WorldWideScience

Sample records for above-ground nuclear tests

  1. Evaluation and summary of seismic response of above ground nuclear power plant piping to strong motion earthquakes

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1985-01-01

    The purpose of this paper is to summarize the observations and experience which has been developed relative to the seismic behavior of above-ground, building-supported, industrial type piping (similar to piping used in nuclear power plants) in strong motion earthquakes. The paper also contains observations regarding the response of piping in experimental tests which attempted to excite the piping to failure. Appropriate conclusions regarding the behavior of such piping in large earthquakes and recommendations as to future design of such piping to resist earthquake motion damage are presented based on observed behavior in large earthquakes and simulated shake table testing

  2. Ground test facility for nuclear testing of space reactor subsystems

    International Nuclear Information System (INIS)

    Quapp, W.J.; Watts, K.D.

    1985-01-01

    Two major reactor facilities at the INEL have been identified as easily adaptable for supporting the nuclear testing of the SP-100 reactor subsystem. They are the Engineering Test Reactor (ETR) and the Loss of Fluid Test Reactor (LOFT). In addition, there are machine shops, analytical laboratories, hot cells, and the supporting services (fire protection, safety, security, medical, waste management, etc.) necessary to conducting a nuclear test program. This paper presents the conceptual approach for modifying these reactor facilities for the ground engineering test facility for the SP-100 nuclear subsystem. 4 figs

  3. Review of Nuclear Thermal Propulsion Ground Test Options

    Science.gov (United States)

    Coote, David J.; Power, Kevin P.; Gerrish, Harold P.; Doughty, Glen

    2015-01-01

    High efficiency rocket propulsion systems are essential for humanity to venture beyond the moon. Nuclear Thermal Propulsion (NTP) is a promising alternative to conventional chemical rockets with relatively high thrust and twice the efficiency of highest performing chemical propellant engines. NTP utilizes the coolant of a nuclear reactor to produce propulsive thrust. An NTP engine produces thrust by flowing hydrogen through a nuclear reactor to cool the reactor, heating the hydrogen and expelling it through a rocket nozzle. The hot gaseous hydrogen is nominally expected to be free of radioactive byproducts from the nuclear reactor; however, it has the potential to be contaminated due to off-nominal engine reactor performance. NTP ground testing is more difficult than chemical engine testing since current environmental regulations do not allow/permit open air testing of NTP as was done in the 1960's and 1970's for the Rover/NERVA program. A new and innovative approach to rocket engine ground test is required to mitigate the unique health and safety risks associated with the potential entrainment of radioactive waste from the NTP engine reactor core into the engine exhaust. Several studies have been conducted since the ROVER/NERVA program in the 1970's investigating NTP engine ground test options to understand the technical feasibility, identify technical challenges and associated risks and provide rough order of magnitude cost estimates for facility development and test operations. The options can be divided into two distinct schemes; (1) real-time filtering of the engine exhaust and its release to the environment or (2) capture and storage of engine exhaust for subsequent processing.

  4. Ground test facilities for evaluating nuclear thermal propulsion engines and fuel elements

    International Nuclear Information System (INIS)

    Allen, G.C.; Beck, D.F.; Harmon, C.D.; Shipers, L.R.

    1992-01-01

    Interagency panels evaluating nuclear thermal propulsion development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and design issues of a proposed ground test complex for evaluating nuclear thermal propulsion engines and fuel elements being developed for the Space Nuclear Thermal Propulsion (SNTP) program. 2 refs

  5. Xenon monitoring and the Comprehensive Nuclear-Test-Ban Treaty

    Energy Technology Data Exchange (ETDEWEB)

    Bowyer, Theodore W. [Nuclear Explosion Monitoring Program, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2014-05-09

    How do you monitor (verify) a CTBT? It is a difficult challenge to monitor the entire world for nuclear tests, regardless of size. Nuclear tests 'normally' occur underground, above ground or underwater. Setting aside very small tests (let's limit our thinking to 1 kiloton or more), nuclear tests shake the ground, emit large amounts of radioactivity, and make loud noises if in the atmosphere (or hydroacoustic waves if underwater)

  6. Handling effluent from nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Allen, G.C.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests

  7. Regional analysis of ground and above-ground climate

    Science.gov (United States)

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of Earth tempering as a practice and of specific Earth sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground are included. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 20 locations in the United States.

  8. Regional analysis of ground and above-ground climate

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

  9. Calculated concentrations of any radionuclide deposited on the ground by release from underground nuclear detonations, tests of nuclear rockets, and tests of nuclear ramjet engines

    International Nuclear Information System (INIS)

    Hicks, H.G.

    1981-11-01

    This report presents calculated gamma radiation exposure rates and ground deposition of related radionuclides resulting from three types of event that deposited detectable radioactivity outside the Nevada Test Site complex, namely, underground nuclear detonations, tests of nuclear rocket engines and tests of nuclear ramjet engines

  10. Effluent treatment options for nuclear thermal propulsion system ground tests

    International Nuclear Information System (INIS)

    Shipers, L.R.; Brockmann, J.E.

    1992-01-01

    A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests

  11. First observations of tritium in ground water outside chimneys of underground nuclear explosions, Yucca Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Crow, N.B.

    1976-01-01

    Abnormal levels of radionuclides had not been detected in ground water at the Nevada Test Site beyond the immediate vicinity of underground nuclear explosions until April 1974, when above-background tritium activity levels were detected in ground-water inflow from the tuff beneath Yucca Flat to an emplacement chamber being mined in hole U2aw in the east-central part of Area 2. No other radionuclides were detected in a sample of water from the chamber. In comparison with the amount of tritium estimated to be present in the ground water in nearby nuclear chimneys, the activity level at U2aw is very low. To put the tritium activity levels at U2aw into proper perspective, the maximum tritium activity level observed was significantly less than the maximum permissible concentration (MPC) for a restricted area, though from mid-April 1974 until the emplacement chamber was expended in September 1974, the tritium activity exceeded the MPC for the general public. Above-background tritium activity was also detected in ground water from the adjacent exploratory hole, Ue2aw. The nearest underground nuclear explosion detonated beneath the water table, believed to be the source of the tritium observed, is Commodore (U2am), located 465 m southeast of the emplacement chamber in U2aw. Commodore was detonated in May 1967. In May 1975, tritium activity May significantly higher than regional background. was detected in ground water from hole Ue2ar, 980 m south of the emplacement chamber in U2aw and 361 m from a second underground nuclear explosion, Agile (U2v), also detonated below the water table, in February 1967. This paper describes these occurrences of tritium in the ground water. A mechanism to account for the movement of tritium is postulated

  12. An assessment of testing requirement impacts on nuclear thermal propulsion ground test facility design

    International Nuclear Information System (INIS)

    Shipers, L.R.; Ottinger, C.A.; Sanchez, L.C.

    1993-01-01

    Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed

  13. Strength and durability tests of pipeline supports for the areas of above-ground routing under the influence of operational loads

    Directory of Open Access Journals (Sweden)

    Surikov Vitaliy Ivanovich

    2014-03-01

    Full Text Available The present article deals with integrated research works and tests of pipeline supports for the areas of above-ground routing of the pipeline system “Zapolyarye - Pur-pe” which is laid in the eternally frozen grounds. In order to ensure the above-ground routing method for the oil pipeline “Zapolyarye - Pur-pe” and in view of the lack of construction experience in case of above-ground routing of oil pipelines, the leading research institute of JSC “Transneft” - LLC “NII TNN” over the period of August, 2011 - September, 2012 performed a research and development work on the subject “Development and production of pipeline supports and pile foundation test specimens for the areas of above-ground routing of the pipeline system “Zapolyarye - Pur-pe”. In the course of the works, the test specimens of fixed support, linear-sliding and free-sliding pipeline supports DN1000 and DN800 were produced and examined. For ensuring the stable structural reliability of the supports constructions and operational integrity of the pipelines the complex research works and tests were performed: 1. Cyclic tests of structural elements of the fixed support on the test bed of JSC “Diascan” by means of internal pressure and bending moment with the application of specially prepared equipment for defining the pipeline supports strength and durability. 2. Tests of the fixed support under the influence of limit operating loads and by means of internal pressure for confirming the support’s integrity. On the test bed there were simulated all the maximum loads on the support (vertical, longitudinal, side loadings, bending moment including subsidence of the neighboring sliding support and, simultaneously, internal pressure of the carried medium. 3. Cyclic tests of endurance and stability of the displacements of sliding supports under the influence of limit operating loads for confirming their operation capacity. Relocation of the pipeline on the sliding

  14. Above-ground biomass of mangrove species. I. Analysis of models

    Science.gov (United States)

    Soares, Mário Luiz Gomes; Schaeffer-Novelli, Yara

    2005-10-01

    This study analyzes the above-ground biomass of Rhizophora mangle and Laguncularia racemosa located in the mangroves of Bertioga (SP) and Guaratiba (RJ), Southeast Brazil. Its purpose is to determine the best regression model to estimate the total above-ground biomass and compartment (leaves, reproductive parts, twigs, branches, trunk and prop roots) biomass, indirectly. To do this, we used structural measurements such as height, diameter at breast-height (DBH), and crown area. A combination of regression types with several compositions of independent variables generated 2.272 models that were later tested. Subsequent analysis of the models indicated that the biomass of reproductive parts, branches, and prop roots yielded great variability, probably because of environmental factors and seasonality (in the case of reproductive parts). It also indicated the superiority of multiple regression to estimate above-ground biomass as it allows researchers to consider several aspects that affect above-ground biomass, specially the influence of environmental factors. This fact has been attested to the models that estimated the biomass of crown compartments.

  15. ERC hazard classification matrices for above ground structures and groundwater and soil remediation activities

    International Nuclear Information System (INIS)

    Curry, L.R.

    1997-01-01

    This document provides the status of the preliminary hazard classification (PHC) process for the Environmental Restoration Contractor (ERC) above ground structures and groundwater and soil remediation activities currently underway for planned for fiscal year (FY) 1997. This classification process is based on current US Department of Energy (DOE), Richland Operations Office (RL) guidance for the classification of facilities and activities containing radionuclide and nonradiological hazardous material inventories. The above ground structures presented in the matrices were drawn from the Bechtel Hanford, Inc. (BHI) Decontamination and Decommissioning (D and D) Project Facility List (DOE 1996), which identifies the facilities in the RL-Environmental Restoration baseline contract in 1997. This document contains the following two appendices: (1) Appendix A, which consists of a matrix identifying PHC documents that have been issued for BHI's above ground structures and groundwater and soil remediation activities underway or planned for FY 1997, and (2) Appendix B, which consists of a matrix showing anticipated PHCs for above ground structures, and groundwater and soil remediation activities underway or planned for FY 1997. Appendix B also shows the schedule for finalization of PHCs for above ground structures with an anticipated classification of Nuclear

  16. Component design challenges for the ground-based SP-100 nuclear assembly test

    International Nuclear Information System (INIS)

    Markley, R.A.; Disney, R.K.; Brown, G.B.

    1989-01-01

    The SP-100 ground engineering system (GES) program involves a ground test of the nuclear subsystems to demonstrate their design. The GES nuclear assembly test (NAT) will be performed in a simulated space environment within a vessel maintained at ultrahigh vacuum. The NAT employs a radiation shielding system that is comprised of both prototypical and nonprototypical shield subsystems to attenuate the reactor radiation leakage and also nonprototypical heat transport subsystems to remove the heat generated by the reactor. The reactor is cooled by liquid lithium, which will operate at temperatures prototypical of the flight system. In designing the components for these systems, a number of design challenges were encountered in meeting the operational requirements of the simulated space environment (and where necessary, prototypical requirements) while also accommodating the restrictions of a ground-based test facility with its limited available space. This paper presents a discussion of the design challenges associated with the radiation shield subsystem components and key components of the heat transport systems

  17. Effluent Containment System for space thermal nuclear propulsion ground test facilities

    International Nuclear Information System (INIS)

    1995-08-01

    This report presents the research and development study work performed for the Space Reactor Power System Division of the U.S. Department of Energy on an innovative ECS that would be used during ground testing of a space nuclear thermal rocket engine. A significant portion of the ground test facilities for a space nuclear thermal propulsion engine are the effluent treatment and containment systems. The proposed ECS configuration developed recycles all engine coolant media and does not impact the environment by venting radioactive material. All coolant media, hydrogen and water, are collected, treated for removal of radioactive particulates, and recycled for use in subsequent tests until the end of the facility life. Radioactive materials removed by the treatment systems are recovered, stored for decay of short-lived isotopes, or packaged for disposal as waste. At the end of the useful life, the facility will be decontaminated and dismantled for disposal

  18. ABOVE GROUND BIOMASS MICRONUTRIENTS IN A SEASONAL SUBTROPICAL FOREST

    Directory of Open Access Journals (Sweden)

    Hamilton Luiz Munari Vogel

    2015-06-01

    Full Text Available In the above ground biomass of a native forest or plantation are stored large quantities of nutrients, with few studies in the literature, especially concerning micronutrients. The present work aimed to quantify the micronutrients in above ground biomass in a Seasonal Subtropical forest in Itaara-RS, Brazil. For the above ground biomass evaluation, 20 trees of five different diameter classes were felled. The above ground biomass was separated in the following compartments: stem wood, stem bark, branches and leaves. The contents of B, Cu, Fe, Mn and Zn in the biomass samples were determined. The stock of micronutrients in the biomass for each component was obtained based on the estimated dry biomass, multiplied by the nutrient content. The total production of above ground biomass was estimated at 210.0 Mg.ha-1. The branches, stem wood, stem bark and leaves corresponded to 48.8, 43.3, 5.4 and 2.4% of the above ground biomass. The lower levels of B, Cu, Fe and Mn are in stem wood, except for Zn; in the branches and trunk wood are the largest stocks of B, Cu, Fe and Mn. In the branches, leaves and trunk bark are stored most micronutrients, pointing to the importance of these to remain on the soil.

  19. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    Directory of Open Access Journals (Sweden)

    Ten-See Wang

    Full Text Available A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze the entire process on a three-dimensional domain. The computed flammability at the exit of the heat exchanger was less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process. Keywords: Hydrogen decomposition reactions, Hydrogen recombination reactions, Hydrogen containment process, Nuclear thermal propulsion, Ground testing

  20. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    International Nuclear Information System (INIS)

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository

  1. Summary of ground motion prediction results for Nevada Test Site underground nuclear explosions related to the Yucca Mountain project

    Energy Technology Data Exchange (ETDEWEB)

    Walck, M.C.

    1996-10-01

    This report summarizes available data on ground motions from underground nuclear explosions recorded on and near the Nevada Test Site, with emphasis on the ground motions recorded at stations on Yucca Mountain, the site of a potential high-level radioactive waste repository. Sandia National Laboratories, through the Weapons Test Seismic Investigations project, collected and analyzed ground motion data from NTS explosions over a 14-year period, from 1977 through 1990. By combining these data with available data from earlier, larger explosions, prediction equations for several ground motion parameters have been developed for the Test Site area for underground nuclear explosion sources. Also presented are available analyses of the relationship between surface and downhole motions and spectra and relevant crustal velocity structure information for Yucca Mountain derived from the explosion data. The data and associated analyses demonstrate that ground motions at Yucca Mountain from nuclear tests have been at levels lower than would be expected from moderate to large earthquakes in the region; thus nuclear explosions, while located relatively close, would not control seismic design criteria for the potential repository.

  2. Nuclear ground state

    International Nuclear Information System (INIS)

    Negele, J.W.

    1975-01-01

    The nuclear ground state is surveyed theoretically, and specific suggestions are given on how to critically test the theory experimentally. Detailed results on 208 Pb are discussed, isolating several features of the charge density distributions. Analyses of 208 Pb electron scattering and muonic data are also considered. 14 figures

  3. Ground Testing a Nuclear Thermal Rocket: Design of a sub-scale demonstration experiment

    Energy Technology Data Exchange (ETDEWEB)

    David Bedsun; Debra Lee; Margaret Townsend; Clay A. Cooper; Jennifer Chapman; Ronald Samborsky; Mel Bulman; Daniel Brasuell; Stanley K. Borowski

    2012-07-01

    In 2008, the NASA Mars Architecture Team found that the Nuclear Thermal Rocket (NTR) was the preferred propulsion system out of all the combinations of chemical propulsion, solar electric, nuclear electric, aerobrake, and NTR studied. Recently, the National Research Council committee reviewing the NASA Technology Roadmaps recommended the NTR as one of the top 16 technologies that should be pursued by NASA. One of the main issues with developing a NTR for future missions is the ability to economically test the full system on the ground. In the late 1990s, the Sub-surface Active Filtering of Exhaust (SAFE) concept was first proposed by Howe as a method to test NTRs at full power and full duration. The concept relied on firing the NTR into one of the test holes at the Nevada Test Site which had been constructed to test nuclear weapons. In 2011, the cost of testing a NTR and the cost of performing a proof of concept experiment were evaluated.

  4. Australia - a nuclear weapons testing ground

    International Nuclear Information System (INIS)

    Dobbs, Michael.

    1993-01-01

    Between 1952 and 1958 Britain conducted five separate nuclear weapons trials in Australia. Australia had the uninhabited wide open spaces and the facilities which such tests need and Britain was able to use its special relationship with Australia to get agreement to conduct atomic tests in Australia and establish a permanent test site at Maralinga. Other non-nuclear tests were conducted between 1953-1963. The story of Britain's involvement in atomic weapons testing in Australia is told through its postal history. Both official and private covers are used to show how the postal communications were established and maintained throughout the test years. (UK)

  5. Puerto Rico Above Ground Biomass Map, 2000

    Data.gov (United States)

    U.S. Environmental Protection Agency — This image dataset details the U.S. Commonwealth of Puerto Rico above-ground forest biomass (AGB) (baseline 2000) developed by the United States (US) Environmental...

  6. History of ground motion programs at the Nevada Test Site

    International Nuclear Information System (INIS)

    Banister, J.R.

    1984-01-01

    Some measurements were made in the atmospheric testing era, but the study of ground motion from nuclear tests became of wider interest after the instigation of underground testing. The ground motion generated by underground nuclear test has been investigated for a number of reasons including understanding basic phenomena, operational and safety concerns, yield determination, stimulation of earthquake concerns, and developing methods to aid in treaty verifications. This history of ground motion programs will include discussing early studies, high yield programs, Peaceful Nuclear Explosions tests, and some more recent developments. 6 references, 10 figures

  7. Monitoring of surface chemical and underground nuclear explosions with help of ionospheric radio-sounding above test site

    International Nuclear Information System (INIS)

    Krasnov, V.M.; Drobzheva, Ya.V.

    2000-01-01

    We describe the basic principles, advantages and disadvantages of ionospheric method to monitor surface chemical and underground nuclear explosions. The ionosphere is 'an apparatus' for the infra-sound measurements immediately above the test site. Using remote radio sounding of the ionosphere you can obtain that information. So you carry out the inspection at the test site. The main disadvantage of the ionospheric method is the necessity to sound the ionosphere with radio waves. (author)

  8. Water activities in Forsmark (Part II). The final disposal facility for spent fuel: water activities above ground

    International Nuclear Information System (INIS)

    Werner, Kent; Hamren, Ulrika; Collinder, Per; Ridderstolpe, Peter

    2010-09-01

    The construction of the repository for spent nuclear fuel in Forsmark is associated with a number of measures above ground that constitute water operations according to Chapter 11 in the Swedish Environmental Code. This report, which is an appendix to the Environmental Impact Assessment, describes these water operations, their effects and consequences, and planned measures

  9. Modelling man-made ground to link the above- and below- ground urban domains

    NARCIS (Netherlands)

    Schokker, J.

    2017-01-01

    This report describes the results of STSM TU1206-36204. During a visit to GEUS (DK) between 23 and 27 January 2017, Jeroen Schokker (TNO-GSN, NL) has focussed on the modelling of man-made ground as a linking pin between the above- and below-ground urban domains. Key results include: • Man-made

  10. Large antennas for ground-based astronomy above 1 THz

    NARCIS (Netherlands)

    Wild, Wolfgang; Guesten, R.; Holland, W. S.; Ivison, R.; Stacey, G. J.

    2006-01-01

    In its history astronomy has continuously expanded access to new wavelength regions both from space and on the ground. Today, one of the few unexplored regimes is the terahertz (THz) frequency range, more specifically above 1 THz (< lambda 300 mum). Astronomical observations above 1 THz are

  11. Underside corrosion of above ground storage tanks (ASTs) | Rim ...

    African Journals Online (AJOL)

    ... above statutory safe limits. The results showed that the physico-chemical characteristics of the water sample have diagnostic and predictive values to implicate and promote underside corrosion of the studied above ground storage tank. Journal of Applied Sciences and Environmental Management Vol. 9(1) 2005: 161-163.

  12. Monitoring of natural revegetation of Semipalatinsk nuclear testing ground

    International Nuclear Information System (INIS)

    Sultanova, B.M.

    2002-01-01

    It is well known, that monitoring of natural revegetation of Semipalatinsk test site (STS) was carried out during period 1994-2002 at test areas (Experimental field, Balapan, Degelen). In this paper the peculiarities of vegetation cover of these test areas are observed. Thus, vegetation cover of Experimental field ground in the epicentre is completely destroyed. At present there are different stages of zonal steppe communities rehabilitation: in zones with γ-irradiation 11000-14000 μR/h the revegetation is not found; on the plots with γ-irradiation 8200-10000 μR/h rare species of Artemisia frigida are found; aggregation of plant (managed from 6000-7000 μR/h is observed; At the γ-irradiation 80-200 μR/h rarefied groups of bunch grass communities similar to the zonal steppe are formed and zonal bunch grass communities developed with 18-25 μR/h. Vegetation cover of Degelen hill tops and near-mouth ground in the results of underground nuclear expulsions are completely destroyed. Here there are three main kinds of vegetation: very stony gallery areas don't almost overgrow; at technogen tops near galleries the single plants, rare field groups and unclosed micro-phyto-biocenoses of weed and adventive species (Amaranthus retroflexus, Artemisia dracunculus, Laxctuca serriola, Chorispora sibirica etc.). On the Balapan are the revegetation is limited by high radiation pollution rate. Here cenose rehabilitation is presented by Artemisia marshalliana, Spita sareptana, Festuca valresiaca). In their paper florostic and phyrocoenitic diversity of STS's flora transformation is studied. Pattern distribution and migration of radionuclides in soils and vegetation cover is represented

  13. Hypersonic ground test capabilities for T and E testing above mach 8 ''a case where S and T meets T and E''

    International Nuclear Information System (INIS)

    Constantino, M; Miles, R; Brown, G; Laster, M; Nelson, G

    1999-01-01

    Simulation of hypersonic flight in ground test and evaluation (T and E) facilities is a challenging and formidable task, especially to fully duplicate the flight environment above approximately Mach 8 for most all hypersonic flight systems that have been developed, conceived, or envisioned. Basically, and for many years, the enabling technology to build such a ground test wind tunnel facility has been severely limited in the area of high-temperature, high-strength materials and thermal protection approaches. To circumvent the problems, various approaches have been used, including partial simulation and use of similarity laws and reduced test time. These approaches often are not satisfactory, i.e. operability and durability testing for air-breathing propulsion development and thermal protection development of many flight systems. Thus, there is a strong need for science and technology (S and T) community involvement in technology development to address these problems. This paper discusses a specific case where this need exists and where significant S and T involvement has made and continues to make significant contributions. The case discussed will be an Air Force research program currently underway to develop enabling technologies for a Mach 8-15 hypersonic true temperature wind tunnel with relatively long run time. The research is based on a concept proposed by princeton University using radiant or beamed energy into the supersonic nozzle flow

  14. The Influence of Tractor-Seat Height above the Ground on Lateral Vibrations

    Directory of Open Access Journals (Sweden)

    Jaime Gomez-Gil

    2014-10-01

    Full Text Available Farmers experience whole-body vibrations when they drive tractors. Among the various factors that influence the vibrations to which the driver is exposed are terrain roughness, tractor speed, tire type and pressure, rear axle width, and tractor seat height above the ground. In this paper the influence of tractor seat height above the ground on the lateral vibrations to which the tractor driver is exposed is studied by means of a geometrical and an experimental analysis. Both analyses show that: (i lateral vibrations experienced by a tractor driver increase linearly with tractor-seat height above the ground; (ii lateral vibrations to which the tractor driver is exposed can equal or exceed vertical vibrations; (iii in medium-size tractors, a feasible 30 cm reduction in the height of the tractor seat, which represents only 15% of its current height, will reduce the lateral vibrations by around 20%; and (iv vertical vibrations are scarcely influenced by tractor-seat height above the ground. The results suggest that manufacturers could increase the comfort of tractors by lowering tractor-seat height above the ground, which will reduce lateral vibrations.

  15. Height-diameter allometry and above ground biomass in tropical montane forests: Insights from the Albertine Rift in Africa.

    Science.gov (United States)

    Imani, Gérard; Boyemba, Faustin; Lewis, Simon; Nabahungu, Nsharwasi Léon; Calders, Kim; Zapfack, Louis; Riera, Bernard; Balegamire, Clarisse; Cuni-Sanchez, Aida

    2017-01-01

    Tropical montane forests provide an important natural laboratory to test ecological theory. While it is well-known that some aspects of forest structure change with altitude, little is known on the effects of altitude on above ground biomass (AGB), particularly with regard to changing height-diameter allometry. To address this we investigate (1) the effects of altitude on height-diameter allometry, (2) how different height-diameter allometric models affect above ground biomass estimates; and (3) how other forest structural, taxonomic and environmental attributes affect above ground biomass using 30 permanent sample plots (1-ha; all trees ≥ 10 cm diameter measured) established between 1250 and 2600 m asl in Kahuzi Biega National Park in eastern Democratic Republic of Congo. Forest structure and species composition differed with increasing altitude, with four forest types identified. Different height-diameter allometric models performed better with the different forest types, as trees got smaller with increasing altitude. Above ground biomass ranged from 168 to 290 Mg ha-1, but there were no significant differences in AGB between forests types, as tree size decreased but stem density increased with increasing altitude. Forest structure had greater effects on above ground biomass than forest diversity. Soil attributes (K and acidity, pH) also significantly affected above ground biomass. Results show how forest structural, taxonomic and environmental attributes affect above ground biomass in African tropical montane forests. They particularly highlight that the use of regional height-diameter models introduces significant biases in above ground biomass estimates, and that different height-diameter models might be preferred for different forest types, and these should be considered in future studies.

  16. Ground assessment methods for nuclear power plant

    International Nuclear Information System (INIS)

    1985-01-01

    It is needless to say that nuclear power plant must be constructed on the most stable and safe ground. Reliable assessment method is required for the purpose. The Ground Integrity Sub-committee of the Committee of Civil Engineering of Nuclear Power Plant started five working groups, the purpose of which is to systematize the assessment procedures including geological survey, ground examination and construction design. The works of working groups are to establishing assessment method of activities of faults, standardizing the rock classification method, standardizing assessment and indication method of ground properties, standardizing test methods and establishing the application standard for design and construction. Flow diagrams for the procedures of geological survey, for the investigation on fault activities and ground properties of area where nuclear reactor and important outdoor equipments are scheduled to construct, were established. And further, flow diagrams for applying investigated results to design and construction of plant, and for determining procedure of liquidification nature of ground etc. were also established. These systematized and standardized methods of investigation are expected to yield reliable data for assessment of construction site of nuclear power plant and lead to the safety of construction and operation in the future. In addition, the execution of these systematized and detailed preliminary investigation for determining the construction site of nuclear power plant will make much contribution for obtaining nation-wide understanding and faith for the project. (Ishimitsu, A.)

  17. Can above-ground ecosystem services compensate for reduced fertilizer input and soil organic matter in annual crops?

    NARCIS (Netherlands)

    van Gils, Stijn; van der Putten, Wim H; Kleijn, David

    2016-01-01

    1.Above-ground and below-ground environmental conditions influence crop yield by pollination, pest pressure, and resource supply. However, little is known about how interactions between these factors contribute to yield. Here, we used oilseed rape Brassica napus to test their effects on crop

  18. Can above-ground ecosystem services compensate for reduced fertilizer input and soil organic matter in annual crops?

    NARCIS (Netherlands)

    Gils, van S.H.; Putten, van der W.H.; Kleijn, D.

    2016-01-01

    1.Above-ground and below-ground environmental conditions influence crop yield by pollination, pest pressure and resource supply. However, little is known about how interactions between these factors contribute to yield. Here, we used oilseed rape Brassica napus to test their effects on crop

  19. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.).

    Science.gov (United States)

    Tang, Xiwang; Pang, Yan; Ji, Puhui; Gao, Pengcheng; Nguyen, Thanh Hung; Tong, Yan'an

    2016-03-01

    Because of its high Cd uptake and translocation, lettuce is often used in Cd contamination studies. However, there is a lack of information on Cd accumulation in the above-ground parts of lettuce during the entire growing season. In this study, a field experiment was carried out in a Cd-contaminated area. Above-ground lettuce parts were sampled, and the Cd content was measured using a flame atomic absorption spectrophotometer (AAS). The results showed that the Cd concentration in the above-ground parts of lettuce increased from 2.70 to 3.62mgkg(-1) during the seedling stage, but decreased from 3.62 to 2.40mgkg(-1) during organogenesis and from 2.40 to 1.64mgkg(-1) during bolting. The mean Cd concentration during the seedling stage was significantly higher than that during organogenesis (a=0.05) and bolting (a=0.01). The Cd accumulation in the above-ground parts of an individual lettuce plant could be described by a sigmoidal curve. Cadmium uptake during organogenesis was highest (80% of the total), whereas that during bolting was only 4.34%. This research further reveals that for Rome lettuce: (1) the highest Cd content of above-ground parts occurred at the end of the seedling phase; (2) the best harvest time with respect to Cd phytoaccumulation is at the end of the organogenesis stage; and (3) the organogenesis stage is the most suitable time to enhance phytoaccumulation efficiency by adjusting the root:shoot ratio. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Underground Nuclear Testing Program, Nevada Test Site

    International Nuclear Information System (INIS)

    1975-09-01

    The Energy Research and Development Administration (ERDA) continues to conduct an underground nuclear testing program which includes tests for nuclear weapons development and other tests for development of nuclear explosives and methods for their application for peaceful uses. ERDA also continues to provide nuclear explosive and test site support for nuclear effects tests sponsored by the Department of Defense. This Supplement extends the Environmental Statement (WASH-1526) to cover all underground nuclear tests and preparations for tests of one megaton (1 MT) or less at the Nevada Test Site (NTS) during Fiscal Year 1976. The test activities covered include numerous continuing programs, both nuclear and non-nuclear, which can best be conducted in a remote area. However, if nuclear excavation tests or tests of yields above 1 MT or tests away from NTS should be planned, these will be covered by separate environmental statements

  1. High Throughput Determination of Plant Height, Ground Cover, and Above-Ground Biomass in Wheat with LiDAR.

    Science.gov (United States)

    Jimenez-Berni, Jose A; Deery, David M; Rozas-Larraondo, Pablo; Condon, Anthony Tony G; Rebetzke, Greg J; James, Richard A; Bovill, William D; Furbank, Robert T; Sirault, Xavier R R

    2018-01-01

    Crop improvement efforts are targeting increased above-ground biomass and radiation-use efficiency as drivers for greater yield. Early ground cover and canopy height contribute to biomass production, but manual measurements of these traits, and in particular above-ground biomass, are slow and labor-intensive, more so when made at multiple developmental stages. These constraints limit the ability to capture these data in a temporal fashion, hampering insights that could be gained from multi-dimensional data. Here we demonstrate the capacity of Light Detection and Ranging (LiDAR), mounted on a lightweight, mobile, ground-based platform, for rapid multi-temporal and non-destructive estimation of canopy height, ground cover and above-ground biomass. Field validation of LiDAR measurements is presented. For canopy height, strong relationships with LiDAR ( r 2 of 0.99 and root mean square error of 0.017 m) were obtained. Ground cover was estimated from LiDAR using two methodologies: red reflectance image and canopy height. In contrast to NDVI, LiDAR was not affected by saturation at high ground cover, and the comparison of both LiDAR methodologies showed strong association ( r 2 = 0.92 and slope = 1.02) at ground cover above 0.8. For above-ground biomass, a dedicated field experiment was performed with destructive biomass sampled eight times across different developmental stages. Two methodologies are presented for the estimation of biomass from LiDAR: 3D voxel index (3DVI) and 3D profile index (3DPI). The parameters involved in the calculation of 3DVI and 3DPI were optimized for each sample event from tillering to maturity, as well as generalized for any developmental stage. Individual sample point predictions were strong while predictions across all eight sample events, provided the strongest association with biomass ( r 2 = 0.93 and r 2 = 0.92) for 3DPI and 3DVI, respectively. Given these results, we believe that application of this system will provide new

  2. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    OpenAIRE

    Wang, Ten-See; Stewart, Eric T.; Canabal, Francisco

    2016-01-01

    A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze ...

  3. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Science.gov (United States)

    2010-07-01

    ... OF UNDERGROUND COAL MINES Surface High-Voltage Distribution § 77.807-1 High-voltage powerlines; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad tracks...

  4. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    International Nuclear Information System (INIS)

    Casey, Leslie A.

    2014-01-01

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  5. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  6. Local above-ground persistence of vascular plants : Life-history trade-offs and environmental constraints

    NARCIS (Netherlands)

    Ozinga, Wim A.; Hennekens, Stephan M.; Schaminee, Joop H. J.; Smits, Nina A. C.; Bekker, Renee M.; Roemermann, Christine; Klimes, Leos; Bakker, Jan P.; van Groenendael, Jan M.

    Questions: 1. Which plant traits and habitat characteristics best explain local above-ground persistence of vascular plant species and 2. Is there a trade-off between local above-ground persistence and the ability for seed dispersal and below-ground persistence in the soil seed bank? Locations: 845

  7. Study of polonium isotopes ground state properties by simultaneous atomic- and nuclear-spectroscopy

    CERN Multimedia

    Koester, U H; Kalaninova, Z; Imai, N

    2007-01-01

    We propose to systematically study the ground state properties of neutron deficient $^{192-200}$Po isotopes by means of in-source laser spectroscopy using the ISOLDE laser ion source coupled with nuclear spectroscopy at the detection setup as successfully done before by this collaboration with neutron deficient lead isotopes. The study of the change in mean square charge radii along the polonium isotope chain will give an insight into shape coexistence above the mid-shell N = 104 and above the closed shell Z = 82. The hyperfine structure of the odd isotopes will also allow determination of the nuclear spin and the magnetic moment of the ground state and of any identifiable isomer state. For this study, a standard UC$_{x}$ target with the ISOLDE RILIS is required for 38 shifts.

  8. Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mark E. Kubiske

    2013-04-15

    The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with the below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.

  9. Above-ground tree outside forest (TOF) phytomass and carbon ...

    Indian Academy of Sciences (India)

    to classify TOF, to estimate above-ground TOF phytomass and the carbon content ... eral, trees outside forests (TOF) mean the trees ..... have been used to stratify the area, based on the ... The optimum plot size and num- .... population centres.

  10. Data from: Can above-ground ecosystem services compensate for reduced fertilizer input and soil organic matter in annual crops?

    NARCIS (Netherlands)

    Gils, van S.H.; Putten, van der W.H.; Kleijn, D.

    2016-01-01

    Above-ground and below-ground environmental conditions influence crop yield by pollination, pest pressure, and resource supply. However, little is known about how interactions between these factors contribute to yield. Here, we used oilseed rape Brassica napus to test their effects on crop yield. We

  11. Test facilities for evaluating nuclear thermal propulsion systems

    International Nuclear Information System (INIS)

    Beck, D.F.; Allen, G.C.; Shipers, L.R.; Dobranich, D.; Ottinger, C.A.; Harmon, C.D.; Fan, W.C.; Todosow, M.

    1992-01-01

    Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized

  12. Prediction of ground motion from underground nuclear weapons tests as it relates to siting of a nuclear waste storage facility at NTS and compatibility with the weapons test program

    International Nuclear Information System (INIS)

    Vortman, L.J. IV.

    1980-04-01

    This report assumes reasonable criteria for NRC licensing of a nuclear waste storage facility at the Nevada Test Site where it would be exposed to ground motion from underground nuclear weapons tests. Prediction equations and their standard deviations have been determined from measurements on a number of nuclear weapons tests. The effect of various independent parameters on standard deviation is discussed. That the data sample is sufficiently large is shown by the fact that additional data have little effect on the standard deviation. It is also shown that coupling effects can be separated out of the other contributions to the standard deviation. An example, based on certain licensing assumptions, shows that it should be possible to have a nuclear waste storage facility in the vicinity of Timber Mountain which would be compatible with a 700 kt weapons test in the Buckboard Area if the facility were designed to withstand a peak vector acceleration of 0.75 g. The prediction equation is a log-log linear equation which predicts acceleration as a function of yield of an explosion and the distance from it

  13. Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms

    NARCIS (Netherlands)

    Kowalchuk, G.A.; Buma, D.S; De Boer, W.; Klinkhamer, P.G.L.; Van Veen, J.A.

    2002-01-01

    A coupling of above-ground plant diversity and below-ground microbial diversity has been implied in studies dedicated to assessing the role of macrophyte diversity on the stability, resilience, and functioning of ecosystems. Indeed, above-ground plant communities have long been assumed to drive

  14. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    Science.gov (United States)

    Wang, Ten-See; Stewart, Eric T.; Canabal, Francisco

    A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze the entire process on a three-dimensional domain. The computed flammability at the exit of the heat exchanger was less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process.

  15. Analytic model for surface ground motion with spall induced by underground nuclear tests

    International Nuclear Information System (INIS)

    MacQueen, D.H.

    1982-04-01

    This report provides a detailed presentation and critique of a model used to characterize the surface ground motion following a contained, spalling underground nuclear explosion intended for calculation of the resulting atmospheric acoustic pulse. Some examples of its use are included. Some discussion of the general approach of ground motion model parameter extraction, not dependent on the specific model, is also presented

  16. Extraction and textural characterization of above-ground areas from aerial stereo pairs: a quality assessment

    Science.gov (United States)

    Baillard, C.; Dissard, O.; Jamet, O.; Maître, H.

    Above-ground analysis is a key point to the reconstruction of urban scenes, but it is a difficult task because of the diversity of the involved objects. We propose a new method to above-ground extraction from an aerial stereo pair, which does not require any assumption about object shape or nature. A Digital Surface Model is first produced by a stereoscopic matching stage preserving discontinuities, and then processed by a region-based Markovian classification algorithm. The produced above-ground areas are finally characterized as man-made or natural according to the grey level information. The quality of the results is assessed and discussed.

  17. Ground testing of an SP-100 prototypic reactor

    International Nuclear Information System (INIS)

    Motwani, K.; Pflasterer, G.R.; Upton, H.; Lazarus, J.D.; Gluck, R.

    1988-01-01

    SP-100 is a space power system which is being developed by GE to meet future space electrical power requirements. The ground testing of an SP-100 prototypic reactor system will be conducted at the Westinghouse Hanford Company site located at Richland, Washington. The objective of this test is to demonstrate the performance of a full scale prototypic reactor system, including the reactor, control system and flight shield. The ground test system is designed to simulate the flight operating conditions while meeting all the necessary nuclear safety requirements in a gravity environment. The goal of the reactor ground test system is to establish confidence in the design maturity of the SP-100 space reactor power system and resolve the technical issues necessary for the development of a flight mission design

  18. Above-ground biomass investments and light interception of tropical forest trees and lianas early in succession

    NARCIS (Netherlands)

    Selaya, N.G.; Anten, N.P.R.; Oomen, R.J.; Matthies, M.; Werger, M.J.A.

    2007-01-01

    Background and Aims Crown structure and above-ground biomass investment was studied in relation to light interception of trees and lianas growing in a 6-month-old regenerating forest. Methods The vertical distribution of total above-ground biomass, height, diameter, stem density, leaf angles and

  19. Peculiarities of radionuclide contamination of different Semipalatinsk nuclear test site (SNTS) zones

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.; Khazhekber, S.; Lukashenko, S.N.; Solodukhin, V.P.; Kazachevskij, I.V.; Poznyak, V.L.; Knyazev, B.B.; Rofer, Ch.

    2002-01-01

    The Semipalatinsk Nuclear Test Site occupies about 18500 km 2 . There are 3 basic test zones in this territory including various test platforms where different character nuclear explosions were carried out. On the test platforms of the 'Opytnoe Pole' zone air and ground tests were performed, including nuclear and hydronuclear (without nuclear reaction) explosions. On the other zones (the Degelen mountains and Balapan valley) the underground tests including camouflaged and excavation nuclear explosions were carried out. Each kind of these tests can be characterised by the quantity and composition of radionuclides which were formed during the nuclear explosion, by the area of their distribution, localisation of the radionuclides at various sites, radionuclide species in soil. Transfer of the products of the air and the ground nuclear explosions by air flows and their sedimentation on the ground surfaces have caused broadband radioactive plumes extending over hundreds of kilometres. As a result of hydronuclear experiments, plenty of alpha-active radionuclides, consisting of a nuclear device is thrown locally out. Besides the ground and the air explosions, radiation conditions of the territory of the SNTS were influenced by excavation explosions with ground throwing out. Such tests resulted in an intensive local pollution. Other zone of an original pollution is the Degelen mountains. Although an basic mass of the nuclear explosion products is obviously concentrated in basin cavities of the tunnels, the radionuclides are taken out on a day time surface together with waters acting in the basin cavity of the tunnels. The results of investigation of radionuclide pollution on the various platforms of the SNTS territory are presented. The results characterise the radionuclide pollution by specificity of spent tests

  20. Cathodic Protection for Above Ground Storage Tank Bottom Using Data Acquisition

    Directory of Open Access Journals (Sweden)

    Naseer Abbood Issa Al Haboubi

    2015-07-01

    Full Text Available Impressed current cathodic protection controlled by computer gives the ideal solution to the changes in environmental factors and long term coating degradation. The protection potential distribution achieved and the current demand on the anode can be regulated to protection criteria, to achieve the effective protection for the system. In this paper, cathodic protection problem of above ground steel storage tank was investigated by an impressed current of cathodic protection with controlled potential of electrical system to manage the variation in soil resistivity. Corrosion controller has been implemented for above ground tank in LabView where tank's bottom potential to soil was manipulated to the desired set point (protection criterion 850 mV. National Instruments Data Acquisition (NI-DAQ and PC controllers for tank corrosion control system provides quick response to achieve steady state condition for any kind of disturbances.

  1. Above-ground biomass equations for Pinus radiata D. Don in Asturias

    Directory of Open Access Journals (Sweden)

    E. Canga

    2013-12-01

    Full Text Available Aim of the study: The aim of this study was to develop a model for above-ground biomass estimation for Pinus radiata D. Don in Asturias.Area of study: Asturias (NE of Spain.Material and methods: Different models were fitted for the different above-ground components and weighted regression was used to correct heteroscedasticity. Finally, all the models were refitted simultaneously by use of Nonlinear Seemingly Unrelated Regressions (NSUR to ensure the additivity of biomass equations.Research highlights: A system of four biomass equations (wood, bark, crown and total biomass was develop, such that the sum of the estimations of the three biomass components is equal to the estimate of total biomass. Total and stem biomass equations explained more than 92% of observed variability, while crown and bark biomass equations explained 77% and 89% respectively.Keywords: radiata pine; plantations; biomass.

  2. Settlement mechanism of the backfilled ground around nuclear power plant buildings. Part 1. A series of 1G shaking table tests

    International Nuclear Information System (INIS)

    Ishimaru, Makoto; Kawai, Tadashi

    2008-01-01

    The large ground settlement locally occurred at the backfilled ground around the Kashiwazaki-Kariwa Nuclear Power Plant buildings during the Niigataken Chuetsu-oki Earthquake in 2007. The purposes of this study are to verify the assumed mechanism of the settlement and to discuss the influence factors on the settlement. For these purposes, we conducted a series of 1G shaking table tests using a rigid structure and sand. In the tests, parameters, which were variously changed, are related to two factors; one is the horizontal ground displacement relative to the structure, the other is the ground strength against the sliding failure. The following results were obtained: (1) All the results showed that the ground settlement sizes near the structure were larger than the ground settlement sizes far from the structure, (2) From the video observed at the ground near the structure, it was found that the settlement locally occurred due to the sliding failure after the ground was separated from the structure, (3) The ground settlement sizes near the structure were large as the horizontal ground displacement sizes were large, and the soil strength arising from fines affected the ground settlement sizes near the structure. (author)

  3. Regional analysis of ground and above-ground climate. Part I. Regional suitability of earth-tempering practices: summary and conclusions. Part II. Bioclimatic data

    Energy Technology Data Exchange (ETDEWEB)

    Labs, K.

    The regional suitability of underground construction as a climate-control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above-ground climate-control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dewpoint ground temperature comparisons for identifying the relative likelihood of condensation, from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically. While the subsurface almost always provides a thermal advantage on its own terms when compared to above-ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate-control techniques. Also contained in the report are reviews of above- and below-ground climate mapping schemes related to human comfort and architectural design, and a detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States. 3 references, 12 figures, 14 tables.

  4. Examining spectral properties of Landsat 8 OLI for predicting above-ground carbon of Labanan Forest, Berau

    Science.gov (United States)

    Suhardiman, A.; Tampubolon, B. A.; Sumaryono, M.

    2018-04-01

    Many studies revealed significant correlation between satellite image properties and forest data attributes such as stand volume, biomass or carbon stock. However, further study is still relevant due to advancement of remote sensing technology as well as improvement on methods of data analysis. In this study, the properties of three vegetation indices derived from Landsat 8 OLI were tested upon above-ground carbon stock data from 50 circular sample plots (30-meter radius) from ground survey in PT. Inhutani I forest concession in Labanan, Berau, East Kalimantan. Correlation analysis using Pearson method exhibited a promising results when the coefficient of correlation (r-value) was higher than 0.5. Further regression analysis was carried out to develop mathematical model describing the correlation between sample plots data and vegetation index image using various mathematical models.Power and exponential model were demonstrated a good result for all vegetation indices. In order to choose the most adequate mathematical model for predicting Above-ground Carbon (AGC), the Bayesian Information Criterion (BIC) was applied. The lowest BIC value (i.e. -376.41) shown by Transformed Vegetation Index (TVI) indicates this formula, AGC = 9.608*TVI21.54, is the best predictor of AGC of study area.

  5. Above- and below-ground competition in high and low irradiance: tree seedling responses to a competing liana Byttneria grandifolia

    NARCIS (Netherlands)

    Chen, J.Y.; Bongers, F.; Cao, K.F.; Cai, Z.Q.

    2008-01-01

    Abstract: In tropical forests, trees compete not only with other trees, but also with lianas, which may limit tree growth and regeneration. Liana effects may depend on the availability of above- and below-ground resources and differ between tree species. We conducted a shade house experiment to test

  6. Testing the generality of above-ground biomass allometry across plant functional types at the continent scale.

    Science.gov (United States)

    Paul, Keryn I; Roxburgh, Stephen H; Chave, Jerome; England, Jacqueline R; Zerihun, Ayalsew; Specht, Alison; Lewis, Tom; Bennett, Lauren T; Baker, Thomas G; Adams, Mark A; Huxtable, Dan; Montagu, Kelvin D; Falster, Daniel S; Feller, Mike; Sochacki, Stan; Ritson, Peter; Bastin, Gary; Bartle, John; Wildy, Dan; Hobbs, Trevor; Larmour, John; Waterworth, Rob; Stewart, Hugh T L; Jonson, Justin; Forrester, David I; Applegate, Grahame; Mendham, Daniel; Bradford, Matt; O'Grady, Anthony; Green, Daryl; Sudmeyer, Rob; Rance, Stan J; Turner, John; Barton, Craig; Wenk, Elizabeth H; Grove, Tim; Attiwill, Peter M; Pinkard, Elizabeth; Butler, Don; Brooksbank, Kim; Spencer, Beren; Snowdon, Peter; O'Brien, Nick; Battaglia, Michael; Cameron, David M; Hamilton, Steve; McAuthur, Geoff; Sinclair, Jenny

    2016-06-01

    Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost-effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above-ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power-law models explained 84-95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand-based biomass from allometric models of varying levels of generalization (species-specific, plant functional type) were validated using whole-plot harvest data from 17 contrasting stands (range: 9-356 Mg ha(-1) ). Losses in efficiency of prediction were <1% if generalized models were used in place of species-specific models. Furthermore, application of generalized multispecies models did not introduce significant bias in biomass prediction in 92% of the 53 species tested. Further, overall efficiency of stand-level biomass prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost-effective prediction of biomass across a wide range of stands, we recommend use of generic allometric models based on plant functional types. Development of new species

  7. Atmospheric methods for nuclear test monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Simons, D.J. [Los Alamos National Laboratory, NM (United States)

    1994-12-31

    This report describes two atmomospheric methods for the monitoring and detection of underground nuclear explosions: Near infrasound technique, and ionospheric monitoring. Ground motion from underground explosions cause induced air pressure perturbations. The ionospheric technique utilizes the very strong air pressure pulse which is launched straight up above an underground explosion. When the pressure disturbance reaches the ionosphere, it becomes a 10 % pressure perturbation. Detection involves sending radio waves through the ionosphere with transmitters and recievers on the ground. Radar analysis yields interpretable signals. The near infrasound method detects the signal which is projected into the side lobes of the main signal. Both of the atmospheric methods were utilized on the monitoring of the NPE underground chemical explosion experiment. Results are described.

  8. Comparison of the inelastic response of steel building frames to strong earthquake and underground nuclear explosion ground motion

    International Nuclear Information System (INIS)

    Murray, R.C.; Tokarz, F.J.

    1976-01-01

    Analytic studies were made of the adequacy of simulating earthquake effects at the Nevada Test Site for structural testing purposes. It is concluded that underground nuclear explosion ground motion will produce inelastic behavior and damage comparable to that produced by strong earthquakes. The generally longer duration of earthquakes compared with underground nuclear explosions does not appear to significantly affect the structural behavior of the building frames considered. A comparison of maximum ductility ratios, maximum story drifts, and maximum displacement indicate similar structural behavior for both types of ground motion. Low yield (10 - kt) underground nuclear explosions are capable of producing inelastic behavior in large structures. Ground motion produced by underground nuclear explosions can produce inelastic earthquake-like effects in large structures and could be used for testing large structures in the inelastic response regime. The Nevada Test Site is a feasible earthquake simulator for testing large structures

  9. Oxygen Containment System Options for Nuclear Thermal Propulsion Testing

    Data.gov (United States)

    National Aeronautics and Space Administration — All nuclear thermal propulsion (NTP) ground testing conducted in the 1950s and 1960s during the ROVER/(Nuclear Engine Rocket Vehicle Application (NERVA) program...

  10. Disposal facility in Olkiluoto, description of above ground facilities in tunnel transport alternative

    International Nuclear Information System (INIS)

    Kukkola, T.

    2006-11-01

    The above ground facilities of the disposal plant on the Olkiluoto site are described in this report as they will be when the operation of the disposal facility starts in the year 2020. The disposal plant is visualised on the Olkiluoto site. Parallel construction of the deposition tunnels and disposal of the spent fuel canisters constitute the principal design basis of the disposal plant. The annual production of disposal canisters for spent fuel amounts to about 40. Production of 100 disposal canisters has been used as the capacity basis. Fuel from the Olkiluoto plant and from the Loviisa plant will be encapsulated in the same production line. The disposal plant will require an area of about 15 to 20 hectares above ground level. The total building volume of the above ground facilities is about 75000 m 3 . The purpose of the report is to provide the base for detailed design of the encapsulation plant and the repository spaces, as well as for coordination between the disposal plant and ONKALO. The dimensioning bases for the disposal plant are shown in the Tables at the end of the report. The report can also be used as a basis for comparison in deciding whether the fuel canisters are transported to the repository by a lift or a by vehicle along the access tunnel. (orig.)

  11. Disposal facility in olkiluoto, description of above ground facilities in lift transport alternative

    International Nuclear Information System (INIS)

    Kukkola, T.

    2006-11-01

    The above ground facilities of the disposal plant on the Olkiluoto site are described in this report as they will be when the operation of the disposal facility starts in the year 2020. The disposal plant is visualised on the Olkiluoto site. Parallel construction of the deposition tunnels and disposal of the spent fuel canisters constitute the principal design basis of the disposal plant. The annual production of disposal canisters for spent fuel amounts to about 40. Production of 100 disposal canisters has been used as the capacity basis. Fuel from the Olkiluoto plant and from the Loviisa plant will be encapsulated in the same production line. The disposal plant will require an area of about 15 to 20 hectares above ground level. The total building volume of the above ground facilities is about 75000 m 3 . The purpose of the report is to provide the base for detailed design of the encapsulation plant and the repository spaces, as well as for coordination between the disposal plant and ONKALO. The dimensioning bases for the disposal plant are shown in the Tables at the end of the report. The report can also be used as a basis for comparison in deciding whether the fuel canisters are transported to the repository by a lift or by a vehicle along the access tunnel. (orig.)

  12. Ground motion prediction needs for nuclear engineering design

    International Nuclear Information System (INIS)

    Hadjian, A.H.

    1985-01-01

    The basic design philosophy of nuclear power plants stipulates that the risk to the public be as low as reasonably achievable. As a result of this philosophy, the seismic design of nuclear power plants has tended, over time, to diverge from that of other engineered structures. The emphasis at the present time is to specify ground motion at a nuclear facility site as realistically as possible and to design all safety-related structures to respond to the specified ground motion in the elastic range. The characteristics of this realistic design ground motion are discussed and present prediction needs identified

  13. Concept of ground facilities and the analyses of the factors for cost estimation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. Y.; Choi, H. J.; Choi, J. W.; Kim, S. K.; Cho, D. K

    2007-09-15

    The geologic disposal of spent fuels generated from the nuclear power plants is the only way to protect the human beings and the surrounding environments present and future. The direct disposal of the spent fuels from the nuclear power plants is considered, and a Korean Reference HLW disposal System(KRS) suitable for our representative geological conditions have been developed. In this study, the concept of the spent fuel encapsulation process as a key of the above ground facilities for deep geological disposal was established. To do this, the design requirements, such as the functions and the spent fuel accumulations, were reviewed. Also, the design principles and the bases were established. Based on the requirements and the bases, the encapsulation process of the spent fuel from receiving spent fuel of nuclear power plants to transferring canister into the underground repository was established. Simulation for the above-ground facility in graphic circumstances through KRS design concept and disposal scenarios for spent nuclear fuel showed that an appropriate process was performed based on facility design concept and required for more improvement on construction facility by actual demonstration test. And, based on the concept of the above ground facilities for the Korean Reference HLW disposal System, the analyses of the factors for the cost estimation was carried out.

  14. From Regional Hazard Assessment to Nuclear-Test-Ban Treaty Support - InSAR Ground Motion Services

    Science.gov (United States)

    Lege, T.; Kalia, A.; Gruenberg, I.; Frei, M.

    2016-12-01

    There are numerous scientific applications of InSAR methods in tectonics, earthquake analysis and other geologic and geophysical fields. Ground motion on local and regional scale measured and monitored via the application of the InSAR techniques provide scientists and engineers with plenty of new insights and further understanding of subsurface processes. However, the operational use of InSAR is not yet very widespread. To foster the operational utilization of the Copernicus Sentinel Satellites in the day-to-day business of federal, state and municipal work and planning BGR (Federal Institute for Geosciences and Natural Resources) initiated workshops with potential user groups. Through extensive reconcilement of interests and demands with scientific, technical, economic and governmental stakeholders (e.g. Ministries, Mining Authorities, Geological Surveys, Geodetic Surveys and Environmental Agencies on federal and state level, SMEs, German Aerospace Center) BGR developed the concept of the InSAR based German National Ground Motion Service. One important backbone for the nationwide ground motion service is the so-called Persistent Scatterer Interferometry Wide Area Product (WAP) approach developed with grants of European research funds. The presentation shows the implementation of the ground motion service and examples for product developments for operational supervision of mining, water resources management and spatial planning. Furthermore the contributions of Copernicus Sentinel 1 radar data in the context of CTBT are discussed. The DInSAR processing of Sentinel 1 IW (Interferometric Wide Swath) SAR acquisitions from January 1st and 13th Jan. 2016 allow for the first time a near real time ground motion measurement of the North Korean nuclear test site. The measured ground displacements show a strong spatio-temporal correlation to the calculated epicenter measured by teleseismic stations. We are convinced this way another space technique will soon contribute even

  15. Chapter 6: Above Ground Deterioration of Wood and Wood-Based Materials

    Science.gov (United States)

    Grant Kirker; Jerrold Winandy

    2014-01-01

    Wood as a material has unique properties that make it ideal for above ground exposure in a wide range of structural and non-strucutral applications. However, no material is without limitations. Wood is a bio-polymer which is subject to degradative processes, both abiotic and biotic. This chapter is a general summary of the abiotic and biotic factors that impact service...

  16. The 20th nuclear explosion test of the Peoples' Republic of China (underground nuclear test)

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    (1) The New China News Agency and the Radio Peking announced that China conducted the underground nuclear explosion test on 17 October, 1976. However, no exact data concerning the data, the place and the scale of this test was stated in above announcement. (2) However, relatively high radioactivity than that of normal level was detected in the rain and dry fallout samples collected from several prefectures. (author)

  17. Above-Level Test Item Functioning across Examinee Age Groups

    Science.gov (United States)

    Warne, Russell T.; Doty, Kristine J.; Malbica, Anne Marie; Angeles, Victor R.; Innes, Scott; Hall, Jared; Masterson-Nixon, Kelli

    2016-01-01

    "Above-level testing" (also called "above-grade testing," "out-of-level testing," and "off-level testing") is the practice of administering to a child a test that is designed for an examinee population that is older or in a more advanced grade. Above-level testing is frequently used to help educators design…

  18. Seismic Data for Evaluation of Ground Motion Hazards in Las Vegas in Support of Test Site Readiness Ground Motion

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, A

    2008-01-16

    In this report we describe the data sets used to evaluate ground motion hazards in Las Vegas from nuclear tests at the Nevada Test Site. This analysis is presented in Rodgers et al. (2005, 2006) and includes 13 nuclear explosions recorded at the John Blume and Associates network, the Little Skull Mountain earthquake and a temporary deployment of broadband station in Las Vegas. The data are available in SAC format on CD-ROM as an appendix to this report.

  19. Modelling the pressurization induced by solar radiation on above ground installations of LPG pipeline systems

    Science.gov (United States)

    Leporini, M.; Terenzi, A.; Marchetti, B.; Giacchetta, G.; Polonara, F.; Corvaro, F.; Cocci Grifoni, R.

    2017-11-01

    Pipelining Liquefied Petroleum Gas (LPG) is a mode of LPG transportation more environmentally-friendly than others due to the lower energy consumption and exhaust emissions. Worldwide, there are over 20000 kilometers of LPG pipelines. There are a number of codes that industry follows for the design, fabrication, construction and operation of liquid LPG pipelines. However, no standards exist to modelling particular critical phenomena which can occur on these lines due to external environmental conditions like the solar radiation pressurization. In fact, the solar radiation can expose above ground pipeline sections at pressure values above the maximum Design Pressure with resulting risks and problems. The present work presents an innovative practice suitable for the Oil & Gas industry to modelling the pressurization induced by the solar radiation on above ground LPG pipeline sections with the application to a real case.

  20. Above Ground Biomass-carbon Partitioning, Storage and Sequestration in a Rehabilitated Forest, Bintulu, Sarawak, Malaysia

    International Nuclear Information System (INIS)

    Kueh, J.H.R.; Majid, N.M.A.; Seca, G.; Ahmed, O.H.

    2013-01-01

    Forest degradation and deforestation are some of the major global concerns as it can reduce forest carbon storage and sequestration capacity. Forest rehabilitation on degraded forest areas has the potential to improve carbon stock, hence mitigate greenhouse gases emission. However, the carbon storage and sequestration potential in a rehabilitated tropical forest remains unclear due to the lack of information. This paper reports an initiative to estimate biomass-carbon partitioning, storage and sequestration in a rehabilitated forest. The study site was at the UPM-Mitsubishi Corporation Forest Rehabilitation Project, UPM Bintulu Sarawak Campus, Bintulu, Sarawak. A plot of 20 x 20 m 2 was established each in site 1991 (Plot 1991), 1999 (Plot 1999) and 2008 (Plot 2008). An adjacent natural regenerating secondary forest plot (Plot NF) was also established for comparison purposes. The results showed that the contribution of tree component biomass/ carbon to total biomass/ carbon was in the order of main stem > branch > leaf. As most of the trees were concentrated in diameter size class = 10 cm for younger rehabilitated forests, the total above ground biomass/ carbon was from this class. These observations suggest that the forests are in the early successional stage. The total above ground biomass obtained for the rehabilitated forest ranged from 4.3 to 4,192.3 kg compared to natural regenerating secondary forest of 3,942.3 kg while total above ground carbon ranged from 1.9 to 1,927.9 kg and 1,820.4 kg, respectively. The mean total above ground biomass accumulated ranged from 1.3 x 10 -2 to 20.5 kg/ 0.04 ha and mean total carbon storage ranged from 5.9 x 10 -3 to 9.4 kg/ 0.04 ha. The total CO 2 sequestrated in rehabilitated forest ranged from 6.9 to 7,069.1 kg CO 2 / 0.04 ha. After 19 years, the rehabilitated forest had total above ground biomass and carbon storage comparable to the natural regeneration secondary forest. The forest rehabilitated activities have the

  1. AMS Ground Truth Measurements: Calibration and Test Lines

    International Nuclear Information System (INIS)

    Wasiolek, P.

