties of enamel coatings on steel

    International Nuclear Information System (INIS)

    Scrinzi, E.; Rossi, S.

    2010-01-01

    In this work, the aesthetic and functional properties of enamelled steel panels were investigated. Enamelling is one of the oldest techniques to protect metallic substrates from corrosive phenomena and to improve the aesthetic aspects. This kind of coating is still up-to-date because of its durability, the possibility of creating different aesthetic effects and the eco-sustainability of the production process. Therefore, these kinds of coatings present a great potential in the field of product design. In this work, the durability and the change in the surface properties of different types of enamels are investigated. Chemical resistance, abrasion resistance and ultraviolet radiation (UV) exposure resistance were studied. To determine the chemical resistance, the samples were immersed in acid and basic solutions. Gloss and colour changes were measured. The falling abrasive test was used to evaluate the abrasion resistance: gloss changes were measured to determine the loss of aesthetic properties, and electrochemical impedance spectroscopy was used to evaluate the loss of protective properties. Gloss and colour changes were measured after 1000 h of UV exposure. Optical microscopy and environmental scanning electron microscopy were used to study the morphology of the damage and correlate it to the gloss and colour changes. All the samples presented good resistance in acid solution and good UV exposure resistance. For the other tests the results varied and were correlated to the characteristics of the enamels in terms of composition, thickness, surface roughness and application technique.

  8. Microstructure of Al-Si Slurry Coatings on Austenitic High-Temperature Creep Resisting Cast Steel

    Directory of Open Access Journals (Sweden)

    Agnieszka E. Kochmańska

    2018-01-01

    Full Text Available This paper presents the results of microstructural examinations on slurry aluminide coatings using scanning electron microscopy, X-ray microanalysis, and X-ray diffraction. Aluminide coatings were produced in air atmosphere on austenitic high-temperature creep resisting cast steel. The function of aluminide coatings is the protection of the equipment components against the high-temperature corrosion in a carburising atmosphere under thermal shock conditions. The obtained coatings had a multilayered structure composed of intermetallic compounds. The composition of newly developed slurry was powders of aluminium and silicon; NaCl, KCl, and NaF halide salts; and a water solution of a soluble glass as an inorganic binder. The application of the inorganic binder in the slurry allowed to produce the coatings in one single step without additional annealing at an intermediate temperature as it is when applied organic binder. The coatings were formed on both: the ground surface and on the raw cast surface. The main technological parameters were temperature (732–1068°C and time of annealing (3.3–11.7 h and the Al/Si ratio (4–14 in the slurry. The rotatable design was used to evaluate the effect of the production parameters on the coatings thickness. The correlation between the technological parameters and the coating structure was determined.

  9. A process for the production of a scale-proof and corrosion-resistant coating on graphite and carbon bodies

    Science.gov (United States)

    Fitzer, E.

    1981-01-01

    A process for the production of a corrosion resistant coating on graphite and carbon bodies is described. The carbon or graphite body is coated or impregnated with titanium silicide under the addition of a metal containing wetting agent in a nitrogen free atmosphere, so that a tight coating is formed.

  10. Tailored Aluminium based Coatings for Optical Appearance and Corrosion Resistance

    DEFF Research Database (Denmark)

    Aggerbeck, Martin

    potential differences in the microstructure, and protection from the network of the Al3Ti phases precipitated during the heat treatment. Laser surface cladding of aluminium containing up to 20 wt. % Ti6Al4V were studied focusing on the microstructure and the alkaline corrosion properties. Due......The current project investigated the possibility of designing aluminium based coatings focusing on the effect of composition and surface finish on the optical appearance and on the alkaline corrosion properties using titanium as the main alloying element. The main results and discussions...... that the roughness after etching increases with higher amounts of alloying elements (especially iron and silicon). Proper polishing requires some alloy hardness, while alloy purity is required for a glossy appearance after anodisation. Magnetron sputtered aluminium based coatings containing up to 18 wt. % titanium...

  11. Drug Resistance and Pseudoresistance: An Unintended Consequence of Enteric Coating Aspirin

    Science.gov (United States)

    Grosser, Tilo; Fries, Susanne; Lawson, John A.; Kapoor, Shiv C.; Grant, Gregory R.; FitzGerald, Garret A.

    2013-01-01

    Background Low dose aspirin reduces the secondary incidence of myocardial infarction and stroke. Drug resistance to aspirin might result in treatment failure. Despite this concern, no clear definition of “aspirin resistance” has emerged and estimates of its incidence have varied remarkably. We aimed to determine the commonality of a mechanistically consistent, stable and specific phenotype of true pharmacological resistance to aspirin – such as might be explained by genetic causes. Methods and Results Healthy volunteers (n=400) were screened for their response to a single oral dose of 325 mg immediate release or enteric coated aspirin. Response parameters reflected the activity of aspirin's molecular target, cyclooxygenase-1. Individuals who appeared “aspirin resistant” on one occasion underwent repeat testing and if still “resistant” were exposed to low dose enteric coated aspirin (81 mg) and clopidogrel (75 mg) for one week each. Variable absorption caused a high frequency of apparent resistance to a single dose of 325 mg enteric coated aspirin (up to 49%) but not to immediate release aspirin (0%). All individuals responded to aspirin upon repeated exposure, extension of the post dosing interval or addition of aspirin to their platelets ex vivo. Conclusions Pharmacological resistance to aspirin is rare; this study failed to identify a single case of true drug resistance. Pseudoresistance, reflecting delayed and reduced drug absorption, complicates enteric coated but not immediate release aspirin administration. Clinical Trial Registration Information clinicaltrials.gov. Identifier: NCT00948987. PMID:23212718

  12. Improved dental implant drill durability and performance using heat and wear resistant protective coatings.

    Science.gov (United States)

    Er, Nilay; Alkan, Alper; İlday, Serim; Bengu, Erman

    2018-03-02

    Dental implant drilling procedure is an essential step for implant surgery and frictional heat appeared in bone during drilling is a key factor affecting the success of an implant. The aim of this study is to increase the dental implant drill lifetime and performance using heat- and wear-resistant protective coatings hence to decrease the alveolar bone temperature caused by the dental implant drilling procedure. Commercially obtained stainless steel drills were coated with titanium aluminum nitride, diamond-like carbon, titanium boron nitride, and boron nitride coatings via magnetron-sputter deposition. Drilling procedure was performed on a bovine femoral cortical bone under the conditions mimicking clinical practice, where the tests were performed both under water-assisted cooling and under the conditions without any cooling was applied. Coated drill performances and durabilities were compared to that of three commonly used commercial drills which surfaces are made from namely; zirconia, black diamond and stainless steel. Protective coatings with boron nitride, titanium boron nitride and diamond-like carbon have significantly improved drill performance and durability. Especially boron nitride-coated drills have performed within safe bone temperature limits for 50 drillings even without any cooling is applied. Titanium aluminium nitride coated drills did not show any improvement over commercially obtained stainless steel drills. Surface modification using heat and wear resistant coatings is an easy and highly effective way to improve implant drill performance and durability, which can reflect positively on surgical procedure and healing period afterwards. The noteworthy success of different types of coatings is novel and likely to be applicable to various other medical systems.

  13. CORROSION RESISTANCE OF ORGANOMETALLIC COATING APLICATED IN FUEL TANKS USING ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY IN BIOFUEL – PART I

    Directory of Open Access Journals (Sweden)

    Milene Adriane Luciano

    2014-10-01

    Full Text Available Nowadays, the industry has opted for more sustainable production processes, and the planet has also opted for new energy sources. From this perspective, automotive tanks with organometallic coatings as well as a partial substitution of fossil fuels by biofuels have been developed. These organometallic coated tanks have a zinc layer, deposited by a galvanizing process, formed between the steel and the organometallic coating. This work aims to characterize the organometallic coating used in metal automotive tanks and evaluate their corrosion resistance in contact with hydrated ethyl alcohol fuel (AEHC. For this purpose, the resistance of all layers formed between Zinc and EEP steel and also the tin coated steel, which has been used for over thirty years, were evaluated. The technique chosen was the Electrochemical Impedance Spectroscopy. The results indicated an increase on the corrosion resistance when organometallic coatings are used in AEHC medium. In addition to that, these coatings allow an estimated 25% reduction in tanks production costs.

  14. Corrosion resistance and development length of steel reinforcement with cementitious coatings

    Science.gov (United States)

    Pei, Xiaofei

    This research program focused on the corrosion resistance and development length of reinforcing steel coated with Cementitious Capillary Crystalline Waterproofing (CCCW) materials. The first part of this research program involved using the half-cell potential method to evaluate the corrosion resistance of CCCW coating materials. One hundred and two steel bars were embedded in concrete cylinders and monitored. In total, 64 steel reinforcing bars were coated with CCCW prior to embedment, 16 mortar cylinders were externally coated with CCCW, and 22 control (uncoated) samples were tested. All the samples were immersed in a 3.5% concentration chloride solution for a period of one year. Three coating types were studied: CCCW-B, CCCW-B+ C and CCCW-C+D. The test results showed that the CCCW coating materials delayed the corrosion activity to varying degrees. In particular, CCCW-C+D applied on the reinforcing steel surface dramatically delayed the corrosion activity when compared to the control samples. After being exposed to the chloride solution for a period of one year, no sign of corrosion was observed for the cylinders where the concrete surface was coated. The second part of this research evaluated the bond strength and development length of reinforcing steel coated with two types of CCCW coating materials (CCCW-B+C and CCCW-C+D) using a modified pull-out test method. A self-reacting inverted T-shaped beam was designed to avoid compression in the concrete surrounding the reinforcing steel. Steel reinforcing bars were embedded along the web portion of the T-beam with various embedded lengths and were staggered side by side. In total, six T-beams were fabricated and each beam contained 8 samples. Both short-term (7 days) and long-term (3 months) effects of water curing were evaluated. The reinforcing steel bars coated with CCCW-B+C demonstrated a higher bond strength than did samples coated with CCCW-C+D. However, the bond strengths of samples with coating materials

  15. Wear resistance of Fe-Nb-Cr-W, Nb, AISI 1020 and AISI 420 coatings produced by thermal spray wire arc; Resistencia al desgaste de recubrimientos Fe-Nb-Cr-W, Nb, AISI 1020 y AISI 420 producidos por proyeccion termica por arco electrico

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Covaleda, E. A.; Mercado-Veladia, J. L.; Olaya-Florez, J. J.

    2013-07-01

    The commercial materials 140MXC (with iron, tungsten, chrome, niobium), 530AS (AISI 1015 steel) and 560AS (AISI 420 steel) on AISI 4340 steel were deposited using thermal spray with arc. The aim of work was to evaluate the best strategy abrasive wear resistance of the system coating-substrate using the following combinations: (1) homogeneous coatings and (2) coatings depositing simultaneously 140MXC + 530AS and 140MXC + 560AS. The coatings microstructure was characterized using Optical microscopy, Scanning electron microscopy and Laser con focal microscopy. The wear resistance was evaluated through dry sand rubber wheel test (DSRW). We found that the wear resistance depends on the quantity of defects and the mechanical properties like hardness. For example, the softer coatings have the biggest wear rates and the failure mode was characterized by plastic deformation caused by particles indentation, and the other hand the failure mode at the harder materials was grooving. The details and wear mechanism of the coatings produced are described in this investigation. (Author)

  16. Nanostructured coatings for controlling bacterial biofilms and antibiotic resistance

    OpenAIRE

    Ivanova, Kristina Dimitrova

    2017-01-01

    The accelerated emergence of drug resistant bacteria is one of the most serious problems in healthcare and the difficulties in finding new antibiotics make it even more challenging. To overcome the action of antibiotics bacteria develop effective resistance mechanisms including the formation of biofilms. Biofilms are bacterial communities of cells embedded in a self-produced polymeric matrix commonly found on medical devices such as indwelling catheters. When pathogens adopt this mode of grow...

  17. Enhanced biocorrosion resistance and biocompatibility of degradable Mg-Nd-Zn-Zr alloy by brushite coating.

    Science.gov (United States)

    Niu, Jialin; Yuan, Guangyin; Liao, Yi; Mao, Lin; Zhang, Jian; Wang, Yongping; Huang, Feng; Jiang, Yao; He, Yaohua; Ding, Wenjiang

    2013-12-01

    To further improve the corrosion resistance and biocompatibility of Mg-Nd-Zn-Zr alloy (JDBM), a biodegradable calcium phosphate coating (Ca-P coating) with high bonding strength was developed using a novel chemical deposition method. The main composition of the Ca-P coating was brushite (CaHPO4·2H2O). The bonding strength between the coating and the JDBM substrate was measured to be over 10 MPa, and the thickness of the coating layer was about 10-30 μm. The in vitro corrosion tests indicated that the Ca-P treatment improved the corrosion resistance of JDBM alloy in Hank's solution. Ca-P treatment significantly reduced the hemolysis rate of JDBM alloy from 48% to 0.68%, and induced no toxicity to MC3T3-E1 cells. The in vivo implantation experiment in New Zealand's rabbit tibia showed that the degradation rate was reduced obviously by the Ca-P treatment and less gas was produced from Ca-P treated JDBM bone plates and screws in early stage of the implantation, and at least 10weeks degradation time can be prolonged by the present coating techniques. Both Ca-P treated and untreated JDBM Mg alloy induced bone growth. The primary results indicate that the present Ca-P treatment is a promising technique for the degradable Mg-based biomaterials for orthopedic applications. © 2013.

  18. Cavitation erosion resistance of diamond-like carbon coating on stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Feng; Jiang, Shuyun, E-mail: jiangshy@seu.edu.cn

    2014-02-15

    Two diamond-like carbon (DLC) coatings are prepared on stainless steel 304 by cathodic arc plasma deposition technology at different substrate bias voltages and arc currents (−200 V/80 A, labeled DLC-1, and −100 V/60 A, labeled DLC-2). Cavitation tests are performed by using a rotating-disk test rig to explore the cavitation erosion resistance of the DLC coating. The mass losses, surface morphologies, chemical compositions and the phase constituents of the specimens after cavitation tests are examined by using digital balance, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The results indicate that the DLC-2 coatings can elongate the incubation period of stainless steel, leading to an excellent cavitation erosion resistance as compared to the untreated stainless steel specimens. After duration of 100 h cavitation test, serious damaged surfaces and plenty of scratches can be observed on the surfaces of the stainless steel specimens, while only a few grooves and tiny pits are observed on the DLC-2 coatings. It is concluded that, decreasing micro defects and increasing adhesion can reduce the delamination of DLC coating, and the erosion continues in the stainless steel substrate after DLC coating failure, and the eroded surface of the substrate is subjected to the combined action from cavitation erosion and slurry erosion.

  19. Electrodeposited Ni-B coatings: Formation and evaluation of hardness and wear resistance

    International Nuclear Information System (INIS)

    Krishnaveni, K.; Sankara Narayanan, T.S.N.; Seshadri, S.K.

    2006-01-01

    The formation of electrodeposited Ni-B alloy coatings using a dimethylamine borane (DMAB) modified Watt's nickel bath and evaluation of their structural characteristics, hardness and wear resistance are discussed. The boron content in the electrodeposited Ni-B alloy coating is determined by the ratio of rate of reduction of nickel and rate of decomposition of DMAB. The boron content of the electrodeposited Ni-B coating decreases as the current density increased from 0.4 to 4 A dm -2 . XRD diffraction pattern of electrodeposited Ni-B coatings in their as-plated condition exhibits the presence of Ni (1 1 1) (2 0 0) and (2 2 0) reflections with (1 1 1) texture. Heat treatment at 400 deg. C for 1 h has resulted in the formation of nickel boride phases, which results in an increase in hardness and wear resistance. The mechanism of wear in electrodeposited Ni-B coatings is intensive plastic deformation of the coating due to the ploughing action of the hard counter disk

  20. CORROSION RESISTANT SOL–GEL COATING ON 2024-T3 ALUMINUM

    Directory of Open Access Journals (Sweden)

    S. Yazdani

    2016-06-01

    Full Text Available The inherent reactivity of the Al–Cu alloys is such that their use for structural, marine, and aerospace components and structures would not be possible without prior application of a corrosion resistance system. Historically these corrosion resistance coatings were based on the use of chemicals containing Cr (VI compounds. Silane coatings are of increasing interest in industry due to their potential application for the replacement of current toxic hexavalent chromate based treatments. In this study, hydrophobic coating sol was prepared with methyltriethoxysilane (MTES, methanol (MeOH, and water (as 7M NH4OH at a molar ratio of 1:25:4.31 respectively. The coatings were applied by a dip-technique to 2024-T3 Al alloy, and subsequently cured at room temperature and there after heat treated in an oven at 150°C. The anticorrosion properties of the coatings within 3.5 wt% NaCl solution were studied by Tafel polarization technique. The sol–gel coating exhibited good anticorrosion properties providing an adherent protection film on the Al 2024-T3 substrate. The surface properties were characterized by water contact angle measurement, scanning electron microscopy (SEM, and the composition was studied by Fourier transform infrared spectroscopy (FTIR.

  1. Improving the Corrosion Resistance of Biodegradable Magnesium Alloys by Diffusion Coating Process

    Science.gov (United States)

    Levy, Galit Katarivas; Aghion, Eli

    Magnesium alloys suffer from accelerated corrosion in physiological environment and hence their use as a structural material for biodegradable implants is limited. The present study focuses on a diffusion coating treatment that amplifies the beneficial effect of Neodymium on the corrosion resistance of magnesium alloys. The diffusion coating layer was obtained by applying 1 µm Nd coating on EW10X04 magnesium alloy using Electron-gun evaporator and PVD process. The coated alloy was heat treated at 350°C for 3 hours in a protective atmosphere of N2+0.2%SF6. The micro structure characteristics were evaluated by SEM, XRD, and XPS; the corrosion resistance was examined by potentiodynamic polarization and EIS analysis. The corrosion resistance of the diffusion coated alloy was significantly improved compared to the uncoated material. This was related to: (i) formation of Nd2O3 in the outer scale, (ii) integration of Nd in the MgO oxide layer, and (iii) formation of secondary phase Mg41Nd5 along the grain boundaries of α-Mg.

  2. Flame retardancy and ultraviolet resistance of silk fabric coated by graphene oxide

    OpenAIRE

    Ji Yi-Min; Cao Ying-Ying; Chen Guo-Qiang; Xing Tie-Ling

    2017-01-01

    Silk fabrics were coated by graphene oxide hydrosol in order to improve its flame retardancy and ultraviolet resistance. In addition, montmorillonoid was doped into the graphene oxide hydrosol to further improve the flame retardancy of silk fabrics. The flame retardancy and ultraviolet resistance were mainly characterized by limiting oxygen index, vertical flame test, smoke density test, and ultraviolet protection factor. The synergistic effect of graphene oxide and montmorillonoid on the the...

  3. Preparation and characterization of the micro-arc oxidation composite coatings on magnesium alloys

    Directory of Open Access Journals (Sweden)

    Yanfeng Ge

    2014-12-01

    Full Text Available The magnesium alloys attract the light-weight manufacture due to its high strength to weight ratio, however the poor corrosion resistance limits the application in automobile industry. The Micro-arc Composite Ceramic (MCC coatings on AZ91D magnesium alloys were prepared by Micro-arc Oxidation (MAO and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance and adhesion of MCC coatings were studied respectively. The cross section morphologies showed that the outer organic coating was filled into the hole on surface of MAO coating, and it acted as a shelter against corrosive products. The copper-accelerated acetic acid salt spray Test, abrasion resistance test, stone impact resistance test, thermal shock resistance test and adhesion test were used to evaluate the protective characterization by the third testing organization which approved by GM. The test results showed the composite coatings meet all the requirements. The MCC coating on Mg presents excellent properties, and it is a promising surface treatment technology on magnesium alloys for production vehicles.

  4. Comparison of surface fractal dimensions of chromizing coating and P110 steel for corrosion resistance estimation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Naiming, E-mail: lnmlz33@163.com [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Guo, Junwen [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Xie, Faqin [School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072 (China); Zou, Jiaojuan; Tian, Wei [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Yao, Xiaofei [School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710032 (China); Zhang, Hongyan; Tang, Bin [Research Institute of Surface Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2014-08-30

    Highlights: • Continuous chromizing coating was synthesized on P110 steel by pack cementation. • The chromizing coating showed better corrosion resistance. • Comparison of surface fractal dimensions can estimate corrosion resistance. - Abstract: In the field of corrosion research, mass gain/loss, electrochemical tests and comparing the surface elemental distributions, phase constitutions as well as surface morphologies before and after corrosion are extensively applied to investigate the corrosion behavior or estimate the corrosion resistance of materials that operated in various environments. Most of the above methods are problem oriented, complex and longer-period time-consuming. However from an object oriented point of view, the corroded surfaces of materials often have self-similar characterization: fractal property which can be employed to efficiently achieve damaged surface analysis. The present work describes a strategy of comparison of the surface fractal dimensions for corrosion resistance estimation: chromizing coating was synthesized on P110 steel surface to improve its performance via pack cementation. Scanning electron microscope (SEM) was used to investigate the surface morphologies of the original and corroded samples. Surface fractal dimensions of the detected samples were calculated by binary images related to SEM images of surface morphologies with box counting algorithm method. The results showed that both surface morphologies and surface fractal dimensions of P110 steel varied greatly before and after corrosion test, but the chromizing coating changed slightly. The chromizing coating indicated better corrosion resistance than P110 steel. Comparison of surface fractal dimensions of original and corroded samples can rapidly and exactly realize the estimation of corrosion resistance.

  5. Comparison of surface fractal dimensions of chromizing coating and P110 steel for corrosion resistance estimation

    International Nuclear Information System (INIS)

    Lin, Naiming; Guo, Junwen; Xie, Faqin; Zou, Jiaojuan; Tian, Wei; Yao, Xiaofei; Zhang, Hongyan; Tang, Bin

    2014-01-01

    Highlights: • Continuous chromizing coating was synthesized on P110 steel by pack cementation. • The chromizing coating showed better corrosion resistance. • Comparison of surface fractal dimensions can estimate corrosion resistance. - Abstract: In the field of corrosion research, mass gain/loss, electrochemical tests and comparing the surface elemental distributions, phase constitutions as well as surface morphologies before and after corrosion are extensively applied to investigate the corrosion behavior or estimate the corrosion resistance of materials that operated in various environments. Most of the above methods are problem oriented, complex and longer-period time-consuming. However from an object oriented point of view, the corroded surfaces of materials often have self-similar characterization: fractal property which can be employed to efficiently achieve damaged surface analysis. The present work describes a strategy of comparison of the surface fractal dimensions for corrosion resistance estimation: chromizing coating was synthesized on P110 steel surface to improve its performance via pack cementation. Scanning electron microscope (SEM) was used to investigate the surface morphologies of the original and corroded samples. Surface fractal dimensions of the detected samples were calculated by binary images related to SEM images of surface morphologies with box counting algorithm method. The results showed that both surface morphologies and surface fractal dimensions of P110 steel varied greatly before and after corrosion test, but the chromizing coating changed slightly. The chromizing coating indicated better corrosion resistance than P110 steel. Comparison of surface fractal dimensions of original and corroded samples can rapidly and exactly realize the estimation of corrosion resistance

  6. Electron beam curable branched chain polyurethane acrylates for magnetic media coatings

    International Nuclear Information System (INIS)

    Ukachi, Takashi; Haga, Kei-ichi; Matsumura, Yoshio

    1989-01-01

    Electron beam curable binder resins have been studied to realize the high quality magnetic coatings. It was supposed that resins with a higher crosslink density could lead to magnetic coatings with higher abrasion resistance. Branched chain polyurethane acrylates show a higher degree of cure by irradiation with an electron beam in comparison with linear polyurethane acrylates. This paper describes the potential wear resistance between properties of magnetic coatings and the physical properties of the cured unpigmented branched chain polyurethane acrylates that were used as the binder resins. (author)

  7. A comparative tribological study of chromium coatings with different specific hardness

    International Nuclear Information System (INIS)

    Darbeida, A.; Von Stebut, J.; Barthole, M.; Belliard, P.; Lelait, L.

    1995-06-01

    The wear resistance in dry friction of two electrolytic and two pVD hard chromium coatings deposited on construction steel substrates is studied by means of standard pin on disc multi-pass, unidirectional operation. For both of these friction modes low cycle high load operation with cemented carbide pins leads to essentially coatings hardness controlled, abrasive wear. For these well adhering commercial coatings (both for through thickness cracking and for spalling failure) assessed by standard testing, are inadequate for quality ranking with respect to wear resistance. Steady state friction corresponds to a stabilised third body essentially composed of chromium oxide. (authors). 13 refs., 7 figs., 1 tab

  8. Improving the oxidation resistance and stability of Ag nanoparticles by coating with multilayered reduced graphene oxide

    Science.gov (United States)

    Li, Yahui; Zhang, Huayu; Wu, Bowen; Guo, Zhuo

    2017-12-01

    A kind of coating nanostructure, Ag nanoparticles coated with multilayered reduced graphene oxide (RGO), is fabricated by employing a three-step reduction method in an orderly manner, which is significantly different from the conventional structures that are simply depositing or doping with Ag nanoparticles on RGO via chemical reduction. The as-prepared nanostructure is investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected-area electronic diffraction (SEAD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The results show that the obtained Ag/RGO nanostructure is observed to be a perfect coating structure with well dispersed Ag particles, which is responsible for the remarkable oxidation resistance. The results of XPS spectra indicate the content of metallic Ag is far greater than that of Ag oxides despite of prolonged exposure to the air, which fully demonstrate the excellent stability of thus coating nanostructure.

  9. Influence of Zeolite Coating on the Corrosion Resistance of AZ91D Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    P. Chakraborty Banerjee

    2014-08-01

    Full Text Available The protective performance of zeolite coating on AZ91D magnesium alloy was evaluated using potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS in 0.1 M sodium chloride solution (NaCl. Electrical equivalent circuit (EEC was developed based upon hypothetical corrosion mechanisms and simulated to correspond to the experimental data. The morphology and the chemical nature of the coating were characterized by scanning electron microscopy (SEM and X-ray diffraction (XRD analysis. Post corrosion morphologies of the zeolite coated and the uncoated AZ91D alloy were investigated using SEM. The corrosion resistance of the zeolite coated specimen was at least one order of magnitude higher than the uncoated specimen.

  10. A facile method to prepare superhydrophobic fluorinated polysiloxane/ZnO nanocomposite coatings with corrosion resistance

    Science.gov (United States)

    Qing, Yongquan; Yang, Chuanning; Hu, Chuanbo; Zheng, Yansheng; Liu, Changsheng

    2015-01-01

    In this paper, we report a simple and inexpensive method for fabricating fluorinated polysiloxane/ZnO nanocomposite coatings on the steel substrates. The surface wettability and topology of coating were characterized by contact angle measurement, scanning electron microscope and Fourier transform infrared spectrometry. The results showed that the hydrophobic sbnd CH3 and sbnd CH2sbnd groups were introduced into ZnO particles via modification, the ZnO nanoparticles were modified from hydrophilic to hydrophobic. When the weight ratio of modified-ZnO to fluorinated polysiloxane was 13:7, the contact angle of nanocomposite coating was 166°, and a sliding angle of 4°, coating surface with hierarchical micro/nano-structures. In addition, the as-prepared superhydrophobic surface has excellent durability and corrosion resistance. It is believed that the facile and low-cost method offer an effective strategy and promising industrial applications for fabricating superhydrophobic surfaces on steel materials.

  11. Alkali resistant optical coatings for alkali lasers and methods of production thereof

    Science.gov (United States)

    Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C

    2014-11-18

    In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.

  12. Enhanced corrosion resistance of strontium hydroxyapatite coating on electron beam treated surgical grade stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Gopi, D., E-mail: dhanaraj_gopi@yahoo.com [Department of Chemistry, Periyar University, Salem 636 011, Tamilnadu (India); Centre for Nanoscience and Nanotechnology, Periyar University, Salem 636 011, Tamilnadu (India); Rajeswari, D. [Department of Chemistry, Periyar University, Salem 636 011, Tamilnadu (India); Department of Physics, Periyar University, Salem 636 011, Tamilnadu (India); Ramya, S. [Department of Chemistry, Periyar University, Salem 636 011, Tamilnadu (India); Sekar, M. [Department of Chemistry, Periyar University, Salem 636 011, Tamilnadu (India); Department of Physics, Periyar University, Salem 636 011, Tamilnadu (India); R, Pramod; Dwivedi, Jishnu [Industrial and Medical Accelerator Section, Raja Ramanna Centre for Advanced Technology, Indore 452 013, Madhya Pradesh (India); Kavitha, L., E-mail: louiskavitha@yahoo.co.in [Centre for Nanoscience and Nanotechnology, Periyar University, Salem 636 011, Tamilnadu (India); Department of Physics, Periyar University, Salem 636 011, Tamilnadu (India); Ramaseshan, R. [Thin film and Coatings Section, Surface and Nanoscience Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu (India)

    2013-12-01

    The surface of 316L stainless steel (316L SS) is irradiated by high energy low current DC electron beam (HELCDEB) with energy of 500 keV and beam current of 1.5 mA followed by the electrodeposition of strontium hydroxyapatite (Sr-HAp) to enhance its corrosion resistance in physiological fluid. The coatings were characterised by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and High resolution scanning electron microscopy (HRSEM). The Sr-HAp coating on HELCDEB treated 316L SS exhibits micro-flower structure. Electrochemical results show that the Sr-HAp coating on HELCDEB treated 316L SS possesses maximum corrosion resistance in Ringer's solution.

  13. Enhanced corrosion resistance of strontium hydroxyapatite coating on electron beam treated surgical grade stainless steel

    Science.gov (United States)

    Gopi, D.; Rajeswari, D.; Ramya, S.; Sekar, M.; R, Pramod; Dwivedi, Jishnu; Kavitha, L.; Ramaseshan, R.

    2013-12-01

    The surface of 316L stainless steel (316L SS) is irradiated by high energy low current DC electron beam (HELCDEB) with energy of 500 keV and beam current of 1.5 mA followed by the electrodeposition of strontium hydroxyapatite (Sr-HAp) to enhance its corrosion resistance in physiological fluid. The coatings were characterised by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and High resolution scanning electron microscopy (HRSEM). The Sr-HAp coating on HELCDEB treated 316L SS exhibits micro-flower structure. Electrochemical results show that the Sr-HAp coating on HELCDEB treated 316L SS possesses maximum corrosion resistance in Ringer's solution.

  14. High corrosion resistance of electroless composite plating coatings on AZ91D magnesium alloys

    International Nuclear Information System (INIS)

    Song, Y.W.; Shan, D.Y.; Han, E.H.

    2008-01-01

    The process of electroless plating Ni-P on AZ91D magnesium alloys was improved. The Ni-P-ZrO 2 composite coatings and multilayer coatings were investigated based on the new electroless plating process. The coatings surface and cross-section morphologies were observed with scanning electron microscopy (SEM). The chemical compositions were analyzed by EDXS. The corrosion behaviors were evaluated by immersion, salt spray and electrochemical tests. The experimental results indicated that the Ni-P-ZrO 2 composite coatings suffered attack in NaCl solution but displayed passivation characteristics in NaOH and Na 2 SO 4 solutions. The corrosion resistance of Ni-P-ZrO 2 coatings was superior to Ni-P coatings due to the effect of ZrO 2 nano-particle. The multilayer coatings consisting of Ni-P-ZrO 2 /electroplating nickel/Ni-P (from substrate to surface) can protect magnesium alloys from corroding more than 1000 h for the salt spray test

  15. A study of degradation resistance and cytocompatibility of super-hydrophobic coating on magnesium.

    Science.gov (United States)

    Zhang, Yufen; Feyerabend, Frank; Tang, Shawei; Hu, Jin; Lu, Xiaopeng; Blawert, Carsten; Lin, Tiegui

    2017-09-01

    Calcium stearate based super-hydrophobic coating was deposited on plasma electrolytic oxidation (PEO) pre-treated magnesium substrate. The pre-treated magnesium and super-hydrophobic coating covered sample were characterized by scanning electron microscopy, X-ray diffraction and electrochemical corrosion measurements. The cytocompatibility and degradation resistance of magnesium, pre-treated magnesium and super-hydrophobic coating were analysed in terms of cell adhesion and osteoblast differentiation. The results indicate that the calcium stearate top coating shows super-hydrophobicity and that the surface is composed of micro/nanostructure. The super-hydrophobic coating covered sample shows higher barrier properties compared with the PEO pre-treated magnesium and bare magnesium. Human osteoblast proliferation, but not differentiation is enhanced by the PEO coating. Contrary, the super-hydrophobic coating reduces proliferation, but enhances differentiation of osteoblast, observable by the formation of hydroxyapatite. The combination of corrosion protection and cell reaction indicates that this system could be interesting for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effect of the deposition temperature on corrosion resistance and biocompatibility of the hydroxyapatite coatings

    Science.gov (United States)

    Vladescu, A.; Braic, M.; Azem, F. Ak; Titorencu, I.; Braic, V.; Pruna, V.; Kiss, A.; Parau, A. C.; Birlik, I.

