WorldWideScience

Sample records for aboveground plant material

  1. Simulation of the decomposition and nitrogen mineralization of aboveground plant material in two unfertilized grassland ecosystems.

    NARCIS (Netherlands)

    Bloemhof, H.S.; Berendse, F.

    1995-01-01

    A simple model of the decomposition and nitrogen mineralization of plant material from two unfertilized grassland ecosystems has been developed, with only the proportion of leaves and stems in the original material, the initial nitrogen contents of these plant parts and temperature as input data.

  2. Linking aboveground and belowground interactions via induced plant defenses

    NARCIS (Netherlands)

    Bezemer, T.M.; Dam, van N.M.

    2005-01-01

    Plants have a variety of chemical defenses that often increase in concentration following attack by herbivores. Such induced plant responses can occur aboveground, in the leaves, and also belowground in the roots. We show here that belowground organisms can also induce defense responses aboveground

  3. Plant responses to variable timing of aboveground clipping and belowground herbivory depend on plant age

    NARCIS (Netherlands)

    Wang, Minggang; Bezemer, T. Martijn; van der Putten, W.H.; Brinkman, Pella; Biere, Arjen

    2017-01-01

    Aims Plants use different types of responses such as tolerance and induced defense to mitigate the effects of herbivores. The direction and magnitude of both these plant responses can vary with plant age. However, most studies have focused on aboveground herbivory, whereas important feeding occurs

  4. Plant responses to variable timing of aboveground clipping and belowground herbivory depend on plant age

    NARCIS (Netherlands)

    Wang, Minggang; Bezemer, T.M.; Putten, Van Der Wim H.; Brinkman, E.P.; Biere, Arjen

    2017-01-01

    Aims
    Plants use different types of responses such as tolerance and
    induced defense to mitigate the effects of herbivores. The direction
    and magnitude of both these plant responses can vary with
    plant age. However, most studies have focused on aboveground
    herbivory, whereas

  5. Aboveground persistence of vascular plants in relationship to the levels of airborne nutrient deposition

    NARCIS (Netherlands)

    Hendriks, R.J.J.; Ozinga, W.A.; Berg, van den L.J.L.; Noordwijk, E.; Schaminee, J.H.J.; Groenendael, van J.M.

    2014-01-01

    This paper examines whether high atmospheric nitrogen deposition affects aboveground persistence of vascular plants. We combined information on local aboveground persistence of vascular plants in 245 permanent plots in the Netherlands with estimated level of nitrogen deposition at the time of

  6. Relationships at the aboveground-belowground interface: plants, soil biota and soil processes

    NARCIS (Netherlands)

    Porazinska, D.L.; Bardgett, R.D.; Postma-Blaauw, M.B.; Hunt, H.W.; Parsons, A.N.; Seastedt, T.R.; Wall, D.M.

    2003-01-01

    Interactions at the aboveground-below ground interface provide important feedbacks that regulate ecosystem processes. Organisms within soil food webs are involved in processes of decomposition and nutrient mineralization, and their abundance and activity have been linked to plant ecophysiological

  7. Plant genetic variation mediates an indirect ecological effect between belowground earthworms and aboveground aphids.

    Science.gov (United States)

    Singh, Akanksha; Braun, Julia; Decker, Emilia; Hans, Sarah; Wagner, Agnes; Weisser, Wolfgang W; Zytynska, Sharon E

    2014-10-21

    Interactions between aboveground and belowground terrestrial communities are often mediated by plants, with soil organisms interacting via the roots and aboveground organisms via the shoots and leaves. Many studies now show that plant genetics can drive changes in the structure of both above and belowground communities; however, the role of plant genetic variation in mediating aboveground-belowground interactions is still unclear. We used an earthworm-plant-aphid model system with two aphid species (Aphis fabae and Acyrthosiphon pisum) to test the effect of host-plant (Vicia faba) genetic variation on the indirect interaction between the belowground earthworms (Eisenia veneta) on the aboveground aphid populations. Our data shows that host-plant variety mediated an indirect ecological effect of earthworms on generalist black bean aphids (A. fabae), with earthworms increasing aphid growth rate in three plant varieties but decreasing it in another variety. We found no effect of earthworms on the second aphid species, the pea aphid (A. pisum), and no effect of competition between the aphid species. Plant biomass was increased when earthworms were present, and decreased when A. pisum was feeding on the plant (mediated by plant variety). Although A. fabae aphids were influenced by the plants and worms, they did not, in turn, alter plant biomass. Previous work has shown inconsistent effects of earthworms on aphids, but we suggest these differences could be explained by plant genetic variation and variation among aphid species. This study demonstrates that the outcome of belowground-aboveground interactions can be mediated by genetic variation in the host-plant, but depends on the identity of the species involved.

  8. Mechanisms and ecological implications of plant-mediated interactions between belowground and aboveground insect herbivores

    NARCIS (Netherlands)

    Papadopoulou, G.V.; Dam, N.M. van

    2017-01-01

    Plant-mediated interactions between belowground (BG) and aboveground (AG) herbivores have received increasing interest recently. However, the molecular mechanisms underlying ecological consequences of BG–AG interactions are not fully clear yet. Herbivore-induced plant defenses are complex and

  9. Local above-ground persistence of vascular plants : Life-history trade-offs and environmental constraints

    NARCIS (Netherlands)

    Ozinga, Wim A.; Hennekens, Stephan M.; Schaminee, Joop H. J.; Smits, Nina A. C.; Bekker, Renee M.; Roemermann, Christine; Klimes, Leos; Bakker, Jan P.; van Groenendael, Jan M.

    Questions: 1. Which plant traits and habitat characteristics best explain local above-ground persistence of vascular plant species and 2. Is there a trade-off between local above-ground persistence and the ability for seed dispersal and below-ground persistence in the soil seed bank? Locations: 845

  10. Local above-ground persistence of vascular plants: life-history trade-offs and environmental constraints

    NARCIS (Netherlands)

    Ozinga, W.A.; Hennekens, S.M.; Schaminée, J.H.J.; Smits, N.A.C.; Bekker, R.M.; Römermann, C.; Bakker, J.P.; Groenendael, van J.M.

    2007-01-01

    Questions: 1. Which plant traits and habitat characteristics best explain local above-ground persistence of vascular plant species and 2. Is there a trade-off between local above-ground persistence and the ability for seed dispersal and below-ground persistence in the soil seed bank? Locations: 845

  11. Effects of Root Herbivory on Pyrrolizidine Alkaloid Content and Aboveground Plant-Herbivore-Parasitoid Interactions in Jacobaea Vulgaris

    NARCIS (Netherlands)

    Kostenko, O.; Mulder, P.P.J.; Bezemer, T.M.

    2013-01-01

    The importance of root herbivory is increasingly recognized in ecological studies, and the effects of root herbivory on plant growth, chemistry, and performance of aboveground herbivores have been relatively well studied. However, how belowground herbivory by root feeding insects affects aboveground

  12. Effects of root herbivory on pyrrolizidine alkaloid content and aboveground plant-herbivore-parasitoid interactions in Jacobaea vulgaris

    NARCIS (Netherlands)

    Kostenko, O.; Mulder, P.P.J.; Bezemer, T.M.

    2013-01-01

    The importance of root herbivory is increasingly recognized in ecological studies, and the effects of root herbivory on plant growth, chemistry, and performance of aboveground herbivores have been relatively well studied. However, how belowground herbivory by root feeding insects affects aboveground

  13. Plant diversity and functional groups affect Si and Ca pools in aboveground biomass of grassland systems.

    Science.gov (United States)

    Schaller, Jörg; Roscher, Christiane; Hillebrand, Helmut; Weigelt, Alexandra; Oelmann, Yvonne; Wilcke, Wolfgang; Ebeling, Anne; Weisser, Wolfgang W

    2016-09-01

    Plant diversity is an important driver of nitrogen and phosphorus stocks in aboveground plant biomass of grassland ecosystems, but plant diversity effects on other elements also important for plant growth are less understood. We tested whether plant species richness, functional group richness or the presence/absence of particular plant functional groups influences the Si and Ca concentrations (mmol g(-1)) and stocks (mmol m(-2)) in aboveground plant biomass in a large grassland biodiversity experiment (Jena Experiment). In the experiment including 60 temperate grassland species, plant diversity was manipulated as sown species richness (1, 2, 4, 8, 16) and richness and identity of plant functional groups (1-4; grasses, small herbs, tall herbs, legumes). We found positive species richness effects on Si as well as Ca stocks that were attributable to increased biomass production. The presence of particular functional groups was the most important factor explaining variation in aboveground Si and Ca stocks (mmol m(-2)). Grass presence increased the Si stocks by 140 % and legume presence increased the Ca stock by 230 %. Both the presence of specific plant functional groups and species diversity altered Si and Ca stocks, whereas Si and Ca concentration were affected mostly by the presence of specific plant functional groups. However, we found a negative effect of species diversity on Si and Ca accumulation, by calculating the deviation between mixtures and mixture biomass proportions, but in monoculture concentrations. These changes may in turn affect ecosystem processes such as plant litter decomposition and nutrient cycling in grasslands.

  14. Estimating aboveground biomass of mariola (Parthenium incanum) from plant dimensions

    Science.gov (United States)

    Carlos Villalobos

    2007-01-01

    The distribution and abundance of plant biomass in space and time are important properties of rangeland ecosystem. Land managers and researchers require reliable shrub weight estimates to evaluate site productivity, food abundance, treatment effects, and stocking rates. Rapid, nondestructive methods are needed to estimate shrub biomass in semi-arid ecosystems. Shrub...

  15. Plants as green as phones: Novel insights into plant-mediated communication between below- and above-ground insects

    NARCIS (Netherlands)

    Soler Gamborena, R.; Harvey, J.A.; Bezemer, T.M.; Stuefer, J.F.

    2008-01-01

    can act as vertical communication channels or ‘green phones’ linking soil-dwelling insects and insects in the aboveground ecosystem. When root-feeding insects attack a plant, the direct defense system of the shoot is activated, leading to an accumulation of phytotoxins in the leaves. The protection

  16. Local adaptation of aboveground herbivores towards plant phenotypes induced by soil biota.

    Directory of Open Access Journals (Sweden)

    Dries Bonte

    2010-06-01

    Full Text Available Soil biota may trigger strong physiological responses in plants and consequently induce distinct phenotypes. Plant phenotype, in turn, has a strong impact on herbivore performance. Here, we tested the hypothesis that aboveground herbivores are able to adapt to plant phenotypes induced by soil biota.We bred spider mites for 15 generations on snap beans with three different belowground biotic interactions: (i no biota (to serve as control, (ii arbuscular mycorrhizal fungi and (ii root-feeding nematodes. Subsequently, we conducted a reciprocal selection experiment using these spider mites, which had been kept on the differently treated plants. Belowground treatments induced changes in plant biomass, nutrient composition and water content. No direct chemical defence through cyanogenesis was detected in any of the plant groups. Growth rates of spider mites were higher on the ecotypes on which they were bred for 15 generations, although the statistical significance disappeared for mites from the nematode treatment when corrected for all multiple comparisons.These results demonstrate that belowground biota may indeed impose selection on the aboveground insect herbivores mediated by the host plant. The observed adaptation was driven by variable quantitative changes of the different separately studied life history traits (i.e. fecundity, longevity, sex-ratio, time to maturity.

  17. Plant systemic induced responses mediate interactions between root parasitic nematodes and aboveground herbivorous insects

    Directory of Open Access Journals (Sweden)

    Mesfin eWondafrash

    2013-04-01

    Full Text Available Insects and nematodes are the most diverse and abundant groups of multicellular animals feeding on plants on either side of the soil-air interface. Several herbivore-induced responses are systemic, and hence can influence the preference and performance of organisms in other plant organs. Recent studies show that plants mediate interactions between belowground plant parasitic nematodes and aboveground herbivorous insects. Based on the knowledge of plant responses to pathogens, we review the emerging insights on plant systemic responses against root-feeding nematodes and shoot-feeding insects. We discuss the potential mechanisms of plant-mediated indirect interactions between both groups of organisms and point to gaps in our knowledge. Root-feeding nematodes can positively or negatively affect shoot herbivorous insects, and vice versa. The outcomes of the interactions between these spatially separated herbivore communities appear to be influenced by the feeding strategy of the nematodes and the insects, as well as by host plant susceptibility to both herbivores. The potential mechanisms for these interactions include systemic induced plant defence, interference with the translocation and dynamics of locally induced secondary metabolites, and reallocation of plant nutritional reserves. During evolution, plant parasitic nematodes as well as herbivorous insects have acquired effectors that modify plant defence responses and resource allocation patterns to their advantage. However, it is also known that plants under herbivore attack change the allocation of their resources, e.g. for compensatory growth responses, which may affect the performance of other organisms feeding on the plant. Studying the chemical and molecular basis of these interactions will reveal the molecular mechanisms that are involved. Moreover, it will lead to a better understanding of the ecological relevance of aboveground-belowground interactions, as well as support the

  18. Plant diversity impacts decomposition and herbivory via changes in aboveground arthropods.

    Science.gov (United States)

    Ebeling, Anne; Meyer, Sebastian T; Abbas, Maike; Eisenhauer, Nico; Hillebrand, Helmut; Lange, Markus; Scherber, Christoph; Vogel, Anja; Weigelt, Alexandra; Weisser, Wolfgang W

    2014-01-01

    Loss of plant diversity influences essential ecosystem processes as aboveground productivity, and can have cascading effects on the arthropod communities in adjacent trophic levels. However, few studies have examined how those changes in arthropod communities can have additional impacts on ecosystem processes caused by them (e.g. pollination, bioturbation, predation, decomposition, herbivory). Therefore, including arthropod effects in predictions of the impact of plant diversity loss on such ecosystem processes is an important but little studied piece of information. In a grassland biodiversity experiment, we addressed this gap by assessing aboveground decomposer and herbivore communities and linking their abundance and diversity to rates of decomposition and herbivory. Path analyses showed that increasing plant diversity led to higher abundance and diversity of decomposing arthropods through higher plant biomass. Higher species richness of decomposers, in turn, enhanced decomposition. Similarly, species-rich plant communities hosted a higher abundance and diversity of herbivores through elevated plant biomass and C:N ratio, leading to higher herbivory rates. Integrating trophic interactions into the study of biodiversity effects is required to understand the multiple pathways by which biodiversity affects ecosystem functioning.

  19. Sequential effects of root and foliar herbivory on aboveground and belowground induced plant defense responses and insect performance

    NARCIS (Netherlands)

    Wang, M.; Biere, A.; Putten, van der W.H.; Bezemer, T.M.

    2014-01-01

    Plants are often simultaneously or sequentially attacked by multiple herbivores and changes in host plants induced by one herbivore can influence the performance of other herbivores. We examined how sequential feeding on the plant Plantago lanceolata by the aboveground herbivore Spodoptera exigua

  20. Estimating aboveground biomass for broadleaf woody plants and young conifers in Sierra Nevada, California forests.

    Science.gov (United States)

    McGinnis, Thomas W.; Shook, Christine D.; Keeley, Jon E.

    2010-01-01

    Quantification of biomass is fundamental to a wide range of research and natural resource management goals. An accurate estimation of plant biomass is essential to predict potential fire behavior, calculate carbon sequestration for global climate change research, assess critical wildlife habitat, and so forth. Reliable allometric equations from simple field measurements are necessary for efficient evaluation of plant biomass. However, allometric equations are not available for many common woody plant taxa in the Sierra Nevada. In this report, we present more than 200 regression equations for the Sierra Nevada western slope that relate crown diameter, plant height, crown volume, stem diameter, and both crown diameter and height to the dry weight of foliage, branches, and entire aboveground biomass. Destructive sampling methods resulted in regression equations that accurately predict biomass from one or two simple, nondestructive field measurements. The tables presented here will allow researchers and natural resource managers to easily choose the best equations to fit their biomass assessment needs.

  1. Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming

    Directory of Open Access Journals (Sweden)

    Kai Xue

    2016-09-01

    Full Text Available Clipping (i.e., harvesting aboveground plant biomass is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened.

  2. Long-term patterns in tropical reforestation: plant community composition and aboveground biomass accumulation.

    Science.gov (United States)

    Marín-Spiotta, E; Ostertag, R; Silver, W L

    2007-04-01

    Primary tropical forests are renowned for their high biodiversity and carbon storage, and considerable research has documented both species and carbon losses with deforestation and agricultural land uses. Economic drivers are now leading to the abandonment of agricultural lands, and the area in secondary forests is increasing. We know little about how long it takes for these ecosystems to achieve the structural and compositional characteristics of primary forests. In this study, we examine changes in plant species composition and aboveground biomass during eight decades of tropical secondary succession in Puerto Rico, and compare these patterns with primary forests. Using a well-replicated chronosequence approach, we sampled primary forests and secondary forests established 10, 20, 30, 60, and 80 years ago on abandoned pastures. Tree species composition in all secondary forests was different from that of primary forests and could be divided into early (10-, 20-, and 30-year) vs. late (60- and 80-year) successional phases. The highest rates of aboveground biomass accumulation occurred in the first 20 years, with rates of C sequestration peaking at 6.7 +/- 0.5 Mg C x ha(-1) x yr(-1). Reforestation of pastures resulted in an accumulation of 125 Mg C/ha in aboveground standing live biomass over 80 years. The 80 year-old secondary forests had greater biomass than the primary forests, due to the replacement of woody species by palms in the primary forests. Our results show that these new ecosystems have different species composition, but similar species richness, and significant potential for carbon sequestration, compared to remnant primary forests.

  3. Wired to the roots: impact of root-beneficial microbe interactions on aboveground plant physiology and protection.

    Science.gov (United States)

    Kumar, Amutha Sampath; Bais, Harsh P

    2012-12-01

    Often, plant-pathogenic microbe interactions are discussed in a host-microbe two-component system, however very little is known about how the diversity of rhizospheric microbes that associate with plants affect host performance against pathogens. There are various studies, which specially direct the importance of induced systemic defense (ISR) response in plants interacting with beneficial rhizobacteria, yet we don't know how rhizobacterial associations modulate plant physiology. In here, we highlight the many dimensions within which plant roots associate with beneficial microbes by regulating aboveground physiology. We review approaches to study the causes and consequences of plant root association with beneficial microbes on aboveground plant-pathogen interactions. The review provides the foundations for future investigations into the impact of the root beneficial microbial associations on plant performance and innate defense responses.

  4. {sup 40}K/{sup 137}Cs discrimination ratios to the aboveground organs of tropical plants

    Energy Technology Data Exchange (ETDEWEB)

    Sanches, N. [Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoata, Niteroi, CEP 24210-346, RJ (Brazil); Anjos, R.M. [Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoata, Niteroi, CEP 24210-346, RJ (Brazil)], E-mail: meigikos@if.uff.br; Mosquera, B. [Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoata, Niteroi, CEP 24210-346, RJ (Brazil)

    2008-07-15

    In the present work, the accumulation of caesium and potassium in aboveground plant parts was studied in order to improve the understanding on the behaviour of monovalent cations in several compartments of tropical plants. We present the results for activity concentrations of {sup 137}Cs and {sup 40}K, measured by gamma spectrometry, from five tropical plant species: guava (Psidium guajava), mango (Mangifera indica), papaya (Carica papaya), banana (Musa paradisiaca), and manioc (Manihot esculenta). Caesium and potassium have shown a high level of mobility within the plants, exhibiting the highest values of concentration in the growing parts (fruits, leaves, twigs, and barks) of the woody fruit and large herbaceous shrub (such as manioc) species. In contrast, the banana and papaya plants exhibited the lowest levels of {sup 137}Cs and {sup 40}K in their growing parts. However, a significant correlation between activity concentrations of {sup 137}Cs and {sup 40}K was observed in these tropical plants. The {sup 40}K/{sup 137}Cs discrimination ratios were approximately equal to unity in different compartments of each individual plant, suggesting the possibility of using caesium to predict the behaviour of potassium in several tropical species.

  5. 40K/137Cs discrimination ratios to the aboveground organs of tropical plants

    International Nuclear Information System (INIS)

    Sanches, N.; Anjos, R.M.; Mosquera, B.

    2008-01-01

    In the present work, the accumulation of caesium and potassium in aboveground plant parts was studied in order to improve the understanding on the behaviour of monovalent cations in several compartments of tropical plants. We present the results for activity concentrations of 137 Cs and 40 K, measured by gamma spectrometry, from five tropical plant species: guava (Psidium guajava), mango (Mangifera indica), papaya (Carica papaya), banana (Musa paradisiaca), and manioc (Manihot esculenta). Caesium and potassium have shown a high level of mobility within the plants, exhibiting the highest values of concentration in the growing parts (fruits, leaves, twigs, and barks) of the woody fruit and large herbaceous shrub (such as manioc) species. In contrast, the banana and papaya plants exhibited the lowest levels of 137 Cs and 40 K in their growing parts. However, a significant correlation between activity concentrations of 137 Cs and 40 K was observed in these tropical plants. The 40 K/ 137 Cs discrimination ratios were approximately equal to unity in different compartments of each individual plant, suggesting the possibility of using caesium to predict the behaviour of potassium in several tropical species

  6. Tundra plant above-ground biomass and shrub dominance mapped across the North Slope of Alaska

    Science.gov (United States)

    Berner, Logan T.; Jantz, Patrick; Tape, Ken D.; Goetz, Scott J.

    2018-03-01

    Arctic tundra is becoming greener and shrubbier due to recent warming. This is impacting climate feedbacks and wildlife, yet the spatial distribution of plant biomass in tundra ecosystems is uncertain. In this study, we mapped plant and shrub above-ground biomass (AGB; kg m-2) and shrub dominance (%; shrub AGB/plant AGB) across the North Slope of Alaska by linking biomass harvests at 28 field sites with 30 m resolution Landsat satellite imagery. We first developed regression models (p accounting for ~43% of regional plant AGB. The new maps capture landscape variation in plant AGB visible in high resolution satellite and aerial imagery, notably shrubby riparian corridors. Modeled shrub AGB was strongly correlated with field measurements of shrub canopy height at 25 sites (rs  = 0.88) and with a regional map of shrub cover (rs  = 0.76). Modeled plant AGB and shrub dominance were higher in shrub tundra than graminoid tundra and increased between areas with the coldest and warmest summer air temperatures, underscoring the fact that future warming has the potential to greatly increase plant AGB and shrub dominance in this region. These new biomass maps provide a unique source of ecological information for a region undergoing rapid environmental change.

  7. Arbuscular mycorrhizal colonization, plant chemistry, and aboveground herbivory on Senecio jacobaea

    Science.gov (United States)

    Reidinger, Stefan; Eschen, René; Gange, Alan C.; Finch, Paul; Bezemer, T. Martijn

    2012-01-01

    Arbuscular mycorrhizal fungi (AMF) can affect insect herbivores by changing plant growth and chemistry. However, many factors can influence the symbiotic relationship between plant and fungus, potentially obscuring experimental treatments and ecosystem impacts. In a field experiment, we assessed AMF colonization levels of individual ragwort ( Senecio jacobaea) plants growing in grassland plots that were originally sown with 15 or 4 plant species, or were unsown. We measured the concentrations of carbon, nitrogen and pyrrolizidine alkaloids (PAs), and assessed the presence of aboveground insect herbivores on the sampled plants. Total AMF colonization and colonization by arbuscules was lower in plots sown with 15 species than in plots sown with 4 species and unsown plots. AMF colonization was positively related to the cover of oxeye daisy ( Leucanthemum vulgare) and a positive relationship between colonization by arbuscules and the occurrence of a specialist seed-feeding fly ( Pegohylemyia seneciella) was found. The occurrence of stem-boring, leaf-mining and sap-sucking insects was not affected by AMF colonization. Total PA concentrations were negatively related to colonization levels by vesicles, but did not differ among the sowing treatments. No single factor explained the observed differences in AMF colonization among the sowing treatments or insect herbivore occurrence on S. jacobaea. However, correlations across the treatments suggest that some of the variation was due to the abundance of one plant species, which is known to stimulate AMF colonization of neighbouring plants, while AMF colonization was related to the occurrence of a specialist insect herbivore. Our results thus illustrate that in natural systems, the ecosystem impact of AMF through their influence on the occurrence of specialist insects can be recognised, but they also highlight the confounding effect of neighbouring plant species identity. Hence, our results emphasise the importance of field

  8. Aboveground endophyte affects root volatile emission and host plant selection of a belowground insect.

    Science.gov (United States)

    Rostás, Michael; Cripps, Michael G; Silcock, Patrick

    2015-02-01

    Plants emit specific blends of volatile organic compounds (VOCs) that serve as multitrophic, multifunctional signals. Fungi colonizing aboveground (AG) or belowground (BG) plant structures can modify VOC patterns, thereby altering the information content for AG insects. Whether AG microbes affect the emission of root volatiles and thus influence soil insect behaviour is unknown. The endophytic fungus Neotyphodium uncinatum colonizes the aerial parts of the grass hybrid Festuca pratensis × Lolium perenne and is responsible for the presence of insect-toxic loline alkaloids in shoots and roots. We investigated whether endophyte symbiosis had an effect on the volatile emission of grass roots and if the root herbivore Costelytra zealandica was able to recognize endophyte-infected plants by olfaction. In BG olfactometer assays, larvae of C. zealandica were more strongly attracted to roots of uninfected than endophyte-harbouring grasses. Combined gas chromatography-mass spectrometry and proton transfer reaction-mass spectrometry revealed that endophyte-infected roots emitted less VOCs and more CO2. Our results demonstrate that symbiotic fungi in plants may influence soil insect distribution by changing their behaviour towards root volatiles. The well-known defensive mutualism between grasses and Neotyphodium endophytes could thus go beyond bioactive alkaloids and also confer protection by being chemically less apparent for soil herbivores.

  9. Biomassas de partes aéreas em plantas da caatinga Aboveground biomass of caatinga plants

    Directory of Open Access Journals (Sweden)

    Grécia Cavalcanti Silva

    2008-06-01

    Full Text Available As biomassas de partes aéreas de nove espécies da caatinga foram determinadas e relacionadas com as medidas das plantas, cortando-se 30 plantas de cada espécie e separando-as em caule, galhos, ramos e folhas. As espécies foram divididas em dois grupos: seis espécies com plantas grandes e três com plantas menores. Cada grupo foi separado em classes de diâmetro do caule (DAP. As alturas totais (HT dobraram (3,8 a 8,5 m da classe de menor para a de maior diâmetro (Biomass of aboveground parts of nine caatinga species were determined and related to plant measurements. Thirty plants of each species were collected and separated into stems, branches, twigs and leaves. The species were divided in two groups: six species of large plants and three species of smaller plants. Each group was divided into classes of stem diameter (DBH. Plant height (H doubled (3.8 to 8.5 m from the smallest-diameter class to the largest diameter ( 5 cm diameter, 20% of branches from 1 to 5 cm, 5% of twigs < 1 cm and 5% of leaves. DBH was the single variable that best predicted biomass of parts, in both species groups, according to a power equation (B = a DBH b. H and CPA were also significantly related to biomass for some parts and group, but with R² lower than DBH. Combining DBH and H improved estimation but not enough to justify the extra field effort in determining H. Therefore, plant part biomass can be estimated from measurements of stem diameter, in a non-destructive process.

  10. The importance of aboveground-belowground interactions on the evolution and maintenance of variation in plant defence traits

    Directory of Open Access Journals (Sweden)

    Moniek evan Geem

    2013-11-01

    Full Text Available Over the past two decades a growing body of empirical research has shown that many ecological processes are mediated by a complex array of indirect interactions occurring between rhizosphere-inhabiting organisms and those found on aboveground plant parts. Aboveground - belowground studies have thus far focused on elucidating processes and underlying mechanisms that mediate the behavior and performance of invertebrates in opposite compartments. Less is known about genetic variation in plant traits as this applies to an above- belowground framework. For instance, although the field of genetic variation in aboveground plant traits on community-level interactions is well developed, most studies have ignored genetic variation in plant traits – such as defence - that may have evolved in response to pressures from the combined effects of above- and below ground interactions from antagonists and mutualists. Here, we discuss gaps in our understanding of genetic variation in plant- and consumer-related traits as they relate to aboveground and belowground multitrophic interactions. When metabolic resources are limiting, then multiple attack by antagonists in both domains may lead to trade-offs in where these resources are optimally invested. In nature, these trade-offs may critically depend upon their effects on plant fitness. Natural enemies of herbivores may also influence selection for different traits via top-down control. At larger scales these interactions may generate evolutionary ‘hotspots’ where the expression of various plant traits is the result of strong reciprocal selection via direct and indirect interactions. The role of abiotic factors in driving genetic variation in plant traits is also discussed.

  11. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China

    Science.gov (United States)

    Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y. Jun

    2016-01-01

    Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region. PMID:27097325

  12. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China.

    Directory of Open Access Journals (Sweden)

    Yanjing Lou

    Full Text Available Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region.

  13. Legacy effects of aboveground-belowground interactions

    NARCIS (Netherlands)

    Kostenko, O.; Voorde, van de T.F.J.; Mulder, P.P.J.; Putten, van der W.H.; Bezemer, T.M.

    2012-01-01

    Root herbivory can greatly affect the performance of aboveground insects via changes in plant chemistry. These interactions have been studied extensively in experiments where aboveground and belowground insects were feeding on the same plant. However, little is known about how aboveground and

  14. Refuse dumps from leaf-cutting ant nests reduce the intensity of above-ground competition among neighboring plants in a Patagonian steppe

    Science.gov (United States)

    Farji-Brener, Alejandro G.; Lescano, María Natalia

    2017-11-01

    In arid environments, the high availability of sunlight due to the scarcity of trees suggests that plant competition take place mainly belowground for water and nutrients. However, the occurrence of soil disturbances that increase nutrient availability and thereby promote plant growth may enhance shoot competition between neighboring plants. We conducted a greenhouse experiment to evaluate the influence of the enriched soil patches generated by the leaf-cutting ant, Acromyrmex lobicornis, on the performance of the alien forb Carduus thoermeri (Asteraceae) under different intraspecific competition scenarios. Our results showed that substrate type and competition scenario affected mainly aboveground plant growth. As expected, plants growing without neighbors and in nutrient-rich ant refuse dumps showed more aboveground biomass than plants growing with neighbors and in nutrient-poor steppe soils. However, aboveground competition was more intense in nutrient-poor substrates: plants under shoot and full competition growing in the nutrient-rich ant refuse dumps showed higher biomass than those growing on steppe soils. Belowground biomass was similar among focal plants growing under different substrate type. Our results support the traditional view that increments in resource availability reduce competition intensity. Moreover, the fact that seedlings in this sunny habitat mainly compete aboveground illustrates how limiting factors may be scale-dependent and change in importance as plants grow.

  15. The role of above-ground competition and nitrogen vs. phosphorus enrichment in seedling survival of common European plant species of semi-natural grasslands.

    Directory of Open Access Journals (Sweden)

    Tobias Ceulemans

    Full Text Available Anthropogenic activities have severely altered fluxes of nitrogen and phosphorus in ecosystems worldwide. In grasslands, subsequent negative effects are commonly attributed to competitive exclusion of plant species following increased above-ground biomass production. However, some studies have shown that this does not fully account for nutrient enrichment effects, questioning whether lowering competition by reducing grassland productivity through mowing or herbivory can mitigate the environmental impact of nutrient pollution. Furthermore, few studies so far discriminate between nitrogen and phosphorus pollution. We performed a full factorial experiment in greenhouse mesocosms combining nitrogen and phosphorus addition with two clipping regimes designed to relax above-ground competition. Next, we studied the survival and growth of seedlings of eight common European grassland species and found that five out of eight species showed higher survival under the clipping regime with the lowest above-ground competition. Phosphorus addition negatively affected seven plant species and nitrogen addition negatively affected four plant species. Importantly, the negative effects of nutrient addition and higher above-ground competition were independent of each other for all but one species. Our results suggest that at any given level of soil nutrients, relaxation of above-ground competition allows for higher seedling survival in grasslands. At the same time, even at low levels of above-ground competition, nutrient enrichment negatively affects survival as compared to nutrient-poor conditions. Therefore, although maintaining low above-ground competition appears essential for species' recruitment, for instance through mowing or herbivory, these management efforts are likely to be insufficient and we conclude that environmental policies aimed to reduce both excess nitrogen and particularly phosphorus inputs are also necessary.

  16. STUDY OF OPPORTUNITIES OF USE OF COMPOSTS CUNICOLES FOR THE ABOVEGROUND PRODUCTION OF TOMATO PLANTS IN TUNISIA

    Directory of Open Access Journals (Sweden)

    Y. M’Sadak

    2015-03-01

    Full Text Available The present work aims to study the potential valorization of composts exhausted cunicoles for aboveground vegetable plants. In a device complete random block with three repetitions, five composts in a pure state or in mixture and a witness are tested under tomato in seedbed except ground. They got results enable us to confirm that the composts are mature. As a whole, they have availability out of high water and a content of relatively weak air, whereas the substrates containing the peat-compost mixtures have physical properties close to the standards retained in Tunisia. The vegetative behavior of these plants with respect to the variation of the composition and the average size of the particles of the substrates shows a sensitivity of the seedlings to these parameters to the beginning of their growth. Majority of the mixtures containing peat-compost gave seedlings of quality, healthy, and homogeneous. The composts prepare well with a partial use in except ground.

  17. The variable effects of soil nitrogen availability and insect herbivory on aboveground and belowground plant biomass in an old-field ecosystem

    DEFF Research Database (Denmark)

    Blue, Jarrod D.; Souza, Lara; Classen, Aimée T.

    2011-01-01

    Nutrient availability and herbivory can regulate primary production in ecosystems, but little is known about how, or whether, they may interact with one another. Here, we investigate how nitrogen availability and insect herbivory interact to alter aboveground and belowground plant community biomass...... in an old-field ecosystem. In 2004, we established 36 experimental plots in which we manipulated soil nitrogen (N) availability and insect abundance in a completely randomized plot design. In 2009, after 6 years of treatments, we measured aboveground biomass and assessed root production at peak growth...... not be limiting primary production in this ecosystem. Insects reduced the aboveground biomass of subdominant plant species and decreased coarse root production. We found no statistical interactions between N availability and insect herbivory for any response variable. Overall, the results of 6 years of nutrient...

  18. Arbuscular mycorrhizal colonization, plant chemistry, and aboveground herbivory on Senecio jacobaea

    NARCIS (Netherlands)

    Reidinger, S.; Eschen, R.; Gange, A.C.; Finch, P.; Bezemer, T.M.

    2012-01-01

    Arbuscular mycorrhizal fungi (AMF) can affect insect herbivores by changing plant growth and chemistry. However, many factors can influence the symbiotic relationship between plant and fungus, potentially obscuring experimental treatments and ecosystem impacts. In a field experiment, we assessed AMF

  19. Potential for post-closure radionuclide redistribution due to biotic intrusion: aboveground biomass, litter production rates, and the distribution of root mass with depth at material disposal area G, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    French, Sean B [Los Alamos National Laboratory; Christensen, Candace [Los Alamos National Laboratory; Jennings, Terry L [Los Alamos National Laboratory; Jaros, Christopher L [Los Alamos National Laboratory; Wykoff, David S [Los Alamos National Laboratory; Crowell, Kelly J [Los Alamos National Laboratory; Shuman, Rob [URS

    2008-01-01

    Low-level radioactive waste (LLW) generated at the Los Alamos National Laboratories (LANL) is disposed of at LANL's Technical Area (T A) 54, Material Disposal Area (MDA) G. The ability of MDA G to safely contain radioactive waste during current and post-closure operations is evaluated as part of the facility's ongoing performance assessment (PA) and composite analysis (CA). Due to the potential for uptake and incorporation of radio nuclides into aboveground plant material, the PA and CA project that plant roots penetrating into buried waste may lead to releases of radionuclides into the accessible environment. The potential amount ofcontamination deposited on the ground surface due to plant intrusion into buried waste is a function of the quantity of litter generated by plants, as well as radionuclide concentrations within the litter. Radionuclide concentrations in plant litter is dependent on the distribution of root mass with depth and the efficiency with which radionuclides are extracted from contaminated soils by the plant's roots. In order to reduce uncertainties associated with the PA and CA for MDA G, surveys are being conducted to assess aboveground biomass, plant litter production rates, and root mass with depth for the four prominent vegetation types (grasses, forbs, shrubs and trees). The collection of aboveground biomass for grasses and forbs began in 2007. Additional sampling was conducted in October 2008 to measure root mass with depth and to collect additional aboveground biomass data for the types of grasses, forbs, shrubs, and trees that may become established at MDA G after the facility undergoes final closure, Biomass data will be used to estimate the future potential mass of contaminated plant litter fall, which could act as a latent conduit for radionuclide transport from the closed disposal area. Data collected are expected to reduce uncertainties associated with the PA and CA for MDA G and ultimately aid in the assessment and

  20. Fungal endophytes in above-ground tissues of desert plants: infrequent in culture, but highly diverse and distinctive symbionts

    Science.gov (United States)

    Massimo, Nicholas C.; Nandi Devan, MM; Arendt, Kayla R.; Wilch, Margaret H.; Riddle, Jakob M.; Furr, Susan H.; Steen, Cole; U'Ren, Jana M.; Sandberg, Dustin C.; Arnold, A. Elizabeth

    2015-01-01

    In hot deserts, plants cope with aridity, high temperatures, and nutrient-poor soils with morphological and biochemical adaptations that encompass intimate microbial symbioses. Whereas the root microbiomes of arid-land plants have received increasing attention, factors influencing assemblages of symbionts in above-ground tissues have not been evaluated for many woody plants that flourish in desert environments. We evaluated the diversity, host affiliations, and distributions of endophytic fungi associated with photosynthetic tissues of desert trees and shrubs, focusing on non-succulent woody plants in the species-rich Sonoran Desert. To inform our strength of inference, we evaluated the effects of two different nutrient media, incubation temperatures, and collection seasons on the apparent structure of endophyte assemblages. Analysis of >22,000 tissue segments revealed that endophytes were isolated four times more frequently from photosynthetic stems than leaves. Isolation frequency was lower than expected given the latitude of the study region, and varied among species a function of sampling site and abiotic factors. However, endophytes were very species-rich and phylogenetically diverse, consistent with less-arid sites of a similar latitudinal position. Community composition differed among host species, but not as a function of tissue type, sampling site, sampling month, or exposure. Estimates of abundance, diversity and composition were not influenced by isolation medium or incubation temperature. Phylogenetic analyses of the most commonly isolated genus (Preussia) revealed multiple evolutionary origins of desert-plant endophytism and little phylogenetic structure with regard to seasonality, tissue preference, or optimal temperatures and nutrients for growth in vitro. Together, these results provide insight into endophytic symbioses in desert plant communities, and can be used to optimize strategies for capturing endophyte biodiversity at regional scales. PMID

  1. Fungal endophytes in aboveground tissues of desert plants: infrequent in culture, but highly diverse and distinctive symbionts.

    Science.gov (United States)

    Massimo, Nicholas C; Nandi Devan, M M; Arendt, Kayla R; Wilch, Margaret H; Riddle, Jakob M; Furr, Susan H; Steen, Cole; U'Ren, Jana M; Sandberg, Dustin C; Arnold, A Elizabeth

    2015-07-01

    In hot deserts, plants cope with aridity, high temperatures, and nutrient-poor soils with morphological and biochemical adaptations that encompass intimate microbial symbioses. Whereas the root microbiomes of arid-land plants have received increasing attention, factors influencing assemblages of symbionts in aboveground tissues have not been evaluated for many woody plants that flourish in desert environments. We evaluated the diversity, host affiliations, and distributions of endophytic fungi associated with photosynthetic tissues of desert trees and shrubs, focusing on nonsucculent woody plants in the species-rich Sonoran Desert. To inform our strength of inference, we evaluated the effects of two different nutrient media, incubation temperatures, and collection seasons on the apparent structure of endophyte assemblages. Analysis of >22,000 tissue segments revealed that endophytes were isolated four times more frequently from photosynthetic stems than leaves. Isolation frequency was lower than expected given the latitude of the study region and varied among species a function of sampling site and abiotic factors. However, endophytes were very species-rich and phylogenetically diverse, consistent with less arid sites of a similar latitudinal position. Community composition differed among host species, but not as a function of tissue type, sampling site, sampling month, or exposure. Estimates of abundance, diversity, and composition were not influenced by isolation medium or incubation temperature. Phylogenetic analyses of the most commonly isolated genus (Preussia) revealed multiple evolutionary origins of desert-plant endophytism and little phylogenetic structure with regard to seasonality, tissue preference, or optimal temperatures and nutrients for growth in vitro. Together, these results provide insight into endophytic symbioses in desert-plant communities and can be used to optimize strategies for capturing endophyte biodiversity at regional scales.

  2. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity.

    Directory of Open Access Journals (Sweden)

    Lionel R Hertzog

    Full Text Available Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution and dominance (relative abundance of the dominant species. Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species, we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i, or indirectly through increased productivity (ii. Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii. Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore

  3. VALORIZATION ABOVEGROUND OF THE EXTRACT OF COMPOST OVINE FOR FERTIGATION OF THE VEGETABLES PLANTS IN TUNISIA

    Directory of Open Access Journals (Sweden)

    Y. M’Sadak

    2013-12-01

    Full Text Available The main objective of this study was to highlight the fertilizing capacity of the extract of ovine compost (prepared to the simple infusion in gardening nursery, while specifying the appropriate ratios of extraction and dilution ,for soilless plant fertigation intended for two strategic summer crops in Tunisia: seasonal tomato and seasonal pepper. It is clear that such extraction ratio of 1: 5 is effective for plants fertigation of two considered species. In addition, it has been shown that 200 times dilution of the concentrated extract is beneficial for the growth of tomato plants. However, this organic liquid fertilizer with different dilutions applied and in the experimental conditions adopted, wasn’t moderately efficient in stimulating the growth of pepper plants. The importance of this type of compost produced from sheep biomass, widely available in Tunisia, encourage the diversification of its exploitation, which is the object of this preliminary work, deserving more future investigations.

  4. Aboveground storage tanks

    International Nuclear Information System (INIS)

    Rizzo, J.A.

    1992-01-01

    With the 1988 promulgation of the comprehensive Resource Conservation and Recovery Act (RCRA) regulations for underground storage of petroleum and hazardous substances, many existing underground storage tank (UST) owners have been considering making the move to aboveground storage. While on the surface, this may appear to be the cure-all to avoiding the underground leakage dilemma, there are many other new and different issues to consider with aboveground storage. The greatest misconception is that by storing materials above ground, there is no risk of subsurface environmental problems. it should be noted that with the aboveground storage tank (AGST) systems, there is still considerable risk of environmental contamination, either by the failure of onground tank bottoms or the spillage of product onto the ground surface where it subsequently finds its way to the ground water. In addition, there are added safety concerns that must be addressed. So what are the other specific areas of concern besides environmental to be addressed when making the decision between underground and aboveground tanks? The primary issues that will be addressed in this paper are: Safety, Product Losses, Cost Comparison of USTs vs AGSTs, Space Availability/Accessibility, Precipitation Handling, Aesthetics and Security, Pending and Existing Regulations

  5. Response of aboveground carbon balance to long-term, experimental shifts in precipitation seasonality is contingent on plant community type in cold-desert rangelands

    Science.gov (United States)

    Reinhardt, K.; McAbee, K.; Germino, M. J.; Bosworth, A.

    2016-12-01

    Semi-arid rangelands have been identified as potential carbon (C) sinks. However, the degree of net C storage or release in water-limited systems is a function of precipitation amount and timing, as well as plant community composition. In northern latitudes of western North America, climate models predict increases in wintertime precipitation and decreases in summertime precipitation. In theory, this should boost C storage in cold-desert ecosystems that have deep-rooted woody plants due to greater wintertime soil water storage that enhances summertime productivity. However, there are few long-term, manipulative field-based studies investigating how shrub- and grass-dominated rangelands will respond to changing precipitation patterns. We measured aboveground C pools and fluxes at leaf, soil, and ecosystem scales over the 2014 growing season on plots that had supplemental precipitation added in either winter or summer for 21 years, in shrub- and exotic-bunchgrass-dominated plots. We hypothesized that increased winter precipitation would stimulate aboveground C uptake and storage relative to ambient conditions, in our cold-desert-adapted plant species. We further hypothesized that long-term gains in aboveground C storage due to precipitation manipulations would be greater in plots containing shrubs. Our hypotheses were generally supported: ecosystem C uptake and long-term biomass accumulation were greater in winter- and summer-irrigated plots compared to control plots in both vegetation communities. However, substantial increases in aboveground biomass occurred only in winter-irrigated plots that contained shrubs. Our findings suggest that increases in winter precipitation will enhance C storage of this widespread ecosystem, provided that the ecosystems have resisted conversion to exotic grassland.

  6. Relationships between aboveground biomass and plant cover at two spatial scales and their determinants in northern Tibetan grasslands.

    Science.gov (United States)

    Jiang, Yanbin; Zhang, Yangjian; Wu, Yupeng; Hu, Ronggui; Zhu, Juntao; Tao, Jian; Zhang, Tao

    2017-10-01

    The relationships between cover and AGB for the dominant and widely distributed alpine grasslands on the northern Tibetan Plateau is still not fully examined. The objectives of this study are to answer the following question: (1) How does aboveground biomass (AGB) of alpine grassland relate to plant cover at different spatial scales? (2) What are the major biotic and abiotic factors influencing on AGB-cover relationship? A community survey (species, cover, height, and abundance) was conducted within 1 m × 1 m plots in 70 sites along a precipitation gradient of 50-600 m. Ordinary linear regression was employed to examine AGB-cover relationships of both community and species levels at regional scale of entire grassland and landscape scale of alpine meadow, alpine steppe, and desert steppe. Hierarchical partitioning was employed to estimate independent contributions of biotic and abiotic factors to AGB and cover at both scales. Partial correlation analyses were used to discriminate the effects of biotic and abiotic factors on AGB-cover relationships at two spatial scales. AGB and community cover both exponentially increased along the precipitation gradient. At community level, AGB was positively and linearly correlated with cover for all grasslands except for alpine meadow. AGB was also linearly correlated with cover of species level at both regional and landscape scales. Contributions of biotic and abiotic factors to the relationship between AGB and cover significantly depended on spatial scales. Cover of cushions, forbs, legumes and sedges, species richness, MAP, and soil bulk density were important factors that influenced the AGB-cover relationship at either regional or landscape scale. This study indicated generally positive and linear relationships between AGB and cover are at both regional and landscape scales. Spatial scale may affect ranges of cover and modify the contribution of cover to AGB. AGB-cover relationships were influenced mainly by species

  7. High Throughput Determination of Plant Height, Ground Cover, and Above-Ground Biomass in Wheat with LiDAR

    Directory of Open Access Journals (Sweden)

    Jose A. Jimenez-Berni

    2018-02-01

    Full Text Available Crop improvement efforts are targeting increased above-ground biomass and radiation-use efficiency as drivers for greater yield. Early ground cover and canopy height contribute to biomass production, but manual measurements of these traits, and in particular above-ground biomass, are slow and labor-intensive, more so when made at multiple developmental stages. These constraints limit the ability to capture these data in a temporal fashion, hampering insights that could be gained from multi-dimensional data. Here we demonstrate the capacity of Light Detection and Ranging (LiDAR, mounted on a lightweight, mobile, ground-based platform, for rapid multi-temporal and non-destructive estimation of canopy height, ground cover and above-ground biomass. Field validation of LiDAR measurements is presented. For canopy height, strong relationships with LiDAR (r2 of 0.99 and root mean square error of 0.017 m were obtained. Ground cover was estimated from LiDAR using two methodologies: red reflectance image and canopy height. In contrast to NDVI, LiDAR was not affected by saturation at high ground cover, and the comparison of both LiDAR methodologies showed strong association (r2 = 0.92 and slope = 1.02 at ground cover above 0.8. For above-ground biomass, a dedicated field experiment was performed with destructive biomass sampled eight times across different developmental stages. Two methodologies are presented for the estimation of biomass from LiDAR: 3D voxel index (3DVI and 3D profile index (3DPI. The parameters involved in the calculation of 3DVI and 3DPI were optimized for each sample event from tillering to maturity, as well as generalized for any developmental stage. Individual sample point predictions were strong while predictions across all eight sample events, provided the strongest association with biomass (r2 = 0.93 and r2 = 0.92 for 3DPI and 3DVI, respectively. Given these results, we believe that application of this system will provide new

  8. High Throughput Determination of Plant Height, Ground Cover, and Above-Ground Biomass in Wheat with LiDAR.

    Science.gov (United States)

    Jimenez-Berni, Jose A; Deery, David M; Rozas-Larraondo, Pablo; Condon, Anthony Tony G; Rebetzke, Greg J; James, Richard A; Bovill, William D; Furbank, Robert T; Sirault, Xavier R R

    2018-01-01

    Crop improvement efforts are targeting increased above-ground biomass and radiation-use efficiency as drivers for greater yield. Early ground cover and canopy height contribute to biomass production, but manual measurements of these traits, and in particular above-ground biomass, are slow and labor-intensive, more so when made at multiple developmental stages. These constraints limit the ability to capture these data in a temporal fashion, hampering insights that could be gained from multi-dimensional data. Here we demonstrate the capacity of Light Detection and Ranging (LiDAR), mounted on a lightweight, mobile, ground-based platform, for rapid multi-temporal and non-destructive estimation of canopy height, ground cover and above-ground biomass. Field validation of LiDAR measurements is presented. For canopy height, strong relationships with LiDAR ( r 2 of 0.99 and root mean square error of 0.017 m) were obtained. Ground cover was estimated from LiDAR using two methodologies: red reflectance image and canopy height. In contrast to NDVI, LiDAR was not affected by saturation at high ground cover, and the comparison of both LiDAR methodologies showed strong association ( r 2 = 0.92 and slope = 1.02) at ground cover above 0.8. For above-ground biomass, a dedicated field experiment was performed with destructive biomass sampled eight times across different developmental stages. Two methodologies are presented for the estimation of biomass from LiDAR: 3D voxel index (3DVI) and 3D profile index (3DPI). The parameters involved in the calculation of 3DVI and 3DPI were optimized for each sample event from tillering to maturity, as well as generalized for any developmental stage. Individual sample point predictions were strong while predictions across all eight sample events, provided the strongest association with biomass ( r 2 = 0.93 and r 2 = 0.92) for 3DPI and 3DVI, respectively. Given these results, we believe that application of this system will provide new

  9. Understanding cross-communication between aboveground and belowground tissues via transcriptome analysis of a sucking insect whitefly-infested pepper plants.

    Science.gov (United States)

    Park, Yong-Soon; Ryu, Choong-Min

    2014-01-03

    Plants have developed defensive machinery to protect themselves against herbivore and pathogen attacks. We previously reported that aboveground whitefly (Bemisia tabaci Genn.) infestation elicited induced resistance in leaves and roots and influenced the modification of the rhizosphere microflora. In this study, to obtain molecular evidence supporting these plant fitness strategies against whitefly infestation, we performed a 300 K pepper microarray analysis using leaf and root tissues of pepper (Capsicum annuum L.) applied with whitefly, benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), and the combination of BTH+whitefly. We defined differentially expressed genes (DEGs) as genes exhibiting more than 2-fold change (1.0 based on log2 values) in expression in leaves and roots in response to each treatment compared to the control. We identified a total of 16,188 DEGs in leaves and roots. Of these, 6685, 6752, and 4045 DEGs from leaf tissue and 6768, 7705, and 7667 DEGs from root tissue were identified in the BTH, BTH+whitefly, and whitefly treatment groups, respectively. The total number of DEGs was approximately two-times higher in roots than in whitefly-infested leaves subjected to whitefly infestation. Among DEGs, whitefly feeding induced salicylic acid and jasmonic acid/ethylene-dependent signaling pathways in leaves and roots. Several transporters and auxin-responsive genes were upregulated in roots, which can explain why biomass increase is facilitated. Using transcriptome analysis, our study provides new insights into the molecular basis of whitefly-mediated intercommunication between aboveground and belowground plant tissues and provides molecular evidence that may explain the alteration of rhizosphere microflora and root biomass by whitefly infestation. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Effects of elevated temperature and CO2 on aboveground-belowground systems: a case study with plants, their mutualistic bacteria and root / shoot herbivores

    Directory of Open Access Journals (Sweden)

    James Michael William Ryalls

    2013-11-01

    Full Text Available Interactions between above- and belowground herbivores have been prominent in the field of aboveground-belowground ecology from the outset, although little is known about how climate change affects these organisms when they share the same plant. Additionally, the interactive effects of multiple factors associated with climate change such as elevated temperature (eT and elevated atmospheric carbon dioxide (eCO2 are untested. We investigated how eT and eCO2 affected larval development of the lucerne weevil (Sitona discoideus and colonisation by the pea aphid (Acyrthosiphon pisum, on three cultivars of a common host plant, lucerne (Medicago sativa. Sitona discoideus larvae feed on root nodules housing N2-fixing rhizobial bacteria, allowing us to test the effects of eT and eCO2 on three trophic levels. Moreover, we assessed the influence of these factors on plant growth. eT increased plant growth rate initially (6, 8 and 10 weeks after sowing, with cultivar ‘Sequel’ achieving the greatest height. Inoculation with aphids, however, reduced plant growth at week 14. eT severely reduced root nodulation by 43%, whereas eCO2 promoted nodulation by 56%, but only at ambient temperatures. Weevil presence increased net root biomass and nodulation, by 31 and 45%, respectively, showing an overcompensatory plant growth response. Effects of eT and eCO2 on root nodulation were mirrored by weevil larval development; eT and eCO2 reduced and increased larval development, respectively. Contrary to expectations, aphid colonisation was unaffected by eT or eCO2, but there was a near-significant 10% reduction in colonisation rates on plants with weevils present belowground. The contrasting effects of eT and eCO2 on weevils potentially occurred through changes in root nodulation patterns.

  11. Effects of elevated temperature and CO2 on aboveground-belowground systems: a case study with plants, their mutualistic bacteria and root/shoot herbivores.

    Science.gov (United States)

    Ryalls, James M W; Riegler, Markus; Moore, Ben D; Lopaticki, Goran; Johnson, Scott N

    2013-01-01

    Interactions between above- and belowground herbivores have been prominent in the field of aboveground-belowground ecology from the outset, although little is known about how climate change affects these organisms when they share the same plant. Additionally, the interactive effects of multiple factors associated with climate change such as elevated temperature (eT) and elevated atmospheric carbon dioxide (eCO2) are untested. We investigated how eT and eCO2 affected larval development of the lucerne weevil (Sitona discoideus) and colonization by the pea aphid (Acyrthosiphon pisum), on three cultivars of a common host plant, lucerne (Medicago sativa). Sitona discoideus larvae feed on root nodules housing N2-fixing rhizobial bacteria, allowing us to test the effects of eT and eCO2 across trophic levels. Moreover, we assessed the influence of these factors on plant growth. eT increased plant growth rate initially (6, 8 and 10 weeks after sowing), with cultivar "Sequel" achieving the greatest height. Inoculation with aphids, however, reduced plant growth at week 14. eT severely reduced root nodulation by 43%, whereas eCO2 promoted nodulation by 56%, but only at ambient temperatures. Weevil presence increased net root biomass and nodulation, by 31 and 45%, respectively, showing an overcompensatory plant growth response. Effects of eT and eCO2 on root nodulation were mirrored by weevil larval development; eT and eCO2 reduced and increased larval development, respectively. Contrary to expectations, aphid colonization was unaffected by eT or eCO2, but there was a near-significant 10% reduction in colonization rates on plants with weevils present belowground. The contrasting effects of eT and eCO2 on weevils potentially occurred through changes in root nodulation patterns.

  12. Effect of the density of transplants in reforestation on the morphological quality of the above-ground part of European beech (Fagus sylvatica L. six years after planting

    Directory of Open Access Journals (Sweden)

    Kateřina Houšková

    2013-01-01

    Full Text Available Quality of the above-ground part of European beech planted at different densities and spacing patterns for the purpose of artificial forest regeneration was monitored 3, 4 and 6 years after planting. The initial numbers of beech transplants were 5,000 pcs.ha−1, 10,000 pcs.ha−1, 15,000 pcs.ha−1 and 20,000 pcs.ha−1. The spacing pattern of transplants was either square or rectangular nearly in all variants: 1.4 × 1.4 m, 2 × 1 m, 1 × 1 m, 0.8 × 0.8 m, 1 ×0.65 m, 0.7 × 0.7 m and 1 × 0.5 m. Conclusions following out from the research are as follows: 1. neither the chosen density of transplants nor their spacing pattern had an essential influence on the after-planting loss or damage of trees; 2. through the planting of larger-diameter transplants it is possible to achieve canopy closure more rapidly as well as faster growth of the plantation; these beech plants keep the edge in growth and quality even 6 years after planting; 3. the higher is the beech plantation density, the less individuals occur in such a plantation with inappropriate stem form; 4. beech plants of the worst quality were found on plots with the lowest initial density of transplants (5,000 and 10,000 pcs.ha−1, yet the number of promising trees was sufficient even there. Thus, none of the experimental numbers of transplants per hectare or spacing arrangements of the European beech transplants can be claimed as inappropriate; however, further monitoring of the plots is necessary.

  13. Nuclear power plant cable materials :

    Energy Technology Data Exchange (ETDEWEB)

    Celina, Mathias C.; Gillen, Kenneth T; Lindgren, Eric Richard

    2013-05-01

    A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by a LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostly inert aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on

  14. Does drought stress modify the effects of plant-growth promoting rhizobacteria on an aboveground chewing herbivore?

    NARCIS (Netherlands)

    de Bobadilla, Maite Fernández; Friman, Julia; Pangesti, Nurmi; Dicke, Marcel; van Loon, Joop J.A.; Pineda, Ana

    2017-01-01

    Soil microbes have important effects on the interactions of plants with their environment, by promoting plant growth, inducing resistance to pests or by conferring tolerance to abiotic stress. However, their effects are variable and the factors responsible for this variation are mainly unknown. Our

  15. Influence of presence and spatial arrangement of belowground insects on host-plant selection of aboveground insects: a field study

    NARCIS (Netherlands)

    Soler, J.J.; Schaper, S.V.; Bezemer, T.M.; Cortesero, A.M.; Hoffmeister, T.S.; Van der Putten, W.H.; Vet, L.E.M.; Harvey, J.A.

    2009-01-01

    1. Several studies have shown that above- and belowground insects can interact by influencing each others growth, development, and survival when they feed on the same host-plant. In natural systems, however, insects can make choices on which plants to oviposit and feed. A field experiment was

  16. Tamarisk coalition - native riparian plant materials program

    Science.gov (United States)

    Stacy Kolegas

    2012-01-01

    The Tamarisk Coalition (TC), a nonprofit organization dedicated to riparian restoration in the western United States, has created a Native Plant Materials Program to address the identified need for native riparian plant species for use in revegetation efforts on the Colorado Plateau. The specific components of the Native Plant Materials Program include: 1) provide seed...

  17. Plant species, not climate, controls aboveground biomass O2:CO2 exchange ratios in deciduous and coniferous ecosystems

    Science.gov (United States)

    Gallagher, Morgan E.; Liljestrand, Frasier L.; Hockaday, William C.; Masiello, Caroline A.

    2017-09-01

    The oxidative ratio (OR) is the O2:CO2 ratio associated with photosynthesis, respiration, and other ecosystem gas exchange processes and can be reported on the scale of an individual leaf, an ecosystem, up to the entire terrestrial biosphere. The OR of the terrestrial biosphere is used to partition anthropogenic CO2 between oceanic and terrestrial carbon sinks, and the ease of measurement of this property on smaller scales suggests its potential for other uses. However, controls on the natural variation of OR are not understood in either organic matter pools or fluxes, and this lack of basic information limits the use of the tracer. Here we assess the annual variability of the OR of photosynthesis over decade for two temperate forests, one coniferous and one deciduous, and show that the photosynthetic OR signature is strongly dominated by plant species. We determined the OR of this flux by measuring the OR of carbon pools that close on annual or shorter timescales (leaves and individual tree rings), via solid-state 13C NMR spectroscopy and elemental analysis. Leaf litter OR is different between coniferous and deciduous forests, but tree bole OR is constant between species. There was no significant change in leaf litter OR with time, nor any correlations between leaf litter OR and temperature or precipitation. During this time growing season precipitation varied by 95% from the time period average, and growing season temperature by 22%, demonstrating that on the decadal scale photosynthetic OR is invariant over significant shifts in these climate parameters.

