WorldWideScience

Sample records for aboveground plant material

  1. Simulation of the decomposition and nitrogen mineralization of aboveground plant material in two unfertilized grassland ecosystems.

    NARCIS (Netherlands)

    Bloemhof, H.S.; Berendse, F.

    1995-01-01

    A simple model of the decomposition and nitrogen mineralization of plant material from two unfertilized grassland ecosystems has been developed, with only the proportion of leaves and stems in the original material, the initial nitrogen contents of these plant parts and temperature as input data.

  2. Linking aboveground and belowground inducible plant resistance

    NARCIS (Netherlands)

    Bezemer, T.M.

    2009-01-01

    Induced resistance of plants against pests and diseases via plant defense responses is well documented and can occur aboveground, in the leaves, and belowground in the roots. A number of recent studies have shown that soil-borne pests can also induce plant resistance aboveground and vice versa.

  3. Interactions between aboveground herbivores and the mycorrhizal mutualists of plants.

    Science.gov (United States)

    Gehring, C A; Whitham, T G

    1994-07-01

    Plant growth, reproduction and survival can be affected both by mycorrhizal fungi and aboveground herbivores, but few studies have examined the interactive effects of these factors on plants. Most of the available data suggest that severe herbivory reduces root colonization by vesicular-arbuscular and ectomycorrhizal fungi. However, the reverse interaction has also been documented - mycorrhizal fungi deter herbivores and interact with fungal endophytes to influence herbivory. Although consistent patterns and mechanistic explanations are yet to emerge, it is likely that aboveground herbivore-mycorrhiza interactions have important implications for plant populations and communities. Copyright © 1994. Published by Elsevier Ltd.

  4. Aboveground mechanical stimuli affect belowground plant-plant communication.

    Science.gov (United States)

    Elhakeem, Ali; Markovic, Dimitrije; Broberg, Anders; Anten, Niels P R; Ninkovic, Velemir

    2018-01-01

    Plants can detect the presence of their neighbours and modify their growth behaviour accordingly. But the extent to which this neighbour detection is mediated by abiotic stressors is not well known. In this study we tested the acclimation response of Zea mays L. seedlings through belowground interactions to the presence of their siblings exposed to brief mechano stimuli. Maize seedling simultaneously shared the growth solution of touched plants or they were transferred to the growth solution of previously touched plants. We tested the growth preferences of newly germinated seedlings toward the growth solution of touched (T_solution) or untouched plants (C_solution). The primary root of the newly germinated seedlings grew significantly less towards T_solution than to C_solution. Plants transferred to T_solution allocated more biomass to shoots and less to roots. While plants that simultaneously shared their growth solution with the touched plants produced more biomass. Results show that plant responses to neighbours can be modified by aboveground abiotic stress to those neighbours and suggest that these modifications are mediated by belowground interactions.

  5. Aboveground mechanical stimuli affect belowground plant-plant communication.

    Directory of Open Access Journals (Sweden)

    Ali Elhakeem

    Full Text Available Plants can detect the presence of their neighbours and modify their growth behaviour accordingly. But the extent to which this neighbour detection is mediated by abiotic stressors is not well known. In this study we tested the acclimation response of Zea mays L. seedlings through belowground interactions to the presence of their siblings exposed to brief mechano stimuli. Maize seedling simultaneously shared the growth solution of touched plants or they were transferred to the growth solution of previously touched plants. We tested the growth preferences of newly germinated seedlings toward the growth solution of touched (T_solution or untouched plants (C_solution. The primary root of the newly germinated seedlings grew significantly less towards T_solution than to C_solution. Plants transferred to T_solution allocated more biomass to shoots and less to roots. While plants that simultaneously shared their growth solution with the touched plants produced more biomass. Results show that plant responses to neighbours can be modified by aboveground abiotic stress to those neighbours and suggest that these modifications are mediated by belowground interactions.

  6. Large grazers modify effects of aboveground-belowground interactions on small-scale plant community composition

    NARCIS (Netherlands)

    Veen, G. F. (Ciska); Geuverink, Elzemiek; Olff, Han; Schmid, Bernhard

    Aboveground and belowground organisms influence plant community composition by local interactions, and their scale of impact may vary from millimeters belowground to kilometers aboveground. However, it still poorly understood how large grazers that select their forage on large spatial scales

  7. Plant responses to variable timing of aboveground clipping and belowground herbivory depend on plant age

    NARCIS (Netherlands)

    Wang, Minggang; Bezemer, T. Martijn; van der Putten, W.H.; Brinkman, Pella; Biere, Arjen

    2017-01-01

    Aims Plants use different types of responses such as tolerance and induced defense to mitigate the effects of herbivores. The direction and magnitude of both these plant responses can vary with plant age. However, most studies have focused on aboveground herbivory, whereas important feeding occurs

  8. Aboveground persistence of vascular plants in relationship to the levels of airborne nutrient deposition

    NARCIS (Netherlands)

    Hendriks, R.J.J.; Ozinga, W.A.; Berg, van den L.J.L.; Noordwijk, E.; Schaminee, J.H.J.; Groenendael, van J.M.

    2014-01-01

    This paper examines whether high atmospheric nitrogen deposition affects aboveground persistence of vascular plants. We combined information on local aboveground persistence of vascular plants in 245 permanent plots in the Netherlands with estimated level of nitrogen deposition at the time of

  9. Experimental effects of herbivore density on above-ground plant biomass in an alpine grassland ecosystem

    OpenAIRE

    Austrheim, Gunnar; Speed, James David Mervyn; Martinsen, Vegard; Mulder, Jan; Mysterud, Atle

    2014-01-01

    Herbivores may increase or decrease aboveground plant productivity depending on factors such as herbivore density and habitat productivity. The grazing optimization hypothesis predicts a peak in plant production at intermediate herbivore densities, but has rarely been tested experimentally in an alpine field setting. In an experimental design with three densities of sheep (high, low, and no sheep), we harvested aboveground plant biomass in alpine grasslands prior to treatment and after five y...

  10. Relationships at the aboveground-belowground interface: plants, soil biota and soil processes

    NARCIS (Netherlands)

    Porazinska, D.L.; Bardgett, R.D.; Postma-Blaauw, M.B.; Hunt, H.W.; Parsons, A.N.; Seastedt, T.R.; Wall, D.M.

    2003-01-01

    Interactions at the aboveground-below ground interface provide important feedbacks that regulate ecosystem processes. Organisms within soil food webs are involved in processes of decomposition and nutrient mineralization, and their abundance and activity have been linked to plant ecophysiological

  11. Plant genetic variation mediates an indirect ecological effect between belowground earthworms and aboveground aphids.

    Science.gov (United States)

    Singh, Akanksha; Braun, Julia; Decker, Emilia; Hans, Sarah; Wagner, Agnes; Weisser, Wolfgang W; Zytynska, Sharon E

    2014-10-21

    Interactions between aboveground and belowground terrestrial communities are often mediated by plants, with soil organisms interacting via the roots and aboveground organisms via the shoots and leaves. Many studies now show that plant genetics can drive changes in the structure of both above and belowground communities; however, the role of plant genetic variation in mediating aboveground-belowground interactions is still unclear. We used an earthworm-plant-aphid model system with two aphid species (Aphis fabae and Acyrthosiphon pisum) to test the effect of host-plant (Vicia faba) genetic variation on the indirect interaction between the belowground earthworms (Eisenia veneta) on the aboveground aphid populations. Our data shows that host-plant variety mediated an indirect ecological effect of earthworms on generalist black bean aphids (A. fabae), with earthworms increasing aphid growth rate in three plant varieties but decreasing it in another variety. We found no effect of earthworms on the second aphid species, the pea aphid (A. pisum), and no effect of competition between the aphid species. Plant biomass was increased when earthworms were present, and decreased when A. pisum was feeding on the plant (mediated by plant variety). Although A. fabae aphids were influenced by the plants and worms, they did not, in turn, alter plant biomass. Previous work has shown inconsistent effects of earthworms on aphids, but we suggest these differences could be explained by plant genetic variation and variation among aphid species. This study demonstrates that the outcome of belowground-aboveground interactions can be mediated by genetic variation in the host-plant, but depends on the identity of the species involved.

  12. Mechanisms and ecological implications of plant-mediated interactions between belowground and aboveground insect herbivores

    NARCIS (Netherlands)

    Papadopoulou, G.V.; Dam, N.M. van

    2017-01-01

    Plant-mediated interactions between belowground (BG) and aboveground (AG) herbivores have received increasing interest recently. However, the molecular mechanisms underlying ecological consequences of BG–AG interactions are not fully clear yet. Herbivore-induced plant defenses are complex and

  13. Local above-ground persistence of vascular plants : Life-history trade-offs and environmental constraints

    NARCIS (Netherlands)

    Ozinga, Wim A.; Hennekens, Stephan M.; Schaminee, Joop H. J.; Smits, Nina A. C.; Bekker, Renee M.; Roemermann, Christine; Klimes, Leos; Bakker, Jan P.; van Groenendael, Jan M.

    Questions: 1. Which plant traits and habitat characteristics best explain local above-ground persistence of vascular plant species and 2. Is there a trade-off between local above-ground persistence and the ability for seed dispersal and below-ground persistence in the soil seed bank? Locations: 845

  14. Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms

    NARCIS (Netherlands)

    Kowalchuk, G.A.; Buma, D.S; De Boer, W.; Klinkhamer, P.G.L.; Van Veen, J.A.

    2002-01-01

    A coupling of above-ground plant diversity and below-ground microbial diversity has been implied in studies dedicated to assessing the role of macrophyte diversity on the stability, resilience, and functioning of ecosystems. Indeed, above-ground plant communities have long been assumed to drive

  15. Plants as green phones: Novel insights into plant-mediated communication between below- and above-ground insects.

    Science.gov (United States)

    Soler, Roxina; Harvey, Jeffrey A; Bezemer, T Martijn; Stuefer, Josef F

    2008-08-01

    Plants can act as vertical communication channels or 'green phones' linking soil-dwelling insects and insects in the aboveground ecosystem. When root-feeding insects attack a plant, the direct defense system of the shoot is activated, leading to an accumulation of phytotoxins in the leaves. The protection of the plant shoot elicited by root damage can impair the survival, growth and development of aboveground insect herbivores, thereby creating plant-based functional links between soil-dwelling insects and insects that develop in the aboveground ecosystem. The interactions between spatially separated insects below- and aboveground are not restricted to root and foliar plant-feeding insects, but can be extended to higher trophic levels such as insect parasitoids. Here we discuss some implications of plants acting as communication channels or 'green phones' between root and foliar-feeding insects and their parasitoids, focusing on recent findings that plants attacked by root-feeding insects are significantly less attractive for the parasitoids of foliar-feeding insects.

  16. Plants as green as phones: Novel insights into plant-mediated communication between below- and above-ground insects

    NARCIS (Netherlands)

    Soler Gamborena, R.; Harvey, J.A.; Bezemer, T.M.; Stuefer, J.F.

    2008-01-01

    can act as vertical communication channels or ‘green phones’ linking soil-dwelling insects and insects in the aboveground ecosystem. When root-feeding insects attack a plant, the direct defense system of the shoot is activated, leading to an accumulation of phytotoxins in the leaves. The protection

  17. Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming

    Directory of Open Access Journals (Sweden)

    Kai Xue

    2016-09-01

    Full Text Available Clipping (i.e., harvesting aboveground plant biomass is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened.

  18. Successful range-expanding plants experience less above-ground and below-ground enemy impact.

    Science.gov (United States)

    Engelkes, Tim; Morriën, Elly; Verhoeven, Koen J F; Bezemer, T Martijn; Biere, Arjen; Harvey, Jeffrey A; McIntyre, Lauren M; Tamis, Wil L M; van der Putten, Wim H

    2008-12-18

    Many species are currently moving to higher latitudes and altitudes. However, little is known about the factors that influence the future performance of range-expanding species in their new habitats. Here we show that range-expanding plant species from a riverine area were better defended against shoot and root enemies than were related native plant species growing in the same area. We grew fifteen plant species with and without non-coevolved polyphagous locusts and cosmopolitan, polyphagous aphids. Contrary to our expectations, the locusts performed more poorly on the range-expanding plant species than on the congeneric native plant species, whereas the aphids showed no difference. The shoot herbivores reduced the biomass of the native plants more than they did that of the congeneric range expanders. Also, the range-expanding plants developed fewer pathogenic effects in their root-zone soil than did the related native species. Current predictions forecast biodiversity loss due to limitations in the ability of species to adjust to climate warming conditions in their range. Our results strongly suggest that the plants that shift ranges towards higher latitudes and altitudes may include potential invaders, as the successful range expanders may experience less control by above-ground or below-ground enemies than the natives.

  19. Wired to the roots: impact of root-beneficial microbe interactions on aboveground plant physiology and protection.

    Science.gov (United States)

    Kumar, Amutha Sampath; Bais, Harsh P

    2012-12-01

    Often, plant-pathogenic microbe interactions are discussed in a host-microbe two-component system, however very little is known about how the diversity of rhizospheric microbes that associate with plants affect host performance against pathogens. There are various studies, which specially direct the importance of induced systemic defense (ISR) response in plants interacting with beneficial rhizobacteria, yet we don't know how rhizobacterial associations modulate plant physiology. In here, we highlight the many dimensions within which plant roots associate with beneficial microbes by regulating aboveground physiology. We review approaches to study the causes and consequences of plant root association with beneficial microbes on aboveground plant-pathogen interactions. The review provides the foundations for future investigations into the impact of the root beneficial microbial associations on plant performance and innate defense responses.

  20. 40K/137Cs discrimination ratios to the aboveground organs of tropical plants

    International Nuclear Information System (INIS)

    Sanches, N.; Anjos, R.M.; Mosquera, B.

    2008-01-01

    In the present work, the accumulation of caesium and potassium in aboveground plant parts was studied in order to improve the understanding on the behaviour of monovalent cations in several compartments of tropical plants. We present the results for activity concentrations of 137 Cs and 40 K, measured by gamma spectrometry, from five tropical plant species: guava (Psidium guajava), mango (Mangifera indica), papaya (Carica papaya), banana (Musa paradisiaca), and manioc (Manihot esculenta). Caesium and potassium have shown a high level of mobility within the plants, exhibiting the highest values of concentration in the growing parts (fruits, leaves, twigs, and barks) of the woody fruit and large herbaceous shrub (such as manioc) species. In contrast, the banana and papaya plants exhibited the lowest levels of 137 Cs and 40 K in their growing parts. However, a significant correlation between activity concentrations of 137 Cs and 40 K was observed in these tropical plants. The 40 K/ 137 Cs discrimination ratios were approximately equal to unity in different compartments of each individual plant, suggesting the possibility of using caesium to predict the behaviour of potassium in several tropical species

  1. {sup 40}K/{sup 137}Cs discrimination ratios to the aboveground organs of tropical plants

    Energy Technology Data Exchange (ETDEWEB)

    Sanches, N. [Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoata, Niteroi, CEP 24210-346, RJ (Brazil); Anjos, R.M. [Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoata, Niteroi, CEP 24210-346, RJ (Brazil)], E-mail: meigikos@if.uff.br; Mosquera, B. [Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n, Gragoata, Niteroi, CEP 24210-346, RJ (Brazil)

    2008-07-15

    In the present work, the accumulation of caesium and potassium in aboveground plant parts was studied in order to improve the understanding on the behaviour of monovalent cations in several compartments of tropical plants. We present the results for activity concentrations of {sup 137}Cs and {sup 40}K, measured by gamma spectrometry, from five tropical plant species: guava (Psidium guajava), mango (Mangifera indica), papaya (Carica papaya), banana (Musa paradisiaca), and manioc (Manihot esculenta). Caesium and potassium have shown a high level of mobility within the plants, exhibiting the highest values of concentration in the growing parts (fruits, leaves, twigs, and barks) of the woody fruit and large herbaceous shrub (such as manioc) species. In contrast, the banana and papaya plants exhibited the lowest levels of {sup 137}Cs and {sup 40}K in their growing parts. However, a significant correlation between activity concentrations of {sup 137}Cs and {sup 40}K was observed in these tropical plants. The {sup 40}K/{sup 137}Cs discrimination ratios were approximately equal to unity in different compartments of each individual plant, suggesting the possibility of using caesium to predict the behaviour of potassium in several tropical species.

  2. 40K/137Cs discrimination ratios to the aboveground organs of tropical plants.

    Science.gov (United States)

    Sanches, N; Anjos, R M; Mosquera, B

    2008-07-01

    In the present work, the accumulation of caesium and potassium in aboveground plant parts was studied in order to improve the understanding on the behaviour of monovalent cations in several compartments of tropical plants. We present the results for activity concentrations of (137)Cs and (40)K, measured by gamma spectrometry, from five tropical plant species: guava (Psidium guajava), mango (Mangifera indica), papaya (Carica papaya), banana (Musa paradisíaca), and manioc (Manihot esculenta). Caesium and potassium have shown a high level of mobility within the plants, exhibiting the highest values of concentration in the growing parts (fruits, leaves, twigs, and barks) of the woody fruit and large herbaceous shrub (such as manioc) species. In contrast, the banana and papaya plants exhibited the lowest levels of (137)Cs and (40)K in their growing parts. However, a significant correlation between activity concentrations of (137)Cs and (40)K was observed in these tropical plants. The (40)K/(137)Cs discrimination ratios were approximately equal to unity in different compartments of each individual plant, suggesting the possibility of using caesium to predict the behaviour of potassium in several tropical species.

  3. Effects of water table position and plant functional group on plant community, aboveground production, and peat properties in a peatland mesocosm experiment (PEATcosm)

    Science.gov (United States)

    Lynette R. Potvin; Evan S. Kane; Rodney A. Chimner; Randall K. Kolka; Erik A. Lilleskov

    2015-01-01

    Aims Our objective was to assess the impacts of water table position and plant functional type on peat structure, plant community composition and aboveground plant production. Methods We initiated a full factorial experiment with 2 water table (WT) treatments (high and low) and 3 plant functional groups (PFG: sedge, Ericaceae,...

  4. Tundra plant above-ground biomass and shrub dominance mapped across the North Slope of Alaska

    Science.gov (United States)

    Berner, Logan T.; Jantz, Patrick; Tape, Ken D.; Goetz, Scott J.

    2018-03-01

    Arctic tundra is becoming greener and shrubbier due to recent warming. This is impacting climate feedbacks and wildlife, yet the spatial distribution of plant biomass in tundra ecosystems is uncertain. In this study, we mapped plant and shrub above-ground biomass (AGB; kg m-2) and shrub dominance (%; shrub AGB/plant AGB) across the North Slope of Alaska by linking biomass harvests at 28 field sites with 30 m resolution Landsat satellite imagery. We first developed regression models (p plant AGB (r 2 = 0.79) and shrub AGB (r 2 = 0.82) based on the normalized difference vegetation index (NDVI) derived from imagery acquired by Landsat 5 and 7. We then predicted regional plant and shrub AGB by combining these regression models with a regional Landsat NDVI mosaic built from 1721 summer scenes acquired between 2007 and 2016. Our approach employed a Monte Carlo uncertainty analysis that propagated sampling and sensor calibration errors. We estimated that plant AGB averaged 0.74 (0.60, 0.88) kg m-2 (95% CI) and totaled 112 (91, 135) Tg across the region, with shrub AGB accounting for ~43% of regional plant AGB. The new maps capture landscape variation in plant AGB visible in high resolution satellite and aerial imagery, notably shrubby riparian corridors. Modeled shrub AGB was strongly correlated with field measurements of shrub canopy height at 25 sites (rs  = 0.88) and with a regional map of shrub cover (rs  = 0.76). Modeled plant AGB and shrub dominance were higher in shrub tundra than graminoid tundra and increased between areas with the coldest and warmest summer air temperatures, underscoring the fact that future warming has the potential to greatly increase plant AGB and shrub dominance in this region. These new biomass maps provide a unique source of ecological information for a region undergoing rapid environmental change.

  5. Arbuscular mycorrhizal colonization, plant chemistry, and aboveground herbivory on Senecio jacobaea

    Science.gov (United States)

    Reidinger, Stefan; Eschen, René; Gange, Alan C.; Finch, Paul; Bezemer, T. Martijn

    2012-01-01

    Arbuscular mycorrhizal fungi (AMF) can affect insect herbivores by changing plant growth and chemistry. However, many factors can influence the symbiotic relationship between plant and fungus, potentially obscuring experimental treatments and ecosystem impacts. In a field experiment, we assessed AMF colonization levels of individual ragwort ( Senecio jacobaea) plants growing in grassland plots that were originally sown with 15 or 4 plant species, or were unsown. We measured the concentrations of carbon, nitrogen and pyrrolizidine alkaloids (PAs), and assessed the presence of aboveground insect herbivores on the sampled plants. Total AMF colonization and colonization by arbuscules was lower in plots sown with 15 species than in plots sown with 4 species and unsown plots. AMF colonization was positively related to the cover of oxeye daisy ( Leucanthemum vulgare) and a positive relationship between colonization by arbuscules and the occurrence of a specialist seed-feeding fly ( Pegohylemyia seneciella) was found. The occurrence of stem-boring, leaf-mining and sap-sucking insects was not affected by AMF colonization. Total PA concentrations were negatively related to colonization levels by vesicles, but did not differ among the sowing treatments. No single factor explained the observed differences in AMF colonization among the sowing treatments or insect herbivore occurrence on S. jacobaea. However, correlations across the treatments suggest that some of the variation was due to the abundance of one plant species, which is known to stimulate AMF colonization of neighbouring plants, while AMF colonization was related to the occurrence of a specialist insect herbivore. Our results thus illustrate that in natural systems, the ecosystem impact of AMF through their influence on the occurrence of specialist insects can be recognised, but they also highlight the confounding effect of neighbouring plant species identity. Hence, our results emphasise the importance of field

  6. Plant genotypes affect aboveground and belowground herbivore interactions by changing chemical defense.

    Science.gov (United States)

    Li, Xiaoqiong; Guo, Wenfeng; Siemann, Evan; Wen, Yuanguang; Huang, Wei; Ding, Jianqing

    2016-12-01

    Spatially separated aboveground (AG) and belowground (BG) herbivores are closely linked through shared host plants, and both patterns of AG-BG interactions and plant responses may vary among plant genotypes. We subjected invasive (USA) and native (China) genotypes of tallow tree (Triadica sebifera) to herbivory by the AG specialist leaf-rolling weevil Heterapoderopsis bicallosicollis and/or the root-feeding larvae of flea beetle Bikasha collaris. We measured leaf damage and leaves rolled by weevils, quantified beetle survival, and analyzed flavonoid and tannin concentrations in leaves and roots. AG and BG herbivores formed negative feedbacks on both native and invasive genotypes. Leaf damage by weevils and the number of beetle larvae emerging as adults were higher on invasive genotypes. Beetles reduced weevil damage and weevils reduced beetle larval emergence more strongly for invasive genotypes. Invasive genotypes had lower leaf and root tannins than native genotypes. BG beetles decreased leaf tannins of native genotypes but increased root tannins of invasive genotypes. AG herbivory increased root flavonoids of invasive genotypes while BG herbivory decreased leaf flavonoids. Invasive genotypes had lower AG and BG herbivore resistance, and negative AG-BG herbivore feedbacks were much stronger for invasive genotypes. Lower tannin concentrations explained overall better AG and BG herbivore performances on invasive genotypes. However, changes in tannins and flavonoids affected AG and BG herbivores differently. These results suggest that divergent selection on chemical production in invasive plants may be critical in regulating herbivore performances and novel AG and BG herbivore communities in new environments.

  7. Aboveground endophyte affects root volatile emission and host plant selection of a belowground insect.

    Science.gov (United States)

    Rostás, Michael; Cripps, Michael G; Silcock, Patrick

    2015-02-01

    Plants emit specific blends of volatile organic compounds (VOCs) that serve as multitrophic, multifunctional signals. Fungi colonizing aboveground (AG) or belowground (BG) plant structures can modify VOC patterns, thereby altering the information content for AG insects. Whether AG microbes affect the emission of root volatiles and thus influence soil insect behaviour is unknown. The endophytic fungus Neotyphodium uncinatum colonizes the aerial parts of the grass hybrid Festuca pratensis × Lolium perenne and is responsible for the presence of insect-toxic loline alkaloids in shoots and roots. We investigated whether endophyte symbiosis had an effect on the volatile emission of grass roots and if the root herbivore Costelytra zealandica was able to recognize endophyte-infected plants by olfaction. In BG olfactometer assays, larvae of C. zealandica were more strongly attracted to roots of uninfected than endophyte-harbouring grasses. Combined gas chromatography-mass spectrometry and proton transfer reaction-mass spectrometry revealed that endophyte-infected roots emitted less VOCs and more CO2. Our results demonstrate that symbiotic fungi in plants may influence soil insect distribution by changing their behaviour towards root volatiles. The well-known defensive mutualism between grasses and Neotyphodium endophytes could thus go beyond bioactive alkaloids and also confer protection by being chemically less apparent for soil herbivores.

  8. Taxonomic and Functional Responses of Soil Microbial Communities to Annual Removal of Aboveground Plant Biomass

    Science.gov (United States)

    Guo, Xue; Zhou, Xishu; Hale, Lauren; Yuan, Mengting; Feng, Jiajie; Ning, Daliang; Shi, Zhou; Qin, Yujia; Liu, Feifei; Wu, Liyou; He, Zhili; Van Nostrand, Joy D.; Liu, Xueduan; Luo, Yiqi; Tiedje, James M.; Zhou, Jizhong

    2018-01-01

    Clipping, removal of aboveground plant biomass, is an important issue in grassland ecology. However, few studies have focused on the effect of clipping on belowground microbial communities. Using integrated metagenomic technologies, we examined the taxonomic and functional responses of soil microbial communities to annual clipping (2010–2014) in a grassland ecosystem of the Great Plains of North America. Our results indicated that clipping significantly (P microbial respiration rates. Annual temporal variation within the microbial communities was much greater than the significant changes introduced by clipping, but cumulative effects of clipping were still observed in the long-term scale. The abundances of some bacterial and fungal lineages including Actinobacteria and Bacteroidetes were significantly (P microbial communities were significantly correlated with soil respiration and plant productivity. Intriguingly, clipping effects on microbial function may be highly regulated by precipitation at the interannual scale. Altogether, our results illustrated the potential of soil microbial communities for increased soil organic matter decomposition under clipping land-use practices. PMID:29904372

  9. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China.

    Science.gov (United States)

    Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y Jun

    2016-01-01

    Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region.

  10. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China

    Science.gov (United States)

    Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y. Jun

    2016-01-01

    Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region. PMID:27097325

  11. Refuse dumps from leaf-cutting ant nests reduce the intensity of above-ground competition among neighboring plants in a Patagonian steppe

    Science.gov (United States)

    Farji-Brener, Alejandro G.; Lescano, María Natalia

    2017-11-01

    In arid environments, the high availability of sunlight due to the scarcity of trees suggests that plant competition take place mainly belowground for water and nutrients. However, the occurrence of soil disturbances that increase nutrient availability and thereby promote plant growth may enhance shoot competition between neighboring plants. We conducted a greenhouse experiment to evaluate the influence of the enriched soil patches generated by the leaf-cutting ant, Acromyrmex lobicornis, on the performance of the alien forb Carduus thoermeri (Asteraceae) under different intraspecific competition scenarios. Our results showed that substrate type and competition scenario affected mainly aboveground plant growth. As expected, plants growing without neighbors and in nutrient-rich ant refuse dumps showed more aboveground biomass than plants growing with neighbors and in nutrient-poor steppe soils. However, aboveground competition was more intense in nutrient-poor substrates: plants under shoot and full competition growing in the nutrient-rich ant refuse dumps showed higher biomass than those growing on steppe soils. Belowground biomass was similar among focal plants growing under different substrate type. Our results support the traditional view that increments in resource availability reduce competition intensity. Moreover, the fact that seedlings in this sunny habitat mainly compete aboveground illustrates how limiting factors may be scale-dependent and change in importance as plants grow.

  12. The role of above-ground competition and nitrogen vs. phosphorus enrichment in seedling survival of common European plant species of semi-natural grasslands.

    Directory of Open Access Journals (Sweden)

    Tobias Ceulemans

    Full Text Available Anthropogenic activities have severely altered fluxes of nitrogen and phosphorus in ecosystems worldwide. In grasslands, subsequent negative effects are commonly attributed to competitive exclusion of plant species following increased above-ground biomass production. However, some studies have shown that this does not fully account for nutrient enrichment effects, questioning whether lowering competition by reducing grassland productivity through mowing or herbivory can mitigate the environmental impact of nutrient pollution. Furthermore, few studies so far discriminate between nitrogen and phosphorus pollution. We performed a full factorial experiment in greenhouse mesocosms combining nitrogen and phosphorus addition with two clipping regimes designed to relax above-ground competition. Next, we studied the survival and growth of seedlings of eight common European grassland species and found that five out of eight species showed higher survival under the clipping regime with the lowest above-ground competition. Phosphorus addition negatively affected seven plant species and nitrogen addition negatively affected four plant species. Importantly, the negative effects of nutrient addition and higher above-ground competition were independent of each other for all but one species. Our results suggest that at any given level of soil nutrients, relaxation of above-ground competition allows for higher seedling survival in grasslands. At the same time, even at low levels of above-ground competition, nutrient enrichment negatively affects survival as compared to nutrient-poor conditions. Therefore, although maintaining low above-ground competition appears essential for species' recruitment, for instance through mowing or herbivory, these management efforts are likely to be insufficient and we conclude that environmental policies aimed to reduce both excess nitrogen and particularly phosphorus inputs are also necessary.

  13. Crop resistance traits modify the effects of an aboveground herbivore, brown planthopper, on soil microbial biomass and nematode community via changes to plant performance.

    NARCIS (Netherlands)

    Huang, J.; Liu, M.; Chen, F.; Griffiths, B.S.; Chen, X.; Johnson, S.N.; Hu, F.

    2012-01-01

    Plant-mediated effects of aboveground herbivory on the belowground ecosystem are well documented, but less attention has been paid to agro-ecosystems and in particular how crop cultivars with different traits (i.e. resistance to pests) shape such interactions. A fully factorial experiment was

  14. The variable effects of soil nitrogen availability and insect herbivory on aboveground and belowground plant biomass in an old-field ecosystem

    DEFF Research Database (Denmark)

    Blue, Jarrod D.; Souza, Lara; Classen, Aimée T.

    2011-01-01

    in an old-field ecosystem. In 2004, we established 36 experimental plots in which we manipulated soil nitrogen (N) availability and insect abundance in a completely randomized plot design. In 2009, after 6 years of treatments, we measured aboveground biomass and assessed root production at peak growth...... not be limiting primary production in this ecosystem. Insects reduced the aboveground biomass of subdominant plant species and decreased coarse root production. We found no statistical interactions between N availability and insect herbivory for any response variable. Overall, the results of 6 years of nutrient...

  15. Arbuscular mycorrhizal colonization, plant chemistry, and aboveground herbivory on Senecio jacobaea

    NARCIS (Netherlands)

    Reidinger, S.; Eschen, R.; Gange, A.C.; Finch, P.; Bezemer, T.M.

    2012-01-01

    Arbuscular mycorrhizal fungi (AMF) can affect insect herbivores by changing plant growth and chemistry. However, many factors can influence the symbiotic relationship between plant and fungus, potentially obscuring experimental treatments and ecosystem impacts. In a field experiment, we assessed AMF

  16. Potential for post-closure radionuclide redistribution due to biotic intrusion: aboveground biomass, litter production rates, and the distribution of root mass with depth at material disposal area G, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    French, Sean B.; Christensen, Candace; Jennings, Terry L.; Jaros, Christopher L.; Wykoff, David S.; Crowell, Kelly J.; Shuman, Rob

    2008-01-01

    Low-level radioactive waste (LLW) generated at the Los Alamos National Laboratories (LANL) is disposed of at LANL's Technical Area (T A) 54, Material Disposal Area (MDA) G. The ability of MDA G to safely contain radioactive waste during current and post-closure operations is evaluated as part of the facility's ongoing performance assessment (PA) and composite analysis (CA). Due to the potential for uptake and incorporation of radio nuclides into aboveground plant material, the PA and CA project that plant roots penetrating into buried waste may lead to releases of radionuclides into the accessible environment. The potential amount ofcontamination deposited on the ground surface due to plant intrusion into buried waste is a function of the quantity of litter generated by plants, as well as radionuclide concentrations within the litter. Radionuclide concentrations in plant litter is dependent on the distribution of root mass with depth and the efficiency with which radionuclides are extracted from contaminated soils by the plant's roots. In order to reduce uncertainties associated with the PA and CA for MDA G, surveys are being conducted to assess aboveground biomass, plant litter production rates, and root mass with depth for the four prominent vegetation types (grasses, forbs, shrubs and trees). The collection of aboveground biomass for grasses and forbs began in 2007. Additional sampling was conducted in October 2008 to measure root mass with depth and to collect additional aboveground biomass data for the types of grasses, forbs, shrubs, and trees that may become established at MDA G after the facility undergoes final closure, Biomass data will be used to estimate the future potential mass of contaminated plant litter fall, which could act as a latent conduit for radionuclide transport from the closed disposal area. Data collected are expected to reduce uncertainties associated with the PA and CA for MDA G and ultimately aid in the assessment and subsequent

  17. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity

    Science.gov (United States)

    Hertzog, Lionel R.; Meyer, Sebastian T.; Weisser, Wolfgang W.; Ebeling, Anne

    2016-01-01

    Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas

  18. Experimental Manipulation of Grassland Plant Diversity Induces Complex Shifts in Aboveground Arthropod Diversity.

    Science.gov (United States)

    Hertzog, Lionel R; Meyer, Sebastian T; Weisser, Wolfgang W; Ebeling, Anne

    2016-01-01

    Changes in producer diversity cause multiple changes in consumer communities through various mechanisms. However, past analyses investigating the relationship between plant diversity and arthropod consumers focused only on few aspects of arthropod diversity, e.g. species richness and abundance. Yet, shifts in understudied facets of arthropod diversity like relative abundances or species dominance may have strong effects on arthropod-mediated ecosystem functions. Here we analyze the relationship between plant species richness and arthropod diversity using four complementary diversity indices, namely: abundance, species richness, evenness (equitability of the abundance distribution) and dominance (relative abundance of the dominant species). Along an experimental gradient of plant species richness (1, 2, 4, 8, 16 and 60 plant species), we sampled herbivorous and carnivorous arthropods using pitfall traps and suction sampling during a whole vegetation period. We tested whether plant species richness affects consumer diversity directly (i), or indirectly through increased productivity (ii). Further, we tested the impact of plant community composition on arthropod diversity by testing for the effects of plant functional groups (iii). Abundance and species richness of both herbivores and carnivores increased with increasing plant species richness, but the underlying mechanisms differed between the two trophic groups. While higher species richness in herbivores was caused by an increase in resource diversity, carnivore richness was driven by plant productivity. Evenness of herbivore communities did not change along the gradient in plant species richness, whereas evenness of carnivores declined. The abundance of dominant herbivore species showed no response to changes in plant species richness, but the dominant carnivores were more abundant in species-rich plant communities. The functional composition of plant communities had small impacts on herbivore communities, whereas

  19. Arbuscular Mycorrhizal Fungi and Plant Chemical Defence: Effects of Colonisation on Aboveground and Belowground Metabolomes.

    Science.gov (United States)

    Hill, Elizabeth M; Robinson, Lynne A; Abdul-Sada, Ali; Vanbergen, Adam J; Hodge, Angela; Hartley, Sue E

    2018-02-01

    Arbuscular mycorrhizal fungal (AMF) colonisation of plant roots is one of the most ancient and widespread interactions in ecology, yet the systemic consequences for plant secondary chemistry remain unclear. We performed the first metabolomic investigation into the impact of AMF colonisation by Rhizophagus irregularis on the chemical defences, spanning above- and below-ground tissues, in its host-plant ragwort (Senecio jacobaea). We used a non-targeted metabolomics approach to profile, and where possible identify, compounds induced by AMF colonisation in both roots and shoots. Metabolomics analyses revealed that 33 compounds were significantly increased in the root tissue of AMF colonised plants, including seven blumenols, plant-derived compounds known to be associated with AMF colonisation. One of these was a novel structure conjugated with a malonyl-sugar and uronic acid moiety, hitherto an unreported combination. Such structural modifications of blumenols could be significant for their previously reported functional roles associated with the establishment and maintenance of AM colonisation. Pyrrolizidine alkaloids (PAs), key anti-herbivore defence compounds in ragwort, dominated the metabolomic profiles of root and shoot extracts. Analyses of the metabolomic profiles revealed an increase in four PAs in roots (but not shoots) of AMF colonised plants, with the potential to protect colonised plants from below-ground organisms.

  20. Aboveground storage tanks

    International Nuclear Information System (INIS)

    Rizzo, J.A.

    1992-01-01

    With the 1988 promulgation of the comprehensive Resource Conservation and Recovery Act (RCRA) regulations for underground storage of petroleum and hazardous substances, many existing underground storage tank (UST) owners have been considering making the move to aboveground storage. While on the surface, this may appear to be the cure-all to avoiding the underground leakage dilemma, there are many other new and different issues to consider with aboveground storage. The greatest misconception is that by storing materials above ground, there is no risk of subsurface environmental problems. it should be noted that with the aboveground storage tank (AGST) systems, there is still considerable risk of environmental contamination, either by the failure of onground tank bottoms or the spillage of product onto the ground surface where it subsequently finds its way to the ground water. In addition, there are added safety concerns that must be addressed. So what are the other specific areas of concern besides environmental to be addressed when making the decision between underground and aboveground tanks? The primary issues that will be addressed in this paper are: Safety, Product Losses, Cost Comparison of USTs vs AGSTs, Space Availability/Accessibility, Precipitation Handling, Aesthetics and Security, Pending and Existing Regulations

  1. VALORIZATION ABOVEGROUND OF THE EXTRACT OF COMPOST OVINE FOR FERTIGATION OF THE VEGETABLES PLANTS IN TUNISIA

    Directory of Open Access Journals (Sweden)

    Y. M’Sadak

    2013-12-01

    Full Text Available The main objective of this study was to highlight the fertilizing capacity of the extract of ovine compost (prepared to the simple infusion in gardening nursery, while specifying the appropriate ratios of extraction and dilution ,for soilless plant fertigation intended for two strategic summer crops in Tunisia: seasonal tomato and seasonal pepper. It is clear that such extraction ratio of 1: 5 is effective for plants fertigation of two considered species. In addition, it has been shown that 200 times dilution of the concentrated extract is beneficial for the growth of tomato plants. However, this organic liquid fertilizer with different dilutions applied and in the experimental conditions adopted, wasn’t moderately efficient in stimulating the growth of pepper plants. The importance of this type of compost produced from sheep biomass, widely available in Tunisia, encourage the diversification of its exploitation, which is the object of this preliminary work, deserving more future investigations.

  2. Testing the generality of above-ground biomass allometry across plant functional types at the continent scale.

    Science.gov (United States)

    Paul, Keryn I; Roxburgh, Stephen H; Chave, Jerome; England, Jacqueline R; Zerihun, Ayalsew; Specht, Alison; Lewis, Tom; Bennett, Lauren T; Baker, Thomas G; Adams, Mark A; Huxtable, Dan; Montagu, Kelvin D; Falster, Daniel S; Feller, Mike; Sochacki, Stan; Ritson, Peter; Bastin, Gary; Bartle, John; Wildy, Dan; Hobbs, Trevor; Larmour, John; Waterworth, Rob; Stewart, Hugh T L; Jonson, Justin; Forrester, David I; Applegate, Grahame; Mendham, Daniel; Bradford, Matt; O'Grady, Anthony; Green, Daryl; Sudmeyer, Rob; Rance, Stan J; Turner, John; Barton, Craig; Wenk, Elizabeth H; Grove, Tim; Attiwill, Peter M; Pinkard, Elizabeth; Butler, Don; Brooksbank, Kim; Spencer, Beren; Snowdon, Peter; O'Brien, Nick; Battaglia, Michael; Cameron, David M; Hamilton, Steve; McAuthur, Geoff; Sinclair, Jenny

    2016-06-01

    Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost-effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above-ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power-law models explained 84-95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand-based biomass from allometric models of varying levels of generalization (species-specific, plant functional type) were validated using whole-plot harvest data from 17 contrasting stands (range: 9-356 Mg ha(-1) ). Losses in efficiency of prediction were <1% if generalized models were used in place of species-specific models. Furthermore, application of generalized multispecies models did not introduce significant bias in biomass prediction in 92% of the 53 species tested. Further, overall efficiency of stand-level biomass prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost-effective prediction of biomass across a wide range of stands, we recommend use of generic allometric models based on plant functional types. Development of new species

  3. Longevity of contributions to SOC stocks from roots and aboveground plant litter below a Miscanthus plantation

    Science.gov (United States)

    Robertson, Andrew; Smith, Pete; Davies, Christian; Bottoms, Emily; McNamara, Niall

    2013-04-01

    Miscanthus is a lignocellulosic crop that uses the Hatch-Slack (C4) photosynthetic pathway as opposed to most C3 vegetation native to the UK. Miscanthus can be grown for a number of practical end-uses but recently interest has increased in its viability as a bioenergy crop; both providing a renewable source of energy and helping to limit climate change by improving the carbon (C) budgets associated with energy generation. Recent studies have shown that Miscanthus plantations may increase stocks of soil organic carbon (SOC), however the longevity and origin of this 'new' SOC must be assessed. Consequently, we combined an input manipulation experiment with physio-chemical soil fractionation to quantify new SOC and CO2 emissions from Miscanthus roots, decomposing plant litter and soil individually. Further, fractionation of SOC from the top 30 cm gave insight into the longevity of that SOC. In January 2009 twenty-five 2 m2 plots were set up in a three-year old 11 hectare Miscanthus plantation in Lincolnshire, UK; with five replicates of five treatments. These treatments varied plant input to the soil by way of controlled exclusion techniques. Treatments excluded roots only ("No Roots"), surface litter only ("No Litter"), both roots and surface litter ("No Roots or Litter") or had double the litter amount added to the soil surface ("Double Litter"). A fifth treatment was a control with undisturbed roots and an average amount of litter added. Monthly measurements of CO2 emissions were taken at the soil surface from each treatment between March 2009 and March 2013, and soil C from the top 30 cm was monitored in all plots over the same period. Miscanthus-derived SOC was determined using the isotopic discrimination between C4 plant matter and C3 soil, and soil fractionation was then used to establish the longevity of that Miscanthus-derived SOC. Ongoing results for CO2 emissions indicate a strong seasonal variation; litter decomposition forms a large portion of the CO2

  4. Response of aboveground carbon balance to long-term, experimental shifts in precipitation seasonality is contingent on plant community type in cold-desert rangelands

    Science.gov (United States)

    Reinhardt, K.; McAbee, K.; Germino, M. J.; Bosworth, A.

    2016-12-01

    Semi-arid rangelands have been identified as potential carbon (C) sinks. However, the degree of net C storage or release in water-limited systems is a function of precipitation amount and timing, as well as plant community composition. In northern latitudes of western North America, climate models predict increases in wintertime precipitation and decreases in summertime precipitation. In theory, this should boost C storage in cold-desert ecosystems that have deep-rooted woody plants due to greater wintertime soil water storage that enhances summertime productivity. However, there are few long-term, manipulative field-based studies investigating how shrub- and grass-dominated rangelands will respond to changing precipitation patterns. We measured aboveground C pools and fluxes at leaf, soil, and ecosystem scales over the 2014 growing season on plots that had supplemental precipitation added in either winter or summer for 21 years, in shrub- and exotic-bunchgrass-dominated plots. We hypothesized that increased winter precipitation would stimulate aboveground C uptake and storage relative to ambient conditions, in our cold-desert-adapted plant species. We further hypothesized that long-term gains in aboveground C storage due to precipitation manipulations would be greater in plots containing shrubs. Our hypotheses were generally supported: ecosystem C uptake and long-term biomass accumulation were greater in winter- and summer-irrigated plots compared to control plots in both vegetation communities. However, substantial increases in aboveground biomass occurred only in winter-irrigated plots that contained shrubs. Our findings suggest that increases in winter precipitation will enhance C storage of this widespread ecosystem, provided that the ecosystems have resisted conversion to exotic grassland.

  5. High Throughput Determination of Plant Height, Ground Cover, and Above-Ground Biomass in Wheat with LiDAR.

    Science.gov (United States)

    Jimenez-Berni, Jose A; Deery, David M; Rozas-Larraondo, Pablo; Condon, Anthony Tony G; Rebetzke, Greg J; James, Richard A; Bovill, William D; Furbank, Robert T; Sirault, Xavier R R

    2018-01-01

    Crop improvement efforts are targeting increased above-ground biomass and radiation-use efficiency as drivers for greater yield. Early ground cover and canopy height contribute to biomass production, but manual measurements of these traits, and in particular above-ground biomass, are slow and labor-intensive, more so when made at multiple developmental stages. These constraints limit the ability to capture these data in a temporal fashion, hampering insights that could be gained from multi-dimensional data. Here we demonstrate the capacity of Light Detection and Ranging (LiDAR), mounted on a lightweight, mobile, ground-based platform, for rapid multi-temporal and non-destructive estimation of canopy height, ground cover and above-ground biomass. Field validation of LiDAR measurements is presented. For canopy height, strong relationships with LiDAR ( r 2 of 0.99 and root mean square error of 0.017 m) were obtained. Ground cover was estimated from LiDAR using two methodologies: red reflectance image and canopy height. In contrast to NDVI, LiDAR was not affected by saturation at high ground cover, and the comparison of both LiDAR methodologies showed strong association ( r 2 = 0.92 and slope = 1.02) at ground cover above 0.8. For above-ground biomass, a dedicated field experiment was performed with destructive biomass sampled eight times across different developmental stages. Two methodologies are presented for the estimation of biomass from LiDAR: 3D voxel index (3DVI) and 3D profile index (3DPI). The parameters involved in the calculation of 3DVI and 3DPI were optimized for each sample event from tillering to maturity, as well as generalized for any developmental stage. Individual sample point predictions were strong while predictions across all eight sample events, provided the strongest association with biomass ( r 2 = 0.93 and r 2 = 0.92) for 3DPI and 3DVI, respectively. Given these results, we believe that application of this system will provide new

  6. Field response of aboveground non-target arthropod community to transgenic Bt-Cry1Ab rice plant residues in postharvest seasons.

    Science.gov (United States)

    Bai, Yao-Yu; Yan, Rui-Hong; Ye, Gong-Yin; Huang, Fangneng; Wangila, David S; Wang, Jin-Jun; Cheng, Jia-An

    2012-10-01

    Risk assessments of ecological effects of transgenic rice expressing lepidoptera-Cry proteins from Bacillus thuringiensis (Bt) on non-target arthropods have primarily focused on rice plants during cropping season, whereas few studies have investigated the effects in postharvest periods. Harvested rice fallow fields provide a critical over-wintering habitat for arthropods in the Chinese rice ecosystems, particularly in the southern region of the country. During 2006-08, two independent field trials were conducted in Chongqing, China to investigate the effects of transgenic Cry1Ab rice residues on non-target arthropod communities. In each trial, pitfall traps were used to sample arthropods in field plots planted with one non-Bt variety and two Bt rice lines expressing the Cry1Ab protein. Aboveground arthropods in the trial plots during the postharvest season were abundant, while community densities varied significantly between the two trials. A total of 52,386 individual insects and spiders, representing 93 families, was captured in the two trials. Predominant arthropods sampled were detritivores, which accounted for 91.9% of the total captures. Other arthropods sampled included predators (4.2%), herbivores (3.2%), and parasitoids (0.7%). In general, there were no significant differences among non-Bt and Bt rice plots in all arthropod community-specific parameters for both trials, suggesting no adverse impact of the Bt rice plant residues on the aboveground non-target arthropod communities during the postharvest season. The results of this study provide additional evidence that Bt rice is safe to non-target arthropod communities in the Chinese rice ecosystems.

  7. Understanding cross-communication between aboveground and belowground tissues via transcriptome analysis of a sucking insect whitefly-infested pepper plants.

    Science.gov (United States)

    Park, Yong-Soon; Ryu, Choong-Min

    2014-01-03

    Plants have developed defensive machinery to protect themselves against herbivore and pathogen attacks. We previously reported that aboveground whitefly (Bemisia tabaci Genn.) infestation elicited induced resistance in leaves and roots and influenced the modification of the rhizosphere microflora. In this study, to obtain molecular evidence supporting these plant fitness strategies against whitefly infestation, we performed a 300 K pepper microarray analysis using leaf and root tissues of pepper (Capsicum annuum L.) applied with whitefly, benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), and the combination of BTH+whitefly. We defined differentially expressed genes (DEGs) as genes exhibiting more than 2-fold change (1.0 based on log2 values) in expression in leaves and roots in response to each treatment compared to the control. We identified a total of 16,188 DEGs in leaves and roots. Of these, 6685, 6752, and 4045 DEGs from leaf tissue and 6768, 7705, and 7667 DEGs from root tissue were identified in the BTH, BTH+whitefly, and whitefly treatment groups, respectively. The total number of DEGs was approximately two-times higher in roots than in whitefly-infested leaves subjected to whitefly infestation. Among DEGs, whitefly feeding induced salicylic acid and jasmonic acid/ethylene-dependent signaling pathways in leaves and roots. Several transporters and auxin-responsive genes were upregulated in roots, which can explain why biomass increase is facilitated. Using transcriptome analysis, our study provides new insights into the molecular basis of whitefly-mediated intercommunication between aboveground and belowground plant tissues and provides molecular evidence that may explain the alteration of rhizosphere microflora and root biomass by whitefly infestation. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Irradiation plant for flowable material

    International Nuclear Information System (INIS)

    Bosshard, E.

    1975-01-01

    The irradiation plant can be used to treat various flowable materials including effluent or sewage sludge. The plant contains a concrete vessel in which a partition is mounted to form two coaxial irradiation chambers through which the flowable material can be circulated by means of an impeller. The partition can be formed to house tubes of radiation sources and to provide a venturi-like member about the impeller. The operation of the impeller is reversed periodically to assure movement of both heavy and light particles in the flow. (U.S.)

  9. Effects of elevated temperature and CO2 on aboveground-belowground systems: a case study with plants, their mutualistic bacteria and root / shoot herbivores

    Directory of Open Access Journals (Sweden)

    James Michael William Ryalls

    2013-11-01

    Full Text Available Interactions between above- and belowground herbivores have been prominent in the field of aboveground-belowground ecology from the outset, although little is known about how climate change affects these organisms when they share the same plant. Additionally, the interactive effects of multiple factors associated with climate change such as elevated temperature (eT and elevated atmospheric carbon dioxide (eCO2 are untested. We investigated how eT and eCO2 affected larval development of the lucerne weevil (Sitona discoideus and colonisation by the pea aphid (Acyrthosiphon pisum, on three cultivars of a common host plant, lucerne (Medicago sativa. Sitona discoideus larvae feed on root nodules housing N2-fixing rhizobial bacteria, allowing us to test the effects of eT and eCO2 on three trophic levels. Moreover, we assessed the influence of these factors on plant growth. eT increased plant growth rate initially (6, 8 and 10 weeks after sowing, with cultivar ‘Sequel’ achieving the greatest height. Inoculation with aphids, however, reduced plant growth at week 14. eT severely reduced root nodulation by 43%, whereas eCO2 promoted nodulation by 56%, but only at ambient temperatures. Weevil presence increased net root biomass and nodulation, by 31 and 45%, respectively, showing an overcompensatory plant growth response. Effects of eT and eCO2 on root nodulation were mirrored by weevil larval development; eT and eCO2 reduced and increased larval development, respectively. Contrary to expectations, aphid colonisation was unaffected by eT or eCO2, but there was a near-significant 10% reduction in colonisation rates on plants with weevils present belowground. The contrasting effects of eT and eCO2 on weevils potentially occurred through changes in root nodulation patterns.

  10. Effect of the density of transplants in reforestation on the morphological quality of the above-ground part of European beech (Fagus sylvatica L. six years after planting

    Directory of Open Access Journals (Sweden)

    Kateřina Houšková

    2013-01-01

    Full Text Available Quality of the above-ground part of European beech planted at different densities and spacing patterns for the purpose of artificial forest regeneration was monitored 3, 4 and 6 years after planting. The initial numbers of beech transplants were 5,000 pcs.ha−1, 10,000 pcs.ha−1, 15,000 pcs.ha−1 and 20,000 pcs.ha−1. The spacing pattern of transplants was either square or rectangular nearly in all variants: 1.4 × 1.4 m, 2 × 1 m, 1 × 1 m, 0.8 × 0.8 m, 1 ×0.65 m, 0.7 × 0.7 m and 1 × 0.5 m. Conclusions following out from the research are as follows: 1. neither the chosen density of transplants nor their spacing pattern had an essential influence on the after-planting loss or damage of trees; 2. through the planting of larger-diameter transplants it is possible to achieve canopy closure more rapidly as well as faster growth of the plantation; these beech plants keep the edge in growth and quality even 6 years after planting; 3. the higher is the beech plantation density, the less individuals occur in such a plantation with inappropriate stem form; 4. beech plants of the worst quality were found on plots with the lowest initial density of transplants (5,000 and 10,000 pcs.ha−1, yet the number of promising trees was sufficient even there. Thus, none of the experimental numbers of transplants per hectare or spacing arrangements of the European beech transplants can be claimed as inappropriate; however, further monitoring of the plots is necessary.

  11. Influence of presence and spatial arrangement of belowground insects on host-plant selection of aboveground insects: a field study

    NARCIS (Netherlands)

    Soler, J.J.; Schaper, S.V.; Bezemer, T.M.; Cortesero, A.M.; Hoffmeister, T.S.; Van der Putten, W.H.; Vet, L.E.M.; Harvey, J.A.

    2009-01-01

    1. Several studies have shown that above- and belowground insects can interact by influencing each others growth, development, and survival when they feed on the same host-plant. In natural systems, however, insects can make choices on which plants to oviposit and feed. A field experiment was

  12. Nuclear power plant cable materials :

    Energy Technology Data Exchange (ETDEWEB)

    Celina, Mathias C.; Gillen, Kenneth T; Lindgren, Eric Richard

    2013-05-01

    A selective literature review was conducted to assess whether currently available accelerated aging and original qualification data could be used to establish operational margins for the continued use of cable insulation and jacketing materials in nuclear power plant environments. The materials are subject to chemical and physical degradation under extended radiationthermal- oxidative conditions. Of particular interest were the circumstances under which existing aging data could be used to predict whether aged materials should pass loss of coolant accident (LOCA) performance requirements. Original LOCA qualification testing usually involved accelerated aging simulations of the 40-year expected ambient aging conditions followed by a LOCA simulation. The accelerated aging simulations were conducted under rapid accelerated aging conditions that did not account for many of the known limitations in accelerated polymer aging and therefore did not correctly simulate actual aging conditions. These highly accelerated aging conditions resulted in insulation materials with mostly inert aging processes as well as jacket materials where oxidative damage dropped quickly away from the air-exposed outside jacket surface. Therefore, for most LOCA performance predictions, testing appears to have relied upon heterogeneous aging behavior with oxidation often limited to the exterior of the cable cross-section a situation which is not comparable with the nearly homogenous oxidative aging that will occur over decades under low dose rate and low temperature plant conditions. The historical aging conditions are therefore insufficient to determine with reasonable confidence the remaining operational margins for these materials. This does not necessarily imply that the existing 40-year-old materials would fail if LOCA conditions occurred, but rather that unambiguous statements about the current aging state and anticipated LOCA performance cannot be provided based on

  13. Tamarisk coalition - native riparian plant materials program

    Science.gov (United States)

    Stacy Kolegas

    2012-01-01

    The Tamarisk Coalition (TC), a nonprofit organization dedicated to riparian restoration in the western United States, has created a Native Plant Materials Program to address the identified need for native riparian plant species for use in revegetation efforts on the Colorado Plateau. The specific components of the Native Plant Materials Program include: 1) provide seed...

  14. Eliciting maize defense pathways aboveground attracts belowground biocontrol agents.

    Science.gov (United States)

    Filgueiras, Camila Cramer; Willett, Denis S; Pereira, Ramom Vasconcelos; Moino Junior, Alcides; Pareja, Martin; Duncan, Larry W

    2016-11-04

    Plant defense pathways mediate multitrophic interactions above and belowground. Understanding the effects of these pathways on pests and natural enemies above and belowground holds great potential for designing effective control strategies. Here we investigate the effects of aboveground stimulation of plant defense pathways on the interactions between corn, the aboveground herbivore adult Diabrotica speciosa, the belowground herbivore larval D. speciosa, and the subterranean ento-mopathogenic nematode natural enemy Heterorhabditis amazonensis. We show that adult D. speciosa recruit to aboveground herbivory and methyl salicylate treatment, that larval D. speciosa are relatively indiscriminate, and that H. amazonensis en-tomopathogenic nematodes recruit to corn fed upon by adult D. speciosa. These results suggest that entomopathogenicnematodes belowground can be highly attuned to changes in the aboveground parts of plants and that biological control can be enhanced with induced plant defense in this and similar systems.

  15. Eliciting maize defense pathways aboveground attracts belowground biocontrol agents

    Science.gov (United States)

    Filgueiras, Camila Cramer; Willett, Denis S.; Pereira, Ramom Vasconcelos; Moino Junior, Alcides; Pareja, Martin; Duncan, Larry W.

    2016-01-01

    Plant defense pathways mediate multitrophic interactions above and belowground. Understanding the effects of these pathways on pests and natural enemies above and belowground holds great potential for designing effective control strategies. Here we investigate the effects of aboveground stimulation of plant defense pathways on the interactions between corn, the aboveground herbivore adult Diabrotica speciosa, the belowground herbivore larval D. speciosa, and the subterranean ento-mopathogenic nematode natural enemy Heterorhabditis amazonensis. We show that adult D. speciosa recruit to aboveground herbivory and methyl salicylate treatment, that larval D. speciosa are relatively indiscriminate, and that H. amazonensis en-tomopathogenic nematodes recruit to corn fed upon by adult D. speciosa. These results suggest that entomopathogenicnematodes belowground can be highly attuned to changes in the aboveground parts of plants and that biological control can be enhanced with induced plant defense in this and similar systems. PMID:27811992

  16. Materials availability for fusion power plant construction

    International Nuclear Information System (INIS)

    Hartley, J.N.; Erickson, L.E.; Engel, R.L.; Foley, T.J.

    1976-09-01

    A preliminary assessment was made of the estimated total U.S. material usage with and without fusion power plants as well as the U.S. and foreign reserves and resources, and U.S. production capacity. The potential environmental impacts of fusion power plant material procurement were also reviewed including land alteration and resultant chemical releases. To provide a general measure for the impact of material procurement for fusion reactors, land requirements were estimated for mining and disposing of waste from mining

  17. Methods of producing compounds from plant materials

    Science.gov (United States)

    Werpy, Todd A [West Richland, WA; Schmidt, Andrew J [Richland, WA; Frye, Jr., John G.; Zacher, Alan H. , Franz; James A. , Alnajjar; Mikhail S. , Neuenschwander; Gary G. , Alderson; Eric V. , Orth; Rick J. , Abbas; Charles A. , Beery; Kyle E. , Rammelsberg; Anne M. , Kim; Catherine, J [Decatur, IL

    2010-01-26

    The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.

  18. Methods of producing compounds from plant material

    Energy Technology Data Exchange (ETDEWEB)

    Werpy, Todd A.; Schmidt, Andrew J.; Frye, Jr., John G.; Zacher, Alan H.; Franz, James A.; Alnajjar, Mikhail S.; Neuenschwander, Gary G.; Alderson, Eric V.; Orth, Rick J.; Abbas, Charles A.; Beery, Kyle E.; Rammelsberg, Anne M.; Kim, Catherine J.

    2006-01-03

    The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.

  19. Steering soil microbiomes to suppress aboveground insect pests

    NARCIS (Netherlands)

    Pineda, Ana; Kaplan, Ian; Bezemer, T. Martijn

    2017-01-01

    Soil-borne microbes affect aboveground herbivorous insects through a cascade of molecular and chemical changes in the plant, but knowledge of these microbe?plant?insect interactions is mostly limited to one or a few microbial strains. Yet, the soil microbial community comprises thousands of unique

  20. Advanced power plant materials, design and technology

    Energy Technology Data Exchange (ETDEWEB)

    Roddy, D. (ed.) [Newcastle University (United Kingdom). Sir Joseph Swan Institute

    2010-07-01

    The book is a comprehensive reference on the state of the art of gas-fired and coal-fired power plants, their major components and performance improvement options. Selected chapters are: Integrated gasification combined cycle (IGCC) power plant design and technology by Y. Zhu, and H. C. Frey; Improving thermal cycle efficiency in advanced power plants: water and steam chemistry and materials performance by B. Dooley; Advanced carbon dioxide (CO{sub 2}) gas separation membrane development for power plants by A. Basile, F. Gallucci, and P. Morrone; Advanced flue gas cleaning systems for sulphur oxides (SOx), nitrogen oxides (NOx) and mercury emissions control in power plants by S. Miller and B.G. Miller; Advanced flue gas dedusting systems and filters for ash and particulate emissions control in power plants by B.G. Miller; Advanced sensors for combustion monitoring in power plants: towards smart high-density sensor networks by M. Yu and A.K. Gupta; Advanced monitoring and process control technology for coal-fired power plants by Y. Yan; Low-rank coal properties, upgrading and utilisation for improving the fuel flexibility of advanced power plants by T. Dlouhy; Development and integration of underground coal gasification (UCG) for improving the environmental impact of advanced power plants by M. Green; Development and application of carbon dioxide (CO{sub 2}) storage for improving the environmental impact of advanced power plants by B. McPherson; and Advanced technologies for syngas and hydrogen (H{sub 2}) production from fossil-fuel feedstocks in power plants by P. Chiesa.

  1. Determination of mercury in plant material

    Energy Technology Data Exchange (ETDEWEB)

    Pickard, J A; Martin, J T

    1960-07-01

    An analytical procedure used for the determination of traces of mercury in plant material is described. The conditions of combustion of organic matter are controlled to avoid loss of mercury and EDTA is used to reduce the values for apparent mercury on uncontaminated samples. Satisfactory recoveries of mercury added to apples, tomatoes and coffee are obtained. 10 references, 1 table.

