WorldWideScience

Sample records for abnormal motor behaviors

  1. Motor Control Abnormalities in Parkinson’s Disease

    Science.gov (United States)

    Mazzoni, Pietro; Shabbott, Britne; Cortés, Juan Camilo

    2012-01-01

    The primary manifestations of Parkinson’s disease are abnormalities of movement, including movement slowness, difficulties with gait and balance, and tremor. We know a considerable amount about the abnormalities of neuronal and muscle activity that correlate with these symptoms. Motor symptoms can also be described in terms of motor control, a level of description that explains how movement variables, such as a limb’s position and speed, are controlled and coordinated. Understanding motor symptoms as motor control abnormalities means to identify how the disease disrupts normal control processes. In the case of Parkinson’s disease, movement slowness, for example, would be explained by a disruption of the control processes that determine normal movement speed. Two long-term benefits of understanding the motor control basis of motor symptoms include the future design of neural prostheses to replace the function of damaged basal ganglia circuits, and the rational design of rehabilitation strategies. This type of understanding, however, remains limited, partly because of limitations in our knowledge of normal motor control. In this article, we review the concept of motor control and describe a few motor symptoms that illustrate the challenges in understanding such symptoms as motor control abnormalities. PMID:22675667

  2. Abnormal Gray Matter Shape, Thickness, and Volume in the Motor Cortico-Subcortical Loop in Idiopathic Rapid Eye Movement Sleep Behavior Disorder: Association with Clinical and Motor Features.

    Science.gov (United States)

    Rahayel, Shady; Postuma, Ronald B; Montplaisir, Jacques; Bedetti, Christophe; Brambati, Simona; Carrier, Julie; Monchi, Oury; Bourgouin, Pierre-Alexandre; Gaubert, Malo; Gagnon, Jean-François

    2018-02-01

    Idiopathic rapid eye movement sleep behavior disorder (iRBD) is a major risk factor for Parkinson's disease and dementia with Lewy bodies. Anatomical gray matter abnormalities in the motor cortico-subcortical loop areas remain under studied in iRBD patients. We acquired T1-weighted images and administrated quantitative motor tasks in 41 patients with polysomnography-confirmed iRBD and 41 healthy subjects. Cortical thickness and voxel-based morphometry (VBM) analyses were performed to investigate local cortical thickness and gray matter volume changes, vertex-based shape analysis to investigate shape of subcortical structures, and structure-based volumetric analyses to investigate volumes of subcortical and brainstem structures. Cortical thickness analysis revealed thinning in iRBD patients in bilateral medial superior frontal, orbitofrontal, anterior cingulate cortices, and the right dorsolateral primary motor cortex. VBM results showed lower gray matter volume in iRBD patients in the frontal lobes, anterior cingulate gyri, and caudate nucleus. Shape analysis revealed extensive surface contraction in the external and internal segments of the left pallidum. Clinical and motor impaired features in iRBD were associated with anomalies of the motor cortico-subcortical loop. In summary, iRBD patients showed numerous gray matter structural abnormalities in the motor cortico-subcortical loop, which are associated with lower motor performance and clinical manifestations of iRBD. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Motor behavioral abnormalities and histopathological findings of Wistar rats inoculated with HTLV-1-infected MT2 cells

    Directory of Open Access Journals (Sweden)

    C.C. Câmara

    2010-07-01

    Full Text Available The objective of the present study was to describe motor behavioral changes in association with histopathological and hematological findings in Wistar rats inoculated intravenously with human T-cell lymphotropic virus type 1 (HTLV-1-infected MT2 cells. Twenty-five 4-month-old male rats were inoculated with HTLV-1-infected MT2 cells and 13 control rats were inoculated with normal human lymphocytes. The behavior of the rats was observed before and 5, 10, 15, and 20 months after inoculation during a 30-min/rat testing time for 5 consecutive days. During each of 4 periods, a subset of rats was randomly chosen to be sacrificed in order to harvest the spinal cord for histopathological analysis and to obtain blood for serological and molecular studies. Behavioral analyses of the HTLV-1-inoculated rats showed a significant decrease of climbing, walking and freezing, and an increase of scratching, sniffing, biting, licking, and resting/sleeping. Two of the 25 HTLV-1-inoculated rats (8% developed spastic paraparesis as a major behavioral change. The histopathological changes were few and mild, but in some cases there was diffuse lymphocyte infiltration. The minor and major behavioral changes occurred after 10-20 months of evolution. The long-term observation of Wistar rats inoculated with HTLV-1-infected MT2 cells showed major (spastic paraparesis and minor motor abnormalities in association with the degree of HTLV-1-induced myelopathy.

  4. GABAergic influences on ORX receptor-dependent abnormal motor behaviors and neurodegenerative events in fish

    International Nuclear Information System (INIS)

    Facciolo, Rosa Maria; Crudo, Michele; Giusi, Giuseppina; Canonaco, Marcello

    2010-01-01

    At date the major neuroreceptors i.e. γ-aminobutyric acid A (GABA A R) and orexin (ORXR) systems are beginning to be linked to homeostasis, neuroendocrine and emotional states. In this study, intraperitoneal treatment of the marine teleost Thalassoma pavo with the highly selective GABA A R agonist (muscimol, MUS; 0,1 μg/g body weight) and/or its antagonist bicuculline (BIC; 1 μg/g body weight) have corroborated a GABA A ergic role on motor behaviors. In particular, MUS induced moderate (p A R was very likely responsible for very strong and strong ORXR mRNA reductions in cerebellum valvula and torus longitudinalis, respectively. Moreover these effects were linked to evident ultra-structural changes such as shrunken cell membranes and loss of cytoplasmic architecture. In contrast, MUS supplied a very low, if any, argyrophilic reaction in hypothalamic and mesencephalic regions plus a scarce level of ultra-structural damages. Interestingly, combined administrations of MUS + BIC were not related to consistent damages, aside mild neuronal alterations in motor-related areas such as optic tectum. Overall it is tempting to suggest, for the first time, a neuroprotective role of GABA A R inhibitory actions against the overexcitatory ORXR-dependent neurodegeneration and consequently abnormal swimming events in fish.