  18. Eliciting maize defense pathways aboveground attracts belowground biocontrol agents

    Science.gov (United States)

    Filgueiras, Camila Cramer; Willett, Denis S.; Pereira, Ramom Vasconcelos; Moino Junior, Alcides; Pareja, Martin; Duncan, Larry W.

    2016-01-01

    Plant defense pathways mediate multitrophic interactions above and belowground. Understanding the effects of these pathways on pests and natural enemies above and belowground holds great potential for designing effective control strategies. Here we investigate the effects of aboveground stimulation of plant defense pathways on the interactions between corn, the aboveground herbivore adult Diabrotica speciosa, the belowground herbivore larval D. speciosa, and the subterranean ento-mopathogenic nematode natural enemy Heterorhabditis amazonensis. We show that adult D. speciosa recruit to aboveground herbivory and methyl salicylate treatment, that larval D. speciosa are relatively indiscriminate, and that H. amazonensis en-tomopathogenic nematodes recruit to corn fed upon by adult D. speciosa. These results suggest that entomopathogenicnematodes belowground can be highly attuned to changes in the aboveground parts of plants and that biological control can be enhanced with induced plant defense in this and similar systems. PMID:27811992

  19. Materials availability for fusion power plant construction

    International Nuclear Information System (INIS)

    Hartley, J.N.; Erickson, L.E.; Engel, R.L.; Foley, T.J.

    1976-09-01

    A preliminary assessment was made of the estimated total U.S. material usage with and without fusion power plants as well as the U.S. and foreign reserves and resources, and U.S. production capacity. The potential environmental impacts of fusion power plant material procurement were also reviewed including land alteration and resultant chemical releases. To provide a general measure for the impact of material procurement for fusion reactors, land requirements were estimated for mining and disposing of waste from mining

  20. Novel superabsorbent materials obtained from plant proteins

    OpenAIRE

    Capezza Villa, Antonio José

    2017-01-01

    This work reviews the potential of plant protein-based materials as superabsorbent polymers (SAP). The review also discusses important topics of relevance for the current state of petroleum-based SAP and explains the background of the high water uptake of such materials. As diapers represent one of the most significant example of SAP applications, their industrial assemblying is highlighted. The research in absorbent materials has shown that treated and functionalized proteins may play a role...

  1. Methods of producing compounds from plant materials

    Science.gov (United States)

    Werpy, Todd A [West Richland, WA; Schmidt, Andrew J [Richland, WA; Frye, Jr., John G.; Zacher, Alan H. , Franz; James A. , Alnajjar; Mikhail S. , Neuenschwander; Gary G. , Alderson; Eric V. , Orth; Rick J. , Abbas; Charles A. , Beery; Kyle E. , Rammelsberg; Anne M. , Kim; Catherine, J [Decatur, IL

    2010-01-26

    The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.

  2. Methods of producing compounds from plant material

    Energy Technology Data Exchange (ETDEWEB)

    Werpy, Todd A.; Schmidt, Andrew J.; Frye, Jr., John G.; Zacher, Alan H.; Franz, James A.; Alnajjar, Mikhail S.; Neuenschwander, Gary G.; Alderson, Eric V.; Orth, Rick J.; Abbas, Charles A.; Beery, Kyle E.; Rammelsberg, Anne M.; Kim, Catherine J.

    2006-01-03

    The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.

  3. Bioavailability of Tc incorporated in plant material

    International Nuclear Information System (INIS)

    Dehut, J.P.; Fonsny, K.; Myttenaere, C.; Deprins, D.; Vandecasteele, C.M.

    1989-01-01

    The effective removal rate of radiopollutants from contaminated soil usually has been estimated by considering only the radioactive decay constant. This approximation, however, becomes a matter of concern when assessments are performed for long release periods, for long-lived radionuclides and for radionuclides exhibiting relatively high values of plant-to-soil concentration ratios. Previous results obtained for 99 Tc showed that phenomena other than radioactive decay may be of importance in soil depletion and that uptake by plants, as well as mechanisms affecting the availability, must be taken into account. In agricultural practice, ignorance of these mechanisms may lead to inaccurate predictions of dose levels. Harvest losses have already been theoretically discussed, and removal constants of soil radioactivity from harvest and leaching have been estimated. Validation of the soil-plant model for Tc including these depletion processes is thus necessary, and minilysimeter experiments were conducted. Contaminated plant material was reincorporated into the soil and was allowed to undergo humification; plants were cultivated on these soils and their Tc uptake was studied. Results showed that an important part of the recycled, bioincorporated Tc is immediately and highly available to plants. The results are discussed within the framework of the plant-material degradation

  4. Advanced power plant materials, design and technology

    Energy Technology Data Exchange (ETDEWEB)

    Roddy, D. (ed.) [Newcastle University (United Kingdom). Sir Joseph Swan Institute

    2010-07-01

    The book is a comprehensive reference on the state of the art of gas-fired and coal-fired power plants, their major components and performance improvement options. Selected chapters are: Integrated gasification combined cycle (IGCC) power plant design and technology by Y. Zhu, and H. C. Frey; Improving thermal cycle efficiency in advanced power plants: water and steam chemistry and materials performance by B. Dooley; Advanced carbon dioxide (CO{sub 2}) gas separation membrane development for power plants by A. Basile, F. Gallucci, and P. Morrone; Advanced flue gas cleaning systems for sulphur oxides (SOx), nitrogen oxides (NOx) and mercury emissions control in power plants by S. Miller and B.G. Miller; Advanced flue gas dedusting systems and filters for ash and particulate emissions control in power plants by B.G. Miller; Advanced sensors for combustion monitoring in power plants: towards smart high-density sensor networks by M. Yu and A.K. Gupta; Advanced monitoring and process control technology for coal-fired power plants by Y. Yan; Low-rank coal properties, upgrading and utilisation for improving the fuel flexibility of advanced power plants by T. Dlouhy; Development and integration of underground coal gasification (UCG) for improving the environmental impact of advanced power plants by M. Green; Development and application of carbon dioxide (CO{sub 2}) storage for improving the environmental impact of advanced power plants by B. McPherson; and Advanced technologies for syngas and hydrogen (H{sub 2}) production from fossil-fuel feedstocks in power plants by P. Chiesa.

  5. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  6. Aktau Plastics Plant Explosives Material Report

    Energy Technology Data Exchange (ETDEWEB)

    CASE JR.,ROGER S.

    1999-12-01

    The U.S. Department of Energy (DOE) has been cooperating with the Republic of Kazakhstanin Combined Threat Reduction (CTR) activities at the BN350 reactor located at the Mangyshlak Atomic Energy Complex (MAEC) in the city of Aktau, Kazakhstan since 1994. DOE contract personnel have been stationed at this facility for the last two years and DOE representatives regularly visit this location to oversee the continuing cooperative activities. Continued future cooperation is planned. A Russian news report in September 1999 indicated that 75 metric tons of organic peroxides stored at the Plastics Plant near Aktau were in danger of exploding and killing or injuring nearby residents. To ensure the health and safety of the personnel at the BN350 site, the DOE conducted a study to investigate the potential danger to the BN350 site posed by these materials at the Plastics Plant. The study conclusion was that while the organic peroxides do have hazards associated with them, the BN350 site is a safe distance from the Plastics Plant. Further, because the Plastics Plant and MAEC have cooperative fire-fighting agreements,and the Plastics Plant had exhausted its reserve of fire-fighting foam, there was the possibility of the Plastics Plant depleting the store of fire-fighting foam at the BN350 site. Subsequently, the DOE decided to purchase fire-fighting foam for the Plastics Plant to ensure the availability of free-fighting foam at the BN350 site.

  7. Material control for a reprocessing plant

    International Nuclear Information System (INIS)

    Rundquist, D.; Bray, G.; Donelson, S.; Glancy, J.; Gozani, T.; Harris, L.; McNamera, R.; Pence, D.; Ringham, M.

    1976-01-01

    Adequate control of special nuclear material (SNM) implies a basic knowledge of the quantities of SNM processed through or contained within a fuels processing facility with sufficient accuracy that diversion of the SNM for deleterious purposes can be detected in a timely manner. This report to the Lawrence Livermore Laboratory (LLL) describes the primary process streams containing plutonium that are handled routinely within a spent fuel reprocessing plant and conversion facility. As an aid in implementing the objectives of the accountability system in a realistic situation, the Allied General Nuclear Services (AGNS) reprocessing plant now under construction near Barnwell, South Carolina, was chosen as the study model. The AGNS plant processes are discussed in detail emphasizing those portions of the process that contain significant quantities of plutonium. The unit processes within the separations plant, nitrate storage, plutonium product facility and the analytical laboratory are described with regard to the SNM control system currently planned for use in the facilities. A general discussion of laboratory techniques, nondestructive assay and process instrumentation for plutonium process and product material from a reprocessing plant is included. A comprehensive discussion is given of holdup measurements in plutonium recycle facilities. A brief preliminary overview is presented of alternative processing strategies for LWR fuel. An extensive review and summary of modeling efforts for liquid-liquid extraction cycles is included. A comprehensive bibliography of previous modeling efforts is covered

  8. Material control for a reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Rundquist, D.; Bray, G.; Donelson, S.; Glancy, J.; Gozani, T.; Harris, L.; McNamera, R.; Pence, D.; Ringham, M.

    1976-08-15

    Adequate control of special nuclear material (SNM) implies a basic knowledge of the quantities of SNM processed through or contained within a fuels processing facility with sufficient accuracy that diversion of the SNM for deleterious purposes can be detected in a timely manner. This report to the Lawrence Livermore Laboratory (LLL) describes the primary process streams containing plutonium that are handled routinely within a spent fuel reprocessing plant and conversion facility. As an aid in implementing the objectives of the accountability system in a realistic situation, the Allied General Nuclear Services (AGNS) reprocessing plant now under construction near Barnwell, South Carolina, was chosen as the study model. The AGNS plant processes are discussed in detail emphasizing those portions of the process that contain significant quantities of plutonium. The unit processes within the separations plant, nitrate storage, plutonium product facility and the analytical laboratory are described with regard to the SNM control system currently planned for use in the facilities. A general discussion of laboratory techniques, nondestructive assay and process instrumentation for plutonium process and product material from a reprocessing plant is included. A comprehensive discussion is given of holdup measurements in plutonium recycle facilities. A brief preliminary overview is presented of alternative processing strategies for LWR fuel. An extensive review and summary of modeling efforts for liquid-liquid extraction cycles is included. A comprehensive bibliography of previous modeling efforts is covered.

  9. Student reasoning while investigating plant material

    Directory of Open Access Journals (Sweden)

    Helena Näs

    2008-11-01

    Full Text Available In this project, 10-12 year old students in three classes, investigated plant material to learn more about plants and photosynthesis. The research study was conducted to reveal the students’ scientific reasoning during their work. The eleven different tasks helped students investigate plant anatomy, plant physiology, and the gases involved in photosynthesis and respiration. The study was carried out in three ordinary classrooms. The collected data consisted of audio-taped discussions, students’ notebooks, and field notes. Students’ discussions and written work, during the different plant tasks, were analysed to see how the students’ learning and understanding processes developed. The analysis is descriptive and uses categories from a modified general typology of student’s epistemological reasoning. The study shows students’ level of interest in doing the tasks, their struggle with new words and concepts, and how they develop their knowledge about plant physiology. The study confirms thatstudents, in this age group, develop understanding and show an interest in complicated processes in natural science, e.g. photosynthesis.

  10. Materials qualification for nuclear power plants

    International Nuclear Information System (INIS)

    Braconi, F.

    1987-01-01

    The supply of materials to be used in the fabrication of components submitted to pressure destined to Atucha II nuclear power plant must fulfill the quality assurance requirements in accordance with the international standards. With the aim of promoting the national participation in CNA II, ENACE had the need to adapt these requirements to the national industry conditions and to the availability of official entities' qualification and inspection. As a uniform and normalized assessment for the qualification of materials did not exist in the country, ENACE had to develop a materials suppliers qualification system. This paper presents a suppliers qualification procedure, its application limits and the alternative procedures for the acceptance of individual stock and for the stock materials purchase. (Author)

  11. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-10-27

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). A limiting factor in this can be the materials of construction. The project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi). This goal seems achievable based on a preliminary assessment of material capabilities. The project is further intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2005.

  12. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2004-10-30

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April to June 30, 2004.

  13. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-07-30

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of April to June 30, 2004.

  14. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; J. Shingledecker; J. Sarver; G. Stanko; M. Borden; W. Mohn; S. Goodstine; I. Perrin

    2005-01-31

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of July 1 to September 30, 2004.

  15. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    K. Coleman; R. Viswanathan; J. Shingledecker; J. Sarver; G. Stanko; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2004-01-23

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have recently initiated a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of ultrasupercritical steam conditions (USC). The project goal initially was to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760 C (1400 F)/35 MPa (5000 psi), although this goal for the main steam temperature had to be revised down to 732 C (1350 F), based on a preliminary assessment of material capabilities. The project is intended to build further upon the alloy development and evaluation programs that have been carried out in Europe and Japan. Those programs have identified ferritic steels capable of meeting the strength requirements of USC plants up to approximately 620 C (1150 F) and nickel-based alloys suitable up to 700 C (1300 F). In this project, the maximum temperature capabilities of these and other available high-temperature alloys are being assessed to provide a basis for materials selection and application under a range of conditions prevailing in the boiler. This report provides a quarterly status report for the period of October 1 to December 30, 2003.

  16. ABoVE: Gridded 30-m Aboveground Biomass, Shrub Dominance, North Slope, AK, 2007-2016

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset includes 30-m gridded estimates of total plant aboveground biomass (AGB), the shrub AGB, and the shrub dominance (shrub/plant AGB) for non-water...

  17. Fate of 15N and 14C from labelled plant material

    DEFF Research Database (Denmark)

    Rasmussen, Jim; Gjettermann, Birgitte; Eriksen, Jørgen

    2008-01-01

    strength of labelled plant residues in dissolved inorganic N (DIN) and dissolved organic N (DON) in pore water from the plough layer, and (ii) the plant uptake of organically bound N. Litterbags containing 14C- and 15N-labelled ryegrass or clover roots or leaves were inserted into the sward of a ryegrass...... layer during autumn and winter had a constant content of dissolved organic N (DON) and an increasing content of dissolved inorganic N (DIN). A positive correlation between aboveground clover biomass harvested in the growth season and total-N in pore water indicated that decaying roots from the living......The belowground C and N dynamics leading to organic and inorganic N leaching from perennial ryegrass–clover mixtures are not well understood. Based on the hypothesis that four different plant materials would degrade differently, a 16 months field experiment was conducted to determine (i) the source...

  18. Different bacterial communities in heat and gamma irradiation treated replant disease soils revealed by 16S rRNA gene analysis – contribution to improved aboveground apple plant growth?

    Directory of Open Access Journals (Sweden)

    Bunlong eYim

    2015-11-01

    Full Text Available Replant disease (RD severely affects apple production in propagation tree nurseries and in fruit orchards worldwide. This study aimed to investigate the effects of soil disinfection treatments on plant growth and health in a biotest in two different RD soil types under greenhouse conditions and to link the plant growth status with the bacterial community composition at the time of plant sampling. In the biotest performed we observed that the aboveground growth of apple rootstock M26 plants after eight weeks was improved in the two RD soils either treated at 50 °C or with gamma irradiation compared to the untreated RD soils. Total community DNA was extracted from soil loosely adhering to the roots and quantitative real-time PCR revealed no pronounced differences in 16S rRNA gene copy numbers. 16S rRNA gene-based bacterial community analysis by denaturing gradient gel electrophoresis (DGGE and 454-pyrosequencing revealed significant differences in the bacterial community composition even after eight weeks of plant growth. In both soils, the treatments affected different phyla but only the relative abundance of Acidobacteria was reduced by both treatments. The genera Streptomyces, Bacillus, Paenibacillus and Sphingomonas had a higher relative abundance in both heat treated soils, whereas the relative abundance of Mucilaginibacter, Devosia and Rhodanobacter was increased in the gamma-irradiated soils and only the genus Phenylobacterium was increased in both treatments. The increased abundance of genera with potentially beneficial bacteria, i.e. potential degraders of phenolic compounds might have contributed to the improved plant growth in both treatments.

  19. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman

    2003-01-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  20. Identification of Biologically Relevant Compounds in Aboveground and Belowground Induced Volatile Blends

    NARCIS (Netherlands)

    Dam, van N.M.; Qiu, B.L.; Hordijk, C.A.; Vet, L.E.M.; Jansen, J.J.

    2010-01-01

    Plants under attack by aboveground herbivores emit complex blends of volatile organic compounds (VOCs). Specific compounds in these blends are used by parasitic wasps to find their hosts. Belowground induction causes shifts in the composition of aboveground induced VOC blends, which affect the

  1. Aboveground biomass production of a semi-arid southern African ...

    African Journals Online (AJOL)

    The model predicts the annual aboveground net primary production (ANPP) from regression equations of canopy cover by annual production fraction for plant functional classes. We tested the output of the model against another fully independent net primary production (NPP) model, namely the MODIS NPP product.

  2. Empirical and theoretical challenges in aboveground-belowground ecology

    DEFF Research Database (Denmark)

    W.H. van der Putten,; R.D. Bardgett; P.C. de Ruiter

    2009-01-01

    from an empirical perspective and in specific ecological settings or contexts. Belowground interactions operate at different spatial and temporal scales. Due to the relatively low mobility and high survival of organisms in the soil, plants have longer lasting legacy effects belowground than aboveground....... Our current challenge is to understand how aboveground-belowground biotic interactions operate across spatial and temporal scales, and how they depend on, as well as influence, the abiotic environment. Because empirical capacities are too limited to explore all possible combinations of interactions...... and environmental settings, we explore where and how they can be supported by theoretical approaches to develop testable predictions and to generalise empirical results. We review four key areas where a combined aboveground-belowground approach offers perspectives for enhancing ecological understanding, namely...

  3. Sulfur mineralization of different plant materials labelled with 35 S

    International Nuclear Information System (INIS)

    Abreu Junior, Cassio H.

    1993-01-01

    This study was carried out, in green house conditions, with the objective of evaluating the effect of incorporation in soil of different plant materials labelled with 35 S and of incubation periods on the availability of sulfur to the bean test plants and on the dynamic of this element in the soil. The bean test plants dry matter yield ranged from 2.00 to 3.79 g/plant, the S content and absorption ranged from 118.20 to 194.04 mg/100 g and 2.61 to 6.34 mg/plant respectively. The 35 S derived from the incorporated bean plant material contributed with 12 to 256% of total S absorbed by bean test plant; rice plant material contributed with 12 to 22%; soybean plant material contributed 11 to 18%; corn plant material at rate of 7 g with, 11 to 19% and corn at rate of 3.5 g; with 7 to 1%. Plant material incorporation showed 35 S using efficiency by bean test plant of 21.41 to 9.94% by incorporated rice plant material, of 16.12 to 7.79% by rice material, of 13.11 to 6.49% by soybean material, of 10.24 to 6.21% by corn at rate of 3.5 g and of 7.41 to 3.81% by corn at rate of 7 g.Incorporated plant material with C/S relationship near 120, such as bean and rice, promoted desirable and favorable alteration in soil, while materials with C/S higher than 250, such as soybean and corn, led to unsatisfactory and undesirable alteration. The characteristic of incorporated plant materials which more affected its behavior was the C/S relationship, which depended on its physiological stage on collect timing. (author)

  4. Aboveground vertebrate and invertebrate herbivore impact on net N mineralization in subalpine grasslands.

    Science.gov (United States)

    Risch, Anita C; Schotz, Martin; Vandegehuchte, Martijn L; Van Der Putten, Wim H; Duyts, Henk; Raschein, Ursina; Gwiazdowicz, Dariusz J; Busse, Matt D; Page-dumroese, Deborah S; Zimmermann, Stephan

    2015-12-01

    . The negative impact of mammals on net N mineralization may be related partially to (1) differences in the amount of plant material (litter) returned to the belowground subsystem, which induced a positive bottom-up effect on mite abundance, and (2) alterations in the amount and/or distribution of dung, urine, and food waste. Thus, our results clearly show that short-term alterations of the aboveground herbivore community can strongly impact nutrient cycling within ecosystems independent of long-term management and grazing history.

  5. Energy, material and land requirement of a fusion plant

    DEFF Research Database (Denmark)

    Schleisner, Liselotte; Hamacher, T.; Cabal, H.

    2001-01-01

    requirement of a fission plant by a factor of two. The material requirement for a fusion plant is roughly 2000 t/MW and little less than 1000 t/MW for a fission plant. The land requirement for a fusion plant is roughly 300 m2/MW and the land requirement for a fission plant is a little less than 200 m2/MW......The energy and material necessary to construct a power plant and the land covered by the plant are indicators for the ‘consumption’ of environment by a certain technology. Based on current knowledge, estimations show that the material necessary to construct a fusion plant will exceed the material...

  6. OBTAINING OF MICROCRYSTALLINE CELLULOSE FROM PLANT MATERIAL

    OpenAIRE

    Барбаш, Валерій Анатолійович; Нагорна, Юлія Миколаївна

    2015-01-01

    The process of obtaining microcrystalline cellulose from fibers of technical and stalks of cereal plants (hemp, flax, kenaf, corn, wheat and miscanthus) with using of soda cooking, acid treatment, bleaching and hydrolysis were investigated. It was founded that soda cooking to help reducing the residual lignin content in industrial fibers plants from 4,6 to 12,4 % and for stalks of cereal plants from 13.4 to 20.9 % and mineral substances for fibers of industrial plants from 1,2 to 2,7 % and fo...

  7. Determination of scanned virus-free potato planting materials by ...

    African Journals Online (AJOL)

    Positive selection for the identification of virus–free potato planting material was evaluated in four locations in Cameroon. Leaves from asymptomatic plants were randomly collected, the plants marked and tubers collected four weeks later, and screened with DAS-ELISA for PLRV, PVY, PVA, PVX, PVS and PVM presence.

  8. Method of preparing and handling chopped plant materials

    Science.gov (United States)

    Bransby, David I.

    2002-11-26

    The method improves efficiency of harvesting, storage, transport, and feeding of dry plant material to animals, and is a more efficient method for harvesting, handling and transporting dry plant material for industrial purposes, such as for production of bioenergy, and composite panels.

  9. Plant Material Testing: Can we learn from small plots

    Science.gov (United States)

    Choosing appropriate plant materials for a rangeland rehabilitation project is critical for long-term success. The question is what species to seed? We find it is first necessary to define objectives and goals before debating plant material choices. For example, our objective is often to suppress...

  10. Use of anthocyanin extracted from natural plant materials to develop ...

    African Journals Online (AJOL)

    The aim of this work was to study the optimal conditions for anthocyanin extraction from natural plant materials in order to develop a pH test kit. The plant materials used were butterfly pea flower (BPF), roselle red flower (RRF) and dragon fruit peel (DFP). The solvents used in this study were distilled water, 1% HCl/95% ...

  11. Materials in flue gas condensation plants; Materialval vid roekgaskondensering

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Barbara; Nordling Magnus

    2003-02-01

    This project is the first part of a larger project. In the part reported here, materials for flue gas condensers have been investigated by contact with plant owners and suppliers and by a literature review of reported failures. If it is decided to continue with another part of the project, a number of materials will be long term tested on site. The project is complementary to an earlier project, which investigated the operating experiences from flue gas condensers in biomass fired cogeneration plants. In the project materials (steel and polymeric) suitable for long term testing in existing plants are discussed. It is proposed that testing in the second part of the project is made with material coupons in one plant fired with only biomass and one plant where biomass is co fired with other fuels. In the biomass fired plant a number of steel materials should be tested. In the co fired plant, with its harsher operating conditions, the same steel materials plus a number of polymeric materials should be tested. Materials suitable for testing are summarised in the report.

  12. Catalytic production of aromatics and olefins from plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Haag, W.O.; Rodewald, P.G.; Weisz, P.B.

    1980-08-01

    Hydrocarbons and hydrocarbon-like plant materials offer the possibility of relatively simple and energy-efficient processing to liquid fuels or petrochemicals. The use of such highly reduced photosynthesis products as potential fuels has been advocated by Calvin and coworkers, and Buchanan and coworkers have evaluated several hundred plant species for the presence of hydrocarbons. The yield of extracted oils may exceed 10 wt % of the plant dry weight. Some field growth studies of the most promising of these plants are underway, e.g., by Calvin in California, by Native Plants, Inc., and by the Diamond Shamrock Co., in conjunction with the University of Arizona, mostly with Euphorbia and related genera. Exploratory studies were performed to determine if direct catalytic upgrading of the hydrocarbon-like plant constituents could be carried out. A preliminary report has been published recently. A variety of plant materials were shown to be upgraded to liquid premium fuels by relatively simple catalytic processing over Mobil's shape selective zeolite, ZSM-5. The present paper contains additional information on the conversion of a variety of plant materials with special emphasis on the production of petrochemicals, and discusses key mechanistic aspects of the reactions. Feedstocks were chosen to represent different types of plant materials: corn oil, castor oil and jojoba seed oil; plant extracts from Euphorbia lathyrus and Grindelia squarrosa; and hydrocarbons obtained by tapping of trees such as copaiba oil and natural rubber latex.

  13. Aboveground insect infestation attenuates belowground Agrobacterium-mediated genetic transformation.

    Science.gov (United States)

    Song, Geun Cheol; Lee, Soohyun; Hong, Jaehwa; Choi, Hye Kyung; Hong, Gun Hyong; Bae, Dong-Won; Mysore, Kirankumar S; Park, Yong-Soon; Ryu, Choong-Min

    2015-07-01

    Agrobacterium tumefaciens causes crown gall disease. Although Agrobacterium can be popularly used for genetic engineering, the influence of aboveground insect infestation on Agrobacterium induced gall formation has not been investigated. Nicotiana benthamiana leaves were exposed to a sucking insect (whitefly) infestation and benzothiadiazole (BTH) for 7 d, and these exposed plants were inoculated with a tumorigenic Agrobacterium strain. We evaluated, both in planta and in vitro, how whitefly infestation affects crown gall disease. Whitefly-infested plants exhibited at least a two-fold reduction in gall formation on both stem and crown root. Silencing of isochorismate synthase 1 (ICS1), required for salicylic acid (SA) synthesis, compromised gall formation indicating an involvement of SA in whitefly-derived plant defence against Agrobacterium. Endogenous SA content was augmented in whitefly-infested plants upon Agrobacterium inoculation. In addition, SA concentration was three times higher in root exudates from whitefly-infested plants. As a consequence, Agrobacterium-mediated transformation of roots of whitefly-infested plants was clearly inhibited when compared to control plants. These results suggest that aboveground whitefly infestation elicits systemic defence responses throughout the plant. Our findings provide new insights into insect-mediated leaf-root intra-communication and a framework to understand interactions between three organisms: whitefly, N. benthamiana and Agrobacterium. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  14. International regulations regarding exchange of Rubus plant material

    Science.gov (United States)

    This article summarizes the international quarantine regulations regarding plant material exchange for Rubus. US federal importation regulations are summarized along with aspects of Rubus that presented as noxious weed. Requirements for exporting Rubus to foreign countries are also described. Proper...

  15. Erosion and corrosion of nuclear power plant materials

    International Nuclear Information System (INIS)

    1994-01-01

    This conference is composed of 23 papers, grouped in 3 sessions which main themes are: analysis of corrosion and erosion damages of nuclear power plant equipment and influence of water chemistry, temperature, irradiations, metallurgical and electrochemical factors, flow assisted cracking, stress cracking; monitoring and control of erosion and corrosion in nuclear power plants; susceptibility of structural materials to erosion and corrosion and ways to improve the resistance of materials, steels, coatings, etc. to erosion, corrosion and cracking

  16. Foundational literature for moving native plant materials in changing climates

    Science.gov (United States)

    Mary I. Williams; Kas Dumroese; Jeremy Pinto; Martin F. Jurgensen

    2015-01-01

    Seed transfer guidelines and zones are used to manage the movement of plant materials, but by the end of the century many landscapes across the globe will have climates that are incompatible with current vegetation. The mismatch in rates between climate change and plant migration and adaptation will pose significant challenges for natural resource managers, especially...

  17. Materials Investigation for Power Plants Industry. Seminar

    International Nuclear Information System (INIS)

    Szteke, W.; Wasiak, J.; Bilous, W.; Przyborska, M.; Wagner, T.; Wojciechowska, J.; Zubowski, B.

    2006-01-01

    The Report is an assembly of the papers concerning perspectives of evolution of power in Poland. The material and diagnostic problems occurring the exploitation of power station as well as gas pipelines are discussed. The progress in the accommodation of the Polish technical prescriptions to the European law is described

  18. Uptake by plants of radionuclides from FUSRAP waste materials

    International Nuclear Information System (INIS)

    Knight, M.J.

    1983-04-01

    Radionuclides from FUSRAP wastes potentially may be taken up by plants during remedial action activities and permanent near-surface burial of contaminated materials. In order to better understand the propensity of radionuclides to accumulate in plant tissue, soil and plant factors influencing the uptake and accumulation of radionuclides by plants are reviewed. In addition, data describing the uptake of the principal radionuclides present in FUSRAP wastes (uranium-238, thorium-230, radium-226, lead-210, and polonium-210) are summarized. All five radionuclides can accumulate in plant root tissue to some extent, and there is potential for the translocation and accumulation of these radionuclides in plant shoot tissue. Of these five radionuclides, radium-226 appears to have the greatest potential for translocation and accumulation in plant shoot tissue. 28 references, 1 figure, 3 tables

  19. Uptake by plants of radionuclides from FUSRAP waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Knight, M.J.

    1983-04-01

    Radionuclides from FUSRAP wastes potentially may be taken up by plants during remedial action activities and permanent near-surface burial of contaminated materials. In order to better understand the propensity of radionuclides to accumulate in plant tissue, soil and plant factors influencing the uptake and accumulation of radionuclides by plants are reviewed. In addition, data describing the uptake of the principal radionuclides present in FUSRAP wastes (uranium-238, thorium-230, radium-226, lead-210, and polonium-210) are summarized. All five radionuclides can accumulate in plant root tissue to some extent, and there is potential for the translocation and accumulation of these radionuclides in plant shoot tissue. Of these five radionuclides, radium-226 appears to have the greatest potential for translocation and accumulation in plant shoot tissue. 28 references, 1 figure, 3 tables.

  20. Plant material as bioaccumulator of arsenic in soils affected by mining activities

    Science.gov (United States)

    Martínez-López, Salvadora; Martínez-Sánchez, Maria Jose; García-Lorenzo, Maria Luz; Pérez-Sirvent, Carmen

    2010-05-01

    Heavy metal contamination is an important environmental problem, since the metals are harmful to humans, animals and tend to bioaccumulate in the food chain. The aim of this study was to determine the total concentration of As, As (III) and As(V) in soil samples, leaves and roots of plant material, growing in a mining area in Spain (Murcia). Ditichia viscosa was used as the plant of reference. The concentrations of bioavailable As in plant samples were calculated by different soil chemical extraction methods; deionized water, 0.5N NaHCO3 (Olsen extraction), oxidizable medium, 0.5 HCl, 0.05M (NH4)2SO4, 0.005M DTPA and Mehra-Jackson extraction. For this study, fourteen samples were collected in the surrounding area of Sierra Minera and Portman Bay (Murcia, SE Spain). Samples were air dried and sieved to < 2mm for general analytical determinations. To determine the As content, soil samples were first ground to a fine powder using an agate ball mill. Fresh vegetable samples were separated into root and aboveground biomass and then lyophilized. Arsenic levels were obtained by using atomic fluorescence spectrometry with an automated continuous flow hydride generation (HG-AFS) spectrometer. Samples showed pH average values close to neutrality. Most samples showed a very low organic matter percentage. Electrical conductivity and calcium carbonate content were considerably low in most samples. The mineralogical analysis showed that the main minerals were quartz, muscovite, kaolinite and illite, while the minority minerals were alteration products derived of mining activities (iron oxides and hydroxides, siderite, jarosite and gypsum), calcite and feldspars. Although the plants do not absorb arsenic in the same proportion, the results suggest that a good relationship exists between the total content of As in soil and the total content in plant. The results showed that the arsenic content in roots was positively correlated with the oxidizable-organic matter and sulfides

  1. Decomposition of aboveground biomass of a herbaceous wetland stand

    OpenAIRE

    KLIMOVIČOVÁ, Lucie

    2010-01-01

    The master?s thesis is part of the project GA ČR č. P504/11/1151- Role of plants in the greenhouse gas budget of a sedge fen. This thesis deals with the decomposition of aboveground vegetation in a herbaceous wetland. The decomposition rate was established on the flooded part of the Wet Meadows near Třeboň. The rate of the decomposition processes was evaluated using the litter-bag method. Mesh bags filled with dry plant matter were located in the vicinity of the automatic meteorological stati...

  2. Material control and accountancy at EDF PWR plants

    International Nuclear Information System (INIS)

    de Cormis, F.

    1991-01-01

    The paper describes the comprehensive system which is developed and implemented at Electricite de France to provide a single reliable nuclear material control and accounting system for all nuclear plants. This software aims at several objectives among which are: the control and the accountancy of nuclear material at the plant, the optimization of the consistency of data by minimizing the possibility of transcription errors, the fulfillment of the statutory requirements by automatic transfer of reports to national and international safeguards authorities, the servicing of other EDF users of nuclear material data for technical or commercial purposes

  3. Reuse of contaminated material from nuclear-power plants

    International Nuclear Information System (INIS)

    Melichar, Z.

    1988-01-01

    Some building structures of decommissioned nuclear power plants are contaminated to a very low extent. Little experience is so far available concerning the recycling and furher exploitation of such materials, the majority of which is constituted by concrete and steel. The mass and activities of the metal parts of the Bohunice A-1 nuclear power plant are estimated and the major contaminant radionuclides are listed. Czechoslovak as well as foreign regulations concerning radioactive material handling are cited and criteria for releasing such materials for further use are discussed. (M.D.). 7 tabs., 3 figs, 28 refs

  4. The hierarchical structure and mechanics of plant materials.

    Science.gov (United States)

    Gibson, Lorna J

    2012-11-07

    The cell walls in plants are made up of just four basic building blocks: cellulose (the main structural fibre of the plant kingdom) hemicellulose, lignin and pectin. Although the microstructure of plant cell walls varies in different types of plants, broadly speaking, cellulose fibres reinforce a matrix of hemicellulose and either pectin or lignin. The cellular structure of plants varies too, from the largely honeycomb-like cells of wood to the closed-cell, liquid-filled foam-like parenchyma cells of apples and potatoes and to composites of these two cellular structures, as in arborescent palm stems. The arrangement of the four basic building blocks in plant cell walls and the variations in cellular structure give rise to a remarkably wide range of mechanical properties: Young's modulus varies from 0.3 MPa in parenchyma to 30 GPa in the densest palm, while the compressive strength varies from 0.3 MPa in parenchyma to over 300 MPa in dense palm. The moduli and compressive strength of plant materials span this entire range. This study reviews the composition and microstructure of the cell wall as well as the cellular structure in three plant materials (wood, parenchyma and arborescent palm stems) to explain the wide range in mechanical properties in plants as well as their remarkable mechanical efficiency.

  5. Prosthetic limb sockets from plant-based composite materials.

    Science.gov (United States)

    Campbell, Andrew I; Sexton, Sandra; Schaschke, Carl J; Kinsman, Harry; McLaughlin, Brian; Boyle, Martin

    2012-06-01

    There is a considerable demand for lower limb prostheses globally due to vascular disease, war, conflict, land mines and natural disasters. Conventional composite materials used for prosthetic limb sockets include acrylic resins, glass and carbon fibres, which produce harmful gasses and dust in their manufacture. To investigate the feasibility of using a renewable plant oil-based polycarbonate-polyurethane copolymer resin and plant fibre composite, instead of conventional materials, to improve safety and accessibility of prosthetic limb manufacture. Experimental, bench research. Test pieces of the resin with a range of plant fibres (10.0% by volume) were prepared and tensile strengths were tested. Test sockets of both conventional composite materials and plant resin with plant fibres were constructed and tested to destruction. Combinations of plant resin and either banana or ramie fibres gave high tensile strengths. The conventional composite material socket and plant resin with ramie composite socket failed at a similar loading, exceeding the ISO 10328 standard. Both wall thickness and fibre-matrix adhesion played a significant role in socket strength. From this limited study we conclude that the plant resin and ramie fibre composite socket has the potential to replace the standard layup. Further mechanical and biocompatibility testing as well as a full economic analysis is required. Using readily sourced and renewable natural fibres and a low-volatile bio-resin has potential to reduce harm to those involved in the manufacture of artificial limb sockets, without compromising socket strength and benefitting clinicians working in poorer countries where safety equipment is scarce. Such composite materials will reduce environmental impact.

  6. Modeling the kinetics of essential oil hydrodistillation from plant materials

    Directory of Open Access Journals (Sweden)

    Milojević Svetomir Ž.

    2013-01-01

    Full Text Available The present work deals with modeling the kinetics of essential oils extraction from plant materials by water and steam distillation. The experimental data were obtained by studying the hydrodistillation kinetics of essential oil from juniper berries. The literature data on the kinetics of essential oils hydrodistillation from different plant materials were also included into the modeling. A physical model based on simultaneous washing and diffusion of essential oil from plant materials were developed to describe the kinetics of essential oils hydrodistillation, and two other simpler models were derived from this physical model assuming either instantaneous washing followed by diffusion or diffusion with no washing (i.e. the first-order kinetics. The main goal was to compare these models and suggest the optimum ones for water and steam distillation and for different plant materials. All three models described well the experimental kinetic data on water distillation irrespective of the type of distillation equipment and its scale, the type of plant materials and the operational conditions. The most applicable one is the model involving simultaneous washing and diffusion of the essential oil. However, this model was generally inapplicable for steam distillation of essential oils, except for juniper berries. For this hydrodistillation technique, the pseudo first-order model was shown to be the best one. In a few cases, a variation of the essential oil yield with time was observed to be sigmoidal and was modeled by the Boltzmann sigmoid function.

  7. of Effect of different organic materials on plant growth

    Directory of Open Access Journals (Sweden)

    mehrnosh eskandari

    2009-06-01

    Full Text Available Using organic matter, such as, peat and vermicompost as soil amendment, increases aeration, water infiltration, water holding capacity and nutrients of soil . A greenhouse experiment was performed to study the effect of organic materials on plant growth characteristics, total biomass and grain weight of chickpea with four treatments; 1 Soil + 3% peat (PS, 2 Sterile soil + 3% peat (SPS, 3 Soil + vermicompost (1:6 (VCS, 4 control (C in a completely randomized design with four replications. The results showed that the maximum germination percentage, number of branch and number of pod per plant were observed in SPS treatment due to the avoidance of harmful microbial impacts. Plant height in this treatment reduced, whereas, no significant differences in total dry matter per plant and dry weight of chickpea per plant were observed compared to control. Plant growth consist of plant height, number of branch and number of pod per plant in vermicompost and soil + peat treatment reduced in the early stages probably because of plant - microbes interaction effects. Application of vermicompost increased fresh and dry weight, pod dry weight and single grain weight, probably due to more plant nutrient availability in this treatment when compared with other treatments.

  8. Nicotine Analysis in Several Non-Tobacco Plant Materials

    Directory of Open Access Journals (Sweden)

    Moldoveanu Serban C.

    2016-04-01

    Full Text Available Present study describes the determination of nicotine in various plant samples with a low content of this compound. Nicotine is found naturally in plants from the Solanaceae family. The plants from Nicotiana genus contain large levels of nicotine. However, only low levels are present in plants from Solanum genus including potato, tomato, eggplant, and from Capsicum genus, which are used as food. Because the levels of nicotine in these materials are in the range of parts per billion, the measurements are difficult and the results are very different from study to study. The present study evaluated the level of nicotine in a number of plants (fruits, roots, leaves, tubers from Solanaceae family (not including Nicotiana genus and from several other vegetables commonly used as food. The analysis consisted of the treatment of plant material with an aqueous solution 5% NaOH at 70°C for 30 min, followed by extraction with TBME containing d3-nicotine as an internal standard. The TBME organic layer was analyzed on a 7890B/7000C GC-MS/MS system with a 30 m × 0.25 mm, 0.25 μm film CAM column. The MS/MS system worked in MRM positive ionization mode monitoring the transition 162 - 84 for nicotine and 165 - 87 for d3-nicotine. Particular attention was given to the preservation of the intact levels of nicotine in the plant material. The plant material was analyzed as is, without drying and with minimal exposure to contaminations. Separately, the moisture of the plant material was measured in order to report the nicotine level on a dry-basis. Levels of nicotine around 180 ng/g dry material were obtained for tomatoes and eggplant (fruit and lower levels were obtained for green pepper and potato. Similar levels to that in the tomato fruit were detected in tomato leaves. Materials from other plant families also showed traces of nicotine. [Beitr. Tabakforsch. Int. 27 (2016 54-59

  9. Light Use Efficiency of Aboveground Biomass Production of Norway Spruce Stands

    Czech Academy of Sciences Publication Activity Database

    Bellan, Michal; Marková, I.; Zaika, A.; Krejza, Jan

    2017-01-01

    Roč. 65, č. 1 (2017), s. 9-16 ISSN 1211-8516 R&D Projects: GA TA ČR TA02010945 Institutional support: RVO:67179843 Keywords : absorbed photosynthetically active radiation * aboveground biomass increment * allometric relation Subject RIV: GC - Agronomy OBOR OECD: Agronomy, plant breeding and plant protection

  10. Aboveground tree biomass statistics for Maine: 1982

    Science.gov (United States)

    Eric H. Wharton; Thomas S. Frieswyk; Anne M. Malley

    1985-01-01

    Traditional measures of volume inadequately describe the total aboveground wood resource. The 1980-82 inventory of Maine included estimates of aboveground tree biomass on timberland. There are nearly 1,504.4 million green tons of wood and bark in all trees above the ground level, or 88.2 green tons per acre of timberland. Most of the biomass is in growing stock, but 49...

  11. Plant materials program. Progress report, June 1980-May 1981

    International Nuclear Information System (INIS)

    Childs, W.; Cubicciotti, D.; Fox, M.; Giannuzzi, A.; Gilman, J.; Jones, R.; McIlree, A.

    1981-11-01

    This is the first annual progress report of the Plant Materials Subprogram, which was organized in May 1980 to address corrosion-related materials problems in light water reactors. The first section of the report provides an overview of plant materials problems which have a high impact on plant availability. These include pipe and pressure vessel cracking, condenser leakage, turbine disc cracking, and steam generator tube denting and cracking. The status and goals of research and development work related to each of these problems are reviewed briefly. Subsequent report sections provide more detailed reviews of significant progress in the relevant technical topic areas: intergranular stress corrosion cracking of austenitic stainless steels; environmentally-assisted cracking of carbon and low alloy steels; intergranular stress corrosion cracking of nickel-base alloys; and improved fabrication technology

  12. Plant Materials Program: progress June 1981 to May 1982

    International Nuclear Information System (INIS)

    Childs, W.; Cubicciotti, D.; Fox, M.; Giannuzzi, A.; Gilman, J.; Jones, R.

    1983-02-01

    This is the second annual progress report of the Plant Materials Subprogram, which was organized in May 1980 to address corrosion-related materials problems in light water reactors. The first section of the report provides an overview of plant materials problems which have a high impact on plant availability. These include pipe and pressure vessel cracking, condenser leakage, turbine disc cracking, steam geerator tube attack and cracking, and cracking of nickel alloy springs, beams and pins. The status and goals of research and development work related to each of these problems are reviewed briefly. Subsequent report sections provide more detailed reviews of significant progress in the relevant technical topic areas: intergranular stress corrosion cracking of austenitic stainless steels; environmentally-assisted cracking of carbon and low alloy steels; intergranular stress corrosion cracking of nickel-base alloys; and improved fabrication technology

  13. Plant Materials Program: progress June 1981-May 1982

    International Nuclear Information System (INIS)

    Childs, W.; Cubicciotti, D.; Fox, M.; Giannuzzi, A.; Gilman, J.; Jones, R.

    1983-02-01

    This is the second annual progress report of the Plant Materials Subprogram, which was organized in May 1980 to address corrosion-related materials problems in light water reactors. The first section of the report provides an overview of plant materials problems which have impact on plant availability. These include pipe and pressure vessel cracking, condenser leakage, turbine disc cracking, steam generator tube attack and cracking, and cracking of nickel alloy springs, beams and pins. The status and goals of research and development work related to each of these problems are reviewed briefly. Subsequent report sections provide more detailed reviews of significant progress in the relevant technical topic area: integranular stress corrosion cracking of austenitic stainless steels; environmentally-assisted cracking of carbon and low alloy steels; intergranular stress corrosion cracking of nickel-base alloys; and improved fabrication technology

  14. Effect of lunar materials on plant tissue culture.

    Science.gov (United States)

    Walkinshaw, C. H.; Venketeswaran, S.; Baur, P. S.; Croley, T. E.; Scholes, V. E.; Weete, J. D.; Halliwell, R. S.; Hall, R. H.

    1973-01-01

    Lunar material collected during the Apollo 11, 12, 14, and 15 missions has been used to treat 12 species of higher plant tissue cultures. Biochemical and morphological studies have been conducted on several of these species. Tobacco tissue cultures treated with 0.22 g of lunar material exhibited increased greening more complex chloroplasts, less cytoplasmic vacuolation and greater vesiculation. Pine tissue cultures reacted to treatment by an increased deposition of tannin-like materials. The percentage of dry weight and soluble protein was increased in cultures treated with either lunar or terrestrial rock materials.

  15. Materials and methods to increase plant growth and yield

    Science.gov (United States)

    Kirst, Matias

    2017-05-16

    The present invention relates to materials and methods for modulating growth rates, yield, and/or resistance to drought conditions in plants. In one embodiment, a method of the invention comprises increasing expression of an hc1 gene (or a homolog thereof that provides for substantially the same activity), or increasing expression or activity of the protein encoded by an hc1 gene thereof, in a plant, wherein expression of the hc1 gene or expression or activity of the protein encoded by an hc1 gene results in increased growth rate, yield, and/or drought resistance in the plant.

  16. Using thermal power plants waste for building materials

    Science.gov (United States)

    Feduik, R. S.; Smoliakov, A. K.; Timokhin, R. A.; Batarshin, V. O.; Yevdokimova, Yu G.

    2017-10-01

    The recycled use of thermal power plants (TPPs) wastes in the building materials production is formulated. The possibility of using of TPPs fly ash as part of the cement composite binder for concrete is assessed. The results of X-ray diffraction and differential thermal analysis as well as and materials photomicrographs are presented. It was revealed that the fly ash of TPPs of Russian Primorsky Krai is suitable for use as a filler in cement binding based on its chemical composition.

  17. Underground or aboveground storage tanks - A critical decision

    International Nuclear Information System (INIS)

    Rizzo, J.A.

    1992-01-01

    With the 1988 promulgation of the comprehensive Resource Conservation and Recovery Act (RCRA) regulations for underground storage of petroleum and hazardous substances, many existing underground storage tank (UST) owners have been considering making the move to aboveground storage. While on the surface, this may appear to be the cure-all to avoiding the underground leakage dilemma, there are many other new and different issues to consider with aboveground storage. The greatest misconception is that by storing materials above ground, there is no risk of subsurface environmental problems. It should be noted that with the aboveground storage tank (AGST) systems, there is still considerable risk of environmental contamination, either by the failure of onground tank bottoms or the spillage of product onto the ground surface where it subsequently finds its way to the ground water. In addition, there are added safety concerns that must be addressed. The greatest interest in AGSTs comes from managers with small volumes of used oil, fresh oil, solvents, chemicals, or heating oil. Dealing with small capacity tanks is not so different than large bulk storage - and, in fact, it lends itself to more options, such as portable storage, tank within tank configurations and inside installations. So what are the other specific areas of concern besides environmental to be addressed when making the decision between underground and aboveground tanks? The primary issues that will be addressed in this presentation are: (1) safety; (2) product losses; (3) cost comparison of USTs vs AGSTs; (4) space availability/accessibility; (5) precipitation handling; (6) aesthetics and security; (7) pending and existing regulations

  18. Observations of White-backed Vultures eating plant material in ...

    African Journals Online (AJOL)

    campbell

    diet, known to include refuse and human excrement. However, with two Namibian reports of White- backed Vultures exhibiting this behaviour, it is possibly more likely the Cape Griffon, which has a diet similar to that of the White- backed Vulture. Anderson (1997), sceptical of the reports of vultures eating plant material ...

  19. Classroom: Models Made from Local Materials for Teaching Plant ...

    African Journals Online (AJOL)

    In an attempt to find out if simulated teaching-learning materials could effectively fill in the gap for expensively imported science teaching-learning resources, models for teaching plant and animal cells and the solar system were made and tested. The results showed that between 13.33 -50 % of the students obtained ...

  20. Outline of material accountancy system for Rokkasho reprocessing plant

    International Nuclear Information System (INIS)

    Kitamura, Touko; Yamazaki Yoshihiro; Ai, Hironobu

    2004-01-01

    In January 2004, Facility Attachment (FA) for Rokkasho Reprocessing Plant (RRP) was entered into force and the safeguards has been implemented in accordance with the FA. So operator must carry out the effectual material accountancy on the basis of facility operation. RRP is large and complex facility and operated based on automatic and remote system. For efficient material accounting viewpoint, the system especially automatic data collection is established using RRP computer network. The paper describes the outline of material accountancy system, the structure of RRP computer network including how to collect the source data, to convert the batch data and the reporting. (author)

  1. Materials control and accountability at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Denning, G.E.; Britschgi, J.J.; Spraktes, F.W.

    1985-01-01

    The ICPP high enriched uranium recovery process has historically been operated as a single Material Balance Area (MBA), with input and output measurement capabilities. Safeguards initiated changes in the last five years have resulted in significant materials control and accountability improvements. Those changes include semi-automation of process accountability measurement, data collection and recording; definition of Sub-MBAs; standard plant cleanouts; and, bimonthly inventory estimates. Process monitoring capabilities are also being installed to provide independent operational procedural compliance verification, process anomaly detection, and enhanced materials traceability. Development of a sensitivity analysis approach to defining process measurement requirements is in progress

  2. Refractories in heating plants; Eldfasta material i vaermeanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Westberg, S.B.

    1996-10-01

    This work concerns the demand for development of refractories used as linings in different types of heating plants in Sweden. The treated plants are primarily saw-dust boilers, black-liquor refuse boilers in the pulp industry, biomass fired fluidised bed boilers and municipal-waste incinerators. The use, function, development and development demand varies largely between the different types of plants. A common trend is, however, that increasingly more higher-grade materials are being used and that other factors than wear rate determine the materials selection. The use of refractories in saw-dust boilers is restricted to the immediate vicinity of the burner. Occurring damages are attended yearly. The design of the lining in municipal-waste incinerators is largely determined by the combustion conditions and the ability to protect the metal from the corrosive flue gas. The introduction of cooled membrane-walls has resulted in extensive use of silicon-carbide based materials due to inherently high thermal conductivity and usually high abrasion resistance. From a durability point of view, a smooth surface and high thermal conductivity is desired. The refractories in a black liquor refuse boiler is attacked by the molten alkali-compounds. These compounds are able to dissolve glass, most minerals and attack cement. Compound materials and sprayed protective surface coatings are often used where possible to decrease the amount of refractories used. High quality corrosion resistant low-cement materials with high content of alumina is used. 25 refs, 4 figs

  3. Contaminated fluid filtration plant using pneumatically renewable granulated material

    International Nuclear Information System (INIS)

    Lucas, J.-C.; Messirejean, Pierre.

    1980-01-01

    This invention concerns a plant for the filtration of a contaminated fluid flow using a granulated material capable of absorbing or adsorbing the contaminants. This plant includes a filtration box within which there is at least one appreciably vertical filtering bed filled with the material and crossed by the fluid flow, loading and discharge compartments respectively located at the top and bottom of the box, each in communication with the filtering bed and an air-actuated transfer system for loading and discharging this bed through these compartments. Facilities of this kind are used mainly in the nuclear and chemical engineering industries to rid their waste of radio-iodines, generally constituted by elementary iodine and methyl iodide, or of toxic gases that contaminate them. The granulated material, whose job it is to trap these contaminants by adsorption or absorption, is generally composed of active carbon or zeolites whose utilisation time is limited [fr

  4. Nuclear material control systems for nuclear power plants

    International Nuclear Information System (INIS)

    1975-06-01

    Paragraph 70.51(c) of 10 CFR Part 70 requires each licensee who is authorized to possess at any one time special nuclear material in a quantity exceeding one effective kilogram to establish, maintain, and follow written material control and accounting procedures that are sufficient to enable the licensee to account for the special nuclear material in his possession under license. While other paragraphs and sections of Part 70 provide specific requirements for nuclear material control systems for fuel cycle plants, such detailed requirements are not included for nuclear power reactors. This guide identifies elements acceptable to the NRC staff for a nuclear material control system for nuclear power reactors. (U.S.)

  5. Hydrogen storage by carbon materials synthesized from oil seeds and fibrous plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, Maheshwar; Bhardwaj, Sunil; Jaybhaye, Sandesh [Nanotechnology Research Center, Birla College, Kalyan 421304 (India); Soga, T.; Afre, Rakesh [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya (Japan); Sathiyamoorthy, D.; Dasgupta, K. [Powder Metallurgy Division, BARC, Trombay 400 085 (India); Sharon, Madhuri [Monad Nanotech Pvt. Ltd., A702 Bhawani Tower, Powai, Mumbai 400 076 (India)

    2007-12-15

    Carbon materials of various morphologies have been synthesized by pyrolysis of various oil-seeds and plant's fibrous materials. These materials are characterized by SEM and Raman. Surface areas of these materials are determined by methylene blue method. These carbon porous materials are used for hydrogen storage. Carbon fibers with channel type structure are obtained from baggas and coconut fibers. It is reported that amongst the different plant based precursors studied, carbon from soyabean (1.09 wt%) and baggas (2.05 wt%) gave the better capacity to store hydrogen at 11kg/m{sup 2} pressure of hydrogen at room temperature. Efforts are made to correlate the hydrogen adsorption capacity with intensities and peak positions of G- and D-band obtained with carbon materials synthesized from plant based precursors. It is suggested that carbon materials whose G-band is around 1575cm{sup -1} and the intensity of D-band is less compared to G-band, may be useful material for hydrogen adsorption study. (author)

  6. IAEA verification of materials accounting in commercial reprocessing plants

    International Nuclear Information System (INIS)

    Gutmacher, R.G.; Hakkila, E.A.

    1987-01-01

    The reprocessing plants currently under International Atomic Energy Agency (IAEA) safeguards have design capacities up to 210 tonnes of heavy metal per year. All of the plants use conventional materials accounting for safeguards. However, several larger commercial reprocessing plants are being designed with capacities of 350 to 1200 tonnes of heavy metal per year. It is likely that many of these plants, as well as some of the existing smaller ones, will adopt near-real-time materials accounting. The major effect of the combination of larger plants and near-real-time accounting on IAEA safeguards will be the demand for greater timeliness of verification. Continuous inspector presence may be required, as well as more on-site measurements by the inspector. In this paper, the authors review what needs to be verified, as well as current inspector activities in the process area. The bulk of the paper describes rapid, easy-to-use measurement techniques and instruments that may be applied to on-site verification measurements

  7. Microbial mineralization processes in Antarctic soils and on plant material

    International Nuclear Information System (INIS)

    Boelter, M.

    1991-01-01

    Soil samples and different plant material from the maritime and continental Antarctic were analyzed for their actual and potential respiration by different methods: total CO 2 -evolution, biological oxygen demand and use of 14C-labeled glucose which may serve as a model for dissolved organic carbohydrates. Since these methods are argued to indicate the mineralization of different fractions of the total organic material by different actual populations, a comparison between the data from these techniques is carried out with regard to their contributions of the total organic matter debris in these environments. The part of respired material calculated from 14C-studies may contribute to nearly 90% of the metabolized material. Results show that the individual fractions differ significantly with respect to the parent material. There are several aspects which have to be taken into account when looking at these data: the original content of water; the contents of dissolved and particulate carbohydrates; and, other edaphic factors. Of special interest is the overall respiration of plant material (mainly lichens) which is strongly influenced by the bacterial respiration of dissolved carbohydrates, probably by ongrowing organisms due to their efficiency in using dissolved organic matter. In terms of respiratory activity, the (bacterial) respiration of glucose may contribute to more than 50% of the total CO 2 -evolution. This influences considerably the modeling of overall respiration of plant material in those environments where close interactions between different parts of the system are very important for their life strategy. Further, the bacterial part may be an overlooked part of metabolic rates in Antarctic lichens

  8. Regulation of above-ground oil and waste containers. Hearing before the Subcommittee on Transportation, Tourism, and Hazardous Materials of the Committee on Energy and Commerce, House of Representatives, One Hundredth Congress, Second Session, January 26, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Representatives from the petroleum industry, US EPA, National Bureau of Standards and Congress were among those testifying at a hearing to discuss one of the worst inland environmental disasters in this Nation's history. The January 2 collapse of the Ashland Oil Co.'s storage tank in Floreffe, Pennsylvania resulted in the release of some 4 million gallons of diesel fuel. Approximately a million gallons escaped the containment structures and spilled over into the Monongahela River. This spill has contaminated the drinking water sources for millions of people downstream, from Pittsburgh to Cincinnati to Louisville, and beyond. Attention is focused on the causes of this tank's collapse, the response measures taken by Ashland Oil, the Coast Guard, the EPA, and the need for tighter federal regulations of above-ground tanks used for the storage of petroleum and hazardous substances.

  9. Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground

    Science.gov (United States)

    Filgueiras, Camila Cramer; Willett, Denis S.; Junior, Alcides Moino; Pareja, Martin; Borai, Fahiem El; Dickson, Donald W.; Stelinski, Lukasz L.; Duncan, Larry W.

    2016-01-01

    Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes. PMID:27136916

  10. Preparation of plant-specific NDA reference material

    International Nuclear Information System (INIS)

    Abedin-Zadeh, R.; Beetle, T.; Kuhn, E.; Terrey, D.; Turel, S.; Busca, G.; Guardini, S.

    1983-01-01

    The importance of having suitable and well characterized non-destructive assay (NDA) reference materials for the verification activities of the safeguards control authorities is stressed. The Euratom Inspectorate and the IAEA have initiated an extensive programme for the procurement and preparation of Joint Euratom/IAEA safeguards NDA reference materials with the active participation of the Ispra Establishment of the Euratom Joint Research Centre. The different type and nature of materials, condition of measurements, and plant characteristics and provisions had to be taken into account for plant-specific NDA reference materials. The preparation of each reference material was planned case by case and specific criteria such as limitations in different facilities, measurement capabilities, conditions, product availability and population variability are being ascertained. A procurement scheme was prepared describing step-by-step procedures detailing responsibilities, measurement conditions, destructive analysis schemes, desired characteristics and methods of data evaluation. This paper describes the principles and procedures carried out for the preparation of a reference MOX pin, low enriched uranium reference rods, low enriched uranium reference drums, reference MTR assemblies, and THTR reference pebbles. The scheme for each characterization technique is presented. (author)

  11. Material surveillance and verification program at a uranium enriching plant

    International Nuclear Information System (INIS)

    DeVito, V.J.

    1975-01-01

    A license for a nuclear facility in the United States is approved only after a licensee demonstrates by procedure or practice that an adequate material control system exists. A license can specify acceptable material control practices. Therefore, processors in the United States receiving uranium hexafluoride (UF 6 ) from a U. S. Government-owned enriching plant can accept shipper's values for nuclear material accounting purposes if: there is surveillance during withdrawal of the UF 6 , an independent sample is obtained, and certain measurement verification is subsequently performed by the receiver or the receiver's agent. Because of the high equipment and operating costs, essentially all UF 6 processors have adopted a surveillance and verification program. A resident observer is employed to perform surveillance, obtain samples, and tamper-safe the shipping cylinders. Samples are analyzed by the receiver or by an independent laboratory. The observer determines by surveillance that withdrawals, or transfers of material, weighings, and sampling are accomplished in accordance with accepted procedures. Surveillance of the withdrawals includes observing the transfer of UF 6 from the enriching plant cylinder to the shipping cylinder(s) and the withdrawal of samples. In addition, it inclu []es observing the weighing of all cylinders associated with a sample lot of UF 6 . Following the surveillance of withdrawals, weighings, and sampling, the cylinders are made tamper-safe by the application of tamper-indicating devices. Statistics for the verification program have shown shipper and receiver measurements to be within the limits acceptable for adequate material control. (auth)

  12. Effect of different sizes of planting material on the growth and yield ...

    African Journals Online (AJOL)

    However, a significant (P<0.05) effect was recorded in cap diameter (3.68cm) from the 20g weight planting material. Stipe height and girth did not show any significant difference amongst the treatments. The 60g planting material weight recorded more shoots than the 20g and 40g planting material sizes. The 60g planting ...