  2. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman; R.W. Swindeman; J. Sarver; J. Blough; W. Mohn; M. Borden; S. Goodstine; I. Perrin

    2003-10-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to maintain a cost-competitive, environmentally acceptable coal-based electric generation option. High sulfur coals will specifically benefit in this respect by having these advanced materials evaluated in high-sulfur coal firing conditions and from the significant reductions in waste generation inherent in the increased operational efficiency. Second, from a national prospective, the results of this program will enable domestic boiler manufacturers to successfully compete in world markets for building high-efficiency coal-fired power plants.

  3. Aktau Plastics Plant Explosives Material Report

    Energy Technology Data Exchange (ETDEWEB)

    CASE JR.,ROGER S.

    1999-12-01

    The U.S. Department of Energy (DOE) has been cooperating with the Republic of Kazakhstanin Combined Threat Reduction (CTR) activities at the BN350 reactor located at the Mangyshlak Atomic Energy Complex (MAEC) in the city of Aktau, Kazakhstan since 1994. DOE contract personnel have been stationed at this facility for the last two years and DOE representatives regularly visit this location to oversee the continuing cooperative activities. Continued future cooperation is planned. A Russian news report in September 1999 indicated that 75 metric tons of organic peroxides stored at the Plastics Plant near Aktau were in danger of exploding and killing or injuring nearby residents. To ensure the health and safety of the personnel at the BN350 site, the DOE conducted a study to investigate the potential danger to the BN350 site posed by these materials at the Plastics Plant. The study conclusion was that while the organic peroxides do have hazards associated with them, the BN350 site is a safe distance from the Plastics Plant. Further, because the Plastics Plant and MAEC have cooperative fire-fighting agreements,and the Plastics Plant had exhausted its reserve of fire-fighting foam, there was the possibility of the Plastics Plant depleting the store of fire-fighting foam at the BN350 site. Subsequently, the DOE decided to purchase fire-fighting foam for the Plastics Plant to ensure the availability of free-fighting foam at the BN350 site.

  4. Material control for a reprocessing plant

    International Nuclear Information System (INIS)

    Rundquist, D.; Bray, G.; Donelson, S.; Glancy, J.; Gozani, T.; Harris, L.; McNamera, R.; Pence, D.; Ringham, M.

    1976-01-01

    Adequate control of special nuclear material (SNM) implies a basic knowledge of the quantities of SNM processed through or contained within a fuels processing facility with sufficient accuracy that diversion of the SNM for deleterious purposes can be detected in a timely manner. This report to the Lawrence Livermore Laboratory (LLL) describes the primary process streams containing plutonium that are handled routinely within a spent fuel reprocessing plant and conversion facility. As an aid in implementing the objectives of the accountability system in a realistic situation, the Allied General Nuclear Services (AGNS) reprocessing plant now under construction near Barnwell, South Carolina, was chosen as the study model. The AGNS plant processes are discussed in detail emphasizing those portions of the process that contain significant quantities of plutonium. The unit processes within the separations plant, nitrate storage, plutonium product facility and the analytical laboratory are described with regard to the SNM control system currently planned for use in the facilities. A general discussion of laboratory techniques, nondestructive assay and process instrumentation for plutonium process and product material from a reprocessing plant is included. A comprehensive discussion is given of holdup measurements in plutonium recycle facilities. A brief preliminary overview is presented of alternative processing strategies for LWR fuel. An extensive review and summary of modeling efforts for liquid-liquid extraction cycles is included. A comprehensive bibliography of previous modeling efforts is covered

  5. Student reasoning while investigating plant material

    Directory of Open Access Journals (Sweden)

    Helena Näs

    2008-11-01

    Full Text Available In this project, 10-12 year old students in three classes, investigated plant material to learn more about plants and photosynthesis. The research study was conducted to reveal the students’ scientific reasoning during their work. The eleven different tasks helped students investigate plant anatomy, plant physiology, and the gases involved in photosynthesis and respiration. The study was carried out in three ordinary classrooms. The collected data consisted of audio-taped discussions, students’ notebooks, and field notes. Students’ discussions and written work, during the different plant tasks, were analysed to see how the students’ learning and understanding processes developed. The analysis is descriptive and uses categories from a modified general typology of student’s epistemological reasoning. The study shows students’ level of interest in doing the tasks, their struggle with new words and concepts, and how they develop their knowledge about plant physiology. The study confirms thatstudents, in this age group, develop understanding and show an interest in complicated processes in natural science, e.g. photosynthesis.

  6. Different bacterial communities in heat and gamma irradiation treated replant disease soils revealed by 16S rRNA gene analysis – contribution to improved aboveground apple plant growth?

    Directory of Open Access Journals (Sweden)

    Bunlong eYim

    2015-11-01

    Full Text Available Replant disease (RD severely affects apple production in propagation tree nurseries and in fruit orchards worldwide. This study aimed to investigate the effects of soil disinfection treatments on plant growth and health in a biotest in two different RD soil types under greenhouse conditions and to link the plant growth status with the bacterial community composition at the time of plant sampling. In the biotest performed we observed that the aboveground growth of apple rootstock M26 plants after eight weeks was improved in the two RD soils either treated at 50 °C or with gamma irradiation compared to the untreated RD soils. Total community DNA was extracted from soil loosely adhering to the roots and quantitative real-time PCR revealed no pronounced differences in 16S rRNA gene copy numbers. 16S rRNA gene-based bacterial community analysis by denaturing gradient gel electrophoresis (DGGE and 454-pyrosequencing revealed significant differences in the bacterial community composition even after eight weeks of plant growth. In both soils, the treatments affected different phyla but only the relative abundance of Acidobacteria was reduced by both treatments. The genera Streptomyces, Bacillus, Paenibacillus and Sphingomonas had a higher relative abundance in both heat treated soils, whereas the relative abundance of Mucilaginibacter, Devosia and Rhodanobacter was increased in the gamma-irradiated soils and only the genus Phenylobacterium was increased in both treatments. The increased abundance of genera with potentially beneficial bacteria, i.e. potential degraders of phenolic compounds might have contributed to the improved plant growth in both treatments.

  7. Materials qualification for nuclear power plants

    International Nuclear Information System (INIS)

    Braconi, F.

    1987-01-01

    The supply of materials to be used in the fabrication of components submitted to pressure destined to Atucha II nuclear power plant must fulfill the quality assurance requirements in accordance with the international standards. With the aim of promoting the national participation in CNA II, ENACE had the need to adapt these requirements to the national industry conditions and to the availability of official entities' qualification and inspection. As a uniform and normalized assessment for the qualification of materials did not exist in the country, ENACE had to develop a materials suppliers qualification system. This paper presents a suppliers qualification procedure, its application limits and the alternative procedures for the acceptance of individual stock and for the stock materials purchase. (Author)

  8. Materials in machine, plant, and apparatus construction

    International Nuclear Information System (INIS)

    Blumenauer, H.; Hampe, E.; Hoehne, D.

    1983-01-01

    The subject is covered under the following headings: principles of materials economy and selection, designation of materials, general construction materials; materials for tools, materials for low temperatures, materials for high temperatures, materials for corrosive stress, materials with high wear resistance and friction materials, sliding and bearing materials, materials for spring load, materials for joints, and materials for nuclear reactors

  9. Plant corrosion: prediction of materials performance

    International Nuclear Information System (INIS)

    Strutt, J.E.; Nicholls, J.R.

    1987-01-01

    Seventeen papers have been compiled forming a book on computer-based approaches to corrosion prediction in a wide range of industrial sectors, including the chemical, petrochemical and power generation industries. Two papers have been selected and indexed separately. The first describes a system operating within BNFL's Reprocessing Division to predict materials performance in corrosive conditions to aid future plant design. The second describes the truncation of the distribution function of pit depths during high temperature oxidation of a 20Cr austenitic steel in the fuel cladding in AGR systems. (U.K.)

  10. BOILER MATERIALS FOR ULTRASUPERCRITICAL COAL POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    R. Viswanathan; K. Coleman

    2003-01-20

    The principal objective of this project is to develop materials technology for use in ultrasupercritical (USC) plant boilers capable of operating with 760 C (1400 F), 35 MPa (5000 psi) steam. In the 21st century, the world faces the critical challenge of providing abundant, cheap electricity to meet the needs of a growing global population while at the same time preserving environmental values. Most studies of this issue conclude that a robust portfolio of generation technologies and fuels should be developed to assure that the United States will have adequate electricity supplies in a variety of possible future scenarios. The use of coal for electricity generation poses a unique set of challenges. On the one hand, coal is plentiful and available at low cost in much of the world, notably in the U.S., China, and India. Countries with large coal reserves will want to develop them to foster economic growth and energy security. On the other hand, traditional methods of coal combustion emit pollutants and CO{sub 2} at high levels relative to other generation options. Maintaining coal as a generation option in the 21st century will require methods for addressing these environmental issues. This project has established a government/industry consortium to undertake a five-year effort to evaluate and develop of advanced materials that allow the use of advanced steam cycles in coal-based power plants. These advanced cycles, with steam temperatures up to 760 C, will increase the efficiency of coal-fired boilers from an average of 35% efficiency (current domestic fleet) to 47% (HHV). This efficiency increase will enable coal-fired power plants to generate electricity at competitive rates (irrespective of fuel costs) while reducing CO{sub 2} and other fuel-related emissions by as much as 29%. Success in achieving these objectives will support a number of broader goals. First, from a national prospective, the program will identify advanced materials that will make it possible to

  11. Aboveground vertebrate and invertebrate herbivore impact on net N mineralization in subalpine grasslands.

    Science.gov (United States)

    Risch, Anita C; Schotz, Martin; Vandegehuchte, Martijn L; Van Der Putten, Wim H; Duyts, Henk; Raschein, Ursina; Gwiazdowicz, Dariusz J; Busse, Matt D; Page-dumroese, Deborah S; Zimmermann, Stephan

    2015-12-01

    . The negative impact of mammals on net N mineralization may be related partially to (1) differences in the amount of plant material (litter) returned to the belowground subsystem, which induced a positive bottom-up effect on mite abundance, and (2) alterations in the amount and/or distribution of dung, urine, and food waste. Thus, our results clearly show that short-term alterations of the aboveground herbivore community can strongly impact nutrient cycling within ecosystems independent of long-term management and grazing history.

  12. Rhododendron aureum Georgi formed a special soil microbial community and competed with above-ground plants on the tundra of the Changbai Mountain, China.

    Science.gov (United States)

    Wang, Xiaolong; Li, Lin; Zhao, Wei; Zhao, Jiaxin; Chen, Xia

    2017-09-01

    Rhododendron aureum Georgi is a perennial evergreen dwarf shrub that grows at all elevations within the alpine tundra of northern China. Previous research has investigated the plant communities of R. aureum ; however, little information is available regarding interspecific competition and underground soil microbial community composition. The objective of our study was to determine whether the presence of R. aureum creates a unique soil microbiome and to investigate the relationship between R. aureum and other plant species. Our study site ranged from 1,800 to 2,600 m above sea level on the northern slope of the Changbai Mountain. The results show that the soil from sites with an R. aureum community had a higher abundance of nitrogen-fixing bacteria and a higher resistance to pathogens than soils from sites without R. aureum . We emphasize that R. aureum promotes a unique soil microbial community structure that is distinct from those associated with other plants. Elevation and microbial biomass were the main influencing factors for plant community structure. Analysis of interspecific relationships reveals that R. aureum is negatively associated with most other dominant shrubs and herbs, suggesting interspecific competition. It is necessary to focus on other dominant species if protection and restoration of the R. aureum competition is to occur. In the future, more is needed to prove whether R. aureum decreases species diversity in the tundra ecosystems of Changbai Mountain.

  13. New plant releases from the USDA-NRCS Aberdeen, Idaho, Plant Materials Center

    Science.gov (United States)

    L. St. John; P. Blaker

    2001-01-01

    The Plant Materials Center at Aberdeen, Idaho, is operated by the United States Department of Agriculture, Natural Resources Conservation Service. The purpose of the Plant Materials Center is to evaluate and release plant materials for conservation use and to develop and transfer new technology for the establishment and management of plants. The Center serves portions...

  14. Sulfur mineralization of different plant materials labelled with 35 S

    International Nuclear Information System (INIS)

    Abreu Junior, Cassio H.

    1993-01-01

    This study was carried out, in green house conditions, with the objective of evaluating the effect of incorporation in soil of different plant materials labelled with 35 S and of incubation periods on the availability of sulfur to the bean test plants and on the dynamic of this element in the soil. The bean test plants dry matter yield ranged from 2.00 to 3.79 g/plant, the S content and absorption ranged from 118.20 to 194.04 mg/100 g and 2.61 to 6.34 mg/plant respectively. The 35 S derived from the incorporated bean plant material contributed with 12 to 256% of total S absorbed by bean test plant; rice plant material contributed with 12 to 22%; soybean plant material contributed 11 to 18%; corn plant material at rate of 7 g with, 11 to 19% and corn at rate of 3.5 g; with 7 to 1%. Plant material incorporation showed 35 S using efficiency by bean test plant of 21.41 to 9.94% by incorporated rice plant material, of 16.12 to 7.79% by rice material, of 13.11 to 6.49% by soybean material, of 10.24 to 6.21% by corn at rate of 3.5 g and of 7.41 to 3.81% by corn at rate of 7 g.Incorporated plant material with C/S relationship near 120, such as bean and rice, promoted desirable and favorable alteration in soil, while materials with C/S higher than 250, such as soybean and corn, led to unsatisfactory and undesirable alteration. The characteristic of incorporated plant materials which more affected its behavior was the C/S relationship, which depended on its physiological stage on collect timing. (author)

  15. Energy, material and land requirement of a fusion plant

    DEFF Research Database (Denmark)

    Schleisner, Liselotte; Hamacher, T.; Cabal, H.

    2001-01-01

    The energy and material necessary to construct a power plant and the land covered by the plant are indicators for the ‘consumption’ of environment by a certain technology. Based on current knowledge, estimations show that the material necessary to construct a fusion plant will exceed the material...... requirement of a fission plant by a factor of two. The material requirement for a fusion plant is roughly 2000 t/MW and little less than 1000 t/MW for a fission plant. The land requirement for a fusion plant is roughly 300 m2/MW and the land requirement for a fission plant is a little less than 200 m2/MW...... less ‘environment’ for the construction than renewable technologies, especially wind and solar....

  16. Aboveground insect infestation attenuates belowground Agrobacterium-mediated genetic transformation.

    Science.gov (United States)

    Song, Geun Cheol; Lee, Soohyun; Hong, Jaehwa; Choi, Hye Kyung; Hong, Gun Hyong; Bae, Dong-Won; Mysore, Kirankumar S; Park, Yong-Soon; Ryu, Choong-Min

    2015-07-01

    Agrobacterium tumefaciens causes crown gall disease. Although Agrobacterium can be popularly used for genetic engineering, the influence of aboveground insect infestation on Agrobacterium induced gall formation has not been investigated. Nicotiana benthamiana leaves were exposed to a sucking insect (whitefly) infestation and benzothiadiazole (BTH) for 7 d, and these exposed plants were inoculated with a tumorigenic Agrobacterium strain. We evaluated, both in planta and in vitro, how whitefly infestation affects crown gall disease. Whitefly-infested plants exhibited at least a two-fold reduction in gall formation on both stem and crown root. Silencing of isochorismate synthase 1 (ICS1), required for salicylic acid (SA) synthesis, compromised gall formation indicating an involvement of SA in whitefly-derived plant defence against Agrobacterium. Endogenous SA content was augmented in whitefly-infested plants upon Agrobacterium inoculation. In addition, SA concentration was three times higher in root exudates from whitefly-infested plants. As a consequence, Agrobacterium-mediated transformation of roots of whitefly-infested plants was clearly inhibited when compared to control plants. These results suggest that aboveground whitefly infestation elicits systemic defence responses throughout the plant. Our findings provide new insights into insect-mediated leaf-root intra-communication and a framework to understand interactions between three organisms: whitefly, N. benthamiana and Agrobacterium. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. New materials for boilers in USC power plants

    International Nuclear Information System (INIS)

    Hong, Sung Ho; Hong, Seok Joo

    2003-01-01

    The efficiency of boiler in fossil power plants is a strong function of steam temperature and pressure. Thus, the main technology of increasing boiler efficiency is the development of stronger high temperature materials, capable of operating under high stresses at ever increasing temperature. This paper will presents the new material relating to boiler of USC power plant

  18. Use of anthocyanin extracted from natural plant materials to develop ...

    African Journals Online (AJOL)

    The aim of this work was to study the optimal conditions for anthocyanin extraction from natural plant materials in order to develop a pH test kit. The plant materials used were butterfly pea flower (BPF), roselle red flower (RRF) and dragon fruit peel (DFP). The solvents used in this study were distilled water, 1% HCl/95% ...

  19. Materials in flue gas condensation plants; Materialval vid roekgaskondensering

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Barbara; Nordling Magnus

    2003-02-01

    This project is the first part of a larger project. In the part reported here, materials for flue gas condensers have been investigated by contact with plant owners and suppliers and by a literature review of reported failures. If it is decided to continue with another part of the project, a number of materials will be long term tested on site. The project is complementary to an earlier project, which investigated the operating experiences from flue gas condensers in biomass fired cogeneration plants. In the project materials (steel and polymeric) suitable for long term testing in existing plants are discussed. It is proposed that testing in the second part of the project is made with material coupons in one plant fired with only biomass and one plant where biomass is co fired with other fuels. In the biomass fired plant a number of steel materials should be tested. In the co fired plant, with its harsher operating conditions, the same steel materials plus a number of polymeric materials should be tested. Materials suitable for testing are summarised in the report.

  20. External costs of material recycling strategies for fusion power plants

    International Nuclear Information System (INIS)

    Hallberg, B.; Aquilonius, K.; Lechon, Y.; Cabal, H.; Saez, R.M.; Schneider, T.; Lepicard, S.; Ward, D.; Hamacher, T.; Korhonen, R.

    2003-01-01

    This paper is based on studies performed within the framework of the project Socio-Economic Research on Fusion (SERF3). Several fusion power plant designs (SEAFP Models 1-6) were compared focusing on part of the plant's life cycle: environmental impact of recycling the materials. Recycling was considered for materials replaced during normal operation, as well as materials from decommissioning of the plant. Environmental impact was assessed and expressed as external cost normalised with the total electrical energy output during plant operation. The methodology used for this study has been developed by the Commission of the European Union within the frame of the ExternE project. External costs for recycling, normalised with the energy production during plant operation, are very low compared with those for other energy sources. Results indicate that a high degree of recycling is preferable, at least when considering external costs, because external costs of manufacturing of new materials and disposal costs are higher

  1. Decomposition of aboveground biomass of a herbaceous wetland stand

    OpenAIRE

    KLIMOVIČOVÁ, Lucie

    2010-01-01

    The master?s thesis is part of the project GA ČR č. P504/11/1151- Role of plants in the greenhouse gas budget of a sedge fen. This thesis deals with the decomposition of aboveground vegetation in a herbaceous wetland. The decomposition rate was established on the flooded part of the Wet Meadows near Třeboň. The rate of the decomposition processes was evaluated using the litter-bag method. Mesh bags filled with dry plant matter were located in the vicinity of the automatic meteorological stati...

  2. Rare earth element abundances and distribution patterns in plant materials

    International Nuclear Information System (INIS)

    Aidid, S.B.

    1994-01-01

    Eight out of the fourteen rare earth elements were estimated from the leaves of Pelthophorum pterocarpum, the leaves and roots of Impatiens balsamina, and the soils from four sampling sites by instrumental neutron activation analysis. The chondrite normalized rare earth element abundances and distribution patterns in the plant materials were found to be significantly correlated to the abundances of the rare earth elements occurring in the soils. The extent of accumulation of the rare earth elements in some plant materials was also governed by the age of the plants and the plant organs. (author) 16 refs.; 4 figs.; 3 tabs

  3. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests.

    Science.gov (United States)

    Ali, Arshad; Yan, En-Rong; Chang, Scott X; Cheng, Jun-Yang; Liu, Xiang-Yu

    2017-01-01

    Subtropical forests are globally important in providing ecological goods and services, but it is not clear whether functional diversity and composition can predict aboveground biomass in such forests. We hypothesized that high aboveground biomass is associated with high functional divergence (FDvar, i.e., niche complementarity) and community-weighted mean (CWM, i.e., mass ratio; communities dominated by a single plant strategy) of trait values. Structural equation modeling was employed to determine the direct and indirect effects of stand age and the residual effects of CWM and FDvar on aboveground biomass across 31 plots in secondary forests in subtropical China. The CWM model accounted for 78, 20, 6 and 2% of the variation in aboveground biomass, nitrogen concentration in young leaf, plant height and specific leaf area of young leaf, respectively. The FDvar model explained 74, 13, 7 and 0% of the variation in aboveground biomass, plant height, twig wood density and nitrogen concentration in young leaf, respectively. The variation in aboveground biomass, CWM of leaf nitrogen concentration and specific leaf area, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf explained by the joint model was 86, 20, 13, 7, 2 and 0%, respectively. Stand age had a strong positive direct effect but low indirect positive effects on aboveground biomass. Aboveground biomass was negatively related to CWM of nitrogen concentration in young leaf, but positively related to CWM of specific leaf area of young leaf and plant height, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf. Leaf and wood economics spectra are decoupled in regulating the functionality of forests, communities with diverse species but high nitrogen conservative and light acquisitive strategies result in high aboveground biomass, and hence, supporting both the mass ratio and niche complementarity hypotheses in secondary subtropical forests

  4. Alaska Plant Materials Center | Division of Agriculture

    Science.gov (United States)

    Management Plan for Alaska, 2005 2017 AK Potato Seed Certification Handbook Tobacco Rattle Virus in Peonies Virus and Thrips Vectors Resources Pacific Northwest Plant Disease Management Handbook Pacific Northwest Potato Production Disease Risk Monitoring Publications and Reports Late Blight Management Plan for Alaska

  5. Erosion and corrosion of nuclear power plant materials

    International Nuclear Information System (INIS)

    1994-01-01

    This conference is composed of 23 papers, grouped in 3 sessions which main themes are: analysis of corrosion and erosion damages of nuclear power plant equipment and influence of water chemistry, temperature, irradiations, metallurgical and electrochemical factors, flow assisted cracking, stress cracking; monitoring and control of erosion and corrosion in nuclear power plants; susceptibility of structural materials to erosion and corrosion and ways to improve the resistance of materials, steels, coatings, etc. to erosion, corrosion and cracking

  6. Light Use Efficiency of Aboveground Biomass Production of Norway Spruce Stands

    Czech Academy of Sciences Publication Activity Database

    Bellan, Michal; Marková, I.; Zaika, A.; Krejza, Jan

    2017-01-01

    Roč. 65, č. 1 (2017), s. 9-16 ISSN 1211-8516 R&D Projects: GA TA ČR TA02010945 Institutional support: RVO:67179843 Keywords : absorbed photosynthetically active radiation * aboveground biomass increment * allometric relation Subject RIV: GC - Agronomy OBOR OECD: Agronomy, plant breeding and plant protection

  7. Foundational literature for moving native plant materials in changing climates

    Science.gov (United States)

    Mary I. Williams; Kas Dumroese; Jeremy Pinto; Martin F. Jurgensen

    2015-01-01

    Seed transfer guidelines and zones are used to manage the movement of plant materials, but by the end of the century many landscapes across the globe will have climates that are incompatible with current vegetation. The mismatch in rates between climate change and plant migration and adaptation will pose significant challenges for natural resource managers, especially...

  8. Materials Investigation for Power Plants Industry. Seminar

    International Nuclear Information System (INIS)

    Szteke, W.; Wasiak, J.; Bilous, W.; Przyborska, M.; Wagner, T.; Wojciechowska, J.; Zubowski, B.

    2006-01-01

    The Report is an assembly of the papers concerning perspectives of evolution of power in Poland. The material and diagnostic problems occurring the exploitation of power station as well as gas pipelines are discussed. The progress in the accommodation of the Polish technical prescriptions to the European law is described

  9. Uptake by plants of radionuclides from FUSRAP waste materials

    International Nuclear Information System (INIS)

    Knight, M.J.

    1983-04-01

    Radionuclides from FUSRAP wastes potentially may be taken up by plants during remedial action activities and permanent near-surface burial of contaminated materials. In order to better understand the propensity of radionuclides to accumulate in plant tissue, soil and plant factors influencing the uptake and accumulation of radionuclides by plants are reviewed. In addition, data describing the uptake of the principal radionuclides present in FUSRAP wastes (uranium-238, thorium-230, radium-226, lead-210, and polonium-210) are summarized. All five radionuclides can accumulate in plant root tissue to some extent, and there is potential for the translocation and accumulation of these radionuclides in plant shoot tissue. Of these five radionuclides, radium-226 appears to have the greatest potential for translocation and accumulation in plant shoot tissue. 28 references, 1 figure, 3 tables

  10. Uptake by plants of radionuclides from FUSRAP waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Knight, M.J.

    1983-04-01

    Radionuclides from FUSRAP wastes potentially may be taken up by plants during remedial action activities and permanent near-surface burial of contaminated materials. In order to better understand the propensity of radionuclides to accumulate in plant tissue, soil and plant factors influencing the uptake and accumulation of radionuclides by plants are reviewed. In addition, data describing the uptake of the principal radionuclides present in FUSRAP wastes (uranium-238, thorium-230, radium-226, lead-210, and polonium-210) are summarized. All five radionuclides can accumulate in plant root tissue to some extent, and there is potential for the translocation and accumulation of these radionuclides in plant shoot tissue. Of these five radionuclides, radium-226 appears to have the greatest potential for translocation and accumulation in plant shoot tissue. 28 references, 1 figure, 3 tables.

  11. [Spatial distribution of aboveground biomass of shrubs in Tianlaochi catchment of the Qilian Mountains].

    Science.gov (United States)

    Liang, Bei; Di, Li; Zhao, Chuan-Yan; Peng, Shou-Zhang; Peng, Huan-Hua; Wang, Chao

    2014-02-01

    This study estimated the spatial distribution of the aboveground biomass of shrubs in the Tianlaochi catchment of Qilian Mountains based on the field survey and remote sensing data. A relationship model of the aboveground biomass and its feasibly measured factors (i. e. , canopy perimeter and plant height) was built. The land use was classified by object-oriented technique with the high resolution image (GeoEye-1) of the study area, and the distribution of shrub coverage was extracted. Then the total aboveground biomass of shrubs in the study area was estimated by the relationship model with the distribution of shrub coverage. The results showed that the aboveground biomass of shrubs in the study area was 1.8 x 10(3) t and the aboveground biomass per unit area was 1598.45 kg x m(-2). The distribution of shrubs mainly was at altitudes of 3000-3700 m, and the aboveground biomass of shrubs on the sunny slope (1.15 x 10(3) t) was higher than that on the shady slope (0.65 x 10(3) t).

  12. Radioactive materials released from nuclear power plants

    International Nuclear Information System (INIS)

    Tichler, J.; Norden, K.; Congemi, J.

    1991-05-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1988 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1988 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs

  13. DNA barcoding of medicinal plant material for identification

    Science.gov (United States)

    Because of the increasing demand for herbal remedies and for authentication of the source material, it is vital to provide a single database containing information about authentic plant materials and their potential adulterants. The database should provide DNA barcodes for data retrieval and similar...

  14. Prevention of spontaneous combustion of backfilled plant waste material.

    CSIR Research Space (South Africa)

    Adamski, SA

    2003-06-01

    Full Text Available Since Grootegeluk Coal Mine commenced operation in 1980 all plant discards and inter-burden material have been stacked on discards dumps, a practice that has led to the spontaneous combustion of the waste material on these dumps. From 1980 to 1988...

  15. Underground or aboveground storage tanks - A critical decision

    International Nuclear Information System (INIS)

    Rizzo, J.A.

    1992-01-01

    With the 1988 promulgation of the comprehensive Resource Conservation and Recovery Act (RCRA) regulations for underground storage of petroleum and hazardous substances, many existing underground storage tank (UST) owners have been considering making the move to aboveground storage. While on the surface, this may appear to be the cure-all to avoiding the underground leakage dilemma, there are many other new and different issues to consider with aboveground storage. The greatest misconception is that by storing materials above ground, there is no risk of subsurface environmental problems. It should be noted that with the aboveground storage tank (AGST) systems, there is still considerable risk of environmental contamination, either by the failure of onground tank bottoms or the spillage of product onto the ground surface where it subsequently finds its way to the ground water. In addition, there are added safety concerns that must be addressed. The greatest interest in AGSTs comes from managers with small volumes of used oil, fresh oil, solvents, chemicals, or heating oil. Dealing with small capacity tanks is not so different than large bulk storage - and, in fact, it lends itself to more options, such as portable storage, tank within tank configurations and inside installations. So what are the other specific areas of concern besides environmental to be addressed when making the decision between underground and aboveground tanks? The primary issues that will be addressed in this presentation are: (1) safety; (2) product losses; (3) cost comparison of USTs vs AGSTs; (4) space availability/accessibility; (5) precipitation handling; (6) aesthetics and security; (7) pending and existing regulations

  16. Material control and accountancy at EDF PWR plants

    International Nuclear Information System (INIS)

    de Cormis, F.

    1991-01-01

    The paper describes the comprehensive system which is developed and implemented at Electricite de France to provide a single reliable nuclear material control and accounting system for all nuclear plants. This software aims at several objectives among which are: the control and the accountancy of nuclear material at the plant, the optimization of the consistency of data by minimizing the possibility of transcription errors, the fulfillment of the statutory requirements by automatic transfer of reports to national and international safeguards authorities, the servicing of other EDF users of nuclear material data for technical or commercial purposes

  17. Reuse of contaminated material from nuclear-power plants

    International Nuclear Information System (INIS)

    Melichar, Z.

    1988-01-01

    Some building structures of decommissioned nuclear power plants are contaminated to a very low extent. Little experience is so far available concerning the recycling and furher exploitation of such materials, the majority of which is constituted by concrete and steel. The mass and activities of the metal parts of the Bohunice A-1 nuclear power plant are estimated and the major contaminant radionuclides are listed. Czechoslovak as well as foreign regulations concerning radioactive material handling are cited and criteria for releasing such materials for further use are discussed. (M.D.). 7 tabs., 3 figs, 28 refs

  18. Creep property testing of energy power plant component material

    International Nuclear Information System (INIS)

    Nitiswati, Sri; Histori; Triyadi, Ari; Haryanto, Mudi

    1999-01-01

    Creep testing of SA213 T12 boiler piping material from fossil plant, Suralaya has been done. The aim of the testing is to know the creep behaviour of SA213 T12 boiler piping material which has been used more than 10 yeas, what is the material still followed ideal creep curve (there are primary stage, secondary stage, and tertiary stage). This possibility could happened because the material which has been used more than 10 years usually will be through ageing process because corrosion. The testing was conducted in 520 0C, with variety load between 4% until 50% maximum allowable load based on strength of the material in 520 0C

  19. Empirical and theoretical challenges in aboveground-belowground ecology

    DEFF Research Database (Denmark)

    W.H. van der Putten,; R.D. Bardgett; P.C. de Ruiter

    2009-01-01

    of the current conceptual succession models into more predictive models can help targeting empirical studies and generalising their results. Then, we discuss how understanding succession may help to enhance managing arable crops, grasslands and invasive plants, as well as provide insights into the effects...... and environmental settings, we explore where and how they can be supported by theoretical approaches to develop testable predictions and to generalise empirical results. We review four key areas where a combined aboveground-belowground approach offers perspectives for enhancing ecological understanding, namely...

  20. of Effect of different organic materials on plant growth

    Directory of Open Access Journals (Sweden)

    mehrnosh eskandari

    2009-06-01

    Full Text Available Using organic matter, such as, peat and vermicompost as soil amendment, increases aeration, water infiltration, water holding capacity and nutrients of soil . A greenhouse experiment was performed to study the effect of organic materials on plant growth characteristics, total biomass and grain weight of chickpea with four treatments; 1 Soil + 3% peat (PS, 2 Sterile soil + 3% peat (SPS, 3 Soil + vermicompost (1:6 (VCS, 4 control (C in a completely randomized design with four replications. The results showed that the maximum germination percentage, number of branch and number of pod per plant were observed in SPS treatment due to the avoidance of harmful microbial impacts. Plant height in this treatment reduced, whereas, no significant differences in total dry matter per plant and dry weight of chickpea per plant were observed compared to control. Plant growth consist of plant height, number of branch and number of pod per plant in vermicompost and soil + peat treatment reduced in the early stages probably because of plant - microbes interaction effects. Application of vermicompost increased fresh and dry weight, pod dry weight and single grain weight, probably due to more plant nutrient availability in this treatment when compared with other treatments.

  1. Bioenergy production potential for aboveground biomass from a subtropical constructed wetland

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Chung [Department of Forestry and Nature Conservation, Chinese Culture University, Taipei 11114 (China); Ko, Chun-Han [School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617 (China); Bioenergy Research Center, National Taiwan University, Taipei 10617 (China); Chang, Fang-Chih [The Instrument Center, National Cheng Kung University, No.1, University Road, Tainan City 70101 (China); Chen, Pen-Yuan [Department of Landscape Architecture, National Chiayi University, Chiayi City 60004 (China); Liu, Tzu-Fen [School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617 (China); Sheu, Yiong-Shing [Department of Water Quality Protection, Environmental Protection Administration, Executive Yuan, Taipei 10042 (China); Shih, Tzenge-Lien [Department of Chemistry, Tamkang University, Tamsui, Taipei 25137 (China); Teng, Chia-Ji [Environmental Protection Bureau, Taipei County Government, Taipei 22001 (China)

    2011-01-15

    Wetland biomass has potentials for bioenergy production and carbon sequestration. Planted with multiple species macrophytes to promote biodiversity, the 3.29 ha constructed wetland has been treated 4000 cubic meter per day (CMD) domestic wastewater and urban runoff. This study investigated the seasonal variations of aboveground biomass of the constructed wetland, from March 2007 to March 2008. The overall aboveground biomass was 16,737 kg and total carbon content 6185 kg at the peak of aboveground accumulation for the system emergent macrophyte at September 2007. Typhoon Korsa flood this constructed wetland at October 2007, however, significant recovery for emergent macrophyte was observed without human intervention. Endemic Ludwigia sp. recovered much faster, compared to previously dominated typha. Self-recovery ability of the macrophyte community after typhoon validated the feasibility of biomass harvesting. Incinerating of 80% biomass harvested of experimental area in a nearby incineration plant could produce 11,846 kWh for one month. (author)

  2. Nicotine Analysis in Several Non-Tobacco Plant Materials

    Directory of Open Access Journals (Sweden)

    Moldoveanu Serban C.

    2016-04-01

    Full Text Available Present study describes the determination of nicotine in various plant samples with a low content of this compound. Nicotine is found naturally in plants from the Solanaceae family. The plants from Nicotiana genus contain large levels of nicotine. However, only low levels are present in plants from Solanum genus including potato, tomato, eggplant, and from Capsicum genus, which are used as food. Because the levels of nicotine in these materials are in the range of parts per billion, the measurements are difficult and the results are very different from study to study. The present study evaluated the level of nicotine in a number of plants (fruits, roots, leaves, tubers from Solanaceae family (not including Nicotiana genus and from several other vegetables commonly used as food. The analysis consisted of the treatment of plant material with an aqueous solution 5% NaOH at 70°C for 30 min, followed by extraction with TBME containing d3-nicotine as an internal standard. The TBME organic layer was analyzed on a 7890B/7000C GC-MS/MS system with a 30 m × 0.25 mm, 0.25 μm film CAM column. The MS/MS system worked in MRM positive ionization mode monitoring the transition 162 - 84 for nicotine and 165 - 87 for d3-nicotine. Particular attention was given to the preservation of the intact levels of nicotine in the plant material. The plant material was analyzed as is, without drying and with minimal exposure to contaminations. Separately, the moisture of the plant material was measured in order to report the nicotine level on a dry-basis. Levels of nicotine around 180 ng/g dry material were obtained for tomatoes and eggplant (fruit and lower levels were obtained for green pepper and potato. Similar levels to that in the tomato fruit were detected in tomato leaves. Materials from other plant families also showed traces of nicotine. [Beitr. Tabakforsch. Int. 27 (2016 54-59

  3. Production of biogas from plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Zuer, J.

    1980-12-01

    Different crop residues from agriculture and horticulture were investigated for feasibility of producing biogas. The anaerobic fermentation has been performed in batch system fermentation reactors (5 liters) at mesophilic conditions (35 degrees C). Content of volatile solids (VS/TS) in raw materials varied from 78.5 percent in silage from top of sugar beet to 97.3 percent in straw of rye. The highest content of lignin was found in stalks of Jerusalem artichoke (49.6 percent), stalks of horse bean (47.6 percent) and the lowest in leaves of cauliflower (9.5 percent), top of sugar beet and leaves of cabbage (11 percent) in both. Ratio of carbon to nitrogen was the highest in the straw of rye (60) and the lowest in silage from top of sugar beet (11) and in leaves of cauliflower (11). Rate of biogas production during the first 13 days of fermentation was about 27 liters per kg TS per day, achieved from top of sugar beet. Typical mean rate of biogas production, about 9 liters per kg TS per day, was performed during the first 40 days of retention time from straw of wheat and stalks of rape. Top of sugar beet and manure slurry have had the shortest effective retention time ca 20 days. Maximum total yield of biogas (427.0 liters per kg TS) was achieved from top of sugar beet. From manure slurry 257.5 liters biogas per kg TS was obtained. Methane content in biogas produced during the final 7 days of retention time was the highest from silage from top of artichoke (72.8 percent), stalks of horse bean (71.6 percent) and straw of wheat (71.0 percent). The lowest percentage of methane (59.0 percent) was found in biogas from top of sugar beet.

  4. Plant materials program. Progress report, June 1980-May 1981

    International Nuclear Information System (INIS)

    Childs, W.; Cubicciotti, D.; Fox, M.; Giannuzzi, A.; Gilman, J.; Jones, R.; McIlree, A.

    1981-11-01

    This is the first annual progress report of the Plant Materials Subprogram, which was organized in May 1980 to address corrosion-related materials problems in light water reactors. The first section of the report provides an overview of plant materials problems which have a high impact on plant availability. These include pipe and pressure vessel cracking, condenser leakage, turbine disc cracking, and steam generator tube denting and cracking. The status and goals of research and development work related to each of these problems are reviewed briefly. Subsequent report sections provide more detailed reviews of significant progress in the relevant technical topic areas: intergranular stress corrosion cracking of austenitic stainless steels; environmentally-assisted cracking of carbon and low alloy steels; intergranular stress corrosion cracking of nickel-base alloys; and improved fabrication technology

  5. Plant Materials Program: progress June 1981 to May 1982

    International Nuclear Information System (INIS)

    Childs, W.; Cubicciotti, D.; Fox, M.; Giannuzzi, A.; Gilman, J.; Jones, R.

    1983-02-01

    This is the second annual progress report of the Plant Materials Subprogram, which was organized in May 1980 to address corrosion-related materials problems in light water reactors. The first section of the report provides an overview of plant materials problems which have a high impact on plant availability. These include pipe and pressure vessel cracking, condenser leakage, turbine disc cracking, steam geerator tube attack and cracking, and cracking of nickel alloy springs, beams and pins. The status and goals of research and development work related to each of these problems are reviewed briefly. Subsequent report sections provide more detailed reviews of significant progress in the relevant technical topic areas: intergranular stress corrosion cracking of austenitic stainless steels; environmentally-assisted cracking of carbon and low alloy steels; intergranular stress corrosion cracking of nickel-base alloys; and improved fabrication technology

  6. Plant Materials Program: progress June 1981-May 1982

    International Nuclear Information System (INIS)

    Childs, W.; Cubicciotti, D.; Fox, M.; Giannuzzi, A.; Gilman, J.; Jones, R.

    1983-02-01

    This is the second annual progress report of the Plant Materials Subprogram, which was organized in May 1980 to address corrosion-related materials problems in light water reactors. The first section of the report provides an overview of plant materials problems which have impact on plant availability. These include pipe and pressure vessel cracking, condenser leakage, turbine disc cracking, steam generator tube attack and cracking, and cracking of nickel alloy springs, beams and pins. The status and goals of research and development work related to each of these problems are reviewed briefly. Subsequent report sections provide more detailed reviews of significant progress in the relevant technical topic area: integranular stress corrosion cracking of austenitic stainless steels; environmentally-assisted cracking of carbon and low alloy steels; intergranular stress corrosion cracking of nickel-base alloys; and improved fabrication technology

  7. Effect of lunar materials on plant tissue culture.

    Science.gov (United States)

    Walkinshaw, C. H.; Venketeswaran, S.; Baur, P. S.; Croley, T. E.; Scholes, V. E.; Weete, J. D.; Halliwell, R. S.; Hall, R. H.

    1973-01-01

    Lunar material collected during the Apollo 11, 12, 14, and 15 missions has been used to treat 12 species of higher plant tissue cultures. Biochemical and morphological studies have been conducted on several of these species. Tobacco tissue cultures treated with 0.22 g of lunar material exhibited increased greening more complex chloroplasts, less cytoplasmic vacuolation and greater vesiculation. Pine tissue cultures reacted to treatment by an increased deposition of tannin-like materials. The percentage of dry weight and soluble protein was increased in cultures treated with either lunar or terrestrial rock materials.

  8. Materials and methods to increase plant growth and yield

    Science.gov (United States)

    Kirst, Matias

    2017-05-16

    The present invention relates to materials and methods for modulating growth rates, yield, and/or resistance to drought conditions in plants. In one embodiment, a method of the invention comprises increasing expression of an hc1 gene (or a homolog thereof that provides for substantially the same activity), or increasing expression or activity of the protein encoded by an hc1 gene thereof, in a plant, wherein expression of the hc1 gene or expression or activity of the protein encoded by an hc1 gene results in increased growth rate, yield, and/or drought resistance in the plant.

  9. Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground.

    Directory of Open Access Journals (Sweden)

    Camila Cramer Filgueiras

    Full Text Available Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes.

  10. Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground

    Science.gov (United States)

    Filgueiras, Camila Cramer; Willett, Denis S.; Junior, Alcides Moino; Pareja, Martin; Borai, Fahiem El; Dickson, Donald W.; Stelinski, Lukasz L.; Duncan, Larry W.

    2016-01-01

    Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes. PMID:27136916

  11. Regulation of above-ground oil and waste containers. Hearing before the Subcommittee on Transportation, Tourism, and Hazardous Materials of the Committee on Energy and Commerce, House of Representatives, One Hundredth Congress, Second Session, January 26, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Representatives from the petroleum industry, US EPA, National Bureau of Standards and Congress were among those testifying at a hearing to discuss one of the worst inland environmental disasters in this Nation's history. The January 2 collapse of the Ashland Oil Co.'s storage tank in Floreffe, Pennsylvania resulted in the release of some 4 million gallons of diesel fuel. Approximately a million gallons escaped the containment structures and spilled over into the Monongahela River. This spill has contaminated the drinking water sources for millions of people downstream, from Pittsburgh to Cincinnati to Louisville, and beyond. Attention is focused on the causes of this tank's collapse, the response measures taken by Ashland Oil, the Coast Guard, the EPA, and the need for tighter federal regulations of above-ground tanks used for the storage of petroleum and hazardous substances.

  12. Implications of fusion power plant studies for materials requirements

    International Nuclear Information System (INIS)

    Cook, Ian; Ward, David; Dudarev, Sergei

    2002-01-01

    This paper addresses the key requirements for fusion materials, as these have emerged from studies of commercial fusion power plants. The objective of the international fusion programme is the creation of power stations that will have very attractive safety and environmental features and viable economics. Fusion power plant studies have shown that these objectives may be achieved without requiring extreme advances in materials. But it is required that existing candidate materials perform at least as well as envisaged in the environment of fusion neutrons, heat fluxes and particle fluxes. The development of advanced materials would bring further benefits. The work required entails the investigation of many intellectually exciting physics issues of great scientific interest, and of wider application than fusion. In addition to giving an overview, selected aspects of the science, of particular physics interest, are illustrated

  13. Using thermal power plants waste for building materials

    Science.gov (United States)

    Feduik, R. S.; Smoliakov, A. K.; Timokhin, R. A.; Batarshin, V. O.; Yevdokimova, Yu G.

    2017-10-01

    The recycled use of thermal power plants (TPPs) wastes in the building materials production is formulated. The possibility of using of TPPs fly ash as part of the cement composite binder for concrete is assessed. The results of X-ray diffraction and differential thermal analysis as well as and materials photomicrographs are presented. It was revealed that the fly ash of TPPs of Russian Primorsky Krai is suitable for use as a filler in cement binding based on its chemical composition.

  14. Radioactive materials in ashes from peat fired plants

    International Nuclear Information System (INIS)

    Erlandsson, B.; Hedvall, R.

    1984-11-01

    Measurements of the gamma radiation have been used for determination of radioactive materials in peat ashes from five Swedish heating plants. The results show that the amount of radioactive materials was almost the same in all samples. The concentration of 125 Sb, 137 Cs, 144 Cs and 155 Eu were in good conformity with the concentrations found in the environment. The 235 U-concentration was hardly possible to measure. (Edv)

  15. Ecological linkages between aboveground and belowground biota

    NARCIS (Netherlands)

    Wardle, D.A.; Bardgett, R.D.; Klironomos, J.N.; Setälä, H.; Putten, van der W.H.; Wall, D.H.

    2004-01-01

    All terrestrial ecosystems consist of aboveground and belowground components that interact to influence community- and ecosystem-level processes and properties. Here we show how these components are closely interlinked at the community level, reinforced by a greater degree of specificity between

  16. Long-term above-ground biomass production in a red oak-pecan agroforestry system

    Science.gov (United States)

    Agroforestry systems have widely been recognized for their potential to foster long-term carbon sequestration in woody perennials. This study aims to determine the above-ground biomass in a 16-year-old red oak (Quercus rubra) - pecan (Carya illinoinensis) silvopastoral planting (141 and 53 trees ha-...

  17. Observations of White-backed Vultures eating plant material in ...

    African Journals Online (AJOL)

    campbell

    small quantities of the green leaves and eagerly feed on dried leaves after the first winter frost without obvious negative effects (H. Stehn, pers. obs.). On being informed of the incident, NT was intrigued, as he had never heard of vultures eating plant material and as White-backed. Vultures eat primarily soft body parts and do ...

  18. Extraction of secondary metabolites from plant material: a review

    NARCIS (Netherlands)

    Starmans, D.A.J.; Nijhuis, H.H.

    1996-01-01

    This review article intends to give an overview of the developments in the extraction technology of secondary metabolites from plant material. There are three types of conventional extraction techniques. In order of increasing technological difficulty, these involve the use of solvents, steam or

  19. Outline of material accountancy system for Rokkasho reprocessing plant

    International Nuclear Information System (INIS)

    Kitamura, Touko; Yamazaki Yoshihiro; Ai, Hironobu

    2004-01-01

    In January 2004, Facility Attachment (FA) for Rokkasho Reprocessing Plant (RRP) was entered into force and the safeguards has been implemented in accordance with the FA. So operator must carry out the effectual material accountancy on the basis of facility operation. RRP is large and complex facility and operated based on automatic and remote system. For efficient material accounting viewpoint, the system especially automatic data collection is established using RRP computer network. The paper describes the outline of material accountancy system, the structure of RRP computer network including how to collect the source data, to convert the batch data and the reporting. (author)

  20. Materials control and accountability at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Denning, G.E.; Britschgi, J.J.; Spraktes, F.W.

    1985-01-01

    The ICPP high enriched uranium recovery process has historically been operated as a single Material Balance Area (MBA), with input and output measurement capabilities. Safeguards initiated changes in the last five years have resulted in significant materials control and accountability improvements. Those changes include semi-automation of process accountability measurement, data collection and recording; definition of Sub-MBAs; standard plant cleanouts; and, bimonthly inventory estimates. Process monitoring capabilities are also being installed to provide independent operational procedural compliance verification, process anomaly detection, and enhanced materials traceability. Development of a sensitivity analysis approach to defining process measurement requirements is in progress

  1. Contaminated fluid filtration plant using pneumatically renewable granulated material

    International Nuclear Information System (INIS)

    Lucas, J.-C.; Messirejean, Pierre.

    1980-01-01

    This invention concerns a plant for the filtration of a contaminated fluid flow using a granulated material capable of absorbing or adsorbing the contaminants. This plant includes a filtration box within which there is at least one appreciably vertical filtering bed filled with the material and crossed by the fluid flow, loading and discharge compartments respectively located at the top and bottom of the box, each in communication with the filtering bed and an air-actuated transfer system for loading and discharging this bed through these compartments. Facilities of this kind are used mainly in the nuclear and chemical engineering industries to rid their waste of radio-iodines, generally constituted by elementary iodine and methyl iodide, or of toxic gases that contaminate them. The granulated material, whose job it is to trap these contaminants by adsorption or absorption, is generally composed of active carbon or zeolites whose utilisation time is limited [fr

  2. Leaf spray: direct chemical analysis of plant material and living plants by mass spectrometry.

    Science.gov (United States)

    Liu, Jiangjiang; Wang, He; Cooks, R Graham; Ouyang, Zheng

    2011-10-15

    The chemical constituents of intact plant material, including living plants, are examined by a simple spray method that provides real-time information on sugars, amino acids, fatty acids, lipids, and alkaloids. The experiment is applicable to various plant parts and is demonstrated for a wide variety of species. An electrical potential is applied to the plant and its natural sap, or an applied solvent generates an electrospray that carries endogenous chemicals into an adjacent benchtop or miniature mass spectrometer. The sharp tip needed to create a high electric field can be either natural (e.g., bean sprout) or a small nick can be cut in a leaf, fruit, bark, etc. Stress-induced changes in glucosinolates can be followed on the minute time scale in several plants, including potted vegetables. Differences in spatial distributions and the possibility of studying plant metabolism are demonstrated. © 2011 American Chemical Society

  3. Nuclear material control systems for nuclear power plants

    International Nuclear Information System (INIS)

    1975-06-01

    Paragraph 70.51(c) of 10 CFR Part 70 requires each licensee who is authorized to possess at any one time special nuclear material in a quantity exceeding one effective kilogram to establish, maintain, and follow written material control and accounting procedures that are sufficient to enable the licensee to account for the special nuclear material in his possession under license. While other paragraphs and sections of Part 70 provide specific requirements for nuclear material control systems for fuel cycle plants, such detailed requirements are not included for nuclear power reactors. This guide identifies elements acceptable to the NRC staff for a nuclear material control system for nuclear power reactors. (U.S.)

  4. IAEA verification of materials accounting in commercial reprocessing plants

    International Nuclear Information System (INIS)

    Gutmacher, R.G.; Hakkila, E.A.

    1987-01-01

    The reprocessing plants currently under International Atomic Energy Agency (IAEA) safeguards have design capacities up to 210 tonnes of heavy metal per year. All of the plants use conventional materials accounting for safeguards. However, several larger commercial reprocessing plants are being designed with capacities of 350 to 1200 tonnes of heavy metal per year. It is likely that many of these plants, as well as some of the existing smaller ones, will adopt near-real-time materials accounting. The major effect of the combination of larger plants and near-real-time accounting on IAEA safeguards will be the demand for greater timeliness of verification. Continuous inspector presence may be required, as well as more on-site measurements by the inspector. In this paper, the authors review what needs to be verified, as well as current inspector activities in the process area. The bulk of the paper describes rapid, easy-to-use measurement techniques and instruments that may be applied to on-site verification measurements

  5. Hydrogen storage by carbon materials synthesized from oil seeds and fibrous plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Sharon, Maheshwar; Bhardwaj, Sunil; Jaybhaye, Sandesh [Nanotechnology Research Center, Birla College, Kalyan 421304 (India); Soga, T.; Afre, Rakesh [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya (Japan); Sathiyamoorthy, D.; Dasgupta, K. [Powder Metallurgy Division, BARC, Trombay 400 085 (India); Sharon, Madhuri [Monad Nanotech Pvt. Ltd., A702 Bhawani Tower, Powai, Mumbai 400 076 (India)

    2007-12-15

    Carbon materials of various morphologies have been synthesized by pyrolysis of various oil-seeds and plant's fibrous materials. These materials are characterized by SEM and Raman. Surface areas of these materials are determined by methylene blue method. These carbon porous materials are used for hydrogen storage. Carbon fibers with channel type structure are obtained from baggas and coconut fibers. It is reported that amongst the different plant based precursors studied, carbon from soyabean (1.09 wt%) and baggas (2.05 wt%) gave the better capacity to store hydrogen at 11kg/m{sup 2} pressure of hydrogen at room temperature. Efforts are made to correlate the hydrogen adsorption capacity with intensities and peak positions of G- and D-band obtained with carbon materials synthesized from plant based precursors. It is suggested that carbon materials whose G-band is around 1575cm{sup -1} and the intensity of D-band is less compared to G-band, may be useful material for hydrogen adsorption study. (author)

  6. Microbial mineralization processes in Antarctic soils and on plant material

    International Nuclear Information System (INIS)

    Boelter, M.

    1991-01-01

    Soil samples and different plant material from the maritime and continental Antarctic were analyzed for their actual and potential respiration by different methods: total CO 2 -evolution, biological oxygen demand and use of 14C-labeled glucose which may serve as a model for dissolved organic carbohydrates. Since these methods are argued to indicate the mineralization of different fractions of the total organic material by different actual populations, a comparison between the data from these techniques is carried out with regard to their contributions of the total organic matter debris in these environments. The part of respired material calculated from 14C-studies may contribute to nearly 90% of the metabolized material. Results show that the individual fractions differ significantly with respect to the parent material. There are several aspects which have to be taken into account when looking at these data: the original content of water; the contents of dissolved and particulate carbohydrates; and, other edaphic factors. Of special interest is the overall respiration of plant material (mainly lichens) which is strongly influenced by the bacterial respiration of dissolved carbohydrates, probably by ongrowing organisms due to their efficiency in using dissolved organic matter. In terms of respiratory activity, the (bacterial) respiration of glucose may contribute to more than 50% of the total CO 2 -evolution. This influences considerably the modeling of overall respiration of plant material in those environments where close interactions between different parts of the system are very important for their life strategy. Further, the bacterial part may be an overlooked part of metabolic rates in Antarctic lichens

  7. Impact of aging and material structure on CANDU plant performance

    International Nuclear Information System (INIS)

    Nadeau, E.; Ballyk, J.; Ghalavand, N.

    2011-01-01

    In-service behaviour of pressure tubes is a key factor in the assessment of safety margins during plant operation. Pressure tube deformation (diametral expansion) affects fuel bundle dry out characteristics resulting in reduced margin to trip for some events. Pressure tube aging mechanisms also erode design margins on fuel channels or interfacing reactor components. The degradation mechanisms of interest are primarily deformation, loss of fracture resistance and hydrogen ingress. CANDU (CANada Deuterium Uranium, a registered trademark of the Atomic Energy of Canada Limited used under exclusive licence by Candu Energy Inc.) owners and operators need to maximize plant capacity factor and meet or exceed the reactor design life targets while maintaining safety margins. The degradation of pressure tube material and geometry are characterized through a program of inspection, material surveillance and assessment and need to be managed to optimize plant performance. Candu is improving pressure tubes installed in new build and life extension projects. Improvements include changes designed to reduce or mitigate the impact of pressure tube elongation and diametral expansion rates, improvement of pressure tube fracture properties, and reduction of the implications of hydrogen ingress. In addition, Candu provides an extensive array of engineering services designed to assess the condition of pressure tubes and address the impact of pressure tube degradation on safety margins and plant performance. These services include periodic and in-service inspection and material surveillance of pressure tubes and deterministic and probabilistic assessment of pressure tube fitness for service to applicable standards. Activities designed to mitigate the impact of pressure tube deformation on safety margins include steam generator cleaning, which improves trip margins, and trip design assessment to optimize reactor trip set points restoring safety and operating margins. This paper provides an

  8. Impact of aging and material structure on CANDU plant performance

    Energy Technology Data Exchange (ETDEWEB)

    Nadeau, E.; Ballyk, J.; Ghalavand, N. [Candu Energy Inc., Mississauga, Ontario (Canada)

    2011-07-01

    In-service behaviour of pressure tubes is a key factor in the assessment of safety margins during plant operation. Pressure tube deformation (diametral expansion) affects fuel bundle dry out characteristics resulting in reduced margin to trip for some events. Pressure tube aging mechanisms also erode design margins on fuel channels or interfacing reactor components. The degradation mechanisms of interest are primarily deformation, loss of fracture resistance and hydrogen ingress. CANDU (CANada Deuterium Uranium, a registered trademark of the Atomic Energy of Canada Limited used under exclusive licence by Candu Energy Inc.) owners and operators need to maximize plant capacity factor and meet or exceed the reactor design life targets while maintaining safety margins. The degradation of pressure tube material and geometry are characterized through a program of inspection, material surveillance and assessment and need to be managed to optimize plant performance. Candu is improving pressure tubes installed in new build and life extension projects. Improvements include changes designed to reduce or mitigate the impact of pressure tube elongation and diametral expansion rates, improvement of pressure tube fracture properties, and reduction of the implications of hydrogen ingress. In addition, Candu provides an extensive array of engineering services designed to assess the condition of pressure tubes and address the impact of pressure tube degradation on safety margins and plant performance. These services include periodic and in-service inspection and material surveillance of pressure tubes and deterministic and probabilistic assessment of pressure tube fitness for service to applicable standards. Activities designed to mitigate the impact of pressure tube deformation on safety margins include steam generator cleaning, which improves trip margins, and trip design assessment to optimize reactor trip set points restoring safety and operating margins. This paper provides an

  9. Preparation of plant-specific NDA reference material

    International Nuclear Information System (INIS)

    Abedin-Zadeh, R.; Beetle, T.; Kuhn, E.; Terrey, D.; Turel, S.; Busca, G.; Guardini, S.

    1983-01-01

    The importance of having suitable and well characterized non-destructive assay (NDA) reference materials for the verification activities of the safeguards control authorities is stressed. The Euratom Inspectorate and the IAEA have initiated an extensive programme for the procurement and preparation of Joint Euratom/IAEA safeguards NDA reference materials with the active participation of the Ispra Establishment of the Euratom Joint Research Centre. The different type and nature of materials, condition of measurements, and plant characteristics and provisions had to be taken into account for plant-specific NDA reference materials. The preparation of each reference material was planned case by case and specific criteria such as limitations in different facilities, measurement capabilities, conditions, product availability and population variability are being ascertained. A procurement scheme was prepared describing step-by-step procedures detailing responsibilities, measurement conditions, destructive analysis schemes, desired characteristics and methods of data evaluation. This paper describes the principles and procedures carried out for the preparation of a reference MOX pin, low enriched uranium reference rods, low enriched uranium reference drums, reference MTR assemblies, and THTR reference pebbles. The scheme for each characterization technique is presented. (author)

  10. Application of ceramic and glass materials in nuclear power plants

    International Nuclear Information System (INIS)

    Hamnabard, Z.

    2008-01-01

    Ceramic and glass are high temperature materials that can be used in many fields of application in nuclear industries. First, it is known that nuclear fuel UO 2 is a ceramic material. Also, ability to absorb neutrons without forming long lived radio-nuclides make the non-oxide ceramics attractive as an absorbent for neutron radiation arising in nuclear power plants. Glass-ceramic materials are a new type of ceramic that produced by the controlled nucleation and crystallization of glass, and have several advantages such as very low or null porosity, uniformity of microstructure, high chemical resistance etc. over conventional powder processed ceramics. These ceramic materials are synthesized in different systems based on their properties and applications. In nuclear industries, those are resistant to leaching and radiation damage for thousands of years, Such as glass-ceramics designed for radioactive waste immobilization and machinable glass-ceramics are used. This article introduces requirements of different glass and ceramic materials used in nuclear power plants and have been focused on developments in properties and application of them

  11. Deer browsing delays succession by altering aboveground vegetation and belowground seed banks.

    Directory of Open Access Journals (Sweden)

    Antonio DiTommaso

    Full Text Available Soil seed bank composition is important to the recovery of natural and semi-natural areas from disturbance and serves as a safeguard against environmental catastrophe. White-tailed deer (Odocoileus virginianus populations have increased dramatically in eastern North America over the past century and can have strong impacts on aboveground vegetation, but their impacts on seed bank dynamics are less known. To document the long-term effects of deer browsing on plant successional dynamics, we studied the impacts of deer on both aboveground vegetation and seed bank composition in plant communities following agricultural abandonment. In 2005, we established six 15 × 15 m fenced enclosures and paired open plots in recently followed agricultural fields near Ithaca, NY, USA. In late October of each of six years (2005-2010, we collected soil from each plot and conducted seed germination cycles in a greenhouse to document seed bank composition. These data were compared to measurements of aboveground plant cover (2005-2008 and tree density (2005-2012. The impacts of deer browsing on aboveground vegetation were severe and immediate, resulting in significantly more bare soil, reduced plant biomass, reduced recruitment of woody species, and relatively fewer native species. These impacts persisted throughout the experiment. The impacts of browsing were even stronger on seed bank dynamics. Browsing resulted in significantly decreased overall species richness (but higher diversity, reduced seed bank abundance, relatively more short-lived species (annuals and biennials, and fewer native species. Both seed bank richness and the relative abundance of annuals/biennials were mirrored in the aboveground vegetation. Thus, deer browsing has long-term and potentially reinforcing impacts on secondary succession, slowing succession by selectively consuming native perennials and woody species and favoring the persistence of short-lived, introduced species that continually

  12. Effect of different sizes of planting material on the growth and yield ...

    African Journals Online (AJOL)

    However, a significant (P<0.05) effect was recorded in cap diameter (3.68cm) from the 20g weight planting material. Stipe height and girth did not show any significant difference amongst the treatments. The 60g planting material weight recorded more shoots than the 20g and 40g planting material sizes. The 60g planting ...

  13. Next Generation Nuclear Plant Materials Research and Development Program Plan

    International Nuclear Information System (INIS)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-01-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R and D) Program is responsible for performing R and D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R and D Program includes the following elements: (1) Developing a specific approach, program plan and other project management

  14. Next Generation Nuclear Plant Materials Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for

  15. Vegetative Regeneration Capacities of Five Ornamental Plant Invaders After Shredding

    Science.gov (United States)

    Monty, Arnaud; Eugène, Marie; Mahy, Grégory

    2015-02-01

    Vegetation management often involves shredding to dispose of cut plant material or to destroy the vegetation itself. In the case of invasive plants, this can represent an environmental risk if the shredded material exhibits vegetative regeneration capacities. We tested the effect of shredding on aboveground and below-ground vegetative material of five ornamental widespread invaders in Western Europe that are likely to be managed by cutting and shredding techniques: Buddleja davidii (butterfly bush, Scrophulariaceae), Fallopia japonica (Japanese knotweed, Polygonaceae), Spiraea × billardii Hérincq (Billard's bridewort, Rosaceae), Solidago gigantea (giant goldenrod, Asteraceae), and Rhus typhina L. (staghorn sumac, Anacardiaceae). We looked at signs of vegetative regeneration and biomass production, and analyzed the data with respect to the season of plant cutting (spring vs summer), the type of plant material (aboveground vs below-ground), and the shredding treatment (shredded vs control). All species were capable of vegetative regeneration, especially the below-ground material. We found differences among species, but the regeneration potential was generally still present after shredding despite a reduction of growth rates. Although it should not be excluded in all cases (e.g., destruction of giant goldenrod and staghorn sumac aboveground material), the use of a shredder to destroy woody alien plant material cannot be considered as a general management option without significant environmental risk.