  5. Mechanism of gastrointestinal abnormal motor activity induced by cisplatin in conscious dogs.

    Science.gov (United States)

    Ando, Hiroyuki; Mochiki, Erito; Ohno, Tetsuro; Yanai, Mitsuhiro; Toyomasu, Yoshitaka; Ogata, Kyoichi; Tabe, Yuichi; Aihara, Ryuusuke; Nakabayashi, Toshihiro; Asao, Takayuki; Kuwano, Hiroyuki

    2014-11-14

    To investigate whether 5-hydroxytryptamine (serotonin; 5-HT) is involved in mediating abnormal motor activity in dogs after cisplatin administration. After the dogs had been given a 2-wk recovery period, all of them were administered cisplatin, and the motor activity was recorded using strain gauge force transducers. Blood and intestinal fluid samples were collected to measure 5-HT for 24 h. To determine whether 5-HT in plasma or that in intestinal fluids is more closely related to abnormal motor activity we injected 5-HT into the bloodstream and the intestinal tract of the dogs. Cisplatin given intravenously produced abnormal motor activity that lasted up to 5 h. From 3 to 4 h after cisplatin administration, normal intact dogs exhibited retropropagation of motor activity accompanied by emesis. The concentration of 5-HT in plasma reached the peak at 4 h, and that in intestinal fluids reached the peak at 3 h. In normal intact dogs with resection of the vagus nerve that were administered kytril, cisplatin given intravenously did not produce abnormal motor activity. Intestinal serotonin administration did not produce abnormal motor activity, but intravenous serotonin administration did. After the intravenous administration of cisplatin, abnormal motor activity was produced in the involved vagus nerve and in the involved serotonergic neurons via another pathway. This study was the first to determine the relationship between 5-HT and emesis-induced motor activity.

  6. Cerebellar influence on motor cortex plasticity: behavioral implications for Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Asha eKishore

    2014-05-01

    Full Text Available Normal motor behavior involves the creation of appropriate activity patterns across motor networks, enabling firing synchrony, synaptic integration and normal functioning of these net works. Strong topography-specific connections among the basal ganglia, cerebellum and their projections to overlapping areas in the motor cortices suggest that these networks could influence each other’s plastic responses and functions. The defective striatal signaling in Parkinson’s disease (PD could therefore lead to abnormal oscillatory activity and aberrant plasticity at multiple levels within the interlinked motor networks. Normal striatal dopaminergic signaling and cerebellar sensory processing functions influence the scaling and topographic specificity of M1 plasticity. Both these functions are abnormal in PD and appear to contribute to the abnormal M1 plasticity. Defective motor map plasticity and topographic specificity within M1 could lead to incorrect muscle synergies, which could manifest as abnormal or undesired movements, and as abnormal motor learning in PD. We propose that the loss of M1 plasticity in PD reflects a loss of co-ordination among the basal ganglia, cerebellar and cortical inputs which translates to an abnormal plasticity of motor maps within M1 and eventually to some of the motor signs of PD. The initial benefits of dopamine replacement therapy on M1 plasticity and motor signs are lost during the progressive course of disease. Levodopa-induced dyskinesias in patients with advanced PD is linked to a loss of M1 sensorimotor plasticity and the attenuation of dyskinesias by cerebellar inhibitory stimulation is associated with restoration of M1 plasticity. Complimentary interventions should target reestablishing physiological communication between the striatal and cerebellar circuits, and within striato-cerebellar loop. This may facilitate correct motor synergies and reduce abnormal movements in PD.

  7. Amelioration of behavioral abnormalities in BH(4-deficient mice by dietary supplementation of tyrosine.

    Directory of Open Access Journals (Sweden)

    Sang Su Kwak

    Full Text Available This study reports an amelioration of abnormal motor behaviors in tetrahydrobiopterin (BH4-deficient Spr (-/- mice by the dietary supplementation of tyrosine. Since BH4 is an essential cofactor for the conversion of phenylalanine into tyrosine as well as the synthesis of dopamine neurotransmitter within the central nervous system, the levels of tyrosine and dopamine were severely reduced in brains of BH4-deficient Spr (-/- mice. We found that Spr (-/- mice display variable 'open-field' behaviors, impaired motor functions on the 'rotating rod', and dystonic 'hind-limb clasping'. In this study, we report that these aberrant motor deficits displayed by Spr (-/- mice were ameliorated by the therapeutic tyrosine diet for 10 days. This study also suggests that dopamine deficiency in brains of Spr (-/- mice may not be the biological feature of aberrant motor behaviors associated with BH4 deficiency. Brain levels of dopamine (DA and its metabolites in Spr (-/- mice were not substantially increased by the dietary tyrosine therapy. However, we found that mTORC1 activity severely suppressed in brains of Spr (-/- mice fed a normal diet was restored 10 days after feeding the mice the tyrosine diet. The present study proposes that brain mTORC1 signaling pathway is one of the potential targets in understanding abnormal motor behaviors associated with BH4-deficiency.

  8. Memetics clarification of abnormal behavior

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: Biological medicine is hard to fully and scientifically explain the etiological factor and pathogenesis of abnormal behaviors; while, researches on philosophy and psychology (including memetics) are beneficial to better understand and explain etiological factor and pathogenesis of abnormal behaviors. At present, the theory of philosophy and psychology is to investigate the entity of abnormal behavior based on the views of memetics.METHODS: Abnormal behavior was researched in this study based on three aspects, including instinctive behavior disorder, poorly social-adapted behavior disorder and mental or body disease associated behavior disorder. Most main viewpoints of memetics were derived from "The Meme Machine", which was written by Susan Blackmore. When questions about abnormal behaviors induced by mental and psychological diseases and conduct disorder of teenagers were discussed, some researching achievements which were summarized by authors previously were added in this study, such as aggressive behaviors, pathologically aggressive behaviors, etc.RESULTS: The abnormal behaviors mainly referred to a part of people's substandard behaviors which were not according with the realistic social environment, culture background and the pathologic behaviors resulted from people's various psychological diseases. According to the theory of "meme", it demonstrated that the relevant behavioral obstacles of various psychological diseases, for example, the unusual behavior of schizophrenia, were caused, because the old meme was destroyed thoroughly but the new meme was unable to establish; psychoneurosis and personality disorder were resulted in hard establishment of meme; the behavioral obstacles which were ill-adapted to society, for example, various additional and homosexual behaviors, were because of the selfish replications and imitations of "additional meme" and "homosexual meme"; various instinct behavioral and congenital intelligent obstacles were not significance

  9. Abnormal functional motor lateralization in healthy siblings of patients with schizophrenia.

    Science.gov (United States)

    Altamura, Mario; Fazio, Leonardo; De Salvia, Michela; Petito, Annamaria; Blasi, Giuseppe; Taurisano, Paolo; Romano, Raffaella; Gelao, Barbara; Bellomo, Antonello; Bertolino, Alessandro

    2012-07-30

    Earlier neuroimaging studies of motor function in schizophrenia have demonstrated reduced functional lateralization in the motor network during motor tasks. Here, we used event-related functional magnetic resonance imaging during a visually guided motor task in 18 clinically unaffected siblings of patients with schizophrenia and 24 matched controls to investigate if abnormal functional lateralization is related to genetic risk for this brain disorder. Whereas activity associated with motor task performance was mainly contralateral with only a marginal ipsilateral component in healthy participants, unaffected siblings had strong bilateral activity with significantly greater response in ipsilateral and contralateral premotor areas as well as in contralateral subcortical motor regions relative to controls. Reduced lateralization in siblings was also identified with a measure of laterality quotient. These findings suggest that abnormal functional lateralization of motor circuitry is related to genetic risk of schizophrenia. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Feedforward and feedback motor control abnormalities implicate cerebellar dysfunctions in autism spectrum disorder.