    2013-01-01

    Airborne gamma spectrometry is one of the primary techniques used to define the extent of ground contamination after a radiological incident. Its usefulness was demonstrated extensively during the response to the Fukushima nuclear power plant (NPP) accident in March-May 2011. To map ground contamination a set of scintillation detectors is mounted on an airborne platform (airplane or helicopter) and flown over contaminated areas. The acquisition system collects spectral information together with the aircraft position and altitude every second. To provide useful information to decision makers, the count rate data expressed in counts per second (cps) needs to be converted to the terrestrial component of the exposure rate 1 m above ground, or surface activity of isotopes of concern. This is done using conversion coefficients derived from calibration flights. During a large scale radiological event, multiple flights may be necessary and may require use of assets from different agencies. However, as the production of a single, consistent map product depicting the ground contamination is the primary goal, it is critical to establish very early into the event a common calibration line. Such a line should be flown periodically in order to normalize data collected from different aerial acquisition systems and potentially flown at different flight altitudes and speeds. In order to verify and validate individual aerial systems, the calibration line needs to be characterized in terms of ground truth measurements. This is especially important if the contamination is due to short-lived radionuclides. The process of establishing such a line, as well as necessary ground truth measurements, is described in this document.

  2. Assinatura da deposição atmosférica de testes nucleares em sedimentos da costa brasileira (240+239Pu e 137Cs

    Directory of Open Access Journals (Sweden)

    Christian J. Sanders

    2012-01-01

    Full Text Available The aim of this review is to take a look at Cold War era nuclear tests signatures found in Brazilian coastal sediments. Both137Cs and 240+239Pu signatures have been documented in mangrove, coastal mudflats and continental shelf sediments, associated with above ground nuclear tests beginning in the 1950's. The dates associated to the anthropogenic radionuclide signatures 137Cs and 240+239Pu along sediment columns are confirmed by 210Pb geochronology in many of the studies highlighted in this review. The results outlined in this review characterize the extent to which nuclear fallout products reach the Brazilian coast in quantities sufficient for detection, allowing the use of these radioisotopes as geochronometers.

  3. Atomic mass and characteristic constant of nuclear ground state (CENPL.MCC). Pt. 1

    International Nuclear Information System (INIS)

    Su Zongdi; Ma Lizhen; Zhou Chunmei; Ge Zhigang

    1994-01-01

    Atomic mass and characteristic constants for nuclear ground states are basic data for nuclear physics, and necessary ones for basic researches, theoretical calculations, as well as many applied researches. The atomic mass of exotic nuclei quite far from the valley stability are also very important for astrophysics researches. The above-requirement is paid attention to in our setting up this file. The recent and as many as possible data (such as the half-lives of the new nuclides 202 Pt, 208 Hg and 185 Hf and the mass excess of 199 Ir, which were produced and distinguished by Chinese scientists) have been collected, and put into the computer-based data file in brief table format. (1 fig.)

  4. Dosimetry of Rn-222 in the air in environments located above and below ground level

    International Nuclear Information System (INIS)

    Cazula, Camila Dias

    2015-01-01

    Exposure of the general population to ionizing radiation comes mainly from natural sources. The main contribution is due to inhalation of radon (Rn-222), a gas that occurs naturally (UNSCEAR, 2000). The Rn-222 concentration in the environment is controlled by factors such as soil permeability and water content, the weather variability, materials used in the foundation and the usual positive pressure differential between the soil and the internal environment. Studies indicate that the concentration of radon shows a wide variation in the basement, ground floor and upper floors of buildings. The objective of this study is to determine radon levels in basements, ground floor and floors above ground level, at a university in the city of Sao Paulo and in one residential building in the city of Peruibe. Rn-222 measurements were performed using the method with nuclear track of solid state detectors (CR-39). The studied environments present Rn-222 concentration well below the values recommended by the International Commission on Radiological Protection, published in the 2009 document, of 300 Bq/m 3 for homes and 1000 Bq/m 3 for the workplace. In the residential building, the concentration of Ra-266, Th-232 and K-40 in the materials used in the building construction was also analyzed, by gamma spectrometry. The effective total dose for the resident due to external exposure was 0.8 mSv y -1 , lower than the annual dose limit for the general public of 1 mSv y -1 . (author)

  5. Cathodic protection for the bottoms of above ground storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Mohr, John P. [Tyco Adhesives, Norwood, MA (United States)

    2004-07-01

    Impressed Current Cathodic Protection has been used for many years to protect the external bottoms of above ground storage tanks. The use of a vertical deep ground bed often treated several bare steel tank bottoms by broadcasting current over a wide area. Environmental concerns and, in some countries, government regulations, have introduced the use of dielectric secondary containment liners. The dielectric liner does not allow the protective cathodic protection current to pass and causes corrosion to continue on the newly placed tank bottom. In existing tank bottoms where inadequate protection has been provided, leaks can develop. In one method of remediation, an old bottom is covered with sand and a double bottom is welded above the leaking bottom. The new bottom is welded very close to the old bottom, thus shielding the traditional cathodic protection from protecting the new bottom. These double bottoms often employ the use of dielectric liner as well. Both the liner and the double bottom often minimize the distance from the external tank bottom. The minimized space between the liner, or double bottom, and the bottom to be protected places a challenge in providing current distribution in cathodic protection systems. This study examines the practical concerns for application of impressed current cathodic protection and the types of anode materials used in these specific applications. One unique approach for an economical treatment using a conductive polymer cathodic protection method is presented. (author)

  6. Evaluation of Sentinel-1A Data For Above Ground Biomass Estimation in Different Forests in India

    Science.gov (United States)

    Vadrevu, Krishna Prasad

    2017-01-01

    Use of remote sensing data for mapping and monitoring of forest biomass across large spatial scales can aid in addressing uncertainties in carbon cycle. Earlier, several researchers reported on the use of Synthetic Aperture Radar (SAR) data for characterizing forest structural parameters and the above ground biomass estimation. However, these studies cannot be generalized and the algorithms cannot be applied to all types of forests without additional information on the forest physiognomy, stand structure and biomass characteristics. The radar backscatter signal also saturates as forest parameters such as biomass and the tree height increase. It is also not clear how different polarizations (VV versus VH) impact the backscatter retrievals in different forested regions. Thus, it is important to evaluate the potential of SAR data in different landscapes for characterizing forest structural parameters. In this study, the SAR data from Sentinel-1A has been used to characterize forest structural parameters including the above ground biomass from tropical forests of India. Ground based data on tree density, basal area and above ground biomass data from thirty-eight different forested sites has been collected to relate to SAR data. After the pre-processing of Sentinel 1-A data for radiometric calibration, geo-correction, terrain correction and speckle filtering, the variability in the backscatter signal in relation tree density, basal area and above biomass density has been investigated. Results from the curve fitting approach suggested exponential model between the Sentinel-1A backscatter versus tree density and above ground biomass whereas the relationship was almost linear with the basal area in the VV polarization mode. Of the different parameters, tree density could explain most of the variations in backscatter. Both VV and VH backscatter signals could explain only thirty and thirty three percent of variation in above biomass in different forest sites of India

  7. Nitrogen mediates above-ground effects of ozone but not below-ground effects in a rhizomatous sedge

    International Nuclear Information System (INIS)

    Jones, M.L.M.; Hodges, G.; Mills, G.

    2010-01-01

    Ozone and atmospheric nitrogen are co-occurring pollutants with adverse effects on natural grassland vegetation. Plants of the rhizomatous sedge Carex arenaria were exposed to four ozone regimes representing increasing background concentrations (background-peak): 10-30, 35-55, 60-80 and 85-105 ppb ozone at two nitrogen levels: 12 and 100 kg N ha -1 yr -1 . Ozone increased the number and proportion of senesced leaves, but not overall leaf number. There was a clear nitrogen x ozone interaction with high nitrogen reducing proportional senescence in each treatment and increasing the ozone dose (AOT40) at which enhanced senescence occurred. Ozone reduced total biomass due to significant effects on root biomass. There were no interactive effects on shoot:root ratio. Rhizome tissue N content was increased by both nitrogen and ozone. Results suggest that nitrogen mediates above-ground impacts of ozone but not impacts on below-ground resource translocation. This may lead to complex interactive effects between the two pollutants on natural vegetation. - Nitrogen alters threshold of ozone-induced senescence, but not below-ground resource allocation.

  8. EnviroAtlas - Above Ground Live Biomass Carbon Storage for the Conterminous United States- Forested

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset includes the average above ground live dry biomass estimate for the Watershed Boundary Dataset (WBD) 12-digit Hydrologic Unit (HUC) in kg/m...

  9. Below- and above-ground effects of deadwood and termites in plantation forests

    Science.gov (United States)

    Michael D. Ulyshen; Richard Shefferson; Scott Horn; Melanie K. Taylor; Bryana Bush; Cavell Brownie; Sebastian Seibold; Michael S. Strickland

    2017-01-01

    Deadwood is an important legacy structure in managed forests, providing continuity in shelter and resource availability for many organisms and acting as a vehicle by which nutrients can be passed from one stand to the next following a harvest. Despite existing at the interface between below- and above-ground systems, however, much remains unknown about the role woody...

  10. Water activities in Forsmark (Part II). The final disposal facility for spent fuel: water activities above ground; Vattenverksamhet i Forsmark (del II). Slutfoervarsanlaeggningen foer anvaent kaernbraensle: Vattenverksamheter ovan mark

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent [EmpTec (Sweden); Hamren, Ulrika; Collinder, Per [Ekologigruppen AB (Sweden); Ridderstolpe, Peter [WRS Uppsala AB (Sweden)

    2010-09-15

    The construction of the repository for spent nuclear fuel in Forsmark is associated with a number of measures above ground that constitute water operations according to Chapter 11 in the Swedish Environmental Code. This report, which is an appendix to the Environmental Impact Assessment, describes these water operations, their effects and consequences, and planned measures

  11. Current Ground Test Options for Nuclear Thermal Propulsion (NTP)

    Science.gov (United States)

    Gerrish, Harold P., Jr.

    2014-01-01

    (approximately 1 GW) with a maximum burn time of 1 hour. The concept utilized lessons learned from NF-1. The strategy breaks down the exhaust into parallel paths to allow flexibility with engine size and mass flow of exhaust. Similar to NF-1, the exhaust is slowed down, cooled, filtered of particulates, filtered of noble gases, and then the clean hydrogen is flared to open air. Another concept proposed by Steve Howe (currently Director of the Center for Space Nuclear Research) to simplify the NTP exhaust filtering is to run the hydrogen exhaust into boreholes underground to filter the exhaust. The two borehole site locations proposed are at the NTS and at the Idaho National Laboratory (INL). At NTS, the boreholes are 8' diameter and 1200' deep. The permeability of hydrogen through the soil and its buoyancy will allow it to rise up through the soil and allow the filtering of noble gases and radioactive particulates. The exhaust needs to be cooled to 600C before entering the borehole to avoid soil glazing. Preliminary analysis shows a small buildup of back pressure with time which depends on permeability. Noble gases entering the borehole walls deep can take a long time before reaching the surface. Other factors affecting permeability include borehole pressure, water saturation, and turbulence. Also, a possible need to pump out contaminated water collected at the bottom of the borehole. At INL, the borehole concept is slightly different. The underground borehole has openings to the soil at special depths which have impermeable interbeds above the water table and below the surface to allow the exhaust to travel horizontal between the impermeable layers. Preliminary results indicate better permeability than at NTS. The last option is total containment of the exhaust during the test run. The concept involves slowing down the flow to subsonic in a water cooled diffuser. The hydrogen is burned off in an oxygen rich afterburner with the only products being steam, oxygen, and some noble

  12. Study of radial distribution of 239,240Pu and 90Sr in annual tree rings and trunk bark of a 103 years old Norway spruce at four different heights above ground

    International Nuclear Information System (INIS)

    Holgye, Z.; Schlesingerova, E.

    2016-01-01

    Radial distribution of 239,240 Pu and 90 Sr originating from atmospheric nuclear tests in tree rings and trunk bark at heights of 1.3, 10, 18 and 22 m above ground was studied. 239,240 Pu activity concentrations in air dried tree ring samples (each containing 10 annual rings) at all heights were under detection limit of the used method. 90 Sr activity concentrations in tree ring samples ranged from 0.54 to 2.81 Bq kg -1 . 239,240 Pu and 90 Sr were present in the trunk bark. The paper presents data for 239,240 Pu and 90 Sr aggregated transfer factors to tree trunk. (author)

  13. Stability evaluation of ground considering dynamic vertical ground motion. Pt. 3. Effect of dynamic vertical motions on sliding safety factor of foundation ground and surrounding slope in nuclear power plant

    International Nuclear Information System (INIS)

    Ishikawa, Hiroyuki; Sato, Hiroaki; Kawai, Tadashi; Kanatani, Mamoru

    2003-01-01

    In this report, time differences of the peak accelerations between horizontal and vertical motions were investigated based on the earthquake records on the rock sites and analytical studies were carried out in order to investigate the effect of them to the fluctuations of the minimum sliding safety factors of the foundation ground and surrounding slope of nuclear power plants. Summaries of this report were as follows; (1) Maximum time difference of the peak accelerations between horizontal and vertical motions on the rock sites was approximately 10 seconds in the earthquakes within the epicenter distance of 100 km. (2) Analytical studies that employed the equivalent linear analysis with horizontal and vertical input motions were carried out against the representative models and ground properties of the foundation grounds and surrounding slopes in nuclear power plants. The combinations of the horizontal and vertical motions were determined from the above-mentioned investigation results based on the actual earthquake records. It was revealed that the fluctuations of the minimum sliding safety factors were not seriously affected by the time difference of the peak accelerations between horizontal and vertical motions. (author)

  14. Long-term above-ground biomass production in a red oak-pecan agroforestry system

    Science.gov (United States)

    Agroforestry systems have widely been recognized for their potential to foster long-term carbon sequestration in woody perennials. This study aims to determine the above-ground biomass in a 16-year-old red oak (Quercus rubra) - pecan (Carya illinoinensis) silvopastoral planting (141 and 53 trees ha-...

  15. Full scale dynamic testing of Paks nuclear power plant structures

    International Nuclear Information System (INIS)

    Da Rin, E.M.

    1995-01-01

    This report refers to the full-scale dynamic structural testing activities that have been performed in December 1994 at the Paks (H) Nuclear Power Plant, within the framework of: the IAEA Coordinated research Programme 'Benchmark Study for the Seismic Analysis and Testing of WWER-type Nuclear Power Plants, and the nuclear research activities of ENEL-WR/YDN, the Italian National Electricity Board in Rome. The specific objective of the conducted investigation was to obtain valid data on the dynamic behaviour of the plant's major constructions, under normal operating conditions, for enabling an assessment of their actual seismic safety to be made. As described in more detail hereafter, the Paks NPP site has been subjected to low level earthquake like ground shaking, through appropriately devised underground explosions, and the dynamic response of the plant's 1 st reactor unit important structures was appropriately measured and digitally recorded. In-situ free field response was measured concurrently and, moreover, site-specific geophysical and seismological data were simultaneously acquired too. The above-said experimental data is to provide basic information on the geophysical and seismological characteristics of the Paks NPP site, together with useful reference information on the true dynamic characteristics of its main structures and give some indications on the actual dynamic soil-structure interaction effects for the case of low level excitation

  16. Ground-water sampling of the NNWSI (Nevada Nuclear Waste Storage Investigation) water table test wells surrounding Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Matuska, N.A.

    1988-12-01

    The US Geological Survey (USGS), as part of the Nevada Nuclear Waste Storage Investigation (NNWSI) study of the water table in the vicinity of Yucca Mountain, completed 16 test holes on the Nevada Test Site and Bureau of Land Management-administered lands surrounding Yucca Mountain. These 16 wells are monitored by the USGS for water-level data; however, they had not been sampled for ground-water chemistry or isotropic composition. As part of the review of the proposed Yucca Mountain high-level nuclear waste repository, the Desert Research Institute (DRI) sampled six of these wells. The goal of this sampling program was to measure field-dependent parameters of the water such as electrical conductivity, pH, temperature and dissolved oxygen, and to collect samples for major and minor element chemistry and isotopic analysis. This information will be used as part of a program to geochemically model the flow direction between the volcanic tuff aquifers and the underlying regional carbonate aquifer

  17. Successful range-expanding plants experience less above-ground and below-ground enemy impact.

    Science.gov (United States)

    Engelkes, Tim; Morriën, Elly; Verhoeven, Koen J F; Bezemer, T Martijn; Biere, Arjen; Harvey, Jeffrey A; McIntyre, Lauren M; Tamis, Wil L M; van der Putten, Wim H

    2008-12-18

    Many species are currently moving to higher latitudes and altitudes. However, little is known about the factors that influence the future performance of range-expanding species in their new habitats. Here we show that range-expanding plant species from a riverine area were better defended against shoot and root enemies than were related native plant species growing in the same area. We grew fifteen plant species with and without non-coevolved polyphagous locusts and cosmopolitan, polyphagous aphids. Contrary to our expectations, the locusts performed more poorly on the range-expanding plant species than on the congeneric native plant species, whereas the aphids showed no difference. The shoot herbivores reduced the biomass of the native plants more than they did that of the congeneric range expanders. Also, the range-expanding plants developed fewer pathogenic effects in their root-zone soil than did the related native species. Current predictions forecast biodiversity loss due to limitations in the ability of species to adjust to climate warming conditions in their range. Our results strongly suggest that the plants that shift ranges towards higher latitudes and altitudes may include potential invaders, as the successful range expanders may experience less control by above-ground or below-ground enemies than the natives.

  18. Power quality considerations for nuclear spectroscopy applications: Grounding

    Science.gov (United States)

    García-Hernández, J. M.; Ramírez-Jiménez, F. J.; Mondragón-Contreras, L.; López-Callejas, R.; Torres-Bribiesca, M. A.; Peña-Eguiluz, R.

    2013-11-01

    Traditionally the electrical installations are designed for supplying power and to assure the personnel safety. In nuclear analysis laboratories, additional issues about grounding also must be considered for proper operation of high resolution nuclear spectroscopy systems. This paper shows the traditional ways of grounding nuclear spectroscopy systems and through different scenarios, it shows the effects on the more sensitive parameter of these systems: the energy resolution, it also proposes the constant monitoring of a power quality parameter as a way to preserve or to improve the resolution of the systems, avoiding the influence of excessive extrinsic noise.

  19. The effect of cassava-based bioethanol production on above-ground carbon stocks: A case study from Southern Mali

    International Nuclear Information System (INIS)

    Vang Rasmussen, Laura; Rasmussen, Kjeld; Birch-Thomsen, Torben; Kristensen, Søren B.P.; Traoré, Oumar

    2012-01-01

    Increasing energy use and the need to mitigate climate change make production of liquid biofuels a high priority. Farmers respond worldwide to this increasing demand by converting forests and grassland into biofuel crops, but whether biofuels offer carbon savings depends on the carbon emissions that occur when land use is changed to biofuel crops. This paper reports the results of a study on cassava-based bioethanol production undertaken in the Sikasso region in Southern Mali. The paper outlines the estimated impacts on above-ground carbon stocks when land use is changed to increase cassava production. The results show that expansion of cassava production for bioethanol will most likely lead to the conversion of fallow areas to cassava. A land use change from fallow to cassava creates a reduction in the above-ground carbon stocks in the order of 4–13 Mg C ha −1 , depending on (a) the age of the fallow, (b) the allometric equation used and (c) whether all trees are removed or the larger, useful trees are preserved. This ‘carbon debt’ associated with the above-ground biomass loss would take 8–25 years to repay if fossil fuels are replaced with cassava-based bioethanol. - Highlights: ► Demands for biofuels make production of cassava-based bioethanol a priority. ► Farmers in Southern Mali are likely to convert fallow areas to cassava production. ► Converting fallow to cassava creates reductions in above-ground carbon stocks. ► Estimates of carbon stock reductions include that farmers preserve useful trees. ► The carbon debt associated with above-ground biomass loss takes 8–25 years to repay.

  20. Soviet nuclear testing: The Republics say no

    International Nuclear Information System (INIS)

    Carter, L.J.

    1990-01-01

    Massive protests are taking place in Russia against nuclear weapons testing. Efforts have been mounted to stop all testing at Kazakhstan test site near the town of Semipalatinsk, site of the first nuclear detonation in 1949 and of more than 500 test conducted since. Boris Yeltsin proposed just after his election as president of the federation the elimination of testing grounds for nuclear and biological weapons on Russian territory. The central government in Moscow has announced that it is considering closing the Semipalatinsk site. Reaction has also been strong to testing at the Arctic island of Novaya Zemlya, and severe constraints, such as Arctic cold, frozen rocks, high winds, difficult access, and protests by Greenpeace activists and USSR's Nordic neighbors do not make this site attractive. The author feels that this movement in the USSR has set in motion a politically dynamic situation that makes for the best chance for a comprehensive test ban treaty yet witnessed

  1. Land-use type and intensity differentially filter traits in above- and below-ground arthropod communities.

    Science.gov (United States)

    Birkhofer, Klaus; Gossner, Martin M; Diekötter, Tim; Drees, Claudia; Ferlian, Olga; Maraun, Mark; Scheu, Stefan; Weisser, Wolfgang W; Wolters, Volkmar; Wurst, Susanne; Zaitsev, Andrey S; Smith, Henrik G

    2017-05-01

    Along with the global decline of species richness goes a loss of ecological traits. Associated biotic homogenization of animal communities and narrowing of trait diversity threaten ecosystem functioning and human well-being. High management intensity is regarded as an important ecological filter, eliminating species that lack suitable adaptations. Below-ground arthropods are assumed to be less sensitive to such effects than above-ground arthropods. Here, we compared the impact of management intensity between (grassland vs. forest) and within land-use types (local management intensity) on the trait diversity and composition in below- and above-ground arthropod communities. We used data on 722 arthropod species living above-ground (Auchenorrhyncha and Heteroptera), primarily in soil (Chilopoda and Oribatida) or at the interface (Araneae and Carabidae). Our results show that trait diversity of arthropod communities is not primarily reduced by intense local land use, but is rather affected by differences between land-use types. Communities of Auchenorrhyncha and Chilopoda had significantly lower trait diversity in grassland habitats as compared to forests. Carabidae showed the opposite pattern with higher trait diversity in grasslands. Grasslands had a lower proportion of large Auchenorrhyncha and Carabidae individuals, whereas Chilopoda and Heteroptera individuals were larger in grasslands. Body size decreased with land-use intensity across taxa, but only in grasslands. The proportion of individuals with low mobility declined with land-use intensity in Araneae and Auchenorrhyncha, but increased in Chilopoda and grassland Heteroptera. The proportion of carnivorous individuals increased with land-use intensity in Heteroptera in forests and in Oribatida and Carabidae in grasslands. Our results suggest that gradients in management intensity across land-use types will not generally reduce trait diversity in multiple taxa, but will exert strong trait filtering within

  2. Estimating Stand Volume and Above-Ground Biomass of Urban Forests Using LiDAR

    Directory of Open Access Journals (Sweden)

    Vincenzo Giannico

    2016-04-01

    Full Text Available Assessing forest stand conditions in urban and peri-urban areas is essential to support ecosystem service planning and management, as most of the ecosystem services provided are a consequence of forest stand characteristics. However, collecting data for assessing forest stand conditions is time consuming and labor intensive. A plausible approach for addressing this issue is to establish a relationship between in situ measurements of stand characteristics and data from airborne laser scanning (LiDAR. In this study we assessed forest stand volume and above-ground biomass (AGB in a broadleaved urban forest, using a combination of LiDAR-derived metrics, which takes the form of a forest allometric model. We tested various methods for extracting proxies of basal area (BA and mean stand height (H from the LiDAR point-cloud distribution and evaluated the performance of different models in estimating forest stand volume and AGB. The best predictors for both models were the scale parameters of the Weibull distribution of all returns (except the first (proxy of BA and the 95th percentile of the distribution of all first returns (proxy of H. The R2 were 0.81 (p < 0.01 for the stand volume model and 0.77 (p < 0.01 for the AGB model with a RMSE of 23.66 m3·ha−1 (23.3% and 19.59 Mg·ha−1 (23.9%, respectively. We found that a combination of two LiDAR-derived variables (i.e., proxy of BA and proxy of H, which take the form of a forest allometric model, can be used to estimate stand volume and above-ground biomass in broadleaved urban forest areas. Our results can be compared to other studies conducted using LiDAR in broadleaved forests with similar methods.

  3. SAFE testing nuclear rockets economically

    International Nuclear Information System (INIS)

    Howe, Steven D.; Travis, Bryan; Zerkle, David K.

    2003-01-01

    Several studies over the past few decades have recognized the need for advanced propulsion to explore the solar system. As early as the 1960s, Werner Von Braun and others recognized the need for a nuclear rocket for sending humans to Mars. The great distances, the intense radiation levels, and the physiological response to zero-gravity all supported the concept of using a nuclear rocket to decrease mission time. These same needs have been recognized in later studies, especially in the Space Exploration Initiative in 1989. One of the key questions that has arisen in later studies, however, is the ability to test a nuclear rocket engine in the current societal environment. Unlike the Rover/NERVA programs in the 1960s, the rocket exhaust can no longer be vented to the open atmosphere. As a consequence, previous studies have examined the feasibility of building a large-scale version of the Nuclear Furnace Scrubber that was demonstrated in 1971. We have investigated an alternative that would deposit the rocket exhaust along with any entrained fission products directly into the ground. The Subsurface Active Filtering of Exhaust, or SAFE, concept would allow variable sized engines to be tested for long times at a modest expense. A system overview, results of preliminary calculations, and cost estimates of proof of concept demonstrations are presented. The results indicate that a nuclear rocket could be tested at the Nevada Test Site for under $20 M

  4. Nuclear Ground State Properties in Strontium by Fast Beam Laser Spectroscopy

    CERN Multimedia

    2002-01-01

    Hyperfine structures and isotope shifts of strontium isotopes with A=78 to A=100 were measured by collinear fast beam laser spectroscopy. Nuclear spins, moments and changes in mean square charge radii are extracted from the data. The spins and moments of most of the odd isotopes are explained in the framework of the single particle model. The changes in mean square charge radii show a decrease with increasing neutron number below the N=50 shell closure. Above N=50 the charge radii increase regularly up to N=59 before revealing a strong discontinuity, indicating the onset of strong ground state deformation. A comparison of the droplet model shows that for the transitional isotopes below and above N=50, the zero point quadrupole motion describes part of the observed shell effect. Calculations carried out in the Hartree-Fock plus BCS model suggest an additional change in the surface region of the charge distribution at spherical shape. From these calculations it is furthermore proposed, that the isotopes $^7

  5. Ground-water protection activities of the US Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    1987-02-01

    This report evaluates the internal consistency of NRC's ground-water protection programs. These programs have evolved consistently with growing public concerns about the significance of ground-water contamination and environmental impacts. Early NRC programs provided for protection of the public health and safety by minimizing releases of radionuclides. More recent programs have included provisions for minimizing releases of nonradiological constituents, mitigating environmental impacts, and correcting ground-water contamination. NRC's ground-water protection programs are categorized according to program areas, including nuclear materials and waste management (NMSS), nuclear reactor operation (NRR), confirmatory research and standards development (RES), inspection and enforcement (IE), and agreement state programs (SP). Based on analysis of existing ground-water protection programs within NRC, the interoffice Ground-water Protection Group has identified several inconsistencies between and within program areas. These inconsistencies include: (1) different definitions of the term ''ground-water,'' (2) variable regulation of nonradiological constituents in ground water, (3) different design periods for ground-water protection, and (4) different scopes and rigor of ground-water assessments. The second inconsistency stems from differences in statutory authority granted to the NRC. The third inconsistency is rationalized by recognizing differences in perceived risks associated with nuclear facilities. The Ground-water Protection Group will document its analysis of the remaining inconsistencies and make recommendations to reconcile or eliminate them in a subsequent report

  6. Application of Low Voltage High Resistance Grounding in Nuclear Power Plants

    Directory of Open Access Journals (Sweden)

    Choong-Koo Chang

    2016-02-01

    Full Text Available Most nuclear power plants now utilize solid grounded low voltage systems. For safety and reliability reasons, the low voltage (LV high resistance grounding (HRG system is also increasingly used in the pulp and paper, petroleum and chemical, and semiconductor industries. Fault detection is easiest and fastest with a solidly grounded system. However, a solidly grounded system has many limitations such as severe fault damage, poor reliability on essential circuits, and electrical noise caused by the high magnitude of ground fault currents. This paper will briefly address the strengths and weaknesses of LV grounding systems. An example of a low voltage HRG system in the LV system of a nuclear power plant will be presented. The HRG system is highly recommended for LV systems of nuclear power plants if sufficient considerations are provided to prevent nuisance tripping of ground fault relays and to avoid the deterioration of system reliability.

  7. A Comparison of Two Above-Ground Biomass Estimation Techniques Integrating Satellite-Based Remotely Sensed Data and Ground Data for Tropical and Semiarid Forests in Puerto Rico

    Science.gov (United States)

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA)...

  8. Forced vibration tests of a model foundation on rock ground

    International Nuclear Information System (INIS)

    Kisaki, N.; Siota, M.; Yamada, M.; Ikeda, A.; Tsuchiya, H.; Kitazawa, K.; Kuwabara, Y.; Ogiwara, Y.

    1983-01-01

    The response of very stiff structures, such as nuclear reactor buildings, to earthquake ground motion is significantly affected by radiation damping due to the soil-structure interaction. The radiation damping can be computed by vibration admittance theory or dynamical ground compliance theory. In order to apply the values derived from these theories to the practical problems, comparative studies between theoretical results and experimental results concerning the soil-structure interaction, especially if the ground is rock, are urgently needed. However, experimental results for rock are less easily obtained than theoretical ones. The purpose of this paper is to describe the harmonic excitation tests of a model foundation on rock and to describe the results of comparative studies. (orig./HP)

  9. Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation?

    NARCIS (Netherlands)

    Wijk, van M.T.; Williams, M.; Gough, L.; Hobbie, S.E.; Shaver, G.R.

    2003-01-01

    1 A field-experiment was used to determine how plant species might retain dominance in an arctic ecosystem receiving added nutrients. We both measured and modelled the above-ground and below-ground biomass allocation and root morphology of non-acidic tussock tundra near Toolik Lake, Alaska, after 4

  10. The role of above-ground competition and nitrogen vs. phosphorus enrichment in seedling survival of common European plant species of semi-natural grasslands.

    Directory of Open Access Journals (Sweden)

    Tobias Ceulemans

    Full Text Available Anthropogenic activities have severely altered fluxes of nitrogen and phosphorus in ecosystems worldwide. In grasslands, subsequent negative effects are commonly attributed to competitive exclusion of plant species following increased above-ground biomass production. However, some studies have shown that this does not fully account for nutrient enrichment effects, questioning whether lowering competition by reducing grassland productivity through mowing or herbivory can mitigate the environmental impact of nutrient pollution. Furthermore, few studies so far discriminate between nitrogen and phosphorus pollution. We performed a full factorial experiment in greenhouse mesocosms combining nitrogen and phosphorus addition with two clipping regimes designed to relax above-ground competition. Next, we studied the survival and growth of seedlings of eight common European grassland species and found that five out of eight species showed higher survival under the clipping regime with the lowest above-ground competition. Phosphorus addition negatively affected seven plant species and nitrogen addition negatively affected four plant species. Importantly, the negative effects of nutrient addition and higher above-ground competition were independent of each other for all but one species. Our results suggest that at any given level of soil nutrients, relaxation of above-ground competition allows for higher seedling survival in grasslands. At the same time, even at low levels of above-ground competition, nutrient enrichment negatively affects survival as compared to nutrient-poor conditions. Therefore, although maintaining low above-ground competition appears essential for species' recruitment, for instance through mowing or herbivory, these management efforts are likely to be insufficient and we conclude that environmental policies aimed to reduce both excess nitrogen and particularly phosphorus inputs are also necessary.

  11. Confirmation test on the dynamic interaction between a model reactor-building foundation and ground in the Sendai Nuclear Power Station

    International Nuclear Information System (INIS)

    Umezu, Hideo; Kisaki, Noboru; Shiota, Mutsumi

    1982-01-01

    On the site of unit 2 (planned) in the Sendai Nuclear Power Station, a model reactor-building foundation of reinforced concrete with diameter of 12 m and height of 5 m was installed. With a vibration generator, its forced vibration tests were carried out in October to December, 1980. Valuable data were able to be obtained on the dynamic interaction between the model foundation and the ground, and also the outlook for the application of theories in hard base rock was obtained. (1) The resonance frequency of the model foundation in horizontal vibration was 35 Hz in both NS and EW directions. (2) Remarkable difference was not observed in the horizontal vibration behavior between NS and EW directions, so that there is not anisotropy in the ground. (3) The model foundation was deformed nearly as a rigid body. (J.P.N.)

  12. Diffusion of dust particles from a point-source above ground level

    International Nuclear Information System (INIS)

    Hassan, M.H.A.; Eltayeb, I.A.

    1998-10-01

    A pollutant of small particles is emitted by a point source at a height h above ground level in an atmosphere in which a uni-directional wind speed, U, is prevailing. The pollutant is subjected to diffusion in all directions in the presence of advection and settling due to gravity. The equation governing the concentration of the pollutant is studied with the wind speed and the different components of diffusion tensor are proportional to the distance above ground level and the source has a uniform strength. Adopting a Cartesian system of coordinates in which the x-axis lies along the direction of the wind velocity, the z-axis is vertically upwards and the y-axis completes the right-hand triad, the solution for the concentration c(x,y,z) is obtained in closed form. The relative importance of the components of diffusion along the three axes is discussed. It is found that for any plane y=constant (=A), c(x,y,z) is concentrated along a curve of ''extensive pollution''. In the plane A=0, the concentration decreases along the line of extensive pollution as we move away from the source. However, for planes A≅0, the line of extensive pollution possesses a point of accumulation, which lies at a nonzero value of x. As we move away from the plane A=0, the point of accumulation moves laterally away from the plane x=0 and towards the plane z=0. The presence of the point of accumulation is entirely due to the presence of lateral diffusion. (author)

  13. Well drilling by rotary percussive drill above ground

    International Nuclear Information System (INIS)

    Sabatier, G.

    1987-01-01

    Originally, the Well Drilling Section of Cogema used only the diamond core drilling technique. The appearance of independent rotation for compressed air rock drills has led to the use and to the development of this drilling system, as a drill core is not indispensable, when the material of the search is radioactive. During the last few years, hydraulic drills have replaced the compressed air drills and have resulted in a very marked improvement: - of the penetration rates; - of the depth achieved. The Well Drilling Section of Cogema has to drill about 400 km per year with rock drills above ground and holds also the record for depth achieved with this technique, i.e. 400 m in granite. In France, the costs of these types of drilling are for the same depth of the order of one-quarter of the core drilling and half of the drilling with a down-the-hole drill. Cogema has greatly developed the types of well logging which now permits the extension of this type of drilling to the search for other materials than uranium [fr

  14. Rock-Magnetic Method for Post Nuclear Detonation Diagnostics

    Science.gov (United States)

    Englert, J.; Petrosky, J.; Bailey, W.; Watts, D. R.; Tauxe, L.; Heger, A. S.

    2011-12-01

    A magnetic signature characteristic of a Nuclear Electromagnetic Pulse (NEMP) may still be detectable near the sites of atmospheric nuclear tests conducted at what is now the Nevada National Security Site. This signature is due to a secondary magnetization component of the natural remanent magnetization of material containing traces of ferromagnetic particles that have been exposed to a strong pulse of magnetic field. We apply a rock-magnetic method introduced by Verrier et al. (2002), and tested on samples exposed to artificial lightning, to samples of rock and building materials (e.g. bricks, concrete) retrieved from several above ground nuclear test sites. The results of magnetization measurements are compared to NEMP simulations and historic test measurements.

  15. Impacts of Jatropha-based biodiesel production on above and below-ground carbon stocks: A case study from Mozambique

    International Nuclear Information System (INIS)

    Vang Rasmussen, Laura; Rasmussen, Kjeld; Bech Bruun, Thilde

    2012-01-01

    The need to mitigate climate change makes production of liquid biofuels a high priority. Substituting fossil fuels by biodiesel produced from Jatropha curcas has gained widespread attention as Jatropha cultivation is claimed to offer green house gas emission reductions. Farmers respond worldwide to this increasing demand by converting forests into Jatropha, but whether Jatropha-based biodiesel offers carbon savings depends on the carbon emissions that occur when land use is changed to Jatropha. This paper provides an impact assessment of a small-scale Jatropha project in Cabo Delgado, Mozambique. The paper outlines the estimated impacts on above and below-ground carbon stocks when land use is changed to increase Jatropha production. The results show that expansion of Jatropha production will most likely lead to the conversion of miombo forest areas to Jatropha, which implies a reduction in above and below-ground carbon stocks. The carbon debts created by the land use change can be repaid by replacing fossil fuels with Jatropha-based biodiesel. A repayment time of almost two centuries is found with optimistic estimates of the carbon debt, while the use of pessimistic values results in a repayment time that approaches the millennium. - Highlights: ► Demands for biofuels make production of Jatropha-based biodiesel a priority. ► Farmers in Northern Mozambique are likely to convert un-logged miombo to Jatropha. ► Converting miombo to Jatropha creates reductions in above and below-ground carbon. ► It takes 187–966 years to repay emissions from above and below-ground carbon stocks.

  16. The behavior of fission products during nuclear rocket reactor tests

    International Nuclear Information System (INIS)

    Bokor, P.C.; Kirk, W.L.; Bohl, R.J.

    1991-01-01

    Fission product release from nuclear rocket propulsion reactor fuel is an important consideration for nuclear rocket development and application. Fission product data from the last six reactors of the Rover program are collected in this paper to provide as basis for addressing development and testing issues. Fission product loss from the fuel will depend on fuel composition and reactor design and operating parameters. During ground testing, fission products can be contained downstream of the reactor. The last Rover reactor tested, the Nuclear Furnance, was mated to an effluent clean-up system that was effective in preventing the discharge of fission products into the atmosphere

  17. Root herbivory indirectly affects above- and below-ground community members and directly reduces plant performance

    NARCIS (Netherlands)

    Barber, N.A.; Milano, N.J.; Kiers, E.T.; Theis, N.; Bartolo, V.; Hazzard, R.V.; Adler, L.S.

    2015-01-01

    There is a widespread recognition that above- and below-ground organisms are linked through their interactions with host plants that span terrestrial subsystems. In addition to direct effects on plants, soil organisms such as root herbivores can indirectly alter interactions between plants and other

  18. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Patterson, Eileen F.; Sandoval, Marisa N.

    2011-01-01

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  19. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor; Sandoval, Marisa N. [Editor

    2011-09-13

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  20. Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar-chang, Julio [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Revelle, Douglas [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning [Los Alamos National Laboratory

    2008-09-23

    These proceedings contain papers prepared for the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 23-25 September, 2008 in Portsmouth, Virginia. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  1. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A [Editor; Patterson, Eileen F [Editor

    2010-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  2. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Patterson, Eileen F.

    2010-01-01

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  3. Ground motion effects of underground nuclear testing on perennial vegetation at Nevada Test Site

    International Nuclear Information System (INIS)

    Rhoads, W.A.

    1976-07-01

    In this study to estimate the potential injury to vegetation from earth movement caused by underground nuclear detonations and to estimate the extent to which this may have occurred at NTS, two explosions in the megaton range on Pahute Mesa were studied in some detail: Boxcar, which caused a surface subsidence, and Benham, which did not. Because of the subsidence phenomenology, shock propagation through the earth and along the surface, and the resulting fractures, shrubs were killed at Boxcar around the perimeter of the subsidence crater. Both trees and shrubs were killed along tectonic faults, which became the path for earth fractures, and along fractures and rock falls elsewhere. There was also evidence at Boxcar of tree damage which antedated the nuclear testing program, presumably from natural earthquakes. With the possible exception of damage to aged junipers this investigation did not reveal any good evidence of immediate effects from underground testing on vegetation beyond that recognized earlier as the edge effect

  4. Nuclear stress test

    Science.gov (United States)

    ... Persantine stress test; Thallium stress test; Stress test - nuclear; Adenosine stress test; Regadenoson stress test; CAD - nuclear stress; Coronary artery disease - nuclear stress; Angina - nuclear ...

  5. Wiring installation for electric devices above the roof slab of a nuclear reactor

    International Nuclear Information System (INIS)

    Jahnke, S.

    1986-01-01

    The wiring installation is situated inside the nuclear reactor building. It includes, associated to electric devices, a first cable which extends from the device to a fixed connector arranged above the cover. A second cable is connected to the said fixed connector and to a connector fixed on a plate situated out of the reactor. According to the present invention each second cable has several sections. A first section can be connected to the said fixed connector situated above the cover and to a fixed lead-in connector of a fluid-tight conduit above the reactor core. A second section is inside the conduit. A third section can be connected to a lead-out connector fixed on the plate which is out of the reactor. The invention applies more particularly to pressurized water nuclear reactors [fr

  6. Technology Implementation Plan: Irradiation Testing and Qualification for Nuclear Thermal Propulsion Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rader, Jordan D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    This document is a notional technology implementation plan (TIP) for the development, testing, and qualification of a prototypic fuel element to support design and construction of a nuclear thermal propulsion (NTP) engine, specifically its pre-flight ground test. This TIP outlines a generic methodology for the progression from non-nuclear out-of-pile (OOP) testing through nuclear in-pile (IP) testing, at operational temperatures, flows, and specific powers, of an NTP fuel element in an existing test reactor. Subsequent post-irradiation examination (PIE) will occur in existing radiological facilities. Further, the methodology is intended to be nonspecific with respect to fuel types and irradiation or examination facilities. The goals of OOP and IP testing are to provide confidence in the operational performance of fuel system concepts and provide data to program leadership for system optimization and fuel down-selection. The test methodology, parameters, collected data, and analytical results from OOP, IP, and PIE will be documented for reference by the NTP operator and the appropriate regulatory and oversight authorities. Final full-scale integrated testing would be performed separately by the reactor operator as part of the preflight ground test.

  7. Above-ground biomass production and allometric relations of Eucalyptus globulus Labill. coppice plantations along a chronosequence in the central highlands of Ethiopia

    International Nuclear Information System (INIS)

    Zewdie, Mulugeta; Olsson, Mats; Verwijst, Theo

    2009-01-01

    Eucalyptus plantations are extensively managed for wood production in the central highlands of Ethiopia. Nevertheless, little is known about their biomass (dry matter) production, partitioning and dynamics over time. Data from 10 different Eucalyptus globulus stands, with a plantation age ranging from 11 to 60 years and with a coppice-shoot age ranging from 1 to 9 years were collected and analyzed. Above-ground tree biomass of 7-10 sampled trees per stand was determined destructively. Dry weights of tree components (W c ; leaves, twigs, branches, stembark, and stemwood) and total above-ground biomass (W a ) were estimated as a function of diameter above stump (D), tree height (H) and a combination of these. The best fits were obtained, using combinations of D and H. When only one explanatory variable was used, D performed better than H. Total above-ground biomass was linearly related to coppice-shoot age. In contrast a negative relation was observed between the above-ground biomass production and total plantation age (number of cutting cycles). Total above-ground biomass increased from 11 t ha -1 at a stand age of 1 year to 153 t ha -1 at 9 years. The highest dry weight was allocated to stemwood and decreased in the following order: stemwood > leaves > stembark > twigs > branches. The equations developed in this study to estimate biomass components can be applied to other Eucalyptus plantations under the assumption that the populations being studied are similar with regard to density and tree size to those for which the relationships were developed

  8. Above-ground biomass production and allometric relations of Eucalyptus globulus Labill. coppice plantations along a chronosequence in the central highlands of Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Zewdie, Mulugeta; Olsson, Mats; Verwijst, Theo [Swedish University of Agricultural Sciences, Department of Crop Production Ecology, P.O. Box 7043, 75007 Uppsala (Sweden)

    2009-03-15

    Eucalyptus plantations are extensively managed for wood production in the central highlands of Ethiopia. Nevertheless, little is known about their biomass (dry matter) production, partitioning and dynamics over time. Data from 10 different Eucalyptus globulus stands, with a plantation age ranging from 11 to 60 years and with a coppice-shoot age ranging from 1 to 9 years were collected and analyzed. Above-ground tree biomass of 7-10 sampled trees per stand was determined destructively. Dry weights of tree components (W{sub c}; leaves, twigs, branches, stembark, and stemwood) and total above-ground biomass (W{sub a}) were estimated as a function of diameter above stump (D), tree height (H) and a combination of these. The best fits were obtained, using combinations of D and H. When only one explanatory variable was used, D performed better than H. Total above-ground biomass was linearly related to coppice-shoot age. In contrast a negative relation was observed between the above-ground biomass production and total plantation age (number of cutting cycles). Total above-ground biomass increased from 11 t ha{sup -1} at a stand age of 1 year to 153 t ha{sup -1} at 9 years. The highest dry weight was allocated to stemwood and decreased in the following order: stemwood > leaves > stembark > twigs > branches. The equations developed in this study to estimate biomass components can be applied to other Eucalyptus plantations under the assumption that the populations being studied are similar with regard to density and tree size to those for which the relationships were developed. (author)

  9. Anechoic Chamber test of the Electromagnetic Measurement System ground test unit

    Science.gov (United States)

    Stevenson, L. E.; Scott, L. D.; Oakes, E. T.

    1987-04-01

    The Electromagnetic Measurement System (EMMS) will acquire data on electromagnetic (EM) environments at key weapon locations on various aircraft certified for nuclear weapons. The high-frequency ground unit of the EMMS consists of an instrumented B61 bomb case that will measure (with current probes) the localized current density resulting from an applied EM field. For this portion of the EMMS, the first system test was performed in the Anechoic Chamber Facility at Sandia National Laboratories, Albuquerque, New Mexico. The EMMS pod was subjected to EM radiation at microwave frequencies of 1, 3, and 10 GHz. At each frequency, the EMMS pod was rotated at many positions relative to the microwave source so that the individual current probes were exposed to a direct line-of-sight illumination. The variations between the measured and calculated electric fields for the current probes with direct illumination by the EM source are within a few db. The results obtained from the anechoic test were better than expected and verify that the high frequency ground portion of the EMMS will accurately measure the EM environments for which it was designed.

  10. Respiration testing for bioventing and biosparging remediation of petroleum contaminated soil and ground water

    International Nuclear Information System (INIS)

    Gray, A.L.; Brown, A.; Moore, B.J.; Payne, R.E.

    1996-01-01

    Respiration tests were performed to measure the effect of subsurface aeration on the biodegradation rates of petroleum hydrocarbon contamination in vadose zone soils (bioventing) and ground water (biosparging). The aerobic biodegradation of petroleum contamination is typically limited by the absence of oxygen in the soil and ground water. Therefore, the goal of these bioremediation technologies is to increase the oxygen concentration in the subsurface and thereby enhance the natural aerobic biodegradation of the organic contamination. One case study for biosparging bioremediation testing is presented. At this site atmospheric air was injected into the ground water to increase the dissolved oxygen concentration in the ground water surrounding a well, and to aerate the smear zone above the ground water table. Aeration flow rates of 3 to 8 cfm (0.09 to 0.23 m 3 /min) were sufficient to increase the dissolved oxygen concentration. Petroleum hydrocarbon biodegradation rates of 32 to 47 microg/l/hour were calculated based on measurements of dissolved oxygen concentration in ground water. The results of this test have demonstrated that biosparging enhances the biodegradation of petroleum hydrocarbons, but the results as they apply to remediation are not known. Two case studies for bioventing respiration testing are presented

  11. Disease ecology across soil boundaries: effects of below-ground fungi on above-ground host-parasite interactions.

    Science.gov (United States)

    Tao, Leiling; Gowler, Camden D; Ahmad, Aamina; Hunter, Mark D; de Roode, Jacobus C

    2015-10-22

    Host-parasite interactions are subject to strong trait-mediated indirect effects from other species. However, it remains unexplored whether such indirect effects may occur across soil boundaries and connect spatially isolated organisms. Here, we demonstrate that, by changing plant (milkweed Asclepias sp.) traits, arbuscular mycorrhizal fungi (AMF) significantly affect interactions between a herbivore (the monarch butterfly Danaus plexippus) and its protozoan parasite (Ophryocystis elektroscirrha), which represents an interaction across four biological kingdoms. In our experiment, AMF affected parasite virulence, host resistance and host tolerance to the parasite. These effects were dependent on both the density of AMF and the identity of milkweed species: AMF indirectly increased disease in monarchs reared on some species, while alleviating disease in monarchs reared on other species. The species-specificity was driven largely by the effects of AMF on both plant primary (phosphorus) and secondary (cardenolides; toxins in milkweeds) traits. Our study demonstrates that trait-mediated indirect effects in disease ecology are extensive, such that below-ground interactions between AMF and plant roots can alter host-parasite interactions above ground. In general, soil biota may play an underappreciated role in the ecology of many terrestrial host-parasite systems. © 2015 The Author(s).

  12. Disease ecology across soil boundaries: effects of below-ground fungi on above-ground host–parasite interactions

    Science.gov (United States)

    Tao, Leiling; Gowler, Camden D.; Ahmad, Aamina; Hunter, Mark D.; de Roode, Jacobus C.

    2015-01-01

    Host–parasite interactions are subject to strong trait-mediated indirect effects from other species. However, it remains unexplored whether such indirect effects may occur across soil boundaries and connect spatially isolated organisms. Here, we demonstrate that, by changing plant (milkweed Asclepias sp.) traits, arbuscular mycorrhizal fungi (AMF) significantly affect interactions between a herbivore (the monarch butterfly Danaus plexippus) and its protozoan parasite (Ophryocystis elektroscirrha), which represents an interaction across four biological kingdoms. In our experiment, AMF affected parasite virulence, host resistance and host tolerance to the parasite. These effects were dependent on both the density of AMF and the identity of milkweed species: AMF indirectly increased disease in monarchs reared on some species, while alleviating disease in monarchs reared on other species. The species-specificity was driven largely by the effects of AMF on both plant primary (phosphorus) and secondary (cardenolides; toxins in milkweeds) traits. Our study demonstrates that trait-mediated indirect effects in disease ecology are extensive, such that below-ground interactions between AMF and plant roots can alter host–parasite interactions above ground. In general, soil biota may play an underappreciated role in the ecology of many terrestrial host–parasite systems. PMID:26468247

  13. Recognition structure of semipalatinsk residents caused by nuclear explosion tests

    International Nuclear Information System (INIS)

    Hirabayashi, Kyoko; Satoh, Kenichi; Ohtaki, Megu; Muldagaliyev, T.; Apsalikov, K.; Kawano, Noriyuki

    2012-01-01

    Authors' team of Hiroshima University and Scientific Research Institute of Radiation Medicine and Ecology (Kazakhstan) has been investigating the health state, exposure route, contents and mental effect of nuclear explosion tests of Semipalatinsk residents through their witness and questionnaire since 2002, to elucidate the humanistic damage of nuclear tests. Reported here is the recognition structure in the title statistically analyzed with use of frequently spoken words in the witness. The audit was performed in 2002-2007 to 994 residents who had experienced ground explosion tests during the period from 1949 to 1962 and were living in 26 villages near the old test site. Asked questions concerning nuclear tests involved such items as still unforgettable matters, dreadful events, regretting things, thought about the test, requests; and matters about themselves, their family, close friends and anything. The frequency of the test site-related words heard in the interview were analyzed with hierarchical clustering and multi-dimensional scaling with a statistic software R for computation and MeCab for morphological analysis. Residents' recognition was found to be of two structures of memory at explosion tests and anger/dissatisfaction/anxiety to the present state. The former contained the frequent words of mushroom cloud, flash, blast, ground tremble and outdoor evacuation, and the latter, mostly anxiety about health of themselves and family. Thus residents have had to be confronted with uneasiness of their health even 20 years after the closure of the test site. (T.T.)

  14. Emergent Ising degrees of freedom above a double-stripe magnetic ground state

    Science.gov (United States)

    Zhang, Guanghua; Flint, Rebecca

    2017-12-01

    Double-stripe magnetism [Q =(π /2 ,π /2 )] has been proposed as the magnetic ground state for both the iron-telluride and BaTi2Sb2O families of superconductors. Double-stripe order is captured within a J1-J2-J3 Heisenberg model in the regime J3≫J2≫J1 . Intriguingly, besides breaking spin-rotational symmetry, the ground-state manifold has three additional Ising degrees of freedom associated with bond ordering. Via their coupling to the lattice, they give rise to an orthorhombic distortion and to two nonuniform lattice distortions with wave vector (π ,π ) . Because the ground state is fourfold degenerate, modulo rotations in spin space, only two of these Ising bond order parameters are independent. Here, we introduce an effective field theory to treat all Ising order parameters, as well as magnetic order, and solve it within a large-N limit. All three transitions, corresponding to the condensations of two Ising bond order parameters and one magnetic order parameter are simultaneous and first order in three dimensions, but lower dimensionality, or equivalently weaker interlayer coupling, and weaker magnetoelastic coupling can split the three transitions, and in some cases allows for two separate Ising phase transitions above the magnetic one.

  15. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar - Chang, Julio [Los Alamos National Laboratory; Anderson, Dale [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning ( David ) [Los Alamos National Laboratory

    2009-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  16. Above-ground biomass models for Seabuckthorn (Hippophae salicifolia) in Mustang District, Nepal

    DEFF Research Database (Denmark)

    Rajchal, Rajesh; Meilby, Henrik

    2013-01-01

    weight of fruit and oven-dry weight of wood (stem and branches) and leaves were measured and used as a basis for developing biomass models. Diameters of the trees were measured at 30 cm above ground whereas the heights were measured in terms of the total tree height (m). Among several models tested......, the models suggested for local use were: ln(woody biomass, oven-dry, kg) = -3.083 + 2.436 ln(diameter, cm), ln (fruit biomass, fresh, kg) = -3.237 + 1.346 ln(diameter, cm) and ln(leaf biomass, oven-dry, kg) = -4.013 + 1.403 ln(Diameter, cm) with adjusted coefficients of determination of 0.99, 0.73 and 0.......91 for wood, fruit, and leaves, respectively. The models suggested for a slightly broader range of environmental conditions were: ln (woody biomass, oven-dry, kg) = -3.277 + 0.924 ln(diameter2 × height), ln(Fruit biomass, fresh, kg) = -3.146 + 0.485 ln(diameter2 × height) and ln(leaf biomass, oven-dry, kg...

  17. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2007-09-25

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  18. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2007-01-01

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  19. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2006-09-19

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  20. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2006-01-01

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  1. Nuclear moments from heavy-ion inelastic scattering above the Coulomb barrier

    International Nuclear Information System (INIS)

    Gross, E.E.

    1981-01-01

    Use of appropriate theoretical techniques allows the study of the moments of the nuclear charge distribution to be extended above the Coulomb barrier. The investigation of nuclear moments through analysis of differential cross sections is discussed with the aid of several examples: 12 C(70.4 MeV) + 144 146 Nd, importance of multistep effects; 20 Ne(131 MeV) + 208 Pb, large hexadecapole deformation; 12 C(78 MeV) + 194 Pt, asymmetric rotor model; and 22 Ne(93.5 MeV) + 126 Te, mutual excitation. 13 figures, 1 table

  2. Advanced stellar compass deep space navigation, ground testing results

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Jørgensen, Peter Siegbjørn

    2006-01-01

    Deep space exploration is in the agenda of the major space agencies worldwide and at least the European Space Agency (SMART & Aurora Programs) and the American NASA (New Millennium Program) have set up programs to allow the development and the demonstration of technologies that can reduce the risks...... and the costs of the deep space missions. Navigation is the Achilles' heel of deep space. Being performed on ground, it imposes considerable constraints on the system and the operations, it is very expensive to execute, especially when the mission lasts several years and, above all, it is not failure tolerant...... to determine the orbit of a spacecraft autonomously, on-board and without any a priori knowledge of any kind. The solution is robust, elegant and fast. This paper presents the preliminary performances obtained during the ground tests. The results are very positive and encouraging....

  3. ABOVE AND BELOW GROUND INTERACTIONS IN THE AGROFORESTAL ASSOCIATION 'RED CEDAR-PERSIAN LIME-CHAYA'

    Directory of Open Access Journals (Sweden)

    Jesús Mao Estanislao Aguilar-Luna

    2011-05-01

    Full Text Available Above and below ground interactions were analyzed in the agroforestal association 'red cedar-Persian lime-chaya', to know the initial optimum planting density (PD, in Quintana Roo, Mexico. Red cedar and Persian lime were placed in a 'Nelder' circle of 3154 m2 which consisted of 20 concentric circles alternating red cedars and Persian limes to 1.50 m apart and 10 plants per circle; chaya rectangular frame was set at 1.50 x 3.00 m, superimposed on the 'Nelder' circle. Defined eight PD 2602 to 3772 pl·ha-1 with 10 repetitions, to evaluate the length of main root (LMR, radical exploration range (RER, below ground interaction (BGI, plant height (PH, crown diameter (CD, above ground interaction (AGI and soil fertility (SF. The growth intraspecific he present statistical difference (P≤0.05 when moving from one PD to another PD, while the growth interespecific manifested different growth habit. The agroforestal association propitious in soil decreased phosphorous ±2 %, and increases organic matter ±14 % and nitrogen ±10 % on all PD. The BGI was increased in direct relation with the PD, reaching its highest value (64±5.8 % to 3772 pl·ha-1; the AGI also increased in direct relation with the PD, its highest value (52±3.1 % went to 3772 pl·ha-1; therefore, to higher PD increased BGI and AGI, at 20 months after planting.

  4. Geologic surface effects of underground nuclear testing, Yucca Flat, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    Grasso, D.N.

    2000-01-01

    This report presents a new Geographic Information System composite map of the geologic surface effects caused by underground nuclear testing in the Yucca Flat Physiographic Area of the Nevada Test Site, Nye County, Nevada. The Nevada Test Site (NTS) was established in 1951 as a continental location for testing nuclear devices (Allen and others, 1997, p.3). Originally known as the ''Nevada Proving Ground'', the NTS hosted a total of 928 nuclear detonations, of which 828 were conducted underground (U.S. Department of Energy, 1994). Three principal testing areas of the NTS were used: (1) Yucca Flat, (2) Pahute Mesa, and (3) Rainier Mesa including Aqueduct Mesa. Underground detonations at Yucca Flat and Pahute Mesa were typically emplaced in vertical drill holes, while others were tunnel emplacements. Of the three testing areas, Yucca Flat was the most extensively used, hosting 658 underground tests (747 detonations) located at 719 individual sites (Allen and others, 1997, p.3-4). Figure 1 shows the location of Yucca Flat and other testing areas of the NTS. Figure 2 shows the locations of underground nuclear detonation sites at Yucca Flat. Table 1 lists the number of underground nuclear detonations conducted, the number of borehole sites utilized, and the number of detonations mapped for surface effects at Yucca Flat by NTS Operational Area

  5. Hot Ground Vibration Tests

    Data.gov (United States)

    National Aeronautics and Space Administration — Ground vibration tests or modal surveys are routinely conducted to support flutter analysis for subsonic and supersonic vehicles. However, vibration testing...

  6. About condition of soil ground at locations of the former Azgir nuclear test site

    International Nuclear Information System (INIS)

    Akhmetov, E.Z.; Adymov, Zh.I.; Ermatov, A.S.

    2003-01-01

    Full text: Soil condition after underground nuclear explosions at locations of the test sites is considered. The region is situated in the zone of northern deserts and characterized by prevalence of greyish-brown soils in conditions of sharply continental climate and presence of salt in soil-formative complex including tertiary clays, loess-like loam, loam sands and sands. There are small quantity of humus in such soil. During investigation of soil characteristics and ability of soil particles to form conglomerates, possessing of different properties, it is necessary to know both element and phase composition, determining, in the most extent, such physical and mechanical macro-characteristics as: density, stickiness, air and water penetrability, solubility, chemical resistance, granulometric set and others. Phase composition of soil samples can be, to a sufficient extent, determined by the X-ray diffractometry methods using ordinary X-ray experimental facilities. Phase composition of soil includes gypsum, quartz, calcium, potash feldspar hematite, kaolin, peach and mica in different quantities. Data on element composition of soil samples were obtained from the territory of technological locations of test site using the method of X-ray-fluorescent analysis. Granulometric composition of soil ground has been investigated using the methods of dry sieving and wet sieving for determination of radionuclide distribution in different fractions of soil particles. By the method of the dry sieving of soil ground samples there are taken place a sticking the small together of fine fractions and an adhesion of stuck-together particles to more large ones. Therefore, fine fractions cannot be separate completely at dry sieving. As distinct from the dry sieving an use of water jet in the sieving allows to overcome defects of the dry method and, by a sufficiently effective separation of granulometric fractions, to obtain more precise results of investigations of granulometric

  7. Quaternary ground siting technology of nuclear power plants

    International Nuclear Information System (INIS)

    Nishi, K.; Kokusho, T.; Iwatate, Y.; Ishida, K.; Honsho, S.; Okamoto, T.; Tohma, J.; Tanaka, Y.; Kanatani, M.

    1992-01-01

    A seismic stability evaluation method for a nuclear power plant to be located on Quaternary sandy/gravelly ground is discussed herein in terms of a geological and geotechnical survey, a design earthquake motion evaluation and geotechnical seismic stability analyses. The geological and geotechnical exploration tunnel in the rock foundation siting will be difficult in the Quaternary ground siting. Boring, geophysical surveys and soil sampling will play a major role in this case. A design earthquake input spectrum for this siting is proposed to take in account the significant effect of longer period motion on ground stability. Equivalent and non-linear analyses demonstrate the seismic stability of the foundation ground so long as the soil density is high. (author)

  8. GES [Ground Engineering System] test site preparation

    International Nuclear Information System (INIS)

    Cox, C.M.; Mahaffey, M.K.; Miller, W.C.; Schade, A.R.; Toyoda, K.G.