    2015-11-01

    Hydroxyapatite (HAP) ceramics belong to a class of calcium phosphate-based materials, which have been widely used as coatings on titanium medical implants in order to improve bone fixation and thus to increase the lifetime of the implant. In this study, HAP coatings were deposited from pure HAP targets on Ti6Al4V substrates using the radio-frequency magnetron sputtering technique at substrate temperatures ranging from 400 to 800 °C. The surface morphology and the crystallographic structure of the films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion resistance of the coatings in saliva solution at 37 °C was evaluated by potentiodynamic polarization. Additionally, the human osteosarcoma cell line (MG-63) was used to test the biocompatibility of the coatings. The results showed that all of the coatings grown uniformly and that the increasing substrate temperature induced an increase in their crystallinity. Corrosion performance of the coatings was improved with the increase of the substrate temperature from 400 °C to 800 °C. Furthermore, all the coatings support the attachment and growth of the osteosarcoma cells with regard to the in vitro test findings.

  17. Coat protein-mediated resistance against an Indian isolate of the ...

    Indian Academy of Sciences (India)

    Coat protein (CP)-mediated resistance against an Indian isolate of the Cucumber mosaic virus (CMV) subgroup IB was demonstrated in transgenic lines of Nicotiana benthamiana through Agrobacterium tumefaciens-mediated transformation. Out of the fourteen independently transformed lines developed, two lines were ...

  18. Applications in the Nuclear Industry for Corrosion-Resistant Amorphous-Metal Thermal-Spray Coatings

    International Nuclear Information System (INIS)

    Farmer, J; Choi, J

    2007-01-01

    Amorphous metal and ceramic thermal spray coatings have been developed that can be used to enhance the corrosion resistance of containers for the transportation, aging and disposal of spent nuclear fuel and high-level radioactive wastes. Fe-based amorphous metal formulations with chromium, molybdenum and tungsten have shown the corrosion resistance believed to be necessary for such applications. Rare earth additions enable very low critical cooling rates to be achieved. The boron content of these materials, and their stability at high neutron doses, enable them to serve as high efficiency neutron absorbers for criticality control. Ceramic coatings may provide even greater corrosion resistance for container applications, though the boron-containing amorphous metals are still favored for criticality control applications. These amorphous metal and ceramic materials have been produced as gas atomized powders and applied as near full density, non-porous coatings with the high-velocity oxy-fuel process. This paper summarizes the performance of these coatings as corrosion-resistant barriers, and as neutron absorbers. Relevant corrosion models are also discussed, as well as a cost model to quantify the economic benefits possible with these new materials

  19. Crack resistance increasing in epoxide-rubber coatings of NPP room floors

    International Nuclear Information System (INIS)

    Khorenzhenko, V.I.

    1986-01-01

    Problems of crack resistance increasing in epoxide-rubber coatings for the floors are considered. Exploitation experience of the floors in the special rooms of NPP is given. Perspectivity of application of the compositions described as the building materials for nuclear power stations is pointed out

  20. Corrosion-resistant coating technique for oxide-dispersion-strengthened ferritic/martensitic steel

    International Nuclear Information System (INIS)

    Sakasegawa, Hideo; Tanigawa, Hiroyasu; Ando, Masami

    2014-01-01

    Oxide-dispersion-strengthened (ODS) steels are attractive materials for application as fuel cladding in fast reactors and first-wall material of fusion blanket. Recent studies have focused more on high-chromium ferritic (12-18 wt% Cr) ODS steels with attractive corrosion resistance properties. However, they have poor material workability, require complicated heat treatments for recrystallization, and possess anisotropic microstructures and mechanical properties. On the other hand, low-chromium ferritic/martensitic (8-9 wt% Cr) ODS steels have no such limitations; nonetheless, they have poor corrosion resistance properties. In our work, we developed a corrosion-resistant coating technique for a low-chromium ferritic/martensitic ODS steel. The ODS steel was coated with the 304 or 430 stainless steel, which has better corrosion resistances than the low-chromium ferritic/martensitic ODS steels. The 304 or 430 stainless steel was coated by changing the canning material from mild steel to stainless steel in the conventional material processing procedure for ODS steels. Microstructural observations and micro-hardness tests proved that the stainless steels were successfully coated without causing a deterioration in the mechanical property of the low-chromium ferritic/martensitic ODS steel. (author)

  1. Mechanical properties and wear and corrosion resistance of electrodeposited Ni-Co/SiC nanocomposite coating

    International Nuclear Information System (INIS)

    Shi Lei; Sun Chufeng; Gao Ping; Zhou Feng; Liu Weimin

    2006-01-01

    Ni-Co/SiC nanocomposite coatings with various contents of SiC nano-particulates were prepared by electrodeposition in a Ni-Co plating bath containing SiC nano-particulates to be co-deposited. The influences of the nanoparticulates concentration, current density, stirring rate and temperature of the plating bath on the composition of the coatings were investigated. The shape and size of the SiC nano-particulates were observed and determined using a transmission electron microscope. The polarization behavior of the composite plating bath was examined on a PAR-273A potentiostat/galvanostat device. The wear behavior of the Ni-Co/SiC nanocomposite coatings was evaluated on a ball-on-disk UMT-2MT test rig. The worn surface morphologies of the Ni-Co/SiC nanocomposite coatings were observed using a scanning electron microscope. The corrosion behavior of the nanocomposite coatings was evaluated by charting the Tafel curves of the solution of 0.5 mol L -1 NaCl at room temperature. It was found that the cathodic polarization potential of the composite electrolyte increased with increasing SiC concentration in the plating bath. The microhardness and wear and corrosion resistance of the nanocomposite coatings also increased with increasing content of the nano-SiC in the plating bath, and the morphologies of the nanocomposite coatings varied with varying SiC concentration in the plating bath as well. Moreover, the co-deposited SiC nano-particulates were uniformly distributed in the Ni-Co matrix and contributed to greatly increase the microhardness and wear resistance of the Ni-Co alloy coating

  2. Preparation and corrosion resistance of pulse electrodeposited Zn and Zn–SiC nanocomposite coatings

    International Nuclear Information System (INIS)

    Sajjadnejad, M.; Mozafari, A.; Omidvar, H.; Javanbakht, M.

    2014-01-01

    Highlights: • Zn and Zn–SiC coatings were obtained under different electrodeposition pulse conditions. • Effects of duty cycle, pulse frequency and applied current on SiC incorporation were investigated. • Potentiodynamic polarization tests were conducted to investigate corrosion behavior of coatings. • SiC incorporation enhances coatings corrosion behavior by filling gaps and defects. • Increasing pulse frequency and decreasing applied current favors SiC incorporation. - Abstract: Pure Zn and Zn matrix composite coatings containing nano-sized SiC particles with an average size of 50 nm were prepared from the zinc sulfate bath. The effects of the pulse frequency, maximum current density and duty cycle on the amount of particles embedded were examined. Electron microscopic studies revealed that the coating morphology was modified by the presence of SiC nanoparticles. In the presence of SiC nanoparticles deposit grows in outgrowth mode resulting in a very rough and porous microstructure. However, at very low and very high duty cycles a smooth and pore free microstructure was obtained. Corrosion resistance properties of the coatings were studied using potentiodynamic polarization technique in 1 M NaCl solution. It was established that presence of well-dispersed nanoparticles significantly improves corrosion resistance of the zinc by filling gaps and defects between zinc flakes and leading to a smoother surface. However, presence of the SiC nanoparticles led to a mixed microstructure with fine and coarse zinc flakes in some coatings, which presented a weak corrosion behavior. Incorporation of SiC nanoparticles enhanced hardness of the Zn coatings by fining deposit structure and through the dispersion hardening effect

  3. Effect of the deposition temperature on corrosion resistance and biocompatibility of the hydroxyapatite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Vladescu, A., E-mail: alinava@inoe.ro [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Braic, M. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Azem, F. Ak [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Buca-Izmir (Turkey); Titorencu, I. [Institute of Cellular Biology and Pathology Nicolae Simionescu of the Romanian Academy, 8 B.P.Hasdeu, Bucharest (Romania); Braic, V. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Pruna, V. [Institute of Cellular Biology and Pathology Nicolae Simionescu of the Romanian Academy, 8 B.P.Hasdeu, Bucharest (Romania); Kiss, A. [National Institute for Optoelectronics, 409 Atomistilor Str., Magurele (Romania); Parau, A.C.; Birlik, I. [Dokuz Eylul University, Engineering Faculty, Metallurgical and Materials Engineering Department, Buca-Izmir (Turkey)

    2015-11-01

    Highlights: • Hydroxyapatite has been produced at temperature from 400 to 800 °C by magnetron sputtering. • Hydroxyapatite crystallinity is improved by increasing substrate temperature. • The increase of substrate temperature resulted in corrosion resistance increasing. • The coating shows high growth of the osteosarcoma cells over a wide temperature range. - Abstract: Hydroxyapatite (HAP) ceramics belong to a class of calcium phosphate-based materials, which have been widely used as coatings on titanium medical implants in order to improve bone fixation and thus to increase the lifetime of the implant. In this study, HAP coatings were deposited from pure HAP targets on Ti6Al4V substrates using the radio-frequency magnetron sputtering technique at substrate temperatures ranging from 400 to 800 °C. The surface morphology and the crystallographic structure of the films were investigated by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion resistance of the coatings in saliva solution at 37 °C was evaluated by potentiodynamic polarization. Additionally, the human osteosarcoma cell line (MG-63) was used to test the biocompatibility of the coatings. The results showed that all of the coatings grown uniformly and that the increasing substrate temperature induced an increase in their crystallinity. Corrosion performance of the coatings was improved with the increase of the substrate temperature from 400 °C to 800 °C. Furthermore, all the coatings support the attachment and growth of the osteosarcoma cells with regard to the in vitro test findings.

  4. Improved thermal stability and oxidation resistance of Al–Ti–N coating by Si addition

    International Nuclear Information System (INIS)

    Chen, Li; Yang, Bing; Xu, Yuxiang; Pei, Fei; Zhou, Liangcai; Du, Yong

    2014-01-01

    Addition of Si is very effective in upgrading the machining performance and thermal properties of Al–Ti–N coating. Here, we concentrate on the thermal stability and oxidation resistance of Al–Ti–Si–N coating. Alloying with Si favors the growth of wurtzite phase, and thereby causes a drop in hardness from ∼ 34.5 to 28.7 GPa. However, Si-containing coating retards the formation of w-AlN during thermal annealing, and thereby behaves a high hardness value of ∼ 31.3 GPa after annealing at T a = 1100 °C. After 10 h exposure in air at 850 °C, Al–Ti–N coating is fully oxidized. Incorporation of Si significantly improves the oxidation resistance of Al–Ti–N due to the combined effects with the promoted formation of Al-oxide rich top-scale and retarded transformation of anatase (a-) TiO 2 into rutile (r-) TiO 2 , where only ∼ 1.43 μm oxide scale is shown after oxidation at 1100 °C for 15 h. Noticeable is that the worst oxidation resistance of Al–Ti–Si–N coating in the temperature range from 800 to 1100 °C is obtained at 950 °C with oxide scale of ∼ 1.76 μm due to the fast formation of r-TiO 2 . Additionally, a pre-oxidation at 1000 °C has a positive effect on the oxidation resistance of Al–Ti–Si–N coating, which is attributed to the formation of Al-oxide rich top-scale, and thus inhibits the outward diffusion of metal atoms and inward diffusion of O. - Highlights: • Si as a substitutional solid solution and via the formation of a-Si 3 N 4 coexists. • Si addition favors the growth of wurtzite phase and causes a decreased hardness. • Alloying with Si improves the oxidation resistance of AlTiN. • AlTiSiN behaves the worst oxidation resistance at 950 °C from 800 to 1100 °C. • A pre-oxidation at 1000 °C improves the oxidation resistance of AlTiSiN coating

  5. Three body abrasion of laser surface alloyed aluminium AA1200

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2012-06-01

    Full Text Available Laser surface alloying of aluminium AA1200 was performed with a 4 kW Nd:YAG laser to improve the abrasion wear resistance. Aluminium surfaces reinforced with metal matrix composites and intermetallic phases were achieved. The phases present depended...

  6. Flame retardancy and ultraviolet resistance of silk fabric coated by graphene oxide

    Directory of Open Access Journals (Sweden)

    Ji Yi-Min

    2017-01-01

    Full Text Available Silk fabrics were coated by graphene oxide hydrosol in order to improve its flame retardancy and ultraviolet resistance. In addition, montmorillonoid was doped into the graphene oxide hydrosol to further improve the flame retardancy of silk fabrics. The flame retardancy and ultraviolet resistance were mainly characterized by limiting oxygen index, vertical flame test, smoke density test, and ultraviolet protection factor. The synergistic effect of graphene oxide and montmorillonoid on the thermal stabilization property of the treated silk fabrics was also investigated. The results show that the treated silk fabrics have excellent flame retardancy, thermal stability, smoke suppression, and ultraviolet resistance simultaneously.

  7. Thermal Shock Resistance of Stabilized Zirconia/Metal Coat on Polymer Matrix Composites by Thermal Spraying Process

    Science.gov (United States)

    Zhu, Ling; Huang, Wenzhi; Cheng, Haifeng; Cao, Xueqiang

    2014-12-01

    Stabilized zirconia/metal coating systems were deposited on the polymer matrix composites by a combined thermal spray process. Effects of the thicknesses of metal layers and ceramic layer on thermal shock resistance of the coating systems were investigated. According to the results of thermal shock lifetime, the coating system consisting of 20 μm Zn and 125 μm 8YSZ exhibited the best thermal shock resistance. Based on microstructure evolution, failure modes and failure mechanism of the coating systems were proposed. The main failure modes were the formation of vertical cracks and delamination in the outlayer of substrate, and the appearance of coating spallation. The residual stress, thermal stress and oxidation of substrate near the substrate/metal layer interface were responsible for coating failure, while the oxidation of substrate near the substrate/coating interface was the dominant one.

  8. Study of vanadium-based chemical conversion coating on the corrosion resistance of magnesium alloy

    International Nuclear Information System (INIS)

    Yang, K.H.; Ger, M.D.; Hwu, W.H.; Sung, Y.; Liu, Y.C.

    2007-01-01

    In this study, magnesium alloy (AZ61) was immersed in vanadium containing bath with various conditions, such as the vanadium concentration, immersion time and bath temperature. The results indicate that increase of both vanadium concentration and immersion time produces a thicker conversion layer. However, when immersion time is too long, it will worsen the corrosion resistance due to the increasing of the crack density. The experimental parameter of bath temperature has no significant effect on corrosion resistance. Our results demonstrated that the better corrosion resistance coating can be obtained when the samples are submitted to an immersion in the conversion bath containing NaVO 3 with concentration of 30 g l -1 for 10 min at 80 deg. C. The presented conversion treatment has its potential to replace the chrome-based conversion coating treatment

  9. Nanocontainer-Enhanced Self-Healing for Corrosion-Resistant Ni Coating on Mg Alloy.

    Science.gov (United States)

    Xie, Zhi-Hui; Li, Dan; Skeete, Zakiya; Sharma, Anju; Zhong, Chuan-Jian

    2017-10-18

    The ability to manipulate the functionalization of Ni coating is of great importance in improving the corrosion resistance of magnesium (Mg) alloy for many industrial applications. In the present work, MCM-41 type mesoporous silica nanocontainers (MSNs) loaded with corrosion inhibitor (NaF) were synthesized and employed as smart reinforcements to enhance the integrity and corrosion inhibition of the Ni coating. The incorporation of the F-loaded MSNs (F@MSNs) to enhance the corrosion resistant capacity of a metallic coating is reported for the first time. The mesoporous structures of the as-prepared MSNs and F@MSNs were confirmed by transmission electron microscopy (TEM), small angle X-rays scattering (SAXS), and N 2 adsorption-desorption isotherms. The X-ray photoelectron spectroscopy (XPS) data demonstrated the successful immobilization of fluoride ion on the MSNs and formation of a magnesium fluoride (MgF 2 ) protective film at the corrosion sites of the Mg alloy upon soaking in a F@MSNs-containing NaCl solution. The results from potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) for both bare Mg alloy and Ni coatings with and without F@MSNs have revealed a clear decrease in corrosion rate in a corrosive solution for a long-time immersion due to the introduction of F@MSNs. These findings open new opportunities in the exploration of self-healing metallic coatings for highly enhanced anticorrosion protection of Mg alloy.

  10. Corrosion Resistance of Ni/Al2O3 Nanocomposite Coatings

    Directory of Open Access Journals (Sweden)

    Beata KUCHARSKA

    2016-05-01

    Full Text Available Nickel matrix composite coatings with ceramic disperse phase have been widely investigated due to their enhanced properties, such as higher hardness and wear resistance in comparison to the pure nickel. The main aim of this research was to characterize the structure and corrosion properties of electrochemically produced Ni/Al2O3 nanocomposite coatings. The coatings were produced in a Watts bath modified by nickel grain growth inhibitor, cationic surfactant and the addition of alumina particles (low concentration 5 g/L. The process has been carried out with mechanical and ultrasonic agitation. The Ni/Al2O3 nanocomposite coatings were characterized by SEM, XRD and TEM techniques. In order to evaluate corrosion resistance of produced coatings, the corrosion studies have been carried out by the potentiodynamic method in a 0.5 M NaCl solution. The corrosion current, corrosion potential and corrosion rate were determined. Investigations of the morphology, topography and corrosion damages of the produced surface layers were performed by scanning microscope techniques. DOI: http://dx.doi.org/10.5755/j01.ms.22.1.7407

  11. Crack-resistant polyimide coating for high-capacity battery anodes

    Science.gov (United States)

    Li, Yingshun; Wang, Shuo; Lee, Pui-Kit; He, Jieqing; Yu, Denis Y. W.

    2017-10-01

    Electrode cracking is a serious problem that hinders the application of many next-generation high-capacity anode materials for lithium-ion batteries. Even though nano-sizing the material can reduce fracturing of individual particles, capacity fading is still observed due to large volume change and loss of contact in the electrode during lithium insertion and extraction. In this study, we design a crack-resistant high-modulus polyimide coating with high compressive strength which can hold multiple particles together during charge and discharge to maintain contact. The effectiveness of the coating is demonstrated on tin dioxide, a high-capacity large-volume-change material that undergoes both alloy and conversion reactions. The polyimide coating improves capacity retention of SnO2 from 80% to 100% after 80 cycles at 250 mA g-1. Stable capacity of 585 mAh g-1 can be obtained even at 500 mA g-1 after 300 cycles. Scanning electron microscopy and in-situ dilatometry confirm that electrode cracking is suppressed and thickness change is reduced with the coating. In addition, the chemically-stable polyimide film can separate the surface from direct contact with electrolyte, improving coulombic efficiency to ∼100%. We expect the novel strategy of suppressing electrode degradation with a crack-resistant coating can also be used for other alloy and conversion-based anodes.

  12. Evaluation of resistant starch, glycemic index and fortificants content of premix rice coated with various concentrations and types of edible coating materials

    Science.gov (United States)

    Yulianto, W. A.; Susiati, A. M.; Adhini, H. A. N.

    2018-01-01

    The incidence of diabetes in Indonesia has been increasing year by year. Diets with a low glycemic index and high resistant starch foods can assist diabetics in controlling their blood glucose levels. Diabetics are known to have micro-nutrient deficiencies of chromium, magnesium and vitamin D that can be overcome by consuming parboiled rice fortified by use of a coating method. The fortification of parboiled rice (premix rice) can be achieved by coating with HPMC (hydroxypropyl methyl cellulose), MC (methyl cellulose), CMC (carboxyl methyl cellulose), gum arabic and rice starch. This research aimed to evaluate the levels of resistant starch, glycemic index and fortificants of premix rice coated with different concentrations and types of edible coating materials. This research used completely randomized design, with treatments to the concentrations and the types of edible coating (HPMC, CMC, MC, gum arabic and rice starch). The concentrations of edible coating were 0.15%, 0.2% and 0.25% for cellulose derivative coatings; 25%, 30%, 35% for gum arabic and 2%, 3.5% and 5% for rice starch. This research shows that fortified premix rice coated with various concentrations and types of edible coating materials is high in resistant starch and has a low glycemic index. The coating treatment affects the levels of magnesium and vitamin D, but does not affect the levels of chromium in parboiled rice. The premix rice with a low glycemic index and high nutrient content (chromium, magnesium and vitamin D) was premix rice coated by CMC 0.25% and HPMC 0.25% with glycemic indeces of 39.34 and 38.50, respectively.

  13. Corrosion resistance and characterization of metallic coatings deposited by thermal spray on carbon steel

    International Nuclear Information System (INIS)

    Sá Brito, V.R.S.; Bastos, I.N.; Costa, H.R.M.

    2012-01-01

    Highlights: ► Five combinations of metallic coatings and intermediate bonds were deposited on carbon steels. ► High strength was reached in adhesion tests. ► Epoxy sealing of coatings improves corrosion resistance. -- Abstract: Carbon steels are not resistant to corrosion and several methods are used in surface engineering to protect them from aggressive environments such as marine. The main objective of this work is the evaluation of mechanical and metallurgical properties of five metallic coatings produced by thermal spray on carbon steel. Five chemical compositions were tested in order to give a large panel of possibility. Coatings were characterized by several methods to result in a screening of their performance. At first, the assessment of microstructural morphology by optical microscopy (OM) and by scanning electron microscopy (SEM) was made. OM and SEM results showed uniformity of deposited layer, low amount of oxides and porosity. The physical properties of coatings were also evaluated by microhardness measurement, adhesion and porosity quantification. The corrosion resistance was analyzed in salt spray and electrochemical polarization tests. In the polarization test, as well as in the salt spray, all sealed conditions presented low corrosion. A new intermediate 78.3Ni20Cr1.4Si0.3Fe alloy was studied in order to reduce pores and microcracks that are frequently found in ordinary 95Ni5Al alloy. Based on the performed characterizations, the findings suggested that the FeCrCo deposition, with an epoxy sealing, is suitable to be used as an efficient coating of carbon steel in aggressive marine environments.

  14. Evaluation of the corrosion resistance of Ni-Co-B coatings in simulated PEMFC environment

    Energy Technology Data Exchange (ETDEWEB)

    Gamboa, S.A.; Valenzuela, E.; Sebastian, P.J. [CIE-UNAM, 62580 Temixco, Morelos (Mexico); Gonzalez-Rodriguez, J.G. [UAEM-CIICAp, Av. Universidad 1001, Col. Chamilpa, 62210 Cuernavaca, Mor. (Mexico); Campillo, B. [Facultad de Quimica-UNAM, Cd. Universitaria, DF, CP 04510 (Mexico); Reyes-Rojas, A. [CIMAV, Miguel de Cervantes 120, Complejo Ind. Chihuahua, 31109 Chihuahua, Chih. (Mexico)

    2006-05-20

    The corrosion resistance behavior of Ni-Co-B coated carbon steel, Al 6061 alloy and 304 stainless steel was evaluated in simulated proton exchange membrane fuel cell (PEMFC) environment. The phase structure of the NiCoB based alloy was determined by Rietveld analysis. The PEMFC environment was constituted of 0.5M H{sub 2}SO{sub 4} at 60{sup o}C and the evaluation techniques employed included potentiodynamic polarization, linear polarization resistance, open circuit potential measurements and electrochemical impedance spectroscopy. The results showed that in all cases the corrosion resistance of the Ni-Co-B coating was higher than that of the uncoated alloys; about two orders of magnitude with respect to carbon steel and an order of magnitude compared to 304 stainless steel. Except for the uncoated 304 type stainless steel, the polarization curves for the coated specimens did not exhibit a passive region but only anodic dissolution. The corrosion potential value, E{sub corr}, was always nobler for the coated samples than for the uncoated specimens. This was true for the stainless steel in the passive region, but in the active state for the carbon steel and Al 6061 alloy. The corrosion of the underlying alloy occurred due to filtering of the solution through coating defects like microcracks, pinholes, etc. During the filtering process the E{sub corr} value of the coating decreased slowly until it reached a steady state value, close to the E{sub corr} value of the underlying alloy. (author)

  15. Electrical resistivity and dielectric properties of helical microorganism cells coated with silver by electroless plating

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Jun, E-mail: jun_cai@buaa.edu.cn [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Lan, Mingming; Zhang, Deyuan; Zhang, Wenqiang [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer We use the microorganism cells as forming templates to fabricate the bio-based conductive particles. Black-Right-Pointing-Pointer The microorganism cells selected as forming templates are Spirulina platens, which are of natural helical shape and high aspect ratio. Black-Right-Pointing-Pointer The sliver-coated Spirulina cells are a kind of lightweight conductive particles. Black-Right-Pointing-Pointer The composites containing sliver-coated Spirulina cells exhibit a lower percolation value. - Abstract: In this paper, microorganism cells (Spirulina platens) were used as forming templates for the fabrication of the helical functional particles by electroless silver plating process. The morphologies and ingredients of the coated Spirulina cells were analyzed with scanning electron microscopy and energy dispersive spectrometer. The crystal structures were characterized by employing the X-ray diffraction. The electrical resistivity and dielectric properties of samples containing different volume faction of sliver-coated Spirulina cells were measured and investigated by four-probe meter and vector network analyzer. The results showed that the Spirulina cells were successfully coated with a uniform silver coating and their initial helical shapes were perfectly kept. The electrical resistivity and dielectric properties of the samples had a strong dependence on the volume content of sliver-coated Spirulina cells and the samples could achieve a low percolation value owing to high aspect ratio and preferable helical shape of Spirulina cells. Furthermore, the conductive mechanism was analyzed with the classic percolation theory, and the values of {phi}{sub c} and t were obtained.

  16. Failure Mechanism of a Stellite Coating on Heat-Resistant Steel

    Science.gov (United States)

    Wang, Dong; Zhao, Haixing; Wang, Huang; Li, Yuyan; Liu, Xia; He, Guo

    2017-09-01

    The Stellite 21 coating on the heat-resistant steel X12CrMoWVNbN10-1-1 (so-called COSTE) used in a steam turbine valve was found to be fatigue broken after service at around 873 K (600 °C) for about 8 years. In order to investigate the failure mechanism, a fresh Stellite 21 coating was also prepared on the same COSTE steel substrate by using the similar deposition parameters for comparison. It was found that the Stellite 21 coating was significantly diluted by the steel, resulting in a thin Fe-rich layer in the coating close to the fusion line. Such high Fe concentration together with the incessant Fe diffusion from the steel substrate to the coating during the service condition (about 873 K (600 °C) for long time) induced the eutectoid decomposition of the fcc α-Co(Fe,Cr,Mo) solid solution, forming an irregular eutectoid microstructure that was composed of the primitive cubic α'-FeCo(Cr,Mo) phase and the tetragonal σ-CrCo(Fe,Mo) phase. The brittle nature of such α'/ σ eutectoid microstructure contributed to the fatigue fracture of the Stellite 21 coating, resulting in an intergranular rupture mode.

  17. High corrosion resistance of magnesium coated with hydroxyapatite directly synthesized in an aqueous solution

    International Nuclear Information System (INIS)

    Hiromoto, Sachiko; Yamamoto, Akiko

    2009-01-01

    Anticorrosion coatings are crucial for practical applications of magnesium alloys, which are used to reduce the weight of vehicles, aircraft, electronics enclosures etc. Hydroxyapatite (HAp) potentially offers high corrosion resistance and no environmental toxicity because its thermodynamic structural stability is high and it is a basic component of bone. However, direct synthesis of HAp on magnesium in aqueous solutions has been a scientific challenge because Mg ions prevent HAp crystallization. A new method of direct synthesis of HAp on magnesium was developed using a Ca chelate compound, which can maintain a sufficiently high concentration of Ca ions on the magnesium surface to overcome prevention of HAp crystallization with Mg ions. Highly crystallized HAp coatings were successfully formed on pure magnesium and AZ series alloys. Corrosion behavior of HAp-coated pure magnesium was examined by cyclic dry and wet tests with 1 g m -2 NaCl on the surface and polarization tests in a 3.5 wt% NaCl solution. A HAp-coated pure magnesium showed no noticeable corrosion pits after the dry and wet test. HAp-coated specimens showed 10 3 -10 4 times lower anodic current density than as-polished specimen in the polarization test. The results demonstrate the remarkable anticorrosion performance of HAp coatings on magnesium for the first time.

  18. High corrosion resistance of magnesium coated with hydroxyapatite directly synthesized in an aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Hiromoto, Sachiko [Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)], E-mail: hiromoto.sachiko@nims.go.jp; Yamamoto, Akiko [Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2009-11-30

    Anticorrosion coatings are crucial for practical applications of magnesium alloys, which are used to reduce the weight of vehicles, aircraft, electronics enclosures etc. Hydroxyapatite (HAp) potentially offers high corrosion resistance and no environmental toxicity because its thermodynamic structural stability is high and it is a basic component of bone. However, direct synthesis of HAp on magnesium in aqueous solutions has been a scientific challenge because Mg ions prevent HAp crystallization. A new method of direct synthesis of HAp on magnesium was developed using a Ca chelate compound, which can maintain a sufficiently high concentration of Ca ions on the magnesium surface to overcome prevention of HAp crystallization with Mg ions. Highly crystallized HAp coatings were successfully formed on pure magnesium and AZ series alloys. Corrosion behavior of HAp-coated pure magnesium was examined by cyclic dry and wet tests with 1 g m{sup -2} NaCl on the surface and polarization tests in a 3.5 wt% NaCl solution. A HAp-coated pure magnesium showed no noticeable corrosion pits after the dry and wet test. HAp-coated specimens showed 10{sup 3}-10{sup 4} times lower anodic current density than as-polished specimen in the polarization test. The results demonstrate the remarkable anticorrosion performance of HAp coatings on magnesium for the first time.

  19. Design of barrier coatings on kink-resistant peripheral nerve conduits

    Directory of Open Access Journals (Sweden)

    Basak Acan Clements

    2016-02-01

    Full Text Available Here, we report on the design of braided peripheral nerve conduits with barrier coatings. Braiding of extruded polymer fibers generates nerve conduits with excellent mechanical properties, high flexibility, and significant kink-resistance. However, braiding also results in variable levels of porosity in the conduit wall, which can lead to the infiltration of fibrous tissue into the interior of the conduit. This problem can be controlled by the application of secondary barrier coatings. Using a critical size defect in a rat sciatic nerve model, the importance of controlling the porosity of the nerve conduit walls was explored. Braided conduits without barrier coatings allowed cellular infiltration that limited nerve recovery. Several types of secondary barrier coatings were tested in animal studies, including (1 electrospinning a layer of polymer fibers onto the surface of the conduit and (2 coating the conduit with a cross-linked hyaluronic acid-based hydrogel. Sixteen weeks after implantation, hyaluronic acid-coated conduits had higher axonal density, displayed higher muscle weight, and better electrophysiological signal recovery than uncoated conduits or conduits having an electrospun layer of polymer fibers. This study indicates that braiding is a promising method of fabrication to improve the mechanical properties of peripheral nerve conduits and demonstrates the need to control the porosity of the conduit wall to optimize functional nerve recovery.