  13. Alkene Metathesis and Renewable Materials: Selective Transformations of Plant Oils

    Science.gov (United States)

    Malacea, Raluca; Dixneuf, Pierre H.

    The olefin metathesis of natural oils and fats and their derivatives is the basis of clean catalytic reactions relevant to green chemistry processes and the production of generate useful chemicals from renewable raw materials. Three variants of alkene metathesis: self-metathesis, ethenolysis and cross-metathesis applied to plant oil derivatives will show new routes to fine chemicals, bifunctional products, polymer precursours and industry intermediates.

  14. Next Generation Nuclear Plant Materials Research and Development Program Plan

    International Nuclear Information System (INIS)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-01-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R and D) Program is responsible for performing R and D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R and D Program includes the following elements: (1) Developing a specific approach, program plan and other project management

  15. Next Generation Nuclear Plant Materials Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for

  16. A novel protocol for assessment of aboveground biomass in rangeland environments

    NARCIS (Netherlands)

    Mundava, C.; Schut, A.G.T.; Helmholtz, P.; Stovold, R.G.H.; Donald, G.; Lamb, D.W.

    2015-01-01

    Current methods to measure aboveground biomass (AGB) do not deliver adequate results in relation to the extent and spatial variability that characterise rangelands. An optimised protocol for the assessment ofAGBis presented that enables calibration and validation of remote-sensing imagery or plant

  17. Long-term above-ground biomass production in a red oak-pecan agroforestry system

    Science.gov (United States)

    Agroforestry systems have widely been recognized for their potential to foster long-term carbon sequestration in woody perennials. This study aims to determine the above-ground biomass in a 16-year-old red oak (Quercus rubra) - pecan (Carya illinoinensis) silvopastoral planting (141 and 53 trees ha-...

  18. The hydrothermal decomposition of C14 labelled plant material

    International Nuclear Information System (INIS)

    Concin, R.; Binder, H.; Bonn, G.; Bobleter, O.

    1978-01-01

    The decomposition of plant materials with regard to obtaining new raw material and energy sources is becoming increasingly important. The 'hydrothermal decomposition' developed by our work groups was investigated with radiochemical methods. C 14 labelled poplar wood was taken as initial material which was grown for the first time over an entire growth period in a 14 CO 2 gasable plant growth chamber. Over 90% of the wood substances could be dissolved in the decomposition in static tests (steel autoclaves) as well as in dynamic (flow) tests. Characteristic differences of the decomposition behaviour between inactive and active material were determined in isolated lignin. It could be shown however, that of the dissolved share, about 50% are present as low-molecular fraction and the activity is contained in about 10 single substances. The chromatographic determinations showed the superiority of the radiochemical measurements as compared to conventional methods particularly clearly. The transition from acid decomposition to hydrothermal decomposition was investigated on model substances (cellobiose) in kinetic measurements. Using active poplar wood in the flow apparatus enabled an exact conversion balance of the decomposition process. (orig.) [de

  19. Effect of decontamination on nuclear power plant primary circuit materials

    International Nuclear Information System (INIS)

    Brezina, M.; Kupca, L.

    1991-01-01

    The effect of repeated decontamination on the properties of structural materials of the WWER-440 primary coolant circuit was examined. Three kinds of specimens of 08Kh18Ni10T steel were used for radioactivity-free laboratory experiments; they included material obtained from assembly additions to the V-2 nuclear power plant primary piping, and a sheet of the CSN 17247 steel. Various chemical, electrochemical and semi-dry electrochemical decontamination procedures were tested. Chemical decontamination was based on the conventional AP(20/5)-CITROX(20/20) procedure and its variants; NP-CITROX type procedures with various compositions were also employed. Solutions based on oxalic acid were tested for the electrochemical and semi-dry electrochemical decontamination. The results of measurements of mass losses of the surfaces, of changes in the corrosion resistance and in the mechanical properties of the materials due to repeated decontamination are summarized. (Z.S.). 12 figs., 1 tab., 8 refs

  20. Possibilities of avoidance and control of bacterial plant diseases when using pathogen-tested (certified) or - treated planting material

    NARCIS (Netherlands)

    Janse, J.; Wenneker, M.

    2002-01-01

    Testing of planting material for freedom from phytopathogenic bacteria is an important, although not exclusive, method for control of bacterial diseases of plants. Ideally, pathogen-free or pathogen-/disease-resistant planting material is desirable, but this situation is not always possible on a

  1. Enzymatic determination of cadmium, zinc, and lead in plant materials

    International Nuclear Information System (INIS)

    Muginova, S.V.; Veselova, I.A.; Parova, L.M.; Shekhovtseva, T.N.

    2008-01-01

    Prospects are outlined for using the following enzymes (native and immobilized on polyurethane foam) in the rapid and highly sensitive determination of cadmium, zinc, and lead ions in plant materials (wild grass, fresh pea, and grape): horseradish peroxidase and alkaline phosphatases isolated from chicken intestine and Greenland seal small intestine. The analytical ranges of the above metals are 1x10 -3 -25; 7x10 -3 -250, and 3x10 -2 -67 mg/kg dry matter, respectively. The enzymatic determination procedures developed are based on the inhibiting effect of metal ions on the catalytic activity of peroxidase in the oxidation of o-dianisidine with hydrogen peroxide and alkaline phosphatases in the hydrolysis of p-nitrophenyl phosphate. The rates of enzymatic reactions were monitored spectrophotometrically or visually. In the analysis of plant extracts, their high acidity was diminished by choosing optimum dilution factors and pH values for test samples and the nature and concentration of a buffer solution. The interference of iron(III) was removed by introducing a 0.1 M tartaric acid solution into the indicator reaction. The accuracy of the results of the enzymatic determination of cadmium, zinc, and lead in plant materials was supported by atomic absorption spectrometry and anodic stripping voltammetry [ru

  2. Simple method for estimating soil mass loading onto plant surface using magnetic material content as a soil indicator - Influence of soil adhesion to vegetation on radioactive cesium concentration in forage.

    Science.gov (United States)

    Sunaga, Yoshihito; Harada, Hisatomi

    2016-11-01

    A simple technique for estimating soil mass loading on vegetation was developed using magnetic material content as an indicator of soil adhesion. Magnetic material contents in plant and soil samples were determined by a magnetic analyzer. High recovery rates of 85-97% were achieved in a recovery test in which additional soil was added to powdered plant materials [stem of forage corn (Zea mays L.), aboveground part of Italian ryegrass (Lolium multiflorum Lam.)] at addition rates of 12.3-200 g dry soil kg -1 dry plant material including soil. Samples of different Japanese cultivated soils were tested and showed a range of magnetic contents of 1.27-16.1 g kg -1 on a dry weight basis. These levels are considered adequate for determining soil contamination in plant materials. Then, we applied this method for confirming the effect of soil adhesion on radioactive cesium concentrations in plant samples obtained at the area affected by the 2011 nuclear accident in Japan. The mean soil mass loading (±standard deviation) on forage rye (Secale cereale L.) showing mild lodging was 0.8 ± 0.6 g kg -1 , but was 7.4 ± 5.0 g kg -1 for plants with serious lodging. No soil loading was detected on rye plants that showed no lodging. Radioactive cesium concentrations in the rye samples increased linearly with the increase in soil mass loading caused by plant lodging, and consequently mean radioactive cesium concentration for rye plants with serious lodging was about 2.7 times higher than that with no lodging. Cesium radioactivity in forage was affected by variations in soil mass loading onto forage plants caused by changes in plant growth and differences between plant species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Functional dominance rather than taxonomic diversity and functional diversity mainly affects community aboveground biomass in the Inner Mongolia grassland.

    Science.gov (United States)

    Zhang, Qing; Buyantuev, Alexander; Li, Frank Yonghong; Jiang, Lin; Niu, Jianming; Ding, Yong; Kang, Sarula; Ma, Wenjing

    2017-03-01

    The relationship between biodiversity and productivity has been a hot topic in ecology. However, the relative importance of taxonomic diversity and functional characteristics (including functional dominance and functional diversity) in maintaining community productivity and the underlying mechanisms (including selection and complementarity effects) of the relationship between diversity and community productivity have been widely controversial. In this study, 194 sites were surveyed in five grassland types along a precipitation gradient in the Inner Mongolia grassland of China. The relationships between taxonomic diversity (species richness and the Shannon-Weaver index), functional dominance (the community-weighted mean of four plant traits), functional diversity (Rao's quadratic entropy), and community aboveground biomass were analyzed. The results showed that (1) taxonomic diversity, functional dominance, functional diversity, and community aboveground biomass all increased from low to high precipitation grassland types; (2) there were significant positive linear relationships between taxonomic diversity, functional dominance, functional diversity, and community aboveground biomass; (3) the effect of functional characteristics on community aboveground biomass is greater than that of taxonomic diversity; and (4) community aboveground biomass depends on the community-weighted mean plant height, which explained 57.1% of the variation in the community aboveground biomass. Our results suggested that functional dominance rather than taxonomic diversity and functional diversity mainly determines community productivity and that the selection effect plays a dominant role in maintaining the relationship between biodiversity and community productivity in the Inner Mongolia grassland.

  4. Power plant wastes capitalization as geopolymeric building materials

    Science.gov (United States)

    Ciobanu, Gabriela; Litu, Loredana; Harja, Maria

    2017-11-01

    In this innovative study, we are present an investigation over the properties of geopolymeric materials prepared using ash supplied by power plant Iasi, Romania and sodium hydroxide solutions/pellets. Having as objective a minimum consumption of energy and materials was developed a class of advanced eco-materials. New synthesized materials can be used as a binder for cement replacement or for the removal/immobilization of pollutants from waste waters or soils. It offers an advanced and low cost-effective solution too many problems, where waste must be capitalized. The geopolymer formation, by hydrothermal method, is influenced by: temperature (20-600°C), alkali concentration (2M-6M), solid /liquid ratio (1-2), ash composition, time of heating (2-48 h), etc. The behaviour of the FTIR peak of 6M sample indicated upper quantity of geopolymer formation at the first stage of the reaction. XRD spectra indicated phases like sodalite, faujasite, Na-Y, which are known phases of geopolymer/zeolite. Advanced destroyed of ash particles due to geopolymerisation reaction were observed when the temperature was higher. At the constant temperature the percentage of geopolymer increases with increasing of curing time, from 4-48 h. Geopolymer materials are environmentally friendly, for its obtaining energy consumption, and CO2 emission is reduced compared to cement binder.

  5. Vegetative Regeneration Capacities of Five Ornamental Plant Invaders After Shredding

    Science.gov (United States)

    Monty, Arnaud; Eugène, Marie; Mahy, Grégory

    2015-02-01

    Vegetation management often involves shredding to dispose of cut plant material or to destroy the vegetation itself. In the case of invasive plants, this can represent an environmental risk if the shredded material exhibits vegetative regeneration capacities. We tested the effect of shredding on aboveground and below-ground vegetative material of five ornamental widespread invaders in Western Europe that are likely to be managed by cutting and shredding techniques: Buddleja davidii (butterfly bush, Scrophulariaceae), Fallopia japonica (Japanese knotweed, Polygonaceae), Spiraea × billardii Hérincq (Billard's bridewort, Rosaceae), Solidago gigantea (giant goldenrod, Asteraceae), and Rhus typhina L. (staghorn sumac, Anacardiaceae). We looked at signs of vegetative regeneration and biomass production, and analyzed the data with respect to the season of plant cutting (spring vs summer), the type of plant material (aboveground vs below-ground), and the shredding treatment (shredded vs control). All species were capable of vegetative regeneration, especially the below-ground material. We found differences among species, but the regeneration potential was generally still present after shredding despite a reduction of growth rates. Although it should not be excluded in all cases (e.g., destruction of giant goldenrod and staghorn sumac aboveground material), the use of a shredder to destroy woody alien plant material cannot be considered as a general management option without significant environmental risk.

  6. Materials Problems and Solutions in Biomass fired plants

    DEFF Research Database (Denmark)

    Larsen, Ole Hede; Montgomery, Melanie

    2006-01-01

    Owing to Denmark's pledge to reduce carbon dioxide emissions, biomass is being increasingly utilised as a fuel for generating energy. Extensive research and development projects, especially in the area of material performance for biomass fired boilers, have been undertaken to make biomass a viable...... fuel resource. When straw is combusted, potassium chloride and potassium sulphate are present in ash products, which condense on superheater components. This gives rise to specific chlorine corrosion problems not previously encountered in coal fired power plants. The type of corrosion attack can...

  7. A fusion power plant without plasma-material interactions

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, S.A.

    1997-04-01

    A steady-state fusion power plant is described which avoids the deleterious plasma-material interactions found in D-T fueled tokamaks. It is based on driven p-{sup 11}B fusion in a high-beta closed-field device, the field-reversed configuration (FRC), anchored in a gas-dynamic trap (GDT). The plasma outflow on the open magnetic-field lines is cooled by radiation in the GDT, then channeled through a magnetic nozzle, promoting 3-body recombination in the expansion region. The resulting supersonic neutral exhaust stream flows through a turbine, generating electricity.

  8. Deer browsing delays succession by altering aboveground vegetation and belowground seed banks.

    Directory of Open Access Journals (Sweden)

    Antonio DiTommaso

    Full Text Available Soil seed bank composition is important to the recovery of natural and semi-natural areas from disturbance and serves as a safeguard against environmental catastrophe. White-tailed deer (Odocoileus virginianus populations have increased dramatically in eastern North America over the past century and can have strong impacts on aboveground vegetation, but their impacts on seed bank dynamics are less known. To document the long-term effects of deer browsing on plant successional dynamics, we studied the impacts of deer on both aboveground vegetation and seed bank composition in plant communities following agricultural abandonment. In 2005, we established six 15 × 15 m fenced enclosures and paired open plots in recently followed agricultural fields near Ithaca, NY, USA. In late October of each of six years (2005-2010, we collected soil from each plot and conducted seed germination cycles in a greenhouse to document seed bank composition. These data were compared to measurements of aboveground plant cover (2005-2008 and tree density (2005-2012. The impacts of deer browsing on aboveground vegetation were severe and immediate, resulting in significantly more bare soil, reduced plant biomass, reduced recruitment of woody species, and relatively fewer native species. These impacts persisted throughout the experiment. The impacts of browsing were even stronger on seed bank dynamics. Browsing resulted in significantly decreased overall species richness (but higher diversity, reduced seed bank abundance, relatively more short-lived species (annuals and biennials, and fewer native species. Both seed bank richness and the relative abundance of annuals/biennials were mirrored in the aboveground vegetation. Thus, deer browsing has long-term and potentially reinforcing impacts on secondary succession, slowing succession by selectively consuming native perennials and woody species and favoring the persistence of short-lived, introduced species that continually

  9. Bentonite as a waste isolation pilot plant shaft sealing material

    International Nuclear Information System (INIS)

    Daemen, J.; Ran, Chongwei

    1996-12-01

    Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites

  10. Boiler materials for ultra supercritical coal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Purgert, Robert [Energy Industries of Ohio, Independence, OH (United States); Shingledecker, John [Electric Power Research Inst., Palo Alto, CA (United States); Pschirer, James [Alstom Power Inc., Windsor, CT (Untied States); Ganta, Reddy [Alstom Power Inc., Windsor, CT (Untied States); Weitzel, Paul [The Babcock & Wilcox Company, Baberton, OH (United States); Sarver, Jeff [The Babcock & Wilcox Company, Baberton, OH (United States); Vitalis, Brian [Riley Power Inc., Worchester, WA (United States); Gagliano, Michael [Foster Wheeler North America Corp., Hampton, NJ (United States); Stanko, Greg [Foster Wheeler North America Corp., Hampton, NJ (United States); Tortorelli, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-29

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have undertaken a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions up to 760°C (1400°F) and 35 MPa (5000 psi). A limiting factor to achieving these higher temperatures and pressures for future A-USC plants are the materials of construction. The goal of this project is to assess/develop materials technology to build and operate an A-USC boiler capable of delivering steam with conditions up to 760°C (1400°F)/35 MPa (5000 psi). The project has successfully met this goal through a focused long-term public-private consortium partnership. The project was based on an R&D plan developed by the Electric Power Research Institute (EPRI) and an industry consortium that supplemented the recommendations of several DOE workshops on the subject of advanced materials. In view of the variety of skills and expertise required for the successful completion of the proposed work, a consortium led by the Energy Industries of Ohio (EIO) with cost-sharing participation of all the major domestic boiler manufacturers, ALSTOM Power (Alstom), Babcock and Wilcox Power Generation Group, Inc. (B&W), Foster Wheeler (FW), and Riley Power, Inc. (Riley), technical management by EPRI and research conducted by Oak Ridge National Laboratory (ORNL) has been developed. The project has clearly identified and tested materials that can withstand 760°C (1400°F) steam conditions and can also make a 700°C (1300°F) plant more economically attractive. In this project, the maximum temperature capabilities of these and other available high-temperature alloys have been assessed to provide a basis for

  11. TEM investigation of plant-irradiated NPP bolt material

    International Nuclear Information System (INIS)

    Pakarinen, J.; Ehrnsten, U.; Keinaenen, H.; Karlsen, W.; Karlsen, T.

    2015-01-01

    Analytical transmission electron microscopy (ATEM) was used to examine irradiation-induced damage in material removed from two different bolts from two different nuclear power plants. One section came from a French PWR, was made of CW AISI 316, and included a section of the bolt that had accumulated a dose of approximately 15 dpa during 19 operation cycles at 350 - 390 C. degrees. Another section came from a VVER bolt that was removed from the plant due to indications found in non-destructive examinations (NDE). The VVER bolt was made of solution annealed titanium stabilized 0X18H10T (corresponding to Type AISI 321) and had accumulated a fluence of 2.9 dpa. During the removal of that bolt, it was found that the bolt washer had been inappropriately spot welded to the shielding plate during assembly. Destructive investigations showed that the bolt had two large intergranular cracks, and the TEM samples were prepared from the material adjacent to those cracks. The PWR bolt had not failed, although cracks in the bolts with a similar history had been found previously. The fluence for the cold-worked AISI 316 PWR bolt was estimated to be about 15 dpa. Both the examined bolts showed a clear radiation induced segregation of alloying elements at the grain boundaries (GB-RIS), the presence of dislocation loops, the formation of precipitates, and linear deformation microstructures. Additionally, voids were found from the PWR bolt and the VVER bolt had a high density of dislocations. (authors)

  12. Root biomass in cereals, catch crops and weeds can be reliably estimated without considering aboveground biomass

    DEFF Research Database (Denmark)

    Hu, Teng; Sørensen, Peter; Wahlström, Ellen Margrethe

    2018-01-01

    Reliable information on belowground plant biomass is essential to estimate belowground carbon inputs to soils. Estimations of belowground plant biomass are often based on a fixed allometric relationship of plant biomass between aboveground and belowground parts. However, environmental and managem......Reliable information on belowground plant biomass is essential to estimate belowground carbon inputs to soils. Estimations of belowground plant biomass are often based on a fixed allometric relationship of plant biomass between aboveground and belowground parts. However, environmental...... and management factors may affect this allometric relationship making such estimates uncertain and biased. Therefore, we aimed to explore how root biomass for typical cereal crops, catch crops and weeds could most reliably be estimated. Published and unpublished data on aboveground and root biomass (corrected...... to 0–25 cm depth) of cereal crops (wheat and barley), catch crops and weeds were collected from studies in Denmark. Leave one out cross validation was used to determine the model that could best estimate root biomass. Root biomass varied with year, farming system (organic versus conventional...

  13. Spatial relationships among species, above-ground biomass, N, and P in degraded grasslands in Ordus Plateau, northwestern China

    Science.gov (United States)

    X. Cheng; S. An; J. chen; B. Li; Y. Liu; S. Liu

    2007-01-01

    We chose five communities, representing a mild to severe gradient of grassland desertification in a semi-arid area of Ordos Plateau, northwestern China, to explore the spatial relationships among plant species, above-ground biomass (AGB), and plant nutrients (N and P). Community 1 (Cl) was dominated by Stipa bungeana; community 2 (C2) by a mix of S...

  14. Automated saccharification assay for determination of digestibility in plant materials

    Directory of Open Access Journals (Sweden)

    Halpin Claire

    2010-10-01

    Full Text Available Abstract Background Cell wall resistance represents the main barrier for the production of second generation biofuels. The deconstruction of lignocellulose can provide sugars for the production of fuels or other industrial products through fermentation. Understanding the biochemical basis of the recalcitrance of cell walls to digestion will allow development of more effective and cost efficient ways to produce sugars from biomass. One approach is to identify plant genes that play a role in biomass recalcitrance, using association genetics. Such an approach requires a robust and reliable high throughput (HT assay for biomass digestibility, which can be used to screen the large numbers of samples involved in such studies. Results We developed a HT saccharification assay based on a robotic platform that can carry out in a 96-well plate format the enzymatic digestion and quantification of the released sugars. The handling of the biomass powder for weighing and formatting into 96 wells is performed by a robotic station, where the plant material is ground, delivered to the desired well in the plates and weighed with a precision of 0.1 mg. Once the plates are loaded, an automated liquid handling platform delivers an optional mild pretreatment ( Conclusions The automated assay systems are sensitive, robust and reliable. The system can reliably detect differences in the saccharification of plant tissues, and is able to process large number of samples with a minimum amount of human intervention. The automated system uncovered significant increases in the digestibility of certain lignin modified lines in a manner compatible with known effects of lignin modification on cell wall properties. We conclude that this automated assay platform is of sufficient sensitivity and reliability to undertake the screening of the large populations of plants necessary for mutant identification and genetic association studies.

  15. Radiation effects on organic materials in nuclear plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, M B; Davis, M V

    1981-11-01

    A literature search was conducted to identify information useful in determining the lowest level at which radiation causes damage to nuclear plant equipment. Information was sought concerning synergistic effects of radiation and other environmental stresses. Organic polymers are often identified as the weak elements in equipment. Data on radiation effects are summarized for 50 generic name plastics and 16 elastomers. Coatings, lubricants, and adhesives are treated as separate groups. Inorganics and metallics are considered briefly. With a few noted exceptions, these are more radiation resistant than organic materials. Some semiconductor devices and electronic assemblies are extremely sensitive to radiation. Any damage threshold including these would be too low to be of practical value. With that exception, equipment exposed to less than 10/sup 4/ rads should not be significantly affected. Equipment containing no Teflon should not be significantly affected by 10/sup 5/ rads. Data concerning synergistic effects and radiation sensitization are discussed. The authors suggest correlations between the two effects.

  16. Extraction Methods for the Isolation of Isoflavonoids from Plant Material

    Directory of Open Access Journals (Sweden)

    Blicharski Tomasz

    2017-03-01

    Full Text Available The purpose of this review is to describe and compare selected traditional and modern extraction methods employed in the isolation of isoflavonoids from plants. Conventional methods such as maceration, percolation, or Soxhlet extraction are still frequently used in phytochemical analysis. Despite their flexibility, traditional extraction techniques have significant drawbacks, including the need for a significant investment of time, energy, and starting material, and a requirement for large amounts of potentially toxic solvents. Moreover, these techniques are difficult to automate, produce considerable amount of waste and pose a risk of degradation of thermolabile compounds. Modern extraction methods, such as: ultrasound-assisted extraction, microwave-assisted extraction, accelerated solvent extraction, supercritical fluid extraction, and negative pressure cavitation extraction, can be regarded as remedies for the aforementioned problems. This manuscript discusses the use of the most relevant extraction techniques in the process of isolation of isoflavonoids, secondary metabolites that have been found to have a plethora of biological and pharmacological activities.

  17. Radiation effects on organic materials in nuclear plants. Final report

    International Nuclear Information System (INIS)

    Bruce, M.B.; Davis, M.V.

    1981-11-01

    A literature search was conducted to identify information useful in determining the lowest level at which radiation causes damage to nuclear plant equipment. Information was sought concerning synergistic effects of radiation and other environmental stresses. Organic polymers are often identified as the weak elements in equipment. Data on radiation effects are summarized for 50 generic name plastics and 16 elastomers. Coatings, lubricants, and adhesives are treated as separate groups. Inorganics and metallics are considered briefly. With a few noted exceptions, these are more radiation resistant than organic materials. Some semiconductor devices and electronic assemblies are extremely sensitive to radiation. Any damage threshold including these would be too low to be of practical value. With that exception, equipment exposed to less than 10 4 rads should not be significantly affected. Equipment containing no Teflon should not be significantly affected by 10 5 rads. Data concerning synergistic effects and radiation sensitization are discussed. The authors suggest correlations between the two effects

  18. Radioactive contaminants in raw materials and foodstuffs of plant origin

    International Nuclear Information System (INIS)

    Stankovicj, S.; Krainchanicj, M.; Stankovicj, A.

    1990-01-01

    The paper concentrates on the results of activity level of radioactive caesium 134 and 137 in the samples of raw materials (barley, oats, soybean, sunflower, pumpkin seed, hops, shreded sugar beet, maize), animal feedstuffs (alfalfa, alfalfa meal, rape, concentrates fed to chickens, pigs or bpvines, dry turnip shreds) and foodstuff of plant origin (lettuce, spinach, cabbage, carrot, celery, cucumber, tomato, olives, sesame). All samples - produced locally on the major part but also including some imported stuff -have been subjected to continuous gamma spectrometry starting with the Chernobyl accident in 1986 through 1989. The highest activity of caesium was recorded in the samples of animal feedstuffs (alfalfa, alfalfa meal, rape) in the years 1986 and 1987. In time, however, the activity tends to drop considerably. (author) 4 refs.; 3 tabs

  19. Imaging of plant materials using indirect desorption electrospray ionization mass spectrometry

    DEFF Research Database (Denmark)

    Janfelt, Christian

    2015-01-01

    of cuticular wax present in leaves and petals. The cuticle protects the plant from drying out, but also makes it difficult for the DESI sprayer to reach the analytes of interest inside the plant material. A solution to this problem is to imprint the plant material onto a surface, thus releasing the analytes......Indirect desorption electrospray ionization mass spectrometry (DESI-MS) imaging is a method for imaging distributions of metabolites in plant materials, in particular leaves and petals. The challenge in direct imaging of such plant materials with DESI-MS is particularly the protective layer...

  20. 77 FR 28407 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Science.gov (United States)

    2012-05-14

    ... COMMISSION Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants AGENCY: Nuclear...-5028, ``Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants.'' In DG-5028... Control and Accounting Systems for Nuclear Power Plants.'' DATES: Submit comments by July 16, 2012...

  1. Materials for Nuclear Plants From Safe Design to Residual Life Assessments

    CERN Document Server

    Hoffelner, Wolfgang

    2013-01-01

    The clamor for non-carbon dioxide emitting energy production has directly  impacted on the development of nuclear energy. As new nuclear plants are built, plans and designs are continually being developed to manage the range of challenging requirement and problems that nuclear plants face especially when managing the greatly increased operating temperatures, irradiation doses and extended design life spans. Materials for Nuclear Plants: From Safe Design to Residual Life Assessments  provides a comprehensive treatment of the structural materials for nuclear power plants with emphasis on advanced design concepts.   Materials for Nuclear Plants: From Safe Design to Residual Life Assessments approaches structural materials with a systemic approach. Important components and materials currently in use as well as those which can be considered in future designs are detailed, whilst the damage mechanisms responsible for plant ageing are discussed and explained. Methodologies for materials characterization, material...

  2. CMS: Aboveground Biomass for Mangrove Forest, Zambezi River Delta, Mozambique

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset provides several estimates of aboveground biomass from various regressions and allometries for mangrove forest in the Zambezi River Delta, Mozambique....

  3. Aboveground Whitefly Infestation-mediated Reshaping of the Root Microbiota

    Directory of Open Access Journals (Sweden)

    Hyun Gi Kong

    2016-09-01

    Full Text Available Plants respond to various types of herbivore and pathogen attack using well-developed defensive machinery designed for self-protection. The phloem-sucking insect infestation such as whitefly and aphid on plant leaves were previously shown to influence both the saprophytic and pathogenic bacterial community in the plant rhizosphere. However, the modulation of the root microbial community by plants following insect infestation has been largely unexplored. Only limited studies of culture-dependent bacterial diversity caused by whitefly and aphid have been conducted. In this study, to obtain a complete picture of the belowground microbiome community, we performed high-speed and high-throughput next-generation sequencing. We sampled the rhizosphere soils of pepper seedlings at 0, 1, and 2 weeks after whitefly infestation versus the water control. We amplified a partial 16S ribosomal RNA gene (V1–V3 region by polymerase chain reaction with specific primers. Our analysis revealed that whitefly infestation reshaped the overall microbiota structure compared to that of the control rhizosphere, even after 1 week of infestation. Examination of the relative abundance distributions of microbes demonstrated that whitefly infestation shifted the proteobacterial groups at week 2. Intriguingly, the population of Pseudomonadales of the class Gammaproteobacteria significantly increased after 2 weeks of whitefly infestation and confirmed the recruitment of fluorescent Pseudomonas spp. exhibiting the insect-killing capacity. Additionally, three taxa, including Caulobacteraceae, Enterobacteriaceae, and Flavobacteriaceae, and three genera, including Achromobacter, Janthinobacterium, and Stenotrophomonas, were the most abundant bacterial groups in the whitefly-infested plant rhizosphere. Our results indicate that whitefly infestation leads plant recruiting specific group of rhizosphere bacteria conferring beneficial traits for host plant. This study provides a new

  4. Assessment of materials selection and performance for direct-coal- liquefaction plants in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, A.R.; Judkins, R.R.; Keiser, J.R.

    1996-09-01

    Several direct coal liquefaction processes have been demonstrated at the pilot plant level in the United States. Presently only one plant remains operational, namely, the Hydrocarbon Technologies, Inc., 4.0- ton-per-day process development unit in Lawrenceville, New Jersey. The period from 1974 to 1982 saw the greatest amount of development of direct coal liquefaction in the United States with four major pilot plants being devoted to variants of this technology. The plants included the SRC-I plant at Wilsonville, Alabama, which operated from 1974 to 1992; the SRC-I/II plant at Fort Lewis, Washington, which operated from 1974 to 1981; the H-Coal plant at Catlettsburg, Kentucky, which operated from 1980 to 1982; and the Exxon Coal Liquefaction Pilot Plant at Baytown, Texas, which operated from 1980 to 1982. Oak Ridge National Laboratory scientists and engineers were actively involved in many phases and technical disciplines at all four of these plants, especially in materials testing, evaluation, and failure analyses. In addition, ORNL materials scientists and engineers conducted reviews of the demonstration and commercial plant designs for materials selections. The ORNL staff members worked closely with materials engineers at the pilot plants in identifying causes of materials degradation and failures, and in identifying solutions to these problems. This report provides a comprehensive summary of those materials activities. Materials performance data from laboratory and coal liquefaction pilot plant tests, failure analyses, and analyses of components after use in pilot plants were reviewed and assessed to determine the extent and causes of materials degradation in direct coal liquefaction process environments. Reviews of demonstration and commercial plant design documents for materials selections were conducted. These reviews and assessments are presented to capture the knowledge base on the most likely materials of construction for direct coal liquefaction plants.

  5. Analysis of phosphate esters in plant material. Extraction and purification.

    Science.gov (United States)

    Isherwood, F A; Barrett, F C

    1967-09-01

    1. A critical study was made of the quantitative extraction of nucleotide and sugar phosphates from plant tissue by either boiling aqueous ethanol or cold trichloroacetic acid. The effect of the extraction technique on the inactivation of the enzymes in the plant tissue and the possibility of adsorption of the phosphate esters on the cell wall were especially considered. 2. In the recommended method the plant tissue was frozen in liquid nitrogen, ground to a powder and then blended with cold aqueous trichloroacetic acid containing 8-hydroxyquinoline to prevent adsorption. 3. The extract contained large amounts of trichloroacetic acid, cations, chloride, sugars, amino acids, hydroxy organic acids, phytic acid, orthophosphoric acid and high-molecular-weight material including some phosphorus-containing compounds. All of these were removed as they were liable to interfere with the chromatographic or enzymic assay of the individual nucleotide or sugar phosphates. 4. The procedure was as follows: the last traces of trichloroacetic acid were extracted with ether after the solution had been passed through a column of Dowex AG 50 in the hydrogen form to remove all cations. High-molecular-weight compounds were removed by ultrafiltration and low-molecular-weight solutes by a two-stage chromatography on cellulose columns with organic solvents. In the first stage, sugars, amino acids, chloride and phytic acid were separated by using a basic solvent (propan-1-ol-water-aqueous ammonia) and, in the second stage, the organic acids and orthophosphoric acid were separated by using an acidic solvent (di-isopropyl ether-formic acid-2-methylpropan-2-ol-water). The final solution of nucleotide and sugar phosphates was substantially free from other solutes and was suitable for the detection of individual phosphate esters by either chromatography or enzymic assay. 5. The recovery of d-glucose 6-phosphate or adenosine 5'-triphosphate added to a trichloroacetic acid extract simulating that

  6. Belowground induction by Delia radicum or phytohormones affect aboveground herbivore communities on field-grown broccoli

    Directory of Open Access Journals (Sweden)

    Sandra Prisca Pierre

    2013-08-01

    Full Text Available Induced plant defence in response to phytophagous insects is a well described phenomenon. However, so far little is known about the effect of induced plant responses on subsequently colonizing herbivores in the field. Broccoli plants were induced in the belowground compartment using (i infestation by the root-herbivore Delia radicum, (ii root application of jasmonic acid (JA or (iii root application of salicylic acid (SA. The abundance of D. radicum and six aboveground herbivores displaying contrasting levels of host specialisation were surveyed for five weeks. Our study showed that the response of herbivores was found to differ from one another, depending on the herbivore species, its degree of specialisation and the root treatment. The abundance of the root herbivore D. radicum and particularly the number of emerging adults was decreased by both phytohormone treatments, while the number of D. radicum eggs was increased on conspecific infested plants. The root infestation exhibited moderate effects on the aboveground community. The abundance of the aphid Brevicoryne brassicae was strongly increased on D. radicum infested plants, but the other species were not impacted. Root hormone applications exhibited a strong effect on the abundance of specialist foliar herbivores. A higher number of B. brassicae and Pieris brassicae and a lower number of Plutella xylostella were found on JA treated plants. On SA treated plants we observed a decrease of the abundance of B. brassicae, Pi. rapae and P. xylostella. Surprisingly, generalist species, Mamestra brassicae and Myzus persicae were not affected by root induction treatments. Finally, root treatments had no significant effect on either glucosinolate profiles of the heads or on plant quality parameters. These results are discussed from the perspective of below- aboveground interactions and adaptations of phytophagous insects to induced plant responses according to their trophic specialisation level.

  7. Acceleration on the Growth of Rubber Planting Materials by Using Foliar Application of Humic Acid

    OpenAIRE

    Cahyo, Andi Nur; Ardika, Risal; Saputra, Jamin; Wijaya, Thomas

    2014-01-01

    The best rubber planting materials are needed to build the best rubber plantation. Humic acids could be used to improve the growth of rubber planting materials. Humic acid plays a role as a hormone-like substance. This research was aimed to determine the optimal concentration of foliar application of humic acid in order to enhance the growth of rubber tree planting materials. This research was arranged in a completely randomized block design with five treatments and four replicates. The treat...

  8. Control of Varroa Mite (Varroa destructor) on Honeybees by Aromatic Oils and Plant Materials

    OpenAIRE

    I.K. Nazer; A. Al-Abbadi

    2003-01-01

    The effect of several volatile plant oils, plant materials and fluvalinate (Apistan®) strips on the control of the mite Varroa destructor on honeybee (Apis mellifera L.) colonies was studied. The volatile oils were: clove, lavender, peppermint, sage, and thyme. The plant materials were: cumin fruits, eucalyptus leaves, and worm wood flowers. For each tested material, three treatment periods were carried out. Each period lasted for 24 days followed by eight days no-treatment. Within each treat...

  9. The life prediction study of Rokkasho reprocessing plant materials

    International Nuclear Information System (INIS)

    Kiuchi, K.; Yano, M.; Takizawa, M.; Shibata, S.

    1998-01-01

    The life prediction study of major equipment materials used in heavily corrosive nitric acid solutions of the RRP was carried out. The nitric acid recovery made of type 304ULC austenitic steel and the dissolver made of type 705 metallic zirconium are selected on the present study. This study is composed of major three programs, namely, the mock-up tests by small-sized equipments simulated to the practical design, laboratory tests for examining corrosion controlling factors by small specimens and to establish the data base system for the life prediction. Important parameters on this study was extracted with analyzing the past data of the life prediction on the Tokai reprocessing equipments. The mock-ups design was made by considering the quantitative evaluation of the most important parts on objective equipments, namely, heat conducting tubes in an acid recovery evaporator and a thermal jacket in a dissolver. From pre-examinations, the effects of radioactive species, nitric acid solution chemistry, the corrosion mechanisms were elucidated. Mock-up testing conditions corrosion monitoring methods and a data base concept for the the life prediction were selected from pre-examination data by referencing the plant operation planning. (author)

  10. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Tang, Xiwang; Pang, Yan; Ji, Puhui; Gao, Pengcheng; Nguyen, Thanh Hung; Tong, Yan'an

    2016-03-01

    Because of its high Cd uptake and translocation, lettuce is often used in Cd contamination studies. However, there is a lack of information on Cd accumulation in the above-ground parts of lettuce during the entire growing season. In this study, a field experiment was carried out in a Cd-contaminated area. Above-ground lettuce parts were sampled, and the Cd content was measured using a flame atomic absorption spectrophotometer (AAS). The results showed that the Cd concentration in the above-ground parts of lettuce increased from 2.70 to 3.62mgkg(-1) during the seedling stage, but decreased from 3.62 to 2.40mgkg(-1) during organogenesis and from 2.40 to 1.64mgkg(-1) during bolting. The mean Cd concentration during the seedling stage was significantly higher than that during organogenesis (a=0.05) and bolting (a=0.01). The Cd accumulation in the above-ground parts of an individual lettuce plant could be described by a sigmoidal curve. Cadmium uptake during organogenesis was highest (80% of the total), whereas that during bolting was only 4.34%. This research further reveals that for Rome lettuce: (1) the highest Cd content of above-ground parts occurred at the end of the seedling phase; (2) the best harvest time with respect to Cd phytoaccumulation is at the end of the organogenesis stage; and (3) the organogenesis stage is the most suitable time to enhance phytoaccumulation efficiency by adjusting the root:shoot ratio. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Regional contingencies in the relationship between aboveground Bbomass and litter in the world’s grasslands

    Science.gov (United States)

    O’Halloran, Lydia R.; Borer, Elizabeth T.; Seabloom, Eric W.; MacDougall, Andrew S.; Cleland, Elsa E.; McCulley, Rebecca L.; Hobbie, Sarah; Harpole, W. Stan; DeCrappeo, Nicole M.; Chu, Cheng-Jin; Bakker, Jonathan D.; Davies, Kendi F.; Du, Guozhen; Firn, Jennifer; Hagenah, Nicole; Hofmockel, Kirsten S.; Knops, Johannes M.H.; Li, Wei; Melbourne, Brett A.; Morgan, John W.; Orrock, John L.; Prober, Suzanne M.; Stevens, Carly J.

    2013-01-01

    Based on regional-scale studies, aboveground production and litter decomposition are thought to positively covary, because they are driven by shared biotic and climatic factors. Until now we have been unable to test whether production and decomposition are generally coupled across climatically dissimilar regions, because we lacked replicated data collected within a single vegetation type across multiple regions, obfuscating the drivers and generality of the association between production and decomposition. Furthermore, our understanding of the relationships between production and decomposition rests heavily on separate meta-analyses of each response, because no studies have simultaneously measured production and the accumulation or decomposition of litter using consistent methods at globally relevant scales. Here, we use a multi-country grassland dataset collected using a standardized protocol to show that live plant biomass (an estimate of aboveground net primary production) and litter disappearance (represented by mass loss of aboveground litter) do not strongly covary. Live biomass and litter disappearance varied at different spatial scales. There was substantial variation in live biomass among continents, sites and plots whereas among continent differences accounted for most of the variation in litter disappearance rates. Although there were strong associations among aboveground biomass, litter disappearance and climatic factors in some regions (e.g. U.S. Great Plains), these relationships were inconsistent within and among the regions represented by this study. These results highlight the importance of replication among regions and continents when characterizing the correlations between ecosystem processes and interpreting their global-scale implications for carbon flux. We must exercise caution in parameterizing litter decomposition and aboveground production in future regional and global carbon models as their relationship is complex.

  12. Improved allometric models to estimate the aboveground biomass of tropical trees.

    Science.gov (United States)

    Chave, Jérôme; Réjou-Méchain, Maxime; Búrquez, Alberto; Chidumayo, Emmanuel; Colgan, Matthew S; Delitti, Welington B C; Duque, Alvaro; Eid, Tron; Fearnside, Philip M; Goodman, Rosa C; Henry, Matieu; Martínez-Yrízar, Angelina; Mugasha, Wilson A; Muller-Landau, Helene C; Mencuccini, Maurizio; Nelson, Bruce W; Ngomanda, Alfred; Nogueira, Euler M; Ortiz-Malavassi, Edgar; Pélissier, Raphaël; Ploton, Pierre; Ryan, Casey M; Saldarriaga, Juan G; Vieilledent, Ghislain

    2014-10-01

    Terrestrial carbon stock mapping is important for the successful implementation of climate change mitigation policies. Its accuracy depends on the availability of reliable allometric models to infer oven-dry aboveground biomass of trees from census data. The degree of uncertainty associated with previously published pantropical aboveground biomass allometries is large. We analyzed a global database of directly harvested trees at 58 sites, spanning a wide range of climatic conditions and vegetation types (4004 trees ≥ 5 cm trunk diameter). When trunk diameter, total tree height, and wood specific gravity were included in the aboveground biomass model as covariates, a single model was found to hold across tropical vegetation types, with no detectable effect of region or environmental factors. The mean percent bias and variance of this model was only slightly higher than that of locally fitted models. Wood specific gravity was an important predictor of aboveground biomass, especially when including a much broader range of vegetation types than previous studies. The generic tree diameter-height relationship depended linearly on a bioclimatic stress variable E, which compounds indices of temperature variability, precipitation variability, and drought intensity. For cases in which total tree height is unavailable for aboveground biomass estimation, a pantropical model incorporating wood density, trunk diameter, and the variable E outperformed previously published models without height. However, to minimize bias, the development of locally derived diameter-height relationships is advised whenever possible. Both new allometric models should contribute to improve the accuracy of biomass assessment protocols in tropical vegetation types, and to advancing our understanding of architectural and evolutionary constraints on woody plant development. © 2014 John Wiley & Sons Ltd.

  13. Steam Turbine Materials for Ultrasupercritical Coal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, R.; Hawk, J.; Schwant, R.; Saha, D.; Totemeier, T.; Goodstine, S.; McNally, M.; Allen, D. B.; Purgert, Robert

    2009-06-30

    The Ultrasupercritical (USC) Steam Turbine Materials Development Program is sponsored and funded by the U.S. Department of Energy and the Ohio Coal Development Office, through grants to Energy Industries of Ohio (EIO), a non-profit organization contracted to manage and direct the project. The program is co-funded by the General Electric Company, Alstom Power, Siemens Power Generation (formerly Siemens Westinghouse), and the Electric Power Research Institute, each organization having subcontracted with EIO and contributing teams of personnel to perform the requisite research. The program is focused on identifying, evaluating, and qualifying advanced alloys for utilization in coal-fired power plants that need to withstand steam turbine operating conditions up to 760°C (1400°F) and 35 MPa (5000 psi). For these conditions, components exposed to the highest temperatures and stresses will need to be constructed from nickel-based alloys with higher elevated temperature strength than the highchromium ferritic steels currently used in today's high-temperature steam turbines. In addition to the strength requirements, these alloys must also be weldable and resistant to environmental effects such as steam oxidation and solid particle erosion. In the present project, candidate materials with the required creep strength at desired temperatures have been identified. Coatings that can resist oxidation and solid particle erosion have also been identified. The ability to perform dissimilar welds between nickel base alloys and ferritic steels have been demonstrated, and the properties of the welds have been evaluated. Results of this three-year study that was completed in 2009 are described in this final report. Additional work is being planned and will commence in 2009. The specific objectives of the future studies will include conducting more detailed evaluations of the weld-ability, mechanical properties and repair-ability of the selected candidate alloys for rotors

  14. 78 FR 38739 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Science.gov (United States)

    2013-06-27

    ... material control and accounting performance requirements for special nuclear material at nuclear power... NUCLEAR REGULATORY COMMISSION [NRC-2012-0109] Special Nuclear Material Control and Accounting... Guide (RG) 5.29, ``Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants...

  15. Symposium on application of new materials to nuclear plants

    International Nuclear Information System (INIS)

    1988-01-01

    The papers on the application of new materials for upgrading LWRs, the application of new materials to FBRs, the application of new materials to high temperature gas-cooled reactors, the application of new materials to nuclear fusion reactors, engineering ceremics shape memorizing alloys and metal base composite materials are collected in this book. As for LWRs, the change of materials for LWR components and the present status of the research and development of the application of new materials in ANERI are described. As for the application of new materials to a demonstration FBR, high Cr-Mo steel, high ductility stainless steel, neutron resistant stainless steel and low cobalt case hardening material are explained, and the development of new materials for practical FBRs is discussed. As for high temperature gas-cooled reactors, the materials for control rod cladding tubes, heat exchangers and high temperature piping, fuel cladding, moderator and reflector, and heat insulator are described. As for nuclear fusion reactors, the structural materials, the materials facing plasma, and superconductive materials, electrode materials and others are discussed. (K.I.)

  16. Literature review on use of nonwood plant fibers for building materials and panels

    Science.gov (United States)

    John A. Youngquist; Brent E. English; Roger C. Scharmer; Poo Chow; Steven R. Shook

    1994-01-01

    The research studies included in this review focus on the use of nonwood plant fibers for building materials and panels. Studies address (1) methods for efficiently producing building materials and panels from nonwood plant fibers; (2) treatment of fibers prior to board production; (3) process variables, such as press time and temperature, press pressure, and type of...

  17. Research on the Intensive Material Management System of Biomass Power Plant

    Science.gov (United States)

    Zhang, Ruosi; Hao, Tianyi; Li, Yunxiao; Zhang, Fangqing; Ding, Sheng

    2017-05-01

    In view of the universal problem which the material management is loose, and lack of standardization and interactive real-time in the biomass power plant, a system based on the method of intensive management is proposed in this paper to control the whole process of power plant material. By analysing the whole process of power plant material management and applying the Internet of Things, the method can simplify the management process. By making use of the resources to maximize and data mining, material utilization, circulation rate and quality control management can be improved. The system has been applied in Gaotang power plant, which raised the level of materials management and economic effectiveness greatly. It has an important significance for safe, cost-effective and highly efficient operation of the plant.

  18. The research on the material management system in nuclear power plant construction process

    International Nuclear Information System (INIS)

    Liu Xuegeng; Huang Zhongping

    2010-01-01

    According to the module construction speciality of nuclear power plant, this article analyzes the relationship between the actual amount of the material transported to the construction site and the planed needs of the material, and points out the zero inventory management target in the nuclear power plant construction site. Based on this, the article put forward a nuclear power plant material management system which is based on the 'pull' information driver. This system is composed by material coding sub-system, procurement and site material integrated management sub-system and project control sub-system, and is driven by the material demand from construction site to realize the JIT purchasing. This structure of the system can reduce the gap between the actual amount of the material transported to the site and the planed needs of the material and achieve the target of reducing storage at construction site. (authors)

  19. Developing a generalized allometric equation for aboveground biomass estimation

    Science.gov (United States)

    Xu, Q.; Balamuta, J. J.; Greenberg, J. A.; Li, B.; Man, A.; Xu, Z.

    2015-12-01

    A key potential uncertainty in estimating carbon stocks across multiple scales stems from the use of empirically calibrated allometric equations, which estimate aboveground biomass (AGB) from plant characteristics such as diameter at breast height (DBH) and/or height (H). The equations themselves contain significant and, at times, poorly characterized errors. Species-specific equations may be missing. Plant responses to their local biophysical environment may lead to spatially varying allometric relationships. The structural predictor may be difficult or impossible to measure accurately, particularly when derived from remote sensing data. All of these issues may lead to significant and spatially varying uncertainties in the estimation of AGB that are unexplored in the literature. We sought to quantify the errors in predicting AGB at the tree and plot level for vegetation plots in California. To accomplish this, we derived a generalized allometric equation (GAE) which we used to model the AGB on a full set of tree information such as DBH, H, taxonomy, and biophysical environment. The GAE was derived using published allometric equations in the GlobAllomeTree database. The equations were sparse in details about the error since authors provide the coefficient of determination (R2) and the sample size. A more realistic simulation of tree AGB should also contain the noise that was not captured by the allometric equation. We derived an empirically corrected variance estimate for the amount of noise to represent the errors in the real biomass. Also, we accounted for the hierarchical relationship between different species by treating each taxonomic level as a covariate nested within a higher taxonomic level (e.g. species equations, the plant's taxonomy, and their biophysical environment.

  20. Potential improvements in materials accounting for an internationally safeguarded fuels reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Dayem, H.A.; Cobb, D.D.; Dietz, R.J.; Shipley, J.P.

    1980-01-01

    The effectiveness of improved materials accounting was evaluated using computer modeling, simulation, and analysis techniques for two model reprocessing plants. One plant, sized to 210 MTHM/yr, represents the small plants currently under international safeguards and the other, sized to 1500 MTHM/yr, represents the large plants expected in the future. The study indicates that conventional accounting may meet IAEA goal quantities and detection times for low-enriched uranium in these facilities. Dynamic materials accounting can meet the IAEA goal for detecting abrupt (1 to 3 wk) diversion of 8 kg of plutonium. Current materials accounting techniques probably cannot meet the protracted diversion goal of detecting 8 kg for plutonium in 1 yr. Facility design features that can improve the effectiveness of materials accounting in future plants are discussed

  1. Materials management in an internationally safeguarded fuels reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Baker, A.L.; Cobb, D.D.

    1980-04-01

    The following appendices are included: aqueous reprocessing and conversion technology, reference facilities, process design and operating features relevant to materials accounting, operator's safeguards system structure, design principles of dynamic materials accounting systems, modeling and simulation approach, optimization of measurement control, aspects of international verification problem, security and reliability of materials measurement and accounting system, estimation of in-process inventory in solvent-extraction contactors, conventional measurement techniques, near-real-time measurement techniques, isotopic correlation techniques, instrumentation available to IAEA inspectors, and integration of materials accounting and containment and surveillance

  2. Materials management in an internationally safeguarded fuels reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, E.A.; Baker, A.L.; Cobb, D.D.

    1980-04-01

    The following appendices are included: aqueous reprocessing and conversion technology, reference facilities, process design and operating features relevant to materials accounting, operator's safeguards system structure, design principles of dynamic materials accounting systems, modeling and simulation approach, optimization of measurement control, aspects of international verification problem, security and reliability of materials measurement and accounting system, estimation of in-process inventory in solvent-extraction contactors, conventional measurement techniques, near-real-time measurement techniques, isotopic correlation techniques, instrumentation available to IAEA inspectors, and integration of materials accounting and containment and surveillance. (DLC)

  3. Assessment of forest management influences on total live aboveground tree biomass in William B Bankhead National Forest, Alabama

    Science.gov (United States)

    Callie Schweitzer; Dawn Lemke; Wubishet Tadesse; Yong Wang

    2015-01-01

    Forests contain a large amount of carbon (C) stored as tree biomass (above and below ground), detritus, and soil organic material. The aboveground tree biomass is the most rapid change component in this forest C pool. Thus, management of forest resources can influence the net C exchange with the atmosphere by changing the amount of C stored, particularly in landscapes...

  4. Aboveground-belowground biodiversity linkages differ in early and late successional temperate forests.

    Science.gov (United States)

    Li, Hui; Wang, Xugao; Liang, Chao; Hao, Zhanqing; Zhou, Lisha; Ma, Sam; Li, Xiaobin; Yang, Shan; Yao, Fei; Jiang, Yong

    2015-07-17

    Understanding ecological linkages between above- and below-ground biota is critical for deepening our knowledge on the maintenance and stability of ecosystem processes. Nevertheless, direct comparisons of plant-microbe diversity at the community level remain scarce due to the knowledge gap between microbial ecology and plant ecology. We compared the α- and β- diversities of plant and soil bacterial communities in two temperate forests that represented early and late successional stages. We documented different patterns of aboveground-belowground diversity relationships in these forests. We observed no linkage between plant and bacterial α-diversity in the early successional forest, and even a negative correlation in the late successional forest, indicating that high bacterial α-diversity is not always linked to high plant α-diversity. Beta-diversity coupling was only found at the late successional stage, while in the early successional forest, the bacterial β-diversity was closely correlated with soil property distances. Additionally, we showed that the dominant competitive tree species in the late successional forest may play key roles in driving forest succession by shaping the soil bacterial community in the early successional stage. This study sheds new light on the potential aboveground-belowground linkage in natural ecosystems, which may help us understand the mechanisms that drive ecosystem succession.

  5. PSO 5806 Material development for waste-to-energy plants

    DEFF Research Database (Denmark)

    Beck, Jørgen; Frederiksen, Jens; Larsen, Ole Hede

    2010-01-01

    The vision of this project (PSO 5806) is to throw light and focus on some of the refractory material characteristics of major importance to predictable service.......The vision of this project (PSO 5806) is to throw light and focus on some of the refractory material characteristics of major importance to predictable service....

  6. CMS: Aboveground Biomass from Penobscot Experimental Forest, Maine, 2012

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes estimates of aboveground biomass (AGB) in 2012 from the Penobscot Experimental Forest (PEF) in Bradley, Maine. The AGB was modeled using LiDAR...

  7. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); Akar, Sertac [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-26

    This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for the parabolic trough system.

  8. Next Generation Nuclear Plant Materials Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    G. O. Hayner; E.L. Shaber

    2004-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

  9. Topographically mediated controls on aboveground biomass across a mediterranean-type landscape

    Science.gov (United States)

    Dahlin, K.; Asner, G. P.; Field, C. B.

    2009-12-01

    Aboveground biomass accumulation is a useful metric for evaluating habitat restoration and ecosystem services projects, in addition to being a robust measure of carbon sequestration. However, at the landscape scale non-anthropogenic controls on biomass accumulation are poorly understood. In this study we combined field measurements, high resolution data from the NASA JPL Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), and the Carnegie Airborne Observatory (CAO) airborne light detection and ranging (lidar) system to create a comprehensive map of aboveground biomass across a patchy mediterranean-type landscape (Jasper Ridge Biological Preserve, Stanford, CA). Candidate explanatory variables (e.g. slope, elevation, incident solar radiation) were developed using a geologic map and a digital elevation model derived from the lidar data. Finally, candidate variables were tested, and a model was produced to predict aboveground biomass from environmental data. Though many of the explanatory variables have only indirect effects on plant growth, the model permits inferences to be made about the relative importance of light, water, temperature, and edaphic characteristics on carbon accumulation in mediterranean-type systems.

  10. Allometric models for estimating the aboveground biomass of the mangrove Rhizophora mangle

    Directory of Open Access Journals (Sweden)

    Heide Vanessa Souza Santos

    Full Text Available Abstract The development of species-specific allometric models is critical to the improvement of aboveground biomass estimates, as well as to the estimation of carbon stock and sequestration in mangrove forests. This study developed allometric equations for estimating aboveground biomass of Rhizophora mangle in the mangroves of the estuary of the São Francisco River, in northeastern Brazil. Using a sample of 74 trees, simple linear regression analysis was used to test the dependence of biomass (total and per plant part on size, considering both transformed (ln and not-transformed data. Best equations were considered as those with the lowest standard error of estimation (SEE and highest adjusted coefficient of determination (R2a. The ln-transformed equations showed better results, with R2a near 0.99 in most cases. The equations for reproductive parts presented low R2a values, probably attributed to the seasonal nature of this compartment. "Basal Area2 × Height" showed to be the best predictor, present in most of the best-fitted equations. The models presented here can be considered reliable predictors of the aboveground biomass of R. mangle in the NE-Brazilian mangroves as well as in any site were this widely distributed species present similar architecture to the trees used in the present study.

  11. Tropical Soil Carbon Stocks do not Reflect Aboveground Forest Biomass Across Geological and Rainfall Gradients

    Science.gov (United States)

    Cusack, D. F.; Markesteijn, L.; Turner, B. L.

    2016-12-01

    Soil organic carbon (C) dynamics present a large source of uncertainty in global C cycle models, and inhibit our ability to predict effects of climate change. Tropical wet and seasonal forests exert a disproportionate influence on the global C cycle relative to their land area because they are the most C-rich ecosystems on Earth, containing 25-40% of global terrestrial C stocks. While significant advances have been made to map aboveground C stocks in tropical forests, determining soil C stocks using remote sensing technology is still not possible for closed-canopy forests. It is unclear to what extent aboveground C stocks can be used to predict soil C stocks across tropical forests. Here we present 1-m-deep soil organic C stocks for 42 tropical forest sites across rainfall and geological gradients in Panama. We show that soil C stocks do not correspond to aboveground plant biomass or to litterfall productivity in these humid tropical forests. Rather, soil C stocks were strongly and positively predicted by fine root biomass, soil clay content, and rainfall (R2 = 0.47, p chemical characteristics form an important basis for improving model estimates of soil C stocks and predictions of climate change effects on tropical C storage.

  12. Timber volume and aboveground live tree biomass estimations for landscape analyses in the Pacific Northwest

    Science.gov (United States)

    Xiaoping Zhou; Miles A. Hemstrom

    2010-01-01

    Timber availability, aboveground tree biomass, and changes in aboveground carbon pools are important consequences of landscape management. There are several models available for calculating tree volume and aboveground tree biomass pools. This paper documents species-specific regional equations for tree volume and aboveground live tree biomass estimation that might be...

  13. Use of anthocyanin extracted from natural plant materials to develop ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-19

    Dec 19, 2011 ... increase in food production of 60 to 70% will become necessary to meet world food demands and minimize malnutrition (Power and Dick, 2000). Faced with a continuous decline in useful land for crop production, increased demands ... kianos = blue) are the most important pigments of the vascular plants ...

  14. Materials management in an internationally safeguarded fuels reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Cobb, D.D.; Dayem, H.A.; Dietz, R.J.; Kern, E.A.; Markin, J.T.; Shipley, J.P.; Barnes, J.W.; Scheinman, L.

    1980-04-01

    The second volume describes the requirements and functions of materials measurement and accounting systems (MMAS) and conceptual designs for an MMAS incorporating both conventional and near-real-time (dynamic) measurement and accounting techniques. Effectiveness evaluations, based on recently developed modeling, simulation, and analysis procedures, show that conventional accountability can meet IAEA goal quantities and detection times in these reference facilities only for low-enriched uranium. Dynamic materials accounting may meet IAEA goals for detecting the abrupt (1-3 weeks) diversion of 8 kg of plutonium. Current materials accounting techniques probably cannot meet the 1-y protracted-diversion goal of 8 kg for plutonium

  15. Probing of Metabolites in Finely Powdered Plant Material by Direct Laser Desorption Ionization Mass Spectrometry

    Science.gov (United States)

    Musharraf, Syed Ghulam; Ali, Arslan; Choudhary, M. Iqbal; Atta-ur-Rahman

    2014-04-01

    Natural products continue to serve as an important source of novel drugs since the beginning of human history. High-throughput techniques, such as MALDI-MS, can be techniques of choice for the rapid screening of natural products in plant materials. We present here a fast and reproducible matrix-free approach for the direct detection of UV active metabolites in plant materials without any prior sample preparation. The plant material is mechanically ground to a fine powder and then sieved through different mesh sizes. The collected plant material is dispersed using 1 μL solvent on a target plate is directly exposed to Nd:YAG 335 nm laser. The strategy was optimized for the analysis of plant metabolites after study of the different factors affecting the reproducibility and effectiveness of the analysis, including particle sizes effects, types of solvents used to disperse the sample, and the part of the plant analyzed. Moreover, several plant species, known for different classes of metabolites, were screened to establish the generality of the approach. The developed approach was validated by the characterization of withaferin A and nicotine in the leaves of Withania somnifera and Nicotiana tabacum, respectively, through comparison of its MS/MS data with the standard compound. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques were used for the tissue imaging purposes. This approach can be used to directly probe small molecules in plant materials as well as in herbal and pharmaceutical formulations for fingerprinting development.