  16. Development and evaluation of high temperature materials for power plant

    International Nuclear Information System (INIS)

    Nickel, H.; Schubert, F.

    1992-01-01

    The development of high temperature materials requires the evaluation of the interaction of microstructure and mechanical properties, the implementation of the microstructural aspects in the constitutive equations for the analysis of loads in a high temperature component and verification of the materials reactions. In this way the full potential of materials properties can be better used. This fundamental method is the basis for the formulation of the structural design code KTA 3221 'Metallic HTR Components'. The method of 'design by analysis' is also activated for large internally cooled turbine blades for stationary gas turbines in combined cycle power plants. This kind of exploratory analysis during the dimensioning procedure are discussed with two examples: He/He-heat exchanger produced of NiCr23Co12Mo (Alloy 617) and turbine blades made of superalloys (e.g. IN 738 LC). (author)

  17. Effect of decontamination on nuclear power plant primary circuit materials

    International Nuclear Information System (INIS)

    Brezina, M.; Kupca, L.

    1991-01-01

    The effect of repeated decontamination on the properties of structural materials of the WWER-440 primary coolant circuit was examined. Three kinds of specimens of 08Kh18Ni10T steel were used for radioactivity-free laboratory experiments; they included material obtained from assembly additions to the V-2 nuclear power plant primary piping, and a sheet of the CSN 17247 steel. Various chemical, electrochemical and semi-dry electrochemical decontamination procedures were tested. Chemical decontamination was based on the conventional AP(20/5)-CITROX(20/20) procedure and its variants; NP-CITROX type procedures with various compositions were also employed. Solutions based on oxalic acid were tested for the electrochemical and semi-dry electrochemical decontamination. The results of measurements of mass losses of the surfaces, of changes in the corrosion resistance and in the mechanical properties of the materials due to repeated decontamination are summarized. (Z.S.). 12 figs., 1 tab., 8 refs

  18. Possibilities of avoidance and control of bacterial plant diseases when using pathogen-tested (certified) or - treated planting material

    NARCIS (Netherlands)

    Janse, J.; Wenneker, M.

    2002-01-01

    Testing of planting material for freedom from phytopathogenic bacteria is an important, although not exclusive, method for control of bacterial diseases of plants. Ideally, pathogen-free or pathogen-/disease-resistant planting material is desirable, but this situation is not always possible on a

  19. Features in the aspect of materials in reprocessing plants

    International Nuclear Information System (INIS)

    Tanaka, Toshikazu; Suzuki, Kazuhiro

    1992-01-01

    The process of the reprocessing plant installed in Rokkasho, Aomori Prefecture, by Japan Nuclear Fuel Service Co., Ltd. is the Purex wet process experienced in Japan and abroad, and which can obtain the uranium and plutonium products of high purity at high recovery rate. This process is to melt spent fuel with nitric acid, and extract and separate uranium, plutonium and fission products from the obtained solution by utilizing the difference in chemical properties. The yearly amount of treatment of the reprocessing plant of this company is 800 t uranium. In order to ensure the safety in the reprocessing plant that handles the solution with high radioactivity, the function of confining radioactive substances in definite areas is demanded. For the purpose, the machinery, equipment and piping containing radioactive substances are made of the materials having the corrosion resistance against nitric acid, and welded structure is adopted to prevent leakage. Negative pressure is maintained in waste gas treatment facilities in relation to cells, and in the cells in relation to the building. The outline of the facilities, the materials of the main machinery and equipment, and the applied technologies are reported. (K.I.)

  20. Enzymatic determination of cadmium, zinc, and lead in plant materials

    International Nuclear Information System (INIS)

    Muginova, S.V.; Veselova, I.A.; Parova, L.M.; Shekhovtseva, T.N.

    2008-01-01

    Prospects are outlined for using the following enzymes (native and immobilized on polyurethane foam) in the rapid and highly sensitive determination of cadmium, zinc, and lead ions in plant materials (wild grass, fresh pea, and grape): horseradish peroxidase and alkaline phosphatases isolated from chicken intestine and Greenland seal small intestine. The analytical ranges of the above metals are 1x10 -3 -25; 7x10 -3 -250, and 3x10 -2 -67 mg/kg dry matter, respectively. The enzymatic determination procedures developed are based on the inhibiting effect of metal ions on the catalytic activity of peroxidase in the oxidation of o-dianisidine with hydrogen peroxide and alkaline phosphatases in the hydrolysis of p-nitrophenyl phosphate. The rates of enzymatic reactions were monitored spectrophotometrically or visually. In the analysis of plant extracts, their high acidity was diminished by choosing optimum dilution factors and pH values for test samples and the nature and concentration of a buffer solution. The interference of iron(III) was removed by introducing a 0.1 M tartaric acid solution into the indicator reaction. The accuracy of the results of the enzymatic determination of cadmium, zinc, and lead in plant materials was supported by atomic absorption spectrometry and anodic stripping voltammetry [ru

  1. Materials Problems and Solutions in Biomass Fired Plants

    DEFF Research Database (Denmark)

    Larsen, Ole Hede; Montgomery, Melanie

    2006-01-01

    ascribed to the composition of the deposit and the metal surface temperature. In woodchip boilers, a similar corrosion rate and corrosion mechanism has on some occasions been observed. Co-firing of straw (10 and 20% energy basis) with coal has shown corrosion rates lower than those in straw-fired plants......Due to Denmark’s pledge to reduce carbon dioxide emissions, biomass is utilised increasingly as a fuel for generating energy. Extensive research and demonstration projects especially in the area of material performance for biomass fired boilers have been undertaken to make biomass a viable fuel...... resource. When straw is combusted, potassium chloride and potassium sulphate are present in ash products, which condense on superheater components. This gives rise to specific chlorine corrosion problems not previously encountered in coal-fired power plants. The type of corrosion attack can be directly...

  2. Characterization of NORM material produced in a water treatment plant

    Energy Technology Data Exchange (ETDEWEB)

    Suursoo, S.; Kiisk, M.; Jantsikene, A.; Koch, R.; Isakar, K.; Realo, E. [University of Tartu, Institute of Physics (Estonia); Lumiste, L. [Tallinn University of Technology (Estonia)

    2014-07-01

    In February 2012 a water treatment plant was opened in Viimsi, Estonia. The plant is designed for removal of iron, manganese, and radium from groundwater. The first 2 years of operation have shown that the purification process generates significant amounts of materials with elevated radium levels. The treatment plant is fed by nine wells, which open to radium-rich aquifers. Purification is achieved by aeration and filtration processes. Aerated water is led through two successive filter columns, first of them is filled with MnO{sub 2} coated material FMH and filtration sand, the second one with zeolite. The plant has five parallel treatment lines with a total of 95 tons of FMH + filtration sand, and 45 tons of zeolite. The average capacity of the facility has been 2400 m{sup 3}/day. Yearly input of radium to the plant is estimated to be 325 MBq for Ra-226, and 420 MBq for Ra-228. Most of the radium (about 90%) accumulates in the filter columns. Some 8-9% of it is removed by backwash water during regular filter backwash cycles. To characterize radium accumulation and its removal by backwash in detail, treatment line no. 5 is sampled monthly for filter materials and backwash water. A steady growth of radium activity concentrations is apparent in both filter materials. In the top layer of the first stage filter (FMH+sand), Ra-226 and Ra-228 activity concentrations (per unit dry weight) reached (1540 ± 60) Bq/kg and (2510 ± 50) Bq/kg (k=2), respectively, by April 2013. At the same time, radium content in the top layer of the second stage filter (zeolite) was an order of magnitude higher: (19 600 ± 130) Bq/kg for Ra-226, and (22 260 ± 170) Bq/kg for Ra-228 (k=2). Radium is not evenly distributed throughout the filter columns. A rough estimate can be given that after 1.25 years of operation (by April 2013) the accumulated activities in treatment line no. 5 reached 1000 MBq for Ra-226 and 1200 MBq for Ra-228. Although filters are the most important type of NORM

  3. Power plant wastes capitalization as geopolymeric building materials

    Science.gov (United States)

    Ciobanu, Gabriela; Litu, Loredana; Harja, Maria

    2017-11-01

    In this innovative study, we are present an investigation over the properties of geopolymeric materials prepared using ash supplied by power plant Iasi, Romania and sodium hydroxide solutions/pellets. Having as objective a minimum consumption of energy and materials was developed a class of advanced eco-materials. New synthesized materials can be used as a binder for cement replacement or for the removal/immobilization of pollutants from waste waters or soils. It offers an advanced and low cost-effective solution too many problems, where waste must be capitalized. The geopolymer formation, by hydrothermal method, is influenced by: temperature (20-600°C), alkali concentration (2M-6M), solid /liquid ratio (1-2), ash composition, time of heating (2-48 h), etc. The behaviour of the FTIR peak of 6M sample indicated upper quantity of geopolymer formation at the first stage of the reaction. XRD spectra indicated phases like sodalite, faujasite, Na-Y, which are known phases of geopolymer/zeolite. Advanced destroyed of ash particles due to geopolymerisation reaction were observed when the temperature was higher. At the constant temperature the percentage of geopolymer increases with increasing of curing time, from 4-48 h. Geopolymer materials are environmentally friendly, for its obtaining energy consumption, and CO2 emission is reduced compared to cement binder.

  4. 7 CFR 330.210a - Administrative instructions listing approved packing materials for plant pests.

    Science.gov (United States)

    2010-01-01

    ... materials for plant pests. 330.210a Section 330.210a Agriculture Regulations of the Department of... PEST REGULATIONS; GENERAL; PLANT PESTS; SOIL, STONE, AND QUARRY PRODUCTS; GARBAGE Movement of Plant Pests § 330.210a Administrative instructions listing approved packing materials for plant pests. (a) The...

  5. Bentonite as a waste isolation pilot plant shaft sealing material

    International Nuclear Information System (INIS)

    Daemen, J.; Ran, Chongwei

    1996-12-01

    Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites

  6. Bentonite as a waste isolation pilot plant shaft sealing material

    Energy Technology Data Exchange (ETDEWEB)

    Daemen, J.; Ran, Chongwei [Univ. of Nevada, Reno, NV (United States)

    1996-12-01

    Current designs of the shaft sealing system for the Waste Isolation Pilot Plant (WIPP) propose using bentonite as a primary sealing component. The shaft sealing designs anticipate that compacted bentonite sealing components can perform through the 10,000-year regulatory period and beyond. To evaluate the acceptability of bentonite as a sealing material for the WIPP, this report identifies references that deal with the properties and characteristics of bentonite that may affect its behavior in the WIPP environment. This report reviews published studies that discuss using bentonite as sealing material for nuclear waste disposal, environmental restoration, toxic and chemical waste disposal, landfill liners, and applications in the petroleum industry. This report identifies the physical and chemical properties, stability and seal construction technologies of bentonite seals in shafts, especially in a saline brine environment. This report focuses on permeability, swelling pressure, strength, stiffness, longevity, and densification properties of bentonites.

  7. Boiler materials for ultra supercritical coal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Purgert, Robert [Energy Industries of Ohio, Independence, OH (United States); Shingledecker, John [Electric Power Research Inst., Palo Alto, CA (United States); Pschirer, James [Alstom Power Inc., Windsor, CT (Untied States); Ganta, Reddy [Alstom Power Inc., Windsor, CT (Untied States); Weitzel, Paul [The Babcock & Wilcox Company, Baberton, OH (United States); Sarver, Jeff [The Babcock & Wilcox Company, Baberton, OH (United States); Vitalis, Brian [Riley Power Inc., Worchester, WA (United States); Gagliano, Michael [Foster Wheeler North America Corp., Hampton, NJ (United States); Stanko, Greg [Foster Wheeler North America Corp., Hampton, NJ (United States); Tortorelli, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-29

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have undertaken a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired boilers capable of operating at much higher efficiencies than current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions up to 760°C (1400°F) and 35 MPa (5000 psi). A limiting factor to achieving these higher temperatures and pressures for future A-USC plants are the materials of construction. The goal of this project is to assess/develop materials technology to build and operate an A-USC boiler capable of delivering steam with conditions up to 760°C (1400°F)/35 MPa (5000 psi). The project has successfully met this goal through a focused long-term public-private consortium partnership. The project was based on an R&D plan developed by the Electric Power Research Institute (EPRI) and an industry consortium that supplemented the recommendations of several DOE workshops on the subject of advanced materials. In view of the variety of skills and expertise required for the successful completion of the proposed work, a consortium led by the Energy Industries of Ohio (EIO) with cost-sharing participation of all the major domestic boiler manufacturers, ALSTOM Power (Alstom), Babcock and Wilcox Power Generation Group, Inc. (B&W), Foster Wheeler (FW), and Riley Power, Inc. (Riley), technical management by EPRI and research conducted by Oak Ridge National Laboratory (ORNL) has been developed. The project has clearly identified and tested materials that can withstand 760°C (1400°F) steam conditions and can also make a 700°C (1300°F) plant more economically attractive. In this project, the maximum temperature capabilities of these and other available high-temperature alloys have been assessed to provide a basis for

  8. Countermeasure technologies against materials deterioration of nuclear power plant components

    International Nuclear Information System (INIS)

    2004-09-01

    This report was tentative safety standard on countermeasure technologies against materials deterioration of nuclear power plant components issued in 2004 on the base of the testing data obtained until March 2004, which was to be applied for technical evaluation for lifetime management of aged plants and preventive maintenance or repair of neutron irradiated components such as core shrouds and jet pumps. In order to prevent stress corrosion cracks (SCCs) of austenitic stainless steel welds of reactor components, thermal surface modification using laser beams was used on neutron irradiated materials with laser cladding or surface melting process methods by limiting heat input according to amount of accumulated helium so as to prevent crack initiation caused by helium bubble growth and coalescence. Laser cladding method of laser welding using molten sleeve set inside pipe surface to prevent SCCs of nickel-chromium-iron alloy welds, alloy 690 cladding method using tungsten inert gas (TIG) welding to prevent SCCs of nickel-chromium-iron alloy welds for dissimilar joints of pipes, and laser surface solid solution heat treatment method of laser irradiation on surfaces to prevent SCCs of austenitic stainless steel welds were also included as repair technologies. (T. Tanaka)

  9. TEM investigation of plant-irradiated NPP bolt material

    International Nuclear Information System (INIS)

    Pakarinen, J.; Ehrnsten, U.; Keinaenen, H.; Karlsen, W.; Karlsen, T.

    2015-01-01

    Analytical transmission electron microscopy (ATEM) was used to examine irradiation-induced damage in material removed from two different bolts from two different nuclear power plants. One section came from a French PWR, was made of CW AISI 316, and included a section of the bolt that had accumulated a dose of approximately 15 dpa during 19 operation cycles at 350 - 390 C. degrees. Another section came from a VVER bolt that was removed from the plant due to indications found in non-destructive examinations (NDE). The VVER bolt was made of solution annealed titanium stabilized 0X18H10T (corresponding to Type AISI 321) and had accumulated a fluence of 2.9 dpa. During the removal of that bolt, it was found that the bolt washer had been inappropriately spot welded to the shielding plate during assembly. Destructive investigations showed that the bolt had two large intergranular cracks, and the TEM samples were prepared from the material adjacent to those cracks. The PWR bolt had not failed, although cracks in the bolts with a similar history had been found previously. The fluence for the cold-worked AISI 316 PWR bolt was estimated to be about 15 dpa. Both the examined bolts showed a clear radiation induced segregation of alloying elements at the grain boundaries (GB-RIS), the presence of dislocation loops, the formation of precipitates, and linear deformation microstructures. Additionally, voids were found from the PWR bolt and the VVER bolt had a high density of dislocations. (authors)

  10. Aboveground Whitefly Infestation-Mediated Reshaping of the Root Microbiota.

    Science.gov (United States)

    Kong, Hyun G; Kim, Byung K; Song, Geun C; Lee, Soohyun; Ryu, Choong-Min

    2016-01-01

    Plants respond to various types of herbivore and pathogen attack using well-developed defensive machinery designed for self-protection. Infestation from phloem-sucking insects such as whitefly and aphid on plant leaves was previously shown to influence both the saprophytic and pathogenic bacterial community in the plant rhizosphere. However, the modulation of the root microbial community by plants following insect infestation has been largely unexplored. Only limited studies of culture-dependent bacterial diversity caused by whitefly and aphid have been conducted. In this study, to obtain a complete picture of the belowground microbiome community, we performed high-speed and high-throughput next-generation sequencing. We sampled the rhizosphere soils of pepper seedlings at 0, 1, and 2 weeks after whitefly infestation versus the water control. We amplified a partial 16S ribosomal RNA gene (V1-V3 region) by polymerase chain reaction with specific primers. Our analysis revealed that whitefly infestation reshaped the overall microbiota structure compared to that of the control rhizosphere, even after 1 week of infestation. Examination of the relative abundance distributions of microbes demonstrated that whitefly infestation shifted the proteobacterial groups at week 2. Intriguingly, the population of Pseudomonadales of the class Gammaproteobacteria significantly increased after 2 weeks of whitefly infestation, and the fluorescent Pseudomonas spp. recruited to the rhizosphere were confirmed to exhibit insect-killing capacity. Additionally, three taxa, including Caulobacteraceae, Enterobacteriaceae, and Flavobacteriaceae, and three genera, including Achromobacter, Janthinobacterium, and Stenotrophomonas, were the most abundant bacterial groups in the whitefly infested plant rhizosphere. Our results indicate that whitefly infestation leads to the recruitment of specific groups of rhizosphere bacteria by the plant, which confer beneficial traits to the host plant. This

  11. Aboveground Whitefly Infestation-mediated Reshaping of the Root Microbiota

    Directory of Open Access Journals (Sweden)

    Hyun Gi Kong

    2016-09-01

    Full Text Available Plants respond to various types of herbivore and pathogen attack using well-developed defensive machinery designed for self-protection. The phloem-sucking insect infestation such as whitefly and aphid on plant leaves were previously shown to influence both the saprophytic and pathogenic bacterial community in the plant rhizosphere. However, the modulation of the root microbial community by plants following insect infestation has been largely unexplored. Only limited studies of culture-dependent bacterial diversity caused by whitefly and aphid have been conducted. In this study, to obtain a complete picture of the belowground microbiome community, we performed high-speed and high-throughput next-generation sequencing. We sampled the rhizosphere soils of pepper seedlings at 0, 1, and 2 weeks after whitefly infestation versus the water control. We amplified a partial 16S ribosomal RNA gene (V1–V3 region by polymerase chain reaction with specific primers. Our analysis revealed that whitefly infestation reshaped the overall microbiota structure compared to that of the control rhizosphere, even after 1 week of infestation. Examination of the relative abundance distributions of microbes demonstrated that whitefly infestation shifted the proteobacterial groups at week 2. Intriguingly, the population of Pseudomonadales of the class Gammaproteobacteria significantly increased after 2 weeks of whitefly infestation and confirmed the recruitment of fluorescent Pseudomonas spp. exhibiting the insect-killing capacity. Additionally, three taxa, including Caulobacteraceae, Enterobacteriaceae, and Flavobacteriaceae, and three genera, including Achromobacter, Janthinobacterium, and Stenotrophomonas, were the most abundant bacterial groups in the whitefly-infested plant rhizosphere. Our results indicate that whitefly infestation leads plant recruiting specific group of rhizosphere bacteria conferring beneficial traits for host plant. This study provides a new

  12. Material balance areas and frequencies for large reprocessing plants

    International Nuclear Information System (INIS)

    Burr, T.

    1994-01-01

    It has long been recognized that facilities with a large nuclear material throughput will probably not meet the International Atomic Energy Agency (IAEA) goal for detecting trickle diversion of plutonium over periods of about one year. The reason is that measurement errors for plutonium concentration and for liquid volume are often approximately relative over a fairly wide range of true values. Therefore, large throughput facilities will tend to have large uncertainties assigned to their annual throughput. By the same argument, if frequent balances are performed over small material balance areas, then the uncertainty associated with each balance period for each balance area will be small. However, trickle diversion would still be difficult to detect statistically. Because the IAEA will soon be faced with safeguarding a new large-scale reprocessing plant in Japan, it is timely to reconsider the advantages and disadvantages of performing frequent material balances over small balance areas (individual tanks where feasible). Therefore, in this paper the authors present some simulation results to study the effect of balance frequency on loss detection probability, and further simulation results to study possibilities introduced by choosing small balance areas. They conclude by recommending frequent balances over small areas

  13. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Tang, Xiwang; Pang, Yan; Ji, Puhui; Gao, Pengcheng; Nguyen, Thanh Hung; Tong, Yan'an

    2016-03-01

    Because of its high Cd uptake and translocation, lettuce is often used in Cd contamination studies. However, there is a lack of information on Cd accumulation in the above-ground parts of lettuce during the entire growing season. In this study, a field experiment was carried out in a Cd-contaminated area. Above-ground lettuce parts were sampled, and the Cd content was measured using a flame atomic absorption spectrophotometer (AAS). The results showed that the Cd concentration in the above-ground parts of lettuce increased from 2.70 to 3.62mgkg(-1) during the seedling stage, but decreased from 3.62 to 2.40mgkg(-1) during organogenesis and from 2.40 to 1.64mgkg(-1) during bolting. The mean Cd concentration during the seedling stage was significantly higher than that during organogenesis (a=0.05) and bolting (a=0.01). The Cd accumulation in the above-ground parts of an individual lettuce plant could be described by a sigmoidal curve. Cadmium uptake during organogenesis was highest (80% of the total), whereas that during bolting was only 4.34%. This research further reveals that for Rome lettuce: (1) the highest Cd content of above-ground parts occurred at the end of the seedling phase; (2) the best harvest time with respect to Cd phytoaccumulation is at the end of the organogenesis stage; and (3) the organogenesis stage is the most suitable time to enhance phytoaccumulation efficiency by adjusting the root:shoot ratio. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Regional contingencies in the relationship between aboveground Bbomass and litter in the world’s grasslands

    Science.gov (United States)

    O’Halloran, Lydia R.; Borer, Elizabeth T.; Seabloom, Eric W.; MacDougall, Andrew S.; Cleland, Elsa E.; McCulley, Rebecca L.; Hobbie, Sarah; Harpole, W. Stan; DeCrappeo, Nicole M.; Chu, Cheng-Jin; Bakker, Jonathan D.; Davies, Kendi F.; Du, Guozhen; Firn, Jennifer; Hagenah, Nicole; Hofmockel, Kirsten S.; Knops, Johannes M.H.; Li, Wei; Melbourne, Brett A.; Morgan, John W.; Orrock, John L.; Prober, Suzanne M.; Stevens, Carly J.

    2013-01-01

    Based on regional-scale studies, aboveground production and litter decomposition are thought to positively covary, because they are driven by shared biotic and climatic factors. Until now we have been unable to test whether production and decomposition are generally coupled across climatically dissimilar regions, because we lacked replicated data collected within a single vegetation type across multiple regions, obfuscating the drivers and generality of the association between production and decomposition. Furthermore, our understanding of the relationships between production and decomposition rests heavily on separate meta-analyses of each response, because no studies have simultaneously measured production and the accumulation or decomposition of litter using consistent methods at globally relevant scales. Here, we use a multi-country grassland dataset collected using a standardized protocol to show that live plant biomass (an estimate of aboveground net primary production) and litter disappearance (represented by mass loss of aboveground litter) do not strongly covary. Live biomass and litter disappearance varied at different spatial scales. There was substantial variation in live biomass among continents, sites and plots whereas among continent differences accounted for most of the variation in litter disappearance rates. Although there were strong associations among aboveground biomass, litter disappearance and climatic factors in some regions (e.g. U.S. Great Plains), these relationships were inconsistent within and among the regions represented by this study. These results highlight the importance of replication among regions and continents when characterizing the correlations between ecosystem processes and interpreting their global-scale implications for carbon flux. We must exercise caution in parameterizing litter decomposition and aboveground production in future regional and global carbon models as their relationship is complex.

  15. Radiation effects on organic materials in nuclear plants. Final report

    International Nuclear Information System (INIS)

    Bruce, M.B.; Davis, M.V.

    1981-11-01

    A literature search was conducted to identify information useful in determining the lowest level at which radiation causes damage to nuclear plant equipment. Information was sought concerning synergistic effects of radiation and other environmental stresses. Organic polymers are often identified as the weak elements in equipment. Data on radiation effects are summarized for 50 generic name plastics and 16 elastomers. Coatings, lubricants, and adhesives are treated as separate groups. Inorganics and metallics are considered briefly. With a few noted exceptions, these are more radiation resistant than organic materials. Some semiconductor devices and electronic assemblies are extremely sensitive to radiation. Any damage threshold including these would be too low to be of practical value. With that exception, equipment exposed to less than 10 4 rads should not be significantly affected. Equipment containing no Teflon should not be significantly affected by 10 5 rads. Data concerning synergistic effects and radiation sensitization are discussed. The authors suggest correlations between the two effects

  16. Materials Problems and Solutions in Biomass fired plants

    DEFF Research Database (Denmark)

    Larsen, Ole Hede; Montgomery, Melanie

    2006-01-01

    be directly ascribed to the composition of the deposit and the metal surface temperature. In woodchip boilers, a similar corrosion rate and corrosion mechanism has on some occasions been observed. Cofiring of straw (10 and 20% energy basis) with coal has shown corrosion rates lower than those in straw fired......Owing to Denmark's pledge to reduce carbon dioxide emissions, biomass is being increasingly utilised as a fuel for generating energy. Extensive research and development projects, especially in the area of material performance for biomass fired boilers, have been undertaken to make biomass a viable...... fuel resource. When straw is combusted, potassium chloride and potassium sulphate are present in ash products, which condense on superheater components. This gives rise to specific chlorine corrosion problems not previously encountered in coal fired power plants. The type of corrosion attack can...

  17. Radioactive contaminants in raw materials and foodstuffs of plant origin

    International Nuclear Information System (INIS)

    Stankovicj, S.; Krainchanicj, M.; Stankovicj, A.

    1990-01-01

    The paper concentrates on the results of activity level of radioactive caesium 134 and 137 in the samples of raw materials (barley, oats, soybean, sunflower, pumpkin seed, hops, shreded sugar beet, maize), animal feedstuffs (alfalfa, alfalfa meal, rape, concentrates fed to chickens, pigs or bpvines, dry turnip shreds) and foodstuff of plant origin (lettuce, spinach, cabbage, carrot, celery, cucumber, tomato, olives, sesame). All samples - produced locally on the major part but also including some imported stuff -have been subjected to continuous gamma spectrometry starting with the Chernobyl accident in 1986 through 1989. The highest activity of caesium was recorded in the samples of animal feedstuffs (alfalfa, alfalfa meal, rape) in the years 1986 and 1987. In time, however, the activity tends to drop considerably. (author) 4 refs.; 3 tabs

  18. DA and NDA measurement of nuclear materials Mayak reprocessing plant

    International Nuclear Information System (INIS)

    Dzekun, E.G.; Lelyuk, G.A.; Sazhnov, V.K.

    1999-01-01

    Methods of nuclear material (NM) analysis and their quality assurance at the laboratory of RT-1 plant of PA Mayak are reviewed as applicable to the NM control and accounting system. The impact of analysis quality on the NM control and accounting system quality is analyzed. It has been shown that major component of the inventory difference for plutonium is caused by the errors of its measurement in the initial solution. The expedience of decreasing this error from 5 % to 1-1.5 % has been substantiated. Errors of plutonium detection on the other flows of NM at the facility prove to be acceptable for the NM control and accounting system. Accuracy of uranium concentration measurements proved to be satisfactory for all NM flows [ru

  19. Extraction Methods for the Isolation of Isoflavonoids from Plant Material

    Directory of Open Access Journals (Sweden)

    Blicharski Tomasz

    2017-03-01

    Full Text Available The purpose of this review is to describe and compare selected traditional and modern extraction methods employed in the isolation of isoflavonoids from plants. Conventional methods such as maceration, percolation, or Soxhlet extraction are still frequently used in phytochemical analysis. Despite their flexibility, traditional extraction techniques have significant drawbacks, including the need for a significant investment of time, energy, and starting material, and a requirement for large amounts of potentially toxic solvents. Moreover, these techniques are difficult to automate, produce considerable amount of waste and pose a risk of degradation of thermolabile compounds. Modern extraction methods, such as: ultrasound-assisted extraction, microwave-assisted extraction, accelerated solvent extraction, supercritical fluid extraction, and negative pressure cavitation extraction, can be regarded as remedies for the aforementioned problems. This manuscript discusses the use of the most relevant extraction techniques in the process of isolation of isoflavonoids, secondary metabolites that have been found to have a plethora of biological and pharmacological activities.

  20. Plant development effects of biochars from different raw materials

    Science.gov (United States)

    Cely, Paola; Méndez, Ana; Paz-Ferreiro, Jorge; Gascó, Gabriel

    2015-04-01

    Biochar can provide multiple benefits in the ecosystem. However, the presence of phytotoxic compounds in some biochars is an important concern that needs to be addressed and that depends on the raw material and the pyrolysis conditions used in biochar production. For example, sewage sludge biochars can have elevated heavy metal contents as they were present in the feedstock and were enriched during pyrolysis. Also during carbonization, some phytotoxic compounds such as polycyclic aromatic hydrocarbons (PAHs), polyphenols or volatile organic compounds (VOCs) could be formed representing a risk of contamination to soils and crops. In this work we report the results from seed germination and plant development for three biochars prepared from wood, paper sludge plus wheat husks and sewage sludge. Five higher plant species (cress, lentils, cucumber, tomato and lettuce) were studied. Biochar from wood shows seed inhibition in several species and the paper sludge biochar on lettuce. For the rest, the effect on seed germination was positive. No inhibition of root growth was detected, but in some cases leaves and stems growth were inhibited. Our results are significant in terms of advancing or current understanding on the impacts of biochar on vegetative growth and linking those effects to biochar properties.

  1. Growth Response of Aboveground and Belowground of Eustoma grandiflorum to Elevated Co2 in Hydroponic Culture

    Directory of Open Access Journals (Sweden)

    mahin nikoo

    2018-03-01

    Full Text Available Introduction: One of the climate change sign is variation in greenhouse gases in the Earth's atmosphere. Carbon dioxide is the most important greenhouse gas that is released into the atmosphere by humans. It is expected that addition of carbon dioxide could effect the energy balance and global climate. Climate change is effective on agricultural productions. It is clear that different plants have different responses to Co2 variation. These responses are consisting of yield, growth characteristic and variation in root/shoot ratio of plants. On the other hand, using growing media are expanding for plants because of their advantages such as plants nutrient control, reducing the incidence of diseases and pests and increasing the quantity and quality rather than soil cultivation. Properties of various materials as substrates influence directly or indirectly on plant growth and crop production., Hydroponic method can be considered as one of the important methods to optimize water use in agriculture, especially in many countries are located in arid and semi-arid regions that have water crisis. Lisianthus is one of the most beautiful flowers with folded petals in white, blue and purple. I-ts scientific name is Eustoma grandiflorum from the family of Gentianaceae and native to North America. It has variety of annual, biennial or short-lived perennial. The aim of this study was to explore the effect of Co2 enrichment on growth response of aboveground and belowground of Eustoma grandiflorum under increasing of Co2 greenhouse gases in hydroponic culture. Materials and Methods: The experiment was done as a split-plot based on completely randomized experimental design with three replications at greenhouse of Ferdowsi University of Mashhad. The treatments were consists of three concentrations of carbon dioxide (380 as controls, 750 and 1050 ppm as main plots and two cultivars Yodel white and GCREC-blue as subplots. Some characteristic such as plant height

  2. Design of solar drying-plant for bulk material drying

    Directory of Open Access Journals (Sweden)

    Peter Horbaj

    2008-11-01

    Full Text Available A generally well-known high energy requirement for technological processes of drying and the fact that the world’s supplyof the conventional energy sources has considerably decreased are the decisive factors forcing us to look for some new, if possible,renewable energy sources for this process by emphasising their environmental reliability. One of the possibilities how to replace, atleast partly, the conventional energy sources – heat in a drying process is solar energy.Air-drying of bulk materials usually has a series of disadvantages such as time expenditure, drying defects in the bulk materialand inadequate final moisture content. A method that obviates or reduces the disadvantages of air-drying and, at the same time, reducesthe costs of kiln drying, is drying with solar heat. Solar energy can replace a large part of this depletable energy since solar energy cansupply heat at the temperatures most often used to dry bulk material. Solar drying-plant offer an attractive solution.

  3. 78 FR 38739 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants

    Science.gov (United States)

    2013-06-27

    ... Systems for Nuclear Power Plants AGENCY: Nuclear Regulatory Commission. ACTION: Regulatory guide; issuance... Guide (RG) 5.29, ``Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants... material control and accounting. This guide applies to all nuclear power plants. ADDRESSES: Please refer to...

  4. Materials for Nuclear Plants From Safe Design to Residual Life Assessments

    CERN Document Server

    Hoffelner, Wolfgang

    2013-01-01

    The clamor for non-carbon dioxide emitting energy production has directly  impacted on the development of nuclear energy. As new nuclear plants are built, plans and designs are continually being developed to manage the range of challenging requirement and problems that nuclear plants face especially when managing the greatly increased operating temperatures, irradiation doses and extended design life spans. Materials for Nuclear Plants: From Safe Design to Residual Life Assessments  provides a comprehensive treatment of the structural materials for nuclear power plants with emphasis on advanced design concepts.   Materials for Nuclear Plants: From Safe Design to Residual Life Assessments approaches structural materials with a systemic approach. Important components and materials currently in use as well as those which can be considered in future designs are detailed, whilst the damage mechanisms responsible for plant ageing are discussed and explained. Methodologies for materials characterization, material...

  5. Assessment of materials selection and performance for direct-coal- liquefaction plants in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, A.R.; Judkins, R.R.; Keiser, J.R.

    1996-09-01

    Several direct coal liquefaction processes have been demonstrated at the pilot plant level in the United States. Presently only one plant remains operational, namely, the Hydrocarbon Technologies, Inc., 4.0- ton-per-day process development unit in Lawrenceville, New Jersey. The period from 1974 to 1982 saw the greatest amount of development of direct coal liquefaction in the United States with four major pilot plants being devoted to variants of this technology. The plants included the SRC-I plant at Wilsonville, Alabama, which operated from 1974 to 1992; the SRC-I/II plant at Fort Lewis, Washington, which operated from 1974 to 1981; the H-Coal plant at Catlettsburg, Kentucky, which operated from 1980 to 1982; and the Exxon Coal Liquefaction Pilot Plant at Baytown, Texas, which operated from 1980 to 1982. Oak Ridge National Laboratory scientists and engineers were actively involved in many phases and technical disciplines at all four of these plants, especially in materials testing, evaluation, and failure analyses. In addition, ORNL materials scientists and engineers conducted reviews of the demonstration and commercial plant designs for materials selections. The ORNL staff members worked closely with materials engineers at the pilot plants in identifying causes of materials degradation and failures, and in identifying solutions to these problems. This report provides a comprehensive summary of those materials activities. Materials performance data from laboratory and coal liquefaction pilot plant tests, failure analyses, and analyses of components after use in pilot plants were reviewed and assessed to determine the extent and causes of materials degradation in direct coal liquefaction process environments. Reviews of demonstration and commercial plant design documents for materials selections were conducted. These reviews and assessments are presented to capture the knowledge base on the most likely materials of construction for direct coal liquefaction plants.

  6. Analysis of phosphate esters in plant material. Extraction and purification.

    Science.gov (United States)

    Isherwood, F A; Barrett, F C

    1967-09-01

    1. A critical study was made of the quantitative extraction of nucleotide and sugar phosphates from plant tissue by either boiling aqueous ethanol or cold trichloroacetic acid. The effect of the extraction technique on the inactivation of the enzymes in the plant tissue and the possibility of adsorption of the phosphate esters on the cell wall were especially considered. 2. In the recommended method the plant tissue was frozen in liquid nitrogen, ground to a powder and then blended with cold aqueous trichloroacetic acid containing 8-hydroxyquinoline to prevent adsorption. 3. The extract contained large amounts of trichloroacetic acid, cations, chloride, sugars, amino acids, hydroxy organic acids, phytic acid, orthophosphoric acid and high-molecular-weight material including some phosphorus-containing compounds. All of these were removed as they were liable to interfere with the chromatographic or enzymic assay of the individual nucleotide or sugar phosphates. 4. The procedure was as follows: the last traces of trichloroacetic acid were extracted with ether after the solution had been passed through a column of Dowex AG 50 in the hydrogen form to remove all cations. High-molecular-weight compounds were removed by ultrafiltration and low-molecular-weight solutes by a two-stage chromatography on cellulose columns with organic solvents. In the first stage, sugars, amino acids, chloride and phytic acid were separated by using a basic solvent (propan-1-ol-water-aqueous ammonia) and, in the second stage, the organic acids and orthophosphoric acid were separated by using an acidic solvent (di-isopropyl ether-formic acid-2-methylpropan-2-ol-water). The final solution of nucleotide and sugar phosphates was substantially free from other solutes and was suitable for the detection of individual phosphate esters by either chromatography or enzymic assay. 5. The recovery of d-glucose 6-phosphate or adenosine 5'-triphosphate added to a trichloroacetic acid extract simulating that

  7. The life prediction study of Rokkasho reprocessing plant materials

    International Nuclear Information System (INIS)

    Kiuchi, K.; Yano, M.; Takizawa, M.; Shibata, S.

    1998-01-01

    The life prediction study of major equipment materials used in heavily corrosive nitric acid solutions of the RRP was carried out. The nitric acid recovery made of type 304ULC austenitic steel and the dissolver made of type 705 metallic zirconium are selected on the present study. This study is composed of major three programs, namely, the mock-up tests by small-sized equipments simulated to the practical design, laboratory tests for examining corrosion controlling factors by small specimens and to establish the data base system for the life prediction. Important parameters on this study was extracted with analyzing the past data of the life prediction on the Tokai reprocessing equipments. The mock-ups design was made by considering the quantitative evaluation of the most important parts on objective equipments, namely, heat conducting tubes in an acid recovery evaporator and a thermal jacket in a dissolver. From pre-examinations, the effects of radioactive species, nitric acid solution chemistry, the corrosion mechanisms were elucidated. Mock-up testing conditions corrosion monitoring methods and a data base concept for the the life prediction were selected from pre-examination data by referencing the plant operation planning. (author)

  8. Large grazers modify effects of aboveground–belowground interactions on small-scale plant community composition

    NARCIS (Netherlands)

    Veen, G.F.; Geuverink, E.; Olff, H.

    2012-01-01

    Aboveground and belowground organisms influence plant community composition by local interactions, and their scale of impact may vary from millimeters belowground to kilometers aboveground. However, it still poorly understood how large grazers that select their forage on large spatial scales

  9. Developing a generalized allometric equation for aboveground biomass estimation

    Science.gov (United States)

    Xu, Q.; Balamuta, J. J.; Greenberg, J. A.; Li, B.; Man, A.; Xu, Z.

    2015-12-01

    A key potential uncertainty in estimating carbon stocks across multiple scales stems from the use of empirically calibrated allometric equations, which estimate aboveground biomass (AGB) from plant characteristics such as diameter at breast height (DBH) and/or height (H). The equations themselves contain significant and, at times, poorly characterized errors. Species-specific equations may be missing. Plant responses to their local biophysical environment may lead to spatially varying allometric relationships. The structural predictor may be difficult or impossible to measure accurately, particularly when derived from remote sensing data. All of these issues may lead to significant and spatially varying uncertainties in the estimation of AGB that are unexplored in the literature. We sought to quantify the errors in predicting AGB at the tree and plot level for vegetation plots in California. To accomplish this, we derived a generalized allometric equation (GAE) which we used to model the AGB on a full set of tree information such as DBH, H, taxonomy, and biophysical environment. The GAE was derived using published allometric equations in the GlobAllomeTree database. The equations were sparse in details about the error since authors provide the coefficient of determination (R2) and the sample size. A more realistic simulation of tree AGB should also contain the noise that was not captured by the allometric equation. We derived an empirically corrected variance estimate for the amount of noise to represent the errors in the real biomass. Also, we accounted for the hierarchical relationship between different species by treating each taxonomic level as a covariate nested within a higher taxonomic level (e.g. species contribution of each different covariate in estimating the AGB of trees. Lastly, we applied the GAE to an existing vegetation plot database - Forest Inventory and Analysis database - to derive per-tree and per-plot AGB estimations, their errors, and how

  10. Disentangling the effects of species diversity, and intraspecific and interspecific tree size variation on aboveground biomass in dry zone homegarden agroforestry systems.

    Science.gov (United States)

    Ali, Arshad; Mattsson, Eskil

    2017-11-15

    The biodiversity - aboveground biomass relationship has been intensively studied in recent decades. However, no consensus has been arrived to consider the interplay of species diversity, and intraspecific and interspecific tree size variation in driving aboveground biomass, after accounting for the effects of plot size heterogeneity, soil fertility and stand quality in natural forest including agroforests. We tested the full, partial and no mediations effects of species diversity, and intraspecific and interspecific tree size variation on aboveground biomass by employing structural equation models (SEMs) using data from 45 homegarden agroforestry systems in Sri Lanka. The full mediation effect of either species diversity or intraspecific and interspecific tree size variation was rejected, while the partial and no mediation effects were accepted. In the no mediation SEM, homegarden size had the strongest negative direct effect (β=-0.49) on aboveground biomass (R 2 =0.65), followed by strong positive direct effect of intraspecific tree size variation (β=0.32), species diversity (β=0.29) and interspecific tree size variation (β=0.28). Soil fertility had a negative direct effect on interspecific tree size variation (β=-0.31). Stand quality had a significant positive total effect on aboveground biomass (β=0.28), but homegarden size had a significant negative total effect (β=-0.62), while soil fertility had a non-significant total effect on aboveground biomass. Similar to the no mediation SEM, the partial mediation SEMs had explained almost similar variation in aboveground biomass because species diversity, and intraspecific and interspecific tree size variation had non-significant indirect effects on aboveground biomass via each other. Our results strongly suggest that a multilayered tree canopy structure, due to high intraspecific and interspecific tree size variation, increases light capture and efficient utilization of resources among component species, and

  11. Imaging of plant materials using indirect desorption electrospray ionization mass spectrometry

    DEFF Research Database (Denmark)

    Janfelt, Christian

    2015-01-01

    Indirect desorption electrospray ionization mass spectrometry (DESI-MS) imaging is a method for imaging distributions of metabolites in plant materials, in particular leaves and petals. The challenge in direct imaging of such plant materials with DESI-MS is particularly the protective layer of cu...... of interest from parts of their matrix while preserving the spatial information in the two dimensions. The imprint can then easily be imaged by DESI-MS. The method delivers simple and robust mass spectrometry imaging of plant material with very high success ratios....... of cuticular wax present in leaves and petals. The cuticle protects the plant from drying out, but also makes it difficult for the DESI sprayer to reach the analytes of interest inside the plant material. A solution to this problem is to imprint the plant material onto a surface, thus releasing the analytes...

  12. Plant-based raw material: Improved food quality for better nutrition via plant genomics

    NARCIS (Netherlands)

    Meer, van der I.M.; Bovy, A.G.; Bosch, H.J.

    2001-01-01

    Plants form the basis of the human food chain. Characteristics of plants are therefore crucial to the quantity and quality of human food. In this review, it is discussed how technological developments in the area of plant genomics and plant genetics help to mobilise the potential of plants to

  13. Proven Alternatives for Aboveground Treatment of Arsenic in Groundwater

    Science.gov (United States)

    This issue paper, developed for EPA's Engineering Forum, identifies and summarizes experiences with proven aboveground treatment alternatives for arsenic in groundwater, and provides information on their relative effectiveness and cost.

  14. an expansion of the aboveground biomass quantification model for ...

    African Journals Online (AJOL)

    Research Note BECVOL 3: an expansion of the aboveground biomass quantification model for ... African Journal of Range and Forage Science ... encroachment and estimation of food to browser herbivore species, was proposed during 1989.

  15. Changes in vegetation structure and aboveground biomass in ...

    African Journals Online (AJOL)

    Changes in vegetation structure and aboveground biomass in response to traditional rangeland management practices in Borana, southern Ethiopia. ... managed by prescribed fire for five years and grazed only post-fire during dry seasons.

  16. Above-ground tree outside forest (TOF) phytomass and carbon ...

    Indian Academy of Sciences (India)

    to classify TOF, to estimate above-ground TOF phytomass and the carbon content ... eral, trees outside forests (TOF) mean the trees ..... have been used to stratify the area, based on the ... The optimum plot size and num- .... population centres.

  17. Laboratory Testing of Waste Isolation Pilot Plant Surrogate Waste Materials

    Science.gov (United States)

    Broome, S.; Bronowski, D.; Pfeifle, T.; Herrick, C. G.

    2011-12-01

    The Waste Isolation Pilot Plant (WIPP) is a U.S. Department of Energy geological repository for the permanent disposal of defense-related transuranic (TRU) waste. The waste is emplaced in rooms excavated in the bedded Salado salt formation at a depth of 655 m below the ground surface. After emplacement of the waste, the repository will be sealed and decommissioned. WIPP Performance Assessment modeling of the underground material response requires a full and accurate understanding of coupled mechanical, hydrological, and geochemical processes and how they evolve with time. This study was part of a broader test program focused on room closure, specifically the compaction behavior of waste and the constitutive relations to model this behavior. The goal of this study was to develop an improved waste constitutive model. The model parameters are developed based on a well designed set of test data. The constitutive model will then be used to realistically model evolution of the underground and to better understand the impacts on repository performance. The present study results are focused on laboratory testing of surrogate waste materials. The surrogate wastes correspond to a conservative estimate of the degraded containers and TRU waste materials after the 10,000 year regulatory period. Testing consists of hydrostatic, uniaxial, and triaxial tests performed on surrogate waste recipes that were previously developed by Hansen et al. (1997). These recipes can be divided into materials that simulate 50% and 100% degraded waste by weight. The percent degradation indicates the anticipated amount of iron corrosion, as well as the decomposition of cellulosics, plastics, and rubbers. Axial, lateral, and volumetric strain and axial and lateral stress measurements were made. Two unique testing techniques were developed during the course of the experimental program. The first involves the use of dilatometry to measure sample volumetric strain under a hydrostatic condition. Bulk

  18. Above-ground biomass equations for Pinus radiata D. Don in Asturias

    Directory of Open Access Journals (Sweden)

    E. Canga

    2013-12-01

    Full Text Available Aim of the study: The aim of this study was to develop a model for above-ground biomass estimation for Pinus radiata D. Don in Asturias.Area of study: Asturias (NE of Spain.Material and methods: Different models were fitted for the different above-ground components and weighted regression was used to correct heteroscedasticity. Finally, all the models were refitted simultaneously by use of Nonlinear Seemingly Unrelated Regressions (NSUR to ensure the additivity of biomass equations.Research highlights: A system of four biomass equations (wood, bark, crown and total biomass was develop, such that the sum of the estimations of the three biomass components is equal to the estimate of total biomass. Total and stem biomass equations explained more than 92% of observed variability, while crown and bark biomass equations explained 77% and 89% respectively.Keywords: radiata pine; plantations; biomass.

  19. Assessment of forest management influences on total live aboveground tree biomass in William B Bankhead National Forest, Alabama

    Science.gov (United States)

    Callie Schweitzer; Dawn Lemke; Wubishet Tadesse; Yong Wang

    2015-01-01

    Forests contain a large amount of carbon (C) stored as tree biomass (above and below ground), detritus, and soil organic material. The aboveground tree biomass is the most rapid change component in this forest C pool. Thus, management of forest resources can influence the net C exchange with the atmosphere by changing the amount of C stored, particularly in landscapes...

  20. Steam Turbine Materials for Ultrasupercritical Coal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, R.; Hawk, J.; Schwant, R.; Saha, D.; Totemeier, T.; Goodstine, S.; McNally, M.; Allen, D. B.; Purgert, Robert

    2009-06-30

    The Ultrasupercritical (USC) Steam Turbine Materials Development Program is sponsored and funded by the U.S. Department of Energy and the Ohio Coal Development Office, through grants to Energy Industries of Ohio (EIO), a non-profit organization contracted to manage and direct the project. The program is co-funded by the General Electric Company, Alstom Power, Siemens Power Generation (formerly Siemens Westinghouse), and the Electric Power Research Institute, each organization having subcontracted with EIO and contributing teams of personnel to perform the requisite research. The program is focused on identifying, evaluating, and qualifying advanced alloys for utilization in coal-fired power plants that need to withstand steam turbine operating conditions up to 760°C (1400°F) and 35 MPa (5000 psi). For these conditions, components exposed to the highest temperatures and stresses will need to be constructed from nickel-based alloys with higher elevated temperature strength than the highchromium ferritic steels currently used in today's high-temperature steam turbines. In addition to the strength requirements, these alloys must also be weldable and resistant to environmental effects such as steam oxidation and solid particle erosion. In the present project, candidate materials with the required creep strength at desired temperatures have been identified. Coatings that can resist oxidation and solid particle erosion have also been identified. The ability to perform dissimilar welds between nickel base alloys and ferritic steels have been demonstrated, and the properties of the welds have been evaluated. Results of this three-year study that was completed in 2009 are described in this final report. Additional work is being planned and will commence in 2009. The specific objectives of the future studies will include conducting more detailed evaluations of the weld-ability, mechanical properties and repair-ability of the selected candidate alloys for rotors

  1. Dry matter yield and Carbon partitioning in the aboveground part of switchgrass ( panicum virgatum l.) germplasm

    Energy Technology Data Exchange (ETDEWEB)

    Butkutė, B.; Lemežien ė, N.; Cesevičienė, J.; Liaudanskienė, I., E-mail: brone@lzi.lt [Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Kėdainiai distr. (Lithuania)

    2013-07-01

    Carbon (C) accumulated in biomass can be converted into usable forms of energy like methane, bioethanol or solid fuel. Understanding the partitioning of aboveground biomass and C plays an important role in optimizing its pre-treatment technologies. Our objectives were to determine dry matter yield (DMY) and C partitioning in switch grass germplasm. Plants were sampled at heading (HS) and seed filling (SFS) stages. The biomass of the SFS-sampled plants was separated into leaves (blades+sheaths), stems, and panicles. C content was determined by dry combustion. C yield per plant (CY) at HS ranged from 25.9 to 171 g (37.3 g on average for plants in the first harvest year, and 147 for those in the second harvest year), at SFS CY varied within a range of 79.8 ‒ 295g and averaged 119 and 252g depending on the year of growth. DMY was a weighted factor for such results. At SFS, DMY of stems accounted on average for 46.3%, leaves for 40.5%, and panicles for 13.2% of the aboveground biomass of whole plant with respective C concentrations of 462, 439 and 459 g kg -1 DM. (author)

  2. Timber volume and aboveground live tree biomass estimations for landscape analyses in the Pacific Northwest

    Science.gov (United States)

    Xiaoping Zhou; Miles A. Hemstrom

    2010-01-01

    Timber availability, aboveground tree biomass, and changes in aboveground carbon pools are important consequences of landscape management. There are several models available for calculating tree volume and aboveground tree biomass pools. This paper documents species-specific regional equations for tree volume and aboveground live tree biomass estimation that might be...

  3. Allometric models for estimating the aboveground biomass of the mangrove Rhizophora mangle

    Directory of Open Access Journals (Sweden)

    Heide Vanessa Souza Santos

    Full Text Available Abstract The development of species-specific allometric models is critical to the improvement of aboveground biomass estimates, as well as to the estimation of carbon stock and sequestration in mangrove forests. This study developed allometric equations for estimating aboveground biomass of Rhizophora mangle in the mangroves of the estuary of the São Francisco River, in northeastern Brazil. Using a sample of 74 trees, simple linear regression analysis was used to test the dependence of biomass (total and per plant part on size, considering both transformed (ln and not-transformed data. Best equations were considered as those with the lowest standard error of estimation (SEE and highest adjusted coefficient of determination (R2a. The ln-transformed equations showed better results, with R2a near 0.99 in most cases. The equations for reproductive parts presented low R2a values, probably attributed to the seasonal nature of this compartment. "Basal Area2 × Height" showed to be the best predictor, present in most of the best-fitted equations. The models presented here can be considered reliable predictors of the aboveground biomass of R. mangle in the NE-Brazilian mangroves as well as in any site were this widely distributed species present similar architecture to the trees used in the present study.

  4. Topographically mediated controls on aboveground biomass across a mediterranean-type landscape

    Science.gov (United States)

    Dahlin, K.; Asner, G. P.; Field, C. B.

    2009-12-01

    Aboveground biomass accumulation is a useful metric for evaluating habitat restoration and ecosystem services projects, in addition to being a robust measure of carbon sequestration. However, at the landscape scale non-anthropogenic controls on biomass accumulation are poorly understood. In this study we combined field measurements, high resolution data from the NASA JPL Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), and the Carnegie Airborne Observatory (CAO) airborne light detection and ranging (lidar) system to create a comprehensive map of aboveground biomass across a patchy mediterranean-type landscape (Jasper Ridge Biological Preserve, Stanford, CA). Candidate explanatory variables (e.g. slope, elevation, incident solar radiation) were developed using a geologic map and a digital elevation model derived from the lidar data. Finally, candidate variables were tested, and a model was produced to predict aboveground biomass from environmental data. Though many of the explanatory variables have only indirect effects on plant growth, the model permits inferences to be made about the relative importance of light, water, temperature, and edaphic characteristics on carbon accumulation in mediterranean-type systems.

  5. Symposium on application of new materials to nuclear plants

    International Nuclear Information System (INIS)

    1988-01-01

    The papers on the application of new materials for upgrading LWRs, the application of new materials to FBRs, the application of new materials to high temperature gas-cooled reactors, the application of new materials to nuclear fusion reactors, engineering ceremics shape memorizing alloys and metal base composite materials are collected in this book. As for LWRs, the change of materials for LWR components and the present status of the research and development of the application of new materials in ANERI are described. As for the application of new materials to a demonstration FBR, high Cr-Mo steel, high ductility stainless steel, neutron resistant stainless steel and low cobalt case hardening material are explained, and the development of new materials for practical FBRs is discussed. As for high temperature gas-cooled reactors, the materials for control rod cladding tubes, heat exchangers and high temperature piping, fuel cladding, moderator and reflector, and heat insulator are described. As for nuclear fusion reactors, the structural materials, the materials facing plasma, and superconductive materials, electrode materials and others are discussed. (K.I.)

  6. Carbon sequestration rate and aboveground biomass carbon potential of three young species in lower Gangetic plain.

    Science.gov (United States)

    Jana, Bipal K; Biswas, Soumyajit; Majumder, Mrinmoy; Roy, Pankaj K; Mazumdar, Asis

    2011-07-01

    Carbon is sequestered by the plant photosynthesis and stored as biomass in different parts of the tree. Carbon sequestration rate has been measured for young species (6 years age) of Shorea robusta at Chadra forest in Paschim Medinipur district, Albizzia lebbek in Indian Botanic Garden in Howrah district and Artocarpus integrifolia at Banobitan within Kolkata in the lower Gangetic plain of West Bengal in India by Automated Vaisala Made Instrument GMP343 and aboveground biomass carbon has been analyzed by CHN analyzer. The specific objective of this paper is to measure carbon sequestration rate and aboveground biomass carbon potential of three young species of Shorea robusta, Albizzia lebbek and Artocarpus integrifolia. The carbon sequestration rate (mean) from the ambient air during winter season as obtained by Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 11.13 g/h, 14.86 g/h and 4.22g/h, respectively. The annual carbon sequestration rate from ambient air were estimated at 8.97 t C ha(-1) by Shorea robusta, 11.97 t C ha(-1) by Albizzia lebbek and 3.33 t C ha(-1) by Artocarpus integrifolia. The percentage of carbon content (except root) in the aboveground biomass of Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 47.45, 47.12 and 43.33, respectively. The total aboveground biomass carbon stock per hectare as estimated for Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 5.22 t C ha(-1) , 6.26 t C ha(-1) and 7.28 t C ha(-1), respectively in these forest stands.

  7. Certification of materials for steam generator condensor and regeneration heat exchanger for nuclear plant

    International Nuclear Information System (INIS)

    Stevanovicj, M.V.; Jovashevicj, V.J.; Jovashevicj, V.D.J.; Spasicj, Zh.Lj.

    1977-01-01

    In the construction of a nuclear power plant almost all known materials are used. The choice depends on working conditions. In this work standard specifications of contemporary materials that take part in larger quantities in the following components of the secondary circuit of PWR-type nuclear power plant are proposed: steam generator with moisture separator, condensor and regenerative heat eXchanger

  8. The research on the material management system in nuclear power plant construction process

    International Nuclear Information System (INIS)

    Liu Xuegeng; Huang Zhongping

    2010-01-01

    According to the module construction speciality of nuclear power plant, this article analyzes the relationship between the actual amount of the material transported to the construction site and the planed needs of the material, and points out the zero inventory management target in the nuclear power plant construction site. Based on this, the article put forward a nuclear power plant material management system which is based on the 'pull' information driver. This system is composed by material coding sub-system, procurement and site material integrated management sub-system and project control sub-system, and is driven by the material demand from construction site to realize the JIT purchasing. This structure of the system can reduce the gap between the actual amount of the material transported to the site and the planed needs of the material and achieve the target of reducing storage at construction site. (authors)

  9. General regularities of Sr 90 distribution in system soil-plant under natural conditions

    International Nuclear Information System (INIS)

    Gudeliene, I.; Marchiulioniene, D.; Petroshius, R.

    2006-01-01

    Sr 90 distribution in system 'soil - underground part of plant - aboveground part of plant' was investigated. It was determined that Sr 90 activity concentration in underground and aboveground part of plants and in mosses was not dependent on its activity concentration in soil. There was direct dependence of Sr 90 activity concentration in aboveground on underground parts of plants. Sr 90 transfer factor from soil to underground part of plants and mosses was directly dependent on this radionuclide activity concentration in them. (authors)

  10. Materials management in an internationally safeguarded fuels reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Baker, A.L.; Cobb, D.D.

    1980-04-01

    The following appendices are included: aqueous reprocessing and conversion technology, reference facilities, process design and operating features relevant to materials accounting, operator's safeguards system structure, design principles of dynamic materials accounting systems, modeling and simulation approach, optimization of measurement control, aspects of international verification problem, security and reliability of materials measurement and accounting system, estimation of in-process inventory in solvent-extraction contactors, conventional measurement techniques, near-real-time measurement techniques, isotopic correlation techniques, instrumentation available to IAEA inspectors, and integration of materials accounting and containment and surveillance

  11. Materials management in an internationally safeguarded fuels reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, E.A.; Baker, A.L.; Cobb, D.D.

    1980-04-01

    The following appendices are included: aqueous reprocessing and conversion technology, reference facilities, process design and operating features relevant to materials accounting, operator's safeguards system structure, design principles of dynamic materials accounting systems, modeling and simulation approach, optimization of measurement control, aspects of international verification problem, security and reliability of materials measurement and accounting system, estimation of in-process inventory in solvent-extraction contactors, conventional measurement techniques, near-real-time measurement techniques, isotopic correlation techniques, instrumentation available to IAEA inspectors, and integration of materials accounting and containment and surveillance. (DLC)

  12. Report of the U.S. Nuclear Regulatory Commission Piping Review Committee. Summary and evaluation of historical strong-motion earthquake seismic response and damage to aboveground industrial piping

    International Nuclear Information System (INIS)

    1985-04-01

    The primary purpose of this report is to collect in one reference document the observation and experience that has been developed with regard to the seismic behavior of aboveground, building-supported, industrial-type process piping (similar to piping used in nuclear power plants) in strong-motion earthquakes. The report will also contain observations regarding the response of piping in strong-motion experimental tests and appropriate conclusions regarding the behavior of such piping in large earthquakes. Recommendations are included covering the future design of such piping to resist earthquake motion damage based on observed behavior in large earthquakes and simulated shake table testing. Since available detailed data on the behavior of aboveground (building-supported) piping are quite limited, this report will draw heavily on the observations and experiences of experts in the field. In Section 2 of this report, observed earthquake damage to aboveground piping in a number of large-motion earthquakes is summarized. In Section 3, the available experience from strong-motion testing of piping in experimental facilities is summarized. In Section 4 are presented some observations that attempt to explain the observed response of piping to strong-motion excitation from actual earthquakes and shake table testing. Section 5 contains the conclusions based on this study and recommendations regarding the future seismic design of piping based on the observed strong-motion behavior and material developed for the NPC Piping Review Committee. Finally, in Section 6 the references used in this study are presented. It should be understood that the use of the term piping in this report, in general, is limited to piping supported by building structures. It does not include behavior of piping buried in soil media. It is believed that the seismic behavior of buried piping is governed primarily by the deformation of the surrounding soil media and is not dependent on the inertial response

  13. Classification of scrap material from nuclear power plants as acceptable for recirculation

    International Nuclear Information System (INIS)

    Bergman, C.

    1983-06-01

    The Swedish National Institute of Radiation Protection has in a principal decision accepted that scrap material from nuclear power plants, that contains or may contain radioactive material, can be recirculated. The document is an English translation of the background material for the Board meeting decision and gives some guide-lines for the authority when dealing with this questions. (author)

  14. MODIS Based Estimation of Forest Aboveground Biomass in China

    Science.gov (United States)

    Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha−1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y−1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y−1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y−1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests. PMID:26115195

  15. MODIS Based Estimation of Forest Aboveground Biomass in China.

    Science.gov (United States)

    Yin, Guodong; Zhang, Yuan; Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.

  16. MODIS Based Estimation of Forest Aboveground Biomass in China.

    Directory of Open Access Journals (Sweden)

    Guodong Yin

    Full Text Available Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS dataset in a machine learning algorithm (the model tree ensemble, MTE. We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.