  20. EFFECT OF La2O3 ON HIGH-TEMPERATURE OXIDATION RESISTANCE OF ELECTROSPARK DEPOSITED Ni-BASED COATINGS

    OpenAIRE

    YUXIN GAO; JIAN YI; ZHIGANG FANG; HU CHENG

    2014-01-01

    The oxidation tests of electrospark deposited Ni-based coatings without and with 2.5 wt.% La2O3 were conducted at 960°C in air for 100 h. The oxidation kinetic of the coatings was studied by testing the weight gain. The phase structures and morphologies of the oxidized coatings were investigated by XRD and SEM. The experimental results show that the coatings with 2.5 wt.% La2O3 exhibits excellent high-temperature oxidation resistance including low oxidation rate and improved spallation resist...

  1. On the influence of Ti-Al intermetallic coating architecture on mechanical properties and wear resistance of end mills

    Science.gov (United States)

    Vardanyan, E. L.; Budilov, V. V.; Ramazanov, K. N.; Ataullin, Z. R.

    2017-07-01

    Thin-film wear-resistant coatings are widely used to increase life and efficiency of metal cutting tools. This paper shows the results of a study on the influence of architecture (number, sequence and thickness of layers) of wear-resistant coatings on physical, mechanical and operational properties of end mills. Coatings consisting of alternating Ti-Al/Ti-Al-N layers of equal thickness demonstrated the best physical and mechanical properties. Durability of coated tools when processing materials from chromium-vanadium steel increased twice as compared to uncoated tools.

  2. Improvement of the wear resistance of electroplated Au-Ni coatings by Zr ion bombardment of Ni-B sublayer

    International Nuclear Information System (INIS)

    Lyazgin, Alexander; Shugurov, Artur; Sergeev, Viktor; Neufeld, Vasily; Panin, Alexey; Shesterikov, Evgeny

    2015-01-01

    The effect of bombardment of the Ni-B sublayer by Zr ion beams on the surface morphology and tribomechanical properties of Au-Ni coatings was investigated. It was found that the treatment has no significant effect on the surface roughness and grain size of the Au-Ni coatings, while it provides essential reducing of their friction coefficient and improvement of wear resistance. It is shown that increased wear resistance of these coatings was caused by their strain hardening resulted from localization of plastic strain. The optimal Zr fluence were determined that provide the maximum reduction of linear wear of the coatings

  3. Influence of Al-Si alloy microstructure on the corrosion resistance of coatings formed by the microarc oxidation method

    Directory of Open Access Journals (Sweden)

    Dudareva Natalia.Y.

    2017-01-01

    Full Text Available The impact of the high-silicon aluminum alloy initial microstructure on the quality of the coating formed by microarc oxidation (MAO has been studied. The MAO treatment is applied to AK12D samples in the initial coarse-grained state and after high pressure torsion. The following coating properties are studied: thickness, microhardness, porosity and corrosion resistance. It is established that the MAO layers properties depend on the base microstructure much. High pressure torsion applied to AK12D samples before MAO results in increase of the coating thickness by ∼ 2 times. The microhardness of coatings reduces and their corrosion resistance degrades by ∼ 10 times.

  4. Characterization and properties of shock and corrosion resistant of titanium based coatings

    International Nuclear Information System (INIS)

    Motoiu, P.; Rosso, M.

    2001-01-01

    Thermal spraying technologies are an effective way to ensure surface protection against destructive effects of wear, corrosion and oxidizing phenomena. These technologies can be applied in majority of industrial sectors in order to improve properties of new parts or for reconditioning worn out parts technology. Ideally, it would be comfortable to have a material able to resist to all type of wear, but the work condition intricacy combined with economic reason have lead to the development of a big number of powder materials that are used in thermal spraying technologies. The titanium powders are suitable for coating layers which have a good behavior in 'metal on metal friction', toughness, shock and corrosion resistance. In particular, titanium layers obtained by plasma spraying are used in different aerospace and non aerospace applications due to the combination of low density, very good mechanical properties and high corrosion resistance. The accomplishment of new titanium thermal layers is effectively used in order to increase the lifetime of different engine parts securing the thermal protection in use, resistance to high corrosion and oxidizing phenomena. This paper deals about the mechanical properties of Ti based coatings applied by plasma spray process on steel substrates, the obtained results show the possibility to apply titanium coatings where special and high performance materials are needed. (author)

  5. The Tribological Performance of Hardfaced/ Thermal Sprayed Coatings for Increasing the Wear Resistance of Ventilation Mill Working Parts

    Directory of Open Access Journals (Sweden)

    A. Vencl

    2015-09-01

    Full Text Available During the coal pulverizing, the working parts of the ventilation mill are being worn by the sand particles. For this reason, the working parts are usually protected with materials resistant to wear (hardfaced/thermal sprayed coatings. The aim of this study was to evaluate the tribological performance of four different types of coatings as candidates for wear protection of the mill’s working parts. The coatings were produced by using the filler materials with the following nominal chemical composition: NiFeBSi-WC, NiCrBSiC, FeCrCTiSi, and FeCrNiCSiBMn, and by using the plasma arc welding and flame and electric arc spraying processes. The results showed that Ni-based coatings exhibited higher wear resistance than Fe-based coatings. The highest wear resistance showed coating produced by using the NiFeBSi-WC filler material and plasma transferred arc welding deposition process. The hardness was not the only characteristic that affected the wear resistance. In this context, the wear rate of NiFeBSi-WC coating was not in correlation with its hardness, in contrast to other coatings. The different wear performance of NiFeBSi-WC coating was attributed to the different type and morphological features of the reinforcing particles (WC.

  6. Strength and wear resistance of a dental glass-ionomer cement with a novel nanofilled resin coating.

    Science.gov (United States)

    Lohbauer, Ulrich; Krämer, Norbert; Siedschlag, Gustavo; Schubert, Edward W; Lauerer, Brigitte; Müller, Frank A; Petschelt, Anselm; Ebert, Johannes

    2011-04-01

    To evaluate the influence of different resin coating protocols on the fracture strength and wear resistance of a commercial glass-ionomer cement (GIC). A new restorative concept [Equia (GC Europe)] has been introduced as a system application consisting of a condensable GIC (Fuji IX GP Extra) and a novel nanofilled resin coating material (G-Coat Plus). Four-point fracture strength (FS, 2 x 2 x 25 mm, 14-day storage, distilled water, 37 degrees C) were produced and measured from three experimental protocols: no coating GIC (Group 1), GIC coating before water contamination (Group 2), GIC coating after water contamination (Group 3). The strength data were analyzed using Weibull statistics. Three-body wear resistance (Group 1 vs. Group 2) was measured after each 10,000 wear cycles up to a total of 200,000 cycles using the ACTA method. GIC microstructure and interfaces between GIC and coating materials were investigated under SEM and CLSM. The highest FS of 26.1 MPa and the most homogenous behavior (m = 7.7) has been observed in Group 2. The coated and uncoated GIC showed similar wear resistance until 90,000 cycles. After 200,000 wear cycles, the coated version showed significantly higher wear rate (ANOVA, P< 0.05). The coating protocol has been shown to determine the GIC fracture strength. Coating after water contamination and air drying is leading to surface crack formation thus significantly reducing the FS. The resin coating showed a proper sealing of GIC surface porosities and cracks. In terms of wear, the coating did not improve the wear resistance of the underlying cement as similar or higher wear rates have been measured for Group 1 versus Group 2.

  7. Study of the rheological properties and the finishing behavior of abrasive gels in abrasive flow machining

    Energy Technology Data Exchange (ETDEWEB)

    Wang, A. C.; Liu, C. H.; Liang, K. Z.; Pai, S. H. [Ching Yun University, Taipei (China)

    2007-10-15

    Abrasive flow machining (AFM) is an effective method to finish the smooth surface in the complex holes. Abrasive media are key elements which dominate the polished results in AFM. But it is hard to develop the machining model of these abrasive gels because of its complicated mechanism. In this research, a non-Newtonian flow is used to set up the abrasive mechanism of the abrasive media in AFM. Power law is a main equation of the non-Newtonian flow to describe the motion of the abrasive media. Viscosities vs. shear rates of different abrasive gels are used to establish the power law in CFD-ACE{sup +} software first. And the working parameters of AFM were applied as input to study the properties of the abrasive gels in AFM. Finally, the relationships between the simulations and the experiments were found. And the abrasive mechanism of the abrasive gels was set up in AFM. The simulated results show that the abrasive gel with high viscosity can entirely deform in the complex hole than the abrasive gel with low viscosity. And the abrasive gel with high viscosity generates a larger shear force than the abrasive gel with low viscosity in the same area. Moreover, the strain rate is seriously changed when the abrasive gel cross over the narrow cross-section of the complex hole. It also means that abrasive gel will produce large finish force in that area. And these results indeed consist with the experiments in AFM.

  8. Improvement of corrosion resistance of transparent conductive multilayer coating consisting of silver layers and transparent metal oxide layers

    International Nuclear Information System (INIS)

    Koike, Katsuhiko; Yamazaki, Fumiharu; Okamura, Tomoyuki; Fukuda, Shin

    2007-01-01

    An optical filter for plasma display panel (PDP) requires an electromagnetic shield with very high ability. The authors investigated a transparent conductive multilayer coating consisting of silver (Ag) layers and transparent metal oxide layers. The durability of the multilayer sputter coating, including the silver layer, is very sensitive to the surrounding atmosphere. For example, after an exposure test they found discolored points on the multilayer sputter coatings, possibly caused by migration of silver atoms in the silver layers. In their investigation, they modified the top surface of the multilayer sputter coatings with transition metals to improve the corrosion resistance of the multilayer coating. Specifically, they deposited transition metals 0.5-2 nm thick on the top surface of the multilayer coatings by sputtering. They chose indium tin oxide (ITO) as the transparent metal oxide. They applied the multilayer sputter coatings of seven layers to a polyethylene terephthalate (PET) film substrate. A cross-sectional structure of the film with the multilayer coatings is PET film/ITO/Ag/ITO/Ag/ITO/Ag/ITO. They evaluated the corrosion resistance of the films by a salt-water immersion test. In the test, they immersed the film with multilayer coatings into salt water, and then evaluated the appearance, transmittance, and electrical resistance of the multilayer coatings. They investigated several transition metals as the modifying material, and found that titanium and tantalum drastically improved the resistance of the multilayer coatings to the salt-water exposure without a significant decline in transmittance. They also investigated the relation between elapsed time after deposition of the modifying materials and resistance to the salt water. Furthermore, they investigated the effects of a heat treatment and an oxide plasma treatment on resistance to the salt water

  9. Evaluation of resistance of diamond-like carbon coating to the corpuscular radiation in outer space conditions

    Science.gov (United States)

    Tomilova, Elizaveta; Bashkov, Valeriy; Mikhalev, Pavel; Fedorchenko, Alexander; Volkova, Yana

    2015-02-01

    The purpose of this work was to research the resistance of thin coatings to the effects of corpuscular radiation, as well as evaluation speed etching of diamond-like films with different content of diamond phase. There were two samples of monocrystalline silicon with DLC coating. To evaluate the resistance, two groups of grooves were etched on each sample. The depth was then measured to calculate a relative etching ratio of DLC coating. The resistance was determined to be four times that of silicon.

  10. Testing of Flame Sprayed Al2O3 Matrix Coatings Containing TiO2

    Directory of Open Access Journals (Sweden)

    Czupryński A.

    2016-09-01

    Full Text Available The paper presents the results of the properties of flame sprayed ceramic coatings using oxide ceramic materials coating of a powdered aluminium oxide (Al2O3 matrix with 3% titanium oxide (TiO2 applied to unalloyed S235JR grade structural steel. A primer consisting of a metallic Ni-Al-Mo based powder has been applied to plates with dimensions of 5×200×300 mm and front surfaces of Ø40×50 mm cylinders. Flame spraying of primer coating was made using a RotoTec 80 torch, and an external coating was made with a CastoDyn DS 8000 torch. Evaluation of the coating properties was conducted using metallographic testing, phase composition research, measurement of microhardness, substrate coating adhesion (acc. to EN 582:1996 standard, erosion wear resistance (acc. to ASTM G76-95 standard, and abrasive wear resistance (acc. to ASTM G65 standard and thermal impact. The testing performed has demonstrated that flame spraying with 97% Al2O3 powder containing 3% TiO2 performed in a range of parameters allows for obtaining high-quality ceramic coatings with thickness up to ca. 500 µm on a steel base. Spray coating possesses a structure consisting mainly of aluminium oxide and a small amount of NiAl10O16 and NiAl32O49 phases. The bonding primer coat sprayed with the Ni-Al-Mo powder to the steel substrate and external coating sprayed with the 97% Al2O3 powder with 3% TiO2 addition demonstrates mechanical bonding characteristics. The coating is characterized by a high adhesion to the base amounting to 6.5 MPa. Average hardness of the external coating is ca. 780 HV. The obtained coatings are characterized by high erosion and abrasive wear resistance and the resistance to effects of cyclic thermal shock.

  11. Improving the contact resistance at low force using gold coated carbon nanotube surfaces

    Science.gov (United States)

    McBride, J. W.; Yunus, E. M.; Spearing, S. M.

    2010-04-01

    Investigations to determine the electrical contact performance under repeated cycles at low force conditions for carbon-nanotube (CNT) coated surfaces were performed. The surfaces under investigation consisted of multi-walled CNT synthesized on a silicon substrate and coated with a gold film. These planar surfaces were mounted on the tip of a PZT actuator and contacted with a plated Au hemispherical probe. The dynamic applied force used was 1 mN. The contact resistance (Rc) of these surfaces was investigated with the applied force and with repeated loading cycles performed for stability testing. The surfaces were compared with a reference Au-Au contact under the same experimental conditions. This initial study shows the potential for the application of gold coated CNT surfaces as an interface in low force electrical contact applications.

  12. Influence of dielectric protective layer on laser damage resistance of gold coated gratings

    Science.gov (United States)

    Wu, Kepeng; Ma, Ping; Pu, Yunti; Xia, Zhilin

    2016-03-01

    Aiming at the problem that the damage threshold of gold coated grating is relatively low, a dielectric film is considered on the gold coated gratings as a protective layer. The thickness range of the protective layer is determined under the prerequisite that the diffraction efficiency of the gold coated grating is reduced to an acceptable degree. In this paper, the electromagnetic field, the temperature field and the stress field distribution in the grating are calculated when the silica and hafnium oxide are used as protective layers, under the preconditions of the electromagnetic field distribution of the gratings known. The results show that the addition of the protective layer changes the distribution of the electromagnetic field, temperature field and stress field in the grating, and the protective layer with an appropriate thickness can improve the laser damage resistance of the grating.

  13. Review of Artificial Abrasion Test Methods for PV Module Technology

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Muller, Matt T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpson, Lin J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    This review is intended to identify the method or methods--and the basic details of those methods--that might be used to develop an artificial abrasion test. Methods used in the PV literature were compared with their closest implementation in existing standards. Also, meetings of the International PV Quality Assurance Task Force Task Group 12-3 (TG12-3, which is concerned with coated glass) were used to identify established test methods. Feedback from the group, which included many of the authors from the PV literature, included insights not explored within the literature itself. The combined experience and examples from the literature are intended to provide an assessment of the present industry practices and an informed path forward. Recommendations toward artificial abrasion test methods are then identified based on the experiences in the literature and feedback from the PV community. The review here is strictly focused on abrasion. Assessment methods, including optical performance (e.g., transmittance or reflectance), surface energy, and verification of chemical composition were not examined. Methods of artificially soiling PV modules or other specimens were not examined. The weathering of artificial or naturally soiled specimens (which may ultimately include combined temperature and humidity, thermal cycling and ultraviolet light) were also not examined. A sense of the purpose or application of an abrasion test method within the PV industry should, however, be evident from the literature.

  14. High temperature oxidation resistance of magnetron-sputtered homogeneous CrAlON coatings on 430 steel

    Energy Technology Data Exchange (ETDEWEB)

    Garratt, E; Wickey, K J; Nandasiri, M I; Moore, A; AlFaify, S; Gao, X [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Smith, R J; Buchanan, T L; Priyantha, W; Kopczyk, M; Gannon, P E [Montana State University, Bozeman, MT, 59717 (United States); Kayani, A, E-mail: asghar.kayani@wmich.ed

    2009-11-01

    The requirements of low cost and high-temperature corrosion resistance for bipolar interconnect plates in solid oxide fuel cell stacks has directed attention to the use of metal plates with oxidation resistant coatings. We have investigated the performance of steel plates with homogenous coatings of CrAlON (oxynitrides). The coatings were deposited using RF magnetron sputtering, with Ar as a sputtering gas. Oxygen in these coatings was not intentionally added. Oxygen might have come through contaminated nitrogen gas bottle, leak in the chamber or from the partial pressure of water vapors. Nitrogen was added during the growth process to get oxynitride coating. The Cr/Al composition ratio in the coatings was varied in a combinatorial approach. The coatings were subsequently annealed in air for up to 25 hours at 800 {sup o}C. The composition of the coated plates and the rate of oxidation were characterized using Rutherford backscattering (RBS) and nuclear reaction analysis (NRA). Surface characterization was carried out using Atomic Force Microscopy (AFM) and surfaces of the coatings were found smooth on submicron scale. From our results, we conclude that Al rich coatings are more susceptible to oxidation than Cr rich coatings.

  15. Corrosion Resistance of the Superhydrophobic Mg(OH2/Mg-Al Layered Double Hydroxide Coatings on Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Fen Zhang

    2016-04-01

    Full Text Available Coatings of the Mg(OH2/Mg-Al layered double hydroxide (LDH composite were formed by a combined co-precipitation method and hydrothermal process on the AZ31 alloy substrate in alkaline condition. Subsequently, a superhydrophobic surface was successfully constructed to modify the composite coatings on the AZ31 alloy substrate using stearic acid. The characteristics of the composite coatings were investigated by means of X-ray diffractometer (XRD, Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, scanning electronic microscope (SEM and contact angle (CA. The corrosion resistance of the coatings was assessed by potentiodynamic polarization, the electrochemical impedance spectrum (EIS, the test of hydrogen evolution and the immersion test. The results showed that the superhydrophobic coatings considerably improved the corrosion resistant performance of the LDH coatings on the AZ31 alloy substrate.

  16. Oxidation resistance of quintuple Ti-Al-Si-C-N coatings and associated mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wu Guizhi; Ma Shengli; Xu Kewei; Ji, Vincent; Chu, Paul K. [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); ICMMO/LEMHE, Universite Paris-Sud 11, 91405 Orsay Cedex (France); Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon (Hong Kong)

    2012-07-15

    The oxidation behavior of Ti-Al-Si-C-N hard coatings with different Al contents deposited on high-speed steel and Si substrates by hybrid arc-enhanced magnetron sputtering is investigated in the temperature range of 500 Degree-Sign C-1000 Degree-Sign C. The coating hardness is maintained at around 35 GPa, and the parabolic oxidation rate constant K{sub p} at 1000 Degree-Sign C decreases to 3.36 Multiplication-Sign 10{sup -10} kg{sup 2} m{sup -4} s{sup -1} when the Al concentration is increased to 30 at. %, indicating that Ti-Al-Si-C-N coatings with larger Al concentrations have better oxidation resistance. X-ray diffraction, cross-sectional scanning electron microscopy, and x-ray photoelectron spectroscopy reveal a protective surface layer consisting of Al{sub 2}O{sub 3}, TiO{sub 2}, and SiO{sub 2} that retards inward oxygen diffusion. A mechanism is proposed to elucidate the oxide formation. As a consequence of the good oxidation resistance, the Ti-Al-Si-C-N coatings have a large potential in high-speed dry cutting as well as other high temperature applications.

  17. The enhanced corrosion resistance of UMAO coatings on Mg by silane treatment

    Directory of Open Access Journals (Sweden)

    Muqin Li

    2014-10-01

    Full Text Available The surface silanization was carried out on ultrasonic micro-arc oxidation (UMAO coatings on pure magnesium using KH550 as silane coupling agent (SCA. The surface morphology, chemical bonds and corrosion resistance of the silane films were investigated by scanning electron microscope (SEM, Fourier transform infrared spectroscopy (FTIR and electrochemical workstation, respectively. The results showed that hybrid coatings were successfully prepared on pure magnesium by UMAO-NaOH (1 mol/L, 2 mol/L, 3 mol/L-SCA processing. The organic films with Si–O–Mg bonds are helpful for the reduction of the pores in UMAO coatings. The pores decreased with increasing NaOH concentration. Compared with single UMAO treatment, the corrosion potentials (Ecorr of magnesium plates with UMAO-NaOH (1 mol/L, 2 mol/L, 3 mol/L-SCA treatment increased by 29 mV, 53 mV and 75 mV, respectively, meanwhile the corrosion current density (Icorr reduced one to two orders of magnitude. It indicated that the corrosion resistance of the coatings was improved by silane treatment.

  18. METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS IN LAB COATS OF NURSING STUDENTS

    Directory of Open Access Journals (Sweden)

    Jean Phellipe Marques do Nascimento

    2016-05-01

    Full Text Available The aim of the present study was to investigate the presence of Staphylococcus sp. in lab coats nursing students, in addition to determining the antimicrobial sensitivity profile of the isolated bacteria. The bacterial samples were collected, identified and characterized phenotypically, with subsequent determination of antimicrobial sensitivity profile by disk diffusion technique, according to recommendation of the Clinical and Laboratory Standards Institute. 57 colonies were isolated, where 51% were identified as Staphylococcus coagulase negative, 47% as Staphylococcus aureus and 2% belonging to a genus not identified. Among the samples identified as S. aureus, 15% were resistant to Oxacillin and 55% showed resistance to more than one antimicrobial.The results obtained in this work strengthen the role of the lab coat as a source of contamination of pathogenic microorganisms, as well as its possible role in the spread of these pathogens within and outside the hospital environment

  19. Effect of HCl pre-treatment on corrosion resistance of cerium-based conversion coatings on magnesium and magnesium alloys

    International Nuclear Information System (INIS)

    Brunelli, Katya; Dabala, Manuele; Calliari, Irene; Magrini, Maurizio

    2005-01-01

    The corrosion protection afforded by a cerium conversion coating, formed by immersion in a solution containing rare earth salt and hydrogen peroxide, on pure magnesium and two magnesium alloys, AZ91 and AM50, has been studied. The effect of HCl pre-treatments on the morphology and on the corrosion resistance of the cerium conversion layer was investigated. A thicker and more homogeneous distribution of the conversion coating was obtained when the sample surface was pre-treated with acid. Higher amounts of cerium on the surface of the pre-treated samples were detected. The cerium conversion coating increased the corrosion resistance of the alloys because it ennobled the corrosion potential and decreased both the anodic and cathodic current. The acid pre-treatment further increased the corrosion resistance of the coated alloys. After five days of immersion in chloride environment the untreated samples showed localized corrosion while the chemical conversion coated samples appeared unaffected

  20. Zn-ZrO{sub 2} nanocomposite coatings: Elecrodeposition and evaluation of corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Vathsala, Kanagalasara, E-mail: vathsala.mahesh@gmail.com [Department of Studies in Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta-577451, Karnataka (India); Venkatesha, Thimmappa Venkatarangaiah, E-mail: drtvvenkatesha@yahoo.co.uk [Department of Studies in Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta-577451, Karnataka (India)

    2011-08-15

    The Zn and Zn-ZrO{sub 2} composite coatings were produced by electrodeposition technique using sulphate bath. ZrO{sub 2} particles were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The ZrO{sub 2} particle size distribution in the plating bath and Zeta potential and the ZrO{sub 2} were measured using dynamic light scattering technique (DLS). The corrosion resistance properties of Zn and Zn-ZrO{sub 2} composite coatings were compared by examining the experimental data acquired through polarization, open circuit potential (OCP) and Tafel measurements. The corrosion environment was 3.5 wt% NaCl solution. The variation of amount of ZrO{sub 2} in the solution on their % wt inclusion in the composite and on composite microhardness was investigated. XRD patterns were recorded for Zn and Zn-ZrO{sub 2} coatings to compare their grain size. The SEM images of coatings before and after corrosion under chemical and electrochemical conditions were presented. The results were analyzed to establish the superiority of Zn-ZrO{sub 2} composite over Zn coating.

  1. Photoinactivation of various antibiotic resistant strains of Escherichia coli using a paint coat

    OpenAIRE

    Vera Sousa; Celia M Manaia; Adelio Mendes; Olga C Nunes

    2013-01-01

    Multi-antibiotic resistant bacteria have been implicated with a large number of hospital-acquired infections and become one of the most significant concerns in public health. Given the potential risk of indoor transmission of these organisms in health care units, the development of a disinfection surface is highly attractive. Based on the recognized effectiveness of photocatalysis on the inactivation of microorganisms, a photocatalytic water born paint coat (UV-A/TiO2 - 10 W m(-2)) was assess...

  2. Effect of coatings obtanied by sputtering of chromium catode on the corrosion resistance of AISI H13 steel

    International Nuclear Information System (INIS)

    Sandoval, A; Peña, D; Piratoba, U

    2013-01-01

    Corrosion resistance of coatings obtained by sputtering a chromium target were evaluated. The films were deposited on substrates of disk-shaped AISI H13 steel. By means of potentiodynamic polarization curves were able to determine the current density vs. potential for the coated and uncoated substrate and the difference in the corrosion potential Ecorr. All samples with coating showed an increase in Ecorr respect to substrate. The electrochemical tests were conducted in an electrolytic solution of 3% NaCl

  3. Evaluation of atmospheric corrosion on electroplated zinc and zinc nickel coatings by Electrical Resistance (ER) Monitoring

    DEFF Research Database (Denmark)

    Møller, Per

    2013-01-01

    ER (Electrical Resistance) probes provide a measurement of metal loss, measured at any time when a metal is exposed to the real environment. The precise electrical resistance monitoring system can evaluate the corrosion to the level of nanometers, if the conductivity is compensated for temperature...... and magnetic fields. With this technique very important information about the durability of a new conversion coatings for aluminum, zinc and zinc alloys exposed to unknown atmospheric conditions can be gathered. This is expected to have a major impact on a number of industrial segments, such as test cars...

  4. Resistivity behavior of optimized PbTiO3 thin films prepared by spin coating method

    Science.gov (United States)

    Nurbaya, Z.; Wahid, M. H.; Rozana, M. D.; Alrokayan, S. A. H.; Khan, H. A.; Rusop, M.

    2018-05-01

    Th is study presents the resistivity behavior of PbTiO3 thin films which were prepared towards metal-insulator-metal capacitor device fabrication. The PbTiO3 thin films were prepared through sol-gel spin coating method that involved various deposition parameters that is (1) different molar concentration of PbTiO3 solutions, (2) various additional PbAc-content in PbTiO3 solutions, and (3) various annealing temperature on PbTiO3 thin films. Hence, an electrical measurement of current versus voltage was done to determine the resistivity behavior of PbTiO3 thin films.

  5. Study of the surface resistance of niobium sputter-coated copper cavities

    CERN Document Server

    Benvenuti, Cristoforo; Campisi, I E; Darriulat, Pierre; Peck, M A; Russo, R; Valente, A M

    1999-01-01

    A systematic study of the superconducting properties of niobium films deposited on the inner wall of copper radiofrequency cavities is presented. Films are grown by sputtering with different discharge gases (Xe, Kr, Ar and Ar/Ne mixtures) on substrates prepared under different conditions. The measured quantities include the surface resistance at 1.5 GHz, the critical temperature and the penetration depth. The surface resistance is analyzed in terms of its dependence on temperature, RF field and the density of trapped fluxons. Once allowance for electron scattering is made by means of a single mean free path parameter, good agreement with BCS theory is observed. The residual resistance is observed to be essentially noncorrelated with the superconducting properties, although influenced by specific coating conditions. On occasions, very low residual resistances, in the nano-ohm range, have been maintained over a broad range of RF field, indicating the absence of fundamental limitations specific to the film techn...

  6. Development of durable self-cleaning coatings using organic–inorganic hybrid sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Divya [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Wu, Xinghua [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Energy Research Institute at NTU - ERI@N, 1 CleanTech Loop, #06-04, CleanTech One, Singapore 637141 (Singapore); Fu, Qitao [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Ho, Jeffrey Weng Chye [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Energy Research Institute at NTU - ERI@N, 1 CleanTech Loop, #06-04, CleanTech One, Singapore 637141 (Singapore); Kanhere, Pushkar D. [Energy Research Institute at NTU - ERI@N, 1 CleanTech Loop, #06-04, CleanTech One, Singapore 637141 (Singapore); Li, Lin [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Chen, Zhong, E-mail: ASZChen@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Energy Research Institute at NTU - ERI@N, 1 CleanTech Loop, #06-04, CleanTech One, Singapore 637141 (Singapore)

    2015-07-30

    Highlights: • A facile method to produce sol–gel based self-cleaning coatings is described. • Effect of filler size and content is evaluated via contact angle, sliding angle, and surface morphology. • Coating with 15 wt.% nano-sized silica fillers exhibits the best self-cleaning performance. • The coatings are resistant to UV radiation and retain the functionality after the abrasion test. • A self-cleaning test and scheme to quantify the self-cleaning efficiency are described in this work. - Abstract: Self-cleaning coatings with excellent water-repellence and good mechanical properties are in high demand. However, producing such coatings with resistance to mechanical abrasion and environmental weathering remains a key challenge. Mechanically robust coatings based on tetraethylorthosilicate (TEOS) and glycidoxypropyltriethoxysilane (Glymo) have been prepared using a sol–gel method. Emphasis is given to the addition of Glymo, an epoxy silane which creates an organic matrix that blends with the inorganic Si−O−Si matrix formed from the TEOS. The combination of the blended matrix produced coatings with good adhesion to substrates and improved mechanical properties. Fluoroalkylsilane (FAS) and silica fillers were introduced to increase the hydrophobicity of the coating. It was found that the water contact angle (CA) of these coatings increases from 115° to 164° upon decreasing filler size from 1–5 μm to 10–20 nm. The sliding angle (SA) for coatings with 15 wt.% loading of 10–20 nm silica is around 2°. UV weathering does not show significant effect on the properties of the coatings. Mechanical properties and performances including hardness, Young's modulus, coating adhesion and abrasion resistance were systematically analyzed. In the current work, a simple self-cleaning test, which measures the extent of dirt accumulation and subsequent removal by water spray, was performed. The coatings with 15 wt.% loading of 10–20 nm silica particles

  7. Effect of Coat Layers in Bacillus Subtilis Spores Resistance to Photo-Catalytic Inactivation

    Directory of Open Access Journals (Sweden)

    Luz del Carmen Huesca-Espitia

    2017-10-01

    Full Text Available Different water treatment processes (physical and chemical exist to obtain safe water for human or food industry supply. The advanced oxidation technologies are rising as a new alternative to eliminate undesirable chemicals and waterborne diseases. In this work, we analyze the power of the photo-assisted Fenton process using Fe(II/H2O2 and UV radiation (365 nm to inactivate Bacillus subtilis spores, considered among the most resistant biological structures known. Different concentrations of Fe(II, H2O2 and UV radiation (365 nm were used to inactivate wt and some coat spore mutants of B. subtilis. Wt spores of B. subtilis were inactivated after 60 min using this process. In general, all defective coat mutants were more sensitive than the wt spores and, particularly, the double mutant was 10 folds more sensitive than others being inactivated during the first 10 minutes using soft reaction conditions. Presence of Fe(II ions was found essential for spore inactivating process and, for those spores inactivated using the Fe(II/H2O2 under UV radiation process, it is suggested that coat structures are important to their resistance to the treatment process. The photo-assisted Fenton process using Fe(II, H2O2 and UV radiation (365 nm can be used to inactivate any water microorganisms with the same or less resistance that B. subtilis spores to produce safe drinking water in relatively short treatment time.