  16. Analysis of requirements for teaching materials based on the course bioinformatics for plant metabolism

    Science.gov (United States)

    Balqis, Widodo, Lukiati, Betty; Amin, Mohamad

    2017-05-01

    A way to improve the quality of learning in the course of Plant Metabolism in the Department of Biology, State University of Malang, is to develop teaching materials. This research evaluates the needs of bioinformatics-based teaching material in the course Plant Metabolism by the Analyze, Design, Develop, Implement, and Evaluate (ADDIE) development model. Data were collected through questionnaires distributed to the students in the Plant Metabolism course of the Department of Biology, University of Malang, and analysis of the plan of lectures semester (RPS). Learning gains of this course show that it is not yet integrated into the field of bioinformatics. All respondents stated that plant metabolism books do not include bioinformatics and fail to explain the metabolism of a chemical compound of a local plant in Indonesia. Respondents thought that bioinformatics can explain examples and metabolism of a secondary metabolite analysis techniques and discuss potential medicinal compounds from local plants. As many as 65% of the respondents said that the existing metabolism book could not be used to understand secondary metabolism in lectures of plant metabolism. Therefore, the development of teaching materials including plant metabolism-based bioinformatics is important to improve the understanding of the lecture material in plant metabolism.

  17. Carbon sequestration rate and aboveground biomass carbon potential of three young species in lower Gangetic plain.

    Science.gov (United States)

    Jana, Bipal K; Biswas, Soumyajit; Majumder, Mrinmoy; Roy, Pankaj K; Mazumdar, Asis

    2011-07-01

    Carbon is sequestered by the plant photosynthesis and stored as biomass in different parts of the tree. Carbon sequestration rate has been measured for young species (6 years age) of Shorea robusta at Chadra forest in Paschim Medinipur district, Albizzia lebbek in Indian Botanic Garden in Howrah district and Artocarpus integrifolia at Banobitan within Kolkata in the lower Gangetic plain of West Bengal in India by Automated Vaisala Made Instrument GMP343 and aboveground biomass carbon has been analyzed by CHN analyzer. The specific objective of this paper is to measure carbon sequestration rate and aboveground biomass carbon potential of three young species of Shorea robusta, Albizzia lebbek and Artocarpus integrifolia. The carbon sequestration rate (mean) from the ambient air during winter season as obtained by Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 11.13 g/h, 14.86 g/h and 4.22g/h, respectively. The annual carbon sequestration rate from ambient air were estimated at 8.97 t C ha(-1) by Shorea robusta, 11.97 t C ha(-1) by Albizzia lebbek and 3.33 t C ha(-1) by Artocarpus integrifolia. The percentage of carbon content (except root) in the aboveground biomass of Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 47.45, 47.12 and 43.33, respectively. The total aboveground biomass carbon stock per hectare as estimated for Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 5.22 t C ha(-1) , 6.26 t C ha(-1) and 7.28 t C ha(-1), respectively in these forest stands.

  18. General regularities of Sr 90 distribution in system soil-plant under natural conditions

    International Nuclear Information System (INIS)

    Gudeliene, I.; Marchiulioniene, D.; Petroshius, R.

    2006-01-01

    Sr 90 distribution in system 'soil - underground part of plant - aboveground part of plant' was investigated. It was determined that Sr 90 activity concentration in underground and aboveground part of plants and in mosses was not dependent on its activity concentration in soil. There was direct dependence of Sr 90 activity concentration in aboveground on underground parts of plants. Sr 90 transfer factor from soil to underground part of plants and mosses was directly dependent on this radionuclide activity concentration in them. (authors)

  19. Materials concepts in PWR power plants. An overview

    International Nuclear Information System (INIS)

    Costa e Silva, A.L.V.

    1987-01-01

    Some measures to reduce the risk of exposure in case of nuclear accidents are presented. Some material questions concerning the integrity of reactor pressure vessel, the containment vessel and external systems are discussed. (E.G.) [pt

  20. Low activation structural material candidates for fusion power plants

    International Nuclear Information System (INIS)

    Forty, C.B.A.; Cook, I.

    1997-06-01

    Under the SEAL Programme of the European Long-Term Fusion Safety Programme, an assessment was performed of a number of possible blanket structural materials. These included the steels then under consideration in the European Blanket Programme, as well as materials being considered for investigation in the Advanced Materials Programme. Calculations were performed, using SEAFP methods, of the activation properties of the materials, and these were related, based on the SEAFP experience, to assessments of S and E performance. The materials investigated were the SEAFP low-activation martensitic steel (LA12TaLC); a Japanese low-activation martensitic steel (F-82H), a range of compositional variants about this steel; the vanadium-titanium-chromium alloy which was the original proposal of the ITER JCT for the ITER in-vessel components; a titanium-aluminium intermetallic (Ti-Al) which is under investigation in Japan; and silicon carbide composite (SiC). Assessed impurities were included in the compositions of these materials, and they have very important impacts on the activation properties. Lack of sufficiently detailed data on the composition of chromium alloys precluded their inclusion in the study. (UK)

  1. Close down nuclear power plants. Materials for nuclear power phaseout

    International Nuclear Information System (INIS)

    1986-07-01

    This is a brochure presented by the Greens in the Parliament of Baden-Wuerttemberg, Stuttgart, to document that it is possible for Baden-Wuerttemberg and, moreover, the entire Federal Republic of Germany to opt out of nuclear power immediately, and to show how this can be done. Most prominent in this context is a study worked out in connection with the bill for the nuclear-test ban. That study calculates the figures for two scenarios: scenario A is based on the immediate close-down of all nuclear power plants in 1986/87; the concept of scenario B is the immediate close-down of all nuclear power plants put into operation in 1980 at the latest, as well as the speedy closing-down step-by-step of all the remaining nuclear power plants until the beginning of the nineties. Opting out of nuclear energy must be accompanied also by changes in the energy economy in legal and structural regards. For that purpose, the programme for 'democratization and recommunalization of the energy economy' was designed. Opting out of nuclear energy finally presupposes a commitment to energy conservation techniques and to non-polluting, renewable energy sources. (orig./HSCH) [de

  2. Nuclear power plant control and instrumentation 1993. Working material

    International Nuclear Information System (INIS)

    1994-01-01

    The regular meeting of the International Working Group on Nuclear Power Plant Control and Instrumentation (IWG-NPPCI) was organized in order to summarize operating experience of nuclear power plant control systems, gain a general overview of activities in development of modern control systems and receive recommendations on the further directions and particular measures within the Agency's programme. The meeting was held at the Merlin-Gerin Headquarters in Paris and was attended by twenty one national delegates and observers from 17 countries. The present volume contains: (1) report on the meeting of the IWG-NPPCI, Paris, 21-22 October 1993, (2) report by the scientific secretary on the major activities of IAEA during 1991-1993 in the NPPCI area, and (3) reports of the national representatives to the International Working Group on NPPCI. The papers and discussions with practical experience and described actual problems encountered. Emphasis was placed on the technical, industrial and economic aspects of the introduction of modern control systems and on the improvement of plant availability and safety. Refs, figs and tabs

  3. Selection of construction materials for equipment in an experimental reprocessing plant

    International Nuclear Information System (INIS)

    Mizrahi, R.; Cragnolino, G.A.

    1994-01-01

    A review is made of the most significant corrosion problems that may be present in different stages of the process in a spent fuel reprocessing plant. The influence of different variables is analyzed: concentration of nitric acid and other oxidizing species, temperature, etc., in corrosion of materials of most frequent use in pipings and equipment. The materials are austenitic stainless steels and refractory metals, especially zirconium and its alloys. Both general and localized corrosion phenomena are analyzed for these materials. Selection criteria for the use of adequate material in different components of the plant are also discussed. (author). 32 refs., 20 figs., 3 tabs

  4. Effects of Ten Plant Materials in the Preservation of Stored Cowpea ...

    African Journals Online (AJOL)

    The potentials of the pulverized parts of ten locally available plant products compared to a conventional storage insecticide (Actellic 2% dust) as protectants of stored cowpea, Vigna unguiculata (L.) Walp were evaluated under laboratory conditions. Each of the plant materials was tested at four rates (2.5g, 5.0g and ...

  5. Materials management in an internationally safeguarded fuels reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Cobb, D.D.; Dayem, H.A.; Dietz, R.J.; Kern, E.A.; Markin, J.T.; Shipley, J.P.; Barnes, J.W.; Scheinman, L.

    1980-04-01

    The first volume of this report summarizes the results and conclusions for this study of conventional and advanced nuclear materials accounting systems applicable for both large (1500 MTHM/y) and small (210 MTHM/y) spent-fuel reprocessing facilities subject to international verification

  6. Osmotic potential of Zinnia elegans plant material affects the yield ...

    African Journals Online (AJOL)

    Jane

    2010-12-20

    Dec 20, 2010 ... to induce different osmolarities in leaf materials from two cultivars (cvs) of Z. elegans, Envy and Purple. Prince. The isolated leaf mesophyll cells ..... Furthermore, visual observations during in vitro TE differentiation indicated an ... For instance, there was no work about the effect of growth conditions during ...

  7. Osmotic potential of Zinnia elegans plant material affects the yield ...

    African Journals Online (AJOL)

    To examine whether the growth conditions that determine leaf osmolarity (LO) affect the final %TE, we used three light intensities (50, 70 and 100 μmol.m-2s-1) and three electrical conductivity (EC) levels (EC 2, 4 and 6 dS.m-1 ) in hydroponic systems to induce different osmolarities in leaf materials from two cultivars (cvs) of ...

  8. Apollo 12 lunar material - Effects on plant pigments.

    Science.gov (United States)

    Weete, J. D.; Walkinshaw, C. H.

    1972-01-01

    Tissue cultures of tobacco grown for 12 weeks in contact with lunar material returned by Apollo 12 contained 21 to 35% more total pigment than control tissues. This difference is due primarily to increased chlorophyll a concentrations per gram fresh weight of tissue in experimental cultures. No differences were noted in the fresh or dry weight of the experimental and control cultures.

  9. Materials Problems and Solutions in Biomass Fired Plants

    DEFF Research Database (Denmark)

    Larsen, Ole Hede; Montgomery, Melanie

    2006-01-01

    Due to Denmark’s pledge to reduce carbon dioxide emissions, biomass is utilised increasingly as a fuel for generating energy. Extensive research and demonstration projects especially in the area of material performance for biomass fired boilers have been undertaken to make biomass a viable fuel r...

  10. Next Generation Nuclear Plant Materials Selection and Qualification Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    R. Doug Hamelin; G. O. Hayner

    2004-11-01

    The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

  11. Obtaining of Grafted Planting Material at Some Romanian Tomatoes

    Directory of Open Access Journals (Sweden)

    Madalina Doltu

    2016-11-01

    Full Text Available The tomatoes have highest share in Romanian crops from protected spaces (greenhouses, solariums. The grafting is an agronomical technique that induces or improves some qualities of the tomato cultivars (resistance to soil diseases and pests, resistance to abiotic factors, quantity and quality of fruit production. The research was aimed the establishing of the technological stages for producing of scion and rootstock seedlings from L. esculentum species, to obtain compatible phenotype when is grafted. The observations of this research were conducted on Department of Horticultural Cultures in Protected Spaces from Horting Institute Bucharest. The experience was carry out on a cultivar collection consisting from L. esculentum plants: scions (‘Siriana’–F1 hybrid and ‘Buzău 1600’– variety, creations from the germplasm bank of Research and Development Station for Vegetable Growing Buzău Romania (VDRS Buzău and rootstock (‘Groundforce’–F1 hybrid. The plant diameters were correlated for a grafting by the annexation method, cutting at 45 degrees. The grafting was performed successfully. The technological steps have achieved phenotypic compatibility of the symbiotes when was the grafting by annexation. The technology for producing of scion and rootstock seedlings at these Romanian tomatoes (‘Siriana’ and ‘Buzău’ 1600 was established for the crops in protected spaces in south area of Romania.

  12. Development of Advanced Heat Resistant Materials for IGCC And AUSC Power Plants

    Science.gov (United States)

    Chai, Guocai; Sand, Tommy; Hernblom, Johan; Forsberg, Urban; Peltola, Timo

    Integrated gasification combined cycle (IGCC) power plants and advanced ultra-supercritical (AUSC) thermal power plants are believed to be used as future power plants for high efficient and clean energy production. Increase in the efficiency of these plants is mainly attributed to the increase in temperature and pressure, and the consequent environments become much tougher. This will give a great challenge to the materials used in these plants. The new materials with even higher creep strength combined with better corrosion resistance need to be developed. This paper will provide an overview on the newly developed advanced heat resistant materials for these applications. It will mainly focus the following two types of materials. One is a newly developed advanced heat resistant austenitic stainless steels for AUSC boilers. The material has been tested in several boilers in Europe. Another is one type of composite tube material for convective syngas cooler in the coal gasification process, reverse composite tubes for the fire-tube boiler. A 15 years' application experience of this type of composite tube material will be discussed.

  13. Incorporation of plant materials in the control of root pathogens in muskmelon

    Directory of Open Access Journals (Sweden)

    Andréa Mirne de Macêdo Dantas

    2013-12-01

    Full Text Available The effect of plant materials[Sunn Hemp (Crotalaria juncea, Castor Bean (Ricinus communis L., Cassava (Manihot esculenta Crantz and Neem (Azadirachta indica] and the times of incorporation of these materials in regards to the incidence of root rot in melon was evaluated in Ceará state, Brazil. The experiment was conducted in a commercial area with a history of root pathogens in cucurbitaceae. The randomized block design was used, in a 5 x 3 factorial arrangement with four repetitions. The treatments consisted of a combination of four plant materials (sunn hemp, castor beans, cassava and neem and a control with no soil incorporation of plant material and three times of incorporation (28, 21, and 14 days before the transplanting of the seedlings. Lower incidence of root rot was observed in practically all of the treatments where materials were incorporated at different times, with variation between the materials, corresponding with the time of incorporation, in relation to the soil without plant material. The pathogens isolated from the symptomatic muskmelon plants were Fusarium solani, Macrophomina phaseolina, Monosporascus cannonballus and Rhizoctonia solani, F. solani being encountered most frequently.

  14. Report of the U.S. Nuclear Regulatory Commission Piping Review Committee. Summary and evaluation of historical strong-motion earthquake seismic response and damage to aboveground industrial piping

    International Nuclear Information System (INIS)

    1985-04-01

    The primary purpose of this report is to collect in one reference document the observation and experience that has been developed with regard to the seismic behavior of aboveground, building-supported, industrial-type process piping (similar to piping used in nuclear power plants) in strong-motion earthquakes. The report will also contain observations regarding the response of piping in strong-motion experimental tests and appropriate conclusions regarding the behavior of such piping in large earthquakes. Recommendations are included covering the future design of such piping to resist earthquake motion damage based on observed behavior in large earthquakes and simulated shake table testing. Since available detailed data on the behavior of aboveground (building-supported) piping are quite limited, this report will draw heavily on the observations and experiences of experts in the field. In Section 2 of this report, observed earthquake damage to aboveground piping in a number of large-motion earthquakes is summarized. In Section 3, the available experience from strong-motion testing of piping in experimental facilities is summarized. In Section 4 are presented some observations that attempt to explain the observed response of piping to strong-motion excitation from actual earthquakes and shake table testing. Section 5 contains the conclusions based on this study and recommendations regarding the future seismic design of piping based on the observed strong-motion behavior and material developed for the NPC Piping Review Committee. Finally, in Section 6 the references used in this study are presented. It should be understood that the use of the term piping in this report, in general, is limited to piping supported by building structures. It does not include behavior of piping buried in soil media. It is believed that the seismic behavior of buried piping is governed primarily by the deformation of the surrounding soil media and is not dependent on the inertial response

  15. Plant Materials are Sustainable Substrates Supporting New Technologies of Plant-Only-Based Culture Media for in vitro Culturing of the Plant Microbiota.

    Science.gov (United States)

    Mourad, Elhussein F; Sarhan, Mohamed S; Daanaa, Hassan-Sibroe A; Abdou, Mennatullah; Morsi, Ahmed T; Abdelfadeel, Mohamed R; Elsawey, Hend; Nemr, Rahma; El-Tahan, Mahmoud; Hamza, Mervat A; Abbas, Mohamed; Youssef, Hanan H; Abdelhadi, Abdelhadi A; Amer, Wafaa M; Fayez, Mohamed; Ruppel, Silke; Hegazi, Nabil A

    2018-03-29

    In order to improve the culturability and biomass production of rhizobacteria, we previously introduced plant-only-based culture media. We herein attempted to widen the scope of plant materials suitable for the preparation of plant-only-based culture media. We chemically analyzed the refuse of turfgrass, cactus, and clover. They were sufficiently rich to support good in vitro growth by rhizobacteria isolates representing Proteobacteria and Firmicutes. They were also adequate and efficient to produce a cell biomass in liquid batch cultures. These culture media were as sufficient as artificial culture media for the cultivation and recovery of the in situ rhizobacteria of barley (Hordeum murinum L.). Based on culture-dependent (CFU plate counting) and culture-independent analyses (qPCR), mowed turfgrass, in particular, supported the highest culturable population of barley endophytes, representing >16% of the total bacterial number quantified with qPCR. This accurately reflected the endophytic community composition, in terms of diversity indices (S', H', and D') based on PCR-DGGE, and clustered the plant culture media together with the qPCR root populations away from the artificial culture media. Despite the promiscuous nature of the plant materials tested to culture the plant microbiome, our results indicated that plant materials of a homologous nature to the tested host plant, at least at the family level, and/or of the same environment were more likely to be selected. Plant-only-based culture media require further refinements in order to provide selectivity for the in vitro growth of members of the plant microbiome, particularly difficult-to-culture bacteria. This will provide insights into their hidden roles in the environment and support future culturomic studies.

  16. Quality control of three main materials for civil construction of nuclear power plant

    International Nuclear Information System (INIS)

    Wang Feng

    2011-01-01

    The construction and operation of nuclear power plant is a systematic engineering. To ensure quality and safety of nuclear power plants, each work from design to operation can have certain impact on the quality and safety of the project. The quality of each related work shall be controlled. Starting from the quality control over raw materials for the civil construction of nuclear power plant, this article mainly analyzes how to control the quality and manage the three main materials of steel, concrete and modular parts in the civil construction. (author)

  17. Radioactive materials released from nuclear power plants: Annual report, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Tichler, J.; Norden, K.; Congemi, J.

    1987-08-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1984 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1984 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  18. Materials Investigation for Power Plants and Power Industry. Seminar

    International Nuclear Information System (INIS)

    Szteke, W.; Wasiak, J.; Bilous, W.; Przyborska, M.; Wagner, T.; Wojciechowska, J.; Zubowski, B.

    2005-01-01

    The Report is an assembly of the papers concerning the present state and perspectives of evolution of power industry in Poland, in this the development of atomic energy. The material and diagnostic problems occurring the exploitation of power station as well as gas pipelines are also discussed. The progress in the accommodation of the Polish technical prescriptions to the European law is also described. (authors)

  19. Underground radioactive materials in 100-H and F plants

    Energy Technology Data Exchange (ETDEWEB)

    Herman, G. Jr.

    1965-10-29

    At 100-H Area there are 13 locations and at 100-F Area 16 locations where radioactive material was deposited underground. Five of these locations, 2 at 100-H and 3 at 100-F, have been permanently terminated as burial sites in compliance with Radiation Control Standards. They contain solid waste with significant quantities of long-life radionuclides. Burial locations within the 105 Building exclusion fences were not marked with permanent posts as the exclusion fences are sufficient marking for such sites. Other locations not permanently marked were the components of the effluent systems, including the 107 retention basins, 1904 outfall structures and associated piping. Control objectives for these locations were to prevent contamination spreads and limit personnel access for several years. Similar objectives applied to locations where small quantities of liquid waste were released to ground, or small amounts of surface-contaminated materials were buried. At these locations, existing fences and radiation zone signs were left in place. The permanently posted burial grounds contain two general types of radioactive waste: neutron-activated reactor components, and surface-contaminated material and equipment. The activated components consist almost entirely of steel and aluminum. The most significant radionuclide contained in these materials is 5-year /sup 60/Co. The surface contaminants are primarily corrosion and activation products of the reactor cooling water effluent, of which the long-life emitter is the 245-day /sup 65/Zn. The activity at the radiation zoned sites should be measured at the end of 5 years, or before all control is relinquished, to ascertain if the locations are releasable.

  20. Surface treatments for material protection in nuclear power plants

    International Nuclear Information System (INIS)

    De, P.K.; Gadiyar, H.S.

    1987-01-01

    The paper highlights some of the surface treatment methods used in nuclear power plants to improve their performance. The corrosion resistance of zirconium alloys results from the formation of an adherent and protective film of ZrO 2 . Graphite coating of zircaloy-2 cladding minimizes the susceptibility to environmental induced cracking. Magnetite formation during the hot conditioning operation improves the corrosion resistance of carbon steel as well as controls the spread of radioactivity. It has been illustrated how the surface treatment is helpful for redistributing residual stress to facilitate conversion of tensile stress to compressive stress to mitigate failures due to stress corrosion and fatigue corrosion. Inhibitors and passivators can modify the surface conditions (in situ) of condenser tubes and cooling water systems. These aspects have been dealt in the text of the paper. (author). 8 refs., 3 figures

  1. Structural materials requirements for in-vessel components of fusion power plants

    International Nuclear Information System (INIS)

    Schaaf, B. van der

    2000-01-01

    The economic production of fusion energy is determined by principal choices such as using magnetic plasma confinement or generating inertial fusion energy. The first generation power plants will use deuterium and tritium mixtures as fuel, producing large amounts of highly energetic neutrons resulting in radiation damage in materials. In the far future the advanced fuels, 3 He or 11 B, determine power plant designs with less radiation damage than in the first generation. The first generation power plants design must anticipate radiation damage. Solid sacrificing armour or liquid layers could limit component replacements costs to economic levels. There is more than radiation damage resistance to determine the successful application of structural materials. High endurance against cyclic loading is a prominent requirement, both for magnetic and inertial fusion energy power plants. For high efficiency and compactness of the plant, elevated temperature behaviour should be attractive. Safety and environmental requirements demand that materials have low activation potential and little toxic effects under both normal and accident conditions. The long-term contenders for fusion power plant components near the plasma are materials in the range from innovative steels, such as reduced activation ferritic martensitic steels, to highly advanced ceramic composites based on silicon carbide, and chromium alloys. The steels follow an evolutionary path to basic plant efficiencies. The competition on the energy market in the middle of the next century might necessitate the riskier but more rewarding development of SiCSiC composites or chromium alloys

  2. Effects of different drying processes on the concentrations of metals and metalloids in plant materials

    International Nuclear Information System (INIS)

    Anawar, H.M.; Canha, N.; Freitas, M.C; Santa Regina, I.; Garcia-Sanchez, A.

    2011-01-01

    The drying process of fresh plant materials may affect the porous structure, dehydration and a number of quality characteristics of these materials. Therefore, this study has investigated the effect of different drying processes on the variation of metal and metalloid concentrations in the dried plant materials. Seven varieties of native plant species collected from Sao Domingos mine were analyzed by instrumental neutron activation analysis (INAA) to investigate the effects of freeze-drying (FD), ambient air-drying (AAD) and oven-drying (OD) process on the concentrations of metals and metalloids in the plant biomass. Comparison of ambient air-dried, oven-dried and freeze-dried preparations allows a phenomenological description of the dehydration artefacts. In the quantitative analysis of metals and metalloids, FD and OD plant samples show the higher concentrations of metals and metalloids when compared to those in the AAD plant biomass. The freeze-drying process is comparatively reliable for determination of metals and metalloids concentrations in plant materials. (author)

  3. Development of in-plant reference material for composition of chinese cabbage with certified selenium content

    Directory of Open Access Journals (Sweden)

    D. A. Chupahin

    2014-01-01

    Full Text Available In-plant reference material for composition of Chinese cabbage with certified selenium content was developed for accuracy control of the results of selenium determination and within-laboratory quality control of analytical work in the analysis of food raw material.

  4. Activity measurement of 14C-labelled plant materials and their hydrothermolysis products

    International Nuclear Information System (INIS)

    Concin, R.; Binder, H.; Schinner, F.

    1982-01-01

    Poplar seedlings and mycelia of fungi were cultivated in a growth chamber in a radioactive CO 2 -atmosphere. The distribution of the incorporated activity in the plant materials was determined by autoradiography. The activities of the biomass materials were measured directly and/or after solubilization or combustion by liquid scintillation counting. (orig.)

  5. Liquid scintillation counting of calcium-45 in plant and soil material

    International Nuclear Information System (INIS)

    Waller, S.S.; Dodd, J.D.

    1977-01-01

    The recovery efficiencies of 45 Ca, for plant material using dry ashing with HCL as the extractant, and for soils using column extraction with MgCl 2 as the extractant, have been determined. The extraction and detection procedures, using available scintillation solvent systems, are given and show a combination of a high counting efficiency with high recovery efficiencies. The extraction procedures are simple, involving minimal operator time, and allow simultaneous 45 Ca determination in both plant and soil material. Both extraction procedures exhibit good reproducibility over a wide range of specific activities while being relatively insensitive to quenching and carrier calcium normally encountered in plant and soil material. These procedures are particularly useful in ecological studies requiring the examination of a large number of plant and/or soil samples over a wide range of radioactive concentrations. (U.K.)

  6. Guidelines for consistent characterisation and documentation of plant source materials for studies in phytochemistry and phytopharmacology.

    Science.gov (United States)

    Zidorn, Christian

    2017-07-01

    Plants are still by far the most important source of natural products. For higher plants as source materials identification and documentation are less challenging than for many other groups of organisms such as microorganisms or marine invertebrates. Nonetheless, many studies in natural products chemistry and phytopharmacology involving higher plants are flawed because the plant material is erroneously assigned, inaccurately documented, untraceable, or not named in accordance with the rules of nomenclature. Recently, the importance of the proper usage of plant nomenclature has been highlighted in a dedicated series of articles in the Journal of Ethnopharmacology and the importance of taxonomic and geographic information in a viewpoint in Natural Products Reports. Here, the importance of three related points is being emphasized: a) the traceability of the identification of plant source materials, b) easy access to vouchers and digital vouchers of the studied plants, and c) standards for accurate geographic data about the collection sites of these plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. RELEASE OF SILICON FROM SILICATE MATERIALS AND ITS UPTAKE BY RICE PLANT

    Directory of Open Access Journals (Sweden)

    Linca Anggria

    2018-01-01

    Full Text Available Plants absorb silicon (Si from soil solution in the form of monosilicic acid, also called orthosilicic acid (H4SiO4. Application of organic and inorganic materials containing readily soluble Si can increase Si supply in the soil and  its uptake by plant. The study aimed to evaluate the release of Si from organic and inorganic material sources and its uptake by rice plant. The released phosphorus (P from those materials was also evaluated. The inorganic materials evaluated included fly ash, steel slag, silica gel and Japanese silica gel (JSG, while the organic materials consisted of rice husk ash (RHA, rice husk burnt (RHB, media of mushroom (MM, cacao shell biochar (cacao SB and rice straw compost (RSC. The dynamics of Si and P were observed by periodical samplings at 7, 17, 24 and 34 days after transplanting (DAT.  Tiller number and plant height were measured at 16, 21 and 36 DAT.  The results showed that Si concentration in solution derived from inorganic material was highest for JSG followed by silica gel (1.107 and 0.806 mmol L-1, respectively. The release of Si from organic material was higher for RHB and RHA (0.618 and 0.539 mmol L-1, respectively.  Cacao SB, silica gel, JSG and RHB significantly increased plant height at 36 DAT. Meanwhile, Si materials did not significantly affect the tiller number. Of the materials used, steel slag and JSG significantly affected Si uptake by rice plant.

  8. Contribution to the studies on the mineral content of plant material through radioactivation analysis

    International Nuclear Information System (INIS)

    Fourcy, A.

    1968-03-01

    Radioactivation analysis is by its great sensibility or its rapidity quite helpful in plant biology and agronomy. Specific composition of plants and results to obtain in biological experimentation have needed a practical research on analytical methods for plant materials, using for radioactivation swimming-pool reactor neutrons and 14 MeV neutrons from a generator. Dosage process for 25 elements is exposed, taking account of the interest of the analysis for each element, the average amount occurring in plants and the result obtained. Many applications are developed, concerning nutrition physiology, genetics, parasitology, toxicology, control of manufactured agricultural and pharmaceutical products industrial and pesticides residues, ecology, radioecology and biochemistry. (author) [fr

  9. Planting on the slope of Yangjiang nuclear power plant by spraying combined materials

    International Nuclear Information System (INIS)

    Li Ning

    2010-01-01

    During the development and construction of nuclear power projects, in order to prevent ecological degradation and soil erosion of slope hazards, taking practical measures in the works or plant is particularly important. through the main high slope green field application of Yangjiang nuclear power plant, introducing mixed vegetation spraying techniques and characteristics of the construction process, for similar projects it is also a good guide. (author)

  10. Losses of the elements during dry ashing of plant materials

    International Nuclear Information System (INIS)

    Nonaka, Nobuhiro; Higuchi, Hideo; Hamaguchi, Hiroshi; Tomura, Kenji.

    1981-01-01

    Dry ashing technique has been considered to cause potential errors due to loss of elements by volatilisation or by reaction with the vessel. To obtain an overall view of elemental loss, the dry ashing was applied to the standard reference materials such as Orchard leaves(NBS) and Bamboo leaves. The ashing condition was as follows; The temperature varied from 200 0 C to 800 0 C by stepwise heating and the duration of heating at each temperature was 24 h. Concentrations of 25 elements in a sample were determined by means of atomic absorption spectrometry and neutron activation analysis using a Ge(Li) detector. The results obtained were as follows; (1) The losses for alkali elements were dependent on crucible materials and sample species. The losses increased with temperature and they were serious when a silica dish was used. (2) The loss for mercury was found above 110 0 C and simply increased with temperature. On the other hand, chlorine, bromine, selenium and chromium showed complicated patterns in which the first losses occurred at 200 0 C, no additional losses being observed at each following step of heating between 200 0 C and 450 0 C, and they increased again above 500 0 C. (3) The losses for arsenic and antimony occurred at 200 0 C, but any losses could not be observed above 200 0 C. (4) No losses were detected over the temperature range studied for alkaline earths, rare earths, vanadium, manganese, iron, cobalt, zinc and aluminum. (author)

  11. Nuclear material safeguards for enrichments plants: Part 4, Gas Centrifuge Enrichment Plant: Diversion scenarios and IAEA safeguards activities: Safeguards training course

    Energy Technology Data Exchange (ETDEWEB)

    1988-10-01

    This publication is Part 4 of a safeguards training course in Nuclear Material Safeguards for enrichment plants. This part of the course deals with diversion scenarios and safeguards activities at gas centrifuge enrichment plants.

  12. Belowground interactions with aboveground consequences: Invasive earthworms and arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Paudel, Shishir; Longcore, Travis; MacDonald, Beau; McCormick, Melissa K; Szlavecz, Katalin; Wilson, Gail W T; Loss, Scot R

    2016-03-01

    A mounting body of research suggests that invasive nonnative earthworms substantially alter microbial communities, including arbuscular mycorrhizal fungi (AMF). These changes to AMF can cascade to affect plant communities and vertebrate populations. Despite these research advances, relatively little is known about (1) the mechanisms behind earthworms' effects on AMF and (2) the factors that determine the outcomes of earthworm-AMF interactions (i.e., whether AMF abundance is increased or decreased and subsequent effects on plants). We predict that AMF-mediated effects of nonnative earthworms on ecosystems are nearly universal because (1) AMF are important components of most terrestrial ecosystems, (2) nonnative earthworms have become established in nearly every type of terrestrial ecosystem, and (3) nonnative earthworms, due to their burrowing and feeding behavior, greatly affect AMF with potentially profound concomitant effects on plant communities. We highlight the multiple direct and indirect effects of nonnative earthworms on plants and review what is currently known about the interaction between earthworms and AMF. We also illustrate how the effects of nonnative earthworms on plant-AMF mutualisms can alter the structure and stability of aboveground plant communities, as well as the vertebrate communities relying on these habitats. Integrative studies that assess the interactive effects of earthworms and AMF can provide new insights into the role that belowground ecosystem engineers play in altering aboveground ecological processes. Understanding these processes may improve our ability to predict the structure of plant and animal communities in earthworm-invaded regions and to develop management strategies that limit the numerous undesired impacts of earthworms.

  13. The use of ferritic materials in light water reactor power plants

    International Nuclear Information System (INIS)

    Marston, T.V.

    1984-01-01

    This paper reviews the use of ferritic materials in LWR power plant components. The two principal types of LWR systems, the boiling water reactor (BWR) and the pressurized water reactor (PWR) are described. The evolution of the construction materials, including plates and forgings, is presented. The fabrication process for both reactors constructed with plates and forgings are described in detail. Typical mechanical properties of the reactor vessel materials are presented. Finally, one critical issue radiation embrittlement dealing with ferritic materials is discussed. This has been one of the major issues regarding the use of ferritic material in the construction of LWR pressure vessels

  14. Plant waste materials from restaurants as the adsorbents for dyes

    Directory of Open Access Journals (Sweden)

    Pavlović Marija D.

    2015-01-01

    Full Text Available This paper has demonstrated the valorization of inexpensive and readily available restaurant waste containing most consumed food and beverage residues as adsorbents for methylene blue dye. Coffee, tea, lettuce and citrus waste have been utilized without any pre-treatment, thus the adsorption capacities and dye removal efficiency were determined. Coffee waste showed highest adsorbent capacity, followed by tea, lettuce and citrus waste. The dye removal was more effective as dye concentration increases from 5 up to 60 mg/L. The favorable results obtained for lettuce waste have been especially encouraged, as this material has not been commonly employed for sorption purposes. Equilibrium data fitted very well in a Freundlich isotherm model, whereas pseudo-second-order kinetic model describes the process behavior. Restaurant waste performed rapid dye removal at no cost, so it can be adopted and widely used in industries for contaminated water treatment.

  15. The nuclear materials control and accountability internal audit program at the Oak Ridge Y-12 plant

    International Nuclear Information System (INIS)

    Lewis, T.J.

    1987-01-01

    The internal audit program of the Nuclear Material Control and Accountability (NMCandA) Department at the Oak Ridge Y-12 Plant, through inventory-verification audits, inventory-observation audits, procedures audits, and records audits, evaluates the adequacy of material accounting and control systems and procedures throughout the Plant; appraises and verifies the accuracy and reliability of accountability records and reports; assures the consistent application of generally accepted accounting principles in accounting for nuclear materials; and assures compliance with the Department of Energy (DOE) and NMCandA procedures and requirements. The internal audit program has significantly strengthened the control and accountability of nuclear materials through improving the system of internal control over nuclear materials, increasing the awareness of materials control and accountability concerns within the Plant's material balance areas (MBAs), strengthening the existence of audit trails within the overall accounting system for nuclear materials, improving the accuracy and timeliness of data submitted to the nuclear materials accountability system, auditing the NMCandA accounting system to ensure its accuracy and reliability, and ensuring that all components of that system (general ledgers, subsidiary ledgers, inventory listings, etc.) are in agreement among themselves

  16. Next Generation Nuclear Plant Materials Research and Development Program Plan, Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    G.O. Hayner; R.L. Bratton; R.E. Mizia; W.E. Windes; W.R. Corwin; T.D. Burchell; C.E. Duty; Y. Katoh; J.W. Klett; T.E. McGreevy; R.K. Nanstad; W. Ren; P.L. Rittenhouse; L.L. Snead; R.W. Swindeman; D.F. Wlson

    2007-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 950°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Some of the general and administrative aspects of the R&D Plan include: • Expand American Society of Mechanical Engineers (ASME) Codes and American Society for Testing and Materials (ASTM) Standards in support of the NGNP Materials R&D Program. • Define and develop inspection needs and the procedures for those inspections. • Support selected university materials related R&D activities that would be of direct benefit to the NGNP Project. • Support international materials related collaboration activities through the DOE sponsored Generation IV International Forum (GIF) Materials and Components (M&C) Project Management Board (PMB). • Support document review activities through the Materials Review Committee (MRC) or other suitable forum.

  17. Aspects of cleaning environmental materials for multi-element analysis, e.g. plant samples

    International Nuclear Information System (INIS)

    Markert, B.

    1992-01-01

    Cleaning of samples is often the first step in the entire procedure of sample preparation in environmental trace element research. The question must generally be raised of whether cleaning is meaningful before chemical investigations with plant material (e.g. for the determination of transfer factors in the soil/plant system) or not (e.g. for food chain analysis in the plant/animal system). The most varied cleaning procedures for plant samples are currently available ranging from dry and wet wiping of the leaf or needle surface up to the complete removal of the cuticule with the aid of chlorofom. There is at present no standardized cleaning procedure for plant samples so that it is frequently not possible to compare analytical data from different working groups studying the same plant species. (orig.)

  18. Some metals in aboveground biomass of Scots pine in Lithuania

    DEFF Research Database (Denmark)

    Varnagiryte-Kabašinskiene, Iveta; Armolaitis, Kestutis; Stupak, Inge

    2014-01-01

    The stocks of iron (Fe), manganese (Mn), zinc (Zn) and aluminium (Al) in different compartments of the aboveground tree biomass were estimated in Scots pine (Pinus sylvestris L.) stands in Lithuania. Simulated removals of metals due to the forest biomass extraction in a model Scots pine stands...... during a 100-year-long rotation period were compared with metals pools in sandy soil and the fluxes through atmospheric deposition. Applying whole tree harvesting, total removal comprised about 20kgha-1 of each Al and Mn, and 5 times lower amount of each Zn and Fe. The metals were mainly removed...... with stemwood and living branches. However, metal export with aboveground biomass represented relatively small proportion of metals in mineral sandy soil. The annual inputs of Fe and Zn with atmospheric deposition were over 10 times higher than the mean annual removals with total aboveground biomass...

  19. The material control and accounting system model development in the Radiochemical plant of Siberian Chemical Combine (SChC)

    International Nuclear Information System (INIS)

    Kozyrev, A.S.; Purygin, V.Ya.; Skuratov, V.A.; Lapotkov, A.A.

    1999-01-01

    The nuclear material (NM) control and accounting computerized system is designed to automatically account NM reception, movement and storage at the Radiochemical Plant. The objective of this system development is to provide a constant surveillance over the process material movement, to improve their accountability and administrative work, to upgrade the plant protection against possible NM thefts, stealing and diversion, to rule out any casual errors of operators, to improve the timeliness and significance (reliability) of information about nuclear materials. The NM control and accounting system at the Radiochemical Plant should be based on the computerized network. It must keep track of all the material movements in each Material Balance Areas: material receipt from other plant; material local movement within the plant; material shipment to other plants; generation of required documents about NM movements and its accounting [ru

  20. Effect of growth regulator Kelpak SL on the formation of aboveground biomass of Festulolium braunii (K. Richt. A. Camus

    Directory of Open Access Journals (Sweden)

    Jacek Sosnowski

    2013-07-01

    Full Text Available A study on the cultivation of Festulolium braunii cv. 'Felopa' was carried out using polyurethane rings with a diameter of 36 cm and a height of 40 cm, which were sunk into the ground to a depth of 30 cm and filled with soil material. In this experiment, Kelpak SL was used as a bioregulator. It consists of natural plant hormones such as auxins (11 mg in dm3 and cytokinins (0.03 mg in dm3. The experimental factors were as follows: A1-control; A2 – 20% solution of the growth regulator; A3 – 40% solution; and A4 – 60% solution. The preparation was applied to all three regrowths in the form of spray, at a rate of 3 cm3 ring-1, at the stem elongation stage. The full period of this experiment was in the years 2010–2011. During this time, detailed investigations were carried out on aboveground biomass yield (g DM ring-1, number of shoots (pcs ring-1, leaf blade length (cm, width of the leaf blade base (mm, leaf greenness index (SPAD. The study showed a significant effect of the growth regulator on the formation of Festulolium braunii biomass. However, its highest effectiveness was observed when the 60% solution was applied.

  1. Authentication of nuclear-material assays made with in-plant instruments

    International Nuclear Information System (INIS)

    Hatcher, C.R.; Hsue, S.T.; Russo, P.A.

    1982-01-01

    This paper develops a general approach for International Atomic Energy Agency (IAEA) authentication of nuclear material assays made with in-plant instruments under facility operator control. The IAEA is evaluating the use of in-plant instruments as a part of international safeguards at large bulk-handling facilities, such as reprocessing plants, fuel fabrication plants, and enrichment plants. One of the major technical problems associated with IAEA use of data from in-plant instruments is the need to show that there has been no tampering with the measurements. Two fundamentally different methods are discussed that can be used by IAEA inspectors to independently verify (or authenticate) measurements made with in-plant instruments. Method 1, called external authentication, uses a protected IAEA measurement technique to compare in-plant instrument results with IAEA results. Method 2, called internal authentication, uses protected IAEA standards, known physical constants, and special test procedures to determine the performance characteristics of the in-plant instrument. The importance of measurement control programs to detect normally expected instrument failures and procedural errors is also addressed. The paper concludes with a brief discussion of factors that should be considered by the designers of new in-plant instruments in order to facilitate IAEA authentication procedures

  2. Project Plan For Remove Special Nuclear Material (SNM) from Plutonium Finishing Plant (PFP) Project

    International Nuclear Information System (INIS)

    BARTLETT, W.D.

    1999-01-01

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Remove SNM Materials. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP), HNF-3617. This project plan is the top-level definitive project management document for the PFP Remove SNM Materials project. It specifies the technical, schedule, requirements and the cost baseline to manage the execution of the Remove SNM Materials project. Any deviation to the document must be authorized through the appropriate change control process. The Remove SNM Materials project provides the necessary support and controls required for DOE-HQ, DOE-RL, BWHC, and other DOE Complex Contractors the path forward to negotiate shipped/receiver agreements, schedule shipments, and transfer material out of PFP to enable final deactivation

  3. Aboveground burial for managing catastrophic losses of livestock

    Directory of Open Access Journals (Sweden)

    Gary Alan Flory

    2017-09-01

    Full Text Available Background and Aim: Environmental impacts from carcass management are a significant concern globally. Despite a history of costly, ineffective, and environmentally damaging carcass disposal efforts, large animal carcass disposal methods have advanced little in the past decade. An outbreak today will likely be managed with the same carcass disposal techniques used in the previous decades and will likely result in the same economic, health, and environmental impacts. This article overviews the results of one field test that was completed in Virginia (United States using the aboveground burial (AGB technique and the disposal of 111 foot-and-mouth disease (FMD infected sheep in Tunisia using a similar methodology. Materials and Methods: Researchers in the United States conducted a field test to assess the environmental impact and effectiveness of AGB in decomposing livestock carcasses. The system design included a shallow trench excavated into native soil and a carbonaceous base placed on the bottom of the trenches followed by a single layer of animal carcasses. Excavated soils were subsequently placed on top of the animals, and a vegetative layer was established. A similar methodology was used in Tunisia to manage sheep infected with FMDs, Peste des Petits Ruminants virus, and Bluetongue Virus. Results: The results of the field test in the United States demonstrated a significant carcass degradation during the 1-year period of the project, and the migration of nutrients below the carcasses appears to be limited thereby minimizing the threat of groundwater contamination. The methodology proved practical for the disposal of infected sheep carcasses in Tunisia. Conclusions: Based on the analysis conducted to date, AGB appears to offer many benefits over traditional burial for catastrophic mortality management. Ongoing research will help to identify limitations of the method and determine where its application during large disease outbreaks or natural

  4. The contribution of woody plant materials on the several conditions in a space environment

    Science.gov (United States)

    Tomita-Yokotani, Kaori; Baba, Keiichi; Suzuki, Toshisada; Kimura, Shunta; Sato, Seigo; Katoh, Hiroshi; Abe, Yusuke; Katayama, Takeshi

    Woody plant materials have several utilization elements in our habitation environment on earth. The studies of woody plants under a space-environment in the vegetable kingdom have a high contribution to the study of various and exotic environmental responses, too. Woody plants can produce an excess oxygen, woody materials for the living cabin, and provide a biomass by cultivating crops and other species of creatures. Tree material would become to be a tool in closed bio-ecosystems such as an environment in a space. We named the trees used as material for the experiment related to space environments “CosmoBon”, small tree bonsai. Japanese cherry tree, “Sakura”, is famous and lovely tree in Japan. One species of “Sakura”, “Mamezakura, Prunus incisa”, is not only lovely tree species, but also suitable tree for the model tree of our purpose. The species of Prunus incisa is originally grown in volcano environment. That species of Sakura is originally grown on Mt. Fuji aria, oligotrophic place. We will try to build the best utilization usage of woody plant under the space environment by “Mamezakura” as a model tree. Here, we will show the importance of uniformity of materials when we will use the tree materials in a space environment. We will also discuss that tree has a high possibility of utilization under the space environments by using our several results related to this research.

  5. A remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States

    Science.gov (United States)

    Byrd, Kristin B.; Ballanti, Laurel; Thomas, Nathan; Nguyen, Dung; Holmquist, James R.; Simard, Marc; Windham-Myers, Lisamarie

    2018-05-01

    Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our objective was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). We developed the first calibration-grade, national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. Using the random forest machine learning algorithm, we tested whether imagery from multiple sensors, Sentinel-1 C-band synthetic aperture radar, Landsat, and the National Agriculture Imagery Program (NAIP), can improve model performance. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n = 409, RMSE = 310 g/m2, 10.3% normalized RMSE), successfully predicted biomass for a range of marsh plant functional types defined by height, leaf angle and growth form. Model results were improved by scaling field-measured biomass calibration data by NAIP-derived 30 m fraction green vegetation. With a mean plant carbon content of 44.1% (n = 1384, 95% C.I. = 43.99%-44.37%), we generated regional 30 m aboveground carbon density maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map. We applied a multivariate delta method to calculate uncertainties in regional carbon densities and stocks that considered standard error in map area, mean biomass and mean %C. Louisiana palustrine emergent marshes had the highest C density (2.67 ± 0.004 Mg/ha) of all regions, while San Francisco Bay brackish/saline marshes had the highest C density of all

  6. Laser-induced breakdown spectroscopy for analysis of plant materials: A review

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Dario [Centro de Ciencias Exatas e da Terra - Universidade Federal de Sao Paulo, 09972-270 Diadema-SP (Brazil); Nunes, Lidiane Cristina; Gustinelli Arantes de Carvalho, Gabriel [Centro de Energia Nuclear na Agricultura - Universidade de Sao Paulo, 13416-000 Piracicaba-SP (Brazil); Gomes, Marcos da Silva [Centro de Energia Nuclear na Agricultura - Universidade de Sao Paulo, 13416-000 Piracicaba-SP (Brazil); Departamento de Quimica, Universidade Federal de Sao Carlos, 13565-905 Sao Carlos-SP (Brazil); Souza, Paulino Florencio de [Centro de Energia Nuclear na Agricultura - Universidade de Sao Paulo, 13416-000 Piracicaba-SP (Brazil); Centro de Tecnologia Canavieira, PO Box 162, 13400-970 Piracicaba-SP (Brazil); Leme, Flavio de Oliveira; Gustavo Cofani dos Santos, Luis [Centro de Energia Nuclear na Agricultura - Universidade de Sao Paulo, 13416-000 Piracicaba-SP (Brazil); Krug, Francisco Jose, E-mail: fjkrug@cena.usp.br [Centro de Energia Nuclear na Agricultura - Universidade de Sao Paulo, 13416-000 Piracicaba-SP (Brazil)

    2012-05-15

    Developments and contributions of laser-induced breakdown spectroscopy (LIBS) for the determination of elements in plant materials are reviewed. Several applications where the solid samples are interrogated by simply focusing the laser pulses directly onto a fresh or dried surface of leaves, roots, fruits, vegetables, wood and pollen are presented. For quantitative purposes aiming at plant nutrition diagnosis, the test sample presentation in the form of pressed pellets, prepared from clean, dried and properly ground/homogenized leaves, and the use of univariate or multivariate calibration strategies are revisited. - Highlights: Black-Right-Pointing-Pointer Qualitative and quantitative LIBS analysis of plant materials are reviewed. Black-Right-Pointing-Pointer Fresh or dried leaves, fruits, roots and pellets can be easily interrogated by LIBS. Black-Right-Pointing-Pointer LIBS is a powerful tool for plant nutrition diagnosis and elemental mapping. Black-Right-Pointing-Pointer Intended LIBS users will find a survey of applications in a comprehensive table.

  7. Taking into account the risk of radioactive material dissemination in French fuel cycle plants

    International Nuclear Information System (INIS)

    Ruiz, J.

    1996-01-01

    This paper presents the design principles for handling the radioactive material dissemination risk in French fuel cycle plants (fuel enrichment and fabrication plants, reprocessing plants, processing and storing facilities). Consideration of the dissemination risk in this type of facilities is made through a deep protection procedure involving the settlement of successive containment systems. These containment systems are dimensioned according to the radioactive material dissemination risk and the external exposure risk. Regulations, standards and guides are first reviewed, followed by a presentation of the various components related to the containment realization in the fuel cycle plants and the way they are realized, the evolutions of methods and designs, the supervision and inspection, and the experience gained

  8. Proceedings of the Tripartite Seminar on Nuclear Material Accounting and Control at Radiochemical Plants

    International Nuclear Information System (INIS)

    1999-01-01

    The problems of creation and operation of nuclear materials (NM) control and accounting systems and their components at radiochemical plants were discussed in seminar during November 2-6 of 1998. There were 63 Russian and 25 foreign participants in seminar. The seminar programme includes following sessions and articles: the aspects of State NM control and accountancy; NM control and accounting in radiochemical plants and at separate stages of reprocessing of spent nuclear fuel and irradiated fuel elements of commercial reactors; NM control and accountancy in storage facilities of radiochemical plants; NM control and accounting computerization, material balance assessment, preparation of reports; qualitative and quantitative measurements in NM control and accounting at radiochemical plants destructive analysis techniques [ru

  9. Antifoaming materials in G.S. (Girlder sulfide) heavy water plants. Thermical stability. Pt. 2

    International Nuclear Information System (INIS)

    Delfino, C.A.

    1986-01-01

    In Girlder sulfide (G.S.) heavy water plants hydrogen sulfide-water systems are inherentely foaming, so the adding of antifoaming materials is of great importance. These may be of high volatility, pyrolizable or chemically unstable in plant operation conditions (water and hydrogen sulfide at 2 MPa, up to 230 deg C). About twenty commercial surfactants were studied from the point of view of their thermical stability. (Author) [es

  10. Nondestructive assay technology and in-plant dynamic materials control: ''DYMAC''

    International Nuclear Information System (INIS)

    Keppin, G.R.; Maraman, W.J.

    1975-01-01

    An advanced system of in-plant materials control known as DYMAC, Dynamic Materials Control, is being developed. This major safeguards R and D effort merges state-of-the-art nondestructive assay instrumentation and computer technology, with the clear objective of demonstrating a workable, cost-effective system of stringent, real time control of nuclear materials in a modern plutonium processing facility. Emphasis is placed on developing practical solutions to generic problems of materials measurement and control, so that resulting safeguards techniques and instrumentation will have widespread applicability throughout the nuclear community. (auth)

  11. The adhesion characteristics of protective coating materials for the containment structure in nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Sang-Kook; Shin, Jae-Chul

    2003-01-01

    Protective coating materials used in the containment structures should be durable for the designed 30 to 40 year lifetime of a nuclear power plant. At the present, these materials have not yet been developed. Therefore it is very important to keep the durability of the protective coating materials through persistent maintenance, and in order to achieve this, understanding the adhesion characteristics of the coating materials is of utmost importance. Therefore, this study attempts to find any methods for durability maintenance of these protective coating materials. To accomplish these aims, this study applied an experimental deterioration environment condition relevant to Loss of Coolant Accident (LOCA) and Main Steam Line Break (MSLB), categorized as of Design Basis Accident (DBA), onto steel liner plate specimens covered with protective coating materials. Adhesion tests were performed on these deteriorated coating materials to characterize the physical properties and through these tests, the quantitative adhesion characteristics according to the history of deterioration environment were found

  12. Plant-inspired adaptive structures and materials for morphing and actuation: a review.

    Science.gov (United States)

    Li, Suyi; Wang, K W

    2016-12-20

    Plants exhibit a variety of reversible motions, from the slow opening of pine cones to the impulsive closing of Venus flytrap leaves. These motions are achieved without muscles and they have inspired a wide spectrum of engineered materials and structures. This review summarizes the recent developments of plant-inspired adaptive structures and materials for morphing and actuation. We begin with a brief overview of the actuation strategies and physiological features associated to these plant movements, showing that different combinations of these strategies and features can lead to motions with different deformation characteristics and response speeds. Then we offer a comprehensive survey of the plant-inspired morphing and actuation systems, including pressurized cellular structures, osmotic actuation, anisotropic hygroscopic materials, and bistable systems for rapid movements. Although these engineered systems are vastly different in terms of their size scales and intended applications, their working principles are all related to the actuation strategies and physiological features in plants. This review is to promote future cross-disciplinary studies between plant biology and engineering, which can foster new solutions for many applications such as morphing airframes, soft robotics and kinetic architectures.

  13. ACCELERATION ON THE GROWTH OF RUBBER PLANTING MATERIALS BY USING FOLIAR APPLICATION OF HUMIC ACID

    Directory of Open Access Journals (Sweden)

    Andi Nur Cahyo

    2014-06-01

    Full Text Available The best rubber planting materials are needed to build the best rubber plantation. Humic acids could be used to improve the growth of rubber planting materials. Humic acid plays a role as a hormone-like substance. This research was aimed to determine the optimal concentration of foliar application of humic acid in order to enhance the growth of rubber tree planting materials. This research was arranged in a completely randomized block design with five treatments and four replicates. The treatments were the concentrations of humic acids, i. e. 0; 250; 500; 750; and 1,000 ppm. Observations were made on rubber tree diameter, plant height, shoot and root biomass, and nutrient content of leaves and the stem. The results showed that foliar application of 1,000 ppm of humic acids could enhance the growth of rubber tree planting materials. Foliar application of 500 – 1,000 ppm of humic acids could increase K content of the stem. The effects of foliar application of humic acids were more apparent in the root part than in the shoot part.

  14. Hazardous-material accidents near nuclear power plants: an evaluation of analyses and approaches

    International Nuclear Information System (INIS)

    Kot, C.A.; Lin, H.C.; van Erp, J.B.; Eichler, T.V.; Wiedermann, A.H.

    1983-10-01

    The state of knowledge concerning postulated accidents involving offsite hazardous materials in the vicinity of nuclear power plants is critically evaluated. This effort is part of a study to analyze the potential effects of offsite hazards upon the safety of nuclear power plants and to develop a technical basis for the assessment of siting approaches. The evaluation includes consideration of data bases and statistics of hazardous materials and accidents involving them, deterministic aspects of possible material dispersion and threat environments, the susceptibility and vulnerability of vital plant systems, and a critical review of past licensing experience and regulatory practice with respect to these hazards. While many of the data bases and analysis methods exist for an adequate estimate of threat and plant response, this knowledge is not fully used and no comprehensive guidance has been developed. Siting of nuclear power plants relative to offsite hazardous materials is a risk based procedure that considers both probabilities and consequences of events that make up accident scenarios. In this context it appears feasible to improve the procedures vis-a-vis the perception of safety, economy of effort, and efficiency of implementation. A scenario dependent conditional risk approach is outlined as a possible means of improving the siting procedures

  15. Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation?

    NARCIS (Netherlands)

    Wijk, van M.T.; Williams, M.; Gough, L.; Hobbie, S.E.; Shaver, G.R.

    2003-01-01

    1 A field-experiment was used to determine how plant species might retain dominance in an arctic ecosystem receiving added nutrients. We both measured and modelled the above-ground and below-ground biomass allocation and root morphology of non-acidic tussock tundra near Toolik Lake, Alaska, after 4

  16. Synthesis of functional materials by radiation and qualification testing of organic materials in nuclear power plant

    International Nuclear Information System (INIS)

    Nho, Young Chang; Kim, Ki Yup; Kang, Phil Hyun and others; Jun, Hong Jae; Suh, Dong Hak; Lee, Young Moo; Min, Byung Kak; Bae, You Han

    2003-05-01

    The radiation crosslinking and grafting can be easily adjusted and is easily reproducible by controlling the radiation dose. These studies aim to develop new biomaterials such as covering for burns and wound, and controlled release of drug. A radiation technology was used to develop PTC materials useful in devices that limit electric fault currents. Radiation-curing of fiber-matrix composites is a promising application. There are a number of advantages to radiation curing of composites, compared with conventional thermal processing. Radiation curing at ambient temperature allows tighter control of part dimensions, and elimination of internal stresses which otherwise occur on cooling and which reduce material strength. These studies involved radiation curing of epoxy resins with various fibers and filler for structural application for aerospace and sport goods. The chain scission is the basis of other radiation treatments aimed at enhancing processing characteristics of polymers. These studies aim to make PTFE powder from PTFE scrap using the radiation degradation which allows incorporation of the material into coatings, inks etc. Low density polyethylene, crosslinked polyethylene, ethylene propylene rubber, and acrylonitrile butadiene rubber as cable insulating, seathing and sealing materials were irradiated for the accelerated ageing tests. Degradation was investigated by measuring dielectric analysis, thermogravimetric analysis, and dynamic mechanical analysis. Dielectric tanδ, storage modulus and loss modulus were increased with irradiation doses. However, decomposition temperature decreased with irradiation doses

  17. Towards a more consolidated approach to material data management in life assessment of power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, A.; Maile, K. [MPA Stuttgart (Germany)

    1998-12-31

    The presentation discusses the necessity of having a more consolidated (unified, possibly `European`) framework for all (not only pure experimental) material data needed for optimized life management and assessment of high-temperature and other components in power and process plants. After setting the main requirements for such a system, a description of efforts done in this direction at MPA Stuttgart in the area of high-temperature components in power plants is given. Furthermore, a reference to other relevant efforts elsewhere is made and an example of practical application of the proposed solution described (optimized material selection and life assessment of high-temperature piping). (orig.) 10 refs.

  18. Analysis of difficulties accounting and evaluating nuclear material of PWR fuel plant

    International Nuclear Information System (INIS)

    Zhang Min; Jue Ji; Liu Tianshu

    2013-01-01

    Background: Nuclear materials accountancy must be developed for nuclear facilities, which is required by regulatory in China. Currently, there are some unresolved problems for nuclear materials accountancy of bulk nuclear facilities. Purpose: The retention values and measurement errors are analyzed in nuclear materials accountancy of Power Water Reactor (PWR) fuel plant to meet the regulatory requirements. Methods: On the basis of nuclear material accounting and evaluation data of PWR fuel plant, a deep analysis research including ratio among random error variance, long-term systematic error variance, short-term systematic error variance and total error involving Material Unaccounted For (MUF) evaluation is developed by the retention value measure in equipment and pipeline. Results: In the equipment pipeline, the holdup estimation error and its total proportion are not more than 5% and 1.5%, respectively. And the holdup estimation can be regraded as a constant in the PWR nuclear material accountancy. Random error variance, long-term systematic error variance, short-term systematic error variance of overall measurement, and analytical and sampling methods are also obtained. A valuable reference is provided for nuclear material accountancy. Conclusion: In nuclear material accountancy, the retention value can be considered as a constant. The long-term systematic error is a main factor in all errors, especially in overall measurement error and sampling error: The long-term systematic errors of overall measurement and sampling are considered important in the PWR nuclear material accountancy. The proposals and measures are applied to the nuclear materials accountancy of PWR fuel plant, and the capacity of nuclear materials accountancy is improved. (authors)

  19. Proposal for guidelines for the physical protection of nuclear materials, plants and transports in Denmark

    International Nuclear Information System (INIS)

    1978-03-01

    The guidelines are based on recommendations in the IAEA's ''Physical Protection of Nuclear Material,'' INFCIRC/225/rev.1. In accordance with practice in other countries, the guidelines give more detailed requirements for the protection of reactor plants than those given in the IAEA's present recommendations, which put more emphasis on the protection of nuclear materials. The measures to be taken for nuclear plants, or nuclear transports, are proposed made to fit the potential risk that the more closely defined actions imply. It is suggested that the more detailed rules for the scope of the protection of plants or materials should be laid down by the National Agency on the basis of recommendations made by the Inspectorate of Nuclear Installations, which in turn are based on the safety documentation of the plant/material owners. It is further proposed that the National Agency, again on a recommendation from the Inspectorate, should lay down more detailed guidelines for the reporting of changes in stocks or transports of nuclear materials. (author)

  20. Reduced activation structural materials for fusion power plants - The European Union program

    International Nuclear Information System (INIS)

    Schaaf, B. van der; Le Marois, G.; Moeslang, A.; Victoria, M.