    Science.gov (United States)

    Mosconi, Matthew W; Mohanty, Suman; Greene, Rachel K; Cook, Edwin H; Vaillancourt, David E; Sweeney, John A

    2015-02-04

    Sensorimotor abnormalities are common in autism spectrum disorder (ASD) and among the earliest manifestations of the disorder. They have been studied far less than the social-communication and cognitive deficits that define ASD, but a mechanistic understanding of sensorimotor abnormalities in ASD may provide key insights into the neural underpinnings of the disorder. In this human study, we examined rapid, precision grip force contractions to determine whether feedforward mechanisms supporting initial motor output before sensory feedback can be processed are disrupted in ASD. Sustained force contractions also were examined to determine whether reactive adjustments to ongoing motor behavior based on visual feedback are altered. Sustained force was studied across multiple force levels and visual gains to assess motor and visuomotor mechanisms, respectively. Primary force contractions of individuals with ASD showed greater peak rate of force increases and large transient overshoots. Individuals with ASD also showed increased sustained force variability that scaled with force level and was more severe when visual gain was highly amplified or highly degraded. When sustaining a constant force level, their reactive adjustments were more periodic than controls, and they showed increased reliance on slower feedback mechanisms. Feedforward and feedback mechanism alterations each were associated with more severe social-communication impairments in ASD. These findings implicate anterior cerebellar circuits involved in feedforward motor control and posterior cerebellar circuits involved in transforming visual feedback into precise motor adjustments in ASD. Copyright © 2015 the authors 0270-6474/15/352015-11$15.00/0.

  11. High prevalence of abnormal motor repertoire at 3 months corrected age in extremely preterm infants.

    Science.gov (United States)

    Fjørtoft, Toril; Evensen, Kari Anne I; Øberg, Gunn Kristin; Songstad, Nils Thomas; Labori, Cathrine; Silberg, Inger Elisabeth; Loennecken, Marianne; Møinichen, Unn Inger; Vågen, Randi; Støen, Ragnhild; Adde, Lars

    2016-03-01

    To compare early motor repertoire between extremely preterm and term-born infants. An association between the motor repertoire and gestational age and birth weight was explored in extremely preterm infants without severe ultrasound abnormalities. In a multicentre study, the early motor repertoire of 82 infants born extremely preterm (ELGAN:<28 weeks) and/or with extremely low birth weight (ELBW:<1000 g) and 87 term-born infants were assessed by the "Assessment of Motor Repertoire - 2 to 5 Months" (AMR) which is part of Prechtl's "General Movement Assessment", at 12 weeks post-term age. Fidgety movements were classified as normal if present and abnormal if absent, sporadic or exaggerated. Concurrent motor repertoire was classified as normal if smooth and fluent and abnormal if monotonous, stiff, jerky and/or predominantly fast or slow. Eight-teen ELBW/ELGAN infants had abnormal fidgety movements (8 absent, 7 sporadic and 3 exaggerated fidgety movements) compared with 2 control infants (OR:12.0; 95%CI:2.7-53.4) and 46 ELBW/ELGAN infants had abnormal concurrent motor repertoire compared with 17 control infants (OR:5.3; 95%CI:2.6-10.5). Almost all detailed aspects of the AMR differed between the groups. Results were the same when three infants with severe ultrasound abnormalities were excluded. In the remaining ELBW/ELGAN infants, there was no association between motor repertoire and gestational age or birth weight. ELBW/ELGAN infants had poorer quality of early motor repertoire than term-born infants.The findings were not explained by severe abnormalities on neonatal ultrasound scans and were not correlated to the degree of prematurity. The consequences of these abnormal movement patterns remain to be seen in future follow-up studies. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  12. REM sleep behavior disorder in Parkinson disease: association with abnormal ocular motor findings.

    Science.gov (United States)

    Kim, Young Eun; Yang, Hui June; Yun, Ji Young; Kim, Han-Joon; Lee, Jee-Young; Jeon, Beom S

    2014-04-01

    The anatomical substrates associated with generalized muscle atonia during REM sleep are located on the pontine tegmentum and medial medulla oblongata. We examined whether patients with REM sleep behavior disorder (RBD) have abnormal ocular movements suggesting brainstem or cerebellar dysfunction in Parkinson's disease (PD). Cross-sectional survey for the existence of RBD and abnormal ocular movements. Ocular movements were examined by video-oculography (VOG). A total of 202 patients were included in this study. One hundred and sixteen (57.4%) of the 202 patients have clinically probable RBD, and 28 (24.1%) of the 116 with clinically probable RBD patients had abnormal VOG findings suggesting brainstem or cerebellar dysfunction; whereas 86 of the 202 patients did not have clinically probable RBD, and only 7 (8.1%) of the 86 patients had abnormal VOG findings suggesting brainstem or cerebellar dysfunction (P=0.001). This study suggests that the presence of RBD is associated with more severe or extensive brainstem pathology or different distribution of pathology in PD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Trichloroethylene exposure aggravates behavioral abnormalities in mice that are deficient in superoxide dismutase.

    Science.gov (United States)

    Otsuki, Noriyuki; Homma, Takujiro; Fujiwara, Hiroki; Kaneko, Kenya; Hozumi, Yasukazu; Shichiri, Mototada; Takashima, Mizuki; Ito, Junitsu; Konno, Tasuku; Kurahashi, Toshihiro; Yoshida, Yasukazu; Goto, Kaoru; Fujii, Satoshi; Fujii, Junichi

    2016-08-01

    Trichloroethylene (TCE) has been implicated as a causative agent for Parkinson's disease (PD). The administration of TCE to rodents induces neurotoxicity associated with dopaminergic neuron death, and evidence suggests that oxidative stress as a major player in the progression of PD. Here we report on TCE-induced behavioral abnormality in mice that are deficient in superoxide dismutase 1 (SOD1). Wild-type (WT) and SOD1-deficient (Sod1(-/-)) mice were intraperitoneally administered TCE (500 mg/kg) over a period of 4 weeks. Although the TCE-administrated Sod1(-/-) mice showed marked abnormal motor behavior, no significant differences were observed among the experimental groups by biochemical and histopathological analyses. However, treating mouse neuroblastoma-derived NB2a cells with TCE resulted in the down regulation of the SOD1 protein and elevated oxidative stress under conditions where SOD1 production was suppressed. Taken together, these data indicate that SOD1 plays a pivotal role in protecting motor neuron function against TCE toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Abnormal nuclear envelopes in the striatum and motor deficits in DYT11 myoclonus-dystonia mouse models.