    1987-10-01

    Activities are under way at Hanford to convert the 309 containment building and its associated service wing to a nuclear test facility for the Ground Engineering System (GES) test. Conceptual design is about 80% complete, encompassing facility modifications, a secondary heat transport system, a large vacuum system, a test article cell and handing system, control and data handling systems, and safety andl auxiliary systems. The design makes extensive use of existing equipment to minimize technical risk and cost. Refurbishment of this equipment is 25% complete. Cleanout of some 1000 m 3 of equipment from the earlier reactor test in the facility is 85% complete. An Environmental Assessment was prepared and revised to incorporate Department of Energy (DOE) comments. It is now in the DOE approval chain, where a Finding of No Significant Impact is expected. During the next year, definite design will be well advanced, long-lead procurements will be initiated, construction planning will be completed, an operator training plan will be prepared, and the site (preliminary) safety analysis report will be drafted

  9. Variational Monte Carlo calculations of nuclear ground states

    International Nuclear Information System (INIS)

    Wiringa, R.B.

    1990-01-01

    A major goal in nuclear physics is to understand how nuclear structure comes about from the underlying interactions between nucleons. This requires modelling nuclei as collections of strongly interacting nucleons. We start with realistic nucleon-nucleon potentials, supplemented with consistent three-nucleon potentials and two-body electroweak current operators, and try to predict nuclear ground properties, such as the binding energy, density and momentum distributions, and electromagnetic form factors. We also seek to predict other properties of nuclei such as excited states and low-energy reactions. 21 refs., 14 figs., 5 tabs

  10. Estimation of above ground biomass by using multispectral data for Evergreen Forest in Phu Hin Rong Kla National Park, Thailand

    International Nuclear Information System (INIS)

    Suwanprasit, C.

    2010-01-01

    Tropical forest is the most important and largest source for stocking CO 2 from the atmosphere which might be one of the main sources of carbon emission, global warming and climate change in recent decades. There are two main objectives of this study. The first one is to establish a relationship between above ground biomass and vegetation indices and the other is to evaluate above ground biomass and carbon sequestration for evergreen forest areas in Phu Hin Rong Kla National park, Thailand. Random sampling design based was applied for calculating the above ground biomass at stand level in the selected area by using Brown and Tsutsumi allometric equations. Landsat 7 ETM+ data in February 2009 was used. Support Vector Machine (SVM) was applied for identifying evergreen forest area. Forty-three of vegetation indices and image transformations were used for finding the best correlation with forest stand biomass. Regression analysis was used to investigate the relationship between the biomass volume at stand level and digital data from the satellite image. TM51 which derived from Tsutsumi allometric equation was the highest correlation with stand biomass. Normalized Difference Vegetation Index (NDVI) was not the best correlation in this study. The best biomass estimation model was from TM51 and ND71 (R2 =0.658). The totals of above ground biomass and carbon sequestration were 112,062,010 ton and 56,031,005 ton respectively. The application of this study would be quite useful for understanding the terrestrial carbon dynamics and global climate change. (author)

  11. Handling and disposal of SP-100 ground test nuclear fuel and equipment

    International Nuclear Information System (INIS)

    Wilson, C.E.; Potter, J.D.; Hodgson, R.D.

    1990-05-01

    The post SP-100 reactor testing period will focus on defueling the reactor, packaging the various radioactive waste forms, and shipping this material to the appropriate locations. Remote-handling techniques will be developed to defuel the reactor. Packaging the spent fuel and activated reactor components is a challenge in itself. This paper presents an overview of the strategy, methods, and equipment that will be used during the closeout phase of nuclear testing

  12. Handling and disposal of SP-100 ground test nuclear fuel and equipment

    International Nuclear Information System (INIS)

    Wilson, C.E.; Potter, J.D.; Hodgson, R.D.

    1991-01-01

    The post SP-100 reactor testing period will focus on defueling the reactor, packaging the various radiactive waste forms, and shipping this material to the appropriate locations. Remote-handling techniques will be developed to defuel the reactor. Packaging the spent fuel and activated reactor components is a challenge in itself. This paper presents an overview of the strategy, methods, and equipment that will be used during the closeout phase of nuclear testing

  13. Compatible above-ground biomass equations and carbon stock estimation for small diameter Turkish pine (Pinus brutia Ten.).

    Science.gov (United States)

    Sakici, Oytun Emre; Kucuk, Omer; Ashraf, Muhammad Irfan

    2018-04-15

    Small trees and saplings are important for forest management, carbon stock estimation, ecological modeling, and fire management planning. Turkish pine (Pinus brutia Ten.) is a common coniferous species and comprises 25.1% of total forest area of Turkey. Turkish pine is also important due to its flammable fuel characteristics. In this study, compatible above-ground biomass equations were developed to predict needle, branch, stem wood, and above-ground total biomass, and carbon stock assessment was also described for Turkish pine which is smaller than 8 cm diameter at breast height or shorter than breast height. Compatible biomass equations are useful for biomass prediction of small diameter individuals of Turkish pine. These equations will also be helpful in determining fire behavior characteristics and calculating their carbon stock. Overall, present study will be useful for developing ecological models, forest management plans, silvicultural plans, and fire management plans.

  14. Mapping the spatial pattern of temperate forest above ground biomass by integrating airborne lidar with Radarsat-2 imagery via geostatistical models

    Science.gov (United States)

    Li, Wang; Niu, Zheng; Gao, Shuai; Wang, Cheng

    2014-11-01

    Light Detection and Ranging (LiDAR) and Synthetic Aperture Radar (SAR) are two competitive active remote sensing techniques in forest above ground biomass estimation, which is important for forest management and global climate change study. This study aims to further explore their capabilities in temperate forest above ground biomass (AGB) estimation by emphasizing the spatial auto-correlation of variables obtained from these two remote sensing tools, which is a usually overlooked aspect in remote sensing applications to vegetation studies. Remote sensing variables including airborne LiDAR metrics, backscattering coefficient for different SAR polarizations and their ratio variables for Radarsat-2 imagery were calculated. First, simple linear regression models (SLR) was established between the field-estimated above ground biomass and the remote sensing variables. Pearson's correlation coefficient (R2) was used to find which LiDAR metric showed the most significant correlation with the regression residuals and could be selected as co-variable in regression co-kriging (RCoKrig). Second, regression co-kriging was conducted by choosing the regression residuals as dependent variable and the LiDAR metric (Hmean) with highest R2 as co-variable. Third, above ground biomass over the study area was estimated using SLR model and RCoKrig model, respectively. The results for these two models were validated using the same ground points. Results showed that both of these two methods achieved satisfactory prediction accuracy, while regression co-kriging showed the lower estimation error. It is proved that regression co-kriging model is feasible and effective in mapping the spatial pattern of AGB in the temperate forest using Radarsat-2 data calibrated by airborne LiDAR metrics.

  15. Continuous monitoring of a mountain snowpack in the Austrian Alps by above-ground neutron sensing

    Science.gov (United States)

    Schattan, Paul; Baroni, Gabriele; Oswald, Sascha E.; Schöber, Johannes; Fey, Christine; Francke, Till; Huttenlau, Matthias; Achleitner, Stefan

    2017-04-01

    In alpine catchments the knowledge of the spatially and temporally heterogeneous dynamics of snow accumulation and depletion is crucial for modelling and managing water resources. While snow covered area can be retrieved operationally from remote sensing data, continuous measurements of other snow state variables like snow depth (SD) or snow water equivalent (SWE) remain challenging. Existing methods of retrieving both variables in alpine terrain face severe issues like a lack of spatial representativeness, labour-intensity or discontinuity in time. Recently, promising new measurement techniques combining a larger support with low maintenance cost like above-ground gamma-ray scintillators, GPS interferometric reflectometry or above-ground cosmic-ray neutron sensors (CRNS) have been suggested. While CRNS has proven its potential for monitoring soil moisture in a wide range of environments and applications, the empirical knowledge of using CRNS for snowpack monitoring is still very limited and restricted to shallow snowpacks with rather uniform evolution. The characteristics of an above-ground cosmic-ray neutron sensor (CRNS) were therefore evaluated for monitoring a mountain snowpack in the Austrian Alps (Kaunertal, Tyrol) during three winter seasons. The measurement campaign included a number of measurements during the period from 03/2014 to 06/2016: (i) neutron count measurements by CRNS, (ii) continuous point-scale SD and SWE measurements from an automatic weather station and (iii) 17 Terrestrial Laser Scanning (TLS) with simultaneous SD and SWE surveys. The highest accumulation in terms of SWE was found in 04/2014 with 600 mm. Neutron counts were compared to all available snow data. While previous studies suggested a signal saturation at around 100 mm of SWE, no complete signal saturation was found. A strong non-linear relation was found for both SD and SWE with best fits for spatially distributed TLS based snow data. Initially slightly different shapes were

  16. Environmental assessment of SP-100 ground engineering system test site: Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1988-12-01

    The US Department of Energy (DOE) proposes to modify an existing reactor containment building (decommissioned Plutonium Recycle Test Reactor (PRTR) 309 Building) to provide ground test capability for the prototype SP-100 reactor. The 309 Building (Figure 1.1) is located in the 300 Area on the Hanford Site in Washington State. The National Environmental Policy Act (NEPA) requires that Federal agencies assess the potential impacts that their actions may have on the environment. This Environmental Assessment describes the consideration given to environmental impacts during reactor concept and test site selection, examines the environmental effects of the DOE proposal to ground test the nuclear subsystem, describes alternatives to the proposed action, and examines radiological risks of potential SP-100 use in space. 73 refs., 19 figs., 7 tabs.

  17. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta) Forests

    Science.gov (United States)

    McIntosh, Anne C. S.; Macdonald, S. Ellen; Quideau, Sylvie A.

    2016-01-01

    Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights

  18. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta Forests.

    Directory of Open Access Journals (Sweden)

    Anne C S McIntosh

    Full Text Available Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs and multiple carbon-source substrate-induced respiration (MSIR of the forest floor microbial community environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis showed that two above-ground (mean tree diameter, litter cover and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs properties were associated with variation in understory plant community composition. These results provide

  19. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta) Forests.

    Science.gov (United States)

    McIntosh, Anne C S; Macdonald, S Ellen; Quideau, Sylvie A

    2016-01-01

    Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights

  20. Assessment of erecting nuclear power plants below ground in an open building pit

    International Nuclear Information System (INIS)

    Kroeger, W.; Altes, J.; Bongartz, R.; David, P.H.; Escherich, K.H.; Kasper, K.; Koschmieder, D.; Roethig, K.D.; Schwarzer, K.; Wolters, J.

    1978-01-01

    The technical feasibility, costs and safety potential of siting a nuclear power plant below ground level have been assessed. The reference plant was a 1,300 MWsub(e) PWR and the siting was based on a 'cut-and-cover' design in soil. The 'cut-and-cover' design enhances the safety potential of the site both with regard to extreme internal accidents and to external impacts inclusive of hostile attack. The measures required to 'harden' the site against these extreme conditions do not cancel each other. The realization of the safety potential is strongly dependent on the reliability of the closure equipment on routes to the atmosphere. These closures represent the remaining vulnerable feature of the design, as all other release paths are through soil which prevents any immediate danger to the public. The concepts considered include partial or complete lowering of the reactor. The thickness of the coverage depends on the degree of protection required and is typically between 8 and 13 m. The essential systems of the above-ground design are unchanged and therefore prior experience and existing designs can be applied. The concepts appear to be technically feasible including, in particular, the large pits and the additional closures; the technical difficulties, however, should not be underestimated. The depth of lowering does not determine the gain in safety because a well designed coverage can act as natural soil. Partial lowering, in fact, appears to be the more economic method. According to the degree of protection and the variations of design, the concepts would cost between 8 and 14% more than the capital cost of an equivalent above-ground plant. The construction time would be extended by 1.4 years for the concepts investigated. (orig./HP) [de

  1. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    Science.gov (United States)

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-01-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the U.S. Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts supported through the U.S. Department of Energy program will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Test-generated contaminants have been introduced over large areas and at variable depths above and below the water table throughout NTS. Evaluating the risks associated with these byproducts of underground testing presupposes a knowledge of the source, transport, and potential receptors of these contaminants. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. Any assessment of the risk must rely in part on the current understanding of ground-water flow, and the assessment will be only as good as the understanding

  2. Hydraulic Characterization of Overpressured Tuffs in Central Yucca Flat, Nevada Test Site, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    K.J. Halford; R.J. Laczniak; D.L. Galloway

    2005-10-07

    A sequence of buried, bedded, air-fall tuffs has been used extensively as a host medium for underground nuclear tests detonated in the central part of Yucca Flat at the Nevada Test Site. Water levels within these bedded tuffs have been elevated hundreds of meters in areas where underground nuclear tests were detonated below the water table. Changes in the ground-water levels within these tuffs and changes in the rate and distribution of land-surface subsidence above these tuffs indicate that pore-fluid pressures have been slowly depressurizing since the cessation of nuclear testing in 1992. Declines in ground-water levels concurrent with regional land subsidence are explained by poroelastic deformation accompanying ground-water flow as fluids pressurized by underground nuclear detonations drain from the host tuffs into the overlying water table and underlying regional carbonate aquifer. A hydraulic conductivity of about 3 x 10-6 m/d and a specific storage of 9 x 10-6 m-1 are estimated using ground-water flow models. Cross-sectional and three-dimensional ground-water flow models were calibrated to measured water levels and to land-subsidence rates measured using Interferometric Synthetic Aperture Radar. Model results are consistent and indicate that about 2 million m3 of ground water flowed from the tuffs to the carbonate rock as a result of pressurization caused by underground nuclear testing. The annual rate of inflow into the carbonate rock averaged about 0.008 m/yr between 1962 and 2005, and declined from 0.005 m/yr in 2005 to 0.0005 m/yr by 2300.

  3. The impact of forest structure and spatial scale on the relationship between ground plot above ground biomass and GEDI lidar waveforms

    Science.gov (United States)

    Armston, J.; Marselis, S.; Hancock, S.; Duncanson, L.; Tang, H.; Kellner, J. R.; Calders, K.; Disney, M.; Dubayah, R.

    2017-12-01

    The NASA Global Ecosystem Dynamics Investigation (GEDI) will place a multi-beam waveform lidar instrument on the International Space Station (ISS) to provide measurements of forest vertical structure globally. These measurements of structure will underpin empirical modelling of above ground biomass density (AGBD) at the scale of individual GEDI lidar footprints (25m diameter). The GEDI pre-launch calibration strategy for footprint level models relies on linking AGBD estimates from ground plots with GEDI lidar waveforms simulated from coincident discrete return airborne laser scanning data. Currently available ground plot data have variable and often large uncertainty at the spatial resolution of GEDI footprints due to poor colocation, allometric model error, sample size and plot edge effects. The relative importance of these sources of uncertainty partly depends on the quality of ground measurements and region. It is usually difficult to know the magnitude of these uncertainties a priori so a common approach to mitigate their influence on model training is to aggregate ground plot and waveform lidar data to a coarser spatial scale (0.25-1ha). Here we examine the impacts of these principal sources of uncertainty using a 3D simulation approach. Sets of realistic tree models generated from terrestrial laser scanning (TLS) data or parametric modelling matched to tree inventory data were assembled from four contrasting forest plots across tropical rainforest, deciduous temperate forest, and sclerophyll eucalypt woodland sites. These tree models were used to simulate geometrically explicit 3D scenes with variable tree density, size class and spatial distribution. GEDI lidar waveforms are simulated over ground plots within these scenes using monte carlo ray tracing, allowing the impact of varying ground plot and waveform colocation error, forest structure and edge effects on the relationship between ground plot AGBD and GEDI lidar waveforms to be directly assessed. We

  4. Long-term changes in above ground biomass after disturbance in a neotropical dry forest, Hellshire Hills, Jamaica

    DEFF Research Database (Denmark)

    Niño, Milena; McLaren, Kurt P.; Meilby, Henrik

    2014-01-01

    We used data from experimental plots (control, partially cut and clear-cut) established in 1998, in a tropical dry forest (TDF) in Jamaica, to assess changes in above ground biomass (AGB) 10 years after disturbance. The treatments reduced AGB significantly in 1999 (partially cut: 37.6 %, clear-cu...

  5. Advanced Testing Method for Ground Thermal Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [ORNL; Clemenzi, Rick [Geothermal Design Center Inc.; Liu, Su [University of Tennessee (UT)

    2017-04-01

    A new method is developed that can quickly and more accurately determine the effective ground thermal conductivity (GTC) based on thermal response test (TRT) results. Ground thermal conductivity is an important parameter for sizing ground heat exchangers (GHEXs) used by geothermal heat pump systems. The conventional GTC test method usually requires a TRT for 48 hours with a very stable electric power supply throughout the entire test. In contrast, the new method reduces the required test time by 40%–60% or more, and it can determine GTC even with an unstable or intermittent power supply. Consequently, it can significantly reduce the cost of GTC testing and increase its use, which will enable optimal design of geothermal heat pump systems. Further, this new method provides more information about the thermal properties of the GHEX and the ground than previous techniques. It can verify the installation quality of GHEXs and has the potential, if developed, to characterize the heterogeneous thermal properties of the ground formation surrounding the GHEXs.

  6. Impact of deforestation and climate on the Amazon Basin's above-ground biomass during 1993-2012.

    Science.gov (United States)

    Exbrayat, Jean-François; Liu, Yi Y; Williams, Mathew

    2017-11-15

    Since the 1960s, large-scale deforestation in the Amazon Basin has contributed to rising global CO 2 concentrations and to climate change. Recent advances in satellite observations enable estimates of gross losses of above-ground biomass (AGB) stocks due to deforestation. However, because of simultaneous regrowth, the net contribution of deforestation emissions to rising atmospheric CO 2 concentrations is poorly quantified. Climate change may also reduce the potential for forest regeneration in previously disturbed regions. Here, we address these points of uncertainty with a machine-learning approach that combines satellite observations of AGB with climate data across the Amazon Basin to reconstruct annual maps of potential AGB during 1993-2012, the above-ground C storage potential of the undisturbed landscape. We derive a 2.2 Pg C loss of AGB over the study period, and, for the regions where these losses occur, we estimate a 0.7 Pg C reduction in potential AGB. Thus, climate change has led to a decline of ~1/3 in the capacity of these disturbed forests to recover and recapture the C lost in disturbances during 1993-2012. Our approach further shows that annual variations in land use change mask the natural relationship between the El Niño/Southern Oscillation and AGB stocks in disturbed regions.

  7. An engineering geological investigation of ground subsidence above the Huntly East Mine

    Energy Technology Data Exchange (ETDEWEB)

    Kelsey, P.I.

    1987-10-01

    Ground subsidence above the Huntly East Mine at the N.Z.E.D. Hostel has affected an area of approximately seven hectares with measured settlements of over 800mm. Extensive damage was suffered by most buildings and services of the hostel complex To determine the cause(s) and mechanism(s) of the subsidence, site and laboratory investigations were undertaken. Site investigations included core and wash drilling, geophysical borehole logging, dutch cone penetrometer soundings plus piezometer installation and monitoring. Laboratory investigations included one dimensional consolidation and permeability testing, SEM fabric studies, XRD and chemical tests for clay mineralogy, and determinations of Atterberg Limits and grain size distributions. The mine overburden geology at the site consists of a 35 to 60m thick sequence of mudstones and coal seams of the Te Kuiti Group (Eocene to Oligocene), and overlain by a 50 to 70m thick succession of saturated sands, silts and gravels of the Tauranga Group (Pliocene to Holocene). Within the Tauranga Group three aquifers are present. The engineering geological model considered most likely to explain the subsidence is mine roof collapse causing void migration to near the top of the Te Kuiti Group sequence resulting in drainage and depressurising of aquifers at the base of the Tauranga Group. Aquifer depressurisation is considered likely to cause consolidation within both the aquifer and aquitards associated with it. Back-analyses of the dewatering consolidation model in terms of both magnitude and rates of settlement are consistent with observed values. A finite difference numerical analysis was developed for estimations of settlement rates. 98 refs., 67 figs., 12 tabs.

  8. Chemical Explosion Experiments to Improve Nuclear Test Monitoring - Developing a New Paradigm for Nuclear Test Monitoring with the Source Physics Experiments (SPE)

    International Nuclear Information System (INIS)

    Snelson, Catherine M.; Abbott, Robert E.; Broome, Scott T.; Mellors, Robert J.; Patton, Howard J.; Sussman, Aviva J.; Townsend, Margaret J.; Walter, William R.

    2013-01-01

    A series of chemical explosions, called the Source Physics Experiments (SPE), is being conducted under the auspices of the U.S. Department of Energy's National Nuclear Security Administration (NNSA) to develop a new more physics-based paradigm for nuclear test monitoring. Currently, monitoring relies on semi-empirical models to discriminate explosions from earthquakes and to estimate key parameters such as yield. While these models have been highly successful monitoring established test sites, there is concern that future tests could occur in media and at scale depths of burial outside of our empirical experience. This is highlighted by North Korean tests, which exhibit poor performance of a reliable discriminant, mb:Ms (Selby et al., 2012), possibly due to source emplacement and differences in seismic responses for nascent and established test sites. The goal of SPE is to replace these semi-empirical relationships with numerical techniques grounded in a physical basis and thus applicable to any geologic setting or depth

  9. Preliminary plan for decommissioning - repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Hallberg, Bengt; Tiberg, Liselotte

    2010-06-01

    The final disposal facility for spent nuclear fuel is part of the KBS-3 system, which also consists of a central facility for interim storage and encapsulation of the spent nuclear fuel and a transport system. The nuclear fuel repository will be a nuclear facility. Regulation SSMFS 2008:1 (Swedish Radiation Safety Authority's regulations on safety of nuclear facilities) requires that the licensee must have a current decommissioning plan throughout the facility lifecycle. Before the facility is constructed, a preliminary decommissioning plan should be reported to the Swedish Radiation Safety Authority. This document is a preliminary decommissioning plan, and submitted as an attachment to SKB's application for a license under the Nuclear Activities Act to construct, own and operate the facility. The final disposal facility for spent nuclear fuel consists of an above ground part and a below ground part and will be built near Forsmark and the final repository for radioactive operational waste, SFR. The parts above and below ground are connected by a ramp and several shafts, e.g. for ventilation. The below ground part consists of a central area, and several landfill sites. The latter form the repository area. The sealed below ground part constitutes the final repository. The decommissioning is taking place after the main operation has ended, that is, when all spent nuclear fuel has been deposited and the deposition tunnels have been backfilled and plugged. The decommissioning involves sealing of the remaining parts of the below ground part and demolition of above ground part. When decommissioning begins, there will be no contamination in the facility. The demolition is therefore performed as for a conventional plant. Demolition waste is sorted and recycled whenever possible or placed in landfill. Hazardous waste is managed in accordance with current regulations. A ground investigation is performed and is the basis for after-treatment of the site. The timetable for the

  10. Potential of ALOS2 and NDVI to Estimate Forest Above-Ground Biomass, and Comparison with Lidar-Derived Estimates

    Directory of Open Access Journals (Sweden)

    Gaia Vaglio Laurin

    2016-12-01

    Full Text Available Remote sensing supports carbon estimation, allowing the upscaling of field measurements to large extents. Lidar is considered the premier instrument to estimate above ground biomass, but data are expensive and collected on-demand, with limited spatial and temporal coverage. The previous JERS and ALOS SAR satellites data were extensively employed to model forest biomass, with literature suggesting signal saturation at low-moderate biomass values, and an influence of plot size on estimates accuracy. The ALOS2 continuity mission since May 2014 produces data with improved features with respect to the former ALOS, such as increased spatial resolution and reduced revisit time. We used ALOS2 backscatter data, testing also the integration with additional features (SAR textures and NDVI from Landsat 8 data together with ground truth, to model and map above ground biomass in two mixed forest sites: Tahoe (California and Asiago (Alps. While texture was useful to improve the model performance, the best model was obtained using joined SAR and NDVI (R2 equal to 0.66. In this model, only a slight saturation was observed, at higher levels than what usually reported in literature for SAR; the trend requires further investigation but the model confirmed the complementarity of optical and SAR datatypes. For comparison purposes, we also generated a biomass map for Asiago using lidar data, and considered a previous lidar-based study for Tahoe; in these areas, the observed R2 were 0.92 for Tahoe and 0.75 for Asiago, respectively. The quantitative comparison of the carbon stocks obtained with the two methods allows discussion of sensor suitability. The range of local variation captured by lidar is higher than those by SAR and NDVI, with the latter showing overestimation. However, this overestimation is very limited for one of the study areas, suggesting that when the purpose is the overall quantification of the stored carbon, especially in areas with high carbon

  11. Modelling above Ground Biomass of Mangrove Forest Using SENTINEL-1 Imagery

    Science.gov (United States)

    Labadisos Argamosa, Reginald Jay; Conferido Blanco, Ariel; Balidoy Baloloy, Alvin; Gumbao Candido, Christian; Lovern Caboboy Dumalag, John Bart; Carandang Dimapilis, Lee, , Lady; Camero Paringit, Enrico

    2018-04-01

    Many studies have been conducted in the estimation of forest above ground biomass (AGB) using features from synthetic aperture radar (SAR). Specifically, L-band ALOS/PALSAR (wavelength 23 cm) data is often used. However, few studies have been made on the use of shorter wavelengths (e.g., C-band, 3.75 cm to 7.5 cm) for forest mapping especially in tropical forests since higher attenuation is observed for volumetric objects where energy propagated is absorbed. This study aims to model AGB estimates of mangrove forest using information derived from Sentinel-1 C-band SAR data. Combinations of polarisations (VV, VH), its derivatives, grey level co-occurrence matrix (GLCM), and its principal components were used as features for modelling AGB. Five models were tested with varying combinations of features; a) sigma nought polarisations and its derivatives; b) GLCM textures; c) the first five principal components; d) combination of models a-c; and e) the identified important features by Random Forest variable importance algorithm. Random Forest was used as regressor to compute for the AGB estimates to avoid over fitting caused by the introduction of too many features in the model. Model e obtained the highest r2 of 0.79 and an RMSE of 0.44 Mg using only four features, namely, σ°VH GLCM variance, σ°VH GLCM contrast, PC1, and PC2. This study shows that Sentinel-1 C-band SAR data could be used to produce acceptable AGB estimates in mangrove forest to compensate for the unavailability of longer wavelength SAR.

  12. Contribution of above- and below-ground plant traits to the structure and function of grassland soil microbial communities.

    Science.gov (United States)

    Legay, N; Baxendale, C; Grigulis, K; Krainer, U; Kastl, E; Schloter, M; Bardgett, R D; Arnoldi, C; Bahn, M; Dumont, M; Poly, F; Pommier, T; Clément, J C; Lavorel, S

    2014-10-01

    Abiotic properties of soil are known to be major drivers of the microbial community within it. Our understanding of how soil microbial properties are related to the functional structure and diversity of plant communities, however, is limited and largely restricted to above-ground plant traits, with the role of below-ground traits being poorly understood. This study investigated the relative contributions of soil abiotic properties and plant traits, both above-ground and below-ground, to variations in microbial processes involved in grassland nitrogen turnover. In mountain grasslands distributed across three European sites, a correlative approach was used to examine the role of a large range of plant functional traits and soil abiotic factors on microbial variables, including gene abundance of nitrifiers and denitrifiers and their potential activities. Direct effects of soil abiotic parameters were found to have the most significant influence on the microbial groups investigated. Indirect pathways via plant functional traits contributed substantially to explaining the relative abundance of fungi and bacteria and gene abundances of the investigated microbial communities, while they explained little of the variance in microbial activities. Gene abundances of nitrifiers and denitrifiers were most strongly related to below-ground plant traits, suggesting that they were the most relevant traits for explaining variation in community structure and abundances of soil microbes involved in nitrification and denitrification. The results suggest that consideration of plant traits, and especially below-ground traits, increases our ability to describe variation in the abundances and the functional characteristics of microbial communities in grassland soils. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Innovative Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    International Nuclear Information System (INIS)

    Hill, T.; Noble, C.; Martinell, J.; Borowski, S.

    2000-01-01

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonably assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible

  14. Innovation Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hill, T.; Noble, C.; Martinell, J. (INEEL); Borowski, S. (NASA Glenn Research Center)

    2000-07-14

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonably assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible.

  15. Innovative Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Thomas Johnathan; Noble, Cheryl Ann; Noble, C.; Martinell, John Stephen; Borowski, S.

    2000-07-01

    The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonable assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible.

  16. α-decay half-lives of some nuclei from ground state to ground state using different nuclear potential

    Directory of Open Access Journals (Sweden)

    Akrawy Dashty T.

    2018-01-01

    Full Text Available Theoretical α-decay half-lives of some nuclei from ground state to ground state are calculated using different nuclear potential model including Coulomb proximity potential (CPPM, Royer proximity potential and Broglia and Winther 1991. The calculated values comparing with experimental data, it is observed that the CPPM model is in good agreement with the experimental data.

  17. Test Plan for the Boiling Water Reactor Dry Cask Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lindgren, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis . These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and by increasing the internal convection through greater canister helium pressure. These same vertical, canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern vertical, canistered dry cask systems. The BWR cask simulator (BCS) has been designed in detail for both the above-ground and below-ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 deg C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the

  18. Ground state energy fluctuations in the nuclear shell model

    International Nuclear Information System (INIS)

    Velazquez, Victor; Hirsch, Jorge G.; Frank, Alejandro; Barea, Jose; Zuker, Andres P.

    2005-01-01

    Statistical fluctuations of the nuclear ground state energies are estimated using shell model calculations in which particles in the valence shells interact through well-defined forces, and are coupled to an upper shell governed by random 2-body interactions. Induced ground-state energy fluctuations are found to be one order of magnitude smaller than those previously associated with chaotic components, in close agreement with independent perturbative estimates based on the spreading widths of excited states

  19. Change Detection for Remote Monitoring of Underground Nuclear Testing: Comparison with Seismic and Associated Explosion Source Phenomenological Data

    DEFF Research Database (Denmark)

    Canty, M.; Jahnke, G.; Nielsen, Allan Aasbjerg

    2005-01-01

    The analysis of open-source satellite imagery is in process of establishing itself as an important tool for monitoring nuclear activities throughout the world which are relevant to disarmament treaties, like e. g. the Comprehensive Nuclear-Test-Ban Treaty (CTBT). However, the detection of anthrop......The analysis of open-source satellite imagery is in process of establishing itself as an important tool for monitoring nuclear activities throughout the world which are relevant to disarmament treaties, like e. g. the Comprehensive Nuclear-Test-Ban Treaty (CTBT). However, the detection...... of conventional multispectral satellite platforms with moderate ground resolution (Landsat TM, ASTER) to detect changes over wide areas.We chose the Nevada Test Site (NTS), USA, for a case study because of the large amount of available ground truth information. The analysis is based on the multivariate alteration...

  20. Nuclear multifragmentation, its relation to general physics. A rich test ground of the fundamentals of statistical mechanics

    International Nuclear Information System (INIS)

    Gross, D.H.E.

    2006-01-01

    Heat can flow from cold to hot at any phase separation even in macroscopic systems. Therefore also Lynden-Bell's famous gravo-thermal catastrophe must be reconsidered. In contrast to traditional canonical Boltzmann-Gibbs statistics this is correctly described only by microcanonical statistics. Systems studied in chemical thermodynamics (ChTh) by using canonical statistics consist of several homogeneous macroscopic phases. Evidently, macroscopic statistics as in chemistry cannot and should not be applied to non-extensive or inhomogeneous systems like nuclei or galaxies. Nuclei are small and inhomogeneous. Multifragmented nuclei are even more inhomogeneous and the fragments even smaller. Phase transitions of first order and especially phase separations therefore cannot be described by a (homogeneous) canonical ensemble. Taking this serious, fascinating perspectives open for statistical nuclear fragmentation as test ground for the basic principles of statistical mechanics, especially of phase transitions, without the use of the thermodynamic limit. Moreover, there is also a lot of similarity between the accessible phase space of fragmenting nuclei and inhomogeneous multistellar systems. This underlines the fundamental significance for statistical physics in general. (orig.)

  1. The risk of leukaemia in young children from exposure to tritium and carbon-14 in the discharges of German nuclear power stations and in the fallout from atmospheric nuclear weapons testing.

    Science.gov (United States)

    Wakeford, Richard

    2014-05-01

    Towards the end of 2007, the results were published from a case-control study (the "KiKK Study") of cancer in young children, diagnosed study found a tendency for cases of leukaemia to live closer to the nearest nuclear power station than their matched controls, producing an odds ratio that was raised to a statistically significant extent for residence within 5 km of a nuclear power station. The findings of the study received much publicity, but a detailed radiological risk assessment demonstrated that the radiation doses received by young children from discharges of radioactive material from the nuclear reactors were much lower than those received from natural background radiation and far too small to be responsible for the statistical association reported in the KiKK Study. This has led to speculation that conventional radiological risk assessments have grossly underestimated the risk of leukaemia in young children posed by exposure to man-made radionuclides, and particular attention has been drawn to the possible role of tritium and carbon-14 discharges in this supposedly severe underestimation of risk. Both (3)H and (14)C are generated naturally in the upper atmosphere, and substantial increases in these radionuclides in the environment occurred as a result of their production by atmospheric testing of nuclear weapons during the late 1950s and early 1960s. If the leukaemogenic effect of these radionuclides has been seriously underestimated to the degree necessary to explain the KiKK Study findings, then a pronounced increase in the worldwide incidence of leukaemia among young children should have followed the notably elevated exposure to (3)H and (14)C from nuclear weapons testing fallout. To investigate this hypothesis, the time series of incidence rates of leukaemia among young children risk of leukaemia in young children following the peak of above-ground nuclear weapons testing, or that incidence rates are related to level of exposure to fallout, is

  2. Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar.

    Science.gov (United States)

    Kristensen, Terje; Næsset, Erik; Ohlson, Mikael; Bolstad, Paul V; Kolka, Randall

    2015-01-01

    A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest ecosystem has been given much less attention. Here we combine the use airborne small footprint scanning lidar with fine-scale spatial C data relating to vegetation and the soil surface to describe and contrast the size and spatial distribution of C pools within and among multilayered Norway spruce (Picea abies) stands. Predictor variables from lidar derived metrics delivered precise models of above- and below-ground tree C, which comprised the largest C pool in our study stands. We also found evidence that lidar canopy data correlated well with the variation in field layer C stock, consisting mainly of ericaceous dwarf shrubs and herbaceous plants. However, lidar metrics derived directly from understory echoes did not yield significant models. Furthermore, our results indicate that the variation in both the mosses and soil organic layer C stock plots appears less influenced by differences in stand structure properties than topographical gradients. By using topographical models from lidar ground returns we were able to establish a strong correlation between lidar data and the organic layer C stock at a stand level. Increasing the topographical resolution from plot averages (~2000 m2) towards individual grid cells (1 m2) did not yield consistent models. Our study demonstrates a connection between the size and distribution of different forest C pools and models derived from airborne lidar data, providing a foundation for future research concerning the use of lidar for assessing and monitoring boreal forest C.

  3. Geotechnical studies relevant to the containment of underground nuclear explosions at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Heuze, F.E.

    1982-05-01

    The Department of Energy and the Department of Defense are actively pursuing a program of nuclear weapons testing by underground explosions at the Nevada Test Site (NTS). Over the past 11 years, scores of tests have been conducted and the safety record is very good. In the short run, emphasis is put on preventing the release of radioactive materials into the atmosphere. In the long run, the subsidence and collapse of the ground above the nuclear cavities also are matters of interest. Currently, estimation of containment is based mostly on empiricism derived from extensive experience and on a combination of physical/mechanical testing and numerical modeling. When measured directly, the mechanical material properties are obtained from short-term laboratory tests on small, conventional samples. This practice does not determine the large effects of scale and time on measured stiffnesses and strengths of geological materials. Because of the limited data base of properties and in situ conditions, the input to otherwise fairly sophisticated computer programs is subject to several simplifying assumptions; some of them can have a nonconservative impact on the calculated results. As for the long-term, subsidence and collapse phenomena simply have not been studied to any significant degree. This report examines the geomechanical aspects of procedures currently used to estimate containment of undergroung explosions at NTS. Based on this examination, it is concluded that state-of-the-art geological engineering practice in the areas of field testing, large scale laboratory measurements, and numerical modeling can be drawn upon to complement the current approach.

  4. Geotechnical studies relevant to the containment of underground nuclear explosions at the Nevada Test Site

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1982-05-01

    The Department of Energy and the Department of Defense are actively pursuing a program of nuclear weapons testing by underground explosions at the Nevada Test Site (NTS). Over the past 11 years, scores of tests have been conducted and the safety record is very good. In the short run, emphasis is put on preventing the release of radioactive materials into the atmosphere. In the long run, the subsidence and collapse of the ground above the nuclear cavities also are matters of interest. Currently, estimation of containment is based mostly on empiricism derived from extensive experience and on a combination of physical/mechanical testing and numerical modeling. When measured directly, the mechanical material properties are obtained from short-term laboratory tests on small, conventional samples. This practice does not determine the large effects of scale and time on measured stiffnesses and strengths of geological materials. Because of the limited data base of properties and in situ conditions, the input to otherwise fairly sophisticated computer programs is subject to several simplifying assumptions; some of them can have a nonconservative impact on the calculated results. As for the long-term, subsidence and collapse phenomena simply have not been studied to any significant degree. This report examines the geomechanical aspects of procedures currently used to estimate containment of undergroung explosions at NTS. Based on this examination, it is concluded that state-of-the-art geological engineering practice in the areas of field testing, large scale laboratory measurements, and numerical modeling can be drawn upon to complement the current approach

  5. Terrestrial laser scanning to quantify above-ground biomass of structurally complex coastal wetland vegetation

    Science.gov (United States)

    Owers, Christopher J.; Rogers, Kerrylee; Woodroffe, Colin D.

    2018-05-01

    Above-ground biomass represents a small yet significant contributor to carbon storage in coastal wetlands. Despite this, above-ground biomass is often poorly quantified, particularly in areas where vegetation structure is complex. Traditional methods for providing accurate estimates involve harvesting vegetation to develop mangrove allometric equations and quantify saltmarsh biomass in quadrats. However broad scale application of these methods may not capture structural variability in vegetation resulting in a loss of detail and estimates with considerable uncertainty. Terrestrial laser scanning (TLS) collects high resolution three-dimensional point clouds capable of providing detailed structural morphology of vegetation. This study demonstrates that TLS is a suitable non-destructive method for estimating biomass of structurally complex coastal wetland vegetation. We compare volumetric models, 3-D surface reconstruction and rasterised volume, and point cloud elevation histogram modelling techniques to estimate biomass. Our results show that current volumetric modelling approaches for estimating TLS-derived biomass are comparable to traditional mangrove allometrics and saltmarsh harvesting. However, volumetric modelling approaches oversimplify vegetation structure by under-utilising the large amount of structural information provided by the point cloud. The point cloud elevation histogram model presented in this study, as an alternative to volumetric modelling, utilises all of the information within the point cloud, as opposed to sub-sampling based on specific criteria. This method is simple but highly effective for both mangrove (r2 = 0.95) and saltmarsh (r2 > 0.92) vegetation. Our results provide evidence that application of TLS in coastal wetlands is an effective non-destructive method to accurately quantify biomass for structurally complex vegetation.

  6. Diversity and above-ground biomass patterns of vascular flora induced by flooding in the drawdown area of China's Three Gorges Reservoir.

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    Full Text Available Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR, because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the

  7. Ground acceleration in a nuclear power plant

    International Nuclear Information System (INIS)

    Pena G, P.; Balcazar, M.; Vega R, E.

    2015-09-01

    A methodology that adopts the recommendations of international organizations for determining the ground acceleration at a nuclear power plant is outlined. Systematic presented here emphasizes the type of geological, geophysical and geotechnical studies in different areas of influence, culminating in assessments of Design Basis earthquake and the earthquake Operating Base. The methodology indicates that in regional areas where the site of the nuclear power plant is located, failures are identified in geological structures, and seismic histories of the region are documented. In the area of detail geophysical tools to generate effects to determine subsurface propagation velocities and spectra of the induced seismic waves are used. The mechanical analysis of drill cores allows estimating the efforts that generate and earthquake postulate. Studies show that the magnitude of the Fukushima earthquake, did not affect the integrity of nuclear power plants due to the rocky settlement found. (Author)

  8. Effects of above- and below-ground competition from shrubs on photosynthesis, transpiration and growth in Quercus robur L

    Science.gov (United States)

    Anna M. Jensen; Magnus Lof; Emile S. Gardiner

    2011-01-01

    For a tree seedling to successfully establish in dense shrubbery, it must maintain function under heterogeneous resource availability. We evaluated leaf-level acclimation in photosynthetic capacity, seedling-level transpiration, and seedling morphology and growth to gain an understanding of the effects of above- and below-ground competition on Quercus robur seedlings....

  9. Hydrogeologic investigations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hawkins, W.L.; Trudeau, D.A.; Drellack, S.L.

    1992-01-01

    The Nevada Test Site was established in 1950 as a continental area for testing nuclear devices and, since 1963, all nuclear detonations there have been underground. Most tests are conducted in vertical shafts with a small percentage conducted in tunnels. The majority of detonation points are above the water table, primarily in volcanic rocks or alluvium. In the testing areas the water table is 450--700 m below the surface. Pre- and post- event geologic investigations are conducted for each test location and long-term studies assess the impact of underground testing on a more regional scale. Studies in progress have not identified any impact on the regional ground water system from testing, but some local effects have been recognized. In some areas where several large tests have been conducted below the water table, water levels hundreds of meters above the regional water table have been measured and radioactivity has been discovered associated with fractures in a few holes. Flow-through and straddle packer testing has revealed unexpectedly high hydraulic pressures at depth. Recently, a multiple completion monitoring well installed to study three zones has confirmed the existence of a significant upward hydraulic gradient. These observations of local pressurization and fracture flow are being further explored to determine the influence of underground nuclear testing on the regional hydrogeologic system

  10. Relativistic analysis of nuclear ground state densities at 135 to 200 ...

    Indian Academy of Sciences (India)

    fitting of differential cross-section and analyzing power, and the appearance of wine-bottle- ... So, the effect of different nuclear density distributions is quite conspicuous in the relativistic ap- proach. Hence, we have analyzed five different nuclear ground state .... The NEG and FNEG densities have been used to see the effect.

  11. Nuclear Test Personnel Review

    Science.gov (United States)

    FOIA Electronic Reading Room Privacy Impact Assessment DTRA No Fear Act Reporting Nuclear Test Personnel Review NTPR Fact Sheets NTPR Radiation Dose Assessment Documents US Atmospheric Nuclear Test History Documents US Underground Nuclear Test History Reports NTPR Radiation Exposure Reports Enewetak

  12. Treatability tests on water from a low-level waste burial ground

    International Nuclear Information System (INIS)

    Taylor, P.A.

    1990-01-01

    Lab-scale treatability tests on trench water from a low-level waste burial ground have shown that the water can be successfully treated by existing wastewater treatment plants at Oak Ridge National Laboratory. Water from the four most highly contaminated trenches that had been identified to date was used in the treatability tests. The softening and ion exchange processes used in the Process Wastewater Treatment Plant removed Sr-90 from the trench water, which was the only radionuclide present at above the discharge limits. The air stripping and activated carbon adsorption processes used in the Nonradiological Wastewater Treatment Plant removed volatile and semi-volatile organics, which were the main contaminants in the trench water, to below detection limits. 6 refs., 2 figs., 7 tabs

  13. Recent Ground Hold and Rapid Depressurization Testing of Multilayer Systems

    Science.gov (United States)

    Johnson, Wesley L.

    2014-01-01

    In the development of flight insulation systems for large cryogenic orbital storage (spray on foam and multilayer insulation), testing need include all environments that are experienced during flight. While large efforts have been expended on studying, bounding, and modeling the orbital performance of the insulation systems, little effort has been expended on the ground hold and ascent phases of a mission. Historical cryogenic in-space systems that have flown have been able to ignore these phases of flight due to the insulation system being within a vacuum jacket. In the development phase of the Nuclear Mars Vehicle and the Shuttle Nuclear Vehicle, several insulation systems were evaluated for the full mission cycle. Since that time there had been minimal work on these phases of flight until the Constellation program began investigating cryogenic service modules and long duration upper stages. With the inception of the Cryogenic Propellant Storage and Transfer Technology Demonstration Mission, a specific need was seen for the data and as such, several tests were added to the Cryogenic Boil-off Reduction System liquid hydrogen test matrix to provide more data on a insulation system. Testing was attempted with both gaseous nitrogen (GN2) and gaseous helium (GHe) backfills. The initial tests with nitrogen backfill were not successfully completed due to nitrogen liquefaction and solidification preventing the rapid pumpdown of the vacuum chamber. Subsequent helium backfill tests were successful and showed minimal degradation. The results are compared to the historical data.

  14. Changes in ground beetle assemblages above and below the treeline of the Dolomites after almost 30 years (1980/2009)

    OpenAIRE

    Pizzolotto, Roberto; Gobbi, Mauro; Brandmayr, Pietro

    2014-01-01

    Very little is known about the changes of ground beetle assemblages in the last few decades in the Alps, and different responses to climate change of animal populations living above and below the treeline have not been estimated yet. This study focuses on an altitudinal habitat sequence from subalpine spruce forest to alpine grassland in a low disturbance area of the southeastern Dolomites in Italy, the Paneveggio Regional Park. We compared the ground beetle (Carabidae) populations sampled in...

  15. Effect of nitrogen addition and drought on above-ground biomass of expanding tall grasses Calamagrostis epigejos and Arrhenatherum elatius

    Czech Academy of Sciences Publication Activity Database

    Fiala, Karel; Tůma, Ivan; Holub, Petr

    2011-01-01

    Roč. 66, č. 2 (2011), s. 275-281 ISSN 0006-3088 R&D Projects: GA ČR(CZ) GA526/06/0556 Institutional research plan: CEZ:AV0Z60050516 Keywords : nitrogen * drought * above-ground biomass Subject RIV: EF - Botanics Impact factor: 0.557, year: 2011

  16. Political aspects of nuclear test effects at Semipalatinsk nuclear test site

    International Nuclear Information System (INIS)

    Sydykov, E.B.; Panin, M.S.

    2003-01-01

    The paper describes tense struggle of Kazakhstan people for closure of the Semipalatinsk Nuclear Test Site. It reveals major foreign policy aspects and nuclear test effects for both Kazakhstan and the world community. (author)

  17. Competitive responses of seedlings and understory plants in longleaf pine woodlands: separating canopy influences above and below ground

    Science.gov (United States)

    Stephen D. Pecot; Robert J. Mitchell; Brian J. Palik; Barry Moser; J. Kevin Hiers

    2007-01-01

    A trenching study was used to investigate above- and below-ground competition in a longleaf pine (Pinus palustris P. Mill.) woodland. Trenched and nontrenched plots were replicated in the woodland matrix, at gap edges, and in gap centers representing a range of overstory stocking. One-half of each plot received a herbicide treatment to remove the...

  18. Ground test for vibration control demonstrator

    Science.gov (United States)

    Meyer, C.; Prodigue, J.; Broux, G.; Cantinaud, O.; Poussot-Vassal, C.

    2016-09-01

    In the objective of maximizing comfort in Falcon jets, Dassault Aviation is developing an innovative vibration control technology. Vibrations of the structure are measured at several locations and sent to a dedicated high performance vibration control computer. Control laws are implemented in this computer to analyse the vibrations in real time, and then elaborate orders sent to the existing control surfaces to counteract vibrations. After detailing the technology principles, this paper focuses on the vibration control ground demonstration that was performed by Dassault Aviation in May 2015 on Falcon 7X business jet. The goal of this test was to attenuate vibrations resulting from fixed forced excitation delivered by shakers. The ground test demonstrated the capability to implement an efficient closed-loop vibration control with a significant vibration level reduction and validated the vibration control law design methodology. This successful ground test was a prerequisite before the flight test demonstration that is now being prepared. This study has been partly supported by the JTI CleanSky SFWA-ITD.

  19. Nuclear waste package materials testing report: basaltic and tuffaceous environments

    International Nuclear Information System (INIS)

    Bradley, D.J.; Coles, D.G.; Hodges, F.N.; McVay, G.L.; Westerman, R.E.

    1983-03-01

    The disposal of high-level nuclear wastes in underground repositories in the continental United States requires the development of a waste package that will contain radionuclides for a time period commensurate with performance criteria, which may be up to 1000 years. This report addresses materials testing in support of a waste package for a basalt (Hanford, Washington) or a tuff (Nevada Test Site) repository. The materials investigated in this testing effort were: sodium and calcium bentonites and mixtures with sand or basalt as a backfill; iron and titanium-based alloys as structural barriers; and borosilicate waste glass PNL 76-68 as a waste form. The testing also incorporated site-specific rock media and ground waters: Reference Umtanum Entablature-1 basalt and reference basalt ground water, Bullfrog tuff and NTS J-13 well water. The results of the testing are discussed in four major categories: Backfill Materials: emphasizing water migration, radionuclide migration, physical property and long-term stability studies. Structural Barriers: emphasizing uniform corrosion, irradiation-corrosion, and environmental-mechanical testing. Waste Form Release Characteristics: emphasizing ground water, sample surface area/solution volume ratio, and gamma radiolysis effects. Component Compatibility: emphasizing solution/rock, glass/rock, glass/structural barrier, and glass/backfill interaction tests. This area also includes sensitivity testing to determine primary parameters to be studied, and the results of systems tests where more than two waste package components were combined during a single test

  20. Study on Quaternary ground siting of nuclear power plant, (1)

    International Nuclear Information System (INIS)

    Kokusho, Takaji; Nishi, Koichi; Honsho, Shizumitsu

    1991-01-01

    A seismic stability evaluation method for a nuclear power plant to be located on a Quaternary sandy/gravelly ground is discussed herein in terms of the geological and geotechnical survey, design earthquake motion evaluation and geotechnical seismic stability analyses. The geological and geotechnical exploration tunnel in the rock-foundation siting will be difficult in the Quaternary ground siting. Boring, geophysical surveys and soil samplings will play a major role in this case. The design earthquake input spectrum for this siting is proposed so as to take account the significant effect of longer period motion on the ground stability. Equivalent and non-linear analyses demonstrate the seismic stability of the foundation ground so long as the soil density is high. (author)

  1. Extreme ground motions and Yucca Mountain

    Science.gov (United States)

    Hanks, Thomas C.; Abrahamson, Norman A.; Baker, Jack W.; Boore, David M.; Board, Mark; Brune, James N.; Cornell, C. Allin; Whitney, John W.

    2013-01-01

    Yucca Mountain is the designated site of the underground repository for the United States' high-level radioactive waste (HLW), consisting of commercial and military spent nuclear fuel, HLW derived from reprocessing of uranium and plutonium, surplus plutonium, and other nuclear-weapons materials. Yucca Mountain straddles the western boundary of the Nevada Test Site, where the United States has tested nuclear devices since the 1950s, and is situated in an arid, remote, and thinly populated region of Nevada, ~100 miles northwest of Las Vegas. Yucca Mountain was originally considered as a potential underground repository of HLW because of its thick units of unsaturated rocks, with the repository horizon being not only ~300 m above the water table but also ~300 m below the Yucca Mountain crest. The fundamental rationale for a geologic (underground) repository for HLW is to securely isolate these materials from the environment and its inhabitants to the greatest extent possible and for very long periods of time. Given the present climate conditions and what is known about the current hydrologic system and conditions around and in the mountain itself, one would anticipate that the rates of infiltration, corrosion, and transport would be very low—except for the possibility that repository integrity might be compromised by low-probability disruptive events, which include earthquakes, strong ground motion, and (or) a repository-piercing volcanic intrusion/eruption. Extreme ground motions (ExGM), as we use the phrase in this report, refer to the extremely large amplitudes of earthquake ground motion that arise at extremely low probabilities of exceedance (hazard). They first came to our attention when the 1998 probabilistic seismic hazard analysis for Yucca Mountain was extended to a hazard level of 10-8/yr (a 10-4/yr probability for a 104-year repository “lifetime”). The primary purpose of this report is to summarize the principal results of the ExGM research program

  2. Summary of the Atmospheric Test Data (Film Scanning and Re-Analysis) Project at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Murray, S. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-03-21

    The goal of the Atmospheric Test Data (ATD) Project is to preserve and make better use of scientific-quality films that were taken during the era of above ground nuclear testing. The project is being done in collaboration with Los Alamos National Laboratory, which is the custodian of the films. Our primary points of contact at LANL have been Alan Carr, Carla Breiner, and Randy Drake.

  3. Space nuclear power plant technology development philosophy for a ground engineering phase

    International Nuclear Information System (INIS)

    Buden, D.; Trapp, T.J.; Los Alamos National Lab., NM)

    1985-01-01

    The development of a space qualified nuclear power plant is proceeding from the technical assessment and advancement phase to the ground engineering phase. In this new phase, the selected concept will be matured by the completion of activities needed before protoflight units can be assembled and qualified for first flight applications. This paper addresses a possible philosophy to arrive at the activities to be performed during the ground engineering phase. The philosophy is derived from what we believe a potential user of nuclear power would like to see completed before commitment to a flight development phase. 5 references

  4. Space nuclear power plant technology development philosophy for a ground engineering phase

    International Nuclear Information System (INIS)

    Buden, D.; Trapp, T.J.

    1985-01-01

    The development of a space qualified nuclear power plant is proceeding from the Technical Assessment and Advancement Phase to the Ground Engineering Phase. In this new phase, the selected concept will be matured by the completion of activities needed before protoflight units can be assembled and qualified for first flight applications. This paper addresses a possible philosophy to arrive at the activities to be performed during the Ground Engineering Phase. The philosophy is derived from what we believe a potential user of nuclear power would like to see completed before commitment to a flight development phase

  5. Risk Perception of Radiation Exposure of Villagers Living Near the Semipalatinsk Nuclear Test Site

    Science.gov (United States)

    Purvis-Roberts, K. L.

    2006-12-01

    Connecting scientific data to societal needs is particularly important with the complex environmental issues that face us in the near future, such as global warming and natural hazards. Once the scientific data is collected and analyzed, dissemination of the results needs to be communicated to the public in a way that can be easily understood without glossing over the complexity of the issue. An interesting case study derives from the primary nuclear test site for the former Soviet Union, located near the city of Semipalatinsk, Kazakhstan. Villagers living directly adjacent to the Semipalatinsk Nuclear Test Site (SNTS) were exposed continuously to radioactive clouds from atmospheric, above ground and underground nuclear tests. The people living in the region are still exposed to low levels of radiation through the environmental contamination of their food and water and have experienced a higher incidence of cancers and birth defects than people living in other regions of the country. A database of historical environmental data was collected throughout the nuclear testing period by the Soviet government, tracking radiation concentrations through food, water, and soil samples around the SNTS, but this environmental data was never shared with the villagers. In fact, only after the Soviet Union fell apart in 1989 did the people discover that they had been exposed to radiation during the past 40 years. Through preliminary interviews with villagers, physicians, and scientists who live near the SNTS, it was discovered that the three groups viewed the risk of radiation exposure very differently. By developing a risk perception survey to understand how the different groups perceived radiation risk, and then comparing the scientific data to the survey results, a better way to communicate the risk could be developed. The risk perception survey was given to over 800 people in East Kazakhstan Oblast, including villagers living near the SNTS, scientists who study the

  6. Single-event effect ground test issues

    International Nuclear Information System (INIS)

    Koga, R.

    1996-01-01

    Ground-based single event effect (SEE) testing of microcircuits permits characterization of device susceptibility to various radiation induced disturbances, including: (1) single event upset (SEU) and single event latchup (SEL) in digital microcircuits; (2) single event gate rupture (SEGR), and single event burnout (SEB) in power transistors; and (3) bit errors in photonic devices. These characterizations can then be used to generate predictions of device performance in the space radiation environment. This paper provides a general overview of ground-based SEE testing and examines in critical depth several underlying conceptual constructs relevant to the conduct of such tests and to the proper interpretation of results. These more traditional issues are contrasted with emerging concerns related to the testing of modern, advanced microcircuits

  7. Towards ground-truthing of spaceborne estimates of above-ground biomass and leaf area index in tropical rain forests

    Science.gov (United States)

    Köhler, P.; Huth, A.

    2010-05-01

    The canopy height of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or lidar. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground biomass (AGB) (and thus carbon content of vegetation) and leaf area index (LAI). The process-based forest growth model FORMIND2.0 was applied to simulate (a) undisturbed forest growth and (b) a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia) in South-East Asia. It is found that for undisturbed forest and a variety of disturbed forests situations AGB can be expressed as a power-law function of canopy height h (AGB=a·hb) with an r2~60% for a spatial resolution of 20 m×20 m (0.04 ha, also called plot size). The regression is becoming significant better for the hectare wide analysis of the disturbed forest sites (r2=91%). There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2~60%) between AGB and the area fraction in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot data from the same region and with the large-scale forest inventory in Lambir. We conclude that the spaceborne remote sensing techniques have the potential to

  8. Advancing Explosion Source Theory through Experimentation: Results from Seismic Experiments Since the Moratorium on Nuclear Testing

    Science.gov (United States)

    Bonner, J. L.; Stump, B. W.

    2011-12-01

    confinement. The Frozen Rock Experiment in 2006 found only minor differences in seismic coupling for explosions in frozen and unfrozen rock. The seismo-acoustic source function was the focus of the above- and below-ground Humble Redwood explosions (2007, 2009 ) in New Mexico and detonations of rocket motor explosions in Utah. Acoustic travel time calibration for the IMS was accomplished with the 2009 and 2011 100-ton surface explosions in southern Israel. The New England Damage Experiment in 2009 correlated increased shear wave generation with increased rock damage from explosions. Damage from explosions continues to be an important research topic at Nevada's National Center for Nuclear Security with the ongoing Source Physics Experiment. A number of exciting experiments are already planned for the future and thus continue the effort to improve global detection, location, and identification of nuclear explosions.

  9. Hiding levitating objects above a ground plane

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Luo, Yu; Mortensen, Asger

    2010-01-01

    An approach to hiding objects levitating above a conducting sheet is suggested in this paper. The proposed device makes use of isotropic negative-refractive-index materials without extreme material parameters, and creates an illusion of a remote conducting sheet. Numerical simulations are perform...

  10. Asia nuclear-test-ban network for nuclear non-proliferation

    International Nuclear Information System (INIS)

    Shinohara, Nobuo; Kokaji, Lisa; Ichimasa, Sukeyuki

    2010-01-01

    In Global Center of Excellence Program of The University of Tokyo, Non- Proliferation Study Committee by the members of nuclear industries, electricity utilities, nuclear energy institutes and universities has initiated on October 2008 from the viewpoints of investigating a package of measures for nuclear non-proliferation and bringing up young people who will support the near-future nuclear energy system. One of the non-proliferation issues in the Committee is the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Objective of this treaty is to cease all nuclear weapon test explosions and all other nuclear explosion. This purpose should be contributed effectively to the political stability of the Asian region by continuous efforts to eliminate the nuclear weapons. In the Committee, by extracting several issues related to the CTBT, conception of 'Asia nuclear-test-ban network for nuclear non-proliferation' has been discussed with the aim of the nuclear-weapon security in Asian region, where environmental nuclear-test monitoring data is mainly treated and utilized. In this paper, the conception of the 'network' is presented in detail. (author)

  11. The risk of leukaemia in young children from exposure to tritium and carbon-14 in the discharges of German nuclear power stations and in the fallout from atmospheric nuclear weapons testing

    Energy Technology Data Exchange (ETDEWEB)

    Wakeford, Richard [The University of Manchester, Centre for Occupational and Environmental Health, Institute of Population Health, Manchester (United Kingdom)

    2014-05-15

    examined from ten cancer registries from three continents and both hemispheres, which include registration data from the early 1960s or before. No evidence of a markedly increased risk of leukaemia in young children following the peak of above-ground nuclear weapons testing, or that incidence rates are related to level of exposure to fallout, is apparent from these registration rates, providing strong grounds for discounting the idea that the risk of leukaemia in young children from {sup 3}H or {sup 14}C (or any other radionuclide present in both nuclear weapons testing fallout and discharges from nuclear installations) has been grossly underestimated and that such exposure can account for the findings of the KiKK Study. (orig.)

  12. Nuclear quadrupole moment of the 99Tc ground state

    International Nuclear Information System (INIS)

    Errico, Leonardo; Darriba, German; Renteria, Mario; Tang Zhengning; Emmerich, Heike; Cottenier, Stefaan

    2008-01-01

    By combining first-principles calculations and existing nuclear magnetic resonance (NMR) experiments, we determine the quadrupole moment of the 9/2 + ground state of 99 Tc to be (-)0.14(3)b. This confirms the value of -0.129(20)b, which is currently believed to be the most reliable experimental determination, and disagrees with two earlier experimental values. We supply ab initio calculated electric-field gradients for Tc in YTc 2 and ZrTc 2 . If this calculated information would be combined with yet to be performed Tc-NMR experiments in these compounds, the error bar on the 99 Tc ground state quadrupole moment could be further reduced

  13. Fabrication and Testing of Nuclear-Thermal Propulsion Ground Test Hardware, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Efficient nuclear-thermal propulsion requires heating a low molecular weight gas, typically hydrogen, to high temperature and expelling it through a nozzle. The...