    2003-01-01

    The competition of fusion power plants with the renewable energy sources in the second half of the 21st century requires structural materials operating at high temperatures, and sufficient radiation resistance to ensure high plant efficiency and availability. The reduced activation materials development in the EU counts several steps regarding the radiation damage resistance: 75 dpa for DEMO and 150 dpa and beyond for power plants. The maximum operating temperature development line ranges from the present day from the present day feasible 600 K up to 1300- K in advanced power plants. The reduced activation steel, RAS, forms the reference for the development efforts. EUROFER has been manufactured in the EU on industrial scale with specified purity and mechanical properties up to 825 K. The oxide dispersion strengthened , ODS, variety of RAS should reach the 925 K operation limit. The EU has selected silicon carbide ceramic composite as the primary high temperature, 1300 K, goal. On a small scale the potential of tungsten alloys for higher temperatures is investigated. The present test environments for radiation resistance are insufficient to provide data for DEMO. Hence the support of the EU for the International Fusion Materials Irradiation facility. The computational modelling is expected to guide the materials development and the design of near plasma components. The EU co-operates closely with Japan, the RF and US in IEA and IAEA co-ordinated agreements, which are highly beneficial for the fusion structural materials development. (author)

  1. Empirical and theoretical challenges in aboveground-belowground ecology

    NARCIS (Netherlands)

    Putten, van der W.H.; Bardgett, R.D.; Ruiter, de P.C.; Hol, W.H.G.; Meyer, K.M.; Bezemer, T.M.; Bradford, M.A.; Christensen, S.; Eppinga, M.B.; Fukami, T.; Hemerik, L.; Molofsky, J.; Schädler, M.; Scherber, C.; Strauss, S.Y.; Vos, M.; Wardle, D.A.

    2009-01-01

    A growing body of evidence shows that aboveground and belowground communities and processes are intrinsically linked, and that feedbacks between these subsystems have important implications for community structure and ecosystem functioning. Almost all studies on this topic have been carried out from

  2. Aboveground Biomass and Litterfall Dynamics in Secondary Forest ...

    African Journals Online (AJOL)

    The differences in aboveground biomass, litterfall patterns and the seasonality of litterfall in three secondary forest fields aged 1, 5 and 10 years of age regenerating from degraded abandoned rubber plantation and a mature forest were studied in southern Nigeria. This is with a view to understanding the possibility of ...

  3. Estimates of forest canopy height and aboveground biomass using ICESat.

    Science.gov (United States)

    Michael A. Lefsky; David J. Harding; Michael Keller; Warren B. Cohen; Claudia C. Carabajal; Fernando Del Bom; Maria O. Hunter; Raimundo Jr. de Oliveira

    2005-01-01

    Exchange of carbon between forests and the atmosphere is a vital component of the global carbon cycle. Satellite laser altimetry has a unique capability for estimating forest canopy height, which has a direct and increasingly well understood relationship to aboveground carbon storage. While the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land...

  4. Aboveground growth interactions of paired conifer seedlings in close proximity

    Science.gov (United States)

    Warren D. Devine; Timothy B. Harrington

    2011-01-01

    Where belowground resources are relatively abundant, naturally established trees sometimes occur in very close proximity to one another. We conducted a two-year study to assess the aboveground interactions between Douglas-fir (Pseudotsuga menziesii), grand fir (Abies grandis) and noble fir (Abies procera)...

  5. Family Differences in Aboveground Biomass Allocation in Loblolly Pine

    Science.gov (United States)

    Scott D. Roberts

    2002-01-01

    The proportion of tree growth allocated to stemwood is an important economic component of growth efficiency. Differences in growth efficiency between species, or between families within species, may therefore be related to how growth is proportionally allocated between the stem and other aboveground biomass components. This study examines genetically related...

  6. Estimating aboveground live understory vegetation carbon in the United States

    Science.gov (United States)

    Johnson, Kristofer D.; Domke, Grant M.; Russell, Matthew B.; Walters, Brian; Hom, John; Peduzzi, Alicia; Birdsey, Richard; Dolan, Katelyn; Huang, Wenli

    2017-12-01

    Despite the key role that understory vegetation plays in ecosystems and the terrestrial carbon cycle, it is often overlooked and has few quantitative measurements, especially at national scales. To understand the contribution of understory carbon to the United States (US) carbon budget, we developed an approach that relies on field measurements of understory vegetation cover and height on US Department of Agriculture Forest Service, Forest Inventory and Analysis (FIA) subplots. Allometric models were developed to estimate aboveground understory carbon. A spatial model based on stand characteristics and remotely sensed data was also applied to estimate understory carbon on all FIA plots. We found that most understory carbon was comprised of woody shrub species (64%), followed by nonwoody forbs and graminoid species (35%) and seedlings (1%). The largest estimates were found in temperate or warm humid locations such as the Pacific Northwest and southeastern US, thus following the same broad trend as aboveground tree biomass. The average understory aboveground carbon density was estimated to be 0.977 Mg ha-1, for a total estimate of 272 Tg carbon across all managed forest land in the US (approximately 2% of the total aboveground live tree carbon pool). This estimate is more than twice as low as previous FIA modeled estimates that did not rely on understory measurements, suggesting that this pool may currently be overestimated in US National Greenhouse Gas reporting.

  7. Project plan remove special nuclear material from PFP project plutonium finishing plant; TOPICAL

    International Nuclear Information System (INIS)

    BARTLETT, W.D.

    1999-01-01

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Remove Special Nuclear Material (SNM) Materials. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP), HNF-3617,Rev. 0. This project plan is the top-level definitive project management document for PFP Remove SNM Materials project. It specifies the technical, schedule, requirements and the cost baselines to manage the execution of the Remove SNM Materials project. Any deviations to the document must be authorized through the appropriate change control process

  8. Project plan remove special nuclear material from PFP project plutonium finishing plant

    International Nuclear Information System (INIS)

    BARTLETT, W.D.

    1999-01-01

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Remove Special Nuclear Material (SNM) Materials. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP), HNF-3617, Rev. 0. This project plan is the top-level definitive project management document for PFP Remove SNM Materials project. It specifies the technical, schedule, requirements and the cost baselines to manage the execution of the Remove SNM Materials project. Any deviations to the document must be authorized through the appropriate change control process

  9. Antioxidant capacity and major phenol compounds of horticultural plant materials not usually used.

    Science.gov (United States)

    Burri, Stina C M; Ekholm, Anders; Håkansson, Åsa; Tornberg, Eva; Rumpunen, Kimmo

    2017-11-01

    Horticultural plant materials not usually used from onion, carrot, beetroot, sea buckthorn, black and red currants as well as a wastewater powder from olive oil production were analyzed for total phenols content (FC), ferric reducing ability of plasma (FRAP), radical scavenging capacity (ABTS), and for major phenolic compounds by HPLC-MS. Antioxidant capacity and phenol content varied significantly between species and cultivars, with extracts of sea buckthorn leaves being superior. In different species, different phenolic compounds were closely associated with FRAP, ABTS and FC. For instance, hydrolysable tannins were major antioxidants in sea buckthorn whereas quercetin was the major antioxidant in onion peel and skin. This study shows that horticultural plant materials usually left in the field or waste materials from processing may have high antioxidant properties, and that extracts of these materials therefore could be of potential interest for development of antioxidant food additives.

  10. Material and welding development of anchor plates to build nuclear power plant by blue arc process

    International Nuclear Information System (INIS)

    Gibelli, C.E.

    1986-01-01

    To build nuclear power plants, anchor plates are plenty used. These anchor plates serve as a system with the purpose to fix many heavy components or a simple stair. Considering the necessity of element fabrication fastly, with reasonable economy and quality, the arc study welding process (blue arc) was used. A special development of the material concept as well as a welding procedure and a subsuppliers qualification of the raw material was necessary. (Author) [pt

  11. Review of scientific Research results in identification of plant raw materials in food products

    OpenAIRE

    GOLUBTSOVA YU. V.

    2016-01-01

    Currently, the science-based capabilities have been generated to develop and test various identification methods of food products and reveal adulteration using advanced technique and processes. This article reviews researches and developments to identify the plant raw materials in food products based on morphological, anatomic, physical and chemical test methods and the latest DNA-technologies. Review of physical, chemical, anatomic and morphological test methods to identify raw materials bot...

  12. Low activation material design methodology for reduction of radio-active wastes of nuclear power plant

    International Nuclear Information System (INIS)

    Hasegawa, A.; Satou, M.; Nogami, S.; Kakinuma, N.; Kinno, M.; Hayashi, K.

    2007-01-01

    Most of the concrete shielding walls and pipes around a reactor pressure vessel of a light water reactor become low level radioactive waste at decommission phase because they contain radioactive nuclides by thermal-neutron irradiation during its operation. The radioactivity of some low level radioactive wastes is close to the clearance level. It is very desirable in terms of life cycle cost reduction that the radioactivity of those low level radioactive wastes is decreased below clearance level. In case of light water reactors, however, methodology of low activation design of a nuclear plant has not been established yet because the reactor is a large-scale facility and has various structural materials. The Objectives of this work are to develop low activation material design methodology and material fabrication for reduction of radio-active wastes of nuclear power plant such as reinforced concrete. To realize fabrication of reduced radioactive concrete, it is necessary to develop (1) the database of the chemical composition of raw materials to select low activation materials, (2) the tool for calculation of the neutron flux and the spectrum distribution of nuclear plants to evaluate radioactivity of reactor components, (3) optimization of material process conditions to produce the low activation cement and the low activation steels. Results of the data base development, calculation tools and trial production of low activation cements will be presented. (authors)

  13. 49 CFR 195.132 - Design and construction of aboveground breakout tanks.

    Science.gov (United States)

    2010-10-01

    ... construction of aboveground breakout tanks. (a) Each aboveground breakout tank must be designed and constructed...), or not greater than the pressure developed by the weight of the tank roof) must be designed and... 49 Transportation 3 2010-10-01 2010-10-01 false Design and construction of aboveground breakout...

  14. Economics of production of biogas from specifically-grown plant material. [New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, D.J.

    1977-10-15

    The production of biogas from plant materials is technologically very simple, and is the only process currently available (other than direct burning) for conversion of cellulose materials into energy or fuels that is feasible at a farm-scale, or even a home-scale, as well as a large industrial plant scale. For this reason the economics of biogas production can be considered at the farm-scale as well as the industrial scale. An accurate assessment of the economics at the farm-scale is possible, because commercially produced units are now available in New Zealand and in operation. However, although large-scale plants have been proposed and costed in the USA for the conversion of the cellulose component of garbage into biogas, operational data are not yet available, and the costing has not been applied to the use of specifically-grown plant material. Nevertheless, the large-scale plants envisaged use a large number of digesters each of 100,000 gallons capacity and can thus be regarded as a combination of farm-size units, although with some economics in digester size, number of pumps required, etc. For these reasons, this review of the economics of biogas production is based on the operation of commercial 20,000 gallon digesters available in NZ for farm-scale use. Factors governing the economics of farm-scale and industrial-scale production of biogas will be discussed in section 6.

  15. An OxiTop (R) protocol for screening plant material for its biochemical methane potential (BMP)

    NARCIS (Netherlands)

    Pabon Pereira, C.P.; Castanares, G.; Lier, van J.B.

    2012-01-01

    A protocol was developed for determining the biochemical methane potential (BMP) of plant material using the OxiTop (R) system. NaOH pellets for CO2 absorption and different pretreatment methods were tested for their influence in the BMP test. The use of NaOH pellets in the headspace of the bottle

  16. A strategy for maximizing native plant material diversity for ecological restoration, germplasm conservation and genecology research

    Science.gov (United States)

    Berta Youtie; Nancy Shaw; Matt Fisk; Scott Jensen

    2012-01-01

    One of the most important steps in planning a restoration project is careful selection of ecologically adapted native plant material. As species-specific seed zone maps are not available for most species in the Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush) ecoregion in the Great Basin, USA, we are employing a provisional seed zone map based on annual...

  17. Effect of canker size on availability of cassava planting materials in ...

    African Journals Online (AJOL)

    Cassava (Manihot esculenta L.) production is highly limited by cassava anthracnose disease (CAD) which causes significant losses in planting materials. An experiment was laid out at Ihiagwa, Owern in Nigeria with eighteen treatments replicated three times. Disease severity was scored on a scale of 1-5, and disease ...

  18. 1064nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials

    Science.gov (United States)

    Umesh P. Agarwal

    2014-01-01

    Raman spectroscopy with its various special techniques and methods has been applied to study plant biomass for about 30 years. Such investigations have been performed at both macro- and micro-levels. However, with the availability of the Near Infrared (NIR) (1064 nm) Fourier Transform (FT)-Raman instruments where, in most materials, successful fluorescence suppression...

  19. Prolonged elevated atmospheric CO(2)does not affect decomposition of plant material

    NARCIS (Netherlands)

    Graaff, de M.A.; Six, J.; Blum, H.; Kessel, van C.

    2006-01-01

    Prolonged elevated atmospheric CO2 might alter decomposition. In a 90-day incubation study, we determined the long-term (9 years) impact of elevated CO2 on N mineralization of Lolium perenne and Trifolium repens plant material grown at ambient and elevated CO2 and low- and high-N-15 fertilizer

  20. Active materials for adaptive architectural envelopes based on plant adaptation principles

    Directory of Open Access Journals (Sweden)

    Marlen Lopez

    2015-06-01

    Full Text Available In this paper, the authors present research into adaptive architectural envelopes that adapt to environmental changes using active materials, as a result of application of biomimetic principles from plants to architecture. Buildings use large amounts of energy in order to maintain their internal comfort, because conventional buildings are designed to provide a static design solution. Most of the current solutions for facades are not designed for optimum adaptation to contextual issues and needs, while biological solutions to adaptation are often complex, multi-functional and highly responsive. We focus on plant adaptations to the environment, as, due to their immobility, they have developed special means of protection against weather changing conditions. Furthermore, recent developments in new technologies are allowing the possibility to transfer these plant adaptation strategies to technical implementation. These technologies include: multi-material 3D printing, advances in materials science and new capabilities in simulation software. Unlike traditional mechanical activation used for dynamic systems in kinetic facades, adaptive architectural envelopes require no complex electronics, sensors, or actuators. The paper proposes a research of the relationship that can be developed between active materials and environmental issues in order to propose innovative and low-tech design strategies to achieve living envelopes according to plant adaptation principles.  

  1. A model Apparatus for Isolation of Volatile Oils from Various Plant Materials

    Directory of Open Access Journals (Sweden)

    Mahdi T. AI-Kaisey

    2018-02-01

    The present paper givas a detailed description of apparatus which were sutable for isola.tion the lighter and tile heavier u.('-m water volatile oils fronl differenet plant materials. Meanwhile tbe purity of tile concentrates were ex lrined by g-aS liquid chromato graphy( GLe.

  2. A useful single-solution polychrome stain for plant material...Brook Cyte-Chrome I.

    Science.gov (United States)

    Stanley L Krugman; Julia F. Littlefield

    1968-01-01

    Fresh and chemically fixed sectioned plant material can be quickly stained by applying a Brook Cyte Chrome I polychrome stain. Staining time averaged only about 10 minutes. And exact timing of staining and de-staining is not as critical as with most of the commonly used stains. The overall quality is comparable to that of the traditional stains.

  3. The potential of novel native plant materials for the restoration of novel ecosystems

    Directory of Open Access Journals (Sweden)

    T.A. Jones

    2015-05-01

    Full Text Available Abstract Extensive ecological change has been sustained by many dryland ecosystems throughout the world, resulting in conversion to so-called novel ecosystems. It is within such ecological contexts that native plant materials destined for ecological applications must be able to function. In the Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis [Beetle & A.M. Young] S.L. Welsh ecosystems of the Intermountain West, for example, novel ecosystem structure and functioning are pervasive. Invasive species, particularly annual grasses, fuel repeated wildfires that drive previously stable ecosystem states across thresholds to less desirable states that are highly recalcitrant to restoration efforts. Structural changes include reductions of native flora, damage to biological soil crusts, and alterations to soil microbiota. Functional changes include altered hydrologic and nutrient cycling, leading to permanent losses of soil organic matter and nitrogen that favor the invaders. We argue that there is an important place in restoration for plant materials that are novel and/or non-local that have been developed to be more effective in the novel ecosystems for which they are intended, thus qualifying them as “ecologically appropriate.” Such plant materials may be considered as an alternative to natural/local “genetically appropriate” plant materials, which are sometimes deemed best adapted due to vetting by historical evolutionary processes.

  4. Using Soxhlet Ethanol Extraction to Produce and Test Plant Material (Essential Oils for Their Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    James Redfern

    2013-11-01

    Full Text Available As the issue of antimicrobial resistance continues to grow, there is a renewed interest in deriving antimicrobial products from natural compounds, particularly extracts from plant materials. This paper describes how essential oil can be extracted from the common herb, thyme (Thymus vulgaris in the classroom. Subsequently, the extract can be tested for its antimicrobial activity. A number of variables are suggested.

  5. A Study on Salt Attack Protection of Structural and Finishing Materials in Power Plant Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, W.B.; Kweon, K.J.; Suh, Y.P.; Nah, H.S.; Lee, K.J.; Park, D.S.; Jo, Y.K. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    This is a final report written by both KEPRI and KICT as a co-operative research titled {sup A} study on Salt Protection of Structural and Finishings in Power Plant Structures{sup .} This study presented the methods to prevent the chloride-induced corrosion of power plant structures through collection and analysis of research datum relating to design, construction and maintenance for the prevention of structural and finishing materials, thru material performance tests for anti-corrosion under many kinds of chloride-induced corrosion environments. As a result, this study proposed the guidelines for design, construction and maintenance of power plant structures due to chloride-induced corrosion. (author). 257 refs., 111 figs., 86 tabs.

  6. Towards aging mechanisms of cross-linked polyethylene (XLPE) cable insulation materials in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shuaishuai; Fifield, Leonard S.; Bowler, Nicola

    2016-12-19

    Cross-linked polyethylene (XLPE) cable insulation material undergoes simultaneous, accelerated thermal and gamma-radiation aging to simulate the long-term aging environment within nuclear power plants (NPPs). A variety of materials characterization tests, including scanning electron microscopy, thermo-gravimetric analysis, differential scanning calorimetry, oxidation induction time, gel-fraction and dielectric properties measurement, are conducted on pristine and differently aged XLPE samples. A preliminary model of one possible aging mechanism of XLPE cable insulation material under gamma radiation at elevated temperature of 115 °C is suggested.

  7. Mechanistic understanding of cellular level of water in plant-based food material

    Science.gov (United States)

    Khan, Md. Imran H.; Kumar, C.; Karim, M. A.

    2017-06-01

    Understanding of water distribution in plant-based food material is crucial for developing an accurate heat and mass transfer drying model. Generally, in plant-based food tissue, water is distributed in three different spaces namely, intercellular water, intracellular water, and cell wall water. For hygroscopic material, these three types of water transport should be considered for actual understanding of heat and mass transfer during drying. However, there is limited study dedicated to the investigation of the moisture distribution in a different cellular environment in the plant-based food material. Therefore, the aim of the present study was to investigate the proportion of intercellular water, intracellular water, and cell wall water inside the plant-based food material. During this study, experiments were performed for two different plant-based food tissues namely, eggplant and potato tissue using 1H-NMR-T2 relaxometry. Various types of water component were calculated by using multicomponent fits of the T2 relaxation curves. The experimental result showed that in potato tissue 80-82% water exist in intracellular space; 10-13% water in intercellular space and only 4-6% water exist in the cell wall space. In eggplant tissue, 90-93% water in intracellular space, 4-6% water exists in intercellular space and the remaining percentage of water is recognized as cell wall water. The investigated results quantify different types of water in plant-based food tissue. The highest proportion of water exists in intracellular spaces. Therefore, it is necessary to include different transport mechanism for intracellular, intercellular and cell wall water during modelling of heat and mass transfer during drying.

  8. Below-ground plant–fungus network topology is not congruent with above-ground plant–animal network topology

    Science.gov (United States)

    Toju, Hirokazu; Guimarães, Paulo R.; Olesen, Jens M.; Thompson, John N.

    2015-01-01

    In nature, plants and their pollinating and/or seed-dispersing animals form complex interaction networks. The commonly observed pattern of links between specialists and generalists in these networks has been predicted to promote species coexistence. Plants also build highly species-rich mutualistic networks below ground with root-associated fungi, and the structure of these plant–fungus networks may also affect terrestrial community processes. By compiling high-throughput DNA sequencing data sets of the symbiosis of plants and their root-associated fungi from three localities along a latitudinal gradient, we uncovered the entire network architecture of these interactions under contrasting environmental conditions. Each network included more than 30 plant species and hundreds of mycorrhizal and endophytic fungi belonging to diverse phylogenetic groups. The results were consistent with the notion that processes shaping host-plant specialization of fungal species generate a unique linkage pattern that strongly contrasts with the pattern of above-ground plant–partner networks. Specifically, plant–fungus networks lacked a “nested” architecture, which has been considered to promote species coexistence in plant–partner networks. Rather, the below-ground networks had a conspicuous “antinested” topology. Our findings lead to the working hypothesis that terrestrial plant community dynamics are likely determined by the balance between above-ground and below-ground webs of interspecific interactions. PMID:26601279

  9. Ultrastructural changes of cell walls under intense mechanical treatment of selective plant raw material

    International Nuclear Information System (INIS)

    Bychkov, Aleksey L.; Ryabchikova, E.I.; Korolev, K.G.; Lomovsky, O.I.

    2012-01-01

    Structural changes of cell walls under intense mechanical treatment of corn straw and oil-palm fibers were studied by electron and light microscopy. Differences in the character of destruction of plant biomass were revealed, and the dependence of destruction mechanisms on the structure of cell walls and lignin content was demonstrated. We suggest that the high reactivity of the particles of corn straw (about 18% of lignin) after intense mechanical treatment is related to disordering of cell walls and an increase of the surface area, while in the case of oil palm (10% of lignin) the major contribution into an increase in the reactivity is made by an increase of surface area. -- Highlights: ► Structure of cell walls determines the processes of plant materials' destruction. ► Ultrastructure of highly lignified materials strongly disordering by mechanical action. ► Ultrastructure of low-lignified materials is not disordering by mechanical action.

  10. Compatibility of Space Nuclear Power Plant Materials in an Inert He/Xe Working Gas Containing Reactive Impurities

    International Nuclear Information System (INIS)

    MM Hall

    2006-01-01

    A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing

  11. Compatibility of Space Nuclear Power Plant Materials in an Inert He/Xe Working Gas Containing Reactive Impurities

    Energy Technology Data Exchange (ETDEWEB)

    MM Hall

    2006-01-31

    A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing.

  12. Closed vessel miniaturized microwave assisted chelating extraction for determination of trace metals in plant materials

    Science.gov (United States)

    Czarnecki, Sezin; Duering, Rolf-Alexander

    2013-04-01

    In recent years, the use of closed vessel microwave assisted extraction (MAE) for plant samples has shown increasing research interest which will probably substitute conventional procedures in the future due to their general disadvantages including consumption of time and solvents. The objective of this study was to demonstrate an innovative miniaturized closed vessel microwave assisted extraction (µMAE) method under the use of EDTA (µMAE-EDTA) to determine metal contents (Cd, Co, Cu, Mn, Ni, Pb, Zn) in plant samples (Lolio-Cynosuretum) by inductively coupled plasma-optical emission spectrometry (ICP-OES). Validation of the method was done by comparison of the results with another miniaturized closed vessel microwave HNO3 method (µMAE-H) and with two other macro scale MAE procedures (MAE-H and MAE-EDTA) which were applied by using a mixture of nitric acid (HNO3) and hydrogen peroxide (H2O2) (MAE-H) and EDTA (MAE-EDTA), respectively. The already established MAE-H method is taken into consideration as a reference validation MAE method for plant material. A conventional plant extraction (CE) method, based on dry ashing and dissolving of the plant material in HNO3, was used as a confidence comparative method. Certified plant reference materials (CRMs) were used for comparison of recovery rates from different extraction protocols. This allowed the validation of the applicability of the µMAE-EDTA procedure. For 36 real plant samples with triplicates each, µMAE-EDTA showed the same extraction yields as the MAE-H in the determination of Cd, Co, Cu, Mn, Ni, Pb, and Zn contents in plant samples. Analytical parameters in µMAE-EDTA should be further investigated and adapted for other metals of interest. By the reduction and elimination of the use of hazardous chemicals in environmental analysis and thus allowing a better understanding of metal distribution and accumulation process in plants and also the metal transfer from soil to plants and into the food chain, µ

  13. [Plants' materials and synthetic agonists of cannabinoid receptors use as a substitute of Marihuana, appearing in a current forensic toxicology practice of evidence materials].

    Science.gov (United States)

    Geppert, Bogna; Tezyk, Artur; Florek, Ewa; Zaba, Czesław

    2010-01-01

    Cannabis sativa species Indica (Marihuana) is nowadays one of the most common plant drug, with psychoactive activity, presently appearing on the illegal market in Poland. It is reported that frequency of securing evidential materials so called substitute of Marihuana, is growing rapidly during the last few years. The substitutes of Marihuana occurring on the market are of natural or synthetic origins, for example different species of raw plants' materials having action similar to Cannabis or raw plants' materials with no psychoactive properities but with an addition of components so called synthetic cannabinoids. The review presents recent developments in drug market and current problems of forensic toxicology on the example of Marihuana.

  14. A forward-looking, national-scale remote sensing-based model of tidal marsh aboveground carbon stocks

    Science.gov (United States)

    Holmquist, J. R.; Byrd, K. B.; Ballanti, L.; Nguyen, D.; Simard, M.; Windham-Myers, L.; Thomas, N.

    2017-12-01

    Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our goal was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). To meet this objective we developed the first national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. Using the random forest algorithm we tested Sentinel-1 radar backscatter metrics and Landsat vegetation indices as predictors of biomass. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n=409, RMSE=310 g/m2, 10.3% normalized RMSE), successfully predicted biomass and carbon for a range of marsh plant functional types defined by height, leaf angle and growth form. Model error was reduced by scaling field measured biomass by Landsat fraction green vegetation derived from object-based classification of National Agriculture Imagery Program imagery. We generated 30m resolution biomass maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map for each region. With a mean plant %C of 44.1% (n=1384, 95% C.I.=43.99% - 44.37%) we estimated mean aboveground carbon densities (Mg/ha) and total carbon stocks for each wetland type for each region. Louisiana palustrine emergent marshes had the highest C density (2.67 ±0.08 Mg/ha) of all regions, while San Francisco Bay brackish/saline marshes had the highest C density of all estuarine emergent marshes (2.03 ±0.06 Mg/ha). This modeling and data synthesis effort will allow for aboveground

  15. Evaluation of laser induced breakdown spectroscopy for the determination of micronutrients in plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Trevizan, Lilian Cristina [Centro de Energia Nuclear na Agricultura-Universidade de Sao Paulo, Av. Centenario 303, 13416-000, Piracicaba-SP (Brazil); Santos, Dario [Universidade Federal de Sao Paulo - UNIFESP, Rua Prof. Artur Riedel 275, 09972-270, Diadema-SP (Brazil); Elgul Samad, Ricardo; Dias Vieira, Nilson [Centro de Lasers e Aplicacoes, IPEN/CNEN-SP, Av. Prof. Lineu Prestes 2242, 05508-000, Sao Paulo-SP (Brazil); Nunes, Lidiane Cristina [Centro de Energia Nuclear na Agricultura-Universidade de Sao Paulo, Av. Centenario 303, 13416-000, Piracicaba-SP (Brazil); Departamento de Quimica, Universidade Federal de Sao Carlos, Rodovia Washington Luis (SP-310), km 235, 13565-905, Sao Carlos-SP (Brazil); Aparecida Rufini, Iolanda [Centro de Energia Nuclear na Agricultura-Universidade de Sao Paulo, Av. Centenario 303, 13416-000, Piracicaba-SP (Brazil); Krug, Francisco Jose [Centro de Energia Nuclear na Agricultura-Universidade de Sao Paulo, Av. Centenario 303, 13416-000, Piracicaba-SP (Brazil)], E-mail: fjkrug@cena.usp.br

    2009-05-15

    Laser induced breakdown spectroscopy (LIBS) has been evaluated for the determination of micronutrients (B, Cu, Fe, Mn and Zn) in pellets of plant materials, using NIST, BCR and GBW biological certified reference materials for analytical calibration. Pellets of approximately 2 mm thick and 15 mm diameter were prepared by transferring 0.5 g of powdered material to a 15 mm die set and applying 8.0 tons cm{sup -2}. An experimental setup was designed by using a Nd:YAG laser operating at 1064 nm (200 mJ per pulse, 10 Hz) and an Echelle spectrometer with ICCD detector. Repeatability precision varied from 4 to 30% from measurements obtained in 10 different positions (8 laser shots per test portion) in the same sample pellet. Limits of detection were appropriate for routine analysis of plant materials and were 2.2 mg kg{sup -1} B, 3.0 mg kg{sup -1} Cu, 3.6 mg kg{sup -1} Fe, 1.8 mg kg{sup -1} Mn and 1.2 mg kg{sup -1} Zn. Analysis of different plant samples were carried out by LIBS and results were compared with those obtained by ICP OES after wet acid decomposition.

  16. Calculation of coal power plant cost on agricultural and material building impact of emission

    International Nuclear Information System (INIS)

    Mochamad Nasrullah; Wiku Lulus Widodo

    2016-01-01

    Calculation for externally cost of Coal Power Plant (CPP) is very important. This paper is focus on CPP appear SO 2 impact on agricultural plant and material building. AGRIMAT'S model from International Atomic Energy Agency is model one be used to account environmental damage for air impact because SO 2 emission. Analysis method use Impact Pathways Assessment: Determining characteristic source, Exposure Response Functions (ERF), Impacts and Damage Costs, and Monetary Unit Cost. Result for calculate shows that SO 2 that issued CPP, if value of SO 2 is 19,3 μg/m3, damage cost begins valuably positive. It shows that the land around CPP has decrease prosperity, and it will disadvantage for agricultural plant. On material building, SO 2 resulting damage cost. The increase humidity price therefore damage cost on material building will increase cost. But if concentration SO 2 increase therefore damage cost that is appear on material building decrease. Expected this result can added with external cost on health impact of CPP. External cost was done at developed countries. If it is done at Indonesia, therefore generation cost with fossil as more expensive and will get implication on issue cut back gases greenhouse. On the other side, renewable energy and also alternative energy as nuclear have opportunity at national energy mix system. (author)

  17. 21 CFR 1308.35 - Exemption of certain cannabis plant material, and products made therefrom, that contain...

    Science.gov (United States)

    2010-04-01

    ...: (1) Made from any portion of a plant of the genus Cannabis excluded from the definition of marijuana... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Exemption of certain cannabis plant material, and... ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE SCHEDULES OF CONTROLLED SUBSTANCES Exempt Cannabis Plant...

  18. Biosafety Procedure for Safe Handling of Genetically Modified Plant Materials in Bio Design Facility

    International Nuclear Information System (INIS)

    Zaiton Ahmad; Shuhaimi Shamsudin; Mohamed Najli Mohamed Yasin; Affrida Abu Hassan; Mohd Zaid Hassan; Rusli Ibrahim

    2015-01-01

    Bio Design Facility is the specifically designed glass house for propagation, screening and analysis of high quality plant varieties developed through biotechnology or a combination of nuclear technology and biotechnology. High quality plant varieties especially genetically modified plants (GMO) require a special glass house facility for propagation and screening to isolate them from cross-pollinating with wild type varieties in surrounding ecosystem, and for carrying out evaluation of possible risks of the plants to human, animal and environment before they are proven safe for field trials or commercial release. This facility which was developed under the Ninth Malaysia Plan is classified as the Plant Containment Level 2 and is compliance with the bio safety regulations and guidance for the safe release of GMO according to Malaysian Bio safety Act 2007. Bio Design Facility is fully operational since 2010 and in 2012, it has also been certified as the glass house for post-entry quarantine by The Department of Agriculture. This paper summarizes the bio safety procedure for a safe, controlled and contained growing and evaluation of GMO in Bio Design Facility. This procedure covers the physical (containment and equipment's) and operational (including responsibility, code of practice, growing, decontamination and disposal of plant materials, emergency and contingency plan) aspects of the facility. (author)

  19. Nuclear material safeguards for enrichment plants: Part 4, Gas Centrifuge Enrichment Plant: Diversion scenarios and IAEA safeguards activities: Safeguards training course

    International Nuclear Information System (INIS)

    1987-10-01

    This 5-day training course on nuclear material safeguards for uranium enrichment plants has been developed to train IAEA professionals who are responsible for safeguarding uranium enrichment facilties on the safeguards relevant principles of enrichment technology, particularly as related to centrifuge enrichment plants. This volume contains discussions of diversions of declared material at a centrifuge plant, centrifuge facility material balance verification activities, enriching beyond declared levels in a centrifuge facility, safeguards inspection techniques that may be used inside cascade areas, and demonstration of the enrichment verification measurement technique for cascade header pipes

  20. Insects on individual plants : plant quality, plant diversity and aboveground-belowground effects

    NARCIS (Netherlands)

    Kostenko, O.

    2014-01-01

    Planten en insecten vormen de basis van veel ecosystemen en ze zijn verantwoordelijk voor belangrijke ecologische functies. Gedurende de laatste drie decennia zijn ecologen en entomologen zich er steeds meer bewust van geworden dat het aantal insecten en de soortsamenstelling van die insecten op één

  1. Cathodic Protection Design Algorithms for Refineries Aboveground Storage Tanks

    Directory of Open Access Journals (Sweden)

    Kosay Abdul sattar Majbor

    2017-12-01

    Full Text Available Storage tanks condition and integrity is maintained by joint application of coating and cathodic protection. Iraq southern region rich in oil and petroleum product refineries need and use plenty of aboveground storage tanks. Iraq went through conflicts over the past thirty five years resulting in holding the oil industry infrastructure behind regarding maintenance and modernization. The primary concern in this work is the design and implementation of cathodic protection systems for the aboveground storage tanks farm in the oil industry. Storage tank external base area and tank internal surface area are to be protected against corrosion using impressed current and sacrificial anode cathodic protection systems. Interactive versatile computer programs are developed to provide the necessary system parameters data including the anode requirements, composition, rating, configuration, etc. Microsoft-Excel datasheet and Visual Basic.Net developed software were used throughout the study in the design of both cathodic protection systems. The case study considered in this work is the eleven aboveground storage tanks farm situated in al-Shauiba refinery in southern IRAQ. The designed cathodic protection systems are to be installed and monitored realistically in the near future. Both systems were designed for a life span of (15-30 years, and all their parameters were within the internationally accepted standards.

  2. Effect of operating conditions and environment on properties of materials of PWR type nuclear power plant components

    International Nuclear Information System (INIS)

    Vacek, M.

    1987-01-01

    Operating reliability and service life of PWR type nuclear power plants are discussed with respect to the material properties of the plant components. The effects of the operating environment on the material properties and the methods of their determination are characterized. Discussed are core materials, such as fuel, its cladding and regulating rod materials, and the materials of pipes, steam generators and condensers. The advances in the production of pressure vessel materials and their degradation during operation are treated in great detail. (Z.M.)

  3. Computerization of operation and maintenance for nuclear power plants. Working material

    International Nuclear Information System (INIS)

    1994-01-01

    This report provides a resource for computerization of activities in plant operation and maintenance. Experience gained from design and implementation of various computer systems around the world is described. The material may be useful as a guide to modification and upgrading of existing plants as well as design and engineering of new plants. It should be particularly of interest to managers and engineers who are engaged in planning, bidding, specifying or designing computer systems for operation and maintenance applications. The technical document is the result of a series of advisory and consultant meetings held by the IAEA in Vienna in 1991 - 1994. The document was prepared with the participation of experts from Canada, France, Germany, Hungary, Japan, Russia, Sweden, United Kingdom, and the United States. Refs, figs and tabs

  4. Treatments of non-wood plant fibres used as reinforcement in composite materials

    Directory of Open Access Journals (Sweden)

    Marie-Ange Arsène

    2013-01-01

    Full Text Available This paper presents a summary of the knowledge on fibres and pulps of non wood tropical plants used as reinforcement in cementitious composites accumulated during the recent years by Guadeloupean and Brazilian teams participating in collaborative work. Vegetable fibres represent a good alternative as non-conventional materials for the construction of ecological and sustainable buildings. The use of such renewable resources contributes to the development of sustainable technologies. The main objective of the paper is to emphasize the use of agricultural wastes in the production of cement based composites. The botanical, chemical, physical, morphological and mechanical properties of fibres from various plants are described. The effects of different treatments on physical, chemical and mechanical properties of fibres are presented. The most effective treatments in influencing the mechanical and physical properties are pyrolysis and alkaline ones, according to the type of plant. The final choice will have to consider fibre availability, and treatment costs.

  5. Design of training centres for nuclear power plants. Working material. Proceedings of a specialists' meeting

    International Nuclear Information System (INIS)

    1996-01-01

    The purpose of this meeting was to provide an international forum for presentation and discussion of experiences in the design and operation of training centres for nuclear power plant personnel. The term ''training centre'', as used during this meeting, includes both those facilities that are dedicated to provide training for an individual nuclear power plants, and that are often located near that plant, as well as facilities that provide training for multiple NPPs, and which are operated by vendors or by utility organizations that are not directly controlled by the NPP organizations which they serve. The topic, ''design of training centres'' was used in its broadest sense to include not only facilities (such as classrooms, laboratories and simulators), but also design of: training organizations; training programmes and materials; and examination/evaluation methods. Refs, figs, tabs

  6. The circulation of materials which endanger water in power plant operations

    International Nuclear Information System (INIS)

    Wilhelm, M.; Hoelscher, W.; Langen, H.J.

    1994-01-01

    Legal regulations for the circulation of materials which endanger water stipulate that the possibility of water contamination insofar as human judgment can determine shall be excluded. In power station operation, numerous components are lubricated with oil. Equally, attention must be paid to this as to water protection when chemicals are used. The potential of endangerment depends on the type of material used, its quantity and the hydrogeological data of the site of the plant. Future control equipment will provide for the multiplicity of applications between than before. (orig.) [de

  7. Methods for nuclear material control used in the basic production of a typical radiochemical plant

    International Nuclear Information System (INIS)

    Kositsyn, V.F.; Mukhortov, N.F.; Korovin, Yu.I.; Rudenko, V.S.; Petrov, A.M.

    1999-01-01

    Techniques for destructive and non-destructive assay of the component and isotopic composition of nuclear materials are described, namely gravimetric, titrimetric, coulometric, mass spectrometry, as well as those based on registration of neutron and γ radiations. Their metrologic characteristics are described. The techniques described are suggested to be used for nuclear material (NM) control and accounting purposes at the model radiochemical plant for processing irradiated fuel subassemblies from power reactors. The measurement control program is also described. This program is intended for the measurement quality assurance in the framework of NM control and accountancy system [ru

  8. Measurements of the radioactivity of power plant by-products processed into construction materials

    International Nuclear Information System (INIS)

    Marcinkowski, S.A.; Dudelewski, H.A.

    1992-01-01

    The subject of the recycling of residual products comprising, inter alia, fly ash and slags accuring from the combustion of black and brown coal in modern coal dust boilers in the power industry has been topical for a number of years. Numerous discussions and articles in technical periodicals and the daily press have revolved around the problem of the radioactivity of construction materials or construction elements obtained from fly ash or slags of power plant. In Poland, this was a forbidden subject until the publication in 1980 by the Warsaw institute of construction technology of standard no. 234 entitled: 'Recommendations for establishing the natural radioactivity of products processed into construction materials'. (orig.) [de

  9. Savannah River Plant's Accountability Inventory Management System (AIMS) (Nuclear materials inventory control)

    International Nuclear Information System (INIS)

    Croom, R.G.

    1976-06-01

    The Accountability Inventory Management System (AIMS) is a new computer inventory control system for nuclear materials at the Savannah River Plant, Aiken, South Carolina. The system has two major components, inventory files and system parameter files. AIMS, part of the overall safeguards program, maintains an up-to-date record of nuclear material by location, produces reports required by ERDA in addition to onplant reports, and is capable of a wide range of response to changing input/output requirements through use of user-prepared parameter cards, as opposed to basic system reprogramming

  10. Material analysis of Bottom ash from waste-to-energy plants.

    Science.gov (United States)

    Šyc, Michal; Krausová, Aneta; Kameníková, Petra; Šomplák, Radovan; Pavlas, Martin; Zach, Boleslav; Pohořelý, Michael; Svoboda, Karel; Punčochář, Miroslav

    2018-03-01

    Bottom ash (BA) from waste-to-energy (WtE) plants contains valuable components, particularly ferrous (Fe) and non-ferrous (NFe) metals, which can be recovered. To assess the resource recovery potential of BA in the Czech Republic, it was necessary to obtain its detailed material composition. This paper presents the material composition of BA samples from all three Czech WtE plants. It was found that the BA contained 9.2-22.7% glass, 1.8-5.1% ceramics and porcelain, 0.2-1.0% unburnt organic matter, 10.2-16.3% magnetic fraction, 6.1-11.0% Fe scrap, and 1.3-2.8% NFe metals (in dry matter). The contents of individual components were also studied with respect to the BA granulometry and character of the WtE waste collection area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Material protection control and accounting program activities at the Urals electrochemical integrated plant

    International Nuclear Information System (INIS)

    McAllister, S.

    1997-01-01

    The Urals Electrochemical Integrated Plant (UEIP) is the Russian Federation's largest uranium enrichment plant and one of three sites in Russia blending high enriched uranium (HEU) into commercial grade low enriched uranium. UEIP is located approximately 70 km north of Yekaterinburg in the closed city of Novouralsk (formerly Sverdlovsk- 44). DOE's MPC ampersand A program first met with UEIP in June of 1996, however because of some contractual issues the work did not start until September of 1997. The six national laboratories participating in DOE's Material Protection Control and Accounting program are cooperating with UEIP to enhance the capabilities of the physical protection, access control, and nuclear material control and accounting systems. The MPC ampersand A work at UEIP is expected to be completed during fiscal year 2001

  12. Site layout and balance of plant design for an accelerator-driven materials processing complex

    Energy Technology Data Exchange (ETDEWEB)

    Cunliffe, J.; Taussig, R.; Ghose, S. [Bechtel Corporation, San Francisco, CA (United States)] [and others

    1995-10-01

    High energy proton beam accelerators are under consideration for use in radioisotope production, surplus weapons material destruction, radioactive waste transmutation, and thorium-based energy conversion cycles. While there are unique aspects to each of these applications that must be accommodated in the design of the associated facility, all share a set of fundamental characteristics that in large measure dictate the site layout features and many balance-of-plant (BOP) design requirements found to be common to all. This paper defines these key design determinants and goes on to discuss the manner in which they have been accommodated in the pre-conceptual design for a particular materials production application. An estimate of the costs associated with this BOP design is also presented with the aim of guiding future evaluations where the basic plant designs are similar to that of this specific case.

  13. Aboveground Allometric Models for Freeze-Affected Black Mangroves (Avicennia germinans): Equations for a Climate Sensitive Mangrove-Marsh Ecotone

    Science.gov (United States)

    Osland, Michael J.; Day, Richard H.; Larriviere, Jack C.; From, Andrew S.

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone. PMID:24971938

  14. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone

    Science.gov (United States)

    Osland, Michael J.; Day, Richard H.; Larriviere, Jack C.; From, Andrew S.

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  15. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans: equations for a climate sensitive mangrove-marsh ecotone.

    Directory of Open Access Journals (Sweden)

    Michael J Osland

    Full Text Available Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1 total aboveground biomass; (2 leaf biomass; (3 stem plus branch biomass; and (4 leaf area. Plant volume (i.e., a combination of crown area and plant height was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  16. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone.

    Science.gov (United States)

    Osland, Michael J; Day, Richard H; Larriviere, Jack C; From, Andrew S

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  17. Plants as green phones

    NARCIS (Netherlands)

    Soler, R.; Harvey, J.A.; Bezemer, T.M.; Stuefer, J.F.

    2008-01-01

    Plants can act as vertical communication channels or `green phones¿ linking soil-dwelling insects and insects in the aboveground ecosystem. When root-feeding insects attack a plant, the direct defense system of the shoot is activated, leading to an accumulation of phytotoxins in the leaves. The

  18. High-throughput and homogeneous 13C-labelling of plant material for fair carbon accounting

    International Nuclear Information System (INIS)

    Slaets, J.I.F.; Resch, C.; Mayr, L.; Weltin, G.; Heiling, M.; Gruber, R.; Dercon, G.

    2016-01-01

    With growing political acknowledgement of the anthropogenic drivers and consequences of climate change, the development of carbon accounting mechanisms is essential for fair greenhouse gas emission mitigation policies. Therefore, carbon storage and emission must be accurately quantified. Plant material labelled with 13 C can be used to measure carbon storage in soil and carbon losses via CO 2 emission to the atmosphere from various cropping practices through in situ and incubation experiments.

  19. Application and potential of capillary electroseparation methods to determine antioxidant phenolic compounds from plant food material.

    Science.gov (United States)

    Hurtado-Fernández, Elena; Gómez-Romero, María; Carrasco-Pancorbo, Alegría; Fernández-Gutiérrez, Alberto

    2010-12-15

    Antioxidants are one of the most common active ingredients of nutritionally functional foods which can play an important role in the prevention of oxidation and cellular damage inhibiting or delaying the oxidative processes. In recent years there has been an increased interest in the application of antioxidants to medical treatment as information is constantly gathered linking the development of human diseases to oxidative stress. Within antioxidants, phenolic molecules are an important category of compounds, commonly present in a wide variety of plant food materials. Their correct determination is pivotal nowadays and involves their extraction from the sample, analytical separation, identification, quantification and interpretation of the data. The aim of this review is to provide an overview about all the necessary steps of any analytical procedure to achieve the determination of phenolic compounds from plant matrices, paying particular attention to the application and potential of capillary electroseparation methods. Since it is quite complicated to establish a classification of plant food material, and to structure the current review, we will group the different matrices as follows: fruits, vegetables, herbs, spices and medicinal plants, beverages, vegetable oils, cereals, legumes and nuts and other matrices (including cocoa beans and bee products). At the end of the overview, we include two sections to explain the usefulness of the data about phenols provided by capillary electrophoresis and the newest trends. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Control of Varroa Mite (Varroa destructor on Honeybees by Aromatic Oils and Plant Materials

    Directory of Open Access Journals (Sweden)

    I.K. Nazer

    2003-01-01

    Full Text Available The effect of several volatile plant oils, plant materials and fluvalinate (Apistan® strips on the control of the mite Varroa destructor on honeybee (Apis mellifera L. colonies was studied. The volatile oils were: clove, lavender, peppermint, sage, and thyme. The plant materials were: cumin fruits, eucalyptus leaves, and worm wood flowers. For each tested material, three treatment periods were carried out. Each period lasted for 24 days followed by eight days no-treatment. Within each treatment period, an average of three to six treatments were applied. Dead mites were counted one hour before and after each treatment. An increase in dead mites was recorded for the three treatment periods. It indicated that worm wood flowers, peppermint oil and clove oil treatments gave the best results in the control of Varroa mites but not significantly different than the control. The overall increase in the dead mites was 3.92, 3.62 and 3.34 fold, respectively.

  1. Molecular Dissection of The Cellular Mechanisms Involved In Nickel Hyperaccumulation in Plants

    Energy Technology Data Exchange (ETDEWEB)

    David E. Salt

    2002-04-08

    Hyperaccumulator plant species are able to accumulate between 1-5% of their biomass as metal. However, these plants are often small, slow growing, and do not produce a high biomass. Phytoextraction, a cost-effective, in situ, plant based approach to soil remediation takes advantage of the remarkable ability of hyperaccumulating plants to concentrate metals from the soil and accumulate them in their harvestable, above-ground tissues. However, to make use of the valuable genetic resources identified in metal hyperaccumulating species, it will be necessary to transfer this material to high biomass rapidly growing crop plants. These plants would then be ideally suited to the phytoremediation process, having the ability to produce large amount of metal-rich plant biomass for rapid harvest and soil cleanup. Although progress is being made in understanding the genetic basis of metal hyperaccumulation a more complete understanding will be necessary before we can take full advantage of the genetic potential of these plants.

  2. A simple non-destructive method for estimating aboveground biomass of emergent aquatic macrophytes

    Directory of Open Access Journals (Sweden)

    Laís Samira Correia Nunes

    Full Text Available Abstract: Aim Non-destructive methods for estimating aquatic macrophytes biomass may be employed by using indirect measurements, especially in experimental studies, thus enabling the conservation of plant samples. It is possible to estimate macrophyte biomass by developing mathematical equations that relate the plants’ dry mass to their morphological variables. The aim of this study was to evaluate the relationship between different morphological variables and biomass in order to determine which variable is easier to be obtained for the emergent aquatic macrophytes Crinum americanum and Spartina alterniflora. Methods We obtained the aboveground area and height of individuals of both species, with different sizes and distinct developmental stages. The samples were collected in the Itanhaém River Estuary (SP, Brazil. The plants were dried in a laboratory oven and weighed so as to obtain their dry mass. Simple linear regression analyses were applied to the morphological variables and the individual dry mass to obtain equations. Results For the both species, the relationship between area and biomass, and the relationship between individual height and biomass presented significant coefficients of determination (p < 0.0001. For the elaboration of models involving the individual height, we used only one morphological measure for each individual, whereas for models involving the individual area it was necessary to obtain more than one hundred morphological measurements per individual. Conclusions The morphological variables chosen are good attributes for estimating the aboveground biomass of C. americanum and S. alterniflora. Considering the models’ adjustment and the consumed time to obtain the measurements, we conclude that the individual height measurement is better for biomass estimation for both species.

  3. Carbon isotopic constraints on the contribution of plant material to the natural precursors of trihalomethanes

    Science.gov (United States)

    Bergamaschi, B.A.; Fram, M.S.; Kendall, C.; Silva, S.R.; Aiken, G.R.; Fujii, R.

    1999-01-01

    The ??13C values of individual trihalomethanes (THM) formed on reaction of chlorine with dissolved organic carbon (DOC) leached from maize (corn, Zea maize L) and Scirpus acutus (an aquatic bulrush), and with DOC extracted from agricultural drainage waters were determined using purge and trap introduction into a gas chromatograph-combustion-isotope ratio monitoring mass spectrometer. We observed a 1-6.8??? difference between the ??13C values of THM produced from the maize and Scirpus leachates, similar to the isotopic difference between the whole plant materials. Both maize and Scirpus formed THM 12??? lower in 13C than whole plant material. We suggest that the low value of the THM relative to the whole plant material is evidence of distinct pools of THM-forming DOC, representing different biochemical types or chemical structures, and possessing different environmental reactivity Humic extracts of waters draining an agricultural field containing Scirpus peat soils and planted with maize formed THM with isotopic values intermediate between those of maize and Scirpus leachates, indicating maize may contribute significantly to the THM-forming DOC. The difference between the ??13C values of the whole isolate and that of the THM it yielded was 3 9???, however, suggesting diagenesis plays a role in determining the ??13C value of THM-forming DOC in the drainage waters, and precluding the direct use of isotopic mixing models to quantitatively attribute sources.The ??13C values of individual trihalomethanes (THM) formed on reaction of chlorine with dissolved organic carbon (DOC) leached from maize (corn; Zea maize L.) and Scirpus acutus (an aquatic bulrush), and with DOC extracted from agricultural drainage waters were determined using purge and trap introduction into a gas chromatograph-combustion-isotope ratio monitoring mass spectrometer. We observed a 16.8qq difference between the ??13C values of THM produced from the maize and Scirpus leachates, similar to the isotopic

  4. Materials Integrity Analysis for Application of Hyper Duplex Stainless Steels to Korean Nuclear Power Plants

    International Nuclear Information System (INIS)

    Chang, Hyun Young; Park, Heung Bae; Park, Yong Soo; Kim, Soon Tae; Kim, Young Sik; Kim, Kwang Tae; Jhang, Yoon Young

    2010-01-01

    Hyper duplex stainless steels have been developed in Korea for the purpose of application to the seawater system of Korean nuclear power plants. This system supplies seawater to cooling water heat exchanger tubes, related pipes and chlorine injection system. In normal operation, seawater is supplied to heat exchanger through the exit of circulating water pump headers, and the heat exchanged sea water is extracted to the discharge pipes in circulating water system connected to the circulating water discharge lines. The high flow velocity of some part of seawater system in nuclear power plants accelerates damages of components. Therefore, high strength and high corrosion resistant steels need to be applied for this environment. Hyper duplex stainless steel (27Cr-7.0Ni-2.5Mo-3.2W-0.35N) has been newly developed in Korea and is being improved for applying to nuclear power plants. In this study, the physical and mechanical properties and corrosion resistance of newly developed materials are quantitatively evaluated in comparative to commercial stainless steels in other countries. The properties of weld and HAZ (heat affected zone) are analyzed and the best compositions are suggested. The optimum conditions in welding process are derived for ensuring the volume fraction of ferrite(α) and austenite(γ) in HAZ and controlling weld cracks. For applying these materials to the seawater heat exchanger, CCT and CPT in weldments are measured. As a result of all experiments, it was found that the newly developed hyper duplex stainless steel WREMBA has higher corrosion resistance and mechanical properties than those of super austenitic stainless steels including welded area. It is expected to be a promising material for seawater systems of Korean nuclear power plants

  5. Material development for waste to energy plants. Overlay welding and refractory linings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Noergaard Hansson, A.

    2011-02-15

    Waste is an extremely corrosive fuel. In order to recover a higher percentage of the energy in waste, waste incineration plants have developed from purely heat producing units to heat and power producing units. The change in concept results in higher material temperatures and thereby faster material degradation. As a result material failures have been observed in many waste incineration plants. The purpose of this project was to develop materials with higher resistance to the corrosive elements, in order to reduce the cost of maintenance, increase the availability, and increase the efficiency. The focus is on overlay welding and refractory linings. Inconel 625, alloy 50, alloy 686, and Super 625 offer equivalent corrosion protection at panel walls. 100% overlay performs better than 50% overlay. The corrosion morphology changes with increasing temperature from pitting and general corrosion to pitting and selective corrosion (dendritic core or grain boundaries). The previously observed detrimental effect of Fe on the corrosion resistance was not confirmed. It probably depends on factors such as microstructure of the alloy and local metal temperature. Ni-overlay also reduces the corrosion rates on superheater tubes. However, the superheater environment is less aggressive than the water wall environment. Failure of refractory linings is linked to excess porosity, detrimental reactions between raw materials and other mix constituents, volume growth reactions between base material and salt depositions, and thermal stress induced crack formation. Free water and not decomposition of hydrates causes spalling and cracking during the initial heating of refractory linings. Finite Element analysis confirms the stress levels between steel and refractory with the higher stress level at the top of the panel wall tube. A number of LCC mixes were formulated, adjusted and tested. Mixes with low open porosities ({approx} 10%) and state of the art resistance to KCl were achieved. (LN)

  6. A quantitative approach to design of material accounting system for a complex facility. Study at the PNC reprocessing plants

    International Nuclear Information System (INIS)

    Ikawa, K.

    1994-01-01

    An approach to a design of nuclear materials accounting sysyem for a complex facility in Japan is discussed. Near-real-time materials accountancy model studied at the PNC reprocessing plant is described. Main features of the computerized nuclear materials accounting system are considered as well as the PROMAC - C code algorithm for statistical data processing is presented. 18 refs., 5 figs., 1 tab

  7. Current Perspective in the International Trade of Medicinal Plants Material: An Update.

    Science.gov (United States)

    Vasisht, Karan; Sharma, Neetika; Karan, Maninder

    2016-01-01

    The recent years have seen an increased interest in medicinal plants together with the therapeutic use of phytochemicals. Medicinal plants are utilized by the industry for the production of extracts, phytopharmaceuticals, nutraceuticals and cosmeceuticals and their use is expected to grow faster than the conventional drugs. The enormous demand of medicinal plant material has resulted in huge trade both at domestic and international levels. The trade data of medicinal plant material with commodity code HS 1211 (SITC.4, code 292.4) and their derived/related products which are traded under different commodity codes has been acquired from COMTRADE, Trade Map, country reports, technical documents etc for the period 2001 to 2014. The data was analyzed using statistical tools to draw conclusions. The significant features of the global trade; the leading source, consumer, import and export countries; and the striking trends are presented. The trade of the ten key countries and the selected important items is also discussed in detail. The conservative figure of trade of medicinal plants materials and their derived/related products including extracts, essential oils, phytopharmaceuticals, gums, spices used in medicine, tannins for pharmaceutical use, ingredients for cosmetics etc. as calculated from the global export data for the year 2014 is estimated at USD 33 billion. The average global export in medicinal plants under HS 1211 for the fourteen year period was USD 1.92 billion for 601,357 tons per annum and for the year 2014 it stood at 702,813 tons valued at USD 3.60 billion. For the studied period, an annual average growth rate (AAGR) of 2.4% in volumes and 9.2% in values of export was observed. Nearly 30% of the global trade is made up by top two countries of the import and export. China and India from Asia; Egypt and Morocco from Africa; Poland, Bulgaria and Albania from Europe; Chile and Peru from South America are important supply sources. The USA, Japan and Europe

  8. Human and environmental controls over aboveground carbon storage in Madagascar

    Directory of Open Access Journals (Sweden)

    Asner Gregory P

    2012-01-01

    Full Text Available Abstract Background Accurate, high-resolution mapping of aboveground carbon density (ACD, Mg C ha-1 could provide insight into human and environmental controls over ecosystem state and functioning, and could support conservation and climate policy development. However, mapping ACD has proven challenging, particularly in spatially complex regions harboring a mosaic of land use activities, or in remote montane areas that are difficult to access and poorly understood ecologically. Using a combination of field measurements, airborne Light Detection and Ranging (LiDAR and satellite data, we present the first large-scale, high-resolution estimates of aboveground carbon stocks in Madagascar. Results We found that elevation and the fraction of photosynthetic vegetation (PV cover, analyzed throughout forests of widely varying structure and condition, account for 27-67% of the spatial variation in ACD. This finding facilitated spatial extrapolation of LiDAR-based carbon estimates to a total of 2,372,680 ha using satellite data. Remote, humid sub-montane forests harbored the highest carbon densities, while ACD was suppressed in dry spiny forests and in montane humid ecosystems, as well as in most lowland areas with heightened human activity. Independent of human activity, aboveground carbon stocks were subject to strong physiographic controls expressed through variation in tropical forest canopy structure measured using airborne LiDAR. Conclusions High-resolution mapping of carbon stocks is possible in remote regions, with or without human activity, and thus carbon monitoring can be brought to highly endangered Malagasy forests as a climate-change mitigation and biological conservation strategy.

  9. Closure Report for Corrective Action Unit 134: Aboveground Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 134 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Aboveground Storage Tanks' and consists of the following four Corrective Action Sites (CASs), located in Areas 3, 15, and 29 of the Nevada Test Site: (1) CAS 03-01-03, Aboveground Storage Tank; (2) CAS 03-01-04, Tank; (3) CAS 15-01-05, Aboveground Storage Tank; and (4) CAS 29-01-01, Hydrocarbon Stain

  10. Aboveground net primary production decline with stand age: potential causes.

    Science.gov (United States)

    Gower, S T; McMurtrie, R E; Murty, D

    1996-09-01

    Aboveground net primary production (ANPP) commonly reaches a maximum in young forest stands and decreases by 0-76% as stands mature. However, the mechanism(s) responsible for the decline are not well understood. Current hypotheses for declining ANPP with stand age include: (1) an altered balance between photosynthetic and respiring tissues, (2) decreasing soil nutrient availability, and (3) increasing stomatal limitation leading to reduced photosynthetic rates. Recent empirical and modeling studies reveal that mechanisms (2) and (3) are largely responsible for age-related decline in ANPP for forests in cold environments. Increasing respiratory costs appear to be relatively unimportant in explaining declining productivity in ageing stands.