  8. Fabrication of Aluminum-based Superhydrophobic Coating by Anodization and Research on Stability and Corrosion Resistance

    Directory of Open Access Journals (Sweden)

    ZHENG Shun-li

    2017-10-01

    Full Text Available Aluminum (Al can be easily contaminated or damaged after exposure in damp environments, which can adversely affect its aesthetic appearance and desired functionalities. To improve its corrosion resistance, a superhydrophobic coating was fabricated on Al by electrochemical anodization followed by modification with myristic acid. The surface morphology and chemical composition were characterized by using a field emission scanning electron microscope (FESEM with attached energy dispersive X-ray spectrum (EDS. The surface wettability, mechanical stability as well as corrosion resistance were also investigated by contact angle measuring system, sandblasting test and electrochemical measurements. The results show that the optimal Al-based superhydrophobic coating with a static water contact angle of (155.2±0.5° and a sliding angle of (3.5±1.3° is obtained at the anodization voltage of 20V. The corresponding corrosion current density (Icorr is reduced by 2 orders of magnitude and the corrosion potential (Ecorr shifts from -0.629V to -0.570V compared to the bare Al substrate, indicating excellent corrosion resistance. Besides, the as-prepared optimal Al-based superhydrophobic coating also suggests good mechanical stability.

  9. Operation of microstrip gas chambers manufactured on glass coated with high resistivity diamond-like layers

    CERN Document Server

    Boimska, B; Dominik, Wojciech; Hoch, M; Million, Gilbert; Ropelewski, Leszek; Sauli, Fabio; Sharma, A

    1997-01-01

    We describe recent observations and measurements realized with micro-strip gas chambers (MSGCs) manufactured on boro-silicate glass coated with a thin layer of diamond-like carbon (DLC) having a surface resistivity around 4.10$^{16}\\Omega/\\Box$. The role of the back-pla electrode configuration and potential in the detector performance has been studied. Even for this very high resistivity of the coatings, MSGCs operate differently from those manufactured on bare boro-silicate glass; the charge gain increases with the radiation flux for counting rates above 103 Hz/mm2, reaching a value 60% higher for 105 Hz/mm2. This behavior does not depend on the presence and potential of the back plane electrode; however, both maximum gain and rate capability are influenced by the drift field. From this study, compared with measurements realized previously with other detectors, we deduce that for stable high rate operation of MSGCs the resistivity of the coating should not exceed ~10$^{15}\\Omega/\\Box$.

  10. Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Jun, E-mail: pdj@kaeri.re.kr; Kim, Hyun Gil; Jung, Yang Il; Park, Jung Hwan; Yang, Jae Ho; Koo, Yang Hyun

    2016-12-15

    This study investigates protective coatings for improving the high temperature oxidation resistance of Zr fuel claddings for light water nuclear reactors. FeCrAl alloy and Cr layers were deposited onto Zr plates and tubes using cold spraying. For the FeCrAl/Zr system, a Mo layer was introduced between the FeCrAl coating and the Zr matrix to prevent inter-diffusion at high temperatures. Both the FeCrAl and Cr coatings improved the oxidation resistance compared to that of the uncoated Zr alloy when exposed to a steam environment at 1200 °C. The ballooning behavior and mechanical properties of the coated cladding samples were studied under simulated loss-of-coolant accident conditions. The coated samples showed higher burst temperatures, lower circumferential strain, and smaller rupture openings compared to the uncoated Zr. Although 4-point bend tests of the coated samples showed a small increase in the maximum load, ring compression tests of a sectioned sample showed increased ductility. - Highlights: • Cr and FeCrAl were coated onto Zr fuel cladding for light water nuclear reactors. • Mo layer between FeCrAl and Zr prevented inter-diffusion at high temperatures. • Coated claddings were tested under loss-of-cooling accident conditions. • Coating improved high-temperature oxidation resistance and mechanical properties.

  11. Fracture resistance of dental nickel–titanium rotary instruments with novel surface treatment: Thin film metallic glass coating

    Directory of Open Access Journals (Sweden)

    Chih-Wen Chi

    2017-05-01

    Conclusion: The novel surface treatment of Ti-Zr-B thin film metallic glass on dental NiTi rotary files can effectively improve the fatigue fracture resistance by offering a smooth coated surface with amorphous microstructure.

  12. Preparation and Testing of Corrosion and Spallation-Resistant Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, John

    2015-11-01

    This Energy & Environmental Research Center (EERC) project is designed to determine if plating APMT®, a specific highly oxidation-resistant oxide dispersion-strengthened FeCrAl alloy made by Kanthal, onto nickel-based superalloy turbine parts is a viable method for substantially improving the lifetimes and maximum use temperatures of the parts. The method for joining the APMT plate to the superalloys is called evaporative metal bonding and involves placing a thin foil of zinc between the plate and the superalloy, clamping them together, and heating in an atmosphere-controlled furnace. Upon heating, the zinc melts and dissolves the oxide skins of the alloys at the bond line, allowing the two alloys to diffuse into each other. The zinc then diffuses through the alloys and evaporates from their surfaces. During this annual reporting period, the finite element model was completed and used to design clamping jigs to hold the APMT plate to the larger blocks of superalloys during the bonding process. The clamping system was machined from titanium–zirconium–molybdenum and used to bond the APMT plate to the superalloy blocks. The bond between the APMT plate was weak for one of each of the superalloy blocks. We believe that this occurred because enough oxidation had occurred on the surface of the parts as a result of a 1-month time period between sandblasting to prepare the parts and the actual bonding process. The other blocks were, therefore, bonded within 1 day of preparing the parts for bonding, and their joints appear strong. Scanning electron microscopy analyses of representative joints showed that no zinc remained in the alloys after bonding. Also, phases rich in hafnium and tantalum had precipitated near the bond line in the APMT. Iron from the APMT had diffused into the superalloys during bonding, more extensively in the CM247LC than in the Rene 80. Nickel from the superalloys had diffused into the APMT, again more extensively in the joint with the CM247LC than

  13. Development of the white cast iron with niobium alloy, heat treating, to wear of the abrasive resistance; Desenvolvimento de uma liga de ferro fundido branco alto cromo com niobio, tratada termicamente, para resistencia ao desgaste abrasivo

    Energy Technology Data Exchange (ETDEWEB)

    Farah, Alessandro Fraga

    1997-07-01

    This work presents the heat treatment and abrasion tests results of a white cast iron with niobium alloy. The hardening heat treatment were made 950, 1000, 1050 e 110 deg C temperatures cooled by forced air. The tempering treatment were made at 450, 500 e 550 deg C temperatures. The heat treating alloy were compared, in the abrasive tests, with commercial alloys used as hardfacing by welding process in wear pieces. The abrasion tests was realized in pin on disk test. Additional tests were carried out for microstructural characterization to identify the different phases presents in the alloys. In a general way, the alloy studies showed the best wear rate for the heat treatments that results in higher hardness. It performance was superior than that of the commercial alloys. (author)

  14. Effect of Sr on the bioactivity and corrosion resistance of nanoporous niobium oxide coating for orthopaedic applications

    International Nuclear Information System (INIS)

    Pauline, S. Anne; Rajendran, N.

    2014-01-01

    In this study, strontium incorporated Nb 2 O 5 was synthesized in two different proportions by sol–gel methodology and was deposited on 316L SS by spin coating method. The synthesis conditions were optimized to obtain a nanoporous morphology. The prepared Sr-incorporated Nb 2 O 5 coatings were uniform, smooth and well adherent on to the substrate 316L SS. The coatings were characterized by attenuated total reflectance-infrared spectroscopy (ATR-IR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM) and transmission electron microscopy (TEM) and the formation of Sr-incorporated Nb 2 O 5 coatings with nanoporous morphology was confirmed. Static water contact angle measurements showed an enhancement in the wettability of the obtained coatings. In vitro bioactivity test of the coated substrates showed that 0.05 M Sr-incorporated Nb 2 O 5 coating had better bioactivity compared to 0.1 M Sr-incorporated coating. Solution analysis studies confirmed the controlled release of Sr ions from the coating, which aid and enhance hydroxyapatite (HAp) growth. Electrochemical studies confirmed that the coatings provided excellent corrosion protection to the base material as increased charge transfer resistance and decreased double layer capacitance was observed for the coated substrates. - Highlights: • Nanoporous Sr-incorporated Nb 2 O 5 coatings were deposited on 316L SS. • The coatings have excellent bond strength and high Vickers micro hardness value. • Nanoporous 0.05 M Sr-incorporated Nb 2 O 5 coating showed hydroxyapatite growth. • Slow release of strontium from the coating accelerated hydroxyapatite growth. • The nanoporous coatings offered excellent corrosion protection to 316L SS

  15. Effect of Sr on the bioactivity and corrosion resistance of nanoporous niobium oxide coating for orthopaedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Pauline, S. Anne; Rajendran, N., E-mail: nrajendran@annauniv.edu

    2014-03-01

    In this study, strontium incorporated Nb{sub 2}O{sub 5} was synthesized in two different proportions by sol–gel methodology and was deposited on 316L SS by spin coating method. The synthesis conditions were optimized to obtain a nanoporous morphology. The prepared Sr-incorporated Nb{sub 2}O{sub 5} coatings were uniform, smooth and well adherent on to the substrate 316L SS. The coatings were characterized by attenuated total reflectance-infrared spectroscopy (ATR-IR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM) and transmission electron microscopy (TEM) and the formation of Sr-incorporated Nb{sub 2}O{sub 5} coatings with nanoporous morphology was confirmed. Static water contact angle measurements showed an enhancement in the wettability of the obtained coatings. In vitro bioactivity test of the coated substrates showed that 0.05 M Sr-incorporated Nb{sub 2}O{sub 5} coating had better bioactivity compared to 0.1 M Sr-incorporated coating. Solution analysis studies confirmed the controlled release of Sr ions from the coating, which aid and enhance hydroxyapatite (HAp) growth. Electrochemical studies confirmed that the coatings provided excellent corrosion protection to the base material as increased charge transfer resistance and decreased double layer capacitance was observed for the coated substrates. - Highlights: • Nanoporous Sr-incorporated Nb{sub 2}O{sub 5} coatings were deposited on 316L SS. • The coatings have excellent bond strength and high Vickers micro hardness value. • Nanoporous 0.05 M Sr-incorporated Nb{sub 2}O{sub 5} coating showed hydroxyapatite growth. • Slow release of strontium from the coating accelerated hydroxyapatite growth. • The nanoporous coatings offered excellent corrosion protection to 316L SS.

  16. Anti-reflection coatings applied by acid leaching process

    Science.gov (United States)

    Pastirik, E.

    1980-01-01

    The Magicote C process developed by S.M. Thompsen was evaluated for use in applying an antireflective coating to the cover plates of solar panels. The process uses a fluosilicic acid solution supersaturated with silica at elevated temperature to selectively attack the surface of soda-lime glass cover plates and alter the physical and chemical composition of a thin layer of glass. The altered glass layer constitutes an antireflective coating. The process produces coatings of excellent optical quality which possess outstanding resistance to soiling and staining. The coatings produced are not resistant to mechanical abrasion and are attacked to some extent by glass cleansers. Control of the filming process was found to be difficult.

  17. The effects of RE and Si on the microstructure and corrosion resistance of Zn–6Al–3Mg hot dip coating

    International Nuclear Information System (INIS)

    Li, Shiwei; Gao, Bo; Yin, Shaohua; Tu, Ganfeng; Zhu, Guanglin; Sun, Shuchen; Zhu, Xiaoping

    2015-01-01

    Highlights: • ZAM coating has been prepared by using an experimental hot-dip galvanizing simulator. • The corrosion resistance of ZAM coating can be improved by additions of Si and RE. • Zn–6Al–3Mg–Si–RE coating forms a dense and stabilized corrosion product layer. • Zn–6Al–3Mg–Si–RE coating shows uniform corrosion. - Abstract: The effects of Si and RE on the microstructure and corrosion resistance of Zn–6Al–3Mg coating (ZAM) have been investigated. Surface morphology observations of the coating and corrosion products reveal that the additions of Si and rare earth metals (RES) improve the microstructural homogeneity of ZAMSR coating and stability of corrosion products formed on ZAMSR coating. Moreover, only uniform corrosion occurs in ZAMSR coating during the corrosion test, while intergranular corrosion and pitting occur in ZAM. As a result, the corrosion resistance of ZAM coating is improved by the additions of Si and RES.

  18. The effects of RE and Si on the microstructure and corrosion resistance of Zn–6Al–3Mg hot dip coating

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shiwei [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Gao, Bo, E-mail: surfgao@aliyun.com [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Yin, Shaohua [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China); Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Tu, Ganfeng; Zhu, Guanglin; Sun, Shuchen; Zhu, Xiaoping [School of Materials and Metallurgy, Northeastern University, Shenyang 110819 (China)

    2015-12-01

    Highlights: • ZAM coating has been prepared by using an experimental hot-dip galvanizing simulator. • The corrosion resistance of ZAM coating can be improved by additions of Si and RE. • Zn–6Al–3Mg–Si–RE coating forms a dense and stabilized corrosion product layer. • Zn–6Al–3Mg–Si–RE coating shows uniform corrosion. - Abstract: The effects of Si and RE on the microstructure and corrosion resistance of Zn–6Al–3Mg coating (ZAM) have been investigated. Surface morphology observations of the coating and corrosion products reveal that the additions of Si and rare earth metals (RES) improve the microstructural homogeneity of ZAMSR coating and stability of corrosion products formed on ZAMSR coating. Moreover, only uniform corrosion occurs in ZAMSR coating during the corrosion test, while intergranular corrosion and pitting occur in ZAM. As a result, the corrosion resistance of ZAM coating is improved by the additions of Si and RES.

  19. Preparation and testing of corrosion and spallation-resistant coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, John P. [Univ. of North Dakota, Grand Forks, ND (United States); Cavalli, Matthew N. [Univ. of North Dakota, Grand Forks, ND (United States)

    2016-06-30

    The goal of this project was to take a recently developed method of bonding oxide dispersion-strengthened (ODS) FeCrAl plating to nickel superalloys closer to commercial use in syngas-fired turbines. The project was designed to better understand and develop the bonding process and to determine if plating APMT®, a specific highly oxidation-resistant ODS FeCrAl alloy made by Kanthal, onto nickel-based superalloy turbine parts is a viable method for substantially improving the lifetimes and maximum use temperatures of the parts. The superalloys investigated for protection were CM247LC and Rene® 80, both alumina scale-forming alloys. The method for bonding the APMT plate to the superalloys is called evaporative metal bonding, which involves placing a thin foil of zinc between the plate and the superalloy, clamping them together, and heating in an atmosphere-controlled furnace. Upon heating, the zinc melts and dissolves the oxide skins of the alloys at the bond line, allowing the two alloys to diffuse into each other. The zinc then diffuses through the alloys and evaporates from their surfaces, creating a bond between the APMT and the superalloy that is stronger than the APMT itself. Testing showed that the diffusivity of zinc in both APMT and CM247LC is quite similar at 700°C but 15 times higher in the APMT at 1214°C. Coefficients of thermal expansion were determined for each of the alloys as a function of temperature. This information was entered into a finite-element model using ANSYS, which was used to design a clamping jig for pressing the APMT to the superalloys at the bonding temperature. Scanning electron microscopy analyses of representative joints showed that no zinc remained in the alloys after bonding Unfortunately, the analyses also showed some small pieces of broken aluminum oxide scale near the bond lines, indicating that its scale was not sufficiently removed during prebonding cleaning. Samples from each of the bonded blocks were sent to Siemens for

  20. Effect of corrosion protective coatings on compressor blades affected by different erosive exposures

    International Nuclear Information System (INIS)

    Happle, T.W.

    1989-01-01

    It was the task of this dissertation to examine and to classify the inorganically bonded aluminum coatings with regard to their suitability as a coating for compressor blades for stationary gas turbines and aerojet engines. Industrial aluminum coatings bonded inorganically were used for the tests. Comparative examinations were done with diffusion-deposited aluminum layers as well as with aluminum layers precipitated electrolytically, and with modified inorganically bonded aluminum coatings (with additional TiN protective coating). The examination program was subdivided into two main tasks: Suitability tests and examination of corrosion fatigue. The suitability tests covered corrosion examinations (with salt spray and intermittent immersion tests), electrochemically controlled corrosion assessments (pitting corrosion behavior) and erosion assessments (erosive and abrasive wear tests). Experimental material was mainly the commercial compressor blade steel X20Cr13, and sample tests were carried out with the higher-strength steel X10CrNiMoV12 2 2. For the practical examination of the erosion resistance of the aluminum coatings, it was required to develop an erosion testing method. It was designed as an erosive and abrasive wear testing method with solid-face fluidized bed. The testing method makes it possible to pre-set all relevant quantities which influence the erosive and abrasive wear. (orig./MM) [de

  1. Rugged Packaging for Damage Resistant Inertial Fusion Energy Optics

    Energy Technology Data Exchange (ETDEWEB)

    Stelmack, Larry

    2003-11-17

    The development of practical fusion energy plants based on inertial confinement with ultraviolet laser beams requires durable, stable final optics that will withstand the harsh fusion environment. Aluminum-coated reflective surfaces are fragile, and require hard overcoatings resistant to contamination, with low optical losses at 248.4 nanometers for use with high-power KrF excimer lasers. This program addresses the definition of requirements for IFE optics protective coatings, the conceptual design of the required deposition equipment according to accepted contamination control principles, and the deposition and evaluation of diamondlike carbon (DLC) test coatings. DLC coatings deposited by Plasma Immersion Ion Processing were adherent and abrasion-resistant, but their UV optical losses must be further reduced to allow their use as protective coatings for IFE final optics. Deposition equipment for coating high-performance IFE final optics must be designed, constructed, and operated with contamination control as a high priority.

  2. Modeling of Micro Deval abrasion loss based on some rock properties

    Science.gov (United States)

    Capik, Mehmet; Yilmaz, Ali Osman

    2017-10-01

    Aggregate is one of the most widely used construction material. The quality of the aggregate is determined using some testing methods. Among these methods, the Micro Deval Abrasion Loss (MDAL) test is commonly used for the determination of the quality and the abrasion resistance of aggregate. The main objective of this study is to develop models for the prediction of MDAL from rock properties, including uniaxial compressive strength, Brazilian tensile strength, point load index, Schmidt rebound hardness, apparent porosity, void ratio Cerchar abrasivity index and Bohme abrasion test are examined. Additionally, the MDAL is modeled using simple regression analysis and multiple linear regression analysis based on the rock properties. The study shows that the MDAL decreases with the increase of uniaxial compressive strength, Brazilian tensile strength, point load index, Schmidt rebound hardness and Cerchar abrasivity index. It is also concluded that the MDAL increases with the increase of apparent porosity, void ratio and Bohme abrasion test. The modeling results show that the models based on Bohme abrasion test and L type Schmidt rebound hardness give the better forecasting performances for the MDAL. More models, including the uniaxial compressive strength, the apparent porosity and Cerchar abrasivity index, are developed for the rapid estimation of the MDAL of the rocks. The developed models were verified by statistical tests. Additionally, it can be stated that the proposed models can be used as a forecasting for aggregate quality.

  3. Preparation of Organic-Inorganic Multifunctional Nanocomposite Coating via Sol-Gel Routes

    International Nuclear Information System (INIS)

    Li Haoying; Chen Yunfa; Ruan Chengxiang; Gao Weimin; Xie Yusheng

    2001-01-01

    The inorganic-organic nanocomposite coatings are prepared on poly(methyl methacrylate) (PMMA) substrate by the spinning technique which involves incorporating homogeneously nanosized ZnO particle into the molecular inorganic-organic hybrid matrices. The hybrid matrices are derived from tetraethoxyasilane (TEOS) and 3-glycidoxypropyltrimethoxyailane (GLYMO). To avoid the destruction of the polymer structure caused by ZnO and modify the interface between nanoparticles and organic groups, ZnO was first surface-coated with SiO 2 from hydrolyzed TEOS using ammonia water as catalyst. The coatings thus obtained are dense, flexible, abrasion resistant and UV absorbent

  4. An Investigation on the Wear Resistance and Fatigue Behaviour of Ti-6Al-4V Notched Members Coated with Hydroxyapatite Coatings

    Directory of Open Access Journals (Sweden)

    Reza H Oskouei

    2016-02-01

    Full Text Available In this study, surface properties of Ti-6Al-4V alloy coated with hydroxyapatite coatings were investigated. Wear resistance and fatigue behaviour of samples with coating thicknesses of 10 and 50 µm as well as uncoated samples were examined. Wear experiments demonstrated that the friction factor of the uncoated titanium decreased from 0.31 to 0.06, through a fluctuating trend, after 50 cycles of wear tests. However, the friction factor of both the coated samples (10 and 50 µm gradually decreased from 0.20 to 0.12 after 50 cycles. At the end of the 50th cycle, the penetration depth of the 10 and 50 µm coated samples were 7.69 and 6.06 µm, respectively. Fatigue tests showed that hydroxyapatite coatings could improve fatigue life of a notched Ti-6Al-4V member in both low and high cycle fatigue zones. It was understood, from fractography of the fracture surfaces, that the fatigue zone of the uncoated specimens was generally smaller in comparison with that of the coated specimens. No significant difference was observed between the fatigue life of coated specimens with 10 and 50 µm thicknesses.

  5. Study of the fire resistant behavior of unfilled and carbon nanofibers reinforced polybenzimidazole coating for structural applications

    OpenAIRE

    Iqbal, H.M.S.; Stec, A.A.; Patel, P.; Bhowmik, S.; Benedictus, R.

    2013-01-01

    With increasing interest in epoxy-based carbon fiber composites for structural applications, it is important to improve the fire resistant properties of these materials. The fire resistant performance of these materials can be improved either by using high performance epoxy resin for manufacturing carbon fiber composite or by protecting the previously used epoxy-based composite with some fire resistant coating. In this context, work is carried out to evaluate the fire resistance performance o...

  6. Wear behaviour of wear-resistant adaptive nano-multilayered Ti-Al-Mo-N coatings

    Science.gov (United States)

    Sergevnin, V. S.; Blinkov, I. V.; Volkhonskii, A. O.; Belov, D. S.; Kuznetsov, D. V.; Gorshenkov, M. V.; Skryleva, E. A.

    2016-12-01

    Coating samples in the Ti-Al-Mo-N system were obtained by arc-PVD method at variable bias voltage Ub applied to the substrate, and the partial pressure of nitrogen P(N2) used as a reaction gas. The deposited coatings were characterized by a nanocrystalline structure with an average grain size of 30-40 nm and multilayered architecture with alternating layers of (Ti,Al)N nitride and Mo-containing phases with a thickness comparable to the grain size. Coatings of (Ti,Al)N-Mo-Mo2N and (Ti,Al)N-Mo2N compositions were obtained by changing deposition parameters. The obtained coatings had hardness of 40 GPa and the relative plastic deformation under microindentation up to 60%. (Ti,Al)N-Mo2N coatings demonstrated better physicomechanical characteristics, showing high resistance to crack formation and destruction through the plastic deformation mechanism without brittle fracturing, unlike (Ti,Al)N-Mo-Mo2N. The friction coefficient of the study coatings (against Al2O3 balls under dry condition using a pin-on-disc method) reached the values of 0.35 and 0.5 at 20 °C and 500 °C respectively, without noticeable wear within this temperature range. These tribological properties were achieved by forming MoO3 acting as a solid lubricant. At higher temperatures the deterioration in the tribological properties is due to the high rate of MoO3 sublimation from friction surfaces.

  7. Ultrananocrystalline diamond film as a wear resistant and protective coating for mechanical seal applications

    International Nuclear Information System (INIS)

    Sumant, A.V.; Krauss, A.R.; Gruen, D.M.; Auciello, O.; Erdemir, A.; Williams, M.; Artiles, A.F.; Adams, W.

    2005-01-01

    Mechanical shaft seals used in pumps are critically important to the safe operation of the paper, pulp, and chemical process industry, as well as petroleum and nuclear power plants. Specifically, these seals prevent the leakage of toxic gases and hazardous chemicals to the environment and final products from the rotating equipment used in manufacturing processes. Diamond coatings have the potential to provide negligible wear, ultralow friction, and high corrosion resistance for the sliding surfaces of mechanical seals, because diamond exhibits outstanding tribological, physical, and chemical properties. However, diamond coatings produced by conventional chemical vapor deposition (CVD) exhibit high surface roughness (R a ≥ 1 μm), which results in high wear of the seal counterface, leading to premature seal failure. To avoid this problem, we have developed an ultrananocrystalline diamond (UNCD) film formed by a unique CH 4 /Ar microwave plasma CVD method. This method yields extremely smooth diamond coatings with surface roughness R a = 20-30 nm and an average grain size of 2-5 nm. We report the results of a systematic test program involving uncoated and UNCD-coated SiC shaft seals. Results confirmed that the UNCD-coated seals exhibited neither measurable wear nor any leakage during long-duration tests that took 21 days to complete. In addition, the UNCD coatings reduced the frictional torque for seal rotation by five to six times compared with the uncoated seals. This work promises to lead to rotating shaft seals with much improved service life, reduced maintenance cost, reduced leakage of environmentally hazardous materials, and increased energy savings. This technology may also have many other tribological applications involving rolling or sliding contacts.

  8. Waterborne UV coating for industrial applications

    International Nuclear Information System (INIS)

    Bhattacharya, I.N.

    2007-01-01

    (Full Text): Solvent borne industrial coatings are being replaced by environment friendly coatings like Ultra Violet (UV) or Electron Beam (Eb) cured coatings, Powder coatings and Waterborne coatings. Waterborne systems enjoy the biggest share from this shift. UV and EB coatings provide the advantages of instant cure at room temperature, high scratch and abrasion resistance combined with excellent chemical resistance. Polyurethane (PU) chemistry is the dominant chemistry in Industrial coatings as they provide a very high level of performance. Most PU coatings are solvent based 2-component systems comprising of a resin and a cross linker. Polyurethane dispersions (PUD) in water in single pack are available but mainly addresses the Do It Yourself (DIY) market because of their slow drying speeds. Performance of PUD in most cases is inferior to solvent borne 2-component PU systems.Therefore the combination of PU dispersion and UV/EB curable technology has led to new innovative waterborne polymers called UV curable polyurethane dispersions (UVPUD). UVPUD are zero VOC systems as they are coalescent free. They are higher in molecular weight than standard UV curable products resulting in lower shrinkage coatings and provide good adhesion to substrates. Their low-viscosity makes them suitable for application by spray, curtain coater and even roller coater, without having to use monomers. UVPUD display superior chemical and mechanical properties necessary to protect high quality surface from the challenging usage conditions. UVPUD resins are therefore tailor-made to address performance needs like excellence in outdoor durability, scratch resistance, stain resistance, adhesion etc. UVPUD technology is now growing rapidly in industrial coatings for applications such as resilient flooring, wooden parquet flooring, automotive interior plastics, mobile phones etc. (Author)

  9. Improving Erosion Resistance of Plasma-Sprayed Ceramic Coatings by Elevating the Deposition Temperature Based on the Critical Bonding Temperature

    Science.gov (United States)

    Yao, Shu-Wei; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Interlamellar bonding within plasma-sprayed coatings is one of the most important factors dominating the properties and performance of coatings. The interface bonding between lamellae significantly influences the erosion behavior of plasma-sprayed ceramic coatings. In this study, TiO2 and Al2O3 coatings with different microstructures were deposited at different deposition temperatures based on the critical bonding temperature concept. The erosion behavior of ceramic coatings was investigated. It was revealed that the coatings prepared at room temperature exhibit a typical lamellar structure with numerous unbonded interfaces, whereas the coatings deposited at the temperature above the critical bonding temperature present a dense structure with well-bonded interfaces. The erosion rate decreases sharply with the improvement of interlamellar bonding when the deposition temperature increases to the critical bonding temperature. In addition, the erosion mechanisms of ceramic coatings were examined. The unbonded interfaces in the conventional coatings act as pre-cracks accelerating the erosion of coatings. Thus, controlling interlamellar bonding formation based on the critical bonding temperature is an effective approach to improve the erosion resistance of plasma-sprayed ceramic coatings.

  10. Microstructure and wear resistance of a laser clad TiC reinforced nickel aluminides matrix composite coating

    International Nuclear Information System (INIS)

    Chen, Y.; Wang, H.M.

    2004-01-01

    Wear resistant TiC/(NiAl-Ni 3 Al) composite coating was fabricated on a substrate of electrolyzed nickel by laser cladding using Ni-Al-Ti-C alloy powders. The laser clad coating is metallurgically bonded to the substrate and has a homogenous fine microstructure consisting of the flower-like equiaxed TiC dendrite and the dual phase matrix of NiAl and Ni 3 Al. The intermetallic matrix composite coating exhibits excellent wear resistance under both room- and high-temperature sliding wear test conditions due to the high hardness of TiC coupled with the strong atomic bonds of intermetallic matrix

  11. A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Mukhametkaliyev, T.M.; Surmeneva, M.A. [National Research Tomsk Polytechnic University, 634050, Lenin Avenue 43, Tomsk (Russian Federation); Vladescu, A. [National Research Tomsk Polytechnic University, 634050, Lenin Avenue 43, Tomsk (Russian Federation); National Institute for Optoelectronics, 409 Atomistilor St., RO77125 Magurele (Romania); Cotrut, C.M. [National Research Tomsk Polytechnic University, 634050, Lenin Avenue 43, Tomsk (Russian Federation); Politehnica University of Bucharest, 313 Spl. Independentei, Bucharest (Romania); Braic, M.; Dinu, M. [National Institute for Optoelectronics, 409 Atomistilor St., RO77125 Magurele (Romania); Vranceanu, M.D. [Politehnica University of Bucharest, 313 Spl. Independentei, Bucharest (Romania); Pana, I. [National Institute for Optoelectronics, 409 Atomistilor St., RO77125 Magurele (Romania); Faculty of Physics, Bucharest University, 405 Atomistilor St., RO77125 Magurele (Romania); Mueller, M. [Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart (Germany); Surmenev, R.A., E-mail: rsurmenev@gmail.com [National Research Tomsk Polytechnic University, 634050, Lenin Avenue 43, Tomsk (Russian Federation)

    2017-06-01

    The main aim of this study was to investigate the properties of an AZ91 alloy coated with nanostructured hydroxyapatite (HA) prepared by radio frequency (RF) magnetron sputtering. The bioactivity and biomineralization of the AZ91 magnesium alloy coated with HA were investigated in simulated body fluid (SBF) via an in vitro test. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analyses were performed. The samples were immersed in SBF to study the ability of the surface to promote the formation of an apatite layer as well as corrosion resistance and mass change of the HA-coated AZ91 alloy. Electrochemical tests were performed to estimate the corrosion behaviour of HA-coated and uncoated samples. The results revealed the capability of the HA coating to significantly improve the corrosion resistance of the uncoated AZ91 alloy. - Highlights: • The nanostructured HA layer allows to control the degradation rate of the AZ91 alloy. • The HA coating significantly reduces the corrosion current density. • The HA coating significantly improves the polarization resistance in vitro. • The RF magnetron deposited HA coating promotes calcium-phosphate precipitation in SBF.

  12. A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance

    International Nuclear Information System (INIS)

    Mukhametkaliyev, T.M.; Surmeneva, M.A.; Vladescu, A.; Cotrut, C.M.; Braic, M.; Dinu, M.; Vranceanu, M.D.; Pana, I.; Mueller, M.; Surmenev, R.A.

    2017-01-01

    The main aim of this study was to investigate the properties of an AZ91 alloy coated with nanostructured hydroxyapatite (HA) prepared by radio frequency (RF) magnetron sputtering. The bioactivity and biomineralization of the AZ91 magnesium alloy coated with HA were investigated in simulated body fluid (SBF) via an in vitro test. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analyses were performed. The samples were immersed in SBF to study the ability of the surface to promote the formation of an apatite layer as well as corrosion resistance and mass change of the HA-coated AZ91 alloy. Electrochemical tests were performed to estimate the corrosion behaviour of HA-coated and uncoated samples. The results revealed the capability of the HA coating to significantly improve the corrosion resistance of the uncoated AZ91 alloy. - Highlights: • The nanostructured HA layer allows to control the degradation rate of the AZ91 alloy. • The HA coating significantly reduces the corrosion current density. • The HA coating significantly improves the polarization resistance in vitro. • The RF magnetron deposited HA coating promotes calcium-phosphate precipitation in SBF.