  17. PSO 5806 Material development for waste-to-energy plants

    DEFF Research Database (Denmark)

    Beck, Jørgen; Frederiksen, Jens; Larsen, Ole Hede

    2010-01-01

    The vision of this project (PSO 5806) is to throw light and focus on some of the refractory material characteristics of major importance to predictable service.......The vision of this project (PSO 5806) is to throw light and focus on some of the refractory material characteristics of major importance to predictable service....

  18. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Lab. (NREL), Golden, CO (United States); Akar, Sertac [National Renewable Energy Lab. (NREL), Golden, CO (United States); Flores, Francisco [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-26

    This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for the parabolic trough system.

  19. Next Generation Nuclear Plant Materials Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    G. O. Hayner; E.L. Shaber

    2004-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

  20. Response of plant species to coal-mine soil materials

    Energy Technology Data Exchange (ETDEWEB)

    Day, A.D.; Tucker, T.C.; Thames, J.L.

    1983-03-01

    The two-year Black Mesa Coal Mine Research Study on the area near Kayenta, Arizona investigating the growth and establishment of seven plant species in unmined soil and coal-mined soils found that plant species grew better in unmined soil and that irrigation is essential during seedling establishment for the effective stabilization of coal-mined soils in a semi-arid environment. Differences among the species included variations in germination, response to irrigation, seedling establishment, and stem growth. 12 references, 2 figures, 2 tables.

  1. Plant for processing radioactive materials or toxic products

    International Nuclear Information System (INIS)

    Stoll, W.; Schneider, V.; Kiy, M.; Schneider, G.

    1980-01-01

    In the fuel element manufacturing plant, there are several steel vessels which can only be entered via air locks. Inside these steel vessels, there are groups of glove boxes. For safety reasons, the pressure in the steel vessels is kept higher than that in the glove boxes for plutonium treatment and lower than that in the building by suitable equipment. (DG) [de

  2. Materials management in an internationally safeguarded fuels reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Cobb, D.D.; Dayem, H.A.; Dietz, R.J.; Kern, E.A.; Markin, J.T.; Shipley, J.P.; Barnes, J.W.; Scheinman, L.

    1980-04-01

    The second volume describes the requirements and functions of materials measurement and accounting systems (MMAS) and conceptual designs for an MMAS incorporating both conventional and near-real-time (dynamic) measurement and accounting techniques. Effectiveness evaluations, based on recently developed modeling, simulation, and analysis procedures, show that conventional accountability can meet IAEA goal quantities and detection times in these reference facilities only for low-enriched uranium. Dynamic materials accounting may meet IAEA goals for detecting the abrupt (1-3 weeks) diversion of 8 kg of plutonium. Current materials accounting techniques probably cannot meet the 1-y protracted-diversion goal of 8 kg for plutonium

  3. Analysis of requirements for teaching materials based on the course bioinformatics for plant metabolism

    Science.gov (United States)

    Balqis, Widodo, Lukiati, Betty; Amin, Mohamad

    2017-05-01

    A way to improve the quality of learning in the course of Plant Metabolism in the Department of Biology, State University of Malang, is to develop teaching materials. This research evaluates the needs of bioinformatics-based teaching material in the course Plant Metabolism by the Analyze, Design, Develop, Implement, and Evaluate (ADDIE) development model. Data were collected through questionnaires distributed to the students in the Plant Metabolism course of the Department of Biology, University of Malang, and analysis of the plan of lectures semester (RPS). Learning gains of this course show that it is not yet integrated into the field of bioinformatics. All respondents stated that plant metabolism books do not include bioinformatics and fail to explain the metabolism of a chemical compound of a local plant in Indonesia. Respondents thought that bioinformatics can explain examples and metabolism of a secondary metabolite analysis techniques and discuss potential medicinal compounds from local plants. As many as 65% of the respondents said that the existing metabolism book could not be used to understand secondary metabolism in lectures of plant metabolism. Therefore, the development of teaching materials including plant metabolism-based bioinformatics is important to improve the understanding of the lecture material in plant metabolism.

  4. Listing the investment costs and producing material analyses for given plants for energy supply

    International Nuclear Information System (INIS)

    Wagner, H.J.; Hansen, K.; Schoen, R.; Wassmann, B.

    1989-01-01

    In this comparison, the investment and material cost for the following plants are examined: 1. Solar service water treatment plants, 2. Solar heating plants, 3. Conventional comparative plants, 4. Heat pump heating plants, 5. Nuclear power stations and hardcoal-fired power stations, and 6. Wind energy converters. The technique of energy conversion of each is generally explained. In the appendix, points of the use of energy are given for the manufacture of components of the heating and installation trade. Specific energy costs per product unit are compiled for the different branches. (UA) [de

  5. Materials concepts in PWR power plants. An overview

    International Nuclear Information System (INIS)

    Costa e Silva, A.L.V.

    1987-01-01

    Some measures to reduce the risk of exposure in case of nuclear accidents are presented. Some material questions concerning the integrity of reactor pressure vessel, the containment vessel and external systems are discussed. (E.G.) [pt

  6. Belowground interactions with aboveground consequences: Invasive earthworms and arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Paudel, Shishir; Longcore, Travis; MacDonald, Beau; McCormick, Melissa K; Szlavecz, Katalin; Wilson, Gail W T; Loss, Scot R

    2016-03-01

    A mounting body of research suggests that invasive nonnative earthworms substantially alter microbial communities, including arbuscular mycorrhizal fungi (AMF). These changes to AMF can cascade to affect plant communities and vertebrate populations. Despite these research advances, relatively little is known about (1) the mechanisms behind earthworms' effects on AMF and (2) the factors that determine the outcomes of earthworm-AMF interactions (i.e., whether AMF abundance is increased or decreased and subsequent effects on plants). We predict that AMF-mediated effects of nonnative earthworms on ecosystems are nearly universal because (1) AMF are important components of most terrestrial ecosystems, (2) nonnative earthworms have become established in nearly every type of terrestrial ecosystem, and (3) nonnative earthworms, due to their burrowing and feeding behavior, greatly affect AMF with potentially profound concomitant effects on plant communities. We highlight the multiple direct and indirect effects of nonnative earthworms on plants and review what is currently known about the interaction between earthworms and AMF. We also illustrate how the effects of nonnative earthworms on plant-AMF mutualisms can alter the structure and stability of aboveground plant communities, as well as the vertebrate communities relying on these habitats. Integrative studies that assess the interactive effects of earthworms and AMF can provide new insights into the role that belowground ecosystem engineers play in altering aboveground ecological processes. Understanding these processes may improve our ability to predict the structure of plant and animal communities in earthworm-invaded regions and to develop management strategies that limit the numerous undesired impacts of earthworms.

  7. [Energy accumulation and allocation of main plant populations in Aneurolepidium chinense grassland in Songnen Plain].

    Science.gov (United States)

    Qu, Guohui; Wen, Mingzhang; Guo, Jixun

    2003-05-01

    The calorific value of plants is dependent on their biological characteristics and energy-containing materials. The allocation of calorific value in different organs of Aneurolepidium chinese, Calamagrostic epigejos, Puccinellia tenuiflora and Chloris virgata was inflorescence > leaf > stem > dead standing. The seasonal dynamics of standing crop energy of aboveground part of four plant populations showed single-peak curve, and the energy production was Aneurolepidium chinense > Calamagrostic epigejos > Chloris virgata > Puccinellia tenuiflora. Energy increasing rate showed double-peak curve, with the first peak at heading stage and the second peak at maturing stage of seeds. Energy increasing rate was negative at the final stage of growth. The horizontal distribution of energy of aboveground part was that the allocation ratio of different organs at different growth stages was different. There existed a similar trend for vertical distribution of energy among four plant populations, i.e., was the vertical distribution of energy of aboveground part showed a tower shape, with the maximum value in 10-30 cm height. The vertical distribution of energy of underground part showed an inverted tower shape from soil surface to deeper layer, with the maximum value in 0-10 cm depth. The standing crop energy of underground part was about 3-4 times than that of aboveground part.

  8. Low activation structural material candidates for fusion power plants

    International Nuclear Information System (INIS)

    Forty, C.B.A.; Cook, I.

    1997-06-01

    Under the SEAL Programme of the European Long-Term Fusion Safety Programme, an assessment was performed of a number of possible blanket structural materials. These included the steels then under consideration in the European Blanket Programme, as well as materials being considered for investigation in the Advanced Materials Programme. Calculations were performed, using SEAFP methods, of the activation properties of the materials, and these were related, based on the SEAFP experience, to assessments of S and E performance. The materials investigated were the SEAFP low-activation martensitic steel (LA12TaLC); a Japanese low-activation martensitic steel (F-82H), a range of compositional variants about this steel; the vanadium-titanium-chromium alloy which was the original proposal of the ITER JCT for the ITER in-vessel components; a titanium-aluminium intermetallic (Ti-Al) which is under investigation in Japan; and silicon carbide composite (SiC). Assessed impurities were included in the compositions of these materials, and they have very important impacts on the activation properties. Lack of sufficiently detailed data on the composition of chromium alloys precluded their inclusion in the study. (UK)

  9. Nuclear power plant control and instrumentation 1993. Working material

    International Nuclear Information System (INIS)

    1994-01-01

    The regular meeting of the International Working Group on Nuclear Power Plant Control and Instrumentation (IWG-NPPCI) was organized in order to summarize operating experience of nuclear power plant control systems, gain a general overview of activities in development of modern control systems and receive recommendations on the further directions and particular measures within the Agency's programme. The meeting was held at the Merlin-Gerin Headquarters in Paris and was attended by twenty one national delegates and observers from 17 countries. The present volume contains: (1) report on the meeting of the IWG-NPPCI, Paris, 21-22 October 1993, (2) report by the scientific secretary on the major activities of IAEA during 1991-1993 in the NPPCI area, and (3) reports of the national representatives to the International Working Group on NPPCI. The papers and discussions with practical experience and described actual problems encountered. Emphasis was placed on the technical, industrial and economic aspects of the introduction of modern control systems and on the improvement of plant availability and safety. Refs, figs and tabs

  10. Some metals in aboveground biomass of Scots pine in Lithuania

    DEFF Research Database (Denmark)

    Varnagiryte-Kabašinskiene, Iveta; Armolaitis, Kestutis; Stupak, Inge

    2014-01-01

    with stemwood and living branches. However, metal export with aboveground biomass represented relatively small proportion of metals in mineral sandy soil. The annual inputs of Fe and Zn with atmospheric deposition were over 10 times higher than the mean annual removals with total aboveground biomass....... The content of metals in forest biomass fuel ash was relatively small to compare with their total removals. The findings of this study have an important implications for future practice, i.e. the recommended maximum forest biomass fuel ash dose for the compensating fertilising could be increased with respect...... to balanced output - input in Lithuania....

  11. Selection of construction materials for equipment in an experimental reprocessing plant

    International Nuclear Information System (INIS)

    Mizrahi, R.; Cragnolino, G.A.

    1994-01-01

    A review is made of the most significant corrosion problems that may be present in different stages of the process in a spent fuel reprocessing plant. The influence of different variables is analyzed: concentration of nitric acid and other oxidizing species, temperature, etc., in corrosion of materials of most frequent use in pipings and equipment. The materials are austenitic stainless steels and refractory metals, especially zirconium and its alloys. Both general and localized corrosion phenomena are analyzed for these materials. Selection criteria for the use of adequate material in different components of the plant are also discussed. (author). 32 refs., 20 figs., 3 tabs

  12. Enhancing materials management programs in nuclear power plants

    International Nuclear Information System (INIS)

    Hassaballa, M.M.; Malak, S.M.

    1992-01-01

    Materials management programs for the nuclear utilities in the United States are continually being affected, concurrent with the gradual disappearance of qualified component and replacement parts vendors by regulatory concerns about procurement and materials management. In addition, current economic and competitive pressures are forcing utilities to seek avenues for reducing procurement costs for safety-related items. In response to these concerns, initiatives have been undertaken and engineering guidelines have been developed by the nuclear power industry-sponsored organizations, such as the Electric Power Research Institute and the Nuclear Management Resources Council. It is our experience that successful materials management programs require a multitude of engineering disciplines and experience and are composed of three major elements: strategic procurement plan, parts classification and procurement data base, and enhancement tools. This paper provides a brief description of each of the three elements

  13. Experiences with liquid scintillation counting of 3H, 14C and 35S from plant material

    International Nuclear Information System (INIS)

    Das, S.K.

    1974-01-01

    Relative merits of different methods in radioassay of three soft beta emitting isotopes like 3 H, 14 C and 35 S from plant material have been assessed. The methods used are: (1) combustion method (2) use of tissue solubilizing agents and (3) wet digestion method. Results show that determinations of 14 C by combustion method; 3 H by combustion and Mahin and Lofberg's method; and 35 S by wet digestion method are superior for plant material than the other methods tried. (author)

  14. Effect of growth regulator Kelpak SL on the formation of aboveground biomass of Festulolium braunii (K. Richt. A. Camus

    Directory of Open Access Journals (Sweden)

    Jacek Sosnowski

    2013-07-01

    Full Text Available A study on the cultivation of Festulolium braunii cv. 'Felopa' was carried out using polyurethane rings with a diameter of 36 cm and a height of 40 cm, which were sunk into the ground to a depth of 30 cm and filled with soil material. In this experiment, Kelpak SL was used as a bioregulator. It consists of natural plant hormones such as auxins (11 mg in dm3 and cytokinins (0.03 mg in dm3. The experimental factors were as follows: A1-control; A2 – 20% solution of the growth regulator; A3 – 40% solution; and A4 – 60% solution. The preparation was applied to all three regrowths in the form of spray, at a rate of 3 cm3 ring-1, at the stem elongation stage. The full period of this experiment was in the years 2010–2011. During this time, detailed investigations were carried out on aboveground biomass yield (g DM ring-1, number of shoots (pcs ring-1, leaf blade length (cm, width of the leaf blade base (mm, leaf greenness index (SPAD. The study showed a significant effect of the growth regulator on the formation of Festulolium braunii biomass. However, its highest effectiveness was observed when the 60% solution was applied.

  15. Osmotic potential of Zinnia elegans plant material affects the yield ...

    African Journals Online (AJOL)

    To examine whether the growth conditions that determine leaf osmolarity (LO) affect the final %TE, we used three light intensities (50, 70 and 100 μmol.m-2s-1) and three electrical conductivity (EC) levels (EC 2, 4 and 6 dS.m-1 ) in hydroponic systems to induce different osmolarities in leaf materials from two cultivars (cvs) of ...

  16. Materials management in an internationally safeguarded fuels reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Cobb, D.D.; Dayem, H.A.; Dietz, R.J.; Kern, E.A.; Markin, J.T.; Shipley, J.P.; Barnes, J.W.; Scheinman, L.

    1980-04-01

    The first volume of this report summarizes the results and conclusions for this study of conventional and advanced nuclear materials accounting systems applicable for both large (1500 MTHM/y) and small (210 MTHM/y) spent-fuel reprocessing facilities subject to international verification

  17. Next Generation Nuclear Plant Materials Selection and Qualification Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    R. Doug Hamelin; G. O. Hayner

    2004-11-01

    The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

  18. A remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States

    Science.gov (United States)

    Byrd, Kristin B.; Ballanti, Laurel; Thomas, Nathan; Nguyen, Dung; Holmquist, James R.; Simard, Marc; Windham-Myers, Lisamarie

    2018-05-01

    Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our objective was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). We developed the first calibration-grade, national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. Using the random forest machine learning algorithm, we tested whether imagery from multiple sensors, Sentinel-1 C-band synthetic aperture radar, Landsat, and the National Agriculture Imagery Program (NAIP), can improve model performance. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n = 409, RMSE = 310 g/m2, 10.3% normalized RMSE), successfully predicted biomass for a range of marsh plant functional types defined by height, leaf angle and growth form. Model results were improved by scaling field-measured biomass calibration data by NAIP-derived 30 m fraction green vegetation. With a mean plant carbon content of 44.1% (n = 1384, 95% C.I. = 43.99%-44.37%), we generated regional 30 m aboveground carbon density maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map. We applied a multivariate delta method to calculate uncertainties in regional carbon densities and stocks that considered standard error in map area, mean biomass and mean %C. Louisiana palustrine emergent marshes had the highest C density (2.67 ± 0.004 Mg/ha) of all regions, while San Francisco Bay brackish/saline marshes had the highest C density of all

  19. Obtaining of Grafted Planting Material at Some Romanian Tomatoes

    Directory of Open Access Journals (Sweden)

    Madalina Doltu

    2016-11-01

    Full Text Available The tomatoes have highest share in Romanian crops from protected spaces (greenhouses, solariums. The grafting is an agronomical technique that induces or improves some qualities of the tomato cultivars (resistance to soil diseases and pests, resistance to abiotic factors, quantity and quality of fruit production. The research was aimed the establishing of the technological stages for producing of scion and rootstock seedlings from L. esculentum species, to obtain compatible phenotype when is grafted. The observations of this research were conducted on Department of Horticultural Cultures in Protected Spaces from Horting Institute Bucharest. The experience was carry out on a cultivar collection consisting from L. esculentum plants: scions (‘Siriana’–F1 hybrid and ‘Buzău 1600’– variety, creations from the germplasm bank of Research and Development Station for Vegetable Growing Buzău Romania (VDRS Buzău and rootstock (‘Groundforce’–F1 hybrid. The plant diameters were correlated for a grafting by the annexation method, cutting at 45 degrees. The grafting was performed successfully. The technological steps have achieved phenotypic compatibility of the symbiotes when was the grafting by annexation. The technology for producing of scion and rootstock seedlings at these Romanian tomatoes (‘Siriana’ and ‘Buzău’ 1600 was established for the crops in protected spaces in south area of Romania.

  20. Incorporation of plant materials in the control of root pathogens in muskmelon

    Directory of Open Access Journals (Sweden)

    Andréa Mirne de Macêdo Dantas

    2013-12-01

    Full Text Available The effect of plant materials[Sunn Hemp (Crotalaria juncea, Castor Bean (Ricinus communis L., Cassava (Manihot esculenta Crantz and Neem (Azadirachta indica] and the times of incorporation of these materials in regards to the incidence of root rot in melon was evaluated in Ceará state, Brazil. The experiment was conducted in a commercial area with a history of root pathogens in cucurbitaceae. The randomized block design was used, in a 5 x 3 factorial arrangement with four repetitions. The treatments consisted of a combination of four plant materials (sunn hemp, castor beans, cassava and neem and a control with no soil incorporation of plant material and three times of incorporation (28, 21, and 14 days before the transplanting of the seedlings. Lower incidence of root rot was observed in practically all of the treatments where materials were incorporated at different times, with variation between the materials, corresponding with the time of incorporation, in relation to the soil without plant material. The pathogens isolated from the symptomatic muskmelon plants were Fusarium solani, Macrophomina phaseolina, Monosporascus cannonballus and Rhizoctonia solani, F. solani being encountered most frequently.

  1. Plant Materials are Sustainable Substrates Supporting New Technologies of Plant-Only-Based Culture Media for in vitro Culturing of the Plant Microbiota.

    Science.gov (United States)

    Mourad, Elhussein F; Sarhan, Mohamed S; Daanaa, Hassan-Sibroe A; Abdou, Mennatullah; Morsi, Ahmed T; Abdelfadeel, Mohamed R; Elsawey, Hend; Nemr, Rahma; El-Tahan, Mahmoud; Hamza, Mervat A; Abbas, Mohamed; Youssef, Hanan H; Abdelhadi, Abdelhadi A; Amer, Wafaa M; Fayez, Mohamed; Ruppel, Silke; Hegazi, Nabil A

    2018-03-29

    In order to improve the culturability and biomass production of rhizobacteria, we previously introduced plant-only-based culture media. We herein attempted to widen the scope of plant materials suitable for the preparation of plant-only-based culture media. We chemically analyzed the refuse of turfgrass, cactus, and clover. They were sufficiently rich to support good in vitro growth by rhizobacteria isolates representing Proteobacteria and Firmicutes. They were also adequate and efficient to produce a cell biomass in liquid batch cultures. These culture media were as sufficient as artificial culture media for the cultivation and recovery of the in situ rhizobacteria of barley (Hordeum murinum L.). Based on culture-dependent (CFU plate counting) and culture-independent analyses (qPCR), mowed turfgrass, in particular, supported the highest culturable population of barley endophytes, representing >16% of the total bacterial number quantified with qPCR. This accurately reflected the endophytic community composition, in terms of diversity indices (S', H', and D') based on PCR-DGGE, and clustered the plant culture media together with the qPCR root populations away from the artificial culture media. Despite the promiscuous nature of the plant materials tested to culture the plant microbiome, our results indicated that plant materials of a homologous nature to the tested host plant, at least at the family level, and/or of the same environment were more likely to be selected. Plant-only-based culture media require further refinements in order to provide selectivity for the in vitro growth of members of the plant microbiome, particularly difficult-to-culture bacteria. This will provide insights into their hidden roles in the environment and support future culturomic studies.

  2. Quality control of three main materials for civil construction of nuclear power plant

    International Nuclear Information System (INIS)

    Wang Feng

    2011-01-01

    The construction and operation of nuclear power plant is a systematic engineering. To ensure quality and safety of nuclear power plants, each work from design to operation can have certain impact on the quality and safety of the project. The quality of each related work shall be controlled. Starting from the quality control over raw materials for the civil construction of nuclear power plant, this article mainly analyzes how to control the quality and manage the three main materials of steel, concrete and modular parts in the civil construction. (author)

  3. Materials Investigation for Power Plants and Power Industry. Seminar

    International Nuclear Information System (INIS)

    Szteke, W.; Wasiak, J.; Bilous, W.; Przyborska, M.; Wagner, T.; Wojciechowska, J.; Zubowski, B.

    2005-01-01

    The Report is an assembly of the papers concerning the present state and perspectives of evolution of power industry in Poland, in this the development of atomic energy. The material and diagnostic problems occurring the exploitation of power station as well as gas pipelines are also discussed. The progress in the accommodation of the Polish technical prescriptions to the European law is also described. (authors)

  4. Radioactive materials released from nuclear power plants: Annual report, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Tichler, J.; Norden, K.; Congemi, J.

    1987-08-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1984 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1984 release data are summarized in tabular form. Data covering specific radionuclides are summarized.

  5. Radioactive materials released from nuclear power plants (1976)

    International Nuclear Information System (INIS)

    Decker, T.R.

    1978-11-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1976 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1976 release data are compared with previous year releases in tabular form. Data covering specific radionuclides are summarized

  6. Radioactive materials released from nuclear power plants. Annual report 1977

    International Nuclear Information System (INIS)

    Decker, T.R.

    1978-11-01

    Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1977 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1977 release data are compared with previous years releases in tabular form. Data covering specific radionuclides are summarized

  7. Surface treatments for material protection in nuclear power plants

    International Nuclear Information System (INIS)

    De, P.K.; Gadiyar, H.S.

    1987-01-01

    The paper highlights some of the surface treatment methods used in nuclear power plants to improve their performance. The corrosion resistance of zirconium alloys results from the formation of an adherent and protective film of ZrO 2 . Graphite coating of zircaloy-2 cladding minimizes the susceptibility to environmental induced cracking. Magnetite formation during the hot conditioning operation improves the corrosion resistance of carbon steel as well as controls the spread of radioactivity. It has been illustrated how the surface treatment is helpful for redistributing residual stress to facilitate conversion of tensile stress to compressive stress to mitigate failures due to stress corrosion and fatigue corrosion. Inhibitors and passivators can modify the surface conditions (in situ) of condenser tubes and cooling water systems. These aspects have been dealt in the text of the paper. (author). 8 refs., 3 figures

  8. Decomposition of macrophytes with uniformly C-14-labelled plant material

    International Nuclear Information System (INIS)

    Blake, G.

    1979-01-01

    Uniform labelling of plant such as macrophytes is relatively difficult to obtain. In my experiments I used samples of ripe stems and leaves of labelled maize which had grown for 110 days in a 14 Co 2 atmosphere. These samples were laid in a glass bowl for in situ and in vitro experiments under similar conditions of light and temperature. The aim of this study was to determine the shift of carbon through chosen compartments of a core (water, sediments, bacteria, invertebrates, atmosphere) and to understand the mineralization process with type of particulate organic matter. At low temperature (7 0 C), leaching of organic matter in the first 5 days increases bacteria activity, then radioactivity-incorporation level declines to the 60th day; CO 2 production was measured during experiments and was varying between 60% and 75% of used carbon of the tissue. (orig.) [de

  9. Aboveground Biomass and Litterfall Dynamics in Secondary Forest ...

    African Journals Online (AJOL)

    The differences in aboveground biomass, litterfall patterns and the seasonality of litterfall in three secondary forest fields aged 1, 5 and 10 years of age regenerating from degraded abandoned rubber plantation and a mature forest were studied in southern Nigeria. This is with a view to understanding the possibility of ...

  10. Estimates of forest canopy height and aboveground biomass using ICESat.

    Science.gov (United States)

    Michael A. Lefsky; David J. Harding; Michael Keller; Warren B. Cohen; Claudia C. Carabajal; Fernando Del Bom; Maria O. Hunter; Raimundo Jr. de Oliveira

    2005-01-01

    Exchange of carbon between forests and the atmosphere is a vital component of the global carbon cycle. Satellite laser altimetry has a unique capability for estimating forest canopy height, which has a direct and increasingly well understood relationship to aboveground carbon storage. While the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land...

  11. Inventory of Tank Farm equipment stored or abandoned aboveground

    International Nuclear Information System (INIS)

    Hines, S.C.; Lakes, M.E.

    1994-01-01

    This document provides an inventory of Tank Farm equipment stored or abandoned aboveground and potentially subject to regulation. This inventory was conducted in part to ensure that Westinghouse Hanford Company (WHC) does not violate dangerous waste laws concerning storage of potentially contaminated equipment/debris that has been in contact with dangerous waste. The report identifies areas inventoried and provides photographs of equipment

  12. Structural materials requirements for in-vessel components of fusion power plants

    International Nuclear Information System (INIS)

    Schaaf, B. van der

    2000-01-01

    The economic production of fusion energy is determined by principal choices such as using magnetic plasma confinement or generating inertial fusion energy. The first generation power plants will use deuterium and tritium mixtures as fuel, producing large amounts of highly energetic neutrons resulting in radiation damage in materials. In the far future the advanced fuels, 3 He or 11 B, determine power plant designs with less radiation damage than in the first generation. The first generation power plants design must anticipate radiation damage. Solid sacrificing armour or liquid layers could limit component replacements costs to economic levels. There is more than radiation damage resistance to determine the successful application of structural materials. High endurance against cyclic loading is a prominent requirement, both for magnetic and inertial fusion energy power plants. For high efficiency and compactness of the plant, elevated temperature behaviour should be attractive. Safety and environmental requirements demand that materials have low activation potential and little toxic effects under both normal and accident conditions. The long-term contenders for fusion power plant components near the plasma are materials in the range from innovative steels, such as reduced activation ferritic martensitic steels, to highly advanced ceramic composites based on silicon carbide, and chromium alloys. The steels follow an evolutionary path to basic plant efficiencies. The competition on the energy market in the middle of the next century might necessitate the riskier but more rewarding development of SiCSiC composites or chromium alloys

  13. Effects of different drying processes on the concentrations of metals and metalloids in plant materials

    International Nuclear Information System (INIS)

    Anawar, H.M.; Canha, N.; Freitas, M.C; Santa Regina, I.; Garcia-Sanchez, A.

    2011-01-01

    The drying process of fresh plant materials may affect the porous structure, dehydration and a number of quality characteristics of these materials. Therefore, this study has investigated the effect of different drying processes on the variation of metal and metalloid concentrations in the dried plant materials. Seven varieties of native plant species collected from Sao Domingos mine were analyzed by instrumental neutron activation analysis (INAA) to investigate the effects of freeze-drying (FD), ambient air-drying (AAD) and oven-drying (OD) process on the concentrations of metals and metalloids in the plant biomass. Comparison of ambient air-dried, oven-dried and freeze-dried preparations allows a phenomenological description of the dehydration artefacts. In the quantitative analysis of metals and metalloids, FD and OD plant samples show the higher concentrations of metals and metalloids when compared to those in the AAD plant biomass. The freeze-drying process is comparatively reliable for determination of metals and metalloids concentrations in plant materials. (author)

  14. Planting on the slope of Yangjiang nuclear power plant by spraying combined materials

    International Nuclear Information System (INIS)

    Li Ning

    2010-01-01

    During the development and construction of nuclear power projects, in order to prevent ecological degradation and soil erosion of slope hazards, taking practical measures in the works or plant is particularly important. through the main high slope green field application of Yangjiang nuclear power plant, introducing mixed vegetation spraying techniques and characteristics of the construction process, for similar projects it is also a good guide. (author)

  15. Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation?

    NARCIS (Netherlands)

    Wijk, van M.T.; Williams, M.; Gough, L.; Hobbie, S.E.; Shaver, G.R.

    2003-01-01

    1 A field-experiment was used to determine how plant species might retain dominance in an arctic ecosystem receiving added nutrients. We both measured and modelled the above-ground and below-ground biomass allocation and root morphology of non-acidic tussock tundra near Toolik Lake, Alaska, after 4

  16. Contribution to the studies on the mineral content of plant material through radioactivation analysis

    International Nuclear Information System (INIS)

    Fourcy, A.

    1968-03-01

    Radioactivation analysis is by its great sensibility or its rapidity quite helpful in plant biology and agronomy. Specific composition of plants and results to obtain in biological experimentation have needed a practical research on analytical methods for plant materials, using for radioactivation swimming-pool reactor neutrons and 14 MeV neutrons from a generator. Dosage process for 25 elements is exposed, taking account of the interest of the analysis for each element, the average amount occurring in plants and the result obtained. Many applications are developed, concerning nutrition physiology, genetics, parasitology, toxicology, control of manufactured agricultural and pharmaceutical products industrial and pesticides residues, ecology, radioecology and biochemistry. (author) [fr

  17. Liquid scintillation counting of calcium-45 in plant and soil material

    International Nuclear Information System (INIS)

    Waller, S.S.; Dodd, J.D.

    1977-01-01

    The recovery efficiencies of 45 Ca, for plant material using dry ashing with HCL as the extractant, and for soils using column extraction with MgCl 2 as the extractant, have been determined. The extraction and detection procedures, using available scintillation solvent systems, are given and show a combination of a high counting efficiency with high recovery efficiencies. The extraction procedures are simple, involving minimal operator time, and allow simultaneous 45 Ca determination in both plant and soil material. Both extraction procedures exhibit good reproducibility over a wide range of specific activities while being relatively insensitive to quenching and carrier calcium normally encountered in plant and soil material. These procedures are particularly useful in ecological studies requiring the examination of a large number of plant and/or soil samples over a wide range of radioactive concentrations. (U.K.)

  18. Development of in-plant reference material for composition of chinese cabbage with certified selenium content

    Directory of Open Access Journals (Sweden)

    D. A. Chupahin

    2014-01-01

    Full Text Available In-plant reference material for composition of Chinese cabbage with certified selenium content was developed for accuracy control of the results of selenium determination and within-laboratory quality control of analytical work in the analysis of food raw material.

  19. [Design of plant leaf bionic camouflage materials based on spectral analysis].

    Science.gov (United States)

    Yang, Yu-Jie; Liu, Zhi-Ming; Hu, Bi-Ru; Wu, Wen-Jian

    2011-06-01

    The influence of structure parameters and contents of plant leaves on their reflectance spectra was analyzed using the PROSPECT model. The result showed that the bionic camouflage materials should be provided with coarse surface and spongy inner structure, the refractive index of main content must be close to that of plant leaves, the contents of materials should contain chlorophyll and water, and the content of C-H bond must be strictly controlled. Based on the analysis above, a novel camouflage material, which was constituted by coarse transparent waterproof surface, chlorophyll, water and spongy material, was designed. The result of verifiable experiment showed that the reflectance spectra of camouflage material exhibited the same characteristics as those of plant leaves. The similarity coefficient of reflectance spectrum of the camouflage material and camphor leaves was 0.988 1, and the characteristics of camouflage material did not change after sunlight treatment for three months. The bionic camouflage material, who exhibited a high spectral similarity with plant leaves and a good weather resistance, will be an available method for reconnaissance of hyperspectral imaging hopefully.

  20. Plant and soil pollution caused by lead residues of petrol engines

    Energy Technology Data Exchange (ETDEWEB)

    Horak, V O; Huber, I

    1974-01-01

    The lead content of plants near a major, well-traveled road were measured. Vegetative aboveground parts of plants contained-depending on the distance from the road-3-220 ppm lead/dry matter. Remnants of dried plants contained up to 539 ppm of lead in early spring. Lead content of plants depended on the sampling date, intensity of growth, and morphology of the material. The lead content decreases with the distance from the roads. In soils, amounts of 12-30 ppm of lead were found far from the road and 27-290 ppm of lead were detected near the road. (in german) (3 graphs, 26 references, 8 tables )

  1. Losses of the elements during dry ashing of plant materials

    International Nuclear Information System (INIS)

    Nonaka, Nobuhiro; Higuchi, Hideo; Hamaguchi, Hiroshi; Tomura, Kenji.

    1981-01-01

    Dry ashing technique has been considered to cause potential errors due to loss of elements by volatilisation or by reaction with the vessel. To obtain an overall view of elemental loss, the dry ashing was applied to the standard reference materials such as Orchard leaves(NBS) and Bamboo leaves. The ashing condition was as follows; The temperature varied from 200 0 C to 800 0 C by stepwise heating and the duration of heating at each temperature was 24 h. Concentrations of 25 elements in a sample were determined by means of atomic absorption spectrometry and neutron activation analysis using a Ge(Li) detector. The results obtained were as follows; (1) The losses for alkali elements were dependent on crucible materials and sample species. The losses increased with temperature and they were serious when a silica dish was used. (2) The loss for mercury was found above 110 0 C and simply increased with temperature. On the other hand, chlorine, bromine, selenium and chromium showed complicated patterns in which the first losses occurred at 200 0 C, no additional losses being observed at each following step of heating between 200 0 C and 450 0 C, and they increased again above 500 0 C. (3) The losses for arsenic and antimony occurred at 200 0 C, but any losses could not be observed above 200 0 C. (4) No losses were detected over the temperature range studied for alkaline earths, rare earths, vanadium, manganese, iron, cobalt, zinc and aluminum. (author)

  2. Innovative plant protection means prepared natural raw materials

    Directory of Open Access Journals (Sweden)

    Omar Lomtadze

    2018-03-01

    Full Text Available Were developed new compositions preparation against pests and diseases of plant: Insekto-acaricide “Antipest”, Fungicide “Antifungal”, a drug against of overwintering pests “Proinsekt” and nutritious preparation “Si-humate”.The effectiveness of trial oil-emulsion preparation “Proinsect” was assessed by the spread of pests - San Jose scale (Diaspidiotus perniciosus and mountain ash bentwing (Leucoptera scitella Costa on treated trees. According to field testing, the efficiency of preparation “Proinsect” exceeds the effectiveness of one of the best imported oily preparation “Sipcomol”, which was selected as a reference.Joint content in composition of synthetic pyretroids with turpentine oil, supposedly synergism takes place (turpentines cause prolonged action of synthetic pyrethroid. In working solutions, obtained from turpentine oil containing composition concentration of pyretroid is low, but it is enough during the whole period of pest development cycle. According to the comparative field testing of “Antipest” and imported preparations, against for fruits pests their efficiency is at almost one level, despite the low content (by 30–40% of pyrethroid (cypermethrin in “Antipest”.The developed phosphate preparation “Antifungal” is a little bit less effective compared to Bordeaux mixture. If well take into account significant decrease of intensity of disease spread and development after the action of phosphate preparation, also very low toxicity zinc hydro- and dihydrophosphates compared to the blue vitriol (Copper(II sulfate, the developed fungicide preparation can be successfully used instead of traditional Bordeaux mixture and in particular against the peach leaf curl.According to the results of field trials, effect, of developed silicon containing humic nutrient composition -“Si-humate” on experimental 2-year-old seedlings apples and peach is on the average 15–17% better than the control ones in

  3. The use of ferritic materials in light water reactor power plants

    International Nuclear Information System (INIS)

    Marston, T.V.

    1984-01-01

    This paper reviews the use of ferritic materials in LWR power plant components. The two principal types of LWR systems, the boiling water reactor (BWR) and the pressurized water reactor (PWR) are described. The evolution of the construction materials, including plates and forgings, is presented. The fabrication process for both reactors constructed with plates and forgings are described in detail. Typical mechanical properties of the reactor vessel materials are presented. Finally, one critical issue radiation embrittlement dealing with ferritic materials is discussed. This has been one of the major issues regarding the use of ferritic material in the construction of LWR pressure vessels

  4. Plant waste materials from restaurants as the adsorbents for dyes

    Directory of Open Access Journals (Sweden)

    Pavlović Marija D.

    2015-01-01

    Full Text Available This paper has demonstrated the valorization of inexpensive and readily available restaurant waste containing most consumed food and beverage residues as adsorbents for methylene blue dye. Coffee, tea, lettuce and citrus waste have been utilized without any pre-treatment, thus the adsorption capacities and dye removal efficiency were determined. Coffee waste showed highest adsorbent capacity, followed by tea, lettuce and citrus waste. The dye removal was more effective as dye concentration increases from 5 up to 60 mg/L. The favorable results obtained for lettuce waste have been especially encouraged, as this material has not been commonly employed for sorption purposes. Equilibrium data fitted very well in a Freundlich isotherm model, whereas pseudo-second-order kinetic model describes the process behavior. Restaurant waste performed rapid dye removal at no cost, so it can be adopted and widely used in industries for contaminated water treatment.

  5. Nuclear material control and accountancy in a radiochemical plant

    International Nuclear Information System (INIS)

    Crawford, J. M.

    1999-01-01

    The measurement systems in use at Savannah River Site, SRS, to determine material balance around dissolution of fuel, separation and purification of actinides to a nitrate product are described. To ensure that volume accuracy's are as expected, SRS has implemented a volumetric measurement control program to control errors and to detect anomalies. The program consists of periodic instrument calibrations, comparison of in-tank density measurements. An analytical quality control program is in place at SRS to provide assurance that analysis are reliable and to estimate and monitor method performance. Checks include the analysis of standard prior to the use of each method each shift the method is used. At SRS cumulative inventory difference is compared to the combined errors for the balance. The results from current evaluations for uranium and plutonium balances are presented [ru

  6. Irradiation creep of candidate materials for advanced nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J., E-mail: jiachao.chen@psi.ch; Jung, P.; Hoffelner, W.

    2013-10-15

    In the present paper, irradiation creep results of an intermetallic TiAl alloy and two ferritic oxide dispersion strengthened (ODS) steels are summarized. In situ irradiation creep measurements were performed using homogeneous implantation with α- and p-particles to maximum doses of 0.8 dpa at displacement damage rates of 2–8 × 10{sup −6} dpa/s. The strains of miniaturized flat dog-bone specimens were monitored under uniaxial tensile stresses ranging from 20 to 400 MPa at temperatures of 573, 673 and 773 K, respectively. The effects of material composition, ODS particle size, and bombarding particle on the irradiation creep compliance was studied and results are compared to literature data. Evolution of microstructure during helium implantation was investigated in detail by TEM and is discussed with respect to irradiation creep models.

  7. Aspects of cleaning environmental materials for multi-element analysis, e.g. plant samples

    International Nuclear Information System (INIS)

    Markert, B.

    1992-01-01

    Cleaning of samples is often the first step in the entire procedure of sample preparation in environmental trace element research. The question must generally be raised of whether cleaning is meaningful before chemical investigations with plant material (e.g. for the determination of transfer factors in the soil/plant system) or not (e.g. for food chain analysis in the plant/animal system). The most varied cleaning procedures for plant samples are currently available ranging from dry and wet wiping of the leaf or needle surface up to the complete removal of the cuticule with the aid of chlorofom. There is at present no standardized cleaning procedure for plant samples so that it is frequently not possible to compare analytical data from different working groups studying the same plant species. (orig.)

  8. The nuclear materials control and accountability internal audit program at the Oak Ridge Y-12 plant

    International Nuclear Information System (INIS)

    Lewis, T.J.

    1987-01-01

    The internal audit program of the Nuclear Material Control and Accountability (NMCandA) Department at the Oak Ridge Y-12 Plant, through inventory-verification audits, inventory-observation audits, procedures audits, and records audits, evaluates the adequacy of material accounting and control systems and procedures throughout the Plant; appraises and verifies the accuracy and reliability of accountability records and reports; assures the consistent application of generally accepted accounting principles in accounting for nuclear materials; and assures compliance with the Department of Energy (DOE) and NMCandA procedures and requirements. The internal audit program has significantly strengthened the control and accountability of nuclear materials through improving the system of internal control over nuclear materials, increasing the awareness of materials control and accountability concerns within the Plant's material balance areas (MBAs), strengthening the existence of audit trails within the overall accounting system for nuclear materials, improving the accuracy and timeliness of data submitted to the nuclear materials accountability system, auditing the NMCandA accounting system to ensure its accuracy and reliability, and ensuring that all components of that system (general ledgers, subsidiary ledgers, inventory listings, etc.) are in agreement among themselves

  9. Next Generation Nuclear Plant Materials Research and Development Program Plan, Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    G.O. Hayner; R.L. Bratton; R.E. Mizia; W.E. Windes; W.R. Corwin; T.D. Burchell; C.E. Duty; Y. Katoh; J.W. Klett; T.E. McGreevy; R.K. Nanstad; W. Ren; P.L. Rittenhouse; L.L. Snead; R.W. Swindeman; D.F. Wlson

    2007-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 950°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Some of the general and administrative aspects of the R&D Plan include: • Expand American Society of Mechanical Engineers (ASME) Codes and American Society for Testing and Materials (ASTM) Standards in support of the NGNP Materials R&D Program. • Define and develop inspection needs and the procedures for those inspections. • Support selected university materials related R&D activities that would be of direct benefit to the NGNP Project. • Support international materials related collaboration activities through the DOE sponsored Generation IV International Forum (GIF) Materials and Components (M&C) Project Management Board (PMB). • Support document review activities through the Materials Review Committee (MRC) or other suitable forum.

  10. The material control and accounting system model development in the Radiochemical plant of Siberian Chemical Combine (SChC)

    International Nuclear Information System (INIS)

    Kozyrev, A.S.; Purygin, V.Ya.; Skuratov, V.A.; Lapotkov, A.A.

    1999-01-01

    The nuclear material (NM) control and accounting computerized system is designed to automatically account NM reception, movement and storage at the Radiochemical Plant. The objective of this system development is to provide a constant surveillance over the process material movement, to improve their accountability and administrative work, to upgrade the plant protection against possible NM thefts, stealing and diversion, to rule out any casual errors of operators, to improve the timeliness and significance (reliability) of information about nuclear materials. The NM control and accounting system at the Radiochemical Plant should be based on the computerized network. It must keep track of all the material movements in each Material Balance Areas: material receipt from other plant; material local movement within the plant; material shipment to other plants; generation of required documents about NM movements and its accounting [ru

  11. Development of the system for the estimation of materials flow in pyrochemical reprocessing plant. Characteristic evaluation of the oxide electrowinning plant

    International Nuclear Information System (INIS)

    Okamura, Nobuo; Tozawa, Katuhiro; Sato, Koji

    2002-07-01

    The operation of the plant with the non-aqueous reprocessing technology depends on the materials handling equipment closely. Because the value of decontamination factor of the products in the plant is low, treatment of nuclear materials requires remote operation technology. So the system for the evaluation of materials flow in the plant was built to evaluate the production ability of the plant and to check out the plant operation from the viewpoint of materials flow. The system is only based on information of the treatment abilities of materials handling machines and process installations and the arrangement of process installations in the reprocessing cell that influences a way to operate materials handling machines intensity. Therefore the system can be used to estimate the characteristics of non-aqueous plants that are not in detail design stage. The amount of production and the characteristics of the oxide electrowinning plant (operation term 200days/year, plant capacity 50tHM/year in design) designed in Feasibility Study Phase1 were estimated using the system. The results show that the practical amount of production of the plant design is about 88% of the designed value. To increase the amount of production, it is more useful to speed up materials handling machine time than to install new installation or to give priority to conduct bottleneck processes. It is because materials handling influences the production ability of the plant deeply. (author)

  12. Consequences of long-term severe industrial pollution for aboveground carbon and nitrogen pools in northern taiga forests at local and regional scales.

    Science.gov (United States)

    Manninen, Sirkku; Zverev, Vitali; Bergman, Igor; Kozlov, Mikhail V

    2015-12-01

    Boreal coniferous forests act as an important sink for atmospheric carbon dioxide. The overall tree carbon (C) sink in the forests of Europe has increased during the past decades, especially due to management and elevated nitrogen (N) deposition; however, industrial atmospheric pollution, primarily sulphur dioxide and heavy metals, still negatively affect forest biomass production at different spatial scales. We report local and regional changes in forest aboveground biomass, C and N concentrations in plant tissues, and C and N pools caused by long-term atmospheric emissions from a large point source, the nickel-copper smelter in Monchegorsk, in north-western Russia. An increase in pollution load (assessed as Cu concentration in forest litter) caused C to increase in foliage but C remained unchanged in wood, while N decreased in foliage and increased in wood, demonstrating strong effects of pollution on resource translocation between green and woody tissues. The aboveground C and N pools were primarily governed by plant biomass, which strongly decreased with an increase in pollution load. In our study sites (located 1.6-39.7 km from the smelter) living aboveground plant biomass was 76 to 4888 gm(-2), and C and N pools ranged 35-2333 g C m(-2) and 0.5-35.1 g N m(-2), respectively. We estimate that the aboveground plant biomass is reduced due to chronic exposure to industrial air pollution over an area of about 107,200 km2, and the total (aboveground and belowground) loss of phytomass C stock amounts to 4.24×10(13) g C. Our results emphasize the need to account for the overall impact of industrial polluters on ecosystem C and N pools when assessing the C and N dynamics in northern boreal forests because of the marked long-term negative effects of their emissions on structure and productivity of plant communities. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Authentication of nuclear-material assays made with in-plant instruments

    International Nuclear Information System (INIS)

    Hatcher, C.R.; Hsue, S.T.; Russo, P.A.

    1982-01-01

    This paper develops a general approach for International Atomic Energy Agency (IAEA) authentication of nuclear material assays made with in-plant instruments under facility operator control. The IAEA is evaluating the use of in-plant instruments as a part of international safeguards at large bulk-handling facilities, such as reprocessing plants, fuel fabrication plants, and enrichment plants. One of the major technical problems associated with IAEA use of data from in-plant instruments is the need to show that there has been no tampering with the measurements. Two fundamentally different methods are discussed that can be used by IAEA inspectors to independently verify (or authenticate) measurements made with in-plant instruments. Method 1, called external authentication, uses a protected IAEA measurement technique to compare in-plant instrument results with IAEA results. Method 2, called internal authentication, uses protected IAEA standards, known physical constants, and special test procedures to determine the performance characteristics of the in-plant instrument. The importance of measurement control programs to detect normally expected instrument failures and procedural errors is also addressed. The paper concludes with a brief discussion of factors that should be considered by the designers of new in-plant instruments in order to facilitate IAEA authentication procedures

  14. Development and modification of materials applied for reprocessing plant

    International Nuclear Information System (INIS)

    Kiuchi, K.; Yamanouchi, N.; Kikuchi, M.; Kuriki, Y.; Tamura, M.

    1991-01-01

    To attain sufficient reliability of materials for chemical reaction vessels used in nitric acid environments of reprocessing process, the optimization of R-304ULC steels and developments of alternative alloys against the trans-passive corrosion were made. Following composition adjustment and the thermomechanical treatment so-called SAR were selected in the former; to control Cr and Ni contents upper limits of type 304L standard, to exclude minor elements within engineeringly available, to control Si contents 0.1-0.2 wt%. Plates and pipes of the optimized R-304ULC showed a good corrosion resistance both results of long time immersion in nitric acid production process and the evaluation of tunneling corrosion resistance, comparing with commercial heats. 30%Cr Ni base alloy added sufficient amounts of W and Si was selected in the latter for attaining sufficient corrosion resistances in a wide range of passive to trans-passive. It is concluded that both inhibition of anodic- and cathodic-reactions are required to attain sufficient corrosion resistances in highly oxidizing environments like boiling nitric acid solutions. (author)

  15. Project Plan For Remove Special Nuclear Material (SNM) from Plutonium Finishing Plant (PFP) Project

    International Nuclear Information System (INIS)

    BARTLETT, W.D.

    1999-01-01

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Remove SNM Materials. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP), HNF-3617. This project plan is the top-level definitive project management document for the PFP Remove SNM Materials project. It specifies the technical, schedule, requirements and the cost baseline to manage the execution of the Remove SNM Materials project. Any deviation to the document must be authorized through the appropriate change control process. The Remove SNM Materials project provides the necessary support and controls required for DOE-HQ, DOE-RL, BWHC, and other DOE Complex Contractors the path forward to negotiate shipped/receiver agreements, schedule shipments, and transfer material out of PFP to enable final deactivation

  16. The contribution of woody plant materials on the several conditions in a space environment

    Science.gov (United States)

    Tomita-Yokotani, Kaori; Baba, Keiichi; Suzuki, Toshisada; Kimura, Shunta; Sato, Seigo; Katoh, Hiroshi; Abe, Yusuke; Katayama, Takeshi

    Woody plant materials have several utilization elements in our habitation environment on earth. The studies of woody plants under a space-environment in the vegetable kingdom have a high contribution to the study of various and exotic environmental responses, too. Woody plants can produce an excess oxygen, woody materials for the living cabin, and provide a biomass by cultivating crops and other species of creatures. Tree material would become to be a tool in closed bio-ecosystems such as an environment in a space. We named the trees used as material for the experiment related to space environments “CosmoBon”, small tree bonsai. Japanese cherry tree, “Sakura”, is famous and lovely tree in Japan. One species of “Sakura”, “Mamezakura, Prunus incisa”, is not only lovely tree species, but also suitable tree for the model tree of our purpose. The species of Prunus incisa is originally grown in volcano environment. That species of Sakura is originally grown on Mt. Fuji aria, oligotrophic place. We will try to build the best utilization usage of woody plant under the space environment by “Mamezakura” as a model tree. Here, we will show the importance of uniformity of materials when we will use the tree materials in a space environment. We will also discuss that tree has a high possibility of utilization under the space environments by using our several results related to this research.

  17. Proceedings of the Tripartite Seminar on Nuclear Material Accounting and Control at Radiochemical Plants

    International Nuclear Information System (INIS)

    1999-01-01

    The problems of creation and operation of nuclear materials (NM) control and accounting systems and their components at radiochemical plants were discussed in seminar during November 2-6 of 1998. There were 63 Russian and 25 foreign participants in seminar. The seminar programme includes following sessions and articles: the aspects of State NM control and accountancy; NM control and accounting in radiochemical plants and at separate stages of reprocessing of spent nuclear fuel and irradiated fuel elements of commercial reactors; NM control and accountancy in storage facilities of radiochemical plants; NM control and accounting computerization, material balance assessment, preparation of reports; qualitative and quantitative measurements in NM control and accounting at radiochemical plants destructive analysis techniques [ru

  18. Future Applications in Quantitative Isotopic Tracing using Homogeneously Carbon-13 Labelled Plant Material

    International Nuclear Information System (INIS)

    Slaets, Johanna I.F.; Chen, Janet; Resch, Christian; Mayr, Leopold; Weltin, Georg; Heiling, Maria; Gruber, Roman; Dercon, Gerd

    2017-01-01

    Carbon-13 ("1"3C) and nitrogen-15 ("1"5N) labelled plant material is increasingly being used to trace the fate of plant-derived C and N into the atmosphere, soil, water and organisms in many studies, including those investigating the potential of soils to store greenhouse gases belowground. Storage of C in soils can offset and even reduce atmospheric levels of the greenhouse gas, CO_2, and interest in such studies is growing due to problems associated with anthropogenic greenhouse gas emissions impacting climate change. Reduction of N loss in soils is also of great interest, as it reduces release of the greenhouse gas, N_2O, into the atmosphere. However, accurate quantitative tracing of plant-derived C and N in such research is only possible if plant material is labelled both homogeneously and in sufficient quantities.

  19. Laser-induced breakdown spectroscopy for analysis of plant materials: A review

    International Nuclear Information System (INIS)

    Santos, Dário; Nunes, Lidiane Cristina; Gustinelli Arantes de Carvalho, Gabriel; Gomes, Marcos da Silva; Souza, Paulino Florêncio de; Leme, Flavio de Oliveira; Gustavo Cofani dos Santos, Luis; Krug, Francisco José

    2012-01-01

    Developments and contributions of laser-induced breakdown spectroscopy (LIBS) for the determination of elements in plant materials are reviewed. Several applications where the solid samples are interrogated by simply focusing the laser pulses directly onto a fresh or dried surface of leaves, roots, fruits, vegetables, wood and pollen are presented. For quantitative purposes aiming at plant nutrition diagnosis, the test sample presentation in the form of pressed pellets, prepared from clean, dried and properly ground/homogenized leaves, and the use of univariate or multivariate calibration strategies are revisited. - Highlights: ► Qualitative and quantitative LIBS analysis of plant materials are reviewed. ► Fresh or dried leaves, fruits, roots and pellets can be easily interrogated by LIBS. ► LIBS is a powerful tool for plant nutrition diagnosis and elemental mapping. ► Intended LIBS users will find a survey of applications in a comprehensive table.

  20. An analysis of the development and application of plant protection UAV based on advanced materials

    Science.gov (United States)

    Huang, Yuan-hui; Wei, Neng; Quan, Zhi-cheng; Huang, Yu-rong

    2018-06-01

    The development and application of a number of advanced materials plant protection unmanned aerial vehicle (UAV) is an important part of the comprehensive production of agricultural modernization. The paper is taken as an example of Guangxi No. 1 agricultural service aviation science and Technology Co., Ltd. This paper introduces the internal and external environment of the research and development of the plant protection UAV for the advanced materials of the company. The external environment focuses on the role of the plant protection UAV on the development of the agricultural mechanization; the internal environment focuses on the advantages of the UAV in technology research, market promotion and application, which is imperative. Finally, according to the background of the whole industry, we put forward some suggestions for the developing opportunities and challenges faced by plant protection UAV, hoping to proving some ideas for operators, experts and scholars engaged in agricultural industry.

  1. 21 CFR 1308.35 - Exemption of certain cannabis plant material, and products made therefrom, that contain...

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Exemption of certain cannabis plant material, and... ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE SCHEDULES OF CONTROLLED SUBSTANCES Exempt Cannabis Plant... cannabis plant material, and products made therefrom, that contain tetrahydrocannabinols. (a) Any processed...

  2. MS-Based Metabolite Profiling of Aboveground and Root Components of Zingiber mioga and Officinale.

    Science.gov (United States)

    Han, Ji Soo; Lee, Sunmin; Kim, Hyang Yeon; Lee, Choong Hwan

    2015-09-03

    Zingiber species are members of the Zingiberaceae family, and are widely used for medicinal and food purposes. In this study aboveground and root parts of Zingiber mioga and Zingiber officinale were subjected to metabolite profiling by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) in order to characterize them by species and parts and also to measure bioactivities. Both primary and secondary metabolites showed clear discrimination in the PCA score plot and PLS-DA by species and parts. Tetrahydrocurcumin, diarylheptanoid, 8-gingerol, and 8-paradol were discriminating metabolites between Z. mioga and Z. officinale that were present in different quantities. Eleven flavonoids, six amino acids, six organic acids, four fatty acids, and gingerenone A were higher in the aboveground parts than the root parts. Antioxidant activities were measured and were highest in the root part of Z. officinale. The relatively high contents of tetrahydrocurcumin, diarylheptanoid, and galanganol C in the root part of Z. officinale showed highly positive correlation with bioactivities based on correlation assay. On the basis of these results, we can suggest different usages of structurally different parts of Zingiber species as food plants.

  3. MS-Based Metabolite Profiling of Aboveground and Root Components of Zingiber mioga and Officinale

    Directory of Open Access Journals (Sweden)

    Ji Soo Han

    2015-09-01

    Full Text Available Zingiber species are members of the Zingiberaceae family, and are widely used for medicinal and food purposes. In this study aboveground and root parts of Zingiber mioga and Zingiber officinale were subjected to metabolite profiling by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS in order to characterize them by species and parts and also to measure bioactivities. Both primary and secondary metabolites showed clear discrimination in the PCA score plot and PLS-DA by species and parts. Tetrahydrocurcumin, diarylheptanoid, 8-gingerol, and 8-paradol were discriminating metabolites between Z. mioga and Z. officinale that were present in different quantities. Eleven flavonoids, six amino acids, six organic acids, four fatty acids, and gingerenone A were higher in the aboveground parts than the root parts. Antioxidant activities were measured and were highest in the root part of Z. officinale. The relatively high contents of tetrahydrocurcumin, diarylheptanoid, and galanganol C in the root part of Z. officinale showed highly positive correlation with bioactivities based on correlation assay. On the basis of these results, we can suggest different usages of structurally different parts of Zingiber species as food plants.

  4. Nuclear materials accountancy in an industrial MOX fuel fabrication plant safeguards versus commercial aspects

    International Nuclear Information System (INIS)

    Canck, H. de; Ingels, R.; Lefevre, R.

    1991-01-01

    In a modern MOX Fuel Fabrication Plant, with a large throughput of nuclear materials, computerized real-time accountancy systems are applied. Following regulations and prescriptions imposed by the Inspectorates EURATOM-IAEA, the State and also by internal plant safety rules, the accountancy is kept in plutonium element, uranium element and 235 U for enriched uranium. In practice, Safeguards Authorities are concerned with quantities of the element (U tot , Pu tot ) and to some extent with its fissile content. Custom Authorities are for historical reasons, interested in fissile quantities (U fiss , Pu fiss ) whereas owners wish to recover the energetic value of their material (Pu equivalent). Balancing the accountancy simultaneously in all these related but not proportional units is a new problem in a MOX-plant where pool accountancy is applied. This paper indicates possible ways to solve the balancing problem created by these different units used for expressing nuclear material quantities

  5. Antifoaming materials in G.S. (Girlder sulfide) heavy water plants. Thermical stability. Pt. 2

    International Nuclear Information System (INIS)

    Delfino, C.A.

    1986-01-01

    In Girlder sulfide (G.S.) heavy water plants hydrogen sulfide-water systems are inherentely foaming, so the adding of antifoaming materials is of great importance. These may be of high volatility, pyrolizable or chemically unstable in plant operation conditions (water and hydrogen sulfide at 2 MPa, up to 230 deg C). About twenty commercial surfactants were studied from the point of view of their thermical stability. (Author) [es

  6. Nondestructive assay technology and in-plant dynamic materials control: ''DYMAC''

    International Nuclear Information System (INIS)

    Keppin, G.R.; Maraman, W.J.

    1975-01-01

    An advanced system of in-plant materials control known as DYMAC, Dynamic Materials Control, is being developed. This major safeguards R and D effort merges state-of-the-art nondestructive assay instrumentation and computer technology, with the clear objective of demonstrating a workable, cost-effective system of stringent, real time control of nuclear materials in a modern plutonium processing facility. Emphasis is placed on developing practical solutions to generic problems of materials measurement and control, so that resulting safeguards techniques and instrumentation will have widespread applicability throughout the nuclear community. (auth)

  7. Development of conventional fatigue database for structure materials of nuclear power plant

    International Nuclear Information System (INIS)

    Yang Bing

    2002-01-01

    Management system of the conventional fatigue database for structure materials of nuclear power plant (NPP) is developed. The database included the parameters of design curves, i.e., the stress-life, survival probability-stress-life, strain-life, survival probability-strain-life, stress-strain and survival probability-stress-strain curves, and corresponding information of materials and testing conditions. Two ways, by materials name or by the inter-bounds of material mechanical properties, are constructed to search the database. From the searched information it can be conveniently performed of the conventional fatigue design analysis and reliability assessment of structures

  8. Plant-inspired adaptive structures and materials for morphing and actuation: a review.

    Science.gov (United States)

    Li, Suyi; Wang, K W

    2016-12-20

    Plants exhibit a variety of reversible motions, from the slow opening of pine cones to the impulsive closing of Venus flytrap leaves. These motions are achieved without muscles and they have inspired a wide spectrum of engineered materials and structures. This review summarizes the recent developments of plant-inspired adaptive structures and materials for morphing and actuation. We begin with a brief overview of the actuation strategies and physiological features associated to these plant movements, showing that different combinations of these strategies and features can lead to motions with different deformation characteristics and response speeds. Then we offer a comprehensive survey of the plant-inspired morphing and actuation systems, including pressurized cellular structures, osmotic actuation, anisotropic hygroscopic materials, and bistable systems for rapid movements. Although these engineered systems are vastly different in terms of their size scales and intended applications, their working principles are all related to the actuation strategies and physiological features in plants. This review is to promote future cross-disciplinary studies between plant biology and engineering, which can foster new solutions for many applications such as morphing airframes, soft robotics and kinetic architectures.

  9. The adhesion characteristics of protective coating materials for the containment structure in nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Sang-Kook; Shin, Jae-Chul

    2003-01-01

    Protective coating materials used in the containment structures should be durable for the designed 30 to 40 year lifetime of a nuclear power plant. At the present, these materials have not yet been developed. Therefore it is very important to keep the durability of the protective coating materials through persistent maintenance, and in order to achieve this, understanding the adhesion characteristics of the coating materials is of utmost importance. Therefore, this study attempts to find any methods for durability maintenance of these protective coating materials. To accomplish these aims, this study applied an experimental deterioration environment condition relevant to Loss of Coolant Accident (LOCA) and Main Steam Line Break (MSLB), categorized as of Design Basis Accident (DBA), onto steel liner plate specimens covered with protective coating materials. Adhesion tests were performed on these deteriorated coating materials to characterize the physical properties and through these tests, the quantitative adhesion characteristics according to the history of deterioration environment were found

  10. Towards a more consolidated approach to material data management in life assessment of power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, A.; Maile, K. [MPA Stuttgart (Germany)

    1998-12-31

    The presentation discusses the necessity of having a more consolidated (unified, possibly `European`) framework for all (not only pure experimental) material data needed for optimized life management and assessment of high-temperature and other components in power and process plants. After setting the main requirements for such a system, a description of efforts done in this direction at MPA Stuttgart in the area of high-temperature components in power plants is given. Furthermore, a reference to other relevant efforts elsewhere is made and an example of practical application of the proposed solution described (optimized material selection and life assessment of high-temperature piping). (orig.) 10 refs.

