WorldWideScience

Sample records for aboveground net primary

  1. Effects of precipitation changes on aboveground net primary production and soil respiration in a switchgrass field

    Science.gov (United States)

    This study attempted to test whether switchgrass aboveground net primary production (ANPP) responds to precipitation (PPT) changes in a double asymmetry pattern as framed by Knapp et al. (2016), and whether it is held true for other ecosystem processes such as soil respiration (SR). Data were colle...

  2. Aboveground Net Primary Production of tree cover at the post-disturbance area in the Tatra National Park, Slovakia

    Directory of Open Access Journals (Sweden)

    Konôpka Bohdan

    2015-09-01

    Full Text Available Large-scale disturbances under the conditions of Slovakia, caused especially by storm and bark beetle, bring dramatic decline in carbon budget of the country, besides other negative consequences. The largest disturbance in modern history of the Slovak forestry was the storm damage that occurred in November 2004. The Tatra National Park (TNP was one of the most affected regions. Thus, in this territory, two transects (T1 – the Danielov dom site and T2 – near the Horný Smokovec village were established to survey basic dendrometric properties of trees in young stands established after the disaster. The standing stock of aboveground biomass in tree cover for the spring and autumn 2014 was calculated using the recorded variables, i.e. tree height and diameter measured at the stem base, together with the region-specific allometric relations. Then, the Aboveground Net Primary Production (ANPP in tree cover was estimated with respect to its components (stem, branches and foliage. ANPP was 315 g m−2 per year (Transect T1, and 391 g m−2 per year (Transect T2. The differences in the structure of ANPP, i.e. contribution of tree components, were found between transects T1 and T2. They were caused by the contrasting tree species composition, specifically the ratios between Norway spruce and broadleaved species. Broadleaves allocated more biomass production to foliage than spruce. This phenomenon together with higher turnover (once a year of foliage caused that broadleaves manifest higher share of fast-cycling carbon in comparison to the amount of carbon sequestrated in woody parts (stem and branches. High variability of ANPP was found within the transects, i.e. among the plots (microsites. As for the representative estimation of the standing stock of aboveground part of tree cover as well as ANPP at the post-disturbance area in the TNP territory, the survey should be performed on a net of research plots. Only this approach enables reliable estimates

  3. Aboveground Net Primary Productivity in a Riparian Wetland Following Restoration of Hydrology.

    Science.gov (United States)

    Koontz, Melissa; Lundberg, Christopher; Lane, Robert; Day, John; Pezeshki, Reza

    2016-02-04

    This research presents the initial results of the effects of hydrological restoration on forested wetlands in the Mississippi alluvial plain near Memphis, Tennessee. Measurements were carried out in a secondary channel, the Loosahatchie Chute, in which rock dikes were constructed in the 1960s to keep most flow in the main navigation channel. In 2008-2009, the dikes were notched to allow more flow into the secondary channel. Study sites were established based on relative distance downstream of the notched dikes. Additionally, a reference site was established north of the Loosahatchie Chute where the dikes remained unnotched. We compared various components of vegetation composition and productivity at sites in the riparian wetlands for two years. Salix nigra had the highest Importance Value at every site. Species with minor Importance Values were Celtis laevigata, Acer rubrum, and Plantanus occidentalis. Productivity increased more following the introduction of river water in affected sites compared to the reference. Aboveground net primary productivity was highest at the reference site (2926 ± 458.1 g·m(-2)·year(-1)), the intact site; however, there were greater increase at the sites in the Loosahatchie Chute, where measurements ranged from 1197.7 ± 160.0 g m(-2)·year(-1)·to 2874.2 ± 794.0 g·m(-2)·year(-1). The site furthest from the notching was the most affected. Pulsed inputs into these wetlands may enhance forested wetland productivity. Continued monitoring will quantify impacts of restored channel hydrology along the Mississippi River.

  4. Aboveground Net Primary Productivity in a Riparian Wetland Following Restoration of Hydrology

    Directory of Open Access Journals (Sweden)

    Melissa Koontz

    2016-02-01

    Full Text Available This research presents the initial results of the effects of hydrological restoration on forested wetlands in the Mississippi alluvial plain near Memphis, Tennessee. Measurements were carried out in a secondary channel, the Loosahatchie Chute, in which rock dikes were constructed in the 1960s to keep most flow in the main navigation channel. In 2008–2009, the dikes were notched to allow more flow into the secondary channel. Study sites were established based on relative distance downstream of the notched dikes. Additionally, a reference site was established north of the Loosahatchie Chute where the dikes remained unnotched. We compared various components of vegetation composition and productivity at sites in the riparian wetlands for two years. Salix nigra had the highest Importance Value at every site. Species with minor Importance Values were Celtis laevigata, Acer rubrum, and Plantanus occidentalis. Productivity increased more following the introduction of river water in affected sites compared to the reference. Aboveground net primary productivity was highest at the reference site (2926 ± 458.1 g·m−2·year−1, the intact site; however, there were greater increase at the sites in the Loosahatchie Chute, where measurements ranged from 1197.7 ± 160.0 g m−2·year−1·to 2874.2 ± 794.0 g·m−2·year−1. The site furthest from the notching was the most affected. Pulsed inputs into these wetlands may enhance forested wetland productivity. Continued monitoring will quantify impacts of restored channel hydrology along the Mississippi River.

  5. Aboveground vertebrate and invertebrate herbivore impact on net N mineralization in subalpine grasslands.

    Science.gov (United States)

    Risch, Anita C; Schotz, Martin; Vandegehuchte, Martijn L; Van Der Putten, Wim H; Duyts, Henk; Raschein, Ursina; Gwiazdowicz, Dariusz J; Busse, Matt D; Page-dumroese, Deborah S; Zimmermann, Stephan

    2015-12-01

    Aboveground herbivores have strong effects on grassland nitrogen (N) cycling. They can accelerate or slow down soil net N mineralization depending on ecosystem productivity and grazing intensity. Yet, most studies only consider either ungulates or invertebrate herbivores, but not the combined effect of several functionally different vertebrate and invertebrate herbivore species or guilds. We assessed how a diverse herbivore community affects net N mineralization in subalpine grasslands. By using size-selective fences, we progressively excluded large, medium, and small mammals, as well as invertebrates from two vegetation types, and assessed how the exclosure types (ET) affected net N mineralization. The two vegetation types differed in long-term management (centuries), forage quality, and grazing history and intensity. To gain a more mechanistic understanding of how herbivores affect net N mineralization, we linked mineralization to soil abiotic (temperature; moisture; NO3-, NH4+, and total inorganic N concentrations/pools; C, N, P concentrations; pH; bulk density), soil biotic (microbial biomass; abundance of collembolans, mites, and nematodes) and plant (shoot and root biomass; consumption; plant C, N, and fiber content; plant N pool) properties. Net N mineralization differed between ET, but not between vegetation types. Thus, short-term changes in herbivore community composition and, therefore, in grazing intensity had a stronger effect on net N mineralization than long-term management and grazing history. We found highest N mineralization values when only invertebrates were present, suggesting that mammals had a negative effect on net N mineralization. Of the variables included in our analyses, only mite abundance and aboveground plant biomass explained variation in net N mineralization among ET. Abundances of both mites and leaf-sucking invertebrates were positively correlated with aboveground plant biomass, and biomass increased with progressive exclusion

  6. Ecosystem carbon partitioning: aboveground net primary productivity correlates with the root carbon input in different land use types of Southern Alps

    Science.gov (United States)

    Rodeghiero, Mirco; Martinez, Cristina; Gianelle, Damiano; Camin, Federica; Zanotelli, Damiano; Magnani, Federico

    2013-04-01

    Terrestrial plant carbon partitioning to above- and below-ground compartments can be better understood by integrating studies on biomass allocation and estimates of root carbon input based on the use of stable isotopes. These experiments are essential to model ecosystem's metabolism and predict the effects of global change on carbon cycling. Using in-growth soil cores in conjunction with the 13C natural abundance method we quantified net plant-derived root carbon input into the soil, which has been pointed out as the main unaccounted NPP (net primary productivity) component. Four land use types located in the Trentino Region (northern Italy) and representing a range of aboveground net primary productivity (ANPP) values (155-868 gC m-2 y-1) were investigated: conifer forest, apple orchard, vineyard and grassland. Cores, filled with soil of a known C4 isotopic signature were inserted at 18 sampling points for each site and left in place for twelve months. After extraction, cores were analysed for %C and d13C, which were used to calculate the proportion of new plant-derived root C input by applying a mass balance equation. The GPP (gross primary productivity) of each ecosystem was determined by the eddy covariance technique whereas ANPP was quantified with a repeated inventory approach. We found a strong and significant relationship (R2 = 0.93; p=0.03) between ANPP and the fraction of GPP transferred to the soil as root C input across the investigated sites. This percentage varied between 10 and 25% of GPP with the grassland having the lowest value and the apple orchard the highest. Mechanistic ecosystem carbon balance models could benefit from this general relationship since ANPP is routinely and easily measured at many sites. This result also suggests that by quantifying site-specific ANPP, root carbon input can be reliably estimated, as opposed to using arbitrary root/shoot ratios which may under- or over-estimate C partitioning.

  7. Aboveground vertebrate and invertebrate herbivore impacts on net N mineralization in subalpine grasslands

    Science.gov (United States)

    Anita C. Risch; Martin Schutz; Martijn L. Vandegehuchte; Wim H. van der Putten; Henk Duyts; Ursina Raschein; Dariusz J. Gwiazdowicz; Matt D. Busse; Deborah S. Page-Dumroese; Stephan Zimmerman

    2015-01-01

    Aboveground herbivores have strong effects on grassland nitrogen (N) cycling. They can accelerate or slow down soil net N mineralization depending on ecosystem productivity and grazing intensity. Yet, most studies only consider either ungulates or invertebrate herbivores, but not the combined effect of several functionally different vertebrate and invertebrate...

  8. Modelling the dynamics of total precipitation and aboveground net primary production of fescue-feather grass steppe at Askania Nova according to global climate change scenariosModelling the dynamics of total precipitation and aboveground net primary production of fescue-feather grass steppe at Askania Nova according to global climate change scenarios

    Directory of Open Access Journals (Sweden)

    S. O. Belyakov

    2017-01-01

    Full Text Available This article discusses modelling of Aboveground Net Primary Production (ANPP of steppe (arid grassland ecosystems plant species in relation to changes in total precipitation over the previous year at the “Stara” study site, Biosphere Reserve “Askania-Nova”, Khersonregion (Ukraine. To investigate linkages between precipitation and Aboveground Net Primary Production, correlation analysis was chosen and a time series regression analysis was based on the data set for the period 1988–2012. The NPP dependence on quantity of precipitation was found to be more significant for the previous autumn-winter-spring period (AWSP than for the previous 12 month period. A regression model of ANPP’s dependence on AWSP is proposed. This model was further validated by the authors’ samples of ANPP, collected at the “Stara” study site in 2013–2016. The regression model showed a non-linear (quadratic dependence of net primary production of zonal and intrazonal plant coenoses and total precipitation for the autumn-winter-spring period for arid grasslands with a coefficient of determination equal to 0.54 and significance level less than 0.05. The non-linear equation for these relations, visualized by a parabola curve, was calculated using the Nonlinear Least-Squares Regression Method. The data set, based on calculated predicted values, using the calculated equation, had a similar dynamic to the historical data on ANPP, but the model could not predict critical values. For this reason, additional studies are required for critical precipitation events. Non-linear response, investigated according to regression analysis, reveals optimal zones of plant growth, depending on the total precipitation level before the vegetation peak. For research areas where the dominant species are the turf grasses Stipa ucrainica P. Smirn., S. capillata L., S. lessingiana Trin. & Rupr., Festuca valesiaca Gaudin, Koeleria cristata (L. Pers. the optimal precipitation rates

  9. Evaluation of Net Primary Productivity and Carbon Allocation to Different Parts of Corn in Different Tillage and Nutrient Management Systems

    Directory of Open Access Journals (Sweden)

    esmat mohammadi

    2017-09-01

    Full Text Available Evaluation of net primary productivity and carbon allocation to different organs of corn under nutrient management and tillage systems Introduction Agriculture operations produce 10 to 20 percent of greenhouse gases. As a result of conventional operations of agriculture, greenhouse gases have been increased (Osborne et al., 2010. Therefor it is necessary to notice to carbon sequestration to reduce greenhouse gases emissions. In photosynthesis process, plants absorb CO2 and large amounts of organic carbon accumulate in their organs. Biochar is produced of pyrolysis of organic compounds. Biochar is an appropriate compound for improved of soil properties and carbon sequestration (Whitman and Lehmann, 2009; Smith et al., 2010. Conservation tillage has become an important technology in sustainable agriculture due to its benefits. So the aim of this study was to evaluate the effect of nutrient management and tillage systems on net primary production and carbon allocation to different organs of corn in Shahrood. Material and methods This study was conducted at the Shahrood University of Technology research farm. Experiment was done as split plot in randomized complete block design with three replications. Tillage systems with two levels (conventional tillage and minimum tillage were as the main factor and nutrient management in seven levels including (control, chemical fertilizer, manure, biochar, chemical fertilizer + manure, chemical fertilizer + biochar, manure + biochar were considered as sub plot. At the time of maturity of corn, was sampled from its aboveground and belowground biomasses. Carbon content of shoot, seed and root was considered almost 45 percent of yield of each of these biomasses and carbon in root exudates almost 65 percent of carbon in the root. Statistical analysis of the data was performed using SAS program. Comparison of means was conducted with LSD test at the 5% level. Results and discussion Effect of nutrient management was

  10. Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system.

    Science.gov (United States)

    Charbonnier, Fabien; Roupsard, Olivier; le Maire, Guerric; Guillemot, Joannès; Casanoves, Fernando; Lacointe, André; Vaast, Philippe; Allinne, Clémentine; Audebert, Louise; Cambou, Aurélie; Clément-Vidal, Anne; Defrenet, Elsa; Duursma, Remko A; Jarri, Laura; Jourdan, Christophe; Khac, Emmanuelle; Leandro, Patricia; Medlyn, Belinda E; Saint-André, Laurent; Thaler, Philippe; Van Den Meersche, Karel; Barquero Aguilar, Alejandra; Lehner, Peter; Dreyer, Erwin

    2017-08-01

    In agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light-use efficiency, thereby reducing the difference in net primary productivity between shaded and non-shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics. In this study, we monitored net primary productivity, during two years, on scales ranging from individual coffee plants to the entire plot. Absorbed radiation was mapped with a 3D model (MAESPA). Light-use efficiency and net assimilation rate were derived for each coffee plant individually. We found that although irradiance was reduced by 60% below crowns of shade trees, coffee light-use efficiency increased by 50%, leaving net primary productivity fairly stable across all shade levels. Variability of aboveground net primary productivity of coffee plants was caused primarily by the age of the plants and by intraspecific competition among them (drivers usually overlooked in the agroforestry literature) rather than by the presence of shade trees. © 2017 John Wiley & Sons Ltd.

  11. Tropical forests are a net carbon source based on aboveground measurements of gain and loss

    Science.gov (United States)

    Baccini, A.; Walker, W.; Carvalho, L.; Farina, M.; Sulla-Menashe, D.; Houghton, R. A.

    2017-10-01

    The carbon balance of tropical ecosystems remains uncertain, with top-down atmospheric studies suggesting an overall sink and bottom-up ecological approaches indicating a modest net source. Here we use 12 years (2003 to 2014) of MODIS pantropical satellite data to quantify net annual changes in the aboveground carbon density of tropical woody live vegetation, providing direct, measurement-based evidence that the world’s tropical forests are a net carbon source of 425.2 ± 92.0 teragrams of carbon per year (Tg C year-1). This net release of carbon consists of losses of 861.7 ± 80.2 Tg C year-1 and gains of 436.5 ± 31.0 Tg C year-1. Gains result from forest growth; losses result from deforestation and from reductions in carbon density within standing forests (degradation or disturbance), with the latter accounting for 68.9% of overall losses.

  12. Aboveground net primary productivity and rainfall use efficiency of grassland on three soils after two years of exposure to a subambient to superambient CO2 gradient.

    Science.gov (United States)

    Fay, P. A.; Polley, H. W.; Jin, V. L.

    2008-12-01

    Atmospheric CO2 concentrations (CA) have increased by about 100 μL L-1 over the last 250 years to ~ 380 μL L-1, the highest values in the last half-million years, and CA is expected to continue to increase to greater than 500 μL L-1 by 2100. CO2 enrichment has been shown to affect many ecosystem processes, but experiments typically examine only two or a few levels of CA, and are typically constrained to one soil type. However, soil hydrologic properties differ across the landscape. Therefore, variation in the impacts of increasing CA on ecosystem function on different soil types must be understood to model and forecast ecosystem function under future CA and climate scenarios. Here we evaluate the aboveground net primary productivity (ANPP) of grassland plots receiving equal rainfall inputs (from irrigation) and exposed to a continuous gradient (250 to 500 μL L-1) of CA in the Lysimeter CO2 Gradient Experiment in central Texas, USA. Sixty intact soil monoliths (1 m2 x 1.5 m deep) taken from three soil types (Austin silty clay, Bastrop sandy loam, Houston clay) and planted to seven native tallgrass prairie grasses and forbs were exposed to the CA gradient beginning in 2006. Aboveground net primary productivity was assessed by end of season (November) harvest of each species in each monolith. Total ANPP of all species was 35 to 50% greater on Bastrop and Houston soils compared to Austin soils in both years (p Solidago canadensis strongly increased with increasing CA, with S. nutans responding more strongly on Bastrop and Houston soils (p = 0.053), indicating that increased greater rainfall use efficiency at high CA on these productive soils was associated with increased dominance by these species. In contrast, the grass Bouteloua curtipendula decreased in biomass with increasing CA, especially on Austin and Bastrop soils. The least productive species were the grass Tridens albescens, the legume Desmanthus illinoensis, and the forb Salvia azurea, and these showed

  13. The relationship between species richness and aboveground biomass in a primary Pinus kesiya forest of Yunnan, southwestern China.

    Science.gov (United States)

    Li, Shuaifeng; Lang, Xuedong; Liu, Wande; Ou, Guanglong; Xu, Hui; Su, Jianrong

    2018-01-01

    The relationship between biodiversity and biomass is an essential element of the natural ecosystem functioning. Our research aims at assessing the effects of species richness on the aboveground biomass and the ecological driver of this relationship in a primary Pinus kesiya forest. We sampled 112 plots of the primary P. kesiya forests in Yunnan Province. The general linear model and the structural equation model were used to estimate relative effects of multivariate factors among aboveground biomass, species richness and the other explanatory variables, including climate moisture index, soil nutrient regime and stand age. We found a positive linear regression relationship between the species richness and aboveground biomass using ordinary least squares regressions. The species richness and soil nutrient regime had no direct significant effect on aboveground biomass. However, the climate moisture index and stand age had direct effects on aboveground biomass. The climate moisture index could be a better link to mediate the relationship between species richness and aboveground biomass. The species richness affected aboveground biomass which was mediated by the climate moisture index. Stand age had direct and indirect effects on aboveground biomass through the climate moisture index. Our results revealed that climate moisture index had a positive feedback in the relationship between species richness and aboveground biomass, which played an important role in a link between biodiversity maintenance and ecosystem functioning. Meanwhile, climate moisture index not only affected positively on aboveground biomass, but also indirectly through species richness. The information would be helpful in understanding the biodiversity-aboveground biomass relationship of a primary P. kesiya forest and for forest management.

  14. Tropical forests are a net carbon source based on aboveground measurements of gain and loss.

    Science.gov (United States)

    Baccini, A; Walker, W; Carvalho, L; Farina, M; Sulla-Menashe, D; Houghton, R A

    2017-10-13

    The carbon balance of tropical ecosystems remains uncertain, with top-down atmospheric studies suggesting an overall sink and bottom-up ecological approaches indicating a modest net source. Here we use 12 years (2003 to 2014) of MODIS pantropical satellite data to quantify net annual changes in the aboveground carbon density of tropical woody live vegetation, providing direct, measurement-based evidence that the world's tropical forests are a net carbon source of 425.2 ± 92.0 teragrams of carbon per year (Tg C year -1 ). This net release of carbon consists of losses of 861.7 ± 80.2 Tg C year -1 and gains of 436.5 ± 31.0 Tg C year -1 Gains result from forest growth; losses result from deforestation and from reductions in carbon density within standing forests (degradation or disturbance), with the latter accounting for 68.9% of overall losses. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  15. Net primary production of forest-forming species in climatic gradients of Eurasia

    Directory of Open Access Journals (Sweden)

    V. A. Usoltsev

    2018-04-01

    Full Text Available When using biomass and net primary production (NPP databases compiled by the authors for 6 forest-forming species in a number of 6694 and 2192 sample plots correspondingly, a system of regression models of their NPP is designed and some species-specific regularities of NPP distribution in two climatic gradients (natural zonality and climate continentality are stated. It is found that according to a zonal gradient, aboveground and total NPP in 2-needled pine and spruce-fir forests are monotonically increasing in the direction from the northern to the southern tip of the continent, while larch and birch have the maximum in the southern moderate, and aspen and poplar – in the northern moderate zone, but oak forests do not show any significant pattern. Within a single zonal belt, the aboveground and total NPP of coniferous and deciduous are monotonically decreasing in direction from the Atlantic and Pacific coasts to the continentality pole in Yakutia. The understory NPP of all the species, except oak, monotonically increase towards the subequatorial zone. For oak forests, any clear regularity is not revealed. Within a single zonal belt, when approaching continentality pole, Pinus and Quercus NPP monotonically decreases and in other species, increases. Species-specific patterns in changing the relative indices of NPP (forest stand underground NPP to aboveground one and forest understory NPP to total forest stand one in gradients of the natural zonality and climate continentality are established.

  16. HANPP Collection: Human Appropriation of Net Primary Productivity as a Percentage of Net Primary Productivity

    Data.gov (United States)

    National Aeronautics and Space Administration — The Human Appropriation of Net Primary Productivity (HANPP) as a Percentage of Net Primary Product (NPP) portion of the HANPP Collection represents a map identifying...

  17. RadNet Radiological Air Monitoring Network

    International Nuclear Information System (INIS)

    Scott Telofski, J.; Askren, D.R.; Petko, Ch.M.; Fraass, R.G.

    2010-01-01

    The United States Environmental Protection Agency operates a national environmental radiation monitoring program called RadNet. RadNet monitors airborne particulates, precipitation, milk, and drinking water for radiation levels. The primary purpose of the original program in the 1950's and 1960's was to collect and analyze samples in various media to assess the effects of radioactive fallout from above-ground nuclear weapon testing. As above-ground testing diminished in the 1970's, the program, especially the air network, became critical in evaluating effects of other types of nuclear incidents, such as the nuclear reactor accident at Chernobyl, as well as monitoring trends in environmental radioactive contamination. The value of rapid data collection subsequent to such incidents led to the consideration of developing air monitors with radiation detectors and telecommunication equipment for real-time radiation measurement. The strengthened United States homeland security posture after 2001 led to production and installation of the current real-time RadNet air monitors. There are now 118 stationary, continuously operating air monitoring stations and 40 mobile air monitors for site specific monitoring. The stationary air monitors include radiation detectors, meteorological sensors, a high-volume air sampler, and communication devices for hourly data transfers. When unusual levels are detected, scientists download a full sodium iodide detector spectrum for analysis. The real-time data collected by RadNet stationary systems permit rapid identification and quantification of airborne nuclides with sufficient sensitivity to provide critical information to help determine protective actions. The data also may help to rapidly refine long-range radioactive plume models and estimate exposure to the population. This paper provides an overview of the airborne particulate monitoring conducted during above-ground nuclear weapon testing, summarizes the uses of data from the program

  18. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites.

    Science.gov (United States)

    Babst, Flurin; Bouriaud, Olivier; Papale, Dario; Gielen, Bert; Janssens, Ivan A; Nikinmaa, Eero; Ibrom, Andreas; Wu, Jian; Bernhofer, Christian; Köstner, Barbara; Grünwald, Thomas; Seufert, Günther; Ciais, Philippe; Frank, David

    2014-03-01

    • Attempts to combine biometric and eddy-covariance (EC) quantifications of carbon allocation to different storage pools in forests have been inconsistent and variably successful in the past. • We assessed above-ground biomass changes at five long-term EC forest stations based on tree-ring width and wood density measurements, together with multiple allometric models. Measurements were validated with site-specific biomass estimates and compared with the sum of monthly CO₂ fluxes between 1997 and 2009. • Biometric measurements and seasonal net ecosystem productivity (NEP) proved largely compatible and suggested that carbon sequestered between January and July is mainly used for volume increase, whereas that taken up between August and September supports a combination of cell wall thickening and storage. The inter-annual variability in above-ground woody carbon uptake was significantly linked with wood production at the sites, ranging between 110 and 370 g C m(-2) yr(-1) , thereby accounting for 10-25% of gross primary productivity (GPP), 15-32% of terrestrial ecosystem respiration (TER) and 25-80% of NEP. • The observed seasonal partitioning of carbon used to support different wood formation processes refines our knowledge on the dynamics and magnitude of carbon allocation in forests across the major European climatic zones. It may thus contribute, for example, to improved vegetation model parameterization and provides an enhanced framework to link tree-ring parameters with EC measurements. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  19. Net ecosystem CO2 exchange of a primary tropical peat swamp forest in Sarawak, Malaysia

    Science.gov (United States)

    Tang Che Ing, A.; Stoy, P. C.; Melling, L.

    2014-12-01

    Tropical peat swamp forests are widely recognized as one of the world's most efficient ecosystems for the sequestration and storage of carbon through both their aboveground biomass and underlying thick deposits of peat. As the peat characteristics exhibit high spatial and temporal variability as well as the structural and functional complexity of forests, tropical peat ecosystems can act naturally as both carbon sinks and sources over their life cycles. Nonetheless, few reports of studies on the ecosystem-scale CO2 exchange of tropical peat swamp forests are available to-date and their present roles in the global carbon cycle remain uncertain. To quantify CO2 exchange and unravel the prevailing factors and potential underlying mechanism regulating net CO2 fluxes, an eddy covariance tower was erected in a tropical peat swamp forest in Sarawak, Malaysia. We observed that the diurnal and seasonal patterns of net ecosystem CO2 exchange (NEE) and its components (gross primary productivity (GPP) and ecosystem respiration (RE)) varied between seasons and years. Rates of NEE declined in the wet season relative to the dry season. Conversely, both the gross primary productivity (GPP) and ecosystem respiration (RE) were found to be higher during the wet season than the dry season, in which GPP was strongly negatively correlated with NEE. The average annual NEE was 385 ± 74 g C m-2 yr-1, indicating the primary peat swamp forest functioned as net source of CO2 to the atmosphere over the observation period.

  20. Validation databases for simulation models: aboveground biomass and net primary productive, (NPP) estimation using eastwide FIA data

    Science.gov (United States)

    Jennifer C. Jenkins; Richard A. Birdsey

    2000-01-01

    As interest grows in the role of forest growth in the carbon cycle, and as simulation models are applied to predict future forest productivity at large spatial scales, the need for reliable and field-based data for evaluation of model estimates is clear. We created estimates of potential forest biomass and annual aboveground production for the Chesapeake Bay watershed...

  1. Global patterns in human consumption of net primary production

    Science.gov (United States)

    Imhoff, Marc L.; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence, William T.

    2004-06-01

    The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our own use. Net primary production-the net amount of solar energy converted to plant organic matter through photosynthesis-can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, energy flows within food webs and the provision of important ecosystem services. Here we present a global map showing the amount of net primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial balance sheet of net primary production `supply' and `demand' for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production `imports' and suggest policy options for slowing future growth of human appropriation of net primary production.

  2. Cathodic Protection Design Algorithms for Refineries Aboveground Storage Tanks

    Directory of Open Access Journals (Sweden)

    Kosay Abdul sattar Majbor

    2017-12-01

    Full Text Available Storage tanks condition and integrity is maintained by joint application of coating and cathodic protection. Iraq southern region rich in oil and petroleum product refineries need and use plenty of aboveground storage tanks. Iraq went through conflicts over the past thirty five years resulting in holding the oil industry infrastructure behind regarding maintenance and modernization. The primary concern in this work is the design and implementation of cathodic protection systems for the aboveground storage tanks farm in the oil industry. Storage tank external base area and tank internal surface area are to be protected against corrosion using impressed current and sacrificial anode cathodic protection systems. Interactive versatile computer programs are developed to provide the necessary system parameters data including the anode requirements, composition, rating, configuration, etc. Microsoft-Excel datasheet and Visual Basic.Net developed software were used throughout the study in the design of both cathodic protection systems. The case study considered in this work is the eleven aboveground storage tanks farm situated in al-Shauiba refinery in southern IRAQ. The designed cathodic protection systems are to be installed and monitored realistically in the near future. Both systems were designed for a life span of (15-30 years, and all their parameters were within the internationally accepted standards.

  3. Net one, net two: the primary care network income statement.

    Science.gov (United States)

    Halley, M D; Little, A W

    1999-10-01

    Although hospital-owned primary care practices have been unprofitable for most hospitals, some hospitals are achieving competitive advantage and sustainable practice operations. A key to the success of some has been a net income reporting tool that separates practice operating expenses from the costs of creating and operating a network of practices to help healthcare organization managers, physicians, and staff to identify opportunities to improve the network's financial performance. This "Net One, Net Two" reporting allows operations leadership to be held accountable for Net One expenses and strategic leadership to be held accountable for Net Two expenses.

  4. Decadal-Scale Reduction in Forest Net Ecosystem Production Following Insect Defoliation Contrasts with Short-Term Impacts of Prescribed Fires

    Science.gov (United States)

    Kenneth L. Clark; Heidi J. Renninger; Nicholas Skowronski; Michael Gallagher; Karina V.R.  Schäfer

    2018-01-01

    Understanding processes underlying forest carbon dynamics is essential for accurately predicting the outcomes of non-stand-replacing disturbance in intermediate-age forests. We quantified net ecosystem production (NEP), aboveground net primary production (ANPP), and the dynamics of major carbon (C) pools before and during the decade following invasive insect...

  5. HANPP Collection: Global Patterns in Net Primary Productivity (NPP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Patterns in Net Primary Productivity (NPP) portion of the Human Appropriation of Net Primary Productivity (HANPP) Collection maps the net amount of solar...

  6. Combining remote sensing and climatic data to estimate net primary production across Oregon

    International Nuclear Information System (INIS)

    Law, B.E.; Waring, R.H.

    1994-01-01

    A range in productivity and climate exists along an east—west transect in Oregon. Remote sensing and climatic data for several of the Oregon Transect Ecosystem Research Project (OTTER) forested sites and neighboring shrub sites were combined to determined whether percentage intercepted photosynthetically active radiation (%IPAR) can be estimated from remotely sensed observations and to evaluate climatic constraints on the ability of vegetation to utilize intercepted of radiation for production. The Thematic Mappers Simulator (TMS) normalized difference vegetation index (NDVI) provided a good linear estimate of %IPAR (R 2 = 0.97). Vegetation intercepted from 24.8% to 99.9% of incident photosynthetically active radiation (PAR), and aboveground net primary production (ANPP) ranged from 53 to 1310 g·m —2 ·yr —1 . The ANPP was linearly related to annual IPAR across sites (R 2 = 0.70). Constraints on the ability of each species to utilize intercepted light, as defined by differential responses to freezing temperatures, drought, and vapor pressure deficit, were quantified from hourly meteorological station measurements near the sites and field physiological measurements. Vegetation could utilize from 30% of intercepted radiation at the eastside semiarid juniper woodland and shrub sites to 97% at the maritime coastal sites. Energy—size efficiency (ϵu), calculated from aboveground production and IPAR modified by the environmental limits, averaged 0.5 g/MJ for the shrub sites and 0.9 g/MJ for the forested sites. (author)

  7. Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments

    Czech Academy of Sciences Publication Activity Database

    Wilcox, K. R.; Shi, Z.; Gherardi, L. A.; Lemoine, N. P.; Koerner, S. E.; Hoover, D. L.; Bork, E.; Byrne, K. M.; Cahill, J.; Collins, S. L.; Evans, S.M.; Gilgen, Anna K.; Holub, Petr; Jiang, L.; Knapp, A. K.; LeCain, D.; Liang, J.; Garcia-Palacios, P.; Penuelas, J.; Pockman, W. T.; Smith, M. D.; Sun, S.; White, S. R.; Yahdjian, L.; Zhu, K.; Luo, Y.

    2017-01-01

    Roč. 23, č. 10 (2017), s. 4376-4385 ISSN 1354-1013 Institutional support: RVO:86652079 Keywords : net primary productivity * terrestrial ecosystems * temperate grassland * biomass allocation * plant-communities * tallgrass prairie * climate extremes * use efficiency * united-states * global-change * aboveground net primary productivity * belowground net primary productivity * biomass allocation * climate change * grasslands * meta-analysis * root biomass Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 8.502, year: 2016

  8. Aboveground storage tanks

    International Nuclear Information System (INIS)

    Rizzo, J.A.

    1992-01-01

    With the 1988 promulgation of the comprehensive Resource Conservation and Recovery Act (RCRA) regulations for underground storage of petroleum and hazardous substances, many existing underground storage tank (UST) owners have been considering making the move to aboveground storage. While on the surface, this may appear to be the cure-all to avoiding the underground leakage dilemma, there are many other new and different issues to consider with aboveground storage. The greatest misconception is that by storing materials above ground, there is no risk of subsurface environmental problems. it should be noted that with the aboveground storage tank (AGST) systems, there is still considerable risk of environmental contamination, either by the failure of onground tank bottoms or the spillage of product onto the ground surface where it subsequently finds its way to the ground water. In addition, there are added safety concerns that must be addressed. So what are the other specific areas of concern besides environmental to be addressed when making the decision between underground and aboveground tanks? The primary issues that will be addressed in this paper are: Safety, Product Losses, Cost Comparison of USTs vs AGSTs, Space Availability/Accessibility, Precipitation Handling, Aesthetics and Security, Pending and Existing Regulations

  9. Regional-Scale High Spatial Resolution Mapping of Aboveground Net Primary Productivity (ANPP from Field Survey and Landsat Data: A Case Study for the Country of Wales

    Directory of Open Access Journals (Sweden)

    Emma J. Tebbs

    2017-08-01

    Full Text Available This paper presents an alternative approach for high spatial resolution vegetation productivity mapping at a regional scale, using a combination of Normalised Difference Vegetation Index (NDVI imagery and widely distributed ground-based Above-ground Net Primary Production (ANPP estimates. Our method searches through all available single-date NDVI imagery to identify the images which give the best NDVI–ANPP relationship. The derived relationships are then used to predict ANPP values outside of field survey plots. This approach enables the use of the high spatial resolution (30 m Landsat 8 sensor, despite its low revisit frequency that is further reduced by cloud cover. This is one of few studies to investigate the NDVI–ANPP relationship across a wide range of temperate habitats and strong relationships were observed (R2 = 0.706, which increased when only grasslands were considered (R2 = 0.833. The strongest NDVI–ANPP relationships occurred during the spring “green-up” period. A reserved subset of 20% of ground-based ANPP estimates was used for validation and results showed that our method was able to estimate ANPP with a RMSE of 15–21%. This work is important because we demonstrate a general methodological framework for mapping of ANPP from local to regional scales, with the potential to be applied to any temperate ecosystems with a pronounced green up period. Our approach allows spatial extrapolation outside of field survey plots to produce a continuous surface product, useful for capturing spatial patterns and representing small-scale heterogeneity, and well-suited for modelling applications. The data requirements for implementing this approach are also discussed.

  10. Net primary productivity and its partitioning in response to precipitation gradient in an alpine meadow.

    Science.gov (United States)

    Zhang, Fangyue; Quan, Quan; Song, Bing; Sun, Jian; Chen, Youjun; Zhou, Qingping; Niu, Shuli

    2017-11-09

    The dynamics of net primary productivity (NPP) and its partitioning to the aboveground versus belowground are of fundamental importance to understand carbon cycling and its feedback to climate change. However, the responses of NPP and its partitioning to precipitation gradient are poorly understood. We conducted a manipulative field experiment with six precipitation treatments (1/12 P, 1/4 P, 1/2 P, 3/4 P, P, and 5/4 P, P is annual precipitation) in an alpine meadow to examine aboveground and belowground NPP (ANPP and BNPP) in response to precipitation gradient in 2015 and 2016. We found that changes in precipitation had no significant impact on ANPP or belowground biomass in 2015. Compared with control, only the extremely drought treatment (1/12 P) significantly reduced ANPP by 37.68% and increased BNPP at the depth of 20-40 cm by 80.59% in 2016. Across the gradient, ANPP showed a nonlinear response to precipitation amount in 2016. Neither BNPP nor NPP had significant relationship with precipitation changes. The variance in ANPP were mostly due to forbs production, which was ultimately caused by altering soil water content and soil inorganic nitrogen concentration. The nonlinear precipitation-ANPP relationship indicates that future precipitation changes especially extreme drought will dramatically decrease ANPP and push this ecosystem beyond threshold.

  11. Changes in carbon allocation to aboveground versus belowground forest components is driven by a trade-off involving mycorrhizal fungi, not fine roots

    Science.gov (United States)

    Ouimette, A.; Ollinger, S. V.; Hobbie, E. A.; Lepine, L. C.; Stephens, R.; Rowe, R.; Vadeboncoeur, M. A.; Tumber-Davila, S. J.

    2017-12-01

    Species composition and resource availability exert a strong influence on the dynamics of carbon allocation among different forest ecosystem components. Recent work in temperate forests has highlighted a tradeoff between carbon allocation to aboveground woody tissues (access to light), and belowground to fine roots (access to soil nutrients). Although root-associated mycorrhizal fungi are crucial for N acquisition and can receive 20% or more of annual net primary production, most studies fail to explicitly include carbon allocation to mycorrhizal fungi. In part, this is due to the inherent difficulties in accurately quantifying fungal production. We took several approaches to quantify production of mycorrhizal fungi, including a carbon budget approach and isotopic techniques. Here we present data on patterns of carbon allocation to aboveground (wood and foliar production), and belowground components (production of fine roots and mycorrhizal fungi), across temperate forest stands spanning a range of nitrogen availability and species composition. We found that as the proportion of conifer species decreased, and stand nitrogen availability increased, both the absolute amount and the fraction of net primary production increased for foliage, aboveground wood, and fine roots ("a rising tide lifts all boats"). While allocation to plant pools increased, allocation to mycorrhizal fungi significantly decreased with decreasing conifer dominance and increasing soil nitrogen availability. We did not find a strong trade-off between carbon allocation to fine roots and aboveground wood or foliage. Instead, a negative relationship is seen between allocation to mycorrhizal fungi and other plant pools. Effort to estimate carbon allocation to mycorrhizal fungi is important for gaining a more complete understanding of how ecosystems respond to changes in growth-limiting resources.

  12. Valuing ecosystem services. A shadow price for net primary production

    International Nuclear Information System (INIS)

    Richmond, Amy; Kaufmann, Robert K.; Myneni, Ranga B.

    2007-01-01

    We analyze the contribution of ecosystem services to GDP and use this contribution to calculate an empirical price for ecosystem services. Net primary production is used as a proxy for ecosystem services and, along with capital and labor, is used to estimate a Cobb Douglas production function from an international panel. A positive output elasticity for net primary production probably measures both marketed and nonmarketed contributions of ecosystems services. The production function is used to calculate the marginal product of net primary production, which is the shadow price for ecosystem services. The shadow price generally is greatest for developed nations, which have larger technical scalars and use less net primary production per unit output. The rate of technical substitution indicates that the quantity of capital needed to replace a unit of net primary production tends to increase with economic development, and this rate of replacement may ultimately constrain economic growth. (author)

  13. Net Primary Production and Carbon Stocks for Subarctic Mesic-Dry Tundras with Contrasting Microtopography, Altitude, and Dominant Species

    DEFF Research Database (Denmark)

    Campioli, Matteo; Michelsen, Anders; Demey, A

    2009-01-01

    Mesic-dry tundras are widespread in the Arctic but detailed assessments of net primary production (NPP) and ecosystem carbon (C) stocks are lacking. We addressed this lack of knowledge by determining the seasonal dynamics of aboveground vascular NPP, annual NPP, and whole-ecosystem C stocks in five...... mesic-dry tundras in Northern Sweden with contrasting microtopography, altitude, and dominant species. Those measurements were paralleled by the stock assessments of nitrogen (N), the limiting nutrient. The vascular production was determined by harvest or in situ growing units, whereas the nonvascular...... hermaphroditum is more productive than Cassiope tetragona vegetation. Although the large majority of the apical NPP occurred in early-mid season (85%), production of stems and evergreen leaves proceeded until about 2 weeks before senescence. Most of the vascular vegetation was belowground (80%), whereas most...

  14. Exploring long-term trends in land use change and aboveground human appropriation of net primary production in nine European countries

    DEFF Research Database (Denmark)

    Gingrich, Simone; Niedertscheider, Maria; Kastner, Thomas

    2015-01-01

    Profound changes in land use occurred during the last century in Europe, driven by growing population, changes in affluence, and technological innovation. To capture and understand these changes, we compiled a consistent dataset on the distribution of land-use types and biomass extraction for nine...... primary production" (HANPP) framework for the nine countries and for the sum of all countries on a yearly basis from 1902 to 2003. We find that cropland and grazing land contracted in all countries except Albania in the observed period, while forestland increased. Crop yields increased in all countries......, most strongly during the second half of the 20th century. In some countries, biomass extraction on grazing lands increased to a similar extent. Overall, HANPP was high but declined slightly from 63% of the net primary production of potential vegetation in 1902 to 55% in 2003. This is the result...

  15. Regional contingencies in the relationship between aboveground Bbomass and litter in the world’s grasslands

    Science.gov (United States)

    O’Halloran, Lydia R.; Borer, Elizabeth T.; Seabloom, Eric W.; MacDougall, Andrew S.; Cleland, Elsa E.; McCulley, Rebecca L.; Hobbie, Sarah; Harpole, W. Stan; DeCrappeo, Nicole M.; Chu, Cheng-Jin; Bakker, Jonathan D.; Davies, Kendi F.; Du, Guozhen; Firn, Jennifer; Hagenah, Nicole; Hofmockel, Kirsten S.; Knops, Johannes M.H.; Li, Wei; Melbourne, Brett A.; Morgan, John W.; Orrock, John L.; Prober, Suzanne M.; Stevens, Carly J.

    2013-01-01

    Based on regional-scale studies, aboveground production and litter decomposition are thought to positively covary, because they are driven by shared biotic and climatic factors. Until now we have been unable to test whether production and decomposition are generally coupled across climatically dissimilar regions, because we lacked replicated data collected within a single vegetation type across multiple regions, obfuscating the drivers and generality of the association between production and decomposition. Furthermore, our understanding of the relationships between production and decomposition rests heavily on separate meta-analyses of each response, because no studies have simultaneously measured production and the accumulation or decomposition of litter using consistent methods at globally relevant scales. Here, we use a multi-country grassland dataset collected using a standardized protocol to show that live plant biomass (an estimate of aboveground net primary production) and litter disappearance (represented by mass loss of aboveground litter) do not strongly covary. Live biomass and litter disappearance varied at different spatial scales. There was substantial variation in live biomass among continents, sites and plots whereas among continent differences accounted for most of the variation in litter disappearance rates. Although there were strong associations among aboveground biomass, litter disappearance and climatic factors in some regions (e.g. U.S. Great Plains), these relationships were inconsistent within and among the regions represented by this study. These results highlight the importance of replication among regions and continents when characterizing the correlations between ecosystem processes and interpreting their global-scale implications for carbon flux. We must exercise caution in parameterizing litter decomposition and aboveground production in future regional and global carbon models as their relationship is complex.

  16. HANPP Collection: Global Patterns in Net Primary Productivity (NPP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Patterns in Net Primary Productivity (NPP) portion of the HANPP Collection maps the net amount of solar energy converted to plant organic matter through...

  17. Shrubland primary production and soil respiration diverge along European climate gradient

    DEFF Research Database (Denmark)

    Reinsch, Sabine; Koller, Eva; Sowerby, Alwyn

    2017-01-01

    uncertain. Here we show the responses of ecosystem C to 8-12 years of experimental drought and night-time warming across an aridity gradient spanning seven European shrublands using indices of C assimilation (aboveground net primary production: aNPP) and soil C efflux (soil respiration: Rs). The changes...

  18. [Effects of drip irrigation with plastic mulching on the net primary productivity, soil heterotrophic respiration, and net CO2 exchange flux of cotton field ecosystem in Xinjiang, Northwest China].

    Science.gov (United States)

    Li, Zhi-Guo; Zhang, Run-Hua; Lai, Dong-Mei; Yan, Zheng-Yue; Jiang, Li; Tian, Chang-Yan

    2012-04-01

    In April-October, 2009, a field experiment was conducted to study the effects of drip irrigation with plastic mulching (MD) on the net primary productivity (NPP), soil heterotrophic respiration (Rh) , and net CO2 exchange flux (NEF(CO2)) of cotton field ecosystem in Xinjiang, taking the traditional flood irrigation with no mulching (NF) as the control. With the increasing time, the NPP, Rh, and NEF(CO2) in treatments MD and NF all presented a trend of increasing first and decreased then. As compared with NF, MD increased the aboveground and belowground biomass and the NPP of cotton, and decreased the Rh. Over the whole growth period, the Rh in treatment MD (214 g C x m(-2)) was smaller than that in treatment NF (317 g C x m(-2)), but the NEF(CO2) in treatment MD (1030 g C x m(-2)) was higher than that in treatment NF (649 g C x m(-2)). Treatment MD could fix the atmospheric CO2 approximately 479 g C x m(-2) higher than treatment NF. Drip irrigation with plastic mulching could promote crop productivity while decreasing soil CO2 emission, being an important agricultural measure for the carbon sequestration and emission reduction of cropland ecosystems in arid area.

  19. Global net primary production and heterotrophic respiration for 1987

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, R.E. Jr.; Piper, S.C.; Nemani, R. [Univ. of Montana, Missoula, MT (United States)]|[Scripps Institute of Oceanography, La Jolla, CA (United States)] [and others

    1995-06-01

    An ecosystem process model, BIOME-BGC, was parameterized and used to simulate the actual net primary production and heterotrophic respiration using daily climatic data, land cover type, leaf area index gridded to 1{degree} latitude by 1{degree} longitude grid cells for the year 1987. Global net primary production was 52 Pg C. These estimates were validated directly by two different methods. First, the grid cells were aggregated and used as inputs to a 3D atmospheric transport model, to compare CO{sub 2} station data with predictions. We simulated the intra-annual variation of atmospheric CO{sub 2} well for the northern hemisphere, but not for the southern hemisphere. Second, we calculated the net {sup 13}C uptake of vegetation, which is a function of water use efficiency. The {sup 13}C/{sup 12}C ratios agreed with measured data, indicating a strong limitation of global primary processes by the hydrologic cycle, especially precipitation. These are different from other global carbon models as we can simulate the year-to-year variation of climate, including El Nino, on the global carbon cycle.

  20. HANPP Collection: Global Patterns in Human Appropriation of Net Primary Productivity (HANPP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Patterns in Human Appropriation of Net Primary Productivity (HANPP) portion of the HANPP Collection represents a digital map of human appropriation of net...

  1. Net Primary Productivity and Edaphic Fertility in Two Pluvial Tropical Forests in the Chocó Biogeographical Region of Colombia.

    Science.gov (United States)

    Quinto-Mosquera, Harley; Moreno, Flavio

    2017-01-01

    The net primary productivity (NPP) of tropical forests is a key process of the carbon cycle and therefore for the mitigation of global climate change. It has been proposed that NPP is limited by the availability of soil nutrients in lowland tropical forests and that belowground NPP decreases as edaphic fertility increases. This hypothesis was evaluated in two localities (Opogodó and Pacurita) of the Chocó Biogeographical region, one of the rainiest of the world, where the aboveground (litter and wood) and belowground (fine and coarse roots) components of NPP were measured. Fertility parameters (pH, nutrients, and texture) were also determined and related to NPP. Total NPP was similar between locations (23.7 vs. 24.2 t ha-1 year-1 for Opogodó and Pacurita, respectively). However, components of NPP showed differences: in Pacurita, with steeper topography, NPP of wood and coarse roots were higher; therefore, differences of topography and drainage between localities probably affected the NPP of wood. On the other hand, soils of Opogodó, where NPP of fine roots was higher, showed higher contents of sand, N+, and organic matter (OM). With the increase of pH, OM, N+, K, Mg, and sand, the NPP of leaves and fine roots as well as the percentage of NPP belowground also increased, which suggests NPP limitation by multiple nutrients. The increase of NPP belowground with the availability of edaphic nutrients evidenced a redistribution of the aboveground and belowground components of NPP with the increase of soil fertility in oligotrophic systems, probably as a mechanism to improve the capture of resources.

  2. Grazing alters net ecosystem C fluxes and the global warming potential of a subtropical pasture.

    Science.gov (United States)

    Gomez-Casanovas, Nuria; DeLucia, Nicholas J; Bernacchi, Carl J; Boughton, Elizabeth H; Sparks, Jed P; Chamberlain, Samuel D; DeLucia, Evan H

    2018-03-01

    The impact of grazing on C fluxes from pastures in subtropical and tropical regions and on the environment is uncertain, although these systems account for a substantial portion of global C storage. We investigated how cattle grazing influences net ecosystem CO 2 and CH 4 exchange in subtropical pastures using the eddy covariance technique. Measurements were made over several wet-dry seasonal cycles in a grazed pasture, and in an adjacent pasture during the first three years of grazer exclusion. Grazing increased soil wetness but did not affect soil temperature. By removing aboveground biomass, grazing decreased ecosystem respiration (R eco ) and gross primary productivity (GPP). As the decrease in R eco was larger than the reduction in GPP, grazing consistently increased the net CO 2 sink strength of subtropical pastures (55, 219 and 187 more C/m 2 in 2013, 2014, and 2015). Enteric ruminant fermentation and increased soil wetness due to grazers, increased total net ecosystem CH 4 emissions in grazed relative to ungrazed pasture (27-80%). Unlike temperate, arid, and semiarid pastures, where differences in CH 4 emissions between grazed and ungrazed pastures are mainly driven by enteric ruminant fermentation, our results showed that the effect of grazing on soil CH 4 emissions can be greater than CH 4 produced by cattle. Thus, our results suggest that the interactions between grazers and soil hydrology affecting soil CH 4 emissions play an important role in determining the environmental impacts of this management practice in a subtropical pasture. Although grazing increased total net ecosystem CH 4 emissions and removed aboveground biomass, it increased the net storage of C and decreased the global warming potential associated with C fluxes of pasture by increasing its net CO 2 sink strength. © 2017 by the Ecological Society of America.

  3. Optimum Temperatures for Net Primary Productivity of Three Tropical Seagrass Species

    Directory of Open Access Journals (Sweden)

    Catherine J. Collier

    2017-08-01

    Full Text Available Rising sea water temperature will play a significant role in responses of the world's seagrass meadows to climate change. In this study, we investigated seasonal and latitudinal variation (spanning more than 1,500 km in seagrass productivity, and the optimum temperatures at which maximum photosynthesis and net productivity (for the leaf and the whole plant occurs, for three seagrass species (Cymodocea serrulata, Halodule uninervis, and Zostera muelleri. To obtain whole plant net production, photosynthesis, and respiration rates of leaves and the root/rhizome complex were measured using oxygen-sensitive optodes in closed incubation chambers at temperatures ranging from 15 to 43°C. The temperature-dependence of photosynthesis and respiration was fitted to empirical models to obtain maximum metabolic rates and thermal optima. The thermal optimum (Topt for gross photosynthesis of Z. muelleri, which is more commonly distributed in sub-tropical to temperate regions, was 31°C. The Topt for photosynthesis of the tropical species, H. uninervis and C. serrulata, was considerably higher (35°C on average. This suggests that seagrass species are adapted to water temperature within their distributional range; however, when comparing among latitudes and seasons, thermal optima within a species showed limited acclimation to ambient water temperature (Topt varied by 1°C in C. serrulata and 2°C in H. uninervis, and the variation did not follow changes in ambient water temperature. The Topt for gross photosynthesis were higher than Topt calculated from plant net productivity, which includes above- and below-ground respiration for Z. muelleri (24°C and H. uninervis (33°C, but remained unchanged at 35°C in C. serrulata. Both estimated plant net productivity and Topt are sensitive to the proportion of below-ground biomass, highlighting the need for consideration of below- to above-ground biomass ratios when applying thermal optima to other meadows. The

  4. HANPP Collection: Human Appropriation of Net Primary Productivity (HANPP) by Country and Product

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Patterns in Human Appropriation of Net Primary Productivity (HANPP) portion of the HANPP Collection represents a digital map of human appropriation of net...

  5. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring.

    Science.gov (United States)

    David P. Turner; William D. Ritts; Warren B. Cohen; Thomas K. Maeirsperger; Stith T. Gower; Al A. Kirschbaum; Steve W. Runnings; Maosheng Zhaos; Steven C. Wofsy; Allison L. Dunn; Beverly E. Law; John L. Campbell; Walter C. Oechel; Hyo Jung Kwon; Tilden P. Meyers; Eric E. Small; Shirley A. Kurc; John A. Gamon

    2005-01-01

    Operational monitoring of global terrestrial gross primary production (GPP) and net primary production (NPP) is now underway using imagery from the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Evaluation of MODIS GPP and NPP products will require site-level studies across a range of biomes, with close attention to numerous scaling...

  6. Optimum Temperatures for Net Primary Productivity of Three Tropical Seagrass Species.

    Science.gov (United States)

    Collier, Catherine J; Ow, Yan X; Langlois, Lucas; Uthicke, Sven; Johansson, Charlotte L; O'Brien, Katherine R; Hrebien, Victoria; Adams, Matthew P

    2017-01-01

    Rising sea water temperature will play a significant role in responses of the world's seagrass meadows to climate change. In this study, we investigated seasonal and latitudinal variation (spanning more than 1,500 km) in seagrass productivity, and the optimum temperatures at which maximum photosynthesis and net productivity (for the leaf and the whole plant) occurs, for three seagrass species ( Cymodocea serrulata, Halodule uninervis , and Zostera muelleri ). To obtain whole plant net production, photosynthesis, and respiration rates of leaves and the root/rhizome complex were measured using oxygen-sensitive optodes in closed incubation chambers at temperatures ranging from 15 to 43°C. The temperature-dependence of photosynthesis and respiration was fitted to empirical models to obtain maximum metabolic rates and thermal optima. The thermal optimum ( T opt ) for gross photosynthesis of Z. muelleri , which is more commonly distributed in sub-tropical to temperate regions, was 31°C. The T opt for photosynthesis of the tropical species, H. uninervis and C. serrulata , was considerably higher (35°C on average). This suggests that seagrass species are adapted to water temperature within their distributional range; however, when comparing among latitudes and seasons, thermal optima within a species showed limited acclimation to ambient water temperature ( T opt varied by 1°C in C. serrulata and 2°C in H. uninervis , and the variation did not follow changes in ambient water temperature). The T opt for gross photosynthesis were higher than T opt calculated from plant net productivity, which includes above- and below-ground respiration for Z. muelleri (24°C) and H. uninervis ( 33°C), but remained unchanged at 35°C in C. serrulata . Both estimated plant net productivity and T opt are sensitive to the proportion of below-ground biomass, highlighting the need for consideration of below- to above-ground biomass ratios when applying thermal optima to other meadows. The

  7. Underground or aboveground storage tanks - A critical decision

    International Nuclear Information System (INIS)

    Rizzo, J.A.

    1992-01-01

    With the 1988 promulgation of the comprehensive Resource Conservation and Recovery Act (RCRA) regulations for underground storage of petroleum and hazardous substances, many existing underground storage tank (UST) owners have been considering making the move to aboveground storage. While on the surface, this may appear to be the cure-all to avoiding the underground leakage dilemma, there are many other new and different issues to consider with aboveground storage. The greatest misconception is that by storing materials above ground, there is no risk of subsurface environmental problems. It should be noted that with the aboveground storage tank (AGST) systems, there is still considerable risk of environmental contamination, either by the failure of onground tank bottoms or the spillage of product onto the ground surface where it subsequently finds its way to the ground water. In addition, there are added safety concerns that must be addressed. The greatest interest in AGSTs comes from managers with small volumes of used oil, fresh oil, solvents, chemicals, or heating oil. Dealing with small capacity tanks is not so different than large bulk storage - and, in fact, it lends itself to more options, such as portable storage, tank within tank configurations and inside installations. So what are the other specific areas of concern besides environmental to be addressed when making the decision between underground and aboveground tanks? The primary issues that will be addressed in this presentation are: (1) safety; (2) product losses; (3) cost comparison of USTs vs AGSTs; (4) space availability/accessibility; (5) precipitation handling; (6) aesthetics and security; (7) pending and existing regulations

  8. Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China’s forest ecosystems

    Science.gov (United States)

    Wei Ren; Hanqin Tian; Bo Tao; Art Chappelka; Ge Sun; et al

    2011-01-01

    Aim We investigated how ozone pollution and climate change/variability have interactively affected net primary productivity (NPP) and net carbon exchange (NCE) across China’s forest ecosystem in the past half century. Location Continental China. Methods Using the dynamic land ecosystem model (DLEM) in conjunction with 10-km-resolution gridded historical data sets (...

  9. Foliage litter quality and annual net N mineralization: comparison across North American forest sites.

    Science.gov (United States)

    Scott, Neal A; Binkley, Dan

    1997-07-01

    The feedback between plant litterfall and nutrient cycling processes plays a major role in the regulation of nutrient availability and net primary production in terrestrial ecosystems. While several studies have examined site-specific feedbacks between litter chemistry and nitrogen (N) availability, little is known about the interaction between climate, litter chemistry, and N availability across different ecosystems. We assembled data from several studies spanning a wide range of vegetation, soils, and climatic regimes to examine the relationship between aboveground litter chemistry and annual net N mineralization. Net N mineralization declined strongly and non-linearly as the litter lignin:N ratio increased in forest ecosystems (r 2  = 0.74, P mineralization decreased linearly as litter lignin concentration increased, but the relationship was significant (r 2  = 0.63, P mineralization across this range of sites (r 2  litter lignin:N ratio and net N mineralization from forest floor and mineral soil was similar. The litter lignin:N ratio explained more of the variation in net N mineralization than climatic factors over a wide range of forest age classes, suggesting that litter quality (lignin:N ratio) may exert more than a proximal control over net N mineralization by influencing soil organic matter quality throughout the soil profile independent of climate.

  10. Detection of unknown primary neuroendocrine tumours (CUP-NET) using 68Ga-DOTA-NOC receptor PET/CT

    International Nuclear Information System (INIS)

    Prasad, Vikas; Baum, Richard P.; Ambrosini, Valentina; Fanti, Stefano; Hommann, Merten; Hoersch, Dieter

    2010-01-01

    This bi-centric study aimed to determine the role of receptor PET/CT using 68 Ga-DOTA-NOC in the detection of undiagnosed primary sites of neuroendocrine tumours (NETs) and to understand the molecular behaviour of the primarily undiagnosed tumours. Overall 59 patients (33 men and 26 women, age: 65 ± 9 years) with documented NET and unknown primary were enrolled. PET/CT was performed after injection of approximately 100 MBq (46-260 MBq) of 68 Ga-DOTA-NOC. The maximum standardised uptake values (SUV max ) were calculated and compared with SUV max in known pancreatic NET (pNET) and ileum/jejunum/duodenum (SI-NET). The results of PET/CT were also correlated with CT alone. In 35 of 59 patients (59%), 68 Ga-DOTA-NOC PET/CT localised the site of the primary: ileum/jejunum (14), pancreas (16), rectum/colon (2), lungs (2) and paraganglioma (1). CT alone (on retrospective analyses) confirmed the findings in 12 of 59 patients (20%). The mean SUV max of identified previously unknown pNET and SI-NET were 18.6 ± 9.8 (range: 7.8-34.8) and 9.1 ± 6.0 (range: 4.2-27.8), respectively. SUV max in patients with previously known pNET and SI-NET were 26.1 ± 14.5 (range: 8.7-42.4) and 11.3 ± 3.7 (range: 5.6-17.9). The SUV max of the unknown pNET and SI-NET were significantly lower (p 68 Ga-DOTA-NOC receptor PET/CT, 6 of 59 patients were operated and the primary was removed (4 pancreatic, 1 ileal and 1 rectal tumour) resulting in a management change in approximately 10% of the patients. In the remaining 29 patients, because of the far advanced stage of the disease (due to distant metastases), the primary tumours were not operated. Additional histopathological sampling was available from one patient with bronchial carcinoid (through bronchoscopy). Our data indicate that 68 Ga-DOTA-NOC PET/CT is highly superior to 111 In-OctreoScan (39% detection rate for CUP according to the literature) and can play a major role in the management of patients with CUP-NET. (orig.)

  11. Annual Removal of Aboveground Plant Biomass Alters Soil Microbial Responses to Warming

    Directory of Open Access Journals (Sweden)

    Kai Xue

    2016-09-01

    Full Text Available Clipping (i.e., harvesting aboveground plant biomass is common in agriculture and for bioenergy production. However, microbial responses to clipping in the context of climate warming are poorly understood. We investigated the interactive effects of grassland warming and clipping on soil properties and plant and microbial communities, in particular, on microbial functional genes. Clipping alone did not change the plant biomass production, but warming and clipping combined increased the C4 peak biomass by 47% and belowground net primary production by 110%. Clipping alone and in combination with warming decreased the soil carbon input from litter by 81% and 75%, respectively. With less carbon input, the abundances of genes involved in degrading relatively recalcitrant carbon increased by 38% to 137% in response to either clipping or the combined treatment, which could weaken long-term soil carbon stability and trigger positive feedback with respect to warming. Clipping alone also increased the abundance of genes for nitrogen fixation, mineralization, and denitrification by 32% to 39%. Such potentially stimulated nitrogen fixation could help compensate for the 20% decline in soil ammonium levels caused by clipping alone and could contribute to unchanged plant biomass levels. Moreover, clipping tended to interact antagonistically with warming, especially with respect to effects on nitrogen cycling genes, demonstrating that single-factor studies cannot predict multifactorial changes. These results revealed that clipping alone or in combination with warming altered soil and plant properties as well as the abundance and structure of soil microbial functional genes. Aboveground biomass removal for biofuel production needs to be reconsidered, as the long-term soil carbon stability may be weakened.

  12. Detection of unknown primary neuroendocrine tumours (CUP-NET) using {sup 68}Ga-DOTA-NOC receptor PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Vikas; Baum, Richard P. [Zentralklinik Bad Berka, Department of Nuclear Medicine and Centre for PET/CT, Bad Berka (Germany); Ambrosini, Valentina; Fanti, Stefano [University of Bologna, Nuclear Medicine Unit, Policlinico S. Orsola-Malpighi, Bologna (Italy); Hommann, Merten [Zentralklinik Bad Berka, Department of General and Visceral Surgery, Bad Berka (Germany); Hoersch, Dieter [Zentralklinik Bad Berka, Department of Internal Medicine/Gastroenterology, Oncology and Endocrinology, Bad Berka (Germany)

    2010-01-15

    This bi-centric study aimed to determine the role of receptor PET/CT using {sup 68}Ga-DOTA-NOC in the detection of undiagnosed primary sites of neuroendocrine tumours (NETs) and to understand the molecular behaviour of the primarily undiagnosed tumours. Overall 59 patients (33 men and 26 women, age: 65 {+-} 9 years) with documented NET and unknown primary were enrolled. PET/CT was performed after injection of approximately 100 MBq (46-260 MBq) of {sup 68}Ga-DOTA-NOC. The maximum standardised uptake values (SUV{sub max}) were calculated and compared with SUV{sub max} in known pancreatic NET (pNET) and ileum/jejunum/duodenum (SI-NET). The results of PET/CT were also correlated with CT alone. In 35 of 59 patients (59%), {sup 68}Ga-DOTA-NOC PET/CT localised the site of the primary: ileum/jejunum (14), pancreas (16), rectum/colon (2), lungs (2) and paraganglioma (1). CT alone (on retrospective analyses) confirmed the findings in 12 of 59 patients (20%). The mean SUV{sub max} of identified previously unknown pNET and SI-NET were 18.6 {+-} 9.8 (range: 7.8-34.8) and 9.1 {+-} 6.0 (range: 4.2-27.8), respectively. SUV{sub max} in patients with previously known pNET and SI-NET were 26.1 {+-} 14.5 (range: 8.7-42.4) and 11.3 {+-} 3.7 (range: 5.6-17.9). The SUV{sub max} of the unknown pNET and SI-NET were significantly lower (p < 0.05) as compared to the ones with known primary tumour sites; 19% of the patients had high-grade and 81% low-grade NET. Based on {sup 68}Ga-DOTA-NOC receptor PET/CT, 6 of 59 patients were operated and the primary was removed (4 pancreatic, 1 ileal and 1 rectal tumour) resulting in a management change in approximately 10% of the patients. In the remaining 29 patients, because of the far advanced stage of the disease (due to distant metastases), the primary tumours were not operated. Additional histopathological sampling was available from one patient with bronchial carcinoid (through bronchoscopy). Our data indicate that {sup 68}Ga-DOTA-NOC PET/CT is

  13. Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada's boreal forests.

    Science.gov (United States)

    Chen, Han Y H; Luo, Yong

    2015-10-01

    Biomass change of the world's forests is critical to the global carbon cycle. Despite storing nearly half of global forest carbon, the boreal biome of diverse forest types and ages is a poorly understood component of the carbon cycle. Using data from 871 permanent plots in the western boreal forest of Canada, we examined net annual aboveground biomass change (ΔAGB) of four major forest types between 1958 and 2011. We found that ΔAGB was higher for deciduous broadleaf (DEC) (1.44 Mg ha(-1)  year(-1) , 95% Bayesian confidence interval (CI), 1.22-1.68) and early-successional coniferous forests (ESC) (1.42, CI, 1.30-1.56) than mixed forests (MIX) (0.80, CI, 0.50-1.11) and late-successional coniferous (LSC) forests (0.62, CI, 0.39-0.88). ΔAGB declined with forest age as well as calendar year. After accounting for the effects of forest age, ΔAGB declined by 0.035, 0.021, 0.032 and 0.069 Mg ha(-1)  year(-1) per calendar year in DEC, ESC, MIX and LSC forests, respectively. The ΔAGB declines resulted from increased tree mortality and reduced growth in all forest types except DEC, in which a large biomass loss from mortality was accompanied with a small increase in growth. With every degree of annual temperature increase, ΔAGB decreased by 1.00, 0.20, 0.55 and 1.07 Mg ha(-1)  year(-1) in DEC, ESC, MIX and LSC forests, respectively. With every cm decrease of annual climatic moisture availability, ΔAGB decreased 0.030, 0.045 and 0.17 Mg ha(-1)  year(-1) in ESC, MIX and LSC forests, but changed little in DEC forests. Our results suggest that persistent warming and decreasing water availability have profound negative effects on forest biomass in the boreal forests of western Canada. Furthermore, our results indicate that forest responses to climate change are strongly dependent on forest composition with late-successional coniferous forests being most vulnerable to climate changes in terms of aboveground biomass. © 2015 John Wiley & Sons Ltd.