  14. Impacts of Woody Invader Dillenia suffruticosa (Griff. Martelli on Physio-chemical Properties of Soil and, Below and Above Ground Flora

    Directory of Open Access Journals (Sweden)

    B.A.K. Wickramathilake

    2014-01-01

    Full Text Available Dillenia suffruticosa (Griffith Martelli, that spreads fast in low-lying areas in wet zone of Sri Lanka is currently listed as a nationally important Invasive Alien Species that deserves attention in ecological studies. Thus, impact of this woody invader on physical, chemical properties of soil and below and above ground flora was investigated. Five sampling sites were identified along a distance of 46km from Avissawella to Ratnapura. At each site, two adjacent plots [1m x10m each for D. suffruticosa present (D+ and absent (D-] were outlined. Physical and chemical soil parameters, microbial biomass and number of bacterial colonies in soil were determined using standard procedures and compared between D+ and D- by ANOVA using SPSS. Rate of decomposition of D. suffruticosa leaves was also determined using the litter bag technique at 35% and 50% moisture levels. Above ground plant species richness in sample stands was compared using Jaccard and Sorenson diversity indices.  Decomposition of D. suffruticosa leaves was slow, but occurred at a more or less similar rate irrespective of moisture content of soil. Particle size distribution in D+ soil showed a much higher percentage of large soil particles.  Higher % porosity in D+ sites was a clear indication that the soil was aerated.  The pH was significantly lower for D+ than D- thus developing acidic soils whereas conductivity has been significantly high making soil further stressed. The significant drop in Cation Exchange Capacity (CEC in D+ soil was a remarkable finding to be concerned with as it correlated with fertility of soil. Significantly higher values of phosphates reported in D+ soil support the idea that plant invaders are capable to increase phosphates in soil. Higher biomass values recorded for D+ sites together with higher number of bacterial colonies could be related to the unexpectedly recorded higher Organic Carbon. Both  the  Jaccard  and  Sorenson   indices indicated  that

  15. Comprehensive study of temperature anomalies on of the former Semipalatinsk nuclear test site territory

    International Nuclear Information System (INIS)

    Subbotin, S.B.; Lukashenko, S.N.; Dmitropavlenko, V.N.; Ajdarkhanov, A.O.; Duchkov, A.D.; Kazantsev, S.A.

    2005-01-01

    In 1997 by the space images data in the Semipalatinsk test site area a mysterious anomaly thermal zone with square about 20 thousand sq. km. with soil temperature 10-15 degrees above than on the adjacent areas was found. The results of 1996-1999 observation confirm the presence of steady temperature anomalies. A number of scientists are suggesting that the increased temperature zones are related with conducted nuclear tests. These temperature anomalies related with objects of nuclear explosions conduction and its have limited distribution the spatially attached to nuclear explosions cavities. Anomalies are the sequent of residual manifestation of long-time geothermal activity in the underground nuclear explosions epicenters. In 2001 in the frameworks of joint program 'Comprehensive study of thermal anomalies on the territory of the former Semipalatinsk test site' the direct measurements of soils on the five sections which were selected by the results of space images

  16. Some predicted peak ground motions for nuclear cratering explosions along the Qattara alignment in Egypt

    International Nuclear Information System (INIS)

    Bryan, J.B.

    1980-01-01

    Some predicted peak free-field ground motions at shot depth for the nuclear explosive excavation of a canal in Egypt are summarized. Peak values of displacement, velocity, acceleration, and radial stress are presented as a function of slant range from the working point. Results from two-dimensional TENSOR cratering calculations are included. Fits to ground motion measurements in other media are also shown. This summary is intended to help specify engineering design requirements for detonating nuclear explosive salvos which are required to efficiently excavate the canal. It also should be useful in guiding estimates for gage response ranges in ground motion measurements

  17. Mine seismicity and the Comprehensive Nuclear Test Ban Treaty

    Energy Technology Data Exchange (ETDEWEB)

    Chiappetta, F. [Blasting Analysis International, Allentown, PA (United States); Heuze, F.; Walter, W. [Lawrence Livermore National Lab., CA (United States); Hopler, R. [Powderman Consulting Inc., Oxford, MD (United States); Hsu, V. [Air Force Technical Applications Center, Patrick AFB, FL (United States); Martin, B. [Thunder Basin Coal Co., Wright, WY (United States); Pearson, C. [Los Alamos National Lab., NM (United States); Stump, B. [Southern Methodist Univ., Dallas, TX (United States); Zipf, K. [Univ. of New South Wales (Australia)

    1998-12-09

    Surface and underground mining operations generate seismic ground motions which are created by chemical explosions and ground failures. It may come as a surprise to some that the ground failures (coal bumps, first caves, pillar collapses, rockbursts, etc.) can send signals whose magnitudes are as strong or stronger than those from any mining blast. A verification system that includes seismic, infrasound, hydroacoustic and radionuclide sensors is being completed as part of the CTBT. The largest mine blasts and ground failures will be detected by this system and must be identified as distinct from signals generated by small nuclear explosions. Seismologists will analyze the seismic records and presumably should be able to separate them into earthquake-like and non earthquake-like categories, using a variety of so-called seismic discriminants. Non-earthquake essentially means explosion- or implosion-like. Such signals can be generated not only by mine blasts but also by a variety of ground failures. Because it is known that single-fired chemical explosions and nuclear explosion signals of the same yield give very similar seismic records, the non-earthquake signals will be of concern to the Treaty verification community. The magnitude of the mine-related events is in the range of seismicity created by smaller nuclear explosions or decoupled tests, which are of particular concern under the Treaty. It is conceivable that legitimate mining blasts or some mine-induced ground failures could occasionally be questioned. Information such as shot time, location and design parameters may be all that is necessary to resolve the event identity. In rare instances where the legitimate origin of the event could not be resolved by a consultation and clarification procedure, it might trigger on On-Site Inspection (OSI). Because there is uncertainty in the precise location of seismic event as determined by the International Monitoring System (IMS), the OSI can cover an area of up to 1

  18. Radiation exposure of inhabitants around Semipalatinsk nuclear weapon test site

    International Nuclear Information System (INIS)

    Takada, Jun; Hoshi, Masaharu

    1997-01-01

    This paper described and reviewed the data reported by Russia and Kazakhstan and authors' studies on the exposed doses as follows. History of nuclear explosion tests in Semipalatinsk: From 1949 to 1989 in old Russia, 459 explosion tests involving 26 on the ground, 87 in the air and 346 in underground were performed, of which TNT equivalence was 0.6 Mt, 6 Mt and 11 Mt, respectively. A mystery in the reports of radiation doses by Russia and Kazakhstan. Present status of the regions after the end of nuclear weapon tests: Environment radiation doses in μSv/h in following regions were 0.06 in Mostik, 0.1 in Dolon and Semipalatinsk, 0.07 in Izvyestka and Znamenka, 0.08 in Tchagan and 21 in Atomic Lake. Evaluation of external exposure dose of the living regions with thermoluminescence method: External exposure dose was estimated to be about 90 cGy in a certain village and 40 cGy in Semipalatinsk which being 150 km far from the test site. (K.H.)

  19. Bibliography of reports on studies of the geology, hydrogeology and hydrology at the Nevada Test Site, Nye County, Nevada, from 1951--1996

    Energy Technology Data Exchange (ETDEWEB)

    Seaber, P.R.; Stowers, E.D.; Pearl, R.H.

    1997-04-01

    The Nevada Test Site (NTS) was established in 1951 as a proving ground for nuclear weapons. The site had formerly been part of an Air Force bombing and gunnery range during World War II. Sponsor-directed studies of the geology, hydrogeology, and hydrology of the NTS began about 1956 and were broad based in nature, but were related mainly to the effects of the detonation of nuclear weapons. These effects included recommending acceptable media and areas for underground tests, the possibility of off-site contamination of groundwater, air blast and surface contamination in the event of venting, ground-shock damage that could result from underground blasts, and studies in support of drilling and emplacement. The studies were both of a pure scientific nature and of a practical applied nature. The NTS was the site of 828 underground nuclear tests and 100 above-ground tests conducted between 1951 and 1992 (U.S. Department of Energy, 1994a). After July 1962, all nuclear tests conducted in the United States were underground, most of them at the NTS. The first contained underground nuclear explosion was detonated on September 19, 1957, following extensive study of the underground effect of chemical explosives. The tests were performed by U.S. Department of Energy (DOE) and its predecessors, the U.S. Atomic Energy Commission and the Energy Research and Development Administration. As part of a nationwide complex for nuclear weapons design, testing and manufacturing, the NTS was the location for continental testing of new and stockpiled nuclear devices. Other tests, including Project {open_quotes}Plowshare{close_quotes} experiments to test the peaceful application of nuclear explosives, were conducted on several parts of the site. In addition, the Defense Nuclear Agency tested the effect of nuclear detonations on military hardware.

  20. Test of a superheated superconducting granule detector with nuclear recoil measurements

    International Nuclear Information System (INIS)

    Berger, C.; Czapek, G.; Diggelmann, U.; Flammer, I.; Frei, D.; Furlan, M.; Gabutti, A.; Janos, S.; Moser, U.; Pretzl, K.; Schmiemann, K.; Perret-Gallix, D.; Konter, J.A.; Mango, S.

    1993-01-01

    The presented results are part of a Superheated Superconducting Granule (SSG) detector development for neutrinos and dark matter. An aluminum SSG detector was exposed to a 70MeV neutron beam to test the detector sensitivity to nuclear recoils. The neutron scattering angels were determined using a scintillator hodoscope. Coincidences between the SSG and the hodoscope signals have been clearly established. Data were taken at an operating temperature of 120mK for different SSG intrinsic thresholds. The proved sensitivity of the detector to nuclear recoils above 10keV is encouraging for possible applications of SSG as a dark matter detector. (orig.)

  1. GROUND TRANSPORTATION OF NUCLEAR PROPULSION STAGES

    Energy Technology Data Exchange (ETDEWEB)

    Marjon, P. L.

    1963-08-15

    The results of studies on transportation problems associated with the development and testing of nuclear rocket powered space vehicles at the static test size are presented. Factors involved in selecting a transport mode are discussed. Radiation shutdown considerations and a conceptual transporter capable of handling test articles of foreseeable size are examined. (D.C.W.)

  2. Development of Open Test-bed for Autonomous Operation in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Seungmin; Heo, Gyunyoung

    2017-01-01

    Nuclear power plants also recognize the need for automation. However, it is dangerous technology to have a significant impact on human society. In addition, due to the uncertain legal responsibility for autonomous operation, the application and development speed of nuclear energy related automation technology will be significantly decrease compared to other industries. It is argued that the application of AI and automation technology to power plants should not be prematurely applied or not based on the principle of applying proven technology since nuclear power plants are the highest level security operated facilities. As described above, the overall algorithm of the Test Bed is an autonomous operation algorithm (rulebased algorithm, learning-based algorithm, semiautonomous operation algorithm) to judge the entry condition of the procedure through condition monitoring and to enter the appropriate operating procedure. In order to make a test bed, the investigation for the heuristic part of the existing procedures and the heuristic part from the circumstance which is not specified in the procedure is needed. In the learning based and semi-autonomous operation algorithms, using MARS to extract its operating data and operational logs and try out various diagnostic algorithms as described above. Through the completion of these future tasks, the test bed which can compared with actual operators will be constructed and that it will be able to check its effectiveness by improving competitively with other research teams through the characteristics of shared platform.

  3. Evaluation of drought and UV radiation impacts on above-ground biomass of mountain grassland by spectral reflectance and thermal imaging techniques

    Czech Academy of Sciences Publication Activity Database

    Novotná, Kateřina; Klem, Karel; Holub, Petr; Rapantová, Barbora; Urban, Otmar

    2016-01-01

    Roč. 9, 1-2 (2016), s. 21-30 ISSN 1803-2451 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : above-ground biomass * drought stress * grassland * UV radiation * precipitation * spectral reflectance * thermal imaging Subject RIV: EH - Ecology, Behaviour

  4. Evaluation of the radionuclide tracer test conducted at the project Gnome Underground Nuclear Test Site, New Mexico

    International Nuclear Information System (INIS)

    Pohll, G.; Pohlmann, K.

    1996-08-01

    A radionuclide tracer test was conducted in 1963 by the U.S. Geological Survey at the Project Gnome underground nuclear test site, approximately 40 km southeast of Carlsbad, New Mexico. The tracer study was carried out under the auspices of the U.S. Atomic Energy Commission (AEC) to study the transport behavior of radionuclides in fractured rock aquifers. The Culebra Dolomite was chosen for the test because it was considered to be a reasonable analogue of the fractured carbonate aquifer at the Nevada Test Site (NTS), the principal location of U.S. underground nuclear tests. Project Gnome was one of a small number of underground nuclear tests conducted by the AEC at sites distant from the NTS. The Gnome device was detonated on December 10, 1961 in an evaporate unit at a depth of 360 m below ground surface. Recently, the U.S. Department of Energy (DOE) implemented an environmental restoration program to characterize, remediate, and close these offsite nuclear test areas. An early step in this process is performance of a preliminary risk analysis of the hazard posed by each site. The Desert Research Institute has performed preliminary hydrologic risk evaluations for the groundwater transport pathway at Gnome. That evaluation included the radioactive tracer test as a possible source because the test introduced radionuclides directly into the Culebra Dolomite, which is the only aquifer at the site. This report presents a preliminary evaluation of the radionuclide tracer test as a source for radionuclide migration in the Culebra Dolomite. The results of this study will assist in planning site characterization activities and refining estimates of the radionuclide source for comprehensive models of groundwater transport st the Gnome site

  5. Estimation of the Altai region population exposure resulting from the nuclear tests at the Semipalatinsk test site

    International Nuclear Information System (INIS)

    Djachenko, V.I.; Gabbasov, M.N.; Laborev, V.M.; Markovtsev, A.S.; Sudakov, V.V.; Volobuyev, N.M.; Zelenov, V.I.; Lagutin, A.A.; Shoikher, J.N.

    1998-01-01

    The historical roots of reconstruction of doses received by populations from nuclear tests date back to the 60''s, when the world faced a problem of growing radioactive contamination by radioactive fallout resulting from atmospheric nuclear tests. Since then, only one aspect of this problem has been properly developed, namely: public-exposure doses resulting from the global radioactive fallout have been estimated. Local fallout, which occurred mainly in the territories of the test sites and regions adjacent to their boundaries, was considered and studied as an internal affair of the states. The first steps in creating the above-mentioned methodological basis were taken in Russia, where, by now, the methodology of dose estimation in regions of local radioactive fallout has been determined and acknowledged nationwide as a standard document (Federal Committee on Sanitay Epidemiological Control of RF, 1994). It was this methodology that was used for calculations and dose estimation of the exposure of the Altai population from the Semipalatinsk Test Site (STS). (orig./GL)

  6. Prediction of Pseudo relative velocity response spectra at Yucca Mountain for underground nuclear explosions conducted in the Pahute Mesa testing area at the Nevada testing site

    International Nuclear Information System (INIS)

    Phillips, J.S.

    1991-12-01

    The Yucca Mountain Site Characterization Project (YMP), managed by the Office of Geologic Disposal of the Office of Civilian Radioactive Waste Management of the US Department of Energy, is examining the feasibility of siting a repository for commercial, high-level nuclear wastes at Yucca Mountain on and adjacent to the Nevada Test Site (NTS). This work, intended to extend our understanding of the ground motion at Yucca Mountain resulting from testing of nuclear weapons on the NTS, was funded by the Yucca Mountain project and the Military Applications Weapons Test Program. This report summarizes one aspect of the weapons test seismic investigations conducted in FY88. Pseudo relative velocity response spectra (PSRV) have been calculated for a large body of surface ground motions generated by underground nuclear explosions. These spectra have been analyzed and fit using multiple linear regression techniques to develop a credible prediction technique for surface PSRVs. In addition, a technique for estimating downhole PSRVs at specific stations is included. A data summary, data analysis, prediction development, prediction evaluation, software summary and FORTRAN listing of the prediction technique are included in this report

  7. A first map of tropical Africa's above-ground biomass derived from satellite imagery

    International Nuclear Information System (INIS)

    Baccini, A; Laporte, N; Goetz, S J; Sun, M; Dong, H

    2008-01-01

    Observations from the moderate resolution imaging spectroradiometer (MODIS) were used in combination with a large data set of field measurements to map woody above-ground biomass (AGB) across tropical Africa. We generated a best-quality cloud-free mosaic of MODIS satellite reflectance observations for the period 2000-2003 and used a regression tree model to predict AGB at 1 km resolution. Results based on a cross-validation approach show that the model explained 82% of the variance in AGB, with a root mean square error of 50.5 Mg ha -1 for a range of biomass between 0 and 454 Mg ha -1 . Analysis of lidar metrics from the Geoscience Laser Altimetry System (GLAS), which are sensitive to vegetation structure, indicate that the model successfully captured the regional distribution of AGB. The results showed a strong positive correlation (R 2 = 0.90) between the GLAS height metrics and predicted AGB.

  8. "None of the above" as a correct and incorrect alternative on a multiple-choice test: implications for the testing effect.

    Science.gov (United States)

    Odegard, Timothy N; Koen, Joshua D

    2007-11-01

    Both positive and negative testing effects have been demonstrated with a variety of materials and paradigms (Roediger & Karpicke, 2006b). The present series of experiments replicate and extend the research of Roediger and Marsh (2005) with the addition of a "none-of-the-above" response option. Participants (n=32 in both experiments) read a set of passages, took an initial multiple-choice test, completed a filler task, and then completed a final cued-recall test (Experiment 1) or multiple-choice test (Experiment 2). Questions were manipulated on the initial multiple-choice test by adding a "none-of-the-above" response alternative (choice "E") that was incorrect ("E" Incorrect) or correct ("E" Correct). The results from both experiments demonstrated that the positive testing effect was negated when the "none-of-the-above" alternative was the correct response on the initial multiple-choice test, but was still present when the "none-of-the-above" alternative was an incorrect response.

  9. Nuclear Fuel Test Rod Fabrication for Data Acquisition Test

    International Nuclear Information System (INIS)

    Joung, Chang-Young; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho

    2014-01-01

    A nuclear fuel test rod must be fabricated with precise welding and assembly technologies, and confirmed for their soundness. Recently, we have developed various kinds of processing systems such as an orbital TIG welding system, a fiber laser welding system, an automated drilling system and a helium leak analyzer, which are able to fabricate the nuclear fuel test rods and rigs, and keep inspection systems to confirm the soundness of the nuclear fuel test rods and rids. The orbital TIG welding system can be used with two kinds of welding methods. One can perform the round welding for end-caps of a nuclear fuel test rod by an orbital head mounted in a low-pressure chamber. The other can do spot welding for a pin-hole of a nuclear fuel test rod in a high-pressure chamber to fill up helium gas of high pressure. The fiber laser welding system can weld cylindrical and 3 axis samples such as parts of a nuclear fuel test rod and instrumentation sensors which is moved by an index chuck and a 3 axis (X, Y, Z) servo stage controlled by the CNC program. To measure the real-time temperature change at the center of the nuclear fuel during the irradiation test, a thermocouple should be instrumented at that position. Therefore, a hole needs to be made at the center of fuel pellet to instrument the thermocouple. An automated drilling system can drill a fine hole into a fuel pellet without changing tools or breaking the work-piece. The helium leak analyzer (ASM-380 model of DEIXEN Co.) can check the leak of the nuclear fuel test rod filled with helium gas. This paper describes not only the assembly and fabrication methods used by the process systems, but also the results of the data acquisition test for the nuclear fuel test rod. A nuclear fuel test rod for the data acquisition test was fabricated using the welding and assembling echnologies acquired from previous tests

  10. Nuclear Fuel Test Rod Fabrication for Data Acquisition Test

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    A nuclear fuel test rod must be fabricated with precise welding and assembly technologies, and confirmed for their soundness. Recently, we have developed various kinds of processing systems such as an orbital TIG welding system, a fiber laser welding system, an automated drilling system and a helium leak analyzer, which are able to fabricate the nuclear fuel test rods and rigs, and keep inspection systems to confirm the soundness of the nuclear fuel test rods and rids. The orbital TIG welding system can be used with two kinds of welding methods. One can perform the round welding for end-caps of a nuclear fuel test rod by an orbital head mounted in a low-pressure chamber. The other can do spot welding for a pin-hole of a nuclear fuel test rod in a high-pressure chamber to fill up helium gas of high pressure. The fiber laser welding system can weld cylindrical and 3 axis samples such as parts of a nuclear fuel test rod and instrumentation sensors which is moved by an index chuck and a 3 axis (X, Y, Z) servo stage controlled by the CNC program. To measure the real-time temperature change at the center of the nuclear fuel during the irradiation test, a thermocouple should be instrumented at that position. Therefore, a hole needs to be made at the center of fuel pellet to instrument the thermocouple. An automated drilling system can drill a fine hole into a fuel pellet without changing tools or breaking the work-piece. The helium leak analyzer (ASM-380 model of DEIXEN Co.) can check the leak of the nuclear fuel test rod filled with helium gas. This paper describes not only the assembly and fabrication methods used by the process systems, but also the results of the data acquisition test for the nuclear fuel test rod. A nuclear fuel test rod for the data acquisition test was fabricated using the welding and assembling echnologies acquired from previous tests.

  11. Analysis of Operation Plumbbob nuclear test: BOLTZMANN radiological and meteorological data

    International Nuclear Information System (INIS)

    Steadman, C.R. Jr.; Kennedy, N.C.; Quinn, V.E.

    1983-09-01

    This report describes the Weather Service Nuclear Support Office (WSNSO) analyses of the radiological and meteorological data collected for the BOLTZMANN nuclear test of Operation PLUMBBOB. Inconsistencies in the radiological data and their resolution are discussed. The methods of converting aerial radiological data to equivalent ground-level values and of estimating fallout arrival times are presented. The meteorological situation on D-day is described. A comparison of the WSNSO fallout analyses with analyses in the late 1950's is presented. The appendices contain tabulated radiological data used in the fallout analyses, and contain discussions of the BOLTZMANN hot spot contention and of the enhanced activity at Portola, California

  12. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor.

    Science.gov (United States)

    Nguyen, Hieu Cong; Jung, Jaehoon; Lee, Jungbin; Choi, Sung-Uk; Hong, Suk-Young; Heo, Joon

    2015-07-31

    The reflectance of the Earth's surface is significantly influenced by atmospheric conditions such as water vapor content and aerosols. Particularly, the absorption and scattering effects become stronger when the target features are non-bright objects, such as in aqueous or vegetated areas. For any remote-sensing approach, atmospheric correction is thus required to minimize those effects and to convert digital number (DN) values to surface reflectance. The main aim of this study was to test the three most popular atmospheric correction models, namely (1) Dark Object Subtraction (DOS); (2) Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and (3) the Second Simulation of Satellite Signal in the Solar Spectrum (6S) and compare them with Top of Atmospheric (TOA) reflectance. By using the k-Nearest Neighbor (kNN) algorithm, a series of experiments were conducted for above-ground forest biomass (AGB) estimations of the Gongju and Sejong region of South Korea, in order to check the effectiveness of atmospheric correction methods for Landsat ETM+. Overall, in the forest biomass estimation, the 6S model showed the bestRMSE's, followed by FLAASH, DOS and TOA. In addition, a significant improvement of RMSE by 6S was found with images when the study site had higher total water vapor and temperature levels. Moreover, we also tested the sensitivity of the atmospheric correction methods to each of the Landsat ETM+ bands. The results confirmed that 6S dominates the other methods, especially in the infrared wavelengths covering the pivotal bands for forest applications. Finally, we suggest that the 6S model, integrating water vapor and aerosol optical depth derived from MODIS products, is better suited for AGB estimation based on optical remote-sensing data, especially when using satellite images acquired in the summer during full canopy development.

  13. The "None of the Above" Option in Multiple-Choice Testing: An Experimental Study

    Science.gov (United States)

    DiBattista, David; Sinnige-Egger, Jo-Anne; Fortuna, Glenda

    2014-01-01

    The authors assessed the effects of using "none of the above" as an option in a 40-item, general-knowledge multiple-choice test administered to undergraduate students. Examinees who selected "none of the above" were given an incentive to write the correct answer to the question posed. Using "none of the above" as the…

  14. Spin assignments of nuclear levels above the neutron binding energy in $^{88}$Sr

    CERN Multimedia

    Neutron resonances reveal nuclear levels in the highly excited region of the nucleus around the neutron binding energy. Nuclear level density models are therefore usually calibrated to the number of observed levels in neutron-induced reactions. The gamma-ray cascade from the decay of the highly excited compound nucleus state to the ground state show dierences dependent on the initial spin. This results in a dierence in the multiplicity distribution which can be exploited. We propose to use the 4${\\pi}$ total absorption calorimeter (TAC) at the n TOF facility to determine the spins of resonances formed by neutrons incident on a metallic $^{87}$Sr sample by measuring the gamma multiplicity distributions for the resolved resonances. In addition we would like to use the available enriched $^{87}$Sr target for cross section measurements with the C$\\scriptscriptstyle{6}$D$\\scriptscriptstyle{6}$ detector setup.

  15. Modelling of nuclear explosions in hard rock sites

    International Nuclear Information System (INIS)

    Brunish, W.M.; App, F.N.

    1993-01-01

    This study represents part of a larger effort to systematically model the effects of differing source region properties on ground motion from underground nuclear explosions at the Nevada Test Site. In previous work by the authors the primary emphasis was on alluvium and both saturated and unsaturated tuff. We have attempted to model events on Pahute Mesa, where either the working point medium, or some of the layers above the working point, or both, are hard rock. The complex layering at these sites, however, has prevented us from drawing unambiguous conclusions about modelling hard rock

  16. Underground nuclear energy complexes - technical and economic advantages

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Carl W [Los Alamos National Laboratory; Kunze, Jay F [IDAHO STATE UNIV; Giraud, Kellen M [BABECOCK AND WILCOX; Mahar, James M [IDAHO STATE UNIV

    2010-01-01

    Underground nuclear power plant parks have been projected to be economically feasible compared to above ground instalIations. This paper includes a thorough cost analysis of the savings, compared to above ground facilities, resulting from in-place entombment (decommissioning) of facilities at the end of their life. reduced costs of security for the lifetime of the various facilities in the underground park. reduced transportation costs. and reduced costs in the operation of the waste storage complex (also underground). compared to the fair share of the costs of operating a national waste repository.

  17. Preliminary plan for decommissioning - repository for spent nuclear fuel; Preliminaer plan foer avveckling - slutfoervar foer anvaent kaernbraensle

    Energy Technology Data Exchange (ETDEWEB)

    Hallberg, Bengt; Tiberg, Liselotte (Studsvik Nuclear AB, Nykoeping (Sweden))

    2010-06-15

    The final disposal facility for spent nuclear fuel is part of the KBS-3 system, which also consists of a central facility for interim storage and encapsulation of the spent nuclear fuel and a transport system. The nuclear fuel repository will be a nuclear facility. Regulation SSMFS 2008:1 (Swedish Radiation Safety Authority's regulations on safety of nuclear facilities) requires that the licensee must have a current decommissioning plan throughout the facility lifecycle. Before the facility is constructed, a preliminary decommissioning plan should be reported to the Swedish Radiation Safety Authority. This document is a preliminary decommissioning plan, and submitted as an attachment to SKB's application for a license under the Nuclear Activities Act to construct, own and operate the facility. The final disposal facility for spent nuclear fuel consists of an above ground part and a below ground part and will be built near Forsmark and the final repository for radioactive operational waste, SFR. The parts above and below ground are connected by a ramp and several shafts, e.g. for ventilation. The below ground part consists of a central area, and several landfill sites. The latter form the repository area. The sealed below ground part constitutes the final repository. The decommissioning is taking place after the main operation has ended, that is, when all spent nuclear fuel has been deposited and the deposition tunnels have been backfilled and plugged. The decommissioning involves sealing of the remaining parts of the below ground part and demolition of above ground part. When decommissioning begins, there will be no contamination in the facility. The demolition is therefore performed as for a conventional plant. Demolition waste is sorted and recycled whenever possible or placed in landfill. Hazardous waste is managed in accordance with current regulations. A ground investigation is performed and is the basis for after-treatment of the site. The timetable

  18. Nuclear heat-load limits for above-grade storage of solid transuranium wastes

    International Nuclear Information System (INIS)

    Clontz, B.G.

    1978-06-01

    Nuclear safety and heat load limits were established for above-grade storage of transuranium (TRU) wastes. Nuclear safety limits were obtained from a study by J.L. Forstner and are summarized. Heat load limits are based on temperature calculations for TRU waste drums stored in concrete containers (hats), and results are summarized. Waste already in storage is within these limits. The limiting factors for individual drum heat load limits were (1) avoidance of temperatures in excess of 190 0 F (decomposition temperature of anion resin) when anion resin is present in a concrete hat, and (2) avoidance of temperatures in excess of 450 0 F (ignition temperature of paper) at any point inside a waste drum. The limiting factor for concrete had heat load limits was avoidance of temperatures in excess of 265 0 F (melt point of high density polyethylene) at the drum liners. A temperature profile for drums and hats filled to recommended limits is shown. Equations and assumptions used were conservative

  19. Decades of nuclear testing

    International Nuclear Information System (INIS)

    Miettinen, J.K.

    1995-01-01

    The United States carried out the world's first nuclear test in 1945. The test marked the beginning of an arms race between the great powers that lasted for decades. Innumerable nuclear test explosions were detonated to test and refine the weapons. The arms race picked up speed in the 1950s and culminated in 1958, when the United States detonated 77 and the Soviet Union 35 nuclear explosions. This was followed by the first pause in nuclear testing, brought about through the efforts of the Pugwash organisation consisting of the world's foremost scientists. Finland, too, received its share of the radioactive fallout coming from atmospheric nuclear explosions. Rain water samples have been studied for radioactivity in Finland since the mid-1950s. The first studies to determine the internal radiation doses caused by radioactive substances in man were conducted in the late 1950s by measuring cesium and strontium contents in grass and in milk. The efficiency of research and radiation monitoring improved in the 1960s, which was also a time when training in the sector developed rapidly. In consequence, when the accident in Chernobyl took place Finland had already gained valuable experience needed for rapid determination of unexpected fallout. (orig.) (3 figs.)

  20. AMS Ground Truth Measurements: Calibrations and Test Lines

    Energy Technology Data Exchange (ETDEWEB)

    Wasiolek, Piotr T. [National Security Technologies, LLC

    2015-12-01

    Airborne gamma spectrometry is one of the primary techniques used to define the extent of ground contamination after a radiological incident. Its usefulness was demonstrated extensively during the response to the Fukushima NPP accident in March-May 2011. To map ground contamination, a set of scintillation detectors is mounted on an airborne platform (airplane or helicopter) and flown over contaminated areas. The acquisition system collects spectral information together with the aircraft position and altitude every second. To provide useful information to decision makers, the count data, expressed in counts per second (cps), need to be converted to a terrestrial component of the exposure rate at 1 meter (m) above ground, or surface activity of the isotopes of concern. This is done using conversion coefficients derived from calibration flights. During a large-scale radiological event, multiple flights may be necessary and may require use of assets from different agencies. However, because production of a single, consistent map product depicting the ground contamination is the primary goal, it is critical to establish a common calibration line very early into the event. Such a line should be flown periodically in order to normalize data collected from different aerial acquisition systems and that are potentially flown at different flight altitudes and speeds. In order to verify and validate individual aerial systems, the calibration line needs to be characterized in terms of ground truth measurements This is especially important if the contamination is due to short-lived radionuclides. The process of establishing such a line, as well as necessary ground truth measurements, is described in this document.

  1. Operation fusileer onsite radiological safety report for announced nuclear tests, October 1983-September 1984

    International Nuclear Information System (INIS)

    Mullen, O.W.; Eubank, B.F.

    1985-08-01

    Fusileer was the name assigned to the series of underground nuclear experiments conducted at the Nevada Test Site from October 1, 1983 through September 30, 1984. This report is limited to announced nuclear tests. Remote radiation measurements were taken during and after each nuclear experiment by a telemetry system. Monitors with portable radiation detection instruments surveyed reentry routes into ground zeros before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene coverage was provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific operational procedures are defined

  2. Ecological consequences of nuclear testing

    International Nuclear Information System (INIS)

    Fuller, R.G.; Kirkwood, J.B.

    1977-01-01

    Many of the terrestrial disturbances on Amchitka Island resulting from nuclear testing were superimposed on scars remaining from military occupation. Construction, road improvement, and the Milrow and Cannikin nuclear detonations resulted in the loss or deterioration of about 420 ha (1040 acres) of terrestrial habitat, or less than 1.5% of the total area of Amchitka. A few streams and lakes were polluted by drilling effluents or human wastes; normal flushing action is expected to restore the quality of most of these freshwater habitats. Irreversible effects in freshwaters include the drainage of several ponds, gross channel alteration in a part of one stream, and the creation of a new lake which is deeper and which has a greater volume than any of the more than 2100 natural lakes on the southeast half of Amchitka. About 6 ha (15 acres) of intertidal bench was displaced to a level above the intertidal zone, and an undetermined amount of similar habitat was altered to some degree by lesser vertical displacement. No type of habitat on the island was destroyed, and localized habitat losses in the terrestrial, freshwater, and marine ecosystems are believed to have been too slight to have permanent effects on associated biotic populations

  3. The management-retrieval code of the sub-library of atomic mass and characteristic constants for nuclear ground state

    International Nuclear Information System (INIS)

    Su Zongdi; Ma Lizhen

    1994-01-01

    The management code of the sub-library of atomic mass and characteristic constants for nuclear ground state (MCC) is used for displaying the basic information on the MCC sub-library on the screen, and retrieving the required data. The MCC data file contains the data of 4800 nuclides ranging from Z 0, A = 1 to Z = 122, A = 318. The MCC sub-library has been set up at Chinese Nuclear Data Center (CNDC), and has been used to provide the atomic masses and characteristic constants of nuclear ground states for the nuclear model calculation, nuclear data evaluations and other fields

  4. Towards ground-truthing of spaceborne estimates of above-ground life biomass and leaf area index in tropical rain forests

    Directory of Open Access Journals (Sweden)

    P. Köhler

    2010-08-01

    Full Text Available The canopy height h of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or LIDAR. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground life biomass (AGB (and thus carbon content of vegetation and leaf area index (LAI and identify how correlation and uncertainty vary for two different spatial scales. The process-based forest growth model FORMIND2.0 was applied to simulate (a undisturbed forest growth and (b a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia in South-East Asia. In both undisturbed and disturbed forests AGB can be expressed as a power-law function of canopy height h (AGB = a · hb with an r2 ~ 60% if data are analysed in a spatial resolution of 20 m × 20 m (0.04 ha, also called plot size. The correlation coefficient of the regression is becoming significant better in the disturbed forest sites (r2 = 91% if data are analysed hectare wide. There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2 ~ 60% between AGB and the area fraction of gaps in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a

  5. Towards ground-truthing of spaceborne estimates of above-ground life biomass and leaf area index in tropical rain forests

    Science.gov (United States)

    Köhler, P.; Huth, A.

    2010-08-01

    The canopy height h of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or LIDAR. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground life biomass (AGB) (and thus carbon content of vegetation) and leaf area index (LAI) and identify how correlation and uncertainty vary for two different spatial scales. The process-based forest growth model FORMIND2.0 was applied to simulate (a) undisturbed forest growth and (b) a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia) in South-East Asia. In both undisturbed and disturbed forests AGB can be expressed as a power-law function of canopy height h (AGB = a · hb) with an r2 ~ 60% if data are analysed in a spatial resolution of 20 m × 20 m (0.04 ha, also called plot size). The correlation coefficient of the regression is becoming significant better in the disturbed forest sites (r2 = 91%) if data are analysed hectare wide. There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2 ~ 60%) between AGB and the area fraction of gaps in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot (PSP) data from the same region and with the

  6. Gamma radiation at ground level in Sweden in 1975-1977

    International Nuclear Information System (INIS)

    Kjelle, P.E.

    1978-03-01

    Measurement of the gamma radiation 2 1/2 m above the ground, carried out continuously in Sweden since 1960, has been continued during 1975 - 1977 at 24 places in Sweden. The net of gamma stations is intended for the rapid detection of large quantities of fallout. The standard deviation of an exposure reading (incl. natural exposure) has been estimated to be +- 5 percent. Figures show the variation of the exposure in μR/h from 1960 for three of the stations. After a peak of about 24 mR/y in 1963 (17 mR/y the actual value including absorption in the snow), the average additional exposure due to fallout decreased to about 10 mR/y (the actual value 7 mR/y) and since 1965 there have been no significant variations in the annual exposure due to fallout. The contribution from fallout to the irradiation level above the ground depends mostly on cesium-137 from the atmospheric nuclear explosions in 1961 and 1962 with some contribution from fresh fallout originating from later nuclear explosions

  7. Physical Characterisation and Quantification of Total Above Ground Biomass Derived from First Thinnings for Wood Fuel Consumption in Ireland

    OpenAIRE

    Mockler, Nicholas

    2013-01-01

    Comprehensive knowledge of wood fuel properties assists in the optimisation of operations concerned with the harvesting, seasoning, processing and conversion of wood to energy. This study investigated the physical properties of wood fuel. These properties included moisture content and basic density. The field work also allowed for the quantification of above ground biomass partitions. The species investigated were alder (Alnus glutinosa), ash (Fraxinus excelsior L.), birch (Betula spp.), lodg...

  8. Ground acceleration in a nuclear power plant; Aceleracion del suelo en una central nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Pena G, P.; Balcazar, M.; Vega R, E., E-mail: pablo.pena@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    A methodology that adopts the recommendations of international organizations for determining the ground acceleration at a nuclear power plant is outlined. Systematic presented here emphasizes the type of geological, geophysical and geotechnical studies in different areas of influence, culminating in assessments of Design Basis earthquake and the earthquake Operating Base. The methodology indicates that in regional areas where the site of the nuclear power plant is located, failures are identified in geological structures, and seismic histories of the region are documented. In the area of detail geophysical tools to generate effects to determine subsurface propagation velocities and spectra of the induced seismic waves are used. The mechanical analysis of drill cores allows estimating the efforts that generate and earthquake postulate. Studies show that the magnitude of the Fukushima earthquake, did not affect the integrity of nuclear power plants due to the rocky settlement found. (Author)

  9. Evaluation of vibratory ground motion at nuclear power plant sites

    International Nuclear Information System (INIS)

    Hofmann, R.B.; Greeves, J.T.

    1978-01-01

    The evaluation of vibratory ground motion at nuclear power plant sites requires the cooperative effort of scientists and engineers in several disciplines. These include seismology, geology, geotechnical engineering and structural engineering. The Geosciences Branch of the NRC Division of Site Safety and Environmental Analysis includes two sections, the Geology/Seismology Section and the Geotechnical Engineering Section

  10. Economic analysis of using above ground gas storage devices for compressed air energy storage system

    Science.gov (United States)

    Liu, Jinchao; Zhang, Xinjing; Xu, Yujie; Chen, Zongyan; Chen, Haisheng; Tan, Chunqing

    2014-12-01

    Above ground gas storage devices for compressed air energy storage (CAES) have three types: air storage tanks, gas cylinders, and gas storage pipelines. A cost model of these gas storage devices is established on the basis of whole life cycle cost (LCC) analysis. The optimum parameters of the three types are determined by calculating the theoretical metallic raw material consumption of these three devices and considering the difficulties in manufacture and the influence of gas storage device number. The LCCs of the three types are comprehensively analyzed and compared. The result reveal that the cost of the gas storage pipeline type is lower than that of the other two types. This study may serve as a reference for designing large-scale CAES systems.

  11. BUSTED BUTTE TEST FACILITY GROUND SUPPORT CONFIRMATION ANALYSIS

    International Nuclear Information System (INIS)

    Bonabian, S.

    1998-01-01

    The main purpose and objective of this analysis is to confirm the validity of the ground support design for Busted Butte Test Facility (BBTF). The highwall stability and adequacy of highwall and tunnel ground support is addressed in this analysis. The design of the BBTF including the ground support system was performed in a separate document (Reference 5.3). Both in situ and seismic loads are considered in the evaluation of the highwall and the tunnel ground support system. In this analysis only the ground support designed in Reference 5.3 is addressed. The additional ground support installed (still work in progress) by the constructor is not addressed in this analysis. This additional ground support was evaluated by the A/E during a site visit and its findings and recommendations are addressed in this analysis

  12. Genetic effects of radiation and prediction of hereditary pathology of population of areas around the former Semipalatinsk test site

    International Nuclear Information System (INIS)

    Bigaliev, A.B.

    1998-01-01

    Epidemiological analysis of diseases and mortality of the population living in areas around Semipalatinsk test site is not only theoretically interesting in terms of the human being genetics, but is important for the health-care in practice, since it allows correct planning the score of medical social aid to the sick people and their families, including measures. Assessment of posterior consequences of low dose radiation effect on health of the population of the areas around the former Semipalatinsk nuclear test site is of special interest. Many underground, atmospheric and above-ground tests of nuclear weapon resulted in a significant increase of the oncologic and blood diseases rate among several generations of the effected people. Moreover, consequences of the above-ground and atmospheric tests of nuclear and hydrogen weapon will show up in the next century, taking into account the fact that the 'open' tests were ceased only at the middle of 60-th. The birth rate of children with the inherent intelligence defects was determined according to the accounting records of the new-born children within 1986-1992 years. Analysis of perinatal mortality was carried out based on the records on autopsy within 1985-1992 years. The two-fold increase of the onco diseases rate was revealed among children. The rate of spontaneous aborts in the Eginbulak district was 9.99% and exceeded the average rate in the region and indexes of other regions

  13. A comprehensive nuclear test ban

    International Nuclear Information System (INIS)

    1985-01-01

    The conclusion of a comprehensive nuclear test ban is of critical importance for the future of arms limitation and disarmament. As the 1980 report of the Secretary-General concluded, a comprehensive nuclear test ban is regarded as the first and most urgent step towards the cessation of the nuclear arms race and, in particular, of its qualitative aspects. It could serve as an important measure for the non-proliferation of nuclear weapons, both vertical and horizontal. It would have a major arms limitation impact in that it would make it difficult, if not impossible, to develop new designs of nuclear weapons and would also place constraints on the modification of existing weapon designs. The permanent cessation of all nuclear-weapon tests has long been sought by the world community and its achievement would be an event of great international significance

  14. Energy coupling of nuclear bursts in and above the ocean surface: source region calculations and experimental validation

    International Nuclear Information System (INIS)

    Clarke, D.B.; Harben, P.E.; Rock, D.W.; White, J.W.; Piacsek, A.

    1997-01-01

    In support of the Comprehensive Test Ban, research is under way on the long range propagation of signals from nuclear explosions in deep underwater sound (SOFAR) channel. Initially our work at LLNL on signals in the source region considered explosions in or above deep ocean. We studied the variation of wave properties and source region energy coupling as a function of height or depth of burst. Initial calculations on the CALE hydrodynamics code were linked at a few hundred milliseconds to a version of NRL's weak code, NPE, which solves the nonlinear progressive wave equation. The simulation of the wave propagation was carried down to 5000 m depth and out to 10,000 m range. We have completed ten such simulations at a variety of heights and depths below the ocean surface

  15. A terrestrial biosphere model optimized to atmospheric CO2 concentration and above ground woody biomass

    Science.gov (United States)

    Saito, M.; Ito, A.; Maksyutov, S. S.

    2013-12-01

    This study documents an optimization of a prognostic biosphere model (VISIT; Vegetation Integrative Similator for Trace gases) to observations of atmospheric CO2 concentration and above ground woody biomass by using a Bayesian inversion method combined with an atmospheric tracer transport model (NIES-TM; National Institute for Environmental Studies / Frontier Research Center for Global Change (NIES/FRCGC) off-line global atmospheric tracer transport model). The assimilated observations include 74 station records of surface atmospheric CO2 concentration and aggregated grid data sets of above ground woody biomass (AGB) and net primary productivity (NPP) over the globe. Both the biosphere model and the atmospheric transport model are used at a horizontal resolution of 2.5 deg x 2.5 deg grid with temporal resolutions of a day and an hour, respectively. The atmospheric transport model simulates atmospheric CO2 concentration with nine vertical levels using daily net ecosystem CO2 exchange rate (NEE) from the biosphere model, oceanic CO2 flux, and fossil fuel emission inventory. The models are driven by meteorological data from JRA-25 (Japanese 25-year ReAnalysis) and JCDAS (JMA Climate Data Assimilation System). Statistically optimum physiological parameters in the biosphere model are found by iterative minimization of the corresponding Bayesian cost function. We select thirteen physiological parameter with high sensitivity to NEE, NPP, and AGB for the minimization. Given the optimized physiological parameters, the model shows error reductions in seasonal variation of the CO2 concentrations especially in the northern hemisphere due to abundant observation stations, while errors remain at a few stations that are located in coastal coastal area and stations in the southern hemisphere. The model also produces moderate estimates of the mean magnitudes and probability distributions in AGB and NPP for each biome. However, the model fails in the simulation of the terrestrial

  16. Quantitative Estimation of Above Ground Crop Biomass using Ground-based, Airborne and Spaceborne Low Frequency Polarimetric Synthetic Aperture Radar

    Science.gov (United States)

    Koyama, C.; Watanabe, M.; Shimada, M.

    2016-12-01

    Estimation of crop biomass is one of the important challenges in environmental remote sensing related to agricultural as well as hydrological and meteorological applications. Usually passive optical data (photographs, spectral data) operating in the visible and near-infrared bands is used for such purposes. The virtue of optical remote sensing for yield estimation, however, is rather limited as the visible light can only provide information about the chemical characteristics of the canopy surface. Low frequency microwave signals with wavelength longer 20 cm have the potential to penetrate through the canopy and provide information about the whole vertical structure of vegetation from the top of the canopy down to the very soil surface. This phenomenon has been well known and exploited to detect targets under vegetation in the military radar application known as FOPEN (foliage penetration). With the availability of polarimetric interferometric SAR data the use PolInSAR techniques to retrieve vertical vegetation structures has become an attractive tool. However, PolInSAR is still highly experimental and suitable data is not yet widely available. In this study we focus on the use of operational dual-polarization L-band (1.27 GHz) SAR which is since the launch of Japan's Advanced Land Observing Satellite (ALOS, 2006-2011) available worldwide. Since 2014 ALOS-2 continues to deliver such kind of partial polarimetric data for the entire land surface. In addition to these spaceborne data sets we use airborne L-band SAR data acquired by the Japanese Pi-SAR-L2 as well as ultra-wideband (UWB) ground based SAR data operating in the frequency range from 1-4 GHz. By exploiting the complex dual-polarization [C2] Covariance matrix information, the scattering contributions from the canopy can be well separated from the ground reflections allowing for the establishment of semi-empirical relationships between measured radar reflectivity and the amount of fresh-weight above-ground

  17. Methodological aspects of creating a radiological 'passport' of the former Semipalatinsk nuclear test site

    International Nuclear Information System (INIS)

    Dubasov, Yu.V.; Smagulov, S.G.; Tukhvatulin, Sh.T.

    2002-01-01

    During its existence, 456 nuclear tests were carried out at the Semipalatinsk Test Site - 30 at the ground surface, 86 in the atmosphere and 340 underground. Radioactive fallout from ground surface tests is responsible for the present radiation conditions within the 'Test Field'. The radiation situation in the Degelen Mountains is caused by 209 underground tests carried out in local tunnels. Within the former Test Site there are three large and several small zones to which general access is prohibited for public health reasons: the 'Test Field', the Degelen Mountains, lake Shagan, the rim of the lake, and the adjacent land to the north. The information and characteristics, which have to be included in radiological passport of the former Semipalatinsk Test Site, are discussed along with general information about the Semipalatinsk site, its administrative status, the population distribution throughout the territory, all the economic activities taking place within the territory, the zones and structures representing a radiation hazard, and radiohydrogeological conditions of the test site and the adjacent regions, biogenic conditions (topography, soil, vegetation), wildlife, fauna monitoring, etc. (author)

  18. Predictive modeling of hazardous waste landfill total above-ground biomass using passive optical and LIDAR remotely sensed data

    Science.gov (United States)

    Hadley, Brian Christopher

    This dissertation assessed remotely sensed data and geospatial modeling technique(s) to map the spatial distribution of total above-ground biomass present on the surface of the Savannah River National Laboratory's (SRNL) Mixed Waste Management Facility (MWMF) hazardous waste landfill. Ordinary least squares (OLS) regression, regression kriging, and tree-structured regression were employed to model the empirical relationship between in-situ measured Bahia (Paspalum notatum Flugge) and Centipede [Eremochloa ophiuroides (Munro) Hack.] grass biomass against an assortment of explanatory variables extracted from fine spatial resolution passive optical and LIDAR remotely sensed data. Explanatory variables included: (1) discrete channels of visible, near-infrared (NIR), and short-wave infrared (SWIR) reflectance, (2) spectral vegetation indices (SVI), (3) spectral mixture analysis (SMA) modeled fractions, (4) narrow-band derivative-based vegetation indices, and (5) LIDAR derived topographic variables (i.e. elevation, slope, and aspect). Results showed that a linear combination of the first- (1DZ_DGVI), second- (2DZ_DGVI), and third-derivative of green vegetation indices (3DZ_DGVI) calculated from hyperspectral data recorded over the 400--960 nm wavelengths of the electromagnetic spectrum explained the largest percentage of statistical variation (R2 = 0.5184) in the total above-ground biomass measurements. In general, the topographic variables did not correlate well with the MWMF biomass data, accounting for less than five percent of the statistical variation. It was concluded that tree-structured regression represented the optimum geospatial modeling technique due to a combination of model performance and efficiency/flexibility factors.

  19. Nuclear test ban's last chance

    International Nuclear Information System (INIS)

    Barnaby, F.

    1976-01-01

    It is argued that if nuclear disarmament is the aim then some arms control treaties have been counterproductive. The two great powers have conducted, albeit underground, more nuclear explosions in the 12 years since the partial test ban than they did in the preceding 18 years, 1945 to 1963. The partial test ban treaty obliges the parties to negotiate a ban on 'all test explosions of nuclear weapons for all time'. After 12 years of negotiations very little progress has been made to this end. The USA and the USSR signed a bilateral Threshold Test Ban Treaty in 1974 banning 'any underground nuclear weapon tests having a yield exceeding 150 kilo-tons... beginning 31 March, 1976', a protocol describes how compliance is to be verified, and Article III requires that an agreement is to be negotiated governing peaceful nuclear explosions. From the point of view of disarmament it would be much better if the threshold test ban treaty were not ratified and a comprehensive test ban treaty were negotiated instead. The main official reason given for the failure to negotiate such a treaty is the problem of verification. However it is argued that due to recent progress in seismology there are no longer significant technical obstacles to the negotiation of a comprehensive test ban treaty. But there is lack of political will to obtain such a treaty. (U.K.)

  20. Application of acoustic emission, as non destructive testing technique, to nuclear components inspection

    International Nuclear Information System (INIS)

    Sanchez Miro, J.J.

    1980-01-01

    A panorama of actual state of acoustic emission as non destructive testing technique, from stand point of its safety applications to nuclear reactor is offered. In first place the physic grounds of acoustic emission phenomenon is briefly exposed. After we speak about the experimental methods for detection, and overall is made an explanation of the problems which are found during the application of this technology to on-line inspection of nuclear oower plants. It is hoped that this repport makes a contribution in the sense of to create a favourable atmosphere toward the introduction in our country of this important technique, and concretely within the nuclear power industry. In this last field the employ of acoustic emission is overcoming the experimental stage. (author)

  1. Towards a nuclear-test ban

    International Nuclear Information System (INIS)

    1991-01-01

    In 1986 and again in 1987 the General Assembly adopted resolutions by which it called on States conducting nuclear-test explosions to notify the Secretary-General, within one week of each explosion, of the time, place, yield and site characteristics of the test and also invited all other States to provide any such data on nuclear explosions that they might have. Over the years, in the Conference on Disarmament, members of the Group of 21 (mostly neutral and non-aligned countries) have continued to attach the utmost importance to the urgent conclusion of a comprehensive test-ban treaty as a significant contribution to the aim of ending the qualitative refinement of nuclear weapons and the development of new types of such weapons as well as of reversing the nuclear-arms race and achieving nuclear disarmament. In 1995 a conference will be convened to decide whether the non-proliferation Treaty will continue in force indefinitely, or will be extended for an additional fixed period or periods. Many States support the view that a comprehensive test ban would be a significant contribution to the non-proliferation of nuclear weapons; and some believe that, without a cessation of nuclear testing, it may not be possible to extend the NPT well beyond 1995. Other States, however, are of the opinion that the NPT, independently, offers benefits for the security of all States and, by its extension, will continue to do so

  2. Environmental radiation measurements at the former Soviet Union's Semipalatinsk nuclear test site and surrounding villages

    International Nuclear Information System (INIS)

    Shebell, P.; Hutter, A.R.

    1996-07-01

    Two scientists from the U.S. Department of Energy's Environmental Measurements Laboratory served as scientific experts to the International Atomic Energy Agency's (IAEA) Mission to Kazakhstan: Strengthening Radiation and Nuclear Safety Infrastructures in Countries of the former USSR, Special Task - Preassessment of the radiological situation in the Semipalatinsk and western areas of Kazakhstan. The former Soviet Union's largest nuclear test site was located near Semipalatinsk, Kazakhstan, and following Kazakhstan's independence, the IAEA committed to studying the environmental contamination and the resulting radiation exposure risk to the population due to 346 underground, 87 atmospheric and 26 surface nuclear detonations performed at the site between 1949 and 1989. As part of an 11-member team, environmental radiation measurements were performed during 2 weeks in July 1994. Approximately 30 sites were visited both within the boundaries of the Semipalatinsk nuclear test site as well as in and around surrounding villages. Specifically, the objectives of the EML team were to apply independent methods and equipment to assess potential current radiation exposures to the population. Towards this end, the EML scientists collected in-situ gamma-ray spectra, performed external gamma dose rate measurements using pressurized ionization chambers, and collected soil samples in order to estimate the inventory and to determine the depth distribution of radionuclides of interest. With the exception of an area near an open-quotes atomic lakeclose quotes and a 1 km 2 area encompassing ground zero, all the areas visited by the team had external dose rates that were within typical environmental levels. The measurements taken within a 15 km radius of ground zero had elevated levels of 137 Cs as well as the activation products 152 Eu and 60 Co, The dose rate within a 1 km radius of ground zero ranged from 500 to 30000 nGy h -1

  3. Comprehensive Nuclear Test-ban Treaty

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The Comprehensive Nuclear Test-Ban Treaty was adopted by the General Assembly on 10 September 1996 (Res/50/245) and was open for signature by all states on 24 September 1996. It will enter into force 180 days after the date of deposit of the instruments of ratification by all states listed in Annex 2 to the Treaty. This document reproduces the text of the Treaty and the Protocol to the Comprehensive Nuclear Test-Ban Treaty Protocol to the Comprehensive Nuclear Test-Ban Treaty. 4 tabs.

  4. Comprehensive Nuclear Test-ban Treaty

    International Nuclear Information System (INIS)

    1998-01-01

    The Comprehensive Nuclear Test-Ban Treaty was adopted by the General Assembly on 10 September 1996 (Res/50/245) and was open for signature by all states on 24 September 1996. It will enter into force 180 days after the date of deposit of the instruments of ratification by all states listed in Annex 2 to the Treaty. This document reproduces the text of the Treaty and the Protocol to the Comprehensive Nuclear Test-Ban Treaty Protocol to the Comprehensive Nuclear Test-Ban Treaty

  5. Description of ground motion data processing codes: Volume 3

    International Nuclear Information System (INIS)

    Sanders, M.L.

    1988-02-01

    Data processing codes developed to process ground motion at the Nevada Test Site for the Weapons Test Seismic Investigations Project are used today as part of the program to process ground motion records for the Nevada Nuclear Waste Storage Investigations Project. The work contained in this report documents and lists codes and verifies the ''PSRV'' code. 39 figs

  6. Nuclear Test-Experimental Science

    International Nuclear Information System (INIS)

    Struble, G.L.; Donohue, M.L.; Bucciarelli, G.; Hymer, J.D.; Kirvel, R.D.; Middleton, C.; Prono, J.; Reid, S.; Strack, B.

    1988-01-01

    Fiscal year 1988 has been a significant, rewarding, and exciting period for Lawrence Livermore National Laboratory's nuclear testing program. It was significant in that the Laboratory's new director chose to focus strongly on the program's activities and to commit to a revitalized emphasis on testing and the experimental science that underlies it. It was rewarding in that revolutionary new measurement techniques were fielded on recent important and highly complicated underground nuclear tests with truly incredible results. And it was exciting in that the sophisticated and fundamental problems of weapons science that are now being addressed experimentally are yielding new challenges and understanding in ways that stimulate and reward the brightest and best of scientists. During FY88 the program was reorganized to emphasize our commitment to experimental science. The name of the program was changed to reflect this commitment, becoming the Nuclear Test-Experimental Science (NTES) Program

  7. The nuclear dissuasion without tests

    International Nuclear Information System (INIS)

    2003-02-01

    Since the signature of the french treaty against the nuclear tests (Tice) in 1995, the french engineers must used the simulation to warrant the performance and the safety of weapons. This paper recalls the historical aspects of the french nuclear tests and presents the technological and scientific resources to simulate a nuclear weapon operating. a special interest is given to the computer TERA. (A.L.B.)

  8. Measurement and evaluation of high-rise building response to ground motion generated by underground nuclear explosions

    International Nuclear Information System (INIS)

    Honda, K.K.

    1976-01-01

    As part of the structural response research program being conducted for ERDA, the response behavior of high-rise buildings in Las Vegas, Nevada, due to ground motion caused by underground nuclear explosions (UNEs) at the Nevada Test Site (NTS) has been measured for the past 12 years. Results obtained include variation in dynamic response properties as a function of amplitude of motion, influence of nonstructural partitions in the building response, and comparison of calculated and measured response. These data for three reinforced concrete high-rise buildings, all designed as moment-resisting space frames are presented

  9. Nuclear tests and health: conference proceedings

    International Nuclear Information System (INIS)

    Beaudeau, M.C.

    2002-01-01

    This conference was organized by the observatory of French nuclear weapons - CDRPC-, the 'Moruroa e Tatou' association and the association of nuclear test veterans. Its aim was to call upon the victims of nuclear tests to speak about their health problems and to the possible consequences on their children's health. It pleads in favour of a particular legislation and in favour of the creation of an organization which would take for responsibility the health and environmental impacts of nuclear tests. (J.S.)

  10. Concerning control of radiation exposure to workers in nuclear reactor facilities for testing and nuclear reactor facilities in research and development phase (fiscal 1987)

    International Nuclear Information System (INIS)

    1988-01-01

    A nuclear reactor operator is required by the Nuclear Reactor Control Law to ensure that the radiation dose to workers engaged in the operations of his nuclear reactor is controlled below the permissible exposure doses that are specified in notifications issued based on the Law. The present note briefly summarizes the data given in the Reports on Radiation Control, which have been submitted according to the Nuclear Reactor Control Law by the operators of nuclear reactor facilities for testing and those in the research and development phase, and the Reports on Control of Radiation Exposure to Workers submitted in accordance with the applicable administrative notices. According to these reports, the measured exposure to workers in 1987 were below the above-mentioned permissible exposure doses in all these nuclear facilities. The 1986 and 1987 measurements of radiation exposure dose to workers in nuclear reactor facilities for testing are tabulated. The measurements cover dose distribution among the facilities' personnel and workers of contractors. They also cover the total exposure dose for all workers in each of four plants operated under the Japan Atomic Energy Research Institute and the Power Reactor and Nuclear Fuel Development Corporation. (N.K.)

  11. Fast recovery strain measurements in a nuclear test environment

    International Nuclear Information System (INIS)

    Kitchen, W.R.; Nauman, W.J.; Vollmer, D.W.

    1979-01-01

    The recovery of early-time (50 μs or less) strain gage data on structural response experiments in underground nuclear tests has been a continuing problem for experimenters at the Nevada Test Site. Strain measurement is one of the primary techniques used to obtain experimental data for model verification and correlation with predicted effects. Peak strains generally occur within 50 to 100 μs of the radiation exposure. Associated with the exposure is an intense electromagnetic impulse that produces potentials of kilovolts and currents of kiloamperes on the experimental structures. For successful operation, the transducer and associated recording system must recover from the initial noise overload and accurately track the strain response within about 50 μs of the nuclear detonation. A gaging and fielding technique and a recording system design that together accomplish these objectives are described. Areas discussed include: (1) noise source model; (2) experimental cassette design, gage application, grounding, and shielding; (3) cable design and shielding between gage and recorder; (4) recorder design including signal conditioner/amplifier, digital encoder, buffer memory, and uphole data transmission; and (5) samples of experimental data

  12. Radiation exposure on residents due to semipalatinsk nuclear tests

    International Nuclear Information System (INIS)

    Takada, J.; Hoshi, M.; Nagatomo, T.