  11. Towards a more consolidated approach to material data management in life assessment of power plant components

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, A; Maile, K [MPA Stuttgart (Germany)

    1999-12-31

    The presentation discusses the necessity of having a more consolidated (unified, possibly `European`) framework for all (not only pure experimental) material data needed for optimized life management and assessment of high-temperature and other components in power and process plants. After setting the main requirements for such a system, a description of efforts done in this direction at MPA Stuttgart in the area of high-temperature components in power plants is given. Furthermore, a reference to other relevant efforts elsewhere is made and an example of practical application of the proposed solution described (optimized material selection and life assessment of high-temperature piping). (orig.) 10 refs.

  12. Synthesis of functional materials by radiation and qualification testing of organic materials in nuclear power plant

    International Nuclear Information System (INIS)

    Nho, Young Chang; Kim, Ki Yup; Kang, Phil Hyun and others; Jun, Hong Jae; Suh, Dong Hak; Lee, Young Moo; Min, Byung Kak; Bae, You Han

    2003-05-01

    The radiation crosslinking and grafting can be easily adjusted and is easily reproducible by controlling the radiation dose. These studies aim to develop new biomaterials such as covering for burns and wound, and controlled release of drug. A radiation technology was used to develop PTC materials useful in devices that limit electric fault currents. Radiation-curing of fiber-matrix composites is a promising application. There are a number of advantages to radiation curing of composites, compared with conventional thermal processing. Radiation curing at ambient temperature allows tighter control of part dimensions, and elimination of internal stresses which otherwise occur on cooling and which reduce material strength. These studies involved radiation curing of epoxy resins with various fibers and filler for structural application for aerospace and sport goods. The chain scission is the basis of other radiation treatments aimed at enhancing processing characteristics of polymers. These studies aim to make PTFE powder from PTFE scrap using the radiation degradation which allows incorporation of the material into coatings, inks etc. Low density polyethylene, crosslinked polyethylene, ethylene propylene rubber, and acrylonitrile butadiene rubber as cable insulating, seathing and sealing materials were irradiated for the accelerated ageing tests. Degradation was investigated by measuring dielectric analysis, thermogravimetric analysis, and dynamic mechanical analysis. Dielectric tanδ, storage modulus and loss modulus were increased with irradiation doses. However, decomposition temperature decreased with irradiation doses

  13. Analysis of difficulties accounting and evaluating nuclear material of PWR fuel plant

    International Nuclear Information System (INIS)

    Zhang Min; Jue Ji; Liu Tianshu

    2013-01-01

    Background: Nuclear materials accountancy must be developed for nuclear facilities, which is required by regulatory in China. Currently, there are some unresolved problems for nuclear materials accountancy of bulk nuclear facilities. Purpose: The retention values and measurement errors are analyzed in nuclear materials accountancy of Power Water Reactor (PWR) fuel plant to meet the regulatory requirements. Methods: On the basis of nuclear material accounting and evaluation data of PWR fuel plant, a deep analysis research including ratio among random error variance, long-term systematic error variance, short-term systematic error variance and total error involving Material Unaccounted For (MUF) evaluation is developed by the retention value measure in equipment and pipeline. Results: In the equipment pipeline, the holdup estimation error and its total proportion are not more than 5% and 1.5%, respectively. And the holdup estimation can be regraded as a constant in the PWR nuclear material accountancy. Random error variance, long-term systematic error variance, short-term systematic error variance of overall measurement, and analytical and sampling methods are also obtained. A valuable reference is provided for nuclear material accountancy. Conclusion: In nuclear material accountancy, the retention value can be considered as a constant. The long-term systematic error is a main factor in all errors, especially in overall measurement error and sampling error: The long-term systematic errors of overall measurement and sampling are considered important in the PWR nuclear material accountancy. The proposals and measures are applied to the nuclear materials accountancy of PWR fuel plant, and the capacity of nuclear materials accountancy is improved. (authors)

  14. Proposal for guidelines for the physical protection of nuclear materials, plants and transports in Denmark

    International Nuclear Information System (INIS)

    1978-03-01

    The guidelines are based on recommendations in the IAEA's ''Physical Protection of Nuclear Material,'' INFCIRC/225/rev.1. In accordance with practice in other countries, the guidelines give more detailed requirements for the protection of reactor plants than those given in the IAEA's present recommendations, which put more emphasis on the protection of nuclear materials. The measures to be taken for nuclear plants, or nuclear transports, are proposed made to fit the potential risk that the more closely defined actions imply. It is suggested that the more detailed rules for the scope of the protection of plants or materials should be laid down by the National Agency on the basis of recommendations made by the Inspectorate of Nuclear Installations, which in turn are based on the safety documentation of the plant/material owners. It is further proposed that the National Agency, again on a recommendation from the Inspectorate, should lay down more detailed guidelines for the reporting of changes in stocks or transports of nuclear materials. (author)

  15. Reduced activation structural materials for fusion power plants - The European Union program

    International Nuclear Information System (INIS)

    Schaaf, B. van der; Le Marois, G.; Moeslang, A.; Victoria, M.

    2003-01-01

    The competition of fusion power plants with the renewable energy sources in the second half of the 21st century requires structural materials operating at high temperatures, and sufficient radiation resistance to ensure high plant efficiency and availability. The reduced activation materials development in the EU counts several steps regarding the radiation damage resistance: 75 dpa for DEMO and 150 dpa and beyond for power plants. The maximum operating temperature development line ranges from the present day from the present day feasible 600 K up to 1300- K in advanced power plants. The reduced activation steel, RAS, forms the reference for the development efforts. EUROFER has been manufactured in the EU on industrial scale with specified purity and mechanical properties up to 825 K. The oxide dispersion strengthened , ODS, variety of RAS should reach the 925 K operation limit. The EU has selected silicon carbide ceramic composite as the primary high temperature, 1300 K, goal. On a small scale the potential of tungsten alloys for higher temperatures is investigated. The present test environments for radiation resistance are insufficient to provide data for DEMO. Hence the support of the EU for the International Fusion Materials Irradiation facility. The computational modelling is expected to guide the materials development and the design of near plasma components. The EU co-operates closely with Japan, the RF and US in IEA and IAEA co-ordinated agreements, which are highly beneficial for the fusion structural materials development. (author)

  16. Proven Alternatives for Aboveground Treatment of Arsenic in Groundwater

    Science.gov (United States)

    2002-10-01

    issue paper does not address three technologies that have been used to treat water containing arsenic: • Biological treatment • Phytoremediation ...arsenic in water, and no aboveground treatments of groundwater conducted at full scale were found. Phytoremediation and electrokinetics are not...Roundtable. September 1998. http://www.frtr.gov/costperf.htm. 1.16 U.S. EPA. Office of Research and Development. Arsenic & Mercury - Workshop on Removal

  17. A forward-looking, national-scale remote sensing-based model of tidal marsh aboveground carbon stocks

    Science.gov (United States)

    Holmquist, J. R.; Byrd, K. B.; Ballanti, L.; Nguyen, D.; Simard, M.; Windham-Myers, L.; Thomas, N.

    2017-12-01

    Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our goal was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). To meet this objective we developed the first national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. Using the random forest algorithm we tested Sentinel-1 radar backscatter metrics and Landsat vegetation indices as predictors of biomass. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n=409, RMSE=310 g/m2, 10.3% normalized RMSE), successfully predicted biomass and carbon for a range of marsh plant functional types defined by height, leaf angle and growth form. Model error was reduced by scaling field measured biomass by Landsat fraction green vegetation derived from object-based classification of National Agriculture Imagery Program imagery. We generated 30m resolution biomass maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map for each region. With a mean plant %C of 44.1% (n=1384, 95% C.I.=43.99% - 44.37%) we estimated mean aboveground carbon densities (Mg/ha) and total carbon stocks for each wetland type for each region. Louisiana palustrine emergent marshes had the highest C density (2.67 ±0.08 Mg/ha) of all regions, while San Francisco Bay brackish/saline marshes had the highest C density of all estuarine emergent marshes (2.03 ±0.06 Mg/ha). This modeling and data synthesis effort will allow for aboveground

  18. Project plan remove special nuclear material from PFP project plutonium finishing plant; TOPICAL

    International Nuclear Information System (INIS)

    BARTLETT, W.D.

    1999-01-01

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Remove Special Nuclear Material (SNM) Materials. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP), HNF-3617,Rev. 0. This project plan is the top-level definitive project management document for PFP Remove SNM Materials project. It specifies the technical, schedule, requirements and the cost baselines to manage the execution of the Remove SNM Materials project. Any deviations to the document must be authorized through the appropriate change control process

  19. Project plan remove special nuclear material from PFP project plutonium finishing plant

    International Nuclear Information System (INIS)

    BARTLETT, W.D.

    1999-01-01

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Remove Special Nuclear Material (SNM) Materials. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP), HNF-3617, Rev. 0. This project plan is the top-level definitive project management document for PFP Remove SNM Materials project. It specifies the technical, schedule, requirements and the cost baselines to manage the execution of the Remove SNM Materials project. Any deviations to the document must be authorized through the appropriate change control process

  20. Radiation resistance of cable insulation and jacket materials for nuclear power plants

    International Nuclear Information System (INIS)

    Morita, Minoru; Kon, Shuji; Nishikawa, Ichiro

    1978-01-01

    The cables for use in nuclear power plants are required to satisfy the specific environmental resistance and excellent flame resistance as stipulated in IEEE Std. 383. The materials to be used to cables intended for this specific purpose of use must therefore be strictly tested so as to evaluate their flame resistance in addition to compliance with various environmental requirements, such as heat resistance, water-vapor resistance, and radiation resistance. This paper describes general information on radiation resistance and deterioration of various high-molecular materials, suggests the direction of efforts to be made to improve their properties including flame resistance of various rubber and plastic materials for cables to be used in nuclear power plants, and indicates the performance characteristics of such materials. (author)

  1. Coordinated safeguards for materials management in a fuel reprocessing plant. Volume I

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Cobb, D.D.; Dayem, H.A.; Dietz, R.J.; Kern, E.A.; Schelonka, E.P.; Shipley, J.P.; Smith, D.B.; Augustson, R.H.; Barnes, J.W.

    1977-09-01

    A materials management system is described for safeguarding special nuclear materials in a fuel-reprocessing plant. Recently developed nondestructive-analysis techniques and process-monitoring devices are combined with conventional chemical analyses and process-control instrumentation for improved materials accounting data. Unit-process accounting based on dynamic material balances permits localization of diversion in time and space, and the application of advanced statistical methods supported by decision-analysis theory ensures optimum use of accounting information for detecting diversion. This coordinated safeguards system provides maximum effectiveness consistent with modest cost and minimum process interference. Modeling and simulation techniques are used to evaluate the sensitivity of the system to single and multiple thefts and to compare various safeguards options. The study identifies design criteria that would improve the safeguardability of future plants

  2. Cathodic Protection Design Algorithms for Refineries Aboveground Storage Tanks

    Directory of Open Access Journals (Sweden)

    Kosay Abdul sattar Majbor

    2017-12-01

    Full Text Available Storage tanks condition and integrity is maintained by joint application of coating and cathodic protection. Iraq southern region rich in oil and petroleum product refineries need and use plenty of aboveground storage tanks. Iraq went through conflicts over the past thirty five years resulting in holding the oil industry infrastructure behind regarding maintenance and modernization. The primary concern in this work is the design and implementation of cathodic protection systems for the aboveground storage tanks farm in the oil industry. Storage tank external base area and tank internal surface area are to be protected against corrosion using impressed current and sacrificial anode cathodic protection systems. Interactive versatile computer programs are developed to provide the necessary system parameters data including the anode requirements, composition, rating, configuration, etc. Microsoft-Excel datasheet and Visual Basic.Net developed software were used throughout the study in the design of both cathodic protection systems. The case study considered in this work is the eleven aboveground storage tanks farm situated in al-Shauiba refinery in southern IRAQ. The designed cathodic protection systems are to be installed and monitored realistically in the near future. Both systems were designed for a life span of (15-30 years, and all their parameters were within the internationally accepted standards.

  3. Plant growth response in experimental soilless mixes prepared from coal combustion products and organic waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Bardhan, S.; Watson, M.; Dick, W.A. [Ohio State University, Wooster, OH (United States)

    2008-07-15

    Large quantities of organic materials such as animal manures, yard trimmings, and biosolids are produced each year. Beneficial use options for them are often limited, and composting has been proposed as a way to better manage these organic materials. Similarly, burning of coal created 125 million tons of coal combustion products (CCP) in the United States in 2006. An estimated 53 million tons of CCP were reused, whereas the remainder was deposited in landfills. By combining CCP and composted organic materials (COM), we were able to create soilless plant growth mixes with physicochemical conditions that can support excellent plant growth. An additional benefit is the conservation of natural raw materials, such as peat, which is generally used for making soilless mixes. Experimental mixes were formulated by combining CCP and COM at ratios ranging from 2:8 to 8:2 (vol/vol), respectively. Water content at saturation for the created mixes was 63% to 72%, whereas for the commercial control, it was 77%. pH values for the best performing mixes ranged between 5.9 and 6.8. Electrical conductivity and concentrations of required plant nutrient were also within plant growth recommendations for container media. Significantly (P < 0.0001) higher plant biomass growth (7%-130%) was observed in the experimental mixes compared with a commercial mix. No additional fertilizers were provided during the experiment, and reduced fertilization costs can thus accrue as an added benefit to the grower. In summary, combining CCP and COM, derived from source materials often viewed as wastes, can create highly productive plant growth mixes.

  4. Material and welding development of anchor plates to build nuclear power plant by blue arc process

    International Nuclear Information System (INIS)

    Gibelli, C.E.

    1986-01-01

    To build nuclear power plants, anchor plates are plenty used. These anchor plates serve as a system with the purpose to fix many heavy components or a simple stair. Considering the necessity of element fabrication fastly, with reasonable economy and quality, the arc study welding process (blue arc) was used. A special development of the material concept as well as a welding procedure and a subsuppliers qualification of the raw material was necessary. (Author) [pt

  5. Review of scientific Research results in identification of plant raw materials in food products

    OpenAIRE

    GOLUBTSOVA YU. V.

    2016-01-01

    Currently, the science-based capabilities have been generated to develop and test various identification methods of food products and reveal adulteration using advanced technique and processes. This article reviews researches and developments to identify the plant raw materials in food products based on morphological, anatomic, physical and chemical test methods and the latest DNA-technologies. Review of physical, chemical, anatomic and morphological test methods to identify raw materials bot...

  6. Statistical analysis of nuclear material weighing systems at the Oak Ridge - Y-12 plant

    International Nuclear Information System (INIS)

    Hammer, A.H.

    1980-04-01

    The variation in weight measurements on the electronic scales purchased for the Dynamic Special Nuclear Materials Control and Accountability System (DYMCAS) has been characterized and estimated to be more than is acceptable when using the current weighing methods. New weighing procedures have been developed which substantially reduce this variation and bring the weight errors within the Y-12 Plant Nuclear Materials Control and Accountability Department's desired +- 2-g accuracy

  7. Low activation material design methodology for reduction of radio-active wastes of nuclear power plant

    International Nuclear Information System (INIS)

    Hasegawa, A.; Satou, M.; Nogami, S.; Kakinuma, N.; Kinno, M.; Hayashi, K.

    2007-01-01

    Most of the concrete shielding walls and pipes around a reactor pressure vessel of a light water reactor become low level radioactive waste at decommission phase because they contain radioactive nuclides by thermal-neutron irradiation during its operation. The radioactivity of some low level radioactive wastes is close to the clearance level. It is very desirable in terms of life cycle cost reduction that the radioactivity of those low level radioactive wastes is decreased below clearance level. In case of light water reactors, however, methodology of low activation design of a nuclear plant has not been established yet because the reactor is a large-scale facility and has various structural materials. The Objectives of this work are to develop low activation material design methodology and material fabrication for reduction of radio-active wastes of nuclear power plant such as reinforced concrete. To realize fabrication of reduced radioactive concrete, it is necessary to develop (1) the database of the chemical composition of raw materials to select low activation materials, (2) the tool for calculation of the neutron flux and the spectrum distribution of nuclear plants to evaluate radioactivity of reactor components, (3) optimization of material process conditions to produce the low activation cement and the low activation steels. Results of the data base development, calculation tools and trial production of low activation cements will be presented. (authors)

  8. Increase of efficiency of plant materials heat treatment in tubular reactors

    Directory of Open Access Journals (Sweden)

    A. V. Golubkovich

    2016-01-01

    Full Text Available In agriculture products of pyrolysis of plant materials in the form of waste of the main production can be applied as a source of heat and electric power. Besides, their use prevents ecological pollution of the soil and the atmosphere. Pyrolysis plants can be used for work with tubular reactors anywhere. Due to them farmers can dry grain, using waste heat of diesel generators, heatgenerators, boiler plants and receiving thus gaseous products, liquid and firm fractions. A technology based on cyclic and continuous plant mass movement by a piston in a pipe from a loading site to a place of unloading of a firm phase consistently through cameras of drying, pyrolysis, condensation of gaseous products. Exhaust furnace gases with a temperature up to 600 degrees Celsius are given countercurrent material movement from a power equipment. The gaseous, liquid and firm products from the pyrolysis camera are used for heat and electric power generation. Calculation of parameters of subdrying and pyrolysis cameras is necessary for effective and steady operation of the tubular reactor. The authors determined the speed of raw materials movement, and also duration of drying and pyrolysis in working chambers. An analysis of a simplified mathematical model of process was confirmed with results of experiments. Models of heat treatment of wet plant materials in tubular reactors are worked out on a basis of equality of speeds of material movement in the reactor and distribution of a temperature front in material on radius. The authors defined estimated characteristic for determination of tubular reactor productivity and size of heat, required for drying and pyrolysis.

  9. Constructing wetlands: measuring and modeling feedbacks of oxidation processes between plants and clay-rich material

    Science.gov (United States)

    Saaltink, Rémon; Dekker, Stefan C.; Griffioen, Jasper; Wassen, Martin J.

    2016-04-01

    Interest is growing in using soft sediment as a building material in eco-engineering projects. Wetland construction in the Dutch lake Markermeer is an example: here the option of dredging some of the clay-rich lake-bed sediment and using it to construct 10.000 ha of wetland will soon go under construction. Natural processes will be utilized during and after construction to accelerate ecosystem development. Knowing that plants can eco-engineer their environment via positive or negative biogeochemical plant-soil feedbacks, we conducted a six-month greenhouse experiment to identify the key biogeochemical processes in the mud when Phragmites australis is used as an eco-engineering species. We applied inverse biogeochemical modeling to link observed changes in pore water composition to biogeochemical processes. Two months after transplantation we observed reduced plant growth and shriveling as well as yellowing of foliage. The N:P ratios of plant tissue were low and were affected not by hampered uptake of N but by enhanced uptake of P. Plant analyses revealed high Fe concentrations in the leaves and roots. Sulfate concentrations rose drastically in our experiment due to pyrite oxidation; as reduction of sulfate will decouple Fe-P in reducing conditions, we argue that plant-induced iron toxicity hampered plant growth, forming a negative feedback loop, while simultaneously there was a positive feedback loop, as iron toxicity promotes P mobilization as a result of reduced conditions through root death, thereby stimulating plant growth and regeneration. Given these two feedback mechanisms, we propose that when building wetlands from these mud deposits Fe-tolerant species are used rather than species that thrive in N-limited conditions. The results presented in this study demonstrate the importance of studying the biogeochemical properties of the building material and the feedback mechanisms between plant and soil prior to finalizing the design of the eco-engineering project.

  10. MULCHING MATERIALS OF PLANT ORIGIN AT POTATO GROWING IN ASTRAKHAN REGION

    Directory of Open Access Journals (Sweden)

    S. B. Bairambekov

    2016-01-01

    Full Text Available The application of phytogenous mulching materials based on local processed raw materials at potato cultivation in irrigated conditions of the Astrakhan region has allowed optimization of temperature and moisture regime of the soil. It was found that in case of the spring term of planting, the mulching has increased the soil temperature up to 0,6-0,9°C on April-May at a depth of 0,10 m as compared to the control. During heat period, mulching materials have decreased the soil temperature. Antecedent soil water under mulching materials in the phase of tubers formation was on 1,15-1,19 times higher than in the control variant without mulching. The most effective materials for the soils of different grain-size distribution were determined: for the heavy-loamy soil the best mulching material was straw, for the sandy loam soil the more efficient mulching was saw-dust.

  11. Economics of production of biogas from specifically-grown plant material. [New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, D. J.

    1977-10-15

    The production of biogas from plant materials is technologically very simple, and is the only process currently available (other than direct burning) for conversion of cellulose materials into energy or fuels that is feasible at a farm-scale, or even a home-scale, as well as a large industrial plant scale. For this reason the economics of biogas production can be considered at the farm-scale as well as the industrial scale. An accurate assessment of the economics at the farm-scale is possible, because commercially produced units are now available in New Zealand and in operation. However, although large-scale plants have been proposed and costed in the USA for the conversion of the cellulose component of garbage into biogas, operational data are not yet available, and the costing has not been applied to the use of specifically-grown plant material. Nevertheless, the large-scale plants envisaged use a large number of digesters each of 100,000 gallons capacity and can thus be regarded as a combination of farm-size units, although with some economics in digester size, number of pumps required, etc. For these reasons, this review of the economics of biogas production is based on the operation of commercial 20,000 gallon digesters available in NZ for farm-scale use. Factors governing the economics of farm-scale and industrial-scale production of biogas will be discussed in section 6.

  12. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone

    Science.gov (United States)

    Osland, Michael J.; Day, Richard H.; Larriviere, Jack C.; From, Andrew S.

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  13. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone.

    Science.gov (United States)

    Osland, Michael J; Day, Richard H; Larriviere, Jack C; From, Andrew S

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  14. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans: equations for a climate sensitive mangrove-marsh ecotone.

    Directory of Open Access Journals (Sweden)

    Michael J Osland

    Full Text Available Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1 total aboveground biomass; (2 leaf biomass; (3 stem plus branch biomass; and (4 leaf area. Plant volume (i.e., a combination of crown area and plant height was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  15. Materials characterization capabilities at DOE Nuclear Weapons Laboratories and Production Plants

    International Nuclear Information System (INIS)

    Pyper, J.W.

    1984-06-01

    The materials characterization and analytical chemistry capabilities at the 11 DOE Nuclear Weapons Laboratories or Production Plants have been surveyed and compared. In general, all laboratories have similar capabilities and equipment. Facilities or capabilities that are unique or that exist at only a few laboratories are described in detail

  16. Active materials for adaptive architectural envelopes based on plant adaptation principles

    Directory of Open Access Journals (Sweden)

    Marlen Lopez

    2015-06-01

    Full Text Available In this paper, the authors present research into adaptive architectural envelopes that adapt to environmental changes using active materials, as a result of application of biomimetic principles from plants to architecture. Buildings use large amounts of energy in order to maintain their internal comfort, because conventional buildings are designed to provide a static design solution. Most of the current solutions for facades are not designed for optimum adaptation to contextual issues and needs, while biological solutions to adaptation are often complex, multi-functional and highly responsive. We focus on plant adaptations to the environment, as, due to their immobility, they have developed special means of protection against weather changing conditions. Furthermore, recent developments in new technologies are allowing the possibility to transfer these plant adaptation strategies to technical implementation. These technologies include: multi-material 3D printing, advances in materials science and new capabilities in simulation software. Unlike traditional mechanical activation used for dynamic systems in kinetic facades, adaptive architectural envelopes require no complex electronics, sensors, or actuators. The paper proposes a research of the relationship that can be developed between active materials and environmental issues in order to propose innovative and low-tech design strategies to achieve living envelopes according to plant adaptation principles.  

  17. A useful single-solution polychrome stain for plant material...Brook Cyte-Chrome I.

    Science.gov (United States)

    Stanley L Krugman; Julia F. Littlefield

    1968-01-01

    Fresh and chemically fixed sectioned plant material can be quickly stained by applying a Brook Cyte Chrome I polychrome stain. Staining time averaged only about 10 minutes. And exact timing of staining and de-staining is not as critical as with most of the commonly used stains. The overall quality is comparable to that of the traditional stains.

  18. A strategy for maximizing native plant material diversity for ecological restoration, germplasm conservation and genecology research

    Science.gov (United States)

    Berta Youtie; Nancy Shaw; Matt Fisk; Scott Jensen

    2012-01-01

    One of the most important steps in planning a restoration project is careful selection of ecologically adapted native plant material. As species-specific seed zone maps are not available for most species in the Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush) ecoregion in the Great Basin, USA, we are employing a provisional seed zone map based on annual...

  19. A model Apparatus for Isolation of Volatile Oils from Various Plant Materials

    Directory of Open Access Journals (Sweden)

    Mahdi T. AI-Kaisey

    2018-02-01

    The present paper givas a detailed description of apparatus which were sutable for isola.tion the lighter and tile heavier u.('-m water volatile oils fronl differenet plant materials. Meanwhile tbe purity of tile concentrates were ex lrined by g-aS liquid chromato graphy( GLe.

  20. Special conditions for the application of coating materials in nuclear power plants

    International Nuclear Information System (INIS)

    Boetius, I.

    1980-01-01

    Proceeding from the special conditions for the application of coating materials in nuclear power plants the following factors influencing the decontamination of surface coatings are discussed from the point of view of radiation protection: abrasion resistance, waterproofness, mechanical and adhesion strength, and permeability. For practical use it is recommended to test the surface tightness of coatings with radiation-exposed specimens

  1. Effect of canker size on availability of cassava planting materials in ...

    African Journals Online (AJOL)

    Cassava (Manihot esculenta L.) production is highly limited by cassava anthracnose disease (CAD) which causes significant losses in planting materials. An experiment was laid out at Ihiagwa, Owern in Nigeria with eighteen treatments replicated three times. Disease severity was scored on a scale of 1-5, and disease ...

  2. 1064nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials

    Science.gov (United States)

    Umesh P. Agarwal

    2014-01-01

    Raman spectroscopy with its various special techniques and methods has been applied to study plant biomass for about 30 years. Such investigations have been performed at both macro- and micro-levels. However, with the availability of the Near Infrared (NIR) (1064 nm) Fourier Transform (FT)-Raman instruments where, in most materials, successful fluorescence suppression...

  3. The potential of novel native plant materials for the restoration of novel ecosystems

    Directory of Open Access Journals (Sweden)

    T.A. Jones

    2015-05-01

    Full Text Available Abstract Extensive ecological change has been sustained by many dryland ecosystems throughout the world, resulting in conversion to so-called novel ecosystems. It is within such ecological contexts that native plant materials destined for ecological applications must be able to function. In the Wyoming big sagebrush (Artemisia tridentata Nutt. ssp. wyomingensis [Beetle & A.M. Young] S.L. Welsh ecosystems of the Intermountain West, for example, novel ecosystem structure and functioning are pervasive. Invasive species, particularly annual grasses, fuel repeated wildfires that drive previously stable ecosystem states across thresholds to less desirable states that are highly recalcitrant to restoration efforts. Structural changes include reductions of native flora, damage to biological soil crusts, and alterations to soil microbiota. Functional changes include altered hydrologic and nutrient cycling, leading to permanent losses of soil organic matter and nitrogen that favor the invaders. We argue that there is an important place in restoration for plant materials that are novel and/or non-local that have been developed to be more effective in the novel ecosystems for which they are intended, thus qualifying them as “ecologically appropriate.” Such plant materials may be considered as an alternative to natural/local “genetically appropriate” plant materials, which are sometimes deemed best adapted due to vetting by historical evolutionary processes.

  4. A Study on Salt Attack Protection of Structural and Finishing Materials in Power Plant Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, W B; Kweon, K J; Suh, Y P; Nah, H S; Lee, K J; Park, D S; Jo, Y K [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1998-12-31

    This is a final report written by both KEPRI and KICT as a co-operative research titled {sup A} study on Salt Protection of Structural and Finishings in Power Plant Structures{sup .} This study presented the methods to prevent the chloride-induced corrosion of power plant structures through collection and analysis of research datum relating to design, construction and maintenance for the prevention of structural and finishing materials, thru material performance tests for anti-corrosion under many kinds of chloride-induced corrosion environments. As a result, this study proposed the guidelines for design, construction and maintenance of power plant structures due to chloride-induced corrosion. (author). 257 refs., 111 figs., 86 tabs.

  5. A Study on Salt Attack Protection of Structural and Finishing Materials in Power Plant Structures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, W.B.; Kweon, K.J.; Suh, Y.P.; Nah, H.S.; Lee, K.J.; Park, D.S.; Jo, Y.K. [Korea Electric Power Research Institute, Taejeon (Korea, Republic of)

    1997-12-31

    This is a final report written by both KEPRI and KICT as a co-operative research titled {sup A} study on Salt Protection of Structural and Finishings in Power Plant Structures{sup .} This study presented the methods to prevent the chloride-induced corrosion of power plant structures through collection and analysis of research datum relating to design, construction and maintenance for the prevention of structural and finishing materials, thru material performance tests for anti-corrosion under many kinds of chloride-induced corrosion environments. As a result, this study proposed the guidelines for design, construction and maintenance of power plant structures due to chloride-induced corrosion. (author). 257 refs., 111 figs., 86 tabs.

  6. Aboveground dry biomass partitioning and nitrogen accumulation in early maturing soybean ‘Merlin’

    Directory of Open Access Journals (Sweden)

    Tadeusz Zając

    2017-12-01

    Full Text Available The aim of the study was to determine the biomass and nitrogen accumulation in early maturing soybean plants experiencing contrasting weather conditions. Soybean (Glycine max is a species of agricultural crop plant that is widely described in scientific publications. During 2014–2016, a field experiment with early maturing soybean ‘Merlin’ was carried out at Grodziec Śląski, Poland (49°48'01" N, 18°52'04" E. Results showed that the morphological traits of the plants, the yield of individual plants, and the soybean crop were all closely related to the climatic conditions. A high amount of precipitation stimulated seed development, resulting in a high production potential. The harvest index calculated for soybean ‘Merlin’ was high and exceeded 0.5 g g−1. The nitrogen content of the aboveground biomass increased during ontogenesis. The maximum yield of dry matter was noted at the green maturity phase, which subsequently decreased at the full maturity phase because of the loss of the leaf fraction. The variation in the effectiveness of nitrogen accumulation in seeds between 2015 and 2016 was 30%. The nitrogen harvest index values were high in each year of the experiment and exceeded 0.92 g−1. For the production of 1 ton of seeds with an adequate amount of soybean straw, plants needed, on average, 68 kg of nitrogen.

  7. Ultrastructural changes of cell walls under intense mechanical treatment of selective plant raw material

    International Nuclear Information System (INIS)

    Bychkov, Aleksey L.; Ryabchikova, E.I.; Korolev, K.G.; Lomovsky, O.I.

    2012-01-01

    Structural changes of cell walls under intense mechanical treatment of corn straw and oil-palm fibers were studied by electron and light microscopy. Differences in the character of destruction of plant biomass were revealed, and the dependence of destruction mechanisms on the structure of cell walls and lignin content was demonstrated. We suggest that the high reactivity of the particles of corn straw (about 18% of lignin) after intense mechanical treatment is related to disordering of cell walls and an increase of the surface area, while in the case of oil palm (10% of lignin) the major contribution into an increase in the reactivity is made by an increase of surface area. -- Highlights: ► Structure of cell walls determines the processes of plant materials' destruction. ► Ultrastructure of highly lignified materials strongly disordering by mechanical action. ► Ultrastructure of low-lignified materials is not disordering by mechanical action.

  8. Closed vessel miniaturized microwave assisted chelating extraction for determination of trace metals in plant materials

    Science.gov (United States)

    Czarnecki, Sezin; Duering, Rolf-Alexander

    2013-04-01

    In recent years, the use of closed vessel microwave assisted extraction (MAE) for plant samples has shown increasing research interest which will probably substitute conventional procedures in the future due to their general disadvantages including consumption of time and solvents. The objective of this study was to demonstrate an innovative miniaturized closed vessel microwave assisted extraction (µMAE) method under the use of EDTA (µMAE-EDTA) to determine metal contents (Cd, Co, Cu, Mn, Ni, Pb, Zn) in plant samples (Lolio-Cynosuretum) by inductively coupled plasma-optical emission spectrometry (ICP-OES). Validation of the method was done by comparison of the results with another miniaturized closed vessel microwave HNO3 method (µMAE-H) and with two other macro scale MAE procedures (MAE-H and MAE-EDTA) which were applied by using a mixture of nitric acid (HNO3) and hydrogen peroxide (H2O2) (MAE-H) and EDTA (MAE-EDTA), respectively. The already established MAE-H method is taken into consideration as a reference validation MAE method for plant material. A conventional plant extraction (CE) method, based on dry ashing and dissolving of the plant material in HNO3, was used as a confidence comparative method. Certified plant reference materials (CRMs) were used for comparison of recovery rates from different extraction protocols. This allowed the validation of the applicability of the µMAE-EDTA procedure. For 36 real plant samples with triplicates each, µMAE-EDTA showed the same extraction yields as the MAE-H in the determination of Cd, Co, Cu, Mn, Ni, Pb, and Zn contents in plant samples. Analytical parameters in µMAE-EDTA should be further investigated and adapted for other metals of interest. By the reduction and elimination of the use of hazardous chemicals in environmental analysis and thus allowing a better understanding of metal distribution and accumulation process in plants and also the metal transfer from soil to plants and into the food chain, µ

  9. Compatibility of Space Nuclear Power Plant Materials in an Inert He/Xe Working Gas Containing Reactive Impurities

    International Nuclear Information System (INIS)

    MM Hall

    2006-01-01

    A major materials selection and qualification issue identified in the Space Materials Plan is the potential for creating materials compatibility problems by combining dissimilar reactor core, Brayton Unit and other power conversion plant materials in a recirculating, inert He/Xe gas loop containing reactive impurity gases. Reported here are results of equilibrium thermochemical analyses that address the compatibility of space nuclear power plant (SNPP) materials in high temperature impure He gas environments. These studies provide early information regarding the constraints that exist for SNPP materials selection and provide guidance for establishing test objectives and environments for SNPP materials qualification testing

  10. Plants as green phones

    NARCIS (Netherlands)

    Soler, R.; Harvey, J.A.; Bezemer, T.M.; Stuefer, J.F.

    2008-01-01

    Plants can act as vertical communication channels or `green phones¿ linking soil-dwelling insects and insects in the aboveground ecosystem. When root-feeding insects attack a plant, the direct defense system of the shoot is activated, leading to an accumulation of phytotoxins in the leaves. The

  11. Aging predictions in nuclear power plants: Crosslinked polyolefin and EPR cable insulation materials

    International Nuclear Information System (INIS)

    Gillen, K.T.; Clough, R.L.

    1991-06-01

    In two earlier reports, we derived a time-temperature-dose rate superposition methodology, which, when applicable, can be used to predict cable degradation versus dose rate, temperature and exposure time. This methodology results in long-term predictive capabilities at the low dose rates appropriate to ambient nuclear power plant aging environments. The methodology was successfully applied to numerous important cable materials used in nuclear applications and the extrapolated predictions were verified by comparisons with long-term (7 to 12 year) results for similar or identical materials aged in nuclear environments. In this report, we test the methodology on three crosslinked polyolefin (CLPO) and two ethylene propylene rubber (EPR) cable insulation materials. The methodology applies to one of the CLPO materials and one of the EPR materials, allowing predictions to be made for these materials under low dose-rate, low temperature conditions. For the other materials, it is determined that, at low temperatures, a decrease in temperature at a constant radiation dose rate leads to an increase in the degradation rate for the mechanical properties. Since these results contradict the fundamental assumption underlying time-temperature-dose rate superposition, this methodology cannot be applied to such data. As indicated in the earlier reports, such anomalous results might be expected when attempting to model data taken across the crystalline melting region of semicrystalline materials. Nonetheless, the existing experimental evidence suggests that these CLPO and EPR materials have substantial aging endurance for typical reactor conditions. 28 refs., 26 figs., 3 tabs

  12. Development of a computerized nuclear materials control and accounting system for a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Crawford, J.M.; Ehinger, M.H.; Joseph, C.; Madeen, M.L.

    1979-07-01

    A computerized nuclear materials control and accounting system (CNMCAS) for a fuel reprocessing plant is being developed by Allied-General Nuclear Services at the Barnwell Nuclear Fuel Plant. Development work includes on-line demonstration of near real-time measurement, measurement control, accounting, and processing monitoring/process surveillance activities during test process runs using natural uranium. A technique for estimating in-process inventory is also being developed. This paper describes development work performed and planned, plus significant design features required to integrate CNMCAS into an advanced safeguards system

  13. Determination of molybdenum in plant reference material by thermal-ionization isotope-dilution mass spectrometry

    International Nuclear Information System (INIS)

    Saumer, M.; Gantner, E.; Reinhardt, J.; Ache, H.J.

    1992-01-01

    An analytical method is described for the determination of the concentration and the isotopic composition of molybdenum in plant samples using thermal ionization mass spectrometry. After microwave acid digestion and liquid-liquid extractive separation with Amberlite LA-2, the molybdenum isotopes are measured as MoO 3 - -ions in a quadrupole mass spectrometer. In all cases, the relative standard deviation of the measurements of both natural and spike molybdenum was better than 3% for all ratios measured. The concentration of molybdenum found in three different plant reference materials agreed well with the certified values. (orig.)

  14. Development of a computerized nuclear materials control and accounting system for a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Crawford, J.M.; Ehinger, M.H.; Joseph, C.; Madeen, M.L.

    1979-01-01

    A computerized nuclear materials control and accounting system (CNMCAS) for a fuel reprocessing plant is being developed by Allied-General Nuclear Services at the Barnwell Nuclear Fuel Plant. Development work includes on-line demonstration of near real-time measurement, measurement control, accounting, and processing monitoring/process surveillance activities during test process runs using natural uranium. A technique for estimating in-process inventory is also being developed. This paper describes development work performed and planned, plus significant design features required to integrate CNMCAS into an advanced safeguards system. 2 refs

  15. Evaluation of laser induced breakdown spectroscopy for the determination of micronutrients in plant materials

    International Nuclear Information System (INIS)

    Trevizan, Lilian Cristina; Santos, Dario; Elgul Samad, Ricardo; Dias Vieira, Nilson; Nunes, Lidiane Cristina; Aparecida Rufini, Iolanda; Krug, Francisco Jose

    2009-01-01

    Laser induced breakdown spectroscopy (LIBS) has been evaluated for the determination of micronutrients (B, Cu, Fe, Mn and Zn) in pellets of plant materials, using NIST, BCR and GBW biological certified reference materials for analytical calibration. Pellets of approximately 2 mm thick and 15 mm diameter were prepared by transferring 0.5 g of powdered material to a 15 mm die set and applying 8.0 tons cm -2 . An experimental setup was designed by using a Nd:YAG laser operating at 1064 nm (200 mJ per pulse, 10 Hz) and an Echelle spectrometer with ICCD detector. Repeatability precision varied from 4 to 30% from measurements obtained in 10 different positions (8 laser shots per test portion) in the same sample pellet. Limits of detection were appropriate for routine analysis of plant materials and were 2.2 mg kg -1 B, 3.0 mg kg -1 Cu, 3.6 mg kg -1 Fe, 1.8 mg kg -1 Mn and 1.2 mg kg -1 Zn. Analysis of different plant samples were carried out by LIBS and results were compared with those obtained by ICP OES after wet acid decomposition.

  16. Calculation of coal power plant cost on agricultural and material building impact of emission

    International Nuclear Information System (INIS)

    Mochamad Nasrullah; Wiku Lulus Widodo

    2016-01-01

    Calculation for externally cost of Coal Power Plant (CPP) is very important. This paper is focus on CPP appear SO 2 impact on agricultural plant and material building. AGRIMAT'S model from International Atomic Energy Agency is model one be used to account environmental damage for air impact because SO 2 emission. Analysis method use Impact Pathways Assessment: Determining characteristic source, Exposure Response Functions (ERF), Impacts and Damage Costs, and Monetary Unit Cost. Result for calculate shows that SO 2 that issued CPP, if value of SO 2 is 19,3 μg/m3, damage cost begins valuably positive. It shows that the land around CPP has decrease prosperity, and it will disadvantage for agricultural plant. On material building, SO 2 resulting damage cost. The increase humidity price therefore damage cost on material building will increase cost. But if concentration SO 2 increase therefore damage cost that is appear on material building decrease. Expected this result can added with external cost on health impact of CPP. External cost was done at developed countries. If it is done at Indonesia, therefore generation cost with fossil as more expensive and will get implication on issue cut back gases greenhouse. On the other side, renewable energy and also alternative energy as nuclear have opportunity at national energy mix system. (author)

  17. [Plants' materials and synthetic agonists of cannabinoid receptors use as a substitute of Marihuana, appearing in a current forensic toxicology practice of evidence materials].

    Science.gov (United States)

    Geppert, Bogna; Tezyk, Artur; Florek, Ewa; Zaba, Czesław

    2010-01-01

    Cannabis sativa species Indica (Marihuana) is nowadays one of the most common plant drug, with psychoactive activity, presently appearing on the illegal market in Poland. It is reported that frequency of securing evidential materials so called substitute of Marihuana, is growing rapidly during the last few years. The substitutes of Marihuana occurring on the market are of natural or synthetic origins, for example different species of raw plants' materials having action similar to Cannabis or raw plants' materials with no psychoactive properities but with an addition of components so called synthetic cannabinoids. The review presents recent developments in drug market and current problems of forensic toxicology on the example of Marihuana.

  18. Closure Report for Corrective Action Unit 134: Aboveground Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 134 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Aboveground Storage Tanks' and consists of the following four Corrective Action Sites (CASs), located in Areas 3, 15, and 29 of the Nevada Test Site: (1) CAS 03-01-03, Aboveground Storage Tank; (2) CAS 03-01-04, Tank; (3) CAS 15-01-05, Aboveground Storage Tank; and (4) CAS 29-01-01, Hydrocarbon Stain

  19. Biosafety Procedure for Safe Handling of Genetically Modified Plant Materials in Bio Design Facility

    International Nuclear Information System (INIS)

    Zaiton Ahmad; Shuhaimi Shamsudin; Mohamed Najli Mohamed Yasin; Affrida Abu Hassan; Mohd Zaid Hassan; Rusli Ibrahim

    2015-01-01

    Bio Design Facility is the specifically designed glass house for propagation, screening and analysis of high quality plant varieties developed through biotechnology or a combination of nuclear technology and biotechnology. High quality plant varieties especially genetically modified plants (GMO) require a special glass house facility for propagation and screening to isolate them from cross-pollinating with wild type varieties in surrounding ecosystem, and for carrying out evaluation of possible risks of the plants to human, animal and environment before they are proven safe for field trials or commercial release. This facility which was developed under the Ninth Malaysia Plan is classified as the Plant Containment Level 2 and is compliance with the bio safety regulations and guidance for the safe release of GMO according to Malaysian Bio safety Act 2007. Bio Design Facility is fully operational since 2010 and in 2012, it has also been certified as the glass house for post-entry quarantine by The Department of Agriculture. This paper summarizes the bio safety procedure for a safe, controlled and contained growing and evaluation of GMO in Bio Design Facility. This procedure covers the physical (containment and equipment's) and operational (including responsibility, code of practice, growing, decontamination and disposal of plant materials, emergency and contingency plan) aspects of the facility. (author)

  20. Reclamation of waste rock material at the Summitville Mine Superfund site using organic matter and topsoil treatments

    Energy Technology Data Exchange (ETDEWEB)

    Winter, M.E.; Redente, E.F.

    1999-07-01

    The Summitville Mine was a high elevation (3,500 m) open-pit gold mine located in southwestern Colorado. The mine was abandoned in 1992 leaving approximately 200 ha of disturbed area comprised partially of two large waste rock piles. Reclamation of waste rock material is challenging due to extreme climatic conditions in conjunction with a high acid-production potential and low organic matter concentration of the material. In addition, stockpiled topsoil at the site is acidic and may be biologically inactive due to long-term storage, and therefore sufficient plant growth medium may be limited. The purpose of this study was to determine the effect of organic amendments (mushroom compost vs. biosolids) and topsoil (stockpiled vs. nonstockpiled) on aboveground biomass, herbaceous cover, and trace element uptake. An on-site field study was established in 1995 to identify the most effective combination of treatments for successful reclamation of waste rock material. Incorporation of organic matter increased total aboveground production and cover, with mushroom compost being more effective than biosolids, but did not show significant trends relative to trace element uptake. The use of topsoil did not show a significant response relative to aboveground production, cover, and trace element uptake. This study shows that waste rock materials can be directly revegetated if properly neutralized, fertilized, and amended with organic matter. Additionally, stockpiled topsoil was equivalent in plant growth to non-stockpiled topsoil when neutralized with lime.

  1. Molecular Dissection of The Cellular Mechanisms Involved In Nickel Hyperaccumulation in Plants; FINAL

    International Nuclear Information System (INIS)

    David E. Salt

    2002-01-01

    Hyperaccumulator plant species are able to accumulate between 1-5% of their biomass as metal. However, these plants are often small, slow growing, and do not produce a high biomass. Phytoextraction, a cost-effective, in situ, plant based approach to soil remediation takes advantage of the remarkable ability of hyperaccumulating plants to concentrate metals from the soil and accumulate them in their harvestable, above-ground tissues. However, to make use of the valuable genetic resources identified in metal hyperaccumulating species, it will be necessary to transfer this material to high biomass rapidly growing crop plants. These plants would then be ideally suited to the phytoremediation process, having the ability to produce large amount of metal-rich plant biomass for rapid harvest and soil cleanup. Although progress is being made in understanding the genetic basis of metal hyperaccumulation a more complete understanding will be necessary before we can take full advantage of the genetic potential of these plants

  2. Molecular Dissection of The Cellular Mechanisms Involved In Nickel Hyperaccumulation in Plants

    Energy Technology Data Exchange (ETDEWEB)

    David E. Salt

    2002-04-08

    Hyperaccumulator plant species are able to accumulate between 1-5% of their biomass as metal. However, these plants are often small, slow growing, and do not produce a high biomass. Phytoextraction, a cost-effective, in situ, plant based approach to soil remediation takes advantage of the remarkable ability of hyperaccumulating plants to concentrate metals from the soil and accumulate them in their harvestable, above-ground tissues. However, to make use of the valuable genetic resources identified in metal hyperaccumulating species, it will be necessary to transfer this material to high biomass rapidly growing crop plants. These plants would then be ideally suited to the phytoremediation process, having the ability to produce large amount of metal-rich plant biomass for rapid harvest and soil cleanup. Although progress is being made in understanding the genetic basis of metal hyperaccumulation a more complete understanding will be necessary before we can take full advantage of the genetic potential of these plants.

  3. Evaluation of laser induced breakdown spectroscopy for the determination of macronutrients in plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Trevizan, Lilian Cristina [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario 303, 13416-000, Piracicaba-SP (Brazil)], E-mail: lilian@conectcor.com.br; Santos, Dario [Universidade Federal de Sao Paulo - UNIFESP, Rua Prof. Artur Riedel 275, 09972-270, Diadema-SP (Brazil); Elgul Samad, Ricardo; Dias Vieira, Nilson [Centro de Lasers e Aplicacoes, IPEN/CNEN-SP, Av. Prof. Lineu Prestes 2242, 05508-000, Sao Paulo-SP (Brazil); Seimi Nomura, Cassiana [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adelia 166, 09210-170, Santo Andre-SP (Brazil); Nunes, Lidiane Cristina [Departamento de Quimica, Universidade Federal de Sao Carlos, Rod. Washington Luis, km 235, 13565-905, Sao Carlos-SP (Brazil); Rufini, Iolanda Aparecida; Krug, Francisco Jose [Centro de Energia Nuclear na Agricultura, Universidade de Sao Paulo, Av. Centenario 303, 13416-000, Piracicaba-SP (Brazil)

    2008-10-15

    Laser induced breakdown spectroscopy (LIBS) has become an analytical tool for the direct analysis of a large variety of materials in order to provide qualitative and/or quantitative information. However, there is a lack of information for LIBS analysis of agricultural and environmental samples. In this work a LIBS system has been evaluated for the determination of macronutrients (P, K, Ca, Mg) in pellets of vegetal reference materials. An experimental setup was designed by using a Nd:YAG laser operating at 1064 nm and an Echelle spectrometer with ICCD detector. The plasma temperature was estimated by Boltzmann plots and instrumental parameters such as delay time, lens-to-sample distance and pulse energy were evaluated. Certified reference materials as well as reference materials were used for analytical calibrations of P, K, Ca, and Mg. Most results of the direct analysis of plant samples by LIBS were in reasonable agreement with those obtained by ICP OES after wet acid decomposition.

  4. Evaluation of laser induced breakdown spectroscopy for the determination of macronutrients in plant materials

    International Nuclear Information System (INIS)

    Trevizan, Lilian Cristina; Santos, Dario; Elgul Samad, Ricardo; Dias Vieira, Nilson; Seimi Nomura, Cassiana; Nunes, Lidiane Cristina; Rufini, Iolanda Aparecida; Krug, Francisco Jose

    2008-01-01

    Laser induced breakdown spectroscopy (LIBS) has become an analytical tool for the direct analysis of a large variety of materials in order to provide qualitative and/or quantitative information. However, there is a lack of information for LIBS analysis of agricultural and environmental samples. In this work a LIBS system has been evaluated for the determination of macronutrients (P, K, Ca, Mg) in pellets of vegetal reference materials. An experimental setup was designed by using a Nd:YAG laser operating at 1064 nm and an Echelle spectrometer with ICCD detector. The plasma temperature was estimated by Boltzmann plots and instrumental parameters such as delay time, lens-to-sample distance and pulse energy were evaluated. Certified reference materials as well as reference materials were used for analytical calibrations of P, K, Ca, and Mg. Most results of the direct analysis of plant samples by LIBS were in reasonable agreement with those obtained by ICP OES after wet acid decomposition

  5. Materials selection for process equipment in the Hanford waste vitrification plant

    Energy Technology Data Exchange (ETDEWEB)

    Elmore, M R; Jensen, G A

    1991-07-01

    The Hanford Waste Vitrification Plant (HWVP) is being designed to vitrify defense liquid high-level wastes and transuranic wastes stored at Hanford. The HWVP Functional Design Criteria (FDC) requires that materials used for fabrication of remote process equipment and piping in the facility be compatible with the expected waste stream compositions and process conditions. To satisfy FDC requirements, corrosion-resistant materials have been evaluated under simulated HWVP-specific conditions and recommendations have been made for HWVP applications. The materials recommendations provide to the project architect/engineer the best available corrosion rate information for the materials under the expected HWVP process conditions. Existing data and sound engineering judgement must be used and a solid technical basis must be developed to define an approach to selecting suitable construction materials for the HWVP. This report contains the strategy, approach, criteria, and technical basis developed for selecting materials of construction. Based on materials testing specific to HWVP and on related outside testing, this report recommends for constructing specific process equipment and identifies future testing needs to complete verification of the performance of the selected materials. 30 refs., 7 figs., 11 tabs.

  6. Identification of fine scale and landscape scale drivers of urban aboveground carbon stocks using high-resolution modeling and mapping.

    Science.gov (United States)

    Mitchell, Matthew G E; Johansen, Kasper; Maron, Martine; McAlpine, Clive A; Wu, Dan; Rhodes, Jonathan R

    2018-05-01

    Urban areas are sources of land use change and CO 2 emissions that contribute to global climate change. Despite this, assessments of urban vegetation carbon stocks often fail to identify important landscape-scale drivers of variation in urban carbon, especially the potential effects of landscape structure variables at different spatial scales. We combined field measurements with Light Detection And Ranging (LiDAR) data to build high-resolution models of woody plant aboveground carbon across the urban portion of Brisbane, Australia, and then identified landscape scale drivers of these carbon stocks. First, we used LiDAR data to quantify the extent and vertical structure of vegetation across the city at high resolution (5×5m). Next, we paired this data with aboveground carbon measurements at 219 sites to create boosted regression tree models and map aboveground carbon across the city. We then used these maps to determine how spatial variation in land cover/land use and landscape structure affects these carbon stocks. Foliage densities above 5m height, tree canopy height, and the presence of ground openings had the strongest relationships with aboveground carbon. Using these fine-scale relationships, we estimate that 2.2±0.4 TgC are stored aboveground in the urban portion of Brisbane, with mean densities of 32.6±5.8MgCha -1 calculated across the entire urban land area, and 110.9±19.7MgCha -1 calculated within treed areas. Predicted carbon densities within treed areas showed strong positive relationships with the proportion of surrounding tree cover and how clumped that tree cover was at both 1km 2 and 1ha resolutions. Our models predict that even dense urban areas with low tree cover can have high carbon densities at fine scales. We conclude that actions and policies aimed at increasing urban carbon should focus on those areas where urban tree cover is most fragmented. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Effect of operating conditions and environment on properties of materials of PWR type nuclear power plant components

    International Nuclear Information System (INIS)

    Vacek, M.

    1987-01-01

    Operating reliability and service life of PWR type nuclear power plants are discussed with respect to the material properties of the plant components. The effects of the operating environment on the material properties and the methods of their determination are characterized. Discussed are core materials, such as fuel, its cladding and regulating rod materials, and the materials of pipes, steam generators and condensers. The advances in the production of pressure vessel materials and their degradation during operation are treated in great detail. (Z.M.)

  8. Treatments of non-wood plant fibres used as reinforcement in composite materials

    Directory of Open Access Journals (Sweden)

    Marie-Ange Arsène

    2013-01-01

    Full Text Available This paper presents a summary of the knowledge on fibres and pulps of non wood tropical plants used as reinforcement in cementitious composites accumulated during the recent years by Guadeloupean and Brazilian teams participating in collaborative work. Vegetable fibres represent a good alternative as non-conventional materials for the construction of ecological and sustainable buildings. The use of such renewable resources contributes to the development of sustainable technologies. The main objective of the paper is to emphasize the use of agricultural wastes in the production of cement based composites. The botanical, chemical, physical, morphological and mechanical properties of fibres from various plants are described. The effects of different treatments on physical, chemical and mechanical properties of fibres are presented. The most effective treatments in influencing the mechanical and physical properties are pyrolysis and alkaline ones, according to the type of plant. The final choice will have to consider fibre availability, and treatment costs.

  9. Design of training centres for nuclear power plants. Working material. Proceedings of a specialists` meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The purpose of this meeting was to provide an international forum for presentation and discussion of experiences in the design and operation of training centres for nuclear power plant personnel. The term ``training centre``, as used during this meeting, includes both those facilities that are dedicated to provide training for an individual nuclear power plants, and that are often located near that plant, as well as facilities that provide training for multiple NPPs, and which are operated by vendors or by utility organizations that are not directly controlled by the NPP organizations which they serve. The topic, ``design of training centres`` was used in its broadest sense to include not only facilities (such as classrooms, laboratories and simulators), but also design of: training organizations; training programmes and materials; and examination/evaluation methods. Refs, figs, tabs.

  10. Computerization of operation and maintenance for nuclear power plants. Working material

    International Nuclear Information System (INIS)

    1994-01-01

    This report provides a resource for computerization of activities in plant operation and maintenance. Experience gained from design and implementation of various computer systems around the world is described. The material may be useful as a guide to modification and upgrading of existing plants as well as design and engineering of new plants. It should be particularly of interest to managers and engineers who are engaged in planning, bidding, specifying or designing computer systems for operation and maintenance applications. The technical document is the result of a series of advisory and consultant meetings held by the IAEA in Vienna in 1991 - 1994. The document was prepared with the participation of experts from Canada, France, Germany, Hungary, Japan, Russia, Sweden, United Kingdom, and the United States. Refs, figs and tabs

  11. Design of training centres for nuclear power plants. Working material. Proceedings of a specialists' meeting

    International Nuclear Information System (INIS)

    1996-01-01

    The purpose of this meeting was to provide an international forum for presentation and discussion of experiences in the design and operation of training centres for nuclear power plant personnel. The term ''training centre'', as used during this meeting, includes both those facilities that are dedicated to provide training for an individual nuclear power plants, and that are often located near that plant, as well as facilities that provide training for multiple NPPs, and which are operated by vendors or by utility organizations that are not directly controlled by the NPP organizations which they serve. The topic, ''design of training centres'' was used in its broadest sense to include not only facilities (such as classrooms, laboratories and simulators), but also design of: training organizations; training programmes and materials; and examination/evaluation methods. Refs, figs, tabs

  12. Computerization of nuclear material accounting and control at storage facilities of RT-1 plant, PA Mayak

    International Nuclear Information System (INIS)

    Krakhmal'nik, V.I.; Menshchikov, Yu.L.; Mozhaev, D.A.

    1999-01-01

    Computerized system for nuclear material (NM) accounting and control at RT-1 plant is being created on the basis of advanced engineering and programming tools, which give a possibility to ensure prompt access to the information required, to unify the accounting and report documentation, make statistical processing of the data, and trace the NM transfers in the chain of its storage at facilities of RT-1 plant. Currently, the accounting is performed in parallel, both by the old methods and with computerized system. The following functions are performed by the system at the current stage: input of data on the end product's (plutonium dioxide) quantitative and qualitative composition; data input on the localization of containers with finished products at storage facilities of the plant and the product's temporary characteristics; selective verification of the data on containers and batches, according to the criteria prespecified by the user; data protection against unauthorized access; data archiving; report documents formation and providing [ru

  13. Material protection control and accounting program activities at the Urals electrochemical integrated plant

    International Nuclear Information System (INIS)

    McAllister, S.

    1997-01-01

    The Urals Electrochemical Integrated Plant (UEIP) is the Russian Federation's largest uranium enrichment plant and one of three sites in Russia blending high enriched uranium (HEU) into commercial grade low enriched uranium. UEIP is located approximately 70 km north of Yekaterinburg in the closed city of Novouralsk (formerly Sverdlovsk- 44). DOE's MPC ampersand A program first met with UEIP in June of 1996, however because of some contractual issues the work did not start until September of 1997. The six national laboratories participating in DOE's Material Protection Control and Accounting program are cooperating with UEIP to enhance the capabilities of the physical protection, access control, and nuclear material control and accounting systems. The MPC ampersand A work at UEIP is expected to be completed during fiscal year 2001

  14. Site layout and balance of plant design for an accelerator-driven materials processing complex

    Energy Technology Data Exchange (ETDEWEB)

    Cunliffe, J.; Taussig, R.; Ghose, S. [Bechtel Corporation, San Francisco, CA (United States)] [and others

    1995-10-01

    High energy proton beam accelerators are under consideration for use in radioisotope production, surplus weapons material destruction, radioactive waste transmutation, and thorium-based energy conversion cycles. While there are unique aspects to each of these applications that must be accommodated in the design of the associated facility, all share a set of fundamental characteristics that in large measure dictate the site layout features and many balance-of-plant (BOP) design requirements found to be common to all. This paper defines these key design determinants and goes on to discuss the manner in which they have been accommodated in the pre-conceptual design for a particular materials production application. An estimate of the costs associated with this BOP design is also presented with the aim of guiding future evaluations where the basic plant designs are similar to that of this specific case.

  15. Knowledge of ageing phenomenons of materials used in the PWR power plants

    International Nuclear Information System (INIS)

    Vancon, D.; Meyzaud, Y.; Soulat, P.

    1996-01-01

    The nuclear power plants with PWR type reactors are planned to work during forty years and are the subject of studies aiming to check their integrity during all their life. The materials used to the fabrication of the components can be submitted different stress. The temperature, the mechanical constraints, the irradiation are examples of stress which can make the materials getting old. This text presents three themes: the ageing by irradiation, the thermal ageing and the corrosion, and their principle industrial consequences. (N.C.)

  16. Monitoring for radioactive materials releasing to environment in M310 reformatived nuclear power plant

    International Nuclear Information System (INIS)

    Yin Zhenyu; Yang Guangli; Xu Guang

    2012-01-01

    Airborne radioactive materials of nuclear power plant (NPP) releases to the environment from the stack of NPP. Radioactive liquid waste releases of the ocean, the fluvial and the lake through the liquid waste letdyke of NPP. Further more, a few radioactive waste may be taken out of the NPP by vehicle or personnel. For the purpose of strict management and control above-mentioned waste, we use detect equipment monitoring radioactive waste of NPP. Management and control for the releasing of radioactive material to the environment in M310 reformatived NPP is strict and safety. (authors)

  17. Methods for nuclear material control used in the basic production of a typical radiochemical plant

    International Nuclear Information System (INIS)

    Kositsyn, V.F.; Mukhortov, N.F.; Korovin, Yu.I.; Rudenko, V.S.; Petrov, A.M.

    1999-01-01

    Techniques for destructive and non-destructive assay of the component and isotopic composition of nuclear materials are described, namely gravimetric, titrimetric, coulometric, mass spectrometry, as well as those based on registration of neutron and γ radiations. Their metrologic characteristics are described. The techniques described are suggested to be used for nuclear material (NM) control and accounting purposes at the model radiochemical plant for processing irradiated fuel subassemblies from power reactors. The measurement control program is also described. This program is intended for the measurement quality assurance in the framework of NM control and accountancy system [ru

  18. Savannah River Plant's Accountability Inventory Management System (AIMS) (Nuclear materials inventory control)

    International Nuclear Information System (INIS)

    Croom, R.G.

    1976-06-01

    The Accountability Inventory Management System (AIMS) is a new computer inventory control system for nuclear materials at the Savannah River Plant, Aiken, South Carolina. The system has two major components, inventory files and system parameter files. AIMS, part of the overall safeguards program, maintains an up-to-date record of nuclear material by location, produces reports required by ERDA in addition to onplant reports, and is capable of a wide range of response to changing input/output requirements through use of user-prepared parameter cards, as opposed to basic system reprogramming

  19. Measurements of the radioactivity of power plant by-products processed into construction materials

    International Nuclear Information System (INIS)

    Marcinkowski, S.A.; Dudelewski, H.A.

    1992-01-01

    The subject of the recycling of residual products comprising, inter alia, fly ash and slags accuring from the combustion of black and brown coal in modern coal dust boilers in the power industry has been topical for a number of years. Numerous discussions and articles in technical periodicals and the daily press have revolved around the problem of the radioactivity of construction materials or construction elements obtained from fly ash or slags of power plant. In Poland, this was a forbidden subject until the publication in 1980 by the Warsaw institute of construction technology of standard no. 234 entitled: 'Recommendations for establishing the natural radioactivity of products processed into construction materials'. (orig.) [de

  20. Preliminary concepts: coordinated safeguards for materials management in a thorium--uranium fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Barnes, J.W.; Dayem, H.A.; Dietz, R.J.; Shipley, J.P.