  11. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright

    2010-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for

  12. Next Generation Nuclear Plant Intermediate Heat Exchanger Materials Research and Development Plan (PLN-2804)

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright

    2008-04-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for

  13.  The antiradical activity of some plant raw materials and extracts obtained from these raw materials

    Directory of Open Access Journals (Sweden)

    Aleksandra Kasprzyk

    2012-03-01

    Full Text Available  Introduction:Free radicals and reactive oxygen species are compounds usually present in healthy organisms as natural products of many metabolic pathways, and they are important in cell signaling and homeostasis. As a source of reactive oxygen species one can mention phagocytic cells and enzymes such as xanthine oxidase. Sometimes the level of reactive oxygen species strongly increases. This may lead to damage of very important cell structures such as nucleic acids, proteins or lipids. In this situation one should provide the organism with powerful antioxidants as a medicine or in the diet. A rich source of strong antioxidants such as phenolic compounds is plant raw materials, which are the subject of our study.Material/Methods:Antiradical potential of extracts was measured with DPPH radical (2,2-diphenyl-1-picrylhydrazyl and was expressed as the number of units per mg of extracts (TAU515/mg and per g of raw material (TAU515/g. The amount of phenolic compounds was determined colorimetrically using Folin-Ciocalteu phenol reagent (3H2O • P2O5 • 13WO3 • 5MoO3 • 10H2O.Results:The strongest antiradical activity was noted for extracts obtained from Cinnamomi cortex; the number of antiradical units per mg of extract (TAU515/mg was 10.31±1.052. The lowest antiradical features were exhibited by extract from Zingiberis rhizoma (0.28±0.174 and extract from Cichorii radix (0.38±0.669. The highest amount of phenolic compounds was measured for extracts from Bistortae rhizoma, with a value (in percentage of 78.6±13.5. The correlation coefficient between the number of antiradical units in extracts and amount of phenolic compounds in these extracts was 0.7273. When the number of antiradical units was calculated per g of raw material (TAU515/g the strongest antiradical properties were noted for Bistortae rhizoma (1406±274.9, the weakest for Cichorii radix (122±158.3.

  14. Approach to IAEA material-balance verification at the Portsmouth Gas Centrifuge Enrichment Plant

    International Nuclear Information System (INIS)

    Gordon, D.M.; Sanborn, J.B.; Younkin, J.M.; DeVito, V.J.

    1983-01-01

    This paper describes a potential approach by which the International Atomic Energy Agency (IAEA) might verify the nuclear-material balance at the Portsmouth Gas Centrifuge Enrichment Plant (GCEP). The strategy makes use of the attributes and variables measurement verification approach, whereby the IAEA would perform independent measurements on a randomly selected subset of the items comprising the U-235 flows and inventories at the plant. In addition, the MUF-D statistic is used as the test statistic for the detection of diversion. The paper includes descriptions of the potential verification activities, as well as calculations of: (1) attributes and variables sample sizes for the various strata, (2) standard deviations of the relevant test statistics, and (3) the detection sensitivity which the IAEA might achieve by this verification strategy at GCEP

  15. Effects of temperature, ultraviolet radiation and pectin methyl esterase on aerobic methane release from plant material

    DEFF Research Database (Denmark)

    Bruhn, Dan; Mikkelsen, Teis Nørgaard; Øbro, J.

    2009-01-01

    This study examines the effects of different irradiance types on aerobic methane (CH4) efflux rates from terrestrial plant material. Furthermore, the role of the enzyme pectin methyl esterase (PME) on CH4 efflux potential was also examined. Different types of plant tissue and purified pectin were...... incubated in glass vials with different combinations of irradiation and/or temperature. Purified dry pectin was incubated in solution, and with or without PME. Before and after incubation, the concentration of CH4 was measured with a gas chromatograph. Rates of CH4 emission were found to depend...... exponentially on temperature and linearly on UV-B irradiance. UV-B had a greater stimulating effect than UV-A, while visible light had no effect on emission rates. PME was found to substantially reduce the potential for aerobic CH4 emissions upon demethylation of pectin....

  16. Identification of fine scale and landscape scale drivers of urban aboveground carbon stocks using high-resolution modeling and mapping.

    Science.gov (United States)

    Mitchell, Matthew G E; Johansen, Kasper; Maron, Martine; McAlpine, Clive A; Wu, Dan; Rhodes, Jonathan R

    2018-05-01

    Urban areas are sources of land use change and CO 2 emissions that contribute to global climate change. Despite this, assessments of urban vegetation carbon stocks often fail to identify important landscape-scale drivers of variation in urban carbon, especially the potential effects of landscape structure variables at different spatial scales. We combined field measurements with Light Detection And Ranging (LiDAR) data to build high-resolution models of woody plant aboveground carbon across the urban portion of Brisbane, Australia, and then identified landscape scale drivers of these carbon stocks. First, we used LiDAR data to quantify the extent and vertical structure of vegetation across the city at high resolution (5×5m). Next, we paired this data with aboveground carbon measurements at 219 sites to create boosted regression tree models and map aboveground carbon across the city. We then used these maps to determine how spatial variation in land cover/land use and landscape structure affects these carbon stocks. Foliage densities above 5m height, tree canopy height, and the presence of ground openings had the strongest relationships with aboveground carbon. Using these fine-scale relationships, we estimate that 2.2±0.4 TgC are stored aboveground in the urban portion of Brisbane, with mean densities of 32.6±5.8MgCha -1 calculated across the entire urban land area, and 110.9±19.7MgCha -1 calculated within treed areas. Predicted carbon densities within treed areas showed strong positive relationships with the proportion of surrounding tree cover and how clumped that tree cover was at both 1km 2 and 1ha resolutions. Our models predict that even dense urban areas with low tree cover can have high carbon densities at fine scales. We conclude that actions and policies aimed at increasing urban carbon should focus on those areas where urban tree cover is most fragmented. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Cellular water distribution, transport, and its investigation methods for plant-based food material.

    Science.gov (United States)

    Khan, Md Imran H; Karim, M A

    2017-09-01

    Heterogeneous and hygroscopic characteristics of plant-based food material make it complex in structure, and therefore water distribution in its different cellular environments is very complex. There are three different cellular environments, namely the intercellular environment, the intracellular environment, and the cell wall environment inside the food structure. According to the bonding strength, intracellular water is defined as loosely bound water, cell wall water is categorized as strongly bound water, and intercellular water is known as free water (FW). During food drying, optimization of the heat and mass transfer process is crucial for the energy efficiency of the process and the quality of the product. For optimizing heat and mass transfer during food processing, understanding these three types of waters (strongly bound, loosely bound, and free water) in plant-based food material is essential. However, there are few studies that investigate cellular level water distribution and transport. As there is no direct method for determining the cellular level water distributions, various indirect methods have been applied to investigate the cellular level water distribution, and there is, as yet, no consensus on the appropriate method for measuring cellular level water in plant-based food material. Therefore, the main aim of this paper is to present a comprehensive review on the available methods to investigate the cellular level water, the characteristics of water at different cellular levels and its transport mechanism during drying. The effect of bound water transport on quality of food product is also discussed. This review article presents a comparative study of different methods that can be applied to investigate cellular water such as nuclear magnetic resonance (NMR), bioelectric impedance analysis (BIA), differential scanning calorimetry (DSC), and dilatometry. The article closes with a discussion of current challenges to investigating cellular water

  18. Evaluation of residual life of material of power plant construction elements after long-term operation

    International Nuclear Information System (INIS)

    Osasyuk, V.V.

    1989-01-01

    Existing methods are analyzed for estimation of residual resource of elements of constructions, working in creep conditions. A suggested and experimentally verified new method of residual durability forecasting is described permitting the value of the supplementary resource to be specified according to the real state of the material after preoperation. Evaluation results are given for residual life of steam lines received by different methods and advantages of the technique proposed are shown. Reliability of the new technique is confirmed by steam line operation at thermal power plants

  19. Nuclear power plant diagnostics - Safety aspects and licensing. Report of a technical committee meeting. Working material

    International Nuclear Information System (INIS)

    1997-01-01

    The aim of the Technical Committee Meeting (TCM) was to review developed systems and methods in diagnostics in the scope of their impacts and importance to the safety of Nuclear Power Plants. Papers presented on TCM came from different sources, from developers, from manufacturers, from licensing authorities and from NPP personal. They reflect up to date status in the given subject. Participants of TCM formulated three working groups to elaborate different questions which were raised during the discussions. Their results are reflected in the three chapter titles of the given material. Annex 1 to this document contains presentations made at the Technical Committee Meeting. Refs, figs, tabs

  20. Air-cleaning philosophy in a nuclear-materials fabrication plant

    International Nuclear Information System (INIS)

    Ward, F.Y.; Yoder, R.E.

    1982-01-01

    At the Department of Energy's Rocky Flats Plant there is a major ventilation improvement project underway. To achieve the desired goals of ALARA regarding radioactivity and toxic material releases and natural phenomena insults, a comprehensive air-cleaning philosophy and policy statement was developed. Design of the upgraded systems were evaluated against these statements and we believe that upon completion of the projects that an efficient system will be demonstrated. the design permits reuse and heat recovery of ventilation air, the optimization of sampling points to reduce analytical laboratory services. This paper discusses the basis of the philosophy and the engineering features incorporated to meet this stated objective. Points of compromise are noted

  1. Laser ablation inductively coupled plasma optical emission spectrometry for analysis of pellets of plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Marcos S. [Departamento de Química, Universidade Federal de São Carlos, Rod. Washington Luís, km 235, 13565-905 São Carlos, SP (Brazil); Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000 Piracicaba, SP (Brazil); Schenk, Emily R. [Department of Chemistry and Biochemistry, Florida International University, Miami, FL (United States); International Forensic Research Institute, Florida International University, Miami, FL (United States); Santos, Dário [Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Rua Professor Arthur Riedel 275, Diadema, SP (Brazil); Krug, Francisco José [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000 Piracicaba, SP (Brazil); Almirall, José R., E-mail: almirall@fiu.edu [Department of Chemistry and Biochemistry, Florida International University, Miami, FL (United States); International Forensic Research Institute, Florida International University, Miami, FL (United States)

    2014-04-01

    An evaluation of laser ablation inductively coupled plasma optical emission spectroscopy (LAICP OES) for the direct analysis of pelleted plant material is reported. Ground leaves of orange citrus, soy and sugarcane were comminuted using a high-speed ball mill, pressed into pellets and sampled directly with laser ablation and analyzed by ICP OES. The limits of detection (LODs) for the method ranged from as low as 0.1 mg kg{sup −1} for Zn to as high as 94 mg kg{sup −1} for K but were generally below 6 mg kg{sup −1} for most of the elements of interest. A certified reference material consisting of a similar matrix (NIST SRM 1547 peach leaves) was used to check the accuracy of the calibration and the reported method resulted in an average bias of ∼ 5% for all the elements of interest. The precision for the reported method ranged from as low as 4% relative standard deviation (RSD) for Mn to as high as 17% RSD for Zn but averaged ∼ 6.5% RSD for all the elements (n = 10). The proposed method was tested for the determination of Ca, Mg, P, K, Fe, Mn, Zn and B, and the results were in good agreement with those obtained for the corresponding acid digests by ICP-OES, no differences being observed by applying a paired t-test at the 95% confidence level. The reported direct solid sampling method provides a fast alternative to acid digestion that results in similar and appropriate analytical figures of merit with regard to sensitivity, accuracy and precision for plant material analysis. - Highlights: • An evaluation of LA-ICP-OES for the direct analysis of pelleted plant material is reported. • Orange citrus, soy and sugarcane plants were pressed into pellets and sampled directly. • The element menu consisted of Ca, Mg, P, K, Fe, Mn, Zn and B. • LODs for the method ranged from 0.1 mg kg{sup −1} for Zn to 94 mg kg{sup −1} for K. • The precision ranged from 4% RSD for Mn to 17% RSD for Zn (∼ 6.5% RSD average)

  2. The radiolytic cracking decomposion of the plant cellulose materials and their chemcial properties

    International Nuclear Information System (INIS)

    Shou Hongxia

    1987-01-01

    Under the treatment with high energy radiation, plant cellulose materials undergo a series of changes in chemical and physical properties. This paper describes the chemical changes of water-soluble carbohydrate, easy-to-hydrolyse carbohydrate, hard-to-hydrolyse carbohydrate, amino acid and protein in rice straw after irradiation with 60 Co γ-ray. The content of water-soluble carbohydrate in rice straw can be increased significantly by such treatment. The combination treatment of irradiation and acid or alkali soaker can reduce the dose for the radiolytic cracking decomposition and produce a good effect

  3. A graphical technique for distinguishing plant material and soil from atmospheric deposition in biomonitors

    International Nuclear Information System (INIS)

    Rahn, K.A.

    2000-01-01

    The paper explores the limits to which a new graphical technique can distinguish the various hierarchical levels of sources of trace elements within biomonitors. When applied to data from Portuguese lichens, it appears to resolve four levels of sources, from plant material down to individual types of pollution. Careful factor analysis appears to offer very similar results, being weaker than the graphical method in some aspects and stronger in others. As a result, it now seems possible to determine sources for elements in lichens with better precision and confidence than was available previously. (author)

  4. Hydrological dispersion of radioactive material in relation to nuclear power plant siting

    International Nuclear Information System (INIS)

    1985-01-01

    This Guide discusses the dispersion of normal and accidental releases of radioactive materials from nuclear power plants into surface water, including the washout of airborne radionuclides, and gives recommendations on information to be collected during the various stages of the siting procedure, a minimum measurement programme and the selection and validation of appropriate mathematical models for predicting dispersion. Guidelines are also provided for the optimal use of models for a specific site situation and for defining the necessary input parameters. Results of existing validation studies are given

  5. Extractable sulphate-sulphur, total sulphur and trace-element determinations in plant material by flow injection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Heanes, D.L. (South Australian Department of Agriculture, Adelaide (Australia))

    1990-01-01

    A rapid, accurate and reproducible procedure for determining total sulphur(S) and trace elements (copper, zinc, manganese and iron) in plant material is described. Plant material is digested in culture tubes with a mixture of nitric and perchloric acids containing ammonium metavanadate and calcium chloride. In the acid digest, concentrations of total-S as sulphate are determined by turbidimetry and trace-elements by flame atomic absorption spectrophotometry using flow injection analysis. The results for a range of plant materials compare well with those obtained by conventional procedures for the same elements. The microprocessor controlled digestion and multielement assay procedure described here offers improved laboratory efficiencies in materials, time and cost effectiveness. The techniques should be particularly useful when plant tissues are in limited supply.

  6. Atmospheric contribution to boron enrichment in aboveground wheat tissues.

    Science.gov (United States)

    Wang, Cheng; Ji, Junfeng; Chen, Mindong; Zhong, Cong; Yang, Zhongfang; Browne, Patrick

    2017-05-01

    Boron is an essential trace element for all organisms and has both beneficial and harmful biological functions. A particular amount of boron is discharged into the environment every year because of industrial activities; however, the effects of environmental boron emissions on boron accumulation in cereals has not yet been estimated. The present study characterized the accumulation of boron in wheat under different ecological conditions in the Yangtze River Delta (YRD) area. This study aimed to estimate the effects of atmospheric boron that is associated with industrial activities on boron accumulation in wheat. The results showed that the concentrations of boron in aboveground wheat tissues from the highly industrialized region were significantly higher than those from the agriculture-dominated region, even though there was no significant difference in boron content in soils. Using the model based on the translocation coefficients of boron in the soil-wheat system, we estimated that the contribution of atmosphere to boron accumulation in wheat straw in the highly industrialized region exceeded that in the agriculture-dominated region by 36%. In addition, from the environmental implication of the model, it was estimated that the development of boron-utilizing industries had elevated the concentration of boron in aboveground wheat tissues by 28-53%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Nuclear power plant containment metallic pressure boundary materials and plans for collecting and presenting their properties

    International Nuclear Information System (INIS)

    Oland, C.B.

    1995-04-01

    A program is being conducted at the Oak Ridge National Laboratory (ORNL to assist the Nuclear Regulatory Commission (NRC)) in their assessment of the effects of degradation (primarily corrosion) on the structural capacity and leaktight integrity of metal containments and steel liners of reinforced concrete structures in nuclear power plants. One of the program objectives is to characterize and quantify manifestations of corrosion on the properties of steels used to construct containment pressure boundary components. This report describes a plan for use in collecting and presenting data and information on ferrous alloys permitted for use in construction of pressure retaining components in concrete and metal containments. Discussions about various degradation mechanisms that could potentially affect the mechanical properties of these materials are also included. Conclusions and recommendations presented in this report will be used to guide the collection of data and information that will be used to prepare a material properties data base for containment steels

  8. PWSCC crack growth rate of alloy 690 to simulate actual plant material

    International Nuclear Information System (INIS)

    Fukumura, Takuya; Totsuka, Nobuo

    2014-01-01

    In order to understand the PWSCC crack growth rate of domestically produced alloy 690, alloy 690 materials were obtained from two companies which supply materials that are used in actual plants. PWSCC crack growth rates of cold worked alloy TT690 were measured under simulated PWR primary water conditions. The crack growth rates of 20% cold-worked alloy TT690 from both companies were less than 5×10 -11 m/s, and the crack growth rates were not as fast as reported from Bettis. Also it was observed that there was up to about 2.5 times difference in the crack growth rates of TT690 of the two companies. (author)

  9. Metabolic Engineering of Plants to Produce Precursors (Phloroglucinol and 1,2,4-butanetriol) of Energetic Materials

    Science.gov (United States)

    2015-01-02

    crop , we have developed an efficient regeneration system for this plant. 15. SUBJECT TERMS Metabolic engineering. Energetic materials. Plants...34. These proof-of-concept experiments were carried out in Arabidopsis. To introduce these pathways into Miscanthus, a non-food crop , we have developed an...To see if there is differential accumulation of phloroglucinol and phlorin in roots and shoots, we grew plants hydroponically for 3 weeks, shoots and

  10. Costs of jasmonic acid induced defense in aboveground and belowground parts of corn (Zea mays L.).

    Science.gov (United States)

    Feng, Yuanjiao; Wang, Jianwu; Luo, Shiming; Fan, Huizhi; Jin, Qiong

    2012-08-01

    Costs of jasmonic acid (JA) induced plant defense have gained increasing attention. In this study, JA was applied continuously to the aboveground (AG) or belowground (BG) parts, or AG plus BG parts of corn (Zea mays L.) to investigate whether JA exposure in one part of the plant would affect defense responses in another part, and whether or not JA induced defense would incur allocation costs. The results indicated that continuous JA application to AG parts systemically affected the quantities of defense chemicals in the roots, and vice versa. Quantities of DIMBOA and total amounts of phenolic compounds in leaves or roots generally increased 2 or 4 wk after the JA treatment to different plant parts. In the first 2 wk after application, the increase of defense chemicals in leaves and roots was accompanied by a significant decrease of root length, root surface area, and root biomass. Four weeks after the JA application, however, no such costs for the increase of defense chemicals in leaves and roots were detected. Instead, shoot biomass and root biomass increased. The results suggest that JA as a defense signal can be transferred from AG parts to BG parts of corn, and vice versa. Costs for induced defense elicited by continuous JA application were found in the early 2 wk, while distinct benefits were observed later, i.e., 4 wk after JA treatment.

  11. THE DEVELOPMENT OF PLANTS FOR THE PRODUCTION OF CONCENTRATED PASTES OF FRUIT AND VEGETABLE RAW MATERIALS

    Directory of Open Access Journals (Sweden)

    G. O. Magomedov

    2015-01-01

    Full Text Available Summary. Developed a new system for producing concentrated semi-finished products in the form of pastes for the food industry. Currently, an important task of the food industry is the creation of new products with the aim of improving the structure of the range, saving scarce raw materials, as well as reduce sugar intake; development of product functionality and products with extended shelf life. The use of local non-traditional types of plant materials can contribute to solving existing problems. Fruit and vegetable pastes are a valuable food products which can be used as a semifinished product in the confectionery, bakery, food concentrates industry. Fruit and vegetable purees have a distinct structurally viscous or pseudo-plastic properties and concentration form a very viscous mass. Already in the beginning of the process of concentration, i.e. at a relatively low degree of evaporation that leads to a rapid increase in the viscosity of the concentrate mass and reduce evaporation. With increasing temperature is the burning mass, and also change its color and flavor. Therefore, for the concentration of fruit and vegetable purees, you must use equipment whose design takes into account the possible rheological and thermal problems. The analysis of literary data structures evaporators and studies, we developed a system for producing concentrated pastes of fruit and vegetable raw materials. Developed installation can increase the quality of the finished product due to the intensification of the process of concentration, to reduce material and energy resources, increase productivity.

  12. Potential of Biogas Power Plant Produced by Anaerobic Digestion of Biodegradable Materials

    Directory of Open Access Journals (Sweden)

    Nur Shuhada Ghazali

    2013-09-01

    Full Text Available Biogas typically refers to a gas produced by the breakdown of organic matter in the absence of oxygen. It is a renewable energy source, like solar and wind energy. Furthermore, biogas can be produced from regionally available raw materials and recycled waste and is environmentally friendly and CO2 neutral. Biogas is produced by the anaerobic digestion or fermentation of biodegradable materials such as manure, sewage, municipal waste, green waste, plant material, and crops. Biogas comprises primarily methane (CH4 and carbon dioxide (CO2 and may have small amounts of hydrogen sulphide (H2S, moisture and siloxanes. The gases methane, hydrogen, and carbon monoxide (CO can be combusted or oxidized with oxygen. This energy release allows biogas to be used as a fuel. Biogas can be compressed, much like natural gas, and used to power motor vehicles. Biogas is a renewable fuel so it qualifies for renewable energy subsidies in some parts of the world. Biogas can also be cleaned and upgraded to natural gas standards when it becomes bio methane. This paper will discuss the potential of biogas in order to provide a clean, easily controlled source of renewable energy from organic waste materials for a small labour input, replacing firewood or fossil fuels which are becoming more expensive as supply falls behind demand.

  13. Development of plant-based resist materials in electron beam lithography

    Science.gov (United States)

    Takei, Satoshi; Oshima, Akihiro; Yanamori, Naomi; Sekiguchi, Atsushi; Kozawa, Takahiro; Tagawa, Seiichi

    2011-04-01

    Electron beam lithography has great potential for future production of nano-imprint templates, light-emitting diodes, solar cell devices, actuators, biosensors, and micro electro mechanical systems (MEMS) where continued success ultimately requires improvements in current processing technologies. Electron beam lithography is promising for advancing multiple electronic applications due to several advantages such as high resolution, deep depth of focus, flexibility in material design, and assumable cost. This study presents progress in the development of a new plant-based resist material (TPU-EBR1) to achieve high exposure sensitivity and lower film thickness shrinkage by electron beam irradiation. Highly efficient crosslinking properties and high quality patterning line images were provided by specific process conditions of 30 keV electron beam lithography. Lower film thickness shrinkage of the newly developed TPU-EBR than that of the referenced acrylate type resist material is one of key to achieve EB patterning. The validity of our approach using the developed TPU-EBR was confirmed experimentally. In addition, this new approach was demonstrated to apply glucose and dextrin derivatives as the eco-friendlier compounds to the resist materials in micro and nano-patterning processes for environmentally-compatible electronic device fabrications.

  14. 3D modelling of branching in plants

    NARCIS (Netherlands)

    Evers, J.B.

    2011-01-01

    Shoot branching is a key determinant of overall aboveground plant form. During plant development, the number of branches formed strongly influences the amount of light absorbed by the plant, and thus the plant’s competitive strength in terms of light capture in relation to neighbouring plants.

  15. An inexpensive alternative equipment for the plant material embedding in the paraffin under the vacuum

    Directory of Open Access Journals (Sweden)

    Carlos André Espolador Leitão

    2008-10-01

    Full Text Available The present work describes an equipment constructed using inexpensive material for embedding the plant material in the paraffin under the vacuum, using an oven and a vacuum pump. The equipment was tested using the samples of Rodriguezia venusta (Orchidaceae buds embedded in paraffin, where half of the samples were submitted to the vacuum by the equipment during the embedding. The material was sectioned with a rotary microtome, obtaining full series of quality sections. The control was hard to section with the microtome, obtaining damaged sections due the air bubbles, making the ribbon formation difficult. These results proved the effectiveness of the equipment, making it a practical, inexpensive and more portable solution for newly established laboratories.O presente trabalho apresenta um equipamento feito com material barato, destinado à inclusão de material botânico em parafina sob vácuo, utilizando-se uma estufa e uma bomba de vácuo. O equipamento foi testado utilizando-se amostras de botão floral de Rodriguezia venusta (Orchidaceae incluídas em parafina, das quais metade foi submetida ao vácuo pelo equipamento durante a infiltração. O material foi seccionado em micrótomo rotativo, obtendo-se séries completas de cortes de boa qualidade das amostras submetidas ao vácuo. O controle foi de difícil microtomia, obtendo-se cortes danificados pela presença de bolhas de ar, dificultando assim a formação de fitas. Estes resultados comprovam a eficácia do equipamento proposto, sendo este uma solução prática, barata e portátil para laboratórios em início de estruturação.

  16. A remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States

    Science.gov (United States)

    Byrd, Kristin B.; Ballanti, Laurel; Thomas, Nathan; Nguyen, Dung; Holmquist, James R.; Simard, Marc; Windham-Myers, Lisamarie

    2018-01-01

    Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our objective was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). We developed the first calibration-grade, national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. Using the random forest machine learning algorithm, we tested whether imagery from multiple sensors, Sentinel-1 C-band synthetic aperture radar, Landsat, and the National Agriculture Imagery Program (NAIP), can improve model performance. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n = 409, RMSE = 310 g/m2, 10.3% normalized RMSE), successfully predicted biomass for a range of marsh plant functional types defined by height, leaf angle and growth form. Model results were improved by scaling field-measured biomass calibration data by NAIP-derived 30 m fraction green vegetation. With a mean plant carbon content of 44.1% (n = 1384, 95% C.I. = 43.99%–44.37%), we generated regional 30 m aboveground carbon density maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map. We applied a multivariate delta method to calculate uncertainties in regional carbon densities and stocks that considered standard error in map area, mean biomass and mean %C. Louisiana palustrine emergent marshes had the highest C density (2.67 ± 0.004 Mg/ha) of all regions, while San Francisco Bay brackish/saline marshes had

  17. INFLUENCE OF CULTIVAR AND PLANTING MATERIAL REGARDING PHENOLOGICAL ASPECTS AT DAHLIA HYBRIDA

    Directory of Open Access Journals (Sweden)

    Ioana Ciobanu (Moldovan

    2017-07-01

    Full Text Available Dahlia is one of the most important cut flowers and it is used also for garden decor during the summer. Based on the researches conducted on seven cultivars of Dahlia hybrida cactus type: 'Kennemerland', 'Tsuki Yori No Sisha', 'Hayley Jane', 'Purple Gem', 'Star Favourite', 'Park Princess', 'Friquolet', it was analysed the influence of cultivar and planting material (forced and unforced tuberous roots on some phenological aspects. Phenological observations conducted on the plants were the following: debut of growth, appearance of the first flower buds, opening of the first flower buds and decorative period. According to the data collected, it was calculated the duration between phenophases as number of days. After the interpretation of the results using Ducan test, it was found that forcing of the tuberous roots has a positive influence on the duration of decorative period, that took place in an interval of 58.11-112.55 days for the cultivars 'Park Princess' and 'Kennemerland' and by comparison, for the unforced tuberous roots, the decorative period was much shorter for cultivars 'Star Favourite' (29.77 days and 'Kennemerland' (105.55 days. Studies reveal that forcing of the Dahlia tuberous roots is causing the decrease of number of days from planting to sprouting that also helps in extending the decorative period.

  18. Influence of Cultivar and Planting Material on Soluble Dry Matter Content of Dahlia Tubers

    Directory of Open Access Journals (Sweden)

    Ioana Ciobanu

    2016-11-01

    Full Text Available The aim of present paper was to study the influence ofthe planting material (forced and unforced tuberous roots, and of the cultivar on the average soluble dry matter content (% from Dahlia tuberous roots at harvest. Also, there were determined a series of relationships between soluble dry matter content and main plant characteristics, like average shoots per plant and average weight of the tuberous roots at harvesting. The study was conducted for two years at University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca on seven cultivars of Dahlia variabilis ‘cactus’ type: 'Kennemerland', 'TsukiYori No Sisha', 'Hayley Jane', 'Purple Gem', 'Star Favourite', 'Park Princess' and 'Friquolet'. Based on the results obtained it can be concluded that the forcing of the tuberous roots affected the accumulation of soluble dry matter content at dahlia tubers, but it also depends on the cultivar. The highest content of soluble dry matter was at following cultivars 'Star Favourite'/forced tubers (25.47%, 'TsukiYori No Sisha'/unforced tubers (24.80%, ‘Kennemerland’/unforced tubers (24.27%, 'Hayley Jane'/forced tubers (23.97%, and 'TsukiYori No Sisha'/forced tubers (22.57%. These dahlia cultivars can be recommended for inulin extraction.

  19. Phytomedication based on raw material from plants of the family gramineae

    Directory of Open Access Journals (Sweden)

    Ірина Сергіївна Бурлака

    2016-01-01

    Full Text Available The healing properties of medicinal plants are conditioned by biologically active substances (BAS in their composition, which in humans cause some therapeutic effect. These promising crops are Reedgrass - Calamagrostis epigeios (L. Roth. and Tufted hairgrass - Deschampsia caespitosa (L. P. Beauv., family cereals - Poaceae Barnh., which are widely distributed in Ukraine and CIS countries.Aim. The aim of our study was to develop a method of making tincture of Reedgrass and , Tufted hairgrass standardization and definition of pharmacological activity.Methods. Technological parameters of raw material were identified, BAS group identification was made using a qualitative method of reactions and thin layer chromatography (TLC. Standardization by spectrophotometric method was conducted, pharmacological activity by biological methods was performed.Results. Method of obtaining the tincture of Reedgrass and Tufted hairgrass was substantiated, tincture was standardized and it`s acute toxicity, diuretic and anti-inflammatory activities were defined as a result of the study.Conclusions. Reedgrass and Tufted hairgrass are a promising plant materials to produce phytomedications based on them

  20. Materials integrity analysis for application of POSCO developed STS to Korean Nuclear Power Plants

    International Nuclear Information System (INIS)

    Hyun-Young, Ch.; Tae-Eun, J.; Young-Sik, K.

    2009-01-01

    Full text of publication follows: POSCO has developed duplex stainless steel (S32750) and hyper super duplex stainless steels for the purpose of using them in the secondary circulation cooling water system in Korean nuclear power plants. This system supplies seawater to cooling water heat exchanger tubes, related pipes and chlorine injection system. In normal operation, seawater is supplied to heat exchanger through the exit of circulation pump headers and the heat exchanged sea water is extracted to the discharge pipes in circulation cooling water system connected to the circulation water discharge lines. The flow velocity of circulation cooling water system in nuclear power plants is high and damages of components from corrosion are severe. Therefore, this environment makes requiring of using high strength and high corrosion resistant steels. Hyper duplex stainless steel (27Cr-7.0Ni-2.5Mo-3.2W-0.35N) has been newly developed in Korea and is being improved for applying to nuclear power plants. In this study, the physical and mechanical properties and corrosion resistance of currently producing stainless steels and newly developed materials are qualitatively evaluated in comparative to commercial stainless steels in other countries. The properties of weld are analyzed and the best compositions of welding rod are suggested. The optimum weld condition is derived for ensuring HAZ phase ratios and controlling weld cracks. For applying these materials to the seawater heat exchanger, CCT and CPT in weldments are measured using mock-up tube testers that are newly designed for this study. Coupons of candidate materials are introduced in the real system and corrosion resistance of them are analyzed. As results of all experiments, the current CCT and CPT criteria in Korean nuclear power plants are reviewed, and the more actual and strengthened criteria will be suggested. The real scale components made of newly developed hyper super duplex stainless steel will be applied to

  1. Corrosion Behavior Of Potential Structural Materials For Use In Nitrate Salts Based Solar Thermal Power Plants

    Science.gov (United States)

    Summers, Kodi

    The increasing global demand for electricity is straining current resources of fossil fuels and placing increased pressure on the environment. The implementation of alternative sources of energy is paramount to satisfying global electricity demand while reducing reliance on fossil fuels and lessen the impact on the environment. Concentrated solar power (CSP) plants have the ability to harness solar energy at an efficiency not yet achieved by other technologies designed to convert solar energy to electricity. The problem of intermittency in power production seen with other renewable technologies can be virtually eliminated with the use of molten salt as a heat transfer fluid in CSP plants. Commercial and economic success of CSP plants requires operating at maximum efficiency and capacity which requires high temperature and material reliability. This study investigates the corrosion behavior of structural alloys and electrochemical testing in molten nitrate salts at three temperatures common to CSP plants. Corrosion behavior was evaluated using gravimetric and inductively-coupled plasma optical emission spectroscopy (ICP-OES) analysis. Surface morphology was studied using scanning electron microscopy. Surface oxide structure and chemistry was characterized using X-ray diffraction, Raman spectroscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. Electrochemical behavior of candidate structural alloys Alloy 4130, austenitic stainless steel 316, and super-austenitic Incoloy 800H was evaluated using potentiodynamic polarization characteristics. It was observed that electrochemical evaluation of these candidate materials correlates well with the corrosion behavior observed from gravimetric and ICP-OES analysis. This study identifies that all three alloys exhibited acceptable corrosion in 300°C molten salt while elevated salt temperatures require the more corrosion resistant alloys, stainless steel 316 and 800H. Characterization of the sample

  2. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright; R. N. Wright

    2010-07-01

    The U.S. Department of Energy (DOE) has selected the High-Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production, with an outlet gas temperature in the range of 750°C, and a design service life of 60 years. The reactor design will be a graphite-moderated, helium-cooled, prismatic, or pebble bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. This technology development plan details the additional research and development (R&D) required to design and license the NGNP RPV, assuming that A 508/A 533 is the material of construction. The majority of additional information that is required is related to long-term aging behavior at NGNP vessel temperatures, which are somewhat above those commonly encountered in the existing database from LWR experience. Additional data are also required for the anticipated NGNP environment. An assessment of required R&D for a Grade 91 vessel has been retained from the first revision of the R&D plan in Appendix B in somewhat less detail. Considerably more development is required for this steel compared to A 508/A 533 including additional irradiation testing for expected NGNP operating temperatures, high-temperature mechanical properties, and extensive studies of long-term microstructural stability.

  3. Application of high temperature phase change materials for improved efficiency in waste-to-energy plants.

    Science.gov (United States)

    Dal Magro, Fabio; Xu, Haoxin; Nardin, Gioacchino; Romagnoli, Alessandro

    2018-03-01

    This study reports the thermal analysis of a novel thermal energy storage based on high temperature phase change material (PCM) used to improve efficiency in waste-to-energy plants. Current waste-to-energy plants efficiency is limited by the steam generation cycle which is carried out with boilers composed by water-walls (i.e. radiant evaporators), evaporators, economizers and superheaters. Although being well established, this technology is subjected to limitations related with high temperature corrosion and fluctuation in steam production due to the non-homogenous composition of solid waste; this leads to increased maintenance costs and limited plants availability and electrical efficiency. The proposed solution in this paper consists of replacing the typical refractory brick installed in the combustion chamber with a PCM-based refractory brick capable of storing a variable heat flux and to release it on demand as a steady heat flux. By means of this technology it is possible to mitigate steam production fluctuation, to increase temperature of superheated steam over current corrosion limits (450°C) without using coated superheaters and to increase the electrical efficiency beyond 34%. In the current paper a detailed thermo-mechanical analysis has been carried out in order to compare the performance of the PCM-based refractory brick against the traditional alumina refractory bricks. The PCM considered in this paper is aluminium (and its alloys) whereas its container consists of high density ceramics (such as Al 2 O 3 , AlN and Si 3 N 4 ); the different coefficient of linear thermal expansion for the different materials requires a detailed thermo-mechanical analysis to be carried out to ascertain the feasibility of the proposed technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Methods for estimating aboveground biomass and its components for Douglas-fir and lodgepole pine trees

    Science.gov (United States)

    K.P. Poudel; H. Temesgen

    2016-01-01

    Estimating aboveground biomass and its components requires sound statistical formulation and evaluation. Using data collected from 55 destructively sampled trees in different parts of Oregon, we evaluated the performance of three groups of methods to estimate total aboveground biomass and (or) its components based on the bias and root mean squared error (RMSE) that...

  5. Responses of Soil Bacterial Communities to Nitrogen Deposition and Precipitation Increment Are Closely Linked with Aboveground Community Variation.

    Science.gov (United States)

    Li, Hui; Xu, Zhuwen; Yang, Shan; Li, Xiaobin; Top, Eva M; Wang, Ruzhen; Zhang, Yuge; Cai, Jiangping; Yao, Fei; Han, Xingguo; Jiang, Yong

    2016-05-01

    It has been predicted that precipitation and atmospheric nitrogen (N) deposition will increase in northern China; yet, ecosystem responses to the interactive effects of water and N remain largely unknown. In particular, responses of belowground microbial community to projected global change and their potential linkages to aboveground macro-organisms are rarely studied. In this study, we examined the responses of soil bacterial diversity and community composition to increased precipitation and multi-level N deposition in a temperate steppe in Inner Mongolia, China, and explored the diversity linkages between aboveground and belowground communities. It was observed that N addition caused the significant decrease in bacterial alpha-diversity and dramatic changes in community composition. In addition, we documented strong correlations of alpha- and beta-diversity between plant and bacterial communities in response to N addition. It was found that N enriched the so-called copiotrophic bacteria, but reduced the oligotrophic groups, primarily by increasing the soil inorganic N content and carbon availability and decreasing soil pH. We still highlighted that increased precipitation tended to alleviate the effects of N on bacterial diversity and dampen the plant-microbe connections induced by N. The counteractive effects of N addition and increased precipitation imply that even though the ecosystem diversity and function are predicted to be negatively affected by N deposition in the coming decades; the combination with increased precipitation may partially offset this detrimental effect.

  6. ALLOMETRIC EQUATIONS FOR ESTIMATING ABOVEGROUND BIOMASS IN PAPUA TROPICAL FOREST

    Directory of Open Access Journals (Sweden)

    Sandhi Imam Maulana

    2014-10-01

    Full Text Available Allometric equations can be used to estimate biomass and carbon stock of  the forest. However, so far the allometric equations for commercial species in Papua tropical forests have not been appropriately developed. In this research, allometric equations are presented based on the genera of  commercial species. Few equations have been developed for the commercial species of  Intsia, Pometia, Palaquium and Vatica genera and an equation of  a mix of  these genera. The number of  trees sampled in this research was 49, with diameters (1.30 m above-ground or above buttresses ranging from 5 to 40 cm. Destructive sampling was used to collect the samples where Diameter at Breast Height (DBH and Wood Density (WD were used as predictors for dry weight of  Total Above-Ground Biomass (TAGB. Model comparison and selection were based on the values of  F-statistics, R-sq, R-sq (adj, and average deviation. Based on these statistical indicators, the most suitable model for Intsia, Pometia, Palaquium and Vatica genera respectively are Log(TAGB = -0.76 + 2.51Log(DBH, Log(TAGB = -0.84 + 2.57Log(DBH, Log(TAGB = -1.52 + 2.96Log(DBH, and Log(TAGB = -0.09 + 2.08Log(DBH. Additional explanatory variables such as Commercial Bole Height (CBH do not really increase the indicators’ goodness of  fit for the equation. An alternative model to incorporate wood density should  be considered for estimating the above-ground biomass for mixed genera. Comparing the presented mixed-genera equation; Log(TAGB = 0.205 + 2.08Log(DBH + 1.75Log(WD, R-sq: 97.0%, R-sq (adj: 96.9%, F statistics 750.67, average deviation: 3.5%; to previously published datashows that this local species specific equation differs substantially from previously published equations and this site-specific equation is  considered to give a better estimation of  biomass.

  7. Microbial assimilation of 14C of ground and unground plant materials decomposing in a loamy sand and a clay soil

    DEFF Research Database (Denmark)

    Sørensen, P.; Ladd, J.N.; Amato, M.

    1996-01-01

    to soil, a more intimate contact between the plant constituents and the soil matrix, thereby enhancing opportunities for the colonization by decomposer organisms that are more protected against predation. The greater associated of protected cells with the soil matrix results in a higher retention......The influence of grinding plant materials on the microbial decomposition and the distribution of plant-derived carbon in soil was measured. Ground and unground, C-14-labelled subclover leaves (Trifolium subterraneum) were added to a loamy sand and clay soil and incubated for 42 d at 25 degrees C...... of the plant residue amendment. The early (

  8. Metallic substrate materials for thin film oxygen transport membranes for application in a fossil power plant

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Y.; Baumann, S.; Sebold, D.; Meulenberg, W.A.; Stoever, D. [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energieforschung (IEF) - IEF-1 Materials Synthesis and Processing

    2010-07-01

    La{sub 0.58}Sr{sub 0.4}CO{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF58428) and Ba{sub 0.5}Sr{sub 0.5}CO{sub 0.8}Fe{sub 3-{delta}} (BSCF5582) exhibit high oxygen permeability due to their high ionic and electronic conductivity. For this reason they are under discussion for application in oxygen transport membranes (OTMs) in zero-emission power plants using oxyfuel technology. A thin film membrane which can increase the oxygen flux is beneficial and a structural substrate is required. Two types of Ni-base alloys were studied as substrate material candidates with a number of advantages, such as high strength, high temperature stability, easy joining and similar thermal expansion coefficient to the selected perovskite materials. Chemical compositions and thermal expansion coefficients of Ni-base alloys were measured in this study. LSCF58428 and BSCF5582 layers were screen printed on Ni-based alloys and co-fired at high temperature in air. The microstructure and element analysis of samples were characterized by scanning electron microscopy (SEM and EDX). A Ni-base alloy, MCrAlY, with a high Al content was the most suitable substrate material, and showed better chemical compatibility with perovskite materials at high temperature than Hastelloy X, which is a chromia-forming Ni-base alloy. A reaction occurred between Sr in the perovskite and the alumina surface layers on MCr-AlY. However, the reaction zone did not increase in thickness during medium-term annealing at 800 C in air. Hence, it is expected that this reaction will not prevent the application of MCr-AlY as a substrate material. (orig.)

  9. Mechanochemical modification of the composition and structure of plant raw materials to control the combustion of alternative fuel

    Directory of Open Access Journals (Sweden)

    Bychkov Aleksey

    2017-01-01

    Full Text Available The possibilities of mechanochemistry in processing of renewable lignocellulose raw material into solid kinds of biofuel are demonstrated in this work. A review of lignocellulose raw materials promising for our country is presented. These raw materials include wastes from agriculture and forestry, and the biomass of rapidly growing plants. The physicochemical properties of lignocellulose materials with different delignification degrees were modeled with the help of the artificial mixtures of plant raw material with purified cellulose and lignin. The data illustrating the effect of disperse state and lignin content on the reactivity of the material in subsequent combustion are presented. The tests at the combustion bench with the thermal power up to 5 MW allowed determining the optimal combustion parameters for the obtained biofuel in the autothermal mode.

  10. Natural and construction materials and plant products. Raw materials, constructional physics, design and construction. 2. upd. and enl. ed.; Natuerliche und pflanzliche Baustoffe. Rohstoff - Bauphysik - Konstruktion

    Energy Technology Data Exchange (ETDEWEB)

    Holzmann, Gerhard; Wangelin, Matthias; Bruns, Rainer

    2012-07-01

    The book discusses all relevant renewable constructional materials made from fibre or dyeing plants along with their physical and chemical fundamentals. Protection of resources, environmental protection, and pollutants in constructional materials are gone into as well. [German] Dieses Buch behandelt alle wichtige nachwachsenden, pflanzlichen Baustoffe aus Faser- und Faerberpflanzen sowie dazugehoerige physikalische und chemische Grundlagen. Angesprochen werden auch Ressourcen- und Umweltschutz sowie Schadstoffe aus Bauprodukten.

  11. Optimal measurement uncertainties for materials accounting in a fast breeder reactor spent-fuel reprocessing plant

    International Nuclear Information System (INIS)

    Dayem, H.A.; Kern, E.A.; Markin, J.T.

    1982-01-01

    Optimization techniques are used to calculate measurement uncertainties for materials accountability instruments in a fast breeder reactor spent-fuel reprocessing plant. Optimal measurement uncertainties are calculated so that performance goals for detecting materials loss are achieved while minimizing the total instrument development cost. Improved materials accounting in the chemical separations process (111 kg Pu/day) to meet 8-kg plutonium abrupt (1 day) and 40-kg plutonium protracted (6 months) loss-detection goals requires: process tank volume and concentration measurements having precisions less than or equal to 1%; accountability and plutonium sample tank volume measurements having precisions less than or equal to 0.3%, short-term correlated errors less than or equal to 0.04%, and long-term correlated errors less than or equal to 0.04%; and accountability and plutonium sample tank concentration measurements having precisions less than or equal to 0.4%, short-term correlated errors less than or equal to 0.1%, and long-term correlated errors less than or equal to 0.05%

  12. Tentative to use wastes from thermal power plants for construction building materials

    Science.gov (United States)

    Bui, Quoc-Bao; Phan, To-Anh-Vu; Tran, Minh-Tung; Le, Duc-Hien

    2018-04-01

    Thermal power plants (TPP) generates wastes (bottom and fly ashes) which become a serious environmental problem in Vietnam. Indeed, although in several countries fly ash can be used for cement industry, fly ash from actual TPP in Vietnam does not have enough good quality for cement production, because the fly ash treatment phase has not yet included in the generations of existing Vietnamese TPP. That is why bottom ash and fly ash purely become wastes and their evacuation is an urgent demand of the society. This paper presents an investigation using fly and bottom ashes in the manufacturing of construction materials. The main aims of this study is to reduce environmental impacts of fly and bottom ashes, and to test another non-conventional binder to replace cement in the manufacture of unburnt bricks. Several proportions of fly ash, bottom ash, cement, gravel, sand and water were tested to manufacture concretes. Then, geopolymer was prepared from the fly ash and an activator. Specimens were tested in uniaxial compressions. Results showed that the cement concrete tested had the compressive strengths which could be used for low rise constructions and the material using geopolymer could be used for non-load-bearing materials (unburnt bricks).

  13. Phosphorus transformations in plant-based and bio-waste materials induced by pyrolysis.

    Science.gov (United States)

    Robinson, James Stephen; Baumann, Karen; Hu, Yongfeng; Hagemann, Philipp; Kebelmann, Lutz; Leinweber, Peter

    2018-01-01

    Strategies are needed to increase the sustainability of phosphorus (P) fertiliser management in agriculture. This paper reports on the potential of pyrolysis treatment to recycle P from renewable materials previously regarded as wastes. The study used K-edge X-ray absorption near-edge structure (XANES) spectroscopy to examine chemical forms of P in the waste feedstock materials and corresponding biochars (pyrolysis at 480-500 °C) of four ligno-cellulosic, plant-based residues and five relatively P-rich livestock and water-treatment by-products, to acquire information on changes in potential P fertiliser value. Pyrolysis enriched P in the biochars by factors of 1.3-4.3, thus offering wide-ranging P fertiliser potential. XANES spectroscopy revealed hydroxyapatite (HAP) as one of the dominant chemical P compounds in the feedstocks, ranging from 14% (rice husks) to 98% (animal bone) of total P. For most materials, pyrolysis increased the proportion of HAP, and pyrophosphates were generated in several cases. These alterations possibly lead to diversity in the P solubility characteristics of the biochars if used as soil amendments; this is an important property of environmentally sound P fertilisers.

  14. Statistical models for thermal ageing of steel materials in nuclear power plants

    International Nuclear Information System (INIS)

    Persoz, M.

    1996-01-01

    Some category of steel materials in nuclear power plants may be subjected to thermal ageing, whose extent depends on the steel chemical composition and the ageing parameters, i.e. temperature and duration. This ageing affects the 'impact strength' of the materials, which is a mechanical property. In order to assess the residual lifetime of these components, a probabilistic study has been launched, which takes into account the scatter over the input parameters of the mechanical model. Predictive formulae for estimating the impact strength of aged materials are important input data of the model. A data base has been created with impact strength results obtained from an ageing program in laboratory and statistical treatments have been undertaken. Two kinds of model have been developed, with non linear regression methods (PROC NLIN, available in SAS/STAT). The first one, using a hyperbolic tangent function, is partly based on physical considerations, and the second one, of an exponential type, is purely statistically built. The difficulties consist in selecting the significant parameters and attributing initial values to the coefficients, which is a requirement of the NLIN procedure. This global statistical analysis has led to general models that are unction of the chemical variables and the ageing parameters. These models are as precise (if not more) as local models that had been developed earlier for some specific values of ageing temperature and ageing duration. This paper describes the data and the methodology used to build the models and analyses the results given by the SAS system. (author)

  15. Determination of silicon in plant materials by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Paulino Florêncio de [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Centro de Tecnologia Canavieira, PO Box 162, 13400-970 Piracicaba, SP (Brazil); Santos, Dário [Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Rua Prof. Artur Riedel, 275, 09972-270, Diadema, SP (Brazil); Gustinelli Arantes de Carvalho, Gabriel; Nunes, Lidiane Cristina [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Silva Gomes, Marcos da [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP (Brazil); Guerra, Marcelo Braga Bueno [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Krug, Francisco José, E-mail: fjkrug@cena.usp.br [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil)

    2013-05-01

    In spite of the importance of Si for improving the productivity of many important crops, such as those from the Poaceae family (e.g. sugar cane, maize, wheat, rice), its quantitative determination in plants is seldom carried out and restricted to few laboratories in the world. There is a survey of methods in the literature, but most of them are either laborious or difficult to validate in view of the low availability of reference materials with a certified Si mass fraction. The aim of this study is to propose a method for the direct determination of Si in pellets of plant materials by laser-induced breakdown spectroscopy (LIBS). The experimental setup was designed by using a Q-switched Nd:YAG laser at 1064 nm (5 ns, 10 Hz) and the emission signals were collected by lenses into an optical fiber coupled to an Echelle spectrometer equipped with an intensified charge-coupled device. Experiments were carried out with leaves from 24 sugar cane varieties, with mass fractions varying from ca. 2 to 10 g kg{sup −1} Si. Pellets prepared from cryogenically ground leaves were used as test samples for both method development and validation of the calibration model. Best results were obtained when the test samples were interrogated with laser fluence of 50 J cm{sup −2} (750 μm spot size) and measurements carried out at Si I 212.412 nm emission line. The results obtained by LIBS were compared with those from inductively coupled plasma optical emission spectrometry after oven-induced alkaline digestion, and no significant differences were observed after applying the Student's t-test at 95% confidence level. The trueness of the proposed LIBS method was also confirmed from the analysis of CRM GBW 07603 (Bush branches and leaves). - Highlights: • This is the first application of LIBS for determination of Si in plant materials. • Data indicate that the method is appropriate for Si diagnosis in routine analysis. • Silicon can be simultaneously determined with macro- and

  16. Preliminary materials selection issues for the next generation nuclear plant reactor pressure vessel.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Majumdar, S.; Shankar, P. S.; Shah, V. N.; Nuclear Engineering Division

    2007-03-21

    In the coming decades, the United States and the entire world will need energy supplies to meet the growing demands due to population increase and increase in consumption due to global industrialization. One of the reactor system concepts, the Very High Temperature Reactor (VHTR), with helium as the coolant, has been identified as uniquely suited for producing hydrogen without consumption of fossil fuels or the emission of greenhouse gases [Generation IV 2002]. The U.S. Department of Energy (DOE) has selected this system for the Next Generation Nuclear Plant (NGNP) Project, to demonstrate emissions-free nuclear-assisted electricity and hydrogen production within the next 15 years. The NGNP reference concepts are helium-cooled, graphite-moderated, thermal neutron spectrum reactors with a design goal outlet helium temperature of {approx}1000 C [MacDonald et al. 2004]. The reactor core could be either a prismatic graphite block type core or a pebble bed core. The use of molten salt coolant, especially for the transfer of heat to hydrogen production, is also being considered. The NGNP is expected to produce both electricity and hydrogen. The process heat for hydrogen production will be transferred to the hydrogen plant through an intermediate heat exchanger (IHX). The basic technology for the NGNP has been established in the former high temperature gas reactor (HTGR) and demonstration plants (DRAGON, Peach Bottom, AVR, Fort St. Vrain, and THTR). In addition, the technologies for the NGNP are being advanced in the Gas Turbine-Modular Helium Reactor (GT-MHR) project, and the South African state utility ESKOM-sponsored project to develop the Pebble Bed Modular Reactor (PBMR). Furthermore, the Japanese HTTR and Chinese HTR-10 test reactors are demonstrating the feasibility of some of the planned components and materials. The proposed high operating temperatures in the VHTR place significant constraints on the choice of material selected for the reactor pressure vessel for

  17. Evaluating lidar point densities for effective estimation of aboveground biomass

    Science.gov (United States)

    Wu, Zhuoting; Dye, Dennis G.; Stoker, Jason M.; Vogel, John M.; Velasco, Miguel G.; Middleton, Barry R.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) was recently established to provide airborne lidar data coverage on a national scale. As part of a broader research effort of the USGS to develop an effective remote sensing-based methodology for the creation of an operational biomass Essential Climate Variable (Biomass ECV) data product, we evaluated the performance of airborne lidar data at various pulse densities against Landsat 8 satellite imagery in estimating above ground biomass for forests and woodlands in a study area in east-central Arizona, U.S. High point density airborne lidar data, were randomly sampled to produce five lidar datasets with reduced densities ranging from 0.5 to 8 point(s)/m2, corresponding to the point density range of 3DEP to provide national lidar coverage over time. Lidar-derived aboveground biomass estimate errors showed an overall decreasing trend as lidar point density increased from 0.5 to 8 points/m2. Landsat 8-based aboveground biomass estimates produced errors larger than the lowest lidar point density of 0.5 point/m2, and therefore Landsat 8 observations alone were ineffective relative to airborne lidar for generating a Biomass ECV product, at least for the forest and woodland vegetation types of the Southwestern U.S. While a national Biomass ECV product with optimal accuracy could potentially be achieved with 3DEP data at 8 points/m2, our results indicate that even lower density lidar data could be sufficient to provide a national Biomass ECV product with accuracies significantly higher than that from Landsat observations alone.

  18. JORDANIAN ZEOLITIC TUFF AS A RAW MATERIAL FOR THE PREPARATION OF SUBSTRATES USED FOR PLANT GROWTH

    Directory of Open Access Journals (Sweden)

    Ivan Manolov

    2006-07-01

    Full Text Available One of the problems faced in front of industry for potting media is limited amount of quality row materials (mainly peat for unlimited production of quality substrates in the future. The using of natural minerals for production of substrates or as amendments for existing substrates is possible solution for this problem. The natural zeolites with their specific properties – high CEC, high content of macro and microelements are one of good alternatives to the traditional potting media. Each zeolite deposit has unique chemical composition, physical and mechanical properties. That is why obligatory preliminary condition for their successful application in agriculture is caring out of biological study with agricultural plants for determination of the optimal parameters of chemical and physicochemical properties of the substrates.

  19. NDA systems to support nuclear material control and accounting in spent fuel reprocessing plants

    International Nuclear Information System (INIS)

    Simpson, J.C.B.; Clark, P.A.; Nicols, O.P.; Whitehouse, K.R.

    1999-01-01

    Detailed descriptions of a number of instrument systems relating to accountancy and safeguarding of plutonium operations and storage on Thermal Oxide Plant (Thorp) are provided. The systems described include the Plutonium Inventory Measurement System (PIMS), used to provide Near Real Time Materials Accountancy (NRTMA) information within the Thorp plutonium finishing area; the Product Can Contents Monitor (PCCM), used to verify can weight measurements and isotopic composition and; the In-Store Plutonium Verification Monitor, used to provide in-situ measurements of plutonium in cans whilst they are in their storage channels. These nondestructive systems are necessarily combined with other physical security, surveillance and identification arrangements for the handling and storage of plutonium product cans [ru

  20. Study of ferromagnetic component base material on nuclear power plant testing

    International Nuclear Information System (INIS)

    Soedardjo; Histori; Triyadi, Ari

    1998-01-01

    Ferromagnetic component base material testing on Nuclear Power Plant (NPP) has been studied. NPP component was chosen is A533 grade B2 steel, which is commonly used for pressure vessels in light-water reactor. The testing development technology we performed from the acoustic emission measurement and magnetic field measurement combination and namely Barkhausen noise measurement technique. The non destructive Test provides to residual stress and characteristic microstructure measurement. The metallurgical effect and magnetomechanical acoustic emission parameters will be tried to study the Fe-Ni content. The result of study was recrystallization of dislocated grains proceeds at 600 o C and tempering at 650 o C produced annealed ferrite plus carbide structure

  1. Evaluation of automated analysis of 15N and total N in plant material and soil

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1991-01-01

    was lower than 0.1%. The CV of repeated analyses of N-15-labelled plant material and soil samples varied between 0.3% and 1.1%. The reproducibility of repeated total N analyses using the automated method was comparable to results obtained with a semi-micro Kjeldahl procedure. However, the automated method...... analysis showed that the recovery of inorganic N in the NH3 trap was lower when the N was diffused from water than from 2 M KCl. The results also indicated that different proportions of the NO3- and the NH4+ in aqueous solution were recovered in the trap after combined diffusion. The method is most suited...

  2. Turning Waste into Value: Nanosized Natural Plant Materials of Solanum incanum L. and Pterocarpus erinaceus Poir with Promising Antimicrobial Activities

    Directory of Open Access Journals (Sweden)

    Sharoon Griffin

    2016-04-01

    Full Text Available Numerous plants are known to exhibit considerable biological activities in the fields of medicine and agriculture, yet access to their active ingredients is often complicated, cumbersome and expensive. As a consequence, many plants harbouring potential drugs or green phyto-protectants go largely unnoticed, especially in poorer countries which, at the same time, are in desperate need of antimicrobial agents. As in the case of plants such as the Jericho tomato, Solanum incanum, and the common African tree Pterocarpus erinaceus, nanosizing of original plant materials may provide an interesting alternative to extensive extraction and isolation procedures. Indeed, it is straightforward to obtain considerable amounts of such common, often weed-like plants, and to mill the dried material to more or less uniform particles of microscopic and nanoscopic size. These particles exhibit activity against Steinernema feltiae or Escherichia coli, which is comparable to the ones seen for processed extracts of the same, respective plants. As S. feltiae is used as a model nematode indicative of possible phyto-protective uses in the agricultural arena, these findings also showcase the potential of nanosizing of crude “waste” plant materials for specific practical applications, especially—but not exclusively—in developing countries lacking a more sophisticated industrial infrastructure.

  3. PLE in the analysis of plant compounds. Part II: One-cycle PLE in determining total amount of analyte in plant material.

    Science.gov (United States)

    Dawidowicz, Andrzej L; Wianowska, Dorota

    2005-04-29

    Pressurised liquid extraction (PLE) is recognised as one of the most effective sample preparation methods. Despite the enhanced extraction power of PLE, the full recovery of an analyte from plant material may require multiple extractions of the same sample. The presented investigations show the possibility of estimating the true concentration value of an analyte in plant material employing one-cycle PLE in which plant samples of different weight are used. The performed experiments show a linear dependence between the reciprocal value of the analyte amount (E*), extracted in single-step PLE from a plant matrix, and the ratio of plant material mass to extrahent volume (m(p)/V(s)). Hence, time-consuming multi-step PLE can be replaced by a few single-step PLEs performed at different (m(p)/V(s)) ratios. The concentrations of rutin in Sambucus nigra L. and caffeine in tea and coffee estimated by means of the tested procedure are almost the same as their concentrations estimated by multiple PLE.