  14. Net carbon exchange across the Arctic tundra-boreal forest transition in Alaska 1981-2000

    Science.gov (United States)

    Thompson, Catharine Copass; McGuire, A.D.; Clein, Joy S.; Chapin, F. S.; Beringer, J.

    2006-01-01

    Shifts in the carbon balance of high-latitude ecosystems could result from differential responses of vegetation and soil processes to changing moisture and temperature regimes and to a lengthening of the growing season. Although shrub expansion and northward movement of treeline should increase carbon inputs, the effects of these vegetation changes on net carbon exchange have not been evaluated. We selected low shrub, tall shrub, and forest tundra sites near treeline in northwestern Alaska, representing the major structural transitions expected in response to warming. In these sites, we measured aboveground net primary production (ANPP) and vegetation and soil carbon and nitrogen pools, and used these data to parameterize the Terrestrial Ecosystem Model. We simulated the response of carbon balance components to air temperature and precipitation trends during 1981-2000. In areas experiencing warmer and dryer conditions, Net Primary Production (NPP) decreased and heterotrophic respiration (R H ) increased, leading to a decrease in Net Ecosystem Production (NEP). In warmer and wetter conditions NPP increased, but the response was exceeded by an increase in R H ; therefore, NEP also decreased. Lastly, in colder and wetter regions, the increase in NPP exceeded a small decline in R H , leading to an increase in NEP. The net effect for the region was a slight gain in ecosystem carbon storage over the 20 year period. This research highlights the potential importance of spatial variability in ecosystem responses to climate change in assessing the response of carbon storage in northern Alaska over the last two decades. ?? Springer 2005.

  15. Controls of vegetation structure and net primary production in restored grasslands

    Science.gov (United States)

    Munson, Seth M.; Lauenroth, William K.

    2014-01-01

    1. Vegetation structure and net primary production (NPP) are fundamental properties of ecosystems. Understanding how restoration practices following disturbance interact with environmental factors to control these properties can provide insight on how ecosystems recover and guide management efforts. 2. We assessed the relative contribution of environmental and restoration factors in controlling vegetation structure, above- and below-ground investment in production across a chronosequence of semiarid Conservation Reserve Program (CRP) fields recovering from dryland wheat cropping relative to undisturbed grassland. Importantly, we determined the role of plant diversity and how seeding either native or introduced perennial grasses influenced the recovery of vegetation properties. 3. Plant basal cover increased with field age and was highest in CRP fields seeded with native perennial grasses. In contrast, fields seeded with introduced perennial grasses had tall-growing plants with relatively low basal cover. These vegetation structural characteristics interacted with precipitation, but not soil characteristics, to influence above-ground NPP (ANPP). Fields enrolled in the CRP program for >7 years supported twice as much ANPP as undisturbed shortgrass steppe in the first wet year of the study, but all CRP fields converged on a common low amount of ANPP in the following dry year and invested less than half as much as the shortgrass steppe in below-ground biomass. 4. ANPP in CRP fields seeded with native perennial grasses for more than 7 years was positively related to species richness, whereas ANPP in CRP fields seeded with introduced perennial grasses were controlled more by dominant species. 5. Synthesis and applications. Seeding with introduced, instead of native, perennial grasses had a strong direct influence on vegetation structure, including species richness, which indirectly affected NPP through time. However, the effects of restoring either native or introduced

  16. Assessment of forest management influences on total live aboveground tree biomass in William B Bankhead National Forest, Alabama

    Science.gov (United States)

    Callie Schweitzer; Dawn Lemke; Wubishet Tadesse; Yong Wang

    2015-01-01

    Forests contain a large amount of carbon (C) stored as tree biomass (above and below ground), detritus, and soil organic material. The aboveground tree biomass is the most rapid change component in this forest C pool. Thus, management of forest resources can influence the net C exchange with the atmosphere by changing the amount of C stored, particularly in landscapes...

  17. HANPP Collection: Human Appropriation of Net Primary Productivity (HANPP) by Country and Product

    Data.gov (United States)

    National Aeronautics and Space Administration — The Human Appropriation of Net Primary Productivity (HANPP) by Country and Product portion of the HANPP Collection contains tabular data on carbon-equivalents of...

  18. An assessment of underground and aboveground steam system failures in the SRS waste tank farms

    International Nuclear Information System (INIS)

    Hsu, T.C.; Shurrab, M.S.; Wiersma, B.J.

    1997-01-01

    Underground steam system failures in waste tank farms at the Savannah River Site (SRS) increased significantly in the 3--4 year period prior to 1995. The primary safety issues created by the failures were the formation of sub-surface voids in soil and the loss of steam jet transfer and waste evaporation capability, and the loss of heating and ventilation to the tanks. The average annual cost for excavation and repair of the underground steam system was estimated to be several million dollars. These factors prompted engineering personnel to re-consider long-term solutions to the problem. The primary cause of these failures was the inadequate thermal insulation utilized for steam lines associated with older tanks. The failure mechanisms were either pitting or localized general corrosion on the exterior of the pipe beneath the thermal insulation. The most realistic and practical solution is to replace the underground lines by installing aboveground steam systems, although this option will incur significant initial capital costs. Steam system components, installed aboveground in other areas of the tank farms have experienced few failures, while in continuous use. As a result, piecewise installation of temporary aboveground steam systems have been implemented in F-area whenever opportunities, i.e., failures, present themselves

  19. Estimation of livestock appropriation of net primary productivity in Texas Drylands

    Science.gov (United States)

    Robert Washington-Allen; Jody Fitzgerald; Stephanie Grounds; Faisar Jihadi; John Kretzschmar; Kathryn Ramirez; John Mitchell

    2009-01-01

    The ecological state of US Drylands is unknown. This research is developing procedures to determine the impact of the ecological footprint of grazing livestock on the productive capacity of US Drylands. A pilot geodatabase was developed for the state of Texas that includes 2002 data for county boundaries, net primary productivity (NPP) derived from the Moderate...

  20. Linking aboveground and belowground inducible plant resistance

    NARCIS (Netherlands)

    Bezemer, T.M.

    2009-01-01

    Induced resistance of plants against pests and diseases via plant defense responses is well documented and can occur aboveground, in the leaves, and belowground in the roots. A number of recent studies have shown that soil-borne pests can also induce plant resistance aboveground and vice versa.

  1. Decreasing Net Primary Productivity in Response to Urbanization in Liaoning Province, China

    Directory of Open Access Journals (Sweden)

    Tan Chen

    2017-01-01

    Full Text Available Regional ecosystems have been greatly affected by the rapid expansion of urban areas. In order to explore the impact of land use change on net primary productivity (NPP in rapidly developing cities during the current urbanization process, we quantified land use change in Liaoning province between 2000 and 2010 using net primary productivity as an indicator of ecosystem productivity and health. The Carnegie–Ames–Stanford Approach model was used to estimate NPP by region and land use. We used a unit circle-based evaluation model to quantify local urbanization effects on NPP around eight representative cities. The dominant land use types were farmland, woodland and urban, with urban rapidly replacing farmland. Mean annual NPP and total NPP decreased faster from 2005 to 2010 than from 2000 to 2005, reflecting increasing urbanization rates. The eastern, primarily woodland part of Liaoning province had the greatest reduction in NPP, while the western part, which was primarily farmland and grassland, had the lowest reduction.

  2. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP

    Science.gov (United States)

    Takeshi Ise; Creighton M. Litton; Christian P. Giardina; Akihiko Ito

    2010-01-01

    Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long�]lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning...

  3. Fire intensity impacts on post-fire temperate coniferous forest net primary productivity

    Science.gov (United States)

    Sparks, Aaron M.; Kolden, Crystal A.; Smith, Alistair M. S.; Boschetti, Luigi; Johnson, Daniel M.; Cochrane, Mark A.

    2018-02-01

    Fire is a dynamic ecological process in forests and impacts the carbon (C) cycle through direct combustion emissions, tree mortality, and by impairing the ability of surviving trees to sequester carbon. While studies on young trees have demonstrated that fire intensity is a determinant of post-fire net primary productivity, wildland fires on landscape to regional scales have largely been assumed to either cause tree mortality, or conversely, cause no physiological impact, ignoring the impacted but surviving trees. Our objective was to understand how fire intensity affects post-fire net primary productivity in conifer-dominated forested ecosystems on the spatial scale of large wildland fires. We examined the relationships between fire radiative power (FRP), its temporal integral (fire radiative energy - FRE), and net primary productivity (NPP) using 16 years of data from the MOderate Resolution Imaging Spectrometer (MODIS) for 15 large fires in western United States coniferous forests. The greatest NPP post-fire loss occurred 1 year post-fire and ranged from -67 to -312 g C m-2 yr-1 (-13 to -54 %) across all fires. Forests dominated by fire-resistant species (species that typically survive low-intensity fires) experienced the lowest relative NPP reductions compared to forests with less resistant species. Post-fire NPP in forests that were dominated by fire-susceptible species were not as sensitive to FRP or FRE, indicating that NPP in these forests may be reduced to similar levels regardless of fire intensity. Conversely, post-fire NPP in forests dominated by fire-resistant and mixed species decreased with increasing FRP or FRE. In some cases, this dose-response relationship persisted for more than a decade post-fire, highlighting a legacy effect of fire intensity on post-fire C dynamics in these forests.

  4. Variance-based sensitivity analysis of BIOME-BGC for gross and net primary production

    NARCIS (Netherlands)

    Raj, R.; Hamm, N.A.S.; van der Tol, C.; Stein, A.

    2014-01-01

    Parameterization and calibration of a process-based simulator (PBS) is a major challenge when simulating gross and net primary production (GPP and NPP). The large number of parameters makes the calibration computationally expensive and is complicated by the dependence of several parameters on other

  5. Creating a regional MODIS satellite-driven net primary production dataset for european forests

    NARCIS (Netherlands)

    Neumann, Mathias; Moreno, Adam; Thurnher, Christopher; Mues, Volker; Härkönen, Sanna; Mura, Matteo; Bouriaud, Olivier; Lang, Mait; Cardellini, Giuseppe; Thivolle-Cazat, Alain; Bronisz, Karol; Merganic, Jan; Alberdi, Iciar; Astrup, Rasmus; Mohren, Frits; Zhao, Maosheng; Hasenauer, Hubert

    2016-01-01

    Net primary production (NPP) is an important ecological metric for studying forest ecosystems and their carbon sequestration, for assessing the potential supply of food or timber and quantifying the impacts of climate change on ecosystems. The global MODIS NPP dataset using the MOD17 algorithm

  6. Variations of Terrestrial Net Primary Productivity in East Asia

    Directory of Open Access Journals (Sweden)

    Fangmin Zhang

    2012-01-01

    Full Text Available Due to the heterogeneity and complexity of terrestrial ecosystems of East Asia, a better understanding of relationships between climate change and net primary productivity (NPP distribution is important to predict future carbon dynamics. The objective of this study is to analyze the temporal-spatial patterns of NPP in East Asia (10°S - 55°N, 60 - 155°E from 1982 to 2006 using the process-based Boreal Ecosystem Productivity Simulator (BEPS model. Prior to the regional simulation, the annual simulated NPP was validated using field observed NPP demonstrating the ability of BEPS to simulate NPP in different ecosystems of East Asia.

  7. Eliciting maize defense pathways aboveground attracts belowground biocontrol agents.

    Science.gov (United States)

    Filgueiras, Camila Cramer; Willett, Denis S; Pereira, Ramom Vasconcelos; Moino Junior, Alcides; Pareja, Martin; Duncan, Larry W

    2016-11-04

    Plant defense pathways mediate multitrophic interactions above and belowground. Understanding the effects of these pathways on pests and natural enemies above and belowground holds great potential for designing effective control strategies. Here we investigate the effects of aboveground stimulation of plant defense pathways on the interactions between corn, the aboveground herbivore adult Diabrotica speciosa, the belowground herbivore larval D. speciosa, and the subterranean ento-mopathogenic nematode natural enemy Heterorhabditis amazonensis. We show that adult D. speciosa recruit to aboveground herbivory and methyl salicylate treatment, that larval D. speciosa are relatively indiscriminate, and that H. amazonensis en-tomopathogenic nematodes recruit to corn fed upon by adult D. speciosa. These results suggest that entomopathogenicnematodes belowground can be highly attuned to changes in the aboveground parts of plants and that biological control can be enhanced with induced plant defense in this and similar systems.

  8. Eliciting maize defense pathways aboveground attracts belowground biocontrol agents

    Science.gov (United States)

    Filgueiras, Camila Cramer; Willett, Denis S.; Pereira, Ramom Vasconcelos; Moino Junior, Alcides; Pareja, Martin; Duncan, Larry W.

    2016-01-01

    Plant defense pathways mediate multitrophic interactions above and belowground. Understanding the effects of these pathways on pests and natural enemies above and belowground holds great potential for designing effective control strategies. Here we investigate the effects of aboveground stimulation of plant defense pathways on the interactions between corn, the aboveground herbivore adult Diabrotica speciosa, the belowground herbivore larval D. speciosa, and the subterranean ento-mopathogenic nematode natural enemy Heterorhabditis amazonensis. We show that adult D. speciosa recruit to aboveground herbivory and methyl salicylate treatment, that larval D. speciosa are relatively indiscriminate, and that H. amazonensis en-tomopathogenic nematodes recruit to corn fed upon by adult D. speciosa. These results suggest that entomopathogenicnematodes belowground can be highly attuned to changes in the aboveground parts of plants and that biological control can be enhanced with induced plant defense in this and similar systems. PMID:27811992

  9. Biomass Accumulation and Net Primary Production during the Early Stage of Secondary Succession after a Severe Forest Disturbance in Northern Japan

    Directory of Open Access Journals (Sweden)

    Tomotsugu Yazaki

    2016-11-01

    Full Text Available Quantitative evaluations of biomass accumulation after disturbances in forests are crucially important for elucidating and predicting forest carbon dynamics in order to understand the carbon sink/source activities. During early secondary succession, understory vegetation often affects sapling growth. However, reports on biomass recovery in naturally-regenerating sites are limited in Japan. Therefore, we traced annual or biennial changes in plant species, biomass, and net primary production (NPP in a naturally regenerating site in Japan after windthrow and salvage-logging plantation for nine years. The catastrophic disturbance depleted the aboveground biomass (AGB from 90.6 to 2.7 Mg·ha−1, changing understory dominant species from Dryopteris spp. to Rubus idaeus. The mean understory AGB recovered to 4.7 Mg·ha−1 in seven years with the dominant species changing to invasive Solidago gigantea. Subsequently, patches of deciduous trees (mainly Betula spp. recovered whereas the understory AGB decreased. Mean understory NPP increased to 272 g·C·m−2·year−1 within seven years after the disturbance, but decreased thereafter to 189 g·C·m−2·year−1. Total NPP stagnated despite increasing overstory NPP. The biomass accumulation is similar to that of naturally regenerating sites without increase of trees in boreal and temperate regions. Dense ground vegetation and low water and nutrient availability of the soil in the study site restrict the recovery of canopy-forming trees and eventually influence the biomass accumulation.

  10. Relationships between net primary productivity and forest stand age in U.S. forests

    Science.gov (United States)

    Liming He; Jing M. Chen; Yude Pan; Richard Birdsey; Jens. Kattge

    2012-01-01

    Net primary productivity (NPP) is a key flux in the terrestrial ecosystem carbon balance, as it summarizes the autotrophic input into the system. Forest NPP varies predictably with stand age, and quantitative information on the NPP-age relationship for different regions and forest types is therefore fundamentally important for forest carbon cycle modeling. We used four...

  11. Annual measurements of gain and loss in aboveground carbon density

    Science.gov (United States)

    Baccini, A.; Walker, W. S.; Carvalho, L.; Farina, M.; Sulla-menashe, D. J.; Houghton, R. A.

    2017-12-01

    Tropical forests hold large stores of carbon, but their net carbon balance is uncertain. Land use and land-cover change (LULCC) are believed to release between 0.81 and 1.14 PgC yr-1, while intact native forests are thought to be a net carbon sink of approximately the same magnitude. Reducing the uncertainty of these estimates is not only fundamental to the advancement of carbon cycle science but is also of increasing relevance to national and international policies designed to reduce emissions from deforestation and forest degradation (e.g., REDD+). Contemporary approaches to estimating the net carbon balance of tropical forests rely on changes in forest area between two periods, typically derived from satellite data, together with information on average biomass density. These approaches tend to capture losses in biomass due to deforestation (i.e., wholesale stand removals) but are limited in their sensitivity to forest degradation (e.g., selective logging or single-tree removals), which can account for additional biomass losses on the order of 47-75% of deforestation. Furthermore, while satellite-based estimates of forest area loss have been used successfully to estimate associated carbon losses, few such analyses have endeavored to determine the rate of carbon sequestration in growing forests. Here we use 12 years (2003-2014) of pantropical satellite data to quantify net annual changes in the aboveground carbon density of woody vegetation (MgC ha-1yr-1), providing direct, measurement-based evidence that the world's tropical forests are a net carbon source of 425.2 ± 92.0 Tg C yr-1. This net release of carbon consists of losses of 861.7 ± 80.2 Tg C yr-1 and gains of -436.5 ± 31.0 Tg C yr-1 . Gains result from forest growth; losses result from reductions in forest area due to deforestation and from reductions in biomass density within standing forests (degradation), with the latter accounting for 68.9% of overall losses. Our findings advance previous research

  12. Genetic basis of aboveground productivity in two native Populus species and their hybrids.

    Science.gov (United States)

    Lojewski, Nathan R; Fischer, Dylan G; Bailey, Joseph K; Schweitzer, Jennifer A; Whitham, Thomas G; Hart, Stephen C

    2009-09-01

    Demonstration of genetic control over riparian tree productivity has major implications for responses of riparian systems to shifting environmental conditions and effects of genetics on ecosystems in general. We used field studies and common gardens, applying both molecular and quantitative techniques, to compare plot-level tree aboveground net primary productivity (ANPP(tree)) and individual tree growth rate constants in relation to plant genetic identity in two naturally occurring Populus tree species and their hybrids. In field comparisons of four cross types (Populus fremontii S. Wats., Populus angustifolia James, F(1) hybrids and backcross hybrids) across 11 natural stands, productivity was greatest for P. fremontii trees, followed by hybrids and lowest in P. angustifolia. A similar pattern was observed in four common gardens across a 290 m elevation and 100 km environmental gradient. Despite a doubling in productivity across the common gardens, the relative differences among the cross types remained constant. Using clonal replicates in a common garden, we found ANPP(tree) to be a heritable plant trait (i.e., broad-sense heritability), such that plant genetic factors explained between 38% and 82% of the variation in ANPP(tree). Furthermore, analysis of the genetic composition among individual tree genotypes using restriction fragment length polymorphism molecular markers showed that genetically similar trees also exhibited similar ANPP(tree). These findings indicate strong genetic contributions to natural variation in ANPP with important ecological implications.

  13. ULC/ORD-C80.1 : the standard for aboveground non-metallic tanks for fuel oil

    Energy Technology Data Exchange (ETDEWEB)

    Nikolic, G. [Underwriters' Lab. of Canada, Toronto, ON (Canada)

    2001-09-01

    As a rule, flammable and combustible liquids were stored in aboveground tanks made of steel. Non-metallic materials are now being used for a new generation of aboveground tanks. Corrosion is a problem faced by most tank owners in many parts of Canada. Saltwater mist, sand blasting and bacteria growth formed in the condensation water at the bottom of the tank in the Maritimes affects an aboveground tank installed outdoors and close to the seashore. European non-metallic aboveground tanks for fuel oil first arrived on the North American market, and are now followed by designs from Canada. Requirements for these tanks were developed and tested by the Underwriters' Laboratories of Canada (ULC). It is a not-for-profit, independent organization accredited by the Standards Council of Canada to perform safety, certification, testing, quality registration, and standards development. The minimum criteria for non-metallic aboveground tank construction are contained in the ULC/ORD-C80.1 document. They can be constructed of fiber-reinforced plastic (FRP), single or double wall, or they can be double wall tanks consisting of primary plastic tanks within metallic secondary containment. Other tanks are made of the blow molded high-density polyethylene. To simulate an in-house installation, fire tests were performed where a tank filled with fuel was exposed to pool fire for 30 minutes. A successful test meant the tank had not ruptured nor leaked during and after the test. Testers had to observe that any collapse occurred above the liquid level, and that violent explosion of any part of the tank or its content did not occur. The design requirements were evaluated by performing an analysis of the temperature chart: maximum vapour temperature inside the tank was 358 Celsius, while the liquid reached a maximum temperature of 91 Celsius and the outside temperature reached 600 Celsius. Primary tank pressure did not exceed 17 kilo Pascal. Building simulation of venting installation

  14. The variable effects of soil nitrogen availability and insect herbivory on aboveground and belowground plant biomass in an old-field ecosystem

    DEFF Research Database (Denmark)

    Blue, Jarrod D.; Souza, Lara; Classen, Aimée T.

    2011-01-01

    in an old-field ecosystem. In 2004, we established 36 experimental plots in which we manipulated soil nitrogen (N) availability and insect abundance in a completely randomized plot design. In 2009, after 6 years of treatments, we measured aboveground biomass and assessed root production at peak growth...... not be limiting primary production in this ecosystem. Insects reduced the aboveground biomass of subdominant plant species and decreased coarse root production. We found no statistical interactions between N availability and insect herbivory for any response variable. Overall, the results of 6 years of nutrient...

  15. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP

    Science.gov (United States)

    Ise, Takeshi; Litton, Creighton M.; Giardina, Christian P.; Ito, Akihiko

    2010-12-01

    Partitioning of gross primary production (GPP) to aboveground versus belowground, to growth versus respiration, and to short versus long-lived tissues exerts a strong influence on ecosystem structure and function, with potentially large implications for the global carbon budget. A recent meta-analysis of forest ecosystems suggests that carbon partitioning to leaves, stems, and roots varies consistently with GPP and that the ratio of net primary production (NPP) to GPP is conservative across environmental gradients. To examine influences of carbon partitioning schemes employed by global ecosystem models, we used this meta-analysis-based model and a satellite-based (MODIS) terrestrial GPP data set to estimate global woody NPP and equilibrium biomass, and then compared it to two process-based ecosystem models (Biome-BGC and VISIT) using the same GPP data set. We hypothesized that different carbon partitioning schemes would result in large differences in global estimates of woody NPP and equilibrium biomass. Woody NPP estimated by Biome-BGC and VISIT was 25% and 29% higher than the meta-analysis-based model for boreal forests, with smaller differences in temperate and tropics. Global equilibrium woody biomass, calculated from model-specific NPP estimates and a single set of tissue turnover rates, was 48 and 226 Pg C higher for Biome-BGC and VISIT compared to the meta-analysis-based model, reflecting differences in carbon partitioning to structural versus metabolically active tissues. In summary, we found that different carbon partitioning schemes resulted in large variations in estimates of global woody carbon flux and storage, indicating that stand-level controls on carbon partitioning are not yet accurately represented in ecosystem models.

  16. [Simulation study on the effects of climate change on aboveground biomass of plantation in southern China: Taking Moshao forest farm in Huitong Ecological Station as an example].

    Science.gov (United States)

    Dai, Er Fu; Zhou, Heng; Wu, Zhuo; Wang, Xiao-Fan; Xi, Wei Min; Zhu, Jian Jia

    2016-10-01

    Global climate warming has significant effect on territorial ecosystem, especially on forest ecosystem. The increase in temperature and radiative forcing will significantly alter the structure and function of forest ecosystem. The southern plantation is an important part of forests in China, its response to climate change is getting more and more intense. In order to explore the responses of southern plantation to climate change under future climate scenarios and to reduce the losses that might be caused by climate change, we used climatic estimated data under three new emission scenarios, representative concentration pathways (RCPs) scenarios (RCP2.6 scenario, RCP4.5 scenario, and RCP8.5 scenario). We used the spatially dynamic forest landscape model LANDIS-2, coupled with a forest ecosystem process model PnET-2, to simulate the impact of climate change on aboveground net primary production (ANPP), species' establishment probability (SEP) and aboveground biomass of Moshao forest farm in Huitong Ecological Station, which located in Hunan Province during the period of 2014-2094. The results showed that there were obvious differences in SEP and ANPP among different forest types under changing climate. The degrees of response of SEP to climate change for different forest types were shown as: under RCP2.6 and RCP4.5, artificial coniferous forest>natural broadleaved forest>artificial broadleaved forest. Under RCP8.5, natural broadleaved forest>artificial broadleaved forest>artificial coniferous forest. The degrees of response of ANPP to climate change for different forest types were shown as: under RCP2.6, artificial broadleaved forest> natural broadleaved forest>artificial coniferous forest. Under RCP4.5 and RCP8.5, natural broadleaved forest>artificial broadleaved forest>artificial coniferous forest. The aboveground biomass of the artificial coniferous forest would decline at about 2050, but the natural broadleaved forest and artificial broadleaved forest showed a

  17. MODIS Based Estimation of Forest Aboveground Biomass in China.

    Directory of Open Access Journals (Sweden)

    Guodong Yin

    Full Text Available Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS dataset in a machine learning algorithm (the model tree ensemble, MTE. We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.

  18. MODIS Based Estimation of Forest Aboveground Biomass in China

    Science.gov (United States)

    Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha−1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y−1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y−1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y−1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests. PMID:26115195

  19. MODIS Based Estimation of Forest Aboveground Biomass in China.

    Science.gov (United States)

    Yin, Guodong; Zhang, Yuan; Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.

  20. Combining Multi-Source Remotely Sensed Data and a Process-Based Model for Forest Aboveground Biomass Updating.

    Science.gov (United States)

    Lu, Xiaoman; Zheng, Guang; Miller, Colton; Alvarado, Ernesto

    2017-09-08

    Monitoring and understanding the spatio-temporal variations of forest aboveground biomass (AGB) is a key basis to quantitatively assess the carbon sequestration capacity of a forest ecosystem. To map and update forest AGB in the Greater Khingan Mountains (GKM) of China, this work proposes a physical-based approach. Based on the baseline forest AGB from Landsat Enhanced Thematic Mapper Plus (ETM+) images in 2008, we dynamically updated the annual forest AGB from 2009 to 2012 by adding the annual AGB increment (ABI) obtained from the simulated daily and annual net primary productivity (NPP) using the Boreal Ecosystem Productivity Simulator (BEPS) model. The 2012 result was validated by both field- and aerial laser scanning (ALS)-based AGBs. The predicted forest AGB for 2012 estimated from the process-based model can explain 31% ( n = 35, p forest AGBs, respectively. However, due to the saturation of optical remote sensing-based spectral signals and contribution of understory vegetation, the BEPS-based AGB tended to underestimate/overestimate the AGB for dense/sparse forests. Generally, our results showed that the remotely sensed forest AGB estimates could serve as the initial carbon pool to parameterize the process-based model for NPP simulation, and the combination of the baseline forest AGB and BEPS model could effectively update the spatiotemporal distribution of forest AGB.

  1. Impact of deforestation and climate on the Amazon Basin's above-ground biomass during 1993-2012.

    Science.gov (United States)

    Exbrayat, Jean-François; Liu, Yi Y; Williams, Mathew

    2017-11-15

    Since the 1960s, large-scale deforestation in the Amazon Basin has contributed to rising global CO 2 concentrations and to climate change. Recent advances in satellite observations enable estimates of gross losses of above-ground biomass (AGB) stocks due to deforestation. However, because of simultaneous regrowth, the net contribution of deforestation emissions to rising atmospheric CO 2 concentrations is poorly quantified. Climate change may also reduce the potential for forest regeneration in previously disturbed regions. Here, we address these points of uncertainty with a machine-learning approach that combines satellite observations of AGB with climate data across the Amazon Basin to reconstruct annual maps of potential AGB during 1993-2012, the above-ground C storage potential of the undisturbed landscape. We derive a 2.2 Pg C loss of AGB over the study period, and, for the regions where these losses occur, we estimate a 0.7 Pg C reduction in potential AGB. Thus, climate change has led to a decline of ~1/3 in the capacity of these disturbed forests to recover and recapture the C lost in disturbances during 1993-2012. Our approach further shows that annual variations in land use change mask the natural relationship between the El Niño/Southern Oscillation and AGB stocks in disturbed regions.

  2. The Effect of a Short-term Glucose Deprivation on Neuron Net Functioning of Hippocampus Primary Culture on a Multi-electrode Matrix

    OpenAIRE

    Vedunova M.V.; Korotchenko S.A.; Balashova A.N.; Isakova A.O.; Khaspekov L.G.; Kazantsev V.B.; Mukhina I.V.

    2011-01-01

    There has been studied the effect of a short-term glucose deprivation on neuron net functioning of hippocampus primary culture developing within 32 days on a multi-electrode matrix MED64 (Alpha MED Sciences Company, Japan) in an early and remote periods after deprivation. A short-term glucose deprivation (20 min) has been shown to result in the increase of electrobiological activity of neuron net of hippocampus primary culture, with the cascade of metabolic reactions being activated leading t...

  3. Timber volume and aboveground live tree biomass estimations for landscape analyses in the Pacific Northwest

    Science.gov (United States)

    Xiaoping Zhou; Miles A. Hemstrom

    2010-01-01

    Timber availability, aboveground tree biomass, and changes in aboveground carbon pools are important consequences of landscape management. There are several models available for calculating tree volume and aboveground tree biomass pools. This paper documents species-specific regional equations for tree volume and aboveground live tree biomass estimation that might be...

  4. Estimating climate change effects on net primary production of rangelands in the United States

    Science.gov (United States)

    Matthew C. Reeves; Adam L. Moreno; Karen E. Bagne; Steven W. Running

    2014-01-01

    The potential effects of climate change on net primary productivity (NPP) of U.S. rangelands were evaluated using estimated climate regimes from the A1B, A2 and B2 global change scenarios imposed on the biogeochemical cycling model, Biome-BGC from 2001 to 2100. Temperature, precipitation, vapor pressure deficit, day length, solar radiation, CO2 enrichment and nitrogen...

  5. Estimating forest and woodland aboveground biomass using active and passive remote sensing

    Science.gov (United States)

    Wu, Zhuoting; Dye, Dennis G.; Vogel, John M.; Middleton, Barry R.

    2016-01-01

    Aboveground biomass was estimated from active and passive remote sensing sources, including airborne lidar and Landsat-8 satellites, in an eastern Arizona (USA) study area comprised of forest and woodland ecosystems. Compared to field measurements, airborne lidar enabled direct estimation of individual tree height with a slope of 0.98 (R2 = 0.98). At the plot-level, lidar-derived height and intensity metrics provided the most robust estimate for aboveground biomass, producing dominant species-based aboveground models with errors ranging from 4 to 14Mg ha –1 across all woodland and forest species. Landsat-8 imagery produced dominant species-based aboveground biomass models with errors ranging from 10 to 28 Mg ha –1. Thus, airborne lidar allowed for estimates for fine-scale aboveground biomass mapping with low uncertainty, while Landsat-8 seems best suited for broader spatial scale products such as a national biomass essential climate variable (ECV) based on land cover types for the United States.

  6. Above-ground biomass of mangrove species. I. Analysis of models

    Science.gov (United States)

    Soares, Mário Luiz Gomes; Schaeffer-Novelli, Yara

    2005-10-01

    This study analyzes the above-ground biomass of Rhizophora mangle and Laguncularia racemosa located in the mangroves of Bertioga (SP) and Guaratiba (RJ), Southeast Brazil. Its purpose is to determine the best regression model to estimate the total above-ground biomass and compartment (leaves, reproductive parts, twigs, branches, trunk and prop roots) biomass, indirectly. To do this, we used structural measurements such as height, diameter at breast-height (DBH), and crown area. A combination of regression types with several compositions of independent variables generated 2.272 models that were later tested. Subsequent analysis of the models indicated that the biomass of reproductive parts, branches, and prop roots yielded great variability, probably because of environmental factors and seasonality (in the case of reproductive parts). It also indicated the superiority of multiple regression to estimate above-ground biomass as it allows researchers to consider several aspects that affect above-ground biomass, specially the influence of environmental factors. This fact has been attested to the models that estimated the biomass of crown compartments.

  7. Incentivizing primary care providers to innovate: building medical homes in the post-Katrina New Orleans safety net.

    Science.gov (United States)

    Rittenhouse, Diane R; Schmidt, Laura A; Wu, Kevin J; Wiley, James

    2014-02-01

    To evaluate safety-net clinics' responses to a novel community-wide Patient-Centered Medical Home (PCMH) financial incentive program in post-Katrina New Orleans. Between June 2008 and June 2010, we studied 50 primary care clinics in New Orleans receiving federal funds to expand services and improve care delivery. Multiwave, longitudinal, observational study of a local safety-net primary care system. Clinic-level data from a semiannual survey of clinic leaders (89.3 percent response rate), augmented by administrative records. Overall, 62 percent of the clinics responded to financial incentives by achieving PCMH recognition from the National Committee on Quality Assurance (NCQA). Higher patient volume, higher baseline PCMH scores, and type of ownership were significant predictors of achieving NCQA recognition. The steepest increase in adoption of PCMH processes occurred among clinics achieving the highest, Level 3, NCQA recognition. Following NCQA recognition, 88.9 percent stabilized or increased their use of PCMH processes, although several specific PCMH processes had very low rates of adoption overall. Findings demonstrate that widespread PCMH implementation is possible in a safety-net environment when external financial incentives are aligned with the goal of practice innovation. © Health Research and Educational Trust.

  8. Creating a Regional MODIS Satellite-Driven Net Primary Production Dataset for European Forests

    OpenAIRE

    Neumann, Mathias; Moreno, Adam; Thurnher, Christopher; Mues, Volker; Härkönen, Sanna; Mura, Matteo; Bouriaud, Olivier; Lang, Mait; Cardellini, Giuseppe; Thivolle-Cazat, Alain; Bronisz, Karol; Merganic, Jan; Alberdi, Iciar; Astrup, Rasmus; Mohren, Frits

    2016-01-01

    Net primary production (NPP) is an important ecological metric for studying forest ecosystems and their carbon sequestration, for assessing the potential supply of food or timber and quantifying the impacts of climate change on ecosystems. The global MODIS NPP dataset using the MOD17 algorithm provides valuable information for monitoring NPP at 1-km resolution. Since coarse-resolution global climate data are used, the global dataset may contain uncertainties for Europe. We used a 1-km daily g...

  9. netCare, a new collaborative primary health care service based in Swiss community pharmacies.

    Science.gov (United States)

    Erni, Pina; von Overbeck, Jan; Reich, Oliver; Ruggli, Martine

    2016-01-01

    The Swiss Pharmacists Association has launched a new collaborative project, netCare. Community pharmacists provide a standard form with structured triage based on decision trees and document findings. As a backup, they can collaborate with physicians via video consultation. The aim of the study was to evaluate the impact of this service on the Swiss health care system. All pharmacists offering netCare completed two training courses, a course covering the most common medical conditions observed in primary health care and a specific course on all of the decision trees. The pharmacists were free to decide whether they would provide the usual care or offer netCare triage. The patient was also free to accept or refuse netCare. Pharmacists reported the type of ailment, procedure of the consultation, treatment, patient information and outcomes of the follow-up call on a standardized form submitted to the study center. Pharmacists from 162 pharmacies performed 4118 triages over a period of 21 months. A backup consultation was needed for 17% of the cases. In follow-up calls, 84% of the patients who were seen only by pharmacists reported complete relief or symptom reduction. netCare is a low-threshold service by which pharmacists can manage common medical conditions with physician backup, if needed. This study showed that a pharmacist could resolve a large proportion of the cases. However, to be efficient and sustainable, this service must be fully integrated into the health care system. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Assessing the impact of urbanization on regional net primary productivity in Jiangyin County, China.

    Science.gov (United States)

    Xu, C; Liu, M; An, S; Chen, J M; Yan, P

    2007-11-01

    Urbanization is one of the most important aspects of global change. The process of urbanization has a significant impact on the terrestrial ecosystem carbon cycle. The Yangtze Delta region has one of the highest rates of urbanization in China. In this study, carried out in Jiangyin County as a representative region within the Yangtze Delta, land use and land cover changes were estimated using Landsat TM and ETM+ imagery. With these satellite data and the BEPS process model (Boreal Ecosystem Productivity Simulator), the impacts of urbanization on regional net primary productivity (NPP) and annual net primary production were assessed for 1991 and 2002. Landsat-based land cover maps in 1991 and 2002 showed that urban development encroached large areas of cropland and forest. Expansion of residential areas and reduction of vegetated areas were the major forms of land transformation in Jiangyin County during this period. Mean NPP of the total area decreased from 818 to 699 gCm(-2)yr(-1) during the period of 1991 to 2002. NPP of cropland was only reduced by 2.7% while forest NPP was reduced by 9.3%. Regional annual primary production decreased from 808 GgC in 1991 to 691 GgC in 2002, a reduction of 14.5%. Land cover changes reduced regional NPP directly, and the increasing intensity and frequency of human-induced disturbance in the urbanized areas could be the main reason for the decrease in forest NPP.

  11. Assessing changes in biomass, productivity, and C and N stores following Juniperus virginiana forest expansion into tallgrass prairie

    Energy Technology Data Exchange (ETDEWEB)

    Norris, M. D.; Blair, J. M.; Johnson, L. C. [Kansas State Univ., Manhattan, KS (United States); McKane, R. B. [Environmental Protection Agency, Western Ecology Division, Corvallis, OR (United States)

    2001-11-01

    The objective of this study was to assess changes in plant productivity and above-ground plant biomass associated with red cedar forest expansion into areas formerly dominated by tallgrass prairie. Regionally appropriate allometric biomass regression equations were developed for the nondestructive estimation of red cedar biomass in eastern Kansas, followed by quantification of the carbon and nitrogen content of selected biomass components. The equations were applied, along with measurements of leaf litter production, to selected local stands of mature closed-canopy red cedars to estimate above-ground biomass, standing stocks of carbon and nitrogen and annual above-ground net primary productivity. Above-ground plant biomass for these red cedar-dominated sites ranged from 114,100 kg/ha for the youngest stand to 210,700 kg/ha for the oldest. Annual above-ground net primary productivity (ANPP) ranged from 7,250 to 10,440 kg/ha/yr for the oldest and younger red cedar stands respectively. The ANPP in comparable tallgrass prairie sites in this region averages 3,690 k/ha/yr, indicating a large increase in carbon uptake and above-ground storage as a result of the change from prairie to red cedar forests. Comparing these results with similar published data from other sites led to the conclusion that the widespread change from tallgrass to red cedars across the woodland-prairie ecotone has important consequences for regional carbon storage.37 refs., 3 tabs., 3 figs.

  12. Above-ground net primary productivity in young stands of beech and spruce

    Directory of Open Access Journals (Sweden)

    Pajtík Jozef

    2013-09-01

    Full Text Available V tejto práci sme pomocou kombinácií kontinuálnych meraní a deštruktívnych odberov vzorníkov sledovali a porovnali zásobu nadzemnej biomasy a ročnú primárnu produkciu (NPP v prirodzene obnovených mladých porastoch buka a smreka. Na vybranej lokalite predpokladáme, že zmenené klimatické podmienky budú lepšie vyhovovať buku pred v súčasnosti prevládajúcim smrekom. Lokalita Vrchslatina sa nachádza v južnej časti Veporských vrchov v nadmorskej výške 977 m nad morom (48° 38΄ 50΄΄ N, 19° 36΄ 07΄΄ E. Priemerné ročné zrážky sa pohybujú okolo 900 mm, priemerná ročná teplota je 5,2 °C. Na sledovanej lokalite sme pozorovali odlišný priebeh rastu buka a smreka. Pri buku bola pozorovaná menšia medziročná mortalita, udržiaval sa až prehustený zápoj, v ktorom sa aj podúrovňové stromy snažili dostať do úrovne. Toto sa prejavilo na tvare kmeňov, ktoré sú tenké a vysoké. Štíhlostný koeficient sa pri stromoch so strednou hrúbkou a strednou výškou postupne zvyšoval od 1,19 do 1,40. Pri smreku dochádza k vyššej mortalite, vrastavé a podúrovňové stromy odumierajú z dôvodu nedostatku svetla. Stromy rastú viac do hrúbky, čo sa odráža aj na štíhlostnom koeficiente, ktorý bol po celé obdobie viac-menej konštantný a pohyboval sa v rozpätí 0,89 až 0,93 (tab. 1. Zásoby kmeňa sú pri smreku v jednotlivých rokoch o 3 - 10 m3.ha-1 väčšie ako pri buku (tab. 3. Po prepočítaní na sušinu je vplyvom rozdielnej objemovej hmotnosti (obr. 5 celková zásoba sušiny drevných častí (kmeň a konáre väčšia pri buku (tab. 3. Najväčší rozdiel medzi drevinami je v zásobe asimilačných orgánov, ktorá je pri smreku viac než trojnásobná (tab. 3 a 4. Počas rastu dochádza pri obidvoch drevinách k zvyšovaniu podielu kmeňa a znižovaniu podielu asimilačných orgánov (obr. 2. Hlavný medzidruhový rozdiel pri pomerne vyrovnaných hektárových zásobách je v rozdelení nadzemnej biomasy medzi komponenty, kde buk alokuje do kmeňa viac asimilátov ako smrek (obr. 2 - 4. Pri porovnaní ročnej NPP asimilačných orgánov a konárov neboli zistené žiadne signifikantné rozdiely medzi sledovanými drevinami (obr. 6. Ukázali sme, že zásoby nadzemnej biomasy ako aj NPP buka a smreka boli v mladých plnozakmenených porastoch z prirodzeného zmladenia na danom stanovišti podobné (tab. 3 a 4.

  13. Radiation-use efficiency and gas exchange responses to water and nutrient availability in irrigated and fertilized stands of sweetgum and sycamore

    Science.gov (United States)

    Christopher B. Allen; Rodney E. Will; Robert C. McGravey; David R. Coyle; Mark D. Coleman

    2005-01-01

    We investigated how water and nutrient availability affect radiation-use effeciency (e) and assessed leaf gas exchange as a possible mechanism for shifts in e. We measured aboveground net primary production (ANPP) and annual photosynthetically active radiation (PAR) capture to calculate e as well as leaf-level physiological variables (light-saturated net photosynthesis...

  14. [Spatial distribution of aboveground biomass of shrubs in Tianlaochi catchment of the Qilian Mountains].

    Science.gov (United States)

    Liang, Bei; Di, Li; Zhao, Chuan-Yan; Peng, Shou-Zhang; Peng, Huan-Hua; Wang, Chao

    2014-02-01

    This study estimated the spatial distribution of the aboveground biomass of shrubs in the Tianlaochi catchment of Qilian Mountains based on the field survey and remote sensing data. A relationship model of the aboveground biomass and its feasibly measured factors (i. e. , canopy perimeter and plant height) was built. The land use was classified by object-oriented technique with the high resolution image (GeoEye-1) of the study area, and the distribution of shrub coverage was extracted. Then the total aboveground biomass of shrubs in the study area was estimated by the relationship model with the distribution of shrub coverage. The results showed that the aboveground biomass of shrubs in the study area was 1.8 x 10(3) t and the aboveground biomass per unit area was 1598.45 kg x m(-2). The distribution of shrubs mainly was at altitudes of 3000-3700 m, and the aboveground biomass of shrubs on the sunny slope (1.15 x 10(3) t) was higher than that on the shady slope (0.65 x 10(3) t).

  15. Improved estimates of net primary productivity from MODIS satellite data at regional and local scales

    Science.gov (United States)

    Yude Pan; Richard Birdsey; John Hom; Kevin McCullough; Kenneth Clark

    2006-01-01

    We compared estimates of net primary production (NPP) from the MODIS satellite with estimates from a forest ecosystem process model (PnET-CN) and forest inventory and analysis (FIA) data for forest types of the mid-Atlantic region of the United States. The regional means were similar for the three methods and for the dominant oak? hickory forests in the region. However...

  16. Response of aboveground carbon balance to long-term, experimental shifts in precipitation seasonality is contingent on plant community type in cold-desert rangelands

    Science.gov (United States)

    Reinhardt, K.; McAbee, K.; Germino, M. J.; Bosworth, A.

    2016-12-01

    Semi-arid rangelands have been identified as potential carbon (C) sinks. However, the degree of net C storage or release in water-limited systems is a function of precipitation amount and timing, as well as plant community composition. In northern latitudes of western North America, climate models predict increases in wintertime precipitation and decreases in summertime precipitation. In theory, this should boost C storage in cold-desert ecosystems that have deep-rooted woody plants due to greater wintertime soil water storage that enhances summertime productivity. However, there are few long-term, manipulative field-based studies investigating how shrub- and grass-dominated rangelands will respond to changing precipitation patterns. We measured aboveground C pools and fluxes at leaf, soil, and ecosystem scales over the 2014 growing season on plots that had supplemental precipitation added in either winter or summer for 21 years, in shrub- and exotic-bunchgrass-dominated plots. We hypothesized that increased winter precipitation would stimulate aboveground C uptake and storage relative to ambient conditions, in our cold-desert-adapted plant species. We further hypothesized that long-term gains in aboveground C storage due to precipitation manipulations would be greater in plots containing shrubs. Our hypotheses were generally supported: ecosystem C uptake and long-term biomass accumulation were greater in winter- and summer-irrigated plots compared to control plots in both vegetation communities. However, substantial increases in aboveground biomass occurred only in winter-irrigated plots that contained shrubs. Our findings suggest that increases in winter precipitation will enhance C storage of this widespread ecosystem, provided that the ecosystems have resisted conversion to exotic grassland.

  17. Exploring Global Patterns in Human Appropriation of Net Primary Production Using Earth Observation Satellites and Statistical Data

    Science.gov (United States)

    Imhoff, M.; Bounoua, L.

    2004-12-01

    A unique combination of satellite and socio-economic data were used to explore the relationship between human consumption and the carbon cycle. Biophysical models were applied to consumption data to estimate the annual amount of Earth's terrestrial net primary production humans require for food, fiber and fuel using the same modeling architecture as satellite-supported NPP measurements. The amount of Earth's NPP required to support human activities is a powerful measure of the aggregate human impacts on the biosphere and indicator of societal vulnerability to climate change. Equations were developed estimating the amount of landscape-level NPP required to generate all the products consumed by 230 countries including; vegetal foods, meat, milk, eggs, wood, fuel-wood, paper and fiber. The amount of NPP required was calculated on a per capita basis and projected onto a global map of population to create a spatially explicit map of NPP-carbon demand in units of elemental carbon. NPP demand was compared to a map of Earth's average annual net primary production or supply created using 17 years (1982-1998) of AVHRR vegetation index to produce a geographically accurate balance sheet of terrestrial NPP-carbon supply and demand. Globally, humans consume 20 percent of Earth's total net primary production on land. Regionally the NPP-carbon balance percentage varies from 6 to over 70 percent and locally from near 0 to over 30,000 percent in major urban areas. The uneven distribution of NPP-carbon supply and demand, indicate the degree to which various human populations rely on NPP imports, are vulnerable to climate change and suggest policy options for slowing future growth in NPP demand.

  18. COMBINING LIDAR ESTIMATES OF BIOMASS AND LANDSAT ESTIMATES OF STAND AGE FOR SPATIALLY EXTENSIVE VALIDATION OF MODELED FOREST PRODUCTIVITY. (R828309)

    Science.gov (United States)

    Extensive estimates of forest productivity are required to understand the relationships between shifting land use, changing climate and carbon storage and fluxes. Aboveground net primary production of wood (NPPAw) is a major component of total NPP and...

  19. Aboveground vs. Belowground Carbon Stocks in African Tropical Lowland Rainforest: Drivers and Implications.

    Directory of Open Access Journals (Sweden)

    Sebastian Doetterl

    Full Text Available African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors.Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock were only half compared to an area with lower tree height (= smaller aboveground carbon stock. This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system.We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to the terrestrial C budget.

  20. Aboveground vs. Belowground Carbon Stocks in African Tropical Lowland Rainforest: Drivers and Implications.

    Science.gov (United States)

    Doetterl, Sebastian; Kearsley, Elizabeth; Bauters, Marijn; Hufkens, Koen; Lisingo, Janvier; Baert, Geert; Verbeeck, Hans; Boeckx, Pascal

    2015-01-01

    African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors. Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock) were only half compared to an area with lower tree height (= smaller aboveground carbon stock). This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system. We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to the terrestrial C budget.

  1. Closure Report for Corrective Action Unit 134: Aboveground Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    2009-01-01

    Corrective Action Unit (CAU) 134 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Aboveground Storage Tanks' and consists of the following four Corrective Action Sites (CASs), located in Areas 3, 15, and 29 of the Nevada Test Site: (1) CAS 03-01-03, Aboveground Storage Tank; (2) CAS 03-01-04, Tank; (3) CAS 15-01-05, Aboveground Storage Tank; and (4) CAS 29-01-01, Hydrocarbon Stain

  2. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Tang, Xiwang; Pang, Yan; Ji, Puhui; Gao, Pengcheng; Nguyen, Thanh Hung; Tong, Yan'an

    2016-03-01

    Because of its high Cd uptake and translocation, lettuce is often used in Cd contamination studies. However, there is a lack of information on Cd accumulation in the above-ground parts of lettuce during the entire growing season. In this study, a field experiment was carried out in a Cd-contaminated area. Above-ground lettuce parts were sampled, and the Cd content was measured using a flame atomic absorption spectrophotometer (AAS). The results showed that the Cd concentration in the above-ground parts of lettuce increased from 2.70 to 3.62mgkg(-1) during the seedling stage, but decreased from 3.62 to 2.40mgkg(-1) during organogenesis and from 2.40 to 1.64mgkg(-1) during bolting. The mean Cd concentration during the seedling stage was significantly higher than that during organogenesis (a=0.05) and bolting (a=0.01). The Cd accumulation in the above-ground parts of an individual lettuce plant could be described by a sigmoidal curve. Cadmium uptake during organogenesis was highest (80% of the total), whereas that during bolting was only 4.34%. This research further reveals that for Rome lettuce: (1) the highest Cd content of above-ground parts occurred at the end of the seedling phase; (2) the best harvest time with respect to Cd phytoaccumulation is at the end of the organogenesis stage; and (3) the organogenesis stage is the most suitable time to enhance phytoaccumulation efficiency by adjusting the root:shoot ratio. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Modeling aboveground biomass of Tamarix ramosissima in the Arkansas River Basin of Southeastern Colorado, USA

    Science.gov (United States)

    Evangelista, P.; Kumar, S.; Stohlgren, T.J.; Crall, A.W.; Newman, G.J.

    2007-01-01

    Predictive models of aboveground biomass of nonnative Tamarix ramosissima of various sizes were developed using destructive sampling techniques on 50 individuals and four 100-m2 plots. Each sample was measured for average height (m) of stems and canopy area (m2) prior to cutting, drying, and weighing. Five competing regression models (P < 0.05) were developed to estimate aboveground biomass of T. ramosissima using average height and/or canopy area measurements and were evaluated using Akaike's Information Criterion corrected for small sample size (AICc). Our best model (AICc = -148.69, ??AICc = 0) successfully predicted T. ramosissima aboveground biomass (R2 = 0.97) and used average height and canopy area as predictors. Our 2nd-best model, using the same predictors, was also successful in predicting aboveground biomass (R2 = 0.97, AICc = -131.71, ??AICc = 16.98). A 3rd model demonstrated high correlation between only aboveground biomass and canopy area (R2 = 0.95), while 2 additional models found high correlations between aboveground biomass and average height measurements only (R2 = 0.90 and 0.70, respectively). These models illustrate how simple field measurements, such as height and canopy area, can be used in allometric relationships to accurately predict aboveground biomass of T. ramosissima. Although a correction factor may be necessary for predictions at larger scales, the models presented will prove useful for many research and management initiatives.

  4. Contrasting impacts of continuous moderate drought and episodic severe droughts on the aboveground-biomass increment and litterfall of three coexisting Mediterranean woody species.

    Science.gov (United States)

    Liu, Daijun; Ogaya, Romà; Barbeta, Adrià; Yang, Xiaohong; Peñuelas, Josep

    2015-11-01

    Climate change is predicted to increase the aridity in the Mediterranean Basin and severely affect forest productivity and composition. The responses of forests to different timescales of drought, however, are still poorly understood because extreme and persistent moderate droughts can produce nonlinear responses in plants. We conducted a rainfall-manipulation experiment in a Mediterranean forest dominated by Quercus ilex, Phillyrea latifolia, and Arbutus unedo in the Prades Mountains in southern Catalonia from 1999 to 2014. The experimental drought significantly decreased forest aboveground-biomass increment (ABI), tended to increase the litterfall, and decreased aboveground net primary production throughout the 15 years of the study. The responses to the experimental drought were highly species-specific. A. unedo suffered a significant reduction in ABI, Q. ilex experienced a decrease during the early experiment (1999-2003) and in the extreme droughts of 2005-2006 and 2011-2012, and P. latifolia was unaffected by the treatment. The drought treatment significantly increased branch litterfall, especially in the extremely dry year of 2011, and also increased overall leaf litterfall. The drought treatment reduced the fruit production of Q. ilex, which affected seedling recruitment. The ABIs of all species were highly correlated with SPEI in early spring, whereas the branch litterfalls were better correlated with summer SPEIs and the leaf and fruit litterfalls were better correlated with autumn SPEIs. These species-specific responses indicated that the dominant species (Q. ilex) could be partially replaced by the drought-resistant species (P. latifolia). However, the results of this long-term study also suggest that the effect of drought treatment has been dampened over time, probably due to a combination of demographic compensation, morphological and physiological acclimation, and epigenetic changes. However, the structure of community (e.g., species composition

  5. Conversion of tropical lowland forest reduces nutrient return through litterfall, and alters nutrient use efficiency and seasonality of net primary production.

    Science.gov (United States)

    Kotowska, Martyna M; Leuschner, Christoph; Triadiati, Triadiati; Hertel, Dietrich

    2016-02-01

    Tropical landscapes are not only rapidly transformed by ongoing land-use change, but are additionally confronted by increasing seasonal climate variation. There is an increasing demand for studies analyzing the effects and feedbacks on ecosystem functioning of large-scale conversions of tropical natural forest into intensively managed cash crop agriculture. We analyzed the seasonality of aboveground litterfall, fine root litter production, and aboveground woody biomass production (ANPP(woody)) in natural lowland forests, rubber agroforests under natural tree cover ("jungle rubber"), rubber and oil palm monocultures along a forest-to-agriculture transformation gradient in Sumatra. We hypothesized that the temporal fluctuation of litter production increases with increasing land-use intensity, while the associated nutrient fluxes and nutrient use efficiency (NUE) decrease. Indeed, the seasonal variation of aboveground litter production and ANPP(woody) increased from the natural forest to the plantations, while aboveground litterfall generally decreased. Nutrient return through aboveground litter was mostly highest in the natural forest; however, it was significantly lower only in rubber plantations. NUE of N, P and K was lowest in the oil palm plantations, with natural forest and the rubber systems showing comparably high values. Root litter production was generally lower than leaf litter production in all systems, while the root-to-leaf ratio of litter C flux increased along the land-use intensity gradient. Our results suggest that nutrient and C cycles are more directly affected by climate seasonality in species-poor agricultural systems than in species-rich forests, and therefore might be more susceptible to inter-annual climate fluctuation and climate change.

  6. Human appropriation of net primary production in the United Kingdom, 1800-2000. Changes in society's impact on ecological energy flows during the agrarian-industrial transition

    International Nuclear Information System (INIS)

    Musel, Annabella

    2009-01-01

    This paper presents an empirical analysis of the United Kingdom's society's long-term intervention into the energy flows of domestic terrestrial ecosystems through the human appropriation of aboveground net primary production (aHANPP) covering the period 1800-2000. The depicted aHANPP trajectory and the historical development of its components are discussed in view of a continuously increasing population and the transition process from an agrarian to an industrial socioecological regime. During the 19th century, aHANPP shows a steady decline from its level of 71% in 1800. While even higher levels were reached during the mid 20th century, the trend during the last forty years of the period under investigation again shows a reduction of aHANPP, which lies at 68% in the year 2000. The high values of aHANPP in the United Kingdom are primarily attributable to the limited amount of forest in comparison to large agricultural areas. At the beginning of the studied period, the relative stabilisation or even decrease in aHANPP in comparison to population development was made possible through the area expansion of and productivity increases on cropland and permanent pastures. Later this was made possible through the outsourcing of biomass harvest, by satisfying local nutritional demands by means of overseas imports, and as from the mid 20th century through huge amounts of fossil fuel based inputs into agriculture (e.g. increased amounts of fertilizers and motorized traction) which allowed increases in biomass harvest to be decoupled from HANPP. (author)

  7. Estimating crop net primary production using inventory data and MODIS-derived parameters

    Energy Technology Data Exchange (ETDEWEB)

    Bandaru, Varaprasad; West, Tristram O.; Ricciuto, Daniel M.; Izaurralde, Roberto C.

    2013-06-03

    National estimates of spatially-resolved cropland net primary production (NPP) are needed for diagnostic and prognostic modeling of carbon sources, sinks, and net carbon flux. Cropland NPP estimates that correspond with existing cropland cover maps are needed to drive biogeochemical models at the local scale and over national and continental extents. Existing satellite-based NPP products tend to underestimate NPP on croplands. A new Agricultural Inventory-based Light Use Efficiency (AgI-LUE) framework was developed to estimate individual crop biophysical parameters for use in estimating crop-specific NPP. The method is documented here and evaluated for corn and soybean crops in Iowa and Illinois in years 2006 and 2007. The method includes a crop-specific enhanced vegetation index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS), shortwave radiation data estimated using Mountain Climate Simulator (MTCLIM) algorithm and crop-specific LUE per county. The combined aforementioned variables were used to generate spatially-resolved, crop-specific NPP that correspond to the Cropland Data Layer (CDL) land cover product. The modeling framework represented well the gradient of NPP across Iowa and Illinois, and also well represented the difference in NPP between years 2006 and 2007. Average corn and soybean NPP from AgI-LUE was 980 g C m-2 yr-1 and 420 g C m-2 yr-1, respectively. This was 2.4 and 1.1 times higher, respectively, for corn and soybean compared to the MOD17A3 NPP product. Estimated gross primary productivity (GPP) derived from AgI-LUE were in close agreement with eddy flux tower estimates. The combination of new inputs and improved datasets enabled the development of spatially explicit and reliable NPP estimates for individual crops over large regional extents.

  8. Ecological linkages between aboveground and belowground biota

    NARCIS (Netherlands)

    Wardle, D.A.; Bardgett, R.D.; Klironomos, J.N.; Setälä, H.; Putten, van der W.H.; Wall, D.H.

    2004-01-01

    All terrestrial ecosystems consist of aboveground and belowground components that interact to influence community- and ecosystem-level processes and properties. Here we show how these components are closely interlinked at the community level, reinforced by a greater degree of specificity between

  9. Biometric-based estimation of net ecosystem production in a mature Japanese cedar (Cryptomeria japonica) plantation beneath a flux tower.

    Science.gov (United States)

    Yashiro, Yuichiro; Lee, Na-Yeon M; Ohtsuka, Toshiyuki; Shizu, Yoko; Saitoh, Taku M; Koizumi, Hiroshi

    2010-07-01

    Quantification of carbon budgets and cycling in Japanese cedar (Cryptomeria japonica D. Don) plantations is essential for understanding forest functions in Japan because these plantations occupy about 20% of the total forested area. We conducted a biometric estimate of net ecosystem production (NEP) in a mature Japanese cedar plantation beneath a flux tower over a 4-year period. Net primary production (NPP) was 7.9 Mg C ha(-1) year(-1) and consisted mainly of tree biomass increment and aboveground litter production. Respiration was calculated as 6.8 (soil) and 3.3 (root) Mg C ha(-1) year(-1). Thus, NEP in the plantation was 4.3 Mg C ha(-1) year(-1). In agreement with the tower-based flux findings, this result suggests that the Japanese cedar plantation was a strong carbon sink. The biometric-based NEP was higher among most other types of Japanese forests studied. Carbon sequestration in the mature plantation was characterized by a larger increment in tree biomass and lower mortality than in natural forests. Land-use change from natural forest to Japanese cedar plantation might, therefore, stimulate carbon sequestration and change the carbon allocation of NPP from an increment in coarse woody debris to an increase in tree biomass.

  10. Net primary productivity (NPP) and associated parameters for the U.S. outer continental shelf waters, 1998-2009 (NODC Accession 0071184)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession consists of monthly net primary productivity (NPP) estimates for 1998-2009 derived from the Vertically Generalized Production Model (VGPM) for the 26...

  11. Rain use efficiency across a precipitation gradient on the Tibetan Plateau

    Science.gov (United States)

    Rain use efficiency (RUE), commonly described as the ratio of aboveground net primary production (ANPP) to mean annual precipitation (MAP), is a critical indicator for predicting potential responses of grassland ecosystems to changing precipitation regimes. However, current understanding on patterns...

  12. Changes in vegetation structure and aboveground biomass in ...

    African Journals Online (AJOL)

    Changes in vegetation structure and aboveground biomass in response to traditional rangeland management practices in Borana, southern Ethiopia. ... managed by prescribed fire for five years and grazed only post-fire during dry seasons.

  13. Worldwide estimates and bibliography of net primary productivity derived from pre-1982 publications

    Energy Technology Data Exchange (ETDEWEB)

    Esser, G. [Justus-Liebig-Univ., Giessen (Germany). Inst. for Plant Ecology; Lieth, H.F.H. [Univ. of Osnabrueck (Germany). Systems Research Group; Scurlock, J.M.O.; Olson, R.J. [Oak Ridge National Lab., TN (United States)

    1997-10-01

    An extensive compilation of more than 700 field estimates of net primary productivity of natural and agricultural ecosystems worldwide was synthesized in Germany in the 1970s and early 1980s. Although the Osnabrueck data set has not been updated since the 1980s, it represents a wealth of information for use in model development and validation. This report documents the development of this data set, its contents, and its recent availability on the Internet from the Oak Ridge National Laboratory Distributed Active Archive Center for Biogeochemical Dynamics. Caution is advised in using these data, which necessarily include assumptions and conversions that may not be universally applicable to all sites.

  14. Aboveground persistence of vascular plants in relationship to the levels of airborne nutrient deposition

    NARCIS (Netherlands)

    Hendriks, R.J.J.; Ozinga, W.A.; Berg, van den L.J.L.; Noordwijk, E.; Schaminee, J.H.J.; Groenendael, van J.M.

    2014-01-01

    This paper examines whether high atmospheric nitrogen deposition affects aboveground persistence of vascular plants. We combined information on local aboveground persistence of vascular plants in 245 permanent plots in the Netherlands with estimated level of nitrogen deposition at the time of

  15. Large grazers modify effects of aboveground-belowground interactions on small-scale plant community composition

    NARCIS (Netherlands)

    Veen, G. F. (Ciska); Geuverink, Elzemiek; Olff, Han; Schmid, Bernhard

    Aboveground and belowground organisms influence plant community composition by local interactions, and their scale of impact may vary from millimeters belowground to kilometers aboveground. However, it still poorly understood how large grazers that select their forage on large spatial scales

  16. Comparison between remote sensing and a dynamic vegetation model for estimating terrestrial primary production of Africa.

    Science.gov (United States)

    Ardö, Jonas

    2015-12-01

    Africa is an important part of the global carbon cycle. It is also a continent facing potential problems due to increasing resource demand in combination with climate change-induced changes in resource supply. Quantifying the pools and fluxes constituting the terrestrial African carbon cycle is a challenge, because of uncertainties in meteorological driver data, lack of validation data, and potentially uncertain representation of important processes in major ecosystems. In this paper, terrestrial primary production estimates derived from remote sensing and a dynamic vegetation model are compared and quantified for major African land cover types. Continental gross primary production estimates derived from remote sensing were higher than corresponding estimates derived from a dynamic vegetation model. However, estimates of continental net primary production from remote sensing were lower than corresponding estimates from the dynamic vegetation model. Variation was found among land cover classes, and the largest differences in gross primary production were found in the evergreen broadleaf forest. Average carbon use efficiency (NPP/GPP) was 0.58 for the vegetation model and 0.46 for the remote sensing method. Validation versus in situ data of aboveground net primary production revealed significant positive relationships for both methods. A combination of the remote sensing method with the dynamic vegetation model did not strongly affect this relationship. Observed significant differences in estimated vegetation productivity may have several causes, including model design and temperature sensitivity. Differences in carbon use efficiency reflect underlying model assumptions. Integrating the realistic process representation of dynamic vegetation models with the high resolution observational strength of remote sensing may support realistic estimation of components of the carbon cycle and enhance resource monitoring, providing suitable validation data is available.

  17. Interactions between aboveground herbivores and the mycorrhizal mutualists of plants.

    Science.gov (United States)

    Gehring, C A; Whitham, T G

    1994-07-01

    Plant growth, reproduction and survival can be affected both by mycorrhizal fungi and aboveground herbivores, but few studies have examined the interactive effects of these factors on plants. Most of the available data suggest that severe herbivory reduces root colonization by vesicular-arbuscular and ectomycorrhizal fungi. However, the reverse interaction has also been documented - mycorrhizal fungi deter herbivores and interact with fungal endophytes to influence herbivory. Although consistent patterns and mechanistic explanations are yet to emerge, it is likely that aboveground herbivore-mycorrhiza interactions have important implications for plant populations and communities. Copyright © 1994. Published by Elsevier Ltd.

  18. Some metals in aboveground biomass of Scots pine in Lithuania

    DEFF Research Database (Denmark)

    Varnagiryte-Kabašinskiene, Iveta; Armolaitis, Kestutis; Stupak, Inge

    2014-01-01

    with stemwood and living branches. However, metal export with aboveground biomass represented relatively small proportion of metals in mineral sandy soil. The annual inputs of Fe and Zn with atmospheric deposition were over 10 times higher than the mean annual removals with total aboveground biomass....... The content of metals in forest biomass fuel ash was relatively small to compare with their total removals. The findings of this study have an important implications for future practice, i.e. the recommended maximum forest biomass fuel ash dose for the compensating fertilising could be increased with respect...... to balanced output - input in Lithuania....