    Science.gov (United States)

    Yokoi, Fumiaki; Dang, Mai T; Zhou, Tong; Li, Yuqing

    2012-02-15

    DYT11 myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonic symptoms and caused by mutations in paternally expressed SGCE, which codes for ε-sarcoglycan. Paternally inherited Sgce heterozygous knock-out (KO) mice exhibit motor deficits and spontaneous myoclonus. Abnormal nuclear envelopes have been reported in cellular and mouse models of early-onset DYT1 generalized torsion dystonia; however, the relationship between the abnormal nuclear envelopes and motor symptoms are not clear. Furthermore, it is not known whether abnormal nuclear envelope exists in non-DYT1 dystonia. In the present study, abnormal nuclear envelopes in the striatal medium spiny neurons (MSNs) were found in Sgce KO mice. To analyze whether the loss of ε-sarcoglycan in the striatum alone causes abnormal nuclear envelopes, motor deficits or myoclonus, we produced paternally inherited striatum-specific Sgce conditional KO (Sgce sKO) mice and analyzed their phenotypes. Sgce sKO mice exhibited motor deficits in both beam-walking and accelerated rotarod tests, while they did not exhibit abnormal nuclear envelopes, alteration in locomotion, or myoclonus. The results suggest that the loss of ε-sarcoglycan in the striatum contributes to motor deficits, while it alone does not produce abnormal nuclear envelopes or myoclonus. Development of therapies targeting the striatum to compensate for the loss of ε-sarcoglycan function may rescue the motor deficits in DYT11 M-D patients.

  15. Abnormal nuclear envelopes in the striatum and motor deficits in DYT11 myoclonus-dystonia mouse models

    Science.gov (United States)

    Yokoi, Fumiaki; Dang, Mai T.; Zhou, Tong; Li, Yuqing

    2012-01-01

    DYT11 myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonic symptoms and caused by mutations in paternally expressed SGCE, which codes for ɛ-sarcoglycan. Paternally inherited Sgce heterozygous knock-out (KO) mice exhibit motor deficits and spontaneous myoclonus. Abnormal nuclear envelopes have been reported in cellular and mouse models of early-onset DYT1 generalized torsion dystonia; however, the relationship between the abnormal nuclear envelopes and motor symptoms are not clear. Furthermore, it is not known whether abnormal nuclear envelope exists in non-DYT1 dystonia. In the present study, abnormal nuclear envelopes in the striatal medium spiny neurons (MSNs) were found in Sgce KO mice. To analyze whether the loss of ɛ-sarcoglycan in the striatum alone causes abnormal nuclear envelopes, motor deficits or myoclonus, we produced paternally inherited striatum-specific Sgce conditional KO (Sgce sKO) mice and analyzed their phenotypes. Sgce sKO mice exhibited motor deficits in both beam-walking and accelerated rotarod tests, while they did not exhibit abnormal nuclear envelopes, alteration in locomotion, or myoclonus. The results suggest that the loss of ɛ-sarcoglycan in the striatum contributes to motor deficits, while it alone does not produce abnormal nuclear envelopes or myoclonus. Development of therapies targeting the striatum to compensate for the loss of ɛ-sarcoglycan function may rescue the motor deficits in DYT11 M-D patients. PMID:22080833

  16. Clinical Significance of REM Sleep Behavior Disorders and Other Non-motor Symptoms of Parkinsonism

    Institute of Scientific and Technical Information of China (English)

    Hong Jin; Jin-Ru Zhang; Yun Shen; Chun-Feng Liu

    2017-01-01

    Rapid eye movement sleep behavior disorder (RBD) is one of the most common non-motor symptoms of parkinsonism,and it may serve as a prodromal marker of neurodegenerative disease.The mechanism underlying RBD is unclear.Several prospective studies have reported that specific non-motor symptoms predict a conversion risk of developing a neurodegenerative disease,including olfactory dysfunction,abnormal color vision,autonomic dysfunction,excessive daytime sleepiness,depression,and cognitive impairment.Parkinson's disease (PD) with RBD exhibits clinical heterogeneity with respect to motor and non-motor symptoms compared with PD without RBD.In this review,we describe the main clinical and pathogenic features of RBD,focusing on its association with other non-motor symptoms of parkinsonism.

  17. Abnormal lateralization of fine motor actions in Tourette syndrome persists into adulthood.

    Directory of Open Access Journals (Sweden)

    D Martino

    Full Text Available Youth with Tourette syndrome (TS exhibit, compared to healthy, abnormal ability to lateralize digital sequential tasks. It is unknown whether this trait is related to inter-hemispheric connections, and whether it is preserved or lost in patients with TS persisting through adult life. We studied 13 adult TS patients and 15 age-matched healthy volunteers. All participants undertook: 1 a finger opposition task, performed with the right hand (RH only or with both hands, using a sensor-engineered glove in synchrony with a metronome at 2 Hz; we calculated a lateralization index [(single RH-bimanual RH/single RH X 100 for percentage of correct movements (%CORR; 2 MRI-based diffusion tensor imaging and probabilistic tractography of inter-hemispheric corpus callosum (CC connections between supplementary motor areas (SMA and primary motor cortices (M1. We confirmed a significant increase in the %CORR in RH in the bimanual vs. single task in TS patients (p<0.001, coupled to an abnormal ability to lateralize finger movements (significantly lower lateralization index for %CORR in TS patients, p = 0.04. The %CORR lateralization index correlated positively with tic severity measured with the Yale Global Tic Severity Scale (R = 0.55;p = 0.04. We detected a significantly higher fractional anisotropy (FA in both the M1-M1 (p = 0.036 and the SMA-SMA (p = 0.018 callosal fibre tracts in TS patients. In healthy subjects, the %CORR lateralization index correlated positively with fractional anisotropy of SMA-SMA fibre tracts (R = 0.63, p = 0.02; this correlation was not significant in TS patients. TS patients exhibited an abnormal ability to lateralize finger movements in sequential tasks, which increased in accuracy when the task was performed bimanually. This abnormality persists throughout different age periods and appears dissociated from the transcallosal connectivity of motor cortical regions. The altered interhemispheric transfer of motor abilities in TS may be

  18. Signs of abnormal motor performance in preschool children

    Directory of Open Access Journals (Sweden)