  13. A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance.

    Science.gov (United States)

    Mukhametkaliyev, T M; Surmeneva, M A; Vladescu, A; Cotrut, C M; Braic, M; Dinu, M; Vranceanu, M D; Pana, I; Mueller, M; Surmenev, R A

    2017-06-01

    The main aim of this study was to investigate the properties of an AZ91 alloy coated with nanostructured hydroxyapatite (HA) prepared by radio frequency (RF) magnetron sputtering. The bioactivity and biomineralization of the AZ91 magnesium alloy coated with HA were investigated in simulated body fluid (SBF) via an in vitro test. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analyses were performed. The samples were immersed in SBF to study the ability of the surface to promote the formation of an apatite layer as well as corrosion resistance and mass change of the HA-coated AZ91 alloy. Electrochemical tests were performed to estimate the corrosion behaviour of HA-coated and uncoated samples. The results revealed the capability of the HA coating to significantly improve the corrosion resistance of the uncoated AZ91 alloy. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effects of surface coating on weld growth of resistance spot-welded hot-stamped boron steels

    International Nuclear Information System (INIS)

    Ji, Chang Wook; Lee, Hyun Ju; Kim, Yang Do; Jo, Il Guk; Choi, Il Dong; Park, Yeong Do

    2014-01-01

    Aluminum-silicon-based and zinc-based metallic coatings have been widely used for hot-stamped boron steel in automotive applications. In this study, resistance spot weldability was explored by investigating the effects of the properties of metallic coating layers on heat development and nugget growth during resistance spot welding. In the case of the aluminum-silicon-coated hot-stamped boron steel, the intermetallic coating transformed into a liquid film that covered the faying interface. A wide, weldable current range was obtained with slow heat development because of low contact resistance and large current passage. In the case of the zinc-coated hot-stamped boron steel, a buildup of liquid and vapor formation under large vapor pressure was observed at the faying interface because of the high contact resistance and low vaporization temperature of the intermetallic layers. With rapid heat development, the current passage was narrow because of the limited continuous layer at the faying interface. A more significant change in nugget growth was observed in the zinc coated hot-stamped boron steel than in the aluminum-silicon-coated hot-stamped boron steel.

  15. Microstructural Study on Oxidation Resistance of Nonmodified and Platinum Modified Aluminide Coating

    Science.gov (United States)

    Zagula-Yavorska, Maryana; Sieniawski, Jan

    2014-03-01

    Platinum electroplating layers (3 and 7 μm thick) were deposited on the surface of the Inconel 713 LC, CMSX 4, and Inconel 625 Ni-base superalloys. Diffusion treatment at 1050°C for 2 h under argon atmosphere was performed after electroplating. Diffusion treated samples were aluminized according to the low activity CVD process at 1050°C for 8 h. The nonmodified aluminide coatings consist of NiAl phase. Platinum modification let to obtain the (Ni,Pt)Al phase in coatings. The coated samples were subjected to cyclic oxidation testing at 1100°C. It was discovered that increase of the platinum electroplating thickness from 3 to 7 μm provides the improvement of oxidation resistance of aluminide coatings. Increase of the platinum thickness causes decreases in weight change and decreases in parabolic constant during oxidation. The platinum provides the pure Al2O3 oxide formation, slow growth oxide layer, and delay the oxide spalling during heating-cooling thermal cycles.

  16. Protein-resistant polymer coatings obtained by matrix assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Rusen, L. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, 077125, Magurele, Bucharest (Romania); Mustaciosu, C. [Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH, Magurele, Bucharest (Romania); Mitu, B.; Filipescu, M.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, 077125, Magurele, Bucharest (Romania); Dinca, V., E-mail: dinali@nipne.ro [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, PO Box MG-16, 077125, Magurele, Bucharest (Romania)

    2013-08-01

    Adsorption of proteins and polysaccharides is known to facilitate microbial attachment and subsequent formation of biofilm on surfaces that ultimately results in its biofouling. Therefore, protein repellent modified surfaces are necessary to block the irreversible attachment of microorganisms. Within this context, the feasibility of using the Poly(ethylene glycol)-block-poly(ε-caprolactone) methyl ether (PEG-block-PCL Me) copolymer as potential protein-resistant coating was explored in this work. The films were deposited using Matrix Assisted Pulsed Laser Evaporation (MAPLE), a technique that allows good control of composition, thickness and homogeneity. The chemical and morphological characteristics of the films were examined using Fourier Transform Infrared Spectroscopy (FTIR), contact angle measurements and Atomic Force Microscopy (AFM). The FTIR data demonstrates that the functional groups in the MAPLE-deposited films remain intact, especially for fluences below 0.5 J cm{sup −2}. Optical Microscopy and AFM images show that the homogeneity and the roughness of the coatings are related to both laser parameters (fluence, number of pulses) and target composition. Protein adsorption tests were performed on the PEG-block-PCL Me copolymer coated glass and on bare glass surface as a control. The results show that the presence of copolymer as coating significantly reduces the adsorption of proteins.

  17. Effect of Surface Contaminants Remained on the Blasted Surface on Epoxy Coating Performance and Corrosion Resistance

    International Nuclear Information System (INIS)

    Baek, Kwang Ki; Park, Chung Seo; Kim, Ki Hong; Chung, Mong Kyu; Park, Jin Hwan

    2006-01-01

    One of the critical issues in the coating specification is the allowable limit of surface contaminant(s) - such as soluble salt(s), grit dust, and rust - after grit blasting. Yet, there is no universally accepted data supporting the relationship between the long-term coating performance and the amount of various surface contaminants allowed after grit blasting. In this study, it was attempted to prepare epoxy coatings applied on grit-blasted steel substrate dosed with controlled amount of surface contaminants - such as soluble salt(s), grit dust, and rust. Then, coating samples were subjected to 4,200 hours of cyclic test(NORSOK M-501), which were then evaluated in terms of resistance to rust creepage, blistering, chalking, rusting, cracking and adhesion strength. Additional investigations on the possible damage at the paint/steel interface were carried out using an Electrochemical Impedance Spectroscopy(EIS) and observations of under-film-corrosion. Test results suggested that the current industrial specifications were well matched with the allowable degree of rust, whereas the allowable amount of soluble salt and grit dust after grit blasting showed a certain deviation from the specifications currently employed for fabrication of marine vessels and offshore facilities

  18. Evaluating the thermal damage resistance of graphene/carbon nanotube hybrid composite coatings

    Science.gov (United States)

    David, L.; Feldman, A.; Mansfield, E.; Lehman, J.; Singh, G.

    2014-03-01

    We study laser irradiation behavior of multiwalled carbon nanotubes (MWCNT) and chemically modified graphene (rGO)-composite spray coatings for use as a thermal absorber material for high-power laser calorimeters. Spray coatings on aluminum test coupon were exposed to increasing laser irradiance for extended exposure times to quantify their damage threshold and optical absorbance. The coatings, prepared at varying mass % of MWCNTs in rGO, demonstrated significantly higher damage threshold values at 2.5 kW laser power at 10.6 μm wavelength than carbon paint or MWCNTs alone. Electron microscopy and Raman spectroscopy of irradiated specimens show that the coating prepared at 50% CNT loading endure at least 2 kW.cm-2 for 10 seconds without significant damage. The improved damage resistance is attributed to the unique structure of the composite in which the MWCNTs act as an efficient absorber of laser light while the much larger rGO sheets surrounding them, dissipate the heat over a wider area.

  19. Enhanced Corrosion Resistance of PVD-CrN Coatings by ALD Sealing Layers

    Science.gov (United States)

    Wan; Zhang, Teng Fei; Ding, Ji Cheng; Kim, Chang-Min; Park, So-Won; Yang, Yang; Kim, Kwang-Ho; Kwon, Se-Hun

    2017-04-01

    Multilayered hard coatings with a CrN matrix and an Al2O3, TiO2, or nanolaminate-Al2O3/TiO2 sealing layer were designed by a hybrid deposition process combined with physical vapor deposition (PVD) and atomic layer deposition (ALD). The strategy was to utilize ALD thin films as pinhole-free barriers to seal the intrinsic defects to protect the CrN matrix. The influences of the different sealing layers added in the coatings on the microstructure, surface roughness, and corrosion behaviors were investigated. The results indicated that the sealing layer added by ALD significantly decreased the average grain size and improved the corrosion resistance of the CrN coatings. The insertion of the nanolaminate-Al2O3/TiO2 sealing layers resulted in a further increase in corrosion resistance, which was attributed to the synergistic effect of Al2O3 and TiO2, both acting as excellent passivation barriers to the diffusion of corrosive substances.

  20. Study on applicability of highly corrosion-resistant amorphous coating techniques to components of reprocessing plant

    International Nuclear Information System (INIS)

    Ebata, Makoto; Okuyama, Gen; Chiba, Shigeru; Matsunaga, Tsunebumi

    1991-01-01

    In view of the growing need for prolongation of lives of reprocessing plant installations, we recently investigated the applicability of highly corrosion-resistant amorphous coating techniques to such plant components as to be subjected to a badly corrosive environment created by high temperatures, boiling nitric acid (HNO 3 ), etc. As the result, giving a preference to the Ta-based amorphous alloys exhibiting high corrosion-resistance in HNO 3 solutions, we made specimens of stainless steel plates coated with the above amorphous alloys through the sputtering process thereof. To our satisfaction, these specimens successfully passed various HNO 3 corrosion tests as described later on. Ta-based amorphous films give cathodic protection to 310 Nb stainless steel plates, and that with extremely low corrosion rates of themselves as protecting agents. For these reasons, we are confident that there will be no practical problems at all, in case we adopt stainless steel plates partially coated with such amorphous alloys for use in a nitric-acid environment. In this paper, we explain the comparative tests for various amorphous alloys with different compositions, referring also to the thus-selected Ta-based amorphous alloy along with several kinds of corrosion tests specially arranged for the same alloy. (author)

  1. Preparation and corrosion resistance of electroless Ni-P/SiC functionally gradient coatings on AZ91D magnesium alloy

    Science.gov (United States)

    Wang, Hui-Long; Liu, Ling-Yun; Dou, Yong; Zhang, Wen-Zhu; Jiang, Wen-Feng

    2013-12-01

    In this paper, the protective electroless Ni-P/SiC gradient coatings on AZ91D magnesium alloy substrate were successfully prepared. The prepared Ni-P/SiC gradient coatings were characterized for its microstructure, morphology, microhardness and adhesion to the substrate. The deposition reaction kinetics was investigated and an empirical rate equation for electroless Ni-P/SiC plating on AZ91D magnesium alloy was developed. The anticorrosion properties of the Ni-P/SiC gradient coatings in 3.5 wt.% NaCl solution were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies. The potentiodynamic polarization measurements revealed that the SiC concentration in the bath and heat treatment can influence the corrosion protection performance of electroless deposited Ni-P/SiC gradient coatings. EIS studies indicated that higher charge transfer resistance and slightly lower capacitance values were obtained for Ni-P/SiC gradient coatings compared to Ni-P coatings. The corrosion resistance of the Ni-P/SiC gradient coatings increases initially and decreases afterwards with the sustained increasing of immersion time in the aggressive medium. The electroless Ni-P/SiC gradient coatings can afford better corrosion protection for magnesium alloy substrate compared with Ni-P coatings.

  2. Corrosion resistance of Zn-Al layered double hydroxide/poly(lactic acid) composite coating on magnesium alloy AZ31

    Science.gov (United States)

    Zeng, Rong-Chang; Li, Xiao-Ting; Liu, Zhen-Guo; Zhang, Fen; Li, Shuo-Qi; Cui, Hong-Zhi

    2015-12-01

    A Zn-Al layered double hydroxide (ZnAl-LDH) coating consisted of uniform hexagonal nano-plates was firstly synthesized by co-precipitation and hydrothermal treatment on the AZ31 alloy, and then a poly(lactic acid) (PLA) coating was sealed on the top layer of the ZnAl-LDH coating using vacuum freeze-drying. The characteristics of the ZnAl-LDH/PLA composite coatings were investigated by means of XRD, SEM, FTIR and EDS. The corrosion resistance of the coatings was assessed by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the ZnAl-LDH coating contained a compact inner layer and a porous outer layer, and the PLA coating with a strong adhesion to the porous outer layer can prolong the service life of the ZnAl-LDH coating. The excellent corrosion resistance of this composite coating can be attributable to its barrier function, ion-exchange and self-healing ability.

  3. Microwave-assisted synthesis of lanthanum conversion coating on Mg-Li alloy and its corrosion resistance

    International Nuclear Information System (INIS)

    Song Dalei; Jing Xiaoyan; Wang Jun; Lu Shanshan; Yang Piaoping; Wang Yanli; Zhang Milin

    2011-01-01

    Graphical abstract: Highlights: → The method of microwave is used to synthesize lanthanum conversion coating. → Lanthanum conversion coating on Mg-Li alloy was studied. → Different conditions between room temperature and microwave were compared. → The corrosion behavior of lanthanum conversion coatings was studied. → The corrosion mechanism of lanthanum conversion coatings was studied. - Abstract: Lanthanum-based conversion coating on Mg-Li alloy has been prepared by a microwave-assisted method. X-ray diffractions (XRD) indicate that the intermetallic compounds of lanthanum are formed on Mg-Li alloy surface. Scanning electron microscopy (SEM) images show that the coating has different morphologies and special structures. The corrosion resistance was assessed by means of potentiodynamic polarization curves and electrochemical impedance spectra (EIS). The results indicate that this coating significantly reduces the corrosion rate of Mg-Li alloy in NaCl solution. A comparing experiment indicates that the coating prepared by microwave-assisted process has superior corrosion resistance to the coating obtained at room temperature.

  4. A silver ion-doped calcium phosphate-based ceramic nanopowder-coated prosthesis increased infection resistance.

    Science.gov (United States)

    Kose, Nusret; Otuzbir, Ali; Pekşen, Ceren; Kiremitçi, Abdurrahman; Doğan, Aydin

    2013-08-01

    Despite progress in surgical techniques, 1% to 2% of joint arthroplasties become complicated by infection. Coating implant surfaces with antimicrobial agents have been attempted to prevent initial bacterial adhesion to implants with varying success rates. We developed a silver ion-containing calcium phosphate-based ceramic nanopowder coating to provide antibacterial activity for orthopaedic implants. We asked whether titanium prostheses coated with this nanopowder would show resistance to bacterial colonization as compared with uncoated prostheses. We inserted titanium implants (uncoated [n = 9], hydroxyapatite-coated [n = 9], silver-coated [n = 9]) simulating knee prostheses into 27 rabbits' knees. Before implantation, 5 × 10(2) colony-forming units of Staphylococcus aureus were inoculated into the femoral canal. Radiology, microbiology, and histology findings were quantified at Week 6 to define the infection, microbiologically by increased rate of implant colonization/positive cultures, histologically by leukocyte infiltration, necrosis, foreign-body granuloma, and devitalized bone, and radiographically by periosteal reaction, osteolysis, or sequestrum formation. Swab samples taken from medullary canals and implants revealed a lower proportion of positive culture in silver-coated implants (one of nine) than in uncoated (eight of nine) or hydroxyapatite-coated (five of nine) implants. Silver-coated implants also had a lower rate of colonization. No cellular inflammation or foreign-body granuloma was observed around the silver-coated prostheses. Silver ion-doped ceramic nanopowder coating of titanium implants led to an increase in resistance to bacterial colonization compared to uncoated implants. Silver-coated orthopaedic implants may be useful for resistance to local infection but will require in vivo confirmation.

  5. Characterization of Conventional and High-Translucency Y-TZP Dental Ceramics Submitted to Air Abrasion.

    Science.gov (United States)

    Tostes, Bhenya Ottoni; Guimarães, Renato Bastos; Noronha-Filho, Jaime Dutra; Botelho, Glauco Dos Santos; Guimarães, José Guilherme Antunes; Silva, Eduardo Moreira da

    2017-01-01

    This study evaluated the effect of air-abrasion on t®m phase transformation, roughness, topography and the elemental composition of three Y-TZP (Yttria-stabilized tetragonal zirconia polycrystal) dental ceramics: two conventional (Lava Frame and IPS ZirCad) and one with high-translucency (Lava Plus). Plates obtained from sintered blocks of each ceramic were divided into four groups: AS (as-sintered); 30 (air-abrasion with 30 mm Si-coated Al2O3 particles); 50 (air-abrasion with 50 mm Al2O3 particles) and 150 (air-abrasion with 150 mm Al2O3 particles). After the treatments, the plates were submitted to X-ray diffractometry; 3-D profilometry and SEM/EDS. The AS surfaces were composed of Zr and t phases. All treatments produced t®m phase transformation in the ceramics. The diameter of air-abrasion particles influenced the roughness (150>50>30>AS) and the topography. SEM analysis showed that the three treatments produced groove-shaped microretentions on the ceramic surfaces, which increased with the diameter of air-abrasion particles. EDS showed a decrease in Zr content along with the emergence of O and Al elements after air-abrasion. Presence of Si was also detected on the plates air-abraded with 30 mm Si-coated Al2O3 particles. It was concluded that irrespective of the type and diameter of the particles, air-abrasion produced t®m phase transformation, increased the roughness and changed the elemental composition of the three Y-TZP dental ceramics. Lava Plus also behaved similarly to the conventional Y-TZP ceramics, indicating that this high translucency ceramic could be more suitable to build monolithic ceramic restorations in the aesthetic restorative dentistry field.

  6. Hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications

    Science.gov (United States)

    Seals, Roland D.

    2015-08-18

    The present disclosure relates generally to hardface coating systems and methods for metal alloys and other materials for wear and corrosion resistant applications. More specifically, the present disclosure relates to hardface coatings that include a network of titanium monoboride (TiB) needles or whiskers in a matrix, which are formed from titanium (Ti) and titanium diboride (TiB.sub.2) precursors by reactions enabled by the inherent energy provided by the process heat associated with coating deposition and, optionally, coating post-heat treatment. These hardface coatings are pyrophoric, thereby generating further reaction energy internally, and may be applied in a functionally graded manner. The hardface coatings may be deposited in the presence of a number of fluxing agents, beta stabilizers, densification aids, diffusional aids, and multimode particle size distributions to further enhance their performance characteristics.

  7. Hexagonal Boron Nitride Impregnated Silane Composite Coating for Corrosion Resistance of Magnesium Alloys for Temporary Bioimplant Applications

    Directory of Open Access Journals (Sweden)

    Saad Al-Saadi

    2017-11-01

    Full Text Available Magnesium and its alloys are attractive potential materials for construction of biodegradable temporary implant devices. However, their rapid degradation in human body fluid before the desired service life is reached necessitate the application of suitable coatings. To this end, WZ21 magnesium alloy surface was modified by hexagonal boron nitride (hBN-impregnated silane coating. The coating was chemically characterised by Raman spectroscopy. Potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS of the coated alloy in Hanks’ solution showed a five-fold improvement in the corrosion resistance of the alloy due to the composite coating. Post-corrosion analyses corroborated the electrochemical data and provided a mechanistic insight of the improvement provided by the composite coating.

  8. On the abrasion of heat-treated 2.8C21Cr1Mo white cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Al-Rubaie, Kassim S.; Preti, Orlando [Centro Universitario SOCIESC, Joinville (Brazil). Engenharia Mecanica; Pohl, Michael [Bochum Univ. (Germany). Inst. fuer Werkstoffe

    2016-09-15

    The abrasion behaviour of heat-treated 2.8C21Cr1Mo cast iron was studied. The specimens were destabilised at two temperatures, 980 and 1050 C, for 4 h, air hardened, and then tempered at five temperatures, 220, 320, 400, 500, and 620 C, for 2 h followed by air cooling. Using a pin-on-plate abrasion apparatus, the specimens were abraded on four types of bonded abrasives (silicon carbide, corundum, flint, and glass). The effect of work hardening on the abrasion resistance was investigated. It was found that the increase in alloy hardness produced by heat treatment had little effect on the abrasion resistance against silicon carbide or corundum; the inverse was true against flint or glass. The as-hardened structure containing 40% retained austenite gave the best abrasion resistance, whereas the hardened and tempered at 620 C showed the worst. Both bulk hardness and matrix hardness before wear correlated poorly with the abrasion resistance. Therefore, a general model ''equivalent hardness'' was developed, in which the hardness of the abraded matrix was considered. With this model, the abrasion behaviour can be clearly analysed.

  9. Development of corrosion and wear resistant coatings by an improved HVOF spraying process

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Y.; Kawakita, J.; Kuroda, S. [National Inst. for Materials Science, Tsukuba (Japan)

    2005-07-01

    We have developed an improved HVOF spray process called ''Gas-shrouded HVOF'' (GS-HVOF) over the past several years. By using an extension nozzle at the exit of a commercial HVOF spray gun, GS-HVOF is capable of controlling the oxidation of sprayed materials during flight as well as achieving higher velocity of sprayed particles. These features result in extremely dense and clean microstructure of the sprayed coatings. The process has been successfully applied to corrosion resistant alloys such as SUS316L, Hastelloy C, and alloy 625 as well as cermets such as WC-Cr{sub 3}C{sub 2}-Ni. The spray process, coatings microstructure and property evaluation will be discussed with potential industrial applications in the near future. (orig.)

  10. Method for providing uranium articles with a corrosion resistant anodized coating

    International Nuclear Information System (INIS)

    Waldrop, F.B.; Washington, C.A.

    1982-01-01

    Uranium articles are provided with anodized oxide coatings in an aqueous solution of an electrolyte selected from the group consisting of potassium phosphate, potassium hydroxide, ammonium hydroxide, and a mixture of potassium tetraborate and boric acid. The uranium articles are anodized at a temperature greater than about 75 degrees C. With a current flow of less than about 0.036 A/cm2 of surface area while the Ph of the solution is maintained in a range of about 2 to 11.5. The Ph values of the aqueous solution and the low current density utilized during the electrolysis prevent excessive dissolution of the uranium and porosity in the film or watering. The relatively high temperature of the electrolyte bath inhibits hydration and the attendant deleterious pitting so as to enhance corrosion resistance of the anodized coating

  11. A New GEM-like Imaging Detector with Electrodes Coated with Resistive Layers

    CERN Document Server

    Di Mauro, Antonio; Martinengo, Paolo; Napri, Eugenio; Peskov, Vladimir; Periale, Luciano; Picchi, P.; Pietropaolo, Francesco; Rodionov, I.

    We have developed and tested several prototypes of GEM-like detectors with electrodes coated with resistive layers: CuO or CrO. These detectors can operate stably at gains close to 10E5 and they are very robust. We discovered that the cathodes of these detectors could be coated by CsI layers and in such a way the detectors gain high efficiency for the UV photons. We also demonstrated that such detectors can operate stably in the cascade mode and high overall gains (~10E6) are reachable. This opens applications in several areas, for example in RICH or in noble liquid TPCs. Results from the first applications of these devices for UV photon detection at room and cryogenic temperatures are given.

  12. Structural influences on the laser damage resistance of optical oxide coatings for use at 1064 nm

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, E; Lauth, H; Meyer, J; Weissbrodt, P [Zeiss Jena GmbH, Jena (Germany, F.R.); Wolf, R; Zscherpe, G [Ingenieurhochschule Mittweida (Germany, F.R.); Heyer, H [Sektion Physik, Friedrich-Schiller-Univ. Jena (Germany, F.R.)

    1990-11-01

    Optical coatings of titania (TiO{sub 2}) and tantala (Ta{sub 2}O{sub 5}) prepared by reactive r.f. diode and d.c. plasmatron sputtering were investigated for the influence of structural properties on the 1064 nm laser damage resistance. Using various methods of characterizing the compositional, crystallographic, microstructural and optical properties, it was found that the damage thresholds are directly related to the content of oxygen in the films in excess of the stoichiometric values, whereas grain sizes and refractive indices show no systematic influences valid for both oxide materials. The highest oxygen-to-metal atomic ratios and thus the highest damage threshold were achieved by the use of r.f diode sputtering. X-ray photospectroscopy investigations of tantala coatings with different oxygen-to-tantalum atomic ratios up to 2.75 revealed for both constituents of the oxide only binding energies representative for tantalum pentoxide. (orig.).

  13. Transgenic Sugarcane Resistant to Sorghum mosaic virus Based on Coat Protein Gene Silencing by RNA Interference

    Directory of Open Access Journals (Sweden)

    Jinlong Guo

    2015-01-01

    Full Text Available As one of the critical diseases of sugarcane, sugarcane mosaic disease can lead to serious decline in stalk yield and sucrose content. It is mainly caused by Potyvirus sugarcane mosaic virus (SCMV and/or Sorghum mosaic virus (SrMV, with additional differences in viral strains. RNA interference (RNAi is a novel strategy for producing viral resistant plants. In this study, based on multiple sequence alignment conducted on genomic sequences of different strains and isolates of SrMV, the conserved region of coat protein (CP genes was selected as the target gene and the interference sequence with size of 423 bp in length was obtained through PCR amplification. The RNAi vector pGII00-HACP with an expression cassette containing both hairpin interference sequence and cp4-epsps herbicide-tolerant gene was transferred to sugarcane cultivar ROC22 via Agrobacterium-mediated transformation. After herbicide screening, PCR molecular identification, and artificial inoculation challenge, anti-SrMV positive transgenic lines were successfully obtained. SrMV resistance rate of the transgenic lines with the interference sequence was 87.5% based on SrMV challenge by artificial inoculation. The genetically modified SrMV-resistant lines of cultivar ROC22 provide resistant germplasm for breeding lines and can also serve as resistant lines having the same genetic background for study of resistance mechanisms.

  14. Steam oxidation resistance of Ni-aluminide/Fe-aluminide duplex coatings formed on creep resistant ferritic steels by low temperature pack cementation process

    International Nuclear Information System (INIS)

    Xiang, Z.D.; Zeng, D.; Zhu, C.Y.; Rose, S.R.; Datta, P.K.

    2011-01-01

    Research highlights: → The Ni 2 Al 3 /Fe 2 Al 5 duplex coating on ferritic steel is resistant against steam oxidation at 650 o C. → The coating shows evidence of enhanced thermal stability. → The enhanced thermal stability of the coating is facilitated by thermodynamic constraints. → The lifetime of the coating can be enhanced by controlling the layer structure of the coating. - Abstract: Steam oxidation resistance and thermal stability were studied at 650 o C for a coating with an outer Ni 2 Al 3 layer and an inner Fe 2 Al 5 layer formed on P92 steel surface. The parabolic rate law of oxidation was obeyed only in less than 2000 h with positive deviations occurring at longer oxidation times. The outer layer of the coating was transformed to NiAl during oxidation, but it remained stable once it was formed. The mechanisms for the enhanced thermal stability were discussed and a simple approach to enhancing the lifetime of the coating was proposed.

  15. Improving the scratch resistance of sol-gel metal oxide coatings cured at 250 C through use of thermogenerated amines

    NARCIS (Netherlands)

    Langanke, J.; Arfsten, N.; Buskens, P.; Habets, R.; Klankermayer, J.; Leitner, W.

    2013-01-01

    Scratch resistant sol-gel metal oxide coatings typically require a thermal post-treatment step (curing process) at temperatures between 400 and 700 C. In this report, we demonstrate that the in situ generation of amines within sol-gel films facilitates the preparation of scratch resistant metal

  16. Albumin coatings by alternating current electrophoretic deposition for improving corrosion resistance and bioactivity of titanium implants.

    Science.gov (United States)

    Höhn, Sarah; Braem, Annabel; Neirinck, Bram; Virtanen, Sannakaisa

    2017-04-01

    Although Ti alloys are generally regarded to be highly corrosion resistant, inflammatory conditions following surgery can instigate breakdown of the TiO 2 passivation layer leading to an increased metal ion release. Furthermore proteins present in the surrounding tissue will readily adsorb on a titanium surface after implantation. In this paper alternating current electrophoretic deposition (AC-EPD) of bovine serum albumin (BSA) on Ti6Al4V was investigated in order to increase the corrosion resistance and control the protein adsorption capability of the implant surface. The Ti6Al4V surface was characterized with SEM, XPS and ToF-SIMS after long-term immersion tests under physiological conditions and simulated inflammatory conditions either in Dulbecco's Modified Eagle Medium (DMEM) or DMEM supplemented with fetal calf serum (FCS). The analysis showed an increased adsorption of amino acids and proteins from the different immersion solutions. The BSA coating was shown to prevent selective dissolution of the vanadium (V) rich β-phase, thus effectively limiting metal ion release to the environment. Electrochemical impedance spectroscopy measurements confirmed an increase of the corrosion resistance for BSA coated surfaces as a function of immersion time due to the time-dependent adsorption of the different amino acids (from DMEM) and proteins (from FCS) as observed by ToF-SIMS analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A study of oxidation resistant coating on TiAl alloys by Cr evaporation and pack cementation

    International Nuclear Information System (INIS)

    Jung, Dong Ju; Jung, Hwan Gyo; Kim, Kyoo Young

    2002-01-01

    A Cr+Al-type composite coating is applied to improve the properties of aluminide coating layers, AiAl 3 , formed on TiAl alloys. This method is performed by Cr evaporation on the TiAl-XNb(X= 1,6at%) substrate followed by pack aluminizing. The coating layer formed by the composite coating process consists of the outer layer of Al 4 Cr and the inner layer of TiAl 3 regardless of the Nb content. however, these coating layers are transformed to Ti(Al,Cr) 3 layers with Ll 2 structures during oxidation. In particular, as Nb content increases, the grain size of the inner TiAl 3 layer becomes smaller and the diffusion rate of Cr increases after oxidation. Faster formation of a Ti(Al,Cr) 3 layer with an Ll 2 structure through Nb addition is more effective to improve cracking resistance at the beginning of oxidation of TiAl alloys. However, growth of Ti(Al,Cr) 3 formed on the coating layer becomes slower as the Nb content in the coating layer is increased. As a result, the addition of a large amount of Nb to composite coating layer is not desirable due to poor ductility of the coating layer. A Ti(Al,Cr) 3 layer with an Ll 2 structure developed during oxidation showed much better ductility compared with other coating layers

  18. FY05 HPCRM Annual Report: High-Performance Corrosion-Resistant Iron-Based Amorphous Metal Coatings Evaluation of Corrosion Resistance FY05 HPCRM Annual Report No. Rev. 1DOE-DARPA Co-Sponsored Advanced Materials Program

    International Nuclear Information System (INIS)

    Farmer, J C; Haslam, J J; Day, S D

    2007-01-01

    or inhibitor. Comparable metallic alloys such as SAM2X5 and SAM1651 may also experience crevice corrosion under sufficiently harsh conditions. Accelerated crevice corrosion tests are now being conducted to intentionally induce crevice corrosion, and to determine those environmental conditions where such localized attack occurs. Such materials are extremely hard, and provide enhanced resistance to abrasion and gouges (stress risers) from backfill operations, and possibly even tunnel boring. The hardness of Type 316L Stainless Steel is approximately 150 VHN, that of Alloy C-22 is approximately 250 VHN, and that of HVOF SAM2X5 ranges from 1100-1300 VHN. These new materials provide a viable coating option for repository engineers. SAM2X5 and SAM1651 coatings can be applied with thermal spray processes without any significant loss of corrosion resistance. Both Alloy C-22 and Type 316L stainless lose their resistance to corrosion during thermal spraying. Containers for the transportation, storage and disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) with corrosion resistant coatings are envisioned. For example, an enhanced multi-purpose container (MPC) could be made with such coatings, leveraging existing experience in the fabrication of such containers. These coating materials could be used to protect the final closure weld on SNF/HLW disposal containers, eliminate need for stress mitigation. Integral drip shield could be produced by directly spraying it onto the disposal container, thereby eliminating the need for an expensive titanium drip shield. In specific areas where crevice corrosion is anticipated, such as the contact point between the disposal container and pallet, HVOF coatings could be used to buildup thickness, thereby selectively adding corrosion life where it is needed. Both SAM2X5 and SAM1651 have high boron content which enable them to absorb neutrons and therefore be used for criticality control in baskets. Alloy C-22 and 316L

  19. Recent Developments in Abrasive Hybrid Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Ruszaj Adam

    2017-06-01

    Full Text Available Recent dynamic development of abrasive hybrid manufacturing processes results from application of a new difficult for machining materials and improvement of technological indicators of manufacturing processes already applied in practice. This tendency also occurs in abrasive machining processes which are often supported by ultrasonic vibrations, electrochemical dissolution or by electrical discharges. In the paper we present the review of new results of investigations and new practical applications of Abrasive Electrodischarge (AEDM and Electrochemical (AECM Machining.