  19. Bioenergy production potential for aboveground biomass from a subtropical constructed wetland

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Chung [Department of Forestry and Nature Conservation, Chinese Culture University, Taipei 11114 (China); Ko, Chun-Han [School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617 (China); Bioenergy Research Center, National Taiwan University, Taipei 10617 (China); Chang, Fang-Chih [The Instrument Center, National Cheng Kung University, No.1, University Road, Tainan City 70101 (China); Chen, Pen-Yuan [Department of Landscape Architecture, National Chiayi University, Chiayi City 60004 (China); Liu, Tzu-Fen [School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617 (China); Sheu, Yiong-Shing [Department of Water Quality Protection, Environmental Protection Administration, Executive Yuan, Taipei 10042 (China); Shih, Tzenge-Lien [Department of Chemistry, Tamkang University, Tamsui, Taipei 25137 (China); Teng, Chia-Ji [Environmental Protection Bureau, Taipei County Government, Taipei 22001 (China)

    2011-01-15

    Wetland biomass has potentials for bioenergy production and carbon sequestration. Planted with multiple species macrophytes to promote biodiversity, the 3.29 ha constructed wetland has been treated 4000 cubic meter per day (CMD) domestic wastewater and urban runoff. This study investigated the seasonal variations of aboveground biomass of the constructed wetland, from March 2007 to March 2008. The overall aboveground biomass was 16,737 kg and total carbon content 6185 kg at the peak of aboveground accumulation for the system emergent macrophyte at September 2007. Typhoon Korsa flood this constructed wetland at October 2007, however, significant recovery for emergent macrophyte was observed without human intervention. Endemic Ludwigia sp. recovered much faster, compared to previously dominated typha. Self-recovery ability of the macrophyte community after typhoon validated the feasibility of biomass harvesting. Incinerating of 80% biomass harvested of experimental area in a nearby incineration plant could produce 11,846 kWh for one month. (author)

  20. MS-Based Metabolite Profiling of Aboveground and Root Components of Zingiber mioga and Officinale.

    Science.gov (United States)

    Han, Ji Soo; Lee, Sunmin; Kim, Hyang Yeon; Lee, Choong Hwan

    2015-09-03

    Zingiber species are members of the Zingiberaceae family, and are widely used for medicinal and food purposes. In this study aboveground and root parts of Zingiber mioga and Zingiber officinale were subjected to metabolite profiling by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) in order to characterize them by species and parts and also to measure bioactivities. Both primary and secondary metabolites showed clear discrimination in the PCA score plot and PLS-DA by species and parts. Tetrahydrocurcumin, diarylheptanoid, 8-gingerol, and 8-paradol were discriminating metabolites between Z. mioga and Z. officinale that were present in different quantities. Eleven flavonoids, six amino acids, six organic acids, four fatty acids, and gingerenone A were higher in the aboveground parts than the root parts. Antioxidant activities were measured and were highest in the root part of Z. officinale. The relatively high contents of tetrahydrocurcumin, diarylheptanoid, and galanganol C in the root part of Z. officinale showed highly positive correlation with bioactivities based on correlation assay. On the basis of these results, we can suggest different usages of structurally different parts of Zingiber species as food plants.

  1. MS-Based Metabolite Profiling of Aboveground and Root Components of Zingiber mioga and Officinale

    Directory of Open Access Journals (Sweden)

    Ji Soo Han

    2015-09-01

    Full Text Available Zingiber species are members of the Zingiberaceae family, and are widely used for medicinal and food purposes. In this study aboveground and root parts of Zingiber mioga and Zingiber officinale were subjected to metabolite profiling by ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS in order to characterize them by species and parts and also to measure bioactivities. Both primary and secondary metabolites showed clear discrimination in the PCA score plot and PLS-DA by species and parts. Tetrahydrocurcumin, diarylheptanoid, 8-gingerol, and 8-paradol were discriminating metabolites between Z. mioga and Z. officinale that were present in different quantities. Eleven flavonoids, six amino acids, six organic acids, four fatty acids, and gingerenone A were higher in the aboveground parts than the root parts. Antioxidant activities were measured and were highest in the root part of Z. officinale. The relatively high contents of tetrahydrocurcumin, diarylheptanoid, and galanganol C in the root part of Z. officinale showed highly positive correlation with bioactivities based on correlation assay. On the basis of these results, we can suggest different usages of structurally different parts of Zingiber species as food plants.

  2. Human appropriation of net primary production in the United Kingdom, 1800-2000. Changes in society's impact on ecological energy flows during the agrarian-industrial transition

    Energy Technology Data Exchange (ETDEWEB)

    Musel, Annabella [Institute of Social Ecology, Alpen-Adria University Klagenfurt - Graz - Wien, Schottenfeldgasse 29, 1070 Vienna (Austria)

    2009-12-15

    This paper presents an empirical analysis of the United Kingdom's society's long-term intervention into the energy flows of domestic terrestrial ecosystems through the human appropriation of aboveground net primary production (aHANPP) covering the period 1800-2000. The depicted aHANPP trajectory and the historical development of its components are discussed in view of a continuously increasing population and the transition process from an agrarian to an industrial socioecological regime. During the 19th century, aHANPP shows a steady decline from its level of 71% in 1800. While even higher levels were reached during the mid 20th century, the trend during the last forty years of the period under investigation again shows a reduction of aHANPP, which lies at 68% in the year 2000. The high values of aHANPP in the United Kingdom are primarily attributable to the limited amount of forest in comparison to large agricultural areas. At the beginning of the studied period, the relative stabilisation or even decrease in aHANPP in comparison to population development was made possible through the area expansion of and productivity increases on cropland and permanent pastures. Later this was made possible through the outsourcing of biomass harvest, by satisfying local nutritional demands by means of overseas imports, and as from the mid 20th century through huge amounts of fossil fuel based inputs into agriculture (e.g. increased amounts of fertilizers and motorized traction) which allowed increases in biomass harvest to be decoupled from HANPP. (author)

  3. Local above-ground persistence of vascular plants : Life-history trade-offs and environmental constraints

    NARCIS (Netherlands)

    Ozinga, Wim A.; Hennekens, Stephan M.; Schaminee, Joop H. J.; Smits, Nina A. C.; Bekker, Renee M.; Roemermann, Christine; Klimes, Leos; Bakker, Jan P.; van Groenendael, Jan M.

    Questions: 1. Which plant traits and habitat characteristics best explain local above-ground persistence of vascular plant species and 2. Is there a trade-off between local above-ground persistence and the ability for seed dispersal and below-ground persistence in the soil seed bank? Locations: 845

  4. Relationship between plant diversity and spatial stability of ...

    African Journals Online (AJOL)

    Theory predicts that greater biodiversity is expected to enhance stability of ecosystem. In field experiment, we created some diversity-level assemblages by removing functional groups across two grassland ecosystems and evaluated the responses of spatial stability of aboveground net primary productivity (ANPP) to varying ...

  5. Aboveground mechanical stimuli affect belowground plant-plant communication.

    Science.gov (United States)

    Elhakeem, Ali; Markovic, Dimitrije; Broberg, Anders; Anten, Niels P R; Ninkovic, Velemir

    2018-01-01

    Plants can detect the presence of their neighbours and modify their growth behaviour accordingly. But the extent to which this neighbour detection is mediated by abiotic stressors is not well known. In this study we tested the acclimation response of Zea mays L. seedlings through belowground interactions to the presence of their siblings exposed to brief mechano stimuli. Maize seedling simultaneously shared the growth solution of touched plants or they were transferred to the growth solution of previously touched plants. We tested the growth preferences of newly germinated seedlings toward the growth solution of touched (T_solution) or untouched plants (C_solution). The primary root of the newly germinated seedlings grew significantly less towards T_solution than to C_solution. Plants transferred to T_solution allocated more biomass to shoots and less to roots. While plants that simultaneously shared their growth solution with the touched plants produced more biomass. Results show that plant responses to neighbours can be modified by aboveground abiotic stress to those neighbours and suggest that these modifications are mediated by belowground interactions.

  6. Aboveground mechanical stimuli affect belowground plant-plant communication.

    Directory of Open Access Journals (Sweden)

    Ali Elhakeem

    Full Text Available Plants can detect the presence of their neighbours and modify their growth behaviour accordingly. But the extent to which this neighbour detection is mediated by abiotic stressors is not well known. In this study we tested the acclimation response of Zea mays L. seedlings through belowground interactions to the presence of their siblings exposed to brief mechano stimuli. Maize seedling simultaneously shared the growth solution of touched plants or they were transferred to the growth solution of previously touched plants. We tested the growth preferences of newly germinated seedlings toward the growth solution of touched (T_solution or untouched plants (C_solution. The primary root of the newly germinated seedlings grew significantly less towards T_solution than to C_solution. Plants transferred to T_solution allocated more biomass to shoots and less to roots. While plants that simultaneously shared their growth solution with the touched plants produced more biomass. Results show that plant responses to neighbours can be modified by aboveground abiotic stress to those neighbours and suggest that these modifications are mediated by belowground interactions.

  7. Proven Alternatives for Aboveground Treatment of Arsenic in Groundwater

    Science.gov (United States)

    This issue paper, developed for EPA's Engineering Forum, identifies and summarizes experiences with proven aboveground treatment alternatives for arsenic in groundwater, and provides information on their relative effectiveness and cost.

  8. Seasonal Oxygen Dynamics in a Warm Temperate Estuary: Effects of Hydrologic Variability on Measurements of Primary Production, Respiration, and Net Metabolism

    Science.gov (United States)

    Seasonal responses in estuarine metabolism (primary production, respiration, and net metabolism) were examined using two complementary approaches. Total ecosystem metabolism rates were calculated from dissolved oxygen time series using Odum’s open water method. Water column rates...

  9. Biomass yielding potential of naturally regenerated Prosopis juliflora tree stands at three varied ecosystems in southern districts of Tamil Nadu, India.

    Science.gov (United States)

    Saraswathi, K; Chandrasekaran, S

    2016-05-01

    Fuel energy demand is of great concern in recent times due to the depletion of fossil fuel resources. Biomass serves as widely available primary renewable energy source. Hence, a study was performed to assess the above-ground biomass yielding capability of fuel wood tree Prosopis juliflora in three varied ecosystems viz., coastal, fallow land and riparian ecosystems in southern districts of Tamil Nadu. The results showed that the biomass production potential and above-ground net primary productivity of P. juliflora depend on the age of the tree stands and the nature of ecosystem. A higher biomass yield was observed for P. juliflora trees with 5 to 10 years old when compared to less than 5 years of their age. Among the three ecosystems, the maximum biomass production was recorded in riparian ecosystem. The stands with less than 5-year-old P. juliflora trees gave 1.40 t/ha, and 5- to 10-year-old tree stands produced 27.69 t/ha in riparian ecosystem. Above-ground net primary productivity of both the age groups was high in fallow land ecosystem. In riparian ecosystem, the wood showed high density and low sulphur content than the other two ecosystems. Hence, P. juliflora biomass can serve as an environmentally and economically feasible fuel as well as their utilization proffers an effective means to control its invasiveness.

  10. Community level offset of rain use- and transpiration efficiency for a heavily grazed ecosystem in inner Mongolia grassland.

    Science.gov (United States)

    Gao, Ying Z; Giese, Marcus; Gao, Qiang; Brueck, Holger; Sheng, Lian X; Yang, Hai J

    2013-01-01

    Water use efficiency (WUE) is a key indicator to assess ecosystem adaptation to water stress. Rain use efficiency (RUE) is usually used as a proxy for WUE due to lack of transpiration data. Furthermore, RUE based on aboveground primary productivity (RUEANPP) is used to evaluate whole plant water use because root production data is often missing as well. However, it is controversial as to whether RUE is a reliable parameter to elucidate transpiration efficiency (TE), and whether RUEANPP is a suitable proxy for RUE of the whole plant basis. The experiment was conducted at three differently managed sites in the Inner Mongolia steppe: a site fenced since 1979 (UG79), a winter grazing site (WG) and a heavily grazed site (HG). Site HG had consistent lowest RUEANPP and RUE based on total net primary productivity (RUENPP). RUEANPP is a relatively good proxy at sites UG79 and WG, but less reliable for site HG. Similarly, RUEANPP is good predictor of transpiration efficiency based on aboveground net primary productivity (TEANPP) at sites UG79 and WG but not for site HG. However, if total net primary productivity is considered, RUENPP is good predictor of transpiration efficiency based on total net primary productivity (TENPP) for all sites. Although our measurements indicate decreased plant transpiration and consequentially decreasing RUE under heavy grazing, productivity was relatively compensated for with a higher TE. This offset between RUE and TE was even enhanced under water limited conditions and more evident when belowground net primary productivity (BNNP) was included. These findings suggest that BNPP should be considered when studies fucus on WUE of more intensively used grasslands. The consideration of the whole plant perspective and "real" WUE would partially revise our picture of system performance and therefore might affect the discussion on the C-sequestration and resilience potential of ecosystems.

  11. an expansion of the aboveground biomass quantification model for ...

    African Journals Online (AJOL)

    Research Note BECVOL 3: an expansion of the aboveground biomass quantification model for ... African Journal of Range and Forage Science ... encroachment and estimation of food to browser herbivore species, was proposed during 1989.

  12. Deer browsing delays succession by altering aboveground vegetation and belowground seed banks.

    Directory of Open Access Journals (Sweden)

    Antonio DiTommaso

    Full Text Available Soil seed bank composition is important to the recovery of natural and semi-natural areas from disturbance and serves as a safeguard against environmental catastrophe. White-tailed deer (Odocoileus virginianus populations have increased dramatically in eastern North America over the past century and can have strong impacts on aboveground vegetation, but their impacts on seed bank dynamics are less known. To document the long-term effects of deer browsing on plant successional dynamics, we studied the impacts of deer on both aboveground vegetation and seed bank composition in plant communities following agricultural abandonment. In 2005, we established six 15 × 15 m fenced enclosures and paired open plots in recently followed agricultural fields near Ithaca, NY, USA. In late October of each of six years (2005-2010, we collected soil from each plot and conducted seed germination cycles in a greenhouse to document seed bank composition. These data were compared to measurements of aboveground plant cover (2005-2008 and tree density (2005-2012. The impacts of deer browsing on aboveground vegetation were severe and immediate, resulting in significantly more bare soil, reduced plant biomass, reduced recruitment of woody species, and relatively fewer native species. These impacts persisted throughout the experiment. The impacts of browsing were even stronger on seed bank dynamics. Browsing resulted in significantly decreased overall species richness (but higher diversity, reduced seed bank abundance, relatively more short-lived species (annuals and biennials, and fewer native species. Both seed bank richness and the relative abundance of annuals/biennials were mirrored in the aboveground vegetation. Thus, deer browsing has long-term and potentially reinforcing impacts on secondary succession, slowing succession by selectively consuming native perennials and woody species and favoring the persistence of short-lived, introduced species that continually

  13. Individual tree size inequality enhances aboveground biomass in homegarden agroforestry systems in the dry zone of Sri Lanka.

    Science.gov (United States)

    Ali, Arshad; Mattsson, Eskil

    2017-01-01

    Individual tree size variation, which is generally quantified by variances in tree diameter at breast height (DBH) and height in isolation or conjunction, plays a central role in ecosystem functioning in both controlled and natural environments, including forests. However, none of the studies have been conducted in homegarden agroforestry systems. In this study, aboveground biomass, stand quality, cation exchange capacity (CEC), DBH variation, and species diversity were determined across 45 homegardens in the dry zone of Sri Lanka. We employed structural equation modeling (SEM) to test for the direct and indirect effects of stand quality and CEC, via tree size inequality and species diversity, on aboveground biomass. The SEM accounted for 26, 8, and 1% of the variation in aboveground biomass, species diversity and DBH variation, respectively. DBH variation had the strongest positive direct effect on aboveground biomass (β=0.49), followed by the non-significant direct effect of species diversity (β=0.17), stand quality (β=0.17) and CEC (β=-0.05). There were non-significant direct effects of CEC and stand quality on DBH variation and species diversity. Stand quality and CEC had also non-significant indirect effects, via DBH variation and species diversity, on aboveground biomass. Our study revealed that aboveground biomass substantially increased with individual tree size variation only, which supports the niche complementarity mechanism. However, aboveground biomass was not considerably increased with species diversity, stand quality and soil fertility, which might be attributable to the adaptation of certain productive species to the local site conditions. Stand structure shaped by few productive species or independent of species diversity is a main determinant for the variation in aboveground biomass in the studied homegardens. Maintaining stand structure through management practices could be an effective approach for enhancing aboveground biomass in these dry

  14. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests.

    Science.gov (United States)

    Ali, Arshad; Yan, En-Rong; Chang, Scott X; Cheng, Jun-Yang; Liu, Xiang-Yu

    2017-01-01

    Subtropical forests are globally important in providing ecological goods and services, but it is not clear whether functional diversity and composition can predict aboveground biomass in such forests. We hypothesized that high aboveground biomass is associated with high functional divergence (FDvar, i.e., niche complementarity) and community-weighted mean (CWM, i.e., mass ratio; communities dominated by a single plant strategy) of trait values. Structural equation modeling was employed to determine the direct and indirect effects of stand age and the residual effects of CWM and FDvar on aboveground biomass across 31 plots in secondary forests in subtropical China. The CWM model accounted for 78, 20, 6 and 2% of the variation in aboveground biomass, nitrogen concentration in young leaf, plant height and specific leaf area of young leaf, respectively. The FDvar model explained 74, 13, 7 and 0% of the variation in aboveground biomass, plant height, twig wood density and nitrogen concentration in young leaf, respectively. The variation in aboveground biomass, CWM of leaf nitrogen concentration and specific leaf area, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf explained by the joint model was 86, 20, 13, 7, 2 and 0%, respectively. Stand age had a strong positive direct effect but low indirect positive effects on aboveground biomass. Aboveground biomass was negatively related to CWM of nitrogen concentration in young leaf, but positively related to CWM of specific leaf area of young leaf and plant height, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf. Leaf and wood economics spectra are decoupled in regulating the functionality of forests, communities with diverse species but high nitrogen conservative and light acquisitive strategies result in high aboveground biomass, and hence, supporting both the mass ratio and niche complementarity hypotheses in secondary subtropical forests

  15. Steering soil microbiomes to suppress aboveground insect pests

    NARCIS (Netherlands)

    Pineda, Ana; Kaplan, Ian; Bezemer, T. Martijn

    2017-01-01

    Soil-borne microbes affect aboveground herbivorous insects through a cascade of molecular and chemical changes in the plant, but knowledge of these microbe?plant?insect interactions is mostly limited to one or a few microbial strains. Yet, the soil microbial community comprises thousands of unique

  16. Topographically mediated controls on aboveground biomass across a mediterranean-type landscape

    Science.gov (United States)

    Dahlin, K.; Asner, G. P.; Field, C. B.

    2009-12-01

    Aboveground biomass accumulation is a useful metric for evaluating habitat restoration and ecosystem services projects, in addition to being a robust measure of carbon sequestration. However, at the landscape scale non-anthropogenic controls on biomass accumulation are poorly understood. In this study we combined field measurements, high resolution data from the NASA JPL Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), and the Carnegie Airborne Observatory (CAO) airborne light detection and ranging (lidar) system to create a comprehensive map of aboveground biomass across a patchy mediterranean-type landscape (Jasper Ridge Biological Preserve, Stanford, CA). Candidate explanatory variables (e.g. slope, elevation, incident solar radiation) were developed using a geologic map and a digital elevation model derived from the lidar data. Finally, candidate variables were tested, and a model was produced to predict aboveground biomass from environmental data. Though many of the explanatory variables have only indirect effects on plant growth, the model permits inferences to be made about the relative importance of light, water, temperature, and edaphic characteristics on carbon accumulation in mediterranean-type systems.

  17. Observation and simulation of net primary productivity in Qilian Mountain, western China.

    Science.gov (United States)

    Zhou, Y; Zhu, Q; Chen, J M; Wang, Y Q; Liu, J; Sun, R; Tang, S

    2007-11-01

    We modeled net primary productivity (NPP) at high spatial resolution using an advanced spaceborne thermal emission and reflection radiometer (ASTER) image of a Qilian Mountain study area using the boreal ecosystem productivity simulator (BEPS). Two key driving variables of the model, leaf area index (LAI) and land cover type, were derived from ASTER and moderate resolution imaging spectroradiometer (MODIS) data. Other spatially explicit inputs included daily meteorological data (radiation, precipitation, temperature, humidity), available soil water holding capacity (AWC), and forest biomass. NPP was estimated for coniferous forests and other land cover types in the study area. The result showed that NPP of coniferous forests in the study area was about 4.4 tCha(-1)y(-1). The correlation coefficient between the modeled NPP and ground measurements was 0.84, with a mean relative error of about 13.9%.

  18. Airborne laser scanner-assisted estimation of aboveground biomass change in a temperate oak-pine forest

    Science.gov (United States)

    Nicholas S. Skowronski; Kenneth L. Clark; Michael Gallagher; Richard A. Birdsey; John L. Hom

    2014-01-01

    We estimated aboveground tree biomass and change in aboveground tree biomass using repeated airborne laser scanner (ALS) acquisitions and temporally coincident ground observations of forest biomass, for a relatively undisturbed period (2004-2007; ∇07-04), a contrasting period of disturbance (2007-2009; ∇09-07...

  19. Spatial scaling of net primary productivity using subpixel landcover information

    Science.gov (United States)

    Chen, X. F.; Chen, Jing M.; Ju, Wei M.; Ren, L. L.

    2008-10-01

    Gridding the land surface into coarse homogeneous pixels may cause important biases on ecosystem model estimations of carbon budget components at local, regional and global scales. These biases result from overlooking subpixel variability of land surface characteristics. Vegetation heterogeneity is an important factor introducing biases in regional ecological modeling, especially when the modeling is made on large grids. This study suggests a simple algorithm that uses subpixel information on the spatial variability of land cover type to correct net primary productivity (NPP) estimates, made at coarse spatial resolutions where the land surface is considered as homogeneous within each pixel. The algorithm operates in such a way that NPP obtained from calculations made at coarse spatial resolutions are multiplied by simple functions that attempt to reproduce the effects of subpixel variability of land cover type on NPP. Its application to a carbon-hydrology coupled model(BEPS-TerrainLab model) estimates made at a 1-km resolution over a watershed (named Baohe River Basin) located in the southwestern part of Qinling Mountains, Shaanxi Province, China, improved estimates of average NPP as well as its spatial variability.

  20. Productive vegetation: relationships between net primary productivity, vegetation types and climate change in the Wet Tropics bioregion

    International Nuclear Information System (INIS)

    Ramirez, Vanessa Valdez; Williams, Stephen E.; VanDerWal, Jeremy

    2007-01-01

    Full text: Full text: There is now ample evidence demonstrating the impacts of climate change on biodiversity and human society (Walther ef a/. 2002). Numerous studies have shown climate change is one of the most significant threats to tropical forests, such as the Wet Tropics Heritage Area, due to their high biodiversity and endemism (Pounds ef al. 1999; Hughes 2000; Parmesan and Yohe 2003). Williams ef al. (2003) suggested that small shifts in net primary productivity (NPP) as a result of climate change could lead to potentially massive follow-on effects for the extremely diverse and vulnerable rainforest flora and fauna. It is therefore crucial to explore the relationships between NPP and local biodiversity, especially to create models for different climate change scenarios. Nevertheless, NPP in the Wet Tropics has yet to be estimated. This is the first study to provide a general NPP estimate for the Wet Tropics bioregion using climate surrogates (Schuur 2003). This technique estimates NPP in an accurate, repeatable, and cost-effective way. NPP values were linked to vegetation types and examined under various climatic and environmental conditions. Results show a significant difference in productivity according to vegetation types and climatic variables, with temperature and rainfall seasonality as the most important determining variables. Additionally, lowland and upland vegetations showed a significant difference in productivity patterns throughout the year. Vegetation types located above 1000 metres in altitude had the lowest values of mean annual productivity due to their high rainfall and low temperatures; vegetation types located below 600 metres showed increased productivity values during the wet season (December-March). Net primary productivity will certainly be impacted by changes in temperature and rainfall, due to climate change. Although an increase in NPP values can be predicted for upland areas, the more widely distributed lowlands will drastically

  1. Extraction and textural characterization of above-ground areas from aerial stereo pairs: a quality assessment

    Science.gov (United States)

    Baillard, C.; Dissard, O.; Jamet, O.; Maître, H.

    Above-ground analysis is a key point to the reconstruction of urban scenes, but it is a difficult task because of the diversity of the involved objects. We propose a new method to above-ground extraction from an aerial stereo pair, which does not require any assumption about object shape or nature. A Digital Surface Model is first produced by a stereoscopic matching stage preserving discontinuities, and then processed by a region-based Markovian classification algorithm. The produced above-ground areas are finally characterized as man-made or natural according to the grey level information. The quality of the results is assessed and discussed.

  2. Above-ground tree outside forest (TOF) phytomass and carbon ...

    Indian Academy of Sciences (India)

    to classify TOF, to estimate above-ground TOF phytomass and the carbon content ... eral, trees outside forests (TOF) mean the trees ..... have been used to stratify the area, based on the ... The optimum plot size and num- .... population centres.

  3. Aboveground Biomass and Litterfall Dynamics in Secondary Forest ...

    African Journals Online (AJOL)

    The differences in aboveground biomass, litterfall patterns and the seasonality of litterfall in three secondary forest fields aged 1, 5 and 10 years of age regenerating from degraded abandoned rubber plantation and a mature forest were studied in southern Nigeria. This is with a view to understanding the possibility of ...

  4. Effects of Climate Change and Shifts in Forest Composition on Forest Net Primary Production

    Institute of Scientific and Technical Information of China (English)

    Jyh-Min Chiang; Louts R. Iverson; Anantha Prasad; Kim J. Brown

    2008-01-01

    Forests are dynamic in both structure and species composition, and these dynamics are strongly Influenced by climate.However, the net effects of future tree species composition on net primary production (NPP) are not well understood. The objective of this work was to model the potential range shifts of tree species (DISTRIB Model) and predict their impacts on NPP (PnET-Ⅱ Model) that will be associated with alterations in species composition. We selected four 200 × 200 km areas In Wisconsin, Maine, Arkansas, and the Ohio-West Virginia area, representing focal areas of potential species range shifts. PnET-Ⅱ model simulations were carried out assuming that all forests achieved steady state, of which the species compositions were predicted by DISTRIB model with no migration limitation. The total NPP under the current climate ranged from 552 to 908 g C/m2 per year. The effects of potential species redistributions on NPP were moderate (-12% to +8%) compared with the influence of future climatic changes (-60% to +25%). The direction and magnitude of climate change effects on NPP were largely dependent on the degree of warming and water balance. Thus, the magnitude of future climate change can affect the feedback system between the atmosphere and biosphere.

  5. Plant genetic variation mediates an indirect ecological effect between belowground earthworms and aboveground aphids.

    Science.gov (United States)

    Singh, Akanksha; Braun, Julia; Decker, Emilia; Hans, Sarah; Wagner, Agnes; Weisser, Wolfgang W; Zytynska, Sharon E

    2014-10-21

    Interactions between aboveground and belowground terrestrial communities are often mediated by plants, with soil organisms interacting via the roots and aboveground organisms via the shoots and leaves. Many studies now show that plant genetics can drive changes in the structure of both above and belowground communities; however, the role of plant genetic variation in mediating aboveground-belowground interactions is still unclear. We used an earthworm-plant-aphid model system with two aphid species (Aphis fabae and Acyrthosiphon pisum) to test the effect of host-plant (Vicia faba) genetic variation on the indirect interaction between the belowground earthworms (Eisenia veneta) on the aboveground aphid populations. Our data shows that host-plant variety mediated an indirect ecological effect of earthworms on generalist black bean aphids (A. fabae), with earthworms increasing aphid growth rate in three plant varieties but decreasing it in another variety. We found no effect of earthworms on the second aphid species, the pea aphid (A. pisum), and no effect of competition between the aphid species. Plant biomass was increased when earthworms were present, and decreased when A. pisum was feeding on the plant (mediated by plant variety). Although A. fabae aphids were influenced by the plants and worms, they did not, in turn, alter plant biomass. Previous work has shown inconsistent effects of earthworms on aphids, but we suggest these differences could be explained by plant genetic variation and variation among aphid species. This study demonstrates that the outcome of belowground-aboveground interactions can be mediated by genetic variation in the host-plant, but depends on the identity of the species involved.

  6. Above-ground biomass investments and light interception of tropical forest trees and lianas early in succession

    NARCIS (Netherlands)

    Selaya, N.G.; Anten, N.P.R.; Oomen, R.J.; Matthies, M.; Werger, M.J.A.

    2007-01-01

    Background and Aims Crown structure and above-ground biomass investment was studied in relation to light interception of trees and lianas growing in a 6-month-old regenerating forest. Methods The vertical distribution of total above-ground biomass, height, diameter, stem density, leaf angles and

  7. Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms

    NARCIS (Netherlands)

    Kowalchuk, G.A.; Buma, D.S; De Boer, W.; Klinkhamer, P.G.L.; Van Veen, J.A.

    2002-01-01

    A coupling of above-ground plant diversity and below-ground microbial diversity has been implied in studies dedicated to assessing the role of macrophyte diversity on the stability, resilience, and functioning of ecosystems. Indeed, above-ground plant communities have long been assumed to drive

  8. Net primary productivity of some aquatic macrophytes in sewage-sullage mixture.

    Science.gov (United States)

    Kanungo, V K; Sinha, S; Naik, M L

    2001-07-01

    Sewage-sullage mixture from Raipur city is spread over a vast area surrounding the city. This mixture has a pH always above neutrality with high turbidity. Transparency was nil with the absence of phenolphthalein alkalinity and dissolved oxygen. Hardness was high with low nitrogen and phosphorus concentration. Human consumable. acquatic macrophytes are cultivated in such waste water. Net primary productivity of three macrophytes: Ipomoea aquatica, Marsilea quadrifolia and Nelumbo nucifera were evaluated while being cultivated in such sewage-sullage mixture. Productivity was determined either with periodic biomass removal (I. aquatica and M. quadrifolia) or through removing the biomass only once at the time of growing season (N. nucifera). Growing season productivity of up to 27.48. 19.81 and 9.49 g m(-2) and day(-1) and extrapolated productivity of up to 100.30, 72.31 and 34.64 mt. ha(-1) yr(-1) was recorded for I. aquatica. M. quadrifolia and N. nucifera respectively. Thus, these macrophytes are yielding a high amount of human consumable biomass from an area which neither be a useless wetland.

  9. Plants as green phones: Novel insights into plant-mediated communication between below- and above-ground insects.

    Science.gov (United States)

    Soler, Roxina; Harvey, Jeffrey A; Bezemer, T Martijn; Stuefer, Josef F

    2008-08-01

    Plants can act as vertical communication channels or 'green phones' linking soil-dwelling insects and insects in the aboveground ecosystem. When root-feeding insects attack a plant, the direct defense system of the shoot is activated, leading to an accumulation of phytotoxins in the leaves. The protection of the plant shoot elicited by root damage can impair the survival, growth and development of aboveground insect herbivores, thereby creating plant-based functional links between soil-dwelling insects and insects that develop in the aboveground ecosystem. The interactions between spatially separated insects below- and aboveground are not restricted to root and foliar plant-feeding insects, but can be extended to higher trophic levels such as insect parasitoids. Here we discuss some implications of plants acting as communication channels or 'green phones' between root and foliar-feeding insects and their parasitoids, focusing on recent findings that plants attacked by root-feeding insects are significantly less attractive for the parasitoids of foliar-feeding insects.

  10. Net primary production and canopy nitrogen in a temperate forest landscape: an analysis using imaging spectroscopy, modeling and field data

    Science.gov (United States)

    Scott V. Ollinger; Marie-Louise Smith

    2005-01-01

    Understanding spatial patterns of net primary production (NPP) is central to the study of terrestrial ecosystems, but efforts are frequently hampered by a lack of spatial information regarding factors such as nitrogen availability and site history. Here, we examined the degree to which canopy nitrogen can serve as an indicator of patterns of NPP at the Bartlett...

  11. Improved assessment of gross and net primary productivity of Canada's landmass

    Science.gov (United States)

    Gonsamo, Alemu; Chen, Jing M.; Price, David T.; Kurz, Werner A.; Liu, Jane; Boisvenue, Céline; Hember, Robbie A.; Wu, Chaoyang; Chang, Kuo-Hsien

    2013-12-01

    assess Canada's gross primary productivity (GPP) and net primary productivity (NPP) using boreal ecosystem productivity simulator (BEPS) at 250 m spatial resolution with improved input parameter and driver fields and phenology and nutrient release parameterization schemes. BEPS is a process-based two-leaf enzyme kinetic terrestrial ecosystem model designed to simulate energy, water, and carbon (C) fluxes using spatial data sets of meteorology, remotely sensed land surface variables, soil properties, and photosynthesis and respiration rate parameters. Two improved key land surface variables, leaf area index (LAI) and land cover type, are derived at 250 m from Moderate Resolution Imaging Spectroradiometer sensor. For diagnostic error assessment, we use nine forest flux tower sites where all measured C flux, meteorology, and ancillary data sets are available. The errors due to input drivers and parameters are then independently corrected for Canada-wide GPP and NPP simulations. The optimized LAI use, for example, reduced the absolute bias in GPP from 20.7% to 1.1% for hourly BEPS simulations. Following the error diagnostics and corrections, daily GPP and NPP are simulated over Canada at 250 m spatial resolution, the highest resolution simulation yet for the country or any other comparable region. Total NPP (GPP) for Canada's land area was 1.27 (2.68) Pg C for 2008, with forests contributing 1.02 (2.2) Pg C. The annual comparisons between measured and simulated GPP show that the mean differences are not statistically significant (p > 0.05, paired t test). The main BEPS simulation error sources are from the driver fields.

  12. Extreme precipitation patterns and reductions of terrestrial ecosystem production across biomes

    Science.gov (United States)

    Yongguang Zhang; M. Susan Moran; Mark A. Nearing; Guillermo E. Ponce Campos; Alfredo R. Huete; Anthony R. Buda; David D. Bosch; Stacey A. Gunter; Stanley G. Kitchen; W. Henry McNab; Jack A. Morgan; Mitchel P. McClaran; Diane S. Montoya; Debra P.C. Peters; Patrick J. Starks

    2013-01-01

    Precipitation regimes are predicted to shift to more extreme patterns that are characterized by more heavy rainfall events and longer dry intervals, yet their ecological impacts on vegetation production remain uncertain across biomes in natural climatic conditions. This in situ study investigated the effects of these climatic conditions on aboveground net primary...

  13. Game Theory .net.

    Science.gov (United States)

    Shor, Mikhael

    2003-01-01

    States making game theory relevant and accessible to students is challenging. Describes the primary goal of GameTheory.net is to provide interactive teaching tools. Indicates the site strives to unite educators from economics, political and computer science, and ecology by providing a repository of lecture notes and tests for courses using…

  14. Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mark E. Kubiske

    2013-04-15

    The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.

  15. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009.

    Science.gov (United States)

    Zhao, Maosheng; Running, Steven W

    2010-08-20

    Terrestrial net primary production (NPP) quantifies the amount of atmospheric carbon fixed by plants and accumulated as biomass. Previous studies have shown that climate constraints were relaxing with increasing temperature and solar radiation, allowing an upward trend in NPP from 1982 through 1999. The past decade (2000 to 2009) has been the warmest since instrumental measurements began, which could imply continued increases in NPP; however, our estimates suggest a reduction in the global NPP of 0.55 petagrams of carbon. Large-scale droughts have reduced regional NPP, and a drying trend in the Southern Hemisphere has decreased NPP in that area, counteracting the increased NPP over the Northern Hemisphere. A continued decline in NPP would not only weaken the terrestrial carbon sink, but it would also intensify future competition between food demand and proposed biofuel production.

  16. Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground.

    Directory of Open Access Journals (Sweden)

    Camila Cramer Filgueiras

    Full Text Available Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes.

  17. Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground

    Science.gov (United States)

    Filgueiras, Camila Cramer; Willett, Denis S.; Junior, Alcides Moino; Pareja, Martin; Borai, Fahiem El; Dickson, Donald W.; Stelinski, Lukasz L.; Duncan, Larry W.

    2016-01-01

    Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes. PMID:27136916

  18. Estimating Net Primary Productivity Using Satellite and Ancillary Data

    Science.gov (United States)

    Choudhury, Bhaskar J.

    2002-01-01

    The net primary productivity (C) or the annual rate of carbon accumulation per unit ground area by terrestrial plant communities is the difference of gross photosynthesis (A(sub g)) and respiration (R) per unit ground area. Available field observations show that R is a large and variable fraction of A(sub g), although it is generally recognized that there are considerable difficulties in determining these fluxes, and thus pose challenge in assessing the accuracy. Further uncertainties arise in extrapolating field measurements (which are acquired over a hectare or so area) to regional scale. Here, an approach is presented for determining these fluxes using satellite and ancillary data to be representative of regional scale and allow assessment of interannual variation. A, has been expressed as the product of radiation use efficiency for gross photosynthesis by an unstressed canopy and intercepted photosynthetically active radiation, which is then adjusted for stresses due to soil water shortage and temperature away from optimum. R has been calculated as the sum of growth and maintenance components (respectively, R(sub g) and R(sub m)).The R(sub m) has been determined from nitrogen content of plant tissue per unit ground area, while R(sub g) has been obtained as a fraction of the difference of A(sub g) and R(sub m). Results for five consecutive years (1986-1990) are presented for the Amazon-Tocontins, Mississippi, and Ob River basins.

  19. Net primary productivity distribution in the BOREAS region from a process model using satellite and surface data

    Science.gov (United States)

    Liu, J.; Chen, J. M.; Cihlar, J.; Chen, W.

    1999-11-01

    The purpose of this paper is to upscale tower measurements of net primary productivity (NPP) to the Boreal Ecosystem-Atmosphere Study (BOREAS) study region by means of remote sensing and modeling. The Boreal Ecosystem Productivity Simulator (BEPS) with a new daily canopy photosynthesis model was first tested in one coniferous and one deciduous site. The simultaneous CO2 flux measurements above and below the tree canopy made it possible to isolate daily net primary productivity of the tree canopy for model validation. Soil water holding capacity and gridded daily meteorological data for the region were used as inputs to BEPS, in addition to 1 km resolution land cover and leaf area index (LAI) maps derived from the advanced very high resolution radiometer (AVHRR) data. NPP statistics for the various cover types in the BOREAS region and in the southern study area (SSA) and the northern study area (NSA) are presented. Strong dependence of NPP on LAI was found for the three major cover types: coniferous forest, deciduous forest and cropland. Since BEPS can compute total photosynthetically active radiation absorbed by the canopy in each pixel, light use efficiencies for NPP and gross primary productivity could also be analyzed. From the model results, the following area-averaged statistics were obtained for 1994: (1) mean NPP for the BOREAS region of 217 g C m-2 yr-1; (2) mean NPP of forests (excluding burnt areas in the region) equal to 234 g C m-2 yr-1; (3) mean NPP for the SSA and the NSA of 297 and 238 g C m-2 yr-1, respectively; and (4) mean light use efficiency for NPP equal to 0.40, 0.20, and 0.33 g C (MJ APAR)-1 for deciduous forest, coniferous forest, and crops, respectively.

  20. Litterfall in the hardwood forest of a minor alluvial-floodplain

    Science.gov (United States)

    Calvin E. Meier; John A. Stanturf; Emile S. Gardiner

    2006-01-01

    within mature deciduous forests, annual development of foliar biomass is a major component of aboveground net primary production and nutrient demand. As litterfall, this same foliage becomes a dominant annual transfer of biomass and nutrients to the detritus pathway. We report litterfall transfers of a mature bottomland hardwood forest in a minor alluvial-floodplain...

  1. Optimum Temperatures for Net Primary Productivity of Three Tropical Seagrass Species

    OpenAIRE

    Collier, Catherine J.; Ow, Yan X.; Langlois, Lucas; Uthicke, Sven; Johansson, Charlotte L.; O'Brien, Katherine R.; Hrebien, Victoria; Adams, Matthew P.

    2017-01-01

    Rising sea water temperature will play a significant role in responses of the world's seagrass meadows to climate change. In this study, we investigated seasonal and latitudinal variation (spanning more than 1,500 km) in seagrass productivity, and the optimum temperatures at which maximum photosynthesis and net productivity (for the leaf and the whole plant) occurs, for three seagrass species (Cymodocea serrulata, Halodule uninervis, and Zostera muelleri). To obtain whole plant net production...

  2. Nitrogen Fertilization Effects on Net Ecosystem and Net Primary Productivities as Determined from Flux Tower, Biometric, and Model Estimates for a Coastal Douglas-fir Forest in British Columbia

    Science.gov (United States)

    Trofymow, J. A.; Metsaranta, J. M.; Black, T. A.; Jassal, R. S.; Filipescu, C.

    2013-12-01

    In coastal BC, 6,000-10,000 ha of public and significant areas of private forest land are annually fertilized with nitrogen, with or without thinning, to increase merchantable wood and reduce rotation age. Fertilization has also been viewed as a way to increase carbon (C) sequestration in forests and obtain C offsets. Such offset projects must demonstrate additionality with reference to a baseline and include monitoring to verify net C gains over the project period. Models in combination with field-plot measurements are currently the accepted methods for most C offset protocols. On eastern Vancouver Island, measurements of net ecosystem production (NEP), ecosystem respiration (Re) and gross primary productivity (GPP) using the eddy-covariance (EC) technique as well as component C fluxes and stocks have been made since 1998 in an intermediate-aged Douglas-fir dominated forest planted in 1949. In January 2007 an area around the EC flux tower was aerially fertilized with 200 kg urea-N ha-1. Ground plots in the fertilized area and an adjacent unfertilized control area were also monitored for soil (Rs) and heterotrophic (Rh) respiration, litterfall, and tree growth. To determine fertilization effects on whole tree growth, sample trees were felled in both areas for the 4-year (2003-06) pre- and the 4-year (2007-10) post-fertilization periods and were compared with EC NEP estimates and tree-ring based NEP estimates from Carbon Budget Model - Canadian Forest Sector (CBM-CFS3) for the same periods. Empirical equations using climate and C fluxes from 1998-2006 were derived to estimate what the EC fluxes would have been in 2007-10 for the fertilized area had it been unfertilized. Mean EC NEP for 2007-10 was 561 g C m2 y-1 , a 64% increase above pre-fertilization NEP (341 g C m2 y-1) or 28% increase above estimated unfertilized NEP (438 g C m2 y-1). Most of the increase was attributed to increased tree C uptake (i.e., GPP), with little change in Re. In 2007 fertilization

  3. Experimental effects of herbivore density on above-ground plant biomass in an alpine grassland ecosystem

    OpenAIRE

    Austrheim, Gunnar; Speed, James David Mervyn; Martinsen, Vegard; Mulder, Jan; Mysterud, Atle

    2014-01-01

    Herbivores may increase or decrease aboveground plant productivity depending on factors such as herbivore density and habitat productivity. The grazing optimization hypothesis predicts a peak in plant production at intermediate herbivore densities, but has rarely been tested experimentally in an alpine field setting. In an experimental design with three densities of sheep (high, low, and no sheep), we harvested aboveground plant biomass in alpine grasslands prior to treatment and after five y...

  4. Assessing Land Degradation/Recovery in the African Sahel from Long-Term Earth Observation Based Primary Productivity and Precipitation Relationships

    DEFF Research Database (Denmark)

    Fensholt, Rasmus; Rasmussen, Kjeld; Kaspersen, Per Skougaard

    2013-01-01

    degradation. Consequently, RUE may be regarded as means of normalizing ANPP for the impact of annual precipitation, and as an indicator of non-precipitation related land degradation. Large scale and long term identification and monitoring of land degradation in drylands, such as the Sahel, can only......The ‘rain use efficiency’ (RUE) may be defined as the ratio of above-ground net primary productivity (ANPP) to annual precipitation, and it is claimed to be a conservative property of the vegetation cover in drylands, if the vegetation cover is not subject to non-precipitation related land...... useless as a means of normalizing for the impact of annual precipitation on ANPP. By replacing ΣNDVI by a ‘small NDVI integral’, covering only the rainy season and counting only the increase of NDVI relative to some reference level, this problem is solved. Using this approach, RUE is calculated...

  5. Estimation of Aboveground Biomass Using Manual Stereo Viewing of Digital Aerial Photographs in Tropical Seasonal Forest

    Directory of Open Access Journals (Sweden)

    Katsuto Shimizu

    2014-11-01

    Full Text Available The objectives of this study are to: (1 evaluate accuracy of tree height measurements of manual stereo viewing on a computer display using digital aerial photographs compared with airborne LiDAR height measurements; and (2 develop an empirical model to estimate stand-level aboveground biomass with variables derived from manual stereo viewing on the computer display in a Cambodian tropical seasonal forest. We evaluate observation error of tree height measured from the manual stereo viewing, based on field measurements. RMSEs of tree height measurement with manual stereo viewing and LiDAR were 1.96 m and 1.72 m, respectively. Then, stand-level aboveground biomass is regressed against tree height indices derived from the manual stereo viewing. We determined the best model to estimate aboveground biomass in terms of the Akaike’s information criterion. This was a model of mean tree height of the tallest five trees in each plot (R2 = 0.78; RMSE = 58.18 Mg/ha. In conclusion, manual stereo viewing on the computer display can measure tree height accurately and is useful to estimate aboveground stand biomass.

  6. Assessing the impact of the urbanization process on net primary productivity in China in 1989–2000

    International Nuclear Information System (INIS)

    Tian, Guangjin; Qiao, Zhi

    2014-01-01

    Urban development affects the material circulation and energy flow of ecosystems, thereby affecting the Net Primary Productivity (NPP). The loss of NPP due to urban expansion was calculated integrating GLO-PEM with remote sensing and GIS techniques in China during the period of 1989–2000. Using urban expansion and the mean NPP for the different land use types in the fourteen regions, the total loss of NPP was calculated as 0.95 Tg C, which accounted for 0.03% of the national NPP of 1989. The total loss of NPP due to the transformation from cropland to urban land accounted for 91.93%, followed by forest (7.17%) and grassland (0.69%). However, the conversion from unused land, industrial and construction land, and water bodies to urban land resulted in an increase in the NPP. The regions locating in eastern China and middle China had large reductions in the total NPP due to urban expansion. -- Highlights: • This paper assesses the impact of urbanization process on net primary productivity in China. • TM images were interpreted to obtain the extent and spatial distribution of urban development. • Using mean NPP for different land uses, we calculated total loss of NPP was 0.949447 Tg C in China. • The total loss of NPP owing to the transformation from cropland to urban land accounted for 91.93%. -- The loss of NPP due to urban expansion was calculated as 0.95 Tg C in China in 1989–2000, which accounted for 0.03% of the national NPP of 1989

  7. Linking aboveground net primary productivity to soil carbon and dissolved organic carbon in complex terrain

    Science.gov (United States)

    F.S. Peterson; K. Lajtha

    2013-01-01

    Factors influencing soil organic matter (SOM) stabilization and dissolved organic carbon (DOC) content in complex terrain, where vegetation, climate, and topography vary over the scale of a few meters, are not well understood. We examined the spatial correlations of lidar and geographic information system-derived landscape topography, empirically measured soil...

  8. Water consumption in artificial desert oasis based on net primary productivity

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Analysis of the water consumption is the basis for water allocation in oasis. However, the method of estimating oasis water consumption remains a great challenge. Based on net primary productivity (NPP) and the transpiration coefficient, a vegetation water consumption model was developed to estimate the water consumption in desert oasis in ERDAS environment. Our results demonstrated that the ecosystem in the middle reaches of the Heihe oasis consumed water of 18.41×108-21.9×108 m3 for irrigation. Without taking precipitation into account, the water consumption in farmland accounted for 77.1%-77.8% (or about 13.97×108-16.84×108 m3) of the oasis vegetation water consumption and in the farmland protection system accounting for 22%. The growing period precipitation in desert environments is about 7.02×108 m3, and the total annual precipitation is about 8.29×108 m3. The modeled water consumption of desert vegetation, however, is about 4.57×108 m3, equivalent to only 65% of the growing period precipitation or 55% of the total annual precipitation. The modeled value equals to the cumulative precipitation of greater than 5 mm, which is defined as the effective precipitation in arid desert.

  9. Above-ground biomass equations for Pinus radiata D. Don in Asturias

    Directory of Open Access Journals (Sweden)

    E. Canga

    2013-12-01

    Full Text Available Aim of the study: The aim of this study was to develop a model for above-ground biomass estimation for Pinus radiata D. Don in Asturias.Area of study: Asturias (NE of Spain.Material and methods: Different models were fitted for the different above-ground components and weighted regression was used to correct heteroscedasticity. Finally, all the models were refitted simultaneously by use of Nonlinear Seemingly Unrelated Regressions (NSUR to ensure the additivity of biomass equations.Research highlights: A system of four biomass equations (wood, bark, crown and total biomass was develop, such that the sum of the estimations of the three biomass components is equal to the estimate of total biomass. Total and stem biomass equations explained more than 92% of observed variability, while crown and bark biomass equations explained 77% and 89% respectively.Keywords: radiata pine; plantations; biomass.

  10. Net primary productivity collected from New Horizon in Gulf of California and North Pacific Ocean from 2004-07-14 to 2008-08-06 (NCEI Accession 0130076)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Net primary productivity determined from 13C-labeled in situ incubations. Water collected via Niskin bottle was incubated with labeled bicarbonate for 24 hours at...

  11. Siberian Boreal Forest Aboveground Biomass and Fire Scar Maps, Russia, 1969-2007

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides 30-meter resolution mapped estimates of Cajander larch (Larix cajanderi) aboveground biomass (AGB), circa 2007, and a map of burn perimeters...

  12. Inventory of Tank Farm equipment stored or abandoned aboveground

    International Nuclear Information System (INIS)

    Hines, S.C.; Lakes, M.E.

    1994-01-01

    This document provides an inventory of Tank Farm equipment stored or abandoned aboveground and potentially subject to regulation. This inventory was conducted in part to ensure that Westinghouse Hanford Company (WHC) does not violate dangerous waste laws concerning storage of potentially contaminated equipment/debris that has been in contact with dangerous waste. The report identifies areas inventoried and provides photographs of equipment

  13. Evaluation of DementiaNet, a network-based primary care innovation for community-dwelling patients with dementia: protocol for a longitudinal mixed methods multiple case study

    NARCIS (Netherlands)

    Richters, A.; Nieuwboer, M.S.; Perry, M.; Olde Rikkert, M.G.M.; Melis, R.J.F.; Marck, M.A. van der

    2017-01-01

    INTRODUCTION: Primary healthcare professionals will increasingly be required to manage and optimise their treatment for patients with dementia. With DementiaNet, we aim to reduce the burden of dementia on healthcare services and society through implementation and facilitation of integrated

  14. How drought severity constrains gross primary production(GPP) and its partitioning among carbon pools in a Quercus ilex coppice?

    Science.gov (United States)

    Rambal, S.; Lempereur, M.; Limousin, J. M.; Martin-StPaul, N. K.; Ourcival, J. M.; Rodríguez-Calcerrada, J.

    2014-12-01

    The partitioning of photosynthates toward biomass compartments plays a crucial role in the carbon (C) sink function of forests. Few studies have examined how carbon is allocated toward plant compartments in drought-prone forests. We analyzed the fate of gross primary production (GPP) in relation to yearly water deficit in an old evergreen Mediterranean Quercus ilex coppice severely affected by water limitations. Carbon fluxes between the ecosystem and the atmosphere were measured with an eddy covariance flux tower running continuously since 2001. Discrete measurements of litterfall, stem growth and fAPAR allowed us to derive annual productions of leaves, wood, flowers and acorns, and an isometric relationship between stem and belowground biomass has been used to estimate perennial belowground growth. By combining eddy covariance fluxes with annual net primary productions (NPP), we managed to close a C budget and derive values of autotrophic, heterotrophic respirations and carbon-use efficiency (CUE; the ratio between NPP and GPP). Average values of yearly net ecosystem production (NEP), GPP and Reco were 282, 1259 and 977 g C m-2. The corresponding aboveground net primary production (ANPP) components were 142.5, 26.4 and 69.6 g C m-2 for leaves, reproductive effort (flowers and fruits) and stems, respectively. NEP, GPP and Reco were affected by annual water deficit. Partitioning to the different plant compartments was also impacted by drought, with a hierarchy of responses going from the most affected - the stem growth - to the least affected - the leaf production. The average CUE was 0.40, which is well in the range for Mediterranean-type forest ecosystems. CUE tended to decrease less drastically in response to drought than GPP and NPP did, probably due to drought acclimation of autotrophic respiration. Overall, our results provide a baseline for modeling the inter-annual variations of carbon fluxes and allocation in this widespread Mediterranean ecosystem, and

  15. Estimation Terrestrial Net Primary Productivity Based on CASA Model: a Case Study in Minnan Urban Agglomeration, China

    International Nuclear Information System (INIS)

    Hua, L Z; Liu, H; Zhang, X L; Zheng, Y; Man, W; Yin, K

    2014-01-01

    Net Primary Productivity (NPP) is a key component of the terrestrial carbon cycle. The research of net primary productivity will help in understanding the amount of carbon fixed by terrestrial vegetation and its influencing factors. Model simulation is considered as a cost-effective and time-efficient method for the estimation of regional and global NPP. In the paper, a terrestrial biosphere model, CASA (Carnegie Ames Stanford Approach), was applied to estimate monthly NPP in Minnan urban agglomeration (i.e. Xiamen, Zhangzhou and Quanzhou cities) of Fujian province, China, in 2009 and 2010, by incorporating satellite observation of SPOT Vegetation NDVI data together with other climatic parameters and landuse map. The model estimates average annual terrestrial NPP of Minnan area as 16.3 million Mg C. NPP decreased from southwest to the northeast. The higher NPP values exceeding 720 gC·m − 2 ·a −1 showed in North Zhangzhou city and lower values under 500 gC·m − 2 ·a −1 showed in the some areas of northeast Quanzhou city. Seasonal variations of NPP were large. It was about 45% of the total annual NPP in the three months in summer, and the NPP values were very low in winter. From 2009 to 2010, the value of annual NPP showed a slightly decrease trend, approximately 7.8% because the annual temperature for 2010 decline 13.6% compared with 2009 in despite of an increase in rainfall of about 34.3%. The results indicate that temperature was a main limiting factor on vegetation growth, but water is not a limiting factor in the rainy area

  16. Allometric models for estimating the aboveground biomass of the mangrove Rhizophora mangle

    Directory of Open Access Journals (Sweden)

    Heide Vanessa Souza Santos

    Full Text Available Abstract The development of species-specific allometric models is critical to the improvement of aboveground biomass estimates, as well as to the estimation of carbon stock and sequestration in mangrove forests. This study developed allometric equations for estimating aboveground biomass of Rhizophora mangle in the mangroves of the estuary of the São Francisco River, in northeastern Brazil. Using a sample of 74 trees, simple linear regression analysis was used to test the dependence of biomass (total and per plant part on size, considering both transformed (ln and not-transformed data. Best equations were considered as those with the lowest standard error of estimation (SEE and highest adjusted coefficient of determination (R2a. The ln-transformed equations showed better results, with R2a near 0.99 in most cases. The equations for reproductive parts presented low R2a values, probably attributed to the seasonal nature of this compartment. "Basal Area2 × Height" showed to be the best predictor, present in most of the best-fitted equations. The models presented here can be considered reliable predictors of the aboveground biomass of R. mangle in the NE-Brazilian mangroves as well as in any site were this widely distributed species present similar architecture to the trees used in the present study.

  17. Tropospheric O3 compromises net primary production in young stands of trembling aspen, paper birch and sugar maple in response to elevated atmospheric CO2

    Science.gov (United States)

    John S. King; Mark E. Kubiske; Kurt S. Pregitzer; George R. Hendrey; Evan P. McDonald; Christian P. Giardina; Vanessa S. Quinn; David F. Karnosky

    2005-01-01

    Concentrations of atmospheric CO2 and tropospheric ozone (O3) are rising concurrently in the atmosphere, with potentially antagonistic effects on forest net primary production (NPP) and implications for terrestrial carbon sequestration. Using free-air CO2 enrichment (FACE) technology, we exposed north...

  18. Markets, voucher subsidies and free nets combine to achieve high bed net coverage in rural Tanzania

    Directory of Open Access Journals (Sweden)

    Gerrets Rene PM

    2008-06-01

    Full Text Available Abstract Background Tanzania has a well-developed network of commercial ITN retailers. In 2004, the government introduced a voucher subsidy for pregnant women and, in mid 2005, helped distribute free nets to under-fives in small number of districts, including Rufiji on the southern coast, during a child health campaign. Contributions of these multiple insecticide-treated net delivery strategies existing at the same time and place to coverage in a poor rural community were assessed. Methods Cross-sectional household survey in 6,331 members of randomly selected 1,752 households of 31 rural villages of Demographic Surveillance System in Rufiji district, Southern Tanzania was conducted in 2006. A questionnaire was administered to every consenting respondent about net use, treatment status and delivery mechanism. Findings Net use was 62.7% overall, 87.2% amongst infants (0 to1 year, 81.8% amongst young children (>1 to 5 years, 54.5% amongst older children (6 to 15 years and 59.6% amongst adults (>15 years. 30.2% of all nets had been treated six months prior to interview. The biggest source of nets used by infants was purchase from the private sector with a voucher subsidy (41.8%. Half of nets used by young children (50.0% and over a third of those used by older children (37.2% were obtained free of charge through the vaccination campaign. The largest source of nets amongst the population overall was commercial purchase (45.1% use and was the primary means for protecting adults (60.2% use. All delivery mechanisms, especially sale of nets at full market price, under-served the poorest but no difference in equity was observed between voucher-subsidized and freely distributed nets. Conclusion All three delivery strategies enabled a poor rural community to achieve net coverage high enough to yield both personal and community level protection for the entire population. Each of them reached their relevant target group and free nets only temporarily

  19. Proven Alternatives for Aboveground Treatment of Arsenic in Groundwater

    Science.gov (United States)

    2002-10-01

    issue paper does not address three technologies that have been used to treat water containing arsenic: • Biological treatment • Phytoremediation ...arsenic in water, and no aboveground treatments of groundwater conducted at full scale were found. Phytoremediation and electrokinetics are not...Roundtable. September 1998. http://www.frtr.gov/costperf.htm. 1.16 U.S. EPA. Office of Research and Development. Arsenic & Mercury - Workshop on Removal

  20. Disentangling the effects of species diversity, and intraspecific and interspecific tree size variation on aboveground biomass in dry zone homegarden agroforestry systems.

    Science.gov (United States)

    Ali, Arshad; Mattsson, Eskil

    2017-11-15

    The biodiversity - aboveground biomass relationship has been intensively studied in recent decades. However, no consensus has been arrived to consider the interplay of species diversity, and intraspecific and interspecific tree size variation in driving aboveground biomass, after accounting for the effects of plot size heterogeneity, soil fertility and stand quality in natural forest including agroforests. We tested the full, partial and no mediations effects of species diversity, and intraspecific and interspecific tree size variation on aboveground biomass by employing structural equation models (SEMs) using data from 45 homegarden agroforestry systems in Sri Lanka. The full mediation effect of either species diversity or intraspecific and interspecific tree size variation was rejected, while the partial and no mediation effects were accepted. In the no mediation SEM, homegarden size had the strongest negative direct effect (β=-0.49) on aboveground biomass (R 2 =0.65), followed by strong positive direct effect of intraspecific tree size variation (β=0.32), species diversity (β=0.29) and interspecific tree size variation (β=0.28). Soil fertility had a negative direct effect on interspecific tree size variation (β=-0.31). Stand quality had a significant positive total effect on aboveground biomass (β=0.28), but homegarden size had a significant negative total effect (β=-0.62), while soil fertility had a non-significant total effect on aboveground biomass. Similar to the no mediation SEM, the partial mediation SEMs had explained almost similar variation in aboveground biomass because species diversity, and intraspecific and interspecific tree size variation had non-significant indirect effects on aboveground biomass via each other. Our results strongly suggest that a multilayered tree canopy structure, due to high intraspecific and interspecific tree size variation, increases light capture and efficient utilization of resources among component species, and

  1. Estimates of forest canopy height and aboveground biomass using ICESat.

    Science.gov (United States)

    Michael A. Lefsky; David J. Harding; Michael Keller; Warren B. Cohen; Claudia C. Carabajal; Fernando Del Bom; Maria O. Hunter; Raimundo Jr. de Oliveira

    2005-01-01

    Exchange of carbon between forests and the atmosphere is a vital component of the global carbon cycle. Satellite laser altimetry has a unique capability for estimating forest canopy height, which has a direct and increasingly well understood relationship to aboveground carbon storage. While the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land...

  2. Daily variation in net primary production and net calcification in coral reef communities exposed to elevated pCO2

    Directory of Open Access Journals (Sweden)

    S. Comeau

    2017-07-01

    Full Text Available The threat represented by ocean acidification (OA for coral reefs has received considerable attention because of the sensitivity of calcifiers to changing seawater carbonate chemistry. However, most studies have focused on the organismic response of calcification to OA, and only a few have addressed community-level effects, or investigated parameters other than calcification, such as photosynthesis. Light (photosynthetically active radiation, PAR is a driver of biological processes on coral reefs, and the possibility that these processes might be perturbed by OA has important implications for community function. Here we investigate how CO2 enrichment affects the relationships between PAR and community net O2 production (Pnet, and between PAR and community net calcification (Gnet, using experiments on three coral communities constructed to match (i the back reef of Mo'orea, French Polynesia, (ii the fore reef of Mo'orea, and (iii the back reef of O'ahu, Hawaii. The results were used to test the hypothesis that OA affects the relationship between Pnet and Gnet. For the three communities tested, pCO2 did not affect the Pnet–PAR relationship, but it affected the intercept of the hyperbolic tangent curve fitting the Gnet–PAR relationship for both reef communities in Mo'orea (but not in O'ahu. For the three communities, the slopes of the linear relationships between Pnet and Gnet were not affected by OA, although the intercepts were depressed by the inhibitory effect of high pCO2 on Gnet. Our result indicates that OA can modify the balance between net calcification and net photosynthesis of reef communities by depressing community calcification, but without affecting community photosynthesis.

  3. Influence of ozone pollution and climate variability on net primary productivity and carbon storage in China's grassland ecosystems from 1961 to 2000

    International Nuclear Information System (INIS)

    Ren Wei; Tian Hanqin; Chen Guangsheng; Liu Mingliang; Zhang Chi; Chappelka, Arthur H.; Pan Shufen

    2007-01-01

    Our simulations with the Dynamic Land Ecosystem Model (DLEM) indicate that the combined effect of ozone, climate, carbon dioxide and land use have caused China's grasslands to act as a weak carbon sink during 1961-2000. This combined effect on national grassland net primary productivity (NPP) and carbon storage was small, but changes in annual NPP and total carbon storage across China's grasslands showed substantial spatial variation, with the maximum total carbon uptake reduction of more than 400 g m -2 in some places of northeastern China. The grasslands in the central northeastern China were more sensitive and vulnerable to elevated ozone pollution than other regions. The combined effect excluding ozone could potentially lead to an increase of 14 Tg C in annual NPP and 0.11 Pg C in total carbon storage for the same time period. This implies that improvement in air quality could significantly increase productivity and carbon storage in China's grassland ecosystems. - Net primary productivity and carbon storage across China's grassland in the late half of the 20th century have been assessed by using the Dynamic Land Ecosystem Model

  4. Standing crop and aboveground biomass partitioning of a dwarf mangrove forest in Taylor River Slough, Florida

    Science.gov (United States)

    Coronado-Molina, C.; Day, J.W.; Reyes, E.; Perez, B.C.

    2004-01-01

    The structure and standing crop biomass of a dwarf mangrove forest, located in the salinity transition zone ofTaylor River Slough in the Everglades National Park, were studied. Although the four mangrove species reported for Florida occurred at the study site, dwarf Rhizophora mangle trees dominated the forest. The structural characteristics of the mangrove forest were relatively simple: tree height varied from 0.9 to 1.2 meters, and tree density ranged from 7062 to 23 778 stems haa??1. An allometric relationship was developed to estimate leaf, branch, prop root, and total aboveground biomass of dwarf Rhizophora mangle trees. Total aboveground biomass and their components were best estimated as a power function of the crown area times number of prop roots as an independent variable (Y = B ?? Xa??0.5083). The allometric equation for each tree component was highly significant (pRhizophora mangle contributed 85% of total standing crop biomass. Conocarpus erectus, Laguncularia racemosa, and Avicennia germinans contributed the remaining biomass. Average aboveground biomass allocation was 69% for prop roots, 25% for stem and branches, and 6% for leaves. This aboveground biomass partitioning pattern, which gives a major role to prop roots that have the potential to produce an extensive root system, may be an important biological strategy in response to low phosphorus availability and relatively reduced soils that characterize mangrove forests in South Florida.

  5. Effects of topography on simulated net primary productivity at landscape scale.

    Science.gov (United States)

    Chen, X F; Chen, J M; An, S Q; Ju, W M

    2007-11-01

    Local topography significantly affects spatial variations of climatic variables and soil water movement in complex terrain. Therefore, the distribution and productivity of ecosystems are closely linked to topography. Using a coupled terrestrial carbon and hydrological model (BEPS-TerrainLab model), the topographic effects on the net primary productivity (NPP) are analyzed through four modelling experiments for a 5700 km(2) area in Baohe River basin, Shaanxi Province, northwest of China. The model was able to capture 81% of the variability in NPP estimated from tree rings, with a mean relative error of 3.1%. The average NPP in 2003 for the study area was 741 gCm(-2)yr(-1) from a model run including topographic effects on the distributions of climate variables and lateral flow of ground water. Topography has considerable effect on NPP, which peaks near 1350 m above the sea level. An elevation increase of 100 m above this level reduces the average annual NPP by about 25 gCm(-2). The terrain aspect gives rise to a NPP change of 5% for forests located below 1900 m as a result of its influence on incident solar radiation. For the whole study area, a simulation totally excluding topographic effects on the distributions of climatic variables and ground water movement overestimated the average NPP by 5%.

  6. Light Use Efficiency of Aboveground Biomass Production of Norway Spruce Stands

    Czech Academy of Sciences Publication Activity Database

    Bellan, Michal; Marková, I.; Zaika, A.; Krejza, Jan

    2017-01-01

    Roč. 65, č. 1 (2017), s. 9-16 ISSN 1211-8516 R&D Projects: GA TA ČR TA02010945 Institutional support: RVO:67179843 Keywords : absorbed photosynthetically active radiation * aboveground biomass increment * allometric relation Subject RIV: GC - Agronomy OBOR OECD: Agronomy, plant breeding and plant protection

  7. Inferring biome-scale net primary productivity from tree-ring isotopes

    Science.gov (United States)

    Pederson, N.; Levesque, M.; Williams, A. P.; Hobi, M. L.; Smith, W. K.; Andreu-Hayles, L.