    Martina Šlachtová

    2013-12-01

    Full Text Available BACKGROUND: The determination of the level of motor development should be a common part of examinations performed by paediatricians, physiotherapists and also teachers. The importance has been increasing because of the prevalence of developmental coordination disorder. OBJECTIVE: The aim of the study was to find the differences in performance of the selected motor tasks of gross motor function in preschoolers on both quantitative and qualitative parameters. METHODS: In the study 261 children were included, boys and girls aged 4–6 years (the average age 5.4 years attending regular kindergartens. We used motor tasks of standing on one leg and hopping. Significant differences in quantitative parameters were assessed by two-way ANOVA in Statistica (version 9 software. Relative frequency of characters in qualitative parameters was assessed by the test of the difference between two proportions. RESULTS: Significant differences between the age groups appeared in the quantitative parameters comparing 4 and 5 year old children and 4 and 6 year old children. Regardless of gender there were no differences between 5 year and 6 year old children. Overall, the girls mastered the tasks of the test better than the boys in the quantitative parameters of evaluation. From the evaluation of the quality of motor performance the most frequently reached performance in the tasks of the test has been described (relative frequency of characters. Significantly different motor performance from most children of the sample was observed particularly in the associated movements of limbs or trunk and face, showing for a reduced ability of selective relaxation at higher demands of the movement task. CONCLUSIONS: The different motor performance in observed parameters, showing for a reduced ability of selective relaxation, could be regarded as signs of abnormal motor performance in that age category.

  19. Motor-related brain abnormalities in HIV-infected patients. A multimodal MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yawen; Wang, Xiaoxiao; Miao, Hui; Wei, Yarui; Ali, Rizwan [University of Science and Technology of China, Centers for Biomedical Engineering, Hefei, Anhui (China); Li, Ruili; Li, Hongjun [Capital Medical University, Department of Radiology, Beijing Youan Hospital, Beijing (China); Qiu, Bensheng [University of Science and Technology of China, Centers for Biomedical Engineering, Hefei, Anhui (China); Anhui Computer Application Institute of Traditional Chinese Medicine, Hefei, Anhui (China)

    2017-11-15

    It is generally believed that HIV infection could cause HIV-associated neurocognitive disorders (HAND) across a broad range of functional domains. Some of the most common findings are deficits in motor control. However, to date no neuroimaging studies have evaluated basic motor control in HIV-infected patients using a multimodal approach. In this study, we utilized high-resolution structural imaging and task-state functional magnetic resonance imaging (fMRI) to assess brain structure and motor function in a homogeneous cohort of HIV-infected patients. We found that HIV-infected patients had significantly reduced gray matter (GM) volume in cortical regions, which are involved in motor control, including the bilateral posterior insula cortex, premotor cortex, and supramarginal gyrus. Increased activation in bilateral posterior insula cortices was also demonstrated by patients during hand movement tasks compared with healthy controls. More importantly, the reduced GM in bilateral posterior insula cortices was spatially coincident with abnormal brain activation in HIV-infected patients. In addition, the results of partial correlation analysis indicated that GM reduction in bilateral posterior insula cortices and premotor cortices was significantly correlated with immune system deterioration. This study is the first to demonstrate spatially coincident GM reduction and abnormal activation during motor performance in HIV-infected patients. Although it remains unknown whether the brain deficits can be recovered, our findings may yield new insights into neurologic injury underlying motor dysfunction in HAND. (orig.)

  20. Motor-related brain abnormalities in HIV-infected patients. A multimodal MRI study

    International Nuclear Information System (INIS)

    Zhou, Yawen; Wang, Xiaoxiao; Miao, Hui; Wei, Yarui; Ali, Rizwan; Li, Ruili; Li, Hongjun; Qiu, Bensheng

    2017-01-01

    It is generally believed that HIV infection could cause HIV-associated neurocognitive disorders (HAND) across a broad range of functional domains. Some of the most common findings are deficits in motor control. However, to date no neuroimaging studies have evaluated basic motor control in HIV-infected patients using a multimodal approach. In this study, we utilized high-resolution structural imaging and task-state functional magnetic resonance imaging (fMRI) to assess brain structure and motor function in a homogeneous cohort of HIV-infected patients. We found that HIV-infected patients had significantly reduced gray matter (GM) volume in cortical regions, which are involved in motor control, including the bilateral posterior insula cortex, premotor cortex, and supramarginal gyrus. Increased activation in bilateral posterior insula cortices was also demonstrated by patients during hand movement tasks compared with healthy controls. More importantly, the reduced GM in bilateral posterior insula cortices was spatially coincident with abnormal brain activation in HIV-infected patients. In addition, the results of partial correlation analysis indicated that GM reduction in bilateral posterior insula cortices and premotor cortices was significantly correlated with immune system deterioration. This study is the first to demonstrate spatially coincident GM reduction and abnormal activation during motor performance in HIV-infected patients. Although it remains unknown whether the brain deficits can be recovered, our findings may yield new insights into neurologic injury underlying motor dysfunction in HAND. (orig.)

  1. Gap junctions and motor behavior

    DEFF Research Database (Denmark)

    Kiehn, Ole; Tresch, Matthew C.

    2002-01-01

    The production of any motor behavior requires coordinated activity in motor neurons and premotor networks. In vertebrates, this coordination is often assumed to take place through chemical synapses. Here we review recent data suggesting that electrical gap-junction coupling plays an important role...... in coordinating and generating motor outputs in embryonic and early postnatal life. Considering the recent demonstration of a prevalent expression of gap-junction proteins and gap-junction structures in the adult mammalian spinal cord, we suggest that neuronal gap-junction coupling might also contribute...... to the production of motor behavior in adult mammals....

  2. Development of an induction motor abnormality monitoring system(IMAMS) using power line signal analysis

    International Nuclear Information System (INIS)

    Jung, Jae Cheon

    1997-02-01

    An induction motor abnormality monitoring system using power line signal analysis is developed in this work. Various studies have focused their attention on the detection of particular harmonic frequencies produced from each defect mode of motors. However, these harmonic frequencies are valuable only when the motor has a continuous slip frequency and operate in constant torque/load condition. The basic concept of the system developed in this work is to detect the characteristic harmonic frequencies occurred when the motor is in abnormal state and to compare it with a predetermined setpoint. Based on these analyses, the place and degree of defect can be easily identified. The experimental results under test bench simulation are also introduced. To find out an alternative way to obtain a threshold level independent of slip/torque, with the rotating field theory, the ratio between harmonic current and total current was calculated with the simplified circuit that is equivalent to two abnormal cases, such as the spatial rotor resistance variation and the symmetrical components changes with field. Also, the threshold level calculation was done with performed the rotating field theory. The results show that they are in good agreement with a experimental results. Further studies are undertaken to extend this work to the on-line monitoring and diagnostic system with a likelihood ratio test method for field application

  3. Sensorimotor integration and psychopathology: motor control abnormalities related to psychiatric disorders.

    Science.gov (United States)

    Velasques, Bruna; Machado, Sergio; Paes, Flávia; Cunha, Marlo; Sanfim, Antonio; Budde, Henning; Cagy, Mauricio; Anghinah, Renato; Basile, Luis F; Piedade, Roberto; Ribeiro, Pedro