    1978-10-01

    This report addresses preliminary concepts for coordinated safeguards materials management in a typical generic thorium--uranium-fueled light-water reactor (LWR) fuels reprocessing plant. The reference facility is designed to recover thorium and uranium from first-generation (denatured 235 U) startup fuels, first-recycle and equilibrium (denatured 233 U) thorium--uranium LWR fuels, and to recover the plutonium generated in the 238 U denaturant as well. 12 figures, 3 tables

  1. High-throughput and homogeneous 13C-labelling of plant material for fair carbon accounting

    International Nuclear Information System (INIS)

    Slaets, J.I.F.; Resch, C.; Mayr, L.; Weltin, G.; Heiling, M.; Gruber, R.; Dercon, G.

    2016-01-01

    With growing political acknowledgement of the anthropogenic drivers and consequences of climate change, the development of carbon accounting mechanisms is essential for fair greenhouse gas emission mitigation policies. Therefore, carbon storage and emission must be accurately quantified. Plant material labelled with 13 C can be used to measure carbon storage in soil and carbon losses via CO 2 emission to the atmosphere from various cropping practices through in situ and incubation experiments.

  2. Modified application of HS-SPME for quality evaluation of essential oil plant materials.

    Science.gov (United States)

    Dawidowicz, Andrzej L; Szewczyk, Joanna; Dybowski, Michal P

    2016-01-01

    The main limitation in the standard application of head space analysis employing solid phase microextraction (HS-SPME) for the evaluation of plants as sources of essential oils (EOs) are different quantitative relations of EO components from those obtained by direct analysis of EO which was got in the steam distillation (SD) process from the same plant (EO/SD). The results presented in the paper for thyme, mint, sage, basil, savory, and marjoram prove that the quantitative relations of EO components established by HS-SPME procedure and direct analysis of EO/SD are similar when the plant material in the HS-SPME process is replaced by its suspension in oil of the same physicochemical character as that of SPME fiber coating. The observed differences in the thyme EO composition estimated by both procedures are insignificant (F(exp)plant material quality and thus may improve the efficiency of analytical laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Control of Varroa Mite (Varroa destructor on Honeybees by Aromatic Oils and Plant Materials

    Directory of Open Access Journals (Sweden)

    I.K. Nazer

    2003-01-01

    Full Text Available The effect of several volatile plant oils, plant materials and fluvalinate (Apistan® strips on the control of the mite Varroa destructor on honeybee (Apis mellifera L. colonies was studied. The volatile oils were: clove, lavender, peppermint, sage, and thyme. The plant materials were: cumin fruits, eucalyptus leaves, and worm wood flowers. For each tested material, three treatment periods were carried out. Each period lasted for 24 days followed by eight days no-treatment. Within each treatment period, an average of three to six treatments were applied. Dead mites were counted one hour before and after each treatment. An increase in dead mites was recorded for the three treatment periods. It indicated that worm wood flowers, peppermint oil and clove oil treatments gave the best results in the control of Varroa mites but not significantly different than the control. The overall increase in the dead mites was 3.92, 3.62 and 3.34 fold, respectively.

  4. New materials for thermal energy storage in concentrated solar power plants

    Science.gov (United States)

    Guerreiro, Luis; Collares-Pereira, Manuel

    2016-05-01

    Solar Thermal Electricity (STE) is an important alternative to PV electricity production, not only because it is getting more cost competitive with the continuous growth in installed capacity, engineering and associated innovations, but also, because of its unique dispatch ability advantage as a result of the already well established 2-tank energy storage using molten salts (MS). In recent years, research has been performed, on direct MS systems, to which features like modularity and combinations with other (solid) thermal storage materials are considered with the goal of achieving lower investment cost. Several alternative materials and systems have been studied. In this research, storage materials were identified with thermo-physical data being presented for different rocks (e.g. quartzite), super concrete, and other appropriate solid materials. Among the new materials being proposed like rocks from old quarries, an interesting option is the incorporation of solid waste material from old mines belonging to the Iberian Pyritic Belt. These are currently handled as byproducts of past mine activity, and can potentially constitute an environmental hazard due to their chemical (metal) content. This paper presents these materials, as part of a broad study to improve the current concept of solar energy storage for STE plants, and additionally presents a potentially valuable solution for environmental protection related to re-use of mining waste.

  5. Costs of jasmonic acid induced defense in aboveground and belowground parts of corn (Zea mays L.).

    Science.gov (United States)

    Feng, Yuanjiao; Wang, Jianwu; Luo, Shiming; Fan, Huizhi; Jin, Qiong

    2012-08-01

    Costs of jasmonic acid (JA) induced plant defense have gained increasing attention. In this study, JA was applied continuously to the aboveground (AG) or belowground (BG) parts, or AG plus BG parts of corn (Zea mays L.) to investigate whether JA exposure in one part of the plant would affect defense responses in another part, and whether or not JA induced defense would incur allocation costs. The results indicated that continuous JA application to AG parts systemically affected the quantities of defense chemicals in the roots, and vice versa. Quantities of DIMBOA and total amounts of phenolic compounds in leaves or roots generally increased 2 or 4 wk after the JA treatment to different plant parts. In the first 2 wk after application, the increase of defense chemicals in leaves and roots was accompanied by a significant decrease of root length, root surface area, and root biomass. Four weeks after the JA application, however, no such costs for the increase of defense chemicals in leaves and roots were detected. Instead, shoot biomass and root biomass increased. The results suggest that JA as a defense signal can be transferred from AG parts to BG parts of corn, and vice versa. Costs for induced defense elicited by continuous JA application were found in the early 2 wk, while distinct benefits were observed later, i.e., 4 wk after JA treatment.

  6. Genetic basis of aboveground productivity in two native Populus species and their hybrids.

    Science.gov (United States)

    Lojewski, Nathan R; Fischer, Dylan G; Bailey, Joseph K; Schweitzer, Jennifer A; Whitham, Thomas G; Hart, Stephen C

    2009-09-01

    Demonstration of genetic control over riparian tree productivity has major implications for responses of riparian systems to shifting environmental conditions and effects of genetics on ecosystems in general. We used field studies and common gardens, applying both molecular and quantitative techniques, to compare plot-level tree aboveground net primary productivity (ANPP(tree)) and individual tree growth rate constants in relation to plant genetic identity in two naturally occurring Populus tree species and their hybrids. In field comparisons of four cross types (Populus fremontii S. Wats., Populus angustifolia James, F(1) hybrids and backcross hybrids) across 11 natural stands, productivity was greatest for P. fremontii trees, followed by hybrids and lowest in P. angustifolia. A similar pattern was observed in four common gardens across a 290 m elevation and 100 km environmental gradient. Despite a doubling in productivity across the common gardens, the relative differences among the cross types remained constant. Using clonal replicates in a common garden, we found ANPP(tree) to be a heritable plant trait (i.e., broad-sense heritability), such that plant genetic factors explained between 38% and 82% of the variation in ANPP(tree). Furthermore, analysis of the genetic composition among individual tree genotypes using restriction fragment length polymorphism molecular markers showed that genetically similar trees also exhibited similar ANPP(tree). These findings indicate strong genetic contributions to natural variation in ANPP with important ecological implications.

  7. Propagating quality planting material to improve plant health and crop performance, key practices for dessert banana, plantain and cooking banana: illustrated guide

    OpenAIRE

    Staver, Charles; Lescot, Thierry

    2015-01-01

    Available in English, French, Spanish and Arabic, on line and on CD-ROM, this illustrated guide summarizes the key practices for producing clean planting material of banana with a high yield potential for smallholders, depending on the pests and diseases which are present. The guide is also designed to contribute to better planning of the propagation of planting material for rural development and disaster relief projects. (Résumé d'auteur)

  8. Diversity and above-ground biomass patterns of vascular flora induced by flooding in the drawdown area of China's Three Gorges Reservoir.

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    Full Text Available Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR, because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the

  9. ULC/ORD-C80.1 : the standard for aboveground non-metallic tanks for fuel oil

    Energy Technology Data Exchange (ETDEWEB)

    Nikolic, G. [Underwriters' Lab. of Canada, Toronto, ON (Canada)

    2001-09-01

    As a rule, flammable and combustible liquids were stored in aboveground tanks made of steel. Non-metallic materials are now being used for a new generation of aboveground tanks. Corrosion is a problem faced by most tank owners in many parts of Canada. Saltwater mist, sand blasting and bacteria growth formed in the condensation water at the bottom of the tank in the Maritimes affects an aboveground tank installed outdoors and close to the seashore. European non-metallic aboveground tanks for fuel oil first arrived on the North American market, and are now followed by designs from Canada. Requirements for these tanks were developed and tested by the Underwriters' Laboratories of Canada (ULC). It is a not-for-profit, independent organization accredited by the Standards Council of Canada to perform safety, certification, testing, quality registration, and standards development. The minimum criteria for non-metallic aboveground tank construction are contained in the ULC/ORD-C80.1 document. They can be constructed of fiber-reinforced plastic (FRP), single or double wall, or they can be double wall tanks consisting of primary plastic tanks within metallic secondary containment. Other tanks are made of the blow molded high-density polyethylene. To simulate an in-house installation, fire tests were performed where a tank filled with fuel was exposed to pool fire for 30 minutes. A successful test meant the tank had not ruptured nor leaked during and after the test. Testers had to observe that any collapse occurred above the liquid level, and that violent explosion of any part of the tank or its content did not occur. The design requirements were evaluated by performing an analysis of the temperature chart: maximum vapour temperature inside the tank was 358 Celsius, while the liquid reached a maximum temperature of 91 Celsius and the outside temperature reached 600 Celsius. Primary tank pressure did not exceed 17 kilo Pascal. Building simulation of venting installation

  10. Stress corrosion cracking susceptibility of selected materials for steam plant bolting applications

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, P.; Noga, J.O.; Ogundele, G.

    1996-12-01

    The incidence of alloy steel bolting failure in nuclear and fossil fired generating plants was discussed. The problem manifests itself in the form of intergranular stress corrosion cracking. A study was conducted to rank the susceptibility of three materials (Alloy AISI, type 4140, Alloy ASTM A564-92AXM 13 and Inconel 718) to stress corrosion cracking and to determine threshold stress intensity factors of currently used and alternate alloys in service environments typically encountered in steam generating utility plants. Although most alloy steel bolting failures have involved Cr-Mo, failures have also been reported for all the above mentioned materials. Attempts to minimize the occurrence of stress corrosion cracking have involved a ban on molybdenum disulphide, limiting bolt tightening torque and placing an upper limit on bolt hardness, and by correlation on tensile strength. Slow strain rate and wedge opening-loading specimen tests were used to evaluate commonly used and superior alternative bolting materials. Electrochemical polarization tests were also conducted. Threshold stresses in a H{sub 2}S environment were determined according to NACE standard TM-01-77. Results showed that, to a certain degree, all tested materials were susceptible to stress corrosion cracking. They ranked as follows from best to worst performance: (1) the Inconel 718, (2) alloy SM 13, and (3) alloy 4140. 9 refs., 20 tabs., 34 figs.

  11. [Effects of different disturbance modes on the morphological characteristics and aboveground biomass of Alhagi sparsifolia in oasis-desert ecotone].

    Science.gov (United States)

    Li, Hai-Feng; Zeng, Fan-Jiang; Gui, Dong-Wei; An, Gui-Xiang; Liu, Zhen; Zhang, Li-Gang; Liu, Bo

    2012-01-01

    Taking Cele oasis at the southern fringe of Taklimakan Desert as a case, this paper studied the effects of different disturbances (burning in spring, cutting in spring, and cutting in fall) on the morphological characteristics and aboveground biomass of natural vegetation Alhagi sparsifolia in the ecotone of oasis-desert. Burning in spring decreased the A. sparsifolia plant height, crown width, and biomass significantly, being harmful to the regeneration and growth of the vegetation. Cutting in spring decreased the A. sparsifolia plant height, crown width, and biomass but increased the leaf biomass, thorn length, and thorn diameter, whereas cutting in fall decreased the plant height and crown width but increased the ramification amount and biomass of A. sparsifolia. Moderate cutting in fall could benefit the protection of A. sparsifolia at the southern fringe of Taklimakan Desert.

  12. A remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States

    Science.gov (United States)

    Byrd, Kristin B.; Ballanti, Laurel; Thomas, Nathan; Nguyen, Dung; Holmquist, James R.; Simard, Marc; Windham-Myers, Lisamarie

    2018-01-01

    Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our objective was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). We developed the first calibration-grade, national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. Using the random forest machine learning algorithm, we tested whether imagery from multiple sensors, Sentinel-1 C-band synthetic aperture radar, Landsat, and the National Agriculture Imagery Program (NAIP), can improve model performance. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n = 409, RMSE = 310 g/m2, 10.3% normalized RMSE), successfully predicted biomass for a range of marsh plant functional types defined by height, leaf angle and growth form. Model results were improved by scaling field-measured biomass calibration data by NAIP-derived 30 m fraction green vegetation. With a mean plant carbon content of 44.1% (n = 1384, 95% C.I. = 43.99%–44.37%), we generated regional 30 m aboveground carbon density maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map. We applied a multivariate delta method to calculate uncertainties in regional carbon densities and stocks that considered standard error in map area, mean biomass and mean %C. Louisiana palustrine emergent marshes had the highest C density (2.67 ± 0.004 Mg/ha) of all regions, while San Francisco Bay brackish/saline marshes had

  13. Materials Integrity Analysis for Application of Hyper Duplex Stainless Steels to Korean Nuclear Power Plants

    International Nuclear Information System (INIS)

    Chang, Hyun Young; Park, Heung Bae; Park, Yong Soo; Kim, Soon Tae; Kim, Young Sik; Kim, Kwang Tae; Jhang, Yoon Young

    2010-01-01

    Hyper duplex stainless steels have been developed in Korea for the purpose of application to the seawater system of Korean nuclear power plants. This system supplies seawater to cooling water heat exchanger tubes, related pipes and chlorine injection system. In normal operation, seawater is supplied to heat exchanger through the exit of circulating water pump headers, and the heat exchanged sea water is extracted to the discharge pipes in circulating water system connected to the circulating water discharge lines. The high flow velocity of some part of seawater system in nuclear power plants accelerates damages of components. Therefore, high strength and high corrosion resistant steels need to be applied for this environment. Hyper duplex stainless steel (27Cr-7.0Ni-2.5Mo-3.2W-0.35N) has been newly developed in Korea and is being improved for applying to nuclear power plants. In this study, the physical and mechanical properties and corrosion resistance of newly developed materials are quantitatively evaluated in comparative to commercial stainless steels in other countries. The properties of weld and HAZ (heat affected zone) are analyzed and the best compositions are suggested. The optimum conditions in welding process are derived for ensuring the volume fraction of ferrite(α) and austenite(γ) in HAZ and controlling weld cracks. For applying these materials to the seawater heat exchanger, CCT and CPT in weldments are measured. As a result of all experiments, it was found that the newly developed hyper duplex stainless steel WREMBA has higher corrosion resistance and mechanical properties than those of super austenitic stainless steels including welded area. It is expected to be a promising material for seawater systems of Korean nuclear power plants

  14. Optimization of the retention of radioactive material from the airborne effluents of reprocessing plants

    International Nuclear Information System (INIS)

    Bonka, H.; Horn, H.-G.

    1984-01-01

    The radiation-protection ordinance of the Federal Republic of Germany does not know the expression 'optimization in radiological protection'. In order to gain experiences with the cost-benefit analysis for the retention of radioactive material from nuclear facilities as proposed in ICRP 26, this method has been applied on the emission of radioactive material with the airborne effluents of reprocessing plants. The reference plant has an annual throughput of 1500 t of spent LWR-fuel. Basing on this plant, two smaller plants (350 t/a, 700 t/a) are also analysed. The cost-benefit-analysis is carried-out for H3, C14, Kr85, J129 and aerosols. For these nuclides as well as for the three plant-sizes, the methods of retention, the estimated annual costs of retention, the emission rates for the different retention measures and the resulting collective-dose commitments are shown. Based on an α-value of 8000 $/man-Sv (20,000 DM/Man-Sv) the cost-benefit analysis shows no optimum for H3 and Kr 85. The optimum C14 as well as iodine retention is a high-efficiency scrubber and an iodine filter, respectively for the dissolver off-gas. For aerosols the cost-benefit analysis shows an optimum for the filtration of the dissolver off-gas by means of HEPA filters. For the other aerosol-sources, condensation, scrubbing and additional droplet separation from the off-gas is optimum. Reasons differing from cost-benefit analysis require HEPA filters for all major aerosol-sources. (author)

  15. Materials, manufacture and testing of pressurized components of high-power steam power plants

    International Nuclear Information System (INIS)

    Blind, D.; Foehl, J.; Issler, L.; Schellhammer, W.; Sturm, D.; Kussmaul, K.; Heinrich, D.; Meyer, H.J.; Prestel, W.

    1981-01-01

    This is the first German review of materials, production and testing of pressure components of high-capacity steam power plants. The authors have been working in this field for years; their special subject has been the availability and reliability of pressure vessels, in particular in nuclear engineering. Fundamentals are presented as well as the findings obtained at the state Materials Testing Institute in Stuttgart. The material is presented in a well-structured classification; the most recent international findings, especially of the USA, are presented. This is possible due to the close cooperation between the Stuttgart institute and a number of US research institutes. The new subject of fracture mechanics is treated in some detail; its fundamentals are discussed from the American point of view while German considerations - in particular of the Reactor Safety Commission - are taken into account in the field of applications. (orig.) [de

  16. Natural radionuclides in coal and waste material originating from coal fired power plant

    International Nuclear Information System (INIS)

    Marovic, Gordana; Franic, Zdenko; Sencar, Jasminka; Petrinec, Branko; Bituh, Tomislav; Kovac, Jadranka

    2008-01-01

    This paper presents long-term investigations of natural radioactivity in coal, used for power production in the coal-fired power plant (CFPP) situated on the Adriatic coast, and resulting slag and ash. Activity concentrations of 40 K, 232 Th, 226 Ra and 238 U in used coal and resulting waste material have been measured for 25 years. As expected, it was demonstrated that the content of radionuclides in deposited bottom and filter ash material are closely related with radionuclide activity concentrations and mineral matter fraction in used coals. The external hazard index has been calculated and discussed for the slag and ash depository. During the first decade of operation of the CFPP has been used domestic coal produced in nearby area characterized by higher background radiation compared with the rest of Croatia. Therefore, the coal itself had relatively high 226 Ra and 238 U activity concentrations while potassium and thorium content was very low, 40 K activity concentrations being 2-9% and those of 232 Th 1-3% of total activity. As, in addition, the sulphur concentrations in coal were very high use of domestic coal was gradually abandoned till it was completely substituted by imported coal originated from various sources and of low natural radioactivity. Upon this, activity concentrations of uranium series radionuclides in deposited waste materials decreased significantly. Consequently, waste material i.e., slag and ash, generated in the last several years of coal fired power plant operation could be readily used in cement industry and as additive to other building materials, without any special restrictions according to the Croatian regulations dealing with building materials and European directives. (author)

  17. Material development for waste to energy plants. Overlay welding and refractory linings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Noergaard Hansson, A.

    2011-02-15

    Waste is an extremely corrosive fuel. In order to recover a higher percentage of the energy in waste, waste incineration plants have developed from purely heat producing units to heat and power producing units. The change in concept results in higher material temperatures and thereby faster material degradation. As a result material failures have been observed in many waste incineration plants. The purpose of this project was to develop materials with higher resistance to the corrosive elements, in order to reduce the cost of maintenance, increase the availability, and increase the efficiency. The focus is on overlay welding and refractory linings. Inconel 625, alloy 50, alloy 686, and Super 625 offer equivalent corrosion protection at panel walls. 100% overlay performs better than 50% overlay. The corrosion morphology changes with increasing temperature from pitting and general corrosion to pitting and selective corrosion (dendritic core or grain boundaries). The previously observed detrimental effect of Fe on the corrosion resistance was not confirmed. It probably depends on factors such as microstructure of the alloy and local metal temperature. Ni-overlay also reduces the corrosion rates on superheater tubes. However, the superheater environment is less aggressive than the water wall environment. Failure of refractory linings is linked to excess porosity, detrimental reactions between raw materials and other mix constituents, volume growth reactions between base material and salt depositions, and thermal stress induced crack formation. Free water and not decomposition of hydrates causes spalling and cracking during the initial heating of refractory linings. Finite Element analysis confirms the stress levels between steel and refractory with the higher stress level at the top of the panel wall tube. A number of LCC mixes were formulated, adjusted and tested. Mixes with low open porosities ({approx} 10%) and state of the art resistance to KCl were achieved. (LN)

  18. A quantitative approach to design of material accounting system for a complex facility. Study at the PNC reprocessing plants

    International Nuclear Information System (INIS)

    Ikawa, K.

    1994-01-01

    An approach to a design of nuclear materials accounting sysyem for a complex facility in Japan is discussed. Near-real-time materials accountancy model studied at the PNC reprocessing plant is described. Main features of the computerized nuclear materials accounting system are considered as well as the PROMAC - C code algorithm for statistical data processing is presented. 18 refs., 5 figs., 1 tab

  19. Influence of weight and type of planting material on fruit quality and its heterogeneity in pineapple [Ananas comosus (L.) Merrill].

    Science.gov (United States)

    Fassinou Hotegni, V Nicodème; Lommen, Willemien J M; Agbossou, Euloge K; Struik, Paul C

    2014-01-01

    Cultural practices can affect the quality of pineapple fruits and its variation. The objectives of this study were to investigate (a) effects of weight class and type of planting material on fruit quality, heterogeneity in quality and proportion and yield of fruits meeting European export standards, and (b) the improvement in quality, proportion and yield of fruits meeting export standards when flowering was induced at optimum time. Experiments were conducted in Benin with cvs Sugarloaf (a Perola type) and Smooth Cayenne. In cv. Sugarloaf, experimental factors were weight class of planting material (light, mixed, heavy) and time of flowering induction (farmers', optimum) (Experiment 1). In cv. Smooth Cayenne an additional experimental factor was the type of planting material (hapas, ground suckers, a mixture of the two) (Experiment 2). Fruits from heavy planting material had higher infructescence and fruit weights, longer infructescences, shorter crowns, and smaller crown: infructescence length than fruits from light planting material. The type of planting material in Experiment 2 did not significantly affect fruit quality except crown length: fruits from hapas had shorter crowns than those from ground suckers. Crops from heavy planting material had a higher proportion and yield of fruits meeting export standards than those from other weight classes in Experiment 1 only; also the type of planting material in Experiment 2 did not affect these variates. Heterogeneity in fruit quality was usually not reduced by selecting only light or heavy planting material instead of mixing weights; incidentally the coefficient of variation was significantly reduced in fruits from heavy slips only. Heterogeneity was also not reduced by not mixing hapas and ground suckers. Flowering induction at optimum time increased the proportion and yield of fruits meeting export standards in fruits from light and mixed slip weights and in those from the mixture of heavy hapas plus ground suckers.

  20. ALLOMETRIC EQUATIONS FOR ESTIMATING ABOVEGROUND BIOMASS IN PAPUA TROPICAL FOREST

    Directory of Open Access Journals (Sweden)

    Sandhi Imam Maulana

    2014-10-01

    Full Text Available Allometric equations can be used to estimate biomass and carbon stock of  the forest. However, so far the allometric equations for commercial species in Papua tropical forests have not been appropriately developed. In this research, allometric equations are presented based on the genera of  commercial species. Few equations have been developed for the commercial species of  Intsia, Pometia, Palaquium and Vatica genera and an equation of  a mix of  these genera. The number of  trees sampled in this research was 49, with diameters (1.30 m above-ground or above buttresses ranging from 5 to 40 cm. Destructive sampling was used to collect the samples where Diameter at Breast Height (DBH and Wood Density (WD were used as predictors for dry weight of  Total Above-Ground Biomass (TAGB. Model comparison and selection were based on the values of  F-statistics, R-sq, R-sq (adj, and average deviation. Based on these statistical indicators, the most suitable model for Intsia, Pometia, Palaquium and Vatica genera respectively are Log(TAGB = -0.76 + 2.51Log(DBH, Log(TAGB = -0.84 + 2.57Log(DBH, Log(TAGB = -1.52 + 2.96Log(DBH, and Log(TAGB = -0.09 + 2.08Log(DBH. Additional explanatory variables such as Commercial Bole Height (CBH do not really increase the indicators’ goodness of  fit for the equation. An alternative model to incorporate wood density should  be considered for estimating the above-ground biomass for mixed genera. Comparing the presented mixed-genera equation; Log(TAGB = 0.205 + 2.08Log(DBH + 1.75Log(WD, R-sq: 97.0%, R-sq (adj: 96.9%, F statistics 750.67, average deviation: 3.5%; to previously published datashows that this local species specific equation differs substantially from previously published equations and this site-specific equation is  considered to give a better estimation of  biomass.

  1. Current Perspective in the International Trade of Medicinal Plants Material: An Update.

    Science.gov (United States)

    Vasisht, Karan; Sharma, Neetika; Karan, Maninder

    2016-01-01

    The recent years have seen an increased interest in medicinal plants together with the therapeutic use of phytochemicals. Medicinal plants are utilized by the industry for the production of extracts, phytopharmaceuticals, nutraceuticals and cosmeceuticals and their use is expected to grow faster than the conventional drugs. The enormous demand of medicinal plant material has resulted in huge trade both at domestic and international levels. The trade data of medicinal plant material with commodity code HS 1211 (SITC.4, code 292.4) and their derived/related products which are traded under different commodity codes has been acquired from COMTRADE, Trade Map, country reports, technical documents etc for the period 2001 to 2014. The data was analyzed using statistical tools to draw conclusions. The significant features of the global trade; the leading source, consumer, import and export countries; and the striking trends are presented. The trade of the ten key countries and the selected important items is also discussed in detail. The conservative figure of trade of medicinal plants materials and their derived/related products including extracts, essential oils, phytopharmaceuticals, gums, spices used in medicine, tannins for pharmaceutical use, ingredients for cosmetics etc. as calculated from the global export data for the year 2014 is estimated at USD 33 billion. The average global export in medicinal plants under HS 1211 for the fourteen year period was USD 1.92 billion for 601,357 tons per annum and for the year 2014 it stood at 702,813 tons valued at USD 3.60 billion. For the studied period, an annual average growth rate (AAGR) of 2.4% in volumes and 9.2% in values of export was observed. Nearly 30% of the global trade is made up by top two countries of the import and export. China and India from Asia; Egypt and Morocco from Africa; Poland, Bulgaria and Albania from Europe; Chile and Peru from South America are important supply sources. The USA, Japan and Europe

  2. Development of a method for analyzing traces of ruthenium in plant materials and determination of the transfer factors soil/plant for ruthenium compounds from reprocessing plants

    International Nuclear Information System (INIS)

    Blasius, E.; Huth, R.; Neumann, W.

    1988-01-01

    In an artificial humous and sandy soil spiked with 106 Ru as RuO 2 and RuCl 3 , pasture grass was grown under artificial illumination in our laboratory. The amounts of ruthenium taken up by the plants were determined by γ-spectrometry. For open-air investigations with pasture grass, wheat and potatoes inactive ruthenium(III) chloride and ruthenium nitrosylchloride were used. Ruthenium was determined by electrothermal atomic absorption spectrometry (ETAAS) after destroying the organic material and concentrating the solution. The concentration and chemical form of the ruthenium exert an unimportant influence on the transfer factor. For the pasture-grass, the stems of wheat and the weed of potatoes it amounts to 0.00005 to 0.0015, for the ear of wheat to about 0.00005. In peeled potatoes there was no ruthenium detectable, therefore the limit of detection leads to a transfer factor ≤ 0.00001. So it is evident that ruthenium is little available for the roots of the plants. In the event of an accident in a nuclear plant the uptake of radioactive ruthenium by roots has only negligible radioecological consequences. This applies even if 50 years of ruthenium enrichment in the soil are assumed. (orig./RB)

  3. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright

    2010-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for

  4. Next Generation Nuclear Plant Intermediate Heat Exchanger Materials Research and Development Plan (PLN-2804)

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright

    2008-04-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for

  5. THE BIODEGRADABILITY AND MECHANICAL STRENGTH OF NUTRITIVE POTS FOR VEGETABLE PLANTING BASED ON LIGNOCELLULOSE COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    Petronela Nechita

    2010-04-01

    Full Text Available Considering the mild degradation strength and the fact that it may be an organic matter reserve for the soil, in the past years lignocellulosic materials have been used as fibrous raw materials in the manufacture of biodegradable nutritive pots for the seedling in vegetable containerized production. This paper analyses the behavior of the nutritive pots made from biodegradable composites for the vegetable seedling production process, focusing on their mechanical strength properties and biodegradability. It was found that the biodegradability of composite materials obtained from a mixture of secondary cellulosic fibers, peat, and additives, is strongly influenced by the presence or absence of the rhizosphere effect and the synergistic relations set in the culture substrate between the plant roots and microorganisms, which develop permanently the recycling and solubilization of mineral nutrients. The results showed that the presence in the substrate of some complex populations made by heterotrophic bacteria favors full degradation of the pulp and lignin contained in the substrate and pots composition. Therefore, unlike the reference sample (plant-free, cultivated versions exhibited an intense biodegradation on the account of rhizosphere effect.

  6. Approach to IAEA material-balance verification at the Portsmouth Gas Centrifuge Enrichment Plant

    International Nuclear Information System (INIS)

    Gordon, D.M.; Sanborn, J.B.; Younkin, J.M.; DeVito, V.J.

    1983-01-01

    This paper describes a potential approach by which the International Atomic Energy Agency (IAEA) might verify the nuclear-material balance at the Portsmouth Gas Centrifuge Enrichment Plant (GCEP). The strategy makes use of the attributes and variables measurement verification approach, whereby the IAEA would perform independent measurements on a randomly selected subset of the items comprising the U-235 flows and inventories at the plant. In addition, the MUF-D statistic is used as the test statistic for the detection of diversion. The paper includes descriptions of the potential verification activities, as well as calculations of: (1) attributes and variables sample sizes for the various strata, (2) standard deviations of the relevant test statistics, and (3) the detection sensitivity which the IAEA might achieve by this verification strategy at GCEP

  7. Effects of temperature, ultraviolet radiation and pectin methyl esterase on aerobic methane release from plant material.

    Science.gov (United States)

    Bruhn, D; Mikkelsen, T N; Obro, J; Willats, W G T; Ambus, P

    2009-11-01

    This study examines the effects of different irradiance types on aerobic methane (CH(4)) efflux rates from terrestrial plant material. Furthermore, the role of the enzyme pectin methyl esterase (PME) on CH(4) efflux potential was also examined. Different types of plant tissue and purified pectin were incubated in glass vials with different combinations of irradiation and/or temperature. Purified dry pectin was incubated in solution, and with or without PME. Before and after incubation, the concentration of CH(4) was measured with a gas chromatograph. Rates of CH(4) emission were found to depend exponentially on temperature and linearly on UV-B irradiance. UV-B had a greater stimulating effect than UV-A, while visible light had no effect on emission rates. PME was found to substantially reduce the potential for aerobic CH(4) emissions upon demethylation of pectin.

  8. Evaluating lidar point densities for effective estimation of aboveground biomass

    Science.gov (United States)

    Wu, Zhuoting; Dye, Dennis G.; Stoker, Jason M.; Vogel, John M.; Velasco, Miguel G.; Middleton, Barry R.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) was recently established to provide airborne lidar data coverage on a national scale. As part of a broader research effort of the USGS to develop an effective remote sensing-based methodology for the creation of an operational biomass Essential Climate Variable (Biomass ECV) data product, we evaluated the performance of airborne lidar data at various pulse densities against Landsat 8 satellite imagery in estimating above ground biomass for forests and woodlands in a study area in east-central Arizona, U.S. High point density airborne lidar data, were randomly sampled to produce five lidar datasets with reduced densities ranging from 0.5 to 8 point(s)/m2, corresponding to the point density range of 3DEP to provide national lidar coverage over time. Lidar-derived aboveground biomass estimate errors showed an overall decreasing trend as lidar point density increased from 0.5 to 8 points/m2. Landsat 8-based aboveground biomass estimates produced errors larger than the lowest lidar point density of 0.5 point/m2, and therefore Landsat 8 observations alone were ineffective relative to airborne lidar for generating a Biomass ECV product, at least for the forest and woodland vegetation types of the Southwestern U.S. While a national Biomass ECV product with optimal accuracy could potentially be achieved with 3DEP data at 8 points/m2, our results indicate that even lower density lidar data could be sufficient to provide a national Biomass ECV product with accuracies significantly higher than that from Landsat observations alone.

  9. Materials in flue gas condensation plants. Stage 2; Materialval vid roekgaskondensering. Etapp 2

    Energy Technology Data Exchange (ETDEWEB)

    Nordling, Magnus; Bergman, Gunnar; Baeck, Gustaf; Jacobsson, Karin; Pahverk, Helen; Roemhild, Stefanie

    2004-12-01

    The corrosion resistance of some metallic and polymeric materials has been investigated in the flue gas scrubbers/condensers in the power plants at Igelsta using waste wood and Brista using bio fuel in the boilers. The materials were exposed inside the inlet part of the condenser and inside the flue gas duct after the condenser. In Brista, the polymeric materials were also exposed to the hot flue gases inside the duct before the condenser. The temperature of the gases before and after the condenser in Brista was 140 deg C and 50-60 deg C, respectively. In Igelsta, the flue gas temperature after the condenser was 45 deg C. The metallic coupons in the condenser were located in the spray-zone, both in Igelsta and Brista. That was true also for the polymeric material in Brista. In both plants, the wash-solution had a pH of 7-8, a temperature of 30 deg C, and a low content of chloride. The metallic materials investigated were stainless steels of the following grades: 17-12-2.5, 2205, SAF2507 and 254SMO. The major part of the polymeric materials investigated consisted of FRP laminates, which were made with different combinations of resin type of surface veil and type of chopped strand mat (CSM). Laminates with a new type of vinyl ester resin, Atlac E-Nova FW 1045, a new type of a stress-corrosion-resistant glass-fibre called Arcotex, and two types of surface reinforcement of carbon fibre have been compared to laminates of common type. Laminates with a special reinforcement of the type 3-D fabric were also included as well as five polypropylene materials (PP) with varying degree of stabilisation, two glass-flake materials applied on carbon steel and a butyl rubber. The corrosion resistance of the materials was evaluated after seven a months exposure at the different positions in the plants. The stainless steel materials were evaluated with respect to uniform corrosion, pitting and crevice attack. The corrosion resistance of the polymeric materials was evaluated with

  10. Characterization of process holdup material at the Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Boyd, D.E.; Miller, R.R.

    1986-01-01

    The cascade material balance area at the Portsmouth Gaseous Diffusion Plant is characterized by continuous, large, in-process inventories of gaseous uranium hexafluoride (UF 6 ) and very large inputs and outputs of UF 6 over a complete range of 235 U enrichments. Monthly inventories are conducted to quantify the in-place material, but the inventory techniques are blind to material not in the gas phase. Material is removed from the gas phase by any one of four mechanisms: (1) freeze-outs which are the solidification of UF 6 , (2) inleakage of wet air which produces solid uranium oxyfluorides, (3) consumption of uranium through UF 6 reaction with internal metal surfaces, and (4) adsorption of UF 6 on internal surfaces. This presentation describes efforts to better characterize and, where possible, to eliminate or reduce the effects of these mechanisms on material accountability. Freeze-outs and wet air deposits occur under absormal operating conditions, and techniques are available to prevent, detect and reverse them. Consumption and adsorption occur under normal operating conditions and are more complex to manage, however, computer models have been developed to quantify monthly the net effects due to consumption and adsorption. These models have shown that consumption and adsorption effects on inventory differences are significant

  11. Evolution of sourdough microbiota in spontaneous sourdoughs started with different plant materials.

    Science.gov (United States)

    Ripari, Valery; Gänzle, Michael G; Berardi, Enrico

    2016-09-02

    The preparation of sourdough in bakeries may include the use of inocula, e.g. fruits, flowers or rumen cuts to accelerate the process of selection of suitable microorganisms. The aim of this work was to investigate the effect of these inocula on the microbial evolution in sourdoughs. First, the microbiota of nineteen traditional sourdoughs that were initially started with diverse inocula was identified. Second, de novo sourdoughs were started with plant materials and the evolution of sourdough microbiota was investigated by culture, and by high-resolution melting curve quantitative PCR (HRM-qPCR). This study developed a new protocol for HRM-qPCR analysis of yeast microbiota in sourdough, and indicates this independent culture method suitable for characterization of yeasts. Microbiota of traditional sourdoughs were largely independent from the use of inoculum, however, Acetobacter spp. were identified only in sourdoughs started with apple flowers or apple pulp. In de novo sourdoughs started with plant materials, microbiota rapidly stabilized, and were characterized by Lactobacillus sanfranciscensis, Lactobacillus plantarum, Lactobacillus graminis, or Lactobacillus rossiae, and Saccharomyces cerevisiae as dominant species. Competition experiments revealed that the ecological fitness of L. plantarum, L. graminis, and L. rossiae in wheat or rye malt sourdoughs was lower when compared to L. sanfranciscensis, demonstrating that their presence in de novo sourdoughs reflects dispersal limitation. In conclusion, establishment of microbiota in de novo sourdoughs is dispersal limited. This study provides scientific support for the artisanal practice to inoculate de novo sourdoughs with flowers, berries, or related plant material. Copyright © 2016. Published by Elsevier B.V.

  12. Evaluation of Blue Value in different plant materials as a tool for rapid starch determination

    Directory of Open Access Journals (Sweden)

    Bogusław Samotus

    2014-01-01

    Full Text Available In order to determine the concentration of starch in plant materials from the intensity of the blue iodine complex, it is necessary to know the Blue Value (B.V., which is defined in this paper as the absorbancy of 100 mg of a starch-iodine complex in 100 ml of aqueous solution. An adequate amount of plant material is treated with a hot CaCl2 solution for 1/2 hour and the solute is diluted to 25 ml with CaCl2. This basic solution serves to measure absorbancy, as well as for starch determination. The first measurement is done by the dilution of a proper amount of basic solution with water and after adding a diluted iodine-iodide solution the reading of B.V. is taken off. The second measurement is done by the precipitation of a starch iodine complex from a proper amount of the basic solution, which is then purified, destroyed by Na2SO3 solution, and starch is determined by the anthrone method. These two readings serve for the establishing of B.V. for the starch. Once established, B.V. can be used for starch determination in the proper plant material. A high degree of variation of the B.V. was found. The highest B.V. was obtained for wrinkled pea seeds (17.4; walnut, potato, smooth pea and pear gave values from 12.6 to 11.0, common bean and broad bean - 10.3 and 9.7, Triticale, carrot, rye, wheat and garden parsley from 8.7 to 8.0 and maize, oat, normal rice from 7.6 to 6.2. The B.V. for amylose was 25.3, for potato starch 12.4, soluble starch 11.9, wheat starch 8.8 and for Triticale and rye starches, 8.7.

  13. Hydrological dispersion of radioactive material in relation to nuclear power plant siting

    International Nuclear Information System (INIS)

    1985-01-01

    This Guide discusses the dispersion of normal and accidental releases of radioactive materials from nuclear power plants into surface water, including the washout of airborne radionuclides, and gives recommendations on information to be collected during the various stages of the siting procedure, a minimum measurement programme and the selection and validation of appropriate mathematical models for predicting dispersion. Guidelines are also provided for the optimal use of models for a specific site situation and for defining the necessary input parameters. Results of existing validation studies are given

  14. The radiolytic cracking decomposion of the plant cellulose materials and their chemcial properties

    International Nuclear Information System (INIS)

    Shou Hongxia

    1987-01-01

    Under the treatment with high energy radiation, plant cellulose materials undergo a series of changes in chemical and physical properties. This paper describes the chemical changes of water-soluble carbohydrate, easy-to-hydrolyse carbohydrate, hard-to-hydrolyse carbohydrate, amino acid and protein in rice straw after irradiation with 60 Co γ-ray. The content of water-soluble carbohydrate in rice straw can be increased significantly by such treatment. The combination treatment of irradiation and acid or alkali soaker can reduce the dose for the radiolytic cracking decomposition and produce a good effect

  15. Evaluation of residual life of material of power plant construction elements after long-term operation

    International Nuclear Information System (INIS)

    Osasyuk, V.V.

    1989-01-01

    Existing methods are analyzed for estimation of residual resource of elements of constructions, working in creep conditions. A suggested and experimentally verified new method of residual durability forecasting is described permitting the value of the supplementary resource to be specified according to the real state of the material after preoperation. Evaluation results are given for residual life of steam lines received by different methods and advantages of the technique proposed are shown. Reliability of the new technique is confirmed by steam line operation at thermal power plants

  16. Laser ablation inductively coupled plasma optical emission spectrometry for analysis of pellets of plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Marcos S. [Departamento de Química, Universidade Federal de São Carlos, Rod. Washington Luís, km 235, 13565-905 São Carlos, SP (Brazil); Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000 Piracicaba, SP (Brazil); Schenk, Emily R. [Department of Chemistry and Biochemistry, Florida International University, Miami, FL (United States); International Forensic Research Institute, Florida International University, Miami, FL (United States); Santos, Dário [Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Rua Professor Arthur Riedel 275, Diadema, SP (Brazil); Krug, Francisco José [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000 Piracicaba, SP (Brazil); Almirall, José R., E-mail: almirall@fiu.edu [Department of Chemistry and Biochemistry, Florida International University, Miami, FL (United States); International Forensic Research Institute, Florida International University, Miami, FL (United States)

    2014-04-01

    An evaluation of laser ablation inductively coupled plasma optical emission spectroscopy (LAICP OES) for the direct analysis of pelleted plant material is reported. Ground leaves of orange citrus, soy and sugarcane were comminuted using a high-speed ball mill, pressed into pellets and sampled directly with laser ablation and analyzed by ICP OES. The limits of detection (LODs) for the method ranged from as low as 0.1 mg kg{sup −1} for Zn to as high as 94 mg kg{sup −1} for K but were generally below 6 mg kg{sup −1} for most of the elements of interest. A certified reference material consisting of a similar matrix (NIST SRM 1547 peach leaves) was used to check the accuracy of the calibration and the reported method resulted in an average bias of ∼ 5% for all the elements of interest. The precision for the reported method ranged from as low as 4% relative standard deviation (RSD) for Mn to as high as 17% RSD for Zn but averaged ∼ 6.5% RSD for all the elements (n = 10). The proposed method was tested for the determination of Ca, Mg, P, K, Fe, Mn, Zn and B, and the results were in good agreement with those obtained for the corresponding acid digests by ICP-OES, no differences being observed by applying a paired t-test at the 95% confidence level. The reported direct solid sampling method provides a fast alternative to acid digestion that results in similar and appropriate analytical figures of merit with regard to sensitivity, accuracy and precision for plant material analysis. - Highlights: • An evaluation of LA-ICP-OES for the direct analysis of pelleted plant material is reported. • Orange citrus, soy and sugarcane plants were pressed into pellets and sampled directly. • The element menu consisted of Ca, Mg, P, K, Fe, Mn, Zn and B. • LODs for the method ranged from 0.1 mg kg{sup −1} for Zn to 94 mg kg{sup −1} for K. • The precision ranged from 4% RSD for Mn to 17% RSD for Zn (∼ 6.5% RSD average)

  17. A graphical technique for distinguishing plant material and soil from atmospheric deposition in biomonitors

    International Nuclear Information System (INIS)

    Rahn, K.A.

    2000-01-01

    The paper explores the limits to which a new graphical technique can distinguish the various hierarchical levels of sources of trace elements within biomonitors. When applied to data from Portuguese lichens, it appears to resolve four levels of sources, from plant material down to individual types of pollution. Careful factor analysis appears to offer very similar results, being weaker than the graphical method in some aspects and stronger in others. As a result, it now seems possible to determine sources for elements in lichens with better precision and confidence than was available previously. (author)

  18. Nuclear power plant diagnostics - Safety aspects and licensing. Report of a technical committee meeting. Working material

    International Nuclear Information System (INIS)

    1997-01-01

    The aim of the Technical Committee Meeting (TCM) was to review developed systems and methods in diagnostics in the scope of their impacts and importance to the safety of Nuclear Power Plants. Papers presented on TCM came from different sources, from developers, from manufacturers, from licensing authorities and from NPP personal. They reflect up to date status in the given subject. Participants of TCM formulated three working groups to elaborate different questions which were raised during the discussions. Their results are reflected in the three chapter titles of the given material. Annex 1 to this document contains presentations made at the Technical Committee Meeting. Refs, figs, tabs

  19. Air-cleaning philosophy in a nuclear-materials fabrication plant

    International Nuclear Information System (INIS)

    Ward, F.Y.; Yoder, R.E.

    1982-01-01

    At the Department of Energy's Rocky Flats Plant there is a major ventilation improvement project underway. To achieve the desired goals of ALARA regarding radioactivity and toxic material releases and natural phenomena insults, a comprehensive air-cleaning philosophy and policy statement was developed. Design of the upgraded systems were evaluated against these statements and we believe that upon completion of the projects that an efficient system will be demonstrated. the design permits reuse and heat recovery of ventilation air, the optimization of sampling points to reduce analytical laboratory services. This paper discusses the basis of the philosophy and the engineering features incorporated to meet this stated objective. Points of compromise are noted

  20. Overview of an automated, near realtime materials accounting system in use at the Savannah River Plant

    International Nuclear Information System (INIS)

    Clark, W.C. Jr.

    1987-01-01

    A reliable material accounting system is a requirement for the operation of any nuclear facility. At the Savannah River Plant, an automated, near realtime, accounting system has been developed to provide such reliability. The system's design provides timely detection of diversion or accounting problems by monitoring the activity in 18 unit process areas (UPAs). Material balance calculations are performed for each UPA after a batch of material has completed a processing step. In most cases, an inventory difference (ID) for a UPA is established at least every 24 hours. Detection of an accounting problem is further enhanced by an online measurement control program. This program evaluates the performance of most measurement equipment every 12 hours. Error estimates are propagated when a material balance is closed to provide a realtime limit of error for the inventory difference. To minimize false alarms, the data must be reliable and free of input errors. Solution volumes, container identifications, material weights, etc., are all collected via direct computer connections. Manual data input is used only as a backup to the automated system. Automatic data collection also provides a quick and easy method of entering accounting data. Data entry is therefore performed simultaneously with production operations, without reducing throughput. Finally, requests for analytical results required to determine nuclear material concentrations are made online. Concentrations are determined using one of ten assay devices or by analysis performed in a dedicated laboratory. When results are available, the information is posted on the accounting computer and any required adjustments are performed automatically. If necessary, material balances are reclosed to reflect the ID changes caused by a posted results

  1. Manipulator and materials handling systems for reactor decommissioning -Cooperation between the university and the plant operator

    International Nuclear Information System (INIS)

    Schreck, G.; Bach, F. W.; Haferkamp, H.

    1995-01-01

    Nuclear reactor dismantling requires suitable handling systems for tools and disassembled components, as well as qualified and reliable disassembly and cutting techniques. From the angle of radiation protection, remote-controlled handling techniques and underwater techniques are the methods of choice, the latter particularly in continuation of plant operating conditions, and this all the more the more disassembly work proceeds towards the reactor core. With the experience accumulated for 20 years now by the Institut fuer Werkstoffkunde (materials science) of Hannover University by basic research and application-oriented development work in the field of thermal cutting technology, especially plasma arc cutting techniques, as well as development work in the field of remote-controlled materials handling systems, the institute is the cut-out partner for disassembly tasks in reactor decommissioning. (Orig./DG) [de

  2. Preliminary experiences with material testing at the oxyfuel pilot plant at Schwarze Pumpe

    Energy Technology Data Exchange (ETDEWEB)

    Hjoernhede, Anders [Vattenfall Power, Gothenborg (Sweden); Montgomery, Melanie [Technical Univ. Denmark, Lyngby (Denmark). Inst. for Mekanisk Teknologi; Vattenfall Heat Nordic, Lyngby (Denmark); Bjurman, Martin; Henderson, Pamela [Vattenfall AB (Sweden). Research and Development; Gerhardt, Alexander [Vattenfall AB, Berlin (Germany). Research and Development

    2010-07-01

    Several material related issues may arise from oxyfuel combustion of coal due to the presence of CO{sub 2} but also as an effect of the partial recirculation of the flue gas. Two examples are increased corrosion and carburisation which may limit steam data, hence limiting the efficiency. A number of corrosion tests, in both conventional air-firing and oxyfuel mode, have been made in Vattenfalls 30 MW oxyfuel pilot plant located in Schwarze Pumpe, Germany. Internally cooled corrosion probes, equipped with ferritic, austenitic, super austenitic steels as well as Ni-based and FeCrAl alloys, simulating superheaters, economisers and air preheaters were exposed for up to 1500 hrs. The analyses show an indication of higher material wastage in oxyfuel compared to air combustion especially at the lower exposure temperatures. This may be due to increased sulphur concentration in corrosion front, increased heat flux, carburisation or other precipitate formations on austenitic steels and Ni-based alloys. (orig.)

  3. Nuclear power plant containment metallic pressure boundary materials and plans for collecting and presenting their properties

    International Nuclear Information System (INIS)

    Oland, C.B.

    1995-04-01

    A program is being conducted at the Oak Ridge National Laboratory (ORNL to assist the Nuclear Regulatory Commission (NRC)) in their assessment of the effects of degradation (primarily corrosion) on the structural capacity and leaktight integrity of metal containments and steel liners of reinforced concrete structures in nuclear power plants. One of the program objectives is to characterize and quantify manifestations of corrosion on the properties of steels used to construct containment pressure boundary components. This report describes a plan for use in collecting and presenting data and information on ferrous alloys permitted for use in construction of pressure retaining components in concrete and metal containments. Discussions about various degradation mechanisms that could potentially affect the mechanical properties of these materials are also included. Conclusions and recommendations presented in this report will be used to guide the collection of data and information that will be used to prepare a material properties data base for containment steels

  4. Hot Water Treatment, Trunk Diseases and Other Critical Factors in the Production of High-Quality Grapevine Planting Material

    Directory of Open Access Journals (Sweden)

    H. Waite

    2007-04-01

    Full Text Available This review describes the critical factors on which successful grapevine propagation depends and discusses the steps that can be taken to improve the quality of planting material available to growers. Spasmodic occurrences of young vine decline and the failure of planting material have plagued the wine industry since the 1990s. The syndrome now described as Petri disease has been identified as the probable cause of many of the failures, but hot water treatment (HWT of dormant cuttings (50°C/30 min, for the control of Phaeomoniella chlamydospora and other endogenous pathogens, has also been implicated in the losses. HWT is known to cause a temporary switch to fermentative respiration and early retarded growth in treated material, particularly in Pinot Noir, but the effects of HWT on dormant vine tissue are not yet fully understood. Poor nursery hygiene and poor storage and handling practices during propagation and planting have also been implicated in vine failure. Demand for planting material has exceeded supply and there has been little incentive for nurseries to improve their standards. The quality of planting material could be significantly improved by changing nursery practices, particularly by discontinuing the practice of soaking cuttings in water, treated or untreated, and by improving general standards of nursery hygiene and the management of cool rooms. There is a need to develop a set of universal quality standards for cuttings and rooted vines. Growers also need to be made aware of the characteristics and benefits of high quality planting material.

  5. THE DEVELOPMENT OF PLANTS FOR THE PRODUCTION OF CONCENTRATED PASTES OF FRUIT AND VEGETABLE RAW MATERIALS

    Directory of Open Access Journals (Sweden)

    G. O. Magomedov

    2015-01-01

    Full Text Available Summary. Developed a new system for producing concentrated semi-finished products in the form of pastes for the food industry. Currently, an important task of the food industry is the creation of new products with the aim of improving the structure of the range, saving scarce raw materials, as well as reduce sugar intake; development of product functionality and products with extended shelf life. The use of local non-traditional types of plant materials can contribute to solving existing problems. Fruit and vegetable pastes are a valuable food products which can be used as a semifinished product in the confectionery, bakery, food concentrates industry. Fruit and vegetable purees have a distinct structurally viscous or pseudo-plastic properties and concentration form a very viscous mass. Already in the beginning of the process of concentration, i.e. at a relatively low degree of evaporation that leads to a rapid increase in the viscosity of the concentrate mass and reduce evaporation. With increasing temperature is the burning mass, and also change its color and flavor. Therefore, for the concentration of fruit and vegetable purees, you must use equipment whose design takes into account the possible rheological and thermal problems. The analysis of literary data structures evaporators and studies, we developed a system for producing concentrated pastes of fruit and vegetable raw materials. Developed installation can increase the quality of the finished product due to the intensification of the process of concentration, to reduce material and energy resources, increase productivity.

  6. IAEA TC Project 'Strengthening safety and reliability of fuel and materials in nuclear power plants'

    International Nuclear Information System (INIS)

    Makihara, Y.

    2008-01-01

    The Regional TC Project in Europe RER9076 'Strengthening Safety and Reliability of Fuel and Materials in Nuclear Power Plants' was launched in 2003 as a four-year project and was subsequently extended in 2006 to run through 2008. The purpose of the Project is to support the Central and Eastern European countries with the necessary tools to fulfill their own fuel and material licensing needs. The main objective will be to provide quality data on fuel and materials irradiated in power reactors and in dedicated experiments carried out in material test reactors (MTRs). Within the framework of the Project, ten tasks were implemented. These included experiments performed at the test facilities in the region, training courses and workshops related to fuel safety. While several tasks are expected to be completed by the end of RER9076, some remain. It would be desirable to initiate a new RER Project from the next TC cycle (2009-2011) in order to take over RER9076 and to implement new tasks required for enhancing fuel safety in the region. (author)

  7. Derived heuristics-based consistent optimization of material flow in a gold processing plant

    Science.gov (United States)

    Myburgh, Christie; Deb, Kalyanmoy

    2018-01-01

    Material flow in a chemical processing plant often follows complicated control laws and involves plant capacity constraints. Importantly, the process involves discrete scenarios which when modelled in a programming format involves if-then-else statements. Therefore, a formulation of an optimization problem of such processes becomes complicated with nonlinear and non-differentiable objective and constraint functions. In handling such problems using classical point-based approaches, users often have to resort to modifications and indirect ways of representing the problem to suit the restrictions associated with classical methods. In a particular gold processing plant optimization problem, these facts are demonstrated by showing results from MATLAB®'s well-known fmincon routine. Thereafter, a customized evolutionary optimization procedure which is capable of handling all complexities offered by the problem is developed. Although the evolutionary approach produced results with comparatively less variance over multiple runs, the performance has been enhanced by introducing derived heuristics associated with the problem. In this article, the development and usage of derived heuristics in a practical problem are presented and their importance in a quick convergence of the overall algorithm is demonstrated.

  8. PWSCC issues and material aging management for nuclear power plants in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seong Sik; Lim, Yun Soo; Kim, Dong Jin; Kim, Sung Woo; Kim, Hong Pyo [Nuclear Materials Research Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    The primary water stress corrosion cracking (PWSCC) of alloy 600 in a PWR has been reported in the control rod drive mechanism (CRDM). Beginning in the mid-seventies, the pressurized water reactor (PWR) plants suffered from a sequence of SCC events mostly confined to S/G tubes, initially ODSCC, and then PWSCC. PWSCC was first reported in Bugey 3 vessel head penetration made of forged alloy 600 materials in September 1991. Other PWRs experienced cracking attributed to the PWSCC of the major primary side weld area made from alloy 182 at the end of the year 2000. Examples of dissimilar metal butt welds between the main austenitic stainless steel primary circuit piping and the outlet pressure vessel nozzles are the cracking of Ringhals 4, V. C. Summer and some J-groove welds of the CRDM of the RVH at Oconee 1. In addition to the Reactor Vessel Head (RVH), the PWSCC of alloy 182/82 has been reported at bottom mounted instrumentation (BMI) nozzle J-welds, steam generator(SG) J-weld drain nozzle, and SG tube sheet cladding. Two cases of boric acid precipitation were reported at the bottom head surface of a SG in Korea. Cracking was found in the cold leg drain nozzles made of alloy 600 in two units, hot side nozzles were fabricated with alloy 690 from the beginning. The cracking of steam generator tubings made of alloy 600 is another concern in Korea, because some plants still have alloy 600 HTMA tubings. The flow accelerated corrosion of secondary pipings is another type of corrosion problems, though it has not been treated as a severe problem in Korea. To properly manage the corrosion issues and seek out research items for maintaining the integrity of nuclear plants, the PRIMA-Net (Proactive Research and Innovative Material Aging Network) was organized in 2007. The research and development expert group consists of a National research laboratory (KAERI), regulatory body (KINS), utility (KHNP), engineering and design company (KEPCO EC), manufacturer (Doosan Heavy

  9. Materials integrity analysis for application of POSCO developed STS to Korean Nuclear Power Plants

    International Nuclear Information System (INIS)

    Hyun-Young, Ch.; Tae-Eun, J.; Young-Sik, K.

    2009-01-01

    Full text of publication follows: POSCO has developed duplex stainless steel (S32750) and hyper super duplex stainless steels for the purpose of using them in the secondary circulation cooling water system in Korean nuclear power plants. This system supplies seawater to cooling water heat exchanger tubes, related pipes and chlorine injection system. In normal operation, seawater is supplied to heat exchanger through the exit of circulation pump headers and the heat exchanged sea water is extracted to the discharge pipes in circulation cooling water system connected to the circulation water discharge lines. The flow velocity of circulation cooling water system in nuclear power plants is high and damages of components from corrosion are severe. Therefore, this environment makes requiring of using high strength and high corrosion resistant steels. Hyper duplex stainless steel (27Cr-7.0Ni-2.5Mo-3.2W-0.35N) has been newly developed in Korea and is being improved for applying to nuclear power plants. In this study, the physical and mechanical properties and corrosion resistance of currently producing stainless steels and newly developed materials are qualitatively evaluated in comparative to commercial stainless steels in other countries. The properties of weld are analyzed and the best compositions of welding rod are suggested. The optimum weld condition is derived for ensuring HAZ phase ratios and controlling weld cracks. For applying these materials to the seawater heat exchanger, CCT and CPT in weldments are measured using mock-up tube testers that are newly designed for this study. Coupons of candidate materials are introduced in the real system and corrosion resistance of them are analyzed. As results of all experiments, the current CCT and CPT criteria in Korean nuclear power plants are reviewed, and the more actual and strengthened criteria will be suggested. The real scale components made of newly developed hyper super duplex stainless steel will be applied to

  10. Modeling aboveground biomass of Tamarix ramosissima in the Arkansas River Basin of Southeastern Colorado, USA

    Science.gov (United States)

    Evangelista, P.; Kumar, S.; Stohlgren, T.J.; Crall, A.W.; Newman, G.J.

    2007-01-01

    Predictive models of aboveground biomass of nonnative Tamarix ramosissima of various sizes were developed using destructive sampling techniques on 50 individuals and four 100-m2 plots. Each sample was measured for average height (m) of stems and canopy area (m2) prior to cutting, drying, and weighing. Five competing regression models (P < 0.05) were developed to estimate aboveground biomass of T. ramosissima using average height and/or canopy area measurements and were evaluated using Akaike's Information Criterion corrected for small sample size (AICc). Our best model (AICc = -148.69, ??AICc = 0) successfully predicted T. ramosissima aboveground biomass (R2 = 0.97) and used average height and canopy area as predictors. Our 2nd-best model, using the same predictors, was also successful in predicting aboveground biomass (R2 = 0.97, AICc = -131.71, ??AICc = 16.98). A 3rd model demonstrated high correlation between only aboveground biomass and canopy area (R2 = 0.95), while 2 additional models found high correlations between aboveground biomass and average height measurements only (R2 = 0.90 and 0.70, respectively). These models illustrate how simple field measurements, such as height and canopy area, can be used in allometric relationships to accurately predict aboveground biomass of T. ramosissima. Although a correction factor may be necessary for predictions at larger scales, the models presented will prove useful for many research and management initiatives.

  11. Application of high temperature phase change materials for improved efficiency in waste-to-energy plants.

    Science.gov (United States)

    Dal Magro, Fabio; Xu, Haoxin; Nardin, Gioacchino; Romagnoli, Alessandro

    2018-03-01

    This study reports the thermal analysis of a novel thermal energy storage based on high temperature phase change material (PCM) used to improve efficiency in waste-to-energy plants. Current waste-to-energy plants efficiency is limited by the steam generation cycle which is carried out with boilers composed by water-walls (i.e. radiant evaporators), evaporators, economizers and superheaters. Although being well established, this technology is subjected to limitations related with high temperature corrosion and fluctuation in steam production due to the non-homogenous composition of solid waste; this leads to increased maintenance costs and limited plants availability and electrical efficiency. The proposed solution in this paper consists of replacing the typical refractory brick installed in the combustion chamber with a PCM-based refractory brick capable of storing a variable heat flux and to release it on demand as a steady heat flux. By means of this technology it is possible to mitigate steam production fluctuation, to increase temperature of superheated steam over current corrosion limits (450°C) without using coated superheaters and to increase the electrical efficiency beyond 34%. In the current paper a detailed thermo-mechanical analysis has been carried out in order to compare the performance of the PCM-based refractory brick against the traditional alumina refractory bricks. The PCM considered in this paper is aluminium (and its alloys) whereas its container consists of high density ceramics (such as Al 2 O 3 , AlN and Si 3 N 4 ); the different coefficient of linear thermal expansion for the different materials requires a detailed thermo-mechanical analysis to be carried out to ascertain the feasibility of the proposed technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Changes in carbon allocation to aboveground versus belowground forest components is driven by a trade-off involving mycorrhizal fungi, not fine roots

    Science.gov (United States)

    Ouimette, A.; Ollinger, S. V.; Hobbie, E. A.; Lepine, L. C.; Stephens, R.; Rowe, R.; Vadeboncoeur, M. A.; Tumber-Davila, S. J.

    2017-12-01

    Species composition and resource availability exert a strong influence on the dynamics of carbon allocation among different forest ecosystem components. Recent work in temperate forests has highlighted a tradeoff between carbon allocation to aboveground woody tissues (access to light), and belowground to fine roots (access to soil nutrients). Although root-associated mycorrhizal fungi are crucial for N acquisition and can receive 20% or more of annual net primary production, most studies fail to explicitly include carbon allocation to mycorrhizal fungi. In part, this is due to the inherent difficulties in accurately quantifying fungal production. We took several approaches to quantify production of mycorrhizal fungi, including a carbon budget approach and isotopic techniques. Here we present data on patterns of carbon allocation to aboveground (wood and foliar production), and belowground components (production of fine roots and mycorrhizal fungi), across temperate forest stands spanning a range of nitrogen availability and species composition. We found that as the proportion of conifer species decreased, and stand nitrogen availability increased, both the absolute amount and the fraction of net primary production increased for foliage, aboveground wood, and fine roots ("a rising tide lifts all boats"). While allocation to plant pools increased, allocation to mycorrhizal fungi significantly decreased with decreasing conifer dominance and increasing soil nitrogen availability. We did not find a strong trade-off between carbon allocation to fine roots and aboveground wood or foliage. Instead, a negative relationship is seen between allocation to mycorrhizal fungi and other plant pools. Effort to estimate carbon allocation to mycorrhizal fungi is important for gaining a more complete understanding of how ecosystems respond to changes in growth-limiting resources.