    2017-12-01

    Satellite estimates of vegetation growth (net primary productivity; NPP), tree-ring records, and forest inventories indicate that ongoing climate change and rising atmospheric CO2 concentration are altering productivity and carbon storage of forests worldwide. The impact of global change on the trends of NPP, however, remain unknown because of the lack of long-term high-resolution NPP data. For the first time, we tested if annually resolved carbon (δ13C) and oxygen (δ18O) stable isotopes from the cellulose of tree rings from trees in temperate regions could be used as a tool for inferring NPP across spatiotemporal scales. We compared satellite NPP estimates from the moderate-resolution imaging spectroradiometer sensor (MODIS, product MOD17A) and a newly developed global NPP dataset derived from the Global Inventory Modeling and Mapping Studies (GIMMS) dataset to annually resolved tree-ring width and δ13C and δ18O records from four sites along a hydroclimatic gradient in Eastern and Central United States. We found strong correlations across large geographical regions between satellite-derived NPP and tree-ring isotopes that ranged from -0.40 to -0.91. Notably, tree-ring derived δ18O had the strongest relation to climate. The results were consistent among the studied tree species (Quercus rubra and Liriodendron tulipifera) and along the hydroclimatic conditions of our network. Our study indicates that tree-ring isotopes can potentially be used to reconstruct NPP in time and space. As such, our findings represent an important breakthrough for estimating long-term changes in vegetation productivity at the biome scale.

  8. Estimating Net Primary Production of Swedish Forest Landscapes by Combining Mechanistic Modeling and Remote Sensing

    DEFF Research Database (Denmark)

    Tagesson, Håkan Torbern; Smith, Benjamin; Løfgren, Anders

    2009-01-01

    and the Beer-Lambert law. LAI estimates were compared with satellite-extrapolated field estimates of LAI, and the results were generally acceptable. NPP estimates directly from the dynamic vegetation model and estimates obtained by combining the model estimates with remote sensing information were, on average......The aim of this study was to investigate a combination of satellite images of leaf area index (LAI) with processbased vegetation modeling for the accurate assessment of the carbon balances of Swedish forest ecosystems at the scale of a landscape. Monthly climatologic data were used as inputs...... in a dynamic vegetation model, the Lund Potsdam Jena-General Ecosystem Simulator. Model estimates of net primary production (NPP) and the fraction of absorbed photosynthetic active radiation were constrained by combining them with satellite-based LAI images using a general light use efficiency (LUE) model...

  9. VARIABILITY IN NET PRIMARY PRODUCTION AND CARBON STORAGE IN BIOMASS ACROSS OREGON FORESTS - AN ASSESSMENT INTEGRATING DATA FROM FOREST INVENTORIES, INTENSIVE SITES, AND REMOTE SENSING. (R828309)

    Science.gov (United States)

    We used a combination of data from USDA Forest Service inventories, intensivechronosequences, extensive sites, and satellite remote sensing, to estimate biomassand net primary production (NPP) for the forested region of western Oregon. Thestudy area was divided int...

  10. Relationships at the aboveground-belowground interface: plants, soil biota and soil processes

    NARCIS (Netherlands)

    Porazinska, D.L.; Bardgett, R.D.; Postma-Blaauw, M.B.; Hunt, H.W.; Parsons, A.N.; Seastedt, T.R.; Wall, D.M.

    2003-01-01

    Interactions at the aboveground-below ground interface provide important feedbacks that regulate ecosystem processes. Organisms within soil food webs are involved in processes of decomposition and nutrient mineralization, and their abundance and activity have been linked to plant ecophysiological

  11. Technical basis for the aboveground structure failure and associated represented hazardous conditions

    International Nuclear Information System (INIS)

    GOETZ, T.G.

    2003-01-01

    This technical basis document describes the risk binning process and the technical basis for assigning risk bins for the aboveground structure failure representative accident and associated represented hazardous conditions. This document was developed to support the documented safety analysis

  12. Dynamics, aboveground biomass and composition on permanent plots, Tambopata National Reserve. Madre de Dios, Peru

    Directory of Open Access Journals (Sweden)

    Nadir C. Pallqui

    2014-12-01

    Full Text Available In this study we evaluated the floristic composition and changes in stored biomass and dynamics over time in 9 permanent plots monitored by RAINFOR (Amazon Forest Inventory Network and located in the lowland Amazon rainforest of the Tambopata National Reserve. Data were acquired in the field using the standardized methodology of RAINFOR. The biomass was estimated using the equation for tropical moist forests of Chave et al. (2005. Biomass dynamics were analyzed, in three separated periods from 2003 to 2011. 64 families, 219 genera and 531 species were recorded. The tree floristic composition is very similar in all plots except for one swamp plot, although but it is also evident that two slightly different forest communities exist in the rest of landscape, apparently related to the age of the ancient river terraces in the area. Mortality and recruitment of individuals averaged 2.12 ± 0.52% and 1.92 ± 0.49%, respectively. The turnover rate is 2.02% per year. Aboveground biomass stored in these forests averages 296.2 ± 33.9 t ha-1. The biomass dynamics show a total net gain of 1.96, 1.69 and –1.23 t ha-1 for period respectively. Prior to the drought of 2010 a change in biomass was found 1.88 t ha-1 yr-1 and post drought was -0.18 t ha-1 yr-1 on average, though the difference is not significant. Demographic analysis suggests a dynamic equilibrium in the plots. The negative balance of biomass observed for the period 2008 – 2011 may be due to the drought of 2010, in which half of the monitored plots experienced negative net biomass change due to mortality of individuals selectively affecting the floristic composition.

  13. Empirical and theoretical challenges in aboveground-belowground ecology

    DEFF Research Database (Denmark)

    W.H. van der Putten,; R.D. Bardgett; P.C. de Ruiter

    2009-01-01

    of the current conceptual succession models into more predictive models can help targeting empirical studies and generalising their results. Then, we discuss how understanding succession may help to enhance managing arable crops, grasslands and invasive plants, as well as provide insights into the effects...... and environmental settings, we explore where and how they can be supported by theoretical approaches to develop testable predictions and to generalise empirical results. We review four key areas where a combined aboveground-belowground approach offers perspectives for enhancing ecological understanding, namely...

  14. Ability of LANDSAT-8 Oli Derived Texture Metrics in Estimating Aboveground Carbon Stocks of Coppice Oak Forests

    Science.gov (United States)

    Safari, A.; Sohrabi, H.

    2016-06-01

    The role of forests as a reservoir for carbon has prompted the need for timely and reliable estimation of aboveground carbon stocks. Since measurement of aboveground carbon stocks of forests is a destructive, costly and time-consuming activity, aerial and satellite remote sensing techniques have gained many attentions in this field. Despite the fact that using aerial data for predicting aboveground carbon stocks has been proved as a highly accurate method, there are challenges related to high acquisition costs, small area coverage, and limited availability of these data. These challenges are more critical for non-commercial forests located in low-income countries. Landsat program provides repetitive acquisition of high-resolution multispectral data, which are freely available. The aim of this study was to assess the potential of multispectral Landsat 8 Operational Land Imager (OLI) derived texture metrics in quantifying aboveground carbon stocks of coppice Oak forests in Zagros Mountains, Iran. We used four different window sizes (3×3, 5×5, 7×7, and 9×9), and four different offsets ([0,1], [1,1], [1,0], and [1,-1]) to derive nine texture metrics (angular second moment, contrast, correlation, dissimilar, entropy, homogeneity, inverse difference, mean, and variance) from four bands (blue, green, red, and infrared). Totally, 124 sample plots in two different forests were measured and carbon was calculated using species-specific allometric models. Stepwise regression analysis was applied to estimate biomass from derived metrics. Results showed that, in general, larger size of window for deriving texture metrics resulted models with better fitting parameters. In addition, the correlation of the spectral bands for deriving texture metrics in regression models was ranked as b4>b3>b2>b5. The best offset was [1,-1]. Amongst the different metrics, mean and entropy were entered in most of the regression models. Overall, different models based on derived texture metrics

  15. Estimating Net Primary Productivity Beneath Snowpack Using Snowpack Radiative Transfer Modeling and Global Satellite Data

    Science.gov (United States)

    Barber, D. E.; Peterson, M. C.

    2002-05-01

    Sufficient photosynthetically active radiation (PAR) penetrates snow for plants to grow beneath snowpack during late winter or early spring in tundra ecosystems. During the spring in this ecosystem, the snowpack creates an environment with higher humidity and less variable and milder temperatures than on the snow-free land. Under these conditions, the amount of PAR available is likely to be the limiting factor for plant growth. Current methods for determining net primary productivity (NPP) of tundra ecosystems do not account for this plant growth beneath snowpack, apparently resulting in underestimating plant production there. We are currently in the process of estimating the magnitude of this early growth beneath snow for tundra ecosystems. Our method includes a radiative transfer model that simulates diffuse and direct PAR penetrating snowpack based on downwelling PAR values and snow depth data from global satellite databases. These PAR levels are convolved with plant growth for vegetation that thrives beneath snowpacks, such as lichen. We expect to present the net primary production for Cladonia species (a common Arctic lichen) that has the capability of photosynthesizing at low temperatures beneath snowpack. This method may also be used to study photosynthesis beneath snowpacks in other hardy plants. Lichens are used here as they are common in snow-covered regions, flourish under snowpack, and provide an important food source for tundra herbivores (e.g. caribou). In addition, lichens are common in arctic-alpine environments and our results can be applied to these ecosystems as well. Finally, the NPP of lichen beneath snowpack is relatively well understood compared to other plants, making it ideal vegetation for this first effort at estimating the potential importance of photosynthesis at large scales. We are examining other candidate plants for their photosynthetic potential beneath snowpack at this time; however, little research has been done on this topic. We

  16. [Aboveground biomass of Tamarix on piedmont plain of Tianshan Mountains south slope].

    Science.gov (United States)

    Zhao, Zhenyong; Wang, Ranghui; Zhang, Huizhi; Wang, Lei

    2006-09-01

    Based on the geo-morphological and hydro-geological characteristics, the piedmont plain of Tianshan Mountains south slope was classified into 4 geo-morphological belts, i.e., flood erosion belt, groundwater spill belt, delta belt, and the joining belt of piedmont plain and Tarim floodplain. A field investigation on the Tamarix shrub in this region showed that there was a significant difference in its aboveground biomass among the four belts, ranged from 1428.53 kg x hm(-2) at groundwater spill belt to 111.18 kg x hm(-2) at the joining belt of piedmont plain and Tarim floodplain. The main reason for such a big difference might be the different density of Tamarix shrub on different belts. Both the Tamarix aboveground biomass and the topsoil's salinity were decreased with increasing groundwater level. Groundwater level was the main factor limiting Tamarix growth, while soil salinity was not.

  17. Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar.

    Science.gov (United States)

    Wang, Dongliang; Xin, Xiaoping; Shao, Quanqin; Brolly, Matthew; Zhu, Zhiliang; Chen, Jin

    2017-01-19

    Accurate canopy structure datasets, including canopy height and fractional cover, are required to monitor aboveground biomass as well as to provide validation data for satellite remote sensing products. In this study, the ability of an unmanned aerial vehicle (UAV) discrete light detection and ranging (lidar) was investigated for modeling both the canopy height and fractional cover in Hulunber grassland ecosystem. The extracted mean canopy height, maximum canopy height, and fractional cover were used to estimate the aboveground biomass. The influences of flight height on lidar estimates were also analyzed. The main findings are: (1) the lidar-derived mean canopy height is the most reasonable predictor of aboveground biomass ( R ² = 0.340, root-mean-square error (RMSE) = 81.89 g·m -2 , and relative error of 14.1%). The improvement of multiple regressions to the R ² and RMSE values is unobvious when adding fractional cover in the regression since the correlation between mean canopy height and fractional cover is high; (2) Flight height has a pronounced effect on the derived fractional cover and details of the lidar data, but the effect is insignificant on the derived canopy height when the flight height is within the range (lidar returns.

  18. Report of the U.S. Nuclear Regulatory Commission Piping Review Committee. Summary and evaluation of historical strong-motion earthquake seismic response and damage to aboveground industrial piping

    International Nuclear Information System (INIS)

    1985-04-01

    The primary purpose of this report is to collect in one reference document the observation and experience that has been developed with regard to the seismic behavior of aboveground, building-supported, industrial-type process piping (similar to piping used in nuclear power plants) in strong-motion earthquakes. The report will also contain observations regarding the response of piping in strong-motion experimental tests and appropriate conclusions regarding the behavior of such piping in large earthquakes. Recommendations are included covering the future design of such piping to resist earthquake motion damage based on observed behavior in large earthquakes and simulated shake table testing. Since available detailed data on the behavior of aboveground (building-supported) piping are quite limited, this report will draw heavily on the observations and experiences of experts in the field. In Section 2 of this report, observed earthquake damage to aboveground piping in a number of large-motion earthquakes is summarized. In Section 3, the available experience from strong-motion testing of piping in experimental facilities is summarized. In Section 4 are presented some observations that attempt to explain the observed response of piping to strong-motion excitation from actual earthquakes and shake table testing. Section 5 contains the conclusions based on this study and recommendations regarding the future seismic design of piping based on the observed strong-motion behavior and material developed for the NPC Piping Review Committee. Finally, in Section 6 the references used in this study are presented. It should be understood that the use of the term piping in this report, in general, is limited to piping supported by building structures. It does not include behavior of piping buried in soil media. It is believed that the seismic behavior of buried piping is governed primarily by the deformation of the surrounding soil media and is not dependent on the inertial response

  19. The effect of cassava-based bioethanol production on above-ground carbon stocks: A case study from Southern Mali

    International Nuclear Information System (INIS)

    Vang Rasmussen, Laura; Rasmussen, Kjeld; Birch-Thomsen, Torben; Kristensen, Søren B.P.; Traoré, Oumar

    2012-01-01

    Increasing energy use and the need to mitigate climate change make production of liquid biofuels a high priority. Farmers respond worldwide to this increasing demand by converting forests and grassland into biofuel crops, but whether biofuels offer carbon savings depends on the carbon emissions that occur when land use is changed to biofuel crops. This paper reports the results of a study on cassava-based bioethanol production undertaken in the Sikasso region in Southern Mali. The paper outlines the estimated impacts on above-ground carbon stocks when land use is changed to increase cassava production. The results show that expansion of cassava production for bioethanol will most likely lead to the conversion of fallow areas to cassava. A land use change from fallow to cassava creates a reduction in the above-ground carbon stocks in the order of 4–13 Mg C ha −1 , depending on (a) the age of the fallow, (b) the allometric equation used and (c) whether all trees are removed or the larger, useful trees are preserved. This ‘carbon debt’ associated with the above-ground biomass loss would take 8–25 years to repay if fossil fuels are replaced with cassava-based bioethanol. - Highlights: ► Demands for biofuels make production of cassava-based bioethanol a priority. ► Farmers in Southern Mali are likely to convert fallow areas to cassava production. ► Converting fallow to cassava creates reductions in above-ground carbon stocks. ► Estimates of carbon stock reductions include that farmers preserve useful trees. ► The carbon debt associated with above-ground biomass loss takes 8–25 years to repay.

  20. Primary hyperaldosteronism in cats: expanding the diagnostic net

    NARCIS (Netherlands)

    Djajadiningrat-Laanen, S.C.

    2014-01-01

    Primary hyperaldosteronism or low-renin hyperaldosteronism in cats is characterized by inappropriately high aldosterone secretion from one or both adrenal glands, with systemic arterial hypertension and hypokalemia as leading clinical manifestations. In this thesis, non-tumorous primary

  1. Simulation of Net Primary Productivity in Mongolia Using CASA Model, During 2000-2004

    Directory of Open Access Journals (Sweden)

    Narangarav Dugarsuren

    2016-12-01

    Full Text Available Vegetation net primary productivity (NPP is always used as an indicator of carbon cycling in terrestrial ecosystems at landscape and regional scales. Based on the CASA model, we analyzed the spatiotemporal pattern of growing season NPP from 2000 to 2004 using MODIS/NDVI and its relationship with precipitation. The result shows that the annual NPP in Mongolia has a tendency to slightly decrease from 61.13 in 2000 to 60 gC/m2 /yr in 2004, with an annual mean decrement of -0.259 gC/ m2 /yr. However, annual and inter-annual NPP trends showed spatial and temporal heterogeneity. NPP in forest and grassland has decreased with an average annual decrement of -1.03 (r2=0.262 and -0.49 (r2=0.324, meanwhile NPP in desert steppe and desert has increased with the annual average increment of 0.4327 (r2=0.322 and 0.2401 (r2=0.283, respectively. The correlation coeffi cient showed that mean growing season NPP in grassland and desert steppe were closely correlated with precipitation than forest and desert.

  2. ALLOMETRIC EQUATIONS FOR ESTIMATING ABOVEGROUND BIOMASS IN PAPUA TROPICAL FOREST

    Directory of Open Access Journals (Sweden)

    Sandhi Imam Maulana

    2014-10-01

    Full Text Available Allometric equations can be used to estimate biomass and carbon stock of  the forest. However, so far the allometric equations for commercial species in Papua tropical forests have not been appropriately developed. In this research, allometric equations are presented based on the genera of  commercial species. Few equations have been developed for the commercial species of  Intsia, Pometia, Palaquium and Vatica genera and an equation of  a mix of  these genera. The number of  trees sampled in this research was 49, with diameters (1.30 m above-ground or above buttresses ranging from 5 to 40 cm. Destructive sampling was used to collect the samples where Diameter at Breast Height (DBH and Wood Density (WD were used as predictors for dry weight of  Total Above-Ground Biomass (TAGB. Model comparison and selection were based on the values of  F-statistics, R-sq, R-sq (adj, and average deviation. Based on these statistical indicators, the most suitable model for Intsia, Pometia, Palaquium and Vatica genera respectively are Log(TAGB = -0.76 + 2.51Log(DBH, Log(TAGB = -0.84 + 2.57Log(DBH, Log(TAGB = -1.52 + 2.96Log(DBH, and Log(TAGB = -0.09 + 2.08Log(DBH. Additional explanatory variables such as Commercial Bole Height (CBH do not really increase the indicators’ goodness of  fit for the equation. An alternative model to incorporate wood density should  be considered for estimating the above-ground biomass for mixed genera. Comparing the presented mixed-genera equation; Log(TAGB = 0.205 + 2.08Log(DBH + 1.75Log(WD, R-sq: 97.0%, R-sq (adj: 96.9%, F statistics 750.67, average deviation: 3.5%; to previously published datashows that this local species specific equation differs substantially from previously published equations and this site-specific equation is  considered to give a better estimation of  biomass.

  3. The role of above-ground competition and nitrogen vs. phosphorus enrichment in seedling survival of common European plant species of semi-natural grasslands.

    Directory of Open Access Journals (Sweden)

    Tobias Ceulemans

    Full Text Available Anthropogenic activities have severely altered fluxes of nitrogen and phosphorus in ecosystems worldwide. In grasslands, subsequent negative effects are commonly attributed to competitive exclusion of plant species following increased above-ground biomass production. However, some studies have shown that this does not fully account for nutrient enrichment effects, questioning whether lowering competition by reducing grassland productivity through mowing or herbivory can mitigate the environmental impact of nutrient pollution. Furthermore, few studies so far discriminate between nitrogen and phosphorus pollution. We performed a full factorial experiment in greenhouse mesocosms combining nitrogen and phosphorus addition with two clipping regimes designed to relax above-ground competition. Next, we studied the survival and growth of seedlings of eight common European grassland species and found that five out of eight species showed higher survival under the clipping regime with the lowest above-ground competition. Phosphorus addition negatively affected seven plant species and nitrogen addition negatively affected four plant species. Importantly, the negative effects of nutrient addition and higher above-ground competition were independent of each other for all but one species. Our results suggest that at any given level of soil nutrients, relaxation of above-ground competition allows for higher seedling survival in grasslands. At the same time, even at low levels of above-ground competition, nutrient enrichment negatively affects survival as compared to nutrient-poor conditions. Therefore, although maintaining low above-ground competition appears essential for species' recruitment, for instance through mowing or herbivory, these management efforts are likely to be insufficient and we conclude that environmental policies aimed to reduce both excess nitrogen and particularly phosphorus inputs are also necessary.

  4. Dryland wheat domestication changed the development of aboveground architecture for a well-structured canopy.

    Directory of Open Access Journals (Sweden)

    Pu-Fang Li

    Full Text Available We examined three different-ploidy wheat species to elucidate the development of aboveground architecture and its domesticated mechanism under environment-controlled field conditions. Architecture parameters including leaf, stem, spike and canopy morphology were measured together with biomass allocation, leaf net photosynthetic rate and instantaneous water use efficiency (WUE(i. Canopy biomass density was decreased from diploid to tetraploid wheat, but increased to maximum in hexaploid wheat. Population yield in hexaploid wheat was higher than in diploid wheat, but the population fitness and individual competition ability was higher in diploid wheats. Plant architecture was modified from a compact type in diploid wheats to an incompact type in tetraploid wheats, and then to a more compact type of hexaploid wheats. Biomass accumulation, population yield, harvest index and the seed to leaf ratio increased from diploid to tetraploid and hexaploid, associated with heavier specific internode weight and greater canopy biomass density in hexaploid and tetraploid than in diploid wheat. Leaf photosynthetic rate and WUEi were decreased from diploid to tetraploid and increased from tetraploid to hexaploid due to more compact leaf type in hexaploid and diploid than in tetraploid. Grain yield formation and WUEi were closely associated with spatial stance of leaves and stems. We conclude that the ideotype of dryland wheats could be based on spatial reconstruction of leaf type and further exertion of leaf photosynthetic rate.

  5. Carbon sequestration rate and aboveground biomass carbon potential of three young species in lower Gangetic plain.

    Science.gov (United States)

    Jana, Bipal K; Biswas, Soumyajit; Majumder, Mrinmoy; Roy, Pankaj K; Mazumdar, Asis

    2011-07-01

    Carbon is sequestered by the plant photosynthesis and stored as biomass in different parts of the tree. Carbon sequestration rate has been measured for young species (6 years age) of Shorea robusta at Chadra forest in Paschim Medinipur district, Albizzia lebbek in Indian Botanic Garden in Howrah district and Artocarpus integrifolia at Banobitan within Kolkata in the lower Gangetic plain of West Bengal in India by Automated Vaisala Made Instrument GMP343 and aboveground biomass carbon has been analyzed by CHN analyzer. The specific objective of this paper is to measure carbon sequestration rate and aboveground biomass carbon potential of three young species of Shorea robusta, Albizzia lebbek and Artocarpus integrifolia. The carbon sequestration rate (mean) from the ambient air during winter season as obtained by Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 11.13 g/h, 14.86 g/h and 4.22g/h, respectively. The annual carbon sequestration rate from ambient air were estimated at 8.97 t C ha(-1) by Shorea robusta, 11.97 t C ha(-1) by Albizzia lebbek and 3.33 t C ha(-1) by Artocarpus integrifolia. The percentage of carbon content (except root) in the aboveground biomass of Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 47.45, 47.12 and 43.33, respectively. The total aboveground biomass carbon stock per hectare as estimated for Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 5.22 t C ha(-1) , 6.26 t C ha(-1) and 7.28 t C ha(-1), respectively in these forest stands.

  6. Aboveground insect infestation attenuates belowground Agrobacterium-mediated genetic transformation.

    Science.gov (United States)

    Song, Geun Cheol; Lee, Soohyun; Hong, Jaehwa; Choi, Hye Kyung; Hong, Gun Hyong; Bae, Dong-Won; Mysore, Kirankumar S; Park, Yong-Soon; Ryu, Choong-Min

    2015-07-01

    Agrobacterium tumefaciens causes crown gall disease. Although Agrobacterium can be popularly used for genetic engineering, the influence of aboveground insect infestation on Agrobacterium induced gall formation has not been investigated. Nicotiana benthamiana leaves were exposed to a sucking insect (whitefly) infestation and benzothiadiazole (BTH) for 7 d, and these exposed plants were inoculated with a tumorigenic Agrobacterium strain. We evaluated, both in planta and in vitro, how whitefly infestation affects crown gall disease. Whitefly-infested plants exhibited at least a two-fold reduction in gall formation on both stem and crown root. Silencing of isochorismate synthase 1 (ICS1), required for salicylic acid (SA) synthesis, compromised gall formation indicating an involvement of SA in whitefly-derived plant defence against Agrobacterium. Endogenous SA content was augmented in whitefly-infested plants upon Agrobacterium inoculation. In addition, SA concentration was three times higher in root exudates from whitefly-infested plants. As a consequence, Agrobacterium-mediated transformation of roots of whitefly-infested plants was clearly inhibited when compared to control plants. These results suggest that aboveground whitefly infestation elicits systemic defence responses throughout the plant. Our findings provide new insights into insect-mediated leaf-root intra-communication and a framework to understand interactions between three organisms: whitefly, N. benthamiana and Agrobacterium. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  7. Environmental and biotic controls over aboveground biomass throughout a tropical rainforest

    Science.gov (United States)

    G.P. Asner; R.F. Hughes; T.A. Varga; D.E. Knapp; T. Kennedy-Bowdoin

    2009-01-01

    The environmental and biotic factors affecting spatial variation in canopy three-dimensional (3-D) structure and aboveground tree biomass (AGB) are poorly understood in tropical rain forests. We combined field measurements and airborne light detection and ranging (lidar) to quantify 3-D structure and AGB across a 5,016 ha rain forest reserve on the...

  8. A remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States

    Science.gov (United States)

    Byrd, Kristin B.; Ballanti, Laurel; Thomas, Nathan; Nguyen, Dung; Holmquist, James R.; Simard, Marc; Windham-Myers, Lisamarie

    2018-05-01

    Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our objective was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). We developed the first calibration-grade, national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. Using the random forest machine learning algorithm, we tested whether imagery from multiple sensors, Sentinel-1 C-band synthetic aperture radar, Landsat, and the National Agriculture Imagery Program (NAIP), can improve model performance. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n = 409, RMSE = 310 g/m2, 10.3% normalized RMSE), successfully predicted biomass for a range of marsh plant functional types defined by height, leaf angle and growth form. Model results were improved by scaling field-measured biomass calibration data by NAIP-derived 30 m fraction green vegetation. With a mean plant carbon content of 44.1% (n = 1384, 95% C.I. = 43.99%-44.37%), we generated regional 30 m aboveground carbon density maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map. We applied a multivariate delta method to calculate uncertainties in regional carbon densities and stocks that considered standard error in map area, mean biomass and mean %C. Louisiana palustrine emergent marshes had the highest C density (2.67 ± 0.004 Mg/ha) of all regions, while San Francisco Bay brackish/saline marshes had the highest C density of all

  9. QUANTIFYING FOREST ABOVEGROUND CARBON POOLS AND FLUXES USING MULTI-TEMPORAL LIDAR A report on field monitoring, remote sensing MMV, GIS integration, and modeling results for forestry field validation test to quantify aboveground tree biomass and carbon

    Energy Technology Data Exchange (ETDEWEB)

    Lee Spangler; Lee A. Vierling; Eva K. Stand; Andrew T. Hudak; Jan U.H. Eitel; Sebastian Martinuzzi

    2012-04-01

    Sound policy recommendations relating to the role of forest management in mitigating atmospheric carbon dioxide (CO{sub 2}) depend upon establishing accurate methodologies for quantifying forest carbon pools for large tracts of land that can be dynamically updated over time. Light Detection and Ranging (LiDAR) remote sensing is a promising technology for achieving accurate estimates of aboveground biomass and thereby carbon pools; however, not much is known about the accuracy of estimating biomass change and carbon flux from repeat LiDAR acquisitions containing different data sampling characteristics. In this study, discrete return airborne LiDAR data was collected in 2003 and 2009 across {approx}20,000 hectares (ha) of an actively managed, mixed conifer forest landscape in northern Idaho, USA. Forest inventory plots, established via a random stratified sampling design, were established and sampled in 2003 and 2009. The Random Forest machine learning algorithm was used to establish statistical relationships between inventory data and forest structural metrics derived from the LiDAR acquisitions. Aboveground biomass maps were created for the study area based on statistical relationships developed at the plot level. Over this 6-year period, we found that the mean increase in biomass due to forest growth across the non-harvested portions of the study area was 4.8 metric ton/hectare (Mg/ha). In these non-harvested areas, we found a significant difference in biomass increase among forest successional stages, with a higher biomass increase in mature and old forest compared to stand initiation and young forest. Approximately 20% of the landscape had been disturbed by harvest activities during the six-year time period, representing a biomass loss of >70 Mg/ha in these areas. During the study period, these harvest activities outweighed growth at the landscape scale, resulting in an overall loss in aboveground carbon at this site. The 30-fold increase in sampling density

  10. [Soil seed bank and its correlations with aboveground vegetation and environmental factors in water level fluctuating zone of Danjiangkou Reservoir, Central China].

    Science.gov (United States)

    Liu, Rui-Xue; Zhan, Juan; Shi, Zhi-Hua; Chen, Long-qing

    2013-03-01

    Taking the water level fluctuating zone of the Danjiangkou Reservoir as a case, and by the method of hierarchical cluster analysis, the soil seed banks at 37 sampling plots within the areas of 140-145 m elevation were divided into 6 groups, and the species composition, density, and diversity of the soil seed banks among the groups were compared. The differences between the soil seed banks and the aboveground vegetations were analyzed by S0rensen similarity coefficient, and the correlations among the soil seed banks, aboveground vegetations, and environmental factors were explored by principal component analysis (PCA) and multivariable regression analysis. At the same altitudes of the water level fluctuating zone, the species composition of the soil seed banks had obvious heterogeneity, and the density and diversity indices of the soil seed banks among different groups were great. The similarity coefficient between the soil seed banks and aboveground vegetations was low, and the species number in the soil seed banks was obviously lesser than that in the aboveground vegetations. The density of the soil seed banks was highly positively correlated with the aboveground vegetations coverage and species number and the soil texture, but highly negatively correlated with the soil water-holding capacity and soil porosity.

  11. Allometric Equations for Aboveground and Belowground Biomass Estimations in an Evergreen Forest in Vietnam.

    Science.gov (United States)

    Nam, Vu Thanh; van Kuijk, Marijke; Anten, Niels P R

    2016-01-01

    Allometric regression models are widely used to estimate tropical forest biomass, but balancing model accuracy with efficiency of implementation remains a major challenge. In addition, while numerous models exist for aboveground mass, very few exist for roots. We developed allometric equations for aboveground biomass (AGB) and root biomass (RB) based on 300 (of 45 species) and 40 (of 25 species) sample trees respectively, in an evergreen forest in Vietnam. The biomass estimations from these local models were compared to regional and pan-tropical models. For AGB we also compared local models that distinguish functional types to an aggregated model, to assess the degree of specificity needed in local models. Besides diameter at breast height (DBH) and tree height (H), wood density (WD) was found to be an important parameter in AGB models. Existing pan-tropical models resulted in up to 27% higher estimates of AGB, and overestimated RB by nearly 150%, indicating the greater accuracy of local models at the plot level. Our functional group aggregated local model which combined data for all species, was as accurate in estimating AGB as functional type specific models, indicating that a local aggregated model is the best choice for predicting plot level AGB in tropical forests. Finally our study presents the first allometric biomass models for aboveground and root biomass in forests in Vietnam.

  12. Allometric Equations for Aboveground and Belowground Biomass Estimations in an Evergreen Forest in Vietnam.

    Directory of Open Access Journals (Sweden)

    Vu Thanh Nam

    Full Text Available Allometric regression models are widely used to estimate tropical forest biomass, but balancing model accuracy with efficiency of implementation remains a major challenge. In addition, while numerous models exist for aboveground mass, very few exist for roots. We developed allometric equations for aboveground biomass (AGB and root biomass (RB based on 300 (of 45 species and 40 (of 25 species sample trees respectively, in an evergreen forest in Vietnam. The biomass estimations from these local models were compared to regional and pan-tropical models. For AGB we also compared local models that distinguish functional types to an aggregated model, to assess the degree of specificity needed in local models. Besides diameter at breast height (DBH and tree height (H, wood density (WD was found to be an important parameter in AGB models. Existing pan-tropical models resulted in up to 27% higher estimates of AGB, and overestimated RB by nearly 150%, indicating the greater accuracy of local models at the plot level. Our functional group aggregated local model which combined data for all species, was as accurate in estimating AGB as functional type specific models, indicating that a local aggregated model is the best choice for predicting plot level AGB in tropical forests. Finally our study presents the first allometric biomass models for aboveground and root biomass in forests in Vietnam.

  13. Partitioning of net carbon dioxide flux measured by automatic transparent chamber

    Science.gov (United States)

    Dyukarev, EA

    2018-03-01

    Mathematical model was developed for describing carbon dioxide fluxes at open sedge-sphagnum fen during growing season. The model was calibrated using the results of observations from automatic transparent chamber and it allows us to estimate autotrophic, heterotrophic and ecosystem respiration fluxes, gross and net primary vegetation production, and the net carbon balance.

  14. Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: implications for dynamic global vegetation models.

    Science.gov (United States)

    Johnson, Michelle O; Galbraith, David; Gloor, Manuel; De Deurwaerder, Hannes; Guimberteau, Matthieu; Rammig, Anja; Thonicke, Kirsten; Verbeeck, Hans; von Randow, Celso; Monteagudo, Abel; Phillips, Oliver L; Brienen, Roel J W; Feldpausch, Ted R; Lopez Gonzalez, Gabriela; Fauset, Sophie; Quesada, Carlos A; Christoffersen, Bradley; Ciais, Philippe; Sampaio, Gilvan; Kruijt, Bart; Meir, Patrick; Moorcroft, Paul; Zhang, Ke; Alvarez-Davila, Esteban; Alves de Oliveira, Atila; Amaral, Ieda; Andrade, Ana; Aragao, Luiz E O C; Araujo-Murakami, Alejandro; Arets, Eric J M M; Arroyo, Luzmila; Aymard, Gerardo A; Baraloto, Christopher; Barroso, Jocely; Bonal, Damien; Boot, Rene; Camargo, Jose; Chave, Jerome; Cogollo, Alvaro; Cornejo Valverde, Fernando; Lola da Costa, Antonio C; Di Fiore, Anthony; Ferreira, Leandro; Higuchi, Niro; Honorio, Euridice N; Killeen, Tim J; Laurance, Susan G; Laurance, William F; Licona, Juan; Lovejoy, Thomas; Malhi, Yadvinder; Marimon, Bia; Marimon, Ben Hur; Matos, Darley C L; Mendoza, Casimiro; Neill, David A; Pardo, Guido; Peña-Claros, Marielos; Pitman, Nigel C A; Poorter, Lourens; Prieto, Adriana; Ramirez-Angulo, Hirma; Roopsind, Anand; Rudas, Agustin; Salomao, Rafael P; Silveira, Marcos; Stropp, Juliana; Ter Steege, Hans; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van der Heijden, Geertje M F; Vasquez, Rodolfo; Guimarães Vieira, Ima Cèlia; Vilanova, Emilio; Vos, Vincent A; Baker, Timothy R

    2016-12-01

    Understanding the processes that determine above-ground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody productivity [woody net primary productivity (NPP)] and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree mortality (the absolute rate of woody biomass loss and the rate of stem mortality) and/or woody NPP, control variation in AGB among 167 plots in intact forest across Amazonia. We then compare these relationships and the observed variation in AGB and woody NPP with the predictions of four DGVMs. The observations show that stem mortality rates, rather than absolute rates of woody biomass loss, are the most important predictor of AGB, which is consistent with the importance of stand size structure for determining spatial variation in AGB. The relationship between stem mortality rates and AGB varies among different regions of Amazonia, indicating that variation in wood density and height/diameter relationships also influences AGB. In contrast to previous findings, we find that woody NPP is not correlated with stem mortality rates and is weakly positively correlated with AGB. Across the four models, basin-wide average AGB is similar to the mean of the observations. However, the models consistently overestimate woody NPP and poorly represent the spatial patterns of both AGB and woody NPP estimated using plot data. In marked contrast to the observations, DGVMs typically show strong positive relationships between woody NPP and AGB. Resolving these differences will require incorporating forest size structure, mechanistic models of stem mortality and variation in functional composition in DGVMs. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  15. Career Guidance in India Based on O*NET and Cultural Variables

    Science.gov (United States)

    Bhatnagar, Mohit

    2018-01-01

    The Occupational Information Network (O*NET) is the primary source of occupational information in the United States (US). In this study, I review O*NET's usage for career guidance in India and conceive a career intervention based on it. In an empirical evaluation adopting a posttest-only experimental design with post-graduate management students…

  16. A forward-looking, national-scale remote sensing-based model of tidal marsh aboveground carbon stocks

    Science.gov (United States)

    Holmquist, J. R.; Byrd, K. B.; Ballanti, L.; Nguyen, D.; Simard, M.; Windham-Myers, L.; Thomas, N.

    2017-12-01

    Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our goal was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). To meet this objective we developed the first national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. Using the random forest algorithm we tested Sentinel-1 radar backscatter metrics and Landsat vegetation indices as predictors of biomass. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n=409, RMSE=310 g/m2, 10.3% normalized RMSE), successfully predicted biomass and carbon for a range of marsh plant functional types defined by height, leaf angle and growth form. Model error was reduced by scaling field measured biomass by Landsat fraction green vegetation derived from object-based classification of National Agriculture Imagery Program imagery. We generated 30m resolution biomass maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map for each region. With a mean plant %C of 44.1% (n=1384, 95% C.I.=43.99% - 44.37%) we estimated mean aboveground carbon densities (Mg/ha) and total carbon stocks for each wetland type for each region. Louisiana palustrine emergent marshes had the highest C density (2.67 ±0.08 Mg/ha) of all regions, while San Francisco Bay brackish/saline marshes had the highest C density of all estuarine emergent marshes (2.03 ±0.06 Mg/ha). This modeling and data synthesis effort will allow for aboveground

  17. Assessment of Export Efficiency Equations in the Southern Ocean Applied to Satellite-Based Net Primary Production

    Science.gov (United States)

    Arteaga, Lionel; Haëntjens, Nils; Boss, Emmanuel; Johnson, Kenneth S.; Sarmiento, Jorge L.

    2018-04-01

    Carbon export efficiency (e-ratio) is defined as the fraction of organic carbon fixed through net primary production (NPP) that is exported out of the surface productive layer of the ocean. Recent observations for the Southern Ocean suggest a negative e-ratio versus NPP relationship, and a reduced dependency of export efficiency on temperature, different than in the global domain. In this study, we complement information from a passive satellite sensor with novel space-based lidar observations of ocean particulate backscattering to infer NPP over the entire annual cycle, and estimate Southern Ocean export rates from five different empirical models of export efficiency. Inferred Southern Ocean NPP falls within the range of previous studies, with a mean estimate of 15.8 (± 3.9) Pg C yr-1 for the region south of 30°S during the 2005-2016 period. We find that an export efficiency model that accounts for silica(Si)-ballasting, which is constrained by observations with a negative e-ratio versus NPP relationship, shows the best agreement with in situ-based estimates of annual net community production (annual export of 2.7 ± 0.6 Pg C yr-1 south of 30°S). By contrast, models based on the analysis of global observations with a positive e-ratio versus NPP relationship predict annually integrated export rates that are ˜ 33% higher than the Si-dependent model. Our results suggest that accounting for Si-induced ballasting is important for the estimation of carbon export in the Southern Ocean.

  18. Cultivating engaged leadership through a learning collaborative: lessons from primary care renewal in Oregon safety net clinics.

    Science.gov (United States)

    McMullen, Carmit K; Schneider, Jennifer; Firemark, Alison; Davis, James; Spofford, Mark

    2013-01-01

    The aim of this study was to explore how learning collaboratives cultivate leadership skills that are essential for implementing patient-centered medical homes (PCMHs). We conducted an ethnographic evaluation of a payor-incentivized PCMH implementation in Oregon safety net clinics, known as Primary Care Renewal. Analyses primarily drew on in-depth interviews with organizational leaders who were involved in the initiative. We solicited perspectives on the history, barriers, facilitators, and other noteworthy factors related to the implementation of PCMH. We reviewed and summarized transcripts and created and applied a coding dictionary to identify emergent leadership themes. We reviewed field notes from clinic site visits and observations of learning collaborative activities for additional information on the role of engaged leadership. Interview data suggested that organizations followed a similar, sequential process of Primary Care Renewal implementation having 2 phases-inspiration and implementation-and that leaders needed and learned different leadership skills in each phase. Leaders reported that collaborative learning opportunities were critical for developing engaged leadership skills during the inspiration phase of transformation. Facilitative and modeling aspects of engaged leadership were most important for codesigning a vision and plan for change. Adaptive leadership skills became more important during the implementation phase, when specific operational and management skills were needed to foster standardization and spread of the Primary Care Renewal initiative throughout participating clinics. The PCMH has received much attention as a way to reorganize and potentially improve primary care. Documenting steps and stages for cultivating leaders with the vision and skills to transform their organizations into PCMHs may offer a useful roadmap to other organizations considering a similar transformation.

  19. Modeling the spatial-temporal dynamics of net primary production in Yangtze River Basin using IBIS model

    Science.gov (United States)

    Zhang, Z.; Jiang, H.; Liu, J.; Zhu, Q.; Wei, X.; Jiang, Z.; Zhou, G.; Zhang, X.; Han, J.

    2011-01-01

    The climate change has significantly affected the carbon cycling in Yangtze River Basin. To better understand the alternation pattern for the relationship between carbon cycling and climate change, the net primary production (NPP) were simulated in the study area from 1956 to 2006 by using the Integrated Biosphere Simulator (IBIS). The results showed that the average annual NPP per square meter was about 0.518 kg C in Yangtze River Basin. The high NPP levels were mainly distributed in the southeast area of Sichuan, and the highest value reached 1.05 kg C/m2. The NPP increased based on the simulated temporal trends. The spatiotemporal variability of the NPP in the vegetation types was obvious, and it was depended on the climate and soil condition. We found the drought climate was one of critical factor that impacts the alterations of the NPP in the area by the simulation. ?? 2011 IEEE.

  20. Global Human Appropriation of Net Primary Production and Associated Resource Decoupling: 2010-2050.

    Science.gov (United States)

    Zhou, Chuanbin; Elshkaki, Ayman; Graedel, T E

    2018-02-06

    Human appropriation of net primary production (HANPP) methodology has previously been developed to assess the intensity of anthropogenic extraction of biomass resources. However, there is limited analysis concerning future trends of HANPP. Here we present four scenarios for global biomass demand and HANPP harv (the most key component of HANPP) from 2010 to 2050 by incorporating data on expanded historical drivers and disaggregated biomass demand (food, wood material, and fuelwood). The results show that the biomass demand has the lowest value in the equitability world scenario (an egalitarian vision) and the highest value in the security foremost scenario (an isolationist vision). The biomass demand for food and materials increases over time, while fuelwood demand decreases over time. Global HANPP harv rises to between 8.5 and 10.1 Pg C/yr in 2050 in the four scenarios, 14-35% above its value in 2010, and some 50% of HANPP harv is calculated to be crop residues, wood residues, and food losses in the future. HANPP harv in developing regions (Asia, Africa, and Latin America) increases faster than that in more-developed regions (North America and Europe), due to urbanization, population growth, and increasing income. Decoupling of HANPP harv and socioeconomic development is also discussed in this work.

  1. Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing.

    Science.gov (United States)

    Feng, X; Liu, G; Chen, J M; Chen, M; Liu, J; Ju, W M; Sun, R; Zhou, W

    2007-11-01

    The terrestrial carbon cycle is one of the foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle research. In this study, China's terrestrial NPP was simulated using the Boreal Ecosystem Productivity Simulator (BEPS), a carbon-water coupled process model based on remote sensing inputs. For these purposes, a national-wide database (including leaf area index, land cover, meteorology, vegetation and soil) at a 1 km resolution and a validation database were established. Using these databases and BEPS, daily maps of NPP for the entire China's landmass in 2001 were produced, and gross primary productivity (GPP) and autotrophic respiration (RA) were estimated. Using the simulated results, we explore temporal-spatial patterns of China's terrestrial NPP and the mechanisms of its responses to various environmental factors. The total NPP and mean NPP of China's landmass were 2.235 GtC and 235.2 gCm(-2)yr(-1), respectively; the total GPP and mean GPP were 4.418 GtC and 465 gCm(-2)yr(-1); and the total RA and mean RA were 2.227 GtC and 234 gCm(-2)yr(-1), respectively. On average, NPP was 50.6% of GPP. In addition, statistical analysis of NPP of different land cover types was conducted, and spatiotemporal patterns of NPP were investigated. The response of NPP to changes in some key factors such as LAI, precipitation, temperature, solar radiation, VPD and AWC are evaluated and discussed.

  2. Efficiency in the use of radiation and primary productivity on forage resources in eastern Uruguay

    International Nuclear Information System (INIS)

    Baeza, S.; Paruelo, J.; Ayala, Walter

    2011-01-01

    Aboveground Net Primary Productivity (ANPP) is one of the most important ecosystem attributes, and the main control of stock density on grasslands. Traditionally it has been estimated from based on periodical biomass harvest. Spectral information allows estimating ANPP at low cost and in real time over large areas. This requires the calibration of models that relate spectral information and field estimates of ANPP, quantifying a key factor in this relationship: the conversion efficiency of radiation into biomass (Radiation Use Efficiency: RUE). In this work, we combined field ANPP estimates with data from satellite imagery and weather stations to estimate EUR and generate models to estimate ANPP in real time in natural grasslands with and without legumes overseeding, of the Sierras y Lomadas del Este region. RUE was 0.24 g MS/MJ for natural grassland, while sowed grassland EUR was approximately twice, depending on the system analyzed. ANPP models explained 70 and 58% of the variance of the data (p <0.001), with prediction r2 of 0,67 and 0.55 (p <0.001), to natural grasslands with and without legumes overseeding, respectively

  3. Ecosystem responses to warming and watering in typical and desert steppes

    OpenAIRE

    Zhenzhu Xu; Yanhui Hou; Lihua Zhang; Tao Liu; Guangsheng Zhou

    2016-01-01

    Global warming is projected to continue, leading to intense fluctuations in precipitation and heat waves and thereby affecting the productivity and the relevant biological processes of grassland ecosystems. Here, we determined the functional responses to warming and altered precipitation in both typical and desert steppes. The results showed that watering markedly increased the aboveground net primary productivity (ANPP) in a typical steppe during a drier year and in a desert steppe over two ...

  4. A remote sensing-based model of tidal marsh aboveground carbon stocks for the conterminous United States

    Science.gov (United States)

    Byrd, Kristin B.; Ballanti, Laurel; Thomas, Nathan; Nguyen, Dung; Holmquist, James R.; Simard, Marc; Windham-Myers, Lisamarie

    2018-01-01

    Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our objective was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). We developed the first calibration-grade, national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. Using the random forest machine learning algorithm, we tested whether imagery from multiple sensors, Sentinel-1 C-band synthetic aperture radar, Landsat, and the National Agriculture Imagery Program (NAIP), can improve model performance. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n = 409, RMSE = 310 g/m2, 10.3% normalized RMSE), successfully predicted biomass for a range of marsh plant functional types defined by height, leaf angle and growth form. Model results were improved by scaling field-measured biomass calibration data by NAIP-derived 30 m fraction green vegetation. With a mean plant carbon content of 44.1% (n = 1384, 95% C.I. = 43.99%–44.37%), we generated regional 30 m aboveground carbon density maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map. We applied a multivariate delta method to calculate uncertainties in regional carbon densities and stocks that considered standard error in map area, mean biomass and mean %C. Louisiana palustrine emergent marshes had the highest C density (2.67 ± 0.004 Mg/ha) of all regions, while San Francisco Bay brackish/saline marshes had

  5. Decomposition of aboveground biomass of a herbaceous wetland stand

    OpenAIRE

    KLIMOVIČOVÁ, Lucie

    2010-01-01

    The master?s thesis is part of the project GA ČR č. P504/11/1151- Role of plants in the greenhouse gas budget of a sedge fen. This thesis deals with the decomposition of aboveground vegetation in a herbaceous wetland. The decomposition rate was established on the flooded part of the Wet Meadows near Třeboň. The rate of the decomposition processes was evaluated using the litter-bag method. Mesh bags filled with dry plant matter were located in the vicinity of the automatic meteorological stati...

  6. Money for nothing? The net costs of medical training.

    Science.gov (United States)

    Barros, Pedro P; Machado, Sara R

    2010-09-01

    One of the stages of medical training is the residency programme. Hosting institutions often claim compensation for the training provided. How much should this compensation be? According to our results, given the benefits arising from having residents among the house staff, no transfer (either tuition fee or subsidy) should be set to compensate the hosting institution for providing medical training. This paper quantifies the net costs of medical training, defined as the training costs over and above the wage paid. We jointly consider two effects. On the one hand, residents take extra time and resources from both the hosting institution and the supervisor. On the other hand, residents can be regarded as a less expensive substitute to nurses and/or graduate physicians, in the production of health care, both in primary care centres and hospitals. The net effect can be either positive or negative. We use the fact that residents, in Portugal, are centrally allocated to National Health Service hospitals to treat them as a fixed exogenous production factor. The data used comes from Portuguese hospitals and primary care centres. Cost function estimates point to a small negative marginal impact of residents on hospitals' (-0.02%) and primary care centres' (-0.9%) costs. Nonetheless, there is a positive relation between size and cost to the very large hospitals and primary care centres. Our approach to estimation of residents' costs controls for other teaching activities hospitals might have (namely undergraduate Medical Schools). Overall, the net costs of medical training appear to be quite small.

  7. Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades

    International Nuclear Information System (INIS)

    Epstein, Howard E; Raynolds, Martha K; Walker, Donald A; Bhatt, Uma S; Tucker, Compton J; Pinzon, Jorge E

    2012-01-01

    Numerous studies have evaluated the dynamics of Arctic tundra vegetation throughout the past few decades, using remotely sensed proxies of vegetation, such as the normalized difference vegetation index (NDVI). While extremely useful, these coarse-scale satellite-derived measurements give us minimal information with regard to how these changes are being expressed on the ground, in terms of tundra structure and function. In this analysis, we used a strong regression model between NDVI and aboveground tundra phytomass, developed from extensive field-harvested measurements of vegetation biomass, to estimate the biomass dynamics of the circumpolar Arctic tundra over the period of continuous satellite records (1982–2010). We found that the southernmost tundra subzones (C–E) dominate the increases in biomass, ranging from 20 to 26%, although there was a high degree of heterogeneity across regions, floristic provinces, and vegetation types. The estimated increase in carbon of the aboveground live vegetation of 0.40 Pg C over the past three decades is substantial, although quite small relative to anthropogenic C emissions. However, a 19.8% average increase in aboveground biomass has major implications for nearly all aspects of tundra ecosystems including hydrology, active layer depths, permafrost regimes, wildlife and human use of Arctic landscapes. While spatially extensive on-the-ground measurements of tundra biomass were conducted in the development of this analysis, validation is still impossible without more repeated, long-term monitoring of Arctic tundra biomass in the field. (letter)

  8. Dynamics of Aboveground Phytomass of the Circumpolar Arctic Tundra During the Past Three Decades

    Science.gov (United States)

    Epstein, Howard E.; Raynolds, Martha K.; Walker, Donald A.; Bhatt, Uma S.; Tucker, Compton J.; Pinzon, Jorge E.

    2012-01-01

    Numerous studies have evaluated the dynamics of Arctic tundra vegetation throughout the past few decades, using remotely sensed proxies of vegetation, such as the normalized difference vegetation index (NDVI). While extremely useful, these coarse-scale satellite-derived measurements give us minimal information with regard to how these changes are being expressed on the ground, in terms of tundra structure and function. In this analysis, we used a strong regression model between NDVI and aboveground tundra phytomass, developed from extensive field-harvested measurements of vegetation biomass, to estimate the biomass dynamics of the circumpolar Arctic tundra over the period of continuous satellite records (1982-2010). We found that the southernmost tundra subzones (C-E) dominate the increases in biomass, ranging from 20 to 26%, although there was a high degree of heterogeneity across regions, floristic provinces, and vegetation types. The estimated increase in carbon of the aboveground live vegetation of 0.40 Pg C over the past three decades is substantial, although quite small relative to anthropogenic C emissions. However, a 19.8% average increase in aboveground biomass has major implications for nearly all aspects of tundra ecosystems including hydrology, active layer depths, permafrost regimes, wildlife and human use of Arctic landscapes. While spatially extensive on-the-ground measurements of tundra biomass were conducted in the development of this analysis, validation is still impossible without more repeated, long-term monitoring of Arctic tundra biomass in the field.

  9. Mechanisms and ecological implications of plant-mediated interactions between belowground and aboveground insect herbivores

    NARCIS (Netherlands)

    Papadopoulou, G.V.; Dam, N.M. van

    2017-01-01

    Plant-mediated interactions between belowground (BG) and aboveground (AG) herbivores have received increasing interest recently. However, the molecular mechanisms underlying ecological consequences of BG–AG interactions are not fully clear yet. Herbivore-induced plant defenses are complex and

  10. Long-term above-ground biomass production in a red oak-pecan agroforestry system

    Science.gov (United States)

    Agroforestry systems have widely been recognized for their potential to foster long-term carbon sequestration in woody perennials. This study aims to determine the above-ground biomass in a 16-year-old red oak (Quercus rubra) - pecan (Carya illinoinensis) silvopastoral planting (141 and 53 trees ha-...

  11. Responses of terrestrial ecosystems' net primary productivity to future regional climate change in China.

    Science.gov (United States)

    Zhao, Dongsheng; Wu, Shaohong; Yin, Yunhe

    2013-01-01

    The impact of regional climate change on net primary productivity (NPP) is an important aspect in the study of ecosystems' response to global climate change. China's ecosystems are very sensitive to climate change owing to the influence of the East Asian monsoon. The Lund-Potsdam-Jena Dynamic Global Vegetation Model for China (LPJ-CN), a global dynamical vegetation model developed for China's terrestrial ecosystems, was applied in this study to simulate the NPP changes affected by future climate change. As the LPJ-CN model is based on natural vegetation, the simulation in this study did not consider the influence of anthropogenic activities. Results suggest that future climate change would have adverse effects on natural ecosystems, with NPP tending to decrease in eastern China, particularly in the temperate and warm temperate regions. NPP would increase in western China, with a concentration in the Tibetan Plateau and the northwest arid regions. The increasing trend in NPP in western China and the decreasing trend in eastern China would be further enhanced by the warming climate. The spatial distribution of NPP, which declines from the southeast coast to the northwest inland, would have minimal variation under scenarios of climate change.

  12. Responses of terrestrial ecosystems' net primary productivity to future regional climate change in China.

    Directory of Open Access Journals (Sweden)

    Dongsheng Zhao

    Full Text Available The impact of regional climate change on net primary productivity (NPP is an important aspect in the study of ecosystems' response to global climate change. China's ecosystems are very sensitive to climate change owing to the influence of the East Asian monsoon. The Lund-Potsdam-Jena Dynamic Global Vegetation Model for China (LPJ-CN, a global dynamical vegetation model developed for China's terrestrial ecosystems, was applied in this study to simulate the NPP changes affected by future climate change. As the LPJ-CN model is based on natural vegetation, the simulation in this study did not consider the influence of anthropogenic activities. Results suggest that future climate change would have adverse effects on natural ecosystems, with NPP tending to decrease in eastern China, particularly in the temperate and warm temperate regions. NPP would increase in western China, with a concentration in the Tibetan Plateau and the northwest arid regions. The increasing trend in NPP in western China and the decreasing trend in eastern China would be further enhanced by the warming climate. The spatial distribution of NPP, which declines from the southeast coast to the northwest inland, would have minimal variation under scenarios of climate change.

  13. Comparing MODIS Net Primary Production Estimates with Terrestrial National Forest Inventory Data in Austria

    Directory of Open Access Journals (Sweden)

    Mathias Neumann

    2015-04-01

    Full Text Available The mission of this study is to compare Net Primary Productivity (NPP estimates using (i forest inventory data and (ii spatio-temporally continuous MODIS (MODerate resolution Imaging Spectroradiometer remote sensing data for Austria. While forest inventories assess the change in forest growth based on repeated individual tree measurements (DBH, height etc., the MODIS NPP estimates are based on ecophysiological processes such as photosynthesis, respiration and carbon allocation. We obtained repeated national forest inventory data from Austria, calculated a “ground-based” NPP estimate and compared the results with “space-based” MODIS NPP estimates using different daily climate data. The MODIS NPP estimates using local Austrian climate data exhibited better compliance with the forest inventory driven NPP estimates than the MODIS NPP predictions using global climate data sets. Stand density plays a key role in addressing the differences between MODIS driven NPP estimates versus terrestrial driven inventory NPP estimates. After addressing stand density, both results are comparable across different scales. As forest management changes stand density, these findings suggest that management issues are important in understanding the observed discrepancies between MODIS and terrestrial NPP.

  14. [Spatial distribution of Tamarix ramosissima aboveground biomass and water consumption in the lower reaches of Heihe River, Northwest China].

    Science.gov (United States)

    Peng, Shou-Zhang; Zhao, Chuan-Yan; Peng, Huan-Hua; Zheng, Xiang-Lin; Xu, Zhong-Lin

    2010-08-01

    Based on the field observation on the Tamarix ramosissima populations in the lower reaches of Heihe River, the relationship models between the aboveground biomass of T. ramosissima and its morphological features (basal diameter, height, and canopy perimeter) were built. In the mean time, the land use/cover of the study area was classified by the decision tree classification with high resolution image (QuickBird), the distribution of T. ramosissima was extracted from classification map, and the morphological feature (canopy perimeter) of T. ramosissima was calculated with ArcGIS 9.2. On the bases of these, the spatial distribution of T. ramosissima aboveground biomass in the study area was estimated. Finally, the spatial distribution of the water consumption of T. ramosissima in the study area was calculated by the transpiration coefficient (300) and the aboveground biomass. The results showed that the aboveground biomass of T. ramosissima was 69644.7 t, and the biomass per unit area was 0.78 kg x m(-2). Spatially, the habitats along the banks of Heihe River were suitable for T. ramosissima, and thus, this tree species had a high biomass. The total amount of water consumption of T. ramosissima in the study area was 2.1 x 10(7) m3, and the annual mean water consumption of T. ramosissima ranged from 30 mm to 386 mm.

  15. Below- and above-ground effects of deadwood and termites in plantation forests

    Science.gov (United States)

    Michael D. Ulyshen; Richard Shefferson; Scott Horn; Melanie K. Taylor; Bryana Bush; Cavell Brownie; Sebastian Seibold; Michael S. Strickland

    2017-01-01

    Deadwood is an important legacy structure in managed forests, providing continuity in shelter and resource availability for many organisms and acting as a vehicle by which nutrients can be passed from one stand to the next following a harvest. Despite existing at the interface between below- and above-ground systems, however, much remains unknown about the role woody...

  16. Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon

    Science.gov (United States)

    Marcos Longo; Michael Keller; Maiza N. dos-Santos; Veronika Leitold; Ekena R. Pinagé; Alessandro Baccini; Sassan Saatchi; Euler M. Nogueira; Mateus Batistella; Douglas C. Morton

    2016-01-01

    Deforestation rates have declined in the Brazilian Amazon since 2005, yet degradation from logging, fire, and fragmentation has continued in frontier forests. In this study we quantified the aboveground carbon density (ACD) in intact and degraded forests using the largest data set of integrated forest inventory plots (n = 359) and airborne lidar data (18,000 ha)...

  17. Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys

    Science.gov (United States)

    Andrew T. Hudak; Eva K. Strand; Lee A. Vierling; John C. Byrne; Jan U. H. Eitel; Sebastian Martinuzzi; Michael J. Falkowski

    2012-01-01

    Sound forest policy and management decisions to mitigate rising atmospheric CO2 depend upon accurate methodologies to quantify forest carbon pools and fluxes over large tracts of land. LiDAR remote sensing is a rapidly evolving technology for quantifying aboveground biomass and thereby carbon pools; however, little work has evaluated the efficacy of repeat LiDAR...

  18. The supply and demand of net primary production in the Sahel

    International Nuclear Information System (INIS)

    Abdi, A M; Seaquist, J; Tenenbaum, D E; Eklundh, L; Ardö, J

    2014-01-01

    Net primary production (NPP) is the principal source of energy for ecosystems and, by extension, human populations that depend on them. The relationship between the supply and demand of NPP is important for the assessment of socio-ecological vulnerability. We present an analysis of the supply and demand of NPP in the Sahel using NPP estimates from the MODIS sensor and agri-environmental data from FAOSTAT. This synergistic approach allows for a spatially explicit estimation of human impact on ecosystems. We estimated the annual amount of NPP required to derive food, fuel and feed between 2000 and 2010 for 22 countries in sub-Saharan Africa. When comparing annual estimates of supply and demand of NPP, we found that demand increased from 0.44 PgC to 1.13 PgC, representing 19% and 41%, respectively, of available supply due to a 31% increase in the human population between 2000 and 2010. The demand for NPP has been increasing at an annual rate of 2.2% but NPP supply was near-constant with an inter-annual variability of approximately 1.7%. Overall, there were statistically significant (p < 0.05) increases in the NPP of cropland (+6.0%), woodland (+6.1%) and grassland/savanna (+9.4%), and a decrease in the NPP of forests (−0.7%). On the demand side, the largest increase was for food (20.4%) followed by feed (16.7%) and fuel (5.5%). The supply-demand balance of NPP is a potentially important tool from the standpoint of sustainable development, and as an indicator of stresses on the environment stemming from increased consumption of biomass. (letter)

  19. A biophysical process based approach for estimating net primary production using satellite and ground observations

    Science.gov (United States)

    Choudhury, Bhaskar J.

    An approach is presented for calculating interannual variation of net primary production (C) of terrestrial plant communities at regional scale using satellite and ground measurements. C has been calculated as the difference of gross photosynthesis (A g) and respiration (R), recognizing that different biophysical factors exert major control on these two processes. A g has been expressed as the product of radiation use efficiency for gross photosynthesis by an unstressed canopy and intercepted photosynthetically active radiation, which is then adjusted for stresses due to soil water shortage and temperature away from optimum. R has been calculated as the sum of growth and maintenance components (respectively, R g and R m. The R m has been determined from nitrogen content of plant tissue per unit ground area, while R g has been obtained as a fraction of the difference of A g and R m. Model parameters have not been determined by matching the calculated fluxes against observations at any location. Results are presented for cultivated and temperate deciduous forest areas over North America for five consecutive years (1986-1990) and compared with observations.

  20. Assessing the impact of the urbanization process on net primary productivity in China in 1989-2000.

    Science.gov (United States)

    Tian, Guangjin; Qiao, Zhi

    2014-01-01

    Urban development affects the material circulation and energy flow of ecosystems, thereby affecting the Net Primary Productivity (NPP). The loss of NPP due to urban expansion was calculated integrating GLO-PEM with remote sensing and GIS techniques in China during the period of 1989-2000. Using urban expansion and the mean NPP for the different land use types in the fourteen regions, the total loss of NPP was calculated as 0.95 Tg C, which accounted for 0.03% of the national NPP of 1989. The total loss of NPP due to the transformation from cropland to urban land accounted for 91.93%, followed by forest (7.17%) and grassland (0.69%). However, the conversion from unused land, industrial and construction land, and water bodies to urban land resulted in an increase in the NPP. The regions locating in eastern China and middle China had large reductions in the total NPP due to urban expansion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Predicting aboveground forest biomass with topographic variables in human-impacted tropical dry forest landscapes

    NARCIS (Netherlands)

    Salinas-Melgoza, Miguel A.; Skutsch, Margaret; Lovett, Jon C.

    2018-01-01

    Topographic variables such as slope and elevation partially explain spatial variations in aboveground biomass (AGB) within landscapes. Human activities that impact vegetation, such as cattle grazing and shifting cultivation, often follow topographic features and also play a key role in determining

  2. Horizontal ichthyoplankton tow-net system with unobstructed net opening

    Science.gov (United States)

    Nester, Robert T.

    1987-01-01

    The larval fish sampler described here consists of a modified bridle, frame, and net system with an obstruction-free net opening and is small enough for use on boats 10 m or less in length. The tow net features a square net frame attached to a 0.5-m-diameter cylinder-on-cone plankton net with a bridle designed to eliminate all obstructions forward of the net opening, significantly reducing currents and vibrations in the water directly preceding the net. This system was effective in collecting larvae representing more than 25 species of fish at sampling depths ranging from surface to 10 m and could easily be used at greater depths.

  3. Higher-moment measurements of net-kaon, net-charge and net-proton multiplicity distributions at STAR

    International Nuclear Information System (INIS)

    Sarkar, Amal

    2014-01-01

    In this paper, we report the measurements of the various moments, such as mean, standard deviation (σ), skewness (S) and kurtosis (κ) of the net-kaon, net-charge and net-proton multiplicity distributions at mid-rapidity in Au + Au collisions from √(s NN )=7.7 to 200 GeV with the STAR experiment at RHIC. This work has been done with the aim to locate the critical point on the QCD phase diagram. These moments and their products are related to the thermodynamic susceptibilities of conserved quantities such as net baryon number, net charge, and net strangeness as well as to the correlation length of the system which diverges in an ideal infinite thermodynamic system at the critical point. For a finite system, existing for a finite time, a non-monotonic behavior of these variables would indicate the presence of the critical point. Furthermore, we also present the moment products Sσ, κσ 2 of net-kaon, net-charge and net-proton multiplicity distributions as a function of collision centrality and energy. The energy and the centrality dependence of higher moments and their products have been compared with different models

  4. Applications of the aqueous self-cooled blanket (ASCB) concept to the Next European Torus (NET)

    International Nuclear Information System (INIS)

    Embrechts, M.J.; Bogaerts, W.; Cardella, A.; Chazalon, M.; Danner, W.; Dinner, P.; Libin, B.

    1987-01-01

    The Aqueous Self-Cooled Blanket Concept (ASCB) leads to a low-technology blanket design that relies on just structural material and coolant with small amounts of lithium compound dissolved in the coolant to provide for tritium production. The application of the ASCB concept in NET is being considered as a driver blanket that would operate at low temperature and low pressure and provide a reliable environment for machine operation during the technology phase. Shielding and tritium production are the primary objectives for such a low-technology blanket. Net tritium breeding is not a design requirement per se for a driver blanket for NET. A DEMO relevant ASCB based blanket test module with (local) tritium self-sufficiency and energy recovery as primary objectives might also be tested in NET if future developments confirm their viability

  5. Aboveground and belowground arthropods experience different relative influences of stochastic versus deterministic community assembly processes following disturbance

    Directory of Open Access Journals (Sweden)

    Scott Ferrenberg

    2016-10-01

    Full Text Available Background Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces. Methods Using a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species and belowground (species active in organic and mineral soil layers arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community and modified Winkler funnels (belowground community and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies abundance, diversity, and composition. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models comparing observed vs. expected levels of species turnover (Beta diversity among samples. Results Tree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the

  6. Aboveground and belowground arthropods experience different relative influences of stochastic versus deterministic community assembly processes following disturbance

    Science.gov (United States)

    Martinez, Alexander S.; Faist, Akasha M.