    2000-01-01

    Accumulated external radiation doses for residents near Semipalatinsk nuclear test site of the former USSR are presented as a results of the first study by thermoluminescence technique for bricks sampled at several settlements between 1995 and 1997. The external doses which we evaluated from brick dose were up to ∼100 cGy for resident. The external doses at several points in the center of Semipalatinsk city were ∼60 cGy that was remarkably high comparing with the previously reported value based on the military data. A total of 459 nuclear explosions were conducted by the former Union of Soviet Socialist Republics (USSR) from 1949 to 1989 at the Semipalatinsk nuclear test site (SNTS) Kazakhstan, including 87 atmospheric, 26 on the ground, and 364 underground explosions. Total energy release of about 18 Mt equivalent of trinitrotoluene is eleven hundreds times of Hiroshima atomic bomb. However previous reports concerning the effects of radiation on residents near the SNTS based on data provided by the Defense Department of the former USSR do not have direct experimental data concerning effective equivalent dose. They just measured some doses for particular settlements after some nuclear explosions. These do not indicate integrated dose for the residents due to the whole explosions. The technique of thermoluminescence dosimetry (TLD) which had been successfully applied to the dosimetry on Hiroshima and Nagasaki atomic bombs, enabled us to evaluate accumulated external gamma ray doses at specific places due to whole nuclear explosions in the Semipalatinsk test site. TLD technique is well-established one for not only instantaneous exposure like in A-bombs (Hiroshima and Nagasaki) but also prolonged exposure like in dating. Moreover this technique was applicable for dosimetry study of radioactive fallout as shown in studies of Chernobyl accident. The way of external dose estimation from TLD doses for brick will be discussed in case of radioactive fallout. We will

  13. Studies of Health Effects from Nuclear Testing near the Semipalatinsk Nuclear Test Site, Kazakhstan

    Directory of Open Access Journals (Sweden)

    Bernd Grosche

    2015-05-01

    Full Text Available The nuclear bomb testing conducted at the Semipalatinsk nuclear test site in Kazakhstan is of great importance for today’s radiation protection research, particularly in the area of low dose exposures. This type of radiation is of particular interest due to the lack of research in this field and how it impacts population health. In order to understand the possible health effects of nuclear bomb testing, it is important to determine what studies have been conducted on the effects of low dose exposure and dosimetry, and evaluate new epidemiologic data and biological material collected from populations living in proximity to the test site. With time, new epidemiological data has been made available, and it is possible that these data may be linked to biological samples. Next to linking existing and newly available data to examine health effects, the existing dosimetry system needs to be expanded and further developed to include residential areas, which have not yet been taken into account. The aim of this paper is to provide an overview of previous studies evaluating the health effects of nuclear testing, including some information on dosimetry efforts, and pointing out directions for future epidemiologic studies.

  14. Studies of Health Effects from Nuclear Testing near the Semipalatinsk Nuclear Test Site, Kazakhstan.

    Science.gov (United States)

    Grosche, Bernd; Zhunussova, Tamara; Apsalikov, Kazbek; Kesminiene, Ausrele

    2015-01-01

    The nuclear bomb testing conducted at the Semipalatinsk nuclear test site in Kazakhstan is of great importance for today's radiation protection research, particularly in the area of low dose exposures. This type of radiation is of particular interest due to the lack of research in this field and how it impacts population health. In order to understand the possible health effects of nuclear bomb testing, it is important to determine what studies have been conducted on the effects of low dose exposure and dosimetry, and evaluate new epidemiologic data and biological material collected from populations living in proximity to the test site. With time, new epidemiological data has been made available, and it is possible that these data may be linked to biological samples. Next to linking existing and newly available data to examine health effects, the existing dosimetry system needs to be expanded and further developed to include residential areas, which have not yet been taken into account. The aim of this paper is to provide an overview of previous studies evaluating the health effects of nuclear testing, including some information on dosimetry efforts, and pointing out directions for future epidemiologic studies.

  15. Space Shuttle Boundary Layer Transition Flight Experiment Ground Testing Overview

    Science.gov (United States)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.

    2014-01-01

    In support of the Boundary Layer Transition (BLT) Flight Experiment (FE) Project in which a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS- 128, STS-131 and STS-133 as well as Space Shuttle Orbiter Endeavour for STS-134, a significant ground test campaign was completed. The primary goals of the test campaign were to provide ground test data to support the planning and safety certification efforts required to fly the flight experiment as well as validation for the collected flight data. These test included Arcjet testing of the tile protuberance, aerothermal testing to determine the boundary layer transition behavior and resultant surface heating and planar laser induced fluorescence (PLIF) testing in order to gain a better understanding of the flow field characteristics associated with the flight experiment. This paper provides an overview of the BLT FE Project ground testing. High-level overviews of the facilities, models, test techniques and data are presented, along with a summary of the insights gained from each test.

  16. Prediction of Pseudo relative velocity response spectra at Yucca Mountain for underground nuclear explosions conducted in the Pahute Mesa testing area at the Nevada testing site; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J.S.

    1991-12-01

    The Yucca Mountain Site Characterization Project (YMP), managed by the Office of Geologic Disposal of the Office of Civilian Radioactive Waste Management of the US Department of Energy, is examining the feasibility of siting a repository for commercial, high-level nuclear wastes at Yucca Mountain on and adjacent to the Nevada Test Site (NTS). This work, intended to extend our understanding of the ground motion at Yucca Mountain resulting from testing of nuclear weapons on the NTS, was funded by the Yucca Mountain project and the Military Applications Weapons Test Program. This report summarizes one aspect of the weapons test seismic investigations conducted in FY88. Pseudo relative velocity response spectra (PSRV) have been calculated for a large body of surface ground motions generated by underground nuclear explosions. These spectra have been analyzed and fit using multiple linear regression techniques to develop a credible prediction technique for surface PSRVs. In addition, a technique for estimating downhole PSRVs at specific stations is included. A data summary, data analysis, prediction development, prediction evaluation, software summary and FORTRAN listing of the prediction technique are included in this report.

  17. Influence of the environmental heterogeneity on the tree species richness –above ground biomass relationship in the Colombian Amazon

    OpenAIRE

    Posada Hernández , Carlos Alberto

    2013-01-01

    Abstract: In this study, we aimed to identify the shape and environmental drivers of the species richness (SR) –rarefied above ground biomass (RAGB) relationship across and within tree communities in the Colombian Amazon. We used a series of 130 0.1 ha plots to answer the next questions: 1) what is the shape of the SR - RAGB relationship both across and within tree communities in the Colombian Amazon? 2) At what extent does environmental heterogeneity drives the shape of the SR - RAGB relatio...

  18. Risk-based screening analysis of ground water contaminated by radionuclides introduced at the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Daniels, J.I.; Anspaugh, L.R.; Andricevic, R.; Jacobson, R.L.

    1993-06-01

    The Nevada Test Site (NTS) is located in the southwestern part of Nevada, about 105 km (65 mi) northwest of the city of Las Vegas. Underground tests of nuclear weapons devices have been conducted at the NTS since late 1962 and ground water beneath the NTS has been contaminated with radionuclides produced by these tests. This concern prompted this examination of the potential health risk to these individuals from drinking the contaminated ground water either at a location on the NTS (assuming loss of institutional control after 100 y) or at one offsite (considering groundwater migration). For the purpose of this assessment, a representative mix of the radionuclides of importance and their concentrations in ground water beneath the NTS were identified from measurements of radionuclide concentrations in groundwater samples-of-opportunity collected at the NTS. Transport of radionuclide-contaminated ground water offsite was evaluated using a travel-time-transport approach. At both locations of interest, potential human-health risk was calculated for an individual ingesting radionuclide-contaminated ground water over the course of a 70-y lifetime. Uncertainties about human physiological attributes, as well as about estimates of physical detriment per unit of radioactive material, were quantified and incorporated into the estimates of risk. The maximum potential excess lifetime risk of cancer mortality estimated for an individual at the offsite location ranges from 7 x 10 -7 to 1 x 10 -5 , and at the onsite location ranges from 3 x 10 -3 to 2 x 10 -2 . Both the offsite and the onsite estimates of risk are dominated by the lifetime doses from tritium. For the assessment of radionuclides in ground water, the critical uncertainty is their concentration today under the entire NTS

  19. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2005-09-20

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  20. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    International Nuclear Information System (INIS)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2005-01-01

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  1. Procedures for evaluation of vibratory ground motions of soil deposits at nuclear power plant sites

    International Nuclear Information System (INIS)

    1975-06-01

    According to USNRC requirements set forth in Appendix A, 10 CFR, Part 100, vibratory ground motion criteria for a nuclear plant must be based on local soil conditions, as well as on the seismicity, geology, and tectonics of the region. This report describes how such criteria can be developed by applying the latest technology associated with analytical predictions of site-dependent ground motions and with the use of composite spectra obtained from the current library of strong motion records. Recommended procedures for defining vibratory ground motion criteria contain the following steps: (1) geologic and seismologic studies; (2) site soils investigations; (3) site response sensitivity studies; (4) evaluation of local site response characteristics; (5) selection of site-matched records; and (6) appraisal and selection of seismic input criteria. An in-depth discussion of the engineering characteristics of earthquake ground motions including parameters used to characterize earthquakes and strong motion records, geologic factors that influence ground shaking, the current strong motion data base, and case histories of the effects of past earthquake events is presented. Next, geotechnical investigations of the seismologic, geologic, and site soil conditions required to develop vibratory motion criteria are briefly summarized. The current technology for establishing vibratory ground motion criteria at nuclear plant sites, including site-independent and site-dependent procedures that use data from strong motion records and from soil response analyses is described. (auth)

  2. Relativistic electron beams above thunderclouds

    DEFF Research Database (Denmark)

    Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.

    2011-01-01

    Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...

  3. Settlement mechanism of the backfilled ground around nuclear power plant buildings. Part 2. A series of centrifuge tests and a numerical simulation by using FEM about a typical test result

    International Nuclear Information System (INIS)

    Kawai, Tadashi; Ishimaru, Makoto

    2009-01-01

    During the Niigataken Chuetsu-oki earthquake, rather large settlements of the backfill ground around the rigid and stable buildings were observed. In this study, five cases of centrifuge tests with shaking events were conducted to reproduce the similar type of the settlements in order to examine the mechanism of the settlements. The results from those tests showed that the ground was settled by the negative dilatancy of sandy soils anywhere in the model ground and the additional settlements were suddenly caused when the backfill ground was apart from the rigid wall modeling the rigid and stable buildings, namely a sliding failure in an active state was occurred in the backfill ground near the structure. It was confirmed that these settlements were able to be estimated by a simple method proposed in this report, in which only the differences between the self-weight of the sliding block and the soil strength calculated at the initial stress conditions were considered as the driving forces of the sliding failure, and then the accelerations calculated from the forces being divided by the mass of the sliding block were simply integrated two times with respected to the time when the ground was apart from the structure. Further, a numerical simulation by using FEM about a typical test result was conducted, and these settlements were well simulated. (author)

  4. A test to evaluation non-linear soil structure interaction

    International Nuclear Information System (INIS)

    Hagiwara, T.; Kitada, Y.

    2005-01-01

    JNES is planning a new project to study non-linear soil-structure interaction (SSI) effect under large earthquake ground motions equivalent to and/or over a design earthquake ground motion of S2. Concerning the SSI test, it is pointed out that handling of the scale effect of the specimen taking into account the surrounding soil on the earthquake response evaluation to the actual structure is essential issue for the scaled model test. Thus, for the test, the largest specimen possible and the biggest input motion possible are necessary. Taking into account the above issues, new test methodology, which utilizes artificial earthquake ground motion, is considered desirable if it can be performed at a realistic cost. With this motivation, we have studied the test methodology which applying blasting power as for a big earthquake ground motion. The information from a coalmine company in the U.S.A. indicates that the works performed in the surface coalmine to blast a rock covering a coal layer generates a big artificial ground motion, which is similar to earthquake ground motion. Application of this artificial earthquake ground motion for the SSI test is considered very promising because the blasting work is carried out periodically for mining coal so that we can apply artificial motions generated by the work if we construct a building model at a closed point to the blasting work area. The major purposes of the test are to understand (a) basic earthquake response characteristics of a Nuclear Power Plant (NPP) reactor building when a large earthquake strikes the NPP site and (b) nonlinear characteristics of SSI phenomenon during a big earthquake. In the paper of ICONE-13, we will introduce the test method and basic characteristics of measured artificial ground motions generated by the blasting works on an actual site. (authors)

  5. Development and Testing of Techniques for In-Ground Stabilization, Size Reduction and Safe Removal of Radioactive Wastes Stored in Large Containments in Burial Grounds - 13591

    International Nuclear Information System (INIS)

    Halliwell, Stephen

    2013-01-01

    Radioactive waste materials, including Transuranic (TRU) wastes from laboratories have been stored below ground in large containments at a number of sites in the US DOE Complex, and at nuclear sites in Europe. These containments are generally referred to as caissons or shafts. The containments are in a range of sizes and depths below grade. The caissons at the DOE's Hanford site are cylindrical, of the order of 2,500 mm in diameter, 3,050 mm in height and are buried about 6,000 mm below grade. One type of caisson is made out of corrugated pipe, whereas others are made of concrete with standard re-bar. However, the larger shafts in the UK are of the order of 4,600 mm in diameter, 53,500 mm deep, and 12,000 below grade. This paper describes the R and D work and testing activities performed to date to evaluate the concept of in-ground size reduction and stabilization of the contents of large containments similar to those at Hanford. In practice, the height of the Test Facility provided for a test cell that was approximately 22' deep. That prevented a 'full scale mockup' test in the sense that the Hanford Caisson configuration would be an identical replication. Therefore, the project was conducted in two phases. The first phase tested a simulated Caisson with surrogate contents, and part of a Chute section, and the second phase tested a full chute section. These tests were performed at VJ Technologies Test Facility located in East Haven, CT, as part of the Proof of Design Concept program for studying the feasibility of an in-situ grout/grind/mix/stabilize technology for the remediation of four caissons at the 618-11 Burial Ground at US Department of Energy Hanford Site. The test site was constructed such that multiple testing areas were provided for the evaluation of various tools, equipment and procedures under conditions that simulated the Hanford site, with representative soils and layout dimensions. (authors)

  6. Development and Testing of Techniques for In-Ground Stabilization, Size Reduction and Safe Removal of Radioactive Wastes Stored in Large Containments in Burial Grounds - 13591

    Energy Technology Data Exchange (ETDEWEB)

    Halliwell, Stephen [VJ Technologies Inc, 89 Carlough Road, Bohemia, NY (United States)

    2013-07-01

    Radioactive waste materials, including Transuranic (TRU) wastes from laboratories have been stored below ground in large containments at a number of sites in the US DOE Complex, and at nuclear sites in Europe. These containments are generally referred to as caissons or shafts. The containments are in a range of sizes and depths below grade. The caissons at the DOE's Hanford site are cylindrical, of the order of 2,500 mm in diameter, 3,050 mm in height and are buried about 6,000 mm below grade. One type of caisson is made out of corrugated pipe, whereas others are made of concrete with standard re-bar. However, the larger shafts in the UK are of the order of 4,600 mm in diameter, 53,500 mm deep, and 12,000 below grade. This paper describes the R and D work and testing activities performed to date to evaluate the concept of in-ground size reduction and stabilization of the contents of large containments similar to those at Hanford. In practice, the height of the Test Facility provided for a test cell that was approximately 22' deep. That prevented a 'full scale mockup' test in the sense that the Hanford Caisson configuration would be an identical replication. Therefore, the project was conducted in two phases. The first phase tested a simulated Caisson with surrogate contents, and part of a Chute section, and the second phase tested a full chute section. These tests were performed at VJ Technologies Test Facility located in East Haven, CT, as part of the Proof of Design Concept program for studying the feasibility of an in-situ grout/grind/mix/stabilize technology for the remediation of four caissons at the 618-11 Burial Ground at US Department of Energy Hanford Site. The test site was constructed such that multiple testing areas were provided for the evaluation of various tools, equipment and procedures under conditions that simulated the Hanford site, with representative soils and layout dimensions. (authors)

  7. The NPT and nuclear testing

    International Nuclear Information System (INIS)

    Howlett, D.; Simpson, J.

    1992-01-01

    One of the oldest unachieved aims of international nuclear disarmament and arms limitation negotiations is a Comprehensive Test Ban Treaty (CTBT). The history of the international negotiations, their outcomes and the consequences of Test Ban for the nuclear arsenals of the nuclear weapons states is discussed. The linkage between a CTBT and the Non-Proliferation Treaty is examined. Two strategies for moving towards a CTBT are compared; one a direct one, the other an incremental route. Both have several alternatives which are considered. (UK)

  8. Gamma radiation at ground level in Sweden in 1975-1977

    International Nuclear Information System (INIS)

    Kjelle, P.E.

    1978-01-01

    After a peak of about 24 mR/y in 1963 (17 mR/y the actual value including absorption in the snow), the average additional exposure due to fallout decreased to about 10 mR/y (the actual value 7 mR/y) and since 1965 there have been no significant variations in the annual exposure due to fallout. The contribution from fallout to the irradiation level above the ground depends mostly on cesium-137 from the atmospheric nuclear explosions in 1961 and 1962 with some contribution from fresh fallout originating from later nuclear explosions

  9. Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada

    International Nuclear Information System (INIS)

    Laczniak, R.J.; Cole, J.C.; Sawyer, D.A.; Trudeau, D.A.

    1996-01-01

    The underground testing of nuclear devices has generated substantial volumes of radioactive and other chemical contaminants below ground at the Nevada Test Site (NTS). Many of the more radioactive contaminants are highly toxic and are known to persist in the environment for thousands of years. In response to concerns about potential health hazards, the US Department of Energy, under its Environmental Restoration Program, has made NTS the subject of a long-term investigation. Efforts will assess whether byproducts of underground testing pose a potential hazard to the health and safety of the public and, if necessary, will evaluate and implement steps to remediate any of the identified dangers. Ground-water flow is the primary mechanism by which contaminants can be transported significant distances away from the initial point of injection. Flow paths between contaminant sources and potential receptors are separated by remote areas that span tens of miles. The diversity and structural complexity of the rocks along these flow paths complicates the hydrology of the region. Although the hydrology has been studied in some detail, much still remains uncertain about flow rates and directions through the fractured-rock aquifers that transmit water great distances across this arid region. Unique to the hydrology of NTS are the effects of underground testing, which severely alter local rock characteristics and affect hydrologic conditions throughout the region. This report summarizes what is known and inferred about ground-water flow throughout the NTS region. The report identifies and updates what is known about some of the major controls on ground-water flow, highlights some of the uncertainties in the current understanding, and prioritizes some of the technical needs as related to the Environmental Restoration Program. 113 refs

  10. Study of ground-state configuration of neutron-rich aluminium isotopes through electromagnetic excitation

    International Nuclear Information System (INIS)

    Chakraborty, S.; Datta Pramanik, U.; Chatterjee, S.

    2013-01-01

    The region of the nuclear chart around neutron magic number, N∼20 and proton number (Z), 10≤ Z≤12 is known as the Island of Inversion. The valance neutron(s) of these nuclei, even in their ground state, are most likely occupying the upper pf orbitals which are normally lying above sd orbitals, N∼20 shell closure. Nuclei like 34,35 Al are lying at the boundary of this Island of Inversion. Little experimental information about their ground state configuration are available in literature

  11. Changes in ground beetle assemblages above and below the treeline of the Dolomites after almost 30 years (1980/2009).

    Science.gov (United States)

    Pizzolotto, Roberto; Gobbi, Mauro; Brandmayr, Pietro

    2014-04-01

    Very little is known about the changes of ground beetle assemblages in the last few decades in the Alps, and different responses to climate change of animal populations living above and below the treeline have not been estimated yet. This study focuses on an altitudinal habitat sequence from subalpine spruce forest to alpine grassland in a low disturbance area of the southeastern Dolomites in Italy, the Paneveggio Regional Park. We compared the ground beetle (Carabidae) populations sampled in 1980 in six stands below and above the treeline (1650-2250 m a.s.l.) with those sampled in the same sites almost 30 years later (2008/9). Quantitative data (species richness and abundance) have been compared by means of several diversity indexes and with a new index, the Index of Rank-abundance Change (IRC). Our work shows that species richness and abundance have changed after almost 30 years as a consequence of local extinctions, uphill increment of abundance and uphill shift of distribution range. The overall species number dropped from 36 to 27, while in the sites above the treeline, species richness and abundance changed more than in the forest sites. Two microtherm characteristic species of the pioneer cushion grass mats, Nebria germari and Trechus dolomitanus, became extinct or showed strong abundance reduction. In Nardetum pastures, several hygrophilic species disappeared, and xerophilic zoophytophagous elements raised their population density. In forest ecosystems, the precipitation reduction caused deep soil texture and watering changes, driving a transformation from Sphagnum-rich (peaty) to humus-rich soil, and as a consequence, soil invertebrate biomass strongly increased and thermophilic carabids enriched the species structure. In three decades, Carabid assemblages changed consistently with the hypothesis that climate change is one of the main factors triggering natural environment modifications. Furthermore, the level of human disturbance could enhance the

  12. Can the deterrence survive to nuclear tests ban

    International Nuclear Information System (INIS)

    Gaffney, F.J. Jr.

    1996-01-01

    The problem of the soundness of the nuclear tests stopping is discussed here. The safety, the durability of nuclear weapons need nuclear tests. So, unless other means able to guarantee the deterrence, it is prejudicial to stop nuclear tests and to sign a non proliferation treaty with the option of zero nuclear explosion. (N.C.)

  13. [Study on Tritium Content in Soil at Sites of Nuclear Explosions on the Territory of Semipalatinsk Test Site].

    Science.gov (United States)

    Timonova, L V; Lyakhova, O N; Lukashenko, S N; Aidarkhanov, A O

    2015-01-01

    As a result of investigations carried out on the territory of Semipalatinsk Test Site, tritium was found in different environmental objects--surface and ground waters, vegetation, air environment, and snow cover. The analysis of the data obtained has shown that contamination of environmental objects at the Semipalatinsk Test Site with tritium is associated with the places where underground nuclear tests were performed. Since tritium can originate from an activation reaction and be trapped by pock particles during a test, it was decided to examine the soil in the sites where surface and excavation tests took place. It was found that the concentration of tritium in soil correlates with the concentration of europium. Probably, the concentration of tritium in the soil depends on the character and yield of the tests performed. Findings of the study have revealed that tritium can be found in soil in significant amounts not only in sites where underground nuclear tests took place but also in sites where surface and excavation nuclear tests were carried out.

  14. Process for testing noise emission from containers or pipelines made of steel, particularly for nuclear reactor plants

    International Nuclear Information System (INIS)

    Votava, E.; Stipsits, G.; Sommer, R.

    1982-01-01

    In a process for noise emission testing of steel containers or pipelines, particularly for testing primary circuit components of nuclear reactor plants, measuring sensors and/or associated electronic amplifiers are used, which are tuned for receiving the frequency band of the sound emission spectrum above a limiting frequency f G , but are limited or non-resonant for frequency bands less than f G . (orig./HP) [de

  15. Estimation of crown biomass of Pinus pinaster stands and shrubland above-ground biomass using forest inventory data, remotely sensed imagery and spatial prediction models

    Science.gov (United States)

    H. Viana; J. Aranha; D. Lopes; Warren B. Cohen

    2012-01-01

    Spatially crown biomass of Pinus pinaster stands and shrubland above-ground biomass (AGB) estimation was carried-out in a region located in Centre-North Portugal, by means of different approaches including forest inventory data, remotely sensed imagery and spatial prediction models. Two cover types (pine stands and shrubland) were inventoried and...

  16. Importance of tests in nuclear facilities

    International Nuclear Information System (INIS)

    Guillemard, B.

    1985-10-01

    In nuclear facilities, safety related systems and equipments are subject, along their whole service-life, to numerous tests. This paper analyses the role of tests in the successive stages of design, construction, exploitation of a nuclear facility. It examines several aspects of test quality control: definition of needs, test planning, intrinsic quality of each test, control of interfaces (test are both the end and the starting point of many actions concerned by quality) and the application [fr

  17. Ultraviolet-B Radiation and Nitrogen Affect Nutrient Concentrations and the Amount of Nutrients Acquired by Above-Ground Organs of Maize

    OpenAIRE

    Correia, Carlos M.; Coutinho, João F.; Bacelar, Eunice A.; Gonçalves, Berta M.; Björn, Lars Olof; Moutinho Pereira, José

    2012-01-01

    UV-B radiation effects on nutrient concentrations in above-ground organs of maize were investigated at silking and maturity at different levels of applied nitrogen under field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. At silking, UV-B increased N, K, Ca, and Zn concentrations, whereas at maturity Ca, Mg, Zn, and Cu increased and N, P and Mn decreased in some plant organs. Generally, at maturity, N, Ca, Cu, and Mn were lower, while P, K, and Zn con...

  18. Radiation transport in earth for neutron and gamma ray point sources above an air-ground interface

    International Nuclear Information System (INIS)

    Lillie, R.A.; Santoro, R.T.

    1979-03-01

    Two-dimensional discrete ordinates methods were used to calculate the instantaneous dose rate in silicon and neutron and gamma ray fluences as a function of depth in earth from point sources at various heights (1.0, 61.3, and 731.5 meters) above an air--ground interface. The radiation incident on the earth's surface was transported through an earth-only and an earth--concrete model containing 0.9 meters of borated concrete beginning 0.5 meters below the earth's surface to obtain fluence distributions to a depth of 3.0 meters. The inclusion of borated concrete did not significantly reduce the total instantaneous dose rate in silicon and, in all cases, the secondary gamma ray fluence and corresponding dose are substantially larger than the primary neutron fluence and corresponding dose for depths greater than 0.6 meter. 4 figures, 4 tables

  19. Radiation transport in earth for neutron and gamma-ray point sources above an air-ground interface

    International Nuclear Information System (INIS)

    Lillie, R.A.; Santoro, R.T.

    1980-01-01

    Two-dimensional discrete-ordinates methods have been used to calculate the instantaneous dose rate in silicon and neutron and gamma-ray fluences as a function of depth in earth from point sources at various heights (1.0, 61.3, and 731.5 m) above an air-ground interface. The radiation incident on the earth's surface was transported through an earth-only and an earth-concrete model containing 0.9 m of borated concrete beginning 0.5 m below the earth's surface to obtain fluence distributions to a depth of 3.0 m. The inclusion of borated concrete did not significantly reduce the total instantaneous dose rate in silicon, and in all cases, the secondary gamma-ray fluence and corresponding dose are substantially larger than the primary neutron fluence and corresponding dose for depths > 0.6 m

  20. The Indian nuclear test in a global perspective

    International Nuclear Information System (INIS)

    Subrahmanyam, K.

    1974-01-01

    A peaceful nuclear explosion test was carried out by India on 18 May, 1974 at Pokharan in the Rajasthan Desert. The test was carried out as a part of India's steady programme to develop nuclear energy for peaceful purposes and there was no diversion of resources from development as is charged by some nations. The test has broken the monopoly of the nuclear superpowers to conduct nuclear tests for which they are entiltled by the Non-proliferation Treaty (NPT) and at the same time, sharply focussed the attention on the discriminatory character of the NPT which does not allow non-nuclear states to carry out nuclear tests even for peaceful purposes. It is argued that India's going nuclear may prove, in the long run, beneficial to the cause of disarmament. (M.G.B.)

  1. Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery

    Science.gov (United States)

    Castillo, Jose Alan A.; Apan, Armando A.; Maraseni, Tek N.; Salmo, Severino G.

    2017-12-01

    The recent launch of the Sentinel-1 (SAR) and Sentinel-2 (multispectral) missions offers a new opportunity for land-based biomass mapping and monitoring especially in the tropics where deforestation is highest. Yet, unlike in agriculture and inland land uses, the use of Sentinel imagery has not been evaluated for biomass retrieval in mangrove forest and the non-forest land uses that replaced mangroves. In this study, we evaluated the ability of Sentinel imagery for the retrieval and predictive mapping of above-ground biomass of mangroves and their replacement land uses. We used Sentinel SAR and multispectral imagery to develop biomass prediction models through the conventional linear regression and novel Machine Learning algorithms. We developed models each from SAR raw polarisation backscatter data, multispectral bands, vegetation indices, and canopy biophysical variables. The results show that the model based on biophysical variable Leaf Area Index (LAI) derived from Sentinel-2 was more accurate in predicting the overall above-ground biomass. In contrast, the model which utilised optical bands had the lowest accuracy. However, the SAR-based model was more accurate in predicting the biomass in the usually deficient to low vegetation cover non-forest replacement land uses such as abandoned aquaculture pond, cleared mangrove and abandoned salt pond. These models had 0.82-0.83 correlation/agreement of observed and predicted value, and root mean square error of 27.8-28.5 Mg ha-1. Among the Sentinel-2 multispectral bands, the red and red edge bands (bands 4, 5 and 7), combined with elevation data, were the best variable set combination for biomass prediction. The red edge-based Inverted Red-Edge Chlorophyll Index had the highest prediction accuracy among the vegetation indices. Overall, Sentinel-1 SAR and Sentinel-2 multispectral imagery can provide satisfactory results in the retrieval and predictive mapping of the above-ground biomass of mangroves and the replacement

  2. Guidance on the Stand Down, Mothball, and Reactivation of Ground Test Facilities

    Science.gov (United States)

    Volkman, Gregrey T.; Dunn, Steven C.

    2013-01-01

    The development of aerospace and aeronautics products typically requires three distinct types of testing resources across research, development, test, and evaluation: experimental ground testing, computational "testing" and development, and flight testing. Over the last twenty plus years, computational methods have replaced some physical experiments and this trend is continuing. The result is decreased utilization of ground test capabilities and, along with market forces, industry consolidation, and other factors, has resulted in the stand down and oftentimes closure of many ground test facilities. Ground test capabilities are (and very likely will continue to be for many years) required to verify computational results and to provide information for regimes where computational methods remain immature. Ground test capabilities are very costly to build and to maintain, so once constructed and operational it may be desirable to retain access to those capabilities even if not currently needed. One means of doing this while reducing ongoing sustainment costs is to stand down the facility into a "mothball" status - keeping it alive to bring it back when needed. Both NASA and the US Department of Defense have policies to accomplish the mothball of a facility, but with little detail. This paper offers a generic process to follow that can be tailored based on the needs of the owner and the applicable facility.

  3. Final Report - Assessment of Testing Options for the NTR at the INL

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Steven D; McLing, Travis L; McCurry, Michael; Plummer, Mitchell A

    2013-02-01

    One of the main technologies that can be developed to dramatically enhance the human exploration of space is the nuclear thermal rocket (NTR). Several studies over the past thirty years have shown that the NTR can reduce the cost of a lunar outpost, reduce the risk of a human mission to Mars, enable fast transits for most missions throughout the solar system, and reduce the cost and time for robotic probes to deep space. Three separate committees of the National Research Council of the National Academy of Sciences have recommended that NASA develop the NTR. One of the primary issues in development of the NTR is the ability to verify a flight ready unit. Three main methods can be used to validate safe operation of a NTR: 1) Full power, full duration test in an above ground facility that scrubs the rocket exhaust clean of any fission products; 2) Full power , full duration test using the Subsurface Active Filtering of Exhaust (SAFE) technique to capture the exhaust in subsurface strata; 3) Test of the reactor fuel at temperature and power density in a driver reactor with subsequent first test of the fully integrated NTR in space. The first method, the above ground facility, has been studied in the past. The second method, SAFE, has been examined for application at the Nevada Test Site. The third method relies on the fact that the Nuclear Furnace series of tests in 1971 showed that the radioactive exhaust coming from graphite based fuel for the NTR could be completely scrubbed of fission products and the clean hydrogen flared into the atmosphere. Under funding from the MSFC, the Center for Space Nuclear Research (CSNR) at the Idaho National laboratory (INL) has completed a reexamination of Methods 2 and 3 for implementation at the INL site. In short, the effort performed the following: 1) Assess the geology of the INL site and determine a location suitable SAFE testing; 2) Perform calculations of gas transport throughout the geology; 3) Produce a cost estimate of a

  4. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites.

    Science.gov (United States)

    Babst, Flurin; Bouriaud, Olivier; Papale, Dario; Gielen, Bert; Janssens, Ivan A; Nikinmaa, Eero; Ibrom, Andreas; Wu, Jian; Bernhofer, Christian; Köstner, Barbara; Grünwald, Thomas; Seufert, Günther; Ciais, Philippe; Frank, David

    2014-03-01

    • Attempts to combine biometric and eddy-covariance (EC) quantifications of carbon allocation to different storage pools in forests have been inconsistent and variably successful in the past. • We assessed above-ground biomass changes at five long-term EC forest stations based on tree-ring width and wood density measurements, together with multiple allometric models. Measurements were validated with site-specific biomass estimates and compared with the sum of monthly CO₂ fluxes between 1997 and 2009. • Biometric measurements and seasonal net ecosystem productivity (NEP) proved largely compatible and suggested that carbon sequestered between January and July is mainly used for volume increase, whereas that taken up between August and September supports a combination of cell wall thickening and storage. The inter-annual variability in above-ground woody carbon uptake was significantly linked with wood production at the sites, ranging between 110 and 370 g C m(-2) yr(-1) , thereby accounting for 10-25% of gross primary productivity (GPP), 15-32% of terrestrial ecosystem respiration (TER) and 25-80% of NEP. • The observed seasonal partitioning of carbon used to support different wood formation processes refines our knowledge on the dynamics and magnitude of carbon allocation in forests across the major European climatic zones. It may thus contribute, for example, to improved vegetation model parameterization and provides an enhanced framework to link tree-ring parameters with EC measurements. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  5. Learning from nuclear waste repository design: the ground-control plan

    International Nuclear Information System (INIS)

    Schmidt, B.

    1988-01-01

    At present, under a U.S. Department of Energy program, three repositories for commercial spent fuel-in salt, tuff and basalt-are in the phase of site characterization and conceptual design, and one pilot project for defense waste in salt is under development. Because of strict quality assurance requirements throughout design and construction, and the need to predict and ascertain in advance the satisfactory performance of the underground openings, underground openings in the unusual circumstances of the repository environment have been analysed. This will lead to an improved understanding of rock behavior and improved methods of underground analysis and design. A formalized ground control plan was developed, the principles of which may be applied to other types of projects. This paper summarizes the status of underground design and construction for nuclear waste repositories and presents some details of the ground control plan and its individual elements. (author)

  6. Development of nuclear technologies and conversion of nuclear weapon testing system infrastructure in Kazakhstan

    International Nuclear Information System (INIS)

    Cherepnin, Yu.; Takibaev, Zh.

    2000-01-01

    The article gives a brief description of the work done by the National Nuclear Center of the Republic of Kazakhstan in development of nuclear technology and conversion of nuclear weapon testing infrastructure in Kazakhstan. Content and trends of works are as follows: 1. Peaceful use of all physical facilities, created earlier for nuclear tests in Kazakhstan; 2. Development of methods and technologies for safe nuclear reactors use; 3. Examination of different materials in field of great neutron flow for thermonuclear reactor's first wall development; 4. Liquidation of all wells, which were formed in the results of underground nuclear explosions in Degelen mountain massif of former Semipalatinsk test site; 5. Study of consequences of nuclear tests in West Kazakhstan (territory of Azgir test site and Karachaganak oil field); 6. Study of radiological situation on the Semipalatinsk test site and surrounding territories; 7. Search of ways for high-level radioactive wastes disposal; 8. Construction of safe nuclear power plants in Kazakhstan

  7. Below and above-ground carbon distribution along a rainfall gradient. A case of the Zambezi teak forests, Zambia

    Science.gov (United States)

    Ngoma, Justine; Moors, Eddy; Kruijt, Bart; Speer, James H.; Vinya, Royd; Chidumayo, Emmanuel N.; Leemans, Rik

    2018-02-01

    Understanding carbon (C) stocks or biomass in forests is important to examine how forests mitigate climate change. To estimate biomass in stems, branches and roots takes intensive fieldwork to uproot, cut and weigh the mass of each component. Different models or equations are also required. Our research focussed on the dry tropical Zambezi teak forests and we studied their structure at three sites following a rainfall gradient in Zambia. We sampled 3558 trees at 42 plots covering a combined area of 15ha. Using data from destructive tree samples, we developed mixed-species biomass models to estimate above ground biomass for small (forests, thereby adversely affecting their mitigating role in climate change.

  8. The microelectronics and photonics test bed (MPTB) space, ground test and modeling experiments

    International Nuclear Information System (INIS)

    Campbell, A.

    1999-01-01

    This paper is an overview of the MPTB (microelectronics and photonics test bed) experiment, a combination of a space experiment, ground test and modeling programs looking at the response of advanced electronic and photonic technologies to the natural radiation environment of space. (author)

  9. A Transient Numerical Simulation of Perched Ground-Water Flow at the Test Reactor Area, Idaho National Engineering and Environmental Laboratory, Idaho, 1952-94

    International Nuclear Information System (INIS)

    Orr, B. R.

    1999-01-01

    Studies of flow through the unsaturated zone and perched ground-water zones above the Snake River Plain aquifer are part of the overall assessment of ground-water flow and determination of the fate and transport of contaminants in the subsurface at the Idaho National Engineering and Environmental Laboratory (INEEL). These studies include definition of the hydrologic controls on the formation of perched ground-water zones and description of the transport and fate of wastewater constituents as they moved through the unsaturated zone. The definition of hydrologic controls requires stratigraphic correlation of basalt flows and sedimentary interbeds within the saturated zone, analysis of hydraulic properties of unsaturated-zone rocks, numerical modeling of the formation of perched ground-water zones, and batch and column experiments to determine rock-water geochemical processes. This report describes the development of a transient numerical simulation that was used to evaluate a conceptual model of flow through perched ground-water zones beneath wastewater infiltration ponds at the Test Reactor Area (TRA)

  10. Surface Disturbances at the Punggye-ri Nuclear Test Site: Another Indicator of Nuclear Testing?

    Energy Technology Data Exchange (ETDEWEB)

    Pabian, Frank V. [Los Alamos National Laboratory; Coblentz, David [Los Alamos National Laboratory

    2017-02-03

    A review of available very high-resolution commercial satellite imagery (bracketing the time of North Korea’s most recent underground nuclear test on 9 September 2016 at the Punggye-ri Underground Nuclear Test Site) has led to the detection and identification of several minor surface disturbances on the southern flank of Mt. Mantap. These surface disturbances occur in the form of small landslides, either alone or together with small zones of disturbed bare rock that appear to have been vertically lofted (“spalled”) as a result of the most recent underground explosion. Typically, spall can be uniquely attributed to underground nuclear testing and is not a result of natural processes. However, given the time gap of up to three months between images (pre- and post-event), which was coincident with a period of heavy typhoon flooding in the area1, it is not possible to determine whether the small landslides were exclusively explosion induced, the consequence of heavy rainfall erosion, or some combination of the two.

  11. Seismic Hazard Assessment in Site Evaluation for Nuclear Installations: Ground Motion Prediction Equations and Site Response

    International Nuclear Information System (INIS)

    2016-07-01

    The objective of this publication is to provide the state-of-the-art practice and detailed technical elements related to ground motion evaluation by ground motion prediction equations (GMPEs) and site response in the context of seismic hazard assessments as recommended in IAEA Safety Standards Series No. SSG-9, Seismic Hazards in Site Evaluation for Nuclear Installations. The publication includes the basics of GMPEs, ground motion simulation, selection and adjustment of GMPEs, site characterization, and modelling of site response in order to improve seismic hazard assessment. The text aims at delineating the most important aspects of these topics (including current practices, criticalities and open problems) within a coherent framework. In particular, attention has been devoted to filling conceptual gaps. It is written as a reference text for trained users who are responsible for planning preparatory seismic hazard analyses for siting of all nuclear installations and/or providing constraints for anti-seismic design and retrofitting of existing structures

  12. Landsat Imagery-Based Above Ground Biomass Estimation and Change Investigation Related to Human Activities

    Directory of Open Access Journals (Sweden)

    Chaofan Wu

    2016-02-01

    Full Text Available Forest biomass is a significant indicator for substance accumulation and forest succession, and a spatiotemporal biomass map would provide valuable information for forest management and scientific planning. In this study, Landsat imagery and field data cooperated with a random forest regression approach were used to estimate spatiotemporal Above Ground Biomass (AGB in Fuyang County, Zhejiang Province of East China. As a result, the AGB retrieval showed an increasing trend for the past decade, from 74.24 ton/ha in 2004 to 99.63 ton/ha in 2013. Topography and forest management were investigated to find their relationships with the spatial distribution change of biomass. In general, the simulated AGB increases with higher elevation, especially in the range of 80–200 m, wherein AGB acquires the highest increase rate. Moreover, the forest policy of ecological forest has a positive effect on the AGB increase, particularly within the national level ecological forest. The result in this study demonstrates that human activities have a great impact on biomass distribution and change tendency. Furthermore, Landsat image-based biomass estimates would provide illuminating information for forest policy-making and sustainable development.

  13. Remediation and recycling of oil-contaminated soil beneath a large above-ground storage tank

    International Nuclear Information System (INIS)

    Wallace, G.

    1994-01-01

    While retrofitting a large 30-year-old, above-ground petroleum storage tank, Southern California Edison Company (SCE) discovered that soil beneath the fixed-roof, single-bottom tank was contaminated with 40,000 gallons of number-sign 6 fuel oil. The steel tank was left in place during the excavation and remediation of the contaminated soil to retain the operating permit. The resulting 2,000 tons of contaminated aggregate was recycled to make asphalt concrete for paving the tank basin and the remaining 5,600 tons of oily soil was thermally treated on site for use as engineered fill at another location. This successful operation provided an economical cleanup solution for a common leakage problem of single-lined tanks and eliminated the long-term liability of Class 1 landfill disposal. As a pro-active environmental effort, this paper shares SCE's site assessment procedure, reveals the engineering method developed to stabilize the tank, discusses the soil treatment technologies used, describes the problems encountered and lessons learned during the cleanup, discloses the costs of the operation, and offers guidelines and recommendations for similar tank remediation. This paper does not describe the work or costs for removing or replacing the tank bottom

  14. Operation Aqueduct: Onsite radiological safety report for announced nuclear tests, October 1989--September 1990

    International Nuclear Information System (INIS)

    Hernandez, G.M.; Jacklin, A.K.

    1992-01-01

    Aqueduct was the name assigned to the series of underground nuclear weapons tests conducted at the Nevada Test Site (NTS) from October 1, 1989, through September 30, 1990. This report includes those experiments publicly announced. Remote radiation measurements were taken during and after each nuclear event by a telemetry system. Reynolds Electrical ampersand Engineering Co., Inc. (REECO) Health Protection Department (HPD) Radiation Protection Technicians (RPTS) with portable radiation detection instruments surveyed reentry routes into ground zeros (GZ) before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene (IH) coverage was provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific operational procedures are defined

  15. CRYogenic Orbital TEstbed Ground Test Article Thermal Analysis

    Science.gov (United States)

    Piryk, David; Schallhorn, Paul; Walls, Laurie; Stopnitzky, Benny; Rhys, Noah; Wollen, Mark

    2012-01-01

    The purpose of this study was to anchor thermal and fluid system models to CRYOTE ground test data. The CRYOTE ground test artide was jointly developed by Innovative Engineering Solutions, United Launch Alliance and NASA KSC. The test article was constructed out of a titanium alloy tank, Sapphire 77 composite skin (similar to G10), an external secondary payload adapter ring, thermal vent system, multi layer insulation and various data acquisition instrumentation. In efforts to understand heat loads throughout this system, the GTA (filled with liquid nitrogen for safety purposes) was subjected to a series of tests in a vacuum chamber at Marshall Space Flight Center. By anchoring analytical models against test data, higher fidelity thermal environment predictions can be made for future flight articles which would eventually demonstrate critical cryogenic fluid management technologies such as system chilldown, transfer, pressure control and long term storage. Significant factors that influenced heat loads included radiative environments, multi-layer insulation performance, tank fill levels and pressures and even contact conductance coefficients. This report demonstrates how analytical thermal/fluid networks were established and includes supporting rationale for specific thermal responses.

  16. Axial currents and nuclear spin orientation

    International Nuclear Information System (INIS)

    Minamisono, T.; Nojiri, Y.; Matsuta, K.

    1984-01-01

    This paper discusses the symmetries in the phenomena in which weak interaction is involved are largely violated, and it is still the up-to-date fore-front to study the structure of the nuclear weak currents and to learn the limitations on the applicabilities of the various relevant conservation laws as well as the nuclear structures studied by the β-decay. In this meeting, research works on the β-decay processes for the past 10 years have focused on the recoil order experiments designed to determine the limits of validity of the conserved vector current (CVC) theory and to test the G parity conservation i.e. the search for the second class currents (SCC), as well as to study the structure of the axial currents. Concerning the SCC, after intensive studies, but with not conclusive results, on the ft values of mirror β-decays in the early seventies, the correlation-type measurements on mass A=8, 12, 19 and 20 systems have been also carried out in various laboratories from 1975. Among those, concerns have been with the mass A=12 nuclear triad, /sup 12/B-/sup 12/C-/sup 12/N, the energy diagram of which is well known. The choice of this triad is because of the test done for the strong CVC predictions using the spectrum shapes of β-rays combined with the experimental analogue γ-width in /sup 12/C as well as those relevant nuclear structures. Thus, this A=12 system provides the best testing ground for the research described above

  17. India and the nuclear test ban

    International Nuclear Information System (INIS)

    Singh, J.

    1998-01-01

    India has sought a nuclear-test ban for the last 42 years bur is now unable to sign the Comprehensive Test ban Treaty (CTBT) when it is in its final form and moved to block its transmittal from the Conference on Disarmament to the UN General assembly. The negotiating mandate for the CTBT required it to effectively contribute to the process of disarmament. It is towards this end that India proposed amendments. Nuclear disarmament is fundamental for India's strategic and security interests. The only viable solution to India's security concerns related to nuclear weapons is in pursuing total elimination of nuclear weapons from national arsenals

  18. A history of US nuclear testing and its influence on nuclear thought, 1945-1963

    CERN Document Server

    Blades, David M

    2014-01-01

    As states continue to pursue nuclear weaponry, nuclear testing remains an important political issue in the twenty-first century. This survey examines how and why the U.S. conducted nuclear tests from 1945 through 1963 and the resulting influence on key questions from normalization and de-normalization up to the Nuclear Test Ban Treaty of 1963.

  19. Nuclear test ban verification

    International Nuclear Information System (INIS)

    Chun, Kin-Yip

    1991-07-01

    This report describes verification and its rationale, the basic tasks of seismic verification, the physical basis for earthquake/explosion source discrimination and explosion yield determination, the technical problems pertaining to seismic monitoring of underground nuclear tests, the basic problem-solving strategy deployed by the forensic seismology resarch team at the University of Toronto, and the scientific significance of the team's research. The research carried out at the Univeristy of Toronto has two components: teleseismic verification using P wave recordings from the Yellowknife Seismic Array (YKA), and regional (close-in) verification using high-frequency L g and P n recordings from the Eastern Canada Telemetered Network. Major differences have been found in P was attenuation among the propagation paths connecting the YKA listening post with seven active nuclear explosion testing areas in the world. Significant revisions have been made to previously published P wave attenuation results, leading to more interpretable nuclear explosion source functions. (11 refs., 12 figs.)

  20. Minisatellite mutations and retrospective biodosimetry of population living close to the Semipalatinsk nuclear test site

    International Nuclear Information System (INIS)

    Lindholm, C.; Bersimbaev, R.I.; Dubrova, Y.E. EI KAUP; EI MAATA

    2003-01-01

    During the period between 1949 and 1989 nuclear weapon testing carried out at the Semipalatinsk Nuclear Test Site (STS) resulted in local fallout affecting the residents of Semipalatinsk, East Kazakhstan and Pavlodar districts of Kazakhstan and Altai region of Russia. The Semipalatinsk nuclear polygon in Kazakhstan has been the site for 470 nuclear tests, including 26 tests performed on the ground and 87 in the atmosphere. More than 1.5 million people living in the vicinity of the test site were repeatedly exposed to ionizing radiation. The paper reviews the study where the main objectives are: (1) to establish a biosample database of blood samples of families in three generations living close to the STS and control families in three generations from clean areas, (2) to determine the minisatellite mutation rates in the three generations of exposed people and the control families of the same ethinic origin living in non-contaminated areas, and (3) to determine the chromosomal translocation frequencies by FISH chromosome painting in the lymphocytes of the exposed and the control people in order to determine the radiation exposure. The aim of the study was to select the population living near to the STS and subjected to the greatest radiation exposure. Of particular interest was the first test of 29th of August 1949, as this was reported to have caused heavy fallout along a narrow trajectory extending north-east from Polygon, also covering parts of the Altai region of Russia and parts of Pavlodar and Karaganda regions in Kazakhstan

  1. Business of Nuclear Safety Analysis Office, Nuclear Technology Test Center

    International Nuclear Information System (INIS)

    Hayakawa, Masahiko

    1981-01-01

    The Nuclear Technology Test Center established the Nuclear Safety Analysis Office to execute newly the works concerning nuclear safety analysis in addition to the works related to the proving tests of nuclear machinery and equipments. The regulations for the Nuclear Safety Analysis Office concerning its organization, business and others were specially decided, and it started the business formally in August, 1980. It is a most important subject to secure the safety of nuclear facilities in nuclear fuel cycle as the premise of developing atomic energy. In Japan, the strict regulation of safety is executed by the government at each stage of the installation, construction, operation and maintenance of nuclear facilities, based on the responsibility for the security of installers themselves. The Nuclear Safety Analysis Office was established as the special organ to help the safety examination related to the installation of nuclear power stations and others by the government. It improves and puts in order the safety analysis codes required for the cross checking in the safety examination, and carries out safety analysis calculation. It is operated by the cooperation of the Science and Technology Agency and the Agency of Natural Resources and Energy. The purpose of establishment, the operation and the business of the Nuclear Safety Analysis Office, the plan of improving and putting in order of analysis codes, and the state of the similar organs in foreign countries are described. (Kako, I.)

  2. Cathodic protection simulation of above ground storage tank bottom: Experimental and numerical results

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Marcelo [Inspection Department, Rio de Janeiro Refinery - REDUC, Petrobras, Rio de Janeiro (Brazil); Brasil, Simone L.D.C. [Chemistry School, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro (Brazil); Baptista, Walmar [Corrosion Department, Research Centre - CENPES, Petrobras (Brazil); Miranda, Luiz de [Materials and Metallurgical Engineering Program, COPPE, UFRJ, Rio de Janeiro (Brazil); Brito, Rosane F. [Corrosion Department, Research Centre, CENPES, Petrobras, Rio de Janeiro (Brazil)

    2004-07-01

    The deterioration history of Above ground Storage Tanks (AST) of Petrobras' refineries - shows that the great incidence of corrosion in the AST bottom is at the external side. This is a problem in the disposability of storage crude oil and other final products. At this refinery, all AST's are built over a concrete base with a lot of pile to support the structure and distribute the charge homogeneously. Because of this it is very difficult to use cathodic protection as an anti-corrosive method for each one of these tanks. This work presents an alternative cathodic protection system to protect the external side of the tank bottom using a new metallic bottom, placed at different distance from the original one. The space between the two bottoms was filled with one of two kinds of soils, sand or clay, more conductive than the concrete. Using a prototype tank it was studied the potential distributions over the new tank bottom for different system parameters, as soil resistivity, number and position of anodes localized in the old bottom. These experimental results were compared to numerical simulations, carried out using a software based on the Boundary Element Method. The computer simulation validates this protection method, confirming to be a very useful tool to define the optimized cathodic protection system configuration. (authors)

  3. A comparative analysis of extended water cloud model and backscatter modelling for above-ground biomass assessment in Corbett Tiger Reserve

    Science.gov (United States)

    Kumar, Yogesh; Singh, Sarnam; Chatterjee, R. S.; Trivedi, Mukul

    2016-04-01

    Forest biomass acts as a backbone in regulating the climate by storing carbon within itself. Thus the assessment of forest biomass is crucial in understanding the dynamics of the environment. Traditionally the destructive methods were adopted for the assessment of biomass which were further advanced to the non-destructive methods. The allometric equations developed by destructive methods were further used in non-destructive methods for the assessment, but they were mostly applied for woody/commercial timber species. However now days Remote Sensing data are primarily used for the biomass geospatial pattern assessment. The Optical Remote Sensing data (Landsat8, LISS III, etc.) are being used very successfully for the estimation of above ground biomass (AGB). However optical data is not suitable for all atmospheric/environmental conditions, because it can't penetrate through clouds and haze. Thus Radar data is one of the alternate possible ways to acquire data in all-weather conditions irrespective of weather and light. The paper examines the potential of ALOS PALSAR L-band dual polarisation data for the estimation of AGB in the Corbett Tiger Reserve (CTR) covering an area of 889 km2. The main focus of this study is to explore the accuracy of Polarimetric Scattering Model (Extended Water Cloud Model (EWCM) with respect to Backscatter model in the assessment of AGB. The parameters of the EWCM were estimated using the decomposition components (Raney Decomposition) and the plot level information. The above ground biomass in the CTR ranges from 9.6 t/ha to 322.6 t/ha.

  4. Modelling Growth and Partitioning of Annual Above-Ground Vegetative and Reproductive Biomass of Grapevine

    Science.gov (United States)

    Meggio, Franco; Vendrame, Nadia; Maniero, Giovanni; Pitacco, Andrea

    2014-05-01

    In the current climate change scenarios, both agriculture and forestry inherently may act as carbon sinks and consequently can play a key role in limiting global warming. An urgent need exists to understand which land uses and land resource types have the greatest potential to mitigate greenhouse gas (GHG) emissions contributing to global change. A common believe is that agricultural fields cannot be net carbon sinks due to many technical inputs and repeated disturbances of upper soil layers that all contribute to a substantial loss both of the old and newly-synthesized organic matter. Perennial tree crops (vineyards and orchards), however, can behave differently: they grow a permanent woody structure, stand undisturbed in the same field for decades, originate a woody pruning debris, and are often grass-covered. In this context, reliable methods for quantifying and modelling emissions and carbon sequestration are required. Carbon stock changes are calculated by multiplying the difference in oven dry weight of biomass increments and losses with the appropriate carbon fraction. These data are relatively scant, and more information is needed on vineyard management practices and how they impact vineyard C sequestration and GHG emissions in order to generate an accurate vineyard GHG footprint. During the last decades, research efforts have been made for estimating the vineyard carbon budget and its allocation pattern since it is crucial to better understand how grapevines control the distribution of acquired resources in response to variation in environmental growth conditions and agronomic practices. The objective of the present study was to model and compare the dynamics of current year's above-ground biomass among four grapevine varieties. Trials were carried out over three growing seasons in field conditions. The non-linear extra-sums-of-squares method demonstrated to be a feasible way of growth models comparison to statistically assess significant differences among

  5. Measurements of radioxenon in ground level air in South Korea following the claimed nuclear test in North Korea on October 9, 2006

    International Nuclear Information System (INIS)

    Ringbom, A.; Elmgren, K.; Lindh, K.; Peterson, J.; Bowyer, T.W.; Hayes, J.C.; McIntyre, J.I.; Panisko, M.; Williams, R.

    2009-01-01

    Following the claimed nuclear test in the Democratic People's Republic of Korea (DPRK) on October 9, 2006, and a reported seismic event, a mobile system for sampling of atmospheric xenon was transported to the Republic of South Korea (ROK) in an attempt to detect possible emissions of radioxenon in the region from a presumed test. Five samples were collected in the ROK during October 11-14, 2006 near the ROK-DPRK border, and thereafter transported to the Swedish Defense Research Agency (FOI) in Stockholm, Sweden, for analysis. Following the initial measurements, an automatic radioxenon sampling and analysis system was installed at the same location in the ROK, and measurements on the ambient atmospheric radioxenon background in the region were performed during November 2006 to February 2007. The measured radioxenon concentrations strongly indicate that the explosion in October 9, 2006 was a nuclear test. The conclusion is further strengthened by atmospheric transport models. Radioactive xenon measurement was the only independent confirmation that the supposed test was in fact a nuclear explosion and not a conventional (chemical) explosive. (author)

  6. Mapping Above-Ground Biomass in a Tropical Forest in Cambodia Using Canopy Textures Derived from Google Earth

    Directory of Open Access Journals (Sweden)

    Minerva Singh

    2015-04-01

    Full Text Available This study develops a modelling framework for utilizing very high-resolution (VHR aerial imagery for monitoring stocks of above-ground biomass (AGB in a tropical forest in Southeast Asia. Three different texture-based methods (grey level co-occurrence metric (GLCM, Gabor wavelets and Fourier-based textural ordination (FOTO were used in conjunction with two different machine learning (ML-based regression techniques (support vector regression (SVR and random forest (RF regression. These methods were implemented on both 50-cm resolution Digital Globe data extracted from Google Earth™ (GE and 8-cm commercially obtained VHR imagery. This study further examines the role of forest biophysical parameters, such as ground-measured canopy cover and vertical canopy height, in explaining AGB distribution. Three models were developed using: (i horizontal canopy variables (i.e., canopy cover and texture variables plus vertical canopy height; (ii horizontal variables only; and (iii texture variables only. AGB was variable across the site, ranging from 51.02 Mg/ha to 356.34 Mg/ha. GE-based AGB estimates were comparable to those derived from commercial aerial imagery. The findings demonstrate that novel use of this array of texture-based techniques with GE imagery can help promote the wider use of freely available imagery for low-cost, fine-resolution monitoring of forests parameters at the landscape scale.

  7. Database on radioecological situation in Semipalatinsk nuclear test site

    International Nuclear Information System (INIS)

    Turkebaev, T.Eh.; Kislitsin, S.B.; Lopuga, A.D.; Kuketaev, A.T.; Kikkarin, S.M.

    1999-01-01

    One of the main objectives of the National Nuclear Center of the Republic of Kazakstan is to define radioecological situation in details, conduct a continuous monitoring and eliminate consequences of nuclear explosions at Semipalatinsk nuclear test site. Investigations of Semipalatinsk nuclear test site area contamination by radioactive substances and vindication activity are the reasons for development of computer database on radioecological situation of the test site area, which will allow arranging and processing the available and entering information about the radioecological situation, assessing the effect of different testing factors on the environment and health of the Semipalatinsk nuclear test site area population.The described conception of database on radioecological situation of the Semipalatinsk nuclear test site area cannot be considered as the final one. As new information arrives, structure and content of the database is updated and optimized. New capabilities and structural elements may be provided if new aspects in Semipalatinsk nuclear test site area contamination study (air environment study, radionuclides migration) arise

  8. [Assessment of modern radioecological situation at nuclear explosion "Chagan" (Balapan Site, Semipalatinsk Nuclear Test Site, Kazakhstan)].

    Science.gov (United States)

    Evseeva, T I; Maĭstrenko, T A; Geras'kin, S A; Belykh, E S; Umarov, M A; Sergeeva, I Iu; Sergeev, V Iu

    2008-01-01

    Results on estimation of modern radioecological situation at nuclear explosion "Chagan" based on large-scale cartographic studies (1:25000) of a test area (4 km2) are presented. Maximum gamma-irradiation doses were observed at bulk of ground surrounded a crater and at radioactive fall-outs extended to the North-East and to the SouthWest from the crater. Based on data on artificial radionuclide specific activity most part of soil samples were attributed to radioactive wastes according to IAEA (1996) and OSPORB (1999). Natural decrease of soil radioactivity up to safety level due to 60Co, 137Cs, 90Sr, 152Eu, 154Eu radioactive decay and 241Am accumulation-decay will not take place within the next 60 years at the studied area.

  9. Nuclear system test simulator

    International Nuclear Information System (INIS)

    Sawyer, S.D.; Hill, W.D.; Wilson, P.A.; Steiner, W.M.

    1987-01-01

    A transportable test simulator is described for a nuclear power plant. The nuclear power plant includes a control panel, a reactor having actuated rods for moving into and out of a reactor for causing the plant to operate, and a control rod network extending between the control panel and the reactor rods. The network serially transmits command words between the panel and rods, and has connecting interfaces at preselected points remote from the control panel between the control panel and rods. The test simulator comprises: a test simulator input for transport to and connection into the network at at least one interface for receiving the serial command words from the network. Each serial command includes an identifier portion and a command portion; means for processing interior of the simulator for the serial command words for identifying that portion of the power plant designated in the identifier portion and processing the word responsive to the command portion of the word after the identification; means for generating a response word responsive to the command portion; and output means for sending and transmitting the response word to the nuclear power plant at the interface whereby the control panel responds to the response word

  10. Dosimetry of Rn-222 in the air in environments located above and below ground level; Dosimetria de Rn-222 no ar em ambientes localizados acima e abaixo do nivel do solo

    Energy Technology Data Exchange (ETDEWEB)

    Cazula, Camila Dias

    2015-07-01

    Exposure of the general population to ionizing radiation comes mainly from natural sources. The main contribution is due to inhalation of radon (Rn-222), a gas that occurs naturally (UNSCEAR, 2000). The Rn-222 concentration in the environment is controlled by factors such as soil permeability and water content, the weather variability, materials used in the foundation and the usual positive pressure differential between the soil and the internal environment. Studies indicate that the concentration of radon shows a wide variation in the basement, ground floor and upper floors of buildings. The objective of this study is to determine radon levels in basements, ground floor and floors above ground level, at a university in the city of Sao Paulo and in one residential building in the city of Peruibe. Rn-222 measurements were performed using the method with nuclear track of solid state detectors (CR-39). The studied environments present Rn-222 concentration well below the values recommended by the International Commission on Radiological Protection, published in the 2009 document, of 300 Bq/m{sup 3} for homes and 1000 Bq/m{sup 3} for the workplace. In the residential building, the concentration of Ra-266, Th-232 and K-40 in the materials used in the building construction was also analyzed, by gamma spectrometry. The effective total dose for the resident due to external exposure was 0.8 mSv y{sup -1}, lower than the annual dose limit for the general public of 1 mSv y{sup -1}. (author)

  11. Australia's nuclear graveyard

    International Nuclear Information System (INIS)

    Milliken, R.