  13. Extraction and textural characterization of above-ground areas from aerial stereo pairs: a quality assessment

    Science.gov (United States)

    Baillard, C.; Dissard, O.; Jamet, O.; Maître, H.

    Above-ground analysis is a key point to the reconstruction of urban scenes, but it is a difficult task because of the diversity of the involved objects. We propose a new method to above-ground extraction from an aerial stereo pair, which does not require any assumption about object shape or nature. A Digital Surface Model is first produced by a stereoscopic matching stage preserving discontinuities, and then processed by a region-based Markovian classification algorithm. The produced above-ground areas are finally characterized as man-made or natural according to the grey level information. The quality of the results is assessed and discussed.

  14. Variation in plant-mediated interactions between rhizobacteria and caterpillars: potential role of soil composition

    NARCIS (Netherlands)

    Pangesti, N.P.D.; Pineda Gomez, A.M.; Dicke, M.; Loon, van J.J.A.

    2015-01-01

    Selected strains of non-pathogenic rhizobacteria can trigger induced systemic resistance (ISR) in plants against aboveground insect herbivores. However, the underlying mechanisms of plant-mediated interactions between rhizobacteria and herbivorous insects are still poorly understood. Using

  15. LEAF AREA DYNAMICS AND ABOVEGROUND BIOMASS OF SPECIFIC VEGETATION TYPES OF A SEMI-ARID GRASSLAND IN SOUTHERN ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Bosco Kidake Kisambo

    2016-12-01

    Full Text Available Leaf Area Index (LAI dynamics and aboveground biomass of a semi-arid grassland region in Southern Ethiopia were determined over a long rain season. The vegetation was categorized into four distinct vegetation types namely Grassland (G, Tree-Grassland (TG, Bushed-Grassland (BG and Bush-Tree grassland (BT. LAI was measured using a Plant Canopy Analyzer (LAI2000. Biomass dynamics of litter and herbaceous components were determined through clipping while the above ground biomass of trees and shrubs were estimated using species-specific allometric equations from literature. LAI showed a seasonal increase over the season with the maximum recorded in the BG vegetation (2.52. Total aboveground biomass for the different vegetation types ranged from 0.61 ton C/ha in areas where trees were non-existent to 8.80 ± 3.81ton C/ha in the Tree-Grassland vegetation in the study site. A correlation of LAI and AGB yielded a positive relationship with an R2 value of 0.55. The results demonstrate the importance of tropical semi-arid grasslands as carbon sinks hence their potential in mitigation of climate change.

  16. DEVELOPMENT OF THE REFERENCE MATERIALS PRODUCTION BRANCH IN THE JOINT STOCK COMPANY "THE GULIDOV KRASNOYARSK NON-FERROUS METALS PLANT"

    Directory of Open Access Journals (Sweden)

    K. A. Shatnykh

    2015-01-01

    Full Text Available The article deals with the development of the branch for the reference materials production in the Joint Stock Company "The Gulidov Krasnoyarsk Non-Ferrous Metals Plant" (JSC "Krastsvetmet". Here the most important workings for reference materials including the work for the London precious metal exchange, current and future works are stated.

  17. Metallic substrate materials for thin film oxygen transport membranes for application in a fossil power plant

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Y.; Baumann, S.; Sebold, D.; Meulenberg, W.A.; Stoever, D. [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energieforschung (IEF) - IEF-1 Materials Synthesis and Processing

    2010-07-01

    La{sub 0.58}Sr{sub 0.4}CO{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF58428) and Ba{sub 0.5}Sr{sub 0.5}CO{sub 0.8}Fe{sub 3-{delta}} (BSCF5582) exhibit high oxygen permeability due to their high ionic and electronic conductivity. For this reason they are under discussion for application in oxygen transport membranes (OTMs) in zero-emission power plants using oxyfuel technology. A thin film membrane which can increase the oxygen flux is beneficial and a structural substrate is required. Two types of Ni-base alloys were studied as substrate material candidates with a number of advantages, such as high strength, high temperature stability, easy joining and similar thermal expansion coefficient to the selected perovskite materials. Chemical compositions and thermal expansion coefficients of Ni-base alloys were measured in this study. LSCF58428 and BSCF5582 layers were screen printed on Ni-based alloys and co-fired at high temperature in air. The microstructure and element analysis of samples were characterized by scanning electron microscopy (SEM and EDX). A Ni-base alloy, MCrAlY, with a high Al content was the most suitable substrate material, and showed better chemical compatibility with perovskite materials at high temperature than Hastelloy X, which is a chromia-forming Ni-base alloy. A reaction occurred between Sr in the perovskite and the alumina surface layers on MCr-AlY. However, the reaction zone did not increase in thickness during medium-term annealing at 800 C in air. Hence, it is expected that this reaction will not prevent the application of MCr-AlY as a substrate material. (orig.)

  18. Mechanochemical modification of the composition and structure of plant raw materials to control the combustion of alternative fuel

    Directory of Open Access Journals (Sweden)

    Bychkov Aleksey

    2017-01-01

    Full Text Available The possibilities of mechanochemistry in processing of renewable lignocellulose raw material into solid kinds of biofuel are demonstrated in this work. A review of lignocellulose raw materials promising for our country is presented. These raw materials include wastes from agriculture and forestry, and the biomass of rapidly growing plants. The physicochemical properties of lignocellulose materials with different delignification degrees were modeled with the help of the artificial mixtures of plant raw material with purified cellulose and lignin. The data illustrating the effect of disperse state and lignin content on the reactivity of the material in subsequent combustion are presented. The tests at the combustion bench with the thermal power up to 5 MW allowed determining the optimal combustion parameters for the obtained biofuel in the autothermal mode.

  19. Statistical models for thermal ageing of steel materials in nuclear power plants

    International Nuclear Information System (INIS)

    Persoz, M.

    1996-01-01

    Some category of steel materials in nuclear power plants may be subjected to thermal ageing, whose extent depends on the steel chemical composition and the ageing parameters, i.e. temperature and duration. This ageing affects the 'impact strength' of the materials, which is a mechanical property. In order to assess the residual lifetime of these components, a probabilistic study has been launched, which takes into account the scatter over the input parameters of the mechanical model. Predictive formulae for estimating the impact strength of aged materials are important input data of the model. A data base has been created with impact strength results obtained from an ageing program in laboratory and statistical treatments have been undertaken. Two kinds of model have been developed, with non linear regression methods (PROC NLIN, available in SAS/STAT). The first one, using a hyperbolic tangent function, is partly based on physical considerations, and the second one, of an exponential type, is purely statistically built. The difficulties consist in selecting the significant parameters and attributing initial values to the coefficients, which is a requirement of the NLIN procedure. This global statistical analysis has led to general models that are unction of the chemical variables and the ageing parameters. These models are as precise (if not more) as local models that had been developed earlier for some specific values of ageing temperature and ageing duration. This paper describes the data and the methodology used to build the models and analyses the results given by the SAS system. (author)

  20. Stabilization/solidification of battery debris ampersand lead impacted material at Schuylkill Metals, Plant City, Florida

    International Nuclear Information System (INIS)

    Anguiano, T.; Floyd, D.

    1997-01-01

    The Schuylkill Metals facility in Plant City Florida (SMPCI) operated as a battery recycling facility for approximately 13 years. During its operation, the facility disposed of battery components in surrounding wetland areas. In March of 1991 the U.S. EPA and SMPCI entered into a Consent Decree for the remediation of the SMPCI site using stabilization/solidification and on-site disposal. In November of 1994, ENTACT began remediation at the facility and to date has successfully stabilized/solidified over 228,000 tons of lead impacted battery components and lead impacted material. The ENTACT process reduces the size of the material to be treated to ensure that complete mixing of the phosphate/cement additive is achieved thereby promoting the chemical reactions of stabilization and solidification. ENTACT has met the following performance criteria for treated material at the SMPCI site: (1) Hydraulic Conductivity less than 1x10 -6 cm/s, (2) Unconfined Compressive Strength greater than 50 psi, (3) Lead, Cadmium, Arsenic, Chromium TCLP Leachability below hazardous levels

  1. Tentative to use wastes from thermal power plants for construction building materials

    Science.gov (United States)

    Bui, Quoc-Bao; Phan, To-Anh-Vu; Tran, Minh-Tung; Le, Duc-Hien

    2018-04-01

    Thermal power plants (TPP) generates wastes (bottom and fly ashes) which become a serious environmental problem in Vietnam. Indeed, although in several countries fly ash can be used for cement industry, fly ash from actual TPP in Vietnam does not have enough good quality for cement production, because the fly ash treatment phase has not yet included in the generations of existing Vietnamese TPP. That is why bottom ash and fly ash purely become wastes and their evacuation is an urgent demand of the society. This paper presents an investigation using fly and bottom ashes in the manufacturing of construction materials. The main aims of this study is to reduce environmental impacts of fly and bottom ashes, and to test another non-conventional binder to replace cement in the manufacture of unburnt bricks. Several proportions of fly ash, bottom ash, cement, gravel, sand and water were tested to manufacture concretes. Then, geopolymer was prepared from the fly ash and an activator. Specimens were tested in uniaxial compressions. Results showed that the cement concrete tested had the compressive strengths which could be used for low rise constructions and the material using geopolymer could be used for non-load-bearing materials (unburnt bricks).

  2. Optimal measurement uncertainties for materials accounting in a fast breeder reactor spent-fuel reprocessing plant

    International Nuclear Information System (INIS)

    Dayem, H.A.; Kern, E.A.; Markin, J.T.

    1982-01-01

    Optimization techniques are used to calculate measurement uncertainties for materials accountability instruments in a fast breeder reactor spent-fuel reprocessing plant. Optimal measurement uncertainties are calculated so that performance goals for detecting materials loss are achieved while minimizing the total instrument development cost. Improved materials accounting in the chemical separations process (111 kg Pu/day) to meet 8-kg plutonium abrupt (1 day) and 40-kg plutonium protracted (6 months) loss-detection goals requires: process tank volume and concentration measurements having precisions less than or equal to 1%; accountability and plutonium sample tank volume measurements having precisions less than or equal to 0.3%, short-term correlated errors less than or equal to 0.04%, and long-term correlated errors less than or equal to 0.04%; and accountability and plutonium sample tank concentration measurements having precisions less than or equal to 0.4%, short-term correlated errors less than or equal to 0.1%, and long-term correlated errors less than or equal to 0.05%

  3. Area effect on galvanic corrosion of condenser materials with titanium tubes in nuclear power plants

    International Nuclear Information System (INIS)

    Hwang, Seong Sik; Kim, Joung Soo; Kim, Uh Chul

    1993-01-01

    Titanium tubes have recently been used in condensers of nuclear power plants since titanium has very good corrosion resistance to seawater. However, when it is connected to Cu alloys as tube sheet materials and these Cu alloys are connected to carbon steels as water box materials, it makes significant galvanic corrosion on connected materials. It is expected from electrochemical tests that the corrosion rate of carbon steel will increase when it is galvanically coupled with Ti or Cu in sea water and the corrosion rate of Cu will increase when it is coupled with Ti, of this couple is exposed to sea water for a long time. It is also expected that the surface area ratios, R 1 (surface area of carbon steel/surface area of Ti) and R 2 (surface area of carbon steel/surface area of Cu) are very improtant for the galvanic corrosion of carbon steel and that these should not be kept to low values in order to minimize the galvanic corrosion on the carbon steel of the water box. Immersed galvanic corrosion tests show that the corrosion rate of carbon steel is 4.4 mpy when this ratio is 10 -2 . The galvanic corrosion rate of this carbon steel is increased from 4.4 mpy to 13 mpy at this area ratio, 1, when this connected galvanic specimen is galvanically coupled with a Ti tube. This can be rationalized by the combined effects of R 1 and R 2 on the polarization curve. (Author)

  4. Verification of nuclear material balances: General theory and application to a highly enriched uranium fabrication plant

    International Nuclear Information System (INIS)

    Avenhaus, R.; Beedgen, R.; Neu, H.

    1980-08-01

    In the theoretical part it is shown that under the assumption, that in case of diversion the operator falsifies all data by a class specific amount, it is optimal in the sense of the probability of detection to use the difference MUF-D as the test statistics. However, as there are arguments for keeping the two tests separately, and furthermore, as it is not clear that the combined test statistics is optimal for any diversion strategy, the overall guaranteed probability of detection for the bivariate test is determined. A numerical example is given applying the theoretical part. Using the material balance data of a Highly Enriched Uranium fabrication plant the variances of MUF, D (no diversion) and MUF-D are calculated with the help of the standard deviations of operator and inspector measurements. The two inventories of the material balance are stratified. The samples sizes of the strata and the total inspection effort for data verification are determined by game theoretical methods (attribute sampling). On the basis of these results the overall detection probability of the combined system (data verification and material accountancy) is determined both for the MUF-D test and the bivariate (D,MUF) test as a function of the goal quantity. The results of both tests are evaluated for different diversion strategies. (orig./HP) [de

  5. Natural and construction materials and plant products. Raw materials, constructional physics, design and construction. 2. upd. and enl. ed.; Natuerliche und pflanzliche Baustoffe. Rohstoff - Bauphysik - Konstruktion

    Energy Technology Data Exchange (ETDEWEB)

    Holzmann, Gerhard; Wangelin, Matthias; Bruns, Rainer

    2012-07-01

    The book discusses all relevant renewable constructional materials made from fibre or dyeing plants along with their physical and chemical fundamentals. Protection of resources, environmental protection, and pollutants in constructional materials are gone into as well. [German] Dieses Buch behandelt alle wichtige nachwachsenden, pflanzlichen Baustoffe aus Faser- und Faerberpflanzen sowie dazugehoerige physikalische und chemische Grundlagen. Angesprochen werden auch Ressourcen- und Umweltschutz sowie Schadstoffe aus Bauprodukten.

  6. Aboveground Whitefly Infestation Modulates Transcriptional Levels of Anthocyanin Biosynthesis and Jasmonic Acid Signaling-Related Genes and Augments the Cope with Drought Stress of Maize.

    Directory of Open Access Journals (Sweden)

    Yong-Soon Park

    Full Text Available Up to now, the potential underlying molecular mechanisms by which maize (Zea mays L. plants elicit defense responses by infestation with a phloem feeding insect whitefly [Bemisia tabaci (Genn.] have been barely elucidated against (abiotic stresses. To fill this gap of current knowledge maize plants were infested with whitefly and these plants were subsequently assessed the levels of water loss. To understand the mode of action, plant hormone contents and the stress-related mRNA expression were evaluated. Whitefly-infested maize plants did not display any significant phenotypic differences in above-ground tissues (infested site compared with controls. By contrast, root (systemic tissue biomass was increased by 2-fold by whitefly infestation. The levels of endogenous indole-3-acetic acid (IAA, jasmonic acid (JA, and hydrogen peroxide (H2O2 were significantly higher in whitefly-infested plants. The biosynthetic or signaling-related genes for JA and anthocyanins were highly up-regulated. Additionally, we found that healthier plants were obtained in whitefly-infested plants under drought conditions. The weight of whitefly-infested plants was approximately 20% higher than that of control plants at 14 d of drought treatment. The drought tolerance-related genes, ZmbZIP72, ZmSNAC1, and ZmABA1, were highly expressed in the whitefly-infected plants. Collectively, our results suggest that IAA/JA-derived maize physiological changes and correlation of H2O2 production and water loss are modulated by above-ground whitefly infestation in maize plants.

  7. Determination of silicon in plant materials by laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Paulino Florêncio de [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Centro de Tecnologia Canavieira, PO Box 162, 13400-970 Piracicaba, SP (Brazil); Santos, Dário [Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Rua Prof. Artur Riedel, 275, 09972-270, Diadema, SP (Brazil); Gustinelli Arantes de Carvalho, Gabriel; Nunes, Lidiane Cristina [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Silva Gomes, Marcos da [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP (Brazil); Guerra, Marcelo Braga Bueno [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil); Krug, Francisco José, E-mail: fjkrug@cena.usp.br [Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário 303, 13416-000, Piracicaba, SP (Brazil)

    2013-05-01

    In spite of the importance of Si for improving the productivity of many important crops, such as those from the Poaceae family (e.g. sugar cane, maize, wheat, rice), its quantitative determination in plants is seldom carried out and restricted to few laboratories in the world. There is a survey of methods in the literature, but most of them are either laborious or difficult to validate in view of the low availability of reference materials with a certified Si mass fraction. The aim of this study is to propose a method for the direct determination of Si in pellets of plant materials by laser-induced breakdown spectroscopy (LIBS). The experimental setup was designed by using a Q-switched Nd:YAG laser at 1064 nm (5 ns, 10 Hz) and the emission signals were collected by lenses into an optical fiber coupled to an Echelle spectrometer equipped with an intensified charge-coupled device. Experiments were carried out with leaves from 24 sugar cane varieties, with mass fractions varying from ca. 2 to 10 g kg{sup −1} Si. Pellets prepared from cryogenically ground leaves were used as test samples for both method development and validation of the calibration model. Best results were obtained when the test samples were interrogated with laser fluence of 50 J cm{sup −2} (750 μm spot size) and measurements carried out at Si I 212.412 nm emission line. The results obtained by LIBS were compared with those from inductively coupled plasma optical emission spectrometry after oven-induced alkaline digestion, and no significant differences were observed after applying the Student's t-test at 95% confidence level. The trueness of the proposed LIBS method was also confirmed from the analysis of CRM GBW 07603 (Bush branches and leaves). - Highlights: • This is the first application of LIBS for determination of Si in plant materials. • Data indicate that the method is appropriate for Si diagnosis in routine analysis. • Silicon can be simultaneously determined with macro- and

  8. Determination of silicon in plant materials by laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Souza, Paulino Florêncio de; Santos, Dário; Gustinelli Arantes de Carvalho, Gabriel; Nunes, Lidiane Cristina; Silva Gomes, Marcos da; Guerra, Marcelo Braga Bueno; Krug, Francisco José

    2013-01-01

    In spite of the importance of Si for improving the productivity of many important crops, such as those from the Poaceae family (e.g. sugar cane, maize, wheat, rice), its quantitative determination in plants is seldom carried out and restricted to few laboratories in the world. There is a survey of methods in the literature, but most of them are either laborious or difficult to validate in view of the low availability of reference materials with a certified Si mass fraction. The aim of this study is to propose a method for the direct determination of Si in pellets of plant materials by laser-induced breakdown spectroscopy (LIBS). The experimental setup was designed by using a Q-switched Nd:YAG laser at 1064 nm (5 ns, 10 Hz) and the emission signals were collected by lenses into an optical fiber coupled to an Echelle spectrometer equipped with an intensified charge-coupled device. Experiments were carried out with leaves from 24 sugar cane varieties, with mass fractions varying from ca. 2 to 10 g kg −1 Si. Pellets prepared from cryogenically ground leaves were used as test samples for both method development and validation of the calibration model. Best results were obtained when the test samples were interrogated with laser fluence of 50 J cm −2 (750 μm spot size) and measurements carried out at Si I 212.412 nm emission line. The results obtained by LIBS were compared with those from inductively coupled plasma optical emission spectrometry after oven-induced alkaline digestion, and no significant differences were observed after applying the Student's t-test at 95% confidence level. The trueness of the proposed LIBS method was also confirmed from the analysis of CRM GBW 07603 (Bush branches and leaves). - Highlights: • This is the first application of LIBS for determination of Si in plant materials. • Data indicate that the method is appropriate for Si diagnosis in routine analysis. • Silicon can be simultaneously determined with macro- and micronutrients

  9. Preliminary materials selection issues for the next generation nuclear plant reactor pressure vessel.

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Majumdar, S.; Shankar, P. S.; Shah, V. N.; Nuclear Engineering Division

    2007-03-21

    In the coming decades, the United States and the entire world will need energy supplies to meet the growing demands due to population increase and increase in consumption due to global industrialization. One of the reactor system concepts, the Very High Temperature Reactor (VHTR), with helium as the coolant, has been identified as uniquely suited for producing hydrogen without consumption of fossil fuels or the emission of greenhouse gases [Generation IV 2002]. The U.S. Department of Energy (DOE) has selected this system for the Next Generation Nuclear Plant (NGNP) Project, to demonstrate emissions-free nuclear-assisted electricity and hydrogen production within the next 15 years. The NGNP reference concepts are helium-cooled, graphite-moderated, thermal neutron spectrum reactors with a design goal outlet helium temperature of {approx}1000 C [MacDonald et al. 2004]. The reactor core could be either a prismatic graphite block type core or a pebble bed core. The use of molten salt coolant, especially for the transfer of heat to hydrogen production, is also being considered. The NGNP is expected to produce both electricity and hydrogen. The process heat for hydrogen production will be transferred to the hydrogen plant through an intermediate heat exchanger (IHX). The basic technology for the NGNP has been established in the former high temperature gas reactor (HTGR) and demonstration plants (DRAGON, Peach Bottom, AVR, Fort St. Vrain, and THTR). In addition, the technologies for the NGNP are being advanced in the Gas Turbine-Modular Helium Reactor (GT-MHR) project, and the South African state utility ESKOM-sponsored project to develop the Pebble Bed Modular Reactor (PBMR). Furthermore, the Japanese HTTR and Chinese HTR-10 test reactors are demonstrating the feasibility of some of the planned components and materials. The proposed high operating temperatures in the VHTR place significant constraints on the choice of material selected for the reactor pressure vessel for

  10. Aboveground Tree Biomass for Pinus ponderosa in Northeastern California

    Directory of Open Access Journals (Sweden)

    Todd A. Hamilton

    2013-03-01

    Full Text Available Forest managers need accurate biomass equations to plan thinning for fuel reduction or energy production. Estimates of carbon sequestration also rely upon such equations. The current allometric equations for ponderosa pine (Pinus ponderosa commonly employed for California forests were developed elsewhere, and are often applied without consideration potential for spatial or temporal variability. Individual-tree aboveground biomass allometric equations are presented from an analysis of 79 felled trees from four separate management units at Blacks Mountain Experimental Forest: one unthinned and three separate thinned units. A simultaneous set of allometric equations for foliage, branch and bole biomass were developed as well as branch-level equations for wood and foliage. Foliage biomass relationships varied substantially between units while branch and bole biomass estimates were more stable across a range of stand conditions. Trees of a given breast height diameter and crown ratio in thinned stands had more foliage biomass, but slightly less branch biomass than those in an unthinned stand. The observed variability in biomass relationships within Blacks Mountain Experimental Forest suggests that users should consider how well the data used to develop a selected model relate to the conditions in any given application.

  11. Global patterns of aboveground carbon stock and sequestration in mangroves

    Directory of Open Access Journals (Sweden)

    GUSTAVO C.D. ESTRADA

    Full Text Available ABSTRACT In order to contribute to understand the factors that control the provisioning of the ecosystem service of carbon storage by mangroves, data on carbon stock and sequestration in the aboveground biomass (AGB from 73 articles were averaged and tested for the dependence on latitude, climatic parameters, physiographic types and age. Global means of carbon stock (78.0 ± 64.5 tC.ha-1 and sequestration (2.9 ± 2.2 tC.ha-1.yr-1 showed that mangroves are among the forest ecosystems with greater capacity of carbon storage in AGB per area. On the global scale, carbon stock increases toward the equator (R²=0.22 and is dependent on 13 climatic parameters, which can be integrated in the following predictive equation: Carbon Stock in AGB = -16.342 + (8.341 x Isothermality + (0.021 x Annual Precipitation [R²=0.34; p < 0.05]. It was shown that almost 70% of carbon stock variability is explained by age. Carbon stock and sequestration also vary according to physiographic types, indicating the importance of hydroperiod and edaphic parameters to the local variability of carbon stock. By demonstrating the contribution of local and regional-global factors to carbon stock, this study provides information to the forecast of the effects of future climate changes and local anthropogenic forcings on this ecosystem service.

  12. Dryland wheat domestication changed the development of aboveground architecture for a well-structured canopy.

    Directory of Open Access Journals (Sweden)

    Pu-Fang Li

    Full Text Available We examined three different-ploidy wheat species to elucidate the development of aboveground architecture and its domesticated mechanism under environment-controlled field conditions. Architecture parameters including leaf, stem, spike and canopy morphology were measured together with biomass allocation, leaf net photosynthetic rate and instantaneous water use efficiency (WUE(i. Canopy biomass density was decreased from diploid to tetraploid wheat, but increased to maximum in hexaploid wheat. Population yield in hexaploid wheat was higher than in diploid wheat, but the population fitness and individual competition ability was higher in diploid wheats. Plant architecture was modified from a compact type in diploid wheats to an incompact type in tetraploid wheats, and then to a more compact type of hexaploid wheats. Biomass accumulation, population yield, harvest index and the seed to leaf ratio increased from diploid to tetraploid and hexaploid, associated with heavier specific internode weight and greater canopy biomass density in hexaploid and tetraploid than in diploid wheat. Leaf photosynthetic rate and WUEi were decreased from diploid to tetraploid and increased from tetraploid to hexaploid due to more compact leaf type in hexaploid and diploid than in tetraploid. Grain yield formation and WUEi were closely associated with spatial stance of leaves and stems. We conclude that the ideotype of dryland wheats could be based on spatial reconstruction of leaf type and further exertion of leaf photosynthetic rate.

  13. Siberian Boreal Forest Aboveground Biomass and Fire Scar Maps, Russia, 1969-2007

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides 30-meter resolution mapped estimates of Cajander larch (Larix cajanderi) aboveground biomass (AGB), circa 2007, and a map of burn perimeters...

  14. Technical basis for the aboveground structure failure and associated represented hazardous conditions

    International Nuclear Information System (INIS)

    GOETZ, T.G.

    2003-01-01

    This technical basis document describes the risk binning process and the technical basis for assigning risk bins for the aboveground structure failure representative accident and associated represented hazardous conditions. This document was developed to support the documented safety analysis

  15. Ageing studies on materials, components and process instruments used in nuclear power plants

    International Nuclear Information System (INIS)

    Bora, J.S.

    1997-04-01

    This report is a compilation of test results of thermal and radiation ageing tests carried out in the laboratory over a period of 25 years on diverse engineering materials, components and instruments used in nuclear power plants. Test items covered are different types of electrical cables, elastomers, surface coatings, electrical and electronics components and process instruments. Effects of thermal and radiation ageing on performance parameters are shown in tabular forms. Apart from finding the characteristics, capabilities and limitations of test items, ageing research has helped in pin-pointing sub-standard and critical parts and necessary corrective action has been taken. This report is expected to be quite useful to the manufacturers users and researchers for reference and guidance. (author)

  16. Degradation evaluation of high temperature pipeline material for power plant using ultrasonic noise analysis

    International Nuclear Information System (INIS)

    Lee, Sang Guk; Chung, Min Hwa; Cho, Yong Sang; Lee, In Cheol

    2001-01-01

    Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep and thermal fatigue damage due to severe operating conditions such as high temperature and high pressure for an extended period time. Conventional measurement techniques for measuring creep damage have such disadvantages as complex preparation and measurement procedures, too many control parameters. And also these techniques have low practicality and applied only to component surfaces with good accessibility. In this paper, artificial degradation test and ultrasonic measurement for their degraded specimens were carried out for the purpose of evaluation for creep and thermal fatigue damage. Absolute measuring method of quantitative ultrasonic measurement for material degradation was established, and long term creep/thermal fatigue degradation tests using life prediction formula were carried out. As a result of ultrasonic tests for crept and thermal fatigued specimens, we conformed that the ultrasonic noise linearly increased in proportion to the increase of degradation.

  17. JORDANIAN ZEOLITIC TUFF AS A RAW MATERIAL FOR THE PREPARATION OF SUBSTRATES USED FOR PLANT GROWTH

    Directory of Open Access Journals (Sweden)

    Ivan Manolov

    2006-07-01

    Full Text Available One of the problems faced in front of industry for potting media is limited amount of quality row materials (mainly peat for unlimited production of quality substrates in the future. The using of natural minerals for production of substrates or as amendments for existing substrates is possible solution for this problem. The natural zeolites with their specific properties – high CEC, high content of macro and microelements are one of good alternatives to the traditional potting media. Each zeolite deposit has unique chemical composition, physical and mechanical properties. That is why obligatory preliminary condition for their successful application in agriculture is caring out of biological study with agricultural plants for determination of the optimal parameters of chemical and physicochemical properties of the substrates.

  18. Evaluation of automated analysis of 15N and total N in plant material and soil

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1991-01-01

    Simultaneous determination of N-15 and total N using an automated nitrogen analyser interfaced to a continuous-flow isotope ratio mass spectrometer (ANA-MS method) was evaluated. The coefficient of variation (CV) of repeated analyses of homogeneous standards and samples at natural abundance...... was lower than 0.1%. The CV of repeated analyses of N-15-labelled plant material and soil samples varied between 0.3% and 1.1%. The reproducibility of repeated total N analyses using the automated method was comparable to results obtained with a semi-micro Kjeldahl procedure. However, the automated method...... analysis showed that the recovery of inorganic N in the NH3 trap was lower when the N was diffused from water than from 2 M KCl. The results also indicated that different proportions of the NO3- and the NH4+ in aqueous solution were recovered in the trap after combined diffusion. The method is most suited...

  19. Fungal enzyme production in seeds of transgenic canola plants for conversion of cellulosic materials to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, K.J.; Beauchemin, K.A. [Agriculture and Agri-Food Canada, Lethbridge, AB (Canada); Moloney, M.M. [Calgary Univ., AB (Canada). Dept. of Biological Sciences

    1997-07-01

    The fuel alcohol industry makes use of industrial enzymes to effectively degrade fibrous plant cell walls. Carbohydrates in cellulosic materials are in the form of complex sugars that can be hydrolyzed to simple sugars by fungal fibrolytic enzymes such as cellulases and xylanases. This study was conducted to find a cost effective way to produce fibrolytic enzymes using gene fusion technology in which a xylanase gene and a cellulase gene from two fungal species are introduced into canola to be a carrier for the production of these enzymes. The two genes had been analyzed for maximal enzymatic activity to minimize side effects. Results of the study demonstrated the stability and potential of transgenic oil-bodies as an immobilized enzyme matrix, and showed that it is possible to express fibrolytic enzymes in canola.

  20. NDA systems to support nuclear material control and accounting in spent fuel reprocessing plants

    International Nuclear Information System (INIS)

    Simpson, J.C.B.; Clark, P.A.; Nicols, O.P.; Whitehouse, K.R.

    1999-01-01

    Detailed descriptions of a number of instrument systems relating to accountancy and safeguarding of plutonium operations and storage on Thermal Oxide Plant (Thorp) are provided. The systems described include the Plutonium Inventory Measurement System (PIMS), used to provide Near Real Time Materials Accountancy (NRTMA) information within the Thorp plutonium finishing area; the Product Can Contents Monitor (PCCM), used to verify can weight measurements and isotopic composition and; the In-Store Plutonium Verification Monitor, used to provide in-situ measurements of plutonium in cans whilst they are in their storage channels. These nondestructive systems are necessarily combined with other physical security, surveillance and identification arrangements for the handling and storage of plutonium product cans [ru

  1. High-throughput analysis of amino acids in plant materials by single quadrupole mass spectrometry

    DEFF Research Database (Denmark)

    Dahl-Lassen, Rasmus; van Hecke, Jan Julien Josef; Jørgensen, Henning

    2018-01-01

    that it is very time consuming with typical chromatographic run times of 70 min or more. Results: We have here developed a high-throughput method for analysis of amino acid profiles in plant materials. The method combines classical protein hydrolysis and derivatization with fast separation by UHPLC and detection...... reducing the overall analytical costs compared to methods based on more advanced mass spectrometers....... by a single quadrupole (QDa) mass spectrometer. The chromatographic run time is reduced to 10 min and the precision, accuracy and sensitivity of the method are in line with other recent methods utilizing advanced and more expensive mass spectrometers. The sensitivity of the method is at least a factor 10...

  2. PLE in the analysis of plant compounds. Part II: One-cycle PLE in determining total amount of analyte in plant material.

    Science.gov (United States)

    Dawidowicz, Andrzej L; Wianowska, Dorota

    2005-04-29

    Pressurised liquid extraction (PLE) is recognised as one of the most effective sample preparation methods. Despite the enhanced extraction power of PLE, the full recovery of an analyte from plant material may require multiple extractions of the same sample. The presented investigations show the possibility of estimating the true concentration value of an analyte in plant material employing one-cycle PLE in which plant samples of different weight are used. The performed experiments show a linear dependence between the reciprocal value of the analyte amount (E*), extracted in single-step PLE from a plant matrix, and the ratio of plant material mass to extrahent volume (m(p)/V(s)). Hence, time-consuming multi-step PLE can be replaced by a few single-step PLEs performed at different (m(p)/V(s)) ratios. The concentrations of rutin in Sambucus nigra L. and caffeine in tea and coffee estimated by means of the tested procedure are almost the same as their concentrations estimated by multiple PLE.

  3. Turning Waste into Value: Nanosized Natural Plant Materials of Solanum incanum L. and Pterocarpus erinaceus Poir with Promising Antimicrobial Activities

    Directory of Open Access Journals (Sweden)

    Sharoon Griffin

    2016-04-01

    Full Text Available Numerous plants are known to exhibit considerable biological activities in the fields of medicine and agriculture, yet access to their active ingredients is often complicated, cumbersome and expensive. As a consequence, many plants harbouring potential drugs or green phyto-protectants go largely unnoticed, especially in poorer countries which, at the same time, are in desperate need of antimicrobial agents. As in the case of plants such as the Jericho tomato, Solanum incanum, and the common African tree Pterocarpus erinaceus, nanosizing of original plant materials may provide an interesting alternative to extensive extraction and isolation procedures. Indeed, it is straightforward to obtain considerable amounts of such common, often weed-like plants, and to mill the dried material to more or less uniform particles of microscopic and nanoscopic size. These particles exhibit activity against Steinernema feltiae or Escherichia coli, which is comparable to the ones seen for processed extracts of the same, respective plants. As S. feltiae is used as a model nematode indicative of possible phyto-protective uses in the agricultural arena, these findings also showcase the potential of nanosizing of crude “waste” plant materials for specific practical applications, especially—but not exclusively—in developing countries lacking a more sophisticated industrial infrastructure.

  4. Effect of turbine materials on power generation efficiency from free water vortex hydro power plant

    International Nuclear Information System (INIS)

    Sritram, P; Treedet, W; Suntivarakorn, R

    2015-01-01

    The objective of this research was to study the effect of turbine materials on power generation efficiency from the water free vortex hydro power plant made of steel and aluminium. These turbines consisted of five blades and were twisted with angles along the height of water. These blades were the maximum width of 45 cm. and height of 32 cm. These turbines were made and experimented for the water free vortex hydro power plant in the laboratory with the water flow rate of 0.68, 1.33, 1.61, 2.31, 2.96 and 3.63 m 3 /min and an electrical load of 20, 40, 60, 80 and 100 W respectively. The experimental results were calculated to find out the torque, electric power, and electricity production efficiency. From the experiment, the results showed that the maximum power generation efficiency of steel and aluminium turbine were 33.56% and 34.79% respectively. From the result at the maximum water flow rate of 3.63 m 3 /min, it was found that the torque value and electricity production efficiency of aluminium turbine was higher than that of steel turbine at the average of 8.4% and 8.14%, respectively. This result showed that light weight of water turbine can increase the torque and power generation efficiency. (paper)

  5. Environmental status of plant-based industries. Biomass and bio-materials; Bilan environnemental des filieres vegetales. Biomasse et biomateriaux

    Energy Technology Data Exchange (ETDEWEB)

    Vindimian, E; Boeglin, N; Houillon, G; Osset, Ph; Vial, E; Leguern, Y; Gosse, G; Gabrielle, B; Dohy, M; Bewa, H; Rigal, L; Guilbert, St; Cesar, G; Pandard, P; Oster, D; Normand, N; Piccardi, M; Garoux, V; Arnaud, L; Barbier, J; Mougin, G; Krausz, P; Pluquet, V; Massacrier, L; Dussaud, J

    2005-07-01

    The French agency of environment and energy mastery (Ademe) and the agency of Agriculture for chemistry and energy (Agrice) have jointly organized these technical days about the potentialities of plant-based products in front of the big environmental stakes of the diversification of energy sources, the development of new outputs for agriculture and the opening of new fields of industrial innovation. This document gathers the articles and transparencies of the presentations given during these 2 days of conference: 1 - Biomass and life cycle analysis (LCA) - impacts and benefits: introduction to LCA (E. Vindimian), keys to understand this environmental evaluation tool (N. Boeglin); environmental status of plant-based industries for chemistry, materials and energy: LCA knowledge status, plant versus fossil (G. Houillon), detailed analysis of 2 industries: agro-materials and bio-polymers (J. Payet); example of environmental and LCA studies: energy and greenhouse gas statuses of the biofuel production processes (P. Osset, E. Vial), LCA of collective and industrial wood-fueled space heating (Y. Leguern), contribution and limitations of LCA for plant-based industries (G. Gosse, B. Gabrielle), conclusion of the first day (M. Dohy). 2 - Biomass and materials: a reality: biomaterials in the Agrice program (H. Bewa), plant-derived materials: resources, status and perspectives (L. Rigal); biopolymers: overview of the industrial use of biopolymers: materials and markets, applications (S. Guibert), degradation mechanisms of biopolymers used in agriculture: biodegradability, eco-toxicity and accumulation in soils (G. Cesar, P. Pandard), present and future regulatory framework: specifications and methods of biodegradability evaluation of materials for agriculture and horticulture (D. Oster), standardization: necessity and possibilities (N. Normand); vegetable fibers and composite materials: market of new vegetable fiber uses (M. Piccardi, V. Garoux), vegetable particulates and

  6. Miscanthus plants used as an alternative biofuel material. The basic studies on ecology and molecular evolution

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chang-Hung [Graduate Institute of Ecology and Evolutionary Biology, College of Life Sciences, China Medical University, Taichung 404 (China)

    2009-08-15

    high energy resource plant. European scientists already brought Asian Miscanthus species and bred a new hybrid called Miscanthus x giganteus, which is now being used as a biofuel material in Europe and would be widely used in the world in the near future if fundamental questions, such as fiber transformation to alcohol or other breeding techniques, are answered. (author)

  7. Naturally occurring radionuclides in materials derived from urban water treatment plants in southeast Queensland, Australia

    International Nuclear Information System (INIS)

    Kleinschmidt, Ross; Akber, Riaz

    2008-01-01

    An assessment of radiologically enhanced residual materials generated during treatment of domestic water supplies in southeast Queensland, Australia, was conducted. Radioactivity concentrations of U-238, Th-232, Ra-226, Rn-222, and Po-210 in water, sourced from both surface water catchments and groundwater resources were examined both pre- and post-treatment under typical water treatment operations. Surface water treatment processes included sedimentation, coagulation, flocculation and filtration, while the groundwater was treated using cation exchange, reverse osmosis, activated charcoal or methods similar to surface water treatment. Waste products generated as a result of treatment included sediments and sludges, filtration media, exhausted ion exchange resin, backwash and wastewaters. Elevated residual concentrations of radionuclides were identified in these waste products. The waste product activity concentrations were used to model the radiological impact of the materials when either utilised for beneficial purposes, or upon disposal. The results indicate that, under current water resource exploitation programs, reuse or disposal of the treatment wastes from large scale urban water treatment plants in Australia do not pose a significant radiological risk

  8. Assessment of radioactive material released from a fuel fabrication plant under accidental conditions

    International Nuclear Information System (INIS)

    1981-01-01

    This report evaluates the amounts of fissile material released both inside and outside a mixed oxide fuel fabrication plant (MOFFP) for light water reactors. The first section begins with a descriptive study of fissile material containment systems, and the methods available for quantifying accident occurrence probabilities. In addition to accidents common to all industrial facilities, other much rarer accidents were considered, such as aircraft crashes. The minimum occurrence probability limit for consideration in this study was set at 10 -6 per annum. The second part of this report attempts to assess the consequences of the accidents considered (i.e. with occurrence probabilities exceeding 10 -6 per annum) by determining maximum values for such accidents. Acts of sabotage and other accidents of this type are beyond the scope of this study and were not taken into consideration. The most serious potential accident would be a fire involving all of the glove boxes in the PuO 2 powder calcination and preparation cell, which could release 76.5 mg of PuO 2 powder into the atmosphere; the occurrence probability of such an accident, however, is slight (less than 10 -5 per annum). The second possibility, is a specially nuclear hazard that would release fission products into the atmosphere. The occurrence probability of such an accident is currently evaluated at 10 -3 per annum

  9. Microwave assisted extraction for trace element analysis of plant materials by ICP-AES

    Energy Technology Data Exchange (ETDEWEB)

    Borkowska-Burnecka, J. [Wroclaw Univ. (Poland). Inst. Chemii

    2000-11-01

    Application of microwave assisted extraction for the decomposition and dissolution of plant samples for trace metal determination by ICP-AES was examined. Dried onion, leaves of spinach beet and three reference materials CTA-OTL-1, CTA-VTL-2 and CL-1 were analyzed. Water, EDTA and hydrochloric acid (0.01, 0.10 and 1.0 M, respectively) were used as leaching solutions. The extraction efficiency was investigated by comparison of the results with those obtained after microwave wet digestion. HCl was found to be very suitable for quantitative extraction of B, Ba, Cd, Cu, Mn, Ni, Pb, Sr and Zn from the samples. For reference materials, the measured concentrations are well consistent with the certified values. The use of EDTA led to a complete extraction of B, Cd, Ni, Pb, Sr and Zn. Water was found to be a good leaching solution for boron. For extraction with HCl and EDTA, the RSD values for the concentrations measured were below 8% for most of the elements. (orig.)

  10. Microwave assisted extraction for trace element analysis of plant materials by ICP-AES.

    Science.gov (United States)

    Borkowska-Burnecka, J

    2000-11-01

    Application of microwave assisted extraction for the decomposition and dissolution of plant samples for trace metal determination by ICP-AES was examined. Dried onion, leaves of spinach beet and three reference materials CTA-OTL-1, CTA-VTL-2 and CL-1 were analyzed. Water, EDTA and hydrochloric acid (0.01, 0.10 and 1.0 M, respectively) were used as leaching solutions. The extraction efficiency was investigated by comparison of the results with those obtained after microwave wet digestion. HCl was found to be very suitable for quantitative extraction of B, Ba, Cd, Cu, Mn, Ni, Pb, Sr and Zn from the samples. For reference materials, the measured concentrations are well consistent with the certified values. The use of EDTA led to a complete extraction of B, Cd, Ni, Pb, Sr and Zn. Water was found to be a good leaching solution for boron. For extraction with HCl and EDTA, the RSD values for the concentrations measured were below 8% for most of the elements.

  11. Evaluation of the metabolic fate of munitions material (TNT & RDX) in plant systems and initial assessment of material interaction with plant genetic material. Validation of the metabolic fate of munitions materials (TNT, RDX) in mature crops

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, R.J.; Harvey, S.D.; Cataldo, D.A.

    1995-09-01

    The goals of this effort were to confirm and expand data related to the behavior and impacts of munitions residues upon human food chain components. Plant species employed included corn (Zea mays), alfalfa (Medicago sativa). spinach (Spinacea oleraceae), and carrot (Daucus carota). Plants were grown from seed to maturity (70 to 120 days) in a low-fertility soil (Burbank) amended with either {sup 14}C-TNT or {sup 14}C-RDX at which time they were harvested and analyzed for munitions uptake, partitioning, and chemical form of the munition or munition-metabolite. All four of the plant species used in this study accumulated the {sup 14}C-TNT- and RDX-derived label. The carrot, alfalfa, and corn demonstrated a higher percentage of label retained in the roots (62, 73, and 83% respectively). The spinach contained less activity in its root (36%) but also contained the highest TNT specific activity observed (>4600 jig TNT equivalents/g dry wt.). The specific uptake values of RDX for the spinach and alfalfa were comparable to those previously reported for wheat and bean (314 to 590 {mu}g RDX-equivalents/g dry wt. respectively). An exception to this may be the carrot where the specific activity was found to exceed 4200 {mu}g RDX-equivalents/g dry wt. in the shoot. The total accumulation of TNT by the plants ranged from 1.24% for the spinach to 2.34% for the carrot. The RDX plants ranging from 15% for the spinach to 37% for the carrot. There was no identifiable TNT or amino dinitrotoluene (ADNT) isomers present in the plants however, the parent RDX compound was found at significant levels in the shoot of alfalfa (> 1 80 {mu}g/g) and corn (>18 {mu}g/g).

  12. Qualitative and quantitative modifications of root mitochondria during senescence of above-ground parts of Arabidopis thaliana.

    Science.gov (United States)

    Fanello, Diego Darío; Bartoli, Carlos Guillermo; Guiamet, Juan José

    2017-05-01

    This work studied modifications experienced by root mitochondria during whole plant senescence or under light deprivation, using Arabidopsis thaliana plants with YFP tagged to mitochondria. During post-bolting development, root respiratory activity started to decline after aboveground organs (i.e., rosette leaves) had senesced. This suggests that carbohydrate starvation may induce root senescence. Similarly, darkening the whole plant induced a decrease in respiration of roots. This was partially due to a decrease in the number of total mitochondria (YFP-labelled mitochondria) and most probably to a decrease in the quantity of mitochondria with a developed inner membrane potential (ΔΨm, i.e., Mitotracker red- labelled mitochondria). Also, the lower amount of mitochondria with ΔΨm compared to YFP-labelled mitochondria at 10d of whole darkened plant, suggests the presence of mitochondria in a "standby state". The experiments also suggest that small mitochondria made the main contribution to the respiratory activity that was lost during root senescence. Sugar supplementation partially restored the respiration of mitochondria after 10d of whole plant dark treatment. These results suggest that root senescence is triggered by carbohydrate starvation, with loss of ΔΨm mitochondria and changes in mitochondrial size distribution. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Potential of plant materials for the management of cowpea bruchid callosobruchus analis (coleoptera: bruchidae) in gram cicer arietinum during storage

    International Nuclear Information System (INIS)

    Sarwar, M.; Ahmad, N.; Tofique, M.

    2012-01-01

    Present research was carried out to identify alternatives to synthetic insecticides to control cowpea weevil Callosobruchus analis (F.) population in gram seed (Cicer arietinum L.), during storage. The efficacies of three plant materials such as Nicotiana tabacum, Citrullus colocythis and Aloe vera were assessed to determine their insecticidal activities against survival of bruchid C. analis on seeds of gram varieties viz., CM-98 and Jubiha-1. These plant materials tested reduced weevil infestation and emergence as compared with untreated control seeds. Seeds treatment with A. vera followed by N. tabacum reduced maximum pest damage over C. colocythis, which proved least effective to control C. analis population. Consequently, the tested plant materials should be given due consideration for effective gram protection as a component of integrated pest management approach in storage. (author)

  14. Antifoaming materials studies in G.S. (Girlder sulfide) heavy water plants. Chemical and thermical stability. Pt. 3

    International Nuclear Information System (INIS)

    Delfino, C.A.; Rojo, E.A.

    1988-01-01

    In Girlder sulfide (G.S.) heavy water plants hydrogen sulfide-water systems are inherentely foaming, so the adding of antifoaming materials is of great importance. These may be of high volatility, pyrolizable or chemically unstable in plant operation conditions (water and hydrogen sulfide at 2 MPa, up to 230 deg C). Five commercial surfactants were studied from the point of view of their chemical and thermical stability in order to select the most suitable. (Author) [es

  15. Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance.

    Science.gov (United States)

    Mensah, Sylvanus; Veldtman, Ruan; Assogbadjo, Achille E; Glèlè Kakaï, Romain; Seifert, Thomas

    2016-10-01

    The relationship between biodiversity and ecosystem function has increasingly been debated as the cornerstone of the processes behind ecosystem services delivery. Experimental and natural field-based studies have come up with nonconsistent patterns of biodiversity-ecosystem function, supporting either niche complementarity or selection effects hypothesis. Here, we used aboveground carbon (AGC) storage as proxy for ecosystem function in a South African mistbelt forest, and analyzed its relationship with species diversity, through functional diversity and functional dominance. We hypothesized that (1) diversity influences AGC through functional diversity and functional dominance effects; and (2) effects of diversity on AGC would be greater for functional dominance than for functional diversity. Community weight mean (CWM) of functional traits (wood density, specific leaf area, and maximum plant height) were calculated to assess functional dominance (selection effects). As for functional diversity (complementarity effects), multitrait functional diversity indices were computed. The first hypothesis was tested using structural equation modeling. For the second hypothesis, effects of environmental variables such as slope and altitude were tested first, and separate linear mixed-effects models were fitted afterward for functional diversity, functional dominance, and both. Results showed that AGC varied significantly along the slope gradient, with lower values at steeper sites. Species diversity (richness) had positive relationship with AGC, even when slope effects were considered. As predicted, diversity effects on AGC were mediated through functional diversity and functional dominance, suggesting that both the niche complementarity and the selection effects are not exclusively affecting carbon storage. However, the effects were greater for functional diversity than for functional dominance. Furthermore, functional dominance effects were strongly transmitted by CWM of

  16. Direct containment heating experiments in Zion Nuclear Power Plant geometry using prototypic materials

    International Nuclear Information System (INIS)

    Binder, J.L.; McUmber, L.M.; Spencer, B.W.

    1993-01-01

    Direct Containment Heating (DCH) experiments have been completed which utilize prototypic core materials. The experiments reported on here are a continuation of the Integral Effects Testing (IET) DCH program. The experiments incorporated a 1/40 scale model of the Zion Nuclear Power Plant containment structures. The model included representations of the primary system volume, RPV lower head, cavity and instrument tunnel, and the lower containment structures. The experiments were steam driven. Iron-alumina thermite with chromium was used as a core melt stimulant in the earlier IET experiments. These earlier IET experiments at Argonne National Laboratory (ANL) and Sandia National Laboratories (SNL) provided useful data on the effect of scale on DCH phenomena; however, a significant question concerns the potential experiment distortions introduced by the use of non-prototypic iron/alumina thermite. Therefore, further testing with prototypic materials has been carried out at ANL. Three tests have been completed, DCH-U1A, U1B and U2. DCH-U1A and U1B employed an inerted containment atmosphere and are counterpart to the IET-1RR test with iron/alumina thermite. DCH-U2 employed nominally the same atmosphere composition of its counterpart iron/alumina test, IET-6. All tests, with prototypic material, have produced lower peak containment pressure rises; 45, 111 and 185 kPa in U1A, U1B and U2, compared to 150 and 250 kPa IET-1RR and 6. Hydrogen production, due to metal-steam reactions, was 33% larger in U1B and U2 compared to IET-1RR and IET-6. The pressurization efficiency was consistently lower for the corium tests compared to the IET tests

  17. Aboveground roofed design for the disposal of low-level radioactive waste in Maine

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, J.A. [Univ. of Maine, Orono, ME (United States)

    1993-03-01

    The conceptual designs proposed in this report resulted from a study for the Maine Low-level Radioactive Waste Authority to develop conceptual designs for a safe and reliable disposal facility for Maine`s low-level radioactive waste (LLW). Freezing temperatures, heavy rainfall, high groundwater tables, and very complex and shallow glaciated soils found in Maine place severe constraints on the design. The fundamental idea behind the study was to consider Maine`s climatic and geological conditions at the beginning of conceptual design rather than starting with a design for another location and adapting it for Maine`s conditions. The conceptual designs recommended are entirely above ground and consist of an inner vault designed to provide shielding and protection against inadvertent intrusion and an outer building to protect the inner vault from water. The air dry conditions within the outer building should lead to almost indefinite service life for the concrete inner vault and the waste containers. This concept differs sharply from the usual aboveground vault in its reliance on at least two independent, but more or less conventional, roofing systems for primary and secondary protection against leakage of radioisotopes from the facility. Features include disposal of waste in air dry environment, waste loading and visual inspection by remote-controlled overhead cranes, and reliance on engineered soils for tertiary protection against release of radioactive materials.

  18. Aboveground and belowground legacies of native Sami land use on boreal forest in northern Sweden 100 years after abandonment.

    Science.gov (United States)

    Freschet, Grégoire T; Ostlund, Lars; Kichenin, Emilie; Wardle, David A

    2014-04-01

    Human activities that involve land-use change often cause major transformations to community and ecosystem properties both aboveground and belowground, and when land use is abandoned, these modifications can persist for extended periods. However, the mechanisms responsible for rapid recovery vs. long-term maintenance of ecosystem changes following abandonment remain poorly understood. Here, we examined the long-term ecological effects of two remote former settlements, regularly visited for -300 years by reindeer-herding Sami and abandoned -100 years ago, within an old-growth boreal forest that is considered one of the most pristine regions in northern Scandinavia. These human legacies were assessed through measurements of abiotic and biotic soil properties and vegetation characteristics at the settlement sites and at varying distances from them. Low-intensity land use by Sami is characterized by the transfer of organic matter towards the settlements by humans and reindeer herds, compaction of soil through trampling, disappearance of understory vegetation, and selective cutting of pine trees for fuel and construction. As a consequence, we found a shift towards early successional plant species and a threefold increase in soil microbial activity and nutrient availability close to the settlements relative to away from them. These changes in soil fertility and vegetation contributed to 83% greater total vegetation productivity, 35% greater plant biomass, and 23% and 16% greater concentrations of foliar N and P nearer the settlements, leading to a greater quantity and quality of litter inputs. Because decomposer activity was also 40% greater towards the settlements, soil organic matter cycling and nutrient availability were further increased, leading to likely positive feedbacks between the aboveground and belowground components resulting from historic land use. Although not all of the activities typical of Sami have left visible residual traces on the ecosystem after

  19. Next Generation Nuclear Plant Materials Research and Development Program Plan, Revision 3

    International Nuclear Information System (INIS)

    G.O. Hayner; R.L. Bratton; R.E. Mizia; W.E. Windes; W.R. Corwin; T.D. Burchell; C.E. Duty; Y. Katoh; J.W. Klett; T.E. McGreevy; R.K. Nanstad; W. Ren; P.L. Rittenhouse; L.L. Snead; R.W. Swindeman; D.F. Wlson

    2006-01-01

    This is the 2006 update (Revision 3) of the NGNP Materials Research and Development Program Plan. This law established that the U.S Department of Energy (DOE) Secretary of Energy shall establish a ''Next Generation Nuclear Plant'' (NGNP) project. The NGNP project named in the Act was given the following attributes and guiding principles to manage its development: (1) The NGNP consists of research, development, design (R and DD), construction, and operation of a prototype reactor to generate electricity and hydrogen; (2) The project shall be managed by the DOE Office of Nuclear Energy; (3) The Idaho National Laboratory (INL) shall be the lead DOE laboratory for the NGNP; (4) The INL shall establish collaborations with selected institutions of higher education, other research institutes and international researchers; (5) The INL shall organize an industrial consortium of partners for cost-shared R and DD, construction; (6) The project shall be sited at the INL; (7) The project shall be licensed by the Nuclear Regulatory Commission (NRC) and by July, 2008 the NRC and DOE shall jointly submit a licensing strategy to Congress; (8) The project shall be organized to maximize technical interchange with the nuclear power industry, nuclear power plant construction firms, the chemical process industry and to seek international cooperation, participation and contributions; (9) The Nuclear Energy Research Advisory Committee (NERAC) shall review all program plans for the NGNP; (10) Phase 1 of the project (selection of hydrogen production technology, conduct R and DD and initial design activities) shall be completed no later than September 30, 2011; (11) Phase 2 of the project (continue R and DD, develop final design, apply for a license, construct and start operations) shall be completed by September 30, 2021; and (12) Provision for authorization of appropriations was made. As a result of the direction provided, the INL and the DOE issued an NGNP Preliminary Project Management

  20. Quantitative data on the fire behavior of combustible materials found in nuclear power plants: A literature review

    International Nuclear Information System (INIS)

    Nowlen, S.P.

    1987-02-01

    This report presents the findings of a task in which currently available fire research literature was reviewed for quantitative data on the burning characteristics of combustible materials that are found in nuclear power plants. The materials considered for which quantitative data were available include cable insulation materials, flammable liquids, furniture, trash and general refuse, and wood and wood products. A total of 90 figures and tables, taken primarily from the referenced works, which summarize the available quantitative fire characterization information for these materials is presented

  1. The materials concept in German light water reactors. A contribution to plant safety, economic performance and damage prevention

    International Nuclear Information System (INIS)

    Ilg, Ulf

    2008-01-01

    Major decisions taken as early as in the planning and construction phases of nuclear power plants may influence overall plant life. Component quality at the beginning of plant life is determined very much also by a balanced inclusion of the 'design, choice of materials, manufacturing and inspection' elements. One example of the holistic treatment of design, choice of material, and manufacture of important safety-related components in pressurized water reactors is the reactor pressure vessel (RPV) in which the ferritic compound tubes, with inside claddings, for the control rod drive nozzles are screwed into the vessel top. Also the choice of Incoloy 800 for the steam generator tubes, and the design of the main coolant pipes with inside claddings as seamless pipe bends / straight pipes with integrated nozzles connected to mixed welds with austenitic pipes are other special design features of the Siemens/KWU plants. A demonstrably high quality standard by international comparison to this day has been exhibited by the austenitic RPV internals of boiling water reactors, which were made of a low-carbon Nb-stabilized austenitic steel grade by optimum manufacturing technologies. The same material is used for backfitting austenitic pipes. Reliable and safe operation of German nuclear power plants has been demonstrated for more than 4 decades. One major element in this performance is the materials concept adopted in Germany also in the interest of damage prevention. (orig.)

  2. Evaluation of biological activities and chemical constituent of storage medicinal plant materials used as a traditional medicine in Nepal

    Directory of Open Access Journals (Sweden)

    Bishnu Prasad Pandey

    2017-12-01

    Full Text Available Aim: The main aims of the study were to evaluate the phytochemicals, antioxidant, antibacterial and chemical constituents of storage medicinal plant materials used as a traditional medicine in Nepal. Methods: Phytochemical screening, total phenolic content, total flavonoid content, antibacterial activities, anti-oxidant assay of the crude extract (water, methanol, n-hexane and acetone were carried out to identify the biological activities and phytonutrients present in the different extract. The chemical constituents present in the crude extract were analyzed using the high performance liquid chromatography (HPLC equipped with UV detector. Results: Evaluated medicinal plant materials were found to have diverse phytonutrients. Results revealed that methanol extract of Pakhanved and Jethimadhu have highest total flavonoids and polyphenol content. Among the selected medicinal plant materials Jethimadhu extract revealed the highest antioxidant activities. Furthermore, evaluated medicinal plants extract were found to exert a range of in vitro growth inhibition activity against both gram positive and gram negative species. The highest antibacterial activities were observed in the case of methanol extract, whereas, least activity was observed with the hexane extract. HPLC analysis of the acetone extract of Jethimadhu reveals the presence of diosmetin. Conclusions: Our result revealed that among the five evaluated medicinal plant materials, Jethimadhu extract revealed biological activities and exhibits a higher amount of polyphenol and flavonoid content. [J Complement Med Res 2017; 6(4.000: 369-377

  3. Partnering with a local concrete block manufacturing plant to improve quality of construction materials in Haiti’s Central Plateau

    Directory of Open Access Journals (Sweden)

    Aaron Gordon

    2016-09-01

    Full Text Available This paper presents a successful ongoing partnership between Clemson Engineers for Developing Countries (CEDC and a concrete masonry unit (CMU manufacturing plant in rural Haiti. The infrastructure destruction and resulting loss of life of the 2010 earthquake in Haiti highlighted the need for improved building materials and codes. This partnership has helped to improve the strength of CMUs in the plant, both creating a safer local built environment and expanding the economic opportunities for this plant. Using samples of aggregate and cement from the site in Haiti, students in Clemson performed experiments to optimise the CMU mix design and made other suggestions to improve efficiency and quality of their product. Consistency continues to be a challenge for the CMU plant, and this paper also describes proposed procedures to help the plant implement quality control and quality assurance plans.

  4. Multiplex PCR for specific and robust detection of Xanthomonas campestris pv. musacearum in pure culture and infected plant material

    DEFF Research Database (Denmark)

    Adriko, John; Aritua, V.; Mortensen, Carmen Nieves

    2012-01-01

    The present study developed a pathovar-specific PCR for the detection of Xanthomonas campestris pv. musacearum (Xcm), the cause of banana xanthomonas wilt, by amplification of a 265-bp region of the gene encoding the general secretion pathway protein D (GspD). A distinct DNA fragment......-specific PCR was successfully multiplexed with internal control primers targeting 16S rDNA for application on DNA from bacterial cultures and with primers targeting plant mitochondrial 26S rDNA for application on DNA extracted from plant material. Diagnostic discrimination of healthy and infected plants...

  5. Effect of the planting material on the incidence of dry rot in Colocasia esculenta (L. Schott and Xanthosoma spp.

    Directory of Open Access Journals (Sweden)

    Ernesto Espinosa

    2012-10-01

    Full Text Available The cocoyam (Xanthosoma spp. and Colocasia esculenta is a monocot plant with vegetative propagation. This work was developed with the aim of determining the effect of the planting material type on the incidence of dry rot in two cultivars of Colocasia and Xanthosoma genera. Primary and secondary rhizomes, crowns of primary rhizomes and in vitro plants were used. The plantation was maintained for twelve months and the plants were characterized morphologically in the growing stage. Besides, it was determined the incidence of dry rot per treatment at growing and harvest stage. Finally, the yield was determined. When in vitro plants were used the percentage of incidence and intensity of the damage of dry rot was less in both cultivars. The yield in primary rhizomes and overall was significantly higher. The results indicated the superiority of in vitro plants as initial plantation material over the traditional seed used in taro culture. Furthermore, it allows the designing a seed production program by biotechnological methods. Key words: clone, cocoyam, dry rot, in vitro plants.

  6. The role of structural materials in the vulnerability of nuclear power plants

    International Nuclear Information System (INIS)

    Debarberis, L.; Simola, K.; Ballesteros, A.; Kryukov, A.; Brumovsky, M.