    2016-01-01

    Background Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces. Methods Using a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species) and belowground (species active in organic and mineral soil layers) arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community) and modified Winkler funnels (belowground community) and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies abundance, diversity, and composition. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models comparing observed vs. expected levels of species turnover (Beta diversity) among samples. Results Tree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the aboveground arthropod

  7. Structure, Aboveground Biomass, and Soil Characterization of Avicennia marina in Eastern Mangrove Lagoon National Park, Abu Dhabi

    Science.gov (United States)

    Alsumaiti, Tareefa Saad Sultan

    Mangrove forests are national treasures of the United Arab Emirates (UAE) and other arid countries with limited forested areas. Mangroves form a crucial part of the coastal ecosystem and provide numerous benefits to society, economy, and especially the environment. Mangrove trees, specifically Avicennia marina, are studied in their native habitat in order to characterize their population structure, aboveground biomass, and soil properties. This study focused on Eastern Mangrove Lagoon National Park in Abu Dhabi, which was the first mangrove protected area to be designated in UAE. In situ measurements were collected to estimate Avicennia marina status, mortality rate (%), height (m), crown spread (m), stem number, diameter at breast height (cm), basal area (m), and aboveground biomass (t ha-1 ). Small-footprint aerial light detection and ranging (LIDAR) data acquired by UAE were processed to characterize mangrove canopy height and aboveground biomass density. This included extraction of LIDAR-derived height percentile statistics, segmentation of the forest into structurally homogenous units, and development of regression relationships between in situ reference and remote sensing data using a machine learning approach. An in situ soil survey was conducted to examine the soils' physical and chemical properties, fertility status, and organic matter. The data of soil survey were used to create soil maps to evaluate key characteristics of soils, and their influence on Avicennia marina in Eastern Mangrove Lagoon National Park. The results of this study provide new insights into Avicennia marina canopy population, structure, aboveground biomass, and soil properties in Abu Dhabi, as data in such arid environments is lacking. This valuable information can help in managing and preserving this unique ecosystem.

  8. Aboveground tree biomass in a recovering tropical sal (Shorea robusta Gaertn. f.) forest of Eastern Ghats, India

    Energy Technology Data Exchange (ETDEWEB)

    Behera, Soumit K.; Misra, Malaya K. [Ecology and Floristic Laboratory, Department of Botany, Berhampur University, Berhampur 760 007, Orissa (India)

    2006-06-15

    Aboveground biomass of individual tree species by component and total biomass per unit area for four different stages of a recovering tropical dry deciduous forest stands, dominated by sal (Shorea robusta Gaertn. f.) of the Eastern Ghats, India were investigated during 2001-2002. Different periods of recovering (2, 4, 6, and 10-year) forest stands (84{sup o}13'E, 20{sup o}29'N) were selected in the Kandhamal district of Orissa, India and sample trees of all species were harvested. Tree species diversity was 23, 23, 21 and 22 in 2, 4, 6, and 10-year recovering stands, respectively. Species-wise Ixora pavetta showed the highest biomass in 2 and 4-year stands while Shorea robusta in 6 and 10-year stands. Component-wise, in all species, bole-wood contribution ranged between 22.6% and 60.9%. Aboveground tree biomass, in all the stands, was dominated by Shorea robusta, which ranged between 12.68 and 231.91Mgha{sup -1}. Total aboveground tree biomass was 30.12, 49.21, 107.54 and 261.08Mgha{sup -1} in 2, 4, 6 and 10-year stands, respectively. (author)

  9. Controls on the variability of net infiltration to desert sandstone

    Science.gov (United States)

    Heilweil, Victor M.; McKinney, Tim S.; Zhdanov, Michael S.; Watt, Dennis E.

    2007-01-01

    As populations grow in arid climates and desert bedrock aquifers are increasingly targeted for future development, understanding and quantifying the spatial variability of net infiltration becomes critically important for accurately inventorying water resources and mapping contamination vulnerability. This paper presents a conceptual model of net infiltration to desert sandstone and then develops an empirical equation for its spatial quantification at the watershed scale using linear least squares inversion methods for evaluating controlling parameters (independent variables) based on estimated net infiltration rates (dependent variables). Net infiltration rates used for this regression analysis were calculated from environmental tracers in boreholes and more than 3000 linear meters of vadose zone excavations in an upland basin in southwestern Utah underlain by Navajo sandstone. Soil coarseness, distance to upgradient outcrop, and topographic slope were shown to be the primary physical parameters controlling the spatial variability of net infiltration. Although the method should be transferable to other desert sandstone settings for determining the relative spatial distribution of net infiltration, further study is needed to evaluate the effects of other potential parameters such as slope aspect, outcrop parameters, and climate on absolute net infiltration rates.

  10. Loss of aboveground forest biomass and landscape biomass variability in Missouri, US

    Science.gov (United States)

    Brice B. Hanberry; Hong S. He; Stephen R. Shifley

    2016-01-01

    Disturbance regimes and forests have changed over time in the eastern United States. We examined effects of historical disturbance (circa 1813 to 1850) compared to current disturbance (circa 2004 to 2008) on aboveground, live tree biomass (for trees with diameters ≥13 cm) and landscape variation of biomass in forests of the Ozarks and Plains landscapes in Missouri, USA...

  11. An exploratory study of treated-bed nets in Timor-Leste: patterns of intended and alternative usage

    Directory of Open Access Journals (Sweden)

    Wilder-Smith Annelies

    2011-07-01

    Full Text Available Abstract Background The Timor-Leste Ministry of Health has recently finalized the National Malaria Control Strategy for 2010-2020. A key component of this roadmap is to provide universal national coverage with long-lasting insecticide-treated nets (LLINs in support of achieving the primary goal of reducing both morbidity and mortality from malaria by 30% in the first three years, followed by a further reduction of 20% by end of the programme cycle in 2020 1. The strategic plan calls for this target to be supported by a comprehensive information, education and communication (IEC programme; however, there is limited prior research into household and personal usage patterns to assist in the creation of targeted, effective, and socio-culturally specific behaviour change materials. Methods Nine separate focus group discussions (FGDs were carried out in Dili, Manatuto, and Covalima districts, Democratic Republic of Timor-Leste, in July 2010. These focus groups primarily explored themes of perceived malaria risk, causes of malaria, net usage patterns within families, barriers to correct and consistent usage, and the daily experience of users (both male and female in households with at least one net. Comprehensive qualitative analysis utilized open source analysis software. Results The primary determinants of net usage were a widespread perception that nets could or should only be used by pregnant women and young children, and the availability of sufficient sleeping space under a limited number of nets within households. Both nuisance biting and disease prevention were commonly cited as primary motivations for usage, while seasonality was not a significant factor. Long-term net durability and ease of hanging were seen as key attributes in net design preference. Very frequent washing cycles were common, potentially degrading net effectiveness. Finally, extensive re-purposing of nets (fishing, protecting crops was both reported and observed, and may

  12. Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy covariance, biometric and continuous soil chamber measurements

    Directory of Open Access Journals (Sweden)

    D. Zanotelli

    2013-05-01

    Full Text Available Carbon use efficiency (CUE, the ratio of net primary production (NPP over gross primary production (GPP, is a functional parameter that could possibly link the current increasingly accurate global GPP estimates with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, NPP and allocation patterns in different plant organs in an apple orchard during a complete year (2010. We applied a measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard, both net ecosystem production and gross primary production on a yearly basis, 380 ± 30 g C m−2 and 1263 ± 189 g C m−2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruit: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71

  13. Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy-covariance, biometric and continuous soil chamber measurements

    Science.gov (United States)

    Zanotelli, D.; Montagnani, L.; Manca, G.; Tagliavini, M.

    2012-10-01

    Carbon use efficiency (CUE) is a functional parameter that could possibly link the current increasingly accurate global estimates of gross primary production with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, net primary production (NPP) and allocation patterns in different plant organs in an apple orchard during a complete year (2010). We applied a~measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross-check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard both net ecosystem production and gross primary production on yearly basis, 380 ± 30 g C m-2 and 1263 ± 189 g C m-2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruits: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls) contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71 ± 0.09, was higher than the previously suggested

  14. Net primary productivity, allocation pattern and carbon use efficiency in an apple orchard assessed by integrating eddy covariance, biometric and continuous soil chamber measurements

    Science.gov (United States)

    Zanotelli, D.; Montagnani, L.; Manca, G.; Tagliavini, M.

    2013-05-01

    Carbon use efficiency (CUE), the ratio of net primary production (NPP) over gross primary production (GPP), is a functional parameter that could possibly link the current increasingly accurate global GPP estimates with those of net ecosystem exchange, for which global predictors are still unavailable. Nevertheless, CUE estimates are actually available for only a few ecosystem types, while information regarding agro-ecosystems is scarce, in spite of the simplified spatial structure of these ecosystems that facilitates studies on allocation patterns and temporal growth dynamics. We combined three largely deployed methods, eddy covariance, soil respiration and biometric measurements, to assess monthly values of CUE, NPP and allocation patterns in different plant organs in an apple orchard during a complete year (2010). We applied a measurement protocol optimized for quantifying monthly values of carbon fluxes in this ecosystem type, which allows for a cross check between estimates obtained from different methods. We also attributed NPP components to standing biomass increments, detritus cycle feeding and lateral exports. We found that in the apple orchard, both net ecosystem production and gross primary production on a yearly basis, 380 ± 30 g C m-2 and 1263 ± 189 g C m-2 respectively, were of a magnitude comparable to those of natural forests growing in similar climate conditions. The largest differences with respect to forests are in the allocation pattern and in the fate of produced biomass. The carbon sequestered from the atmosphere was largely allocated to production of fruit: 49% of annual NPP was taken away from the ecosystem through apple production. Organic material (leaves, fine root litter, pruned wood and early fruit falls) contributing to the detritus cycle was 46% of the NPP. Only 5% was attributable to standing biomass increment, while this NPP component is generally the largest in forests. The CUE, with an annual average of 0.71 ± 0.12, was higher

  15. NET ABOVEGROUND PRIMARY PRODUCTION AND BIOMASS DYNAMICS OF SCHOENOPLECTUS CALIFORNICUS (CYPERACEAE MARSHES GROWING UNDER DIFFERENT HYDROLOGICAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Paula Pratolongo

    2008-01-01

    Full Text Available Se estudiaron diferentes atributos funcionales de 2 pajonales de Schoenoplectus californicus (C. A. Mey Sójak que son muy similares en su estructura y especie dominante, pero aparecen en los extremos opuestos a lo largo de un gradiente de influencia fluvial-mareal en el Bajo Delta del río Paraná. Los resultados mostraron una productividad primaria neta aérea (PPNA significativamente más alta en el pajonal afectado directamente por la marea (1999.41 ± 211.97 g m-2 año-1. En el sitio aguas arriba, menos proclive a la inundación por mareas, S. californicus tuvo una menor PPNA (1299.17 ± 179.48 g m-2 año-1 y el sistema mostró una mayor capacidad para retener la biomasa producida dentro del pajonal, con cantidades significativamente mayores de biomasa muerta en pie (1316.00 ± 336.01 vs. 112.40 ± 55.05 g m-2 y mayores contenidos de materia orgánica en el suelo (16.20 ± 0.12 % vs. 0.70 ± 0.08 %. Los resultados obtenidos en este trabajo sugieren que los flujos superficiales de alta energía pueden cambiar el funcionamiento de estos pajonales, de un sistema estable acumulador de materia orgánica a un pajonal de rápido crecimiento, con altas tasas de acumulación de sedimentos minerales.

  16. Urbanization effects on leaf litter decomposition, foliar nutrient dynamics and aboveground net primary productivity in the subtropics

    Science.gov (United States)

    Heather A. Enloe; B. Graeme Lockaby; Wayne C. Zipperer; Greg L. Somers

    2015-01-01

    Urbanization can alter nutrient cycling. This research evaluated how urbanization affected nutrient dynamics in the subtropics. We established 17–0.04 ha plots in five different land cover types—slash pine (Pinus elliottii) plantations (n=3), rural natural pine forests (n= 3), rural natural oak forests (n=4), urban pine forests (n=3) and urban oak forests (n=4) in the...

  17. Refuse dumps from leaf-cutting ant nests reduce the intensity of above-ground competition among neighboring plants in a Patagonian steppe

    Science.gov (United States)

    Farji-Brener, Alejandro G.; Lescano, María Natalia

    2017-11-01

    In arid environments, the high availability of sunlight due to the scarcity of trees suggests that plant competition take place mainly belowground for water and nutrients. However, the occurrence of soil disturbances that increase nutrient availability and thereby promote plant growth may enhance shoot competition between neighboring plants. We conducted a greenhouse experiment to evaluate the influence of the enriched soil patches generated by the leaf-cutting ant, Acromyrmex lobicornis, on the performance of the alien forb Carduus thoermeri (Asteraceae) under different intraspecific competition scenarios. Our results showed that substrate type and competition scenario affected mainly aboveground plant growth. As expected, plants growing without neighbors and in nutrient-rich ant refuse dumps showed more aboveground biomass than plants growing with neighbors and in nutrient-poor steppe soils. However, aboveground competition was more intense in nutrient-poor substrates: plants under shoot and full competition growing in the nutrient-rich ant refuse dumps showed higher biomass than those growing on steppe soils. Belowground biomass was similar among focal plants growing under different substrate type. Our results support the traditional view that increments in resource availability reduce competition intensity. Moreover, the fact that seedlings in this sunny habitat mainly compete aboveground illustrates how limiting factors may be scale-dependent and change in importance as plants grow.

  18. Above-ground biomass production and allometric relations of Eucalyptus globulus Labill. coppice plantations along a chronosequence in the central highlands of Ethiopia

    International Nuclear Information System (INIS)

    Zewdie, Mulugeta; Olsson, Mats; Verwijst, Theo

    2009-01-01

    Eucalyptus plantations are extensively managed for wood production in the central highlands of Ethiopia. Nevertheless, little is known about their biomass (dry matter) production, partitioning and dynamics over time. Data from 10 different Eucalyptus globulus stands, with a plantation age ranging from 11 to 60 years and with a coppice-shoot age ranging from 1 to 9 years were collected and analyzed. Above-ground tree biomass of 7-10 sampled trees per stand was determined destructively. Dry weights of tree components (W c ; leaves, twigs, branches, stembark, and stemwood) and total above-ground biomass (W a ) were estimated as a function of diameter above stump (D), tree height (H) and a combination of these. The best fits were obtained, using combinations of D and H. When only one explanatory variable was used, D performed better than H. Total above-ground biomass was linearly related to coppice-shoot age. In contrast a negative relation was observed between the above-ground biomass production and total plantation age (number of cutting cycles). Total above-ground biomass increased from 11 t ha -1 at a stand age of 1 year to 153 t ha -1 at 9 years. The highest dry weight was allocated to stemwood and decreased in the following order: stemwood > leaves > stembark > twigs > branches. The equations developed in this study to estimate biomass components can be applied to other Eucalyptus plantations under the assumption that the populations being studied are similar with regard to density and tree size to those for which the relationships were developed

  19. Above-ground biomass production and allometric relations of Eucalyptus globulus Labill. coppice plantations along a chronosequence in the central highlands of Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Zewdie, Mulugeta; Olsson, Mats; Verwijst, Theo [Swedish University of Agricultural Sciences, Department of Crop Production Ecology, P.O. Box 7043, 75007 Uppsala (Sweden)

    2009-03-15

    Eucalyptus plantations are extensively managed for wood production in the central highlands of Ethiopia. Nevertheless, little is known about their biomass (dry matter) production, partitioning and dynamics over time. Data from 10 different Eucalyptus globulus stands, with a plantation age ranging from 11 to 60 years and with a coppice-shoot age ranging from 1 to 9 years were collected and analyzed. Above-ground tree biomass of 7-10 sampled trees per stand was determined destructively. Dry weights of tree components (W{sub c}; leaves, twigs, branches, stembark, and stemwood) and total above-ground biomass (W{sub a}) were estimated as a function of diameter above stump (D), tree height (H) and a combination of these. The best fits were obtained, using combinations of D and H. When only one explanatory variable was used, D performed better than H. Total above-ground biomass was linearly related to coppice-shoot age. In contrast a negative relation was observed between the above-ground biomass production and total plantation age (number of cutting cycles). Total above-ground biomass increased from 11 t ha{sup -1} at a stand age of 1 year to 153 t ha{sup -1} at 9 years. The highest dry weight was allocated to stemwood and decreased in the following order: stemwood > leaves > stembark > twigs > branches. The equations developed in this study to estimate biomass components can be applied to other Eucalyptus plantations under the assumption that the populations being studied are similar with regard to density and tree size to those for which the relationships were developed. (author)

  20. Identification of fine scale and landscape scale drivers of urban aboveground carbon stocks using high-resolution modeling and mapping.

    Science.gov (United States)

    Mitchell, Matthew G E; Johansen, Kasper; Maron, Martine; McAlpine, Clive A; Wu, Dan; Rhodes, Jonathan R

    2018-05-01

    Urban areas are sources of land use change and CO 2 emissions that contribute to global climate change. Despite this, assessments of urban vegetation carbon stocks often fail to identify important landscape-scale drivers of variation in urban carbon, especially the potential effects of landscape structure variables at different spatial scales. We combined field measurements with Light Detection And Ranging (LiDAR) data to build high-resolution models of woody plant aboveground carbon across the urban portion of Brisbane, Australia, and then identified landscape scale drivers of these carbon stocks. First, we used LiDAR data to quantify the extent and vertical structure of vegetation across the city at high resolution (5×5m). Next, we paired this data with aboveground carbon measurements at 219 sites to create boosted regression tree models and map aboveground carbon across the city. We then used these maps to determine how spatial variation in land cover/land use and landscape structure affects these carbon stocks. Foliage densities above 5m height, tree canopy height, and the presence of ground openings had the strongest relationships with aboveground carbon. Using these fine-scale relationships, we estimate that 2.2±0.4 TgC are stored aboveground in the urban portion of Brisbane, with mean densities of 32.6±5.8MgCha -1 calculated across the entire urban land area, and 110.9±19.7MgCha -1 calculated within treed areas. Predicted carbon densities within treed areas showed strong positive relationships with the proportion of surrounding tree cover and how clumped that tree cover was at both 1km 2 and 1ha resolutions. Our models predict that even dense urban areas with low tree cover can have high carbon densities at fine scales. We conclude that actions and policies aimed at increasing urban carbon should focus on those areas where urban tree cover is most fragmented. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Responses of Terrestrial Ecosystems’ Net Primary Productivity to Future Regional Climate Change in China

    Science.gov (United States)

    Zhao, Dongsheng; Wu, Shaohong; Yin, Yunhe

    2013-01-01

    The impact of regional climate change on net primary productivity (NPP) is an important aspect in the study of ecosystems’ response to global climate change. China’s ecosystems are very sensitive to climate change owing to the influence of the East Asian monsoon. The Lund–Potsdam–Jena Dynamic Global Vegetation Model for China (LPJ-CN), a global dynamical vegetation model developed for China’s terrestrial ecosystems, was applied in this study to simulate the NPP changes affected by future climate change. As the LPJ-CN model is based on natural vegetation, the simulation in this study did not consider the influence of anthropogenic activities. Results suggest that future climate change would have adverse effects on natural ecosystems, with NPP tending to decrease in eastern China, particularly in the temperate and warm temperate regions. NPP would increase in western China, with a concentration in the Tibetan Plateau and the northwest arid regions. The increasing trend in NPP in western China and the decreasing trend in eastern China would be further enhanced by the warming climate. The spatial distribution of NPP, which declines from the southeast coast to the northwest inland, would have minimal variation under scenarios of climate change. PMID:23593325

  2. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China.

    Science.gov (United States)

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C; Sang, Weiguo

    2015-03-13

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  3. Asymmetric warming significantly affects net primary production, but not ecosystem carbon balances of forest and grassland ecosystems in northern China

    Science.gov (United States)

    Su, Hongxin; Feng, Jinchao; Axmacher, Jan C.; Sang, Weiguo

    2015-03-01

    We combine the process-based ecosystem model (Biome-BGC) with climate change-scenarios based on both RegCM3 model outputs and historic observed trends to quantify differential effects of symmetric and asymmetric warming on ecosystem net primary productivity (NPP), heterotrophic respiration (Rh) and net ecosystem productivity (NEP) of six ecosystem types representing different climatic zones of northern China. Analysis of covariance shows that NPP is significant greater at most ecosystems under the various environmental change scenarios once temperature asymmetries are taken into consideration. However, these differences do not lead to significant differences in NEP, which indicates that asymmetry in climate change does not result in significant alterations of the overall carbon balance in the dominating forest or grassland ecosystems. Overall, NPP, Rh and NEP are regulated by highly interrelated effects of increases in temperature and atmospheric CO2 concentrations and precipitation changes, while the magnitude of these effects strongly varies across the six sites. Further studies underpinned by suitable experiments are nonetheless required to further improve the performance of ecosystem models and confirm the validity of these model predictions. This is crucial for a sound understanding of the mechanisms controlling the variability in asymmetric warming effects on ecosystem structure and functioning.

  4. Biotic, abiotic, and management controls on the net ecosystem CO2 exchange of European mountain grassland ecosystems

    DEFF Research Database (Denmark)

    Wohlfahrt, Georg; Anderson-Dunn, Margaret; Bahn, Michael

    2008-01-01

    The net ecosystem carbon dioxide (CO2) exchange (NEE) of nine European mountain grassland ecosystems was measured during 2002-2004 using the eddy covariance method. Overall, the availability of photosynthetically active radiation (PPFD) was the single most important abiotic influence factor for NEE....... Its role changed markedly during the course of the season, PPFD being a better predictor for NEE during periods favorable for CO2 uptake, which was spring and autumn for the sites characterized by summer droughts (southern sites) and (peak) summer for the Alpine and northern study sites. This general...... pattern was interrupted by grassland management practices, that is, mowing and grazing, when the variability in NEE explained by PPFD decreased in concert with the amount of aboveground biomass (BMag). Temperature was the abiotic influence factor that explained most of the variability in ecosystem...

  5. Net-baryon-, net-proton-, and net-charge kurtosis in heavy-ion collisions within a relativistic transport approach

    International Nuclear Information System (INIS)

    Nahrgang, Marlene; Schuster, Tim; Stock, Reinhard; Mitrovski, Michael; Bleicher, Marcus

    2012-01-01

    We explore the potential of net-baryon, net-proton and net-charge kurtosis measurements to investigate the properties of hot and dense matter created in relativistic heavy-ion collisions. Contrary to calculations in a grand-canonical ensemble we explicitly take into account exact electric and baryon charge conservation on an event-by-event basis. This drastically limits the width of baryon fluctuations. A simple model to account for this is to assume a grand-canonical distribution with a sharp cut-off at the tails. We present baseline predictions of the energy dependence of the net-baryon, net-proton and net-charge kurtosis for central (b≤2.75 fm) Pb+Pb/Au+Au collisions from E lab =2A GeV to √(s NN )=200 GeV from the UrQMD model. While the net-charge kurtosis is compatible with values around zero, the net-baryon number decreases to large negative values with decreasing beam energy. The net-proton kurtosis becomes only slightly negative for low √(s NN ). (orig.)

  6. Early spring, severe frost events, and drought induce rapid carbon loss in high elevation meadows.

    Directory of Open Access Journals (Sweden)

    Chelsea Arnold

    Full Text Available By the end of the 20th century, the onset of spring in the Sierra Nevada mountain range of California has been occurring on average three weeks earlier than historic records. Superimposed on this trend is an increase in the presence of highly anomalous "extreme" years, where spring arrives either significantly late or early. The timing of the onset of continuous snowpack coupled to the date at which the snowmelt season is initiated play an important role in the development and sustainability of mountain ecosystems. In this study, we assess the impact of extreme winter precipitation variation on aboveground net primary productivity and soil respiration over three years (2011 to 2013. We found that the duration of snow cover, particularly the timing of the onset of a continuous snowpack and presence of early spring frost events contributed to a dramatic change in ecosystem processes. We found an average 100% increase in soil respiration in 2012 and 2103, compared to 2011, and an average 39% decline in aboveground net primary productivity observed over the same time period. The overall growing season length increased by 57 days in 2012 and 61 days in 2013. These results demonstrate the dependency of these keystone ecosystems on a stable climate and indicate that even small changes in climate can potentially alter their resiliency.

  7. Impacts of grazing and climate change on the aboveground net primary productivity of mountainous grassland ecosystems along altitudinal gradients over the Northern Tianshan Mountains, China%天山北坡不同海拔梯度山地草原生态系统地上净初级生产力对气候变化及放牧的响应

    Institute of Scientific and Technical Information of China (English)

    周德成; 罗格平; 韩其飞; 尹昌应; 李龙辉; 胡玉昆

    2012-01-01

    以天山北坡三工河流域为例,利用改进后的Biome-BGC模型分别模拟了仅气候变化和气候变化与放牧联合作用下研究区不同海拔梯度3种山地草原生态系统(低山干旱草原(Lower\\mountain arid grassland,LAG),森林草甸草原(Forest meadow grassland,FMG),高寒草甸草原(Alpine meadow grassland,AMG)) 1959-2009年地上净初级生产力(Aboveground net primary production,ANPP)的动态,并通过假设27种放牧强度情景(0-8羊/hm2)模拟了其ANPP随放牧强度增加的变化趋势.近50a气候变化致使研究区各海拔梯度草原生态系统ANPP整体均呈上升趋势,但在放牧联合作用下,不同草原类型ANPP变化趋势差异显著;放牧导致FMG和AMG的ANPP呈下降态势,分别减少30.0%和33.2%,对比之下,由于1980年前较低放牧强度促进了LAG的ANPP,放牧导致其ANPP整体增加1.3%.随着放牧强度增加,LAG的ANPP呈先增后减趋势,且在干旱年份最为显著;而FMG和AMG的ANPP呈显著非线性递减趋势.这些结果表明,近50a气候波动可能有利于中亚干旱区山地草原生态系统生产力的提高,但日益增强的放牧活动导致其净初级生产力显著降低;放牧对FMG与AMG生产力的负面效应随放牧强度增加而增强,但适度放牧可能促进LAG净初级生产力,尤其在干旱年份.

  8. Wired to the roots: impact of root-beneficial microbe interactions on aboveground plant physiology and protection.

    Science.gov (United States)

    Kumar, Amutha Sampath; Bais, Harsh P

    2012-12-01

    Often, plant-pathogenic microbe interactions are discussed in a host-microbe two-component system, however very little is known about how the diversity of rhizospheric microbes that associate with plants affect host performance against pathogens. There are various studies, which specially direct the importance of induced systemic defense (ISR) response in plants interacting with beneficial rhizobacteria, yet we don't know how rhizobacterial associations modulate plant physiology. In here, we highlight the many dimensions within which plant roots associate with beneficial microbes by regulating aboveground physiology. We review approaches to study the causes and consequences of plant root association with beneficial microbes on aboveground plant-pathogen interactions. The review provides the foundations for future investigations into the impact of the root beneficial microbial associations on plant performance and innate defense responses.

  9. Verification of a primary-to-secondary leaking safety procedure in a nuclear power plant using coloured Petri nets

    International Nuclear Information System (INIS)

    Nemeth, E.; Bartha, T.; Fazekas, Cs.; Hangos, K.M.

    2009-01-01

    This paper deals with formal and simulation-based verification methods of a PRImary-to-SEcondary leaking (abbreviated as PRISE) safety procedure. The PRISE safety procedure controls the draining of the contaminated water in a faulty steam generator when a non-compensable leaking from the primary to the secondary circuit occurs. Because of the discrete nature of the verification, a Coloured Petri Net (CPN) representation is proposed for both the procedure and the plant model. We have proved by using a non-model-based strategy that the PRISE safety procedure is safe, there are no dead markings in the state space, and all transitions are live; being either impartial or fair. Further analysis results have been obtained using a model-based verification approach. We created a simple, low dimensional, nonlinear dynamic model of the primary circuit in a VVER-type pressurized water nuclear power plant for the purpose of the model-based verification. This is in contrast to the widely used safety analysis that requires an accurate detailed model. Our model also describes the relevant safety procedures, as well as all of the major leaking-type faults. We propose a novel method to transform this model to a CPN form by discretization. The composed plant and PRISE safety procedure system has also been analysed by simulation using CPN analysis tools. We found by the model-based analysis-using both single and multiple faults-that the PRISE safety procedure initiates the draining when the PRISE event occurs, and no false alarm will be initiated

  10. Effects of climate warming on net primary productivity in China during 1961-2010.

    Science.gov (United States)

    Gu, Fengxue; Zhang, Yuandong; Huang, Mei; Tao, Bo; Guo, Rui; Yan, Changrong

    2017-09-01

    The response of ecosystems to different magnitudes of climate warming and corresponding precipitation changes during the last few decades may provide an important reference for predicting the magnitude and trajectory of net primary productivity (NPP) in the future. In this study, a process-based ecosystem model, Carbon Exchange between Vegetation, Soil and Atmosphere (CEVSA), was used to investigate the response of NPP to warming at both national and subregional scales during 1961-2010. The results suggest that a 1.3°C increase in temperature stimulated the positive changing trend in NPP at national scale during the past 50 years. Regardless of the magnitude of temperature increase, warming enhanced the increase in NPP; however, the positive trend of NPP decreased when warming exceeded 2°C. The largest increase in NPP was found in regions where temperature increased by 1-2°C, and this rate of increase also contributed the most to the total increase in NPP in China's terrestrial ecosystems. Decreasing precipitation depressed the positive trend in NPP that was stimulated by warming. In northern China, warming depressed the increasing trend of NPP and warming that was accompanied by decreasing precipitation led to negative changing trends in NPP in large parts of northern China, especially when warming exceeded 2°C. However, warming stimulated the increase in NPP until warming was greater than 2°C, and decreased precipitation helped to increase the NPP in southern China.

  11. Carbon stock in forest aboveground biomass –comparison based on Landsat data

    Czech Academy of Sciences Publication Activity Database

    Pechanec, V.; Stržínek, F.; Purkyt, Jan; Štěrbová, Lenka; Cudlín, Pavel

    2017-01-01

    Roč. 63, 2-3 (2017), s. 126-132 ISSN 2454-0358 R&D Projects: GA MŠk(CZ) LO1415 Grant - others:EHP,MF ČR(CZ) EHP-CZ02-OV-1-014-2014 Program:CZ02 Institutional support: RVO:67179843 Keywords : aboveground biomass * carbon stock * remote sensing data * vegetation indices * Czech Republic Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7)

  12. Ecological studies in a Scanian woodland and meadow area, southern Sweden. Ti. Plant biomass, primary production and turnover of organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, F

    1970-01-01

    As a part of an IBP project the productivity of the south Swedish deciduous woodland ecosystems and their secondary successional stages a comparison between the distribution of organic matter in a mixed deciduous woodland dominated by Quercus robur, Tilia cordata, Corylus avellana and Anemone nemorosa and a tall herb meadow with Filipendula ulmaria within the nemoral zone in the southernmost part of Sweden has been made. Estimations of the plant biomass and production in the woodland was made by a dimension analysis applying allometric equations. A total plant biomass of 240 t/ha was found with 201 t/ha and 39 t/ha as above-and below-ground figures respectively. The corresponding figures of the net primary production are 15.6, 13.3 and 2.3 t/ha. A production of 0.77 t/ha is included for the above-ground production of the field layer. The litter fall, fractions less than 50 cm long, during a three year period amounted to 5.28 t/ha with considerable variation between years. Including coarser litter fractions an yearly input to the ground of 6.5 t/ha was found. After estimation of the remaining litter before the leaf fall, 6.1 t/ha, the yearly turnover of the litter layer is calculated to 52%. As the humus fraction amounts to 218 t/ha, the total content of organic matter in the woodland ecosystem thus is 463 t/ha with an almost equal distribution between above-and below-ground portions. In the meadow the distribution of above-and below-ground portions of the organic matter is 1/49, calculated from the following figures: Above-ground biomass 4.7 t/ha, below-ground biomass 13.2 t/ha, surface litter 2.4 t/ha and humus 304 t/ha making the total organic matter of the meadow ecosystem 324 t/ha. The yearly above-ground production is estimated to be 7.2 t/ha and taking this as the yearly litter input to the ground and taking the remaining litter into account a turnover of the litter layer 75% is calculated.

  13. Petri Nets

    Indian Academy of Sciences (India)

    In a computer system, for example, typical discrete events ... This project brought out a series of influential reports on Petri net theory in the mid and late ... Technology became a leading centre for Petri net research and from then on, Petri nets ...

  14. Aboveground tree growth varies with belowground carbon allocation in a tropical rainforest environment

    Science.gov (United States)

    J.W. Raich; D.A. Clark; L. Schwendenmann; Tana Wood

    2014-01-01

    Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15–20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the...

  15. Plant responses to variable timing of aboveground clipping and belowground herbivory depend on plant age

    NARCIS (Netherlands)

    Wang, Minggang; Bezemer, T. Martijn; van der Putten, W.H.; Brinkman, Pella; Biere, Arjen

    2017-01-01

    Aims Plants use different types of responses such as tolerance and induced defense to mitigate the effects of herbivores. The direction and magnitude of both these plant responses can vary with plant age. However, most studies have focused on aboveground herbivory, whereas important feeding occurs

  16. Lianas reduce carbon accumulation and storage in tropical forests.

    Science.gov (United States)

    van der Heijden, Geertje M F; Powers, Jennifer S; Schnitzer, Stefan A

    2015-10-27

    Tropical forests store vast quantities of carbon, account for one-third of the carbon fixed by photosynthesis, and are a major sink in the global carbon cycle. Recent evidence suggests that competition between lianas (woody vines) and trees may reduce forest-wide carbon uptake; however, estimates of the impact of lianas on carbon dynamics of tropical forests are crucially lacking. Here we used a large-scale liana removal experiment and found that, at 3 y after liana removal, lianas reduced net above-ground carbon uptake (growth and recruitment minus mortality) by ∼76% per year, mostly by reducing tree growth. The loss of carbon uptake due to liana-induced mortality was four times greater in the control plots in which lianas were present, but high variation among plots prevented a significant difference among the treatments. Lianas altered how aboveground carbon was stored. In forests where lianas were present, the partitioning of forest aboveground net primary production was dominated by leaves (53.2%, compared with 39.2% in liana-free forests) at the expense of woody stems (from 28.9%, compared with 43.9%), resulting in a more rapid return of fixed carbon to the atmosphere. After 3 y of experimental liana removal, our results clearly demonstrate large differences in carbon cycling between forests with and without lianas. Combined with the recently reported increases in liana abundance, these results indicate that lianas are an important and increasing agent of change in the carbon dynamics of tropical forests.

  17. Carbon dynamics in an Imperata grassland in Northeast India

    Directory of Open Access Journals (Sweden)

    Amrabati Thokchom

    2016-01-01

    Full Text Available Carbon stocks and soil CO2 flux were assessed in an Imperata cylindrica grassland of Manipur, Northeast India. Carbon stocks in the vegetative components were estimated to be 11.17 t C/ha and soil organic carbon stocks were 55.94 t C/ha to a depth of 30 cm. The rates of carbon accumulation in above-ground and below-ground biomass were estimated to be 11.85 t C/ha/yr and 11.71 t C/ha/yr, respectively. Annual soil CO2 flux was evaluated as 6.95 t C/ha and was highly influenced by soil moisture, soil temperature and soil organic carbon as well as by C stocks in above-ground biomass. Our study on the carbon budget of the grassland ecosystem revealed that annually 23.56 t C/ha was captured by the vegetation through photosynthesis, and 6.95 t C/ha was returned to the atmosphere through roots and microbial respiration, with a net balance of 16.61 t C/ha/yr being retained in the grassland ecosystem. Thus the present Imperata grassland exhibited a high capacity to remove atmospheric CO2 and to induce high C stocks in the soil provided it is protected from burning and overgrazing.Keywords: Above-ground biomass, below-ground biomass, carbon stocks, carbon storage, net primary productivity, soil CO2 flux.DOI: 10.17138/TGFT(419-28  

  18. Modeling and Mapping Agroforestry Aboveground Biomass in the Brazilian Amazon Using Airborne Lidar Data

    Science.gov (United States)

    Qi Chen; Dengsheng Lu; Michael Keller; Maiza dos-Santos; Edson Bolfe; Yunyun Feng; Changwei Wang

    2015-01-01

    Agroforestry has large potential for carbon (C) sequestration while providing many economical, social, and ecological benefits via its diversified products. Airborne lidar is considered as the most accurate technology for mapping aboveground biomass (AGB) over landscape levels. However, little research in the past has been done to study AGB of agroforestry systems...

  19. Aboveground biomass and nutrient accumulation 20 years after clear-cutting a southern Appalachian watershed

    Science.gov (United States)

    Katherine J. Elliott; Lindsay R. Boring; Wayne T. Swank

    2002-01-01

    In 1975, we initiated a long-term interdisciplinary study of forest watershed ecosystem response to clear- cutting and cable logging in watershed 7 at the Coweeta Hydrologic Laboratory in the southern Appalachian Mountains of North Carolina. This paper describes ~20 years of change in species composition, aboveground biomass, leaf area index (LAI),...

  20. Aboveground biomass subdivisions in woody species of the savanna ecosystem project study area, Nylsvley

    CSIR Research Space (South Africa)

    Rutherford, MC

    1979-01-01

    Full Text Available Aboveground peak season biomass is given for 11 woody species in each of five belt transects under study. Mean aerial biomass for all species was 16 273 kg ha, made up of 14 937 kg ha wood, 236 kg ha current season's twigs and 1 100 kg ha leaves...

  1. Satellite detection of land-use change and effects on regional forest aboveground biomass estimates

    Science.gov (United States)

    Daolan Zheng; Linda S. Heath; Mark J. Ducey

    2008-01-01

    We used remote-sensing-driven models to detect land-cover change effects on forest aboveground biomass (AGB) density (Mg·ha−1, dry weight) and total AGB (Tg) in Minnesota, Wisconsin, and Michigan USA, between the years 1992-2001, and conducted an evaluation of the approach. Inputs included remotely-sensed 1992 reflectance data...

  2. The equivalency between logic Petri workflow nets and workflow nets.

    Science.gov (United States)

    Wang, Jing; Yu, ShuXia; Du, YuYue

    2015-01-01

    Logic Petri nets (LPNs) can describe and analyze batch processing functions and passing value indeterminacy in cooperative systems. Logic Petri workflow nets (LPWNs) are proposed based on LPNs in this paper. Process mining is regarded as an important bridge between modeling and analysis of data mining and business process. Workflow nets (WF-nets) are the extension to Petri nets (PNs), and have successfully been used to process mining. Some shortcomings cannot be avoided in process mining, such as duplicate tasks, invisible tasks, and the noise of logs. The online shop in electronic commerce in this paper is modeled to prove the equivalence between LPWNs and WF-nets, and advantages of LPWNs are presented.

  3. The Equivalency between Logic Petri Workflow Nets and Workflow Nets

    Science.gov (United States)

    Wang, Jing; Yu, ShuXia; Du, YuYue

    2015-01-01

    Logic Petri nets (LPNs) can describe and analyze batch processing functions and passing value indeterminacy in cooperative systems. Logic Petri workflow nets (LPWNs) are proposed based on LPNs in this paper. Process mining is regarded as an important bridge between modeling and analysis of data mining and business process. Workflow nets (WF-nets) are the extension to Petri nets (PNs), and have successfully been used to process mining. Some shortcomings cannot be avoided in process mining, such as duplicate tasks, invisible tasks, and the noise of logs. The online shop in electronic commerce in this paper is modeled to prove the equivalence between LPWNs and WF-nets, and advantages of LPWNs are presented. PMID:25821845

  4. Long term estimation of carbon dynamic and sequestration for Iranian agro-ecosystem: I- Net primary productivity and annual carbon input for common agricultural crops

    Directory of Open Access Journals (Sweden)

    M Nassiri Mahalati

    2016-05-01

    Full Text Available Evaluation of carbon input is one of the most important factors for estimating soil carbon changes and potential for carbon sequestration. To evaluate the net primary productivity (NPP and soil carbon input in agricultural eco-systems of Iran, data for yield, cultivated area, harvest index (HI and shoot /root ratio in different crops including: wheat, barley, maize, cotton, rice, alfalfa and chickpea were obtained for different provinces. Then, allocated carbon to different organs of plant were calculated based on carbon allocation coefficients and finally, the net primary productivity based on carbon (NPPc was calculated. The ratio of NPPc that was annually returned to soil was considered as carbon annual input. The results showed that the maximum amount of NPPc for wheat, barely and alfalfa were obtained in Khazari climate for rice, chickpea and cotton was achieved in warm-wet climate and for maize was gained in warm-dry climate. In all regions of Iran, chickpea had the lowest effect on NPPc and consequently on carbon sequestration. The highest amount of carbon input per unit area among studied crops and different regions were observed in Khazari region for alfalfa whereas, the lowest carbon input per unit area was relation to chickpea in cold region. The lowest gap between actual and potential of carbon sequestration was observed in alfalfa whereas wheat, rice and cotton showed the most gap by 0.4, 0.38 and 0.37, respectively.

  5. [Variation trends of natural vegetation net primary productivity in China under climate change scenario].

    Science.gov (United States)

    Zhao, Dong-sheng; Wu, Shao-hong; Yin, Yun-he

    2011-04-01

    Based on the widely used Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ) for climate change study, and according to the features of natural environment in China, the operation mechanism of the model was adjusted, and the parameters were modified. With the modified LPJ model and taking 1961-1990 as baseline period, the responses of natural vegetation net primary productivity (NPP) in China to climate change in 1991-2080 were simulated under the Special Report on Emissions Scenarios (SRES) B2 scenario. In 1961-1990, the total NPP of natural vegetation in China was about 3.06 Pg C a(-1); in 1961-2080, the total NPP showed a fluctuant decreasing trend, with an accelerated decreasing rate. Under the condition of slight precipitation change, the increase of mean air temperature would have definite adverse impact on the NPP. Spatially, the NPP decreased from southeast coast to northwest inland, and this pattern would have less variation under climate change. In eastern China with higher NPP, especially in Northeast China, east of North China, and Loess Plateau, the NPP would mainly have a decreasing trend; while in western China with lower NPP, especially in the Tibetan Plateau and Tarim Basin, the NPP would be increased. With the intensive climate change, such a variation trend of NPP would be more obvious.

  6. How do general practitioners use 'safety netting' in acutely ill children?

    Science.gov (United States)

    Bertheloot, Karen; Deraeve, Pieterjan; Vermandere, Mieke; Aertgeerts, Bert; Lemiengre, Marieke; De Sutter, An; Buntinx, Frank; Verbakel, Jan Y

    2016-01-01

    'Safety netting' advice allows general practitioners (GPs) to cope with diagnostic uncertainty in primary care. It informs patients on 'red flag' features and when and how to seek further help. There is, however, insufficient evidence to support useful choices regarding 'safety netting' procedures. To explore how GPs apply 'safety netting' in acutely ill children in Flanders. We designed a qualitative study consisting of semi-structured interviews with 37 GPs across Flanders. Two researchers performed qualitative analysis based on grounded theory components. Although unfamiliar with the term, GPs perform 'safety netting' in every acutely ill child, guided by their intuition without the use of specific guidelines. They communicate 'red flag' features, expected time course of illness and how and when to re-consult and try to tailor their advice to the context, patient and specific illness. Overall, GPs perceive 'safety netting' as an important element of the consultation, acknowledging personal and parental limitations, such as parents' interpretation of their advice. GPs do not feel a need for any form of support in the near future. GPs apply 'safety netting' intuitively and tailor the content. Further research should focus on the impact of 'safety netting' on morbidity and how the advice is conveyed to parents.

  7. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1987-01-01

    The author describes a Petri net model, called coloured Petri nets (CP-nets), by means of which it is possible to describe large systems without having to cope with unnecessary details. The author introduces CP-nets and provide a first impression of their modeling power and the suitability...

  8. Estimating aboveground tree biomass on forest land in the Pacific Northwest: a comparison of approaches

    Science.gov (United States)

    Xiaoping Zhou; Miles A. Hemstrom

    2009-01-01

    Live tree biomass estimates are essential for carbon accounting, bioenergy feasibility studies, and other analyses. Several models are currently used for estimating tree biomass. Each of these incorporates different calculation methods that may significantly impact the estimates of total aboveground tree biomass, merchantable biomass, and carbon pools. Consequently,...

  9. Asymmetric Responses of Primary Productivity to Altered Precipitation Simulated by Land Surface Models across Three Long-term Grassland Sites

    Science.gov (United States)

    Wu, D.; Ciais, P.; Viovy, N.; Knapp, A.; Wilcox, K.; Bahn, M.; Smith, M. D.; Ito, A.; Arneth, A.; Harper, A. B.; Ukkola, A.; Paschalis, A.; Poulter, B.; Peng, C.; Reick, C. H.; Hayes, D. J.; Ricciuto, D. M.; Reinthaler, D.; Chen, G.; Tian, H.; Helene, G.; Zscheischler, J.; Mao, J.; Ingrisch, J.; Nabel, J.; Pongratz, J.; Boysen, L.; Kautz, M.; Schmitt, M.; Krohn, M.; Zeng, N.; Meir, P.; Zhang, Q.; Zhu, Q.; Hasibeder, R.; Vicca, S.; Sippel, S.; Dangal, S. R. S.; Fatichi, S.; Sitch, S.; Shi, X.; Wang, Y.; Luo, Y.; Liu, Y.; Piao, S.

    2017-12-01

    Changes in precipitation variability including the occurrence of extreme events strongly influence plant growth in grasslands. Field measurements of aboveground net primary production (ANPP) in temperate grasslands suggest a positive asymmetric response with wet years resulting in ANPP gains larger than ANPP declines in dry years. Whether land surface models used for historical simulations and future projections of the coupled carbon-water system in grasslands are capable to simulate such non-symmetrical ANPP responses remains an important open research question. In this study, we evaluate the simulated responses of grassland primary productivity to altered precipitation with fourteen land surface models at the three sites of Colorado Shortgrass Steppe (SGS), Konza prairie (KNZ) and Stubai Valley meadow (STU) along a rainfall gradient from dry to wet. Our results suggest that: (i) Gross primary production (GPP), NPP, ANPP and belowground NPP (BNPP) show nonlinear response curves (concave-down) in all the models, but with different curvatures and mean values. In contrast across the sites, primary production increases and then saturates along increasing precipitation with a flattening at the wetter site. (ii) Slopes of spatial relationships between modeled primary production and precipitation are steeper than the temporal slopes (obtained from inter-annual variations). (iii) Asymmetric responses under nominal precipitation range with modeled inter-annual primary production show large uncertainties, and model-ensemble median generally suggests negative asymmetry (greater declines in dry years than increases in wet years) across the three sites. (iv) Primary production at the drier site is predicted to more sensitive to precipitation compared to wetter site, and median sensitivity consistently indicates greater negative impacts of reduced precipitation than positive effects of increased precipitation under extreme conditions. This study implies that most models

  10. Measurements and simulation of forest leaf area index and net primary productivity in Northern China.

    Science.gov (United States)

    Wang, P; Sun, R; Hu, J; Zhu, Q; Zhou, Y; Li, L; Chen, J M

    2007-11-01

    Large scale process-based modeling is a useful approach to estimate distributions of global net primary productivity (NPP). In this paper, in order to validate an existing NPP model with observed data at site level, field experiments were conducted at three sites in northern China. One site is located in Qilian Mountain in Gansu Province, and the other two sites are in Changbaishan Natural Reserve and Dunhua County in Jilin Province. Detailed field experiments are discussed and field data are used to validate the simulated NPP. Remotely sensed images including Landsat Enhanced Thematic Mapper plus (ETM+, 30 m spatial resolution in visible and near infrared bands) and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER, 15m spatial resolution in visible and near infrared bands) are used to derive maps of land cover, leaf area index, and biomass. Based on these maps, field measured data, soil texture and daily meteorological data, NPP of these sites are simulated for year 2001 with the boreal ecosystem productivity simulator (BEPS). The NPP in these sites ranges from 80 to 800 gCm(-2)a(-1). The observed NPP agrees well with the modeled NPP. This study suggests that BEPS can be used to estimate NPP in northern China if remotely sensed images of high spatial resolution are available.

  11. Climate dependence of the CO2 fertilization effect on terrestrial net primary production

    International Nuclear Information System (INIS)

    Alexandrov, G.A.; Yamagata, Y.; Oikawa, T.

    2003-01-01

    The quantitative formulation of the fertilization effect of CO 2 enrichment on net primary production (NPP) introduced by Keeling and Bacastow in 1970s (known as Keeling's formula) has been recognized as a summary of experimental data and has been used in various assessments of the industrial impact on atmospheric chemistry. Nevertheless, the magnitude of the formula's key coefficient, the so-called growth factor, has remained open to question. Some of the global carbon cycle modelers avoid this question by tuning growth factor and choosing the value that fits the observed course of atmospheric CO 2 changes. However, for mapping terrestrial sinks induced by the CO 2 fertilization effect one needs a geographical pattern of the growth factor rather than its globally averaged value. The earlier approach to this problem involved formulating the climate dependence of the growth factor and the derivation of its global pattern from climatic variables (whose geographical distribution is known). We use a process-based model (TsuBiMo) for this purpose and derive the values of growth factor for major biomes for comparison our approach with the earlier studies. Contrary to the earlier prevailing opinion, TsuBiMo predicts that these values decrease with mean annual temperature (excluding biomes of limited water supply). We attribute this result to the effect of light limitation caused by mutual shading inside a canopy, which was considered earlier as unimportant, and conclude that current hypotheses about CO 2 fertilization effect (and thus projections of the related carbon sink) are very sensitive to the choice of driving forces taken into account

  12. Age-Related Deterioration of Perineuronal Nets in the Primary Auditory Cortex of Mice

    Directory of Open Access Journals (Sweden)

    Dustin H Brewton

    2016-11-01

    Full Text Available Age-related changes in inhibitory neurotransmission in sensory cortex may underlie deficits in sensory function. Perineuronal nets (PNNs are extracellular matrix components that ensheath some inhibitory neurons, particularly parvalbumin positive (PV+ interneurons. PNNs may protect PV+ cells from oxidative stress and help establish their rapid spiking properties. Although PNN expression has been well characterized during development, possible changes in aging sensory cortex have not been investigated. Here we tested the hypothesis that PNN+, PV+ and PV/PNN co-localized cell densities decline with age in the primary auditory cortex (A1. This hypothesis was tested using immunohistochemistry in two strains of mice (C57BL/6 and CBA/CaJ with different susceptibility to age-related hearing loss and at three different age ranges (1-3, 6-8 and 14-24 months old. We report that PNN+ and PV/PNN co-localized cell densities decline significantly with age in A1 in both mouse strains. In the PNN+ cells that remain in the old group, the intensity of PNN staining is reduced in the C57 strain, but not the CBA strain. PV+ cell density also declines only in the C57, but not the CBA, mouse suggesting a potential exacerbation of age-effects by hearing loss in the PV/PNN system. Taken together, these data suggest that PNN deterioration may be a key component of altered inhibition in the aging sensory cortex, that may lead to altered synaptic function, susceptibility to oxidative stress and processing deficits.

  13. Relationship between aboveground biomass and multiple measures of biodiversity in subtropical forest of Puerto Rico

    Science.gov (United States)

    Heather D. Vance-Chalcraft; Michael R. Willig; Stephen B. Cox; Ariel E. Lugo; Frederick N. Scatena

    2010-01-01

    Anthropogenic activities have accelerated the rate of global loss of biodiversity, making it more important than ever to understand the structure of biodiversity hotspots. One current focus is the relationship between species richness and aboveground biomass (AGB) in a variety of ecosystems. Nonetheless, species diversity, evenness, rarity, or dominance represent other...

  14. Estimating regional terrestrial carbon fluxes for the Australian continent using a multiple-constraint approach. I. Using remotely sensed data and ecological observations of net primary production

    International Nuclear Information System (INIS)

    Ying Ping Wang; Barrett, Damian J.

    2003-01-01

    We have developed a modelling framework that synthesizes various types of field measurements at different spatial and temporal scales. We used this modelling framework to estimate monthly means and their standard deviations of gross photosynthesis, total ecosystem production, net primary production (NPP) and net ecosystem production (NEP) for eight regions of the Australian continent between 1990 and 1998. Annual mean NPP of the Australian continent varied between 800 and 1100 Mt C/yr between 1990 and 1998, with a coefficient of variation that is defined as the ratio of standard deviation and mean between 0.24 and 0.34. The seasonal variation of NPP for the whole continent varied between 50 and 110 Mt C/month with two maxima, one in the autumn and another in the spring. NEP was most negative in the winter (a carbon sink) and was most positive (a carbon source) in the summer. However, the coefficient of variation of monthly mean NEP was very large (> 4), and consequently confidence in the predicted net carbon fluxes for any month in the period 1990-1998 for the whole continent was very low. A companion paper will apply atmospheric inverse technique to measurements of CO 2 concentration to further constrain the continental carbon cycle and reduce uncertainty in estimated mean monthly carbon fluxes

  15. Environmental Metabarcoding Reveals Contrasting Belowground and Aboveground Fungal Communities from Poplar at a Hg Phytomanagement Site.

    Science.gov (United States)

    Durand, Alexis; Maillard, François; Foulon, Julie; Gweon, Hyun S; Valot, Benoit; Chalot, Michel

    2017-11-01

    Characterization of microbial communities in stressful conditions at a field level is rather scarce, especially when considering fungal communities from aboveground habitats. We aimed at characterizing fungal communities from different poplar habitats at a Hg-contaminated phytomanagement site by using Illumina-based sequencing, network analysis approach, and direct isolation of Hg-resistant fungal strains. The highest diversity estimated by the Shannon index was found for soil communities, which was negatively affected by soil Hg concentration. Among the significant correlations between soil operational taxonomic units (OTUs) in the co-occurrence network, 80% were negatively correlated revealing dominance of a pattern of mutual exclusion. The fungal communities associated with Populus roots mostly consisted of OTUs from the symbiotic guild, such as members of the Thelephoraceae, thus explaining the lowest diversity found for root communities. Additionally, root communities showed the highest network connectivity index, while rarely detected OTUs from the Glomeromycetes may have a central role in the root network. Unexpectedly high richness and diversity were found for aboveground habitats, compared to the root habitat. The aboveground habitats were dominated by yeasts from the Lalaria, Davidiella, and Bensingtonia genera, not detected in belowground habitats. Leaf and stem habitats were characterized by few dominant OTUs such as those from the Dothideomycete class producing mutual exclusion with other OTUs. Aureobasidium pullulans, one of the dominating OTUs, was further isolated from the leaf habitat, in addition to Nakazawaea populi species, which were found to be Hg resistant. Altogether, these findings will provide an improved point of reference for microbial research on inoculation-based programs of tailings dumps.

  16. Spatiotemporal changes in vegetation net primary productivity in the arid region of Northwest China, 2001 to 2012

    Science.gov (United States)

    Li, Zhen; Pan, Jinghu

    2018-03-01

    Net primary productivity (NPP) is recognized as an important index of ecosystem conditions and a key variable of the terrestrial carbon cycle. It also represents the comprehensive effects of climate change and anthropogenic activity on terrestrial vegetation. In this study, the temporal-spatial pattern of NPP for the period 2001-2012 was analyzed using a remote sensing-based carbon model (i.e., the Carnegie-Ames-Stanford Approach, CASA) in addition to other methods, such as linear trend analysis, standard deviation, and the Hurst index. Temporally, NPP showed a significant increasing trend for the arid region of Northwest China (ARNC), with an annual increase of 2.327 g C. Maximum and minimum productivity values appeared in July and December, respectively. Spatially, the NPP was relatively stable in the temperate and warm-temperate desert regions of Northwest China, while temporally, it showed an increasing trend. However, some attention should be given to the northwestern warm-temperate desert region, where there is severe continuous degradation and only a slight improvement trend.

  17. Modelling Growth and Partitioning of Annual Above-Ground Vegetative and Reproductive Biomass of Grapevine

    Science.gov (United States)

    Meggio, Franco; Vendrame, Nadia; Maniero, Giovanni; Pitacco, Andrea

    2014-05-01

    In the current climate change scenarios, both agriculture and forestry inherently may act as carbon sinks and consequently can play a key role in limiting global warming. An urgent need exists to understand which land uses and land resource types have the greatest potential to mitigate greenhouse gas (GHG) emissions contributing to global change. A common believe is that agricultural fields cannot be net carbon sinks due to many technical inputs and repeated disturbances of upper soil layers that all contribute to a substantial loss both of the old and newly-synthesized organic matter. Perennial tree crops (vineyards and orchards), however, can behave differently: they grow a permanent woody structure, stand undisturbed in the same field for decades, originate a woody pruning debris, and are often grass-covered. In this context, reliable methods for quantifying and modelling emissions and carbon sequestration are required. Carbon stock changes are calculated by multiplying the difference in oven dry weight of biomass increments and losses with the appropriate carbon fraction. These data are relatively scant, and more information is needed on vineyard management practices and how they impact vineyard C sequestration and GHG emissions in order to generate an accurate vineyard GHG footprint. During the last decades, research efforts have been made for estimating the vineyard carbon budget and its allocation pattern since it is crucial to better understand how grapevines control the distribution of acquired resources in response to variation in environmental growth conditions and agronomic practices. The objective of the present study was to model and compare the dynamics of current year's above-ground biomass among four grapevine varieties. Trials were carried out over three growing seasons in field conditions. The non-linear extra-sums-of-squares method demonstrated to be a feasible way of growth models comparison to statistically assess significant differences among

  18. Evaluating lidar point densities for effective estimation of aboveground biomass

    Science.gov (United States)

    Wu, Zhuoting; Dye, Dennis G.; Stoker, Jason M.; Vogel, John M.; Velasco, Miguel G.; Middleton, Barry R.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) was recently established to provide airborne lidar data coverage on a national scale. As part of a broader research effort of the USGS to develop an effective remote sensing-based methodology for the creation of an operational biomass Essential Climate Variable (Biomass ECV) data product, we evaluated the performance of airborne lidar data at various pulse densities against Landsat 8 satellite imagery in estimating above ground biomass for forests and woodlands in a study area in east-central Arizona, U.S. High point density airborne lidar data, were randomly sampled to produce five lidar datasets with reduced densities ranging from 0.5 to 8 point(s)/m2, corresponding to the point density range of 3DEP to provide national lidar coverage over time. Lidar-derived aboveground biomass estimate errors showed an overall decreasing trend as lidar point density increased from 0.5 to 8 points/m2. Landsat 8-based aboveground biomass estimates produced errors larger than the lowest lidar point density of 0.5 point/m2, and therefore Landsat 8 observations alone were ineffective relative to airborne lidar for generating a Biomass ECV product, at least for the forest and woodland vegetation types of the Southwestern U.S. While a national Biomass ECV product with optimal accuracy could potentially be achieved with 3DEP data at 8 points/m2, our results indicate that even lower density lidar data could be sufficient to provide a national Biomass ECV product with accuracies significantly higher than that from Landsat observations alone.

  19. Root biomass in cereals, catch crops and weeds can be reliably estimated without considering aboveground biomass

    DEFF Research Database (Denmark)

    Hu, Teng; Sørensen, Peter; Wahlström, Ellen Margrethe

    2018-01-01

    and management factors may affect this allometric relationship making such estimates uncertain and biased. Therefore, we aimed to explore how root biomass for typical cereal crops, catch crops and weeds could most reliably be estimated. Published and unpublished data on aboveground and root biomass (corrected...

  20. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China.

    Science.gov (United States)

    Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y Jun

    2016-01-01

    Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region.

  1. Belowground interactions with aboveground consequences: Invasive earthworms and arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Paudel, Shishir; Longcore, Travis; MacDonald, Beau; McCormick, Melissa K; Szlavecz, Katalin; Wilson, Gail W T; Loss, Scot R

    2016-03-01

    A mounting body of research suggests that invasive nonnative earthworms substantially alter microbial communities, including arbuscular mycorrhizal fungi (AMF). These changes to AMF can cascade to affect plant communities and vertebrate populations. Despite these research advances, relatively little is known about (1) the mechanisms behind earthworms' effects on AMF and (2) the factors that determine the outcomes of earthworm-AMF interactions (i.e., whether AMF abundance is increased or decreased and subsequent effects on plants). We predict that AMF-mediated effects of nonnative earthworms on ecosystems are nearly universal because (1) AMF are important components of most terrestrial ecosystems, (2) nonnative earthworms have become established in nearly every type of terrestrial ecosystem, and (3) nonnative earthworms, due to their burrowing and feeding behavior, greatly affect AMF with potentially profound concomitant effects on plant communities. We highlight the multiple direct and indirect effects of nonnative earthworms on plants and review what is currently known about the interaction between earthworms and AMF. We also illustrate how the effects of nonnative earthworms on plant-AMF mutualisms can alter the structure and stability of aboveground plant communities, as well as the vertebrate communities relying on these habitats. Integrative studies that assess the interactive effects of earthworms and AMF can provide new insights into the role that belowground ecosystem engineers play in altering aboveground ecological processes. Understanding these processes may improve our ability to predict the structure of plant and animal communities in earthworm-invaded regions and to develop management strategies that limit the numerous undesired impacts of earthworms.

  2. Consequences of long-term severe industrial pollution for aboveground carbon and nitrogen pools in northern taiga forests at local and regional scales.

    Science.gov (United States)

    Manninen, Sirkku; Zverev, Vitali; Bergman, Igor; Kozlov, Mikhail V

    2015-12-01

    Boreal coniferous forests act as an important sink for atmospheric carbon dioxide. The overall tree carbon (C) sink in the forests of Europe has increased during the past decades, especially due to management and elevated nitrogen (N) deposition; however, industrial atmospheric pollution, primarily sulphur dioxide and heavy metals, still negatively affect forest biomass production at different spatial scales. We report local and regional changes in forest aboveground biomass, C and N concentrations in plant tissues, and C and N pools caused by long-term atmospheric emissions from a large point source, the nickel-copper smelter in Monchegorsk, in north-western Russia. An increase in pollution load (assessed as Cu concentration in forest litter) caused C to increase in foliage but C remained unchanged in wood, while N decreased in foliage and increased in wood, demonstrating strong effects of pollution on resource translocation between green and woody tissues. The aboveground C and N pools were primarily governed by plant biomass, which strongly decreased with an increase in pollution load. In our study sites (located 1.6-39.7 km from the smelter) living aboveground plant biomass was 76 to 4888 gm(-2), and C and N pools ranged 35-2333 g C m(-2) and 0.5-35.1 g N m(-2), respectively. We estimate that the aboveground plant biomass is reduced due to chronic exposure to industrial air pollution over an area of about 107,200 km2, and the total (aboveground and belowground) loss of phytomass C stock amounts to 4.24×10(13) g C. Our results emphasize the need to account for the overall impact of industrial polluters on ecosystem C and N pools when assessing the C and N dynamics in northern boreal forests because of the marked long-term negative effects of their emissions on structure and productivity of plant communities. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Intermediate herbivory intensity of an aboveground pest promotes soil labile resources and microbial biomass via modifying rice growth

    NARCIS (Netherlands)

    Huang, J.; Liu, M.; Chen, X.; Chen, J.; Chen, F.; Li, H.; Hu, F.

    2013-01-01

    The importance of aboveground herbivores for modifying belowground ecosystems has prompted numerous studies; however, studies can be biased by context dependent conditions which lead to extremely inconsistent results. So far, the impacts of herbivory inte

  4. Aboveground roofed design for the disposal of low-level radioactive waste in Maine

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, J.A. [Univ. of Maine, Orono, ME (United States)

    1993-03-01

    The conceptual designs proposed in this report resulted from a study for the Maine Low-level Radioactive Waste Authority to develop conceptual designs for a safe and reliable disposal facility for Maine`s low-level radioactive waste (LLW). Freezing temperatures, heavy rainfall, high groundwater tables, and very complex and shallow glaciated soils found in Maine place severe constraints on the design. The fundamental idea behind the study was to consider Maine`s climatic and geological conditions at the beginning of conceptual design rather than starting with a design for another location and adapting it for Maine`s conditions. The conceptual designs recommended are entirely above ground and consist of an inner vault designed to provide shielding and protection against inadvertent intrusion and an outer building to protect the inner vault from water. The air dry conditions within the outer building should lead to almost indefinite service life for the concrete inner vault and the waste containers. This concept differs sharply from the usual aboveground vault in its reliance on at least two independent, but more or less conventional, roofing systems for primary and secondary protection against leakage of radioisotopes from the facility. Features include disposal of waste in air dry environment, waste loading and visual inspection by remote-controlled overhead cranes, and reliance on engineered soils for tertiary protection against release of radioactive materials.

  5. High Throughput Determination of Plant Height, Ground Cover, and Above-Ground Biomass in Wheat with LiDAR.

    Science.gov (United States)

    Jimenez-Berni, Jose A; Deery, David M; Rozas-Larraondo, Pablo; Condon, Anthony Tony G; Rebetzke, Greg J; James, Richard A; Bovill, William D; Furbank, Robert T; Sirault, Xavier R R

    2018-01-01

    Crop improvement efforts are targeting increased above-ground biomass and radiation-use efficiency as drivers for greater yield. Early ground cover and canopy height contribute to biomass production, but manual measurements of these traits, and in particular above-ground biomass, are slow and labor-intensive, more so when made at multiple developmental stages. These constraints limit the ability to capture these data in a temporal fashion, hampering insights that could be gained from multi-dimensional data. Here we demonstrate the capacity of Light Detection and Ranging (LiDAR), mounted on a lightweight, mobile, ground-based platform, for rapid multi-temporal and non-destructive estimation of canopy height, ground cover and above-ground biomass. Field validation of LiDAR measurements is presented. For canopy height, strong relationships with LiDAR ( r 2 of 0.99 and root mean square error of 0.017 m) were obtained. Ground cover was estimated from LiDAR using two methodologies: red reflectance image and canopy height. In contrast to NDVI, LiDAR was not affected by saturation at high ground cover, and the comparison of both LiDAR methodologies showed strong association ( r 2 = 0.92 and slope = 1.02) at ground cover above 0.8. For above-ground biomass, a dedicated field experiment was performed with destructive biomass sampled eight times across different developmental stages. Two methodologies are presented for the estimation of biomass from LiDAR: 3D voxel index (3DVI) and 3D profile index (3DPI). The parameters involved in the calculation of 3DVI and 3DPI were optimized for each sample event from tillering to maturity, as well as generalized for any developmental stage. Individual sample point predictions were strong while predictions across all eight sample events, provided the strongest association with biomass ( r 2 = 0.93 and r 2 = 0.92) for 3DPI and 3DVI, respectively. Given these results, we believe that application of this system will provide new

  6. Application of deconvolution interferometry with both Hi-net and KiK-net data

    Science.gov (United States)

    Nakata, N.