    1987-01-01

    Britain and Australia have become locked in a battle of wills and wits over a nuclear legacy that is now more than 30 years old. At stake is the issue of who will pay to clean up a stretch of the central Australian outback where at least 23 kilograms of plutonium are buried in nuclear graveyards or scattered in fine particles on the ground. The plutonium was left there after a series of British nuclear weapons tests in the 1950s and 1960s. The cost of cleaning it up today, and rendering the ground safe the the Aborigines who claim it as their tribal homeland, has been estimated at up to $158 million. Australia's minister for resources, Senator Gareth Evans, went to London in October 1986 to try to involve the British in the cleanup. But Britain is still taking the stand that it had discharged any obligations on this score long ago. This question is at the heart of controversy that began mounting in the late 1970s over the British nuclear tests. It was then that Aborigines and test veterans from Britain and Australia started alleging that they had been exposed to unduly high doses of radiation. Clearly, the nuclear tests, which began as a political exercise between Britain and Australia more than 30 years ago, seem destined to remain the source of much legal, diplomatic, and financial fallout between the two countries for a long time to come

  12. Verifying seismic design of nuclear reactors by testing. Volume 1: test plan

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-20

    This document sets forth recommendations for a verification program to test the ability of operational nuclear power plants to achieve safe shutdown immediately following a safe-shutdown earthquake. The purpose of the study is to develop a program plan to provide assurance by physical demonstration that nuclear power plants are earthquake resistant and to allow nuclear power plant operators to (1) decide whether tests should be conducted on their facilities, (2) specify the tests that should be performed, and (3) estimate the cost of the effort to complete the recommended test program.

  13. Verifying seismic design of nuclear reactors by testing. Volume 1: test plan

    International Nuclear Information System (INIS)

    1979-01-01

    This document sets forth recommendations for a verification program to test the ability of operational nuclear power plants to achieve safe shutdown immediately following a safe-shutdown earthquake. The purpose of the study is to develop a program plan to provide assurance by physical demonstration that nuclear power plants are earthquake resistant and to allow nuclear power plant operators to (1) decide whether tests should be conducted on their facilities, (2) specify the tests that should be performed, and (3) estimate the cost of the effort to complete the recommended test program

  14. ACCESS, Absolute Color Calibration Experiment for Standard Stars: Integration, Test, and Ground Performance

    Science.gov (United States)

    Kaiser, Mary Elizabeth; Morris, Matthew; Aldoroty, Lauren; Kurucz, Robert; McCandliss, Stephan; Rauscher, Bernard; Kimble, Randy; Kruk, Jeffrey; Wright, Edward L.; Feldman, Paul; Riess, Adam; Gardner, Jonathon; Bohlin, Ralph; Deustua, Susana; Dixon, Van; Sahnow, David J.; Perlmutter, Saul

    2018-01-01

    Establishing improved spectrophotometric standards is important for a broad range of missions and is relevant to many astrophysical problems. Systematic errors associated with astrophysical data used to probe fundamental astrophysical questions, such as SNeIa observations used to constrain dark energy theories, now exceed the statistical errors associated with merged databases of these measurements. ACCESS, “Absolute Color Calibration Experiment for Standard Stars”, is a series of rocket-borne sub-orbital missions and ground-based experiments designed to enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35‑1.7μm bandpass. To achieve this goal ACCESS (1) observes HST/ Calspec stars (2) above the atmosphere to eliminate telluric spectral contaminants (e.g. OH) (3) using a single optical path and (HgCdTe) detector (4) that is calibrated to NIST laboratory standards and (5) monitored on the ground and in-flight using a on-board calibration monitor. The observations are (6) cross-checked and extended through the generation of stellar atmosphere models for the targets. The ACCESS telescope and spectrograph have been designed, fabricated, and integrated. Subsystems have been tested. Performance results for subsystems, operations testing, and the integrated spectrograph will be presented. NASA sounding rocket grant NNX17AC83G supports this work.

  15. Ground motion predictions

    Energy Technology Data Exchange (ETDEWEB)

    Loux, P C [Environmental Research Corporation, Alexandria, VA (United States)

    1969-07-01

    Nuclear generated ground motion is defined and then related to the physical parameters that cause it. Techniques employed for prediction of ground motion peak amplitude, frequency spectra and response spectra are explored, with initial emphasis on the analysis of data collected at the Nevada Test Site (NTS). NTS postshot measurements are compared with pre-shot predictions. Applicability of these techniques to new areas, for example, Plowshare sites, must be questioned. Fortunately, the Atomic Energy Commission is sponsoring complementary studies to improve prediction capabilities primarily in new locations outside the NTS region. Some of these are discussed in the light of anomalous seismic behavior, and comparisons are given showing theoretical versus experimental results. In conclusion, current ground motion prediction techniques are applied to events off the NTS. Predictions are compared with measurements for the event Faultless and for the Plowshare events, Gasbuggy, Cabriolet, and Buggy I. (author)

  16. Ground motion predictions

    International Nuclear Information System (INIS)

    Loux, P.C.

    1969-01-01

    Nuclear generated ground motion is defined and then related to the physical parameters that cause it. Techniques employed for prediction of ground motion peak amplitude, frequency spectra and response spectra are explored, with initial emphasis on the analysis of data collected at the Nevada Test Site (NTS). NTS postshot measurements are compared with pre-shot predictions. Applicability of these techniques to new areas, for example, Plowshare sites, must be questioned. Fortunately, the Atomic Energy Commission is sponsoring complementary studies to improve prediction capabilities primarily in new locations outside the NTS region. Some of these are discussed in the light of anomalous seismic behavior, and comparisons are given showing theoretical versus experimental results. In conclusion, current ground motion prediction techniques are applied to events off the NTS. Predictions are compared with measurements for the event Faultless and for the Plowshare events, Gasbuggy, Cabriolet, and Buggy I. (author)

  17. Proceedings of the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear Test-Ban Treaty

    Energy Technology Data Exchange (ETDEWEB)

    Warren, N. Jill [Editor

    1999-09-21

    These proceedings contain papers prepared for the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear-Test-Ban Treaty, held 21-24 September 1999 in Las Vegas, Nevada. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), Department of Defense (DoD), the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  18. Wide area change detection with satellite imagery for locating underground nuclear testing

    International Nuclear Information System (INIS)

    Canty, M.J.; Jasani, B.; Schlittenhardt, J.

    2001-01-01

    nicest aspects of the MAD method: It sorts different categories of change into different image components. Another very important characteristic of the MAD transformation is that it is invariant to linear transformations of the data. This means that if for example the sensors used for the two images have different gains, or if atmospheric haze attenuates the reflectance measurement in one of the images but not in the other, the results of the analysis will be unaffected. A Bayesian model of the probability distribution of the MAD components intensities is applied to determine automatically the decision thresholds for change and no change. The prerequisite image-to-image registration is carried out automatically with the help contour and comer matching to determine ground control points, followed by nearest-neighbor resampling. The inclusion of higher resolution panchromatic information into the procedure without loss of spectral discrimination is accomplished via wavelet fusion with the multispectral channels. A computer program CDSAT (Change Detection with SATellite imagery), which implements a user-friendly graphical environment for performing the various steps involved, is described briefly. The technique has been applied successfully to detect the exact position of an underground nuclear test in Rajasthan in 1998. In the present paper we discuss further results for tests carried out in Lop Nor, China in the 1990's and at the Nevada test site in the 1980's. Historical LANDSAT TM satellite images are used for change detection. Results are correlated with seismic and ground truth data and conclusions are drawn regarding the applicability of wide area change detection to complement seismic verification of the Comprehensive Test Ban Treaty

  19. Verification methods for treaties limiting and banning nuclear tests

    International Nuclear Information System (INIS)

    Voloshin, N.P.

    1998-01-01

    Treaty on limitation of underground nuclear weapon tests and treaty on world banning of nuclear tests contribute to and accompany the process of nuclear disarmament. Test ban in three (Moscow treaty of 1963) as well as the Threshold Test Ban up to 1991 was controlled only with national means. But since 1991 nuclear test threshold of 150 kt has been measured with hydrodynamic and tele seismic methods and checked by the inspection. Distinctive feature of this control is that control is that it is bilateral. This conforms to Treaty on limitation of underground nuclear weapon tests signed by two countries - USA and USSR. The inspection at the place of tests requires monitoring of the test site of the party conducting a test and geological information of rock in the area of explosion. In the treaty of the World Nuclear Test Ban the following ways of international control are provided for: - seismologic measurements; - radionuclide measurements; - hydro-acoustics measurements; - infra-sound measurements; - inspection at the place of the tests conduction

  20. Definitive design status of the SP-100 Ground Engineering System Test Site

    International Nuclear Information System (INIS)

    Renkey, E.J. Jr.; Bazinet, G.D.; Bitten, E.J.; Brackenbury, P.J.; Carlson, W.F.; Irwin, J.J.; Edwards, P.A.; Shen, E.J.; Titzler, P.A.

    1989-05-01

    The SP-100 reactor will be ground tested at the SP-100 Ground Engineering System (GES) Test Site on the US Department of Energy (DOE) Hanford Site near Richland, Washington. Project direction and the flight system design evolution have resulted in a smaller reactor size and the consequential revision to Test Site features to accommodate the design changes and reduce Test Site costs. The significant design events since the completion of the Conceptual Design are discussed in this paper

  1. Definitive design status of the SP-100 Ground Engineering System Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Renkey, E.J. Jr.; Bazinet, G.D.; Bitten, E.J.; Brackenbury, P.J.; Carlson, W.F.; Irwin, J.J.; Edwards, P.A.; Shen, E.J.; Titzler, P.A.

    1989-05-01

    The SP-100 reactor will be ground tested at the SP-100 Ground Engineering System (GES) Test Site on the US Department of Energy (DOE) Hanford Site near Richland, Washington. Project direction and the flight system design evolution have resulted in a smaller reactor size and the consequential revision to Test Site features to accommodate the design changes and reduce Test Site costs. The significant design events since the completion of the Conceptual Design are discussed in this paper.

  2. Standard practice for guided wave testing of above ground steel pipework using piezoelectric effect transduction

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This practice provides a procedure for the use of guided wave testing (GWT), also previously known as long range ultrasonic testing (LRUT) or guided wave ultrasonic testing (GWUT). 1.2 GWT utilizes ultrasonic guided waves, sent in the axial direction of the pipe, to non-destructively test pipes for defects or other features by detecting changes in the cross-section and/or stiffness of the pipe. 1.3 GWT is a screening tool. The method does not provide a direct measurement of wall thickness or the exact dimensions of defects/defected area; an estimate of the defect severity however can be provided. 1.4 This practice is intended for use with tubular carbon steel or low-alloy steel products having Nominal Pipe size (NPS) 2 to 48 corresponding to 60.3 to 1219.2 mm (2.375 to 48 in.) outer diameter, and wall thickness between 3.81 and 25.4 mm (0.15 and 1 in.). 1.5 This practice covers GWT using piezoelectric transduction technology. 1.6 This practice only applies to GWT of basic pipe configuration. This inc...

  3. Calculation of dose distribution above contaminated soil

    Science.gov (United States)

    Kuroda, Junya; Tenzou, Hideki; Manabe, Seiya; Iwakura, Yukiko

    2017-07-01

    The purpose of this study was to assess the relationship between altitude and the distribution of the ambient dose rate in the air over soil decontamination area by using PHITS simulation code. The geometry configuration was 1000 m ×1000 m area and 1m in soil depth and 100m in altitude from the ground to simulate the area of residences or a school grounds. The contaminated region is supposed to be uniformly contaminated by Cs-137 γ radiation sources. The air dose distribution and space resolution was evaluated for flux of the gamma rays at each altitude, 1, 5, 10, and 20m. The effect of decontamination was calculated by defining sharpness S. S was the ratio of an average flux and a flux at the center of denomination area in each altitude. The suitable flight altitude of the drone is found to be less than 15m above a residence and 31m above a school grounds to confirm the decontamination effect. The calculation results can be a help to determine a flight planning of a drone to minimize the clash risk.

  4. Large Payload Ground Transportation and Test Considerations

    Science.gov (United States)

    Rucker, Michelle A.

    2016-01-01

    Many spacecraft concepts under consideration by the National Aeronautics and Space Administration’s (NASA’s) Evolvable Mars Campaign take advantage of a Space Launch System payload shroud that may be 8 to 10 meters in diameter. Large payloads can theoretically save cost by reducing the number of launches needed--but only if it is possible to build, test, and transport a large payload to the launch site in the first place. Analysis performed previously for the Altair project identified several transportation and test issues with an 8.973 meters diameter payload. Although the entire Constellation Program—including Altair—has since been canceled, these issues serve as important lessons learned for spacecraft designers and program managers considering large payloads for future programs. A transportation feasibility study found that, even broken up into an Ascent and Descent Module, the Altair spacecraft would not fit inside available aircraft. Ground transportation of such large payloads over extended distances is not generally permitted, so overland transportation alone would not be an option. Limited ground transportation to the nearest waterway may be possible, but water transportation could take as long as 67 days per production unit, depending on point of origin and acceptance test facility; transportation from the western United States would require transit through the Panama Canal to access the Kennedy Space Center launch site. Large payloads also pose acceptance test and ground processing challenges. Although propulsion, mechanical vibration, and reverberant acoustic test facilities at NASA’s Plum Brook Station have been designed to accommodate large spacecraft, special handling and test work-arounds may be necessary, which could increase cost, schedule, and technical risk. Once at the launch site, there are no facilities currently capable of accommodating the combination of large payload size and hazardous processing such as hypergolic fuels

  5. Ground Operations Demonstration Unit for Liquid Hydrogen Initial Test Results

    Science.gov (United States)

    Notardonato, W. U.; Johnson, W. L.; Swanger, A. M.; Tomsik, T.

    2015-01-01

    NASA operations for handling cryogens in ground support equipment have not changed substantially in 50 years, despite major technology advances in the field of cryogenics. NASA loses approximately 50% of the hydrogen purchased because of a continuous heat leak into ground and flight vessels, transient chill down of warm cryogenic equipment, liquid bleeds, and vent losses. NASA Kennedy Space Center (KSC) needs to develop energy-efficient cryogenic ground systems to minimize propellant losses, simplify operations, and reduce cost associated with hydrogen usage. The GODU LH2 project has designed, assembled, and started testing of a prototype storage and distribution system for liquid hydrogen that represents an advanced end-to-end cryogenic propellant system for a ground launch complex. The project has multiple objectives including zero loss storage and transfer, liquefaction of gaseous hydrogen, and densification of liquid hydrogen. The system is unique because it uses an integrated refrigeration and storage system (IRAS) to control the state of the fluid. This paper will present and discuss the results of the initial phase of testing of the GODU LH2 system.

  6. Above- and Belowground Biomass Allocation in Shrub Biomes across the Northeast Tibetan Plateau

    Science.gov (United States)

    Yang, Yuanhe; Yang, Lucun; Zhou, Guoying

    2016-01-01

    Biomass partitioning has been explored across various biomes. However, the strategies of allocation in plants still remain contentious. This study investigated allocation patterns of above- and belowground biomass at the community level, using biomass survey from the Tibetan Plateau. We explored above- and belowground biomass by conducting three consecutive sampling campaigns across shrub biomes on the northeast Tibetan Plateau during 2011–2013. We then documented the above-ground biomass (AGB), below-ground biomass (BGB) and root: shoot ratio (R/S) and the relationships between R/S and environment factors using data from 201 plots surveyed from 67 sites. We further examined relationships between above-ground and below-ground biomass across various shrub types. Our results indicated that the median values of AGB, BGB, and R/S in Tibetan shrub were 1102.55, 874.91 g m-2, and 0.85, respectively. R/S showed significant trend with mean annual precipitation (MAP), while decreased with mean annual temperature (MAT). Reduced major axis analysis indicated that the slope of the log-log relationship between above- and belowground biomass revealed a significant difference from 1.0 over space, supporting the optimal hypothesis. Interestingly, the slopes of the allometric relationship between log AGB and log BGB differed significantly between alpine and desert shrub. Our findings supported the optimal theory of above- and belowground biomass partitioning in Tibetan shrub, while the isometric hypothesis for alpine shrub at the community level. PMID:27119379

  7. Contaminant Boundary at the Faultless Underground Nuclear Test

    International Nuclear Information System (INIS)

    Greg Pohll; Karl Pohlmann; Jeff Daniels; Ahmed Hassan; Jenny Chapman

    2003-01-01

    The U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP) have reached agreement on a corrective action strategy applicable to address the extent and potential impact of radionuclide contamination of groundwater at underground nuclear test locations. This strategy is described in detail in the Federal Facility Agreement and Consent Order (FFACO, 2000). As part of the corrective action strategy, the nuclear detonations that occurred underground were identified as geographically distinct corrective action units (CAUs). The strategic objective for each CAU is to estimate over a 1,000-yr time period, with uncertainty quantified, the three-dimensional extent of groundwater contamination that would be considered unsafe for domestic and municipal use. Two types of boundaries (contaminant and compliance) are discussed in the FFACO that will map the three-dimensional extent of radionuclide contamination. The contaminant boundary will identify the region wi th 95 percent certainty that contaminants do not exist above a threshold value. It will be prepared by the DOE and presented to NDEP. The compliance boundary will be produced as a result of negotiation between the DOE and NDEP, and can be coincident with, or differ from, the contaminant boundary. Two different thresholds are considered for the contaminant boundary. One is based on the enforceable National Primary Drinking Water Regulations for radionuclides, which were developed as a requirement of the Safe Drinking Water Act. The other is a risk-based threshold considering applicable lifetime excess cancer-risk-based criteria The contaminant boundary for the Faultless underground nuclear test at the Central Nevada Test Area (CNTA) is calculated using a newly developed groundwater flow and radionuclide transport model that incorporates aspects of both the original three-dimensional model (Pohlmann et al., 1999) and the two-dimensional model developed for the Faultless data decision

  8. Estimating above-ground biomass on mountain meadows and pastures through remote sensing

    Science.gov (United States)

    Barrachina, M.; Cristóbal, J.; Tulla, A. F.

    2015-06-01

    Extensive stock-breeding systems developed in mountain areas like the Pyrenees are crucial for local farming economies and depend largely on above-ground biomass (AGB) in the form of grass produced on meadows and pastureland. In this study, a multiple linear regression analysis technique based on in-situ biomass collection and vegetation and wetness indices derived from Landsat-5 TM data is successfully applied in a mountainous Pyrenees area to model AGB. Temporal thoroughness of the data is ensured by using a large series of images. Results of on-site AGB collection show the importance for AGB models to capture the high interannual and intraseasonal variability that results from both meteorological conditions and farming practices. AGB models yield best results at midsummer and end of summer before mowing operations by farmers, with a mean R2, RMSE and PE for 2008 and 2009 midsummer of 0.76, 95 g m-2 and 27%, respectively; and with a mean R2, RMSE and PE for 2008 and 2009 end of summer of 0.74, 128 g m-2 and 36%, respectively. Although vegetation indices are a priori more related with biomass production, wetness indices play an important role in modeling AGB, being statistically selected more frequently (more than 50%) than other traditional vegetation indexes (around 27%) such as NDVI. This suggests that middle infrared bands are crucial descriptors of AGB. The methodology applied in this work compares favorably with other works in the literature, yielding better results than those works in mountain areas, owing to the ability of the proposed methodology to capture natural and anthropogenic variations in AGB which are the key to increasing AGB modeling accuracy.

  9. Nuclear power in space

    International Nuclear Information System (INIS)

    Anghaie, S.

    2007-01-01

    The development of space nuclear power and propulsion in the United States started in 1955 with the initiation of the ROVER project. The first step in the ROVER program was the KIWI project that included the development and testing of 8 non-flyable ultrahigh temperature nuclear test reactors during 1955-1964. The KIWI project was precursor to the PHOEBUS carbon-based fuel reactor project that resulted in ground testing of three high power reactors during 1965-1968 with the last reactor operated at 4,100 MW. During the same time period a parallel program was pursued to develop a nuclear thermal rocket based on cermet fuel technology. The third component of the ROVER program was the Nuclear Engine for Rocket Vehicle Applications (NERVA) that was initiated in 1961 with the primary goal of designing the first generation of nuclear rocket engine based on the KIWI project experience. The fourth component of the ROVER program was the Reactor In-Flight Test (RIFT) project that was intended to design, fabricate, and flight test a NERVA powered upper stage engine for the Saturn-class lunch vehicle. During the ROVER program era, the Unites States ventured in a comprehensive space nuclear program that included design and testing of several compact reactors and space suitable power conversion systems, and the development of a few light weight heat rejection systems. Contrary to its sister ROVER program, the space nuclear power program resulted in the first ever deployment and in-space operation of the nuclear powered SNAP-10A in 1965. The USSR space nuclear program started in early 70's and resulted in deployment of two 6 kWe TOPAZ reactors into space and ground testing of the prototype of a relatively small nuclear rocket engine in 1984. The US ambition for the development and deployment of space nuclear powered systems was resurrected in mid 1980's and intermittently continued to date with the initiation of several research programs that included the SP-100, Space Exploration

  10. Arbuscular mycorrhizal fungi alter above- and below-ground chemical defense expression differentially among Asclepias species

    Directory of Open Access Journals (Sweden)

    Rachel L Vannette

    2013-09-01

    Full Text Available Belowground symbionts of plants can have substantial influence on plant growth and nutrition. Recent work demonstrates that mycorrhizal fungi can affect plant resistance to herbivory and the performance of above and belowground herbivores. Although these examples emerge from diverse systems, it is unclear if plant species that express similar defensive traits respond similarly to fungal colonization, but comparative work may inform this question. To examine the effects of arbuscular mycorrhizal fungi (AMF on the expression of chemical resistance, we inoculated 8 species of Asclepias (milkweed--which all produce toxic cardenolides--with a community of AMF. We quantified plant biomass, foliar and root cardenolide concentration and composition, and assessed evidence for a growth-defense tradeoff in the presence and absence of AMF. As expected, total foliar and root cardenolide concentration varied among milkweed species. Importantly, the effect of mycorrhizal fungi on total foliar cardenolide concentration also varied among milkweed species, with foliar cardenolides increasing or decreasing, depending on the plant species. We detected a phylogenetic signal to this variation; AMF fungi reduced foliar cardenolide concentrations to a greater extent in the clade including A. curassavica than in the clade including A. syriaca. Moreover, AMF inoculation shifted the composition of cardenolides in above- and below-ground plant tissues in a species-specific fashion. Mycorrhizal inoculation changed the relative distribution of cardenolides between root and shoot tissue in a species-specific fashion, but did not affect cardenolide diversity or polarity. Finally, a tradeoff between plant growth and defense in non-mycorrhizal plants was mitigated completely by AMF inoculation. Overall, we conclude that the effects of AMF inoculation on the expression of chemical resistance can vary among congeneric plant species, and ameliorate tradeoffs between growth and

  11. Nuclear bodies in the oocyte nucleus of ground beetles are enriched in snRNPs.

    Science.gov (United States)

    Jaglarz, M K

    2001-08-01

    Within the oocyte nucleus of many insect species, a variable number of intensely stained spherical bodies occur. These nuclear bodies differ significantly from nucleoli and their precise role in nuclei has not been elucidated yet. I have examined some of the histochemical properties as well as the molecular composition of these structures in a representative of ground (carabid) beetles. I demonstrate, using molecular markers, that the nuclear bodies are composed of small nuclear RNAs and associated proteins, including p80 coilin. Hence, they correspond to Cajal bodies (= coiled bodies) described in somatic cell nuclei as well as oocyte germinal vesicles in plant and animal organisms. It is suggested that Cajal bodies in the carabid germinal vesicle serve as a storage site for splicing factors.

  12. A simple dynamic rising nuclear cloud based model of ground radioactive fallout for atmospheric nuclear explosion

    International Nuclear Information System (INIS)

    Zheng Yi

    2008-01-01

    A simple dynamic rising nuclear cloud based model for atmospheric nuclear explosion radioactive prediction was presented. The deposition of particles and initial cloud radius changing with time before the cloud stabilization was considered. Large-scale relative diffusion theory was used after cloud stabilization. The model was considered reasonable and dependable in comparison with four U.S. nuclear test cases and DELFIC model results. (authors)

  13. Calibration of TLD badge to photons of energies above 6 MeV encountered in nuclear reactors

    International Nuclear Information System (INIS)

    Pradhan, A.S.; Bakshi, A.K.

    1999-01-01

    Response of CaSO 4 :Dy Teflon discs based TLD badge has been evaluated for radiation fields having photons of energy above 6 MeV, often encountered in nuclear power plants. Gamma ray response of the TLD disc under metal filter in the badge (used for evaluation of gamma ray doses) was found to increase by about 10% to photons above 6 MeV as compared to the response for reference calibration to 60 Co gamma rays. Response of discs under the open window and the plastic filter was found to be only 40-60% of that under metal filter. Thus, while measurement of whole body dose is not affected seriously, the estimation of beta dose in the mixed fields of high energy gamma rays and beta rays could be in serious error. In the above fields for situations having beta doses of about 1.65 times the gamma ray doses, the present use of dose evaluation will record beta dose as zero, a serious under estimation of beta ray doses. Study also provides an explanation to an anomalous situation where reading under window or plastic filter is much less than that under metal filter. These aspects of personal dosimetry need attention. (author)

  14. Ground Shock Resistant of Buried Nuclear Power Plant Facility

    International Nuclear Information System (INIS)

    Ornai, D.; Adar, A.; Gal, E.

    2014-01-01

    Nuclear Power Plant (NPP) might be subjected to hostile attacks such as Earth Penetrating Weapons (EPW) that carry explosive charges. Explosions of these weapons near buried NPP facility might cause collapse, breaching, spalling, deflection, shear, rigid body motion (depending upon the foundations), and in-structure shock. The occupants and the equipment in the buried facilities are exposed to the in-structure motions, and if they are greater than their fragility values than occupants might be wounded or killed and the equipment might be damaged, unless protective measures will be applied. NPP critical equipment such as pumps are vital for the normal safe operation since it requires constant water circulation between the nuclear reactor and the cooling system, including in case of an immediate shut down. This paper presents analytical- semi empirical formulation and analysis of the explosion of a penetrating weapon with a warhead of 100kgs TNT (Trinitrotoluene) that creates ground shock effect on underground NPP structure containing equipment, such as a typical pump. If the in-structure spectral shock is greater than the pump fragility values than protective measures are required, otherwise a real danger to the NPP safety might occur

  15. Nuclear power flies high

    International Nuclear Information System (INIS)

    Friedman, S.T.

    1983-01-01

    Nuclear power in aircraft, rockets and satellites is discussed. No nuclear-powered rockets or aircraft have ever flown, but ground tests were successful. Nuclear reactors are used in the Soviet Cosmos serles of satellites, but only one American satellite, the SNAP-10A, contained a reactor. Radioisotope thermoelectric generators, many of which use plutonium 238, have powered more than 20 satellites launched into deep space by the U.S.A

  16. Operation Grenadier. Onsite radiological safety report for announced nuclear tests, October 1984-September 1985

    International Nuclear Information System (INIS)

    Mullen, O.W.; Eubank, B.F.

    1986-09-01

    Grenadier was the name assigned to the series of underground nuclear experiments conducted at the Nevada Test Site from October 1, 1984 through September 30, 1985. This report includes those experiments publicly announced. Remote radiation measurements were taken during and after each nuclear experiment by a telemetry system. Monitors with portable radiation detection instruments surveyed reentry routes into ground zeros before other planned entries were made. Continuous surveillance was provided while personnel were in radiation areas and appropriate precautions were taken to protect persons from unnecessary exposure to radiation and toxic gases. Protective clothing and equipment were issued as needed. Complete radiological safety and industrial hygiene coverage was provided during drilling and mineback operations. Telemetered and portable radiation detector measurements are listed. Detection instrumentation used is described and specific operational procedures are defined

  17. Nuclear structure calculations for astrophysical applications

    International Nuclear Information System (INIS)

    Moeller, P.; Kratz, K.L.

    1992-01-01

    Here we present calculated results on such diverse properties as nuclear energy levels, ground-state masses and shapes, β-decay properties and fission-barrier heights. Our approach to these calculations is to use a unified theoretical framework within which the above properties can all be studied. The results are obtained in the macroscopic-microscopic approach in which a microscopic nuclear-structure single-particle model with extensions is combined with a macroscopic model, such as the liquid drop model. In this model the total potential energy of the nucleus may be calculated as a function of shape. The maxima and minima in this function correspond to such features as the ground state, fission saddle points and shape-isomeric states. Various transition rate matrix elements are determined from wave-functions calculated in the single-particle model with pairing and other relevant residual interactions taken into account

  18. Above-ground woody biomass allocation and within tree carbon and nutrient distribution of wild cherry (Prunus avium L. – a case study

    Directory of Open Access Journals (Sweden)

    Christopher Morhart

    2016-02-01

    Full Text Available Background: The global search for new ways to sequester carbon has already reached agricultural lands. Such land constitutes a major potential carbon sink. The production of high value timber within agroforestry systems can facilitate an in-situ carbon storage function. This is followed by a potential long term ex- situ carbon sinkwithin long lasting products such as veneer and furniture. For this purpose wild cherry (Prunus avium L. is an interesting option for middle Europe, yielding high prices on the timber market. Methods: A total number of 39 wild cherry were sampled in 2012 and 2013 to assess the leafless above ground biomass. The complete trees including stem and branches were separated into 1 cm diameter classes. Wood and bark from sub-samples were analysed separately and nutrient content was derived. Models for biomass estimation were constructed for all tree compartments. Results: The smallest diameter classes possess the highest proportion of bark due to smaller cross sectional area. Tree boles with a greater amount of stem wood above 10 cm in diameter will have a more constant bark proportion. Total branch bark proportion also remains relatively constant above d1.3m measurements of 8 cm. A balance is evident between the production of new branches with a low diameter and high bark proportion offset by the thickening and a relative reduction in bark proportion in larger branches. The results show that a single tree with an age of 17 and 18 years can store up to 85 kg of carbon within the aboveground biomass portion, an amount that will increase as the tree matures. Branches display greater nutrient content than stem sections per volume unit which can be attributed to a greater bark proportion. Conclusions: Using the derived models the carbon and the nutrient content of above-ground woody biomass of whole trees can be calculated. Suggested values for carbon with other major and minor nutrients held within relatively immature trees

  19. Probabilistic seismic safety assessment of a CANDU 6 nuclear power plant including ambient vibration tests: Case study

    Energy Technology Data Exchange (ETDEWEB)

    Nour, Ali [Hydro Québec, Montréal, Québec H2L4P5 (Canada); École Polytechnique de Montréal, Montréal, Québec H3C3A7 (Canada); Cherfaoui, Abdelhalim; Gocevski, Vladimir [Hydro Québec, Montréal, Québec H2L4P5 (Canada); Léger, Pierre [École Polytechnique de Montréal, Montréal, Québec H3C3A7 (Canada)

    2016-08-01

    Highlights: • In this case study, the seismic PSA methodology adopted for a CANDU 6 is presented. • Ambient vibrations testing to calibrate a 3D FEM and to reduce uncertainties is performed. • Procedure for the development of FRS for the RB considering wave incoherency effect is proposed. • Seismic fragility analysis for the RB is presented. - Abstract: Following the 2011 Fukushima Daiichi nuclear accident in Japan there is a worldwide interest in reducing uncertainties in seismic safety assessment of existing nuclear power plant (NPP). Within the scope of a Canadian refurbishment project of a CANDU 6 (NPP) put in service in 1983, structures and equipment must sustain a new seismic demand characterised by the uniform hazard spectrum (UHS) obtained from a site specific study defined for a return period of 1/10,000 years. This UHS exhibits larger spectral ordinates in the high-frequency range than those used in design. To reduce modeling uncertainties as part of a seismic probabilistic safety assessment (PSA), Hydro-Québec developed a procedure using ambient vibrations testing to calibrate a detailed 3D finite element model (FEM) of the containment and reactor building (RB). This calibrated FE model is then used for generating floor response spectra (FRS) based on ground motion time histories compatible with the UHS. Seismic fragility analyses of the reactor building (RB) and structural components are also performed in the context of a case study. Because the RB is founded on a large circular raft, it is possible to consider the effect of the seismic wave incoherency to filter out the high-frequency content, mainly above 10 Hz, using the incoherency transfer function (ITF) method. This allows reducing significantly the non-necessary conservatism in resulting FRS, an important issue for an existing NPP. The proposed case study, and related methodology using ambient vibration testing, is particularly useful to engineers involved in seismic re-evaluation of

  20. Analysis of North Korea's Nuclear Tests under Prospect Theory

    International Nuclear Information System (INIS)

    Lee, Han Myung; Ryu, Jae Soo; Lee, Kwang Seok; Lee, Dong Hoon; Jun, Eunju; Kim, Mi Jin

    2013-01-01

    North Korea has chosen nuclear weapons as the means to protect its sovereignty. Despite international society's endeavors and sanctions to encourage North Korea to abandon its nuclear ambition, North Korea has repeatedly conducted nuclear testing. In this paper, the reason for North Korea's addiction to a nuclear arsenal is addressed within the framework of cognitive psychology. The prospect theory addresses an epistemological approach usually overlooked in rational choice theories. It provides useful implications why North Korea, being under a crisis situation has thrown out a stable choice but taken on a risky one such as nuclear testing. Under the viewpoint of prospect theory, nuclear tests by North Korea can be understood as follows: The first nuclear test in 2006 is seen as a trial to escape from loss areas such as financial sanctions and regime threats; the second test in 2009 was interpreted as a consequence of the strategy to recover losses by making a direct confrontation against the United States; and the third test in 2013 was understood as an attempt to strengthen internal solidarity after Kim Jong-eun inherited the dynasty, as well as to enhance bargaining power against the United States. Thus, it can be summarized that Pyongyang repeated its nuclear tests to escape from a negative domain and to settle into a positive one. In addition, in the future, North Korea may not be willing to readily give up its nuclear capabilities to ensure the survival of its own regime

  1. 2011 Ground Testing Highlights Article

    Science.gov (United States)

    Ross, James C.; Buchholz, Steven J.

    2011-01-01

    Two tests supporting development of the launch abort system for the Orion MultiPurpose Crew Vehicle were run in the NASA Ames Unitary Plan wind tunnel last year. The first test used a fully metric model to examine the stability and controllability of the Launch Abort Vehicle during potential abort scenarios for Mach numbers ranging from 0.3 to 2.5. The aerodynamic effects of the Abort Motor and Attitude Control Motor plumes were simulated using high-pressure air flowing through independent paths. The aerodynamic effects of the proximity to the launch vehicle during the early moments of an abort were simulated with a remotely actuated Service Module that allowed the position relative to the Crew Module to be varied appropriately. The second test simulated the acoustic environment around the Launch Abort Vehicle caused by the plumes from the 400,000-pound thrust, solid-fueled Abort Motor. To obtain the proper acoustic characteristics of the hot rocket plumes for the flight vehicle, heated Helium was used. A custom Helium supply system was developed for the test consisting of 2 jumbo high-pressure Helium trailers, a twelve-tube accumulator, and a 13MW gas-fired heater borrowed from the Propulsion Simulation Laboratory at NASA Glenn Research Center. The test provided fluctuating surface pressure measurements at over 200 points on the vehicle surface that have now been used to define the ground-testing requirements for the Orion Launch Abort Vehicle.

  2. Jerusalem artichoke above ground biomass

    Energy Technology Data Exchange (ETDEWEB)

    Lemieux, C.; Pageau, D.; Dubuc, J-P. [Agriculture and Agri-Food Canada, Ste. Foy, PQ (Canada)

    1997-07-01

    The possibility of using Jerusalem artichoke in an ethanol production scheme was discussed. A study was conducted to determine the yield stability, competitive ability and weed control requirements of this member of the sunflower family under the climatic conditions in eastern Canada. Two cultivars, the sunroot and fusil, were planted at four experimental sites in which three weed control treatments were tested (two arrowings, one arrowing, and no control). During the establishment, there was little difference between one and two arrowings, but the no weed control treatment was harmful to crop growth. It was concluded that Jerusalem artichoke is very competitive, and if it were included in an ethanol production scheme, weed control would only be necessary in the establishment year. After that, a single arrowing three to four weeks after planting would be sufficient to ensure proper establishment of the plant stand. 4 refs., 1 tab., 2 figs.

  3. Estimates of the radiation environment for a nuclear rocket engine

    International Nuclear Information System (INIS)

    Courtney, J.C.; Manohara, H.M.; Williams, M.L.

    1992-01-01

    Ambitious missions in deep space, such as manned expeditions to Mars, require nuclear propulsion if they are to be accomplished in a reasonable length of time. Current technology is adequate to support the use of nuclear fission as a source of energy for propulsion; however, problems associated with neutrons and gammas leaking from the rocket engine must be addressed. Before manned or unmanned space flights are attempted, an extensive ground test program on the rocket engine must be completed. This paper compares estimated radiation levels and nuclear heating rates in and around the rocket engine for both a ground test and space environments

  4. Testing of adsorbents used in nuclear power plant air cleaning systems using the open-quotes Newclose quotes standards

    International Nuclear Information System (INIS)

    Freeman, W.P.

    1993-01-01

    Ever since the publication of the NRC Information Notice No. 87-32: Deficiencies in the Testing of Nuclear-Grade Activated Charcoal, nuclear power facilities in the US have struggled in their efforts to open-quotes...review the information for applicability to their facilities and consider action, if appropriate ...close quotes as stated in the notice. The encouragement of resident NRC inspectors at some nuclear power facilities has prompted a variety of responses ranging from no change at all in testing requirements to contemplated changes in plant technical specifications. This confusion is the result of a couple factors. The first factor is the lack of a current revision to NRC Regulatory Guide 1.52, the basic document used in nuclear power plant technical specifications for the testing of engineered-safety feature (ESF) post accident air cleaning systems. The second factor is the standards that have been written since the last revision of Reg. Guide 1.52 which include two revision of ANSI N509 and N510, two revisions of RDT M16-1T, two version of ASTM D3803, two versions of ASTM D4069, and three versions of an SME code AG-1. Few of the standards and codes listed above are commensurate with each other and, thus, present a nearly insolvable maze to the HVAC engineer asked to upgrade adsorbent testing requirements following the standards. This paper describes the authors experience with a number of nuclear power facilities in their efforts to meet the requirements of the new standards of testing adsorbents from nuclear power plant air cleaning systems. The existing standards are discussed in light of the current state of the art for adsorbent testing of adsorbent media from nuclear air treatment systems. Test results are presented showing the impact of new test requirements on acceptance criteria when compared to the old test requirements and recommendations are offered for solution of this testing problem in the future. 12 refs., 5 tabs

  5. Results on MeV-scale dark matter from a gram-scale cryogenic calorimeter operated above ground

    Energy Technology Data Exchange (ETDEWEB)

    Angloher, G.; Bauer, P.; Bento, A.; Iachellini, N.F.; Hauff, D.; Kiefer, M.; Mancuso, M.; Petricca, F.; Proebst, F.; Reindl, F.; Rothe, J.; Seidel, W.; Stodolsky, L.; Strauss, R.; Tanzke, A.; Wuestrich, M. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Bucci, C.; Canonica, L.; Gorla, P.; Pagliarone, C.; Schaeffner, K. [Laboratori Nazionali del Gran Sasso, INFN, Assergi (Italy); Defay, X.; Erb, A.; Feilitzsch, F. v.; Lanfranchi, J.C.; Langenkaemper, A.; Mondragon, E.; Muenster, A.; Oberauer, L.; Potzel, W.; Schoenert, S.; Thi, H.H.T.; Ulrich, A.; Wawoczny, S.; Willers, M.; Zoeller, A. [Technische Universitaet Muenchen, Physik-Department and Excellence Cluster Universe, Garching (Germany); Guetlein, A.; Kluck, H.; Puig, R.; Schieck, J.; Stahlberg, M.; Tuerkoglu, C. [Institut fuer Hochenergiephysik der Oesterreichischen Akademie der Wissenschaften, Vienna (Austria); Vienna University of Technology, Atominstitut, Vienna (Austria); Jochum, J.; Loebell, J.; Strandhagen, C.; Uffinger, M.; Usherov, I. [Eberhard-Karls-Universitaet Tuebingen, Tuebingen (Germany); Kraus, H. [University of Oxford, Department of Physics, Oxford (United Kingdom); Collaboration: CRESST Collaboration

    2017-09-15

    Models for light dark matter particles with masses below 1 GeV/c{sup 2} are a natural and well-motivated alternative to so-far unobserved weakly interacting massive particles. Gram-scale cryogenic calorimeters provide the required detector performance to detect these particles and extend the direct dark matter search program of CRESST. A prototype 0.5 g sapphire detector developed for the ν-cleus experiment has achieved an energy threshold of E{sub th} = (19.7 ± 0.9)eV. This is one order of magnitude lower than for previous devices and independent of the type of particle interaction. The result presented here is obtained in a setup above ground without significant shielding against ambient and cosmogenic radiation. Although operated in a high-background environment, the detector probes a new range of light-mass dark matter particles previously not accessible by direct searches. We report the first limit on the spin-independent dark matter particle-nucleon cross section for masses between 140 and 500 MeV/c{sup 2}. (orig.)

  6. Results on MeV-scale dark matter from a gram-scale cryogenic calorimeter operated above ground

    Science.gov (United States)

    Angloher, G.; Bauer, P.; Bento, A.; Bucci, C.; Canonica, L.; Defay, X.; Erb, A.; Feilitzsch, F. v.; Iachellini, N. Ferreiro; Gorla, P.; Gütlein, A.; Hauff, D.; Jochum, J.; Kiefer, M.; Kluck, H.; Kraus, H.; Lanfranchi, J.-C.; Langenkämper, A.; Loebell, J.; Mancuso, M.; Mondragon, E.; Münster, A.; Oberauer, L.; Pagliarone, C.; Petricca, F.; Potzel, W.; Pröbst, F.; Puig, R.; Reindl, F.; Rothe, J.; Schäffner, K.; Schieck, J.; Schönert, S.; Seidel, W.; Stahlberg, M.; Stodolsky, L.; Strandhagen, C.; Strauss, R.; Tanzke, A.; Thi, H. H. Trinh; Türkoǧlu, C.; Uffinger, M.; Ulrich, A.; Usherov, I.; Wawoczny, S.; Willers, M.; Wüstrich, M.; Zöller, A.

    2017-09-01

    Models for light dark matter particles with masses below 1 GeV/c^2 are a natural and well-motivated alternative to so-far unobserved weakly interacting massive particles. Gram-scale cryogenic calorimeters provide the required detector performance to detect these particles and extend the direct dark matter search program of CRESST. A prototype 0.5 g sapphire detector developed for the ν -cleus experiment has achieved an energy threshold of E_{th}=(19.7± 0.9) eV. This is one order of magnitude lower than for previous devices and independent of the type of particle interaction. The result presented here is obtained in a setup above ground without significant shielding against ambient and cosmogenic radiation. Although operated in a high-background environment, the detector probes a new range of light-mass dark matter particles previously not accessible by direct searches. We report the first limit on the spin-independent dark matter particle-nucleon cross section for masses between 140 and 500 MeV/c^2.

  7. The role of inertial containment fusion in replacing nuclear tests

    Energy Technology Data Exchange (ETDEWEB)

    Schaper, Annette [Hessische Stiftung Friedens- und Konfliktforschung, Frankfurt am Main (Germany)

    2008-07-01

    Nuclear weapon physicists need to understand the process of a nuclear explosion, and their major experimental tools had been nuclear tests. Since a couple of years, the established nuclear weapon states observe a testing moratorium. Nevertheless, they still want to keep their nuclear arsenals, and consequently to ensure the reliability, safety, and security of their nuclear warheads. For this purpose, they use experimental tools that replace nuclear tests, among them ICF. ICF plays a central role in the so-called ''stockpile stewardship program'' that the U.S. has implemented when it participated in the negotiations on a Comprehensive Test Ban Treaty. Several questions arise and are discussed in the presentation: Does ICF allow to simulate the extreme conditions of a nuclear explosion? Which are the functions of nuclear testing that ICF can replace and which are beyond its capabilities? Would ICF be a useful tool for the design of new nuclear warheads? Why are so huge sums spent on ICF in a military context although the usefulness for nuclear weapons seems rather limited?.

  8. Licensing experiences, risk assessment, demonstration test on nuclear fuel packages and design criteria for sea going vessel carrying spent fuel in Japan

    International Nuclear Information System (INIS)

    Aoki, S.; Ikeda, K.

    1978-01-01

    In Japan spent fuels from nuclear power plants shall be shipped to reprocessing plants by sea-going vessels. Atomic Energy Committee has initiated a board of experts to implement the assessment of environmental safety for sea transport. As a part of the assessment a study has been conducted by Central Research Institute of Electric Power Industry under sponsorship of Nuclear Safety Bureau, which is intended to guarantee the safety of sea transport. Nuclear Safety Bureau also has a program to carry out a long term demonstration test on spent fuel package using full scale package models. The test consists of drop, heat transfer, fire, collapse under high external pressure, immersion, shielding and subcritical test. The purpose of this test is to obtain the public acceptance and also to verify the adequacy of the safety analysis for nuclear fuel packages. In order to secure the safety of sea transport, the Ministry of Transportation has provided for the design criteria for sea-going vessel in the case of full load shipping, which aims to make minimum the probability of sinking at collision, grounding and other unforeseen accidents on the sea and also to retain the radiation exposure to crews as low as possible. The design criteria consists of the following items: (1) structural strength of vessel, (2) collision protective structure, (3) arrangement of holds, (4) stability after damage, (5) grounding protective structure, (6) cooling system, (7) tie-down equipment, (8) radiation inspection apparatus, (9) decontamination facilities, (10) emergency water flooding equipment for ship fire, (11) emergency electric sources, etc. Based on the design criteria a sea-going vessel names HINOURA-MARU has been reconstructed to transport spent fuel packages from nuclear power stations to the reprocessing plant

  9. Rock siting of nuclear power plants from a reactor safety standpoint. Status report October 1974

    International Nuclear Information System (INIS)

    1975-01-01

    The aim of this study is to clearify the advantages and disadvantages of an underground nuclear power plant from a reactor safety point of view, compared to a plant above ground. Principles for the technical design of a rock sited BWR nuclear power plant is presented. Also questions of sabotage and closing down the plant at the end of the operational period are treated. (K.K.)

  10. The study on the non-linear soil structure interaction for nuclear power plants

    International Nuclear Information System (INIS)

    Tetsuya Hagiwara; Yoshio Kitada

    2005-01-01

    1. Introduction: JNES is planning a new project to study non-linear soil-structure interaction (SSI) effect under large earthquake ground motions equivalent to and/or over a design earthquake ground motion of S2(The extreme design earthquake). Concerning the SSI test, it is pointed out that handling of the scale effect of the specimen together with the surrounding soil on the earthquake response evaluation of the actual structure is essential issue for the scaled model test. Thus, for the test, the largest specimen possible and the biggest input motion possible are necessary. Taking into account the above issues, new test methodology, which utilizes artificial earthquake ground motion, is considered desirable if it can be performed at a realistic cost. Under this motivation, we have studied the test methodology which applying blasting power as for a big earthquake ground motion. The information from a coal mine company in the U.S.A. indicates that the works performed in the surface coal mine to blast a rock covering a coal layer generates a big artificial ground motion, which is similar to earthquake ground motion. Application of this artificial earthquake ground motion for the SSI test is considered very promising because the blasting work is carried out periodically for mining coal so that we can apply artificial motions generated by the work if we construct a building model at a closed point to the blasting work area. The major purposes of the test will be to understand (a) basic earthquake response characteristics of a Nuclear Power Plant (NPP) reactor building when a large earthquake strikes the NPP site and (b) nonlinear characteristics of SSI phenomenon during a big earthquake. In the paper, we introduce the test method and basic characteristics of measured artificial ground motions generated by the blasting works on an actual site. 2. Conclusion: It was confirmed that the artificial ground motions generated by blasting works have enough acceleration level

  11. Uprooting force balance for pioneer woody plants: A quantification of the relative contribution of above- and below-ground plant architecture to uprooting susceptibility

    Science.gov (United States)

    Bywater-Reyes, S.; Wilcox, A. C.; Lightbody, A.; Skorko, K.; Stella, J. C.

    2012-12-01

    Cottonwood (Populus), willow (Salix), and tamarisk (Tamarix) populate riparian areas in many dryland regions, and their recruitment depends heavily on hydrogeomorphic conditions. The survival of pioneer woody seedlings depends in part on the establishment of root systems capable of anchoring plants in subsequent floods, and this root system development in turn influences the cohesion that plants provide to bars. The factors influencing the anchoring ability and resistance to scour of woody seedlings include plant frontal area and flexibility, root structure, and water table elevation. This study aims to quantify the factors comprising the force balance to uproot woody seedlings and saplings in two field sites characterized by different hydrologic conditions. The Bill Williams River (AZ) is an impounded river with elevated water table elevations produced by dam-released base flows. The Bitterroot River (MT) is an unimpounded river with a snowmelt hydrograph and seasonal fluctuations in river and water table elevation. We simulate uprooting from flooding events by saturating substrates and applying force near the base of the plant in a lateral, downstream direction until uprooting occurs, for a range of plant sizes but with a focus on small (plants, with cottonwood and tamarisk seedlings showing greater variability than willow. In contrast, root length and stem diameter are only weakly correlated with pull-out force. By combining pull test results with measurements of geomorphic and groundwater conditions, this study provides insights into the relative contribution of a plant's above-ground and below-ground architecture to uprooting potential and into the feedbacks between vegetation and morphodynamics on river bars.

  12. Key Response Planning Factors for the Aftermath of Nuclear Terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Buddemeier, B R; Dillon, M B

    2009-01-21

    Despite hundreds of above-ground nuclear tests and data gathered from Hiroshima and Nagasaki, the effects of a ground-level, low-yield nuclear detonation in a modern urban environment are still the subject of considerable scientific debate. Extensive review of nuclear weapon effects studies and discussions with nuclear weapon effects experts from various federal agencies, national laboratories, and technical organizations have identified key issues and bounded some of the unknowns required to support response planning for a low-yield, ground-level nuclear detonation in a modern U.S. city. This study, which is focused primarily upon the hazards posed by radioactive fallout, used detailed fallout predictions from the advanced suite of three-dimensional (3-D) meteorology and plume/fallout models developed at Lawrence Livermore National Laboratory (LLNL), including extensive global Key Response Planning Factors for the Aftermath of Nuclear Terrorism geographical and real-time meteorological databases to support model calculations. This 3-D modeling system provides detailed simulations that account for complex meteorology and terrain effects. The results of initial modeling and analysis were presented to federal, state, and local working groups to obtain critical, broad-based review and feedback on strategy and messaging. This effort involved a diverse set of communities, including New York City, National Capitol Regions, Charlotte, Houston, Portland, and Los Angeles. The largest potential for reducing casualties during the post-detonation response phase comes from reducing exposure to fallout radiation. This can be accomplished through early, adequate sheltering followed by informed, delayed evacuation.B The response challenges to a nuclear detonation must be solved through multiple approaches of public education, planning, and rapid response actions. Because the successful response will require extensive coordination of a large number of organizations, supplemented by

  13. Further limitations on nuclear testing

    International Nuclear Information System (INIS)

    Brown, P.S.

    1991-11-01

    This document addresses a number of subjects related to further constraints on nuclear testing, briefly discussing each of the following topics: the current political situation, the kinds of steps that might next be taken in test limitations and the impacts of further testing limits, the need for a test ban readiness program, some issues related to verification, and the possibility of confidence building measures as alternative, or near-term, steps to further test limitations

  14. Low-level nuclear waste tested for fertilizer value

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The nuclear power industry keeps coming up with proposals for getting rid of radioactive waste - burying it deep in the ground, sinking it at sea and even sending it into space reports Common Cause magazine under a headline, The Latest in Recycling. At its Sequoyah Fuels facility in Oklahoma, Kerr-McGee manufactures fuel for nuclear power plants, generating a low-level radioactive liquid waste product called raphinate. After processing to remove radioactive substances, Kerr-McGee has gotten approval from the Nuclear Regulatory Commission to use the nitrogen-rich residue as a fertilizer - but not to market it. As a result, Kerr-McGee is reported to be buying up thousands of acres of land on which to spread raphinate. The acreage is used to grow hay, which the company has gotten an okay to sell. The recycling effort hasn't exactly won neighborhood friends for the company, noted Common Cause. According to Kerr-McGee's corporate communications direct, When you say to somebody, Sequoyah Fuels is putting nuclear waste (on farmland), people jump up a wall

  15. Nuclear Systems Kilopower Overview

    Science.gov (United States)

    Palac, Don; Gibson, Marc; Mason, Lee; Houts, Michael; McClure, Patrick; Robinson, Ross

    2016-01-01

    The Nuclear Systems Kilopower Project was initiated by NASAs Space Technology Mission Directorate Game Changing Development Program in fiscal year 2015 to demonstrate subsystem-level technology readiness of small space fission power in a relevant environment (Technology Readiness Level 5) for space science and human exploration power needs. The Nuclear Systems Kilopower Project consists of two elements. The primary element is the Kilopower Prototype Test, also called the Kilopower Reactor Using Stirling Technology(KRUSTY) Test. This element consists of the development and testing of a fission ground technology demonstrator of a 1 kWe fission power system. A 1 kWe system matches requirements for some robotic precursor exploration systems and future potential deep space science missions, and also allows a nuclear ground technology demonstration in existing nuclear test facilities at low cost. The second element, the Mars Kilopower Scalability Study, consists of the analysis and design of a scaled-up version of the 1 kWe reference concept to 10 kWe for Mars surface power projected requirements, and validation of the applicability of the KRUSTY experiment to key technology challenges for a 10 kWe system. If successful, these two elements will lead to initiation of planning for a technology demonstration of a 10 kWe fission power capability for Mars surface outpost power.

  16. The settlement of foundation of existing large structure on soft ground and investigation of its allowable settlement

    International Nuclear Information System (INIS)

    Okamoto, Toshiro

    1987-01-01

    In our laboratory a study of siting on quarternary ground is followed to make possible to construct a nuclear power plant on soil ground in Japan, a important subject is to understand bearing capacity, settlement and seismic responce of foundation. So measured data are collected about relation between ground and type of foundation, total settlement and differential settlement of already constructed large structures, and it is done to investigate the real condition and to examine allowable settlement. Investigated structures are mainly foreign nuclear power plant and domestic and foreign high buildings. The higher buildings are, the more raft foundation are for type of foundation and the higher contact pressure are to similar to a nuclear power plant. So discussion is done about mainly raft foundation. It is found that some measured maximum total settlements are larger than already proposed allowable values. So empirical allowable settlement is derived from measured values considering the effect of the width of base slab, contact pressure and foundation ground. Differential settlement is investigated about relation to maximum total settlement, and is formulated considering the width and the rigidity of base slab. Beside the limit of differential settlement is obtained as foundation is damaged, and the limit of maximum total settlement is obtained by combining this and above mentioned relation. Obtained allowable value is largely influenced by the width of base slab, and becomes less severe than some already proposed values. So it is expected that deformation of foundation is rationaly investigated when large structure as nuclear power plant is constructed on soft ground. (author)

  17. Cosmic-ray produced nuclides in ground level air and in precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Schumann, G.; Roedel, W.; Stoeppler, M.

    1963-11-15

    There are mainly three kinds of radioactive substances in the atmosphere: emanations from the ground and their daughters, nuclides produced in the atmosphere by cosmic rays, and artificial products originating from nuclear weapon tests (and in a very small amount from other nuclear technical applications). This paper deals in particular with some of the cosmic-ray produced nuclides.

  18. Above- and Belowground Trophic Interactions on Creeping Thistle (Cirsium arvense) in High- and Low-Diversity Plant Communities: Potential for Biotic Resistance?

    NARCIS (Netherlands)

    Bezemer, T.M.; Graça, O.; Rousseau, P.; Putten, van der W.H.

    2004-01-01

    The capacity of local communities to control introduced plants is called biotic resistance. Biotic resistance has been almost exclusively tested for plant competition and above-ground herbivores and pathogens, while neglecting root herbivores and soil pathogens. Here, we present biotic resistance by

  19. Shaking Table Tests on the Seismic Behavior of Steel Frame Structures Subjected to Various Earthquake Ground Motions

    International Nuclear Information System (INIS)

    Choi, In Kil; Kim, Min Kyu; Choun, Young Sun; Seo, Jeong Moon

    2004-05-01

    The standard response spectrum proposed by US NRC has been used as a design earthquake for the design of Korean nuclear power plant structures. Recent large earthquakes occurred in near-fault zone have done significant damage and loss of life to earthquake area. A survey on some of the Quaternary fault segments near the Korean nuclear power plants is ongoing. If the faults are confirmed as active ones, it will be necessary to reevaluate the seismic safety of the nuclear power plants located near the fault. In this study, the shaking table tests of three steel frame structures were performed. Three types of input motions, artificial time histories that envelop the US NRC Regulatory Guide 1.60 spectrum and the probability based scenario earthquake spectra developed for the Korean nuclear power plant site and a typical near-fault earthquake recorded at Chi-Chi earthquake, were used as input motions. The acceleration and displacement responses of the structure due to the design earthquake were larger than those due to the other input earthquakes. It seems that the design earthquake for the Korean nuclear power plants is conservative, and that the near-fault earthquake and scenario earthquake are not so damageable for the nuclear power plant structures, because the fundamental frequencies of the nuclear power plant structures are generally greater than 5 Hz. The high frequency ground motions that appeared in the scenario earthquake can be more damageable for the equipment installed on the high floors in a building. This means that the design earthquake is not so conservative for the safety of the safety related nuclear power plant equipment

  20. Ground vibration test results of a JetStar airplane using impulsive sine excitation

    Science.gov (United States)

    Kehoe, Michael W.; Voracek, David F.

    1989-01-01

    Structural excitation is important for both ground vibration and flight flutter testing. The structural responses caused by this excitation are analyzed to determine frequency, damping, and mode shape information. Many excitation waveforms have been used throughout the years. The use of impulsive sine (sin omega t)/omega t as an excitation waveform for ground vibration testing and the advantages of using this waveform for flight flutter testing are discussed. The ground vibration test results of a modified JetStar airplane using impulsive sine as an excitation waveform are compared with the test results of the same airplane using multiple-input random excitation. The results indicated that the structure was sufficiently excited using the impulsive sine waveform. Comparisons of input force spectrums, mode shape plots, and frequency and damping values for the two methods of excitation are presented.

  1. French nuclear plant safeguard pump qualification testing: EPEC test loop

    International Nuclear Information System (INIS)

    Guesnon, H.

    1985-01-01

    This paper reviews the specifications to which nuclear power plant safeguard pumps must be qualified, and surveys the qualification methods and program used in France to verify operability of the pump assembly and major pump components. The EPEC test loop is described along with loop capabilities and acheivements up to now. This paper shows, through an example, the Medium Pressure Safety Injection Pump designed for service in 1300 MW nuclear power plants, and the interesting possibilities offered by qualification testing

  2. Salvaging of nuclear waste by nuclear-optical converters

    Science.gov (United States)

    Karelin, A. V.; Shirokov, R. V.

    2007-06-01

    In modern conditions of power consumption growing in Russia, apparently, it is difficult to find alternative to further development of nuclear power engineering. The negative party of nuclear power engineering is the spent fuel of nuclear reactors (radioactive waste). The gaseous and fluid radioactive waste furbished of highly active impurity, dumps in atmosphere or pools. The highly active fluid radioactive waste stores by the way of saline concentrates in special tanks in surface layers of ground, above the level of groundwaters. A firm radioactive waste bury in pods from a stainless steel in underground workings, salt deposits, at the bottom of oceans. However this problem can be esteemed in a positive direction, as irradiation is a hard radiation, which one can be used as a power source in nuclear - optical converters with further conversion of optical radiation into the electric power with the help of photoelectric converters. Thus waste at all do not demand special processing and exposure in temporary storehouses. And the electricity can be worked out in a constant mode within many years practically without gang of a stimulus source, if a level of a residual radioactivity and the half-lives of component are high enough.

  3. The effects of clouds on the detection of light signals from near-ground nuclear bursts at satellite

    International Nuclear Information System (INIS)

    Zhang Zhongshan; Zhang Enshan; Zhao Wenli; Gao Chunxia

    2002-01-01

    The effects of clouds on the detection of light signals from near-ground nuclear bursts are analysed quantitatively. The results indicate: the degree of the effect increasing with the growth of clouds optical thickness and satellite look angle; clouds lead really harmful effect in detectable signal intensity and precision of optical location, but degree of the effect is not great too. The enhancement of the photon optical paths by multiple scattering within the cloud will cause both a delay and a time-broadening of an impulsive light signal, and get 'lower and fat'; upward optical transmission of light through clouds is essentially the same as if there were no cloud present at all, when a point source is above the geometrical mid-plane of the cloud. And if the point source is below the mid-plane, then upward optical transmission of light through clods will be related closely to the distance of the source below the mid-plane. Given also some charts which evaluate conveniently degree of the effect due to clouds for the purpose of reference and use of a person of the same trade or occupation are given also

  4. Radioactive cesium isotope ratios as a tool for determining dispersal and re-dispersal mechanisms downwind from the Nevada Nuclear Security Site.