  20. FIRE-RESISTANT SHIELDING COATING BASED ON SHUNGITE-CONTAINING PAINT

    Directory of Open Access Journals (Sweden)

    BELOUSOVA Elena Sergeevna

    2013-08-01

    Full Text Available Today when specific shielded facilities are designed the construction materials and shields should meet a range of fire safety requirements. A composite coating on the basis of a water-based fire-resistant paint filled with shungite nanopowder can be applied onto walls, floors, ceilings and other surfaces in the shielded areas to reduce electromagnetic radiation and simultaneously to ensure fire safety. Shungit is a mineral with multilayer carbon fullerene globules which diameter is 10–30 nm. Due to the high conductivity shungite is able to weaken electromagnetic radiation. A coating made of schungite-containing paint on a cellulose substrate was subjected to the open flame under the temperature of 1700° C for 3 minutes and 40 seconds. That resulted in the formation of insulating foam layer without mechanical damage of the substrate. The XRD diffraction analysis of the powder obtained in the process of flame influence on the coating showed the formation of the such substances as orthoclase, barite, rutile, etc. Carbon contained in shungit and used as a filler for the fireproof paint wasn’t detected. This fact indicates carbon oxidation as the result of its burning out. The shielding efficiency of the composite coating after open flame exposure was measured for the frequency range 8…12 GHz with the use of the panoramic attenuation meter and voltage standing wave ratio meter YA2R-67-61 with a sweep generator and waveguides. After that the reflection and transmission coefficients were calculated. The results of measurements and calculations showed decrease of the reflection and transmission coefficients due to conductivity decrease and dielectric losses changes of the composite coating provided by silica content increase and carbon percentage decrease.

  1. Antioxidant migration resistance of SiOx layer in SiOx/PLA coated film.

    Science.gov (United States)

    Huang, Chongxing; Zhao, Yuan; Su, Hongxia; Bei, Ronghua

    2018-02-01

    As novel materials for food contact packaging, inorganic silicon oxide (SiO x ) films are high barrier property materials that have been developed rapidly and have attracted the attention of many manufacturers. For the safe use of SiO x films for food packaging it is vital to study the interaction between SiO x layers and food contaminants, as well as the function of a SiO x barrier layer in antioxidant migration resistance. In this study, we deposited a SiO x layer on polylactic acid (PLA)-based films to prepare SiO x /PLA coated films by plasma-enhanced chemical vapour deposition. Additionally, we compared PLA-based films and SiO x /PLA coated films in terms of the migration of different antioxidants (e.g. t-butylhydroquinone [TBHQ], butylated hydroxyanisole [BHA], and butylated hydroxytoluene [BHT]) via specific migration experiments and then investigated the effects of a SiO x layer on antioxidant migration under different conditions. The results indicate that antioxidant migration from SiO x /PLA coated films is similar to that for PLA-based films: with increase of temperature, decrease of food simulant polarity, and increase of single-sided contact time, the antioxidant migration rate and amount in SiO x /PLA coated films increase. The SiO x barrier layer significantly reduced the amount of migration of antioxidants with small and similar molecular weights and similar physical and chemical properties, while the degree of migration blocking was not significantly different among the studied antioxidants. However, the migration was affected by temperature and food simulant. Depending on the food simulants considered, the migration amount in SiO x /PLA coated films was reduced compared with that in PLA-based films by 42-46%, 44-47%, and 44-46% for TBHQ, BHA, and BHT, respectively.

  2. Interpretation of Mechanical and Thermal Properties of Heavy Duty Epoxy Based Floor Coating Doped by Nanosilica

    Science.gov (United States)

    Nikje, M. M. Alavi; Khanmohammadi, M.; Garmarudi, A. Bagheri

    Epoxy-nano silica composites were prepared using Bisphenol-A epoxy resin (Araldite® GY 6010) resin obtained from in situ polymerization or blending method. SiO2 nanoparticles were pretreated by a silan based coupling agent. Surface treated nano silica was dispersed excellently by mechanical and ultrasonic homogenizers. A dramatic increase in the interfacial area between fillers and polymer can significantly improve the properties of the epoxy coating product such as tensile, elongation, abrasion resistance, etc.

  3. Refractory, Abrasive and Other Industrial Mineral Operations

    Data.gov (United States)

    Department of Homeland Security — This map layer includes refractory, abrasive, and other industrial minerals operations in the United States. The data represent commodities covered by the Minerals...

  4. Progress in abrasive and grinding technology

    CERN Document Server

    Xu, Xipeng

    2009-01-01

    The grinding and abrasive processing of materials are machining techniques which use bonded or loose abrasives to remove material from workpieces. Due to the well-known advantages of grinding and abrasive processes, advances in abrasive and grinding technology are always of great import in enhancing both productivity and component quality. In order to highlight the recent progress made in this field, the editor invited 21 world-wide contributions with the aim of gathering together all of the achievements of leading researchers into a single publication. The authors of the 21 invited papers, of

  5. Design and Performance Optimizations of Advanced Erosion-Resistant Low Conductivity Thermal Barrier Coatings for Rotorcraft Engines

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2012-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future rotorcraft engine higher fuel efficiency and lower emission goals. For thermal barrier coatings designed for rotorcraft turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability, because the rotorcraft are often operated in the most severe sand erosive environments. Advanced low thermal conductivity and erosion-resistant thermal barrier coatings are being developed, with the current emphasis being placed on thermal barrier coating toughness improvements using multicomponent alloying and processing optimization approaches. The performance of the advanced thermal barrier coatings has been evaluated in a high temperature erosion burner rig and a laser heat-flux rig to simulate engine erosion and thermal gradient environments. The results have shown that the coating composition and architecture optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic oxidation durability

  6. Effect of nano-TiO{sub 2} particles size on the corrosion resistance of alkyd coating

    Energy Technology Data Exchange (ETDEWEB)

    Deyab, M.A., E-mail: hamadadeiab@yahoo.com; Keera, S.T.

    2014-08-01

    The coating system containing various sizes (∼10, 50, 100, 150 nm) of nano-TiO{sub 2} were prepared and investigated for corrosion protection of carbon steel in 1.0 M H{sub 2}SO{sub 4} using polarization, EIS and transmission electron microscopy (TEM) techniques. It was found that nano-TiO{sub 2} particles improved the corrosion resistance of alkyd coatings. The corrosion resistance occurs via physical adhesion on the metal surface. O{sub 2} and H{sub 2}O permeability of coating decreased with decrease in the nano-TiO{sub 2} size. The inhibition efficiency was found to increase with decreasing the size of nano-TiO{sub 2} and with decreasing the temperature. - Highlights: • Nano-TiO{sub 2} coating were prepared and used for corrosion protection of C-steel. • Nano-TiO{sub 2} particles in coating are effective to improve the corrosion resistance. • Nano-TiO{sub 2} coating inhibit both anodic and cathodic reactions. • Corrosion inhibition efficiency increases with decrease in the size of nano-TiO{sub 2}. • O{sub 2} and H{sub 2}O permeability of coating decreased with decrease in the nano-TiO{sub 2} size.

  7. Standard Test Method for Dust Erosion Resistance of Optical and Infrared Transparent Materials and Coatings

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the resistance of transparent plastics and coatings used in aerospace windscreens, canopies, and viewports to surface erosion as a result of dust impingement. This test method simulates flight through a defined particle cloud environment by means of independent control of particle size, velocity, impact angle, mass loading, and test duration. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  8. ArF photo resist pattern sample preparation method using FIB without protective coating

    Science.gov (United States)

    Okushima, Hirohisa; Onozuka, Toshihiko; Kuroda, Yasushi; Yaguchi, Toshie; Umemura, Kaoru; Tamochi, Ryuichiro; Watanabe, Kenji; Hasegawa, Norio; Kawata, Isao; Rijpers, Bart

    2006-03-01

    This paper presents a novel method of FIB (FIB: focused ion beam) sample preparation to accurately evaluate critical dimensions and profiles of ArF photo resist patterns without the use of a protective coating on the photo resist. In order to accomplish this, the FIB micro-sampling method that is one of effective FIB milling and fabrication method was employed. First a Si cap is picked up from a silicon wafer and fixed to ArF photo resist patterns to protect against ion beam irradiation. Then, a micro-sample, a piece of Si-capped ArF photo resist, was extracted from the bulk ArF photo resist. In this procedure, this silicon cap always protects ArF photo resist patterns against ion beam irradiation. For the next step, the micro-sample is fixed to a needle stub of the FIB-STEM (STEM: scanning transmission electron microscopy) compatible rotation holder. This sample on the needle stub was rotated 180 degrees and milled from the side of Si substrate. Lastly, the sample is milled to the thickness of 2μm. In this process, the ion beam is irradiating from the silicon substrate side to minimize the ion beam irradiation damages on the ArF photo resist patterns. EDX (EDX: Energy dispersive X-ray spectroscopy) analysis proved that no gallium ions were detected on the surface of the ArF photo resist patterns. The feasibility of high accelerating voltage observation of STEM to observe line edge roughness of a thick sample like 2μm without shrinkage has been demonstrated.

  9. Corrosion resistance of Fe-Al alloy-coated steel under bending stress in high temperature lead-bismuth eutectic

    International Nuclear Information System (INIS)

    Yamaki, Eriko; Takahashi, Minoru

    2009-01-01

    Formation of thin Fe-Al alloy layers on the surface of cladding and structural materials is effective to protect a base material from corrosion in high temperature LBE. However, it is concerned that these protective layers may be damaged under various stress conditions. This study on Fe-Al alloy coatings deposited by unbalanced magnetron sputtering (UBMS) is focused to evaluate corrosion resistance and integrity of the Fe-Al coating layers with thickness of 0.5 mm under bending stress in high temperature LBE. High chromium steel specimens (HCM12A, Recloy10) with Fe-Al alloy coating were exposed to LBE pool with low oxygen concentration (up to 5.2x10 -8 wt%) at 550 and 650degC under 45kg-loading for 240 and 500 h. No LBE corrosion was observed in the base metal and coating layer after the tests at 550degC for 550 h. The coating layers could be barrier for corrosion resistance from LBE at 550degC, although the coating scales are cracked by the load. At 650degC, because the base metal was contoccured directly with LBE through cracks across the coating layer. Penetration of LBE to base metal and dissolution of beset metal into LBE occurred. Fe-Al coating layer was not corroded by LBE. (author)

  10. The novel silicon-containing epoxy/PEPA phosphate flame retardant for transparent intumescent fire resistant coating

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yanchao [School of Materials Science and Engineering, Tongji University, 4800 Cao' an Road, Shanghai 201804 (China); Wang, Guojian, E-mail: wanggj@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, 4800 Cao' an Road, Shanghai 201804 (China); Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, 4800 Cao' an Road, Shanghai 201804 (China)

    2016-11-01

    Highlights: • The novel halogen-free flame retardant containing silicon and caged bicyclic phosphate was synthesized. • A novel transparent intumescent fire resistant coating was developed by the P-Si synergistic flame retardant and melamine formaldehyde resin. • Excellent fire protection of the transparent intumescent fire resistant coating. • The P-Si synergistic flame retardant could improve the thermo-oxidation resistance of transparent fire resistant coating. - Abstract: A series of novel silicon-containing epoxy/PEPA phosphate flame retardants (EPPSi) were synthesized by polyphosphoric acid (PPA), caged bicyclic phosphate 1-oxo-4-hydroxymethyl-2,6,7-trioxa-L-phosphabicyclo [2.2.2] octane (PEPA), and different ratios of silicon-containing epoxy 1,1,3,3-tetramethyl-1,3-bis(3-(oxiran-2-ylmethoxy)propyl)disiloxane (TMSEP) to 1,4-butanediol diglycidyl ether (BDE). The chemical structure of EPPSi was confirmed by Fourier transform infrared spectroscopy (FTIR) and {sup 1}H nuclear magnetic resonance spectroscopy ({sup 1}H NMR). Afterwards, the transparent intumescent fire resistant coatings were prepared by mixing EPPSi and melamine formaldehyde resin. The influence of silicon on the fire protection of coatings was intensively investigated by fire protection test, intumescence ratio, scanning electron microscope (SEM), compressive strength test, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and real-time FTIR. It was found that the fire resistant coatings obtained the best fire protection when the ratio of TMESP/BDE was 20/100, while excessive TMSEP made the fire protection of coatings deceased sharply. The intumescence ratio, compressive strength test and SEM result showed that a synergistic effect existed between phosphorus and silicon, which improved the foam structure and compressive strength of the char layer significantly. XPS result proved the out-migration effect of silicon. The high concentration silicon on surface played

  11. The effect of ion implantation on the oxidation resistance of vacuum plasma sprayed CoNiCrAlY coatings

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jie [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Zhao Huayu; Zhou Xiaming [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Tao Shunyan, E-mail: shunyantao@mail.sic.ac.cn [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China); Ding Chuanxian [Key Laboratory of Inorganic Coating Materials, Chinese Academy of Sciences, Shanghai 200050 (China); Shanghai Institute of Ceramic, Chinese Academy of Sciences, Shanghai 200050 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer We used ion implantation to improve the oxidation resistance of CoNiCrAlY coating. Black-Right-Pointing-Pointer The oxidation process of CoNiCrAlY coating at 1100 Degree-Sign C for 1000 h was studied. Black-Right-Pointing-Pointer The Nb ion implanted coating exhibited better oxidation resistance. Black-Right-Pointing-Pointer The influences of Nb and Al ion implantation into CoNiCrAlY coatings were evaluated. - Abstract: CoNiCrAlY coatings prepared by vacuum plasma spraying (VPS) were implanted with Nb and Al ions at a fluence of 10{sup 17} atoms/cm{sup 2}. The effects of ion implantation on the oxidation resistance of CoNiCrAlY coatings were investigated. The thermally grown oxide (TGO) formed on each specimen was characterized by XRD, SEM and EDS, respectively. The results showed that the oxidation process of CoNiCrAlY coatings could be divided into four stages and the key to obtaining good oxidation resistance was to remain high enough amount of Al and promote the lateral growth of TGO. The implantation of Nb resulted in the formation of continuous and dense Al{sub 2}O{sub 3} scale to improve the oxidation resistance. The Al implanted coating could form Al{sub 2}O{sub 3} scale at the initial stage, however, the scale was soon broken and TGO transformed to non-protective spinel.

  12. Laser deposition of carbide-reinforced coatings

    International Nuclear Information System (INIS)

    Cerri, W.; Martinella, R.; Mor, G.P.; Bianchi, P.; D'Angelo, D.

    1991-01-01

    CO 2 laser cladding with blown powder presents many advantages: fusion bonding with the substrate with low dilution, metallurgical continuity in the metallic matrix, high solidification rates, ease of automation, and reduced environmental contamination. In the present paper, laser cladding experimental results using families of carbides (tungsten and titanium) mixed with metallic alloys are reported. As substrates, low alloy construction steel (AISI 4140) (austenitic stainless steel) samples have been utilized, depending on the particular carbide reinforcement application. The coating layers obtained have been characterized by metallurgical examination. They show low dilution, absence of cracks, and high abrasion resistance. The WC samples, obtained with different carbide sizes and percentages, have been characterized with dry and rubber wheel abrasion tests and the specimen behaviour has been compared with the behaviour of materials used for similar applications. The abrasion resistance proved to be better than that of other widely used hardfacing materials and the powder morphology have a non-negligible influence on the tribological properties. (orig.)

  13. Preparation and corrosion resistance of magnesium phytic acid/hydroxyapatite composite coatings on biodegradable AZ31 magnesium alloy.

    Science.gov (United States)

    Zhang, Min; Cai, Shu; Zhang, Feiyang; Xu, Guohua; Wang, Fengwu; Yu, Nian; Wu, Xiaodong

    2017-06-01

    In this work, a magnesium phytic acid/hydroxyapatite composite coating was successfully prepared on AZ31 magnesium alloy substrate by chemical conversion deposition technology with the aim of improving its corrosion resistance and bioactivity. The influence of hydroxyapatite (HA) content on the microstructure and corrosion resistance of the coatings was investigated. The results showed that with the increase of HA content in phytic acid solution, the cracks on the surface of the coatings gradually reduced, which subsequently improved the corrosion resistance of these coated magnesium alloy. Electrochemical measurements in simulated body fluid (SBF) revealed that the composite coating with 45 wt.% HA addition exhibited superior surface integrity and significantly improved corrosion resistance compared with the single phytic acid conversion coating. The results of the immersion test in SBF showed that the composite coating could provide more effective protection for magnesium alloy substrate than that of the single phytic acid coating and showed good bioactivity. Magnesium phytic acid/hydroxyapatite composite, with the desired bioactivity, can be synthesized through chemical conversion deposition technology as protective coatings for surface modification of the biodegradable magnesium alloy implants. The design idea of the new type of biomaterial is belong to the concept of "third generation biomaterial". Corrosion behavior and bioactivity of coated magnesium alloy are the key issues during implantation. In this study, preparation and corrosion behavior of magnesium phytic acid/hydroxyapatite composite coatings on magnesium alloy were studied. The basic findings and significance of this paper are as follows: 1. A novel environmentally friendly, homogenous and crack-free magnesium phytic acid/hydroxyapatite composite coating was fabricated on AZ31 magnesium alloy via chemical conversion deposition technology with the aim of enhancing its corrosion resistance and

  14. Photocatalytic TiO2 and Doped TiO2 Coatings to Improve the Hygiene of Surfaces Used in Food and Beverage Processing—A Study of the Physical and Chemical Resistance of the Coatings

    Directory of Open Access Journals (Sweden)

    Parnia Navabpour

    2014-07-01

    Full Text Available TiO2 coatings deposited using reactive magnetron sputtering and spray coating methods, as well as Ag- and Mo-doped TiO2 coatings were investigated as self-cleaning surfaces for beverage processing. The mechanical resistance and retention of the photocatalytic properties of the coatings were investigated over a three-month period in three separate breweries. TiO2 coatings deposited using reactive magnetron sputtering showed better mechanical durability than the spray coated surfaces, whilst the spray-deposited coating showed enhanced retention of photocatalytic properties. The presence of Ag and Mo dopants improved the photocatalytic properties of TiO2 as well as the retention of these properties. The spray-coated TiO2 was the only coating which showed light-induced hydrophilicity, which was retained in the coatings surviving the process conditions.

  15. An experimental estimation of the resistance against a high-temperature gas corrosion of C/C composite materials with protective plasma coating

    International Nuclear Information System (INIS)

    Babin, S.V.; Khripakov, E.V.

    2007-01-01

    Materials with well-defined structure has been proposed as corrosion- and erosion-resistant coating from the carbon-carbon composite. Experiments on heat and erosion resistance of plasma coatings at carbon-carbon composite materials demonstrate availability of multilayer with upper erosion resistant layer on the basis of aluminium oxide, intermediate layer on the basis of boron-containing components with aluminium additions and damping layer of silicon carbide. Multilayer protective coats offer demand service characteristics of details [ru

  16. Comparison of performance coatings thermally sprayed subject to testing adhesive wear

    International Nuclear Information System (INIS)

    Marangoni, G.F.; Arnt, A.B.C.; Rocha, M.R. da

    2014-01-01

    In this work, the microstructural changes and wear resistance adhesive coatings obtained from powders thermally sprayed by high velocity oxy-fuel (HVOF) were evaluated. Based coatings chrome-nickel and tungsten-cobalt are applied in conditions subject to intense wear especially abrasive. With the aim of evaluate the performance of these coatings under conditions of adhesive wear, these coatings samples were tested by the standard ASTM G99. As test parameters were used: Tungsten carbide pin (SAE 52100) with 6 mm diameter, normal load of 50N and a tangential velocity of 0.5 m / s. The worn surfaces of the coatings were characterized by optical and scanning electron microscopy and X-ray diffraction. Results indicate that the performance front wear is related to the conditions of adhesion and uniformity of the coating applied. (author)

  17. Tough-coated hard powders for hardmetals of novel properties

    International Nuclear Information System (INIS)

    Toth, R.E.; Smid, I.; Kladler, G.; Korb, G.; Sherman, A.; Ettmayer, P.

    2001-01-01

    The properties and performance of conventional materials and composites are constrained by solubility limits, diffusion coefficients, and compatibility of physical and chemical constituent properties in their phase equilibria. To escape these limits, ingenious ways of combining strength, toughness, and wear resistance by way of various coatings and laminations have been devised. These coated tools are systematically discarded after only about 10 % of their wear tolerance has been used. Tough-coated hard powders (TCHP), patented by EnDurAloy (USA), are hard refractory particles CVD coated with nanolayers of WC and Co. Consolidation of TCHP creates an engineered homogeneous cellular structure whose interconnected tough WC-Co 'shells' each contain a wear-resistant core (e.g., TiN). In TCHP's, the coating is throughout the tool, not only on the surface, combining the strength, heat resistance, and toughness of cemented carbides with the chemical and abrasion wear resistance of harder materials. As wear progresses, new wear-resistant material continuously replaces the working surfaces and edges of the tool until its geometry reaches its maximum limits. TCHP tools are then reusable many times. Specific coating and consolidation processes, characterization of compacts, and test comparisons with conventional materials are discussed. (author)

  18. Albumin coatings by alternating current electrophoretic deposition for improving corrosion resistance and bioactivity of titanium implants

    International Nuclear Information System (INIS)

    Höhn, Sarah; Braem, Annabel; Neirinck, Bram; Virtanen, Sannakaisa

    2017-01-01

    Although Ti alloys are generally regarded to be highly corrosion resistant, inflammatory conditions following surgery can instigate breakdown of the TiO 2 passivation layer leading to an increased metal ion release. Furthermore proteins present in the surrounding tissue will readily adsorb on a titanium surface after implantation. In this paper alternating current electrophoretic deposition (AC-EPD) of bovine serum albumin (BSA) on Ti6Al4V was investigated in order to increase the corrosion resistance and control the protein adsorption capability of the implant surface. The Ti6Al4V surface was characterized with SEM, XPS and ToF-SIMS after long-term immersion tests under physiological conditions and simulated inflammatory conditions either in Dulbecco's Modified Eagle Medium (DMEM) or DMEM supplemented with fetal calf serum (FCS). The analysis showed an increased adsorption of amino acids and proteins from the different immersion solutions. The BSA coating was shown to prevent selective dissolution of the vanadium (V) rich β-phase, thus effectively limiting metal ion release to the environment. Electrochemical impedance spectroscopy measurements confirmed an increase of the corrosion resistance for BSA coated surfaces as a function of immersion time due to the time-dependent adsorption of the different amino acids (from DMEM) and proteins (from FCS) as observed by ToF-SIMS analysis. - Highlights: • Alternating current electrophoretic deposition (AC-EPD) of bovine serum albumin was investigated on Ti6Al4V. • The surface was characterized with SEM, XPS and ToF-SIMS after long-term immersion tests at pH 7 and pH 5. • The analysis showed an increased adsorption of amino acids (DMEM) and proteins (DMEM + FCS). • BSA was shown to prevent dissolution of the β-phase, limiting metal ion release and increase of corrosion resistance. • Ratios calculated by means of ToF-SIMS show that the protein will have different orientations during adsorption.

  19. Albumin coatings by alternating current electrophoretic deposition for improving corrosion resistance and bioactivity of titanium implants

    Energy Technology Data Exchange (ETDEWEB)

    Höhn, Sarah, E-mail: sarah.hoehn@fau.de [Institute for Surface Science and Corrosion, Dept. of Mat. Science, University of Erlangen-Nürnberg, 91058 Erlangen, Germany. (Germany); Braem, Annabel, E-mail: annabel.braem@kuleuven.be [KU Leuven Department of Materials Engineering, Kasteelpark Arenberg 44, Box 2450, 3001 Leuven (Belgium); Neirinck, Bram, E-mail: bram.neirinck@3DSystems.com [KU Leuven Department of Materials Engineering, Kasteelpark Arenberg 44, Box 2450, 3001 Leuven (Belgium); Virtanen, Sannakaisa, E-mail: virtanen@ww.uni-erlangen.de [Institute for Surface Science and Corrosion, Dept. of Mat. Science, University of Erlangen-Nürnberg, 91058 Erlangen, Germany. (Germany)

    2017-04-01

    Although Ti alloys are generally regarded to be highly corrosion resistant, inflammatory conditions following surgery can instigate breakdown of the TiO{sub 2} passivation layer leading to an increased metal ion release. Furthermore proteins present in the surrounding tissue will readily adsorb on a titanium surface after implantation. In this paper alternating current electrophoretic deposition (AC-EPD) of bovine serum albumin (BSA) on Ti6Al4V was investigated in order to increase the corrosion resistance and control the protein adsorption capability of the implant surface. The Ti6Al4V surface was characterized with SEM, XPS and ToF-SIMS after long-term immersion tests under physiological conditions and simulated inflammatory conditions either in Dulbecco's Modified Eagle Medium (DMEM) or DMEM supplemented with fetal calf serum (FCS). The analysis showed an increased adsorption of amino acids and proteins from the different immersion solutions. The BSA coating was shown to prevent selective dissolution of the vanadium (V) rich β-phase, thus effectively limiting metal ion release to the environment. Electrochemical impedance spectroscopy measurements confirmed an increase of the corrosion resistance for BSA coated surfaces as a function of immersion time due to the time-dependent adsorption of the different amino acids (from DMEM) and proteins (from FCS) as observed by ToF-SIMS analysis. - Highlights: • Alternating current electrophoretic deposition (AC-EPD) of bovine serum albumin was investigated on Ti6Al4V. • The surface was characterized with SEM, XPS and ToF-SIMS after long-term immersion tests at pH 7 and pH 5. • The analysis showed an increased adsorption of amino acids (DMEM) and proteins (DMEM + FCS). • BSA was shown to prevent dissolution of the β-phase, limiting metal ion release and increase of corrosion resistance. • Ratios calculated by means of ToF-SIMS show that the protein will have different orientations during adsorption.

  20. A new strategy for improvement of the corrosion resistance of a green cerium conversion coating through thermal treatment procedure before and after application of epoxy coating

    Energy Technology Data Exchange (ETDEWEB)

    Mahidashti, Z. [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Shahrabi, T., E-mail: tshahrabi34@modares.ac.ir [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box: 14115-143, Tehran (Iran, Islamic Republic of); Ramezanzadeh, B., E-mail: ramezanzadeh-bh@icrc.ac.ir [Department of Surface Coatings and Corrosion, Institute for Color Science and Technology (ICST), P.O. 16765-654, Tehran (Iran, Islamic Republic of)

    2016-12-30

    Highlights: • The Ce conversion coating was post-heated at various conditions. • The corrosion resistance of post-heated Ce films was evaluated. • A crack free and denser Ce film were obtained after post-heating. • The corrosion resistance of Ce film noticeably increased. • Post-heated Ce film resulted better protection performance of epoxy coating. - Abstract: The effect of post-heating of CeCC on its surface morphology and chemistry has been studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and contact angle (CA) measurements. The corrosion protection performance of the coatings was investigated by electrochemical impedance spectroscopy (EIS). The effect of thermal treatment of CeCC on the corrosion protection performance of epoxy coating was investigated by EIS. Results showed that the heat treatment of Ce film noticeably improved its corrosion resistance and adhesion properties compared to that of untreated samples. The CeCC deposited on the steel substrate at room temperature had a highly cracked structure, while the amount of micro-cracks significantly reduced after post-heating procedure. Results obtained from EIS analysis confirmed the effect of post-heating of CeCC on its corrosion protection performance enhancement. The increase of post-heating temperature and time up to 140 °C and 3 h led to better results.

  1. Wear resistance of nano- and micro-crystalline diamond coatings onto WC-Co with Cr/CrN interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Polini, Riccardo [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 1, Rome, 00133 (Italy); Barletta, Massimiliano, E-mail: barletta@ing.uniroma2.i [Dipartimento di Ingegneria Meccanica, Universita di Roma Tor Vergata, Via del Politecnico, 1, Rome, 00133 (Italy); Cristofanilli, Giacomo [Dipartimento di Scienze e Tecnologie Chimiche, Universita di Roma Tor Vergata, Via della Ricerca Scientifica, 1, Rome, 00133 (Italy)

    2010-12-30

    Cr/CrN bi-layers have been used recently to promote the growth of high quality Hot Filament Chemical Vapour Deposition (HFCVD) diamond coatings onto Co-cemented tungsten carbide (WC-6 wt.%Co) substrates. In the present investigation, the influence of the crystalline size of the diamond coatings on their wear endurance is looked into. Nano- (NDC) and micro-crystalline Diamond Coatings (MDC) were deposited by HFCVD onto untreated and Fluidized Bed (FB) treated Cr/CrN interlayers. NDCs, characterized by a cauliflower-like morphology, showed improved wear resistance. However, the superimposition of NDCs onto Cr/CrN interlayers micro-corrugated by FB treatment was found to be the most promising choice, leading to the formation of highly adherent and wear resistant coatings.

  2. Abrasive water jet drilling of cooling holes in aeroengines: preliminary experimental study

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Petr; Zlámal, T.; Sitek, Libor

    2018-01-01

    Roč. 1, č. 1 (2018), s. 2218-2222 ISSN 1803-1269 R&D Projects: GA MŠk(CZ) LO1406; GA MPO(CZ) FV10446 Institutional support: RVO:68145535 Keywords : abrasive water jet * drilling * thermal barrier coating Subject RIV: JQ - Machines ; Tools OBOR OECD: Mechanical engineering http://www.mmscience.eu/2018.html

  3. THE STRUCTURE AND MECHANICAL PROPERTIES OF NiCrBSi COATINGS PREPARED BY LASER BEAM CLADDING

    Directory of Open Access Journals (Sweden)

    Zita Iždinská

    2010-03-01

    Full Text Available In this work, the influence of processing conditions on the microstructure and abrasive wear behavior of a NiCrBSi laser clad coating is analyzed. The powder was applied onto a mild steel substrate (Fe–0.17% C by different laser powers and cladding speeds providing 0.7 – 1.2 mm thick coatings. The microstructure of coatings was analyzed by scanning electron microscopy (SEM. Energy-dispersive X-ray spectroscopy (EDX was applied for chemical analysis and tribological properties of coatings were evaluated by pin-on-disc wear test. EDX analysis reveals the influence of cladding speed on dilution of iron from the substrate into the coating. Higher iron content matches with lower hardness and wear resistance of appropriate coatings. Obtained results indicate that laser cladding is suitable technique for manufacturing NiCrBSi abrasive wear coatings and that it is possible to find out proper parameters in order to optimize tribological behavior of these coatings.

  4. Searching for optimal mitigation geometries for laser resistant multilayer high reflector coatings

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, S R; Wolfe, J E; Monterrosa, A M; Feit, M D; Pistor, T V; STolz, C J

    2011-02-11

    Growing laser damage sites on multilayer high reflector coatings can limit mirror performance. One of the strategies to improve laser damage resistance is to replace the growing damage sites with pre-designed benign mitigation structures. By mitigating the weakest site on the optic, the large aperture mirror will have a laser resistance comparable to the intrinsic value of the multilayer coating. To determine the optimal mitigation geometry, the finite difference time domain method (FDTD) was used to quantify the electric-field intensification within the multilayer, at the presence of different conical pits. We find that the field intensification induced by the mitigation pit is strongly dependent on the polarization and the angle of incidence (AOI) of the incoming wave. Therefore the optimal mitigation conical pit geometry is application specific. Furthermore, our simulation also illustrates an alternative means to achieve an optimal mitigation structure by matching the cone angle of the structure with the AOI of the incoming wave, except for the p-polarization wave at a range of incident angles between 30{sup o} and 45{sup o}.