    2013-12-01

    Application of deconvolution interferometry to wavefields observed by KiK-net, a strong-motion recording network in Japan, is useful for estimating wave velocities and S-wave splitting in the near surface. Using this technique, for example, Nakata and Snieder (2011, 2012) found changed in velocities caused by Tohoku-Oki earthquake in Japan. At the location of the borehole accelerometer of each KiK-net station, a velocity sensor is also installed as a part of a high-sensitivity seismograph network (Hi-net). I present a technique that uses both Hi-net and KiK-net records for computing deconvolution interferometry. The deconvolved waveform obtained from the combination of Hi-net and KiK-net data is similar to the waveform computed from KiK-net data only, which indicates that one can use Hi-net wavefields for deconvolution interferometry. Because Hi-net records have a high signal-to-noise ratio (S/N) and high dynamic resolution, the S/N and the quality of amplitude and phase of deconvolved waveforms can be improved with Hi-net data. These advantages are especially important for short-time moving-window seismic interferometry and deconvolution interferometry using later coda waves.

  7. [Simulating the effects of climate change and fire disturbance on aboveground biomass of boreal forests in the Great Xing'an Mountains, Northeast China].

    Science.gov (United States)

    Luo, Xu; Wang, Yu Li; Zhang, Jin Quan

    2018-03-01

    Predicting the effects of climate warming and fire disturbance on forest aboveground biomass is a central task of studies in terrestrial ecosystem carbon cycle. The alteration of temperature, precipitation, and disturbance regimes induced by climate warming will affect the carbon dynamics of forest ecosystem. Boreal forest is an important forest type in China, the responses of which to climate warming and fire disturbance are increasingly obvious. In this study, we used a forest landscape model LANDIS PRO to simulate the effects of climate change on aboveground biomass of boreal forests in the Great Xing'an Mountains, and compared direct effects of climate warming and the effects of climate warming-induced fires on forest aboveground biomass. The results showed that the aboveground biomass in this area increased under climate warming scenarios and fire disturbance scenarios with increased intensity. Under the current climate and fire regime scenario, the aboveground biomass in this area was (97.14±5.78) t·hm -2 , and the value would increase up to (97.93±5.83) t·hm -2 under the B1F2 scenario. Under the A2F3 scenario, aboveground biomass at landscape scale was relatively higher at the simulated periods of year 100-150 and year 150-200, and the value were (100.02±3.76) t·hm -2 and (110.56±4.08) t·hm -2 , respectively. Compared to the current fire regime scenario, the predicted biomass at landscape scale was increased by (0.56±1.45) t·hm -2 under the CF2 scenario (fire intensity increased by 30%) at some simulated periods, and the aboveground biomass was reduced by (7.39±1.79) t·hm -2 in CF3 scenario (fire intensity increased by 230%) at the entire simulation period. There were significantly different responses between coniferous and broadleaved species under future climate warming scenarios, in that the simulated biomass for both Larix gmelinii and Betula platyphylla showed decreasing trend with climate change, whereas the simulated biomass for Pinus

  8. Habitat Effect on Allometry of a Xeric Shrub (Artemisia ordosica Krasch in the Mu Us Desert of Northern China

    Directory of Open Access Journals (Sweden)

    Weiwei She

    2015-12-01

    Full Text Available Allometric models are useful for assessment of aboveground net primary productivity (ANPP and aboveground biomass (AGB of forests and shrubs, and are widely implemented in forest inventory and management. Multiple forms of allometric models have been used to estimate vegetation carbon storage for desert shrubland, but their validity for biomass estimation has not been tested at a region scale with different habitats. To verify the validity of habitat-specific models, general models (combining data from all habitats/sites, and previously developed models for biomass prediction, we developed both general models and habitat-specific models for aboveground biomass and ANPP of Artemisia ordosica Krasch, a dominant shrub of the Mu Us Desert. Our results showed that models based on crown area or canopy volume consistently explained large parts of the variations in aboveground biomass and ANPP. Model fitting highlighted that general allometric models were inadequate across different habitats, and habitat-specific models were useful for that specific habitat. Previous models might be inappropriate for other sites because of site quality differences. There was a strong habitat effect on the allometric relationships of A. ordosica. Although our study is a case in point, the results indicate that allometric models for desert shrubs should be used with caution and require robust validation if adopted from other studies or applied to different sites/habitats.

  9. Compatible above-ground biomass equations and carbon stock estimation for small diameter Turkish pine (Pinus brutia Ten.).

    Science.gov (United States)

    Sakici, Oytun Emre; Kucuk, Omer; Ashraf, Muhammad Irfan

    2018-04-15

    Small trees and saplings are important for forest management, carbon stock estimation, ecological modeling, and fire management planning. Turkish pine (Pinus brutia Ten.) is a common coniferous species and comprises 25.1% of total forest area of Turkey. Turkish pine is also important due to its flammable fuel characteristics. In this study, compatible above-ground biomass equations were developed to predict needle, branch, stem wood, and above-ground total biomass, and carbon stock assessment was also described for Turkish pine which is smaller than 8 cm diameter at breast height or shorter than breast height. Compatible biomass equations are useful for biomass prediction of small diameter individuals of Turkish pine. These equations will also be helpful in determining fire behavior characteristics and calculating their carbon stock. Overall, present study will be useful for developing ecological models, forest management plans, silvicultural plans, and fire management plans.

  10. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China

    Science.gov (United States)

    Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y. Jun

    2016-01-01

    Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region. PMID:27097325

  11. Can above-ground ecosystem services compensate for reduced fertilizer input and soil organic matter in annual crops?

    NARCIS (Netherlands)

    van Gils, Stijn; van der Putten, Wim H; Kleijn, David

    2016-01-01

    1.Above-ground and below-ground environmental conditions influence crop yield by pollination, pest pressure, and resource supply. However, little is known about how interactions between these factors contribute to yield. Here, we used oilseed rape Brassica napus to test their effects on crop

  12. Can above-ground ecosystem services compensate for reduced fertilizer input and soil organic matter in annual crops?

    NARCIS (Netherlands)

    Gils, van S.H.; Putten, van der W.H.; Kleijn, D.

    2016-01-01

    1.Above-ground and below-ground environmental conditions influence crop yield by pollination, pest pressure and resource supply. However, little is known about how interactions between these factors contribute to yield. Here, we used oilseed rape Brassica napus to test their effects on crop

  13. Becoming less tolerant with age: sugar maple, shade, and ontogeny.

    Science.gov (United States)

    Sendall, Kerrie M; Lusk, Christopher H; Reich, Peter B

    2015-12-01

    Although shade tolerance is often assumed to be a fixed trait, recent work suggests ontogenetic changes in the light requirements of tree species. We determined the influence of gas exchange, biomass distribution, and self-shading on ontogenetic variation in the instantaneous aboveground carbon balance of Acer saccharum. We quantified the aboveground biomass distributions of 18 juveniles varying in height and growing in low light in a temperate forest understory in Minnesota, USA. Gas exchange rates of leaf and stem tissues were measured, and the crown architecture of each individual was quantified. The YPLANT program was used to estimate the self-shaded fraction of each crown and to model net leaf-level carbon gain. Leaf respiration and photosynthesis per gram of leaf tissue increased with plant size. In contrast, stem respiration rates per gram of stem tissue declined, reflecting a shift in the distribution of stem diameter sizes from smaller (with higher respiration) to larger diameter classes. However, these trends were outweighed by ontogenetic increases in self-shading (which reduces the net photosynthesis realized) and stem mass fraction (which increases the proportion of purely respiratory tissue) in terms of influence on net carbon exchange. As a result, net carbon gain per gram of aboveground plant tissue declined with increasing plant size, and the instantaneous aboveground light compensation point increased. When estimates of root respiration were included to model whole-plant carbon gain and light compensation points, relationships with plant size were even more pronounced. Our findings show how an interplay of gas exchange, self-shading, and biomass distribution shapes ontogenetic changes in shade tolerance.

  14. Characterizing uncertainties in recent trends of global terrestrial net primary production through ensemble modeling

    Science.gov (United States)

    Wang, W.; Hashimoto, H.; Ganguly, S.; Votava, P.; Nemani, R. R.; Myneni, R. B.

    2010-12-01

    Large uncertainties exist in our understanding of the trends and variability in global net primary production (NPP) and its controls. This study attempts to address this question through a multi-model ensemble experiment. In particular, we drive ecosystem models including CASA, LPJ, Biome-BGC, TOPS-BGC, and BEAMS with a long-term climate dataset (i.e., CRU-NCEP) to estimate global NPP from 1901 to 2009 at a spatial resolution of 0.5 x 0.5 degree. We calculate the trends of simulated NPP during different time periods and test their sensitivities to climate variables of solar radiation, air temperature, precipitation, vapor pressure deficit (VPD), and atmospheric CO2 levels. The results indicate a large diversity among the simulated NPP trends over the past 50 years, ranging from nearly no trend to an increasing trend of ~0.1 PgC/yr. Spatial patterns of the NPP generally show positive trends in boreal forests, induced mainly by increasing temperatures in these regions; they also show negative trends in the tropics, although the spatial patterns are more diverse. These diverse trends result from different climatic sensitivities of NPP among the tested models. Depending the ecological processes (e.g., photosynthesis or respiration) a model emphasizes, it can be more or less responsive to changes in solar radiation, temperatures, water, or atmospheric CO2 levels. Overall, these results highlight the limit of current ecosystem models in simulating NPP, which cannot be easily observed. They suggest that the traditional single-model approach is not ideal for characterizing trends and variability in global carbon cycling.

  15. Net Neutrality

    DEFF Research Database (Denmark)

    Savin, Andrej

    2017-01-01

    Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else.......Repealing “net neutrality” in the US will have no bearing on Internet freedom or security there or anywhere else....

  16. Modeling loblolly pine aboveground live biomass in a mature pine-hardwood stand: a cautionary tale

    Science.gov (United States)

    D. C. Bragg

    2011-01-01

    Carbon sequestration in forests is a growing area of interest for researchers and land managers. Calculating the quantity of carbon stored in forest biomass seems to be a straightforward task, but it is highly dependent on the function(s) used to construct the stand. For instance, there are a number of possible equations to predict aboveground live biomass for loblolly...

  17. Annotating Coloured Petri Nets

    DEFF Research Database (Denmark)

    Lindstrøm, Bo; Wells, Lisa Marie

    2002-01-01

    Coloured Petri nets (CP-nets) can be used for several fundamentally different purposes like functional analysis, performance analysis, and visualisation. To be able to use the corresponding tool extensions and libraries it is sometimes necessary to include extra auxiliary information in the CP......-net. An example of such auxiliary information is a counter which is associated with a token to be able to do performance analysis. Modifying colour sets and arc inscriptions in a CP-net to support a specific use may lead to creation of several slightly different CP-nets – only to support the different uses...... of the same basic CP-net. One solution to this problem is that the auxiliary information is not integrated into colour sets and arc inscriptions of a CP-net, but is kept separately. This makes it easy to disable this auxiliary information if a CP-net is to be used for another purpose. This paper proposes...

  18. Results for the Aboveground Configuration of the Boiling Water Reactor Dry Cask Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lindgren, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-30

    The thermal performance of commercial nuclear spent fuel dry storage casks is evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full-sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask, in part by increasing the efficiency of internal conduction pathways, and also by increasing the internal convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above- and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the current investigation was to produce data sets that can be used to test the validity of the assumptions associated with the calculations used to determine steady-state cladding temperatures in modern dry casks that utilize elevated helium pressure in the sealed canister in an above-ground configuration.

  19. Quantifying Human Appropriated Net Primary Productivity (HANPP) in a Ghanaian Cocoa System

    Science.gov (United States)

    Morel, A.; Adu-Bredu, S.; Adu Sasu, M.; Ashley Asare, R.; Boyd, E.; Hirons, M. A.; Malhi, Y.; Mason, J.; Norris, K.; Robinson, E. J. Z.; McDermott, C. L.

    2015-12-01

    Ghana is the second largest producer of cocoa (Theobroma cacoa), exporting approximately 18 percent of global volumes. These cocoa farms are predominantly small-scale, ranging in size from 2-4 hectares (ha). Traditionally, the model of cocoa expansion in Ghana relied on clearing new areas of forest and establishing a farm under remnant forest trees. This is increasingly less practical due to few unprotected forest areas remaining and management practices favoring close to full sun cocoa to maximize short-term yields. This study is part of a larger project, ECOLMITS, which is an interdisciplinary, ESPA-funded[1] initiative exploring the ecological limits of ecosystem system services (ESS) for alleviating poverty in small-scale agroforestry systems. The ecological study plots are situated within and around the Kakum National Forest, a well-protected, moist-evergreen forest of the Lower Guinea Forest region. Net primary productivity (NPP) is a measure of the rate at which carbon dioxide (CO2) is incorporated into plant tissues (e.g. canopy, stem and root). For this study, NPP was monitored in situ using methods developed by the Global Environmental Monitoring Network (GEM, http://gem.tropicalforests.ox.ac.uk/). By comparing NPP measured in intact forest and farms, the human appropriated NPP (HANPP) of this system can be estimated. The forest measures provide the "potential" NPP of the region, and then the reduction in NPP for farm plots is calculated for both land-cover change (HANPPLUC) and cocoa harvesting (HANPPHARV). The results presented are of the first year of NPP measurements across the cocoa landscape, including measurements from intact forest, logged forest and cocoa farms across a shade gradient and located at varying distances from the forest edge (e.g. 100 m, 500 m, 1 km and 5 km). These measures will have implications for carbon sequestration potential over the region and long-term sustainability of the Ghanaian cocoa sector. [1] Ecosystem Services for

  20. Analysis of physical flows in primary commodity trade. A case study in China

    International Nuclear Information System (INIS)

    Ma, Tao; Li, Bo; Fang, Changming; Zhao, Bin; Luo, Yiqi; Chen, Jiakuan

    2006-01-01

    How globalization and international trade affect sustainable development and environment has attracted worldwide attention. Associated with the import and export of primary commodities, ecologically important materials have been exchanged among regions and countries. China, having the largest population in the world and the highest economic growth rate in last decades, may have an important influence on global sustainable development through the trade of primary commodities. Using the data from Almanac of China's Foreign Economic Relations and Trade, we analyzed material flows in the trade of primary commodity in China from 1950 to 2001. Our analysis shows that: (1) China has turned from a net exporter of primary commodities to a net importer; (2) minerals and fuels have been the major imports of primary commodities since 1992, just as well as foods and minerals did in 1980s; (3) most of the net imported primary commodities come from Oceania, Africa and Latin America. (author)

  1. Plants as green as phones: Novel insights into plant-mediated communication between below- and above-ground insects

    NARCIS (Netherlands)

    Soler Gamborena, R.; Harvey, J.A.; Bezemer, T.M.; Stuefer, J.F.

    2008-01-01

    can act as vertical communication channels or ‘green phones’ linking soil-dwelling insects and insects in the aboveground ecosystem. When root-feeding insects attack a plant, the direct defense system of the shoot is activated, leading to an accumulation of phytotoxins in the leaves. The protection

  2. NetSig

    DEFF Research Database (Denmark)

    Horn, Heiko; Lawrence, Michael S; Chouinard, Candace R

    2018-01-01

    Methods that integrate molecular network information and tumor genome data could complement gene-based statistical tests to identify likely new cancer genes; but such approaches are challenging to validate at scale, and their predictive value remains unclear. We developed a robust statistic (Net......Sig) that integrates protein interaction networks with data from 4,742 tumor exomes. NetSig can accurately classify known driver genes in 60% of tested tumor types and predicts 62 new driver candidates. Using a quantitative experimental framework to determine in vivo tumorigenic potential in mice, we found that Net......Sig candidates induce tumors at rates that are comparable to those of known oncogenes and are ten-fold higher than those of random genes. By reanalyzing nine tumor-inducing NetSig candidates in 242 patients with oncogene-negative lung adenocarcinomas, we find that two (AKT2 and TFDP2) are significantly amplified...

  3. Evaluating the effect of alternative carbon allocation schemes in a land surface model (CLM4.5) on carbon fluxes, pools, and turnover in temperate forests

    Science.gov (United States)

    Montané, Francesc; Fox, Andrew M.; Arellano, Avelino F.; MacBean, Natasha; Alexander, M. Ross; Dye, Alex; Bishop, Daniel A.; Trouet, Valerie; Babst, Flurin; Hessl, Amy E.; Pederson, Neil; Blanken, Peter D.; Bohrer, Gil; Gough, Christopher M.; Litvak, Marcy E.; Novick, Kimberly A.; Phillips, Richard P.; Wood, Jeffrey D.; Moore, David J. P.

    2017-09-01

    How carbon (C) is allocated to different plant tissues (leaves, stem, and roots) determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI) measurements) to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM), the Community Land Model (CLM4.5). We ran CLM4.5 for nine temperate (including evergreen and deciduous) forests in North America between 1980 and 2013 using four different C allocation schemes: i. dynamic C allocation scheme (named "D-CLM4.5") with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP); ii. an alternative dynamic C allocation scheme (named "D-Litton"), where, similar to (i), C allocation is a dynamic function of annual NPP, but unlike (i) includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.-iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen") and the other of observations in deciduous forests (named "F-Deciduous"). D-CLM4.5 generally overestimated gross primary production (GPP) and ecosystem respiration, and underestimated net ecosystem exchange (NEE). In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m-2) for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011) was highly underestimated (between 1222 and 7557 g C m-2) for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C-LAI relationship in the model did not match the observed leaf C

  4. Impacts of the climatic change on the biodiversity and on the carbon cycle in prairies (IMAGINE); Impacts du changement climatique sur la biodiversite et le cycle du carbone en prairie (IMAGINE)

    Energy Technology Data Exchange (ETDEWEB)

    Soussana, J.F

    2007-07-01

    The Imagine project uses a combination of experimental and modelling techniques to investigate the impacts of climate change on plant communities comprising herbaceous and woody species. We describe our novel experimental approach and present results from two studies carried out in contrasting climates: a mountain site in the Massif Central and a Mediterranean site at Montpellier. We show that above-ground biomass, community leaf traits and grass species phenology in a mountain grassland community respond to elevated temperature (+3.5 C), summer drought and elevated atmospheric CO{sub 2} treatments. We demonstrate that elevated atmospheric CO{sub 2} can mitigate the negative effects of summer drought on above-ground biomass, and may facilitate woody seedling establishment. After one year of study, changes in species composition are limited but there is a trend towards an increased abundance of dicot species under elevated CO{sub 2}. Work on an artificial plant community at Montpellier shows a negative effect of drought on net photosynthesis, transpiration rates and total respiration measured at the community level. We also find a significant increase in leaf decomposition rates in response to elevated temperature. In contrast, net primary productivity, microbial activity and soil respiration rates show no significant effects of climate treatments. (authors)

  5. Impacts of the climatic change on the biodiversity and on the carbon cycle in prairies (IMAGINE)

    International Nuclear Information System (INIS)

    Soussana, J.F.

    2007-01-01

    The Imagine project uses a combination of experimental and modelling techniques to investigate the impacts of climate change on plant communities comprising herbaceous and woody species. We describe our novel experimental approach and present results from two studies carried out in contrasting climates: a mountain site in the Massif Central and a Mediterranean site at Montpellier. We show that above-ground biomass, community leaf traits and grass species phenology in a mountain grassland community respond to elevated temperature (+3.5 C), summer drought and elevated atmospheric CO 2 treatments. We demonstrate that elevated atmospheric CO 2 can mitigate the negative effects of summer drought on above-ground biomass, and may facilitate woody seedling establishment. After one year of study, changes in species composition are limited but there is a trend towards an increased abundance of dicot species under elevated CO 2 . Work on an artificial plant community at Montpellier shows a negative effect of drought on net photosynthesis, transpiration rates and total respiration measured at the community level. We also find a significant increase in leaf decomposition rates in response to elevated temperature. In contrast, net primary productivity, microbial activity and soil respiration rates show no significant effects of climate treatments. (authors)

  6. Learning Visual Basic NET

    CERN Document Server

    Liberty, Jesse

    2009-01-01

    Learning Visual Basic .NET is a complete introduction to VB.NET and object-oriented programming. By using hundreds of examples, this book demonstrates how to develop various kinds of applications--including those that work with databases--and web services. Learning Visual Basic .NET will help you build a solid foundation in .NET.

  7. Nuclear imaging of neuroendocrine tumors with unknown primary: why, when and how?

    Energy Technology Data Exchange (ETDEWEB)

    Santhanam, Prasanna; Chandramahanti, Sangeeta [Marshall University, Section of Endocrinology, Department of Internal Medicine, Joan C Edwards School of Medicine, Huntington, WV (United States); Kroiss, Alexander [Medical University Innsbruck, Department of Nuclear Medicine, Innsbruck (Austria); Yu, Run [Cedars-Sinai Medical Center, Division of Endocrinology and Carcinoid and Neuroendocrine Tumor Center, Los Angeles, CA (United States); Ruszniewski, Philippe [Beaujon Hospital and Paris-Diderot University, Department of Gastroenterology-Pancreatology, Paris (France); Kumar, Rakesh [All India Institute of Medical Sciences, Diagnostic Nuclear Medicine Division, Department of Nuclear Medicine, New Delhi (India); Taieb, David [Aix-Marseille University, Department of Nuclear Medicine, La Timone University Hospital, Marseille (France); Institut Paoli-Calmettes, Inserm UMR1068 Marseille Cancerology Research Center, Marseille (France); Aix-Marseille University, European Center for Research in Medical Imaging, Marseille (France)

    2015-03-13

    Neuroendocrine tumors (NETs) with unknown primary (CUP-NET) are associated with a poor prognosis (10-year survival 22 %), grade 1 and 2 NETs having a more favorable outcome than grade 3 (also called carcinoma). There is evidence that an effort should be made to localize the primary tumor even in the presence of metastasis because resection of the primary tumor(s) may improve disease-free and overall survival, and because the choice of chemotherapeutic agent depends on the location of the primary tumor. Localization of the tumors remains challenging and often relies on a combination of radiological, endoscopic and functional imaging. The functional imaging protocol for evaluation of these patients has historically relied on somatostatin receptor scintigraphy (SRS). However, the sensitivity and specificity of SRS may be unsatisfactory, especially for NETs of midgut origin. Newer PET radiotracers such as {sup 68}Ga-labeled somatostatin analogs ({sup 68}Ga-DOTA-SSTa) and {sup 18}F-DOPA have shown promise. In direct comparisons between {sup 68}Ga-DOTA-SSTa PET/CT and {sup 99m}Tc-HYNIC-octreotide/{sup 111}In-pentetreotide SPECT(/CT), {sup 68}Ga-DOTA-SSTa performed better than other techniques, giving a compelling reason for switching from SPECT/CT to PET/CT imaging. {sup 18}F-DOPA performs better than SRS and CT in well-differentiated NETs of the small intestine. For detecting pancreatic NETs, the high background uptake of {sup 18}F-DOPA by the normal exocrine pancreas can be somewhat overcome by pretreatment with carbidopa. We have suggested a protocol in which SRS is replaced by one of the two agents (preferably with {sup 68}Ga-DOTA-SSTa, alternatively {sup 18}F-DOPA) as first-line nuclear tracer for detection of CUP-NET in patients with well-differentiated NETs and {sup 18}F-FDG PET/CT may be an additional diagnostic test for poorly differentiated tumors and for prognostication. In the near future, it is expected that patients with CUP-NET will benefit from newly

  8. Nuclear imaging of neuroendocrine tumors with unknown primary: why, when and how?

    International Nuclear Information System (INIS)

    Santhanam, Prasanna; Chandramahanti, Sangeeta; Kroiss, Alexander; Yu, Run; Ruszniewski, Philippe; Kumar, Rakesh; Taieb, David

    2015-01-01

    Neuroendocrine tumors (NETs) with unknown primary (CUP-NET) are associated with a poor prognosis (10-year survival 22 %), grade 1 and 2 NETs having a more favorable outcome than grade 3 (also called carcinoma). There is evidence that an effort should be made to localize the primary tumor even in the presence of metastasis because resection of the primary tumor(s) may improve disease-free and overall survival, and because the choice of chemotherapeutic agent depends on the location of the primary tumor. Localization of the tumors remains challenging and often relies on a combination of radiological, endoscopic and functional imaging. The functional imaging protocol for evaluation of these patients has historically relied on somatostatin receptor scintigraphy (SRS). However, the sensitivity and specificity of SRS may be unsatisfactory, especially for NETs of midgut origin. Newer PET radiotracers such as 68 Ga-labeled somatostatin analogs ( 68 Ga-DOTA-SSTa) and 18 F-DOPA have shown promise. In direct comparisons between 68 Ga-DOTA-SSTa PET/CT and 99m Tc-HYNIC-octreotide/ 111 In-pentetreotide SPECT(/CT), 68 Ga-DOTA-SSTa performed better than other techniques, giving a compelling reason for switching from SPECT/CT to PET/CT imaging. 18 F-DOPA performs better than SRS and CT in well-differentiated NETs of the small intestine. For detecting pancreatic NETs, the high background uptake of 18 F-DOPA by the normal exocrine pancreas can be somewhat overcome by pretreatment with carbidopa. We have suggested a protocol in which SRS is replaced by one of the two agents (preferably with 68 Ga-DOTA-SSTa, alternatively 18 F-DOPA) as first-line nuclear tracer for detection of CUP-NET in patients with well-differentiated NETs and 18 F-FDG PET/CT may be an additional diagnostic test for poorly differentiated tumors and for prognostication. In the near future, it is expected that patients with CUP-NET will benefit from newly developed PET approaches (radiopharmaceuticals) and

  9. Diversity and above-ground biomass patterns of vascular flora induced by flooding in the drawdown area of China's Three Gorges Reservoir.

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    Full Text Available Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR, because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the

  10. Nonlinear Variations of Net Primary Productivity and Its Relationship with Climate and Vegetation Phenology, China

    Directory of Open Access Journals (Sweden)

    Jian Yang

    2017-09-01

    Full Text Available Net primary productivity (NPP is an important component of the terrestrial carbon cycle. In this study, NPP was estimated based on two models and Moderate Resolution Imaging Spaectroradiometer (MODIS data. The spatiotemporal patterns of NPP and the correlations with climate factors and vegetation phenology were then analyzed. Our results showed that NPP derived from MODIS performed well in China. Spatially, NPP decreased from the southeast toward the northwest. Temporally, NPP showed a nonlinear increasing trend at a national scale, but the magnitude became slow after 2004. At a regional scale, NPP in Northern China and the Tibetan Plateau showed a nonlinear increasing trend, while the NPP decreased in most areas of Southern China. The decreases in NPP were more than offset by the increases. At the biome level, all vegetation types displayed an increasing trend, except for shrub and evergreen broad forests (EBF. Moreover, a turning point year occurred for all vegetation types, except for EBF. Generally, climatic factors and Length of Season were all positively correlated with the NPP, while the relationships were much more diverse at a regional level. The direct effect of solar radiation on the NPP was larger (0.31 than precipitation (0.25 and temperature (0.07. Our results indicated that China could mitigate climate warming at a regional and/or global scale to some extent during the time period of 2001–2014.

  11. Net-erosion profile model and simulation experiments

    International Nuclear Information System (INIS)

    Sagara, Akio

    2001-01-01

    Estimation of net-erosion profile is requisite for evaluating the lifetime of divertor plates under high heat and particle fluxes of fusion plasmas. As a reference in benchmark tests of numerical calculation codes, a self-consistent analytical solution is presented for a simplified divertor condition, wherein the magnetic field line is normal to the target plate and the ionization mean free path of sputtered particles is assumed constant. The primary flux profile of hydrogen and impurities are externally given as well as the return ratio of sputtered atoms to the target. In the direction along the divertor trace, all conditions are uniform. The analytical solution is compared with net-erosion experiments carried out using the Compact Helical System (CHS). The deposition profiles of Ti and O impurities are in very good agreement with the analytical predictions. Recent preliminary results observed on divertor plates in the Large Helical Device (LHD) are briefly presented. (author)

  12. Pro-Nets versus No-Nets: Differences in Urban Older Adults' Predilections for Internet Use

    Science.gov (United States)

    Cresci, M. Kay; Yarandi, Hossein N.; Morrell, Roger W.

    2010-01-01

    Enthusiasm for information technology (IT) is growing among older adults. Many older adults enjoy IT and the Internet (Pro-Nets), but others have no desire to use it (No-Nets). This study found that Pro-Nets and No-Nets were different on a number of variables that might predict IT use. No-Nets were older, had less education and income, were…

  13. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone

    Science.gov (United States)

    Osland, Michael J.; Day, Richard H.; Larriviere, Jack C.; From, Andrew S.

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  14. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone.

    Science.gov (United States)

    Osland, Michael J; Day, Richard H; Larriviere, Jack C; From, Andrew S

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  15. Net nitrogen mineralization in natural ecosystems across the conterminous US

    Science.gov (United States)

    LeeAnna Y. Chapman; Steven G. McNulty; Ge Sun; Yang Zhang

    2013-01-01

    Nitrogen is the primary nutrient limiting ecosystem productivity over most of the US. Although soil nitrogen content is important, knowledge about its spatial extent at the continental scale is limited. The objective of this study was to estimate net nitrogen mineralization for the conterminous US (CONUS) using an empirical modeling approach by scaling up site level...

  16. Development and Validation of a Short-Form Safety Net Medical Home Scale.

    Science.gov (United States)

    Nocon, Robert S; Gunter, Kathryn E; Gao, Yue; Lee, Sang Mee; Chin, Marshall H

    2017-12-01

    To develop a short-form Safety Net Medical Home Scale (SNMHS) for assessing patient-centered medical home (PCMH) capability in safety net clinics. National surveys of federally qualified health centers (FQHCs). Interviews with FQHC directors. We constructed three short-form SNMHS versions and examined correlations with full SNMHS and related primary care assessments. We tested usability with FQHC directors and reviewed scale development with an advisory group. Federally qualified health center surveys were administered in 2009 and 2013, by mail and online. Usability testing was conducted through telephone interviews with FQHC directors in 2013. Six-, 12-, and 18-question short-form SNMHS versions had Pearson correlations with full scale of 0.84, 0.92, and 0.96, respectively. All versions showed a level of convergent validity with other primary care assessment scales comparable to the full SNMHS. User testers found short forms to be low-burden, though missing some PCMH concepts. Advisory group members expressed caution over missing concepts and appropriate use of short-form self-assessments. Short-form versions of SNMHS showed strong correlations with full scale and may be useful for brief assessment of safety net PCMH capability. Each short-form SNMHS version may be appropriate for different research, quality improvement, and assessment purposes. © Health Research and Educational Trust.

  17. Experiments and simulation of a net closing mechanism for tether-net capture of space debris

    Science.gov (United States)

    Sharf, Inna; Thomsen, Benjamin; Botta, Eleonora M.; Misra, Arun K.

    2017-10-01

    This research addresses the design and testing of a debris containment system for use in a tether-net approach to space debris removal. The tether-net active debris removal involves the ejection of a net from a spacecraft by applying impulses to masses on the net, subsequent expansion of the net, the envelopment and capture of the debris target, and the de-orbiting of the debris via a tether to the chaser spacecraft. To ensure a debris removal mission's success, it is important that the debris be successfully captured and then, secured within the net. To this end, we present a concept for a net closing mechanism, which we believe will permit consistently successful debris capture via a simple and unobtrusive design. This net closing system functions by extending the main tether connecting the chaser spacecraft and the net vertex to the perimeter and around the perimeter of the net, allowing the tether to actuate closure of the net in a manner similar to a cinch cord. A particular embodiment of the design in a laboratory test-bed is described: the test-bed itself is comprised of a scaled-down tether-net, a supporting frame and a mock-up debris. Experiments conducted with the facility demonstrate the practicality of the net closing system. A model of the net closure concept has been integrated into the previously developed dynamics simulator of the chaser/tether-net/debris system. Simulations under tether tensioning conditions demonstrate the effectiveness of the closure concept for debris containment, in the gravity-free environment of space, for a realistic debris target. The on-ground experimental test-bed is also used to showcase its utility for validating the dynamics simulation of the net deployment, and a full-scale automated setup would make possible a range of validation studies of other aspects of a tether-net debris capture mission.

  18. Study on Net Primary Productivity over Complicated Mountainous Area based on Multi-Source Remote Sensing Data

    Science.gov (United States)

    Guan, X.; Shen, H.; Li, X.; Gan, W.

    2017-12-01

    Mountainous area hosts approximately a quarter of the global land surface, with complex climate and ecosystem conditions. More knowledge about mountainous ecosystem could highly advance our understanding of the global carbon cycle and climate change. Net Primary Productivity (NPP), the biomass increment of plants, is a widely used ecological indicator that can be obtained by remote sensing methods. However, limited by the defective characteristic of sensors, which cannot be long-term with enough spatial details synchronously, the mountainous NPP was far from being understood. In this study, a multi-sensor fusion framework was applied to synthesize a 1-km NPP series from 1982 to 2014 in mountainous southwest China, where elevation ranged from 76m to 6740m. The validation with field-measurements proved this framework greatly improved the accuracy of NPP (r=0.79, prun-off. What is more, it was indicated that the NPP variation showed three distinct stages at the year break-point of 1992 and 2002 over the region. The NPP in low-elevation area varied almost triple more drastic than the high-elevation area for all the three stages, due to the much greater change rate of precipitation. In summary, this study innovatively conducted a long-term and accurate NPP study on the not understood mountainous ecosystem with multi-source data, the framework and conclusions will be beneficial for the further cognition of global climate change.

  19. Variations in Vegetation Net Primary Production in the Qinghai-Xizang Plateau, China, from 1982 to 1999

    Energy Technology Data Exchange (ETDEWEB)

    Piao, S.; Fang, J.; He, J. [Department of Ecology, College of Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871 (China)

    2006-01-15

    Vegetation net primary production (NPP) derived from a carbon model (Carnegie-Ames-Stanford Approach, CASA) and its interannual change in the Qinghai-Xizang (Tibetan) Plateau were investigated in this study using 1982-1999 time series data sets of normalized difference vegetation index (NDVI) and paired ground-based information on vegetation, climate, soil, and solar radiation. The 18-year averaged annual NPP over the plateau was 125 g C m-2 yr-1, decreasing from the southeast to the northwest, consistent with precipitation and temperature patterns. Total annual NPP was estimated between 0.183 and 0.244 Pg C over the 18 years, with an average of 0.212 Pg C (1 Pg = 1015 g). Two distinct periods (1982-1990 and 1991-1999) of NPP variation were observed, separated by a sharp reduction during 1990-1991. From 1982 to 1990, annual NPP did not show a significant trend, while from 1991 to 1999 a marked increase of 0.007 Pg C yr-2 was observed. NPP trends for most vegetation types resembled that of the whole plateau. The largest annual NPP increase during 1991-1999 appeared in alpine meadows, accounting for 32.3% of the increment of the whole region. Changes in solar radiation and temperature significantly influenced NPP variation, suggesting that solar radiation may be one of the major factors associated with changes in NPP.

  20. Future supply and demand of net primary production in the Sahel

    Science.gov (United States)

    Sallaba, Florian; Olin, Stefan; Engström, Kerstin; Abdi, Abdulhakim M.; Boke-Olén, Niklas; Lehsten, Veiko; Ardö, Jonas; Seaquist, Jonathan W.

    2017-12-01

    In the 21st century, climate change in combination with increasing demand, mainly from population growth, will exert greater pressure on the ecosystems of the Sahel to supply food and feed resources. The balance between supply and demand, defined as the annual biomass required for human consumption, serves as a key metric for quantifying basic resource shortfalls over broad regions.Here we apply an exploratory modelling framework to analyse the variations in the timing and geography of different NPP (net primary production) supply-demand scenarios, with distinct assumptions determining supply and demand, for the 21st century Sahel. We achieve this by coupling a simple NPP supply model forced with projections from four representative concentration pathways with a global, reduced-complexity demand model driven by socio-economic data and assumptions derived from five shared socio-economic pathways.For the scenario that deviates least from current socio-economic and climate trends, we find that per capita NPP begins to outstrip supply in the 2040s, while by 2050 half the countries in the Sahel experience NPP shortfalls. We also find that despite variations in the timing of the onset of NPP shortfalls, demand cannot consistently be met across the majority of scenarios. Moreover, large between-country variations are shown across the scenarios, in which by the year 2050 some countries consistently experience shortage or surplus, while others shift from surplus to shortage. At the local level (i.e. grid cell), hotspots of total NPP shortfall consistently occur in the same locations across all scenarios but vary in size and magnitude. These hotspots are linked to population density and high demand. For all scenarios, total simulated NPP supply doubles by 2050 but is outpaced by increasing demand due to a combination of population growth and the adoption of diets rich in animal products. Finally, variations in the timing of the onset and end of supply shortfalls stem from

  1. Future forest aboveground carbon dynamics in the central United States: the importance of forest demographic processes

    Science.gov (United States)

    Wenchi Jin; Hong S. He; Frank R. Thompson; Wen J. Wang; Jacob S. Fraser; Stephen R. Shifley; Brice B. Hanberry; William D. Dijak

    2017-01-01

    The Central Hardwood Forest (CHF) in the United States is currently a major carbon sink, there are uncertainties in how long the current carbon sink will persist and if the CHF will eventually become a carbon source. We used a multi-model ensemble to investigate aboveground carbon density of the CHF from 2010 to 2300 under current climate. Simulations were done using...

  2. ROOT.NET: Using ROOT from .NET languages like C# and F#

    Science.gov (United States)

    Watts, G.

    2012-12-01

    ROOT.NET provides an interface between Microsoft's Common Language Runtime (CLR) and .NET technology and the ubiquitous particle physics analysis tool, ROOT. ROOT.NET automatically generates a series of efficient wrappers around the ROOT API. Unlike pyROOT, these wrappers are statically typed and so are highly efficient as compared to the Python wrappers. The connection to .NET means that one gains access to the full series of languages developed for the CLR including functional languages like F# (based on OCaml). Many features that make ROOT objects work well in the .NET world are added (properties, IEnumerable interface, LINQ compatibility, etc.). Dynamic languages based on the CLR can be used as well, of course (Python, for example). Additionally it is now possible to access ROOT objects that are unknown to the translation tool. This poster will describe the techniques used to effect this translation, along with performance comparisons, and examples. All described source code is posted on the open source site CodePlex.

  3. ROOT.NET: Using ROOT from .NET languages like C and F

    International Nuclear Information System (INIS)

    Watts, G

    2012-01-01

    ROOT.NET provides an interface between Microsoft's Common Language Runtime (CLR) and .NET technology and the ubiquitous particle physics analysis tool, ROOT. ROOT.NET automatically generates a series of efficient wrappers around the ROOT API. Unlike pyROOT, these wrappers are statically typed and so are highly efficient as compared to the Python wrappers. The connection to .NET means that one gains access to the full series of languages developed for the CLR including functional languages like F (based on OCaml). Many features that make ROOT objects work well in the .NET world are added (properties, IEnumerable interface, LINQ compatibility, etc.). Dynamic languages based on the CLR can be used as well, of course (Python, for example). Additionally it is now possible to access ROOT objects that are unknown to the translation tool. This poster will describe the techniques used to effect this translation, along with performance comparisons, and examples. All described source code is posted on the open source site CodePlex.

  4. Calibration of a biome-biogeochemical cycles model for modeling the net primary production of teak forests through inverse modeling of remotely sensed data

    Science.gov (United States)

    Imvitthaya, Chomchid; Honda, Kiyoshi; Lertlum, Surat; Tangtham, Nipon

    2011-01-01

    In this paper, we present the results of a net primary production (NPP) modeling of teak (Tectona grandis Lin F.), an important species in tropical deciduous forests. The biome-biogeochemical cycles or Biome-BGC model was calibrated to estimate net NPP through the inverse modeling approach. A genetic algorithm (GA) was linked with Biome-BGC to determine the optimal ecophysiological model parameters. The Biome-BGC was calibrated by adjusting the ecophysiological model parameters to fit the simulated LAI to the satellite LAI (SPOT-Vegetation), and the best fitness confirmed the high accuracy of generated ecophysioligical parameter from GA. The modeled NPP, using optimized parameters from GA as input data, was evaluated using daily NPP derived by the MODIS satellite and the annual field data in northern Thailand. The results showed that NPP obtained using the optimized ecophysiological parameters were more accurate than those obtained using default literature parameterization. This improvement occurred mainly because the model's optimized parameters reduced the bias by reducing systematic underestimation in the model. These Biome-BGC results can be effectively applied in teak forests in tropical areas. The study proposes a more effective method of using GA to determine ecophysiological parameters at the site level and represents a first step toward the analysis of the carbon budget of teak plantations at the regional scale.

  5. Initial Results From The Micro-pulse Lidar Network (MPL-Net)

    Science.gov (United States)

    Welton, E. J.; Campbell, J. R.; Berkoff, T. A.; Spinhirne, J. D.; Ginoux, P.

    2001-12-01

    The micro-pulse lidar system (MPL) was developed in the early 1990s and was the first small, eye-safe, and autonomous lidar built for fulltime monitoring of cloud and aerosol vertical distributions. In 2000, a new project using MPL systems was started at NASA Goddard Space Flight Center. This new project, the Micro-pulse Lidar Network or MPL-Net, was created to provide long-term observations of aerosol and cloud vertical profiles at key sites around the world. This is accomplished using both NASA operated sites and partnerships with other organizations owning MPL systems. The MPL-Net sites are co-located with NASA AERONET sunphotometers to provide aerosol optical depth data needed for calibration of the MPL. In addition to the long-term sites, MPL-Net provides lidar support for a limited number of field experiments and ocean cruises each year. We will present an overview of the MPL-Net project and show initial results from the first two MPL-Net sites at the South Pole and at Goddard Space Flight Center. Observations of dust layers transported from the desert regions of China, across the Pacific Ocean, to the east coast of the United States will also be shown. MPL-Net affiliated instruments were in place at the desert source region in China, on a research vessel in the Sea of Japan, at ARM sites in Alaska and Oklahoma, and finally at our home site in Maryland (GSFC) during the massive dust storms that occurred in April 2001. The MPL observations of dust layers at each location are shown in comparison to dust layers predicted using the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport model (GOCART). Finally, the MPL-Net project is the primary ground-validation program for the Geo-Science Laser Altimeter System (GLAS) satellite lidar project (launch date 2002). We will present an overview demonstrating how MPL-Net results are used to help prepare the GLAS data processing algorithms and assist in the calibration/validation of the GLAS data

  6. Initial Results from the Micro-pulse Lidar Network (MPL-Net)

    Science.gov (United States)

    Welton, Ellsworth J.; Campbell, James R.; Berkoff, Timothy A.; Spinhirne, James D.; Ginoux, Paul; Starr, David OC. (Technical Monitor)

    2001-01-01

    The micro-pulse lidar system (MPL) was developed in the early 1990s and was the first small, eye-safe, and autonomous lidar built for full time monitoring of cloud and aerosol vertical distributions. In 2000, a new project using MPL systems was started at NASA Goddard Space Flight Center. This new project, the Micro-pulse Lidar Network or MPL-Net, was created to provide long-term observations of aerosol and cloud vertical profiles at key sites around the world. This is accomplished using both NASA operated sites and partnerships with other organizations owning MPL systems. The MPL-Net sites are co-located with NASA AERONET sunphotometers to provide aerosol optical depth data needed for calibration of the MPL. In addition to the long-term sites, MPL-Net provides lidar support for a limited number of field experiments and ocean cruises each year. We will present an overview of the MPL-Net project and show initial results from the first two MPL-Net sites at the South Pole and at Goddard Space Flight Center. Observations of dust layers transported from the Gobi desert, across the Pacific Ocean, to the east coast of the United States will also be shown. MPL-Net affiliated instruments were in place at the desert source region in China, on a research vessel in the Sea of Japan, at ARM sites in Alaska and Oklahoma, and finally at our home site in Maryland (GSFC) during the massive dust storms that occurred in April 2001. The MPL observations of dust layers at each location are shown in comparison to dust layers predicted using the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport model (GOCART). Finally, the MPL-Net project is the primary ground-validation program for the Geo-Science Laser Altimeter System (GLAS) satellite lidar project (launch date 2002). We will present an overview demonstrating how MPL-Net results are used to help prepare the GLAS data processing algorithms and assist in the calibration/validation of the GLAS data products.

  7. Treatment of neuroendocrine tumors (NETs) expressing SMT 90Y and 177Lu

    International Nuclear Information System (INIS)

    Oliva González, Juan P.; Baum, Richard

    2016-01-01

    Neuroendocrine tumors (NETs) are a relatively rare and extremely heterogeneous group, essentially characterized by a different metabolism and endocrine histologically pattern. NETs are a challenge for physicians not only for diagnosis but also for early treatment. In addition to this, QT or RT treatments that require a high rate of cell proliferation to be effective, they are not in these tumors as slow growth. The primary treatment of NETs is surgery, either with a curative intent or tumor shrinkage. Peptide Receptors Radiotherapy (RTPR) consists of the administration for therapeutic purposes of Radiolabeled Synthetic Peptides that bind specifically and with high affinity to receptors of tumor cells. The RTPR of TNE with SMT analogues is effective for handling or metastizados inoperable patients. The Conference gives an accurate picture of the treatment of these tumors both 90 Y as 177 Lu. (author)

  8. [Estimating individual tree aboveground biomass of the mid-subtropical forest using airborne LiDAR technology].

    Science.gov (United States)

    Liu, Feng; Tan, Chang; Lei, Pi-Feng

    2014-11-01

    Taking Wugang forest farm in Xuefeng Mountain as the research object, using the airborne light detection and ranging (LiDAR) data under leaf-on condition and field data of concomitant plots, this paper assessed the ability of using LiDAR technology to estimate aboveground biomass of the mid-subtropical forest. A semi-automated individual tree LiDAR cloud point segmentation was obtained by using condition random fields and optimization methods. Spatial structure, waveform characteristics and topography were calculated as LiDAR metrics from the segmented objects. Then statistical models between aboveground biomass from field data and these LiDAR metrics were built. The individual tree recognition rates were 93%, 86% and 60% for coniferous, broadleaf and mixed forests, respectively. The adjusted coefficients of determination (R(2)adj) and the root mean squared errors (RMSE) for the three types of forest were 0.83, 0.81 and 0.74, and 28.22, 29.79 and 32.31 t · hm(-2), respectively. The estimation capability of model based on canopy geometric volume, tree percentile height, slope and waveform characteristics was much better than that of traditional regression model based on tree height. Therefore, LiDAR metrics from individual tree could facilitate better performance in biomass estimation.

  9. FiberNet--a new embolic protection device for carotid artery stenting.

    Science.gov (United States)

    Bauer, C; Franke, J; Bertog, S C; Woerner, V; Ghasemzadeh-Asl, S; Sievert, H

    2014-05-01

    Though distal filter protection during carotid stenting reduces the risk of cerebrovascular events, periprocedural stroke remains a risk despite their broad usage. This observation may be related to the pore size of common filters. The FiberNet distal filter system is unique by its very small pore size (40 µm) as well as its low profile and flexibility. Little data is available regarding the clinical performance and safety of this device. The aim was the evaluation of the safety of the FiberNet embolic protection system during carotid artery stenting. All consecutive patients treated with carotid stenting at our institution using the FiberNet device were systematically followed. Primary endpoint was the rate of all death and stroke within 30 days of the procedure. Carotid artery stenting using the FiberNet embolic protection system was performed in 54 patients. The procedure was technical successful in all patients. Three patients (5.5%) had a TIA. Amauosis fugax occurred in two patients (3.7%). One patient (1.9%) had a minor stroke with hemiparesis of the left arm and face which resolved completely within 48 hr after the procedure. No patient died or suffered a major stroke. The safety and feasibility of the FiberNet distal protection system appears to be at least equivalent to that reported in studies using conventional distal filter protection. Copyright © 2013 Wiley Periodicals, Inc.

  10. INMARSAT-C SafetyNET

    Science.gov (United States)

    Tsunamis 406 EPIRB's National Weather Service Marine Forecasts INMARSAT-C SafetyNET Marine Forecast Offices greater danger near shore or any shallow waters? NATIONAL WEATHER SERVICE PRODUCTS VIA INMARSAT-C SafetyNET Inmarsat-C SafetyNET is an internationally adopted, automated satellite system for promulgating

  11. Dry matter yield and Carbon partitioning in the aboveground part of switchgrass ( panicum virgatum l.) germplasm

    Energy Technology Data Exchange (ETDEWEB)

    Butkutė, B.; Lemežien ė, N.; Cesevičienė, J.; Liaudanskienė, I., E-mail: brone@lzi.lt [Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry, Akademija, Kėdainiai distr. (Lithuania)

    2013-07-01

    Carbon (C) accumulated in biomass can be converted into usable forms of energy like methane, bioethanol or solid fuel. Understanding the partitioning of aboveground biomass and C plays an important role in optimizing its pre-treatment technologies. Our objectives were to determine dry matter yield (DMY) and C partitioning in switch grass germplasm. Plants were sampled at heading (HS) and seed filling (SFS) stages. The biomass of the SFS-sampled plants was separated into leaves (blades+sheaths), stems, and panicles. C content was determined by dry combustion. C yield per plant (CY) at HS ranged from 25.9 to 171 g (37.3 g on average for plants in the first harvest year, and 147 for those in the second harvest year), at SFS CY varied within a range of 79.8 ‒ 295g and averaged 119 and 252g depending on the year of growth. DMY was a weighted factor for such results. At SFS, DMY of stems accounted on average for 46.3%, leaves for 40.5%, and panicles for 13.2% of the aboveground biomass of whole plant with respective C concentrations of 462, 439 and 459 g kg -1 DM. (author)

  12. Eddy covariance measurements of net C exchange in the CAM bioenergy crop, Agave tequiliana

    Science.gov (United States)

    Owen, Nick A.; Choncubhair, Órlaith Ní; Males, Jamie; del Real Laborde, José Ignacio; Rubio-Cortés, Ramón; Griffiths, Howard; Lanigan, Gary

    2016-04-01

    Bioenergy crop cultivation may focus more on low grade and marginal lands in order to avoid competition with food production for land and water resources. However, in many regions, this would require improvements in plant water-use efficiency that are beyond the physiological capacity of most C3 and C4 bioenergy crop candidates. Crassulacean acid metabolism (CAM) plants, such as Agave tequiliana, can combine high above-ground productivity with as little as 20% of the water demand of C3 and C4 crops. This is achieved through temporal separation of carboxylase activities, with stomata opening at night to allow gas exchange and minimise transpirational losses. Previous studies have employed 'bottom-up' methodologies to investigate carbon (C) accumulation and productivity in Agave, by scaling leaf-level gas exchange and titratable acidity (TA) with leaf area index or maximum productivity. We used the eddy covariance (EC) technique to quantify ecosystem-scale gas exchange over an Agave plantation in Mexico ('top-down' approach). Measurements were made over 252 days, including the transition from wet to dry periods. Results were cross-validated against diel changes in titratable acidity, leaf-unfurling rates, energy exchange fluxes and reported biomass yields. Net ecosystem exchange of CO2 displayed a CAM rhythm that alternated from a net C sink at night to a net C source during the day and partitioned canopy fluxes (gross C assimilation, FA,EC) showed a characteristic four-phase CO2 exchange pattern. The projected ecosystem C balance indicated that the site was a net sink of -333 ± 24 g C m-2 y-1, comprising cumulative soil respiration of 692 ± 7 g C m-2 y-1 and FA,EC of -1025 ± 25 g C m-2 y-1. EC-estimated biomass yield was 20.1 Mg ha-1 y-1. Average integrated daily FA,EC was -234 ± 5 mmol CO2 m-2 d-1 and persisted almost unchanged after 70 days of drought conditions. Our results suggest that the carbon acquisition strategy of drought avoidance employed by Agave

  13. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans: equations for a climate sensitive mangrove-marsh ecotone.

    Directory of Open Access Journals (Sweden)

    Michael J Osland

    Full Text Available Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1 total aboveground biomass; (2 leaf biomass; (3 stem plus branch biomass; and (4 leaf area. Plant volume (i.e., a combination of crown area and plant height was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  14. Primary controls on species richness in higher taxa.

    Science.gov (United States)

    Rabosky, Daniel L

    2010-12-01

    The disparity in species richness across the tree of life is one of the most striking and pervasive features of biological diversity. Some groups are exceptionally diverse, whereas many other groups are species poor. Differences in diversity among groups are frequently assumed to result from primary control by differential rates of net diversification. However, a major alternative explanation is that ecological and other factors exert primary control on clade diversity, such that apparent variation in net diversification rates is a secondary consequence of ecological limits on clade growth. Here, I consider a likelihood framework for distinguishing between these competing hypotheses. I incorporate hierarchical modeling to explicitly relax assumptions about the constancy of diversification rates across clades, and I propose several statistics for a posteriori evaluation of model adequacy. I apply the framework to a recent dated phylogeny of ants. My results reject the hypothesis that net diversification rates exert primary control on species richness in this group and demonstrate that clade diversity is better explained by total time-integrated speciation. These results further suggest that it may not possible to estimate meaningful speciation and extinction rates from higher-level phylogenies of extant taxa only.

  15. Quantum net dynamics

    International Nuclear Information System (INIS)

    Finkelstein, D.

    1989-01-01

    The quantum net unifies the basic principles of quantum theory and relativity in a quantum spacetime having no ultraviolet infinities, supporting the Dirac equation, and having the usual vacuum as a quantum condensation. A correspondence principle connects nets to Schwinger sources and further unifies the vertical structure of the theory, so that the functions of the many hierarchic levels of quantum field theory (predicate algebra, set theory, topology,hor-ellipsis, quantum dynamics) are served by one in quantum net dynamics

  16. High-level Petri Nets

    DEFF Research Database (Denmark)

    various journals and collections. As a result, much of this knowledge is not readily available to people who may be interested in using high-level nets. Within the Petri net community this problem has been discussed many times, and as an outcome this book has been compiled. The book contains reprints...... of some of the most important papers on the application and theory of high-level Petri nets. In this way it makes the relevant literature more available. It is our hope that the book will be a useful source of information and that, e.g., it can be used in the organization of Petri net courses. To make......High-level Petri nets are now widely used in both theoretical analysis and practical modelling of concurrent systems. The main reason for the success of this class of net models is that they make it possible to obtain much more succinct and manageable descriptions than can be obtained by means...

  17. Children's schemes for anticipating the validity of nets for solids

    Science.gov (United States)

    Wright, Vince; Smith, Ken

    2017-09-01

    There is growing acknowledgement of the importance of spatial abilities to student achievement across a broad range of domains and disciplines. Nets are one way to connect three-dimensional shapes and their two-dimensional representations and are a common focus of geometry curricula. Thirty-four students at year 6 (upper primary school) were interviewed on two occasions about their anticipation of whether or not given nets for the cube- and square-based pyramid would fold to form the target solid. Vergnaud's ( Journal of Mathematical Behavior, 17(2), 167-181, 1998, Human Development, 52, 83-94, 2009) four characteristics of schemes were used as a theoretical lens to analyse the data. Successful schemes depended on the interaction of operational invariants, such as strategic choice of the base, rules for action, particularly rotation of shapes, and anticipations of composites of polygons in the net forming arrangements of faces in the solid. Inferences were rare. These data suggest that students need teacher support to make inferences, in order to create transferable schemes.

  18. StreamNet Project : Annual Report Fiscal Year 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Bruce; Roger, Phil; Oftedahl, Lenora

    2008-12-12

    Fiscal Year 2008 (FY-08) represents a transitional year for the StreamNet project. While the project continued to acquire/update, standardize, georeference and disseminate fish-related data for the state, some tribal and one federal fisheries agencies, it also took on several new initiatives and is anticipating new regional guidance on data needs. Passage of the Columbia Basin Accords caused an administrative change within the project, separating the work done by the Columbia River Inter-Tribal Fish Commission (CRITFC) out to a separate contract with BPA. This will change the structure of the StreamNet contract but not change the relationship with the StreamNet Library or data developed by CRITFC, and will likely increase the availability of tribal data to StreamNet due to increased funding for tribal data efforts. This change will take effect in FY-09. We also expect that data work will be adjusted in the future in response to executive level policy direction in the Columbia Basin based on efforts to establish priorities under a regional data management framework. Data development emphasis was shifted this year to place highest priority on data that support indicators of fish abundance for the focal species covered in the Status of the Resource (SOTR) report, as requested by the Columbia Basin Fish and Wildlife Authority (CBFWA) Data Management Framework Subcommittee. We instituted an XML based web service allowing direct access to data from the project database for CBFWA to update the SOTR report. The project also increased efforts to work with tribal fisheries managers to provide data related assistance and to include tribal data in the StreamNet database. A primary theme this year was exploring means to speed the flow of data. We had ongoing success in our strategic emphasis on increasing automation of data conversion through development of comprehensive database systems within our partner agencies, as outlined in our Vision and Strategic Plan. By assisting

  19. The incidence of Clostridioides difficile and Clostridium perfringens netF-positive strains in diarrheic dogs.

    Science.gov (United States)

    Diniz, Amanda Nadia; Coura, Fernanda Morcatti; Rupnik, Maja; Adams, Vicki; Stent, Thomas L; Rood, Julian I; de Oliveira, Carlos Augusto; Lobato, Francisco Carlos Faria; Silva, Rodrigo Otávio Silveira

    2018-02-01

    The aim of this study was to examine the incidence of Clostridioides (previously Clostridium) difficile and Clostridium perfringens in the feces of diarrheic and non-diarrheic dogs. Also, the presence of other common canine enteropathogens was examined. Toxigenic C. difficile and C. perfringens positive for the NetF-encoding gene (netF) were detected in 11 (11.9%) and seven (7.6%) diarrheic dogs, respectively. Three dogs were diagnosed simultaneously with toxigenic C. difficile and netF-positive C. perfringens. Among other enteropathogens, Giardia sp. was the most common agent detected in dogs positive for toxigenic C. difficile or netF-positive C. perfringens. The results suggest that C. difficile and C. perfringens occur more frequently as a primary cause of diarrhea. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Data from: Can above-ground ecosystem services compensate for reduced fertilizer input and soil organic matter in annual crops?

    NARCIS (Netherlands)

    Gils, van S.H.; Putten, van der W.H.; Kleijn, D.

    2016-01-01

    Above-ground and below-ground environmental conditions influence crop yield by pollination, pest pressure, and resource supply. However, little is known about how interactions between these factors contribute to yield. Here, we used oilseed rape Brassica napus to test their effects on crop yield. We

  1. Creating a Regional MODIS Satellite-Driven Net Primary Production Dataset for European Forests

    Directory of Open Access Journals (Sweden)

    Mathias Neumann

    2016-06-01

    Full Text Available Net primary production (NPP is an important ecological metric for studying forest ecosystems and their carbon sequestration, for assessing the potential supply of food or timber and quantifying the impacts of climate change on ecosystems. The global MODIS NPP dataset using the MOD17 algorithm provides valuable information for monitoring NPP at 1-km resolution. Since coarse-resolution global climate data are used, the global dataset may contain uncertainties for Europe. We used a 1-km daily gridded European climate data set with the MOD17 algorithm to create the regional NPP dataset MODIS EURO. For evaluation of this new dataset, we compare MODIS EURO with terrestrial driven NPP from analyzing and harmonizing forest inventory data (NFI from 196,434 plots in 12 European countries as well as the global MODIS NPP dataset for the years 2000 to 2012. Comparing these three NPP datasets, we found that the global MODIS NPP dataset differs from NFI NPP by 26%, while MODIS EURO only differs by 7%. MODIS EURO also agrees with NFI NPP across scales (from continental, regional to country and gradients (elevation, location, tree age, dominant species, etc.. The agreement is particularly good for elevation, dominant species or tree height. This suggests that using improved climate data allows the MOD17 algorithm to provide realistic NPP estimates for Europe. Local discrepancies between MODIS EURO and NFI NPP can be related to differences in stand density due to forest management and the national carbon estimation methods. With this study, we provide a consistent, temporally continuous and spatially explicit productivity dataset for the years 2000 to 2012 on a 1-km resolution, which can be used to assess climate change impacts on ecosystems or the potential biomass supply of the European forests for an increasing bio-based economy. MODIS EURO data are made freely available at ftp://palantir.boku.ac.at/Public/MODIS_EURO.

  2. Logging disturbance shifts net primary productivity and its allocation in Bornean tropical forests.

    Science.gov (United States)

    Riutta, Terhi; Malhi, Yadvinder; Kho, Lip Khoon; Marthews, Toby R; Huaraca Huasco, Walter; Khoo, MinSheng; Tan, Sylvester; Turner, Edgar; Reynolds, Glen; Both, Sabine; Burslem, David F R P; Teh, Yit Arn; Vairappan, Charles S; Majalap, Noreen; Ewers, Robert M

    2018-01-24

    Tropical forests play a major role in the carbon cycle of the terrestrial biosphere. Recent field studies have provided detailed descriptions of the carbon cycle of mature tropical forests, but logged or secondary forests have received much less attention. Here, we report the first measures of total net primary productivity (NPP) and its allocation along a disturbance gradient from old-growth forests to moderately and heavily logged forests in Malaysian Borneo. We measured the main NPP components (woody, fine root and canopy NPP) in old-growth (n = 6) and logged (n = 5) 1 ha forest plots. Overall, the total NPP did not differ between old-growth and logged forest (13.5 ± 0.5 and 15.7 ± 1.5 Mg C ha -1  year -1 respectively). However, logged forests allocated significantly higher fraction into woody NPP at the expense of the canopy NPP (42% and 48% into woody and canopy NPP, respectively, in old-growth forest vs 66% and 23% in logged forest). When controlling for local stand structure, NPP in logged forest stands was 41% higher, and woody NPP was 150% higher than in old-growth stands with similar basal area, but this was offset by structure effects (higher gap frequency and absence of large trees in logged forest). This pattern was not driven by species turnover: the average woody NPP of all species groups within logged forest (pioneers, nonpioneers, species unique to logged plots and species shared with old-growth plots) was similar. Hence, below a threshold of very heavy disturbance, logged forests can exhibit higher NPP and higher allocation to wood; such shifts in carbon cycling persist for decades after the logging event. Given that the majority of tropical forest biome has experienced some degree of logging, our results demonstrate that logging can cause substantial shifts in carbon production and allocation in tropical forests. © 2018 John Wiley & Sons Ltd.

  3. Planning of nets

    International Nuclear Information System (INIS)

    Carberry, M

    1996-01-01

    The paper is about the planning of nets in areas of low density like it is the case of the rural areas. The author includes economic and technological aspects, planning of nets, demands and management among others

  4. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Gustavsson, Leif [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Bergh, Johan [Ecotechnology, Mid Sweden University, Ostersund (Sweden); Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp (Sweden)

    2010-04-15

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO{sub 2equiv} if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission.

  5. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    International Nuclear Information System (INIS)

    Sathre, Roger; Gustavsson, Leif; Bergh, Johan

    2010-01-01

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO 2equiv if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission.

  6. Primary energy and greenhouse gas implications of increasing biomass production through forest fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger; Gustavsson, Leif [Ecotechnology, Mid Sweden University, Oestersund (Sweden); Bergh, Johan [Ecotechnology, Mid Sweden University, Oestersund (Sweden); Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Alnarp (Sweden)

    2010-04-15

    In this study we analyze the primary energy and greenhouse gas (GHG) implications of increasing biomass production by fertilizing 10% of Swedish forest land. We estimate the primary energy use and GHG emissions from forest management including production and application of N and NPK fertilizers. Based on modelled growth response, we then estimate the net primary energy and GHG benefits of using biomaterials and biofuels obtained from the increased forest biomass production. The results show an increased annual biomass harvest of 7.4 million t dry matter, of which 41% is large-diameter stemwood. About 6.9 PJ/year of additional primary energy input is needed for fertilizer production and forest management. Using the additional biomass for fuel and material substitution can reduce fossil primary energy use by 150 or 164 PJ/year if the reference fossil fuel is fossil gas or coal, respectively. About 22% of the reduced fossil energy use is due to material substitution and the remainder is due to fuel substitution. The net annual primary energy benefit corresponds to about 7% of Sweden's total primary energy use. The resulting annual net GHG emission reduction is 11.9 million or 18.1 million tCO{sub 2equiv} if the reference fossil fuel is fossil gas or coal, respectively, corresponding to 18% or 28% of the total Swedish GHG emissions in 2007. A significant one-time carbon stock increase also occurs in wood products and forest tree biomass. These results suggest that forest fertilization is an attractive option for increasing energy security and reducing net GHG emission. (author)

  7. A Value Chain Analysis of ghost nets in the Arafura Sea: identifying trans-boundary stakeholders, intervention points and livelihood trade-offs.

    Science.gov (United States)

    Butler, J R A; Gunn, R; Berry, H L; Wagey, G A; Hardesty, B D; Wilcox, C

    2013-07-15

    Lost or discarded fishing nets are a significant component of marine debris which has trans-boundary impacts in large marine ecosystems. Such 'ghost nets' cause the by-catch of marine fauna and require retrieval from coastlines where they wash up. Identifying the causes of discarded nets and feasible intervention points requires analysis of a complex value chain and the stakeholders within it, yet no studies have attempted this. In this paper we combine Value Chain Analysis, commonly applied to understand value-adding for a commodity, with elements of Life Cycle Assessment and social network analysis to examine the drivers, stakeholders, economic, environmental and social costs and benefits in the life of a trawl net. We use the Arafura Sea as a case study, which is shared by Indonesia, Papua New Guinea and Australia, and is the focus of a Trans-boundary Diagnostic Assessment (TDA) within the Arafura-Timor Seas Ecosystem Action program (ATSEA). We follow a trawl net through four sub-systems: manufacture of webbing in South Korea, fishing and loss by an Indonesian vessel, retrieval as ghost net on the northern Australian coastline by Indigenous rangers, and disposal or re-cycling as 'GhostNet Art' by Indigenous artists. Primary stakeholders along the value chain incur economic and social benefits, and economic and environmental costs. There is an anomaly in the chain between Indonesian fishermen and Indigenous rangers, artists and communities due to the lack of market linkages between these primary stakeholders. The first 'nexus of influence' where reductions in net losses and environmental costs can be achieved is through interactions between GhostNets Australia, the World Wide Fund for Nature and the Australian Government, which can influence Indonesian fishery management institutions and fishing crews. The second nexus is via the international art market which by publicising GhostNet Art can raise awareness amongst fish consumers about the impacts of ghost nets

  8. Programming NET Web Services

    CERN Document Server

    Ferrara, Alex

    2007-01-01

    Web services are poised to become a key technology for a wide range of Internet-enabled applications, spanning everything from straight B2B systems to mobile devices and proprietary in-house software. While there are several tools and platforms that can be used for building web services, developers are finding a powerful tool in Microsoft's .NET Framework and Visual Studio .NET. Designed from scratch to support the development of web services, the .NET Framework simplifies the process--programmers find that tasks that took an hour using the SOAP Toolkit take just minutes. Programming .NET

  9. Global Distribution of Net Electron Acceptance in Subseafloor Sediment

    Science.gov (United States)

    Fulfer, V. M.; Pockalny, R. A.; D'Hondt, S.