  4. Fermentation of Plant Material - Effect on Sugar Content and Stability of Bioactive Compounds

    Directory of Open Access Journals (Sweden)

    Reis Bruno A. dos

    2014-12-01

    Full Text Available Extraction is a method often used to obtain products rich in bioactive compounds from plant material. Most of the solvents used for the poly-phenols extraction simultaneously extract also sugars, undesirable as a component of health-promoting food. Fermentation might be a simple, cheap and efficient way of sugar elimination. In our study, black tea and goji berries, both known for their health benefits, were used and alcoholic fermentation by Saccharomyces cerevisiae was carried out to eliminate sugars. In the course of fermentation the concentration of polyphenols, L-theanine and carotenoids was evaluated in order to verify the preservation of selected bioactive compounds. Decreases in sugar content, formation of ethanol and yeasts growth were monitored during fermentation. The fermentation of black tea decreased the sugar concentration by 84% within 6 h without decreasing total polyphenols and L-theanine contents. Goji berry fermentation yielded a sugars decrease of 87% within 24 h, without decrease in poly-phenol content. However, carotenoid content was reduced by 17%. The study showed that fermentation was an effective way to decrease sugar content in plant extracts, and therefore it might be a pertinent step to concentrate bioactives.

  5. Effect of turbine materials on power generation efficiency from free water vortex hydro power plant

    International Nuclear Information System (INIS)

    Sritram, P; Treedet, W; Suntivarakorn, R

    2015-01-01

    The objective of this research was to study the effect of turbine materials on power generation efficiency from the water free vortex hydro power plant made of steel and aluminium. These turbines consisted of five blades and were twisted with angles along the height of water. These blades were the maximum width of 45 cm. and height of 32 cm. These turbines were made and experimented for the water free vortex hydro power plant in the laboratory with the water flow rate of 0.68, 1.33, 1.61, 2.31, 2.96 and 3.63 m 3 /min and an electrical load of 20, 40, 60, 80 and 100 W respectively. The experimental results were calculated to find out the torque, electric power, and electricity production efficiency. From the experiment, the results showed that the maximum power generation efficiency of steel and aluminium turbine were 33.56% and 34.79% respectively. From the result at the maximum water flow rate of 3.63 m 3 /min, it was found that the torque value and electricity production efficiency of aluminium turbine was higher than that of steel turbine at the average of 8.4% and 8.14%, respectively. This result showed that light weight of water turbine can increase the torque and power generation efficiency. (paper)

  6. Variation in plant-mediated interactions between rhizobacteria and caterpillars: potential role of soil composition

    NARCIS (Netherlands)

    Pangesti, N.P.D.; Pineda Gomez, A.M.; Dicke, M.; Loon, van J.J.A.

    2015-01-01

    Selected strains of non-pathogenic rhizobacteria can trigger induced systemic resistance (ISR) in plants against aboveground insect herbivores. However, the underlying mechanisms of plant-mediated interactions between rhizobacteria and herbivorous insects are still poorly understood. Using

  7. Speciation of arsenic in plants by HPLC-HG-AFS: extraction optimisation on CRM materials and application to cultivated samples.

    Science.gov (United States)

    Bohari, Yusuf; Lobos, Gabriella; Pinochet, Hugo; Pannier, Florence; Astruc, Annette; Potin-Gautier, Martine

    2002-08-01

    A recently developed method for the determination of arsenic species (arsenite, arsenate, monomethylarsonate, MMAA, and dimethylarsinate, DMAA) has been applied to the study of arsenic speciation in plants. This method uses ion-exchange liquid chromatography coupled on-line to atomic fluorescence spectrometry through continuous hydride generation. Various extraction procedures have been studied in detail using three plant certified reference materials. None of the procedures tested revealed fully satisfying results with all kinds of plant samples; microwave assisted extraction with 0.3 mol dm-3 orthophosphoric acid was found to be the most convenient for dealing with terrestrial plants. Species stability appears good. This method was applied to real world cultivated plant parts. Arsenate appears to predominate in soils, roots and leaves; unidentified species (probably arsenosugars) play an important role (60%) in rice fruits. Carrot was found to be the most contaminated edible plant part, containing 1 mg kg-1 essentially as arsenate species. MMAA was detected in all soils and some plant parts especially shallots at low levels, whereas DMAA was found only in one soil sample and in hot pepper leaves. Arsenite is a minor component of all soils; it is also present in some plant parts at low levels. However, no evident relationships were found between As speciation in the various plant parts and much more detailed studies will be necessary to elucidate As behaviour in plants.

  8. Environmental status of plant-based industries. Biomass and bio-materials; Bilan environnemental des filieres vegetales. Biomasse et biomateriaux

    Energy Technology Data Exchange (ETDEWEB)

    Vindimian, E.; Boeglin, N.; Houillon, G.; Osset, Ph.; Vial, E.; Leguern, Y.; Gosse, G.; Gabrielle, B.; Dohy, M.; Bewa, H.; Rigal, L.; Guilbert, St.; Cesar, G.; Pandard, P.; Oster, D.; Normand, N.; Piccardi, M.; Garoux, V.; Arnaud, L.; Barbier, J.; Mougin, G.; Krausz, P.; Pluquet, V.; Massacrier, L.; Dussaud, J.

    2005-07-01

    The French agency of environment and energy mastery (Ademe) and the agency of Agriculture for chemistry and energy (Agrice) have jointly organized these technical days about the potentialities of plant-based products in front of the big environmental stakes of the diversification of energy sources, the development of new outputs for agriculture and the opening of new fields of industrial innovation. This document gathers the articles and transparencies of the presentations given during these 2 days of conference: 1 - Biomass and life cycle analysis (LCA) - impacts and benefits: introduction to LCA (E. Vindimian), keys to understand this environmental evaluation tool (N. Boeglin); environmental status of plant-based industries for chemistry, materials and energy: LCA knowledge status, plant versus fossil (G. Houillon), detailed analysis of 2 industries: agro-materials and bio-polymers (J. Payet); example of environmental and LCA studies: energy and greenhouse gas statuses of the biofuel production processes (P. Osset, E. Vial), LCA of collective and industrial wood-fueled space heating (Y. Leguern), contribution and limitations of LCA for plant-based industries (G. Gosse, B. Gabrielle), conclusion of the first day (M. Dohy). 2 - Biomass and materials: a reality: biomaterials in the Agrice program (H. Bewa), plant-derived materials: resources, status and perspectives (L. Rigal); biopolymers: overview of the industrial use of biopolymers: materials and markets, applications (S. Guibert), degradation mechanisms of biopolymers used in agriculture: biodegradability, eco-toxicity and accumulation in soils (G. Cesar, P. Pandard), present and future regulatory framework: specifications and methods of biodegradability evaluation of materials for agriculture and horticulture (D. Oster), standardization: necessity and possibilities (N. Normand); vegetable fibers and composite materials: market of new vegetable fiber uses (M. Piccardi, V. Garoux), vegetable particulates and

  9. Naturally occurring radionuclides in materials derived from urban water treatment plants in southeast Queensland, Australia

    International Nuclear Information System (INIS)

    Kleinschmidt, Ross; Akber, Riaz

    2008-01-01

    An assessment of radiologically enhanced residual materials generated during treatment of domestic water supplies in southeast Queensland, Australia, was conducted. Radioactivity concentrations of U-238, Th-232, Ra-226, Rn-222, and Po-210 in water, sourced from both surface water catchments and groundwater resources were examined both pre- and post-treatment under typical water treatment operations. Surface water treatment processes included sedimentation, coagulation, flocculation and filtration, while the groundwater was treated using cation exchange, reverse osmosis, activated charcoal or methods similar to surface water treatment. Waste products generated as a result of treatment included sediments and sludges, filtration media, exhausted ion exchange resin, backwash and wastewaters. Elevated residual concentrations of radionuclides were identified in these waste products. The waste product activity concentrations were used to model the radiological impact of the materials when either utilised for beneficial purposes, or upon disposal. The results indicate that, under current water resource exploitation programs, reuse or disposal of the treatment wastes from large scale urban water treatment plants in Australia do not pose a significant radiological risk

  10. Assessment of radioactive material released from a fuel fabrication plant under accidental conditions

    International Nuclear Information System (INIS)

    1981-01-01

    This report evaluates the amounts of fissile material released both inside and outside a mixed oxide fuel fabrication plant (MOFFP) for light water reactors. The first section begins with a descriptive study of fissile material containment systems, and the methods available for quantifying accident occurrence probabilities. In addition to accidents common to all industrial facilities, other much rarer accidents were considered, such as aircraft crashes. The minimum occurrence probability limit for consideration in this study was set at 10 -6 per annum. The second part of this report attempts to assess the consequences of the accidents considered (i.e. with occurrence probabilities exceeding 10 -6 per annum) by determining maximum values for such accidents. Acts of sabotage and other accidents of this type are beyond the scope of this study and were not taken into consideration. The most serious potential accident would be a fire involving all of the glove boxes in the PuO 2 powder calcination and preparation cell, which could release 76.5 mg of PuO 2 powder into the atmosphere; the occurrence probability of such an accident, however, is slight (less than 10 -5 per annum). The second possibility, is a specially nuclear hazard that would release fission products into the atmosphere. The occurrence probability of such an accident is currently evaluated at 10 -3 per annum

  11. Miscanthus plants used as an alternative biofuel material. The basic studies on ecology and molecular evolution

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chang-Hung [Graduate Institute of Ecology and Evolutionary Biology, College of Life Sciences, China Medical University, Taichung 404 (China)

    2009-08-15

    high energy resource plant. European scientists already brought Asian Miscanthus species and bred a new hybrid called Miscanthus x giganteus, which is now being used as a biofuel material in Europe and would be widely used in the world in the near future if fundamental questions, such as fiber transformation to alcohol or other breeding techniques, are answered. (author)

  12. Modeling aboveground biomass of Tamarix ramosissima in the Arkansas River Basin of Southeastern Colorado, USA

    Science.gov (United States)

    Evangelista, P.; Kumar, S.; Stohlgren, T.J.; Crall, A.W.; Newman, G.J.

    2007-01-01

    Predictive models of aboveground biomass of nonnative Tamarix ramosissima of various sizes were developed using destructive sampling techniques on 50 individuals and four 100-m2 plots. Each sample was measured for average height (m) of stems and canopy area (m2) prior to cutting, drying, and weighing. Five competing regression models (P < 0.05) were developed to estimate aboveground biomass of T. ramosissima using average height and/or canopy area measurements and were evaluated using Akaike's Information Criterion corrected for small sample size (AICc). Our best model (AICc = -148.69, ??AICc = 0) successfully predicted T. ramosissima aboveground biomass (R2 = 0.97) and used average height and canopy area as predictors. Our 2nd-best model, using the same predictors, was also successful in predicting aboveground biomass (R2 = 0.97, AICc = -131.71, ??AICc = 16.98). A 3rd model demonstrated high correlation between only aboveground biomass and canopy area (R2 = 0.95), while 2 additional models found high correlations between aboveground biomass and average height measurements only (R2 = 0.90 and 0.70, respectively). These models illustrate how simple field measurements, such as height and canopy area, can be used in allometric relationships to accurately predict aboveground biomass of T. ramosissima. Although a correction factor may be necessary for predictions at larger scales, the models presented will prove useful for many research and management initiatives.

  13. Potential of plant materials for the management of cowpea bruchid callosobruchus analis (coleoptera: bruchidae) in gram cicer arietinum during storage

    International Nuclear Information System (INIS)

    Sarwar, M.; Ahmad, N.; Tofique, M.

    2012-01-01

    Present research was carried out to identify alternatives to synthetic insecticides to control cowpea weevil Callosobruchus analis (F.) population in gram seed (Cicer arietinum L.), during storage. The efficacies of three plant materials such as Nicotiana tabacum, Citrullus colocythis and Aloe vera were assessed to determine their insecticidal activities against survival of bruchid C. analis on seeds of gram varieties viz., CM-98 and Jubiha-1. These plant materials tested reduced weevil infestation and emergence as compared with untreated control seeds. Seeds treatment with A. vera followed by N. tabacum reduced maximum pest damage over C. colocythis, which proved least effective to control C. analis population. Consequently, the tested plant materials should be given due consideration for effective gram protection as a component of integrated pest management approach in storage. (author)

  14. Antifoaming materials studies in G.S. (Girlder sulfide) heavy water plants. Chemical and thermical stability. Pt. 3

    International Nuclear Information System (INIS)

    Delfino, C.A.; Rojo, E.A.

    1988-01-01

    In Girlder sulfide (G.S.) heavy water plants hydrogen sulfide-water systems are inherentely foaming, so the adding of antifoaming materials is of great importance. These may be of high volatility, pyrolizable or chemically unstable in plant operation conditions (water and hydrogen sulfide at 2 MPa, up to 230 deg C). Five commercial surfactants were studied from the point of view of their chemical and thermical stability in order to select the most suitable. (Author) [es

  15. Experimental investigation of Cs 137 distribution in a system of aquatic solution - solid phase - plant

    International Nuclear Information System (INIS)

    Marchiulioniene, D.; Kiponas, D.; Lukshiene, B.

    2005-01-01

    Investigation of Cs 137 accumulation in the plant Lepidium sativum L. (seeds, roots, aboveground part) and in the solid phase from the aquatic solution under laboratory conditions was performed. According to the obtained results, evaluation of Cs 137 distribution in the system aquatic solution - solid phase - plant and transfer of this radionuclide from the root system to the plant aboveground part during the plant growth process was done. (authors)

  16. Quantitative data on the fire behavior of combustible materials found in nuclear power plants: A literature review

    International Nuclear Information System (INIS)

    Nowlen, S.P.

    1987-02-01

    This report presents the findings of a task in which currently available fire research literature was reviewed for quantitative data on the burning characteristics of combustible materials that are found in nuclear power plants. The materials considered for which quantitative data were available include cable insulation materials, flammable liquids, furniture, trash and general refuse, and wood and wood products. A total of 90 figures and tables, taken primarily from the referenced works, which summarize the available quantitative fire characterization information for these materials is presented

  17. Evaluation of biological activities and chemical constituent of storage medicinal plant materials used as a traditional medicine in Nepal

    Directory of Open Access Journals (Sweden)

    Bishnu Prasad Pandey

    2017-12-01

    Full Text Available Aim: The main aims of the study were to evaluate the phytochemicals, antioxidant, antibacterial and chemical constituents of storage medicinal plant materials used as a traditional medicine in Nepal. Methods: Phytochemical screening, total phenolic content, total flavonoid content, antibacterial activities, anti-oxidant assay of the crude extract (water, methanol, n-hexane and acetone were carried out to identify the biological activities and phytonutrients present in the different extract. The chemical constituents present in the crude extract were analyzed using the high performance liquid chromatography (HPLC equipped with UV detector. Results: Evaluated medicinal plant materials were found to have diverse phytonutrients. Results revealed that methanol extract of Pakhanved and Jethimadhu have highest total flavonoids and polyphenol content. Among the selected medicinal plant materials Jethimadhu extract revealed the highest antioxidant activities. Furthermore, evaluated medicinal plants extract were found to exert a range of in vitro growth inhibition activity against both gram positive and gram negative species. The highest antibacterial activities were observed in the case of methanol extract, whereas, least activity was observed with the hexane extract. HPLC analysis of the acetone extract of Jethimadhu reveals the presence of diosmetin. Conclusions: Our result revealed that among the five evaluated medicinal plant materials, Jethimadhu extract revealed biological activities and exhibits a higher amount of polyphenol and flavonoid content. [J Complement Med Res 2017; 6(4.000: 369-377

  18. The materials concept in German light water reactors. A contribution to plant safety, economic performance and damage prevention

    International Nuclear Information System (INIS)

    Ilg, Ulf

    2008-01-01

    Major decisions taken as early as in the planning and construction phases of nuclear power plants may influence overall plant life. Component quality at the beginning of plant life is determined very much also by a balanced inclusion of the 'design, choice of materials, manufacturing and inspection' elements. One example of the holistic treatment of design, choice of material, and manufacture of important safety-related components in pressurized water reactors is the reactor pressure vessel (RPV) in which the ferritic compound tubes, with inside claddings, for the control rod drive nozzles are screwed into the vessel top. Also the choice of Incoloy 800 for the steam generator tubes, and the design of the main coolant pipes with inside claddings as seamless pipe bends / straight pipes with integrated nozzles connected to mixed welds with austenitic pipes are other special design features of the Siemens/KWU plants. A demonstrably high quality standard by international comparison to this day has been exhibited by the austenitic RPV internals of boiling water reactors, which were made of a low-carbon Nb-stabilized austenitic steel grade by optimum manufacturing technologies. The same material is used for backfitting austenitic pipes. Reliable and safe operation of German nuclear power plants has been demonstrated for more than 4 decades. One major element in this performance is the materials concept adopted in Germany also in the interest of damage prevention. (orig.)

  19. LEAF AREA DYNAMICS AND ABOVEGROUND BIOMASS OF SPECIFIC VEGETATION TYPES OF A SEMI-ARID GRASSLAND IN SOUTHERN ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Bosco Kidake Kisambo

    2016-12-01

    Full Text Available Leaf Area Index (LAI dynamics and aboveground biomass of a semi-arid grassland region in Southern Ethiopia were determined over a long rain season. The vegetation was categorized into four distinct vegetation types namely Grassland (G, Tree-Grassland (TG, Bushed-Grassland (BG and Bush-Tree grassland (BT. LAI was measured using a Plant Canopy Analyzer (LAI2000. Biomass dynamics of litter and herbaceous components were determined through clipping while the above ground biomass of trees and shrubs were estimated using species-specific allometric equations from literature. LAI showed a seasonal increase over the season with the maximum recorded in the BG vegetation (2.52. Total aboveground biomass for the different vegetation types ranged from 0.61 ton C/ha in areas where trees were non-existent to 8.80 ± 3.81ton C/ha in the Tree-Grassland vegetation in the study site. A correlation of LAI and AGB yielded a positive relationship with an R2 value of 0.55. The results demonstrate the importance of tropical semi-arid grasslands as carbon sinks hence their potential in mitigation of climate change.

  20. Partnering with a local concrete block manufacturing plant to improve quality of construction materials in Haiti’s Central Plateau

    Directory of Open Access Journals (Sweden)

    Aaron Gordon

    2016-09-01

    Full Text Available This paper presents a successful ongoing partnership between Clemson Engineers for Developing Countries (CEDC and a concrete masonry unit (CMU manufacturing plant in rural Haiti. The infrastructure destruction and resulting loss of life of the 2010 earthquake in Haiti highlighted the need for improved building materials and codes. This partnership has helped to improve the strength of CMUs in the plant, both creating a safer local built environment and expanding the economic opportunities for this plant. Using samples of aggregate and cement from the site in Haiti, students in Clemson performed experiments to optimise the CMU mix design and made other suggestions to improve efficiency and quality of their product. Consistency continues to be a challenge for the CMU plant, and this paper also describes proposed procedures to help the plant implement quality control and quality assurance plans.

  1. Effect of the planting material on the incidence of dry rot in Colocasia esculenta (L. Schott and Xanthosoma spp.

    Directory of Open Access Journals (Sweden)

    Ernesto Espinosa

    2012-10-01

    Full Text Available The cocoyam (Xanthosoma spp. and Colocasia esculenta is a monocot plant with vegetative propagation. This work was developed with the aim of determining the effect of the planting material type on the incidence of dry rot in two cultivars of Colocasia and Xanthosoma genera. Primary and secondary rhizomes, crowns of primary rhizomes and in vitro plants were used. The plantation was maintained for twelve months and the plants were characterized morphologically in the growing stage. Besides, it was determined the incidence of dry rot per treatment at growing and harvest stage. Finally, the yield was determined. When in vitro plants were used the percentage of incidence and intensity of the damage of dry rot was less in both cultivars. The yield in primary rhizomes and overall was significantly higher. The results indicated the superiority of in vitro plants as initial plantation material over the traditional seed used in taro culture. Furthermore, it allows the designing a seed production program by biotechnological methods. Key words: clone, cocoyam, dry rot, in vitro plants.

  2. Aboveground Whitefly Infestation Modulates Transcriptional Levels of Anthocyanin Biosynthesis and Jasmonic Acid Signaling-Related Genes and Augments the Cope with Drought Stress of Maize.

    Directory of Open Access Journals (Sweden)

    Yong-Soon Park

    Full Text Available Up to now, the potential underlying molecular mechanisms by which maize (Zea mays L. plants elicit defense responses by infestation with a phloem feeding insect whitefly [Bemisia tabaci (Genn.] have been barely elucidated against (abiotic stresses. To fill this gap of current knowledge maize plants were infested with whitefly and these plants were subsequently assessed the levels of water loss. To understand the mode of action, plant hormone contents and the stress-related mRNA expression were evaluated. Whitefly-infested maize plants did not display any significant phenotypic differences in above-ground tissues (infested site compared with controls. By contrast, root (systemic tissue biomass was increased by 2-fold by whitefly infestation. The levels of endogenous indole-3-acetic acid (IAA, jasmonic acid (JA, and hydrogen peroxide (H2O2 were significantly higher in whitefly-infested plants. The biosynthetic or signaling-related genes for JA and anthocyanins were highly up-regulated. Additionally, we found that healthier plants were obtained in whitefly-infested plants under drought conditions. The weight of whitefly-infested plants was approximately 20% higher than that of control plants at 14 d of drought treatment. The drought tolerance-related genes, ZmbZIP72, ZmSNAC1, and ZmABA1, were highly expressed in the whitefly-infected plants. Collectively, our results suggest that IAA/JA-derived maize physiological changes and correlation of H2O2 production and water loss are modulated by above-ground whitefly infestation in maize plants.

  3. Aboveground Whitefly Infestation Modulates Transcriptional Levels of Anthocyanin Biosynthesis and Jasmonic Acid Signaling-Related Genes and Augments the Cope with Drought Stress of Maize.

    Science.gov (United States)

    Park, Yong-Soon; Bae, Dong-Won; Ryu, Choong-Min

    2015-01-01

    Up to now, the potential underlying molecular mechanisms by which maize (Zea mays L.) plants elicit defense responses by infestation with a phloem feeding insect whitefly [Bemisia tabaci (Genn.)] have been barely elucidated against (a)biotic stresses. To fill this gap of current knowledge maize plants were infested with whitefly and these plants were subsequently assessed the levels of water loss. To understand the mode of action, plant hormone contents and the stress-related mRNA expression were evaluated. Whitefly-infested maize plants did not display any significant phenotypic differences in above-ground tissues (infested site) compared with controls. By contrast, root (systemic tissue) biomass was increased by 2-fold by whitefly infestation. The levels of endogenous indole-3-acetic acid (IAA), jasmonic acid (JA), and hydrogen peroxide (H2O2) were significantly higher in whitefly-infested plants. The biosynthetic or signaling-related genes for JA and anthocyanins were highly up-regulated. Additionally, we found that healthier plants were obtained in whitefly-infested plants under drought conditions. The weight of whitefly-infested plants was approximately 20% higher than that of control plants at 14 d of drought treatment. The drought tolerance-related genes, ZmbZIP72, ZmSNAC1, and ZmABA1, were highly expressed in the whitefly-infected plants. Collectively, our results suggest that IAA/JA-derived maize physiological changes and correlation of H2O2 production and water loss are modulated by above-ground whitefly infestation in maize plants.

  4. Microscopic research on Plantago major L. and Plantago media L. in identification of medicinal plant-based raw material

    Directory of Open Access Journals (Sweden)

    T. V. Khortetska

    2017-04-01

    Full Text Available Plant-based raw materials of generic species Plantago L. are widely used in world medicine as anti-inflammatory, vulnerary and anti-ulcerous agents. Pharmacologic efficiency is accounted by polysaccharides, aucubin, flavonoids, hydrocinnamic acids, vitamin A, amino-acids, etc. which are presented in the plant. Approximately 18 species of family Plantaginaceae Juss are grown up in Ukraine. But only Plantago major and Plantago lanceolate are officially recognized. Plantago media is near phylogenically to Plantago major, it has large plant base, similar composition and biologically active substances, but it isn’t used in Ukraine. Thus, comparative microscopic researches for two species of Plantago, revealing their diagnostic capacities for further practical using Plantago media in medicine are actual and topical. The aim of our research was to determine general and specific diagnostic microscopic signs in plant-based raw material of Plantago major L. and Plantago media L. Material and methods. Within microscopic study we have used leaves of Plantago major L. and Plantago media L. plants, picked during flowering in Ukraine. Fresh plant raw material has been fixed in mixture: glycerin, ethyl alcohol 96 %, purified water (1:1:1. The research has been done with using chloral hydrate according to methods recommended by State Pharmacopeia of Ukraine. Results and discussion. While carrying out microscopic studies of plant raw material we turned our attention on structure of veins and cells in epidermis, availability, number and type of stoma, features for filaments and glandules, type of leaf lamina. Conclusions. Isolateral type in structure of leaf lamina is the common microscopic diagnostic feature for both Plantago major L. and Plantago media L. The veins of both types are encircled by gross oval cells with starch inclusions. Related structure in lower epidermis of leaves, simple and glandulous filament are specific for both plants. Distinctions in

  5. Forum on impact of radioactive materials on the atmospheric pollutant inventory and on the radioactivity uptake by plants

    International Nuclear Information System (INIS)

    1987-01-01

    This report contains 6 separately documented lectures about the following topics of the meeting: 1) Radiation exposure of plants caused by the reactor accident of Chernobyl; 2) Tritium and radiocarbon concentrations in trees; 3) Energetics of the atmospheric trace materials cycle; 4) Phenomenology of formation and decomposition of ozone in the lower atmosphere, and 5) Comparison of radioactivity levels and trace materials in the air. (PW)

  6. Relationships between functional diversity and aboveground biomass production in the Northern Tibetan alpine grasslands.

    Science.gov (United States)

    Zhu, Juntao; Jiang, Lin; Zhang, Yangjian

    2016-09-26

    Functional diversity, the extent of functional differences among species in a community, drives biodiversity-ecosystem function (BEF) relationships. Here, four species traits and aboveground biomass production (ABP) were considered. We used two community-wide measures of plant functional composition, (1) community weighted means of trait values (CWM) and (2) functional trait diversity based on Rao's quadratic diversity (FD Q ) to evaluate the effects of functional diversity on the ABP in the Northern Tibetan alpine grasslands. Both species and functional diversity were positively related to the ABP. Functional trait composition had a larger predictive power for the ABP than species diversity and FD Q , indicating a primary dependence of ecosystem property on the identity of dominant species in our study system. Multivariate functional diversity was ineffective in predicting ecosystem function due to the trade-offs among different traits or traits selection criterions. Our study contributes to a better understanding of the mechanisms driving the BEF relationships in stressed ecosystems, and especially emphasizes that abiotic and biotic factors affect the BEF relationships in alpine grasslands.

  7. Aboveground and belowground responses to nutrient additions and herbivore exclusion in Arctic tundra ecosystems in northern Alaska

    Science.gov (United States)

    Moore, J. C.; Gough, L.; Simpson, R.; Johnson, D. R.

    2011-12-01

    The Arctic has experienced significant increased regional warming over the past 30 years. Warming generally increases tundra soil nutrient availability by creating a more favorable environment for plant growth, decomposition and nutrient mineralization. Aboveground there has been a "greening" of the Arctic with increased net primary productivity (NPP), and an increase in woody vegetation. Concurrent with the changes aboveground has been an increase in root growth at lower depths and a loss of soil organic C (40 -100 g C m-2 yr-1). Given that arctic soils contain 14% of the global soil C pool, understanding the mechanisms behind shifts of this magnitude that are changing arctic soils from a net sink to a net source of atmospheric C is critical. We took an integrated multi-trophic level approach to examine how altering soil nutrients and mammalian herbivore activity affects vegetation, soil fauna, and microbial communities as well as soil physical characteristics in moist acidic (MAT) and dry heath (DH) tundra. Our work was conducted at the Arctic LTER site in northern Alaska. We sampled the nutrient (controls and annual N+P additions) and herbivore (controls and exclosures) manipulations established in 1996 after 10 years of treatment. Models that incorporated the biomass estimates from the field were used to characterize the trophic structure of the belowground food web and to estimate carbon flux among soil organisms and C-mineralization rates. Both MAT and DH exhibited significant increases in NPP and root growth and changes in vegetation structure with transitions from a mixed community to deciduous shrubs in MAT and from lichens to grasses and shrubs in DH, with nutrient additions and herbivore exclosures. Belowground responses to the treatments were dependent on ecosystem type, but exposed alterations in trophic structure that included changes in microbial biomass, the establishment of microbivorous enchytreaids, increases in root-feeding nematodes, and

  8. Aboveground Tree Biomass for Pinus ponderosa in Northeastern California

    Directory of Open Access Journals (Sweden)

    Todd A. Hamilton

    2013-03-01

    Full Text Available Forest managers need accurate biomass equations to plan thinning for fuel reduction or energy production. Estimates of carbon sequestration also rely upon such equations. The current allometric equations for ponderosa pine (Pinus ponderosa commonly employed for California forests were developed elsewhere, and are often applied without consideration potential for spatial or temporal variability. Individual-tree aboveground biomass allometric equations are presented from an analysis of 79 felled trees from four separate management units at Blacks Mountain Experimental Forest: one unthinned and three separate thinned units. A simultaneous set of allometric equations for foliage, branch and bole biomass were developed as well as branch-level equations for wood and foliage. Foliage biomass relationships varied substantially between units while branch and bole biomass estimates were more stable across a range of stand conditions. Trees of a given breast height diameter and crown ratio in thinned stands had more foliage biomass, but slightly less branch biomass than those in an unthinned stand. The observed variability in biomass relationships within Blacks Mountain Experimental Forest suggests that users should consider how well the data used to develop a selected model relate to the conditions in any given application.

  9. LBA-ECO LC-15 Amazon Basin Aboveground Live Biomass Distribution Map: 1990-2000

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides a single raster image containing the spatial distribution of aboveground live forest biomass of the Amazon basin. This product was derived...

  10. Siberian Boreal Forest Aboveground Biomass and Fire Scar Maps, Russia, 1969-2007

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides 30-meter resolution mapped estimates of Cajander larch (Larix cajanderi) aboveground biomass (AGB), circa 2007, and a map of burn perimeters...

  11. ANTIMICROBIAL ACTIVITY OF THE SUBSTANCES RECEIVED FROM RAW MATERIALS OF LAMIACEAE AND CUCURBITACEAE FAMILY PLANTS

    Directory of Open Access Journals (Sweden)

    Fedchenkova Iu.A

    2017-03-01

    Full Text Available Introduction. The search of new sources of raw materials for medicine creation is one of the pharmacy priorities. In this, our attention was drawn by the plants which are widely cultivated in Ukraine and have a sufficient source of raw materials. It is summer squash (Cucurbita pepo L. and sowing cucumber (Cucumis sativus L. of Cucurbitaceae family and also peppermint (Mentha piperita L. of two sorts “Chernolistaya” and “Zgadka” of Lamiaceae family. However the drugs with antimicrobial action derived from the leaves of these plants in the market of Ukraine are absent. Spirit, lipophilic and polysaccharidic fractions were received from the leaves of sowing cucumber, summer squash and two sorts of peppermint by us. Antimicrobial activity studying of the received substances derived from the studied raw materials for expansion of the medicine range is promising. The relevance of researches is that getting for the first time due to complex raw material processing the lipophilic, spirit and polysaccharidic fractions of leaves of a sowing cucumber, summer squash and two sorts of peppermint “Chernolistnaya” and “Zgadka” are systemically studied on existence of antimicrobic activity. The purpose of our research is the studying of antimicrobial activity of getting substances derived from the leaves of sowing cucumber, summer squash and two sorts of peppermint “Chernolistnaya” and “Zgadka”. Materials and methods. Raw materials for substances are the leaves of a sowing cucumber prepared in June, 2015 in the Kharkiv region, the village Selection, in the conditions of industrial cultivation (the selection station of Institute of vegetable-growing and melon-growing of UAAN. The leaves of summer squash were being prepared also in June, 2015 in Valkovsky district of the Kharkiv region, the settlement Dobropolye. The leaves of peppermint of “Chernolistnaya” and “Zgadka” sort were prepared on the industrial squares of Dnipropetrovsk

  12. New phosphorus biofertilizers from renewable raw materials in the aspect of cadmium and lead contents in soil and plants

    Directory of Open Access Journals (Sweden)

    Jastrzębska Magdalena

    2018-02-01

    Full Text Available Recycling phosphorus from waste for fertilization purposes appears to be an alternative for non-renewable sources and a solution for managing harmful products of civilisation. Fertilizers from secondary raw materials are considered to be safe to the environment. This study presents an assessment of the effects of five new biofertilizers made from sewage sludge ash and/or animal bones on the content of cadmium and lead in the soil, in wheat grains and straw (test plant, in the mass of the the accompanying weeds and in the post-harvest residues. Biofertilizers were produced in the form of suspension or granules and activated using Bacillus megaterium or Acidithiobacillus ferrooxidans bacteria. They were tested in four field experiments. The Cd and Pb contents of the soil and plant material were determined using the ICP-MS technique. Similar to superphosphate, new biofertilizers showed no change in the Cd and Pb contents of the soil and plants biomass when applied at amounts up to 80 kg; P2O5 ha−1. Both Cd and Pb in the soil and plants occurred naturally, and the amounts were within the acceptable standards. Biofertilizers from renewable raw materials, with low toxic element contents, are not thought to pose a hazard to the soil and plants when applied in reasonable amounts. They can be a substitute for conventional phosphorus fertilizers.

  13. Use of phase change materials during compressed air expansion for isothermal CAES plants

    Science.gov (United States)

    Castellani, B.; Presciutti, A.; Morini, E.; Filipponi, M.; Nicolini, A.; Rossi, F.

    2017-11-01

    Compressed air energy storage (CAES) plants are designed to store compressed air into a vessel or in an underground cavern and to expand it in an expansion turbine when energy demand is high. An innovative CAES configuration recently proposed is the isothermal process. Several methods to implement isothermal CAES configuration are under investigation. In this framework, the present paper deals with the experimental testing of phase change materials (PCM) during compressed air expansion phase. The experimental investigation was carried out by means of an apparatus constituted by a compression section, a steel pressure vessel, to which an expansion valve is connected. The initial internal absolute pressure was equal to 5 bar to avoid moisture condensation and the experimental tests were carried out with two paraffin-based PCM amounts (0.05 kg and 0.1 kg). Results show that the temperature change during air expansion decreases with increasing the PCM amount inside the vessel. With the use of PCM during expansions an increase of the expansion work occurs. The increase is included in the range from 9.3% to 18.2%. In every test there is an approach to the isothermal values, which represent the maximum theoretical value of the obtainable expansion work.

  14. Determination of tin and germanium with nonylfluorone and polymeric flocculants in plant materials

    Directory of Open Access Journals (Sweden)

    Lidiya A. Ivanitsa

    2016-08-01

    Full Text Available New analytical systems «polymeric flocculant (PF−nonylfluorone (NF−metal ion» were proposed for spectrophotometric determination of germanium and tin in plant materials. It is shown the higher efficiency of the modifying action of PF nonionic nature (polyvinylpyrrolidone, PVP compared with the cationic PF polyhexamethyleneguanidine chloride. The presence of PVP increases absorbance complex solutions of both metals on 3.5 times. It is found that the compositions of binary complex Ge(IV and Sn(IV being equal to 1:2 in the presence of PF. The interval of optimum values of acidity is pH 1−4, concentration of modifier (PVP is 0.16 g/L. The difference in absorption of solutions PF–NF–metal and reference solution depends linearly on the concentration of metal in the range of 0.01−0.06 μg Ge(IV/mL (ε=1.35∙105, λ=515 nm and 0.18-0.90 μg Sn(IV/mL (ε=4.2∙104, λ=520 nm. The developed method was tested in the determination of germanium in garlic and aloe and tin in pomegranate. The correctness of the results were confirmed by independent spectrophotometric methods which used phenylfluorone and quercetin as reagents.

  15. Quality of plant-based food materials and its prediction during intermittent drying.

    Science.gov (United States)

    Duc Pham, Nghia; Khan, Md Imran H; Joardder, M U H; Rahman, M M; Mahiuddin, Md; Abesinghe, A M Nishani; Karim, M A

    2017-11-30

    In most drying processes, several physical, chemical and nutritional modifications take place in food products. Innovative drying techniques such as intermittent drying can enhance the quality of dehydrated products effectively and efficiently. Intermittent drying is a technique where drying conditions are changed through varying the drying air temperature, humidity, velocity, pressure, or even mode of heat input. This drying technique has been successfully applied to overcome the problems of conventional drying systems such as longer time consumption, case hardening, lower energy efficiency and poor-quality attributes. However, as the effect of intermittent drying on food quality is not yet well understood, a comprehensive study of quality change during intermittent drying is crucial. The main aim of this paper is to present a thorough review of the potential effect of intermittent drying methods on physical, chemical, nutritional, and stability characteristics of plant-based food material. It is found that application of intermittency using different drying systems has a significant effect on product quality and its stability. In addition, a comprehensive review on existing models of physio/biochemical kinetics for food drying is presented. Finally, the paper is concluded with the discussion of the current challenges and future directions of intermittent drying for producing high-quality dried food products.

  16. A Study on Abrasive Wear Behavior of Spacer Grid Materials for Nuclear Power Plant

    International Nuclear Information System (INIS)

    Park, J. M.; Kim, J. H.; Park, J. K.; Jeon, K. L.

    2010-01-01

    Spacer grid is one of the key components of a light water reactor (LWR) fuel assembly. The most important function of it is to hold the fuel rods to maintain the distance between the fuel rods inside a fuel assembly. At the reactor core in operating power plants, a fretting damage has been frequently reported between a nuclear fuel rod and its supporting spring/dimple of the fuel assemblies. This is due to a flow induced vibration (FIV), Which results from the primary coolant that rapidly passes around the fuel rod to remove the excess heat generated by the nuclear reaction. Fretting damage is generally caused by fretting wear, which includes various wear mechanisms such as an oxidative, adhesive, abrasive wear, etc., or fretting fatigue, which includes a surface or bulk fatigue. The purpose of the present work are to investigate the variation of the materials with increasing number of cycles and sliding velocity under abrasive wear test and to examine the wear mechanism at each test condition

  17. Nozzle dam design improvement using composite material of the steam generator in nuclear power plants

    International Nuclear Information System (INIS)

    Kim, S. H.; Jung, S. H.; Lee, S. S.; Lee, Y. S.

    2000-01-01

    The period of normal shut down and maintenance of a nuclear power plants can be remarkably shortened by doing the refueling work with inspection of a steam generator simultaneously. The nozzle dams in a steam generator are to block the back flow of coolant from the reactor cavity to the steam generator. The installation and removal of the nozzle dams have been attempted by using a robot system in stead of human workers in order to protect from the high radiation exposure and harse working environment in a steam generator. The weight of the nozzle dam must be reduced for the convenience of the robot operation. In this paper, a lighter nozzle dams were designed to keep structural integrity. The nozzle dams have been manufactured using various material such as carbon-epoxy, glass-epoxy, honey comb and aluminum plate. The variation in mechanical properties of composites with respect to radiation emission has been investigated. In order to verify the structural integrity of the nozzle dam, the stress analyses have performed using ANSYS finite element program. The hydrostatic pressure test was performed to mock-up. The maximum stress and the maximum displacement of the composite nozzle dams are measured and compared to that obtained by finite element analyses

  18. Nuclear techniques for the determination of protein content in plant material

    International Nuclear Information System (INIS)

    Niemann, E.G.

    1980-01-01

    Elemental analysis for nitrogen has gained in importance over the last decade, as protein improvement and protein control in food and feed has come to be recognized as one of the most promising ways of overcoming deficiencies in food production and distribution. The need for fast and reliable screening methods has stimulated the improvement and automation of classic chemical methods for protein and nitrogen determination and, on the other hand, the development and adaptation of physical and nuclear analysis procedures. After about ten years of work this process has come to a stage where a critical evaluation of the existing methods seems necessary and justified. The present review describes and compares nuclear techniques for nitrogen determination in plant material. These include activation analysis techniques, based on various nuclear reactions, initiated by fast and thermal neutrons, energetic photons, protons, deuterons and α-particles. Other nuclear methods have been applied for nitrogen or protein determination, like ESCA, PIXE, NMR, NQR and Moessbauer spectroscopy, some of which possess good potential as screening methods. Depending on the needs, such as sample size, analysis rate and postulated accuracy, different nuclear techniques may be selected today for nitrogen screening. Some of the techniques discussed have additional potential for carbon or oxygen determination, for measuring depth or lateral N distribution, or for the recognition of the type of chemical N binding. Though most if not all techniques need further development for routine application, they are able to compete with chemical techniques in cost, rate and accuracy. (author)

  19. Averaging Level Control to Reduce Off-Spec Material in a Continuous Pharmaceutical Pilot Plant

    Directory of Open Access Journals (Sweden)

    Richard Lakerveld

    2013-11-01

    Full Text Available The judicious use of buffering capacity is important in the development of future continuous pharmaceutical manufacturing processes. The potential benefits are investigated of using optimal-averaging level control for tanks that have buffering capacity for a section of a continuous pharmaceutical pilot plant involving two crystallizers, a combined filtration and washing stage and a buffer tank. A closed-loop dynamic model is utilized to represent the experimental operation, with the relevant model parameters and initial conditions estimated from experimental data that contained a significant disturbance and a change in setpoint of a concentration control loop. The performance of conventional proportional-integral (PI level controllers is compared with optimal-averaging level controllers. The aim is to reduce the production of off-spec material in a tubular reactor by minimizing the variations in the outlet flow rate of its upstream buffer tank. The results show a distinct difference in behavior, with the optimal-averaging level controllers strongly outperforming the PI controllers. In general, the results stress the importance of dynamic process modeling for the design of future continuous pharmaceutical processes.

  20. Probabilistic approaches applied to damage and embrittlement of structural materials in nuclear power plants

    International Nuclear Information System (INIS)

    Vincent, L.

    2012-01-01

    The present study deals with the long-term mechanical behaviour and damage of structural materials in nuclear power plants. An experimental way is first followed to study the thermal fatigue of austenitic stainless steels with a focus on the effects of mean stress and bi-axiality. Furthermore, the measurement of displacement fields by Digital Image Correlation techniques has been successfully used to detect early crack initiation during high cycle fatigue tests. A probabilistic model based on the shielding zones surrounding existing cracks is proposed to describe the development of crack networks. A more numeric way is then followed to study the embrittlement consequences of the irradiation hardening of the bainitic steel constitutive of nuclear pressure vessels. A crystalline plasticity law, developed in agreement with lower scale results (Dislocation Dynamics), is introduced in a Finite Element code in order to run simulations on aggregates and obtain the distributions of the maximum principal stress inside a Representative Volume Element. These distributions are then used to improve the classical Local Approach to Fracture which estimates the probability for a microstructural defect to be loaded up to a critical level. (author) [fr

  1. PAHs in leachates from thermal power plant wastes and ash-based construction materials.

    Science.gov (United States)

    Irha, Natalya; Reinik, Janek; Jefimova, Jekaterina; Koroljova, Arina; Raado, Lembi-Merike; Hain, Tiina; Uibu, Mai; Kuusik, Rein

    2015-08-01

    The focus of the current study is to characterise the leaching behaviour of polycyclic aromatic hydrocarbons (PAHs) from oil shale ashes (OSAs) of pulverised firing (PF) and circulating fluidised-bed (CFB) boilers from Estonian Thermal Power Plant (Estonia) as well as from mortars and concrete based on OSAs. The target substances were 16 PAHs from the EPA priority pollutant list. OSA samples and OSA-based mortars were tested for leaching, according to European standard EN 12457-2 (2002). European standard CEN/TC 15862(2012) for monolithic matter was used for OSA-based concrete. Water extracts were analysed by GC-MS for the concentration of PAHs. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene and pyrene were detected. Still, the release of PAHs was below the threshold limit value for inert waste. The amount of the finest fraction (particle size materials did not lead to the immobilisation of soluble PAHs. Release of PAHs from the monolith samples did not exceed 0.5 μg/m(2). In terms of leaching of PAHs, OSA is safe to be used for construction purposes.

  2. Influence of weight and type of planting material on fruit quality and its heterogeneity in pineapple [Ananas comosus (L.) Merrill

    NARCIS (Netherlands)

    Fassinou Hotegni, V.N.; Lommen, W.J.M.; Agbossou, E.K.; Struik, P.C.

    2015-01-01

    Cultural practices can affect the quality of pineapple fruits and its variation. The objectives of this study were to investigate (a) effects of weight class and type of planting material on fruit quality, heterogeneity in quality and proportion and yield of fruits meeting European export standards,

  3. Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen [General Electric Global Research, Niskayuna, NY (United States)

    2014-04-01

    The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions.

  4. Material development for waste-to-energy plants. Refractory linings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hede Larsen, O.

    2010-10-15

    Evaluation and SEM analysis of plant exposed, failed linings confirm over and again that failure in broad lines is linked to excess porosity, inferior quality on raw materials, detrimental reactions between raw materials and other mix constituents, volume growth reactions between base material and salt depositions, thermal stress induced crack formation, and uncontrolled craftsmanship. Extensive evaluations, calculations and considerations revealed numerous ways to execute the formulation of experimental castable mixes, of which some formed a broad base for phase I trials. Three mixes of the experimental castable phase II batches reached apparent porosities of {approx} 10% measured with alcohol, estimated to less than 8%-9% if measured in water. These results compare favourably to the open porosities measure with water of generally applied LCCs in the Danish marketplace of 15.5-16.0%. Converted to bonding phase porosities the low levels realised in experiments look rather good: 28% vs 55-57%. Salt cup tests confirm state of the art resistance. Experiments and assessment of surface oxidation of Silicon Carbide grains of three levels of purity confirm that it is impossible to stabilise SiC by pre-oxydation for the purpose of creating a thicker, protective surface layer of SiO{sub 2}. It is evident from the literature and qualified assessment that free Si, as a remnant surplus from SiC manufacture, does indeed hydrolyse in the castable basic environment under development of H{sub 2} gas bubbles adding on to unwanted porosity. Heat conductivity measurements of six different, representative products conducted by the Danish Technological Institute from 300 dec. C to 750 dec. C according to their credited calorimetric method confirm that the pre-firing to excess temperatures and subsequent measurement according to the DIN/EUN norm does indeed give misleading data of up to 45% for a castable containing {approx} 55% Silicon Carbide. Finite Element analysis confirms the

  5. effect of the liming materials and rates on plant growth and nutrient ...

    African Journals Online (AJOL)

    Mrs Ify Greg Onwuka

    production. These include agronomy, plant breeding and genetics, plant pathology, entomology, forage crop production, and weed science and nematology. The work .... Evaluation of growth, yield and post-harvest qualities of twelve cassava ... Effects of plant spacing and organic manure rates on yield and nutrient.

  6. Materials

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2009-02-01

    Full Text Available community. The construction industry is a significantly consumer of materials, using 50 per cent of all products produced globally. Building materials is any material which is used for a construction purpose. Many of these materials are sources from natural...

  7. Qualitative and quantitative modifications of root mitochondria during senescence of above-ground parts of Arabidopis thaliana.

    Science.gov (United States)

    Fanello, Diego Darío; Bartoli, Carlos Guillermo; Guiamet, Juan José

    2017-05-01

    This work studied modifications experienced by root mitochondria during whole plant senescence or under light deprivation, using Arabidopsis thaliana plants with YFP tagged to mitochondria. During post-bolting development, root respiratory activity started to decline after aboveground organs (i.e., rosette leaves) had senesced. This suggests that carbohydrate starvation may induce root senescence. Similarly, darkening the whole plant induced a decrease in respiration of roots. This was partially due to a decrease in the number of total mitochondria (YFP-labelled mitochondria) and most probably to a decrease in the quantity of mitochondria with a developed inner membrane potential (ΔΨm, i.e., Mitotracker red- labelled mitochondria). Also, the lower amount of mitochondria with ΔΨm compared to YFP-labelled mitochondria at 10d of whole darkened plant, suggests the presence of mitochondria in a "standby state". The experiments also suggest that small mitochondria made the main contribution to the respiratory activity that was lost during root senescence. Sugar supplementation partially restored the respiration of mitochondria after 10d of whole plant dark treatment. These results suggest that root senescence is triggered by carbohydrate starvation, with loss of ΔΨm mitochondria and changes in mitochondrial size distribution. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Material control and accountability aspects of safeguards for the USA 233U/Th fuel recycle plant

    International Nuclear Information System (INIS)

    Carpenter, J.A. Jr.; McNeany, S.R.; Angelini, P.; Holder, N.D.; Abraham, L.

    1978-01-01

    The materials control and accountability aspects of the reprocessing and refabrication of a conceptual large-scale HTGR fuel recycle plant have been discussed. Two fuel cycles were considered. The traditional highly enriched uranium cycle uses an initial or makeup fuel element with a fissile enrichment of 93% 235 U. The more recent medium enriched uranium cycle uses initial or makeup fuel elements with a fissile enrichment less than 20% 235 U. In both cases, 233 U bred from the fertile thorium is recycled. Materials control and accountability in the plant will be by means of a real-time accountability method. Accountability data will be derived from monitoring of total material mass through the processes and a system of numerous assays, both destructive and nondestructive

  9. Plant integrity: an important factor in plant-pathogen interactions

    DEFF Research Database (Denmark)

    Orlowska, Elzbieta Zofia; Llorente, Briardo; Cvitanich, Cristina

    2013-01-01

    The effect of plant integrity and of aboveground-belowground defense signaling on plant resistance against pathogens and herbivores is emerging as a subject of scientific research. There is increasing evidence that plant defense responses to pathogen infection differ between whole intact plants...... and detached leaves. Studies have revealed the importance of aboveground-belowground defense signaling for plant defenses against herbivores, while our studies have uncovered that the roots as well as the plant integrity are important for the resistance of the potato cultivar Sarpo Mira against...... the hemibiotrophic oomycete pathogen Phytophthora infestans. Furthermore, in the Sarpo Mira–P. infestans interactions, the plant’s meristems, the stalks or both, seem to be associated with the development of the hypersensitive response and both the plant’s roots and shoots contain antimicrobial compounds when...

  10. Optimising energy recovery and use of chemicals, resources and materials in modern waste-to-energy plants

    International Nuclear Information System (INIS)

    De Greef, J.; Villani, K.; Goethals, J.; Van Belle, H.; Van Caneghem, J.; Vandecasteele, C.

    2013-01-01

    Highlights: • WtE plants are to be optimized beyond current acceptance levels. • Emission and consumption data before and after 5 technical improvements are discussed. • Plant performance can be increased without introduction of new techniques or re-design. • Diagnostic skills and a thorough understanding of processes and operation are essential. - Abstract: Due to ongoing developments in the EU waste policy, Waste-to-Energy (WtE) plants are to be optimized beyond current acceptance levels. In this paper, a non-exhaustive overview of advanced technical improvements is presented and illustrated with facts and figures from state-of-the-art combustion plants for municipal solid waste (MSW). Some of the data included originate from regular WtE plant operation – before and after optimisation – as well as from defined plant-scale research. Aspects of energy efficiency and (re-)use of chemicals, resources and materials are discussed and support, in light of best available techniques (BAT), the idea that WtE plant performance still can be improved significantly, without direct need for expensive techniques, tools or re-design. In first instance, diagnostic skills and a thorough understanding of processes and operations allow for reclaiming the silent optimisation potential

  11. Mechanistic modelling of Middle Eocene atmospheric carbon dioxide using fossil plant material

    Science.gov (United States)

    Grein, Michaela; Roth-Nebelsick, Anita; Wilde, Volker; Konrad, Wilfried; Utescher, Torsten

    2010-05-01

    Various proxies (such as pedogenic carbonates, boron isotopes or phytoplankton) and geochemical models were applied in order to reconstruct palaeoatmospheric carbon dioxide, partially providing conflicting results. Another promising proxy is the frequency of stomata (pores on the leaf surface used for gaseous exchange). In this project, fossil plant material from the Messel Pit (Hesse, Germany) is used to reconstruct atmospheric carbon dioxide concentration in the Middle Eocene by analyzing stomatal density. We applied the novel mechanistic-theoretical approach of Konrad et al. (2008) which provides a quantitative derivation of the stomatal density response (number of stomata per leaf area) to varying atmospheric carbon dioxide concentration. The model couples 1) C3-photosynthesis, 2) the process of diffusion and 3) an optimisation principle providing maximum photosynthesis (via carbon dioxide uptake) and minimum water loss (via stomatal transpiration). These three sub-models also include data of the palaeoenvironment (temperature, water availability, wind velocity, atmospheric humidity, precipitation) and anatomy of leaf and stoma (depth, length and width of stomatal porus, thickness of assimilation tissue, leaf length). In order to calculate curves of stomatal density as a function of atmospheric carbon dioxide concentration, various biochemical parameters have to be borrowed from extant representatives. The necessary palaeoclimate data are reconstructed from the whole Messel flora using Leaf Margin Analysis (LMA) and the Coexistence Approach (CA). In order to obtain a significant result, we selected three species from which a large number of well-preserved leaves is available (at least 20 leaves per species). Palaeoclimate calculations for the Middle Eocene Messel Pit indicate a warm and humid climate with mean annual temperature of approximately 22°C, up to 2540 mm mean annual precipitation and the absence of extended periods of drought. Mean relative air

  12. Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance.

    Science.gov (United States)

    Mensah, Sylvanus; Veldtman, Ruan; Assogbadjo, Achille E; Glèlè Kakaï, Romain; Seifert, Thomas

    2016-10-01

    The relationship between biodiversity and ecosystem function has increasingly been debated as the cornerstone of the processes behind ecosystem services delivery. Experimental and natural field-based studies have come up with nonconsistent patterns of biodiversity-ecosystem function, supporting either niche complementarity or selection effects hypothesis. Here, we used aboveground carbon (AGC) storage as proxy for ecosystem function in a South African mistbelt forest, and analyzed its relationship with species diversity, through functional diversity and functional dominance. We hypothesized that (1) diversity influences AGC through functional diversity and functional dominance effects; and (2) effects of diversity on AGC would be greater for functional dominance than for functional diversity. Community weight mean (CWM) of functional traits (wood density, specific leaf area, and maximum plant height) were calculated to assess functional dominance (selection effects). As for functional diversity (complementarity effects), multitrait functional diversity indices were computed. The first hypothesis was tested using structural equation modeling. For the second hypothesis, effects of environmental variables such as slope and altitude were tested first, and separate linear mixed-effects models were fitted afterward for functional diversity, functional dominance, and both. Results showed that AGC varied significantly along the slope gradient, with lower values at steeper sites. Species diversity (richness) had positive relationship with AGC, even when slope effects were considered. As predicted, diversity effects on AGC were mediated through functional diversity and functional dominance, suggesting that both the niche complementarity and the selection effects are not exclusively affecting carbon storage. However, the effects were greater for functional diversity than for functional dominance. Furthermore, functional dominance effects were strongly transmitted by CWM of

  13. Preliminary field tests of near-real-time materials accountancy system at the Tokai Reprocessing Plant (TASK F)

    International Nuclear Information System (INIS)

    Tsutsumi, Masayori; Sawahata, Toshio; Sugiyama, Toshihide; Tanaka, Kazuhiko; Suyama, Naohiro

    1982-01-01

    A study of applying the proposed near-real-time material accountancy model to the Tokai Reprocessing Plant, PNC (Power Reactor and Nuclear Fuel Development Corp.), showed that the model was feasible and effective to meet the IAEA (International Atomic Energy Agency) safeguards criteria in terms of detection timeliness and sensitivity. This study using the computer simulation technique is shown in this paper. In order to investigate the applicability of the model to the actual plant, the field test was carried out on the process in the material balance area (MBA) which covers the area from the input accountability vessel (IAV) to the product accountability vessel (PAV), in cooperation with JAERI. The key measuring points for dynamic physical inventory counts (D-PIT) are shown. The results of test evaluation are as follows: For timely detection, it will be able to evaluate an abnoumal accountancy in process by using the MUFd (material unaccounted for) obtained by the D-PIT about once every week. Therefore, this seems to satisfy the timely detection of IAEA safeguards criteria. As for detection, sensitivity and verification procedures, in order to clarify these criteria for a large scale reprocessing plant, further research and development will be required. In addition, since the field test was carried out along with normal plant operation, additional man-power problem was also considered. (Wakatsuki, Y.)

  14. Smart tungsten alloys as a material for the first wall of a future fusion power plant

    Science.gov (United States)

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch.; Rasinski, M.; Kreter, A.; Unterberg, B.; Coenen, J. W.; Du, H.; Mayer, J.; Garcia-Rosales, C.; Calvo, A.; Ordas, N.

    2017-06-01

    Tungsten is currently deemed as a promising plasma-facing material (PFM) for the future power plant DEMO. In the case of an accident, air can get into contact with PFMs during the air ingress. The temperature of PFMs can rise up to 1200 °C due to nuclear decay heat in the case of damaged coolant supply. Heated neutron-activated tungsten forms a volatile radioactive oxide which can be mobilized into the atmosphere. New self-passivating ‘smart’ alloys can adjust their properties to the environment. During plasma operation the preferential sputtering of lighter alloying elements will leave an almost pure tungsten surface facing the plasma. During an accident the alloying elements in the bulk are forming oxides thus protecting tungsten from mobilization. Good plasma performance and the suppression of oxidation are required for smart alloys. Bulk tungsten (W)-chroimum (Cr)-titanium (Ti) alloys were exposed together with pure tungsten (W) samples to the steady-state deuterium plasma under identical conditions in the linear plasma device PSI 2. The temperature of the samples was ~576 °C-715 °C, the energy of impinging ions was 210 eV matching well the conditions expected at the first wall of DEMO. Weight loss measurements demonstrated similar mass decrease of smart alloys and pure tungsten samples. The oxidation of exposed samples has proven no effect of plasma exposure on the oxidation resistance. The W-Cr-Ti alloy demonstrated advantageous 3-fold lower mass gain due to oxidation than that of pure tungsten. New yttrium (Y)-containing thin film systems are demonstrating superior performance in comparison to that of W-Cr-Ti systems and of pure W. The oxidation rate constant of W-Cr-Y thin film is 105 times less than that of pure tungsten. However, the detected reactivity of the bulk smart alloy in humid atmosphere is calling for a further improvement.

  15. The Material Protection, Control and Accounting Sustainability Program Implementation at the Electrochemical Plant

    International Nuclear Information System (INIS)

    Sirotenko, Vladimir; Antonov, Eduard; Sirotenko, Alexei; Kukartsev, Alexander; Krivenko, Vladimir; Dabbs, Richard D.; Carroll, Michael F.; Garrett, Albert G.; Patrick, Scott W.; Ku, Esther M.

    2008-01-01

    Joint efforts by the Electrochemical Plant (ECP) in Zelenogorsk, Russia, and the United States Department of Energy National Nuclear Security Administration (US DOE/NNSA) Material Protection, Control and Accounting (MPC and A) Program to upgrade ECP security systems began in 1996. The commissioning of major MPC and A systems at ECP occurred in December 2004. Since that time, the US Project Team (USPT) and ECP personnel have focused jointly on the development and implementation of an enterprise-wide MPC and A Sustainability Program (SP) that address the seven essential MPC and A Program sustainability elements. This paper describes current operational experience at the ECP with the full implementation of the site SP utilizing an earned-value methodology. In support of this site program, ECP has established a Document Control Program (DCP) for sustainability-related documents; developed a robust master Work Breakdown Structure (WBS) that outlines all ECP MPC and A sustainability activities; and chartered an Enterprise-Wide Sustainability Working Group (ESWG) The earned value methodology uses ECP-completed (and USPT-verified) analyses to assess project performance on a quarterly basis. The MPC and A SP, presently operational through a contract between ECP and the Los Alamos National Laboratory (LANL), incorporates the seven essential MPC and A Program sustainability elements and governs all sustainability activities associated with MPC and A systems at ECP. The site SP is designed to ensure over the near term the upgraded MPC and A systems continuous operation at ECP as funding transitions from US-assisted to fully Russian supported and sustained

  16. Control and accountancy of nuclear materials in a uranium enrichment plant

    International Nuclear Information System (INIS)

    Hurt, N.H.