    2011-12-01

    Recent evidence is reviewed to examine relationships among sensorimotor and cognitive aspects in some important psychiatry disorders. This study reviews the theoretical models in the context of sensorimotor integration and the abnormalities reported in the most common psychiatric disorders, such as Alzheimer's disease, autism spectrum disorder and squizophrenia. The bibliographical search used Pubmed/Medline, ISI Web of Knowledge, Cochrane data base and Scielo databases. The terms chosen for the search were: Alzheimer's disease, AD, autism spectrum disorder, and Squizophrenia in combination with sensorimotor integration. Fifty articles published in English and were selected conducted from 1989 up to 2010. We found that the sensorimotor integration process plays a relevant role in elementary mechanisms involved in occurrence of abnormalities in most common psychiatric disorders, participating in the acquisition of abilities that have as critical factor the coupling of different sensory data which will constitute the basis of elaboration of consciously goal-directed motor outputs. Whether these disorders are associated with an abnormal peripheral sensory input or defective central processing is still unclear, but some studies support a central mechanism. Sensorimotor integration seems to play a significant role in the disturbances of motor control, like deficits in the feedforward mechanism, typically seen in AD, autistic and squizophrenic patients.

  4. Normal and Abnormal Behavior in Early Childhood

    OpenAIRE

    Spinner, Miriam R.

    1981-01-01

    Evaluation of normal and abnormal behavior in the period to three years of age involves many variables. Parental attitudes, determined by many factors such as previous childrearing experience, the bonding process, parental psychological status and parental temperament, often influence the labeling of behavior as normal or abnormal. This article describes the forms of crying, sleep and wakefulness, and affective responses from infancy to three years of age.

  5. Steady State Dynamic Operating Behavior of Universal Motor

    Directory of Open Access Journals (Sweden)

    Muhammad Khan Burdi

    2015-01-01

    Full Text Available A detailed investigation of the universal motor is developed and used for various dynamic steady state and transient operating conditions of loads. In the investigation, output torque, motor speed, input current, input/output power and efficiency are computed, compared and analyzed for different loads. While this paper discusses the steady-state behavior of the universal motor, another companion paper, ?Transient dynamic behavior of universal motor?, will discuss its transient behavior in detail. A non-linear generalized electric machine model of the motor is considered for the analysis. This study was essential to investigate effect of output load on input current, power, speed and efficiency of the motor during operations. Previously such investigation is not known

  6. Nonparametric Change Point Diagnosis Method of Concrete Dam Crack Behavior Abnormality

    Directory of Open Access Journals (Sweden)

    Zhanchao Li

    2013-01-01

    Full Text Available The study on diagnosis method of concrete crack behavior abnormality has always been a hot spot and difficulty in the safety monitoring field of hydraulic structure. Based on the performance of concrete dam crack behavior abnormality in parametric statistical model and nonparametric statistical model, the internal relation between concrete dam crack behavior abnormality and statistical change point theory is deeply analyzed from the model structure instability of parametric statistical model and change of sequence distribution law of nonparametric statistical model. On this basis, through the reduction of change point problem, the establishment of basic nonparametric change point model, and asymptotic analysis on test method of basic change point problem, the nonparametric change point diagnosis method of concrete dam crack behavior abnormality is created in consideration of the situation that in practice concrete dam crack behavior may have more abnormality points. And the nonparametric change point diagnosis method of concrete dam crack behavior abnormality is used in the actual project, demonstrating the effectiveness and scientific reasonableness of the method established. Meanwhile, the nonparametric change point diagnosis method of concrete dam crack behavior abnormality has a complete theoretical basis and strong practicality with a broad application prospect in actual project.

  7. Nonparametric Change Point Diagnosis Method of Concrete Dam Crack Behavior Abnormality

    OpenAIRE

    Li, Zhanchao; Gu, Chongshi; Wu, Zhongru

    2013-01-01

    The study on diagnosis method of concrete crack behavior abnormality has always been a hot spot and difficulty in the safety monitoring field of hydraulic structure. Based on the performance of concrete dam crack behavior abnormality in parametric statistical model and nonparametric statistical model, the internal relation between concrete dam crack behavior abnormality and statistical change point theory is deeply analyzed from the model structure instability of parametric statistical model ...

  8. Manganese-Enhanced Magnetic Resonance Imaging and Studies of Rat Behavior: Transient Motor Deficit in Skilled Reaching, Rears, and Activity in Rats After a Single Dose of MnCl

    Directory of Open Access Journals (Sweden)

    Mariam Alaverdashvili

    2017-05-01

    Full Text Available Manganese-enhanced magnetic resonance imaging (MEMRI has been suggested to be a useful tool to visualize and map behavior-relevant neural populations at large scale in freely behaving rodents. A primary concern in MEMRI applications is Mn 2+ toxicity. Although a few studies have specifically examined toxicity on gross motor behavior, Mn 2+ toxicity on skilled motor behavior was not explored. Thus, the objective of this study was to combine manganese as a functional contrast agent with comprehensive behavior evaluation. We evaluated Mn 2+ effect on skilled reach-to-eat action, locomotion, and balance using a single pellet reaching task, activity cage, and cylinder test, respectively. The tests used are sensitive to the pathophysiology of many neurological and neurodegenerative disorders of the motor system. The behavioral testing was done in combination with a moderate dose of manganese. Behavior was studied before and after a single, intravenous infusion of MnCl 2 (48 mg/kg. The rats were imaged at 1, 3, 5, 7, and 14 days following infusion. The results show that MnCl 2 infusion resulted in detectable abnormalities in skilled reaching, locomotion, and balance that recovered within 3 days compared with the infusion of saline. Because some tests and behavioral measures could not detect motor abnormalities of skilled movements, comprehensive evaluation of motor behavior is critical in assessing the effects of MnCl 2 . The relaxation mapping results suggest that the transport of Mn 2+ into the brain is through the choroid plexus-cerebrospinal fluid system with the primary entry point and highest relaxation rates found in the pituitary gland. Relaxation rates in the pituitary gland correlated with measures of motor skill, suggesting that altered motor ability is related to the level of Mn circulating in the brain. Thus, combined MEMRI and behavioral studies that both achieve adequate image enhancement and are also free of motor skills deficits are

  9. Abnormal cortical synaptic plasticity in primary motor area in progressive supranuclear palsy.

    Science.gov (United States)

    Conte, Antonella; Belvisi, Daniele; Bologna, Matteo; Ottaviani, Donatella; Fabbrini, Giovanni; Colosimo, Carlo; Williams, David R; Berardelli, Alfredo