    2017-12-01

    We quantified the global distribution of net electron acceptance rates (e-/m2/year) in subseafloor sediment (>1.5 meters below seafloor [mbsf]) using (i) a modified version of the chemical-reaction-rate algorithm by Wang et al. (2008), (ii) physical properties and dissolved oxygen and sulfate data from interstitial waters of sediment cores collected by the Ocean Drilling Program, Integrated Ocean Drilling Program, International Ocean Discovery Program, and U.S. coring expeditions, and (iii) correlation of net electron acceptance rates to global oceanographic properties. Calculated net rates vary from 4.8 x 1019 e-/m2/year for slowly accumulating abyssal clay to 1.2 x 1023 e-/m2/year for regions of high sedimentation rate. Net electron acceptance rate correlates strongly with mean sedimentation rate. Where sedimentation rate is very low (e.g., 1 m/Myr), dissolved oxygen penetrates more than 70 mbsf and is the primary terminal electron acceptor. Where sedimentation rate is moderate (e.g., 3 to 60 m/Myr), dissolved sulfate penetrates as far as 700 mbsf and is the principal terminal electron acceptor. Where sedimentation rate is high (e.g., > 60 m/Myr), dissolved sulfate penetrates only meters, but is the principal terminal electron acceptor in subseafloor sediment to the depth of sulfate penetration. Because microbial metabolism continues at greater depths than the depth of sulfate penetration in fast-accumulating sediment, complete quantification of subseafloor metabolic rates will require consideration of other chemical species.

  10. Improving timeliness and efficiency in the referral process for safety net providers: application of the Lean Six Sigma methodology.

    Science.gov (United States)

    Deckard, Gloria J; Borkowski, Nancy; Diaz, Deisell; Sanchez, Carlos; Boisette, Serge A

    2010-01-01

    Designated primary care clinics largely serve low-income and uninsured patients who present a disproportionate number of chronic illnesses and face great difficulty in obtaining the medical care they need, particularly the access to specialty physicians. With limited capacity for providing specialty care, these primary care clinics generally refer patients to safety net hospitals' specialty ambulatory care clinics. A large public safety net health system successfully improved the effectiveness and efficiency of the specialty clinic referral process through application of Lean Six Sigma, an advanced process-improvement methodology and set of tools driven by statistics and engineering concepts.

  11. Effect of nitrogen addition and drought on above-ground biomass of expanding tall grasses Calamagrostis epigejos and Arrhenatherum elatius

    Czech Academy of Sciences Publication Activity Database

    Fiala, Karel; Tůma, Ivan; Holub, Petr

    2011-01-01

    Roč. 66, č. 2 (2011), s. 275-281 ISSN 0006-3088 R&D Projects: GA ČR(CZ) GA526/06/0556 Institutional research plan: CEZ:AV0Z60050516 Keywords : nitrogen * drought * above-ground biomass Subject RIV: EF - Botanics Impact factor: 0.557, year: 2011

  12. Does biodiversity make a difference? Relationships between species richness, evolutionary diversity, and aboveground live tree biomass across US forests

    Science.gov (United States)

    Kevin M. Potter; Christopher W. Woodall

    2014-01-01

    Biodiversity conveys numerous functional benefits to forested ecosystems, including community stability and resilience. In the context of managing forests for climate change mitigation/adaptation, maximizing and/or maintaining aboveground biomass will require understanding the interactions between tree biodiversity, site productivity, and the stocking of live trees....

  13. Evaluating the effect of alternative carbon allocation schemes in a land surface model (CLM4.5 on carbon fluxes, pools, and turnover in temperate forests

    Directory of Open Access Journals (Sweden)

    F. Montané

    2017-09-01

    Full Text Available How carbon (C is allocated to different plant tissues (leaves, stem, and roots determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI measurements to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM, the Community Land Model (CLM4.5. We ran CLM4.5 for nine temperate (including evergreen and deciduous forests in North America between 1980 and 2013 using four different C allocation schemes: i. dynamic C allocation scheme (named "D-CLM4.5" with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP; ii. an alternative dynamic C allocation scheme (named "D-Litton", where, similar to (i, C allocation is a dynamic function of annual NPP, but unlike (i includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.–iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen" and the other of observations in deciduous forests (named "F-Deciduous". D-CLM4.5 generally overestimated gross primary production (GPP and ecosystem respiration, and underestimated net ecosystem exchange (NEE. In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m−2 for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011 was highly underestimated (between 1222 and 7557 g C m−2 for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C–LAI relationship in the model did not match the

  14. Game Coloured Petri Nets

    DEFF Research Database (Denmark)

    Westergaard, Michael

    2006-01-01

    This paper introduces the notion of game coloured Petri nets. This allows the modeler to explicitly model what parts of the model comprise the modeled system and what parts are the environment of the modeled system. We give the formal definition of game coloured Petri nets, a means of reachability...... analysis of this net class, and an application of game coloured Petri nets to automatically generate easy-to-understand visualizations of the model by exploiting the knowledge that some parts of the model are not interesting from a visualization perspective (i.e. they are part of the environment...

  15. Results for the Aboveground Configuration of the Boiling Water Reactor Dry Cask Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Fuel Cycle Technologies; Lindgren, Eric Richard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Advanced Nuclear Fuel Cycle Technologies

    2016-09-01

    The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and also by increasing the internal convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and belowground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of aboveground and belowground canistered dry cask systems. The purpose of the current investigation was to produce data sets that can be used to test the validity of the assumptions associated with the calculations used to determine steady-state cladding temperatures in modern dry casks that utilize elevated helium pressure in the sealed canister in an aboveground configuration. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly was deployed inside of a representative storage basket and cylindrical pressure vessel that represents a vertical canister system. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. The arrangement of ducting was used to mimic conditions for an aboveground storage configuration in a vertical, dry cask

  16. Strength and durability tests of pipeline supports for the areas of above-ground routing under the influence of operational loads

    Directory of Open Access Journals (Sweden)

    Surikov Vitaliy Ivanovich

    2014-03-01

    Full Text Available The present article deals with integrated research works and tests of pipeline supports for the areas of above-ground routing of the pipeline system “Zapolyarye - Pur-pe” which is laid in the eternally frozen grounds. In order to ensure the above-ground routing method for the oil pipeline “Zapolyarye - Pur-pe” and in view of the lack of construction experience in case of above-ground routing of oil pipelines, the leading research institute of JSC “Transneft” - LLC “NII TNN” over the period of August, 2011 - September, 2012 performed a research and development work on the subject “Development and production of pipeline supports and pile foundation test specimens for the areas of above-ground routing of the pipeline system “Zapolyarye - Pur-pe”. In the course of the works, the test specimens of fixed support, linear-sliding and free-sliding pipeline supports DN1000 and DN800 were produced and examined. For ensuring the stable structural reliability of the supports constructions and operational integrity of the pipelines the complex research works and tests were performed: 1. Cyclic tests of structural elements of the fixed support on the test bed of JSC “Diascan” by means of internal pressure and bending moment with the application of specially prepared equipment for defining the pipeline supports strength and durability. 2. Tests of the fixed support under the influence of limit operating loads and by means of internal pressure for confirming the support’s integrity. On the test bed there were simulated all the maximum loads on the support (vertical, longitudinal, side loadings, bending moment including subsidence of the neighboring sliding support and, simultaneously, internal pressure of the carried medium. 3. Cyclic tests of endurance and stability of the displacements of sliding supports under the influence of limit operating loads for confirming their operation capacity. Relocation of the pipeline on the sliding

  17. A model of regional primary production for use with coarse resolution satellite data

    Science.gov (United States)

    Prince, S. D.

    1991-01-01

    A model of crop primary production, which was originally developed to relate the amount of absorbed photosynthetically active radiation (APAR) to net production in field studies, is discussed in the context of coarse resolution regional remote sensing of primary production. The model depends on an approximately linear relationship between APAR and the normalized difference vegetation index. A more comprehensive form of the conventional model is shown to be necessary when different physiological types of plants or heterogeneous vegetation types occur within the study area. The predicted variable in the new model is total assimilation (net production plus respiration) rather than net production alone or harvest yield.

  18. Coloured Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1991-01-01

    This paper describes how Coloured Petri Nets (CP-nets) have been developed — from being a promising theoretical model to being a full-fledged language for the design, specification, simulation, validation and implementation of large software systems (and other systems in which human beings and...

  19. Net zero water

    CSIR Research Space (South Africa)

    Lindeque, M

    2013-01-01

    Full Text Available the national grid. The unfortunate situation with water is that there is no replacement technology for water. Water can be supplied from many different sources. A net zero energy development will move closer to a net zero water development by reducing...

  20. Dependence of wheat and rice respiration on tissue nitrogen and the corresponding net carbon fixation efficiency under different rates of nitrogen application

    Science.gov (United States)

    Sun, Wenjuan; Huang, Yao; Chen, Shutao; Zou, Jianwen; Zheng, Xunhua

    2007-02-01

    To quantitatively address the role of tissue N in crop respiration under various agricultural practices, and to consequently evaluate the impact of synthetic fertilizer N application on biomass production and respiration, and hence net carbon fixation efficiency ( E ncf), pot and field experiments were carried out for an annual rotation of a rice-wheat cropping system from 2001 to 2003. The treatments of the pot experiments included fertilizer N application, sowing date and planting density. Different rates of N application were tested in the field experiments. Static opaque chambers were used for sampling the gas. The respiration as CO2 emission was detected by a gas chromatograph. A successive biomass clipping method was employed to determine the crop autotrophic respiration coefficient ( R a). Results from the pot experiments revealed a linear relationship between R a and tissue N content as R a = 4.74N-1.45 ( R 2 = 0.85, P < 0.001). Measurements and calculations from the field experiments indicated that fertilizer N application promoted not only biomass production but also increased the respiration of crops. A further investigation showed that the increase of carbon loss in terms of respiration owing to fertilizer N application exceeded that of net carbon gain in terms of aboveground biomass when fertilizer N was applied over a certain rate. Consequently, the E ncf declined as the N application rate increased.

  1. Forest Restoration Carbon Analysis of Baseline Carbon Emissions and Removal in Tropical Rainforest at La Selva Central, Peru

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Gonzalez; Benjamin Kroll; Carlos R. Vargas

    2006-01-10

    secondary sites. Aboveground carbon density is 120 {+-} 15 t ha{sup -1} in primary forest and 40 {+-} 5 t ha{sup -1} in secondary forest. Forest stands in the secondary forest sites range in age from 10 to 42 y. Growth in biomass (t ha{sup -1}) as a function of time (y) follows the relation: biomass = 4.09-0.017 age{sup 2} (p < 0.001). Aboveground biomass and forest species richness are positively correlated (r{sup 2} = 0.59, p < 0.001). Analyses of Landsat data show that the land cover of the 3700 km{sup 2} of non-cloud areas in 1999 was: closed forest 78%; open forest 12%, low vegetation cover 4%, sparse vegetation cover 6%. Deforestation from 1987 to 1999 claimed a net 200 km{sup 2} of forest, proceeding at a rate of 0.005 y{sup -1}. Of those areas of closed forest in 1987, only 89% remained closed forest in 1999. Consequently, closed forests experienced disruption in the time period at double the rate of net deforestation. The three protected areas experienced negligible deforestation or slight reforestation. Based on 1987 forest cover, 26,000 ha are eligible for forest carbon trading under the Clean Development Mechanism, established by the Kyoto Protocol to the United Nations Framework Convention on Climate Change. Principal components analysis showed that distance to nonforest was the factor that best explained observed patterns of deforestation while distance to forest best explained observed patterns of reforestation, more significant than elevation, distance to rivers, distance to roads, slope, and distance to towns of population > 400. Aboveground carbon in live vegetation in the project area decreased from 35 million {+-} 4 million t in 1987 to 34 million {+-} 4 million t in 1999. Projected aboveground carbon in live vegetation would fall to 33 million {+-} 4 million t in 2006, 32 million {+-} 4 million t in 2011, and 29 million {+-} 3 million t in 2035. Projected net deforestation in the research area would total 13,000 {+-} 3000 ha in the period 1999

  2. Towards new information resources for public health--from WordNet to MedicalWordNet.

    Science.gov (United States)

    Fellbaum, Christiane; Hahn, Udo; Smith, Barry

    2006-06-01

    In the last two decades, WordNet has evolved as the most comprehensive computational lexicon of general English. In this article, we discuss its potential for supporting the creation of an entirely new kind of information resource for public health, viz. MedicalWordNet. This resource is not to be conceived merely as a lexical extension of the original WordNet to medical terminology; indeed, there is already a considerable degree of overlap between WordNet and the vocabulary of medicine. Instead, we propose a new type of repository, consisting of three large collections of (1) medically relevant word forms, structured along the lines of the existing Princeton WordNet; (2) medically validated propositions, referred to here as medical facts, which will constitute what we shall call MedicalFactNet; and (3) propositions reflecting laypersons' medical beliefs, which will constitute what we shall call the MedicalBeliefNet. We introduce a methodology for setting up the MedicalWordNet. We then turn to the discussion of research challenges that have to be met to build this new type of information resource. We build a database of sentences relevant to the medical domain. The sentences are generated from WordNet via its relations as well as from medical statements broken down into elementary propositions. Two subcorpora of sentences are distinguished, MedicalBeliefNet and MedicalFactNet. The former is rated for assent by laypersons; the latter for correctness by medical experts. The sentence corpora will be valuable for a variety of applications in information retrieval as well as in research in linguistics and psychology with respect to the study of expert and non-expert beliefs and their linguistic expressions. Our work has to meet several considerable challenges. These include accounting for the distinction between medical experts and laypersons, the social issues of expert-layperson communication in different media, the linguistic aspects of encoding medical knowledge, and

  3. Multiflavor string-net models

    Science.gov (United States)

    Lin, Chien-Hung

    2017-05-01

    We generalize the string-net construction to multiple flavors of strings, each of which is labeled by the elements of an Abelian group Gi. The same flavor of strings can branch, while different flavors of strings can cross one another and thus they form intersecting string nets. We systematically construct the exactly soluble lattice Hamiltonians and the ground-state wave functions for the intersecting string-net condensed phases. We analyze the braiding statistics of the low-energy quasiparticle excitations and find that our model can realize all the topological phases as the string-net model with group G =∏iGi . In this respect, our construction provides various ways of building lattice models which realize topological order G , corresponding to different partitions of G and thus different flavors of string nets. In fact, our construction concretely demonstrates the Künneth formula by constructing various lattice models with the same topological order. As an example, we construct the G =Z2×Z2×Z2 string-net model which realizes a non-Abelian topological phase by properly intersecting three copies of toric codes.

  4. SEVERAL PESTA TABLET TRIALS WITH Aspergillus alliaceus Thom & Church FOR EFFECTIVE UNDERGROUND AND ABOVEGROUND Orobanche L. BIOCONTROL

    Directory of Open Access Journals (Sweden)

    Mehmet AYBEKE

    2016-06-01

    Full Text Available The present study was performed in order to determine the efficiency of the fungi Aspergillus alliaceus in fighting broomrape by the pesta-tablet trials under below- and above-ground conditions and to determine the appropriate tablet formulations for both conditions. For this purpose, different tablets were used in different experimental steps and their efficiencies were evaluated. The results showed that the tablets T-1, T-2, T-3, T-5, T-12 and T-13 greatly reduced the amount of broomrape in below-ground conditions, particularly with previous and high amount or crushed-tablet applications before crop-sowing. In above-ground conditions, any tablet formulation or directly sclerotial contacting were very effective in broomrape control and it was determined that close presence to or direct contact with broomrape is essential for successful biocontrol. In conclusion, considering the durability of the fungal agent against harsh environmental conditions and its sclerotial structure, it was deduced that if the fungi could be implemented in a stand-alone or especially integrated with each other, it will provide long-term, high-level broomrape biocontrol, indicating the advantages of A. alliaceus against other alternative fungal agents.

  5. Examining spectral properties of Landsat 8 OLI for predicting above-ground carbon of Labanan Forest, Berau

    Science.gov (United States)

    Suhardiman, A.; Tampubolon, B. A.; Sumaryono, M.

    2018-04-01

    Many studies revealed significant correlation between satellite image properties and forest data attributes such as stand volume, biomass or carbon stock. However, further study is still relevant due to advancement of remote sensing technology as well as improvement on methods of data analysis. In this study, the properties of three vegetation indices derived from Landsat 8 OLI were tested upon above-ground carbon stock data from 50 circular sample plots (30-meter radius) from ground survey in PT. Inhutani I forest concession in Labanan, Berau, East Kalimantan. Correlation analysis using Pearson method exhibited a promising results when the coefficient of correlation (r-value) was higher than 0.5. Further regression analysis was carried out to develop mathematical model describing the correlation between sample plots data and vegetation index image using various mathematical models.Power and exponential model were demonstrated a good result for all vegetation indices. In order to choose the most adequate mathematical model for predicting Above-ground Carbon (AGC), the Bayesian Information Criterion (BIC) was applied. The lowest BIC value (i.e. -376.41) shown by Transformed Vegetation Index (TVI) indicates this formula, AGC = 9.608*TVI21.54, is the best predictor of AGC of study area.

  6. Rare, but challenging tumors: NET

    International Nuclear Information System (INIS)

    Ivanova, D.; Balev, B.

    2013-01-01

    Full text: Introduction: Gastroenteropancreatic Neuroendocrine Tumors (GEP - NET) are a heterogeneous group of tumors with different locations and many different clinical, histological, and imaging performance. In a part of them a secretion of various organic substances is present. The morbidity of GEP - NET in the EU is growing, and this leads to increase the attention to them. What you will learn: Imaging methods used for localization and staging of GEP - NET, characteristics of the study’s protocols; Classification of GEP - NET; Demonstration of typical and atypical imaging features of GEP - NET in patients registered at the NET Center at University Hospital ‘St. Marina’, Varna; Features of metastatic NET, The role of imaging in the evaluation of treatment response and follow-up of the patients. Discussion: The image semiotics analysis is based on 19 cases of GEP - NET registered NET Center at University Hospital ‘St. Marina’. The main imaging method is multidetector CT (MDCT), and magnetic resonance imaging (MRI ) has advantages in the evaluation of liver lesions and the local prevalence of anorectal tumors. In patients with advanced disease and liver lesions the assessment of skeletal involvement (MRI/ nuclear medical method) is mandatory. The majority of GEP - NET have not any specific imaging findings. Therefore it is extremely important proper planning and conducting of the study (MDCT and MR enterography; accurate assessment phase of scanning, positive and negative contrast). Conclusion: GEP - NET is a major diagnostic challenge due to the absence of typical imaging characteristics and often an overlap with those of the tumors of different origin can be observed. Therefore, a good knowledge of clinical and imaging changes occurring at different locations is needed. MDCT is the basis for the diagnosis, staging and follow-up of these neoplasms

  7. Limitations of shallow nets approximation.

    Science.gov (United States)

    Lin, Shao-Bo

    2017-10-01

    In this paper, we aim at analyzing the approximation abilities of shallow networks in reproducing kernel Hilbert spaces (RKHSs). We prove that there is a probability measure such that the achievable lower bound for approximating by shallow nets can be realized for all functions in balls of reproducing kernel Hilbert space with high probability, which is different with the classical minimax approximation error estimates. This result together with the existing approximation results for deep nets shows the limitations for shallow nets and provides a theoretical explanation on why deep nets perform better than shallow nets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Spatial distribution of forest aboveground biomass estimated from remote sensing and forest inventory data in New England, USA

    Science.gov (United States)

    Daolan Zheng; Linda S. Heath; Mark J. Ducey

    2008-01-01

    We combined satellite (Landsat 7 and Moderate Resolution Imaging Spectrometer) and U.S. Department of Agriculture forest inventory and analysis (FIA) data to estimate forest aboveground biomass (AGB) across New England, USA. This is practical for large-scale carbon studies and may reduce uncertainty of AGB estimates. We estimate that total regional forest AGB was 1,867...

  9. Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations

    Science.gov (United States)

    Ross Nelson; Hank Margolis; Paul Montesano; Guoqing Sun; Bruce Cook; Larry Corp; Hans-Erik Andersen; Ben deJong; Fernando Paz Pellat; Thaddeus Fickel; Jobriath Kauffman; Stephen Prisley

    2017-01-01

    Existing national forest inventory plots, an airborne lidar scanning (ALS) system, and a space profiling lidar system (ICESat-GLAS) are used to generate circa 2005 estimates of total aboveground dry biomass (AGB) in forest strata, by state, in the continental United States (CONUS) and Mexico. The airborne lidar is used to link ground observations of AGB to space lidar...

  10. Reduction of net primary productivity in southern China caused by abnormal low-temperature freezing in winter of 2008 detected by a remote sensing-driven ecosystem model

    Science.gov (United States)

    Ju, W.; Liu, Y.; Zhou, Y.; Zhu, G.

    2011-12-01

    Terrestrial carbon cycle is an important determinant of global climate change and affected by various factors, including climate, CO2 concentration, atmospheric nitrogen deposition and human activities. Extreme weather events can significantly regulate short-term even long-term carbon exchanges between terrestrial ecosystems and the atmosphere. During the period from the middle January to the middle February 2008, Southern China was seriously hit by abnormal low-temperature freezing, which caused serous damages to forests and crops. However, the reduction of net primary productivity (NPP) of terrestrial ecosystems caused by this extremely abnormal weather event has not been quantitatively investigated. In this study, the Boreal Ecosystem Productivity Simulator (BEPS) model was employed to assess the reduction of NPP in Southern China caused by the abnormal low-temperature freezing. Prior to the regional simulation, the BEPS model was validated using measured NPP in different ecosystems, demonstrating the ability of this model to simulate NPP reliably in China. Then, it was forced using meteorological data interpolated from observations of weather stations and leaf area index inversed from MODIS reflectance data to simulate national wide NPP at a 500 m resolution for the period from 2003 to 2008. The departures of NPP in 2008 from the means during 2003-2007 were used as the indicator of NPP reduction caused by the low-temperature freezing. It was found out that NPP in 2008 decreased significantly in forests of Southern China, especially in Guangdong, Fujian, Zhejiang, Guangxi, Jiangxi, and Hunan Provinces, in which the low-temperature freeing was more serious. The annul reduction of NPP was above 150 g C/m^2/yr in these areas. Key words: Net Primary Productivity, low-temperature freezing, BEPS model, MODIS Correspondence author: Weimin Ju Email:juweimin@nju.edu.cn

  11. Study of Wetland Ecosystem Vegetation Using Satellite Data

    Science.gov (United States)

    Dyukarev, E. A.; Alekseeva, M. N.; Golovatskaya, E. A.

    2017-12-01

    The normalized difference vegetation index (NDVI) is used to estimate the aboveground net production (ANP) of wetland ecosystems for the key area at the South Taiga zone of West Siberia. The vegetation index and aboveground production are related by linear dependence and are specific for each wetland ecosystem. The NDVI grows with an increase in the ANP at wooded oligotrophic ecosystems. Open oligotrophic bogs and eutrophic wetlands are characterized by an opposite relation. Maps of aboveground production for wetland ecosystems are constructed for each study year and for the whole period of studies. The average aboveground production for all wetland ecosystems of the key area, which was estimated with consideration for the area they occupy and using the data of satellite measurements of the vegetation index, is 305 g C/m2/yr. The total annual carbon accumulation in aboveground wetland vegetation in the key area is 794600 t.

  12. The effect of netting solidity ratio and inclined angle on the hydrodynamic characteristics of knotless polyethylene netting

    Science.gov (United States)

    Tang, Hao; Hu, Fuxiang; Xu, Liuxiong; Dong, Shuchuang; Zhou, Cheng; Wang, Xuefang

    2017-10-01

    Knotless polyethylene (PE) netting has been widely used in aquaculture cages and fishing gears, especially in Japan. In this study, the hydrodynamic coefficient of six knotless PE netting panels with different solidity ratios were assessed in a flume tank under various attack angles of netting from 0° (parallel to flow) to 90° (perpendicular to flow) and current speeds from 40 cm s-1 to 130 cm s-1. It was found that the drag coefficient was related to Reynolds number, solidity ratio and attack angle of netting. The solidity ratio was positively related with drag coefficient for netting panel perpendicular to flow, whereas when setting the netting panel parallel to the flow the opposite result was obtained. For netting panels placed at an angle to the flow, the lift coefficient reached the maximum at an attack angle of 50° and then decreased as the attack angle further increased. The solidity ratio had a dual influence on drag coefficient of inclined netting panels. Compared to result in the literature, the normal drag coefficient of knotless PE netting measured in this study is larger than that of nylon netting or Dyneema netting.

  13. Use of bed nets and factors that influence bed net use among Jinuo Ethnic Minority in southern China.

    Science.gov (United States)

    Xu, Jian-wei; Liao, Yuan-mei; Liu, Hui; Nie, Ren-hua; Havumaki, Joshua

    2014-01-01

    Insecticide-treated nets (ITNs) are an integral part of vector control recommendations for malaria elimination in China. This study investigated the extent to which bed nets were used and which factors influence bed net use among Jinuo Ethnic Minority in China-Myanmar-Laos border areas. This study combined a quantitative household questionnaire survey and qualitative semi-structured in-depth interviews (SDI). Questionnaires were administered to 352 heads of households. SDIs were given to 20 key informants. The bed net to person ratio was 1∶2.1 (i.e., nearly one net for every two people), however only 169 (48.0%) households owned at least one net and 623 (47.2%) residents slept under bed nets the prior night. The percentages of residents who regularly slept under nets (RSUN) and slept under nets the prior night (SUNPN) were similar (48.0% vs. 47.2%, P>0.05), however the percentage correct use of nets (CUN) was significantly lower (34.5%, Pcash income per person (ACIP) was an independent factor that influenced bed net use (PHigh bed net availability does not necessarily mean higher coverage or bed net use. Household income, house type and knowledge of the ability of bed nets to prevent malaria are all independent factors that influence bed net use among Jinuo Ethnic Minority.

  14. Fusion through the NET

    International Nuclear Information System (INIS)

    Spears, B.

    1987-01-01

    The paper concerns the next generation of fusion machines which are intended to demonstrate the technical viability of fusion. In Europe, the device that will follow on from JET is known as NET - the Next European Torus. If the design programme for NET proceeds, Europe could start to build the machine in 1994. The present JET programme hopes to achieve breakeven in the early 1990's. NET hopes to reach ignition in the next century, and so lay the foundation for a demonstration reactor. A description is given of the technical specifications of the components of NET, including: the first wall, the divertors to protect the wall, the array of magnets that provide the fields containing the plasma, the superconducting magnets, and the shield of the machine. NET's research programme is briefly outlined, including the testing programme to optimise conditions in the machine to achieve ignition, and its safety work. (U.K.)

  15. NetView technical research

    Science.gov (United States)

    1993-01-01

    This is the Final Technical Report for the NetView Technical Research task. This report is prepared in accordance with Contract Data Requirements List (CDRL) item A002. NetView assistance was provided and details are presented under the following headings: NetView Management Systems (NMS) project tasks; WBAFB IBM 3090; WPAFB AMDAHL; WPAFB IBM 3084; Hill AFB; McClellan AFB AMDAHL; McClellan AFB IBM 3090; and Warner-Robins AFB.

  16. Efficacy of PermaNet® 3.0 and PermaNet® 2.0 nets against laboratory-reared and wild Anopheles gambiae sensu lato populations in northern Tanzania.

    Science.gov (United States)

    Kweka, Eliningaya J; Lyaruu, Lucile J; Mahande, Aneth M

    2017-01-18

    Mosquitoes have developed resistance against pyrethroids, the only class of insecticides approved for use on long-lasting insecticidal nets (LLINs). The present study sought to evaluate the efficacy of the pyrethroid synergist PermaNet® 3.0 LLIN versus the pyrethroid-only PermaNet® 2.0 LLIN, in an East African hut design in Lower Moshi, northern Tanzania. In this setting, resistance to pyrethroid insecticides has been identified in Anopheles gambiae mosquitoes. Standard World Health Organization bioefficacy evaluations were conducted in both laboratory and experimental huts. Experimental hut evaluations were conducted in an area where there was presence of a population of highly pyrethroid-resistant An. arabiensis mosquitoes. All nets used were subjected to cone bioassays and then to experimental hut trials. Mosquito mortality, blood-feeding inhibition and personal protection rate were compared between untreated nets, unwashed LLINs and LLINs that were washed 20 times. Both washed and unwashed PermaNet® 2.0 and PermaNet® 3.0 LLINs had knockdown and mortality rates of 100% against a susceptible strain of An. gambiae sensu stricto. The adjusted mortality rate of the wild mosquito population after use of the unwashed PermaNet® 3.0 and PermaNet® 2.0 nets was found to be higher than after use of the washed PermaNet® 2.0 and PermaNet® 3.0 nets. Given the increasing incidence of pyrethroid resistance in An. gambiae mosquitoes in Tanzania, we recommend that consideration is given to its distribution in areas with pyrethroid-resistant malaria vectors within the framework of a national insecticide-resistance management plan.

  17. PODATKOVNE STORITVE ADO.NET IN ADO.NET ENTITY FRAMEWORK

    OpenAIRE

    Volavc, Franc

    2012-01-01

    V diplomskem delu smo predstavili Microsoftovi ogrodji ADO.NET in ADO.NET Entity Framework. Preučili in analizirali smo metode za dostop do podatkovnih virov, ki jih ponujata ogrodji, ter nato te ugotovitve preslikati v odločitveno drevo, katero bo programerjem in razvijalcem informacijskih sistemov pomagalo pri odločanju glede pristopa za dostop do podatkovnih virov. Ker bomo v diplomskem delu predstavili Microsoftovi ogrodji, bomo posledično omejeni zgolj na Microsoftovo tehnologijo, se pra...

  18. Blanket testing in NET

    International Nuclear Information System (INIS)

    Chazalon, M.; Daenner, W.; Libin, B.

    1989-01-01

    The testing stages in NET for the performance assessment of the various breeding blanket concepts developed at the present time in Europe for DEMO (LiPb and ceramic blankets) and the requirements upon NET to perform these tests are reviewed. Typical locations available in NET for blanket testing are the central outboard segments and the horizontal ports of in-vessel sectors. These test positions will be connectable with external test loops. The number of test loops (helium, water, liquid metal) will be such that each major class of blankets can be tested in NET. The test positions, the boundary conditions and the external test loops are identified and the requirements for test blankets are summarized (author). 6

  19. Divergence in Forest-Type Response to Climate and Weather: Evidence for Regional Links Between Forest-Type Evenness and Net Primary Productivity

    Science.gov (United States)

    Bradford, J.B.

    2011-01-01

    Climate change is altering long-term climatic conditions and increasing the magnitude of weather fluctuations. Assessing the consequences of these changes for terrestrial ecosystems requires understanding how different vegetation types respond to climate and weather. This study examined 20 years of regional-scale remotely sensed net primary productivity (NPP) in forests of the northern Lake States to identify how the relationship between NPP and climate or weather differ among forest types, and if NPP patterns are influenced by landscape-scale evenness of forest-type abundance. These results underscore the positive relationship between temperature and NPP. Importantly, these results indicate significant differences among broadly defined forest types in response to both climate and weather. Essentially all weather variables that were strongly related to annual NPP displayed significant differences among forest types, suggesting complementarity in response to environmental fluctuations. In addition, this study found that forest-type evenness (within 8 ?? 8 km2 areas) is positively related to long-term NPP mean and negatively related to NPP variability, suggesting that NPP in pixels with greater forest-type evenness is both higher and more stable through time. This is landscape- to subcontinental-scale evidence of a relationship between primary productivity and one measure of biological diversity. These results imply that anthropogenic or natural processes that influence the proportional abundance of forest types within landscapes may influence long-term productivity patterns. ?? 2011 Springer Science+Business Media, LLC (outside the USA).

  20. Non-Destructive, Laser-Based Individual Tree Aboveground Biomass Estimation in a Tropical Rainforest

    Directory of Open Access Journals (Sweden)

    Muhammad Zulkarnain Abd Rahman

    2017-03-01

    Full Text Available Recent methods for detailed and accurate biomass and carbon stock estimation of forests have been driven by advances in remote sensing technology. The conventional approach to biomass estimation heavily relies on the tree species and site-specific allometric equations, which are based on destructive methods. This paper introduces a non-destructive, laser-based approach (terrestrial laser scanner for individual tree aboveground biomass estimation in the Royal Belum forest reserve, Perak, Malaysia. The study area is in the state park, and it is believed to be one of the oldest rainforests in the world. The point clouds generated for 35 forest plots, using the terrestrial laser scanner, were geo-rectified and cleaned to produce separate point clouds for individual trees. The volumes of tree trunks were estimated based on a cylinder model fitted to the point clouds. The biomasses of tree trunks were calculated by multiplying the volume and the species wood density. The biomasses of branches and leaves were also estimated based on the estimated volume and density values. Branch and leaf volumes were estimated based on the fitted point clouds using an alpha-shape approach. The estimated individual biomass and the total above ground biomass were compared with the aboveground biomass (AGB value estimated using existing allometric equations and individual tree census data collected in the field. The results show that the combination of a simple single-tree stem reconstruction and wood density can be used to estimate stem biomass comparable to the results usually obtained through existing allometric equations. However, there are several issues associated with the data and method used for branch and leaf biomass estimations, which need further improvement.

  1. The influence of health policy and market factors on the hospital safety net.

    Science.gov (United States)

    Bazzoli, Gloria J; Lindrooth, Richard C; Kang, Ray; Hasnain-Wynia, Romana

    2006-08-01

    To examine how the financial pressures resulting from the Balanced Budget Act (BBA) of 1997 interacted with private sector pressures to affect indigent care provision. American Hospital Association Annual Survey, Area Resource File, InterStudy Health Maintenance Organization files, Current Population Survey, and Bureau of Primary Health Care data. We distinguished core and voluntary safety net hospitals in our analysis. Core safety net hospitals provide a large share of uncompensated care in their markets and have large indigent care patient mix. Voluntary safety net hospitals provide substantial indigent care but less so than core hospitals. We examined the effect of financial pressure in the initial year of the 1997 BBA on uncompensated care for three hospital groups. Data for 1996-2000 were analyzed using approaches that control for hospital and market heterogeneity. All urban U.S. general acute care hospitals with complete data for at least 2 years between 1996 and 2000, which totaled 1,693 institutions. Core safety net hospitals reduced their uncompensated care in response to Medicaid financial pressure. Voluntary safety net hospitals also responded in this way but only when faced with the combined forces of Medicaid and private sector payment pressures. Nonsafety net hospitals did not exhibit similar responses. Our results are consistent with theories of hospital behavior when institutions face reductions in payment. They raise concern given continuing state budget crises plus the focus of recent federal deficit reduction legislation intended to cut Medicaid expenditures.

  2. [Parameter sensitivity of simulating net primary productivity of Larix olgensis forest based on BIOME-BGC model].

    Science.gov (United States)

    He, Li-hong; Wang, Hai-yan; Lei, Xiang-dong

    2016-02-01

    Model based on vegetation ecophysiological process contains many parameters, and reasonable parameter values will greatly improve simulation ability. Sensitivity analysis, as an important method to screen out the sensitive parameters, can comprehensively analyze how model parameters affect the simulation results. In this paper, we conducted parameter sensitivity analysis of BIOME-BGC model with a case study of simulating net primary productivity (NPP) of Larix olgensis forest in Wangqing, Jilin Province. First, with the contrastive analysis between field measurement data and the simulation results, we tested the BIOME-BGC model' s capability of simulating the NPP of L. olgensis forest. Then, Morris and EFAST sensitivity methods were used to screen the sensitive parameters that had strong influence on NPP. On this basis, we also quantitatively estimated the sensitivity of the screened parameters, and calculated the global, the first-order and the second-order sensitivity indices. The results showed that the BIOME-BGC model could well simulate the NPP of L. olgensis forest in the sample plot. The Morris sensitivity method provided a reliable parameter sensitivity analysis result under the condition of a relatively small sample size. The EFAST sensitivity method could quantitatively measure the impact of simulation result of a single parameter as well as the interaction between the parameters in BIOME-BGC model. The influential sensitive parameters for L. olgensis forest NPP were new stem carbon to new leaf carbon allocation and leaf carbon to nitrogen ratio, the effect of their interaction was significantly greater than the other parameter' teraction effect.

  3. Current Status and Future Prospect of K-NET and KiK-net

    Science.gov (United States)

    Aoi, S.; Kunugi, T.; Suzuki, W.; Nakamura, H.; Fujiwara, H.

    2014-12-01

    During 18 years since the deployment of K-NET following the Kobe earthquake, our attention has mainly focused on rapidity of the data collection and an unfailing and reliable observation. In this presentation, we review three generations of the instruments employed by K-NET and KiK-net from these two points of view.At beginning of the 2000's, we newly developed the second generation instruments (K-NET02, K-NET02A, KiK-net06) to replace the first generation instruments (K-NET95, SMAC-MDK) employed when the networks were constructed in the 1990's. These instruments have an automatic dial-out function. It takes typically 2-5 s to establish communication and a few seconds to send the pre-trigger data. After that, data is available typically within a 1.5 s delay. Not only waveform data but also strong motion indexes such as real-time intensity, PGA, PGV, PGD, and response spectra are continuously sent once a second.After the 2011 Tohoku earthquake, we have developed the third generation instruments (K-NET11, KiK-net11) and have replaced almost half of the all stations country wide. Main improvement of this instrument is more unfailing and reliable observation. Because we have often experienced very large ground motions (e.g. 45 records exceeding gravity), the maximum measureable range was expanded from 2000 gal to 4000 gal for the second generation instrument, and to 8000 gal for the third. For the third generation instrument, in case of power failure, observation (including transmission of data) works for seven days thanks to the backup battery, while for the second generation instruments it works only for one day. By adding an oblique component to the three-component accelerometers, we could automatically distinguish shaking data from noise such as electric pulses which may cause a false alarm in EEW. Implementation to guarantee the continuity of observation under severe conditions such as during the Tohoku earthquake is very important, as well as a highly efficient

  4. Agricultural net primary production in relation to that liberated by the extinction of Pleistocene mega-herbivores: an estimate of agricultural carrying capacity?

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, Christopher E; Field, Christopher B, E-mail: chris.doughty@ouce.ox.ac.uk, E-mail: cfield@ciw.edu [Department of Global Ecology, Carnegie Institution, Stanford, CA 94305 (United States)

    2010-10-15

    Mega-fauna (defined as animals > 44 kg) experienced a global extinction with 97 of 150 genera going extinct by {approx} 10 000 years ago. We estimate the net primary production (NPP) that was liberated following the global extinction of these mega-herbivores. We then explore how humans, through agriculture, gradually appropriated this liberated NPP, with specific calculations for 800, 1850, and 2000 AD. By 1850, most of the liberated NPP had been appropriated by people, but NPP was still available in the Western US, South America and Australia. NPP liberated following the extinction of the mega-herbivores was {approx} 2.5% ({approx}1.4 (between 1.2 and 1.6) Pg yr{sup -1} of 56 Pg C yr{sup -1}; Pg: petagrams) of global terrestrial NPP. Liberated NPP peaked during the onset of agriculture and was sufficient for sustaining human agriculture until {approx} 320 (250-500) years ago. Humans currently use {approx} 6 times more NPP than was utilized by the extinct Pleistocene mega-herbivores.

  5. Agricultural net primary production in relation to that liberated by the extinction of Pleistocene mega-herbivores: an estimate of agricultural carrying capacity?

    International Nuclear Information System (INIS)

    Doughty, Christopher E; Field, Christopher B

    2010-01-01

    Mega-fauna (defined as animals > 44 kg) experienced a global extinction with 97 of 150 genera going extinct by ∼ 10 000 years ago. We estimate the net primary production (NPP) that was liberated following the global extinction of these mega-herbivores. We then explore how humans, through agriculture, gradually appropriated this liberated NPP, with specific calculations for 800, 1850, and 2000 AD. By 1850, most of the liberated NPP had been appropriated by people, but NPP was still available in the Western US, South America and Australia. NPP liberated following the extinction of the mega-herbivores was ∼ 2.5% (∼1.4 (between 1.2 and 1.6) Pg yr -1 of 56 Pg C yr -1 ; Pg: petagrams) of global terrestrial NPP. Liberated NPP peaked during the onset of agriculture and was sufficient for sustaining human agriculture until ∼ 320 (250-500) years ago. Humans currently use ∼ 6 times more NPP than was utilized by the extinct Pleistocene mega-herbivores.

  6. Terrestrial laser scanning to quantify above-ground biomass of structurally complex coastal wetland vegetation

    Science.gov (United States)

    Owers, Christopher J.; Rogers, Kerrylee; Woodroffe, Colin D.

    2018-05-01

    Above-ground biomass represents a small yet significant contributor to carbon storage in coastal wetlands. Despite this, above-ground biomass is often poorly quantified, particularly in areas where vegetation structure is complex. Traditional methods for providing accurate estimates involve harvesting vegetation to develop mangrove allometric equations and quantify saltmarsh biomass in quadrats. However broad scale application of these methods may not capture structural variability in vegetation resulting in a loss of detail and estimates with considerable uncertainty. Terrestrial laser scanning (TLS) collects high resolution three-dimensional point clouds capable of providing detailed structural morphology of vegetation. This study demonstrates that TLS is a suitable non-destructive method for estimating biomass of structurally complex coastal wetland vegetation. We compare volumetric models, 3-D surface reconstruction and rasterised volume, and point cloud elevation histogram modelling techniques to estimate biomass. Our results show that current volumetric modelling approaches for estimating TLS-derived biomass are comparable to traditional mangrove allometrics and saltmarsh harvesting. However, volumetric modelling approaches oversimplify vegetation structure by under-utilising the large amount of structural information provided by the point cloud. The point cloud elevation histogram model presented in this study, as an alternative to volumetric modelling, utilises all of the information within the point cloud, as opposed to sub-sampling based on specific criteria. This method is simple but highly effective for both mangrove (r2 = 0.95) and saltmarsh (r2 > 0.92) vegetation. Our results provide evidence that application of TLS in coastal wetlands is an effective non-destructive method to accurately quantify biomass for structurally complex vegetation.

  7. Initial CAD investigations for NET

    International Nuclear Information System (INIS)

    Katz, F.; Leinemann, K.; Ludwig, A.; Marek, U.; Olbrich, W.; Schlechtendahl, E.G.

    1985-11-01

    This report summarizes the work done under contract no. 164/84-7/FU-D-/NET between the Commission of the European Communities and KfK during the period from June 1, 1984, through May 31, 1985. The following topics are covered in this report: Initial modelling of NET version NET2A, CAD system extension for remote handling studies, analysis of the CAD information structure, work related to the transfer of CAD information between KfK and the NET team. (orig.) [de

  8. Organic carbon balance and net ecosystem metabolism in Chesapeake Bay

    Science.gov (United States)

    Kemp, W.M.; Smith, E.M.; Marvin-DiPasquale, M.; Boynton, W.R.

    1997-01-01

    The major fluxes of organic carbon associated with physical transport and biological metabolism were compiled, analyzed and compared for the mainstem portion of Chesapeake Bay (USA). In addition, 5 independent methods were used to calculate the annual mean net ecosystem metabolism (NEM = production - respiration) for the integrated Bay. These methods, which employed biogeochemical models, nutrient mass-balances anti summation of individual organic carbon fluxes, yielded remarkably similar estimates, with a mean NEM of +50 g C m-2 yr-1 (?? SE = 751, which is approximately 8% of the estimated annual average gross primary production. These calculations suggest a strong cross-sectional pattern in NEM throughout the Bay, wherein net heterotrophic metabolism prevails in the pelagic zones of the main channel, while net autotrophy occurs in the littoral zones which flank the deeper central area. For computational purposes, the estuary was separated into 3 regions along the land-sea gradient: (1) the oligohaline Upper Bay (11% of total area); (2) the mesohaline Mid Bay (36% of area); and (3) the polyhaline Lower Bay (53% of area). A distinct regional trend in NEM was observed along this salinity gradient, with net here(atrophy (NEM = 87 g C m-2 yr-1) in the Upper Bay, balanced metabolism in the Mid Bay and net autotrophy (NEM = +92 g C m-2 yr-1) in the Lower Bay. As a consequence of overall net autotrophy, the ratio of dissolved inorganic nitrogen (DIN) to total organic nitrogen (TON) changed from DIN:TON = 5.1 for riverine inputs to DIN:TON = 0.04 for water exported to the ocean. A striking feature of this organic C mass-balance was the relative dominance of biologically mediated metabolic fluxes compared to physical transport fluxes. The overall ratio of physical TOC inputs (1) to biotic primary production (P) was 0.08 for the whole estuary, but varied dramatically from 2.3 in the Upper Bay to 0.03 in the Mid and Lower Bay regions. Similarly, ecosystem respiration was

  9. Mapping aboveground carbon stocks using LiDAR data in Eucalyptus spp. plantations in the state of Sao Paulo, Brazil

    Science.gov (United States)

    Carlos Alberto Silva; Carine Klauberg; Samuel de Padua Chaves e Carvalho; Andrew T. Hudak; e Luiz Carlos Estraviz. Rodriguez

    2014-01-01

    Fast growing plantation forests provide a low-cost means to sequester carbon for greenhouse gas abatement. The aim of this study was to evaluate airborne LiDAR (Light Detection And Ranging) to predict aboveground carbon (AGC) stocks in Eucalyptus spp. plantations. Biometric parameters (tree height (Ht) and diameter at breast height (DBH)) were collected from...

  10. MetNet - In situ observational Network and Orbital platform to investigate the Martian environment

    Science.gov (United States)

    Harri, Ari-Matti; Leinonen, Jussi; Merikallio, Sini; Paton, Mark; Haukka, Harri; Polkko, Jouni

    2007-09-01

    MetNet Mars Mission is an in situ observational network and orbital platform mission to investigate the Martian environment and it has been proposed to European Space Agency in response to Call for proposals for the first planning cycle of Cosmic Vision 2015-2025 D/SCI/DJS/SV/val/21851. The MetNet Mars Mission is to be implemented in collaboration with ESA, FMI, LA, IKI and the payload providing science teams. The scope of the MetNet Mission is to deploy 16 MetNet Landers (MNLs) on the Martian surface by using inflatable descent system structures accompanied by an atmospheric sounder and data relay onboard the MetNet Orbiter (MNO), which is based on ESA Mars Express satellite platform. The MNLs are attached on the three sides of the satellite and most of the MNLs are deployed to Mars separately a few weeks prior to the arrival to Mars. The MetNet Orbiter will perform continuous atmospheric soundings thus complementing the accurate in situ observations at the Martian ground produced by the MetNet observation network, as well as the orbiter will serve as the primary data relay between the MetNet Landers and the Earth. The MNLs are equipped with a versatile science payload focused on the atmospheric science of Mars. Detailed characterisation of the Martian atmospheric circulation patterns, boundary layer phenomena, and climatological cycles, as well as interior investigations, require simultaneous in situ meteorological, seismic and magnetic measurements from networks of stations on the Martian surface. MetNet Mars Mission will also provide a crucial support for the safety of large landing missions in general and manned Mars missions in particular. Accurate knowledge of atmospheric conditions and weather data is essential to guarantee safe landings of the forthcoming Mars mission elements.

  11. NetBeans IDE 8 cookbook

    CERN Document Server

    Salter, David

    2014-01-01

    If you're a Java developer of any level using NetBeans and want to learn how to get the most out of NetBeans, then this book is for you. Learning how to utilize NetBeans will provide a firm foundation for your Java application development.

  12. The Net Advance of Physics

    Science.gov (United States)

    THE NET ADVANCE OF PHYSICS Review Articles and Tutorials in an Encyclopædic Format Established 1995 [Link to MIT] Computer support for The Net Advance of Physics is furnished by The Massachusetts Newest Additions SPECIAL FEATURES: Net Advance RETRO: Nineteenth Century Physics History of Science

  13. Bottom-up and top-down effects on plant communities

    DEFF Research Database (Denmark)

    Souza, Lara; Zelikova, Tamara Jane; Sanders, Nate

    2016-01-01

    -down) and soil nitrogen (bottom-up) were manipulated over six years in an existing old-field community. We tracked plant α and β diversity - within plot richness and among plot biodiversity- and aboveground net primary productivity (ANPP) over the course of the experiment. We found that bottom-up factors...... affected ANPP while top-down factors influenced plant community structure. Across years, while N reduction lowered ANPP by 10%, N reduction did not alter ANPP relative to control plots. Further, N reduction lowered ANPP by 20% relative to N addition plots. On the other hand, the reduction of insect...... community composition via shifts in plant dominance....

  14. County community health associations of net voting shift in the 2016 U.S. presidential election.

    Science.gov (United States)

    Wasfy, Jason H; Stewart, Charles; Bhambhani, Vijeta

    2017-01-01

    In the U.S. presidential election of 2016, substantial shift in voting patterns occurred relative to previous elections. Although this shift has been associated with both education and race, the extent to which this shift was related to public health status is unclear. To determine the extent to which county community health was associated with changes in voting between the presidential elections of 2016 and 2012. Ecological study with principal component analysis (PCA) using principal axis method to extract the components, then generalized linear regression. General community. All counties in the United States. Physically unhealthy days, mentally unhealthy days, percent food insecure, teen birth rate, primary care physician visit rate, age-adjusted mortality rate, violent crime rate, average health care costs, percent diabetic, and percent overweight or obese. The percentage of Donald Trump votes in 2016 minus percentage of Mitt Romney votes in 2012 ("net voting shift"). Complete public health data was available for 3,009 counties which were included in the analysis. The mean net voting shift was 5.4% (+/- 5.8%). Of these 3,009 counties, 2,641 (87.8%) had positive net voting shift (shifted towards Trump) and 368 counties (12.2%) had negative net voting shift (shifted away from Trump). The first principal component ("unhealthy score") accounted for 68% of the total variance in the data. The unhealthy score included all health variables except primary care physician rate, violent crime rate, and health care costs. The mean unhealthy score for counties was 0.39 (SD 0.16). Higher normalized unhealthy score was associated with positive net voting shift (22.1% shift per unit unhealthy, p Donald Trump in 2016 relative to Mitt Romney in 2012 and measures of poor public health. Although these results do not demonstrate causality, these results suggest a possible role for health status in political choices.

  15. Improved netting

    International Nuclear Information System (INIS)

    Bramley, A.; Clabburn, R.J.T.

    1976-01-01

    A method is described for producing netting composed of longitudinal and transverse threads of irradiation cross linked thermoplastic material, the threads being joined together at their crossings by moulded masses of cross linked thermoplastic material. The thread may be formed of polyethylene filaments, subjected to a radiation dose of 15 to 25 MR. The moulding can be conducted at 245 0 to 260 0 C or higher. The product is claimed to be an improved quality of netting, with bonds of increased strength between crossing threads. (U.K.)

  16. Estimation of net primary productivity using a process-based model in Gansu Province, Northwest China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peijuan; Xie, Donghui; Zhou, Yuyu; E, Youhao; Zhu, Qijiang

    2014-01-16

    The ecological structure in the arid and semi-arid region of Northwest China with forest, grassland, agriculture, Gobi, and desert, is complex, vulnerable, and unstable. It is a challenging and sustaining job to keep the ecological structure and improve its ecological function. Net primary productivity (NPP) modeling can help to improve the understanding of the ecosystem, and therefore, improve ecological efficiency. The boreal ecosystem productivity simulator (BEPS) model provides the possibility of NPP modeling in terrestrial ecosystem, but it has some limitations for application in arid and semi-arid regions. In this paper we improve the BEPS model, in terms of its water cycle by adding the processes of infiltration and surface runoff, to be applicable in arid and semi-arid regions. We model the NPP of forest, grass, and crop in Gansu Province as an experimental area in Northwest China in 2003 using the improved BEPS model, parameterized with moderate resolution remote sensing imageries and meteorological data. The modeled NPP using improved BEPS agrees better with the ground measurements in Qilian Mountain than that with original BEPS, with a higher R2 of 0.746 and lower root mean square error (RMSE) of 46.53 gC/m2 compared to R2 of 0.662 and RMSE of 60.19 gC/m2 from original BEPS. The modeled NPP of three vegetation types using improved BEPS show evident differences compared to that using original BEPS, with the highest difference ratio of 9.21% in forest and the lowest value of 4.29% in crop. The difference ratios between different vegetation types lie on the dependence on natural water sources. The modeled NPP in five geographic zones using improved BEPS are higher than those with original BEPS, with higher difference ratio in dry zones and lower value in wet zones.

  17. A new framework for evaluating the impacts of drought on net primary productivity of grassland.

    Science.gov (United States)

    Lei, Tianjie; Wu, Jianjun; Li, Xiaohan; Geng, Guangpo; Shao, Changliang; Zhou, Hongkui; Wang, Qianfeng; Liu, Leizhen

    2015-12-01

    This paper presented a valuable framework for evaluating the impacts of droughts (single factor) on grassland ecosystems. This framework was defined as the quantitative magnitude of drought impact that unacceptable short-term and long-term effects on ecosystems may experience relative to the reference standard. Long-term effects on ecosystems may occur relative to the reference standard. Net primary productivity (NPP) was selected as the response indicator of drought to assess the quantitative impact of drought on Inner Mongolia grassland based on the Standardized Precipitation Index (SPI) and BIOME-BGC model. The framework consists of six main steps: 1) clearly defining drought scenarios, such as moderate, severe and extreme drought; 2) selecting an appropriate indicator of drought impact; 3) selecting an appropriate ecosystem model and verifying its capabilities, calibrating the bias and assessing the uncertainty; 4) assigning a level of unacceptable impact of drought on the indicator; 5) determining the response of the indicator to drought and normal weather state under global-change; and 6) investigating the unacceptable impact of drought at different spatial scales. We found NPP losses assessed using the new framework were more sensitive to drought and had higher precision than the long-term average method. Moreover, the total and average losses of NPP are different in different grassland types during the drought years from 1961-2009. NPP loss was significantly increased along a gradient of increasing drought levels. Meanwhile, NPP loss variation under the same drought level was different in different grassland types. The operational framework was particularly suited for integrative assessing the effects of different drought events and long-term droughts at multiple spatial scales, which provided essential insights for sciences and societies that must develop coping strategies for ecosystems for such events. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Net alkalinity and net acidity 1: Theoretical considerations

    International Nuclear Information System (INIS)

    Kirby, Carl S.; Cravotta, Charles A.

    2005-01-01

    Net acidity and net alkalinity are widely used, poorly defined, and commonly misunderstood parameters for the characterization of mine drainage. The authors explain theoretical expressions of 3 types of alkalinity (caustic, phenolphthalein, and total) and acidity (mineral, CO 2 , and total). Except for rarely-invoked negative alkalinity, theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined 'CO 2 -acidity' is closely related to most standard titration methods with an endpoint pH of 8.3 used for determining acidity in mine drainage, but it is unfortunately named because CO 2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/mass-action approach and employing graphs to illustrate speciation with changes in pH, the authors explore the concept of principal components and how to assign acidity contributions to aqueous species commonly present in mine drainage. Acidity is defined in mine drainage based on aqueous speciation at the sample pH and on the capacity of these species to undergo hydrolysis to pH 8.3. Application of this definition shows that the computed acidity in mgL -1 as CaCO 3 (based on pH and analytical concentrations of dissolved Fe II , Fe III , Mn, and Al in mgL -1 ):acidity calculated =50{1000(10 -pH )+[2(Fe II )+3(Fe III )]/56+2(Mn) /55+3(Al)/27}underestimates contributions from HSO 4 - and H + , but overestimates the acidity due to Fe 3+ and Al 3+ . However, these errors tend to approximately cancel each other. It is demonstrated that 'net alkalinity' is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. Further, it is shown that, for most mine-drainage solutions, a useful net alkalinity value can be derived from: (1) alkalinity and acidity values based on aqueous speciation (2) measured alkalinity minus calculated acidity, or (3) taking the negative of the

  19. Net alkalinity and net acidity 1: Theoretical considerations

    Science.gov (United States)

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    Net acidity and net alkalinity are widely used, poorly defined, and commonly misunderstood parameters for the characterization of mine drainage. The authors explain theoretical expressions of 3 types of alkalinity (caustic, phenolphthalein, and total) and acidity (mineral, CO2, and total). Except for rarely-invoked negative alkalinity, theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined "CO 2-acidity" is closely related to most standard titration methods with an endpoint pH of 8.3 used for determining acidity in mine drainage, but it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/mass- action approach and employing graphs to illustrate speciation with changes in pH, the authors explore the concept of principal components and how to assign acidity contributions to aqueous species commonly present in mine drainage. Acidity is defined in mine drainage based on aqueous speciation at the sample pH and on the capacity of these species to undergo hydrolysis to pH 8.3. Application of this definition shows that the computed acidity in mg L -1 as CaCO3 (based on pH and analytical concentrations of dissolved FeII, FeIII, Mn, and Al in mg L -1):aciditycalculated=50{1000(10-pH)+[2(FeII)+3(FeIII)]/56+2(Mn)/ 55+3(Al)/27}underestimates contributions from HSO4- and H+, but overestimates the acidity due to Fe3+ and Al3+. However, these errors tend to approximately cancel each other. It is demonstrated that "net alkalinity" is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. Further, it is shown that, for most mine-drainage solutions, a useful net alkalinity value can be derived from: (1) alkalinity and acidity values based on aqueous speciation, (2) measured alkalinity minus calculated acidity, or (3) taking the negative of the value obtained in a

  20. Continuous monitoring of a mountain snowpack in the Austrian Alps by above-ground neutron sensing

    Science.gov (United States)

    Schattan, Paul; Baroni, Gabriele; Oswald, Sascha E.; Schöber, Johannes; Fey, Christine; Francke, Till; Huttenlau, Matthias; Achleitner, Stefan

    2017-04-01

    In alpine catchments the knowledge of the spatially and temporally heterogeneous dynamics of snow accumulation and depletion is crucial for modelling and managing water resources. While snow covered area can be retrieved operationally from remote sensing data, continuous measurements of other snow state variables like snow depth (SD) or snow water equivalent (SWE) remain challenging. Existing methods of retrieving both variables in alpine terrain face severe issues like a lack of spatial representativeness, labour-intensity or discontinuity in time. Recently, promising new measurement techniques combining a larger support with low maintenance cost like above-ground gamma-ray scintillators, GPS interferometric reflectometry or above-ground cosmic-ray neutron sensors (CRNS) have been suggested. While CRNS has proven its potential for monitoring soil moisture in a wide range of environments and applications, the empirical knowledge of using CRNS for snowpack monitoring is still very limited and restricted to shallow snowpacks with rather uniform evolution. The characteristics of an above-ground cosmic-ray neutron sensor (CRNS) were therefore evaluated for monitoring a mountain snowpack in the Austrian Alps (Kaunertal, Tyrol) during three winter seasons. The measurement campaign included a number of measurements during the period from 03/2014 to 06/2016: (i) neutron count measurements by CRNS, (ii) continuous point-scale SD and SWE measurements from an automatic weather station and (iii) 17 Terrestrial Laser Scanning (TLS) with simultaneous SD and SWE surveys. The highest accumulation in terms of SWE was found in 04/2014 with 600 mm. Neutron counts were compared to all available snow data. While previous studies suggested a signal saturation at around 100 mm of SWE, no complete signal saturation was found. A strong non-linear relation was found for both SD and SWE with best fits for spatially distributed TLS based snow data. Initially slightly different shapes were

  1. Proof Nets for Lambek Calculus

    NARCIS (Netherlands)

    Roorda, Dirk

    1992-01-01

    The proof nets of linear logic are adapted to the non-commutative Lambek calculus. A different criterion for soundness of proof nets is given, which gives rise to new algorithms for proof search. The order sensitiveness of the Lambek calculus is reflected by the planarity condition on proof nets;

  2. Properties of porous netted materials

    International Nuclear Information System (INIS)

    Daragan, V.D.; Drozdov, B.G.; Kotov, A.Yu.; Mel'nikov, G.N.; Pustogarov, A.V.

    1987-01-01

    Hydraulic and strength characteristics, efficient heat conduction and inner heat exchange coefficient are experimentally studied for porous netted materials on the base of the brass nets as dependent on porosity, cell size and method of net laying. Results of the studies are presented. It is shown that due to anisotropy of the material properties the hydraulic resistance in the direction parallel to the nets plane is 1.3-1.6 times higher than in the perpendicular one. Values of the effective heat conduction in the direction perpendicular to the nets plane at Π>0.45 agree with the data from literature, at Π<0.45 a deviation from the calculated values is marked in the direction of the heat conduction decrease

  3. Summarizing primary and secondary effects

    DEFF Research Database (Denmark)

    Karlson, Kristian Bernt

    2013-01-01

    Current methods for decomposing class differentials in educational decisions into primary and secondary effects produce many parameters, rendering them ill-equipped for parsimonious comparisons across countries or birth cohorts. This paper develops a parametric method that provides an optimal...... summary of primary and secondary effects across discrete class origins. Under the testable assumption that the pattern of effects of class origins on academic ability is proportional to the pattern of effects of class origins on educational choice net of academic ability, the method returns a single...

  4. Evaluation of drought and UV radiation impacts on above-ground biomass of mountain grassland by spectral reflectance and thermal imaging techniques

    Czech Academy of Sciences Publication Activity Database

    Novotná, Kateřina; Klem, Karel; Holub, Petr; Rapantová, Barbora; Urban, Otmar

    2016-01-01

    Roč. 9, 1-2 (2016), s. 21-30 ISSN 1803-2451 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : above-ground biomass * drought stress * grassland * UV radiation * precipitation * spectral reflectance * thermal imaging Subject RIV: EH - Ecology, Behaviour

  5. LEAF AREA DYNAMICS AND ABOVEGROUND BIOMASS OF SPECIFIC VEGETATION TYPES OF A SEMI-ARID GRASSLAND IN SOUTHERN ETHIOPIA

    Directory of Open Access Journals (Sweden)

    Bosco Kidake Kisambo

    2016-12-01

    Full Text Available Leaf Area Index (LAI dynamics and aboveground biomass of a semi-arid grassland region in Southern Ethiopia were determined over a long rain season. The vegetation was categorized into four distinct vegetation types namely Grassland (G, Tree-Grassland (TG, Bushed-Grassland (BG and Bush-Tree grassland (BT. LAI was measured using a Plant Canopy Analyzer (LAI2000. Biomass dynamics of litter and herbaceous components were determined through clipping while the above ground biomass of trees and shrubs were estimated using species-specific allometric equations from literature. LAI showed a seasonal increase over the season with the maximum recorded in the BG vegetation (2.52. Total aboveground biomass for the different vegetation types ranged from 0.61 ton C/ha in areas where trees were non-existent to 8.80 ± 3.81ton C/ha in the Tree-Grassland vegetation in the study site. A correlation of LAI and AGB yielded a positive relationship with an R2 value of 0.55. The results demonstrate the importance of tropical semi-arid grasslands as carbon sinks hence their potential in mitigation of climate change.

  6. Methods and equations for estimating aboveground volume, biomass, and carbon for trees in the U.S. forest inventory, 2010

    Science.gov (United States)

    Christopher W. Woodall; Linda S. Heath; Grant M. Domke; Michael C. Nichols

    2011-01-01

    The U.S. Forest Service, Forest Inventory and Analysis (FIA) program uses numerous models and associated coefficients to estimate aboveground volume, biomass, and carbon for live and standing dead trees for most tree species in forests of the United States. The tree attribute models are coupled with FIA's national inventory of sampled trees to produce estimates of...

  7. Effects of thinning on aboveground carbon sequestration by a 45-year-old eastern white pine plantation: A case study

    Science.gov (United States)

    W. Henry McNab

    2012-01-01

    Aboveground carbon sequestration by a 45-year-old plantation of eastern white pines was determined in response to thinning to three levels of residual basal area: (1) Control (no thinning), (2) light thinning to 120 feet2/acre and (3) heavy thinning to 80 feet2/acre. After 11 years carbon stocks were lowest on the heavily...

  8. Understanding Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Salom, Jaume; Widén, Joakim; Candanedo, José

    2011-01-01

    Although several alternative definitions exist, a Net-Zero Energy Building (Net ZEB) can be succinctly described as a grid-connected building that generates as much energy as it uses over a year. The “net-zero” balance is attained by applying energy conservation and efficiency measures...... and by incorporating renewable energy systems. While based on annual balances, a complete description of a Net ZEB requires examining the system at smaller time-scales. This assessment should address: (a) the relationship between power generation and building loads and (b) the resulting interaction with the power grid...

  9. Impacts of vegetation onset time on the net primary productivity in a mountainous island in Pacific Asia

    International Nuclear Information System (INIS)

    Chang, Chung-Te; Wang, Hsueh-Ching; Huang, Cho-ying

    2013-01-01

    Vegetation phenology reflects the response of a terrestrial ecosystem to climate change. In this study, we attempt to evaluate the El Niño/La Niña-Southern Oscillation (ENSO)-associated temporal dynamics of the vegetation onset and its influence on the net primary productivity (NPP) in a subtropical island (Taiwan) of Pacific Asia. We utilized a decade-long (2001–2010) time series of photosynthetically active vegetation cover (PV) data, which were derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data, to delineate the vegetation phenology. These data served as inputs for the phenological analysis toolbox TIMESAT. The results indicated that the delayed vegetation onset time was directly influenced by a dry spring (February and March) in which less than 40 mm of rainfall was received. This seasonal drought impeded vegetation growth in the subsequent growing season, most likely due to delayed impacts of moisture stress related to the preceding ENSO events. The significant correlations obtained between the annual MODIS NPP and both the vegetation onset time and the length of the growing season may imply that the accumulated rainfall in the spring season governs the annual NPP. The model simulations revealed that the frequency and intensity of the ENSO-related spring droughts might increase, which would result in cascading effects on the ecosystem metabolism. (letter)

  10. History-dependent stochastic Petri nets

    NARCIS (Netherlands)

    Schonenberg, H.; Sidorova, N.; Aalst, van der W.M.P.; Hee, van K.M.; Pnueli, A.; Virbitskaite, I.; Voronkov, A.

    2010-01-01

    Stochastic Petri Nets are a useful and well-known tool for performance analysis. However, an implicit assumption in the different types of Stochastic Petri Nets is the Markov property. It is assumed that a choice in the Petri net only depends on the current state and not on earlier choices. For many

  11. Evaluating renewable natural resources flow and net primary productivity with a GIS-Emergy approach: A case study of Hokkaido, Japan.