  5. Effect of Surface Modification on Corrosion Resistance of Uncoated and DLC Coated Stainless Steel Surface

    Science.gov (United States)

    Scendo, Mieczyslaw; Staszewska-Samson, Katarzyna

    2017-08-01

    Corrosion resistance of 4H13 stainless steel (EN-X46Cr13) surface uncoated and coated with an amorphous hydrogenated carbon (a-C:H) film [diamond-like carbon (DLC)] in acidic chloride solution was investigated. The DLC films were deposited on steel surface by a plasma deposition, direct current discharge (PDCD) method. The Fourier transform infrared (FTIR) was used to determine the chemical groups existing on DLC films. The surface of the specimens was observed by a scanning electron microscope (SEM). The tribological properties of the both materials were examined using a ball-on disk tribometer. The microhardness (HV) of diamond-like carbon film increased over five times in relation to the 4H13 stainless steel without of DLC coating. Oxidation kinetic parameters were determined by gravimetric and electrochemical methods. The high value of polarization resistance indicates that the DLC film on substrate was characterized by low electrical conductivity. The corrosion rate of 4H13 stainless steel with of DLC film decreased about eight times in relation to uncoated surface of 4H13 stainless steel.

  6. Development of wear resistant ceramic coatings for diesel engine components. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Haselkorn, M.H. [Caterpillar, Inc., Peoria, IL (United States)

    1992-04-01

    Improved fuel economy and a reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, insulating the combustion chamber components will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150{degree}C to over 300{degree}C. Existing ring/liner materials can not withstand these higher operating temperatures and for this reason, new materials need to be developed for this critical tribological interface. The overall goal of this program is the development of piston ring/cylinder liner material pairs which would be able to provide the required friction and wear properties at these more severe operating conditions. More specifically, this program first selected, and then evaluated, potential d/wear resistant coatings which could be applied to either piston rings an or cylinder liners and provide, at 350{degree}C under lubricated conditions, coefficients of friction below 0.1 and wear rates of less than 25 {times} lO{sup {minus}6} mm/hour. The processes selected for applying the candidate wear resistant coatings to piston rings and/or cylinder liners were plasma spraying, chemical vapor, physical vapor and low temperature arc vapor deposition techniques as well as enameling techniques.

  7. Novel strategy in increasing stability and corrosion resistance for super-hydrophobic coating on aluminum alloy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yin Bo [Department of Applied Physics, Chongqing University, Chongqing, 400044 (China); Fang Liang, E-mail: fangliangcqu@yahoo.com.cn [Department of Applied Physics, Chongqing University, Chongqing, 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, 400044 (China); Tang Anqiong; Huang Qiuliu; Hu Jia; Mao Jianhui [Department of Applied Physics, Chongqing University, Chongqing, 400044 (China); Bai, Ge; Bai, Huan [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing, 400044 (China)

    2011-10-15

    A novel super-hydrophobic coating was prepared by chemical modification on the anodized aluminum alloy surface. The surface structure was characterized by water contact angle measurement, scanning electron microscopy (SEM), and the composition was measured by X-ray photoelectron spectroscopy (XPS). The corrosion behavior of the super-hydrophobic coating was evaluated by the polarization curve and the electrochemical impedance spectroscopy (EIS). It was found that the static water contact angle on the surface of super-hydrophobic coating was as high as 167.7 {+-} 1.2 deg., and the sliding angle was 5 deg. The super-hydrophobic coating resulted in excellent corrosion resistance property and the super-hydrophobic coating showed a good stability.

  8. Effect of Mg on the Microstructure and Corrosion Resistance of the Continuously Hot-Dip Galvanizing Zn-Mg Coating

    Directory of Open Access Journals (Sweden)

    Anping Dong

    2017-08-01

    Full Text Available The microstructure of continuously hot-dip galvanizing Zn-Mg coating was investigated in order to obtain the mechanism of the effects of Mg on the corrosion resistance. In this paper, the vertical section of the Zn-0.20 wt % Al-Mg ternary phase diagram near the Al-low corner was calculated. The results indicates that the phase composition of the Zn-0.20 wt % Al-Mg ternary phase diagram near the Al-low corner is the same as Zn-Mg binary phase diagram, suggesting Al in the Zn-Mg (ZM coatings mainly concentrates on the interfacial layer between the coating and steel substrate. The microstructure of continuously hot-dip galvanizing ZM coatings with 0.20 wt % Al containing 1.0–3.0 wt % Mg was investigated using tunneling electron microscopy (TEM. The morphology of Zn in the coating changes from bulk to strip and finally to mesh-like, and the MgZn2 changes from rod-like to mesh-like with the Mg content increasing. Al in the ZM coatings mainly segregates at the Fe2Al5 inhibition layer and the Mg added to the Zn bath makes this inhibition layer thinner and uneven. Compared to GI coating, the time of the first red rust appears increases by more than two-fold and expansion rate of red rust reduces by more than four-fold in terms of salt spray experiment. The ZM coating containing 2.0 wt % Mg has the best corrosion resistance. The enhanced corrosion resistance of ZM coatings mainly depends on different corrosion products.

  9. Diamond-like carbon coatings enhance scratch resistance of bearing surfaces for use in joint arthroplasty: hard substrates outperform soft.

    Science.gov (United States)

    Roy, Marcel E; Whiteside, Leo A; Katerberg, Brian J

    2009-05-01

    The purpose of this study was to test the hypotheses that diamond-like carbon (DLC) coatings will enhance the scratch resistance of a bearing surface in joint arthroplasty, and that a hard ceramic substrate will further enhance scratch resistance by reducing plastic deformation. We tested these hypotheses by applying a hard DLC coating to medical-grade cobalt chromium alloy (CoCr) and magnesia-stabilized zirconia (Mg-PSZ) femoral heads and performing scratch tests to determine the loads required to cause cohesive and adhesive fracture of the coating. Scratch tracks of DLC-coated and noncoated heads were then scanned by optical profilometry to determine scratch depth, width, and pile-up (raised edges), as measures of susceptibility to scratching. DLC-coated CoCr specimens exhibited cohesive coating fracture as wedge spallation at an average load of 9.74 N, whereas DLC-coated Mg-PSZ exhibited cohesive fracture as arc-tensile cracks and chipping at a significantly higher average load of 41.3 N (p coating fracture, DLC-CoCr delaminated at an average load of 35.2 N, whereas DLC-Mg-PSZ fractured by recovery spallation at a significantly higher average load of 46.8 N (p DLC-CoCr and DLC-Mg-PSZ specimens exhibited significantly shallower scratches and less pile-up than did uncoated specimens (p DLC-Mg-PSZ better resisted plastic deformation, requiring significantly higher loads for cohesive and adhesive coating fracture. These findings supported both of our hypotheses. (c) 2008 Wiley Periodicals, Inc.

  10. Development of advanced metallic coatings resistant to corrosion in high temperature industrial atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Weber, T.; Bender, R.; Rosado, C.; Schuetze, M. [DECHEMA e.V., Frankfurt am Main (Germany)

    2004-07-01

    Following the experimental results that {gamma}-TiAl is highly resistant in reducing sulfidizing atmospheres the development of Ti-Al-co-diffusion coatings produced in a single step pack cementation process was started. The appropriate diffusion powder compositions were selected using thermodynamical calculations. Different Al-Ti-, Al-Si- and Al-Ti-Si-diffusion coatings were successfully applied on austenitic steels as well as Ni-base materials and showed excellent behaviour in reducing sulfidizing atmospheres with high carbon contents (CH{sub 4} - 1% CO - 1% CO{sub 2} - 10% H{sub 2} - 7% H{sub 2}S) up to 700 deg. C, under metal dusting conditions (H{sub 2} - 25 CO - 2% H{sub 2}O and CO - 2.4% CO{sub 2} - 1% CH{sub 4} - 9.4% N{sub 2} - 23.4% H{sub 2} - 0.2% H{sub 2}O - 1 ppm H{sub 2}S-0.3 ppm HCl) at temperatures of 620 deg. C and 700 deg. C. The application of diffusion coatings on ferritic materials has to be modified due to the specific requirements on the mechanical properties which are affected by the heat treatment during the diffusion process. TiAl was also applied by the HVOF thermal spray method on ferritic steels. Due to similarity of the thermal expansion coefficients this substrate-coating system proved to be mechanically very stable also under thermal cycling conditions. (authors)

  11. Ultrasonic Abrasive Removal Of EDM Recast

    Science.gov (United States)

    Mandel, Johnny L.; Jacobson, Marlowe S.

    1990-01-01

    Ultrasonic abrasive process removes layer of recast material generated during electrical-discharge machining (EDM) of damper pocket on turbine blade. Form-fitted tool vibrated ultrasonically in damper pocket from which material removed. Vibrations activate abrasive in pocket. Amount of material removed controlled precisely.

  12. Ceramic-bonded abrasive grinding tools

    Science.gov (United States)

    Holcombe, Jr., Cressie E.; Gorin, Andrew H.; Seals, Roland D.

    1994-01-01

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  13. Ceramic-bonded abrasive grinding tools

    Science.gov (United States)

    Holcombe, C.E. Jr.; Gorin, A.H.; Seals, R.D.

    1994-11-22

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  14. Transition metal carbide and boride abrasive particles

    International Nuclear Information System (INIS)

    Valdsaar, H.

    1978-01-01

    Abrasive particles and their preparation are discussed. The particles consist essentially of a matrix of titanium carbide and zirconium carbide, at least partially in solid solution form, and grains of crystalline titanium diboride dispersed throughout the carbide matrix. These abrasive particles are particularly useful as components of grinding wheels for abrading steel. 1 figure, 6 tables

  15. Performance Evaluation of Abrasive Grinding Wheel Formulated ...

    African Journals Online (AJOL)

    This paper presents a study on the formulation and manufacture of abrasive grinding wheel using locally formulated silicon carbide abrasive grains. Six local raw material substitutes were identified through pilot study and with the initial mix of the identified materials, a systematic search for an optimal formulation of silicon ...

  16. Removable coating for contamination protection of concrete surface

    International Nuclear Information System (INIS)

    Brambilla, G.; Beaulardi, L.

    1985-01-01

    In order to research protective coatings for concrete surfaces, assuring an effective protection against contamination and that it be easily removed before dismantling the structures, commercial stripping paints have been characterized for their conventional and nuclear properties: water and chemicals, abrasion, impact, tensile stress resistance, stripping capacity, decontaminability. The protective power of the coatings against contamination has been checked by recording the surface activity before and after stripping the paint film: the activity filtered through the coating was, in any case, very low (< 1% of the deposited activity). Indications from large scale application of a stripping paint in NUCLEO (Rome) establishments and technical evaluation of the possible utilization of removable coatings in the CAORSO Nuclear Power Station, are also reported

  17. Annealing effect on corrosion resistance of Bi{sub x}Ti{sub y}O{sub z} coatings

    Energy Technology Data Exchange (ETDEWEB)

    Pinzon, M. J.; Alfonsoa, J. E.; Olaya, J. J. [Universidad Nacional de Colombia, Grupo de Ciencia de Materiales y Superficies, Bogota AA 14490 (Colombia); Pineda Vargas, C. A., E-mail: jealfonsoo@unal.edu.co [iThemba LABS, Materials Research Department, PO Box 722, Somerset West 7129 (South Africa)

    2016-11-01

    Bismuth titanate (Bi-xTi{sub y}O{sub z}) has received widespread attention due to the fact that during recent times it has found important applications in strategic research fields such as optics and optoelectronic, and more recently studies have shown how their physicochemical properties may be harnessed in order to be able to use Bi{sub x}Ti{sub y}O{sub z}, as an anti corrosive coating. In this work bismuth titanate (Bi{sub x}Ti{sub y}O{sub z}) coatings were grown on titanium alloy (Ti6A14V) substrates, using RF magnetron sputtering at room temperature. The main objectives of the work were quantify the evolution of crystallographic phase formation, as a function of the annealing temperature, and establish the chemical composition in order to characterize the behaviour of the bismuth titanate coating as a protective coating of the corrosion. The morphology of the coating was observed via scanning electronic microscopy (Sem); the crystalline structure was characterized by X-ray diffraction (XRD) and the chemical composition was analyzed by Rutherford Backscattering Spectrometry (RBS). The corrosion resistance of the coatings was studied by potentiodynamic polarization (Pp) test (Tafel extrapolation). Sem results showed that the surface roughness of the coatings changed when the temperature of annealing increased. Similar change occurred after Pp tests. The XRD analysis revealed a change in the coatings microstructure as a function of the annealing temperature, since they evolved from a completely amorphous phase to a polycrystalline phase. RBS results indicate that coatings growing at high temperature have a complex chemical composition. Finally, the electrochemical analysis showed that the corrosion resistance of the coating is much better in the amorphous phases of bismuth titanate than in the polycrystalline phases. (Author)

  18. Study on performance of waterborne anticorrosive coatings on steel rebars

    Science.gov (United States)

    Ramaswamy, S. N.; Varalakshmi, R.; Selvaraj, R.

    2017-12-01

    Durability of reinforced cement concrete structures is mainly affected by corrosion of steel reinforcements. In order to protect the reinforcing bars from corrosion and to enhance the lifetime of reinforced cement concrete structural members, anticorrosive treatment to steel is of prime importance. Conventional coatings are solvent based. In this study, water based Latex was used to formulate anticorrosive coating. Latex is applied to steel specimen substrates such as plates and rods and their mechanical properties such as flexibility, abrasion, bendability, adhesive strength, impact resistance, etc. were studied. It was inferred that coating containing latex, micro silica, zinc phosphate, ferric oxide, aluminum oxide, titanium oxide and silica fume was found to possess more corrosion resistance under marine exposure conditions.

  19. Corrosion Resistance Properties of Aluminum Coating Applied by Arc Thermal Metal Spray in SAE J2334 Solution with Exposure Periods

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2016-03-01

    Full Text Available Arc thermal metal spray coating provides excellent corrosion, erosion and wear resistance to steel substrates. This paper incorporates some results of aluminum coating applied by this method on plain carbon steel. Thereafter, coated panels were exposed to an environment known to form stable corrosion products with aluminum. The coated panels were immersed in Society of Automotive Engineers (SAE J2334 for different periods of time. This solution consists of an aqueous solution of NaCl, CaCl2 and NaHCO3. Various electrochemical techniques, i.e., corrosion potential-time, electrochemical impedance spectroscopy (EIS and the potentiodynamic were used to determine the performance of stimulants in improving the properties of the coating. EIS studies revealed the kinetics and mechanism of corrosion and potentiodynamic attributed the formation of a passive film, which stifles the penetration of aggressive ions towards the substrate. The corrosion products that formed on the coating surface, identified using Raman spectroscopy, were Dawsonite (NaAlCO3(OH2 and Al(OH3. These compounds of aluminum are very sparingly soluble in aqueous solution and protect the substrate from pitting and uniform corrosion. The morphology and composition of corrosion products determined by scanning electron microscopy and energy dispersive X-ray analyses indicated that the environment plays a decisive role in improving the corrosion resistance of aluminum coating.

  20. Role of Y in the oxidation resistance of CrAlYN coatings

    Energy Technology Data Exchange (ETDEWEB)

    Domínguez-Meister, S.; El Mrabet, S. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda., Américo Vespucio 49, Sevilla 41092 (Spain); Escobar-Galindo, R. [Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco 28049 (Spain); Mariscal, A.; Jiménez de Haro, M.C.; Justo, A. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda., Américo Vespucio 49, Sevilla 41092 (Spain); Brizuela, M. [TECNALIA, Mikeletegui Pasealekua, 2, Donostia-San Sebastián 20009 (Spain); Rojas, T.C. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda., Américo Vespucio 49, Sevilla 41092 (Spain); Sánchez-López, J.C., E-mail: jcslopez@icmse.csic.es [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda., Américo Vespucio 49, Sevilla 41092 (Spain)

    2015-10-30

    Highlights: • The oxidation behavior of CrAlYN films (Al < 10 at.%) depends on the Al/Y distribution. • ∼4 at.% Y enhances the oxidation resistance up to 1000 °C of CrAlYN-coated M2 steels. • Controlled inward oxygen diffusion affects positively the film oxidation resistance. • Mixed Al–Y oxides appear to block the diffusion of elements from the substrate. • Yttrium modifies the passivation layer composition by increasing the Al/Cr ratio. - Abstract: CrAlYN coatings with different aluminum (4–12 at.%) and yttrium (2–5 at.%) contents are deposited by d.c. reactive magnetron sputtering on silicon and M2 steel substrates using metallic targets and Ar/N{sub 2} mixtures. The influence of the nanostructure and chemical elemental distribution on the oxidation resistance after heating in air at 1000 °C is studied by means of cross-sectional scanning electron microscopy (X-SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and glow discharge optical emission spectroscopy (GD-OES). The sequential exposure to the metallic targets during the synthesis leads to a multilayer structure where concentration of metallic elements (Cr, Al and Y) is changing periodically. A good oxidation resistance is observed when Al- and Y-rich regions are separated by well-defined CrN layers, maintaining crystalline coherence along the columnar structure. This protective behavior is independent of the type of substrate and corresponds to the formation of a thin mixed (Al, Cr)-oxide scale that protects the film underneath. The GD-OES and XRD analysis have demonstrated that Y acts as a reactive element, blocking the Fe and C atoms diffusion from the steel and favoring higher Al/Cr ratio in the passivation layer after heating. The coating with Y content around 4 at.% exhibited the best performance with a thinner oxide scale, a delay in the CrN decomposition and transformation to Cr{sub 2}N, and a more effective Fe and C blocking.

  1. Cleaning power and abrasivity of European toothpastes.

    Science.gov (United States)

    Wülknitz, P

    1997-11-01

    For 41 toothpastes available to European consumers in 1995, the cleaning efficacy was evaluated in comparison with abrasivity on dentin (RDA value). For cleaning power assessment, a modified pellicle cleaning ratio (PCR) measurement method was developed. The method is characterized by a five-day tea-staining procedure on bovine front teeth slabs on a rotating wheel, standardized brushing of the slabs in a V8 cross-brushing machine, and brightness measurement by a chromametric technique. All tested products were in accordance with the new DIN/ISO standard 11,609 for toothpastes in terms of dentin abrasivity. Not a single product exceeded an RDA value of 200. The majority of toothpastes (80%) had an RDA value below 100. Only three products surpassed the reference in cleaning power. Most products (73%) had a cleaning power (PCR value) between 20 and 80. The correlation between cleaning power and dentin abrasion was low (r = 0.66), which can be explained with the different influence on dentin and stains by factors like abrasive type, particle surface and size, as well as the chemical influence of other toothpaste ingredients. Some major trends could be shown on the basis of abrasive types. The ratio PCR to RDA was rather good in most silica-based toothpastes. A lower ratio was found in some products containing calcium carbonate or aluminum trihydrate as the only abrasive. The addition of other abrasives, such as polishing alumina, showed improved cleaning power. Some active ingredients, especially sequenstrants such as sodium tripolyphosphate or AHBP, also improve the PCR/RDA ratio by stain-dissolving action without being abrasive. The data for some special anti-stain products did not differ significantly from standard products. Compared with data measured in 1988, a general trend toward reduced abrasivity without loss of cleaning efficacy could be noticed on the European toothpaste market. This may be mostly due to the increased use of high-performance abrasives such

  2. Corrosion resistance and biocompatibility of titanium surface coated with amorphous tantalum pentoxide

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ying-Sui [Department of Oral Biology, National Yang-Ming University, Taipei, Taiwan (China); Chang, Jean-Heng [Dental Department, Cheng Hsin General Hospital, Taipei, Taiwan (China); Huang, Her-Hsiung, E-mail: hhhuang@ym.edu.tw [Department of Dentistry, National Yang-Ming University, Taipei, Taiwan (China); Department of Dentistry, Taipei City Hospital, Taipei, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan (China)

    2013-01-01

    Tantalum pentoxide (Ta{sub 2}O{sub 5}) possesses good corrosion resistance and biocompatibility. This study aimed to improve the corrosion resistance and biocompatibility of titanium (Ti) by coating it with an amorphous Ta{sub 2}O{sub 5} surface layer. An amorphous Ta{sub 2}O{sub 5} layer was prepared on the Ti surface using a simple hydrolysis–condensation process at room temperature. The surface characteristics of the test specimens were analyzed using X-ray photoelectron spectroscopy, glancing angle X-ray diffraction, field emission scanning electron microscopy, and contact angle measurements. The corrosion resistance of the test specimens was evaluated from the potentiodynamic polarization curves and ion release measurements in simulated blood plasma (SBP). The biocompatibility of the test specimens was evaluated in terms of the protein (albumin) adsorption, cell adhesion, and cell growth of human bone marrow mesenchymal stem cells (hBMSCs). The amorphous Ta{sub 2}O{sub 5} layer with a porous micro-/nano-scale topography, which was deposited on the Ti surface using a simple hydrolysis–condensation process, increased the corrosion resistance (i.e., increased the corrosion potential and decreased the anodic current and ion release) of the Ti in the SBP and improved the surface wettability, albumin adsorption, and cell adhesion. We conclude that the presence of an amorphous Ta{sub 2}O{sub 5} layer on the Ti surface increased the corrosion resistance and biocompatibility of Ti. - Highlights: ► Amorphous Ta{sub 2}O{sub 5} layer was coated on Ti using simple hydrolysis–condensation process. ► Ta{sub 2}O{sub 5} surface layer showed a micro-/nano-scale porous topography. ► Ta{sub 2}O{sub 5} layer enhanced wettability and corrosion resistance of Ti. ► Ta{sub 2}O{sub 5} layer enhanced protein adsorption, cell adhesion, and cell proliferation of Ti.

  3. Characterization of corrosion resistant on NiCoCr coating layer exposed to 5%NaCl

    Science.gov (United States)

    Sugiarti, E.; Sundawa, R.; Desiati, R. D.; Zaini, K. A.

    2018-03-01

    Highly corrosion resistant of carbon steel coated NiCoCr was applied in corrosive of marine environtment. Carbon steel coated NiCoCr was prepared by a two step technique of NiCo electro-deposition and Cr pack cementation. The samples were exposed to 5 wt.% NaCl for 48 and 168 hours. The microstructure and corrosion product were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The corrosion resistance of carbon steel coated NiCoCr was found to be better than that of carbon steel substrate without coating. The results showed the microstructure of 48 h corroded sample has duplex layer composed of inner α-(Ni,Co), α-Cr and outer Cr2O3, while a quite thin and continues protective oxide of Cr2O3 was observed in outer layer of 168 h corroded sample. The formation of oxide scale rich in Cr2O3 has contributed for the better corrosion resistance of carbon steel coated NiCoCr, whereas the formation of non protective oxide of iron might caused low corrosion resistance of carbon steel substrate.

  4. [Study on discrimination of varieties of fire resistive coating for steel structure based on near-infrared spectroscopy].

    Science.gov (United States)

    Xue, Gang; Song, Wen-qi; Li, Shu-chao

    2015-01-01

    In order to achieve the rapid identification of fire resistive coating for steel structure of different brands in circulating, a new method for the fast discrimination of varieties of fire resistive coating for steel structure by means of near infrared spectroscopy was proposed. The raster scanning near infrared spectroscopy instrument and near infrared diffuse reflectance spectroscopy were applied to collect the spectral curve of different brands of fire resistive coating for steel structure and the spectral data were preprocessed with standard normal variate transformation(standard normal variate transformation, SNV) and Norris second derivative. The principal component analysis (principal component analysis, PCA)was used to near infrared spectra for cluster analysis. The analysis results showed that the cumulate reliabilities of PC1 to PC5 were 99. 791%. The 3-dimentional plot was drawn with the scores of PC1, PC2 and PC3 X 10, which appeared to provide the best clustering of the varieties of fire resistive coating for steel structure. A total of 150 fire resistive coating samples were divided into calibration set and validation set randomly, the calibration set had 125 samples with 25 samples of each variety, and the validation set had 25 samples with 5 samples of each variety. According to the principal component scores of unknown samples, Mahalanobis distance values between each variety and unknown samples were calculated to realize the discrimination of different varieties. The qualitative analysis model for external verification of unknown samples is a 10% recognition ration. The results demonstrated that this identification method can be used as a rapid, accurate method to identify the classification of fire resistive coating for steel structure and provide technical reference for market regulation.

  5. Reinforced Carbon Carbon (RCC) oxidation resistant material samples - Baseline coated, and baseline coated with tetraethyl orthosilicate (TEOS) impregnation

    Science.gov (United States)

    Gantz, E. E.

    1977-01-01

    Reinforced carbon-carbon material specimens were machined from 19 and 33 ply flat panels which were fabricated and processed in accordance with the specifications and procedures accepted for the fabrication and processing of the leading edge structural subsystem (LESS) elements for the space shuttle orbiter. The specimens were then baseline coated and tetraethyl orthosilicate impregnated, as applicable, in accordance with the procedures and requirements of the appropriate LESS production specifications. Three heater bars were ATJ graphite silicon carbide coated with the Vought 'pack cementation' coating process, and three were stackpole grade 2020 graphite silicon carbide coated with the chemical vapor deposition process utilized by Vought in coating the LESS shell development program entry heater elements. Nondestructive test results are reported.

  6. Two-body, dry abrasive wear of Fe/Cr/C experimental alloys - relationship between microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Kwok, C.K.S.

    1982-01-01

    A systematic study of abrasive wear resistance of Fe/Cr/Mn based alloys has been carried out using a two body pin-on-disc wear machine. Abrasives used were silicon carbide, alumina and quartz. The objective of this study was to evaluate the abrasive wear resistance and to investigate the relationships between microstructure, mechanical properties, and abrasive wear resistance for these experimental alloys. Several commercial alloys were also tested to provide a basis for comparison. The goal of this study was to develop information so as to improve wear resistance of these experimental alloys by means of thermal treatments. Grain-refinement by double heat treatment was carried out in this research

  7. Dynamic Mechanical Analysis and Three-Body Abrasive Wear Behaviour of Thermoplastic Copolyester Elastomer Composites

    Directory of Open Access Journals (Sweden)

    Hemanth Rajashekaraiah

    2014-01-01

    Full Text Available Various amounts of short fibers (glass and carbon and particulate fillers like polytetrafluoroethylene (PTFE, silicon carbide (SiC, and alumina (Al2O3 were systematically introduced into the thermoplastic copolyester elastomer (TCE matrix for reinforcement purpose. The mechanical properties such as storage modulus, loss modulus, and Tan δ by dynamic mechanical analysis (DMA and three-body abrasive wear performance on a dry sand rubber wheel abrasion tester have been investigated. For abrasive wear study, the experiments were planned according to L27 orthogonal array by considering three factors and three levels. The complex moduli for TCE hybrid composites were pushed to a higher level relative to the TCE filled PTFE composite. At lower temperatures (in the glassy region, the storage modulus increases with increase in wt.% of reinforcement (fiber + fillers and the value is maximum for the composite with 40 wt.% reinforcement. The loss modulus and damping peaks were also found to be higher by the incorporation of SiC and Al2O3 microfillers. The routine abrasive wear test results indicated that TCE filled PTFE composite exhibited better abrasion resistance. Improvements in the abrasion resistance, however, have not been achieved by short-fiber and particlaute filler reinforcements. From the Taguchi’s experimental findings, optimal combination of control factors were obtained for minimum wear volume and also predictive correlations were proposed. Further, the worn surface morphology of the samples was discussed.

  8. Effect of epoxy resin sealing on corrosion resistance of arc spraying aluminium coating using cathode electrophoresis method

    Science.gov (United States)

    Pang, Xuming; Wang, Runqiu; Wei, Qian; Zhou, Jianxin

    2018-01-01

    Arc-sprayed Al coating was sealed with epoxy resin using the cathode electrophoresis method. The anti-corrosion performance of the coatings sealed with epoxy resin was studied by means of a 3.5 wt.% NaCl solution test at 40 °C. For comparison, the anti-corrosion performance of Al coating sealed with boiling water was also performed under the same conditions. The results show that epoxy resin with a thickness of about 20 microns can entirely cover open pores and decreases the surface roughness of the as-sprayed Al coating, and the epoxy resin even permeates into the gaps among lamellar splats from open pores. After corrosion, the thickness of the epoxy resin layer is unchanged and can still cover the as-sprayed Al coating entirely. However, the thickness of Al coating sealed with boiling water decreases from 100 to 40 microns, which indicates that the arc-sprayed Al coating has much better corrosion resistance than the Al coating sealed with boiling water. Meanwhile, the content of substituted benzene ring in the epoxy resin increases, but aromatic ring decreases according to the fourier transform infrared spectra, which will cause the rigidity of the epoxy resin to increase, but the toughness slightly decreases after corrosion.

  9. Development of an oxidation resistant glass-ceramic composite coating on Ti-47Al-2Cr-2Nb alloy

    Science.gov (United States)

    Li, Wenbo; Zhu, Shenglong; Chen, Minghui; Wang, Cheng; Wang, Fuhui

    2014-02-01

    Three glass-ceramic composite coatings were prepared on Ti-47Al-2Cr-2Nb alloy by air spraying technique and subsequent firing. The aim of this work is to study the reactions between glass matrix and inclusions and their effects on the oxidation resistance of the glass-ceramic composite coating. The powders of alumina, quartz, or both were added into the aqueous solution of potassium silicate (ASPS) to form slurries used as the starting materials for the composite coatings. The coating formed from an ASPS-alumina slurry was porous, because the reaction between alumina and potassium silicate glass resulted in the formation of leucite (KAlSi2O6), consuming substantive glass phase and hindering the densification of the composite coating. Cracks were observed in the coating prepared from an ASPS-quartz slurry due to the larger volume shrinkage of the coating than that of the alloy. In contrast, an intact and dense SiO2-Al2O3-glass coating was successfully prepared from an ASPS-alumina-silica slurry. The oxidation behavior of the SiO2-Al2O3-glass composite coating on Ti-47Al-2Cr-2Nb alloy was studied at 900 °C. The SiO2-Al2O3-glass composite coating acted as an oxygen diffusion barrier, and prevented the inward diffusion of the oxygen from the air to the coating/alloy interface, therefore, decreasing the oxidation rate of the Ti-47Al-2Cr-2Nb alloy significantly.