    2012-03-01

    No study has yet investigated whether cortical plasticity in primary motor area (M1) is abnormal in patients with progressive supranuclear palsy (PSP). We studied M1 plasticity in 15 PSP patients and 15 age-matched healthy subjects. We used intermittent theta-burst stimulation (iTBS) to investigate long-term potentiation (LTP) and continuous TBS (cTBS) to investigate long-term depression (LTD)-like cortical plasticity in M1. Ten patients underwent iTBS again 1 year later. We also investigated short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in M1 with paired-pulse transcranial magnetic stimulation, tested H reflex from upper limb flexor muscles before and after iTBS, and measured motor evoked potential (MEP) input-output (I/O) curves before and after iTBS. iTBS elicited a significantly larger MEP facilitation after iTBS in patients than in healthy subjects. Whereas in healthy subjects, cTBS inhibited MEP, in patients it significantly facilitated MEPs. In patients, SICI was reduced, whereas ICF was normal. H reflex size remained unchanged after iTBS. Patients had steeper MEP I/O slopes than healthy subjects at baseline and became even more steeper after iTBS only in patients. The iTBS-induced abnormal MEP facilitation in PSP persisted at 1-year follow-up. In conclusion, patients with PSP have abnormal M1 LTP/LTD-like plasticity. The enhanced LTP-like cortical synaptic plasticity parallels disease progression.

  10. Movement Disorders and Other Motor Abnormalities in Adults With 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Boot, Erik; Butcher, Nancy J; van Amelsvoort, Thérèse AMJ; Lang, Anthony E; Marras, Connie; Pondal, Margarita; Andrade, Danielle M; Fung, Wai Lun Alan; Bassett, Anne S

    2015-01-01

    Movement abnormalities are frequently reported in children with 22q11.2 deletion syndrome (22q11.2DS), but knowledge in this area is scarce in the increasing adult population. We report on five individuals illustrative of movement disorders and other motor abnormalities in adults with 22q11.2DS. In addition to an increased susceptibility to neuropsychiatric disorders, seizures, and early-onset Parkinson disease, the underlying brain dysfunction associated with 22q11.2DS may give rise to an increased vulnerability to multiple movement abnormalities, including those influenced by medications. Movement abnormalities may also be secondary to treatable endocrine diseases and congenital musculoskeletal abnormalities. We propose that movement abnormalities may be common in adults with 22q11.2DS and discuss the implications and challenges important to clinical practice. PMID:25684639

  11. Recruitment of rat diaphragm motor units across motor behaviors with different levels of diaphragm activation.

    Science.gov (United States)

    Seven, Yasin B; Mantilla, Carlos B; Sieck, Gary C

    2014-12-01

    Phrenic motor neurons are recruited across a range of motor behaviors to generate varying levels of diaphragm muscle (DIAm) force. We hypothesized that DIAm motor units are recruited in a fixed order across a range of motor behaviors of varying force levels, consistent with the Henneman Size Principle. Single motor unit action potentials and compound DIAm EMG activities were recorded in anesthetized, neurally intact rats across different motor behaviors, i.e., eupnea, hypoxia-hypercapnia (10% O2 and 5% CO2), deep breaths, sustained airway occlusion, and sneezing. Central drive [estimated by root-mean-squared (RMS) EMG value 75 ms after the onset of EMG activity (RMS75)], recruitment delay, and onset discharge frequencies were similar during eupnea and hypoxia-hypercapnia. Compared with eupnea, central drive increased (∼25%) during deep breaths, and motor units were recruited ∼12 ms earlier (P motor units were recruited ∼30 ms earlier (P motor unit onset discharge frequencies were significantly higher (P Recruitment order of motor unit pairs observed during eupnea was maintained for 98%, 87%, and 84% of the same pairs recorded during hypoxia-hypercapnia, deep breaths, and airway occlusion, respectively. Reversals in motor unit recruitment order were observed primarily if motor unit pairs were recruited motor unit recruitment order being determined primarily by the intrinsic size-dependent electrophysiological properties of phrenic motor neurons. Copyright © 2014 the American Physiological Society.

  12. Abnormal nuclear envelope in the cerebellar Purkinje cells and impaired motor learning in DYT11 myoclonus-dystonia mouse models.

    Science.gov (United States)

    Yokoi, Fumiaki; Dang, Mai T; Yang, Guang; Li, Jindong; Doroodchi, Atbin; Zhou, Tong; Li, Yuqing

    2012-02-01

    Myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonia. DYT11 M-D is caused by mutations in SGCE which codes for ɛ-sarcoglycan. SGCE is maternally imprinted and paternally expressed. Abnormal nuclear envelope has been reported in mouse models of DYT1 generalized torsion dystonia. However, it is not known whether similar alterations occur in DYT11 M-D. We developed a mouse model of DYT11 M-D using paternally inherited Sgce heterozygous knockout (Sgce KO) mice and reported that they had myoclonus and motor coordination and learning deficits in the beam-walking test. However, the specific brain regions that contribute to these phenotypes have not been identified. Since ɛ-sarcoglycan is highly expressed in the cerebellar Purkinje cells, here we examined the nuclear envelope in these cells using a transmission electron microscope and found that they are abnormal in Sgce KO mice. Our results put DYT11 M-D in a growing family of nuclear envelopathies. To analyze the effect of loss of ɛ-sarcoglycan function in the cerebellar Purkinje cells, we produced paternally inherited cerebellar Purkinje cell-specific Sgce conditional knockout (Sgce pKO) mice. Sgce pKO mice showed motor learning deficits, while they did not show abnormal nuclear envelope in the cerebellar Purkinje cells, robust motor deficits, or myoclonus. The results suggest that ɛ-sarcoglycan in the cerebellar Purkinje cells contributes to the motor learning, while loss of ɛ-sarcoglycan in other brain regions may contribute to nuclear envelope abnormality, myoclonus and motor coordination deficits. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Non-motor and motor features in LRRK2 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Zoë Bichler

    Full Text Available Non-motor symptoms are increasingly recognized as important features of Parkinson's disease (PD. LRRK2 mutations are common causes of familial and sporadic PD. Non-motor features have not been yet comprehensively evaluated in LRRK2 transgenic mouse models.Using a transgenic mouse model overexpressing the R1441G mutation of the human LRRK2 gene, we have investigated the longitudinal correlation between motor and non-motor symptoms and determined if specific non-motor phenotypes precede motor symptoms.We investigated the onset of motor and non-motor phenotypes on the LRRK2(R1441G BAC transgenic mice and their littermate controls from 4 to 21 month-old using a battery of behavioral tests. The transgenic mutant mice displayed mild hypokinesia in the open field from 16 months old, with gastrointestinal dysfunctions beginning at 6 months old. Non-motor features such as depression and anxiety-like behaviors, sensorial functions (pain sensitivity and olfaction, and learning and memory abilities in the passive avoidance test were similar in the transgenic animals compared to littermate controls.LRRK2(R1441G BAC transgenic mice displayed gastrointestinal dysfunction at an early stage but did not have abnormalities in fine behaviors, olfaction, pain sensitivity, mood disorders and learning and memory compared to non-transgenic littermate controls. The observations on olfaction and gastrointestinal dysfunction in this model validate findings in human carriers. These mice did recapitulate mild Parkinsonian motor features at late stages but compensatory mechanisms modulating the progression of PD in these models should be further evaluated.