    1985-01-01

    A nuclear material control and accountancy system has been developed by Goodyear Atomic Corporation to meet safeguards and security requirements. It comprises three major elements: physical security, nuclear material control, and nuclear material accounting. This safeguards system is called Dynamic Material Control and Accountancy System (DYMCAS). The system approaches real-time computer control on a transaction-by-transaction basis

  17. Model Thermoelectric Generator TEG Small Modular As Micro Electricity Plant At Indonesia Part 1 Design And Material

    Directory of Open Access Journals (Sweden)

    Kisman M. Mahmud

    2015-08-01

    Full Text Available Thermoelectrically Generator TEG can generate electricity from the temperature difference between hot and cold at the junction thermoelectric module with two different semiconductor materials there will be a flow of current through the junction so as to produce a voltage. This principle uses the Seebeck effect thermoelectric generator as a base. By using these principles this study was conducted to determine the potential of the electric energy of the two Peltier modules which would be an alternative source for micro electricity plant using heat from methylated. The focus of this research is to design a model TEG Thermoelectric Generator Small Modular to produce the kind of material that is optimum for a TEG on the simulation Computer Aided Design CAD with a variety of four different materials that Bi2Te3 Bismuth Telluride PbTe-BiTe CMO-32 -62S Cascade and CMO-32-62S Calcium Manganese Oxide to its cold side using the heat sink fan and simulating heat aluminum plate attached to the hot side of the TEG modules with heat source of methylated. Model simulation results on TEG Small Modular micro electrical plant material obtained CMO-32-62S Cascade thermal material that has a value greater than 3 other material.

  18. Uptake of explosives from contaminated soil by vegetation at the Joliet Army Ammunition Plant

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, J.F.; Tomczyk, N.A.; Zellmer, S.D. [Argonne National Lab., IL (United States); Banwart, W.L. [University of Illinois, Champaign-Urbana, IL (United States). Agronomy Dept.; Houser, W.P. [US Army Environmental Center, Edgewood, MD (United States)

    1994-06-01

    This study examines the uptake of explosives by vegetation growing on soils contaminated by 2,4,6-trinitrotoluene (TNT) in Group 61 at the Joliet Army Ammunition Plant (JAAP). Plant materials and soil from the root zone were sampled and analyzed to determine TNT uptake under natural field conditions. Standard USATHAMA methods were used to determine concentrations of explosives, their derivatives, and metabolites in the soil samples. No- explosives were detected in the aboveground portion of any plant sample. However, results indicate that TNT, 2-aminodinitrotoluene (2-ADNT), and/or 4-ADNT were present in some root samples. The presence of 2-ADNT and 4-ADNT increases the likelihood that explosives were taken up by plant roots, as opposed to their presence resulting from external soil contamination.

  19. Petrographic and anatomical characteristics of plant material from two peat deposits of Holocene and Miocene age, Kalimantan, Indonesia

    Science.gov (United States)

    Moore, T.A.; Hilbert, R.E.

    1992-01-01

    Samples from two peat-forming environments of Holocene and Miocene age in Kalimantan (Borneo), Indonesia, were studied petrographically using nearly identical sample preparation and microscopic methodologies. Both deposits consist of two basic types of organic material: plant organs/tissues and fine-grained matrix. There are seven predominant types of plant organs and tissues: roots possessing only primary growth, stems possessing only primary growth, leaves, stems/roots with secondary growth, secondary xylem fragments, fragments of cork cells, and macerated tissue of undetermined origin. The fine-grained matrix consists of fragments of cell walls and cell fillings, fungal remains, spores and pollen grains, and resin. Some of the matrix material does not have distinct grain boundaries (at ??500) and this material is designated amorphous matrix. The major difference between the Holocene peat and Miocene lignite in reflected light, oil immersion is a loss of red coloration in the cell walls of tissue in the lignite, presumably due to loss of cellulosic compounds. In addition, cortex and phloem tissue (hence primary roots and stems) are difficult to recognize in the lignite, probably because these large, thin-walled tissues are more susceptible to microbial degradation and compaction. Particle size in both peat and lignite samples display a bimodal distribution when measurements are transformed to a - log2 or phi (??), scale. Most plant parts have modes of 2-3?? (0.25 - 0.125 mm), whereas the finer-grained particulate matrix has modes of 7-9?? (0.008-0.002 mm). This similarity suggest certain degradative processes. The 2-3?? range may be a "stable" size for plant parts (regardless of origin) because this is a characteristics of a substrate which is most suitable for plant growth in peat. The finer-grained matrix material (7-9??) probably results from fungal decay which causes plant material to weaken and with slight physical pressure to shatter into its component

  20. Aboveground vs. Belowground Carbon Stocks in African Tropical Lowland Rainforest: Drivers and Implications.

    Directory of Open Access Journals (Sweden)

    Sebastian Doetterl

    Full Text Available African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors.Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock were only half compared to an area with lower tree height (= smaller aboveground carbon stock. This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system.We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to the terrestrial C budget.

  1. Aboveground vs. Belowground Carbon Stocks in African Tropical Lowland Rainforest: Drivers and Implications.

    Science.gov (United States)

    Doetterl, Sebastian; Kearsley, Elizabeth; Bauters, Marijn; Hufkens, Koen; Lisingo, Janvier; Baert, Geert; Verbeeck, Hans; Boeckx, Pascal

    2015-01-01

    African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors. Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock) were only half compared to an area with lower tree height (= smaller aboveground carbon stock). This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system. We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to the terrestrial C budget.

  2. 7 CFR 351.7 - Regulations governing importation by mail of plant material for immediate export.

    Science.gov (United States)

    2010-01-01

    ... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE IMPORTATION OF PLANTS OR... enter the commerce of the United States. (3) After inspection by the customs and quarantine officers... parcel under customs supervision; affix to the parcel the necessary postage, and comply with other...

  3. Characterizing pathways of invasion using Sternorryhncha on imported plant material in cargo

    Science.gov (United States)

    Timothy T. Work

    2011-01-01

    Non-indigenous Homoptera, mainly scales, aphids, and mealy bugs, intercepted on plants destined for cultivation represent an elevated risk for the establishment of invasive insects in North America. These insects [grouped as the suborder Sternorrhyncha] are often parthenogenic and are imported on viable host plants.

  4. Shade avoidance: phytochrome signalling and other aboveground neighbour detection cues

    NARCIS (Netherlands)

    Pierik, Ronald|info:eu-repo/dai/nl/254842836; de Wit, Mieke|info:eu-repo/dai/nl/314114602

    2014-01-01

    Plants compete with neighbouring vegetation for limited resources. In competition for light, plants adjust their architecture to bring the leaves higher in the vegetation where more light is available than in the lower strata. These architectural responses include accelerated elongation of the

  5. ANTIMICROBIAL ACTIVITY OF THE SUBSTANCES RECEIVED FROM RAW MATERIALS OF BIRCH FAMILY PLANTS

    Directory of Open Access Journals (Sweden)

    Fedchenkova Yu.A

    2016-12-01

    Full Text Available Introduction. In accordance with the last events in Ukraine (considering military operations in anti-terrorist operation in the Luhansk and Donetsk regions the domestic medicine is in great need in preparations with antimicrobial activity. Our attention as the sources of receiving biologically active substances with antimicrobial activity was drawn with birch Betulaceae family plants – hazel ordinary Corylus avellana L. and black alder Alnus glutinosa (L. Gaertn. It is known that in medicine the leaves of hazel ordinary are used as antiseptic, anti-inflammatory, vesselrestorative drug, and the leaves of black alder reveal the antiinflammatory, astringent, wound healing, spasmolytic and choleretic action. However, the drugs with antimicrobial action received from the leaves of these plants are absent on the market of Ukraine. Therefore the studying of antimicrobial activity of this type of raw materials received from hazel ordinary and black alder, for creation of new medicines, is now one of the main directions in pharmacy. For this purpose we have revealed tinctures, spirit, lipophilic and polysacharid fractions received from the leaves of hazel ordinary and black alder. The purpose of our research is studying of antimicrobial activity of revealed substance received from the leaves of black alder and hazel ordinary. Materials and methods. There were being examined tinctures, lipophilic, spirit and polysacharid fractions received from the leaves of hazel ordinary and black alder. The test of antimicrobial effect of substances was carried out by means of serial dilution concerning the following six reference cultures: Staphylococcus aureus ATCC 6538-P, Candida albicans ATCC 885-653, Escherichia coli ATCC 25922, Bacillus subtilis ATCC 6833, Bacillus cereus ATCC 10702, Pseudomonas aeruginosa ATCC 9027, according to the State Pharmacopoeia of Ukraine, in the Department of Microbiology and Immunology of KMAPE. For the experiment there was prepared

  6. Analysis of plant gums and saccharide materials in paint samples: comparison of GC-MS analytical procedures and databases

    Science.gov (United States)

    2012-01-01

    Background Saccharide materials have been used for centuries as binding media, to paint, write and illuminate manuscripts and to apply metallic leaf decorations. Although the technical literature often reports on the use of plant gums as binders, actually several other saccharide materials can be encountered in paint samples, not only as major binders, but also as additives. In the literature, there are a variety of analytical procedures that utilize GC-MS to characterize saccharide materials in paint samples, however the chromatographic profiles are often extremely different and it is impossible to compare them and reliably identify the paint binder. Results This paper presents a comparison between two different analytical procedures based on GC-MS for the analysis of saccharide materials in works-of-art. The research presented here evaluates the influence of the analytical procedure used, and how it impacts the sugar profiles obtained from the analysis of paint samples that contain saccharide materials. The procedures have been developed, optimised and systematically used to characterise plant gums at the Getty Conservation Institute in Los Angeles, USA (GCI) and the Department of Chemistry and Industrial Chemistry of the University of Pisa, Italy (DCCI). The main steps of the analytical procedures and their optimisation are discussed. Conclusions The results presented highlight that the two methods give comparable sugar profiles, whether the samples analysed are simple raw materials, pigmented and unpigmented paint replicas, or paint samples collected from hundreds of centuries old polychrome art objects. A common database of sugar profiles of reference materials commonly found in paint samples was thus compiled. The database presents data also from those materials that only contain a minor saccharide fraction. This database highlights how many sources of saccharides can be found in a paint sample, representing an important step forward in the problem of

  7. Analysis of plant gums and saccharide materials in paint samples: comparison of GC-MS analytical procedures and databases

    Directory of Open Access Journals (Sweden)

    Lluveras-Tenorio Anna

    2012-10-01

    Full Text Available Abstract Background Saccharide materials have been used for centuries as binding media, to paint, write and illuminate manuscripts and to apply metallic leaf decorations. Although the technical literature often reports on the use of plant gums as binders, actually several other saccharide materials can be encountered in paint samples, not only as major binders, but also as additives. In the literature, there are a variety of analytical procedures that utilize GC-MS to characterize saccharide materials in paint samples, however the chromatographic profiles are often extremely different and it is impossible to compare them and reliably identify the paint binder. Results This paper presents a comparison between two different analytical procedures based on GC-MS for the analysis of saccharide materials in works-of-art. The research presented here evaluates the influence of the analytical procedure used, and how it impacts the sugar profiles obtained from the analysis of paint samples that contain saccharide materials. The procedures have been developed, optimised and systematically used to characterise plant gums at the Getty Conservation Institute in Los Angeles, USA (GCI and the Department of Chemistry and Industrial Chemistry of the University of Pisa, Italy (DCCI. The main steps of the analytical procedures and their optimisation are discussed. Conclusions The results presented highlight that the two methods give comparable sugar profiles, whether the samples analysed are simple raw materials, pigmented and unpigmented paint replicas, or paint samples collected from hundreds of centuries old polychrome art objects. A common database of sugar profiles of reference materials commonly found in paint samples was thus compiled. The database presents data also from those materials that only contain a minor saccharide fraction. This database highlights how many sources of saccharides can be found in a paint sample, representing an important step

  8. Electron Beam Lithography Using Highly Sensitive Negative Type of Plant-Based Resist Material Derived from Biomass on Hardmask Layer

    Science.gov (United States)

    Takei, Satoshi; Oshima, Akihiro; Sekiguchi, Atsushi; Yanamori, Naomi; Kashiwakura, Miki; Kozawa, Takahiro; Tagawa, Seiichi

    2011-10-01

    We investigated electron beam (EB) lithography using a novel highly sensitive negative type of plant-based resist material derived from biomass on a hardmask layer for trilayer processes. The chemical design concept for using the plant-based resist material with glucose and dextrin derivatives was first demonstrated in the EB lithography. The 1 µm line patterning images with highly efficient crosslinking properties and low film thickness shrinkage were provided under specific process conditions of EB lithography. The results shown reveal that the alpha-linked disaccharide formed by a 1,1-glucoside bond between two glucose units in dextrin derivatives was an important factor in controlling the highly sensitive EB patterning and developer properties.

  9. Summary of historical experience with release of radioactive materials from commercial nuclear power plants in the United States

    International Nuclear Information System (INIS)

    Sailor, V.L.; Colbert, J.J.

    1985-03-01

    This report presents a summary of the historical experience concerning releases of radiactive materials from U.S. commercial nuclear power plants. The material was compiled specifically to provide background information for the Nuclear Regulatory Commission (NCR) Staff Evaluation of the proposed NCR Safety Goals. The types of available data on radioactive emissions are identified, reviewed, and summarized. The annual 50-year population radiation dose commitments for the annular regions between 2 and 80 km of each plant resulting from the radioactive emissions are summarized for the period 1975-1981. These doses are compared with the annual population dose commitments from natural background radiation for the same areas, and with the proposed NCR societal safety goal. The question of independent verification of licensee data on emissions is examined

  10. Role of materials accounting in integrated safeguards systems for reprocessing plants

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Gutmacher, R.G.; Markin, J.T.; Shipley, J.P.; Whitty, W.J.

    1981-01-01

    Integration of materials accounting and containment/surveillance techniques for international safeguards requires careful examination and definition of suitable inspector activities for verification of operator's materials accounting data. The inspector's verification procedures are designed to protect against data falsification and/or the use of measurement uncertainties to conceal missing material. Materials accounting activities are developed to provide an effective international safeguards system when combined with containment/surveillance activities described in a companion paper

  11. Operational control of material release and discharges from nuclear power plant

    International Nuclear Information System (INIS)

    Szabo, I. C.; Ranga, T.; Daroczi, L.; Deme, S.; Kerekes, A.

    2003-01-01

    The operational control of radioactive materials during atmospheric release and aquatic discharge from nuclear power plant is a licensing criterion for NPPs. Originally at the Paks NPP the release control was based on activity limits for four groups of elements. These groups were noble gases, long living radio-aerosols, radioiodine and radiostrontium for atmospheric release and specified activity limit for beta emitters, strontium and tritium for aquatic discharge into Danube. These groups were controlled with proper sampling and/or measuring instrumentation. The limit for atmospheric release was given as a 30-day moving average, for liquid discharges the annual limit was stipulated. The new release and discharge limitation system is based on the environmental dose limitation. The dose constraint for Paks NPP is 90 Sv/year of the critical group for all release pathways and the investigation dose limit is equal to 27 Sv/year. The regulation did not subdivide the dose limit for atmospheric and liquid components but for operational control subdivision of dose limits for atmospheric release and aquatic discharge and shorter time period (one day-one month) seems to be useful. The subdivision can be based on past release data and/or previous activity limits. To satisfy dose below the investigation dose limit there should be a proper operation control level for each separately measured component and pathway belonging to reasonable time interval significantly shorter than one year. The main task of the NPP staff is elaboration of reasonable control levels and reference time intervals for different radionuclide and element groups to be used in operational control. Operational control levels are based on measured daily or monthly release rates. In case of noble gases, aerosols and iodine the daily release rates have several sharp peaks per year. Operational control levels give opportunity to detect these peaks for internal investigation purposes. Investigation release limits

  12. Role of human gut microbiota metabolism in the anti-inflammatory effect of traditionally used ellagitannin-rich plant materials.

    Science.gov (United States)

    Piwowarski, Jakub P; Granica, Sebastian; Zwierzyńska, Marta; Stefańska, Joanna; Schopohl, Patrick; Melzig, Matthias F; Kiss, Anna K

    2014-08-08

    Ellagitannin-rich plant materials are widely used in traditional medicine as effective, internally used anti-inflammatory agents. Due to the not well-established bioavailability of ellagitannins, the mechanisms of observed therapeutic effects following oral administration still remain unclear. The aim of the study was to evaluate if selected ellagitannin-rich plant materials could be the source of bioavailable gut microbiota metabolites, i.e. urolithins, together with determination of the anti-inflammatory activity of the metabolites produced on the THP-1 cell line derived macrophages model. The formation of urolithins was determined by ex vivo incubation of human fecal samples with aqueous extracts from selected plant materials. The anti-inflammatory activity study of metabolites was determined on PMA differentiated, IFN-γ and LPS stimulated, human THP-1 cell line-derived macrophages. The formation of urolithin A, B and C by human gut microbiota was established for aqueous extracts from Filipendula ulmaria (L.) Maxim. herb (Ph. Eur.), Geranium pratense L. herb, Geranium robertianum L. herb, Geum urbanum L. root and rhizome, Lythrum salicaria L. herb (Ph. Eur.), Potentilla anserina L. herb, Potentilla erecta (L.) Raeusch rhizome (Ph. Eur.), Quercus robur L. bark (Ph. Eur.), Rubus idaeus L. leaf, Rubus fruticosus L. and pure ellagitannin vescalagin. Significant inhibition of TNF-α production was determined for all urolithins, while for the most potent urolithin A inhibition was observed at nanomolar concentrations (at 0.625 μM 29.2±6.4% of inhibition). Urolithin C was the only compound inhibiting IL-6 production (at 0.625 μM 13.9±2.2% of inhibition). The data obtained clearly indicate that in the case of peroral use of the examined ellagitannin-rich plant materials the bioactivity of gut microbiota metabolites, i.e. urolithins, has to be taken under consideration. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Thermal Degradation Kinetics Modeling of Benzophenones and Xanthones during High-Temperature Oxidation of Cyclopia genistoides (L.) Vent. Plant Material.

    Science.gov (United States)

    Beelders, Theresa; de Beer, Dalene; Joubert, Elizabeth

    2015-06-10

    Degradation of the major benzophenones, iriflophenone-3-C-glucoside-4-O-glucoside and iriflophenone-3-C-glucoside, and the major xanthones, mangiferin and isomangiferin, of Cyclopia genistoides followed first-order reaction kinetics during high-temperature oxidation of the plant material at 80 and 90 °C. Iriflophenone-3-C-glucoside-4-O-glucoside was shown to be the most thermally stable compound. Isomangiferin was the second most stable compound at 80 °C, while its degradation rate constant was influenced the most by increased temperature. Mangiferin and iriflophenone-3-C-glucoside had comparable degradation rate constants at 80 °C. The thermal degradation kinetic model was subsequently evaluated by subjecting different batches of plant material to oxidative conditions (90 °C/16 h). The model accurately predicted the individual contents of three of the compounds in aqueous extracts prepared from oxidized plant material. The impact of benzophenone and xanthone degradation was reflected in the decreased total antioxidant capacity of the aqueous extracts, as determined using the oxygen radical absorbance capacity and DPPH(•) scavenging assays.

  14. Development of Digital Materials Database for Design and Construction of New Power Plants

    International Nuclear Information System (INIS)

    Ren, Weiju

    2008-01-01

    To facilitate materials selection, structural design, and future maintenance of the Generation IV nuclear reactor systems, an interactive, internet accessible materials property database, dubbed Gen IV Materials Handbook, has been under development with the support of the United States Department of Energy. The Handbook will provide an authoritative source of information on structural materials needed for the development of various Gen IV nuclear reactor systems along with powerful data analysis and management tools. In this paper, the background, history, framework, major features, contents, and development strategy of the Gen IV Materials Handbook are discussed. Current development status and future plans are also elucidated.

  15. Development of digital materials database for design and construction of new power plants

    International Nuclear Information System (INIS)

    Ren, W.

    2008-01-01

    To facilitate materials selection, structural design, and future maintenance of the Generation IV nuclear reactor systems, an interactive, internet accessible materials property database, dubbed Gen IV Materials Handbook, has been under development with the support of the United States Department of Energy. The Handbook will provide an authoritative source of information on structural materials needed for the development of various Gen IV nuclear reactor systems along with powerful data analysis and management tools. In this paper the background, history, framework, major features, contents, and development strategy of the Gen IV Materials Handbook are discussed. Current development status and future plans are also elucidated. (authors)

  16. Development and validation of aboveground biomass estimations for four Salix clones in central New York

    Energy Technology Data Exchange (ETDEWEB)

    Arevalo, Carmela B.M.; Volk, Timothy A.; Bevilacqua, Eddie; Abrahamson, Lawrence [Faculty of Forest and Natural Resources Management, State University of New York, College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210 (United States)

    2007-01-15

    Commercial and research scale plantings of short-rotation woody crops require reliable and efficient estimations of biomass yield before time of harvest. Biomass equations currently exist but the accuracy and efficiency of estimation procedures at the level of specificity needs to be quantified for clones being used in North America. Diameter-based allometric equations for aboveground biomass for four clones of willow (Salix discolor, Salix alba, Salix dasyclados, and Salix sachalinensis), between two sites (Canastota and Tully, NY), and across four years (1998-2001), were developed using ordinary least-squares regression (OLSR) on log-transformed variables, weighted least squares regression (WLSR) on log-transformed variables, and nonlinear regression (NLR) methods and validated using independent data sets. Biomass estimations derived from clone, age, and site (Specific) using OLSR equations had highest R{sup 2} and lowest percent bias (<2.3%) allowing for accurate estimations of standing biomass. Values for specific equations using WLSR were similar, but bias was higher for NLR (0.7-12.5%). However, the amount of time and effort required to develop specific equations, is large and in many situations prohibitive. Biomass estimates derived from clone and age, regardless of site (Intermediate), resulted in small increases in prediction error and a small increase in percent bias using OLSR (<0.4%) and WLSR (<1.7%). The increase in percent bias was larger (1.1-5.7%) for NLR equations. Intermediate models correspond to the loss of only a small amount of accuracy while gaining more efficiency in estimating standing biomass. Estimates of biomass derived from clone alone (general) equations, considering neither age nor site, had the weakest prediction abilities that may lead to large errors for biomass estimations using OLSR (7.0-9.5%), WLSR (1.1-21.7%) or NLR (31.9-143.4%). (author)

  17. Materialism.

    Science.gov (United States)

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Training for the qualification and competence of nuclear power plant personnel. Working material

    International Nuclear Information System (INIS)

    1993-01-01

    This document contains summaries of the presentations prepared for the IAEA Review Meeting ''Training for the Qualification and Competence of Nuclear Power Plant Personnel''. The individual contributors have been indexed separately for the database. Refs, figs and tabs

  19. Tube failures due to cooling process problem and foreign materials in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, J. [Kapar Energy Ventures Sdn Bhd, Jalan Tok Muda, Kapar 42200 (Malaysia); Purbolaksono, J., E-mail: judha@uniten.edu.m [Department of Mechanical Engineering, Universiti Tenaga Nasional, Km 7 Jalan Kajang-Puchong, Kajang 43009, Selangor (Malaysia); Beng, L.C. [Kapar Energy Ventures Sdn Bhd, Jalan Tok Muda, Kapar 42200 (Malaysia)

    2010-07-15

    Cooling process which uses water for heat transfer is an essential factor in coal-fired and nuclear plants. Loss of cooling upset can force the plants to shut down. In particular, this paper reports visual inspections and metallurgical examinations on the failed SA210-A1 right-hand side (RHS) water wall tube of a coal-fired plant. The water wall tube showed the abnormal outer surface colour and has failed with wide-open ductile rupture and thin edges indicating typical signs of short-term overheating. Metallurgical examinations confirmed the failed tube experiencing higher temperature operation. Water flow starvation due to restriction inside the upstream tube is identified as the main root cause of failure. The findings are important to take failure mitigation actions in the future operation. Discussion on the typical problems related to the cooling process in nuclear power plants is also presented.

  20. Tube failures due to cooling process problem and foreign materials in power plants

    International Nuclear Information System (INIS)

    Ahmad, J.; Purbolaksono, J.; Beng, L.C.

    2010-01-01

    Cooling process which uses water for heat transfer is an essential factor in coal-fired and nuclear plants. Loss of cooling upset can force the plants to shut down. In particular, this paper reports visual inspections and metallurgical examinations on the failed SA210-A1 right-hand side (RHS) water wall tube of a coal-fired plant. The water wall tube showed the abnormal outer surface colour and has failed with wide-open ductile rupture and thin edges indicating typical signs of short-term overheating. Metallurgical examinations confirmed the failed tube experiencing higher temperature operation. Water flow starvation due to restriction inside the upstream tube is identified as the main root cause of failure. The findings are important to take failure mitigation actions in the future operation. Discussion on the typical problems related to the cooling process in nuclear power plants is also presented.

  1. Supplementary Material for: CRISPR/Cas9-mediated viral interference in plants

    KAUST Repository

    Ali, Zahir

    2015-01-01

    Abstract Background The CRISPR/Cas9 system provides bacteria and archaea with molecular immunity against invading phages and conjugative plasmids. Recently, CRISPR/Cas9 has been used for targeted genome editing in diverse eukaryotic species. Results In this study, we investigate whether the CRISPR/Cas9 system could be used in plants to confer molecular immunity against DNA viruses. We deliver sgRNAs specific for coding and non-coding sequences of tomato yellow leaf curl virus (TYLCV) into Nicotiana benthamiana plants stably overexpressing the Cas9 endonuclease, and subsequently challenge these plants with TYLCV. Our data demonstrate that the CRISPR/Cas9 system targeted TYLCV for degradation and introduced mutations at the target sequences. All tested sgRNAs exhibit interference activity, but those targeting the stem-loop sequence within the TYLCV origin of replication in the intergenic region (IR) are the most effective. N. benthamiana plants expressing CRISPR/Cas9 exhibit delayed or reduced accumulation of viral DNA, abolishing or significantly attenuating symptoms of infection. Moreover, this system could simultaneously target multiple DNA viruses. Conclusions These data establish the efficacy of the CRISPR/Cas9 system for viral interference in plants, thereby extending the utility of this technology and opening the possibility of producing plants resistant to multiple viral infections.

  2. Topical study on IRS events involving foreign material intrusion in plant systems. First issue. Report of a consultants meeting. Working material

    International Nuclear Information System (INIS)

    1997-01-01

    Recent exchange of operational safety experience among countries, within the framework of the IRS, revealed a noticeable increase in incidents involving foreign material intrusion (FMI) in nuclear power plant systems. These incidents appeared to have safety impact, sometimes widespread, on many systems and components, including the reactor core, control rods, the secondary side, and other support systems such as the electrical, air, and water systems. Notwithstanding the economic penalties and the operational problems that can arise from the FMI, many events indicated severe component damages, challenges to safety systems and to fuel integrity. Difficulties encountered with the removal of foreign material present further challenges due to the long term effects of such material remaining in the system and interacting with either fuel cladding, with the potential of releasing fission products in coolant systems, or with the system pressure boundary with the potential for material wear and sudden failure of the pressure boundary. The FMI topic was, therefore, one of a number of topics that was recommended by the TCM in 1996 for investigation. A consultant meeting was held at the IAEA during the period 14-18 April 1997 to address this topic. Figs

  3. Influence of antioxidants synthesized by plants on physico-chemical and microbiological evolution of Callovo-Oxfordian clay material

    International Nuclear Information System (INIS)

    Ubersfeld, Dimitri

    2016-01-01

    situ on a heap of old argillite (10 years) for one year. The lavandin grew better than lavender and was retained for the second study in situ. The comparison of the planted part of the COx heap with bare COx showed (i) a significant reduction in the quantities of calcium, strontium, iron and sulfur leached (ii) a significant reduction (by two orders of magnitude) to the amount of eroded material on the slope planted compared to unplanted (iii) a significant rate of mycorrhiza roots and microbial growth. In conclusion, although the naturally derived antioxidants did not significantly inhibit the alteration of argillite, the lavandin is an excellent plant for phyto-stabilisation of heap and for production of antioxidants. (author) [fr

  4. Fracture toughness requirements of reactor vessel material in evaluation of the safety analysis report of nuclear power plants

    International Nuclear Information System (INIS)

    Widia Lastana Istanto

    2011-01-01

    Fracture toughness requirements of reactor vessel material that must be met by applicants for nuclear power plants construction permit has been investigated in this paper. The fracture toughness should be described in the Safety Analysis Reports (SARs) document that will be evaluated by the Nuclear Energy Regulatory Agency (BAPETEN). Because BAPETEN does not have a regulations or standards/codes regarding the material used for the reactor vessel, especially in the fracture toughness requirements, then the acceptance criteria that applied to evaluate the fracture toughness of reactor vessel material refers to the regulations/provisions from the countries that have been experienced in the operation of nuclear power plants, such as from the United States, Japan and Korea. Regulations and standards used are 10 CFR Part 50, ASME and ASTM. Fracture toughness of reactor vessel materials are evaluated to ensure compliance of the requirements and provisions of the Regulatory Body and the applicable standards, such as ASME or ASTM, in order to assure a reliability and integrity of the reactor vessels as well as providing an adequate safety margin during the operation, testing, maintenance, and postulated accident conditions over the reactor vessel lifetime. (author)

  5. A near-real-time material accountancy model and its preliminary demonstration in the Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Ikawa, K.; Ihara, H.; Nishimura, H.; Tsutsumi, M.; Sawahata, T.

    1983-01-01

    The study of a near-real-time (n.r.t.) material accountancy system as applied to small or medium-sized spent fuel reprocessing facilities has been carried out since 1978 under the TASTEX programme. In this study, a model of the n.r.t. accountancy system, called the ten-day-detection-time model, was developed and demonstrated in the actual operating plant. The programme was closed on May 1981, but the study has been extended. The effectiveness of the proposed n.r.t. accountancy model was evaluated by means of simulation techniques. The results showed that weekly material balances covering the entire process MBA could provide sufficient information to satisfy the IAEA guidelines for small or medium-sized facilities. The applicability of the model to the actual plant has been evaluated by a series of field tests which covered four campaigns. In addition to the material accountancy data, many valuable operational data with regard to additional locations for an in-process inventory, the time needed for an in-process inventory, etc., have been obtained. A CUMUF (cumulative MUF) chart of the resulting MUF data in the C-1 and C-2 campaigns clearly showed that there had been a measurement bias across the process MBA. This chart gave a dramatic picture of the power of the n.r.t. accountancy concept by showing the nature of this bias, which was not clearly shown in the conventional material accountancy data. (author)

  6. Introduction to Using Native Plant Community on Dredge Material Placement Areas

    Science.gov (United States)

    2017-05-01

    series concerning the use of vegetation in Dredge Material Placement Areas (DMPA), including Confined Disposal Facilities (CDF), to achieve specific...dredged material produced during dredging of navigable channels in waters of the United States, including bays, inland rivers, harbors, and berthing...areas. Typically, a diked structure is constructed and then filled with dredged material over an extended period of time (i.e., 10–50 years) until

  7. Doubts to safety on nuclear power plant materials. Safety of nuclear power plants from design technology. Part 2

    International Nuclear Information System (INIS)

    Shibata, Hiroyuki

    2005-01-01

    Safety of NPPs has been doubted from design technology related with NPP materials. Fracture mechanics have been introduced to evaluate crack propagation in the areas of mechanical facilities and structures such as airplanes, ships and vessels. However multi-site cracks, which were observed simultaneously initiated and propagated around multiple rivets holes of a JAL jumbo jet crash accident, suggest the crack propagation prediction method would not be allowed technically and socially to apply to safety system design of important structures. Maintenance standards applied to NPPs and doubts on precise application of innovated nondestructive method on respective components would just mean the reduction of safety margin of the system and bring about another risk of reactor accidents. Recent experiences of a large system accident show technical difficulty to grasp the actual situation of accident precisely and such a technology should be developed to mitigate accident propagation based on limited uncertain information and limited time in order not be lead to a big accident. (T. Tanaka)

  8. The relationship between species richness and aboveground biomass in a primary Pinus kesiya forest of Yunnan, southwestern China.

    Science.gov (United States)

    Li, Shuaifeng; Lang, Xuedong; Liu, Wande; Ou, Guanglong; Xu, Hui; Su, Jianrong

    2018-01-01

    The relationship between biodiversity and biomass is an essential element of the natural ecosystem functioning. Our research aims at assessing the effects of species richness on the aboveground biomass and the ecological driver of this relationship in a primary Pinus kesiya forest. We sampled 112 plots of the primary P. kesiya forests in Yunnan Province. The general linear model and the structural equation model were used to estimate relative effects of multivariate factors among aboveground biomass, species richness and the other explanatory variables, including climate moisture index, soil nutrient regime and stand age. We found a positive linear regression relationship between the species richness and aboveground biomass using ordinary least squares regressions. The species richness and soil nutrient regime had no direct significant effect on aboveground biomass. However, the climate moisture index and stand age had direct effects on aboveground biomass. The climate moisture index could be a better link to mediate the relationship between species richness and aboveground biomass. The species richness affected aboveground biomass which was mediated by the climate moisture index. Stand age had direct and indirect effects on aboveground biomass through the climate moisture index. Our results revealed that climate moisture index had a positive feedback in the relationship between species richness and aboveground biomass, which played an important role in a link between biodiversity maintenance and ecosystem functioning. Meanwhile, climate moisture index not only affected positively on aboveground biomass, but also indirectly through species richness. The information would be helpful in understanding the biodiversity-aboveground biomass relationship of a primary P. kesiya forest and for forest management.

  9. Uptake of explosives from contaminated soil by existing vegetation at the Joliet Army Ammunition Plant

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, J.F.; Tomczyk, N.A.; Zellmer, S.D. [Argonne National Lab., IL (United States); Banwart, W.L. [Argonne National Lab., IL (United States)]|[Univ., of Illinois, Urbana, IL (United States). Dept., of Agronomy

    1994-01-01

    This study examines the uptake of explosives by existing vegetation growing in TNT-contaminated soils on Group 61 at the Joliet Army Ammunition Plant (JAAP). The soils in this group were contaminated more than 40 years ago. In this study, existing plant materials and soil from the root zone were sampled from 15 locations and analyzed to determine TNT uptake by plants under natural field conditions. Plant materials were separated by species if more than one species was present at a sampling location. Standard methods were used to determine concentrations of explosives, their derivatives, and metabolites in the soil samples. Plant materials were also analyzed. No. explosives were detected in the aboveground portion of any plant sample. However, the results indicate that TNT, 2-amino DNT, and/or 4-amino DNT were found in some root samples of false boneset (Kuhnia eupatorioides), teasel (Dipsacus sylvestris), and bromegrass (Bromus inermis). It is possible that slight soil contamination remained on the roots, especially in the case of the very fine roots for species like bromegrass, where washing was difficult. The presence of 2-amino DNT and 4-amino DNT, which could be plant metabolites of TNT, increases the likelihood that explosives were taken up by plant roots, as opposed to their presence resulting from external soil contamination.

  10. Heterodera schachtii nematodes interfere with aphid-plant relations on Brassica oleracea

    NARCIS (Netherlands)

    Hol, W.H.G.; Boer, de W.; Termorshuizen, A.J.; Meyer, K.M.; Schneider, J.H.M.; Putten, van der W.H.; Dam, N.M.

    2013-01-01

    Aboveground and belowground herbivore species modify plant defense responses differently. Simultaneous attack can lead to non-additive effects on primary and secondary metabolite composition in roots and shoots. We previously found that aphid (Brevicoryne brassicae) population growth on Brassica

  11. Peculiarities of 137Cs translocation in higher plants under environmental and laboratory conditions

    International Nuclear Information System (INIS)

    Marciulioniene, D.; Kiponas, D.; Luksiene, B.

    2008-01-01

    Accumulation of technogenic 137 Cs in higher plant roots and above-ground part and comparison of 137 Cs and 40 K transfer from roots to the above-ground part of plant as well as distribution within above-ground part of plant under environmental conditions were investigated. Parallely, the results of the investigations of 137 Cs accumulation in the roots and shoots of test-organism Lepidium sativum L. in the model hydroponic system aqueous solution-solid phase-plant were analyzed. Peculiarities of transfer of this radionuclide from roots to shoots during the entire plant growing period under experimental conditions were determined. 137 Cs activity in the tested plants of meadow ecotop was on an average 6-fold lower than in the plants of swamp and 10-fold lower than in the plants of forest ecotop. Differences in 137 Cs and 40 K transfer from roots to the above-ground part of plant and their distribution in plants indicate particular biological metabolism of these radionuclides in plants. Increased levels of 137 Cs in soil practically did not affect the 40 K transfer from roots to the above-ground part of plants. The results of investigations under natural and laboratory conditions show that increasing contamination of growth medium with 137 Cs caused higher accumulation of this radionuclide in roots but its transfer from roots to the above-ground part of plant decreased or changed insignificantly. 137 Cs transfer from roots to above-ground part under natural (Artemisia vulgaris) and laboratory (Lepidium sativum) conditions was rather similar. (authors)

  12. Rheological behaviour of fibre-rich plant materials in fat-based food systems

    NARCIS (Netherlands)

    Bonarius, G.A.; Vieira, J.B.; Goot, van der A.J.; Bodnar, I.

    2014-01-01

    The potential use of fibre-rich materials as bulking agents to replace sucrose in chocolate confectionary products is investigated. Since the rheological behaviour of the molten chocolate mass is key in chocolate production, the rheology of fibre-rich materials in medium chain triglycerides (MCT) is

  13. Pilot-Plant for Energy Recovery from Tropical Waste Food Materials ...

    African Journals Online (AJOL)

    An experimental unit for obtaining gaseous methane from waste food materials is discussed and results are presented for experimental tests with animal wastes and tropical waste food materials. The tropical waste food considered include garri, boiled beans and plantains. As expected, the animal wastes produced higher ...

  14. Removal of polycyclic aromatic hydrocarbons from aqueous solution using plant residue materials as a biosorbent

    Energy Technology Data Exchange (ETDEWEB)

    Chen Baoliang, E-mail: blchen@zju.edu.cn [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Yuan Miaoxin; Liu Hao [Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310028 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, Zhejiang 310028 (China)

    2011-04-15

    Graphical abstract: The structure-effect relationship provides a reference to select and modify plant residues as a biosorbent with high efficiency to tackle organic pollutants. Research highlights: {yields} Polycyclic aromatic hydrocarbons are effectively removed by plant residues. {yields} Biosorption mechanism of plant residues to abate PAHs is a partitioning process. {yields} Partition coefficients are negatively related with sugar contents of biosorbent. {yields} The aromatic component and K{sub ow} exhibit positive effects on biosorption. {yields} The structure-effect relationship guides plant residue using as a biosorbent. - Abstract: To elucidate biosorption mechanism and removal efficiency of plant residues as a biosorbent to abate polycyclic aromatic hydrocarbons (PAHs) in wastewater, sorption of PAHs onto wood chips (WC), ryegrass roots (RR), orange peels (OP), bamboo leaves (BL), and pine needles (PN) were investigated. The structural characterization of the biosorbents was analyzed by elemental composition, BET-N{sub 2} surface area, and Fourier transform infrared spectroscopy. PAHs sorption to the selected biosorbents were compared and correlated with their structures. Biosorption isotherms fit well with Freundlich equation and the mechanism was dominated by partition process. The magnitude of phenanthrene partition coefficients (K{sub d}) followed the order of PN > BL > OP > RR > WC, ranged from 2484 {+-} 24.24 to 5306 {+-} 92.49 L/kg. Except the WC sample, the K{sub d} values were negatively correlated with sugar content, polar index [(N + O)/C] of the biosorbents, while the aromatic component exhibited positive effects. For a given biosorbent of bamboo leaves, the carbon-normalized partition coefficients (K{sub oc}) were linearly correlated with octanol-water partition coefficients (K{sub ow}) of PAHs, i.e., log K{sub oc} = 1.16 log K{sub ow} - 1.21. The structure-effect relationship provides a reference to select and modify plant residues as a

  15. Plant-soil feedback of native and range-expanding plant species is insensitive to temperature

    NARCIS (Netherlands)

    Van Grunsven, R.H.A.; Van der Putten, W.H.; Bezemer, T.M.; Veenendaal, E.M.

    2010-01-01

    Temperature change affects many aboveground and belowground ecosystem processes. Here we investigate the effect of a 5°C temperature increase on plant–soil feedback. We compare plant species from a temperate climate region with immigrant plants that originate from warmer regions and have recently

  16. Plant-soil feedback of native and range expanding plant species is insensitive to temperature

    NARCIS (Netherlands)

    Grunsven, van R.H.A.; Veenendaal, E.M.; Bezemer, T.M.; Putten, van der W.H.

    2010-01-01

    Temperature change affects many aboveground and belowground ecosystem processes. Here we investigate the effect of a 5°C temperature increase on plant–soil feedback. We compare plant species from a temperate climate region with immigrant plants that originate from warmer regions and have recently

  17. Plant oil-based polymers prepared in green media and functionalized into useful materials

    Science.gov (United States)

    The conversion of plant oils to polymers has attracted renewed attention in recent years in order to replace or augment the traditional petro-chemical based polymers and resins. This is due to concern for the environment, waste disposal, and depletion of fossil and non renewable feedstocks. In this ...

  18. Correlative imaging of fluorescent proteins in resin-embedded plant material.

    Science.gov (United States)

    Bell, Karen; Mitchell, Steve; Paultre, Danae; Posch, Markus; Oparka, Karl

    2013-04-01

    Fluorescent proteins (FPs) were developed for live-cell imaging and have revolutionized cell biology. However, not all plant tissues are accessible to live imaging using confocal microscopy, necessitating alternative approaches for protein localization. An example is the phloem, a tissue embedded deep within plant organs and sensitive to damage. To facilitate accurate localization of FPs within recalcitrant tissues, we developed a simple method for retaining FPs after resin embedding. This method is based on low-temperature fixation and dehydration, followed by embedding in London Resin White, and avoids the need for cryosections. We show that a palette of FPs can be localized in plant tissues while retaining good structural cell preservation, and that the polymerized block face can be counterstained with cell wall probes. Using this method we have been able to image green fluorescent protein-labeled plasmodesmata to a depth of more than 40 μm beneath the resin surface. Using correlative light and electron microscopy of the phloem, we were able to locate the same FP-labeled sieve elements in semithin and ultrathin sections. Sections were amenable to antibody labeling, and allowed a combination of confocal and superresolution imaging (three-dimensional-structured illumination microscopy) on the same cells. These correlative imaging methods should find several uses in plant cell biology.

  19. The guayule plant : a renewable, domestic source of binder materials for flexible pavement mixtures.

    Science.gov (United States)

    2013-01-01

    The guayule (pronounced 'why-YOU-lee') plant grows in arid and semi-arid regions (e.g. the southwestern U.S.) and is a source of natural rubber. It was cultivated and processed during the World War II rubber shortage and is currently being processed ...

  20. Improved and high throughput quantitative measurements of weak GFP expression in transgenic plant materials.

    Science.gov (United States)

    Wu, Jing-Jing; Liu, Yu-Wen; Sun, Meng-Xiang

    2011-07-01

    Green fluorescent proteins (GFPs) are widely used in tracing transgene expression and have been known as convenient and efficient markers for plant transformation. However, sometimes researchers are still puzzled by the weak fluorescence since it makes the observation of GFP signals and confirmation of transgenic plants difficult. In this investigation, we explored the possibility of enhancing the weak signals by changing the pH environment of detection and took microplate reader as a more effective instrument compared to traditional fluorescent microscope to detect the weak signals. It was found that the fluorescence intensity of enhanced GFP (EGFP) in transgenic plants can be increased 2-6 folds by altering the environmental pH, and the concentration of EGFP at a large scale (ranged from 20 ng/ml to 20 μg/ml) can be detected and quantified. It can exclude the influence of degradation fragment and hence facilitate later analysis; these advantages were further verified by comparing with western blotting and confocal microscopy. It was reliable and effective for the qualitative and quantitative analysis of transgenic plants and was more suitable for the detection of very weak fluorescent signals.

  1. A plant culture system for producing food and recycling materials with sweetpotato in space

    Science.gov (United States)

    Kitaya, Yoshiaki; Yano, Sachiko; Hirai, Hiroaki

    2016-07-01

    The long term human life support in space is greatly dependent on the amounts of food, atmospheric O2 and clean water produced by plants. Therefore, the bio-regenerative life support system such as space farming with scheduling of crop production, obtaining high yields with a rapid turnover rate, converting atmospheric CO2 to O2 and purifying water should be established with employing suitable plant species and varieties and precisely controlling environmental variables around plants grown at a high density in a limited space. We are developing a sweetpotato culture system for producing tuberous roots as a high-calorie food and fresh edible leaves and stems as a nutritive functional vegetable food in space. In this study, we investigated the ability of food production, CO2 to O2 conversion through photosynthesis, and clean water production through transpiration in the sweetpotato production system. The biomass of edible parts in the whole plant was almost 100%. The proportion of the top (leaves and stems) and tuberous roots was strongly affected by environmental variables even when the total biomass production was mostly the same. The production of biomass and clean water was controllable especially by light, atmospheric CO2 and moisture and gas regimes in the root zone. It was confirmed that sweetpotato can be utilized for the vegetable crop as well as the root crop allowing a little waste and is a promising functional crop for supporting long-duration human activity in space.

  2. Standard Assays Do Not Predict the Efficiency of Commercial Cellulase Preparations Towards Plant Materials

    NARCIS (Netherlands)

    Kabel, Mirjam A.; Maarel, Marc J.E.C. van der; Klip, Gert; Voragen, Alphons G.J.; Schols, Henk A.

    2006-01-01

    Commercial cellulase preparations are potentially effective for processing biomass feedstocks in order to obtain bioethanol. In plant cell walls, cellulose fibrils occur in close association with xylans (monocotyls) or xyloglucans (dicotyls). The enzymatic conversion of cellulose/xylans is a complex

  3. Development of in-plant real-time materials control: the DYMAC program

    International Nuclear Information System (INIS)

    Augustson, R.H.

    1976-01-01

    LASL is in the process of developing a dynamic materials control program, called DYMAC, to provide the technology for stringent real-time nuclear materials control. The DYMAC program combines hardware and software into four component subsystems: nondestructive assay (NDA), instrumentation, data acquisition, data base management, and real-time accountability. To demonstrate the feasibility of DYMAC, a working real-time materials control system will be installed at the new plutonium facility presently under construction at LASL. Program emphasis is on developing practical solutions to generic problems and communicating those solutions to other installations for use throughout the nuclear fuel cycle

  4. Use of 15N enriched plant material for labelling of soil nitrogen in legume dinitrogen fixation experiments

    International Nuclear Information System (INIS)

    Jensen, E.S.

    1989-06-01

    The soil nitrogen in a field plot was labelled with nitrogen-15 (15N) by incorporating labelled plant material derived from previous experiments. The plot was used the following 3 years for determination of the amount of N2 fixed by different leguminous plants. The atom % 15N excess in grains of cereals grown as reference crops was 0.20, 0.05 and 0.03 in the 3 years, respectively. In the first year the level of enrichment was adequate for estimating symbiotic nitrogen fixation. In the second and third year lack of precision in determination of the 15N/14N ratios of legume N, may have caused an error in estimates of nitrogen fixation. About 23% of the labelled N was taken up by plants during the 3 years of cropping; after 4 years about 44% of the labelled N was found still to be present in the top soil. The labelling of the soil nitrogen with organic bound 15N, compared to adding mineral 15N at sowing, is advantageous because the labelled N is released by mineralization so that the enrichment of the plant available soil N pool become more uniform during the growth season; and high levels of mineral N, which may depress the fixation process, is avoided. (author) 7 tabs., 1 ill., 30 refs

  5. Airborne laser scanner-assisted estimation of aboveground biomass change in a temperate oak-pine forest

    Science.gov (United States)

    Nicholas S. Skowronski; Kenneth L. Clark; Michael Gallagher; Richard A. Birdsey; John L. Hom

    2014-01-01

    We estimated aboveground tree biomass and change in aboveground tree biomass using repeated airborne laser scanner (ALS) acquisitions and temporally coincident ground observations of forest biomass, for a relatively undisturbed period (2004-2007; ∇07-04), a contrasting period of disturbance (2007-2009; ∇09-07...

  6. Long-term effects of fuel treatments on aboveground biomass accumulation in ponderosa pine forests of the northern Rocky Mountains

    Science.gov (United States)

    Kate A. Clyatt; Christopher R. Keyes; Sharon M. Hood

    2017-01-01

    Fuel treatments in ponderosa pine forests of the northern Rocky Mountains are commonly used to modify fire behavior, but it is unclear how different fuel treatments impact the subsequent production and distribution of aboveground biomass, especially in the long term. This research evaluated aboveground biomass responses 23 years after treatment in two silvicultural...

  7. Distribution of anthropogenic fill material within the Y-12 plant area, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Sutton, G.E. Jr.; Field, S.M.

    1995-10-01

    Widespread groundwater contamination in the vicinity of the Oak Ridge Y-12 Plant has been documented through a variety of monitoring efforts since the late 1970s. Various contaminants, most notably volatile organic compounds (VOCs), have migrated through the subsurface and formed extensive contaminant plumes within the Knox Aquifer/Maynardville Limestone, the primary exit pathway for groundwater transport within the Bear Creek Valley. In 1991, an integrated, comprehensive effort (Upper East Fork Poplar Creek [UEFPC] Phase I monitoring network) was initiated in order to (1) identify contaminant source areas within the industrialized portions of the plant and (2) define contamination migration pathways existing between the source areas and the Knox Aquifer/Maynardville Limestone. Data obtained during previous studies have indicated that extensive zones of fill and buried utility trenches may serve as preferred migration pathways. In addition, portions of UEFPC were rerouted, with several of its tributaries being filled during the initial construction of the plant. These filled surface drainage features are also believed to serve as preferred migration pathways. The identification of preferred contaminant migration pathways within the Y-12 Plant area is essential and required to refine the current Bear Creek Valley groundwater conceptual model and to assist in the selection of technically feasible and cost effective remedial strategies. This report presents the results of an initial investigation of the occurrence of manmade (anthropogenic) fill and its effect upon groundwater movement within the plant area. These interpretations are subject to revision and improvement as further investigation of the effects of the fill upon contaminant migration progresses

  8. Valorization aboveground of the extract of compost ovine for ...

    African Journals Online (AJOL)

    The main objective of this study was to highlight the fertilizing capacity of the extract of ovine compost (prepared to the simple infusion) in gardening nursery, while specifying the appropriate ratios of extraction and dilution ,for soilless plant fertigation intended for two strategic summer crops in Tunisia: seasonal tomato and ...

  9. Above-ground tree outside forest (TOF) phytomass and carbon ...

    Indian Academy of Sciences (India)

    ... and refinement of classified images (Rawat et al. 2004). At the national level, an attempt is being made in the National Carbon. Project (NCP) to estimate the total phytomass and carbon density for plants/trees inside and out-side the forest through a project taken up by the Indian. Space Research Organization (ISRO), ...

  10. Laser-heating and Radiance Spectrometry for the Study of Nuclear Materials in Conditions Simulating a Nuclear Power Plant Accident.

    Science.gov (United States)

    Manara, Dario; Soldi, Luca; Mastromarino, Sara; Boboridis, Kostantinos; Robba, Davide; Vlahovic, Luka; Konings, Rudy

    2017-12-14

    Major and severe accidents have occurred three times in nuclear power plants (NPPs), at Three Mile Island (USA, 1979), Chernobyl (former USSR, 1986) and Fukushima (Japan, 2011). Research on the causes, dynamics, and consequences of these mishaps has been performed in a few laboratories worldwide in the last three decades. Common goals of such research activities are: the prevention of these kinds of accidents, both in existing and potential new nuclear power plants; the minimization of their eventual consequences; and ultimately, a full understanding of the real risks connected with NPPs. At the European Commission Joint Research Centre's Institute for Transuranium Elements, a laser-heating and fast radiance spectro-pyrometry facility is used for the laboratory simulation, on a small scale, of NPP core meltdown, the most common type of severe accident (SA) that can occur in a nuclear reactor as a consequence of a failure of the cooling system. This simulation tool permits fast and effective high-temperature measurements on real nuclear materials, such as plutonium and minor actinide-containing fission fuel samples. In this respect, and in its capability to produce large amount of data concerning materials under extreme conditions, the current experimental approach is certainly unique. For current and future concepts of NPP, example results are presented on the melting behavior of some different types of nuclear fuels: uranium-plutonium oxides, carbides, and nitrides. Results on the high-temperature interaction of oxide fuels with containment materials are also briefly shown.

  11. 36 CFR 13.485 - Subsistence use of timber and plant material.

    Science.gov (United States)

    2010-07-01

    ... cutting of standing timber by local rural residents for appropriate subsistence uses, such as firewood or... materials for subsistence uses, and the noncommerical gathering of dead or downed timber for firewood, shall...

  12. System requirement specifications for the Z-plant materials information tracking system (ZMITS)

    International Nuclear Information System (INIS)

    NEGIN, C.A.

    1999-01-01

    This is a system requirement specification for a database which will be developed to track classified information related to nuclear materials stored at PFP. The system will supplement existing databases to support both processing and disposition information needs

  13. Z-Plant material information tracking system (ZMITS) software development and integration project management plan

    International Nuclear Information System (INIS)

    IBSEN, T.G.

    1999-01-01

    This document plans for software and interface development governing the implementation of ZMITS and other supporting systems necessary to manage information for material stabilization needs of the Project Hanford Management Contract (PHMC)

  14. Report on the FR Germany: US technical workshop on near-real-time material accounting for reprocessing plants

    International Nuclear Information System (INIS)

    Weh, R.; Hakkila, E.A.; Canty, M.J.

    1986-01-01

    A technical workshop on the subject of near-real-time material accounting in an industrial scale reprocessing plant was held. Organized within the context of the US DOE - FR German Ministry of Research and Technology (BMFT) agreement in the field of international safeguards, the workshop was initiated by the Deutsche Gesellschaft fur Wiederaufarbeitung von Kernbrennstoffen, responsible for the construction and operation of a planned industrial scale reprocessing plant in the FR Germany. The workshop's objective was to establish the current state of the art for near-real-time accounting and to bring out a common understanding and consensus among experts from both countries which seve as a basis for the definition of problems still to be solved. A summary of the workshop presentations, preliminary conclusions drawn by the experts attending as well as some implications for the application of dynamic balancing are given

  15. Material control and accountability aspects of safeguards for the USA 233U/TH fuel recycle plant

    International Nuclear Information System (INIS)

    Carpenter, J.A. Jr.; McNeany, S.R.; Angelini, P.; Holder, N.D.; Abraham, L.

    1979-01-01

    Two fuel cycles are considered. The highly enriched uranium (HEU) cycle uses uranium enriched 93% in 235 U as the initial fuel. The medium enriched uranium (MEU) cycle uses uranium with a 235 U enrichment less than 20% as its initial fuel. In both, 233 U is bred from thorium. The HEU 235 U and the 233 U of both cycles are recycled. The MEU 235 U is retired to waste after one reactor cycle. Typical heavy metal contents of spent fuel elements from both cycles are presented. The main functional areas of the recycle plant are Shipping, Receiving, and Storage; Reprocessing; Refabrication; and Waste Treatment. A real-time materials accountability system will manage the data provided by measurements from all four areas. Simulations of material flow used in the HTGR development program are forerunners of such a system. The material control and accountability aspects of Reprocessing and Refabrication only are discussed. The proposed accountability areas are identified and the measurement techniques appropriate to various streams crossing the boundaries of the areas are identified. Special emphasis is placed on novel nondestructive methods developed for assaying solid materials containing 233 U-Th. The material form, total uranium and plutonium, and activity of selected reprocessing streams are listed. The isotopics and activity of the uranium input into Refabrication are also presented

  16. Some effects of soil-moisture availability on above-ground production and reproductive allocation in Larrea tridentata (DC) Cov.

    Science.gov (United States)

    Cunningham, G L; Syvertsen, J P; Reynolds, J F; Willson, J M

    1979-01-01

    Data from the US/IBP Desert Biome validation studies indicate that above-ground production and biomass allocated to reproduction in Larrea tridentata vary from one year to another depending upon the timing and extent of soil-moisture availability. In an attempt to verify these observations and determine to what extent water availability can affect total aboveground production and reproductive allocation in this widely distributed warm desert shrub, a series of soil-moisture augmentation experiments were conducted. High levels of soil moisture had a greater effect on reproductive allocation than on total above-ground production. Enhanced soil moisture during the period of active growth increased total above-ground production and reduced the percentage of biomass allocated to reproduction. Enhanced soil moisture during the normal periods of little or no growth did not increase total above-ground production.

  17. Solid and fly ash materials ofbrown coal power plants, their characteristics and utilisation

    Directory of Open Access Journals (Sweden)

    Kovács Ferenc

    2002-09-01

    Full Text Available coal-fired power plants, a significant amount of residues is produced, depending on the technical parameters of coal separation and firing equipment. A large quantity of solid and fly ash and, in the case of flue gas desulphurisation, REA gypsum and wash-water is produced. The quantity of residues depends primarily on the ash and sulphur content of the fuel.Coal has a significant role in energy production and represents a considerable quantity in electric energy generation. At the turn of the millenary, about 4 billion tones of black coal and 800 million tones of brown coal and lignite are produced in the world annually. Depending on the ash content of the coals – it varies between 5-8% and 30-35% –, the quantity of solid and fly ash produced by firing is 1.0-1.5 billion tones per year. The quantity of residues of this kind accumulated in the past amounts to 100 billion tones.As far as the residues of coal-fired power plants are concerned, the annual fuel demand of the power plants of the Rhenish brown coal basin, where the average ash content of lignite is 7% and the average sulphur content is 0.2-0.8%, is 1 Mt referred to a power plant capacity of 100 MW. 60-70 kt solid + fly ash and, in the case of flue gas desulphurisation, 12-15 kt of gypsum is produced annually, referred to a capacity of 100 MW. In the East German areas, after the reconstruction of power plants, 30-50 kt of fly ash and, because of the higher sulphur content, 25-30 kt of gypsum and 4-5000 m3 of wash-water is produced annually, referred to a capacity of 100 MW.The composition of Hungarian lignite is significantly different to that of Rhenish brown coal. The ash content and combustible sulphur content of domestic lignite is considerably higher. The ash content of lignite varies between 15 and 25%, the average is 20%. In Visonta, 160-200 tones of solid + fly ash is produced annually, referred to a power plant capacity of 100 MW. With the flue gas desulphuriser installed

  18. Making nuclear power plant operational decisions using probabilistic safety assessment information and personal computers. Working material

    International Nuclear Information System (INIS)

    1991-01-01

    PRISIM described in this case study makes a PSA useful to decision makers like plant managers, operational personnel or safety assessors because it provides a rapid access to specific information and the ability to generate updated PSA results that reflect the plant status at a particular time. From the capabilities of PRISIM one can conclude that the ability of a user friendly update of the system model in the PC or changes in the data files at the computer is not realized to data. Also the calculation of averaged probabilities instead of time dependent instantaneous probabilities is a sort of a restriction and will be changed in the future. 5 refs, 34 figs, 3 tabs

  19. The determination of Co in plant materials by radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Danko, B.; Polkowska-Motrenko, H.; Dybczynski, R.

    2000-01-01

    The influence of irradiation conditions on the results of Co determination in plant samples by radiochemical neutron activation analysis (RNAA), after the conventional and microwave assisted wet digestion, has been investigated. Nine CRMs of botanical origin were examined. The study has demonstrated that the effectiveness of mineralization depended significantly on the kind of sample and the irradiation conditions. When analyzed CRMs were subjected to long-term irradiation in a high neutron flux, the mineralization using the microwave technique was necessary to obtain the correct results of Co determination in some of the plant samples. It has been proved that microwave digestion in a mixture of HNO 3 + H 2 O 2 + HF should be a standard method of wet ashing, independent on matrix and irradiation conditions. (author)

  20. Diagnostic systems in nuclear power plants. Proceedings of a technical committee meeting. Working material

    International Nuclear Information System (INIS)

    1998-01-01

    Nuclear power industry has a quite long tradition in on-line diagnostic of mechanical components and a considerable effort was put in developing diagnostic systems which are able to detect arising mechanical problems at an early stage. Computers are increasingly exploited to provide higher level information on process behaviour such as: early indication of the process deviation from normal conditions; rapid identification of the cause of any disturbance; prediction of the evolution of a disturbance; operator aid through computerized help. Following the recommendation of Several Member States to strengthen the activity in this field two divisions of IAEA established in 1995 the International Task Force on Nuclear Power Plant Diagnostics. The scope of the task force cover both technological developments and safety/licensing aspects of diagnostics. This report contains papers presented at the last in the series of Technical Committee Meetings on the Diagnostic Systems in Nuclear Power Plants organized in the framework of International Task Force