  10. Comparison of the structure and wear resistance of Al2O3 -13 wt%TiO2 coatings made by GSP and WSP plasma process with two different powders

    Czech Academy of Sciences Publication Activity Database

    Ageorges, H.; Ctibor, Pavel

    2008-01-01

    Roč. 202, č. 18 (2008), s. 4362-4368 ISSN 0257-8972 R&D Projects: GA AV ČR 1QS200430560 Institutional research plan: CEZ:AV0Z20430508 Keywords : Alumina * titania * plasma spraying * wear resistance * slurry abrasion Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.860, year: 2008

  11. Slip-rolling resistance of novel Zr(C,N) thin film coatings under high Hertzian contact pressures

    Energy Technology Data Exchange (ETDEWEB)

    Manier, Charles-Alix

    2010-08-24

    Today, coatings are used in many applications ranging from the decoration purposes to the improvement of efficiency such as in machining tools, medical tools, computer devices (hard disks) and many more. Especially the automotive industry anticipates a benefit in using coatings for example in powertrains and gears where the mechanical components are stressed under slip-rolling motion. A cost effective option to increase efficiency is based on the increase of the load carrying capacity by thin film coatings. It would also represent a way towards downsizing. In the work presented here, a small review concerning rolling contact fatigue of coatings was performed. Experimentally it is then shown, that crystalline Zr(C,N) coatings can be slip-rolling resistant at 120 C in factory fill engine oil up to ten million cycles under average Hertzian contact pressures up to P{sub 0mean} = 1.94 GPa (P{sub 0max} = 2.91 GPa). Basically, it represents here the doubling of the normal force acting on the surface compared to uncoated steel traditionally lubricated with fully formulated oil. Typically, the coated substrates are made of the quenched and tempered bearing steel Cronidur 30. The Zr(C,N) coatings were fully characterized using different characterisation techniques in order to understand the difference in slip-rolling resistance under those high tribological demands. Effectively, the slip-rolling resistance of different batches of the Zr(C,N) coatings is evaluated using a defined and powerful testing procedure. Different results of lifetime were achieved without fundamental changes of the deposition procedure. The characterisation achieved permits the identification of microstructural disparities which should affect the load carrying capacity of the coating. Moreover, the efficiency of the high slip-rolling resistant Zr(C,N) coating was considered not only with respect to the improvement of the load carrying capacity of the substrate but also in terms of tribological

  12. A doxycycline-loaded polymer-lipid encapsulation matrix coating for the prevention of implant-related osteomyelitis due to doxycycline-resistant methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Metsemakers, Willem-Jan; Emanuel, Noam; Cohen, Or; Reichart, Malka; Potapova, Inga; Schmid, Tanja; Segal, David; Riool, Martijn; Kwakman, Paulus H S; de Boer, Leonie; de Breij, Anna; Nibbering, Peter H; Richards, R Geoff; Zaat, Sebastian A J; Moriarty, T Fintan

    2015-07-10

    Implant-associated bone infections caused by antibiotic-resistant pathogens pose significant clinical challenges to treating physicians. Prophylactic strategies that act against resistant organisms, such as methicillin-resistant Staphylococcus aureus (MRSA), are urgently required. In the present study, we investigated the efficacy of a biodegradable Polymer-Lipid Encapsulation MatriX (PLEX) loaded with the antibiotic doxycycline as a local prophylactic strategy against implant-associated osteomyelitis. Activity was tested against both a doxycycline-susceptible (doxy(S)) methicillin-susceptible S. aureus (MSSA) as well as a doxycycline-resistant (doxy(R)) methicillin-resistant S. aureus (MRSA). In vitro elution studies revealed that 25% of the doxycycline was released from the PLEX-coated implants within the first day, followed by a 3% release per day up to day 28. The released doxycycline was highly effective against doxy(S) MSSA for at least 14days in vitro. A bolus injection of doxycycline mimicking a one day release from the PLEX-coating reduced, but did not eliminate, mouse subcutaneous implant-associated infection (doxy(S) MSSA). In a rabbit intramedullary nail-related infection model, all rabbits receiving a PLEX-doxycycline-coated nail were culture negative in the doxy(S) MSSA-group and the surrounding bone displayed a normal physiological appearance in both histological sections and radiographs. In the doxy(R) MRSA inoculated rabbits, a statistically significant reduction in the number of culture-positive samples was observed for the PLEX-doxycycline-coated group when compared to the animals that had received an uncoated nail, although the reduction in bacterial burden did not reach statistical significance. In conclusion, the PLEX-doxycycline coating on titanium alloy implants provided complete protection against implant-associated MSSA osteomyelitis, and resulted in a significant reduction in the number of culture positive samples when challenged with a

  13. Design of a new bottom antireflective coating composition for KrF resist

    Science.gov (United States)

    Mizutani, Kazuyoshi; Momota, Makoto; Aoai, Toshiaki; Yagihara, Morio

    1999-06-01

    A study for a new organic bottom antireflective coating (BARC) composition is described. A structural design of a light-absorbing dye was most important because dye structure not only plays a role in eliminating reflection from a substrate but also shows influence on dry etch rate of BARC material to a considerable extent. For example, an anthracene moiety with large absorption at 248 nm had undesirable dry etch resistance. 3-Hydroxy-2-naphthoic acid moiety was found to be one of suitable dyes for KrF BARC compositions, and the polymer bearing the dye showed enough absorbance and good erodability in dry etch. The BARC polymer was eroded as one and a half times faster than a novolak resin, and a little faster than an anthracene incorporated polymer. The result was discussed from the concepts of Ohnishi parameter and the ring parameter for dry etch durability of resist materials. BARC polymer should be thermoset by hard bake to eliminate intermixing with resist compositions. The BARC polymer bearing hydroxy group which is useful for a crosslinking reaction was thermoset in the presence of melamine-formaldehyde crosslinker and an acid catalyst after baking over 200 degrees C.

  14. Fabrication of Poly(o/m-Toluidine–SiC/Zinc Bilayer Coatings and Evaluation of Their Corrosion Resistances

    Directory of Open Access Journals (Sweden)

    Chuanbo Hu

    2018-05-01

    Full Text Available The purpose of this research was to study the structure and corrosion resistance of poly(o/m-toluidine-SiC/zinc (Zn bilayer coatings. Poly(o/m-toluidine films, such as poly(o-toluidine (POT and poly(m-toluidine (PMT, were chemically deposited on the surface of composite SiC/Zn coating using the solution evaporation method. The structures of poly(o/m-toluidine were characterized by various optic techniques and the electrochemical behavior was studied by cyclic voltammetry (CV. The structures and morphologies of the SiC/Zn coating were detected by Fourier transformation infrared spectroscopy (FTIR, X-ray diffraction (XRD, energy dispersive spectrometer (EDS, and scanning electron microscopy (SEM. Thereafter, the corrosion resistances of electrodeposited and bilayer coatings were investigated in 3.5% NaCl solution by electrochemical corrosion techniques and an accelerated immersion test. The results showed that the outer POT film exhibits a lower corrosion behavior with respect to PMT, which significantly reduces the corrosion rate of SiC/Zn coating and prolongs the service life of the zinc matrix. The conclusion demontrates that the stronger adsorptive POT film ensures the formed POT–SiC/Zn bilayer coatings possess a compact and low-defect surface, which facilitates POT film to develop its excellent barrier and passivation properties against corrosion.

  15. Wear and Corrosion Resistance of Fe Based Coatings by HVOF Sprayed on Gray Cast-Iron for Automotive Application

    Directory of Open Access Journals (Sweden)

    M.S. Priyan

    2014-12-01

    Full Text Available In this study, commercially available FeSiNiCr and FeBCr alloy powders were designed with suitable compositions, gas atomized and then coated on gray cast-iron substrate. The microstructures of the feed stock Fe based alloy powders and the coatings were investigated by means of optical microscopy (OM, X-Ray diffraction (XRD, Thermogravimetric analysis (TGA and Scanning Electron Microscopy (SEM. In the present study, both the coating materials experienced two-body wear mechanisms. The results showed that for loads of 0.05 N, 0.1 N and 0.2 N, the wear resistance of FeBCr coating was less than FeSiNiCr by 44 %, 40 % and 31 %, respectively. The results indicated that the coated substrates exhibited lower corrosion current densities and lower corrosion rates, when placed in 20 wt.% H2SO4 solutions. In addition, the use of optimal spraying parameters/conditions gave improvements to the corrosion resistance of the substrates that had been treated with the crystalline coating.

  16. Electro-codeposition of Ni-SiO2 nanocomposite coatings from deep eutectic solvent with improved corrosion resistance

    Science.gov (United States)

    Li, Ruiqian; Hou, Yuanyuan; Liang, Jun

    2016-03-01

    Electro-codeposition of nano-sized SiO2 particles into the metal matrix in aqueous solution is generally difficult. In this paper, the nano-sized SiO2 particles were successfully codeposited in the Ni matrix from a choline chloride (ChCl)/ethylene glycol (EG) based deep eutectic solvent (DES) by pulse electro-codeposition. The effects of nano-sized SiO2 particles on electrochemical behaviour of Ni(II) were investigated. The microstructure, composition and corrosion resistance of pure Ni and Ni-SiO2 nanocomposite coatings were explored. Results showed that the SiO2 nanoparticles exhibited excellent dispersion stability in ChCl:2EG DES without any stabilizing additives and the presence of SiO2 nanoparticles have significant effects on the nucleation mechanism of Ni. The maximum content of SiO2 nanoparticles in composite coatings can achieve 4.69 wt.%, which closes to the level of co-deposition micro-sized SiO2 particles from aqueous solution. The Ni-SiO2 nanocomposite coatings exhibit much better corrosion resistance than pure Ni coating, and the corrosion resistance performance increases with increasing SiO2 content in the composite coatings.

  17. The fabrication, nano/micro-structure, heat- and wear-resistance of the superhydrophobic PPS/PTFE composite coatings.

    Science.gov (United States)

    Wang, Huaiyuan; Zhao, Jingyan; Zhu, Youzhuang; Meng, Yang; Zhu, Yanji

    2013-07-15

    A simple engineering method was used to fabricate stability and wear-resistance of superhydrophobic PPS-based PPS/PTFE surfaces through nano/micro-structure design and modification of the lowest surface energy groups (-CF2-), which was inspired by the biomimic lotus leaves. The hydrophobic properties and wear-resistance of the coatings were measured by a contact angle meter and evaluated on a pin-on-disk friction and wear tester, respectively. Moreover, the surfaces of the PPS/PTFE composite coatings were investigated by means of scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), and thermogravimetry (TG) analysis. Results showed that the highest contact angle of the PPS/PTFE surface, with papillae-like randomly distributed double-scale structure, could reach up to 162°. When 1 wt.% PDMS was added, the highest contact angle could hold is 172°. The coatings also retained superhydrophobicity, even under high temperature environment. The investigation also indicated that the coatings were not only superhydrophobic but also oleophobic behavior at room temperature, such as the crude oil, glycerol, and oil-water mixture. The PPS/45%PTFE coatings had more stable friction coefficient and excellent wear-resistance (331,407 cycles) compared with those with less than 45% of PTFE. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Life cycle and sustainability of abrasive tools

    CERN Document Server

    Linke, Barbara

    2016-01-01

    This monograph focuses on abrasive tools for grinding, polishing, honing, and lapping operations. The book describes the life cycle of abrasive tools from raw material processing of abrasive grits and bonding, manufacturing of monolithic or multi-layered tools, tool use to tool end-of-life. Moreover, this work highlights sustainability challenges including economic, environmental, social and technological aspects. The target audience primarily comprises research and industry experts in the field of manufacturing, but the book may also be beneficial for graduate students.

  19. The effect of Al intermediate layer on thermal resistance of EB-PVD yttria-stabilized zirconia coatings on titanium substrate

    Science.gov (United States)

    Panin, Alexey; Panin, Victor; Kazachenok, Marina; Shugurov, Artur; Sinyakova, Elena; Martynov, Sergey; Rusyaev, Andrey; Kasterov, Artur

    2017-12-01

    The yttria-stabilized zirconia coatings sprayed on titanium substrates by the electron beam physical vapor deposition were subjected to thermal annealing in air at 1000°C for 1, 30 and 60 min. The delamination and fracture of the coatings are studied by the scanning electron microscopy and X-ray diffraction. It is shown that a magnetron sputtered Al interlayer between the coating and the substrate considerably improves the thermal resistance of ceramic coatings.

  20. Contribution to the study of the influence of zinc bath composition on corrosion resistance of coatings obtained by galvanization

    International Nuclear Information System (INIS)

    Cabrillac, Claude

    1969-01-01

    This research thesis deals with the influence of zinc purity on the corrosion resistance of a coating obtained by galvanization, and on its effect on cathodic protection. This study therefore addresses methods and tests processes (notably salt spray test) aiming at assessing the efficiency of steel protection by hot galvanization, and aims at highlighting the influence of galvanization bath purity or composition on corrosion resistance of galvanized layers

  1. Clever coating : small technology companies hope to mine some Athabasca riches of their own

    Energy Technology Data Exchange (ETDEWEB)

    Marsters, S.

    2006-09-15

    In oil sands production, abrasive sands and gases such as hydrogen sulfide (H{sub 2}S) can cause corrosion and equipment failure. This article presented details of Hardide, an ultra-hard coating technology that is well-suited to the harsh operating environments of Alberta's heavy oil and oilsands projects. The Hardide manufacturing process involves the application of a thin surface coating of tungsten carbide by chemical vapour deposition to customer-supplied components that are then heated to between 500 degrees C and 600 degrees C, depending on the substrate and the application. Once at the desired temperature, a mixture of gases is pumped into the furnace, where a chemical reaction takes place which then crystallizes on the components to produce a layer of binder-free tungsten carbine coating with abrasion, erosion and chemical resistant characteristics. The coating can be applied to steel, alloys and other materials and has a coating capacity that ranges from 5 to 100 microns. Research on the coating started at the University of Moscow and the Russian Academy of Science Institute but was halted due to the financial problems which followed Perestroika. The coating is now used in the aerospace, power, chemical and food manufacturing industries. It was concluded that the technology is being considered by a number of Canadian oil and gas companies. 2 figs.

  2. The fluoride coated AZ31B magnesium alloy improves corrosion resistance and stimulates bone formation in rabbit model

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei; Zhang, Guangdao [Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China); Tan, Lili; Yang, Ke [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Ai, Hongjun, E-mail: aihongjuna@sina.com [Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang 110001 (China)

    2016-06-01

    This study aimed to evaluate the effect of fluorine coated Mg alloy and clarify its mechanism in bone formation. We implanted the fluorine coated AZ31B Mg alloy screw (group F) in rabbit mandibular and femur in vivo. Untreated AZ31B Mg alloy screw (group A) and titanium screw (group T) were used as control. Then, scanning electron microscopy, the spectral energy distribution analysis, hard and decalcified bone tissues staining were performed. Immunohistochemistry was employed to examine the protein expressions of bone morphogenetic protein 2 (BMP-2) and collagen type I in the vicinity of the implant. Compared with the group A, the degradation of the alloy was reduced, the rates of Mg corrosion and Mg ion release were slowed down, and the depositions of calcium and phosphate increased in the group F in the early stage of implantation. Histological results showed that fluorine coated Mg alloy had well osteogenic activity and biocompatibility. Moreover, fluoride coating obviously up-regulated the expressions of collagen type I and BMP-2. This study confirmed that the fluorine coating might improve the corrosion resistance of AZ31B Mg alloy and promote bone formation by up-regulated the expressions of collagen type I and BMP-2. - Highlights: • Fluoride coating inhibited the degradation of the alloy in the early implantation. • Fluorine coating could slow down the rate of Mg corrosion and Mg ion release. • Fluorine coating could promote the deposition of Ca and P in vivo. • Fluorine coated Mg alloy had well osteogenic activity and biocompatibility. • Fluorine coating up-regulated the expression of BMP-2 and collagen type I protein.

  3. Estudo comparativo da resistência ao desgaste abrasivo do revestimento de três ligas metálicas utilizadas na indústria, aplicadas por soldagem com arames tubulares Comparative study of the wear resistance of three metal cored wire welded coatings used in industry

    Directory of Open Access Journals (Sweden)

    Ricardo Vinícius de Melo Leite

    2009-12-01

    expenditure on maintenance in industries. For the application of the coating by welding, cored wire have been a viable alternative, because of its high productivity and high weld quality, replacing in part, the use of the stick electrode. The objective of this work is to make a comparative study of the abrasive wear resistant coating deposited by welding with selfshielded cored wires of three metal alloys used in industry, first the Fe-Cr-C alloy, the second the Fe-Cr-C alloy with niobium and boron addition, and the third the Fe-Cr-C with niobium addition. The wear resistant coatings, known as hardfacing were deposited on carbon steel plates, with the same parameters and procedures of welding. The samples were obtained by cutting and grinding and were subjected to abrasive wear tests, in a Rubber Wheel apparatus, according to procedure established by ASTM G65-91. The results showed that the Fe-Cr-C alloy with Niobium and Boron addition presented superiority in terms of wear resistence.

  4. Role of Y in the oxidation resistance of CrAlYN coatings

    Science.gov (United States)

    Domínguez-Meister, S.; El Mrabet, S.; Escobar-Galindo, R.; Mariscal, A.; Jiménez de Haro, M. C.; Justo, A.; Brizuela, M.; Rojas, T. C.; Sánchez-López, J. C.

    2015-10-01

    CrAlYN coatings with different aluminum (4-12 at.%) and yttrium (2-5 at.%) contents are deposited by d.c. reactive magnetron sputtering on silicon and M2 steel substrates using metallic targets and Ar/N2 mixtures. The influence of the nanostructure and chemical elemental distribution on the oxidation resistance after heating in air at 1000 °C is studied by means of cross-sectional scanning electron microscopy (X-SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and glow discharge optical emission spectroscopy (GD-OES). The sequential exposure to the metallic targets during the synthesis leads to a multilayer structure where concentration of metallic elements (Cr, Al and Y) is changing periodically. A good oxidation resistance is observed when Al- and Y-rich regions are separated by well-defined CrN layers, maintaining crystalline coherence along the columnar structure. This protective behavior is independent of the type of substrate and corresponds to the formation of a thin mixed (Al, Cr)-oxide scale that protects the film underneath. The GD-OES and XRD analysis have demonstrated that Y acts as a reactive element, blocking the Fe and C atoms diffusion from the steel and favoring higher Al/Cr ratio in the passivation layer after heating. The coating with Y content around 4 at.% exhibited the best performance with a thinner oxide scale, a delay in the CrN decomposition and transformation to Cr2N, and a more effective Fe and C blocking.

  5. Corrosion resistance of micro-arc oxidation coatings formed on aluminum alloy with addition of Al2O3

    Science.gov (United States)

    Zhang, Y.; Chen, Y.; Du, H. Q.; Zhao, YW

    2018-03-01

    Micro-arc oxidation (MAO) coatings were formed on the aluminum alloy in silicate-based electrolyte without and with the addition of Al2O3. It is showed that the coating produced in 7 g l‑1 Al2O3-containing electrolyte was of the most superior corrosion resistance. Besides, the corrosion properties of the coatings were studied by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) test in both 0.5 M and 1 M NaCl solution. The results proved that the coating is capable to protect the substrate from the corrosion of aggressive Cl‑ in 0.5 M NaCl after 384 h immersion. However, it can not offer protection to the aluminum alloy substrate after 384 h immersion in 1 M NaCl solution. The schematic diagrams illustrate the corrosion process and matched well with the corrosion test results.

  6. A Comparative Study of the Microstructure, Mechanical Properties and Corrosion Resistance of Ni- or Fe- Based Composite Coatings by Laser Cladding

    Science.gov (United States)

    Wan, M. Q.; Shi, J.; Lei, L.; Cui, Z. Y.; Wang, H. L.; Wang, X.

    2018-04-01

    Ni- and Fe-based composite coatings were laser cladded on 40Cr steel to improve the surface mechanical property and corrosion resistance, respectively. The microstructure and phase composition were analyzed by x-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) equipped with an energy-dispersive spectrometer (EDS). The micro-hardness, tribological properties and electrochemical corrosion behavior of the coatings were evaluated. The results show that the thickness of both the coatings is around 0.7 mm, the Ni-based coating is mainly composed of γ-(Ni, Fe), FeNi3, Ni31Si12, Ni3B, CrB and Cr7C3, and the Fe-based coating is mainly composed of austenite and (Fe, Cr)7C3. Micro-hardness of the Ni-based composite coating is about 960 HV0.3, much higher than that of Fe-based coating (357.4 HV0.3) and the 40Cr substrate (251 HV0.3). Meanwhile, the Ni-based composite coating possesses better wear resistance than the Fe-based coating validated by the worn appearance and the wear loss. Electrochemical results suggested that Ni-based coating exhibited better corrosion resistance than the Fe-based coating. The 40Cr substrate could be well protected by the Ni-based coating.

  7. Silver-Containing Hydroxyapatite Coating Reduces Biofilm Formation by Methicillin-Resistant Staphylococcus aureus In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Masaya Ueno

    2016-01-01

    Full Text Available Biofilm-producing bacteria are the principal causes of infections associated with orthopaedic implants. We previously reported that silver-containing hydroxyapatite (Ag-HA coatings exhibit high antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA. In the present study, we evaluated the effects of Ag-HA coating of implant surfaces on biofilm formation. Titanium disks (14-mm diameter, 1-mm thickness, one surface of which was coated with HA or 0.5%–3.0% Ag-HA with a thermal spraying technique, were used. In vitro, the disks were inoculated with an MRSA suspension containing 4×105 CFU and incubated for 1-2 weeks. In vivo, MRSA-inoculated HA and 3% Ag-HA disks (8.8–10.0 × 108 CFU were implanted subcutaneously on the back of rats for 1–7 days. All disks were subsequently stained with a biofilm dye and observed under a fluorescence microscope, and biofilm coverage rates (BCRs were calculated. The BCRs on the Ag-HA coating were significantly lower than those on the HA coating at all time points in vitro (p<0.05. Similar results were observed in vivo (p<0.001 without argyria. Ag-HA coating reduced biofilm formation by MRSA in vitro and in vivo; therefore, Ag-HA coating might be effective for reducing implant-associated infections.

  8. Corrosion resistance of Ni-50Cr HVOF coatings on 310S alloy substrates in a metal dusting atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Saaedi, J. [Centre for Advanced Coating Technologies, Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4 (Canada); Department of Materials and Metallurgical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Arabi, H.; Mirdamadi, S.; Ghorbani, H. [Department of Materials and Metallurgical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Coyle, T.W. [Centre for Advanced Coating Technologies, Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4 (Canada)

    2011-09-15

    Metal dusting attack has been examined after three 168 h cycles on two Ni-50Cr coatings with different microstructures deposited on 310S alloy substrates by the high velocity oxy-fuel (HVOF) thermal-spray process. Metal dusting in uncoated 310S alloy specimens was found to be still in the initiation stage after 504 h of exposure in the 50H{sub 2}:50CO gas environment at 620 C. Dense Ni-50Cr coatings offered suitable resistance to metal dusting. Metal dusting was observed in the 310S substrates adjacent to pores at the interface between the substrate and a porous Ni-50Cr coating. The porosity present in the as-deposited coatings was shown to introduce a large variability into coating performance. Carbon formed by decomposition of the gaseous species accumulated in the surface pores and resulted in the dislodgement of surface splats due to stresses generated by the volume changes. When the corrosive gas atmosphere was able to penetrate through the interconnected pores and reach the coating-substrate interface, the 310S substrate was carburized, metal dusting attack occurred, and the resulting formation of coke in the pores led to local failure of the coating. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Preparation of ceramic coating on Ti substrate by Plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance

    Science.gov (United States)

    Shokouhfar, M.; Dehghanian, C.; Baradaran, A.

    2011-01-01

    Ceramic oxide coatings (titania) were produced on Ti by micro-arc oxidation in different aluminate and carbonate based electrolytes. This process was conducted under constant pulsed DC voltage condition. The effect of KOH and NaF in aluminate based solution was also studied. The surface morphology, growth and phase composition of coatings were investigated using scanning electron microscope and X-ray diffraction. Corrosion behavior of the coatings was also examined by potentiodynamic polarization and electrochemical impedance spectroscopy. It was found that the sparking initiation voltage (spark voltage) had a significant effect on the form and properties of coatings. Coatings obtained from potassium aluminate based solution had a lower spark voltage, higher surface homogeneity and a better corrosion resistance than the carbonate based solution. Addition of NaF instead of KOH had improper effects on the homogeneity and adhesion of coatings which in turn caused a poor corrosion protection behavior of the oxide layer. AC impedance curves showed two time constants which is an indication of the coatings with an outer porous layer and an inner compact layer.

  10. Wear resistance of thick diamond like carbon coatings against polymeric materials used in single screw plasticizing technology

    Science.gov (United States)

    Zitzenbacher, G.; Liu, K.; Forsich, C.; Heim, D.

    2015-05-01

    Wear on the screw and barrel surface accompany polymer single screw plasticizing technology from the beginning. In general, wear on screws can be reduced by using nitrided steel surfaces, fused armour alloys on the screw flights and coatings. However, DLC-coatings (Diamond Like Carbon) comprise a number of interesting properties such as a high hardness, a low coefficient of friction and an excellent corrosion resistance due to their amorphous structure. The wear resistance of about 50 µm thick DLC-coatings against polyamide 6.6, polybutylene terephthalate and polypropylene is investigated in this paper. The tribology in the solids conveying zone of a single screw extruder until the beginning of melting is evaluated using a pin on disc tribometer and a so called screw tribometer. The polymeric pins are pressed against coated metal samples using the pin on disc tribometer and the tests are carried out at a defined normal force and sliding velocity. The screw tribometer is used to perform tribological experiments between polymer pellets and rotating coated metal shafts simulating the extruder screw. Long term experiments were performed to evaluate the wear resistance of the DLC-coating. A reduction of the coefficient of friction can be observed after a frictional distance of about 20 kilometers using glass fibre reinforced polymeric materials. This reduction is independent on the polymer and accompanied by a black layer on the wear surface of the polymeric pins. The DLC-coated metal samples show an up to 16 µm deep wear track after the 100 kilometer test period against the glass fiber filled materials only.

  11. Highly transparent and UV-resistant superhydrophobic SiO2-coated ZnO nanorod arrays

    KAUST Repository

    Gao, Yangqin; Gereige, Issam; El Labban, Abdulrahman; Cha, Dong Kyu; Isimjan, Tayirjan T.; Beaujuge, Pierre

    2014-01-01

    Highly transparent and UV-resistant superhydrophobic arrays of SiO 2-coated ZnO nanorods are prepared in a sequence of low-temperature (<150 C) steps on both glass and thin sheets of PET (2 × 2 in. 2), and the superhydrophobic nanocomposite

  12. Analysis of the Effect of Surface Modification on Polyimide Composites Coated with Erosion Resistant Materials

    Science.gov (United States)

    Ndalama, Tchinga; Hirschfeld, Deidre; Sutter, James K. (Technical Monitor)

    2003-01-01

    The aim of this research is to enhance performance of composite coatings through modification of graphite-reinforced polyimide composite surfaces prior to metal bond coat/ hard topcoat application for use in the erosive and/or oxidative environments of advanced engines. Graphite reinforced polyimide composites, PMR-15 and PMR-II-50, formed by sheet molding and pre-pregging will be surface treated, overlaid with a bond coat and then coated with WC-Co. The surface treatment will include cleaning, RF plasma or ultraviolet light- ozone etching, and deposition of SiO(x) groups. These surface treatments will be studied in order to investigate and improve adhesion and oxidation resistance. The following panels were provided by NASA-Glenn Research Center(NASA-GRC): Eight compression molded PMR-II-50; 6 x 6 x 0.125 in. Two vacuum-bagged PMR-II-50; 12 x 12 x 0.125 in. Eight compression molded PMR-15; 6 x 6 x 0.125 in. One vacuum-bagged PMR-15; 12 x 12 x 0.125 in. All panels were made using a 12 x 12 in. T650-35 8HS (3K-tow) graphite fabric. A diamond-wafering blade, with deionized water as a cutting fluid, was used to cut PMR-II-50 and PMR-15 panels into 1 x 1 in. pieces for surface tests. The panel edges exhibiting delamination were used for the preliminary surface preparation tests as these would be unsuitable for strength and erosion testing. PMR-15 neat resin samples were also provided by NASA GRC. Surface profiles of the as-received samples were determined using a Dektak III Surface profile measuring system. Two samples of compression molded PMR-II-50 and PMR-15, vacuum-bagged PMR-II-50 and PMR-15 were randomly chosen for surface profile measurement according to ANSI/ASME B46.1. Prior to each measurement, the samples were blasted with compressed air to remove any artifacts. Five 10 mm-long scans were made on each sample. The short and long wavelength cutoff filter values were set at 100 and 1000 m, diamond stylus radius was 12.5 microns. Table 1 is a summary of the

  13. Cold spray deposition of Ti{sub 2}AlC coatings for improved nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Benjamin R. [University of Wisconsin, Madison, WI (United States); Garcia-Diaz, Brenda L. [Savannah River National Laboratory, Aiken, SC (United States); Hauch, Benjamin [University of Wisconsin, Madison, WI (United States); Olson, Luke C.; Sindelar, Robert L. [Savannah River National Laboratory, Aiken, SC (United States); Sridharan, Kumar, E-mail: kumar@engr.wisc.edu [University of Wisconsin, Madison, WI (United States)

    2015-11-15

    Coatings of Ti{sub 2}AlC MAX phase compound have been successfully deposited on Zircaloy-4 (Zry-4) test flats, with the goal of enhancing the accident tolerance of LWR fuel cladding. Low temperature powder spray process, also known as cold spray, has been used to deposit coatings ∼90 μm in thickness using powder particles of <20 μm. X-ray diffraction analysis showed the phase-content of the deposited coatings to be identical to the powders indicating that no phase transformation or oxidation had occurred during the coating deposition process. The coating exhibited a high hardness of about 800 H{sub K} and pin-on-disk wear tests using abrasive ruby ball counter-surface showed the wear resistance of the coating to be significantly superior to the Zry-4 substrate. Scratch tests revealed the coatings to be well-adhered to the Zry-4 substrate. Such mechanical integrity is required for claddings from the standpoint of fretting wear resistance and resisting wear handling and insertion. Air oxidation tests at 700 °C and simulated LOCA tests at 1005 °C in steam environment showed the coatings to be significantly more oxidation resistant compared to Zry-4 suggesting that such coatings can potentially provide accident tolerance to nuclear fuel cladding. - Highlights: • Deposited Ti{sub 2}AlC coatings on Zircaloy-4 substrates with a low pressure powder spray process, also known as cold spray. • Coatings have high hardness and wear resistance for both damage resistance during rod insertion and fretting wear resistance. • The oxidation resistance of Ti{sub 2}AlC coated Zircaloy-4 at 700 °C and 1005 °C was significantly superior to uncoated Zircaloy. • Cold spray of Ti{sub 2}AlC demonstrates considerable promise as a near-term solution for accident tolerant Zr-alloy fuel claddings.

  14. Environmental degradation of oxidation resistant and thermal barrier coatings for fuel-flexible gas turbine applications

    Science.gov (United States)

    Mohan, Prabhakar

    The development of thermal barrier coatings (TBCs) has been undoubtedly the most critical advancement in materials technology for modern gas turbine engines. TBCs are widely used in gas turbine engines for both power-generation and propulsion applications. Metallic oxidation-resistant coatings (ORCs) are also widely employed as a stand-alone protective coating or bond coat for TBCs in many high-temperature applications. Among the widely studied durability issues in these high-temperature protective coatings, one critical challenge that received greater attention in recent years is their resistance to high-temperature degradation due to corrosive deposits arising from fuel impurities and CMAS (calcium-magnesium-alumino-silicate) sand deposits from air ingestion. The presence of vanadium, sulfur, phosphorus, sodium and calcium impurities in alternative fuels warrants a clear understanding of high-temperature materials degradation for the development of fuel-flexible gas turbine engines. Degradation due to CMAS is a critical problem for gas turbine components operating in a dust-laden environment. In this study, high-temperature degradation due to aggressive deposits such as V2O5, P2O 5, Na2SO4, NaVO3, CaSO4 and a laboratory-synthesized CMAS sand for free-standing air plasma sprayed (APS) yttria stabilized zirconia (YSZ), the topcoat of the TBC system, and APS CoNiCrAlY, the bond coat of the TBC system or a stand-alone ORC, is examined. Phase transformations and microstructural development were examined by using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. This study demonstrated that the V2O5 melt degrades the APS YSZ through the formation of ZrV2O7 and YVO 4 at temperatures below 747°C and above 747°C, respectively. Formation of YVO4 leads to the depletion of the Y2O 3 stabilizer and the deleterious transformation of the YSZ to the monoclinic ZrO2 phase. The investigation on the YSZ degradation by Na 2SO4 and a Na2SO4 + V2

  15. Abrasive water jet: a complementary tool

    OpenAIRE

    Duarte, J. P.; Peças, P.; Nunes, E.; Gouveia, H.

    1998-01-01

    The abrasive water jet is a powerful cutting tool, whose main advantages lie in the absence of thermal effects and the capability of cutting highly thick materials. Compared with Laser, the abrasive water jet allows the cutting of a larger range of thicknesses and a wider variety of materials such as: ornamental stones, metals, polymers, composites, wood, glass and ceramics. The application of this technology has suffered an extensive growth, with successful applications in varied industrial ...

  16. Third abrasive wear mode: is it possible?

    Directory of Open Access Journals (Sweden)

    Ronaldo Câmara Cozza

    2014-04-01

    Full Text Available The objective of this paper is to propose an initial discussion on the characterization of a third abrasive wear mode. The results obtained in a previous work [1] under different test conditions revealed the occurrence of the superposition of the “rolling” and “grooving” abrasive wear modes. This phenomenon was denoted “micro-rolling abrasion” due to the observation that “rolling abrasion” was found to act on “grooving abrasion”.

  17. Review on Electroless Plating Ni-P Coatings for Improving Surface Performance of Steel

    Science.gov (United States)

    Zhang, Hongyan; Zou, Jiaojuan; Lin, Naiming; Tang, Bin

    2014-04-01

    Electroless plating has been considered as an effective approach to provide protection and enhancement for metallic materials with many excellent properties in engineering field. This paper begins with a brief introduction of the fundamental aspects underlying the technological principles and conventional process of electroless nickel-phosphorus (Ni-P) coatings. Then this paper discusses different electroless nickel pl