    Science.gov (United States)

    Wang, Chengdong; Zhang, Shenyan; Yan, Wanglin; Wang, Renqing; Liu, Jian; Wang, Yutao

    2016-11-18

    Renewable natural resources, such as solar radiation, rainfall, wind, and geothermal heat, together with ecosystem services, provide the elementary supports for the sustainable development of human society. To improve regional sustainability, we studied the spatial distributions and quantities of renewable natural resources and net primary productivity (NPP) in Hokkaido, which is the second largest island of Japan. With the help of Geographic Information System (GIS) software, distribution maps for each type of renewable natural resource were generated by kriging interpolation based on statistical records. A composite map of the flow of all types of renewable natural resources was also generated by map layer overlapping. Additionally, we utilized emergy analysis to convert each renewable flow with different attributes into a unified unit (i.e., solar equivalent joules [sej]). As a result, the spatial distributions of the flow of renewable natural resources of the Hokkaido region are presented in the form of thematic emergy maps. Thus, the areas with higher renewable emergy can be easily visualized and identified. The dominant renewable flow in certain areas can also be directly distinguished. The results can provide useful information for regional sustainable development, environmental conservation and ecological management.

  12. The effect of small solar powered 'Bͻkͻͻ' net fans on mosquito net use: results from a randomized controlled cross-over trial in southern Ghana.

    Science.gov (United States)

    Briët, Olivier J T; Yukich, Joshua O; Pfeiffer, Constanze; Miller, William; Jaeger, Mulako S; Khanna, Nitin; Oppong, Samuel; Nardini, Peter; Ahorlu, Collins K; Keating, Joseph

    2017-01-03

    Long-lasting insecticidal nets (LLINs) are ineffective malaria transmission prevention tools if they are unused. Discomfort due to heat is the most commonly reported reason for not using nets, but this problem is largely unaddressed. With increasing rural electrification and the dropping price of solar power, fans could improve comfort inside nets and be affordable to populations in malaria endemic areas. Here, results are presented from a pilot randomized controlled cross-over study testing the effect of fans on LLIN use. Eighty-three households from two rural communities in Greater Accra, Ghana, randomized into three groups, participated in a 10-month cross-over trial. After a screening survey to identify eligible households, all households received new LLINs. Bͻkͻͻ net fan systems (one fan per member) were given to households in Group 1 and water filters were given to households in Group 2. At mid-point, Group 1 and 2 crossed over interventions. Households in Group 1 and 2 participated in fortnightly surveys on households' practices related to nets, fans and water filters, while households in Group 3 were surveyed only at screening, mid-point and study end. Entomological and weather data were collected throughout the study. Analysis took both 'per protocol' (PP) and 'intention to treat' (ITT) approaches. The mid- and end-point survey data from Group 1 and 2 were analysed using Firth logistic regressions. Fortnightly survey data from all groups were analysed using logistic regressions with random effects. Provision of fans to households appeared to increase net use in this study. Although the increase in net use explained by fans was not significant in the primary analyses (ITT odds ratio 3.24, p > 0.01; PP odds ratio = 1.17, p > 0.01), it was significant in secondary PP analysis (odds ratio = 1.95, p Fan use was 90-100% depending on the fortnightly visit. This pilot study could not provide definitive evidence that fans increase net use. A larger

  13. Pro ASP.NET 4 in VB 2010

    CERN Document Server

    MacDonald, Matthew; Freeman, Adam; Szpuszta, Mario; Agarwal, Vidya Vrat

    2010-01-01

    ASP.NET 4 is the latest version of Microsoft's revolutionary ASP.NET technology. It is the principal standard for creating dynamic web pages on the Windows platform. Pro ASP.NET 4 in VB 2010 raises the bar for high-quality, practical advice on learning and deploying Microsoft's dynamic web solution. This new edition is updated with everything you need to come to grips with the latest version of ASP.NET, including coverage of ASP.NET MVC, ASP.NET AJAX 4, ASP.NET Dynamic Data, and Silverlight 3. Seasoned .NET professionals Matthew MacDonald and Mario Szpuszta explain how you can get the most fro

  14. Estimating Stand Volume and Above-Ground Biomass of Urban Forests Using LiDAR

    Directory of Open Access Journals (Sweden)

    Vincenzo Giannico

    2016-04-01

    Full Text Available Assessing forest stand conditions in urban and peri-urban areas is essential to support ecosystem service planning and management, as most of the ecosystem services provided are a consequence of forest stand characteristics. However, collecting data for assessing forest stand conditions is time consuming and labor intensive. A plausible approach for addressing this issue is to establish a relationship between in situ measurements of stand characteristics and data from airborne laser scanning (LiDAR. In this study we assessed forest stand volume and above-ground biomass (AGB in a broadleaved urban forest, using a combination of LiDAR-derived metrics, which takes the form of a forest allometric model. We tested various methods for extracting proxies of basal area (BA and mean stand height (H from the LiDAR point-cloud distribution and evaluated the performance of different models in estimating forest stand volume and AGB. The best predictors for both models were the scale parameters of the Weibull distribution of all returns (except the first (proxy of BA and the 95th percentile of the distribution of all first returns (proxy of H. The R2 were 0.81 (p < 0.01 for the stand volume model and 0.77 (p < 0.01 for the AGB model with a RMSE of 23.66 m3·ha−1 (23.3% and 19.59 Mg·ha−1 (23.9%, respectively. We found that a combination of two LiDAR-derived variables (i.e., proxy of BA and proxy of H, which take the form of a forest allometric model, can be used to estimate stand volume and above-ground biomass in broadleaved urban forest areas. Our results can be compared to other studies conducted using LiDAR in broadleaved forests with similar methods.

  15. Does functional trait diversity predict aboveground biomass and productivity of tropical forests? Testing three alternative hypotheses

    OpenAIRE

    Finegan, B.; Pena Claros, M.; Silva de Oliveira, A.; Ascarrunz, N.; Bret-Harte, M.S.; Carreño Rocabado, I.G.; Casanoves, F.; Diaz, S.; Eguiguren Velepucha, P.; Fernandez, F.; Licona, J.C.; Lorenzo, L.; Salgado Negret, B.; Vaz, M.; Poorter, L.

    2014-01-01

    1. Tropical forests are globally important, but it is not clear whether biodiversity enhances carbon storage and sequestration in them. We tested this relationship focusing on components of functional trait biodiversity as predictors. 2. Data are presented for three rain forests in Bolivia, Brazil and Costa Rica. Initial above-ground biomass and biomass increments of survivors, recruits and survivors + recruits (total) were estimated for trees ≥10 cm d.b.h. in 62 and 21 1.0-ha plots, respecti...

  16. NASA Net Zero Energy Buildings Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Pless, S.; Scheib, J.; Torcellini, P.; Hendron, B.; Slovensky, M.

    2014-10-01

    In preparation for the time-phased net zero energy requirement for new federal buildings starting in 2020, set forth in Executive Order 13514, NASA requested that the National Renewable Energy Laboratory (NREL) to develop a roadmap for NASA's compliance. NASA detailed a Statement of Work that requested information on strategic, organizational, and tactical aspects of net zero energy buildings. In response, this document presents a high-level approach to net zero energy planning, design, construction, and operations, based on NREL's first-hand experience procuring net zero energy construction, and based on NREL and other industry research on net zero energy feasibility. The strategic approach to net zero energy starts with an interpretation of the executive order language relating to net zero energy. Specifically, this roadmap defines a net zero energy acquisition process as one that sets an aggressive energy use intensity goal for the building in project planning, meets the reduced demand goal through energy efficiency strategies and technologies, then adds renewable energy in a prioritized manner, using building-associated, emission- free sources first, to offset the annual energy use required at the building; the net zero energy process extends through the life of the building, requiring a balance of energy use and production in each calendar year.

  17. Allometric Scaling and Resource Limitations Model of Total Aboveground Biomass in Forest Stands: Site-scale Test of Model

    Science.gov (United States)

    CHOI, S.; Shi, Y.; Ni, X.; Simard, M.; Myneni, R. B.

    2013-12-01

    Sparseness in in-situ observations has precluded the spatially explicit and accurate mapping of forest biomass. The need for large-scale maps has raised various approaches implementing conjugations between forest biomass and geospatial predictors such as climate, forest type, soil property, and topography. Despite the improved modeling techniques (e.g., machine learning and spatial statistics), a common limitation is that biophysical mechanisms governing tree growth are neglected in these black-box type models. The absence of a priori knowledge may lead to false interpretation of modeled results or unexplainable shifts in outputs due to the inconsistent training samples or study sites. Here, we present a gray-box approach combining known biophysical processes and geospatial predictors through parametric optimizations (inversion of reference measures). Total aboveground biomass in forest stands is estimated by incorporating the Forest Inventory and Analysis (FIA) and Parameter-elevation Regressions on Independent Slopes Model (PRISM). Two main premises of this research are: (a) The Allometric Scaling and Resource Limitations (ASRL) theory can provide a relationship between tree geometry and local resource availability constrained by environmental conditions; and (b) The zeroth order theory (size-frequency distribution) can expand individual tree allometry into total aboveground biomass at the forest stand level. In addition to the FIA estimates, two reference maps from the National Biomass and Carbon Dataset (NBCD) and U.S. Forest Service (USFS) were produced to evaluate the model. This research focuses on a site-scale test of the biomass model to explore the robustness of predictors, and to potentially improve models using additional geospatial predictors such as climatic variables, vegetation indices, soil properties, and lidar-/radar-derived altimetry products (or existing forest canopy height maps). As results, the optimized ASRL estimates satisfactorily

  18. RESTful NET

    CERN Document Server

    Flanders, Jon

    2008-01-01

    RESTful .NET is the first book that teaches Windows developers to build RESTful web services using the latest Microsoft tools. Written by Windows Communication Foundation (WFC) expert Jon Flanders, this hands-on tutorial demonstrates how you can use WCF and other components of the .NET 3.5 Framework to build, deploy and use REST-based web services in a variety of application scenarios. RESTful architecture offers a simpler approach to building web services than SOAP, SOA, and the cumbersome WS- stack. And WCF has proven to be a flexible technology for building distributed systems not necessa

  19. Accumulation of nitrogen and organic matter during primary succession of Leymus arenarius dunes on the volcanic island Surtsey, Iceland

    Science.gov (United States)

    Stefansdottir, G.; Aradottir, A. L.; Sigurdsson, B. D.

    2014-05-01

    The volcanic island of Surtsey has been a natural laboratory where the primary succession of flora and fauna has been monitored, since it emerged from the N-Atlantic Ocean in 1963. We quantified the accumulation rates of nitrogen (N) and soil organic matter (SOM) in a 37 year long chronosequence of Leymus arenarius dunes in order to illuminate the spatiotemporal patterns in their build-up in primary succession. The Leymus dune area, volume and height grew exponentially over time. Aboveground plant biomass, cover or number of shoots per unit area did not change significantly with time, but root biomass accumulated with time, giving a root-shoot ratio of 19. The dunes accumulated on average 6.6 kg N ha-1 year-1, which was 3.5 times more than is received annually by atmospheric deposition. The extensive root system of Leymus seems to effectively retain and accumulate large part of the annual N deposition, not only deposition directly on the dunes but also from the adjacent unvegetated areas. SOM per unit area increased exponentially with dune age, but the accumulation of roots, aboveground biomass and SOM was more strongly linked to soil N than time: 1 g m-2 increase in soil N led on the average to 6 kg C m-2 increase in biomass and SOM. The Leymus dunes, where most of the N has been accumulated, will therefore probably act as hot-spots for further primary succession of flora and fauna on the tephra sands of Surtsey.

  20. Getting to Net Zero

    Energy Technology Data Exchange (ETDEWEB)

    2016-09-01

    The technology necessary to build net zero energy buildings (NZEBs) is ready and available today, however, building to net zero energy performance levels can be challenging. Energy efficiency measures, onsite energy generation resources, load matching and grid interaction, climatic factors, and local policies vary from location to location and require unique methods of constructing NZEBs. It is recommended that Components start looking into how to construct and operate NZEBs now as there is a learning curve to net zero construction and FY 2020 is just around the corner.

  1. Net Zero Energy Buildings

    DEFF Research Database (Denmark)

    Marszal, Anna Joanna; Bourrelle, Julien S.; Gustavsen, Arild

    2010-01-01

    and identify possible renewable energy supply options which may be considered in calculations. Finally, the gap between the methodology proposed by each organisation and their respective national building code is assessed; providing an overview of the possible changes building codes will need to undergo......The international cooperation project IEA SHC Task 40 / ECBCS Annex 52 “Towards Net Zero Energy Solar Buildings”, attempts to develop a common understanding and to set up the basis for an international definition framework of Net Zero Energy Buildings (Net ZEBs). The understanding of such buildings...

  2. Pro NET Best Practices

    CERN Document Server

    Ritchie, Stephen D

    2011-01-01

    Pro .NET Best Practices is a practical reference to the best practices that you can apply to your .NET projects today. You will learn standards, techniques, and conventions that are sharply focused, realistic and helpful for achieving results, steering clear of unproven, idealistic, and impractical recommendations. Pro .NET Best Practices covers a broad range of practices and principles that development experts agree are the right ways to develop software, which includes continuous integration, automated testing, automated deployment, and code analysis. Whether the solution is from a free and

  3. Evaluation of a barrier net used to mitigate fish impingement at a Hudson River power plant intake

    International Nuclear Information System (INIS)

    Hutchison, J.B.; Matousek, J.A.

    1988-01-01

    A multifilament nylon net of 0.95-cm bar mesh was deployed as a physical barrier to fish in front of the Bowline Point power plant cooling water intake on the Hudson River from 1976 to 1985. The barrier net was deployed during the historical peak impingement months of October-May. The primary species impinged on the intake screens during this period were young-of-year and yearling white perch, striped bass, rainbow smelt, alewife, blue-back herring, and American shad, generally ranging from 5 to 10 cm in total length. When the barrier net was deployed, median impingement of all fish was 91% lower than during comparable periods before the net was installed. A mark-recapture population estimate indicated that 230,000 yearling striped bass and white perch were in the embayment outside the net in April 1982; over a 9-d study period, only 1.6% of this estimated population was impinged. Concurrent survival probability studies of fish marked and released at locations inside and outside the barrier net showed that fish released inside had 72% lower survival (P net. Gillnet catches were significantly lower inside than outside the net (P net deployment, including changes in the anchoring system, use of a debris boom, installation of an air-bubbler system to prevent ice accumulation, and sectioning of the net to facilitate removal and cleaning. 10 refs., 3 figs., 4 tabs

  4. ASP.NET web API build RESTful web applications and services on the .NET framework

    CERN Document Server

    Kanjilal, Joydip

    2013-01-01

    This book is a step-by-step, practical tutorial with a simple approach to help you build RESTful web applications and services on the .NET framework quickly and efficiently.This book is for ASP.NET web developers who want to explore REST-based services with C# 5. This book contains many real-world code examples with explanations whenever necessary. Some experience with C# and ASP.NET 4 is expected.

  5. Migration signatures across the decades: Net migration by age in U.S. counties, 1950-2010

    Directory of Open Access Journals (Sweden)

    Richelle L. Winkler

    2015-05-01

    Full Text Available Background: Migration is the primary population redistribution process in the United States. Selective migration by age, race/ethnic group, and spatial location governs population integration, affects community and economic development, contributes to land use change, and structures service needs. Objective: Delineate historical net migration patterns by age, race/ethnic, and rural-urban dimensions for United States counties. Methods: Net migration rates by age for all US counties are aggregated from 1950−2010, summarized by rural-urban location and compared to explore differential race/ethnic patterns of age-specific net migration over time. Results: We identify distinct age-specific net migration 'signatures' that are consistent over time within county types, but different by rural-urban location and race/ethnic group. There is evidence of moderate population deconcentration and diminished racial segregation between 1990 and 2010. This includes a net outflow of Blacks from large urban core counties to suburban and smaller metropolitan counties, continued Hispanic deconcentration, and a slowdown in White counterurbanization. Conclusions: This paper contributes to a fuller understanding of the complex patterns of migration that have redistributed the U.S. population over the past six decades. It documents the variability in county age-specific net migration patterns both temporally and spatially, as well as the longitudinal consistency in migration signatures among county types and race/ethnic groups.

  6. Determinants of use of insecticide-treated nets among pregnant women in Nigeria

    Directory of Open Access Journals (Sweden)

    Ezire O

    2015-06-01

    Full Text Available Onoriode Ezire,1 Samson B Adebayo,2 Omokhudu Idogho,3 Elijah A Bamgboye,4 Ernest Nwokolo5 1Research and Evaluation Division, Society for Family Health, Abuja, 2National Agency for Food and Drug Administration and Control, Abuja, 3Enhancing Nigeria’s Response to HIV & AIDS, Abuja, 4Medical Statistics, University of Ibadan, Ibadan, 5Society for Family Health, Abuja, Nigeria Background: Malaria in pregnancy is still a major health issue in Nigeria, accounting for about 33% of cause of maternal death. Despite massive efforts to make insecticide-treated net (ITN available to pregnant women in Nigeria, the use is still low. This study was conducted to identify facilitators and inhibitors for the use of ITN/long-lasting insecticidal net (LLIN among pregnant women in Nigeria.Methods: Data were obtained from the 2011 State-Specific HIV & AIDS, Reproductive and Child Health Survey conducted in 18 states of Nigeria. The survey was a population-based study among men and women of reproductive age living in households in rural and urban areas of Nigeria. Multistage cluster sampling technique was used to select eligible respondents. The sample size per state was 960 respondents. Data were collected between October and November 2011. The analysis was done using Statistical Package for Social Sciences (SPSS version 20.Results: A total of 11.5% of the respondents were pregnant at the time of the survey of which 73.2% lived in rural location and approximately 70% were either not educated or attained at most a primary school education. A total of 93.2% of respondents have heard of net, 82.6% were confident that they can hang or use a net, and 64.6% owned an ITN/LLIN in their household while the actual use was just 19.2%. We found education, location (urban–rural, confidence to use a net, and knowledge that the use of a net can protect a pregnant woman from malaria to be significant at 5% level. The number of nets owned per household, the length of time the net

  7. Translating Colored Control Flow Nets into Readable Java via Annotated Java Workflow Nets

    DEFF Research Database (Denmark)

    Lassen, Kristian Bisgaard; Tjell, Simon

    2007-01-01

    In this paper, we present a method for developing Java applications from Colored Control Flow Nets (CCFNs), which is a special kind of Colored Petri Nets (CPNs) that we introduce. CCFN makes an explicit distinction between the representation of: The system, the environment of the system, and the ......In this paper, we present a method for developing Java applications from Colored Control Flow Nets (CCFNs), which is a special kind of Colored Petri Nets (CPNs) that we introduce. CCFN makes an explicit distinction between the representation of: The system, the environment of the system......, and the interface between the system and the environment. Our translation maps CCFNs into Anno- tated Java Workflow Nets (AJWNs) as an intermediate step, and these AJWNs are finally mapped to Java. CCFN is intended to enforce the modeler to describe the system in an imperative manner which makes the subsequent...... translation to Java easier to define. The translation to Java preserves data dependencies and control-flow aspects of the source CCFN. This paper contributes to the model-driven software development paradigm, by showing how to model a system, environment, and their interface, as a CCFN and presenting a fully...

  8. Programming NET 35

    CERN Document Server

    Liberty, Jesse

    2009-01-01

    Bestselling author Jesse Liberty and industry expert Alex Horovitz uncover the common threads that unite the .NET 3.5 technologies, so you can benefit from the best practices and architectural patterns baked into the new Microsoft frameworks. The book offers a Grand Tour" of .NET 3.5 that describes how the principal technologies can be used together, with Ajax, to build modern n-tier and service-oriented applications. "

  9. Net metering: zero electricity bill

    International Nuclear Information System (INIS)

    Mangi, A.; Khan, Z.

    2011-01-01

    Worldwide move towards renewable energy sources, environmental concerns and decentralization of the power sector have made net metering an attractive option for power generation at small scale. This paper discusses the net metering, economical issues of renewable sources in Pakistan, technical aspects, installation suitability according to varying terrain, existing utility rules and formulation of legislation for net metering making it economically attractive. (author)

  10. Influence of grazing on soil seed banks determines the restoration potential of aboveground vegetation in a semi-arid savanna in Ethiopia

    NARCIS (Netherlands)

    Tessema, Z.K.; Boer, de W.F.; Baars, R.M.T.; Prins, H.H.T.

    2012-01-01

    Species composition, number of emerging seedlings, species diversity and functional group of the soil seed banks, and the influence of grazing on the similarity between the soil seed banks and aboveground vegetation, were studied in 2008 and 2009 in a semi-arid savanna of Ethiopia. We tested whether

  11. Aboveground Biomass and Carbon in a South African Mistbelt Forest and the Relationships with Tree Species Diversity and Forest Structures

    Directory of Open Access Journals (Sweden)

    Sylvanus Mensah

    2016-04-01

    Full Text Available Biomass and carbon stocks are key information criteria to understand the role of forests in regulating global climate. However, for a bio-rich continent like Africa, ground-based measurements for accurate estimation of carbon are scarce, and the variables affecting the forest carbon are not well understood. Here, we present the first biomass study conducted in South Africa Mistbelt forests. Using data from a non-destructive sampling of 59 trees of four species, we (1 evaluated the accuracy of multispecies aboveground biomass (AGB models, using predictors such as diameter at breast height (DBH, total height (H and wood density; (2 estimated the amount of biomass and carbon stored in the aboveground compartment of Mistbelt forests and (3 explored the variation of aboveground carbon (AGC in relation to tree species diversity and structural variables. We found significant effects of species on wood density and AGB. Among the candidate models, the model that incorporated DBH and H as a compound variable (DBH2 × H was the best fitting. AGB and AGC values were highly variable across all plots, with average values of 358.1 Mg·ha−1 and 179.0 Mg·C·ha−1, respectively. Few species contributed 80% of AGC stock, probably as a result of selection effect. Stand basal area, basal area of the ten most important species and basal area of the largest trees were the most influencing variables. Tree species richness was also positively correlated with AGC, but the basal area of smaller trees was not. These results enable insights into the role of biodiversity in maintaining carbon storage and the possibilities for sustainable strategies for timber harvesting without risk of significant biomass decline.

  12. NPP Multi-Biome: PIK Data for Northern Eurasia, 1940-1988 (Based on Bazilevich), R1

    Data.gov (United States)

    National Aeronautics and Space Administration — There is one comma-separated (.csv) data file and one text (.txt) file (bibliographic information) with this data set. This data set provides above-ground net...

  13. Net Locality

    DEFF Research Database (Denmark)

    de Souza e Silva, Adriana Araujo; Gordon, Eric

    Provides an introduction to the new theory of Net Locality and the profound effect on individuals and societies when everything is located or locatable. Describes net locality as an emerging form of location awareness central to all aspects of digital media, from mobile phones, to Google Maps......, to location-based social networks and games, such as Foursquare and facebook. Warns of the threats these technologies, such as data surveillance, present to our sense of privacy, while also outlining the opportunities for pro-social developments. Provides a theory of the web in the context of the history...... of emerging technologies, from GeoCities to GPS, Wi-Fi, Wiki Me, and Google Android....

  14. Simulating forest productivity and surface-atmosphere carbon exchange in the BOREAS study region.

    Science.gov (United States)

    Kimball, John S.; Thornton, Peter E.; White, Mike A.; Running, Steven W.

    1997-01-01

    A process-based, general ecosystem model (BIOME-BGC) was used to simulate daily gross primary production, maintenance and heterotrophic respiration, net primary production and net ecosystem carbon exchange of boreal aspen, jack pine and black spruce stands. Model simulations of daily net carbon exchange of the ecosystem (NEE) explained 51.7% (SE = 1.32 g C m(-2) day(-1)) of the variance in daily NEE derived from stand eddy flux measurements of CO(2) during 1994. Differences between measured and simulated results were attributed to several factors including difficulties associated with measuring nighttime CO(2) fluxes and model assumptions of site homogeneity. However, comparisons between simulations and field data improved markedly at coarser time-scales. Model simulations explained 66.1% (SE = 0.97 g C m(-2) day(-1)) of the variance in measured NEE when 5-day means of daily results were compared. Annual simulations of aboveground net primary production ranged from 0.6-2.4 Mg C ha(-1) year(-1) and were concurrent with results derived from tree increment core measurements and allometric equations. Model simulations showed that all of the sites were net sinks (0.1-4.1 Mg C ha(-1) year(-1)) of atmospheric carbon for 1994. Older conifer stands showed narrow margins between uptake of carbon by net photosynthesis and carbon release through respiration. Younger stands were more productive than older stands, primarily because of lower maintenance respiration costs. However, all sites appeared to be less productive than temperate forests. Productivity simulations were strongly linked to stand morphology and site conditions. Old jack pine and aspen stands showed decreased productivity in response to simulated low soil water contents near the end of the 1994 growing season. Compared with the aspen stand, the jack pine stand appeared better adapted to conserve soil water through lower daily evapotranspiration losses but also exhibited a narrower margin between daily net

  15. Net heterotrophy in small Danish lakes: A widespread feature over gradients in trophic status and land cover

    DEFF Research Database (Denmark)

    Sand-Jensen, Kaj; Stæhr, Peter Anton

    2009-01-01

    Nineteen small lakes located in open landscapes or deciduous forests in nutrient-rich calcareous moraines in North Zealand, Denmark, were all net heterotrophic having negative net ecosystem production and predominant CO2 supersaturation and O2 undersaturation of lake waters. Forest lakes were...... poorer in nutrients, phytoplankton, and primary production, but richer in dissolved organic matter and CO2 than open lakes with more light available. The modeled annual balance between gross primary production and community respiration (GPP/R COM) averaged 0.60 in forest lakes and 0.76 in open lakes...... and the ratio increased significantly with phosphorus concentration and phytoplankton biomass but decreased with colored dissolved organic matter. The negative daily rates of ecosystem production resembled estimates of oxygen uptake from the atmosphere to the lakes, whereas estimates of CO2 emission were 7...

  16. Construction of monophase nets

    International Nuclear Information System (INIS)

    Suarez A, Jose Antonio

    1996-01-01

    The paper refers to the use of monophase loads in commercial residential urbanizations and in small industries, for this reason it is considered unnecessary the construction of three-phase nets. The author makes a historical recount of these nets in Bogota, his capacities, uses and energy savings

  17. Aboveground Tree Biomass for Pinus ponderosa in Northeastern California

    Directory of Open Access Journals (Sweden)

    Todd A. Hamilton

    2013-03-01

    Full Text Available Forest managers need accurate biomass equations to plan thinning for fuel reduction or energy production. Estimates of carbon sequestration also rely upon such equations. The current allometric equations for ponderosa pine (Pinus ponderosa commonly employed for California forests were developed elsewhere, and are often applied without consideration potential for spatial or temporal variability. Individual-tree aboveground biomass allometric equations are presented from an analysis of 79 felled trees from four separate management units at Blacks Mountain Experimental Forest: one unthinned and three separate thinned units. A simultaneous set of allometric equations for foliage, branch and bole biomass were developed as well as branch-level equations for wood and foliage. Foliage biomass relationships varied substantially between units while branch and bole biomass estimates were more stable across a range of stand conditions. Trees of a given breast height diameter and crown ratio in thinned stands had more foliage biomass, but slightly less branch biomass than those in an unthinned stand. The observed variability in biomass relationships within Blacks Mountain Experimental Forest suggests that users should consider how well the data used to develop a selected model relate to the conditions in any given application.

  18. Land Use Effects on Net Greenhouse Gas Fluxes in the US Great Plains: Historical Trends and Model Projections

    Science.gov (United States)

    Del Grosso, S. J.; Parton, W. J.; Ojima, D. S.; Mosier, A. R.; Mosier, A. R.; Paustian, K.; Peterson, G. A.

    2001-12-01

    We present maps showing regional patterns of land use change and soil C levels in the US Great Plains during the 20th century and time series of net greenhouse gas fluxes associated with different land uses. Net greenhouse gas fluxes were calculated by accounting for soil CO2 fluxes, the CO2 equivalents of N2O emissions and CH4 uptake, and the CO2 costs of N fertilizer production. Both historical and modern agriculture in this region have been net sources of greenhouse gases. The primary reason for this, prior to 1950, is that agriculture mined soil C and resulted in net CO2 emissions. When chemical N fertilizer became widely used in the 1950's agricultural soils began to sequester CO2-C but these soils were still net greenhouse gas sources if the effects of increased N2O emissions and decreased CH4 uptake are included. The sensitivity of net greenhouse gas fluxes to conventional and alternative land uses was explored using the DAYCENT ecosystem model. Model projections suggest that conversion to no-till, reduction of the fallow period, and use of nitrification inhibitors can significantly decrease net greenhouse gas emissions in dryland and irrigated systems, while maintaining or increasing crop yields.

  19. Caught in the Net: Perineuronal Nets and Addiction

    Directory of Open Access Journals (Sweden)

    Megan Slaker

    2016-01-01

    Full Text Available Exposure to drugs of abuse induces plasticity in the brain and creates persistent drug-related memories. These changes in plasticity and persistent drug memories are believed to produce aberrant motivation and reinforcement contributing to addiction. Most studies have explored the effect drugs of abuse have on pre- and postsynaptic cells and astrocytes; however, more recently, attention has shifted to explore the effect these drugs have on the extracellular matrix (ECM. Within the ECM are unique structures arranged in a net-like manner, surrounding a subset of neurons called perineuronal nets (PNNs. This review focuses on drug-induced changes in PNNs, the molecules that regulate PNNs, and the expression of PNNs within brain circuitry mediating motivation, reward, and reinforcement as it pertains to addiction.

  20. Stand restoration burning in oak-pine forests in the southern Applachians: effects on aboveground biomass and carbon and nitrogen cycling

    Science.gov (United States)

    Robert M. Hubbard; James M. Vose; Barton D. Clinton; Katherine J. Elliott; Jennifer D. Knoepp

    2004-01-01

    Understory prescribed burning is being suggested as a viable management tool for restoring degraded oak–pine forest communities in the southern Appalachians yet information is lacking on how this will affect ecosystem processes. Our objectives in this study were to evaluate the watershed scale effects of understory burning on total aboveground biomass, and the carbon...

  1. Observations and modeling of aboveground tree carbon stocks and fluxes following a bark beetle outbreak in the western United States

    Science.gov (United States)

    Eric M. Pfeifer; Jeffrey A. Hicke; Arjan J.H. Meddens

    2011-01-01

    Bark beetle epidemics result in tree mortality across millions of hectares in North America. However, few studies have quantified impacts on carbon (C) cycling. In this study, we quantified the immediate response and subsequent trajectories of stand-level aboveground tree C stocks and fluxes using field measurements and modeling for a location in central Idaho, USA...

  2. Identifying Telemedicine Services to Improve Access to Specialty Care for the Underserved in the San Francisco Safety Net

    Directory of Open Access Journals (Sweden)

    Ken Russell Coelho

    2011-01-01

    Full Text Available Safety-net settings across the country have grappled with providing adequate access to specialty care services. San Francisco General Hospital and Trauma Center, serving as the city's primary safety-net hospital, has also had to struggle with the same issue. With Healthy San Francisco, the City and County of San Francisco's Universal Healthcare mandate, the increased demand for specialty care services has placed a further strain on the system. With the recent passage of California Proposition 1D, infrastructural funds are now set aside to assist in connecting major hospitals with primary care clinics in remote areas all over the state of California, using telemedicine. Based on a selected sample of key informant interviews with local staff physicians, this study provides further insight into the current process of e-referral which uses electronic communication for making referrals to specialty care. It also identifies key services for telemedicine in primary and specialty care settings within the San Francisco public health system. This study concludes with proposals for a framework that seek to increase collaboration between the referring primary care physician and specialist, to prioritize institution of these key services for telemedicine.

  3. Additive Manufacturing of Near-net Shaped Permanent Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, M Parans [ORNL

    2016-07-26

    The technical objective of this technical collaboration phase I proposal is to fabricate near net-shaped permanent magnets using alloy powders utilizing direct metal deposition technologies at the ORNL MDF. Direct Manufacturing using the POM laser system was used to consolidate Nd2Fe14B (NdFeB) magnet powders into near net-shape parts efficiently and with virtually no wasted material as part of the feasibility study. We fabricated builds based on spherical NdFeB magnet particles. The results show that despite the ability to fabricate highly reactive materials in the laser deposition process, the magnetic coercivity and remanence of the NdFeB hard magnets is significantly reduced. X-ray powder diffraction in conjunction with electron microscopy showed that the material experienced a primary Nd2Fe17Bx solidification due to the undercooling effect (>60K). Consequently the presence of alpha iron phase resulted in deterioration of the build properties. Further optimization of the processing parameters is needed to maintain the Nd2Fe14B phase during fabrication.

  4. The K-NET - A year after

    International Nuclear Information System (INIS)

    Kinoshita, S.; Ohtani, K.; Katayama, T.

    2001-01-01

    We started to release the K-NET strong-motion data from June 1996 and about one year passed. In this article, we report the development of K-NET and some applications using the K-NET information released on the Internet. (author)

  5. Mars MetNet Mission Status

    Science.gov (United States)

    Harri, A.-M.; Aleksashkin, S.; Arruego, I.; Schmidt, W.; Genzer, M.; Vazquez, L.; Haukka, H.; Palin, M.; Nikkanen, T.

    2015-10-01

    New kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semihard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested.

  6. Sub-canopy light conditions only allow low annual net productivity of epiphytic algae on kelp Laminaria hyperborea

    DEFF Research Database (Denmark)

    Pedersen, Morten Foldager; Nejrup, Lars Brammer; Pedersen, Troels Møller

    2014-01-01

    The stipes of older Laminaria hyperborea individuals are heavily covered by epiphytic assemblages that are dominated by macroalgae, and we hypothesized that the production of these algae may contribute significantly to total primary production of the kelp forest ecosystem. The epiphytic assemblages...... through spring as surface irradiance increased. Annual net productivity was relatively low, ranging from 42 to 96 g DW m-2 seafloor depending on site. We conclude that the net productivity of these macroalgal epiphytes is insignificant relative to that of kelp itself, and that the large observed biomass...

  7. NET SALARY ADJUSTMENT

    CERN Multimedia

    Finance Division

    2001-01-01

    On 15 June 2001 the Council approved the correction of the discrepancy identified in the net salary adjustment implemented on 1st January 2001 by retroactively increasing the scale of basic salaries to achieve the 2.8% average net salary adjustment approved in December 2000. We should like to inform you that the corresponding adjustment will be made to your July salary. Full details of the retroactive adjustments will consequently be shown on your pay slip.

  8. Changes of net primary productivity in China during recent 11 years detected using an ecological model driven by MODIS data

    Science.gov (United States)

    Liu, Yibo; Ju, Weimin; He, Honglin; Wang, Shaoqiang; Sun, Rui; Zhang, Yuandong

    2013-03-01

    Net primary productivity (NPP) is an important component of the terrestrial carbon cycle. Accurately mapping the spatial-temporal variations of NPP in China is crucial for global carbon cycling study. In this study the process-based Boreal Ecosystem Productivity Simulator (BEPS) was employed to study the changes of NPP in China's ecosystems for the period from 2000 to 2010. The BEPS model was first validated using gross primary productivity (GPP) measured at typical flux sites and forest NPP measured at different regions. Then it was driven with leaf area index (LAI) inversed from the Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance and land cover products and meteorological data interpolated from observations at 753 national basic meteorological stations to simulate NPP at daily time steps and a spatial resolution of 500 m from January 1, 2000 to December 31, 2010. Validations show that BEPS is able to capture the seasonal variations of tower-based GPP and the spatial variability of forest NPP in different regions of China. Estimated national total of annual NPP varied from 2.63 to 2.84Pg C·yr-1, averaging 2.74 Pg C·yr-1 during the study period. Simulated terrestrial NPP shows spatial patterns decreasing from the east to the west and from the south to the north, in association with land cover types and climate. South-west China makes the largest contribution to the national total of NPP while NPP in the North-west account for only 3.97% of the national total. During the recent 11 years, the temporal changes of NPP were heterogamous. NPP increased in 63.8% of China's landmass, mainly in areas north of the Yangtze River and decreased in most areas of southern China, owing to the low temperature freezing in early 2008 and the severe drought in late 2009.

  9. Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory data: A comparison of empirical modeling approaches

    Science.gov (United States)

    Scott L. Powell; Warren B. Cohen; Sean P. Healey; Robert E. Kennedy; Gretchen G. Moisen; Kenneth B. Pierce; Janet L. Ohmann

    2010-01-01

    Spatially and temporally explicit knowledge of biomass dynamics at broad scales is critical to understanding how forest disturbance and regrowth processes influence carbon dynamics. We modeled live, aboveground tree biomass using Forest Inventory and Analysis (FIA) field data and applied the models to 20+ year time-series of Landsat satellite imagery to...

  10. Net energy gain from DT fusion

    International Nuclear Information System (INIS)

    Buende, R.

    1985-01-01

    The net energy which can be gained from an energy raw material by means of a certain conversion system is deduced as the figure-of-merit which adequately characterizes the net energy balance of utilizing an energy source. This potential net energy gain is determined for DT fusion power plants. It is represented as a function of the degree of exploitation of the energy raw material lithium ore and is compared with the net energy which can be gained with LW and FBR power plants by exploiting uranium ore. The comparison clearly demonstrates the net energetic advantage of DT fusion. A sensitivity study shows that this holds even if the energy expenditure for constructing and operating is drastically increased

  11. Net alkalinity and net acidity 2: Practical considerations

    Science.gov (United States)

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH mine drainage treatment can lead to systems with insufficient Alkalinity to neutralize metal and H+ acidity and is not recommended. The use of net alkalinity = -Hot Acidity titration is recommended for the planning of mine drainage treatment. The use of net alkalinity = (Alkalinitymeasured - Aciditycalculated) is recommended with some cautions

  12. Bed net ownership in Kenya: the impact of 3.4 million free bed nets

    Directory of Open Access Journals (Sweden)

    Vulule John

    2010-06-01

    Full Text Available Abstract Background In July and September 2006, 3.4 million long-lasting insecticide-treated bed nets (LLINs were distributed free in a campaign targeting children 0-59 months old (CU5s in the 46 districts with malaria in Kenya. A survey was conducted one month after the distribution to evaluate who received campaign LLINs, who owned insecticide-treated bed nets and other bed nets received through other channels, and how these nets were being used. The feasibility of a distribution strategy aimed at a high-risk target group to meet bed net ownership and usage targets is evaluated. Methods A stratified, two-stage cluster survey sampled districts and enumeration areas with probability proportional to size. Handheld computers (PDAs with attached global positioning systems (GPS were used to develop the sampling frame, guide interviewers back to chosen households, and collect survey data. Results In targeted areas, 67.5% (95% CI: 64.6, 70.3% of all households with CU5s received campaign LLINs. Including previously owned nets, 74.4% (95% CI: 71.8, 77.0% of all households with CU5s had an ITN. Over half of CU5s (51.7%, 95% CI: 48.8, 54.7% slept under an ITN during the previous evening. Nearly forty percent (39.1% of all households received a campaign net, elevating overall household ownership of ITNs to 50.7% (95% CI: 48.4, 52.9%. Conclusions The campaign was successful in reaching the target population, families with CU5s, the risk group most vulnerable to malaria. Targeted distribution strategies will help Kenya approach indicator targets, but will need to be combined with other strategies to achieve desired population coverage levels.

  13. Quantitative assessment of human-induced impacts based on net primary productivity in Guangzhou, China.

    Science.gov (United States)

    Wu, Yanyan; Wu, Zhifeng

    2018-02-08

    Urban expansion and land cover change driven primarily by human activities have significant influences on the urban eco-environment, and together with climate change jointly alter net primary productivity (NPP). However, at the spatiotemporal scale, there has been limited quantitative analysis of the impacts of human activities independent of climate change on NPP. We chose Guangzhou city as a study area to analyze the impacts of human activities on NPP, as well as the spatiotemporal variations of those impacts within three segments, using a relative impact index (RII) based on potential NPP (NPP p ), actual NPP (NPP act ), and NPP appropriation due to land use/land cover change (NPP lulc ). The spatial patterns and dynamics of NPP act and NPP lulc were evaluated and the impacts of human activities on NPP during the process of urban sprawl were quantitatively analyzed and assessed using the RII. The results showed that NPP act and NPP lulc in the study area had clear spatial heterogeneity, between 2001 and 2013 there was a declining trend in NPP act while an increasing trend occurred in NPP lulc , and those trends were especially significant in the 10-40-km segment. The results also revealed that more than 91.0% of pixels in whole study region had positive RII values, while the lowest average RII values were found in the > 40-km segment (39.03%), indicating that human activities were not the main cause for the change in NPP there; meanwhile, the average RII was greater than 65.0% in the other two, suggesting that they were subjected to severe anthropogenic disturbances. The RII values in all three segments of the study area increased, indicating an increasing human interference. The 10-40-km buffer zone had the largest slope value (0.5665), suggesting that this segment was closely associated with growing human disturbances. Particularly noteworthy is the fact that the > 40-km segment had a large slope value (0.3323) and required more conservation efforts. Based

  14. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    Science.gov (United States)

    Chen, J. M.; Chen, X.; Ju, W.

    2013-07-01

    Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs) for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP) estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI) is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE) in NPP modelled at the 1 km resolution is reduced from 14.8 g C m-2 yr-1 to 4.8 g C m-2 yr-1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m-2 yr-1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI) and elevation have small and additive effects on improving the spatial scaling

  15. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity

    Directory of Open Access Journals (Sweden)

    J. M. Chen

    2013-07-01

    Full Text Available Due to the heterogeneous nature of the land surface, spatial scaling is an inevitable issue in the development of land models coupled with low-resolution Earth system models (ESMs for predicting land-atmosphere interactions and carbon-climate feedbacks. In this study, a simple spatial scaling algorithm is developed to correct errors in net primary productivity (NPP estimates made at a coarse spatial resolution based on sub-pixel information of vegetation heterogeneity and surface topography. An eco-hydrological model BEPS-TerrainLab, which considers both vegetation and topographical effects on the vertical and lateral water flows and the carbon cycle, is used to simulate NPP at 30 m and 1 km resolutions for a 5700 km2 watershed with an elevation range from 518 m to 3767 m in the Qinling Mountain, Shanxi Province, China. Assuming that the NPP simulated at 30 m resolution represents the reality and that at 1 km resolution is subject to errors due to sub-pixel heterogeneity, a spatial scaling index (SSI is developed to correct the coarse resolution NPP values pixel by pixel. The agreement between the NPP values at these two resolutions is improved considerably from R2 = 0.782 to R2 = 0.884 after the correction. The mean bias error (MBE in NPP modelled at the 1 km resolution is reduced from 14.8 g C m−2 yr−1 to 4.8 g C m−2 yr−1 in comparison with NPP modelled at 30 m resolution, where the mean NPP is 668 g C m−2 yr−1. The range of spatial variations of NPP at 30 m resolution is larger than that at 1 km resolution. Land cover fraction is the most important vegetation factor to be considered in NPP spatial scaling, and slope is the most important topographical factor for NPP spatial scaling especially in mountainous areas, because of its influence on the lateral water redistribution, affecting water table, soil moisture and plant growth. Other factors including leaf area index (LAI and elevation have small and additive effects on improving

  16. The Research Site Vrchslatina – an experimental design and the main aims

    Directory of Open Access Journals (Sweden)

    Konôpka Bohdan

    2013-09-01

    Full Text Available The research site “Vrchslatina” was established in the spring of 2009 with the aim of studying production processes and the structure of net primary productivity in young forest stands. The beech and spruce stands grown at the site were selected because they originated from natural regeneration and are nearly of the same age. In 2009, we established 5 research plots in each stand with the aim of measuring basic tree characteristics. Moreover, we excavated entire trees to construct allometric relations for the specific tree compartments. In the consecutive years (2010, 2011 and 2012, we also included grass communities dominated by Calamagrostis epigejos in our studies. Besides studying production processes of all tree compartments (i.e. for trees: foliages, branches, stem, coarse and fine roots, for grasses and herbs: below- and above-ground parts, we monitored several atmospheric characteristics, followed by soil characteristics and eventually added a measurement of soil respiration. The results indicated that forest stands (even though they were in their initial growth stages sequestrated much more carbon than the grass communities. Moreover, we proved the considerable influence of climatic conditions (especially the sum of precipitation in the particular years for net primary productivity.

  17. 47 CFR 65.450 - Net income.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Net income. 65.450 Section 65.450... OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Exchange Carriers § 65.450 Net income. (a) Net income shall consist of all revenues derived from the provision of interstate telecommunications services...

  18. Business Profile of Boat Lift Net and Stationary Lift Net Fishing Gear in Morodemak Waters Central Java

    Science.gov (United States)

    Hapsari, Trisnani D.; Jayanto, Bogi B.; Fitri, Aristi D. P.; Triarso, I.

    2018-02-01

    Lift net is one of the fishing gears that is used widely in the Morodemak coastal fishing port (PPP) for catching pelagic fish. The yield of fish captured by these fishing gear has high economic value, such as fish belt (Trichiurus sp), squids (Loligo sp) and anchovies (Stelophorus sp). The aims of this research were to determine the technical aspects of boat lift net and stationary lift net fishing gear in Morodemak Waters Demak Regency; to find out the financial aspect of those fishing gears and to analyze the financial feasibility by counting PP, NPV, IRR, and B/C ratio criteria. This research used case study method with descriptive analysis. The sampling method was purposive sampling with 22 fishermen as respondents. The result of the research showed that the average of boat lift net acceptance was Rp 388,580,000. The financial analysis of fisheries boat lift net with the result of NPV Rp 836,149,272, PP 2.44 years, IRR value 54%, and B/C ratio 1.73. The average of stationary lift net acceptance was Rp 27,750,000. The financial analysis lift net with the result of NPV Rp 37,937,601; PP 1.96 years, IRR value 86%, and B/C ratio 1.32. This research had a positive NPV value, B/C ratio >1, and IRR > discount rate (12 %). This study concluded that the fishery business of boat lift net and stationary lift net in Morodemak coastal fishing port (PPP) was worth running.

  19. Net neutrality and audiovisual services

    OpenAIRE

    van Eijk, N.; Nikoltchev, S.

    2011-01-01

    Net neutrality is high on the European agenda. New regulations for the communication sector provide a legal framework for net neutrality and need to be implemented on both a European and a national level. The key element is not just about blocking or slowing down traffic across communication networks: the control over the distribution of audiovisual services constitutes a vital part of the problem. In this contribution, the phenomenon of net neutrality is described first. Next, the European a...

  20. 47 CFR 65.500 - Net income.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Net income. 65.500 Section 65.500... OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Interexchange Carriers § 65.500 Net income. The net income methodology specified in § 65.450 shall be utilized by all interexchange carriers that are...

  1. Aplicació Microsoft .Net : Hotel Spa

    OpenAIRE

    Marquès Palmer, Jordi

    2010-01-01

    Desenvolupament d'una aplicació amb Microsoft .NET, WCF, WPF, Linq2SQL, d'un Hotel Spa. Desarrollo de una aplicación con Microsoft .NET, WCF, WPF, Linq2SQL, de un Hotel Spa. Application development using Microsoft .NET, WCF, WPF, Linq2SQL, for a Spa Hotel.

  2. [Influence of fire disturbance on aboveground deadwood debris carbon storage in Huzhong forest region of Great Xing'an Mountains, Northeast China].

    Science.gov (United States)

    Yang, Da; He, Hong-shi; Wu, Zhi-wei; Liang, Yu; Huang, Chao; Luo, Xu; Xiao, Jiang-tao; Zhang, Qing-long

    2015-02-01

    Based on the field inventory data, the aboveground deadwood debris carbon storage under different fire severities was analyzed in Huzhong forest region of Great Xing' an Mountains. The results showed that the fire severity had a significant effect on aboveground deadwood debris carbon storage. The deadwood debris carbon storage was in the order of high-severity > low-severity > unburned in Larix gmelinii stands, and mixed conifer-broadleaf stands ( L. gmelinii and Betula platyphylla), and in the order of high severity > unburned > low-severity in B. platyphylla stands. Fire disturbance significantly changed the component percentage of the deadwood debris carbon storage. The component percentage of snags increased and litter decreased with the increasing fire severity. Logs and stumps did not change significantly with the increasing fire severity. The spatial variation of deadwood debris carbon storage in forests burned with low-severity fire was higher than that in unburned forests. The spatial variation of deadwood debris carbon storage with high-severity fires was lowest. This spatial variation needed to be accounted when calculating forest deadwood debris carbon storage.

  3. Tracing trade-related telecouplings in the global land-system using the embodied human appropriation of net primary production framework

    Science.gov (United States)

    Haberl, H.; Kastner, T.; Schaffartzik, A.; Erb, K. H.

    2015-12-01

    Global land-system change is influenced by a complex set of drivers that transcend spatial, institutional and temporal scales. The notion of "telecouplings" is gaining importance in Land System Science as a framework to address that complexity of drivers. One of them is the trade in land-based products, which forges connections between different geographic regions. Trade in land-based products is growing rapidly, thereby creating an increasing spatial disconnect between the locations where primary products (e.g. crops, fodder or timber) are grown and harvested and where the related environmental pressures occur, and the locations where final products (e.g. food, fiber or bioenergy) are consumed. Governing land-related sustainability issues such as GHG emissions or pressures on biodiversity and ecosystems related with land-use changes requires information on trade-related telecouplings, e.g. in order to avoid leakage effects. However, tracing land use (change) related with flows of traded products is challenging, among others due to (a) the lack of easily implementable metrics to account for differences in land quality and land-use intensity, and (b) the lack of satisfactory methods to allocate land to products that are traded and consumed. Drawing from a database derived from FAO statistics that allows tracing bilateral trade flows between ~200 countries at a resolution of ~500 products for the time period 1986-2006, this presentation will discuss how the framework of embodied human appropriation of net primary production (eHANPP) can help tackling these difficult issues. The HANPP framework allows to consistently represent important aspects of land quality and land-use intensity, e.g. natural productivity potential or land-use efficiency. In terms of allocation of land to products, eHANPP is a factor-based approach, and the presentation will discuss differences to alternative methods such as environmentally extended input-output analysis. We will use the available

  4. Automatic Prompt System in the Process of Mapping plWordNet on Princeton WordNet

    Directory of Open Access Journals (Sweden)

    Paweł Kędzia

    2015-06-01

    Full Text Available Automatic Prompt System in the Process of Mapping plWordNet on Princeton WordNet The paper offers a critical evaluation of the power and usefulness of an automatic prompt system based on the extended Relaxation Labelling algorithm in the process of (manual mapping plWordNet on Princeton WordNet. To this end the results of manual mapping – that is inter-lingual relations between plWN and PWN synsets – are juxtaposed with the automatic prompts that were generated for the source language synsets to be mapped. We check the number and type of inter-lingual relations introduced on the basis of automatic prompts and the distance of the respective prompt synsets from the actual target language synsets.

  5. Loss of protection with insecticide-treated nets against pyrethroid-resistant Culex quinquefasciatus mosquitoes once nets become holed: an experimental hut study

    Directory of Open Access Journals (Sweden)

    Irish SR

    2008-06-01

    Full Text Available Abstract Background An important advantage of pyrethroid-treated nets over untreated nets is that once nets become worn or holed a pyrethroid treatment will normally restore protection. The capacity of pyrethroids to kill or irritate any mosquito that comes into contact with the net and prevent penetration of holes or feeding through the sides are the main reasons why treated nets continue to provide protection despite their condition deteriorating over time. Pyrethroid resistance is a growing problem among Anopheline and Culicine mosquitoes in many parts of Africa. When mosquitoes become resistant the capacity of treated nets to provide protection might be diminished, particularly when holed. An experimental hut trial against pyrethroid-resistant Culex quinquefasciatus was therefore undertaken in southern Benin using a series of intact and holed nets, both untreated and treated, to assess any loss of protection as nets deteriorate with use and time. Results There was loss of protection when untreated nets became holed; the proportion of mosquitoes blood feeding increased from 36.2% when nets were intact to between 59.7% and 68.5% when nets were holed to differing extents. The proportion of mosquitoes blood feeding when treated nets were intact was 29.4% which increased to 43.6–57.4% when nets were holed. The greater the number of holes the greater the loss of protection regardless of whether nets were untreated or treated. Mosquito mortality in huts with untreated nets was 12.9–13.6%; treatment induced mortality was less than 12%. The exiting rate of mosquitoes into the verandas was higher in huts with intact nets. Conclusion As nets deteriorate with use and become increasingly holed the capacity of pyrethroid treatments to restore protection is greatly diminished against resistant Culex quinquefasciatus mosquitoes.

  6. Traditional nets interfere with the uptake of long-lasting insecticidal nets in the Peruvian Amazon: the relevance of net preference for achieving high coverage and use.

    Directory of Open Access Journals (Sweden)

    Koen Peeters Grietens

    Full Text Available While coverage of long-lasting insecticide-treated nets (LLIN has steadily increased, a growing number of studies report gaps between net ownership and use. We conducted a mixed-methods social science study assessing the importance of net preference and use after Olyset® LLINs were distributed through a mass campaign in rural communities surrounding Iquitos, the capital city of the Amazonian region of Peru.The study was conducted in the catchment area of the Paujil and Cahuide Health Centres (San Juan district between July 2007 and November 2008. During a first qualitative phase, participant observation and in-depth interviews collected information on key determinants for net preference and use. In a second quantitative phase, a survey among recently confirmed malaria patients evaluated the acceptability and use of both LLINs and traditional nets, and a case control study assessed the association between net preference/use and housing structure (open vs. closed houses.A total of 10 communities were selected for the anthropological fieldwork and 228 households participated in the quantitative studies. In the study area, bed nets are considered part of the housing structure and are therefore required to fulfil specific architectural and social functions, such as providing privacy and shelter, which the newly distributed Olyset® LLINs ultimately did not. The LLINs' failure to meet these criteria could mainly be attributed to their large mesh size, transparency and perceived ineffectiveness to protect against mosquitoes and other insects, resulting in 63.3% of households not using any of the distributed LLINs. Notably, LLIN usage was significantly lower in houses with no interior or exterior walls (35.2% than in those with walls (73.8% (OR = 5.2, 95CI [2.2; 12.3], p<0.001.Net preference can interfere with optimal LLIN use. In order to improve the number of effective days of LLIN protection per dollar spent, appropriate quantitative and qualitative

  7. Rain events decrease boreal peatland net CO2 uptake through reduced light availability.

    Science.gov (United States)

    Nijp, Jelmer J; Limpens, Juul; Metselaar, Klaas; Peichl, Matthias; Nilsson, Mats B; van der Zee, Sjoerd E A T M; Berendse, Frank

    2015-06-01

    Boreal peatlands store large amounts of carbon, reflecting their important role in the global carbon cycle. The short-term exchange and the long-term storage of atmospheric carbon dioxide (CO2 ) in these ecosystems are closely associated with the permanently wet surface conditions and are susceptible to drought. Especially, the single most important peat forming plant genus, Sphagnum, depends heavily on surface wetness for its primary production. Changes in rainfall patterns are expected to affect surface wetness, but how this transient rewetting affects net ecosystem exchange of CO2 (NEE) remains unknown. This study explores how the timing and characteristics of rain events during photosynthetic active periods, that is daytime, affect peatland NEE and whether rain event associated changes in environmental conditions modify this response (e.g. water table, radiation, vapour pressure deficit, temperature). We analysed an 11-year time series of half-hourly eddy covariance and meteorological measurements from Degerö Stormyr, a boreal peatland in northern Sweden. Our results show that daytime rain events systematically decreased the sink strength of peatlands for atmospheric CO2 . The decrease was best explained by rain associated reduction in light, rather than by rain characteristics or drought length. An average daytime growing season rain event reduced net ecosystem CO2 uptake by 0.23-0.54 gC m(-2) . On an annual basis, this reduction of net CO2 uptake corresponds to 24% of the annual net CO2 uptake (NEE) of the study site, equivalent to a 4.4% reduction of gross primary production (GPP) during the growing season. We conclude that reduced light availability associated with rain events is more important in explaining the NEE response to rain events than rain characteristics and changes in water availability. This suggests that peatland CO2 uptake is highly sensitive to changes in cloud cover formation and to altered rainfall regimes, a process hitherto largely

  8. Delta Semantics Defined By Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kyng, Morten; Madsen, Ole Lehrmann

    and the possibility of using predicates to specify state changes. In this paper a formal semantics for Delta is defined and analysed using Petri nets. Petri nets was chosen because the ideas behind Petri nets and Delta concide on several points. A number of proposals for changes in Delta, which resulted from...

  9. Coloured Petri Nets and the Invariant Method

    DEFF Research Database (Denmark)

    Jensen, Kurt

    1981-01-01

    processes to be described by a common subnet, without losing the ability to distinguish between them. Our generalization, called coloured Petri nets, is heavily influenced by predicate transition-nets introduced by H.J. Genrich and K. Lautenbach. Moreover our paper shows how the invariant-method, introduced...... for Petri nets by K. Lautenbach, can be generalized to coloured Petri nets....

  10. Net metering in British Columbia : white paper

    International Nuclear Information System (INIS)

    Berry, T.

    2003-01-01

    Net metering was described as being the reverse registration of an electricity customer's revenue meter when interconnected with a utility's grid. It is a provincial policy designed to encourage small-distributed renewable power generation such as micro-hydro, solar energy, fuel cells, and larger-scale wind energy. It was noted that interconnection standards for small generation is an important issue that must be addressed. The British Columbia Utilities Commission has asked BC Hydro to prepare a report on the merits of net metering in order to support consultations on a potential net metering tariff application by the utility. This report provides information on net metering with reference to experience in other jurisdictions with net metering, and the possible costs and benefits associated with net metering from both a utility and consumer perspective. Some of the barriers and policy considerations for successful implementation of net metering were also discussed. refs., tabs., figs

  11. Variation and Trends of Landscape Dynamics, Land Surface Phenology and Net Primary Production of the Appalachian Mountains

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yeqiao; Zhao, Jianjun; Zhou, Yuyu; Zhang, Hongyan

    2012-12-15

    The gradients of the Appalachian Mountains in elevations and latitudes provide a unique regional perspective of landscape variations in the eastern United States and a section of the southeastern Canada. This study reveals patterns and trends of landscape dynamics, land surface phenology and ecosystem production along the Appalachian Mountains using time series data from Global Inventory Modeling and Mapping Studies (GIMMS) and AVHRR Global Production Efficiency Model (GloPEM) datasets. We analyzed the spatial and temporal patterns of Normalized Difference Vegetation Index (NDVI), length of growing season (LOS) and net primary production (NPP) of selected ecoregions along the Appalachian Mountains regions. We compared the results out of the Appalachian Mountains regions in different spatial contexts including the North America and the Appalachian Trail corridor area. To reveal latitudinal variations we analyzed data and compared the results between 30°N-40°N and 40°N-50°N latitudes. The result revealed significant decreases in annual peak NDVI in the Appalachian Mountains regions. The trend for the Appalachian Mountains regions was -0.0018 (R2=0.55, P<0.0001) NDVI unit decrease per year during 25 years between 1982 and 2006. The LOS had prolonged 0.3 day yr-1 during 25 years over the Appalachian Mountains regions. The NPP increased by 2.68 gC m-2yr-2 in Appalachian Mountains regions from 1981 to 2000. The comparison with the North America reveals the effects of topography and ecosystem compositions of the Appalachian Mountains. The comparison with the Appalachian Trail corridor area provides a regional mega-transect view of the measured variables.

  12. Upper Primary Students Constructing and Exploring Three Dimensional Shapes: A Comparison of Virtual Reality with Card Nets.

    Science.gov (United States)

    Ainge, David J.

    1996-01-01

    A grade 6/7 class which constructed and explored three-dimensional shapes with the VREAM virtual reality (VR) development system program was compared with a grade 5/6/7 control group using card nets (diagrams which can be cut out/folded). Results indicated that VR had little impact on shape visualization and name writing, but it strongly enhanced…

  13. Mom-net: Evaluation of an internet-facilitated cognitive behavioral intervention for low-income depressed mothers.

    Science.gov (United States)

    Sheeber, Lisa B; Feil, Edward G; Seeley, John R; Leve, Craig; Gau, Jeff M; Davis, Betsy; Sorensen, Erik; Allan, Steve

    2017-04-01

    Evaluate an Internet-facilitated cognitive-behavioral treatment intervention for depression, tailored to economically disadvantaged mothers of young children. Economically disadvantaged mothers (N = 266) of preschool aged children, who reported elevated levels of depressive symptoms, were randomized to either the 8-session, Internet-facilitated intervention (Mom-Net) or to Motivational Interviewing and Referral to Services (MIRS). Outcomes were measured using the Patient Health Questionnaire 9 (PHQ-9; Spitzer et al., 1999), the Structured Clinical Interview for Diagnostic and Statistical Manual for Mental Disorders-Fourth Edition-Text Revised (DSM-IV-TR) Axis I Disorders (SCID; First, Spitzer, Gibbon, & Williams, 2002), and the Hamilton Depression Rating Scale (HDRS; Hamilton, 1960). Relative to participants in the MIRS condition, participants in Mom-Net demonstrated significantly greater reduction in depression as indexed by self-report questionnaire (primary outcome), interviewer-rated symptoms, and diagnostic outcomes. Results suggest that the Mom-Net intervention is effective as a remotely delivered intervention for economically disadvantaged mothers. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  14. Biological Petri Nets

    CERN Document Server

    Wingender, E

    2011-01-01

    It was suggested some years ago that Petri nets might be well suited to modeling metabolic networks, overcoming some of the limitations encountered by the use of systems employing ODEs (ordinary differential equations). Much work has been done since then which confirms this and demonstrates the usefulness of this concept for systems biology. Petri net technology is not only intuitively understood by scientists trained in the life sciences, it also has a robust mathematical foundation and provides the required degree of flexibility. As a result it appears to be a very promising approach to mode

  15. Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 120: Areas 5 and 6 Aboveground Storage Tanks, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Allison Urban

    1999-06-01

    This Closure Report provides documentation for the closure of Corrective Action Unit 120. CAU 120 consists of two Corrective Action Sites located in Areas 5 and 6 of the Nevada Test Site. CAS 05-01-01 is located in Area 5 and consists of three 45,800-liter aboveground storage tanks, piping, and debris associated with Well RNM-1. CAS 06-01-01 in Area 6 consists of two aboveground storage tanks and two tanker trailers All the CAU 120 items have been used to convey or contain radiologically contaminated fluid from post-nuclear event activities at the NTS> Closure of this CAU was completed by collecting samples to identify the appropriate method of disposal for tanks, piping, debris, and tankers in each CAS. Placing low-level radioactive waste into the appropriate containers and disposing of waste in the Area 5 Radioactive Waste Management Site, the Area 9 10C Landfill, and the Area 3 Radioactive Waste Management Site.

  16. Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 120: Areas 5 and 6 Aboveground Storage Tanks, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Allison Urban

    1999-01-01

    This Closure Report provides documentation for the closure of Corrective Action Unit 120. CAU 120 consists of two Corrective Action Sites located in Areas 5 and 6 of the Nevada Test Site. CAS 05-01-01 is located in Area 5 and consists of three 45,800-liter aboveground storage tanks, piping, and debris associated with Well RNM-1. CAS 06-01-01 in Area 6 consists of two aboveground storage tanks and two tanker trailers All the CAU 120 items have been used to convey or contain radiologically contaminated fluid from post-nuclear event activities at the NTS> Closure of this CAU was completed by collecting samples to identify the appropriate method of disposal for tanks, piping, debris, and tankers in each CAS. Placing low-level radioactive waste into the appropriate containers and disposing of waste in the Area 5 Radioactive Waste Management Site, the Area 9 10C Landfill, and the Area 3 Radioactive Waste Management Site

  17. Modelling of current loads on aquaculture net cages

    Science.gov (United States)

    Kristiansen, Trygve; Faltinsen, Odd M.

    2012-10-01

    In this paper we propose and discuss a screen type of force model for the viscous hydrodynamic load on nets. The screen model assumes that the net is divided into a number of flat net panels, or screens. It may thus be applied to any kind of net geometry. In this paper we focus on circular net cages for fish farms. The net structure itself is modelled by an existing truss model. The net shape is solved for in a time-stepping procedure that involves solving a linear system of equations for the unknown tensions at each time step. We present comparisons to experiments with circular net cages in steady current, and discuss the sensitivity of the numerical results to a set of chosen parameters. Satisfactory agreement between experimental and numerical prediction of drag and lift as function of the solidity ratio of the net and the current velocity is documented.

  18. Diversity and aboveground biomass of lianas in the tropical seasonal rain forests of Xishuangbanna, SW China.

    Science.gov (United States)

    Lü, Xiao-Tao; Tang, Jian-Wei; Feng, Zhi-Li; Li, Mai-He

    2009-01-01

    Lianas are important components of tropical forests and have significant impacts on the diversity, structure and dynamics of tropical forests. The present study documented the liana flora in a Chinese tropical region. Species richness, abundance, size-class distribution and spatial patterns of lianas were investigated in three 1-ha plots in tropical seasonal rain forests in Xishuangbanna, SW China. All lianas with > or = 2 cm diameter at breast height (dbh) were measured, tagged and identified. A total of 458 liana stems belonging to 95 species (ranging from 38 to 50 species/ha), 59 genera and 32 families were recorded in the three plots. The most well-represented families were Loganiaceae, Annonceae, Papilionaceae, Apocynaceae and Rhamnaceae. Papilionaceae (14 species recorded) was the most important family in the study forests. The population density, basal area and importance value index (IVI) varied greatly across the three plots. Strychnos cathayensis, Byttneria grandifolia and Bousigonia mekongensis were the dominant species in terms of IVI across the three plots. The mean aboveground biomass of lianas (3 396 kg/ha) accounted for 1.4% of the total community above-ground biomass. The abundance, diversity and biomass of lianas in Xishuangbanna tropical seasonal rain forests are lower than those in tropical moist and wet forests, but higher than those in tropical dry forests. This study provides new data on lianas from a geographical region that has been little-studied. Our findings emphasize that other factors beyond the amount and seasonality of precipitation should be included when considering the liana abundance patterns across scales.

  19. PhysioNet

    Data.gov (United States)

    U.S. Department of Health & Human Services — The PhysioNet Resource is intended to stimulate current research and new investigations in the study of complex biomedical and physiologic signals. It offers free...

  20. Pro Agile NET Development with Scrum

    CERN Document Server

    Blankenship, Jerrel; Millett, Scott

    2011-01-01

    Pro Agile .NET Development with SCRUM guides you through a real-world ASP.NET project and shows how agile methodology is put into practice. There is plenty of literature on the theory behind agile methodologies, but no book on the market takes the concepts of agile practices and applies these in a practical manner to an end-to-end ASP.NET project, especially the estimating, requirements and management aspects of a project. Pro Agile .NET Development with SCRUM takes you through the initial stages of a project - gathering requirements and setting up an environment - through to the development a