    Science.gov (United States)

    Snyder, Darin C; Delmore, James E; Tranter, Troy; Mann, Nick R; Abbott, Michael L; Olson, John E

    2012-08-01

    Fractionation of the two longer-lived radioactive cesium isotopes ((135)Cs and (137)Cs) produced by above ground nuclear tests have been measured and used to clarify the dispersal mechanisms of cesium deposited in the area between the Nevada Nuclear Security Site and Lake Mead in the southwestern United States. Fractionation of these isotopes is due to the 135-decay chain requiring several days to completely decay to (135)Cs, and the 137-decay chain less than one hour decay to (137)Cs. Since the Cs precursors are gases, iodine and xenon, the (135)Cs plume was deposited farther downwind than the (137)Cs plume. Sediment core samples were obtained from the Las Vegas arm of Lake Mead, sub-sampled and analyzed for (135)Cs/(137)Cs ratios by thermal ionization mass spectrometry. The layers proved to have nearly identical highly fractionated isotope ratios. This information is consistent with a model where the cesium was initially deposited onto the land area draining into Lake Mead and the composite from all of the above ground shots subsequently washed onto Lake Mead by high intensity rain and wind storms producing a layering of Cs activity, where each layer is a portion of the composite. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Remote sensing of traveling ionospheric disturbances resulting from underground nuclear tests

    International Nuclear Information System (INIS)

    Copenhaver, C.

    1985-01-01

    Following an underground nuclear test, an acoustic pulse propagates upward through the atmosphere and sets the ionosphere in motion which, in turn, generates gravity waves. The usual ionospheric monitoring approach is to use a phase sounder to observe the acoustic pulse. However, there are other detection techniques that can be employed. These detection techniques include the use of a low-frequency filter so that only long period (approximately 10 minutes) gravity waves can be observed. Another detection technique is to correlate microbarographic measurements on the surface with HF sounder data from the ionosphere to measure Lamb waves. A third detection technique is to correlate seismometer measurements in the ground with their corresponding ionospheric perturbations. The theoretical and experimental aspects of these remote detection techniques are discussed here

  6. Proving test on the reliability for nuclear valves

    International Nuclear Information System (INIS)

    Kajiyama, Yasuo; Tashiro, Hisao; Uga, Takeo; Maeda, Shunichi.

    1986-01-01

    Since valves are the most common components, they could be the most frequent causes of troubles in nuclear power plants. This proving test, therefore, has an important meaning to examine and verify the reliability of various valves under simulating conditions of abnormal and transient operations of the nuclear power plant. The test was performed mainly for the various types and pressure ratings of valves which were used in the primary and secondary systems in BWR and PWR nuclear power plants and which had major operating or safety related functions in those nuclear power plants. The results of the proving test, confirmed for more than four years, showed relatively favourable performance of the tested valves. It is concluded that performances of valves including operability, seat sealing and structural integrity were proved under the thermal cycling, vibration and pipe reaction load conditions. Operating functions during and after accident such as loss of coolant accident were satisfactory. From these results, it was considered that the purpose of this proving test was satisfactorily fulfilled. Several data accumulated by the test would be useful to get better reliability if it was evaluated with the actually experienced data of valves in the nuclear power plants. (Nogami, K.)

  7. Testing a ground-based canopy model using the wind river canopy crane

    Science.gov (United States)

    Robert Van Pelt; Malcolm P. North

    1999-01-01

    A ground-based canopy model that estimates the volume of occupied space in forest canopies was tested using the Wind River Canopy Crane. A total of 126 trees in a 0.25 ha area were measured from the ground and directly from a gondola suspended from the crane. The trees were located in a low elevation, old-growth forest in the southern Washington Cascades. The ground-...

  8. Nuclear rocket propulsion

    International Nuclear Information System (INIS)

    Clark, J.S.; Miller, T.J.

    1991-01-01

    NASA has initiated planning for a technology development project for nuclear rocket propulsion systems for Space Exploration Initiative (SEI) human and robotic missions to the Moon and to Mars. An Interagency project is underway that includes the Department of Energy National Laboratories for nuclear technology development. This paper summarizes the activities of the project planning team in FY 1990 and FY 1991, discusses the progress to date, and reviews the project plan. Critical technology issues have been identified and include: nuclear fuel temperature, life, and reliability; nuclear system ground test; safety; autonomous system operation and health monitoring; minimum mass and high specific impulse

  9. Nuclear cask testing films misleading and misused

    Energy Technology Data Exchange (ETDEWEB)

    Audin, L. (Audin (Lindsay), Ossining, NY (United States))

    1991-10-01

    In 1977 and 1978, Sandia National Laboratories, located in Albuquerque, New Mexico, and operated for the US Department of Energy (DOE), filmed a series of crash and fire tests performed on three casks designed to transport irradiated nuclear fuel assemblies. While the tests were performed to assess the applicability of scale and computer modeling techniques to actual accidents, films of them were quickly pressed into service by the DOE and nuclear utilities as proof'' to the public of the safety of the casks. In the public debate over the safety of irradiated nuclear fuel transportation, the films have served as the mainstay for the nuclear industry. Although the scripts of all the films were reviewed by USDOE officials before production, they contain numerous misleading concepts and images, and omit significant facts. The shorter versions eliminated qualifying statements contained in the longer version, and created false impressions. This paper discusses factors which cast doubt on the veracity of the films and the results of the tests.

  10. Nuclear cask testing films misleading and misused

    Energy Technology Data Exchange (ETDEWEB)

    Audin, L. [Audin (Lindsay), Ossining, NY (United States)

    1991-10-01

    In 1977 and 1978, Sandia National Laboratories, located in Albuquerque, New Mexico, and operated for the US Department of Energy (DOE), filmed a series of crash and fire tests performed on three casks designed to transport irradiated nuclear fuel assemblies. While the tests were performed to assess the applicability of scale and computer modeling techniques to actual accidents, films of them were quickly pressed into service by the DOE and nuclear utilities as ``proof`` to the public of the safety of the casks. In the public debate over the safety of irradiated nuclear fuel transportation, the films have served as the mainstay for the nuclear industry. Although the scripts of all the films were reviewed by USDOE officials before production, they contain numerous misleading concepts and images, and omit significant facts. The shorter versions eliminated qualifying statements contained in the longer version, and created false impressions. This paper discusses factors which cast doubt on the veracity of the films and the results of the tests.

  11. Nuclear cask testing films misleading and misused

    International Nuclear Information System (INIS)

    Audin, L.

    1991-10-01

    In 1977 and 1978, Sandia National Laboratories, located in Albuquerque, New Mexico, and operated for the US Department of Energy (DOE), filmed a series of crash and fire tests performed on three casks designed to transport irradiated nuclear fuel assemblies. While the tests were performed to assess the applicability of scale and computer modeling techniques to actual accidents, films of them were quickly pressed into service by the DOE and nuclear utilities as ''proof'' to the public of the safety of the casks. In the public debate over the safety of irradiated nuclear fuel transportation, the films have served as the mainstay for the nuclear industry. Although the scripts of all the films were reviewed by USDOE officials before production, they contain numerous misleading concepts and images, and omit significant facts. The shorter versions eliminated qualifying statements contained in the longer version, and created false impressions. This paper discusses factors which cast doubt on the veracity of the films and the results of the tests

  12. SOAC - State-of-the-Art Car Engineering Tests at Department of Transportation High Speed Ground Test Center : Volume 2. Performance Tests.

    Science.gov (United States)

    1975-01-01

    The six-volume report presents the technical methodology, data samples, and results of tests conducted on the SOAC on the Rail Transit Test Track at the High Speed Ground Test Center in Pueblo, Colorado during the period April to July 1973. The Test ...

  13. Numerical simualtion of underground 37Ar transportation to the ground

    International Nuclear Information System (INIS)

    She Ruogu; Li Hua; Liu Cheng'an; Wu Jun

    2008-01-01

    Monitoring radioactive gas 37 Ar is an important technique for the On-Site Inspection(OSI) of the Comprehensive Nuclear Test Ban Treaty (CTBT) verification regime. In order to establish a theoretical model that can be used to calculate the appearing time and radioactivity of 37 Ar which transports to the ground after a nuclear explosion, the rock media in the test area is assumed to be a homogeneous porous media, without consideration of gas absorption by and release from the rock media. The seepage model in the porous media is used to calculate 37 Ar transportation. Computational results give the time 37 Ar leaks to the ground and the variation of its radioactivity with time. And we can analyze and consider the computational results when we have developed OSI noble gas monitoring systems and evaluated their effectiveness. (authors)

  14. Some Qualitative Requirements for Testing of Nuclear Emergency Response Robots

    International Nuclear Information System (INIS)

    Eom, Heungseop; Cho, Jai Wan; Choi, Youngsoo; Jeong, Kyungmin

    2014-01-01

    Korea Atomic Energy Research Institute (KAERI) is carrying out the project 'Development of Core Technology for Remote Response in Nuclear Emergency Situation', and as a part of the project, we are studying the reliability and performance requirements of nuclear emergency response robots. In this paper, we described some qualitative requirements for testing of nuclear emergency response robots which are different to general emergency response robots. We briefly introduced test requirements of general emergency response robots and described some qualitative aspects of test requirements for nuclear emergency response robots. When considering an immature field-robot technology and variety of nuclear emergency situations, it seems hard to establish quantitative test requirements of these robots at this time. However, based on studies of nuclear severe accidents and the experience of Fukushima NPP accident, we can expect some test requirements including quantitative ones for nuclear emergency response robots

  15. Standard test methods for determining chemical durability of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics: The product consistency test (PCT)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 These product consistency test methods A and B evaluate the chemical durability of homogeneous glasses, phase separated glasses, devitrified glasses, glass ceramics, and/or multiphase glass ceramic waste forms hereafter collectively referred to as “glass waste forms” by measuring the concentrations of the chemical species released to a test solution. 1.1.1 Test Method A is a seven-day chemical durability test performed at 90 ± 2°C in a leachant of ASTM-Type I water. The test method is static and conducted in stainless steel vessels. Test Method A can specifically be used to evaluate whether the chemical durability and elemental release characteristics of nuclear, hazardous, and mixed glass waste forms have been consistently controlled during production. This test method is applicable to radioactive and simulated glass waste forms as defined above. 1.1.2 Test Method B is a durability test that allows testing at various test durations, test temperatures, mesh size, mass of sample, leachant volume, a...

  16. Water Activities in Laxemar Simpevarp. The final disposal facility for spent nuclear fuel - removal of groundwater and water activities above ground; Vattenverksamhet i Laxemar-Simpevarp. Slutfoervarsanlaeggning foer anvaent kaernbraensle - bortledande av grundvatten samt vattenverksamheter ovan mark

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent (EmpTec (Sweden)); Hamren, Ulrika; Collinder, Per (Ekologigruppen AB (Sweden))

    2010-12-15

    This report concerns water operations (Chapter 11 in the Environmental Code) below and above ground associated with construction, operation, and decommissioning of a repository for spent nuclear fuel in Laxemar in the municipality of Oskarshamn. SKB has chosen Forsmark in the municipality of Oesthammar as site for the repository, and the report hence describes a non-chosen alternative. The report provides a comprehensive description of how the water operations would be executed, their hydrogeological and hydrological effects and the resulting consequences. The description is a background material for comparisons between the two sites in terms of water operations. The underground part of a repository in Laxemar would, among other things, consist of an access ramp and a repository area at a depth of approximately 500 metres. The construction, operation, and decommissioning phases would in total comprise a time period of 60-70 years. Inflowing groundwater would be diverted during construction and operation. The modelling tool MIKE SHE has been used to assess the effects of the groundwater diversion, for instance in terms of groundwater levels and stream discharges. According to MIKE SHE calculations for a hypothetical case with a fully open repository, the total groundwater inflow would be in the order of 55-90 litres per second depending on the permeability of the grouted zone around ramp, shafts and tunnels. In reality, the whole repository would not be open simultaneously, and the inflow would therefore be less. The groundwater diversion would cause groundwater- level drawdown in the rock, which in turn would lead to drawdown of the groundwater table in relatively large areas above and around the repository. According to model calculations, there would be an insignificant drawdown of the water level in Lake Frisksjoen, the largest lake in the area. The discharge in the most important stream of the area (Laxemaraan) would be reduced by less than ten percent

  17. Testing VRIN framework: Resource value and rareness as sources of competitive advantage and above average performance

    OpenAIRE

    Talaja, Anita

    2012-01-01

    In this study, structural equation model that analyzes the impact of resource and capability characteristics, more specifically value and rareness, on sustainable competitive advantage and above average performance is developed and empirically tested. According to the VRIN framework, if a company possesses and exploits valuable, rare, inimitable and non-substitutable resources and capabilities, it will achieve sustainable competitive advantage. Although the above mentioned statement is widely...

  18. Radioactive contamination of the environment and biota on Novaya Zemlya following nuclear weapon tests

    International Nuclear Information System (INIS)

    Matishov, G.G.; Matishov, D.G.; Shchipa, E.; Pavlova, L.G.

    1994-01-01

    Data of radiochemical studies have shown that in key elements of ecosystems on the archipelago (lake and sea waters, bottom deposits, mosses lichens, birds and deer) the content of Cs 137 and other radioisotopes is within the background level. Bottom deposits and soils of local territories of the abandoned nuclear test sites are the exception (the concentration of radioisotopes in the environment and biota amounts to 5000 Bq/rg and more). It is recommended that mosses and lichens on the ground and benthonic organisms in the sea should be used as biological indicators of artificial radiological background

  19. Testing of nuclear air-cleaning systems

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    A standard is presented which describes methods for field-testing nuclear power plant air cleaning systems. Included are specifications for visual inspection; duct and housing leak test; mounting frame pressure leak test; airflow capacity, distribution, and residence time tests; air-aerosol mixing uniformity test; in place leak test of HEPA filter banks; multiple sampling technique; in-place leak test of adsorber stage; laboratory testing of adsorbent; and duct heater performance test

  20. Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1980

    International Nuclear Information System (INIS)

    Smith, D.D.; Grossman, R.F.; Corkern, W.D.; Thome, D.J.; Patzer, R.G.; Hopper, J.L.

    1981-06-01

    The US Environmental Protection Agency's (EPA) Environmental Monitoring Systems Laboratory in Las Vegas (EMSL-LV) continued its Offsite Radiological Safety Program for the Nevada Test Site (NTS) and other sites of past underground nuclear tests. For each test, the Laboratory provided airborne meteorological measurements, ground and airborne radiation monitoring teams, and special briefings to the Test Controller's Advisory Panel. Test-related radioactivity from the NTS was detected offsite following the Riola Test conducted on September 25, 1980. This consisted of xenon-133 (3.4 x 10 -11 μCi/m1) and xenon-135 (3.6 x 10 -10 μCi/m1) in a compressed air sample collected at Lathrop Wells, Nevada. The estimated dose equivalent to the whole body of a hypothetical receptor at Lathrop Wells from exposure to the radioxenon was 0.011 mrem, which is 0.006 percent of the radiation protection guide for a suitable sample of the general population. Whole-body counts of individuals residing in the environs of the NTS showed no manmade radionuclides attributable to the testing program. The only radioactivity from non-NTS sites of past underground nuclear tests was due to tritium in water samples collected from the Project Dribble Site near Hattiesburg, Mississippi, and the Project Long Shot Site on Amchitka Island, Alaska. The maximum concentrations measured at these locations were 1 and 0.1 percent of the Concentration Guide for drinking water, respectively. A small amount of airborne radioactivity originating from nuclear tests carried out by the People's Republic of China was detected during 1980 at some stations scattered throughout the Air Surveillance Network. The Laboratory's Animal Investigation Program sampled tissues from wildlife and domestic animals on and around the NTS. Data from analysis of these tissues are published separately in an annual report

  1. Cryogenic actuator testing for the SAFARI ground calibration setup

    Science.gov (United States)

    de Jonge, C.; Eggens, M.; Nieuwenhuizen, A. C. T.; Detrain, A.; Smit, H.; Dieleman, P.

    2012-09-01

    For the on-ground calibration setup of the SAFARI instrument cryogenic mechanisms are being developed at SRON Netherlands Institute for Space Research, including a filter wheel, XYZ-scanner and a flipmirror mechanism. Due to the extremely low background radiation requirement of the SAFARI instrument, all of these mechanisms will have to perform their work at 4.5 Kelvin and low-dissipative cryogenic actuators are required to drive these mechanisms. In this paper, the performance of stepper motors, piezoelectric actuators and brushless DC-motors as cryogenic actuators are compared. We tested stepper motor mechanical performance and electrical dissipation at 4K. The actuator requirements, test setup and test results are presented. Furthermore, design considerations and early performance tests of the flipmirror mechanism are discussed. This flipmirror features a 102 x 72 mm aluminum mirror that can be rotated 45°. A Phytron stepper motor with reduction gearbox has been chosen to drive the flipmirror. Testing showed that this motor has a dissipation of 49mW at 4K with a torque of 60Nmm at 100rpm. Thermal modeling of the flipmirror mechanism predicts that with proper thermal strapping the peak temperature of the flipmirror after a single action will be within the background level requirements of the SAFARI instrument. Early tests confirm this result. For low-duty cycle operations commercial stepper motors appear suitable as actuators for test equipment in the SAFARI on ground calibration setup.

  2. Evaluation of stability of foundation ground during earthquake, (5)

    International Nuclear Information System (INIS)

    Nishi, Koh-ichi; Kanatani, Mamoru

    1987-01-01

    The Central Research Institute of Electric Power Industry advances the research on the method of evaluating foundation grounds from the standpoint of developing in-situ ground survey testing method and the method of evaluating mechanical properties in the studies on the technology for siting nuclear power stations on Quaternary grounds. The newly developed analytical technique on ground stability by the results of the analytical method for equivalent linear response was already reported. In this paper, the analytical method for nonlinear response to investigate into the more detailed behavior of ground due to strong earthquake motion is reported. In particular, the constitutive relation based on elastoplasticity was newly proposed in order to represent the deformation behavior during cyclic loading, and the examples of its application to the response of horizontally leveled sandy ground to earthquake are described. The dialatancy characteristics of soil are constituted by yield function, plastic potential functioin and hardening function. The material constants in proposed constitutive relation are easily determined by laboratory tests. One-dimensional response analysis was conducted, using the constitutive relation. (Kako, I.)

  3. Field test of wireless sensor network in the nuclear environment

    International Nuclear Information System (INIS)

    Li, L.; Wang, Q.; Bari, A.; Deng, C.; Chen, D.; Jiang, J.; Alexander, Q.; Sur, B.

    2014-01-01

    Wireless sensor networks (WSNs) are appealing options for the health monitoring of nuclear power plants due to their low cost and flexibility. Before they can be used in highly regulated nuclear environments, their reliability in the nuclear environment and compatibility with existing devices have to be assessed. In situ electromagnetic interference tests, wireless signal propagation tests, and nuclear radiation hardness tests conducted on candidate WSN systems at AECL Chalk River Labs are presented. The results are favourable to WSN in nuclear applications. (author)

  4. Field test of wireless sensor network in the nuclear environment

    Energy Technology Data Exchange (ETDEWEB)

    Li, L., E-mail: lil@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Wang, Q.; Bari, A. [Univ. of Western Ontario, London, Ontario (Canada); Deng, C.; Chen, D. [Univ. of Electronic Science and Technology of China, Chengdu, Sichuan (China); Jiang, J. [Univ. of Western Ontario, London, Ontario (Canada); Alexander, Q.; Sur, B. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2014-06-15

    Wireless sensor networks (WSNs) are appealing options for the health monitoring of nuclear power plants due to their low cost and flexibility. Before they can be used in highly regulated nuclear environments, their reliability in the nuclear environment and compatibility with existing devices have to be assessed. In situ electromagnetic interference tests, wireless signal propagation tests, and nuclear radiation hardness tests conducted on candidate WSN systems at AECL Chalk River Labs are presented. The results are favourable to WSN in nuclear applications. (author)

  5. Ground Motion Saturation Evaluation (GMSE) Data Needs Workshop

    International Nuclear Information System (INIS)

    NA

    2004-01-01

    The objective of the data needs workshop is to identify potential near-term (12-18 month) studies that would reduce uncertainty in extremely low probability ( -5 /yr) earthquake ground motions at Yucca Mountain. Recommendations made at the workshop will be considered by BSC and DOE management in formulating plans for FY05 seismic-related investigations. Based on studies done earlier this year, a bound on peak ground velocities (PGVs), consisting of a uniform distribution from 150 cm/s to 500 cm/s, has been applied to the existing PGV hazard curve for the underground repository horizon, for use in the forthcoming License Application. The technical basis for this bounding distribution is being documented, along with the basis for a slightly less conservative bound in the form of a roughly triangular distribution from 153 cm/s to 451 cm/s. The objective of the GMSE studies is to provide a technical basis for reducing remaining excessive conservatism, if any, in the extremely low probability ground motions that are used in postclosure performance assessments. Potential studies that have already been suggested include: (1) Additional tests of failure-strains of repository rocks, at, above, and below the repository horizon; (2) Identification and evaluation of nuclear explosion data that may help establish strain limits in tuff; (3) Numerical modeling of seismic wave propagation through repository rock column to test hypothesis that nonwelded tuffs below the repository horizon would fail in tension and prevent extreme strains from being transmitted to the repository; (4) Evaluation of seismic failure threshold of bladed, fragile-appearing lithophysal crystals; (5) Evaluation of whether a ground motion parameter other than PGV would correlate better with calculated drip-shield and waste-package damage states; (6) Qualification and use of finite seismic-source model to evaluate probabilities of extreme ground motions from extreme scenario earthquakes (e.g., magnitude 6

  6. Electron momentum spectroscopy of aniline taking account of nuclear dynamics in the initial electronic ground state

    International Nuclear Information System (INIS)

    Farasat, M; Golzan, M M; Shojaei, S H R; Morini, F; Deleuze, M S

    2016-01-01

    The electronic structure, electron binding energy spectrum and (e, 2e) momentum distributions of aniline have been theoretically predicted at an electron impact energy of 1.500 keV on the basis of Born–Oppenheimer molecular dynamical simulations, in order to account for thermally induced nuclear motions in the initial electronic ground state. Most computed momentum profiles are rather insensitive to thermally induced alterations of the molecular structure, with the exception of the profiles corresponding to two ionization bands at electron binding energies comprised between ∼10.0 and ∼12.0 eV (band C) and between ∼16.5 and ∼20.0 eV (band G). These profiles are found to be strongly influenced by nuclear dynamics in the electronic ground state, especially in the low momentum region. The obtained results show that thermal averaging smears out most generally the spectral fingerprints that are induced by nitrogen inversion. (paper)

  7. The influence of the Lop Nor Nuclear Weapons Test Base to the population of the Republic of Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Zhumadilov, Kassym, E-mail: kassym@hiroshima-u.ac.j [Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553 (Japan); Ivannikov, Alexander [Medical Radiological Research Center, Korolev str. 4, Obninsk 249036 (Russian Federation); Zharlyganova, Dinara [Astana Medical University, Astana 010000 (Kazakhstan); Stepanenko, Valeriy [Medical Radiological Research Center, Korolev str. 4, Obninsk 249036 (Russian Federation); Zhumadilov, Zhaxybay [Nazarbayev University, Life Science Center, Astana 010000 (Kazakhstan); Apsalikov, Kazbek [Kazakh Scientific-Research Institute for Radiation Medicine and Ecology, Semey 071400 (Kazakhstan); Toyoda, Shin [Department of Applied Physics, Faculty of Science, Okayama University of Science, 1-1 Ridai, Okayama 700-0005 (Japan); Endo, Satoru [Department of Quantum Energy Applications, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527 (Japan); Tanaka, Kenichi [Division of Physics, Department of Liberal Arts and Sciences, Center of Medical Education, Sapporo Medical University, South 1, West 17, Chuo-ku, Sapporo 060-8556 (Japan); Miyazawa, Chuzou [School of Dentistry, Ohu University, 31-1, Aza-Misumido, Tomita-machi, Koriyama-shi, Fukushima Pref. 963-8611 (Japan); Okamoto, Tetsuji [Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Frontier Medical Sciences, Graduate School of Biomedical Sciences, Hiroshima University (Japan); Hoshi, Masaharu [Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553 (Japan)

    2011-04-15

    The method of electron spin resonance (ESR) dosimetry was applied to human tooth enamel to obtain estimates of individual absorbed dose for residents of Makanchi, Urdzhar and Taskesken settlements located near the Kazakhstan-Chinese border (about 400 km to the South-East, from the Semipalatinsk Nuclear Test Site (SNTS) and about 1000 km from the Lop Nor Nuclear Weapons Test Base, China). Since the ground and atmospheric nuclear tests (1964-1981) at Lop Nor, the people residing in these settlements are believed to have been heavily exposed to radioactive fallout. Tooth samples had been extracted for medical reasons during the course of ordinary dental treatment. The village of Kokpekty, located 400 km to the South-east of the SNTS, was chosen as the control group since it has not been subjected to any radioactive contamination. The mean excess doses in tooth enamel obtained after subtraction of the contribution of natural background radiation do not exceed 62 {+-} 28 mGy, 64 {+-} 30 mGy, 49 {+-} 27 mGy and -19 {+-} 36 mGy for all ages of the residents of Makanchi, Urdzhar, Taskesken and the control village of Kokpekty, respectively.

  8. Australia: Comprehensive Nuclear Test Ban Treaty. Model Treaty text

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The scope of the proposed Treaty includes the following: Each State Party undertakes not to carry out any nuclear weapon test explosion, and to prohibit and prevent any such nuclear explosion at any place under its jurisdiction or control; each State Party undertakes, furthermore, to refrain from causing, encouraging, or in any way participating in the carrying out of any nuclear weapon tests explosion or any other nuclear explosion

  9. Development of Phenomenological Models of Underground Nuclear Tests on Pahute Mesa, Nevada Test Site - BENHAM and TYBO

    Energy Technology Data Exchange (ETDEWEB)

    Pawloski, G.A.

    1999-09-21

    Although it is well accepted that underground nuclear explosions modify the in situ geologic media around the explosion point, the details of these changes are neither well understood nor well documented. As part of the engineering and containment process before a nuclear test, the physical environment is characterized to some extent to predict how the explosion will interact with the in situ media. However, a more detailed characterization of the physical environment surrounding an expended site is needed to successfully model radionuclide transport in the groundwater away from the detonation point. It is important to understand how the media have been altered and where the radionuclides are deposited. Once understood, this information on modified geologic media can be incorporated into a phenomenological model that is suitable for input to computer simulations of groundwater flow and radionuclide transport. The primary goals of this study are to (1) identify the modification of the media at a pertinent scale, and (2) provide this information to researchers modeling radionuclide transport in groundwater for the US Department of Energy (DOE) Nevada Operations Office Underground Test Area (UGTA) Project. Results from this study are most applicable at near-field scale (a model domain of about 500 m) and intermediate-field scale (a model domain of about 5 km) for which detailed information can be maximized as it is incorporated in the modeling grids. UGTA collected data on radionuclides in groundwater during recent drilling at the ER-20-5 site, which is near BENHAM and TYBO on Pahute Mesa at the Nevada Test Site (NTS). Computer simulations are being performed to better understand radionuclide transport. The objectives of this modeling effort include: evaluating site-specific information from the BENHAM and TYBO tests on Pahute Mesa; augmenting the above data set with generalized containment data; and developing a phenomenological model suitable for input to

  10. The Nuclear Non-Proliferation Treaty and the Comprehensive Nuclear-Test-Ban Treaty, the relationship

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Thomas Jr. [7609 Glenbrook Rd., Bethesda, MD 20814 (United States)

    2014-05-09

    The Nuclear Non-Proliferation Treaty (NPT) is the most important international security arrangement that we have that is protecting the world community and this has been true for many years. But it did not happen by accident, it is a strategic bargain in which 184 states gave up the right forever to acquire the most powerful weapon ever created in exchange for a commitment from the five states allowed to keep nuclear weapons under the NPT (U.S., U.K., Russia, France and China), to share peaceful nuclear technology and to engage in disarmament negotiations aimed at the ultimate elimination of their nuclear stockpiles. The most important part of this is the comprehensive nuclear test ban (CTBT); the thinking by the 184 NPT non-nuclear weapon states was and is that they understand that the elimination of nuclear weapon stockpiles is a long way off, but at least the NPT nuclear weapon states could stop testing the weapons. The CTBT has been ratified by 161 states but by its terms it can only come into force if 44 nuclear potential states ratify; 36 have of the 44 have ratified it, the remaining eight include the United States and seven others, most of whom are in effect waiting for the United States. No state has tested a nuclear weapon-except for complete outlier North Korea-in 15 years. There appears to be no chance that the U.S. Senate will approve the CTBT for ratification in the foreseeable future, but the NPT may not survive without it. Perhaps it is time to consider an interim measure, for the UN Security Council to declare that any future nuclear weapon test any time, anywhere is a 'threat to peace and security', in effect a violation of international law, which in today's world it clearly would be.

  11. Nuclear instrumentation system operating experience and nuclear instrument testing in the EBR-II

    International Nuclear Information System (INIS)

    Yingling, G.E.; Curran, R.N.

    1980-01-01

    In March of 1972 three wide range nuclear channels were purchased from Gulf Atomics Corporation and installed in EBR-II as a test. The three channels were operated as a test until April 1975 when they became a permanent part of the reactor shutdown system. Also described are the activities involved in evaluating and qualifying neutron detectors for LMFBR applications. Included are descriptions of the ANL Components Technology Division Test Program and the EBR-II Nuclear Instrument Test Facilities (NITF) used for the in-reactor testing and a summary of program test results from EBR-II

  12. The former tests realized to a personal neutron dosemeter based on solid nuclear tracks detector

    International Nuclear Information System (INIS)

    Camacho, M.E.; Tavera, L.; Balcazar, M.

    1997-01-01

    Due to the increase in the use of neutron radiation a personal neutron dosemeter based on solid nuclear tracks detector (DSTN) was designed and constructed. The personal dosemeter design consists of three arrangements. The first one consists of a plastic nuclear tracks detector (LR115 or CR39) in contact with a LiF pellet. The second one is the same that above but it placed among two cadmium pellets and, the third one is formed by the alone detector without converter neither neutron absorber. The three arrangements are placed inside a plastic porta detector hermetically closed to avoid the bottom produced by environmental radon whichever both detectors (LR115 and CR39) are sensitive. In this work the former tests realized to that dosemeter are presented. (Author)

  13. Reconstruction of local fallout composition and gamma-ray exposure in a village contaminated by the first USSR nuclear test in the Semipalatinsk nuclear test site in Kazakhstan.

    Science.gov (United States)

    Imanaka, Tetsuji; Yamamoto, Masayoshi; Kawai, Kenta; Sakaguchi, Aya; Hoshi, Masaharu; Chaizhunusova, Nailya; Apsalikov, Kazbek

    2010-11-01

    After the disintegration of the USSR in end of 1991, it became possible for foreign scientists to visit Kazakhstan, in order to investigate the radiological consequences of nuclear explosions that had been conducted at the Semipalatinsk nuclear test site (SNTS). Since the first visit in 1994, our group has been continuing expeditions for soil sampling at various areas around SNTS. The current level of local fallout at SNTS was studied through γ-spectrometry for (137)Cs as well as α-spectrometry for (239,240)Pu. Average values of soil inventory from wide areas around SNTS were 3,500 and 3,700 Bq m(-2) for (137)Cs and (239,240)Pu, respectively, as of January 1, 2000. The average level of (137)Cs is comparable to that in Japan due to global fallout, while the level of (239,240)Pu is several tens of times larger than that in Japan. Areas of strong contamination were found along the trajectories of radioactive fallout, information on which was declassified after the collapse of the USSR. Our recent efforts of soil sampling were concentrated on the area around the Dolon village heavily affected by the radioactive plume from the first USSR atomic bomb test in 1949 and located 110 km east from ground zero of the explosion. Using soil inventory data, retrospective dosimetry was attempted by reconstructing γ-ray exposure from fission product nuclides deposited on the ground. Adopting representative parameters for the initial (137)Cs deposition (13 kBq m(-2)), the refractory/volatile deposition ratio (3.8) and the plume arrival time after explosion (2.5 h), an absorbed dose in air of 600 mGy was obtained for the 1-year cumulative dose in Dolon village, due to the first bomb test in 1949. Considering possible ranges of the parameters, 350 and 910 mGy were estimated for high and low cases of γ-ray dose in air, respectively. It was encouraging that the deduced value was consistent with other estimations using thermal luminescence and archived monitoring data. The present

  14. Assessment of hydrologic transport of radionuclides from the Rulison Underground Nuclear Test Site, Colorado

    International Nuclear Information System (INIS)

    Earman, S.; Chapman, J.; Andricevic, R.

    1996-09-01

    The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Rulison site in west-central Colorado was the location of an underground detonation of a 40-kiloton nuclear device in 1969. The test took place 2,568 m below ground surface in the Mesaverde Formation. Though located below the regional water table, none of the bedrock formations at the site yielded water during hydraulic tests, indicating extremely low permeability conditions. The scenario evaluated was the migration of radionuclides from the blast-created cavity through the Mesaverde Formation. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides from the test are contained entirely within the area currently administered by DOE. The transport calculations are most sensitive to changes in the mean groundwater velocity and the correlation scale of hydraulic conductivity, with transport of strontium and cesium also sensitive to the sorption coefficient

  15. Molecular species identification of Central European ground beetles (Coleoptera: Carabidae using nuclear rDNA expansion segments and DNA barcodes

    Directory of Open Access Journals (Sweden)

    Raupach Michael J

    2010-09-01

    Full Text Available Abstract Background The identification of vast numbers of unknown organisms using DNA sequences becomes more and more important in ecological and biodiversity studies. In this context, a fragment of the mitochondrial cytochrome c oxidase I (COI gene has been proposed as standard DNA barcoding marker for the identification of organisms. Limitations of the COI barcoding approach can arise from its single-locus identification system, the effect of introgression events, incomplete lineage sorting, numts, heteroplasmy and maternal inheritance of intracellular endosymbionts. Consequently, the analysis of a supplementary nuclear marker system could be advantageous. Results We tested the effectiveness of the COI barcoding region and of three nuclear ribosomal expansion segments in discriminating ground beetles of Central Europe, a diverse and well-studied invertebrate taxon. As nuclear markers we determined the 18S rDNA: V4, 18S rDNA: V7 and 28S rDNA: D3 expansion segments for 344 specimens of 75 species. Seventy-three species (97% of the analysed species could be accurately identified using COI, while the combined approach of all three nuclear markers provided resolution among 71 (95% of the studied Carabidae. Conclusion Our results confirm that the analysed nuclear ribosomal expansion segments in combination constitute a valuable and efficient supplement for classical DNA barcoding to avoid potential pitfalls when only mitochondrial data are being used. We also demonstrate the high potential of COI barcodes for the identification of even closely related carabid species.

  16. Molecular species identification of Central European ground beetles (Coleoptera: Carabidae) using nuclear rDNA expansion segments and DNA barcodes.

    Science.gov (United States)

    Raupach, Michael J; Astrin, Jonas J; Hannig, Karsten; Peters, Marcell K; Stoeckle, Mark Y; Wägele, Johann-Wolfgang

    2010-09-13

    The identification of vast numbers of unknown organisms using DNA sequences becomes more and more important in ecological and biodiversity studies. In this context, a fragment of the mitochondrial cytochrome c oxidase I (COI) gene has been proposed as standard DNA barcoding marker for the identification of organisms. Limitations of the COI barcoding approach can arise from its single-locus identification system, the effect of introgression events, incomplete lineage sorting, numts, heteroplasmy and maternal inheritance of intracellular endosymbionts. Consequently, the analysis of a supplementary nuclear marker system could be advantageous. We tested the effectiveness of the COI barcoding region and of three nuclear ribosomal expansion segments in discriminating ground beetles of Central Europe, a diverse and well-studied invertebrate taxon. As nuclear markers we determined the 18S rDNA: V4, 18S rDNA: V7 and 28S rDNA: D3 expansion segments for 344 specimens of 75 species. Seventy-three species (97%) of the analysed species could be accurately identified using COI, while the combined approach of all three nuclear markers provided resolution among 71 (95%) of the studied Carabidae. Our results confirm that the analysed nuclear ribosomal expansion segments in combination constitute a valuable and efficient supplement for classical DNA barcoding to avoid potential pitfalls when only mitochondrial data are being used. We also demonstrate the high potential of COI barcodes for the identification of even closely related carabid species.

  17. Environmental contamination due to nuclear weapon tests and peaceful uses of nuclear explosions

    International Nuclear Information System (INIS)

    Petr, I.; Jandl, J.

    1979-01-01

    The effect of nuclear weapons tests and of the peaceful uses of nuclear explosions on the environment is described. The local and global fallout and the fallout distribution are analysed for the weapon tests. The radiation effects of external and internal irradiation on the population are discussed and the overall radiation risk is estimated. (author)

  18. Acoustic-Seismic Coupling in Porous Ground - Measurements and Analysis for On-Site-Inspection Support

    Science.gov (United States)

    Liebsch, Mattes; Gorschlüter, Felix; Altmann, Jürgen

    2014-05-01

    During on-site inspections (OSI) of the Comprehensive Nuclear Test Ban Treaty Organisation (CTBTO) a local seismic network can be installed to measure seismic aftershock signals of an assumed underground nuclear explosion. These signals are caused by relaxation processes in and near the cavity created by the explosion and when detected can lead to a localisation of the cavity. This localisation is necessary to take gas samples from the ground which are analysed for radioactive noble gas isotopes to confirm or dismiss the suspicion of a nuclear test. The aftershock signals are of very low magnitude so they can be masked by different sources, in particular periodic disturbances caused by vehicles and aircraft in the inspection area. Vehicles and aircraft (mainly helicopters) will be used for the inspection activities themselves, e.g. for overhead imagery or magnetic-anomaly sensing. While vehicles in contact with the ground can excite soil vibrations directly, aircraft and vehicles alike emit acoustic waves which excite soil vibrations when hitting the ground. These disturbing signals are of periodic nature while the seismic aftershock signals are pulse-shaped, so their separation is possible. The understanding of the coupling of acoustic waves to the ground is yet incomplete, a better understanding is necessary to improve the performance of an OSI, e.g. to address potential consequences for the sensor placement, the helicopter trajectories etc. In a project funded by the Young Scientist Research Award of the CTBTO to one of us (ML), we investigated the acoustic-seismic coupling of airborne signals of jet aircraft and artificially induced ones by a speaker. During a measurement campaign several acoustic and seismic sensors were placed below the take-off trajectory of an airport at 4 km distance. Therefore taking off and landing jet aircraft passed nearly straightly above the setup. Microphones were placed close to the ground to record the sound pressure of incident

  19. The relationship between growth and development of above ground organs with roots of winter wheat using 32P tracer

    International Nuclear Information System (INIS)

    Wang Zhifen; Chen Xueliu; Yu Meiyan

    1997-01-01

    The relationship of growth and development between above ground organs and roots of winter wheat, Lumai-14, was studied using 32 P tracer. The results showed that before the spike formation, dry matter accumulation in roots, stems and leaves were synchronous, and after that they were asynchronous. The dry matter accumulation in stems and leaves were significantly related to that of roots throughout the whole growing period of winter wheat. After the spike formation, the dry matter accumulation in spikes was not related to that of roots. The 32 P distribution in stems and leaves were related to that of roots significantly, however, the relationship between spikes and roots was not obviously related, which was consistent with the dry matter accumulations in various organs. The metabolic activities of stems, leaves and spike were significantly related to that of roots respectively

  20. Reload Startup Physics Tests for Tianwan Nuclear Power station

    International Nuclear Information System (INIS)

    Yang Xiaoqiang; Li Wenshuang; Li Youyi; Yao Jinguo; Li Zaipeng Jiangsu

    2010-01-01

    This paper briefly describes the test purposes, test items, test schedules and test equipment's for reload startup physics test's on Unit 1 and 2 of Tianwan Nuclear Power station. Then, an overview of the previous thrice tests and evaluations on the tests results are presented. In the end, the paper shows the development and work direction of optimization project for reload startup physics tests on Unit 1 and 2 of Tianwan Nuclear Power station. (Authors)

  1. Accuracy analysis of the CTBTO nuclear test detection scale and Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Young Kwang [Seoul National Univ., Seoul (Korea, Republic of)

    2014-10-15

    CTBTO (Comprehensive nuclear Test Ban Treaty Organization) is charge of nuclear test monitoring for nuclear non-proliferation. CTBTO has 170 seismic stations in operation in 76 countries in order to detect the artificial earthquake that was caused by an underground nuclear test. Korea use formula that is based on the equations that are used by the IMS (International Monitoring System) of CTBTO for analysis of explosive scale, and reflect the nature of the terrain, such as rock. But the expression for calculating the exact scale explosive is still un-established state. And generally CTBTO doesn't care about artificial explosive that is being received low-yield in accordance with the criteria of nuclear detection. But, at the time that North Korea conduct a nuclear test, it should not be overlooked that the scale of the earthquake detection criteria below. Because DPRK is trying to conceal their nuclear development capability, there are possibility of low-yield nuclear test or possibility of install a buffer to hide actual explosive scale. These radionuclide observations were consistent with a DPRK low-yield nuclear test on May 2010, even though no seismic signals from such a test have been detected. But there were a few times of low-yield (magnitude 1.39-1.93) occurred around DPRK nuclear test site at that time.

  2. Peculiarities and opportunities of restoration of vegetation of experimental ground 'Experimental field' of Semipalatinsk Test Site

    International Nuclear Information System (INIS)

    Plisak, R.P.; Plisak, S. V.

    2003-01-01

    Full text: Geo-botanical researches at experimental ground 'Experimental field' of Semipalatinsk Test Site were conducted out in 1994-2000. 26 ground and 87 air nuclear tests were conducted out at the territory in 1949-1962. It is found that for deluvial-proluvial plain: High level of radiation pollution of soils in the epicentre of nuclear explosions is limiting factor for vegetation rehabilitation. Under level of PED of γ-irradiation 14,000-16,000 μR/h vegetation restoration has not begun until now. Only single individuals of Artemisia frigida appear under PED of γ-irradiation 10,000-13,000 μR/h. Rarefied plant aggregations constituted by annual-biennial weed species appear under PED of γ-irradiation 3,600-8,000 μR/h. Natural rehabilitation of vegetation occurs more intensively under PED of γ-irradiation of 60-200 μR/h. Vegetation aggregations close to initial zonal coenosis develop in these conditions. It is found that for tumulose: Vegetation restoration on the tops of hills starts with invasion of weed species. Plant aggregations with predominance of Caragana pumila, tyhedra distachya develop on accumulations of fine earth in cracks of mountain rocks. Lichens and mosses assimilate outcrops of mountain rocks. 2. Plant aggregations with predominance of Spiraea hypericifoia, Caragana pumila, Artemisia frigida develop on the upper parts of slopes of hills. Craters of nuclear explosions have not been assimilated by higher plants yet. Rarefied plant aggregations constituted by Psathyrostachys juncea, Artemisia frigida appear in the lower parts of slopes of hills. Single individuals of Medicago falcata, Galium ruthenicum, Melilotus dentatus are found on sides of explosion craters. Vegetation rehabilitates slowly trenches on gentle slopes of hills. Following measures are necessary for intensification of the process of restoration of vegetation destroyed and damaged by nuclear explosions: To clean slopes of hills from numerous fragment of metallic and plastic

  3. Simulation of Local Seismic Ground Motions from the FLASK Underground Nuclear Explosion near the Source Physics Experiment Dry Alluvium Geology Site

    Science.gov (United States)

    Rodgers, A. J.; Pitarka, A.; Wagoner, J. L.; Helmberger, D. V.

    2017-12-01

    The FLASK underground nuclear explosion (UNE) was conducted in Area 2 of Yucca Flat at the Nevada Test Site on May 26, 1970. The yield was 105 kilotons (DOE/NV-209-Rev 16) and the working point was 529 m below the surface. This test was detonated in faulted Tertiary volcanic rocks of Yucca Flat. Coincidently, the FLASK UNE ground zero (GZ) is close (earth structure, including surface topography. SW4 includes vertical mesh refinement which greatly reduces the computational resources needed to run a specific problem. Simulations are performed on high-performance computers with grid spacing as small as 10 meters and resolution to 6 Hz. We are testing various subsurface models to identify the role of 3D structure on path propagation effects from the source. We are also testing 3D models to constrain structure for the upcoming DAG experiments in 2018.

  4. Structure and distribution of glandular and non-glandular trichomes on above-ground organs in Inula helenium L. (Asteraceae

    Directory of Open Access Journals (Sweden)

    Aneta Sulborska

    2014-01-01

    Full Text Available Micromorphology and distribution of glandular and non-glandular trichomes on the above-ground organs of Inula helenium L. were investigated using light and scanning electron microscopy (SEM. Two types of biseriate glandular trichomes, i.e. sessile and stalk hairs, and non-glandular trichomes were recorded. Sessile glandular trichomes were found on all examined I. helenium organs (with their highest density on the abaxial surface of leaves and disk florets, and on stems, whereas stalk glandular trichomes were found on leaves and stems. Sessile trichomes were characterised by a slightly lower height (58–103 μm and width (32–35 μm than the stalk trichomes (62–111 μm x 31–36 μm. Glandular hairs were composed of 5–7 (sessile trichomes or 6–9 (stalk trichomes cell tiers. Apical trichome cell tiers exhibited features of secretory cells. Secretion was accumulated in subcuticular space, which expanded and ruptured at the top, and released its content. Histochemical assays showed the presence of lipids and polyphenols, whereas no starch was detected. Non-glandular trichomes were seen on involucral bracts, leaves and stems (more frequently on involucral bracts. Their structure comprised 2–9 cells; basal cells (1–6 were smaller and linearly arranged, while apical cells had a prozenchymatous shape. The apical cell was the longest and sharply pointed. Applied histochemical tests revealed orange-red (presence of lipids and brow colour (presence of polyphenols in the apical cells of the trichomes. This may suggest that beside their protective role, the trichomes may participate in secretion of secondary metabolites.

  5. Nuclear structure far above the yrast line

    International Nuclear Information System (INIS)

    Gaardhoeje, J.J.

    1985-01-01

    The phase space available for gamma ray spectroscopic studies has recently been extended significantly with the observation of gamma radiation produced in the decay of highly collective (isovector) giant dipole resonances (GDR), built on excited states of high spin, in nuclei produced in heavy ion induced fusion reactions. These gamma rays are predominantly emitted in competition with particles in the first few steps of the decay of compound systems and constitute an entirely new tool to study nuclei at excitation energies far above the yrast line. Some problems of current central interest are addressed. (Auth.)

  6. The struggle of the veterans of the French nuclear tests

    International Nuclear Information System (INIS)

    2005-01-01

    The question debated in this article concerns the demand of compensation and recognition of the impact on their health of nuclear tests. The military personnel that worked during nuclear tests in French Polynesia and the Sahara sites, but also the inhabitants of the atolls of Moruroa and Fangataufa equally in French Polynesia. An observatory of the veterans health has been created in order to improve the medical management of military personnel and former military personnel. An association 'Moruroa e tatou' contains the Polynesian former workers of the Nuclear tests of the Pacific and the association A.V.E.N. contains the veterans of nuclear tests. numerous examples are detailed. The question is tackled too for the consequences on health of the British nuclear tests, in Australia, Christmas Islands, and New Zealand. (N.C.)

  7. An assessment of radiation doses at an educational institution 57.8 km away from the Fukushima Daiichi nuclear power plant 1 month after the nuclear accident.

    Science.gov (United States)

    Tsuji, Masayoshi; Kanda, Hideyuki; Kakamu, Takeyasu; Kobayashi, Daisuke; Miyake, Masao; Hayakawa, Takehito; Mori, Yayoi; Okochi, Toshiyasu; Hazama, Akihiro; Fukushima, Tetsuhito

    2012-03-01

    On 11 March 2011, the Great East Japan Earthquake occurred. Due to this earthquake and subsequent tsunami, malfunctions occurred at the Fukushima Daiichi nuclear power plant. Radioactive material even reached the investigated educational institution despite being 57.8 km away from the power station. With the goal of ensuring the safety of our students, we decided to carry out a risk assessment of the premises of this educational institution by measuring radiation doses at certain locations, making it possible to calculate estimated radiation accumulation. Systematic sampling was carried out at measurement points spaced at regular intervals for a total of 24 indoor and outdoor areas, with 137 measurements at heights of 1 cm and 100 cm above the ground surface. Radiation survey meters were used to measure environmental radiation doses. Radiation dose rates and count rates were higher outdoors than indoors, and higher 1 cm above the ground surface than at 100 cm. Radiation doses 1 cm above the ground surface were higher on grass and moss than on asphalt and soil. The estimated radiation exposure for a student spending an average of 11 h on site at this educational institution was 9.80 μSv. Environmental radiation doses at our educational institution 57.8 km away from the Fukushima Daiichi nuclear power plant 1 month after the accident were lower than the national regulation dose for schools (3.8 μSv/h) at most points. Differences in radiation doses depending on outdoor surface properties are important to note for risk reduction.

  8. Fundamental principles for a nuclear design and structural analysis code for HTR components operating at temperatures above 8000C

    International Nuclear Information System (INIS)

    Nickel, H.; Schubert, F.

    1985-01-01

    With reference to the special characteristics of an HTR plant for the supply of nuclear process heat, the investigation of the fundamental principles to form the basis for a high temperature nuclear structural design code has been described. As examples, preliminary design values are proposed for the creep rupture and fatigue behaviour. The linear damage accumulation rule is for practical reasons proposed for the determination of service life, and the difficulties in using this rule are discussed. Finally, using the data obtained in structural analysis, the main areas of investigation which will lead to improvements in the utilization of the materials are discussed. Based on the current information, the working group ''Design Code'' believes that a service life of 70000 h for the heat-exchanging components operating at above 800 0 C can be. (orig.)

  9. RadNet Radiological Air Monitoring Network

    International Nuclear Information System (INIS)

    Scott Telofski, J.; Askren, D.R.; Petko, Ch.M.; Fraass, R.G.

    2010-01-01

    The United States Environmental Protection Agency operates a national environmental radiation monitoring program called RadNet. RadNet monitors airborne particulates, precipitation, milk, and drinking water for radiation levels. The primary purpose of the original program in the 1950's and 1960's was to collect and analyze samples in various media to assess the effects of radioactive fallout from above-ground nuclear weapon testing. As above-ground testing diminished in the 1970's, the program, especially the air network, became critical in evaluating effects of other types of nuclear incidents, such as the nuclear reactor accident at Chernobyl, as well as monitoring trends in environmental radioactive contamination. The value of rapid data collection subsequent to such incidents led to the consideration of developing air monitors with radiation detectors and telecommunication equipment for real-time radiation measurement. The strengthened United States homeland security posture after 2001 led to production and installation of the current real-time RadNet air monitors. There are now 118 stationary, continuously operating air monitoring stations and 40 mobile air monitors for site specific monitoring. The stationary air monitors include radiation detectors, meteorological sensors, a high-volume air sampler, and communication devices for hourly data transfers. When unusual levels are detected, scientists download a full sodium iodide detector spectrum for analysis. The real-time data collected by RadNet stationary systems permit rapid identification and quantification of airborne nuclides with sufficient sensitivity to provide critical information to help determine protective actions. The data also may help to rapidly refine long-range radioactive plume models and estimate exposure to the population. This paper provides an overview of the airborne particulate monitoring conducted during above-ground nuclear weapon testing, summarizes the uses of data from the program

  10. An SINS/GNSS Ground Vehicle Gravimetry Test Based on SGA-WZ02

    Directory of Open Access Journals (Sweden)

    Ruihang Yu

    2015-09-01

    Full Text Available In March 2015, a ground vehicle gravimetry test was implemented in eastern Changsha to assess the repeatability and accuracy of ground vehicle SINS/GNSS gravimeter—SGA-WZ02. The gravity system developed by NUDT consisted of a Strapdown Inertial Navigation System (SINS, a Global Navigation Satellite System (GNSS remote station on test vehicle, a GNSS static master station on the ground, and a data logging subsystem. A south-north profile of 35 km along the highway in eastern Changsha was chosen and four repeated available measure lines were obtained. The average speed of a vehicle is 40 km/h. To assess the external ground gravity disturbances, precise ground gravity data was built by CG-5 precise gravimeter as the reference. Under relative smooth conditions, internal accuracy among repeated lines shows an average agreement at the level of 1.86 mGal for half wavelengths about 1.1 km, and 1.22 mGal for 1.7 km. The root-mean-square (RMS of difference between calculated gravity data and reference data is about 2.27 mGal/1.1 km, and 1.74 mGal/1.7 km. Not all of the noises caused by vehicle itself and experiments environments were eliminated in the primary results. By means of selecting reasonable filters and improving the GNSS observation conditions, further developments in ground vehicle gravimetry are promising.

  11. Gamma/neutron competition above the neutron separation energy in delayed neutron emitters

    Directory of Open Access Journals (Sweden)

    Valencia E.

    2014-03-01

    Full Text Available To study the β-decay properties of some well known delayed neutron emitters an experiment was performed in 2009 at the IGISOL facility (University of Jyväskylä in Finland using Total Absorption γ-ray Spectroscopy (TAGS technique. The aim of these measurements is to obtain the full β-strength distribution below the neutron separation energy (Sn and the γ/neutron competition above. This information is a key parameter in nuclear technology applications as well as in nuclear astrophysics and nuclear structure. Preliminary results of the analysis show a significant γ-branching ratio above Sn.

  12. Bridge Testing With Ground-Based Interferometric Radar: Experimental Results

    International Nuclear Information System (INIS)

    Chiara, P.; Morelli, A.

    2010-01-01

    The research of innovative non-contact techniques aimed at the vibration measurement of civil engineering structures (also for damage detection and structural health monitoring) is continuously directed to the optimization of measures and methods. Ground-Based Radar Interferometry (GBRI) represents the more recent technique available for static and dynamic control of structures and ground movements.Dynamic testing of bridges and buildings in operational conditions are currently performed: (a) to assess the conformity of the structure to the project design at the end of construction; (b) to identify the modal parameters (i.e. natural frequencies, mode shapes and damping ratios) and to check the variation of any modal parameters over the years; (c) to evaluate the amplitude of the structural response to special load conditions (i.e. strong winds, earthquakes, heavy railway or roadway loads). If such tests are carried out by using a non-contact technique (like GBRI), the classical issues of contact sensors (like accelerometers) are easily overtaken.This paper presents and discusses the results of various tests carried out on full-scale bridges by using a Stepped Frequency-Continuous Wave radar system.

  13. Bridge Testing With Ground-Based Interferometric Radar: Experimental Results

    Science.gov (United States)

    Chiara, P.; Morelli, A.

    2010-05-01

    The research of innovative non-contact techniques aimed at the vibration measurement of civil engineering structures (also for damage detection and structural health monitoring) is continuously directed to the optimization of measures and methods. Ground-Based Radar Interferometry (GBRI) represents the more recent technique available for static and dynamic control of structures and ground movements. Dynamic testing of bridges and buildings in operational conditions are currently performed: (a) to assess the conformity of the structure to the project design at the end of construction; (b) to identify the modal parameters (i.e. natural frequencies, mode shapes and damping ratios) and to check the variation of any modal parameters over the years; (c) to evaluate the amplitude of the structural response to special load conditions (i.e. strong winds, earthquakes, heavy railway or roadway loads). If such tests are carried out by using a non-contact technique (like GBRI), the classical issues of contact sensors (like accelerometers) are easily overtaken. This paper presents and discusses the results of various tests carried out on full-scale bridges by using a Stepped Frequency-Continuous Wave radar system.

  14. General activities of JAERI nuclear data center and Japanese nuclear data committee

    International Nuclear Information System (INIS)

    Fukahori, Tokio

    1999-01-01

    The nuclear data center of Japan Atomic Energy Research Institute (JAERI/NDC) is playing the role of Japanese domestic nuclear data center and gateway to foreign data centers. As the domestic nuclear data center, activities of JAERI/NDC are 1) compiling the Japanese Evaluated Nuclear Data Library (JENDL) for both general and special purposes, 2) importing and exporting nuclear data, 3) nuclear data services for the domestic users, and 4) organizing japanese Nuclear Data Committee (JNDC) as a secretariat. Compiled JENDL General Purpose Files up to now are JENDL-1, 2, 3, 3.1 and 3.2. The data for 340 nuclei in the energy range from 10 -5 eV to 20 MeV are available in JENDL-3.2. JENDL Special Purpose Files were also prepared in order to meet the requests from the specified application fields. JNDC has about 140 members. JNDC consists of Main Committee, Steering Committee, Subcommittee on Nuclear Data, Subcommittee on Reactor Constants, Subcommittee on Nuclear Fuel Cycle and Standing Groups. Above subcommittees are performing essential evaluation for the files described above, checking the JENDL files through the benchmark and integral testing as well as considering the standard group constant, and considering about evaluation of decay heat and nuclide generation/depletion and fission product yields. (author)

  15. Ground test program for a full-size solar dynamic heat receiver

    Science.gov (United States)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.

    1991-01-01

    Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.

  16. Variations in radon-222 in soil and ground water at the Nevada Test Site

    International Nuclear Information System (INIS)

    Wollenberg, H.; Straume, T.; Smith, A.; King, C.Y.

    1977-01-01

    To help evaluate the applicability of variations of radon-222 in ground water and soil gas as a possible earthquake predictor, measurements were conducted in conjunction with underground explosions at the Nevada Test Site (NTS). Radon fluctuations in ground water have been observed during a sequence of aftershocks following the Oroville, California earthquake of 1 August 1975. The NTS measurements were designed to show if these fluctuations were in response to ground shaking; if not, they could be attributed to changes in earth strain prior to the aftershocks. Well waters were periodically sampled and soil-gas 222 Rn monitored prior to and following seven underground explosions of varying strength and distance from sampling and detector locations. Soil-gas 222 Rn contents were measured by the alpha-track method; well water 222 Rn by gamma-ray spectrometry. There was no clearly identifiable correlation between well-water radon fluctuations and individual underground tests. One prominent variation in soil-gas radon corresponded to ground shaking from a pair of underground tests in alluvium; otherwise, there was no apparent correlation between radon emanation and other explosions. Markedly lower soil-gas radon contents following the tests were probably caused by consolidation of alluvium in response to ground shaking

  17. The Comprehensive Nuclear Test-ban Treaty : an overview

    International Nuclear Information System (INIS)

    1997-01-01

    The Comprehensive Nuclear Test-Ban Treaty ushers in the post-nuclear testing era. The Treaty is the result of many years of intensive international negotiation, and is an impressive document of some 48 pages plus 15 pages of annexes which, by April 1997, 143 nations including New Zealand had signed. New Zealand has consistently maintained a strong opposition to the testing of nuclear weapons and has had a long involvement in negotiations towards this Treaty. This is the first of a series of articles on the Treaty, its enforcement, and its implications for New Zealand, and provides an overview of the treaty by means of a quick tour through its main provisions. (author)

  18. Tritium as an indicator of venues for nuclear tests.

    Science.gov (United States)

    Lyakhova, O N; Lukashenko, S N; Mulgin, S I; Zhdanov, S V

    2013-10-01

    Currently, due to the Treaty on the Non-proliferation of Nuclear Weapons there is a highly topical issue of an accurate verification of nuclear explosion venues. This paper proposes to consider new method for verification by using tritium as an indicator. Detailed studies of the tritium content in the air were carried in the locations of underground nuclear tests - "Balapan" and "Degelen" testing sites located in Semipalatinsk Test Site. The paper presents data on the levels and distribution of tritium in the air where tunnels and boreholes are located - explosion epicentres, wellheads and tunnel portals, as well as in estuarine areas of the venues for the underground nuclear explosions (UNE). Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Radiological criteria for underground nuclear tests

    International Nuclear Information System (INIS)

    Malik, J.S.; Brownlee, R.R.; Costa, C.F.; Mueller, H.F.; Newman, R.W.

    1981-04-01

    The radiological criteria for the conduct of nuclear tests have undergone many revisions with the current criteria being 0.17 rad for uncontrolled populations and 0.5 rad for controllable populations. Their effect upon operations at the Nevada Test Site and the current off-site protective plans are reviewed for areas surrounding the Site. The few accidental releases that have occurred are used to establish estimates of probability of release and of hazard to the population. These are then put into context by comparing statistical data on other accidents and cataclysms. The guidelines established by DOE Manual Chapter MC-0524 have never been exceeded during the entire underground nuclear test program. The probability of real hazard to off-site populations appears to be sufficiently low as not to cause undue concern to the citizenry

  20. Radiological criteria for underground nuclear tests

    Energy Technology Data Exchange (ETDEWEB)

    Malik, J.S.; Brownlee, R.R.; Costa, C.F.; Mueller, H.F.; Newman, R.W.

    1981-04-01

    The radiological criteria for the conduct of nuclear tests have undergone many revisions with the current criteria being 0.17 rad for uncontrolled populations and 0.5 rad for controllable populations. Their effect upon operations at the Nevada Test Site and the current off-site protective plans are reviewed for areas surrounding the Site. The few accidental releases that have occurred are used to establish estimates of probability of release and of hazard to the population. These are then put into context by comparing statistical data on other accidents and cataclysms. The guidelines established by DOE Manual Chapter MC-0524 have never been exceeded during the entire underground nuclear test program. The probability of real hazard to off-site populations appears to be sufficiently low as not to cause undue concern to the citizenry.

  1. Ground beetles (Coleoptera, Carabidae of the Hanford Nuclear Site in south-central Washington State

    Directory of Open Access Journals (Sweden)

    Chris Looney

    2014-04-01

    Full Text Available In this paper we report on ground beetles (Coleoptera: Carabidae collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site, which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte, and Stenolophus lineola (Fabricius. Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity.