    2006-01-01

    The nuclear power plants (NPPs) world-wide are generally very robustly designed and constructed, capable to stand very extreme conditions. Small design differences from this point of view can be found among the various reactor types of the same generation; PWR, WWER, ets. The NPP structures are thus designed to accommodate all originally thinkable unwanted conditions, to cope with various extreme scenarios and respond safely to the various considered initiating events. In addition to the robust design, a series of complex redundant and diverse safety barriers, following a defence in depth concept, have been developed to avoid negative consequences, or at least mitigate the consequences of the events. Recently, questions and debates are appearing with regard to the vulnerability of the NPPs and their possible exposure to external threats; like for example terrorist attacks involving few individuals able to by-pass security and introducing small charges of explosive inside or near-by such containments. The role of the structural materials is in these situations very important for the safety of the NPP. The worst consequences of an event can contemplate of course huge environmental damage, like release of radio-activity combined with possible human losses and considerable direct costs, and financial and logistic indirect consequences. Such negative consequences are especially impacting the nuclear industry; in fact, it can be foreseen that a single accident or serious incident may put in danger the complete NPP fleet operation simply due to public opinion justified pressure. The response of the structures subjected to non-design impacts is discussed and reviewed in this paper. Although the main focus is on structural integrity, the paper also discusses the overall risk assessment of terrorist attacks presenting the link between structural analyses and plant risk analysis

  7. Development of a multiplex DNA-based traceability tool for crop plant materials.

    Science.gov (United States)

    Voorhuijzen, Marleen M; van Dijk, Jeroen P; Prins, Theo W; Van Hoef, A M Angeline; Seyfarth, Ralf; Kok, Esther J

    2012-01-01

    The authenticity of food is of increasing importance for producers, retailers and consumers. All groups benefit from the correct labelling of the contents of food products. Producers and retailers want to guarantee the origin of their products and check for adulteration with cheaper or inferior ingredients. Consumers are also more demanding about the origin of their food for various socioeconomic reasons. In contrast to this increasing demand, correct labelling has become much more complex because of global transportation networks of raw materials and processed food products. Within the European integrated research project 'Tracing the origin of food' (TRACE), a DNA-based multiplex detection tool was developed-the padlock probe ligation and microarray detection (PPLMD) tool. In this paper, this method is extended to a 15-plex traceability tool with a focus on products of commercial importance such as the emmer wheat Farro della Garfagnana (FdG) and Basmati rice. The specificity of 14 plant-related padlock probes was determined and initially validated in mixtures comprising seven or nine plant species/varieties. One nucleotide difference in target sequence was sufficient for the distinction between the presence or absence of a specific target. At least 5% FdG or Basmati rice was detected in mixtures with cheaper bread wheat or non-fragrant rice, respectively. The results suggested that even lower levels of (un-)intentional adulteration could be detected. PPLMD has been shown to be a useful tool for the detection of fraudulent/intentional admixtures in premium foods and is ready for the monitoring of correct labelling of premium foods worldwide.

  8. Aboveground vs. Belowground Carbon Stocks in African Tropical Lowland Rainforest: Drivers and Implications.

    Directory of Open Access Journals (Sweden)

    Sebastian Doetterl

    Full Text Available African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors.Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock were only half compared to an area with lower tree height (= smaller aboveground carbon stock. This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system.We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to the terrestrial C budget.

  9. Aboveground vs. Belowground Carbon Stocks in African Tropical Lowland Rainforest: Drivers and Implications.

    Science.gov (United States)

    Doetterl, Sebastian; Kearsley, Elizabeth; Bauters, Marijn; Hufkens, Koen; Lisingo, Janvier; Baert, Geert; Verbeeck, Hans; Boeckx, Pascal

    2015-01-01

    African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors. Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock) were only half compared to an area with lower tree height (= smaller aboveground carbon stock). This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system. We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to the terrestrial C budget.

  10. Forum on impact of radioactive materials on the atmospheric pollutant inventory and on the radioactivity uptake by plants

    International Nuclear Information System (INIS)

    1987-01-01

    This report contains 6 separately documented lectures about the following topics of the meeting: 1) Radiation exposure of plants caused by the reactor accident of Chernobyl; 2) Tritium and radiocarbon concentrations in trees; 3) Energetics of the atmospheric trace materials cycle; 4) Phenomenology of formation and decomposition of ozone in the lower atmosphere, and 5) Comparison of radioactivity levels and trace materials in the air. (PW)

  11. Evaluation of the metabolic fate of munitions material (TNT & RDX) in plant systems and initial assessment of material interaction with plant genetic material (DNA). Initial assessment of plant DNA adducts as biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, S.D.; Clauss, T.W.; Fellows, R.J.; Cataldo, D.A.

    1995-08-01

    Genetic damage to deoxyribonucleic acid (DNA) has long been suspected of being a fundamental event leading to cancer. A variety of causal factors can result in DNA damage including photodimerization of base pairs, ionizing radiation, specific reaction of DNA with environmental pollutants, and nonspecific oxidative damage caused by the action of highly reactive oxidizing agents produced by metabolism. Because organisms depend on an unadulterated DNA template for reproduction, DNA repair mechanisms are an important defense for maintaining genomic integrity. The objective of this exploratory project was to evaluate the potential for TNT to form DNA adducts in plants. These adducts, if they exist in sufficient quantities, could be potential biomarkers of munitions exposure. The ultimate goal is to develop a simple analytical assay for the determination of blomarkers that is indicative of munitions contamination. DNA repair exists in dynamic equilibrium with DNA damage. Repair mechanisms are capable of keeping DNA damage at remarkably low concentrations provided that the repair capacity is not overwhelmed.

  12. Annual measurements of gain and loss in aboveground carbon density

    Science.gov (United States)

    Baccini, A.; Walker, W. S.; Carvalho, L.; Farina, M.; Sulla-menashe, D. J.; Houghton, R. A.

    2017-12-01

    Tropical forests hold large stores of carbon, but their net carbon balance is uncertain. Land use and land-cover change (LULCC) are believed to release between 0.81 and 1.14 PgC yr-1, while intact native forests are thought to be a net carbon sink of approximately the same magnitude. Reducing the uncertainty of these estimates is not only fundamental to the advancement of carbon cycle science but is also of increasing relevance to national and international policies designed to reduce emissions from deforestation and forest degradation (e.g., REDD+). Contemporary approaches to estimating the net carbon balance of tropical forests rely on changes in forest area between two periods, typically derived from satellite data, together with information on average biomass density. These approaches tend to capture losses in biomass due to deforestation (i.e., wholesale stand removals) but are limited in their sensitivity to forest degradation (e.g., selective logging or single-tree removals), which can account for additional biomass losses on the order of 47-75% of deforestation. Furthermore, while satellite-based estimates of forest area loss have been used successfully to estimate associated carbon losses, few such analyses have endeavored to determine the rate of carbon sequestration in growing forests. Here we use 12 years (2003-2014) of pantropical satellite data to quantify net annual changes in the aboveground carbon density of woody vegetation (MgC ha-1yr-1), providing direct, measurement-based evidence that the world's tropical forests are a net carbon source of 425.2 ± 92.0 Tg C yr-1. This net release of carbon consists of losses of 861.7 ± 80.2 Tg C yr-1 and gains of -436.5 ± 31.0 Tg C yr-1 . Gains result from forest growth; losses result from reductions in forest area due to deforestation and from reductions in biomass density within standing forests (degradation), with the latter accounting for 68.9% of overall losses. Our findings advance previous research

  13. Historical nuclear materials balance report for the former AEC-owned Weldon Spring Chemical Plant, Weldon Spring, Missouri

    International Nuclear Information System (INIS)

    Harris, R.A.

    1986-07-01

    From June 1957 through December 1966, four types of nuclear material were processed in the AEC-owned Weldon Spring Chemical Plant. These materials were: (1) natural uranium, (2) depleted uranium, (3) slightly enriched uranium, and (4) natural thorium. The summary material balances for each material are shown in Table 1. In processing these materials, discards occurred to (a) the atmosphere through stacks, (b) area waterways through sewers, and (c) to raffinate pits still in existence at the site. These discards are summarized in Table 2. Natural uranium processing accounted for more than 97% of the nuclear materials throughput (Table 1). Total material balance closures for natural uranium, depleted uranium, slightly enriched uranium, and natural thorium were 99.94%, 100%, 99.27%, and 98.52%, respectively. Of the discards, summarized in Table 2, approximately 75% went to and remain in the existing raffinate pits. Discharges to stacks and sewers account for the remaining discards. As far as can be determined, it appears all plant processes operated efficiently and all materials were well accounted for with only minimal variances

  14. New phosphorus biofertilizers from renewable raw materials in the aspect of cadmium and lead contents in soil and plants

    Directory of Open Access Journals (Sweden)

    Jastrzębska Magdalena

    2018-02-01

    Full Text Available Recycling phosphorus from waste for fertilization purposes appears to be an alternative for non-renewable sources and a solution for managing harmful products of civilisation. Fertilizers from secondary raw materials are considered to be safe to the environment. This study presents an assessment of the effects of five new biofertilizers made from sewage sludge ash and/or animal bones on the content of cadmium and lead in the soil, in wheat grains and straw (test plant, in the mass of the the accompanying weeds and in the post-harvest residues. Biofertilizers were produced in the form of suspension or granules and activated using Bacillus megaterium or Acidithiobacillus ferrooxidans bacteria. They were tested in four field experiments. The Cd and Pb contents of the soil and plant material were determined using the ICP-MS technique. Similar to superphosphate, new biofertilizers showed no change in the Cd and Pb contents of the soil and plants biomass when applied at amounts up to 80 kg; P2O5 ha−1. Both Cd and Pb in the soil and plants occurred naturally, and the amounts were within the acceptable standards. Biofertilizers from renewable raw materials, with low toxic element contents, are not thought to pose a hazard to the soil and plants when applied in reasonable amounts. They can be a substitute for conventional phosphorus fertilizers.

  15. A Study on Abrasive Wear Behavior of Spacer Grid Materials for Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. M.; Kim, J. H. [Chungnam National University, Daejeon (Korea, Republic of); Park, J. K.; Jeon, K. L. [Korea Nuclear Fuel, Daejeon (Korea, Republic of)

    2010-10-15

    Spacer grid is one of the key components of a light water reactor (LWR) fuel assembly. The most important function of it is to hold the fuel rods to maintain the distance between the fuel rods inside a fuel assembly. At the reactor core in operating power plants, a fretting damage has been frequently reported between a nuclear fuel rod and its supporting spring/dimple of the fuel assemblies. This is due to a flow induced vibration (FIV), Which results from the primary coolant that rapidly passes around the fuel rod to remove the excess heat generated by the nuclear reaction. Fretting damage is generally caused by fretting wear, which includes various wear mechanisms such as an oxidative, adhesive, abrasive wear, etc., or fretting fatigue, which includes a surface or bulk fatigue. The purpose of the present work are to investigate the variation of the materials with increasing number of cycles and sliding velocity under abrasive wear test and to examine the wear mechanism at each test condition

  16. Transformation of {sup 15}N-Labelled Ammonium during Aerobic Decomposition of Plant Material

    Energy Technology Data Exchange (ETDEWEB)

    Danneberg, O. H.; Haunold, E.; Kaindl, K. [Institute for Biology and Agriculture. Reactor Centre, Seibersdorf (Austria)

    1968-07-01

    Plant material from maize leaves with the addition of {sup 15}N-labelled (NH{sub 4}){sub 2}SO{sub 4} was composted for periods of 10 to 180 d. The nitrogen of the decomposing samples was fractionated and the {sup 15}N enrichment in the fractions was determined by mass spectrometry. The added {sup 15}NH{sub 4}{sup +} was incorporated into organic compounds mainly during the first 10 d. The largest amount was found in the 'protein' fraction. The total nitrogen of this fraction increased up to 30 d, thus showing a marked synthesis of microbial protein. It decreased afterwards, when the microbial substances themselves were decomposed. Apart from this there was a marked synthesis of humic substances, especially in the first 10 d as indicated by an increase of the acid-insoluble ''humin'' fraction. A rather small amount of labelled ammonium was incorporated into this fraction within this time and this amount remained constant during the whole experiment. Because of the greater decay resistance the ''humin'' fraction was enriched towards the end of the experiment. (author)

  17. Use of phase change materials during compressed air expansion for isothermal CAES plants

    Science.gov (United States)

    Castellani, B.; Presciutti, A.; Morini, E.; Filipponi, M.; Nicolini, A.; Rossi, F.

    2017-11-01

    Compressed air energy storage (CAES) plants are designed to store compressed air into a vessel or in an underground cavern and to expand it in an expansion turbine when energy demand is high. An innovative CAES configuration recently proposed is the isothermal process. Several methods to implement isothermal CAES configuration are under investigation. In this framework, the present paper deals with the experimental testing of phase change materials (PCM) during compressed air expansion phase. The experimental investigation was carried out by means of an apparatus constituted by a compression section, a steel pressure vessel, to which an expansion valve is connected. The initial internal absolute pressure was equal to 5 bar to avoid moisture condensation and the experimental tests were carried out with two paraffin-based PCM amounts (0.05 kg and 0.1 kg). Results show that the temperature change during air expansion decreases with increasing the PCM amount inside the vessel. With the use of PCM during expansions an increase of the expansion work occurs. The increase is included in the range from 9.3% to 18.2%. In every test there is an approach to the isothermal values, which represent the maximum theoretical value of the obtainable expansion work.

  18. Nuclear techniques for the determination of protein content in plant material

    International Nuclear Information System (INIS)

    Niemann, E.G.

    1980-01-01

    Elemental analysis for nitrogen has gained in importance over the last decade, as protein improvement and protein control in food and feed has come to be recognized as one of the most promising ways of overcoming deficiencies in food production and distribution. The need for fast and reliable screening methods has stimulated the improvement and automation of classic chemical methods for protein and nitrogen determination and, on the other hand, the development and adaptation of physical and nuclear analysis procedures. After about ten years of work this process has come to a stage where a critical evaluation of the existing methods seems necessary and justified. The present review describes and compares nuclear techniques for nitrogen determination in plant material. These include activation analysis techniques, based on various nuclear reactions, initiated by fast and thermal neutrons, energetic photons, protons, deuterons and α-particles. Other nuclear methods have been applied for nitrogen or protein determination, like ESCA, PIXE, NMR, NQR and Moessbauer spectroscopy, some of which possess good potential as screening methods. Depending on the needs, such as sample size, analysis rate and postulated accuracy, different nuclear techniques may be selected today for nitrogen screening. Some of the techniques discussed have additional potential for carbon or oxygen determination, for measuring depth or lateral N distribution, or for the recognition of the type of chemical N binding. Though most if not all techniques need further development for routine application, they are able to compete with chemical techniques in cost, rate and accuracy. (author)

  19. Probabilistic approaches applied to damage and embrittlement of structural materials in nuclear power plants

    International Nuclear Information System (INIS)

    Vincent, L.

    2012-01-01

    The present study deals with the long-term mechanical behaviour and damage of structural materials in nuclear power plants. An experimental way is first followed to study the thermal fatigue of austenitic stainless steels with a focus on the effects of mean stress and bi-axiality. Furthermore, the measurement of displacement fields by Digital Image Correlation techniques has been successfully used to detect early crack initiation during high cycle fatigue tests. A probabilistic model based on the shielding zones surrounding existing cracks is proposed to describe the development of crack networks. A more numeric way is then followed to study the embrittlement consequences of the irradiation hardening of the bainitic steel constitutive of nuclear pressure vessels. A crystalline plasticity law, developed in agreement with lower scale results (Dislocation Dynamics), is introduced in a Finite Element code in order to run simulations on aggregates and obtain the distributions of the maximum principal stress inside a Representative Volume Element. These distributions are then used to improve the classical Local Approach to Fracture which estimates the probability for a microstructural defect to be loaded up to a critical level. (author) [fr

  20. Method and device for forecasting remaining lifetime for material constituting light water reactor plant

    International Nuclear Information System (INIS)

    Anzai, Hideya; Nakada, Kiyotomo; Shimanuki, Sei; Kida, Toshitaka; Fuse, Motomasa; Shigenaka, Naoto; Kuniya, Jiro; Izumiya, Masakiyo; Hattori, Shigeo; Saito, Takashi.

    1994-01-01

    A pressure vessel of a light water type reactor comprises a crack development sensor at the inside and a crack development monitor at the outside to monitor the development of cracks detected by the crack progress sensor. In addition, the reactor also comprises, at the outside thereof, a dissolved oxygen meter, a dissolved hydrogen peroxide meter and a conductivity meter for reactor water. A computer is connected, on line, to the crack development monitor, the dissolved oxygen meter, the dissolved hydrogen peroxide meter and the conductivity meter. A crack development rate measured by the crack development monitor, as well as the dissolved oxygen concentration, the dissolved peroxide hydrogen concentration and the conductivity of reactor water measured at the outside of the reactor by the dissolved oxygen meter, the dissolved hydrogen peroxide meter and the conductivity meter are inputted to the computer. The computer calculates the effective dissolved oxygen concentration for each portion of the plant based on these measured values. Further, the period of time till the crack reaches a predetermined limit value is calculated based on the measured values. Then, the period of time is displayed as a remaining life time of the materials due to stress corrosion crackings. (I.N.)

  1. PAHs in leachates from thermal power plant wastes and ash-based construction materials.

    Science.gov (United States)

    Irha, Natalya; Reinik, Janek; Jefimova, Jekaterina; Koroljova, Arina; Raado, Lembi-Merike; Hain, Tiina; Uibu, Mai; Kuusik, Rein

    2015-08-01

    The focus of the current study is to characterise the leaching behaviour of polycyclic aromatic hydrocarbons (PAHs) from oil shale ashes (OSAs) of pulverised firing (PF) and circulating fluidised-bed (CFB) boilers from Estonian Thermal Power Plant (Estonia) as well as from mortars and concrete based on OSAs. The target substances were 16 PAHs from the EPA priority pollutant list. OSA samples and OSA-based mortars were tested for leaching, according to European standard EN 12457-2 (2002). European standard CEN/TC 15862(2012) for monolithic matter was used for OSA-based concrete. Water extracts were analysed by GC-MS for the concentration of PAHs. Naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene and pyrene were detected. Still, the release of PAHs was below the threshold limit value for inert waste. The amount of the finest fraction (particle size materials did not lead to the immobilisation of soluble PAHs. Release of PAHs from the monolith samples did not exceed 0.5 μg/m(2). In terms of leaching of PAHs, OSA is safe to be used for construction purposes.

  2. Ultraviolet-B Radiation and Nitrogen Affect Nutrient Concentrations and the Amount of Nutrients Acquired by Above-Ground Organs of Maize

    OpenAIRE

    Correia, Carlos M.; Coutinho, João F.; Bacelar, Eunice A.; Gonçalves, Berta M.; Björn, Lars Olof; Moutinho Pereira, José

    2012-01-01

    UV-B radiation effects on nutrient concentrations in above-ground organs of maize were investigated at silking and maturity at different levels of applied nitrogen under field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. At silking, UV-B increased N, K, Ca, and Zn concentrations, whereas at maturity Ca, Mg, Zn, and Cu increased and N, P and Mn decreased in some plant organs. Generally, at maturity, N, Ca, Cu, and Mn were lower, while P, K, and Zn con...

  3. Modeling Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultra-supercritical Coal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen [General Electric Global Research, Niskayuna, NY (United States)

    2014-04-01

    The goal of this project is to model creep-fatigue-environment interactions in steam turbine rotor materials for advanced ultra-supercritical (A-USC) coal power Alloy 282 plants, to develop and demonstrate computational algorithms for alloy property predictions, and to determine and model key mechanisms that contribute to the damages caused by creep-fatigue-environment interactions.

  4. Material development for waste-to-energy plants. Refractory linings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hede Larsen, O.

    2010-10-15

    Evaluation and SEM analysis of plant exposed, failed linings confirm over and again that failure in broad lines is linked to excess porosity, inferior quality on raw materials, detrimental reactions between raw materials and other mix constituents, volume growth reactions between base material and salt depositions, thermal stress induced crack formation, and uncontrolled craftsmanship. Extensive evaluations, calculations and considerations revealed numerous ways to execute the formulation of experimental castable mixes, of which some formed a broad base for phase I trials. Three mixes of the experimental castable phase II batches reached apparent porosities of {approx} 10% measured with alcohol, estimated to less than 8%-9% if measured in water. These results compare favourably to the open porosities measure with water of generally applied LCCs in the Danish marketplace of 15.5-16.0%. Converted to bonding phase porosities the low levels realised in experiments look rather good: 28% vs 55-57%. Salt cup tests confirm state of the art resistance. Experiments and assessment of surface oxidation of Silicon Carbide grains of three levels of purity confirm that it is impossible to stabilise SiC by pre-oxydation for the purpose of creating a thicker, protective surface layer of SiO{sub 2}. It is evident from the literature and qualified assessment that free Si, as a remnant surplus from SiC manufacture, does indeed hydrolyse in the castable basic environment under development of H{sub 2} gas bubbles adding on to unwanted porosity. Heat conductivity measurements of six different, representative products conducted by the Danish Technological Institute from 300 dec. C to 750 dec. C according to their credited calorimetric method confirm that the pre-firing to excess temperatures and subsequent measurement according to the DIN/EUN norm does indeed give misleading data of up to 45% for a castable containing {approx} 55% Silicon Carbide. Finite Element analysis confirms the

  5. Estimating forest and woodland aboveground biomass using active and passive remote sensing

    Science.gov (United States)

    Wu, Zhuoting; Dye, Dennis G.; Vogel, John M.; Middleton, Barry R.

    2016-01-01

    Aboveground biomass was estimated from active and passive remote sensing sources, including airborne lidar and Landsat-8 satellites, in an eastern Arizona (USA) study area comprised of forest and woodland ecosystems. Compared to field measurements, airborne lidar enabled direct estimation of individual tree height with a slope of 0.98 (R2 = 0.98). At the plot-level, lidar-derived height and intensity metrics provided the most robust estimate for aboveground biomass, producing dominant species-based aboveground models with errors ranging from 4 to 14Mg ha –1 across all woodland and forest species. Landsat-8 imagery produced dominant species-based aboveground biomass models with errors ranging from 10 to 28 Mg ha –1. Thus, airborne lidar allowed for estimates for fine-scale aboveground biomass mapping with low uncertainty, while Landsat-8 seems best suited for broader spatial scale products such as a national biomass essential climate variable (ECV) based on land cover types for the United States.

  6. Optimising energy recovery and use of chemicals, resources and materials in modern waste-to-energy plants

    International Nuclear Information System (INIS)

    De Greef, J.; Villani, K.; Goethals, J.; Van Belle, H.; Van Caneghem, J.; Vandecasteele, C.

    2013-01-01

    Highlights: • WtE plants are to be optimized beyond current acceptance levels. • Emission and consumption data before and after 5 technical improvements are discussed. • Plant performance can be increased without introduction of new techniques or re-design. • Diagnostic skills and a thorough understanding of processes and operation are essential. - Abstract: Due to ongoing developments in the EU waste policy, Waste-to-Energy (WtE) plants are to be optimized beyond current acceptance levels. In this paper, a non-exhaustive overview of advanced technical improvements is presented and illustrated with facts and figures from state-of-the-art combustion plants for municipal solid waste (MSW). Some of the data included originate from regular WtE plant operation – before and after optimisation – as well as from defined plant-scale research. Aspects of energy efficiency and (re-)use of chemicals, resources and materials are discussed and support, in light of best available techniques (BAT), the idea that WtE plant performance still can be improved significantly, without direct need for expensive techniques, tools or re-design. In first instance, diagnostic skills and a thorough understanding of processes and operations allow for reclaiming the silent optimisation potential

  7. Material control and accountability aspects of safeguards for the USA 233U/Th fuel recycle plant

    International Nuclear Information System (INIS)

    Carpenter, J.A. Jr.; McNeany, S.R.; Angelini, P.; Holder, N.D.; Abraham, L.

    1978-01-01

    The materials control and accountability aspects of the reprocessing and refabrication of a conceptual large-scale HTGR fuel recycle plant have been discussed. Two fuel cycles were considered. The traditional highly enriched uranium cycle uses an initial or makeup fuel element with a fissile enrichment of 93% 235 U. The more recent medium enriched uranium cycle uses initial or makeup fuel elements with a fissile enrichment less than 20% 235 U. In both cases, 233 U bred from the fertile thorium is recycled. Materials control and accountability in the plant will be by means of a real-time accountability method. Accountability data will be derived from monitoring of total material mass through the processes and a system of numerous assays, both destructive and nondestructive

  8. Mechanistic modelling of Middle Eocene atmospheric carbon dioxide using fossil plant material

    Science.gov (United States)

    Grein, Michaela; Roth-Nebelsick, Anita; Wilde, Volker; Konrad, Wilfried; Utescher, Torsten

    2010-05-01

    Various proxies (such as pedogenic carbonates, boron isotopes or phytoplankton) and geochemical models were applied in order to reconstruct palaeoatmospheric carbon dioxide, partially providing conflicting results. Another promising proxy is the frequency of stomata (pores on the leaf surface used for gaseous exchange). In this project, fossil plant material from the Messel Pit (Hesse, Germany) is used to reconstruct atmospheric carbon dioxide concentration in the Middle Eocene by analyzing stomatal density. We applied the novel mechanistic-theoretical approach of Konrad et al. (2008) which provides a quantitative derivation of the stomatal density response (number of stomata per leaf area) to varying atmospheric carbon dioxide concentration. The model couples 1) C3-photosynthesis, 2) the process of diffusion and 3) an optimisation principle providing maximum photosynthesis (via carbon dioxide uptake) and minimum water loss (via stomatal transpiration). These three sub-models also include data of the palaeoenvironment (temperature, water availability, wind velocity, atmospheric humidity, precipitation) and anatomy of leaf and stoma (depth, length and width of stomatal porus, thickness of assimilation tissue, leaf length). In order to calculate curves of stomatal density as a function of atmospheric carbon dioxide concentration, various biochemical parameters have to be borrowed from extant representatives. The necessary palaeoclimate data are reconstructed from the whole Messel flora using Leaf Margin Analysis (LMA) and the Coexistence Approach (CA). In order to obtain a significant result, we selected three species from which a large number of well-preserved leaves is available (at least 20 leaves per species). Palaeoclimate calculations for the Middle Eocene Messel Pit indicate a warm and humid climate with mean annual temperature of approximately 22°C, up to 2540 mm mean annual precipitation and the absence of extended periods of drought. Mean relative air

  9. Preliminary field tests of near-real-time materials accountancy system at the Tokai Reprocessing Plant (TASK F)

    International Nuclear Information System (INIS)

    Tsutsumi, Masayori; Sawahata, Toshio; Sugiyama, Toshihide; Tanaka, Kazuhiko; Suyama, Naohiro

    1982-01-01

    A study of applying the proposed near-real-time material accountancy model to the Tokai Reprocessing Plant, PNC (Power Reactor and Nuclear Fuel Development Corp.), showed that the model was feasible and effective to meet the IAEA (International Atomic Energy Agency) safeguards criteria in terms of detection timeliness and sensitivity. This study using the computer simulation technique is shown in this paper. In order to investigate the applicability of the model to the actual plant, the field test was carried out on the process in the material balance area (MBA) which covers the area from the input accountability vessel (IAV) to the product accountability vessel (PAV), in cooperation with JAERI. The key measuring points for dynamic physical inventory counts (D-PIT) are shown. The results of test evaluation are as follows: For timely detection, it will be able to evaluate an abnoumal accountancy in process by using the MUFd (material unaccounted for) obtained by the D-PIT about once every week. Therefore, this seems to satisfy the timely detection of IAEA safeguards criteria. As for detection, sensitivity and verification procedures, in order to clarify these criteria for a large scale reprocessing plant, further research and development will be required. In addition, since the field test was carried out along with normal plant operation, additional man-power problem was also considered. (Wakatsuki, Y.)

  10. Estimation of individual sennosides in plant materials and marketed formulations by an HPTLC method.

    Science.gov (United States)

    Shah, S A; Ravishankara, M N; Nirmal, A; Shishoo, C J; Rathod, I S; Suhagia, B N

    2000-04-01

    Senna is a well-known drug, used in the Ayurvedic and Allopathic systems of medicine, and is a treatment for constipation. The purgative action of senna and its formulations is due to the presence of sennosides A and B. An HPTLC method has been developed for the determination of individual sennosides (A, B, C, D) without any derivatization in marketed formulations (three tablet formulations, two granule formulations and one liquid formulation) and plant materials (senna leaf and pod). The methanolic solution of a sample was applied on a pre-coated silica gel G60 F254 TLC plate (E. Merck.) and was developed using n-propanol : ethyl acetate : water : glacial acetic acid (3 : 3 : 2 : 0.1 v/v) as the mobile phase. The relative band speeds (Rf values) obtained were 0.35, 0.25, 0.61, 0.46 for sennosides A, B, C and D, respectively. The densitometric response was monitored at 366nm. Calibration curves were found to be linear in the concentration ranges 193-1356, 402-2817, 71-497 and 132-927 ng per spot for sennosides A, B, C, and D, respectively. The correlation coefficients were found to be 0.9978, 0.9987, 0.9939 and 0.9983 respectively for sennosides A, B, C and D. The result obtained with the HPTLC method for total sennoside content was compared with the results using the pharmacopoeial methods (spectrophotometric (British Pharmacopoeia) and spectrofluorimetric (United States Pharmacopeia) using the 'F' test). The results revealed no significant difference in the three different methods for estimation of total sennoside. The proposed HPTLC method was found to be simple, specific, precise, accurate and rapid. It can be used for routine quality control of sennosides or senna-containing formulations for individual sennosides.

  11. The Material Protection, Control and Accounting Sustainability Program Implementation at the Electrochemical Plant

    International Nuclear Information System (INIS)

    Sirotenko, Vladimir; Antonov, Eduard; Sirotenko, Alexei; Kukartsev, Alexander; Krivenko, Vladimir; Dabbs, Richard D.; Carroll, Michael F.; Garrett, Albert G.; Patrick, Scott W.; Ku, Esther M.

    2008-01-01

    Joint efforts by the Electrochemical Plant (ECP) in Zelenogorsk, Russia, and the United States Department of Energy National Nuclear Security Administration (US DOE/NNSA) Material Protection, Control and Accounting (MPC and A) Program to upgrade ECP security systems began in 1996. The commissioning of major MPC and A systems at ECP occurred in December 2004. Since that time, the US Project Team (USPT) and ECP personnel have focused jointly on the development and implementation of an enterprise-wide MPC and A Sustainability Program (SP) that address the seven essential MPC and A Program sustainability elements. This paper describes current operational experience at the ECP with the full implementation of the site SP utilizing an earned-value methodology. In support of this site program, ECP has established a Document Control Program (DCP) for sustainability-related documents; developed a robust master Work Breakdown Structure (WBS) that outlines all ECP MPC and A sustainability activities; and chartered an Enterprise-Wide Sustainability Working Group (ESWG) The earned value methodology uses ECP-completed (and USPT-verified) analyses to assess project performance on a quarterly basis. The MPC and A SP, presently operational through a contract between ECP and the Los Alamos National Laboratory (LANL), incorporates the seven essential MPC and A Program sustainability elements and governs all sustainability activities associated with MPC and A systems at ECP. The site SP is designed to ensure over the near term the upgraded MPC and A systems continuous operation at ECP as funding transitions from US-assisted to fully Russian supported and sustained

  12. Smart tungsten alloys as a material for the first wall of a future fusion power plant

    Science.gov (United States)

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch.; Rasinski, M.; Kreter, A.; Unterberg, B.; Coenen, J. W.; Du, H.; Mayer, J.; Garcia-Rosales, C.; Calvo, A.; Ordas, N.

    2017-06-01

    Tungsten is currently deemed as a promising plasma-facing material (PFM) for the future power plant DEMO. In the case of an accident, air can get into contact with PFMs during the air ingress. The temperature of PFMs can rise up to 1200 °C due to nuclear decay heat in the case of damaged coolant supply. Heated neutron-activated tungsten forms a volatile radioactive oxide which can be mobilized into the atmosphere. New self-passivating ‘smart’ alloys can adjust their properties to the environment. During plasma operation the preferential sputtering of lighter alloying elements will leave an almost pure tungsten surface facing the plasma. During an accident the alloying elements in the bulk are forming oxides thus protecting tungsten from mobilization. Good plasma performance and the suppression of oxidation are required for smart alloys. Bulk tungsten (W)-chroimum (Cr)-titanium (Ti) alloys were exposed together with pure tungsten (W) samples to the steady-state deuterium plasma under identical conditions in the linear plasma device PSI 2. The temperature of the samples was ~576 °C-715 °C, the energy of impinging ions was 210 eV matching well the conditions expected at the first wall of DEMO. Weight loss measurements demonstrated similar mass decrease of smart alloys and pure tungsten samples. The oxidation of exposed samples has proven no effect of plasma exposure on the oxidation resistance. The W-Cr-Ti alloy demonstrated advantageous 3-fold lower mass gain due to oxidation than that of pure tungsten. New yttrium (Y)-containing thin film systems are demonstrating superior performance in comparison to that of W-Cr-Ti systems and of pure W. The oxidation rate constant of W-Cr-Y thin film is 105 times less than that of pure tungsten. However, the detected reactivity of the bulk smart alloy in humid atmosphere is calling for a further improvement.

  13. Radiation doses and cause-specific mortality among workers at a nuclear materials fabrication plant

    International Nuclear Information System (INIS)

    Checkoway, H.; Pearce, N.; Crawford-Brown, D.J.; Cragle, D.L.

    1988-01-01

    A historical cohort mortality study was conducted among 6781 white male employees from a nuclear weapons materials fabrication plant for the years 1947-1979. Exposures of greatest concern are alpha and gamma radiation emanating primarily from insoluble uranium compounds. Among monitored workers, the mean cumulative alpha radiation dose to the lung was 8.21 rem, and the mean cumulative external whole body penetrating dose from gamma radiation was 0.96 rem. Relative to US white males, the cohort experienced mortality deficits from all causes combined, cardiovascular diseases, and from most site-specific cancers. Mortality excesses of lung and brain and central nervous system cancers were seen from comparisons with national and state rates. Dose-response trends were detected for lung cancer mortality with respect to cumulative alpha and gamma radiation, with the most pronounced trend occurring for gamma radiation among workers who received greater than or equal to 5 rem of alpha radiation. These trends diminished in magnitude when a 10-year latency assumption was applied. Under a zero-year latency assumption, the rate ratio for lung cancer mortality associated with joint exposure of greater than or equal to 5 versus less than 1 rem of both types of radiation is 4.60 (95% confidence limits (CL) 0.91, 23.35), while the corresponding result, assuming a 10-year latency, is 3.05 (95% CL 0.37, 24.83). While these rate ratios, which are based on three and one death, respectively, lack statistical precision, the observed dose-response trends indicate potential carcinogenic effects to the lung of relatively low-dose radiation. There are no dose-response trends for mortality from brain and central nervous system cancers

  14. The relationship between species richness and aboveground biomass in a primary Pinus kesiya forest of Yunnan, southwestern China.

    Science.gov (United States)

    Li, Shuaifeng; Lang, Xuedong; Liu, Wande; Ou, Guanglong; Xu, Hui; Su, Jianrong

    2018-01-01

    The relationship between biodiversity and biomass is an essential element of the natural ecosystem functioning. Our research aims at assessing the effects of species richness on the aboveground biomass and the ecological driver of this relationship in a primary Pinus kesiya forest. We sampled 112 plots of the primary P. kesiya forests in Yunnan Province. The general linear model and the structural equation model were used to estimate relative effects of multivariate factors among aboveground biomass, species richness and the other explanatory variables, including climate moisture index, soil nutrient regime and stand age. We found a positive linear regression relationship between the species richness and aboveground biomass using ordinary least squares regressions. The species richness and soil nutrient regime had no direct significant effect on aboveground biomass. However, the climate moisture index and stand age had direct effects on aboveground biomass. The climate moisture index could be a better link to mediate the relationship between species richness and aboveground biomass. The species richness affected aboveground biomass which was mediated by the climate moisture index. Stand age had direct and indirect effects on aboveground biomass through the climate moisture index. Our results revealed that climate moisture index had a positive feedback in the relationship between species richness and aboveground biomass, which played an important role in a link between biodiversity maintenance and ecosystem functioning. Meanwhile, climate moisture index not only affected positively on aboveground biomass, but also indirectly through species richness. The information would be helpful in understanding the biodiversity-aboveground biomass relationship of a primary P. kesiya forest and for forest management.

  15. Control and accountancy of nuclear materials in a uranium enrichment plant

    International Nuclear Information System (INIS)

    Hurt, N.H.

    1985-01-01

    A nuclear material control and accountancy system has been developed by Goodyear Atomic Corporation to meet safeguards and security requirements. It comprises three major elements: physical security, nuclear material control, and nuclear material accounting. This safeguards system is called Dynamic Material Control and Accountancy System (DYMCAS). The system approaches real-time computer control on a transaction-by-transaction basis

  16. Model Thermoelectric Generator TEG Small Modular As Micro Electricity Plant At Indonesia Part 1 Design And Material

    Directory of Open Access Journals (Sweden)

    Kisman M. Mahmud

    2015-08-01

    Full Text Available Thermoelectrically Generator TEG can generate electricity from the temperature difference between hot and cold at the junction thermoelectric module with two different semiconductor materials there will be a flow of current through the junction so as to produce a voltage. This principle uses the Seebeck effect thermoelectric generator as a base. By using these principles this study was conducted to determine the potential of the electric energy of the two Peltier modules which would be an alternative source for micro electricity plant using heat from methylated. The focus of this research is to design a model TEG Thermoelectric Generator Small Modular to produce the kind of material that is optimum for a TEG on the simulation Computer Aided Design CAD with a variety of four different materials that Bi2Te3 Bismuth Telluride PbTe-BiTe CMO-32 -62S Cascade and CMO-32-62S Calcium Manganese Oxide to its cold side using the heat sink fan and simulating heat aluminum plate attached to the hot side of the TEG modules with heat source of methylated. Model simulation results on TEG Small Modular micro electrical plant material obtained CMO-32-62S Cascade thermal material that has a value greater than 3 other material.

  17. Usability of Particle Film Technology and Water Holding Materials to Improve Drought Tolerance in Gossypium hirsutum L. Plants

    Science.gov (United States)

    Roy, K.; Zwieniecki, M.

    2017-12-01

    Cotton (Gossypium hirsutum L.) is relatively drought resistant and thus is planted widely in many semi-arid and arid parts of the world, many of which are usually deprived of modern water management technologies. Since the productivity of cotton plants depends on water availability, we carried out the present research aiming at testing two different low cost and arid-environment friendly water efficient techniques: application of particle film technology on leaves to reduce the transpiration rate (kaolin dust), and use of organic material to improve the soil water holding capacity (cotton wool). In details, kaolin (3% and 5%; weight:volume) mixed in water was sprayed on the upper surface of the leaves of young plants, and small amounts of cotton wool (0.1%, 0.3% and 0.5%; weight:weight) were mixed into the soils. The study showed that kaolin spray was useful as a transpiration reducing agent only if plants have adequate water in the soil (well irrigated) but not under water stress conditions. In addition, mixing a small amount of cotton wool into the soil can significantly increase the amount of water available to the plants, and extend the benefit of kaolin application on plants.

  18. 7 CFR 351.7 - Regulations governing importation by mail of plant material for immediate export.

    Science.gov (United States)

    2010-01-01

    ... (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE IMPORTATION OF PLANTS OR... enter the commerce of the United States. (3) After inspection by the customs and quarantine officers... parcel under customs supervision; affix to the parcel the necessary postage, and comply with other...

  19. Characterizing pathways of invasion using Sternorryhncha on imported plant material in cargo

    Science.gov (United States)

    Timothy T. Work

    2011-01-01

    Non-indigenous Homoptera, mainly scales, aphids, and mealy bugs, intercepted on plants destined for cultivation represent an elevated risk for the establishment of invasive insects in North America. These insects [grouped as the suborder Sternorrhyncha] are often parthenogenic and are imported on viable host plants.

  20. Sonication reduces the attachment of Salmonella Typhimurium ATCC 14028 cells to bacterial cellulose-based plant cell wall models and cut plant material.

    Science.gov (United States)

    Tan, Michelle S F; Rahman, Sadequr; Dykes, Gary A

    2017-04-01

    This study investigated the removal of bacterial surface structures, particularly flagella, using sonication, and examined its effect on the attachment of Salmonella Typhimurium ATCC 14028 cells to plant cell walls. S. Typhimurium ATCC 14028 cells were subjected to sonication at 20 kHz to remove surface structures without affecting cell viability. Effective removal of flagella was determined by staining flagella of sonicated cells with Ryu's stain and enumerating the flagella remaining by direct microscopic counting. The attachment of sonicated S. Typhimurium cells to bacterial cellulose-based plant cell wall models and cut plant material (potato, apple, lettuce) was then evaluated. Varying concentrations of pectin and/or xyloglucan were used to produce a range of bacterial cellulose-based plant cell wall models. As compared to the non-sonicated controls, sonicated S. Typhimurium cells attached in significantly lower numbers (between 0.5 and 1.0 log CFU/cm 2 ) to all surfaces except to the bacterial cellulose-only composite without pectin and xyloglucan. Since attachment of S. Typhimurium to the bacterial cellulose-only composite was not affected by sonication, this suggests that bacterial surface structures, particularly flagella, could have specific interactions with pectin and xyloglucan. This study indicates that sonication may have potential applications for reducing Salmonella attachment during the processing of fresh produce. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Above-ground biomass investments and light interception of tropical forest trees and lianas early in succession

    NARCIS (Netherlands)

    Selaya, N.G.; Anten, N.P.R.; Oomen, R.J.; Matthies, M.; Werger, M.J.A.

    2007-01-01

    Background and Aims Crown structure and above-ground biomass investment was studied in relation to light interception of trees and lianas growing in a 6-month-old regenerating forest. Methods The vertical distribution of total above-ground biomass, height, diameter, stem density, leaf angles and

  2. Airborne laser scanner-assisted estimation of aboveground biomass change in a temperate oak-pine forest

    Science.gov (United States)

    Nicholas S. Skowronski; Kenneth L. Clark; Michael Gallagher; Richard A. Birdsey; John L. Hom

    2014-01-01

    We estimated aboveground tree biomass and change in aboveground tree biomass using repeated airborne laser scanner (ALS) acquisitions and temporally coincident ground observations of forest biomass, for a relatively undisturbed period (2004-2007; ∇07-04), a contrasting period of disturbance (2007-2009; ∇09-07...

  3. Analytical Energy Dispersive X-Ray Fluorescence Measurements with a Scanty Amounts of Plant and Soil Materials

    Science.gov (United States)

    Mittal, R.; Rao, P.; Kaur, P.

    2018-01-01

    Elemental evaluations in scanty powdered material have been made using energy dispersive X-ray fluorescence (EDXRF) measurements, for which formulations along with specific procedure for sample target preparation have been developed. Fractional amount evaluation involves an itinerary of steps; (i) collection of elemental characteristic X-ray counts in EDXRF spectra recorded with different weights of material, (ii) search for linearity between X-ray counts and material weights, (iii) calculation of elemental fractions from the linear fit, and (iv) again linear fitting of calculated fractions with sample weights and its extrapolation to zero weight. Thus, elemental fractions at zero weight are free from material self absorption effects for incident and emitted photons. The analytical procedure after its verification with known synthetic samples of macro-nutrients, potassium and calcium, was used for wheat plant/ soil samples obtained from a pot experiment.

  4. Antioxidant properties of extracts from selected plant materials (Caesalpinia spinosa, Perilla frutescens, Artemisia annua and Viola wittrockiana) in vitro and in model food systems

    OpenAIRE

    Skowyra, Monika

    2014-01-01

    Phenolic compounds, ubiquitous in plants, are of considerable interest and are increasingly becoming a subject of intensive research due to their bioactive properties such as antioxidant, antimicrobial, anti-mutagenic, anti-viral and anti-inflammatory activity. The objective of this research was to determine the antioxidant activity of extracts from selected plant materials, namely Caesalpinia spinosa, Perilla frutescens, Artemisia annua and Viola wittrockiana Gams. Plant material extracts we...

  5. IFE chamber dry wall materials response to pulsed X-rays and ions at power-plant level fluences

    Energy Technology Data Exchange (ETDEWEB)

    Renk, T.J. E-mail: tjrenk@sandia.gov; Olson, C.L.; Tanaka, T.J.; Ulrickson, M.A.; Rochau, G.A.; Peterson, R.R.; Golovkin, I.E.; Thompson, M.O.; Knowles, T.R.; Raffray, A.R.; Tillack, M.S

    2003-04-01

    We have begun a collaborative investigation of the response of candidate first-wall inertial fusion energy (IFE) reactor chamber drywall materials to X-rays on the Z facility, and to ions on RHEPP-1, both located at Sandia National Laboratories. Dose levels are comparable to those anticipated in future direct-drive reactors. Due to the 5-10 Hz repetition rate expected in such reactors, per-pulse effects such as material removal must be negligible. The primary wall materials investigated here are graphite and tungsten in various forms. After exposure on either RHEPP or Z, materials were analyzed for roughening and/or material removal (ablation) as a function of dose. Graphite is observed to undergo significant ablation/sublimation in response to ion exposure at the 3-4 J/cm{sup 2} level, significantly below doses expected in future dry-wall power plants. Evidence of thermomechanical stresses resulting in material loss occurs for both graphite and tungsten, and is probably related to the pulsed nature of the energy delivery. These effects are not seen in typical magnetic fusion energy (MFE) conditions where these same kinds of materials are used. Results are presented for thresholds below which no roughening or ablation occurs. Use of graphite in a 'velvet' two-dimensional form may mitigate the effects seen with the flat material, and alloying tungsten with rhenium may reduce its roughening due to the increased ductility of the alloy.

  6. ANTIMICROBIAL ACTIVITY OF THE SUBSTANCES RECEIVED FROM RAW MATERIALS OF BIRCH FAMILY PLANTS

    Directory of Open Access Journals (Sweden)

    Fedchenkova Yu.A

    2016-12-01

    Full Text Available Introduction. In accordance with the last events in Ukraine (considering military operations in anti-terrorist operation in the Luhansk and Donetsk regions the domestic medicine is in great need in preparations with antimicrobial activity. Our attention as the sources of receiving biologically active substances with antimicrobial activity was drawn with birch Betulaceae family plants – hazel ordinary Corylus avellana L. and black alder Alnus glutinosa (L. Gaertn. It is known that in medicine the leaves of hazel ordinary are used as antiseptic, anti-inflammatory, vesselrestorative drug, and the leaves of black alder reveal the antiinflammatory, astringent, wound healing, spasmolytic and choleretic action. However, the drugs with antimicrobial action received from the leaves of these plants are absent on the market of Ukraine. Therefore the studying of antimicrobial activity of this type of raw materials received from hazel ordinary and black alder, for creation of new medicines, is now one of the main directions in pharmacy. For this purpose we have revealed tinctures, spirit, lipophilic and polysacharid fractions received from the leaves of hazel ordinary and black alder. The purpose of our research is studying of antimicrobial activity of revealed substance received from the leaves of black alder and hazel ordinary. Materials and methods. There were being examined tinctures, lipophilic, spirit and polysacharid fractions received from the leaves of hazel ordinary and black alder. The test of antimicrobial effect of substances was carried out by means of serial dilution concerning the following six reference cultures: Staphylococcus aureus ATCC 6538-P, Candida albicans ATCC 885-653, Escherichia coli ATCC 25922, Bacillus subtilis ATCC 6833, Bacillus cereus ATCC 10702, Pseudomonas aeruginosa ATCC 9027, according to the State Pharmacopoeia of Ukraine, in the Department of Microbiology and Immunology of KMAPE. For the experiment there was prepared

  7. Positive effects of plant species diversity on productivity in the absence of legumes

    NARCIS (Netherlands)

    Ruijven, van J.; Berendse, F.

    2003-01-01

    We investigated the effect of species richness on productivity in randomly assembled grassland communities without legumes. Aboveground biomass increased with increasing species richness and different measures of complementarity showed strong increases with plant species richness. Increasing

  8. Computerization of the nuclear material accounting system for safeguards purposes at nuclear power plants with WWER-440 reactors

    International Nuclear Information System (INIS)

    Antonov, V.P.; Konnov, Yu.I.; Semenets, A.N.

    1983-01-01

    The paper sets forth the basic principles underlying nuclear material accounting at nuclear power plants with WWER-440 reactors. It briefly describes the general structure and individual units in a program for computerized accounting. The use of this program is illustrated by the actual accounting data from the fifth unit of the Novovoronezh nuclear power station. The NUMIS program seems to be of interest both for the purposes of IAEA safeguards and for nuclear power plant operators in countries where power plants with WWER-440 reactors subject to IAEA safeguards are either in operation or under construction. The research in question was conducted initially under an IAEA research contract; the system is now being developed further and tested under the IAEA-USSR technical and scientific co-operation programme on safeguards. (author)

  9. Establishment of Alleycropped Hybrid Aspen “Crandon” in Central Iowa, USA: Effects of Topographic Position and Fertilizer Rate on Aboveground Biomass Production and Allocation

    Directory of Open Access Journals (Sweden)

    Richard B. Hall

    2013-07-01

    Full Text Available Hybrid poplars have demonstrated high productivity as short rotation woody crops (SRWC in the Midwest USA, and the hybrid aspen “Crandon” (Populus alba L. × P. grandidenta Michx. has exhibited particularly promising yields on marginal lands. However, a key obstacle for wider deployment is the lack of economic returns early in the rotation. Alleycropping has the potential to address this issue, especially when paired with crops such as winter triticale which complete their growth cycle early in the summer and therefore are expected to exert minimal competition on establishing trees. In addition, well-placed fertilizer in low rates at planting has the potential to improve tree establishment and shorten the rotation, which is also economically desirable. To test the potential productivity of “Crandon” alleycropped with winter triticale, plots were established on five topographic positions with four different rates of fertilizer placed in the planting hole. Trees were then harvested from the plots after each of the first three growing seasons. Fertilization resulted in significant increases in branch, stem, and total aboveground biomass across all years, whereas the effects of topographic position varied by year. Allocation between branches and stems was found to be primarily a function of total aboveground biomass.

  10. Analysis of plant gums and saccharide materials in paint samples: comparison of GC-MS analytical procedures and databases.

    Science.gov (United States)

    Lluveras-Tenorio, Anna; Mazurek, Joy; Restivo, Annalaura; Colombini, Maria Perla; Bonaduce, Ilaria

    2012-10-10

    Saccharide materials have been used for centuries as binding media, to paint, write and illuminate manuscripts and to apply metallic leaf decorations. Although the technical literature often reports on the use of plant gums as binders, actually several other saccharide materials can be encountered in paint samples, not only as major binders, but also as additives. In the literature, there are a variety of analytical procedures that utilize GC-MS to characterize saccharide materials in paint samples, however the chromatographic profiles are often extremely different and it is impossible to compare them and reliably identify the paint binder. This paper presents a comparison between two different analytical procedures based on GC-MS for the analysis of saccharide materials in works-of-art. The research presented here evaluates the influence of the analytical procedure used, and how it impacts the sugar profiles obtained from the analysis of paint samples that contain saccharide materials. The procedures have been developed, optimised and systematically used to characterise plant gums at the Getty Conservation Institute in Los Angeles, USA (GCI) and the Department of Chemistry and Industrial Chemistry of the University of Pisa, Italy (DCCI). The main steps of the analytical procedures and their optimisation are discussed. The results presented highlight that the two methods give comparable sugar profiles, whether the samples analysed are simple raw materials, pigmented and unpigmented paint replicas, or paint samples collected from hundreds of centuries old polychrome art objects. A common database of sugar profiles of reference materials commonly found in paint samples was thus compiled. The database presents data also from those materials that only contain a minor saccharide fraction. This database highlights how many sources of saccharides can be found in a paint sample, representing an important step forward in the problem of identifying polysaccharide binders in

  11. Determination of the impurities in some pure metals, alloys, ores, plants, and coating materials with emission spectrography

    Energy Technology Data Exchange (ETDEWEB)

    Chao, C N; Lee, S L; Tsai, H T

    1976-07-01

    There are many methods in the instrumental analysis. Among them, the emission spectrographic methods are developed and compiled in analyzing diverse samples. Semi-quantitative method is used widely in general samples, such as alloys, ores, sands, plants, coating materials--etc. However, in quantitative analysis, determination of the metallic impurities contents in the pure metals depends upon the matrix effect. It is necessary to convert to the form identically for unknown and standard alike. Though the technique may be different, all of these methods are easily prepared and applied on new materials.

  12. Corrosion resistance of materials for use in geothermal power plants; Korrosionsbestaendigkeit von Werkstoffen fuer den Einsatz in Geothermieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Baessler, Ralph [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany). Fachbereich ' Korrosionsschutz von Technischen Anlagen und Geraeten' ; Sarmiento Klapper, Helmuth [Baker Hughes - Celle Technology Center, Celle (Germany). Bereich ' Drilling and Evaluation' ; Burkert, Andreas [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin (Germany). Fachbereich ' Korrosion im Bauwesen'

    2012-10-15

    Due to the extreme operation conditions, the material selection for drill technical and process technical installations is decisive for a safe and reliable operation of geothermal power plant. The authors of the contribution under consideration report on the limits in the range of geothermal deep drillings for the exploration of high saline aquifer fluids of Gross Schoenebeck (Federal Republic of Germany). These limits were estimated by means of electrochemical investigations and classical outsourcing experiments within the materials qualifications for two high-alloyed steels.

  13. Role of materials accounting in integrated safeguards systems for reprocessing plants

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Gutmacher, R.G.; Markin, J.T.; Shipley, J.P.; Whitty, W.J.

    1981-01-01

    Integration of materials accounting and containment/surveillance techniques for international safeguards requires careful examination and definition of suitable inspector activities for verification of operator's materials accounting data. The inspector's verification procedures are designed to protect against data falsification and/or the use of measurement uncertainties to conceal missing material. Materials accounting activities are developed to provide an effective international safeguards system when combined with containment/surveillance activities described in a companion paper

  14. Operational control of material release and discharges from nuclear power plant

    International Nuclear Information System (INIS)

    Szabo, I. C.; Ranga, T.; Daroczi, L.; Deme, S.; Kerekes, A.

    2003-01-01

    The operational control of radioactive materials during atmospheric release and aquatic discharge from nuclear power plant is a licensing criterion for NPPs. Originally at the Paks NPP the release control was based on activity limits for four groups of elements. These groups were noble gases, long living radio-aerosols, radioiodine and radiostrontium for atmospheric release and specified activity limit for beta emitters, strontium and tritium for aquatic discharge into Danube. These groups were controlled with proper sampling and/or measuring instrumentation. The limit for atmospheric release was given as a 30-day moving average, for liquid discharges the annual limit was stipulated. The new release and discharge limitation system is based on the environmental dose limitation. The dose constraint for Paks NPP is 90 Sv/year of the critical group for all release pathways and the investigation dose limit is equal to 27 Sv/year. The regulation did not subdivide the dose limit for atmospheric and liquid components but for operational control subdivision of dose limits for atmospheric release and aquatic discharge and shorter time period (one day-one month) seems to be useful. The subdivision can be based on past release data and/or previous activity limits. To satisfy dose below the investigation dose limit there should be a proper operation control level for each separately measured component and pathway belonging to reasonable time interval significantly shorter than one year. The main task of the NPP staff is elaboration of reasonable control levels and reference time intervals for different radionuclide and element groups to be used in operational control. Operational control levels are based on measured daily or monthly release rates. In case of noble gases, aerosols and iodine the daily release rates have several sharp peaks per year. Operational control levels give opportunity to detect these peaks for internal investigation purposes. Investigation release limits

  15. Fate of 15N and 14C from labelled plant material

    DEFF Research Database (Denmark)

    Rasmussen, Jim; Gjettermann, Birgitte; Eriksen, Jørgen

    2008-01-01

    strength of labelled plant residues in dissolved inorganic N (DIN) and dissolved organic N (DON) in pore water from the plough layer, and (ii) the plant uptake of organically bound N. Litterbags containing 14C- and 15N-labelled ryegrass or clover roots or leaves were inserted into the sward of a ryegrass......–clover mixture in early spring. The fate of the released 14C and 15N was monitored in harvested biomass, roots, soil, and pore water percolating from the plough layer. No evidence of plant uptake of dual-labelled organic compounds from the dual-labelled residues could be observed. N in pore water from the plough...

  16. Storage, handling and internal transport of radioactive materials (fuel elements excepted) in nuclear power plants

    International Nuclear Information System (INIS)

    1983-06-01

    The rule applies to storage and handling as well as to transport within the plant and to the exchange of - solid radioactive wastes, - liquid radioactive wastes, except for those covered by the rule KTA 3603, - radioactive components and parts which are planned to be mounted and dismounted until shutdown of the plant, - radioactive-contaminated tools and appliances, - radioactive preparations. The rule is to be applied within the fenced-in sites of stationary nuclear power plants with LWR or HTR including their transport load halls, as fas as these are situated so as to be approachable from the nuclear power station by local transport systems. (orig./HP) [de

  17. Role of human gut microbiota metabolism in the anti-inflammatory effect of traditionally used ellagitannin-rich plant materials.

    Science.gov (United States)

    Piwowarski, Jakub P; Granica, Sebastian; Zwierzyńska, Marta; Stefańska, Joanna; Schopohl, Patrick; Melzig, Matthias F; Kiss, Anna K

    2014-08-08

    Ellagitannin-rich plant materials are widely used in traditional medicine as effective, internally used anti-inflammatory agents. Due to the not well-established bioavailability of ellagitannins, the mechanisms of observed therapeutic effects following oral administration still remain unclear. The aim of the study was to evaluate if selected ellagitannin-rich plant materials could be the source of bioavailable gut microbiota metabolites, i.e. urolithins, together with determination of the anti-inflammatory activity of the metabolites produced on the THP-1 cell line derived macrophages model. The formation of urolithins was determined by ex vivo incubation of human fecal samples with aqueous extracts from selected plant materials. The anti-inflammatory activity study of metabolites was determined on PMA differentiated, IFN-γ and LPS stimulated, human THP-1 cell line-derived macrophages. The formation of urolithin A, B and C by human gut microbiota was established for aqueous extracts from Filipendula ulmaria (L.) Maxim. herb (Ph. Eur.), Geranium pratense L. herb, Geranium robertianum L. herb, Geum urbanum L. root and rhizome, Lythrum salicaria L. herb (Ph. Eur.), Potentilla anserina L. herb, Potentilla erecta (L.) Raeusch rhizome (Ph. Eur.), Quercus robur L. bark (Ph. Eur.), Rubus idaeus L. leaf, Rubus fruticosus L. and pure ellagitannin vescalagin. Significant inhibition of TNF-α production was determined for all urolithins, while for the most potent urolithin A inhibition was observed at nanomolar concentrations (at 0.625 μM 29.2±6.4% of inhibition). Urolithin C was the only compound inhibiting IL-6 production (at 0.625 μM 13.9±2.2% of inhibition). The data obtained clearly indicate that in the case of peroral use of the examined ellagitannin-rich plant materials the bioactivity of gut microbiota metabolites, i.e. urolithins, has to be taken under consideration. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Development and application of special instrumentation for materials accountancy and process control in spent fuel recycle plants

    International Nuclear Information System (INIS)

    Clark, P.A.; Gardner, N.; Merrill, N.H.; Whitehouse, K.R.

    1996-01-01

    Safe and optimum operations of spent fuel recycle plants rely on the availability of real time measurement systems at key points in the process. More than thirty types of special instrument systems have been developed and commissioned on the THORP reprocessing plant at Sellafield. These systems are compiled together with the associated information on measurement purpose, measurement technique and plant performance. A number of these measurement systems are of interest to support Safeguards arrangements on the plant. A more detailed overview of two such instrument systems respectively within the Head End and Product Finishing Stages of THORP is provided. The first of these is the Hulls Monitor, based on high resolution gamma spectrometry, as well as active and passive neutron measurements, of the basket of leached fuel cladding. This provides vital data for criticality assurance, nuclear material accountancy and inventory determination for ultimate disposal of the cladding waste. The second system is the Plutonium Inventory Monitoring System (PIMS) which employs passive neutron counting from a distributed array of neutron detectors within the Pu Finishing Line. This provides a near real time estimate of Pu inventories both during operations and at clean out of the Finishing Line. Both the Hulls Monitor and PIMS technologies are applicable to MOX Fuel recycle. Both systems enhance the control of fissile material in key areas of the recycle process which are of interest to the Safeguards authorities. (author)

  19. Thermal Degradation Kinetics Modeling of Benzophenones and Xanthones during High-Temperature Oxidation of Cyclopia genistoides (L.) Vent. Plant Material.

    Science.gov (United States)

    Beelders, Theresa; de Beer, Dalene; Joubert, Elizabeth

    2015-06-10

    Degradation of the major benzophenones, iriflophenone-3-C-glucoside-4-O-glucoside and iriflophenone-3-C-glucoside, and the major xanthones, mangiferin and isomangiferin, of Cyclopia genistoides followed first-order reaction kinetics during high-temperature oxidation of the plant material at 80 and 90 °C. Iriflophenone-3-C-glucoside-4-O-glucoside was shown to be the most thermally stable compound. Isomangiferin was the second most stable compound at 80 °C, while its degradation rate constant was influenced the most by increased temperature. Mangiferin and iriflophenone-3-C-glucoside had comparable degradation rate constants at 80 °C. The thermal degradation kinetic model was subsequently evaluated by subjecting different batches of plant material to oxidative conditions (90 °C/16 h). The model accurately predicted the individual contents of three of the compounds in aqueous extracts prepared from oxidized plant material. The impact of benzophenone and xanthone degradation was reflected in the decreased total antioxidant capacity of the aqueous extracts, as determined using the oxygen radical absorbance capacity and DPPH(•) scavenging assays.

  20. In-plant test using process monitoring data for nuclear material accounting

    International Nuclear Information System (INIS)

    Smith, B.W.; Fager, J.E.

    1982-11-01

    A test of daily material accounting is being conducted for the NRC as part of a continuing program to estimate the effectiveness of using process monitoring data to enhance strategic special nuclear material accounting in fuel facilities. The test is being conducted at a uranium scrap recovery facility. The purpose is to develop and test procedures for resolving anomalies in material loss indicators. This report describes the results of the first test campaign, in which the emphasis was to characterize the daily material accounting system, test generic resolution procedures, and identify specific conditions that result in anomalies in material loss indicators