  2. Modeling Water and Nutrient Transport through the Soil-Root-Canopy Continuum: Explicitly Linking the Below- and Above-Ground Processes

    Science.gov (United States)

    Kumar, P.; Quijano, J. C.; Drewry, D.

    2010-12-01

    Vegetation roots provide a fundamental link between the below ground water and nutrient dynamics and above ground canopy processes such as photosynthesis, evapotranspiration and energy balance. The “hydraulic architecture” of roots, consisting of the structural organization of the root system and the flow properties of the conduits (xylem) as well as interfaces with the soil and the above ground canopy, affect stomatal conductance thereby directly linking them to the transpiration. Roots serve as preferential pathways for the movement of moisture from wet to dry soil layers during the night, both from upper soil layer to deeper layers during the wet season (‘hydraulic descent’) and vice-versa (‘hydraulic lift’) as determined by the moisture gradients. The conductivities of transport through the root system are significantly, often orders of magnitude, larger than that of the surrounding soil resulting in movement of soil-moisture at rates that are substantially larger than that through the soil. This phenomenon is called hydraulic redistribution (HR). The ability of the deep-rooted vegetation to “bank” the water through hydraulic descent during wet periods for utilization during dry periods provides them with a competitive advantage. However, during periods of hydraulic lift these deep-rooted trees may facilitate the growth of understory vegetation where the understory scavenges the hydraulically lifted soil water. In other words, understory vegetation with relatively shallow root systems have access to the banked deep-water reservoir. These inter-dependent root systems have a significant influence on water cycle and ecosystem productivity. HR induced available moisture may support rhizosphere microbial and mycorrhizal fungi activities and enable utilization of heterogeneously distributed water and nutrient resources To capture this complex inter-dependent nutrient and water transport through the soil-root-canopy continuum we present modeling

  3. Ground motion effects

    Energy Technology Data Exchange (ETDEWEB)

    Blume, J A [John A. Blume and Associates, San Francisco, CA (United States)

    1969-07-01

    Ground motion caused by natural earthquakes or by nuclear explosion causes buildings and other structures to respond in such manner as possibly to have high unit stresses and to be subject to damage or-in some cases-collapse. Even minor damage may constitute a hazard to persons within or adjacent to buildings. The risk of damage may well be the governing restraint on the uses of nuclear energy for peaceful purposes. Theory is advanced regarding structural-dynamic response but real buildings and structures are complex, highly variable, and often difficult to model realistically. This paper discusses the state of knowledge, the art of damage prediction and safety precautions, and shows ground motion effects from explosions of underground nuclear devices in the continental United States including events Salmon, Gasbuggy, Boxcar, Faultless and Benham. (author)

  4. Ground motion effects

    International Nuclear Information System (INIS)

    Blume, J.A.

    1969-01-01

    Ground motion caused by natural earthquakes or by nuclear explosion causes buildings and other structures to respond in such manner as possibly to have high unit stresses and to be subject to damage or-in some cases-collapse. Even minor damage may constitute a hazard to persons within or adjacent to buildings. The risk of damage may well be the governing restraint on the uses of nuclear energy for peaceful purposes. Theory is advanced regarding structural-dynamic response but real buildings and structures are complex, highly variable, and often difficult to model realistically. This paper discusses the state of knowledge, the art of damage prediction and safety precautions, and shows ground motion effects from explosions of underground nuclear devices in the continental United States including events Salmon, Gasbuggy, Boxcar, Faultless and Benham. (author)

  5. Aerial radiation monitoring around the Fukushima Dai-ichi Nuclear Power Plant using an unmanned helicopter.

    Science.gov (United States)

    Sanada, Yukihisa; Torii, Tatsuo

    2015-01-01

    The Great East Japan Earthquake on March 11, 2011 generated a series of large tsunami that seriously damaged the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), which resulted in the release of radioactive materials into the environment. To provide further details regarding the distribution of air dose rate and the distribution of radioactive cesium ((134)Cs and (137)Cs) deposition on the ground within a radius of approximately 5 km from the nuclear power plant, we carried out measurements using an unmanned helicopter equipped with a radiation detection system. The distribution of the air dose rate at a height of 1 m above the ground and the radioactive cesium deposition on the ground was calculated. Accordingly, the footprint of radioactive plumes that extended from the FDNPP was illustrated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Sites for locations of nuclear reactors; Sitios para emplazamientos de reactores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, M.; Huerta, M.; Lopez, A., E-mail: miguel.balcazar@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-10-15

    A restriction on sites of nuclear energy is the history of seismic activity, in its magnitude (Richter) and intensity (Mercalli). This article delimits the areas of greatest magnitude and national seismic intensity, with restrictions of ground acceleration; the supplement areas with a low magnitude of seismic activity are shown. Potential sites for the location of these sites are introduced into a geographic information system. The set of geo-referenced data contains the location of the active volcanic manifestations; the historical record of earthquake epicenters, magnitudes and intensities; major geological faults; surface hydrology and water bodies; location of population density; protected areas; contour lines; the rock type or geology. The geographic information system allows entering normative criteria and environmental restrictions that correlate with geo-referenced data described above, forms both probable and exclusion areas for the installation of nuclear sites. (Author)

  7. Modelling above Ground Biomass in Tanzanian Miombo Woodlands Using TanDEM-X WorldDEM and Field Data

    Directory of Open Access Journals (Sweden)

    Stefano Puliti

    2017-09-01

    Full Text Available The use of Interferometric Synthetic Aperture Radar (InSAR data has great potential for monitoring large scale forest above ground biomass (AGB in the tropics due to the increased ability to retrieve 3D information even under cloud cover. To date; results in tropical forests have been inconsistent and further knowledge on the accuracy of models linking AGB and InSAR height data is crucial for the development of large scale forest monitoring programs. This study provides an example of the use of TanDEM-X WorldDEM data to model AGB in Tanzanian woodlands. The primary objective was to assess the accuracy of a model linking AGB with InSAR height from WorldDEM after the subtraction of ground heights. The secondary objective was to assess the possibility of obtaining InSAR height for field plots when the terrain heights were derived from global navigation satellite systems (GNSS; i.e., as an alternative to using airborne laser scanning (ALS. The results revealed that the AGB model using InSAR height had a predictive accuracy of R M S E = 24.1 t·ha−1; or 38.8% of the mean AGB when terrain heights were derived from ALS. The results were similar when using terrain heights from GNSS. The accuracy of the predicted AGB was improved when compared to a previous study using TanDEM-X for a sub-area of the area of interest and was of similar magnitude to what was achieved in the same sub-area using ALS data. Overall; this study sheds new light on the opportunities that arise from the use of InSAR data for large scale AGB modelling in tropical woodlands.

  8. Radioactive contamination of former Semipalatinsk test site area

    International Nuclear Information System (INIS)

    Artem'ev, O.I.; Akhmetov, M.A.; Ptitskaya, L.D.

    2001-01-01

    The nuclear weapon infrastructure elimination activities and related surveys of radioactive contamination are virtually accomplished at the Semipalatinsk test site (STS). The radioecological surveys accompanied closure of tunnels which were used for underground nuclear testing at Degelen technical field and elimination of intercontinental ballistic missile silo launchers at Balapan technical field. At the same time a ground-based route survey was carried out at the Experimental Field where aboveground tests were conducted and a ground-based area survey was performed in the south of the test site where there are permanent and temporary inhabited settlements. People dwelling these settlements are mainly farmers. The paper presents basic results of radiological work conducted in the course of elimination activities. (author)

  9. A comparison of the different regulatory requirements of NPP in vertical ground motion

    International Nuclear Information System (INIS)

    Hou Chunlin; Pan Rong; Yang Yu; Wang Shuguo; Li Xiaojun

    2015-01-01

    Based on the importance of vertical motion in the nuclear power plants (NPPs) and equipment identification of seismic test, we summarize the existing laws and regulations cited by China's NPPs in the vertical seismic ground motion of the regulations. Then, according to the interpretation of various laws and regulations content, we may identified four vertical earthquake response spectrums. Finally, combined with the seismic safety requirements of China NPPs evaluation and the vertical seismic design of M310, EPR, AP1000 and CAP1400 pressurized water reactor, we explain that the vertical seismic ground motion selection should distinguish the effects between near field and far field earthquake, the existing regulations and specifications that China used are still required to further improve on the selection of vertical ground motion. The results of this study can provide reference for seismic design of China's nuclear power plant and nuclear safety review. (authors)

  10. Lightning discrimination by a ground-based nuclear burst detection system

    International Nuclear Information System (INIS)

    Thornbrough, A.D.

    1978-04-01

    Sandia Laboratories is developing for the U.S. Army a Ground-Based Nuclear Burst Detection System to provide pertinent information for its field commanders and higher authorities. The equipment must operate in all kinds of weather and produce very low false alarms under all types of conditions. With these requirements, a study of the effects during thunderstorms, which includes thousands of lightning flashes, was conducted. The results of these studies were that, with suitable discrimination, the system had no false alarms during a period of high thunderstorm activity in the Albuquerque area for the time from September 13 to October 3, 1977. Data and plots are included of those false alarms that were recorded before the final discriminants were implemented to provide an inventory of waveshapes for additional analysis

  11. Lightning discrimination by a ground-based nuclear burst detection system

    Energy Technology Data Exchange (ETDEWEB)

    Thornbrough, A.D.

    1978-04-01

    Sandia Laboratories is developing for the U.S. Army a Ground-Based Nuclear Burst Detection System to provide pertinent information for its field commanders and higher authorities. The equipment must operate in all kinds of weather and produce very low false alarms under all types of conditions. With these requirements, a study of the effects during thunderstorms, which includes thousands of lightning flashes, was conducted. The results of these studies were that, with suitable discrimination, the system had no false alarms during a period of high thunderstorm activity in the Albuquerque area for the time from September 13 to October 3, 1977. Data and plots are included of those false alarms that were recorded before the final discriminants were implemented to provide an inventory of waveshapes for additional analysis.

  12. Forging the link between nuclear reactions and nuclear structure.

    Science.gov (United States)

    Mahzoon, M H; Charity, R J; Dickhoff, W H; Dussan, H; Waldecker, S J

    2014-04-25

    A comprehensive description of all single-particle properties associated with the nucleus Ca40 is generated by employing a nonlocal dispersive optical potential capable of simultaneously reproducing all relevant data above and below the Fermi energy. The introduction of nonlocality in the absorptive potentials yields equivalent elastic differential cross sections as compared to local versions but changes the absorption profile as a function of angular momentum suggesting important consequences for the analysis of nuclear reactions. Below the Fermi energy, nonlocality is essential to allow for an accurate representation of particle number and the nuclear charge density. Spectral properties implied by (e, e'p) and (p, 2p) reactions are correctly incorporated, including the energy distribution of about 10% high-momentum nucleons, as experimentally determined by data from Jefferson Lab. These high-momentum nucleons provide a substantial contribution to the energy of the ground state, indicating a residual attractive contribution from higher-body interactions for Ca40 of about 0.64  MeV/A.

  13. A compilation of nuclear weapons test detonation data for U.S. Pacific ocean tests.

    Science.gov (United States)

    Simon, S L; Robison, W L

    1997-07-01

    Prior to December 1993, the explosive yields of 44 of 66 nuclear tests conducted by the United States in the Marshall Islands were still classified. Following a request from the Government of the Republic of the Marshall Islands to the U.S. Department of Energy to release this information, the Secretary of Energy declassified and released to the public the explosive yields of the Pacific nuclear tests. This paper presents a synopsis of information on nuclear test detonations in the Marshall Islands and other locations in the mid-Pacific including dates, explosive yields, locations, weapon placement, and summary statistics.

  14. An equivalent ground thermal test method for single-phase fluid loop space radiator

    Directory of Open Access Journals (Sweden)

    Xianwen Ning

    2015-02-01

    Full Text Available Thermal vacuum test is widely used for the ground validation of spacecraft thermal control system. However, the conduction and convection can be simulated in normal ground pressure environment completely. By the employment of pumped fluid loops’ thermal control technology on spacecraft, conduction and convection become the main heat transfer behavior between radiator and inside cabin. As long as the heat transfer behavior between radiator and outer space can be equivalently simulated in normal pressure, the thermal vacuum test can be substituted by the normal ground pressure thermal test. In this paper, an equivalent normal pressure thermal test method for the spacecraft single-phase fluid loop radiator is proposed. The heat radiation between radiator and outer space has been equivalently simulated by combination of a group of refrigerators and thermal electrical cooler (TEC array. By adjusting the heat rejection of each device, the relationship between heat flux and surface temperature of the radiator can be maintained. To verify this method, a validating system has been built up and the experiments have been carried out. The results indicate that the proposed equivalent ground thermal test method can simulate the heat rejection performance of radiator correctly and the temperature error between in-orbit theory value and experiment result of the radiator is less than 0.5 °C, except for the equipment startup period. This provides a potential method for the thermal test of space systems especially for extra-large spacecraft which employs single-phase fluid loop radiator as thermal control approach.

  15. Review of a field study of radionuclide migration from an underground nuclear explosion at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hoffman, D.C.; Daniels, W.R.; Wolfsberg, K.; Thompson, J.L.; Rundberg, R.S.; Fraser, S.L.; Daniels, K.S.

    1983-01-01

    Results from a long-term (9 year) field study of the distribution of radionuclides around an underground nuclear explosion cavity at the Nevada Test Site are reviewed. The goals of this Radionuclide Migration project are to examine the rates of migration underground in various media and to determine the potential for movement, both on and off the Nevada Test Site, of radioactivity from such explosions, with particular interest in possible contamination of water supplies. Initial studies were undertaken near the site of the low-yield test Cambric, which was detonated 73 m beneath the water table in tuffaceous alluvium. Solid samples were obtained from just below ground surface to 50 m below the detonation point, and water was sampled from five different regions in the vicinity of the explosion. Ten years after the test, most of the radioactivity was found to be retained in the fused debris in the cavity region and no activity above background was found 50 m below. Only tritium and 90 Sr were presented in water in the cavity at levels greater than recommended concentration guides for water in uncontrolled areas. A satellite well is being used to remove water 91 m from the detonation point. During seven years (7 x 10 6 m 3 ) of pumping, tritium, 85 Kr, 36 Cl, and 129 I have been detected in the water. Approximately 40% of the total tritium from the cavity region has been removed by pumping at the satellite well, and the maximum in the tritium concentration is clearly defined. Use of sensitive analytical techniques has permitted measurement of the very low concentrations of 36 Cl and 129 I present in the water. The 36 Cl peak precedes the tritiated water, possibly as a result of anion exclusion. Additional analyses are in progress to better define the shape of the 129 I concentration curve

  16. On-site tests on the nuclear power plants

    International Nuclear Information System (INIS)

    Morilhat, P.; Favennec, J.M.; Neau, P.; Preudhomme, E.

    1996-01-01

    On-site tests and experiments are performed by EDF Research and Development Division on the nuclear power plants to assess the behaviour of major components submitted to thermal and vibratory solicitations. On-going studies deal with the qualification of new nuclear power plant standard and with the feedback of plants under operation. The tests, particularly the investigation tests, correspond to large investments and entail an important data volume which must ensure the continuity over a long period of the order of magnitude of the in-service plant life (around 40 years). This paper addresses the on-site experimental activities, describes the means to be used, and gives an example: the qualification of SG of new 1450 MW nuclear power plants. (author)

  17. Ground-based self-gravity tests for LISA Pathfinder and LISA

    International Nuclear Information System (INIS)

    Trenkel, C; Warren, C; Wealthy, D

    2009-01-01

    Gravitational coupling between the free-falling test masses and the surrounding spacecraft is one of the dominant noise sources for both LISA Pathfinder and LISA. At present, there are no plans to verify any of the self-gravity requirements by test, on the ground. Here, we explore the possibilities of conducting such tests, using a customised torsion balance. We discuss the main sources of systematic and statistical uncertainty present in such a set-up. Our preliminary assessment indicates that the sensitivity is sufficient to carry out meaningful self-gravity tests.

  18. Movement of radionuclides from river to ground water in vicinity of location for nuclear power plant

    International Nuclear Information System (INIS)

    Knezevic, Lj.; Lazic, S.; Vukovic, Z.

    1984-01-01

    The possibility of ground water contamination caused by radionuclide from river water to which liquid effluents were released from a nuclear power station was estimated using one-dimensional transport model. This model is suitable for a homogeneous medium and takes into account hydraulic convection and dispersion as well as physical-chemical retardation for the various radionuclides. (author)

  19. Nuclear Analyses of Indian LLCB Test Blanket System in ITER

    Science.gov (United States)

    Swami, H. L.; Shaw, A. K.; Danani, C.; Chaudhuri, Paritosh

    2017-04-01

    Heading towards the Nuclear Fusion Reactor Program, India is developing Lead Lithium Ceramic Breeder (LLCB) tritium breeding blanket for its future fusion Reactor. A mock-up of the LLCB blanket is proposed to be tested in ITER equatorial port no.2, to ensure the overall performance of blanket in reactor relevant nuclear fusion environment. Nuclear analyses play an important role in LLCB Test Blanket System design & development. It is required for tritium breeding estimation, thermal-hydraulic design, coolants process design, radioactive waste management, equipment maintenance & replacement strategies and nuclear safety. The nuclear behaviour of LLCB test blanket module in ITER is predicated in terms of nuclear responses such as tritium production, nuclear heating, neutron fluxes and radiation damages. Radiation shielding capability of LLCB TBS inside and outside bio-shield was also assessed to fulfill ITER shielding requirements. In order to supports the rad-waste and safety assessment, nuclear activation analyses were carried out and radioactivity data were generated for LLCB TBS components. Nuclear analyses of LLCB TBS are performed using ITER recommended nuclear analyses codes (i.e. MCNP, EASY), nuclear cross section data libraries (i.e. FENDL 2.1, EAF) and neutronic model (ITER C-lite v.l). The paper describes a comprehensive nuclear performance of LLCB TBS in ITER.

  20. All of the above: When multiple correct response options enhance the testing effect.

    Science.gov (United States)

    Bishara, Anthony J; Lanzo, Lauren A

    2015-01-01

    Previous research has shown that multiple choice tests often improve memory retention. However, the presence of incorrect lures often attenuates this memory benefit. The current research examined the effects of "all of the above" (AOTA) options. When such options are correct, no incorrect lures are present. In the first three experiments, a correct AOTA option on an initial test led to a larger memory benefit than no test and standard multiple choice test conditions. The benefits of a correct AOTA option occurred even without feedback on the initial test; for both 5-minute and 48-hour retention delays; and for both cued recall and multiple choice final test formats. In the final experiment, an AOTA question led to better memory retention than did a control condition that had identical timing and exposure to response options. However, the benefits relative to this control condition were similar regardless of the type of multiple choice test (AOTA or not). Results suggest that retrieval contributes to multiple choice testing effects. However, the extra testing effect from a correct AOTA option, rather than being due to more retrieval, might be due simply to more exposure to correct information.

  1. Non-invasive monitoring of below ground cassava storage root bulking by ground penetrating radar technology

    Science.gov (United States)

    Ruiz Vera, U. M.; Larson, T. H.; Mwakanyamale, K. E.; Grennan, A. K.; Souza, A. P.; Ort, D. R.; Balikian, R. J.

    2017-12-01

    Agriculture needs a new technological revolution to be able to meet the food demands, to overcome weather and natural hazards events, and to monitor better crop productivity. Advanced technologies used in other fields have recently been applied in agriculture. Thus, imagine instrumentation has been applied to phenotype above-ground biomass and predict yield. However, the capability to monitor belowground biomass is still limited. There are some existing technologies available, for example the ground penetrating radar (GPR) which has been used widely in the area of geology and civil engineering to detect different kind of formations under the ground without the disruption of the soil. GPR technology has been used also to monitor tree roots but as yet not crop roots. Some limitation are that the GPR cannot discern roots smaller than 2 cm in diameter, but it make it feasible for application in tuber crops like Cassava since harvest diameter is greater than 4 cm. The objective of this research is to test the availability to use GPR technology to monitor the growth of cassava roots by testing this technique in the greenhouse and in the field. So far, results from the greenhouse suggest that GPR can detect mature roots of cassava and this data could be used to predict biomass.

  2. Nuclear Materials Management for the Nevada Test Site (NTS)

    International Nuclear Information System (INIS)

    Jesse C. Schreiber

    2007-01-01

    The Nevada Test Site (NTS) has transitioned from its historical role of weapons testing to a broader role that is focused on being a solution to multiple National Nuclear Security Administration (NNSA) challenges and opportunities with nuclear materials for the nation. NTS is supporting other NNSA sites challenged with safe nuclear materials storage and disposition. NNSA, with site involvement, is currently transforming the nuclear stockpile and supporting infrastructure to meet the 2030 vision. Efforts are under way to make the production complex smaller, more consolidated, and more modern. With respect to the nuclear material stockpile, the NNSA sites are currently reducing the complex nuclear material inventory through dispositioning and consolidating nuclear material. This includes moving material from other sites to NTS. State-of-the-art nuclear material management and control practices at NTS are essential for NTS to ensure that these new activities are accomplished in a safe, secure, efficient, and environmentally responsible manner. NTS is aggressively addressing this challenge

  3. Preliminary site design for the SP-100 ground engineering test

    International Nuclear Information System (INIS)

    Cox, C.M.; Miller, W.C.; Mahaffey, M.K.

    1986-04-01

    In November, 1985, Hanford was selected by the Department of Energy (DOE) as the preferred site for a full-scale test of the integrated nuclear subsystem for SP-100. The Hanford Engineering Development Laboratory, operated by Westinghouse Hanford Company, was assigned as the lead contractor for the Test Site. The nuclear subsystem, which includes the reactor and its primary heat transport system, will be provided by the System Developer, another contractor to be selected by DOE in late FY-1986. In addition to reactor operations, test site responsibilities include preparation of the facility plus design, procurement and installation of a vacuum chamber to house the reactor, a secondary heat transport system to dispose of the reactor heat, a facility control system, and postirradiation examination. At the conclusion of the test program, waste disposal and facility decommissioning are required. The test site must also prepare appropriate environmental and safety evaluations. This paper summarizes the preliminary design requirements, the status of design, and plans to achieve full power operation of the test reactor in September, 1990

  4. Yesterday's, today's and tomorrow's nuclear tests of India and Pakistan

    International Nuclear Information System (INIS)

    Duval, M.; Le Guelte, G.

    1998-01-01

    This paper presents the historical aspects that led India and Pakistan to develop nuclear weapons and to perform nuclear weapon tests: weapons acquisition: today's military capacity, help from foreign countries; motivations: nuclear programs, geo-political aspects; results and potentialities; consequences for the non-proliferation systems and for the cut-off convention and test-ban treaties; and the geo-strategic consequences of todays's military nuclear capacity of India and Pakistan. (J.S.)

  5. Nutrient cycling and Above- and Below-ground Interactions in a Runoff Agroforestry System Applied with Composted Tree Trimmings

    Science.gov (United States)

    Ilani, Talli; Ephrath, Jhonathan; Silberbush, Moshe; Berliner, Pedro

    2014-05-01

    The primary production in arid zones is limited due to shortage of water and nutrients. Conveying flood water and storing it in plots surrounded by embankments allows their cropping. The efficient exploitation of the stored water can be achieved through an agroforestry system, in which two crops are grown simultaneously: annual crops with a shallow root system and trees with a deeper root system. We posit that the long-term productivity of this system can be maintained by intercropping symbiotic N fixing shrubs with annual crops, and applying the pruned and composted shrub leaves to the soil, thus ensuring an adequate nitrogen level (a limiting factor in drylands) in the soil. To test our hypothesis we carried a two year trial in which fast-growing acacia (A. saligna) trees were the woody component and maize (Zea mays L.) the intercrop. Ten treatments were applied over two maize growth seasons to examine the below- and above-ground effects of tree pruning, compost application and interactions. The addition of compost in the first growth season led to an increase of the soil organic matter reservoir, which was the main N source for the maize during the following growth season. In the second growth season the maize yield was significantly higher in the plots to which compost was applied. Pruning the tree's canopies changed the trees spatial and temporal root development, allowing the annual crop to develop between the trees. The roots of pruned trees intercropped with maize penetrated deeper in the soil. The intercropping of maize within pruned trees and implementing compost resulted in a higher water use efficiency of the water stored in the soil when compared to the not composted and monoculture treatments. The results presented suggest that the approach used in this study can be the basis for achieving sustainable agricultural production under arid conditions.

  6. Techniques to eliminate nuclear weapons testing infrastructure at former Semipalatinsk test site

    International Nuclear Information System (INIS)

    Erofeev, I.E.; Kovalev, V.V.

    2003-01-01

    It was at the former Semipalatinsk Test Site where for the first time in the world the nuclear weapons testing infrastructure elimination was put into practice. Fundamentally new procedures for blasting operations have been developed by specialists of the Kazakh State Research and Production Center of Blasting Operations (KSCBO), National Nuclear Center of the Republic of Kazakhstan (NNC) and Degelen Enterprise to enhance reliability and provide safety during elimination of various objects and performance of large-scale experiments. (author)

  7. High-order above-threshold dissociation of molecules

    Science.gov (United States)

    Lu, Peifen; Wang, Junping; Li, Hui; Lin, Kang; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Zhang, Wenbin; Ma, Junyang; Li, Hanxiao; Zeng, Heping; He, Feng; Wu, Jian

    2018-03-01

    Electrons bound to atoms or molecules can simultaneously absorb multiple photons via the above-threshold ionization featured with discrete peaks in the photoelectron spectrum on account of the quantized nature of the light energy. Analogously, the above-threshold dissociation of molecules has been proposed to address the multiple-photon energy deposition in the nuclei of molecules. In this case, nuclear energy spectra consisting of photon-energy spaced peaks exceeding the binding energy of the molecular bond are predicted. Although the observation of such phenomena is difficult, this scenario is nevertheless logical and is based on the fundamental laws. Here, we report conclusive experimental observation of high-order above-threshold dissociation of H2 in strong laser fields where the tunneling-ionized electron transfers the absorbed multiphoton energy, which is above the ionization threshold to the nuclei via the field-driven inelastic rescattering. Our results provide an unambiguous evidence that the electron and nuclei of a molecule as a whole absorb multiple photons, and thus above-threshold ionization and above-threshold dissociation must appear simultaneously, which is the cornerstone of the nowadays strong-field molecular physics.

  8. Study on dynamic behavior of large-scale foundation on soft ground, (6)

    International Nuclear Information System (INIS)

    Sawada, Yoshihiro; Yajima, Hiroshi; Esashi, Yasuyuki; Sakurai, Akio

    1983-01-01

    Generally, the earthquake motion in the basements of buildings and foundations shows smaller amplitude than that on ground surface. As the cause, there are two interpretations, the interaction of ground and structures and the input loss of earthquake motion due to the restriction by foundations. It is important to urgently clarify this problem in case of the aseismatic design of nuclear power stations at the location of Quaternary ground. For the purpose, the observation of earthquakes was performed with simple flat foundations and in the surrounding ground, in which the effect of locking and upper structures was negligible. The obtained data were compared with the theoretical solutions according to the above two interpretations, thus it was attempted to clarify the mechanism of restricting earthquake motion by foundations. The foundations were a foundation of 30 cm diameter and 2 cm thickness made by improving the superweak ground with nearly zero N-value by cement mixing treatment and a large concrete base of 90 x 45 x 21 m constructed in sandy gravellayer. The mecahnism of restricting vibration was due to the reflection effect of input energy at the boundary between rigid bases and the soft ground right under them, and it can be estimated by multiple reflection theory. (Kako, I.)

  9. A dose assessment for a U.S. nuclear test site -- Bikini Atoll

    International Nuclear Information System (INIS)

    Robison, W.L.; Bogen, K.T.; Conrado, C.L.

    1993-07-01

    On March 1, 1954, a nuclear weapon test, code-named BRAVO, conducted at Bikini Atoll in the northern Marshall Islands contaminated the major residence island. Here the authors provide a radiological dose assessment for the main residence island, Bikini, using extensive radionuclide concentration data derived from analysis of food crops, ground water, cistern water, fish and other marine species, animals, air, and soil collected at Bikini Island. The unique composition of coral soil greatly alters the relative contribution of cesium-137 and strontium-90 to the total estimated dose relative to expectations based on North American and European soils. Cesium-137 produces 96% of the estimated dose for returning residents, mostly through uptake from the soil to terrestrial food crops but also from external gamma exposure. The estimated maximum annual effective dose is 4.4 mSv y -1 when imported foods, which are now an established part of the diet, are available. The 30-, 50-, and 70-y integral effective doses are 10 cSv, 14 cSv, and 16 cSv, respectively. An analysis of interindividual variability in 0- to 30-y expected integral dose indicates that 95% of Bikini residents would have expected doses within a factor of 3.4 above and 4.8 below the population-average value. A corresponding uncertainty analysis showed that after about 5 y of residence, the 95% confidence limits on population-average dose would be ±35% of its expected value. The authors have evaluated various countermeasures to reduce 137 Cs in food crops. Treatment with potassium reduces the uptake of 137 Cs into food crops, and therefore the ingestion dose, to less than 10% of pretreatment levels and has essentially no negative environmental consequences

  10. Nuclear explosives testing readiness evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Valk, T.C.

    1993-09-01

    This readiness evaluation considers hole selection and characterization, verification, containment issues, nuclear explosive safety studies, test authorities, event operations planning, canister-rack preparation, site preparation, diagnostic equipment setup, device assembly facilities and processes, device delivery and insertion, emplacement, stemming, control room activities, readiness briefing, arming and firing, test execution, emergency response and reentry, and post event analysis to include device diagnostics, nuclear chemistry, and containment. This survey concludes that the LLNL program and its supporting contractors could execute an event within six months of notification, and a second event within the following six months, given the NET group`s evaluation and the following three restraints: (1) FY94 (and subsequent year) funding is essentially constant with FY93, (2) Preliminary work for the initial event is completed to the historical sic months status, (3) Critical personnel, currently working in dual use technologies, would be recallable as needed.

  11. Rock siting of nuclear power plants from a reactor safety standpoint

    International Nuclear Information System (INIS)

    1975-11-01

    The study has aimed at surveying the advantages and disadvantages of a rock sited nuclear power plant from a reactor safety standpoint. The studies performed are almost entirely concentrated on the BWR alternative. The design of a nuclear power plant in rock judged most appropriate has been studied in greater detail, and a relatively extensive safety analysis has been made. It is found that the presented technical design of the rock sited alternative is sufficiently advanced to form a basis for further projecting treatment. The chosen technical design of the reactor plant demands a cavern with a 45-50 metre span. Caverns without strengthening efforts with such spans are used in mines, but have no previously been used for industrial plants. Studies of the stability of such caverns show that a safety level is attainable corresponding to the safety required for the other parts of the nuclear power plant. The conditions are that the rock is of high quality, that necessary strengthening measures are taken and that careful studies of the rock are made before and during the blasting, and also during operation of the plant. When locating a rock sited nuclear power plant, the same criteria must be considered as for an above ground plant, with additional stronger demands for rock quality. The presented rock sited nuclear power plant has been assessed to cost 20 % more in total construction costs than a corresponding above ground plant. The motivations for rock siting also depend on whether a condensing plant for only electricity production, or a plant for combined power production and district heating, is considered. The latter would under certain circumstances make rock siting look more attractive. (author)

  12. Detected Surface Effects of the September 3, 2017 Declared Nuclear Test

    Science.gov (United States)

    Pabian, F. V.

    2017-12-01

    Satellite-based synthetic aperture radar (SAR) data of North Korea's Punggye-ri Nuclear Test Site, together with new electro-optical commercial satellite imagery and a short official video (apparently recorded during the most recent test), provide additional insights on the widespread surface disturbances[1] around the peak of Mt. Mantap that were caused by North Korea's sixth and by far largest nuclear test (over one hundred kilotons). While a number of visible landslides have already been reported by this author and others, this additional data reveals more information about the widespread nature of the detected movements that indicate a general slumping/compression of the top 200 meters of the mountain consisting of loosely consolidated volcanic ash deposits above a nonconformity with underlying basement diorite/granites. A closer look at the one previously noted zone of localized slippage/subsidence located within the volcanic deposits, revealed that several healthy trees have been knocked down. The new image data empirically confirms previous seismological estimates that the detonation occurred somewhere under Mt. Mantap. The North Korean-sourced short video, which shows a large dust cloud rising up from the mountain along with a probable active rockfall in a pre-existing landslide scar, provides additional new evidence consistent with that conclusion. However, the broad-scale nature of those movements inhibits more precise geolocation of the test within the mountain using imagery. [1] Surface displacements include landslides, spall, cracks, rock falls, small fault displacements, and earth movement including slippage/subsidence within pre-existing surface features such as small depressions as previously reported here: http://www.38north.org/2017/01/fpabiandcoblentz010617/ and http://www.38north.org/2017/09/punggye090517/ and http://www.38north.org/2017/09/punggye091217/

  13. Proceedings of International monitoring conference 'Development of rehabilitation methodology of environment of the Semipalatinsk region polluted by nuclear tests'

    International Nuclear Information System (INIS)

    2002-01-01

    The aim of the monitoring conference is draw an attention of government, national and international agencies, scientific societies, and local administrations to the ecological problems of Semipalatinsk nuclear test site, to combine the efforts of scientists to solve problems of soil disinfection, purification of surface and ground water from radioactive and heavy metals. It is expected that the knowledge, experience and methodology accumulated on the monitoring conference might be successfully transferred to solve analogous environmental problems of Kazakhstan

  14. Proposal for health effects studies related to nuclear weapon testing at Semipalatinsk, Kazakhstan

    International Nuclear Information System (INIS)

    Peterson, L.E.; Weinberg, A.D.

    1997-01-01

    Populations that resided and who now resid in and the Semipalatinsk Test Site have emained there for decades and experienced little in and out migration. Semipalatinsk City was literally a secret city until the dissolution of the USSR. The urban population of the city of Semipalatinsk has steadily grown from several hundred thousand to about 1 million people in the area. Although current urban and rural levels of exposure from environmental radiocontamination are not markedly increased beyond natural background, there are many villagers who resided near the Semipalatinsk Test Site whose cumulative lifetime doses are on the order of 0.8-2 Sv. Over the course of 40 years, more than 470 nuclear weapons were tested at the Semipalatinsk Test Site (STS) in the Semipalatinsk region of Kazakhstan. From 1949 to 1963, 38 detonations occured on the ground and 128 in the air. Radionuclides emanating from there tests resulted in atmospheric and enviromental contamination leading to varios levels of acute and chronic radiation exposure. The medical, scientific and social ramifications of the nuclear testing pose serius challenges to the Kazakhstan Repubic and its scientific and health care systems. The release of radionuclides over a long period of time and their spread in the enveronment posed major problems to the Kazakhstan authorities. Efforts to study the association between fallout radiation and radiation-induced health effects were prevented by official decree until 1980. Initially, efforts to address the medical and scientific challenges of the radioactive contamination which was classified in the FSU. After the dissolution of the FSU, efforts to study populations aroud STS were hampered and further encumbered by the political and social changes that increased sharply in the FSU soon after test suspension

  15. Repository for spent nuclear fuel. Plant description layout D - Forsmark

    International Nuclear Information System (INIS)

    2010-07-01

    This document describes the final repository for spent nuclear fuel, SFK, which is located at Forsmark, in Oesthammar. The bedrock at the site is part of a so-called tectonic lens, in which the rock composition is relatively homogeneous and less deformed than outside the lens. The bedrock consists mainly of granite with high quartz content and good thermal conductivity. The central parts above ground are grouped in an operations area, located at the Soederviken on the south side of the intake duct for cooling water for nuclear power plant. Operating area is divided into an internal, secured portion, where the canisters of fuel are handled and there are links to the underground part, and a outer part, where the buffer, backfill and sealing used in the repository's barriers are produced. The above-ground part of the plant and also include storage of excavated rock, ventilation stations, and supplies of bentonite. The underground portion consists of a central area and a storage area. Caverns of the central area contain features for the underground operation. It communicates with the internal operating range above ground via a spiral ramp and several shafts. The ramp used to transport capsules of spent fuel and other heavy or bulky transport. The shafts are used to transport rock, buffer, backfill and staff, as well as for ventilation. The largest part of the space below ground is the repository where the canisters with the spent fuel are disposed. The capsules are deposited in vertical holes in the tunnels. When the deposit in a tunnel is complete, the tunnel is re-filled. The two main activities underground is rock work and disposal work, which are conducted separately from each other. Rock works covers all steps required to excavate tunnels and drill deposition holes, as well as to make temporary installations in the tunnels. To the landfill works count, besides the deposit of the capsule, the placement of the bentonite buffer in the deposition hole and backfilling

  16. Thermohydraulic tests in nuclear fuel model

    International Nuclear Information System (INIS)

    Ladeira, L.C.D.; Navarro, M.A.

    1984-01-01

    The main experimental works performed in the Thermohydraulics Laboratory of the NUCLEBRAS Nuclear Technology Development Center, in the field of thermofluodynamics are briefly described. These works include the performing of steady-state flow tests in single tube test sections, and the design and construction of a rod bundle test section, which will be also used for those kind of testes. Mention is made of the works to be performed in the near future, related to steady-state and transient flow tests. (Author) [pt

  17. Postdetonation nuclear debris for attribution.

    Science.gov (United States)

    Fahey, A J; Zeissler, C J; Newbury, D E; Davis, J; Lindstrom, R M

    2010-11-23

    On the morning of July 16, 1945, the first atomic bomb was exploded in New Mexico on the White Sands Proving Ground. The device was a plutonium implosion device similar to the device that destroyed Nagasaki, Japan, on August 9 of that same year. Recently, with the enactment of US public law 111-140, the "Nuclear Forensics and Attribution Act," scientists in the government and academia have been able, in earnest, to consider what type of forensic-style information may be obtained after a nuclear detonation. To conduct a robust attribution process for an exploded device placed by a nonstate actor, forensic analysis must yield information about not only the nuclear material in the device but about other materials that went into its construction. We have performed an investigation of glassed ground debris from the first nuclear test showing correlations among multiple analytical techniques. Surprisingly, there is strong evidence, obtainable only through microanalysis, that secondary materials used in the device can be identified and positively associated with the nuclear material.

  18. Polarimetric scattering model for estimation of above ground biomass of multilayer vegetation using ALOS-PALSAR quad-pol data

    Science.gov (United States)

    Sai Bharadwaj, P.; Kumar, Shashi; Kushwaha, S. P. S.; Bijker, Wietske

    Forests are important biomes covering a major part of the vegetation on the Earth, and as such account for seventy percent of the carbon present in living beings. The value of a forest's above ground biomass (AGB) is considered as an important parameter for the estimation of global carbon content. In the present study, the quad-pol ALOS-PALSAR data was used for the estimation of AGB for the Dudhwa National Park, India. For this purpose, polarimetric decomposition components and an Extended Water Cloud Model (EWCM) were used. The PolSAR data orientation angle shifts were compensated for before the polarimetric decomposition. The scattering components obtained from the polarimetric decomposition were used in the Water Cloud Model (WCM). The WCM was extended for higher order interactions like double bounce scattering. The parameters of the EWCM were retrieved using the field measurements and the decomposition components. Finally, the relationship between the estimated AGB and measured AGB was assessed. The coefficient of determination (R2) and root mean square error (RMSE) were 0.4341 and 119 t/ha respectively.

  19. Out-pile Test of Double Cladding Fuel Rod Mockups for a Nuclear Fuel Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jaemin; Park, Sungjae; Kang, Younghwan; Kim, Harkrho; Kim, Bonggoo; Kim, Youngki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-05-15

    An instrumented capsule for a nuclear fuel irradiation test has been developed to measure fuel characteristics, such as a fuel temperature, internal pressure of a fuel rod, a fuel pellet elongation and a neutron flux during an irradiation test at HANARO. In the future, nuclear fuel irradiation tests under a high temperature condition are expected from users. To prepare for this request, we have continued developing the technology for a high temperature nuclear fuel irradiation test at HANARO. The purpose of this paper is to verify the possibility that the temperature of a nuclear fuel can be controlled at a high temperature during an irradiation test. Therefore we designed and fabricated double cladding fuel rod mockups. And we performed out-pile tests using these mockups. The purposes of a out-pile test is to analyze an effect of a gap size, which is between an outer cladding and an inner cladding, on the temperature and the effect of a mixture ratio of helium gas and neon gas on the temperature. This paper presents the design and fabrication of double cladding fuel rod mockups and the results of the out-pile test.

  20. Estimating the Above-Ground Biomass in Miombo Savanna Woodlands (Mozambique, East Africa Using L-Band Synthetic Aperture Radar Data

    Directory of Open Access Journals (Sweden)

    Maria J. Vasconcelos

    2013-03-01

    Full Text Available The quantification of forest above-ground biomass (AGB is important for such broader applications as decision making, forest management, carbon (C stock change assessment and scientific applications, such as C cycle modeling. However, there is a great uncertainty related to the estimation of forest AGB, especially in the tropics. The main goal of this study was to test a combination of field data and Advanced Land Observing Satellite (ALOS Phased Array L-band Synthetic Aperture Radar (PALSAR backscatter intensity data to reduce the uncertainty in the estimation of forest AGB in the Miombo savanna woodlands of Mozambique (East Africa. A machine learning algorithm, based on bagging stochastic gradient boosting (BagSGB, was used to model forest AGB as a function of ALOS PALSAR Fine Beam Dual (FBD backscatter intensity metrics. The application of this method resulted in a coefficient of correlation (R between observed and predicted (10-fold cross-validation forest AGB values of 0.95 and a root mean square error of 5.03 Mg·ha−1. However, as a consequence of using bootstrap samples in combination with a cross validation procedure, some bias may have been introduced, and the reported cross validation statistics could be overoptimistic. Therefore and as a consequence of the BagSGB model, a measure of prediction variability (coefficient of variation on a pixel-by-pixel basis was also produced, with values ranging from 10 to 119% (mean = 25% across the study area. It provides additional and complementary information regarding the spatial distribution of the error resulting from the application of the fitted model to new observations.

  1. The new technologies and infrastructure conversion of nuclear testing in Kazakhstan

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.

    1999-01-01

    It is known, that in August, 1991, in accordance with Decree by the Kazakhstan President, the Semipalatinsk test site (STS) was shut down, and practical works on its conversion were initiated. In 1991 the decision on creation of the Kazakhstan National Nuclear Center (KNNC) on a base of the test site scientific and industrial enterprises and Inst. of Nuclear Physics was taken. In 1993 within frame KNNC three new institutes (Inst. of Atomic Energy, Inst. of Geophysical Research, Inst. of Radiation Safety and Ecology) were created. Owing to this, at the condition of USSR disintegration and liquidation of military division in test site territory, high-qualified personnel was saved, the facilities that represent nuclear danger were left under operation and surveillance, and the full-scale program of STS conversion was developed and put into life. At present guidelines for the major research activities at KNNC on conversion program are as follows: liquidation of consequences of nuclear tests; liquidation of technological structure used before for preparation and implementation of nuclear weapons tests; creation of technology, equipment and locations for receipt and storage of radioactive wastes; working out the concept of nuclear power development in Kazakhstan; investigation of the behaviour of melted reactor core in view of potential heavy accidents at nuclear power plants; development of technique and means for detection of nuclear test in the world, continuous control for nuclear explosions; experimental works on investigation of behaviour of the materials-candidates for role of constructional materials for the thermonuclear reactor ITER; creation of high-technology industries. These and other activities undertaken in this respect allow to attract considerable foreign investments, to create in Kurchatov city hundreds of additional working places.The Government support rendered to KNNC in future will allow to expand substantially this area of activities as well as to

  2. High-altitude electromagnetic pulse environment over the lossy ground

    International Nuclear Information System (INIS)

    Xie Yanzhao; Wang Zanji

    2003-01-01

    The electromagnetic field above ground produced by an incident high-altitude electromagnetic pulse plane wave striking the ground plane was described in this paper in terms of the Fresnel reflection coefficients and the numerical FFT. The pulse reflected from the ground plane always cancel the incident field for the horizontal field component, but the reflected field adds to the incident for the vertical field component. The results of several cases for variations in the observation height, angle of incidence and lossy ground electrical parameters were also presented showing different e-field components above the earth

  3. Integrated Vehicle Ground Vibration Testing of Manned Spacecraft: Historical Precedent

    Science.gov (United States)

    Lemke, Paul R.; Tuma, Margaret L.; Askins, Bruce R.

    2008-01-01

    For the first time in nearly 30 years, NASA is developing a new manned space flight launch system. The Ares I will carry crew and cargo to not only the International Space Station, but onward for the future exploration of the Moon and Mars. The Ares I control system and structural designs use complex computer models for their development. An Integrated Vehicle Ground Vibration Test (IVGVT) will validate the efficacy of these computer models. The IVGVT will reduce the technical risk of unexpected conditions that could place the vehicle or crew in jeopardy. The Ares Project Office's Flight and Integrated Test Office commissioned a study to determine how historical programs, such as Saturn and Space Shuttle, validated the structural dynamics of an integrated flight vehicle. The study methodology was to examine the historical record and seek out members of the engineering community who recall the development of historic manned launch vehicles. These records and interviews provided insight into the best practices and lessons learned from these historic development programs. The information that was gathered allowed the creation of timelines of the historic development programs. The timelines trace the programs from the development of test articles through test preparation, test operations, and test data reduction efforts. These timelines also demonstrate how the historical tests fit within their overall vehicle development programs. Finally, the study was able to quantify approximate staffing levels during historic development programs. Using this study, the Flight and Integrated Test Office was able to evaluate the Ares I Integrated Vehicle Ground Vibration Test schedule and workforce budgets in light of the historical precedents to determine if the test had schedule or cost risks associated with it.

  4. Evaluation of seismic stability of nuclear power plants on weathered soft rocks

    International Nuclear Information System (INIS)

    Ogata, Nobuhide; Nishi, Koichi; Honsho, Shizumitsu

    1991-01-01

    Soft rocks such as weathered rocks or low cemented sedimentary rocks spread all over the country. If it is possible to construct nuclear power plants on such soft rocks, there will be more available sites for nuclear power plants. The investigation on the following research items was carried out. (1) Geological survey and the application of test methods on soft rocks. (2) Methods and application of laboratory and in-situ tests on soft rocks. (3) Response analysis of a reactor building and foundation ground during earthquake. (4) Stability analysis of soft rock ground as the foundation of a nuclear power plant regarding both earthquake and long-term settlement. From the results of the investigation, it became evident that the seismic stability of a nuclear power plant on weathered soft rocks can be assured enough. (author)

  5. Analysis of North Korea's Nuclear Tests under Prospect Theory

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Myung; Ryu, Jae Soo; Lee, Kwang Seok; Lee, Dong Hoon; Jun, Eunju; Kim, Mi Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    North Korea has chosen nuclear weapons as the means to protect its sovereignty. Despite international society's endeavors and sanctions to encourage North Korea to abandon its nuclear ambition, North Korea has repeatedly conducted nuclear testing. In this paper, the reason for North Korea's addiction to a nuclear arsenal is addressed within the framework of cognitive psychology. The prospect theory addresses an epistemological approach usually overlooked in rational choice theories. It provides useful implications why North Korea, being under a crisis situation has thrown out a stable choice but taken on a risky one such as nuclear testing. Under the viewpoint of prospect theory, nuclear tests by North Korea can be understood as follows: The first nuclear test in 2006 is seen as a trial to escape from loss areas such as financial sanctions and regime threats; the second test in 2009 was interpreted as a consequence of the strategy to recover losses by making a direct confrontation against the United States; and the third test in 2013 was understood as an attempt to strengthen internal solidarity after Kim Jong-eun inherited the dynasty, as well as to enhance bargaining power against the United States. Thus, it can be summarized that Pyongyang repeated its nuclear tests to escape from a negative domain and to settle into a positive one. In addition, in the future, North Korea may not be willing to readily give up its nuclear capabilities to ensure the survival of its own regime.

  6. Development of a package program for estimating ground level concentrations of radioactive gases

    International Nuclear Information System (INIS)

    Nilkamhang, W.

    1986-01-01

    A package program for estimating ground level concentration of radioactive gas from elevate release was develop for use on IBM P C microcomputer. The main program, GAMMA PLUME NT10, is based on the well known VALLEY MODEL which is a Fortran computer code intended for mainframe computers. Other two options were added, namely, calculation of radioactive gas ground level concentration in Ci/m 3 and dose equivalent rate in mren/hr. In addition, a menu program and editor program were developed to render the program easier to use since the option could be readily selected and the input data could be easily modified as required through the keyboard. The accuracy and reliability of the program is almost identical to the mainframe. Ground level concentration of radioactive radon gas due to ore program processing in the nuclear chemistry laboratory of the Department of Nuclear Technology was estimated. In processing radioactive ore at a rate of 2 kg/day, about 35 p Ci/s of radioactive gas was released from a 14 m stack. When meteorological data of Don Muang (average for 5 years 1978-1982) were used maximum ground level concentration and the dose equivalent rate were found to be 0.00094 p Ci/m 3 and 5.0 x 10 -10 mrem/hr respectively. The processing time required for the above problem was about 7 minutes for any case of source on IBM P C which was acceptable for a computer of this class

  7. A case study of air quality above an urban roof top vegetable farm

    International Nuclear Information System (INIS)

    Tong, Zheming; Whitlow, Thomas H.; Landers, Andrew; Flanner, Benjamin

    2016-01-01

    The effect of elevation and rooftop configuration on local air quality was investigated at the Brooklyn Grange rooftop farm during a short-term observational campaign. Using multiple particle counters and sonic anemometers deployed along vertical gradients, we found that PM_2_._5 concentration decayed with height above the street. Samples adjacent to the street had the highest average PM_2_._5 concentration and frequent stochastic spikes above background. Rooftop observations 26 m above ground showed 7–33% reductions in average PM_2_._5 concentration compared with the curbside and had far fewer spikes. A relationship between the vertical extinction rate of PM_2_._5 and atmospheric stability was found whereby less unstable atmosphere and greater wind shear led to greater PM_2_._5 extinction due to damped vertical motion of air. - Highlights: • PM_2_._5 concentrations on a rooftop farm were 7–33% lower than at ground level. • Rooftop plantings will remove less pollution due to the less steep concentration gradient. • Vegetables are exposed to less vehicular pollution on roofs than that at ground level. - PM_2_._5 concentrations on a rooftop farm were 7–33% below those at ground level, and the vertical extinction rate of PM_2_._5 varied with the atmospheric stability, and a perimeter wall was the dominant factor governing rooftop boundary layer thickness.

  8. TYBO/BENHAM: Model Analysis of Groundwater Flow and Radionuclide Migration from Underground Nuclear Tests in Southwestern Pahute Mesa, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Wolfsberg; Lee Glascoe; Guoping Lu; Alyssa Olson; Peter Lichtner; Maureen McGraw; Terry Cherry; Guy Roemer

    2002-09-01

    Recent field studies have led to the discovery of trace quantities of plutonium originating from the BENHAM underground nuclear test in two groundwater observation wells on Pahute Mesa at the Nevada Test Site. These observation wells are located 1.3 km from the BENHAM underground nuclear test and approximately 300 m from the TYBO underground nuclear test. In addition to plutonium, several other conservative (e.g. tritium) and reactive (e.g. cesium) radionuclides were found in both observation wells. The highest radionuclide concentrations were found in a well sampling a welded tuff aquifer more than 500m above the BENHAM emplacement depth. These measurements have prompted additional investigations to ascertain the mechanisms, processes, and conditions affecting subsurface radionuclide transport in Pahute Mesa groundwater. This report describes an integrated modeling approach used to simulate groundwater flow, radionuclide source release, and radionuclide transport near the BENHAM and TYBO underground nuclear tests on Pahute Mesa. The components of the model include a flow model at a scale large enough to encompass many wells for calibration, a source-term model capable of predicting radionuclide releases to aquifers following complex processes associated with nonisothermal flow and glass dissolution, and site-scale transport models that consider migration of solutes and colloids in fractured volcanic rock. Although multiple modeling components contribute to the methodology presented in this report, they are coupled and yield results consistent with laboratory and field observations. Additionally, sensitivity analyses are conducted to provide insight into the relative importance of uncertainty ranges in the transport parameters.

  9. Radioactive fallout in the southern hemisphere from nuclear weapons tests

    International Nuclear Information System (INIS)

    Moroney, J.R.

    1979-11-01

    Fallout in the southern hemisphere, and its origins in the national programs of atmospheric nuclear weapons testing in both hemispheres, are reviewed. Of the 390 nuclear tests conducted in the atmosphere to date, 53 were carried out in the southern hemisphere and it is the second phase of these, between 1966 and 1974, that is seen to have been responsible for the main fallout of short-lived fission products in the southern hemisphere. In contrast to this, the programs of atmospheric nuclear testing in the northern hemisphere up to 1962 are shown to have been the main source of long-lived fission products in fallout in the southern hemisphere. The course followed by this contamination through the environment of the southern hemisphere is traced for the national programs of nuclear testing after 1962 taken separately (France, China) and for the earlier national programs taken together (U.S.S.R., U.S.A. and U.K.). The impact on populations in the southern hemisphere of fallout from atmospheric nuclear weapons tests to date is assessed

  10. DPRK's 4"t"h Nuclear Test and its Tritium Production

    International Nuclear Information System (INIS)

    Kim, Min Soo; Lee, Sang Joon; Chang, Sun Young

    2016-01-01

    On January 6, 2016 at 10:30am, the artificial earthquake in the DPRK was detected by multiple international seismic organizations. After 2 hours, the DPRK announced on state TV that 'The first H-bomb test was successfully conducted in the DPRK at 10:00 am on Wednesday, Juche 105(2016), pursuant to the strategic determination of the ruling communist party.' There has been a doubt about the real nature of the DPRK's 4th nuclear test, since 2 months have been passed after its nuclear test. To analyze the nature of the DPRK's nuclear test, it is necessary to check possible options for production of essential materials. The pathways to produce nuclear fusion material (tritium) and to have a relatively high possibility for the DPRK are described in this article. Tritium is key material for H-bomb. And there are two options for the DPRK which are 1) production and 2) illicit trafficking. And this study is focused on production possibility of DPRK. Determination of the nature of DPRK's nuclear test is very hard issue

  11. Radioactive fallout in the southern hemisphere from nuclear weapons tests

    International Nuclear Information System (INIS)

    Moroney, J.R.

    1979-01-01

    Fallout in the southern hemisphere, and its origins in the national programs of atmospheric nuclear weapons testing in both hemispheres, are reviewed. Of the 390 nuclear tests conducted in the atmosphere to date, 53 were carried out in the southern hemisphere and it is the second phase of these, between 1966 and 1974, that is seen to have been responsible for the main fallout of short-lived fission products in the southern hemisphere. In contrast to this, the programs of atmospheric nuclear testing in the northern hemisphere up to 1962 are shown to have been the main source of long-lived fission products in fallout in the southern hemisphere. The course followed by this contamination through the environment of the southern hemisphere is traced for the national programs of nuclear testing after 1962 taken separately (France, China) and for the earlier national programs taken together (U.S.S.R., U.S.A. and U.K.). The impact on populations in the southern hemisphere of fallout from atmospheric nuclear weapons tests to date is assessed. (author)

  12. Guidelines of the Design of Electropyrotechnic Firing Circuit for Unmanned Flight and Ground Test Projects

    Science.gov (United States)

    Gonzalez, Guillermo A.; Lucy, Melvin H.; Massie, Jeffrey J.

    2013-01-01

    The NASA Langley Research Center, Engineering Directorate, Electronic System Branch, is responsible for providing pyrotechnic support capabilities to Langley Research Center unmanned flight and ground test projects. These capabilities include device selection, procurement, testing, problem solving, firing system design, fabrication and testing; ground support equipment design, fabrication and testing; checkout procedures and procedure?s training to pyro technicians. This technical memorandum will serve as a guideline for the design, fabrication and testing of electropyrotechnic firing systems. The guidelines will discuss the entire process beginning with requirements definition and ending with development and execution.

  13. Nuclear test at Semipalatinsk test site and their environmental impacts

    International Nuclear Information System (INIS)

    Logachev, V.A.

    2000-01-01

    This paper present classification of nuclear tests conducted at the Semipalatinsk test site by tier radiation hazards. The Institute of Biophysics of the Russian Ministry of Health established a data base the archival data on radiation situation parameters and compiled an album of radioactive plum footprints. The paper states that external and internal exposure doses received by population lived in the test vicinity can sufficiently reliably assesses using archival data. (author)

  14. Goals, Objectives, and Requirements (GOR) of the Ground-based Nuclear Detonation Detection (GNDD) Team for the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D)

    International Nuclear Information System (INIS)

    Casey, Leslie A.

    2014-01-01

    The goal, objectives, and requirements (GOR) presented in this document define a framework for describing research directed specifically by the Ground-based Nuclear Detonation Detection (GNDD) Team of the National Nuclear Security Administration (NNSA). The intent of this document is to provide a communication tool for the GNDD Team with NNSA management and with its stakeholder community. It describes the GNDD expectation that much of the improvement in the proficiency of nuclear explosion monitoring will come from better understanding of the science behind the generation, propagation, recording, and interpretation of seismic, infrasound, hydroacoustic, and radionuclide signals and development of 'game-changer' advances in science and technology.

  15. Goals, Objectives, and Requirements (GOR) of the Ground-based Nuclear Detonation Detection (GNDD) Team for the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D)

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.

    2014-01-13

    The goal, objectives, and requirements (GOR) presented in this document define a framework for describing research directed specifically by the Ground-based Nuclear Detonation Detection (GNDD) Team of the National Nuclear Security Administration (NNSA). The intent of this document is to provide a communication tool for the GNDD Team with NNSA management and with its stakeholder community. It describes the GNDD expectation that much of the improvement in the proficiency of nuclear explosion monitoring will come from better understanding of the science behind the generation, propagation, recording, and interpretation of seismic, infrasound, hydroacoustic, and radionuclide signals and development of "game-changer" advances in science and technology.

  16. Orion Ground Test Article Water Impact Tests: Photogrammetric Evaluation of Impact Conditions

    Science.gov (United States)

    Vassilakos, Gregory J.; Mark, Stephen D.

    2018-01-01

    The Ground Test Article (GTA) is an early production version of the Orion Crew Module (CM). The structural design of the Orion CM is being developed based on LS-DYNA water landing simulations. As part of the process of confirming the accuracy of LS-DYNA water landing simulations, the GTA water impact test series was conducted at NASA Langley Research Center (LaRC) to gather data for comparison with simulations. The simulation of the GTA water impact tests requires the accurate determination of the impact conditions. To accomplish this, the GTA was outfitted with an array of photogrammetry targets. The photogrammetry system utilizes images from two cameras with a specialized tracking software to determine time histories for the 3-D coordinates of each target. The impact conditions can then be determined from the target location data.

  17. Semipalatinsk nuclear test site: History of building and function

    International Nuclear Information System (INIS)

    Sergazina, G.M.; Balmukhanov, S.B.

    1999-01-01

    A vast materials on history of Semipalatinsk nuclear test site creation and it building and function are presented. Authors with big reliability report one page of Kazakhstan's history. In steppe on naked place thousands of soldiers and officers, construct and military specialists have built the nuclear site on which during 40 years were conducting nuclear tests . Prolonged chronic radiation on population living near by site results to tragedy which is confessed by General Assembly of United Nations. In the book aspects of test site conversion and rehabilitation of injured population are considered. The book consists of introduction, three chapters and conclusion. The book is intended to wide circle of readers. (author)

  18. Environmental assessment report: Nuclear Test Technology Complex

    International Nuclear Information System (INIS)

    Tonnessen, K.; Tewes, H.A.

    1982-08-01

    The US Department of Energy (USDOE) is planning to construct and operate a structure, designated the Nuclear Test Technology Complex (NTTC), on a site located west of and adjacent to the Lawrence Livermore National Laboratory. The NTTC is designed to house 350 nuclear test program personnel, and will accommodate the needs of the entire staff of the continuing Nuclear Test Program (NTP). The project has three phases: land acquisition, facility construction and facility operation. The purpose of this environmental assessment report is to describe the activities associated with the three phases of the NTTC project and to evaluate potential environmental disruptions. The project site is located in a rural area of southeastern Alameda County, California, where the primary land use is agriculture; however, the County has zoned the area for industrial development. The environmental impacts of the project include surface disturbance, high noise levels, possible increases in site erosion, and decreased air quality. These impacts will occur primarily during the construction phase of the NTTC project and can be mitigated in part by measures proposed in this report

  19. Recent status of the studies of nuclear masses and β-decay

    International Nuclear Information System (INIS)

    Yamada, Masami

    1996-01-01

    The recent status of the above studies was explained, especially, nuclear masses were described from the aspect of probability theory and that of β-decay suggested that the first forbidden transition was hindered between the ground states. We have to study various systematics in order to know the mass surface, Way-Yamada-Matumoto type systematics is better to check the experimental nuclear masses. The gross theory is very useful to understand the general aspect of β-decay. The understanding method of mass surface, systematic check of mass and hindrance of the first forbidden transition at rank 1 were explained. (S.Y.)

  20. Recent status of the studies of nuclear masses and {beta}-decay

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Masami [Waseda Univ., Tokyo (Japan). Advanced Research Center for Science and Engineering

    1996-05-01

    The recent status of the above studies was explained, especially, nuclear masses were described from the aspect of probability theory and that of {beta}-decay suggested that the first forbidden transition was hindered between the ground states. We have to study various systematics in order to know the mass surface, Way-Yamada-Matumoto type systematics is better to check the experimental nuclear masses. The gross theory is very useful to understand the general aspect of {beta}-decay. The understanding method of mass surface, systematic check of mass and hindrance of the first forbidden transition at rank 1 were explained. (S.Y.)