  14. Abnormal development of sensory-motor, visual temporal and parahippocampal cortex in children with learning disabilities and borderline intellectual functioning

    Directory of Open Access Journals (Sweden)

    Francesca eBaglio

    2014-10-01

    Full Text Available Borderline intellectual functioning (BIF is a condition characterized by an intelligence quotient (IQ between 70 and 85. BIF children present with cognitive, motor, social and adaptive limitations that result in learning disabilities and are more likely to develop psychiatric disorders later in life. Aim of this study was to investigate brain morphometry and its relation to IQ level in borderline intellectual functioning children.Thirteen children with BIF and 14 age- and sex-matched typically developing children were enrolled. All children underwent a full IQ assessment (WISC-III scale and a Magnetic Resonance (MR examination including conventional sequences to assess brain structural abnormalities and high resolution 3D images for voxel based morphometry (VBM analysis. To investigate to what extent the group influenced gray matter volumes, both univariate and multivariate generalized linear model analysis of variance were used, and the varimax factor analysis was used to explore variable correlations and clusters among subjects. Results showed that BIF children, compared to controls have increased regional gray matter volume in bilateral sensori-motor and right posterior temporal cortices and decreased gray matter volume in right parahippocampal gyrus. Gray matter volumes were highly correlated with IQ indices.Our is a case study of a group of BIF children showing that BIF is associated with abnormal cortical development in brain areas that have a pivotal role in motor, learning and behavioral processes. Our findings, although allowing for little generalization to general population, contributes to the very limited knowledge in this field. Future longitudinal MR studies will be useful in verifying whether cortical features can be modified over time even in association with rehabilitative intervention.

  15. Characterizing abnormal behavior in a large population of zoo-housed chimpanzees: prevalence and potential influencing factors

    Directory of Open Access Journals (Sweden)

    Sarah L. Jacobson

    2016-07-01

    Full Text Available Abnormal behaviors in captive animals are generally defined as behaviors that are atypical for the species and are often considered to be indicators of poor welfare. Although some abnormal behaviors have been empirically linked to conditions related to elevated stress and compromised welfare in primates, others have little or no evidence on which to base such a relationship. The objective of this study was to investigate a recent claim that abnormal behavior is endemic in the captive population by surveying a broad sample of chimpanzees (Pan troglodytes, while also considering factors associated with the origins of these behaviors. We surveyed animal care staff from 26 accredited zoos to assess the prevalence of abnormal behavior in a large sample of chimpanzees in the United States for which we had information on origin and rearing history. Our results demonstrated that 64% of this sample was reported to engage in some form of abnormal behavior in the past two years and 48% of chimpanzees engaged in abnormal behavior other than coprophagy. Logistic regression models were used to analyze the historical variables that best predicted the occurrence of all abnormal behavior, any abnormal behavior that was not coprophagy, and coprophagy. Rearing had opposing effects on the occurrence of coprophagy and the other abnormal behaviors such that mother-reared individuals were more likely to perform coprophagy, whereas non-mother-reared individuals were more likely to perform other abnormal behaviors. These results support the assertion that coprophagy may be classified separately when assessing abnormal behavior and the welfare of captive chimpanzees. This robust evaluation of the prevalence of abnormal behavior in our sample from the U.S. zoo population also demonstrates the importance of considering the contribution of historical variables to present behavior, in order to better understand the causes of these behaviors and any potential relationship to

  16. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.

    Science.gov (United States)

    DiGiovanna, Jack; Dominici, Nadia; Friedli, Lucia; Rigosa, Jacopo; Duis, Simone; Kreider, Julie; Beauparlant, Janine; van den Brand, Rubia; Schieppati, Marco; Micera, Silvestro; Courtine, Grégoire

    2016-10-05

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor procedures. We found that the activation of hindlimb motor cortex preceded gait initiation. During overground locomotion, the motor cortex exhibited consistent neuronal population responses that were synchronized with the spatiotemporal activation of hindlimb motoneurons. Behaviors requiring enhanced muscle activity or skilled paw placement correlated with substantial adjustment in neuronal population responses. In contrast, all rats exhibited a reduction of cortical activity during more automated behavior, such as stepping on a treadmill. Despite the facultative role of the motor cortex in the production of locomotion in rats, these results show that the encoding of hindlimb features in motor cortex dynamics is comparable in rats and cats. However, the extent of motor cortex modulations appears linked to the degree of volitional engagement and complexity of the task, reemphasizing the importance of goal-directed behaviors for motor control studies, rehabilitation, and neuroprosthetics. We mapped the neuronal population responses in the hindlimb motor cortex to hindlimb kinematics and hindlimb muscle synergies across a spectrum of natural locomotion behaviors. Robust task-specific neuronal population responses revealed that the rat motor cortex displays similar modulation as other mammals during locomotion. However, the reduced motor cortex activity during more automated behaviors suggests a relationship between the degree of engagement and task complexity. This relationship

  17. Abnormal functional connectivity and cortical integrity influence dominant hand motor disability in multiple sclerosis: a multimodal analysis.

    Science.gov (United States)

    Zhong, Jidan; Nantes, Julia C; Holmes, Scott A; Gallant, Serge; Narayanan, Sridar; Koski, Lisa

    2016-12-01

    Functional reorganization and structural damage occur in the brains of people with multiple sclerosis (MS) throughout the disease course. However, the relationship between resting-state functional connectivity (FC) reorganization in the sensorimotor network and motor disability in MS is not well understood. This study used resting-state fMRI, T1-weighted and T2-weighted, and magnetization transfer (MT) imaging to investigate the relationship between abnormal FC in the sensorimotor network and upper limb motor disability in people with MS, as well as the impact of disease-related structural abnormalities within this network. Specifically, the differences in FC of the left hemisphere hand motor region between MS participants with preserved (n = 17) and impaired (n = 26) right hand function, compared with healthy controls (n = 20) was investigated. Differences in brain atrophy and MT ratio measured at the global and regional levels were also investigated between the three groups. Motor preserved MS participants had stronger FC in structurally intact visual information processing regions relative to motor impaired MS participants. Motor impaired MS participants showed weaker FC in the sensorimotor and somatosensory association cortices and more severe structural damage throughout the brain compared with the other groups. Logistic regression analysis showed that regional MTR predicted motor disability beyond the impact of global atrophy whereas regional grey matter volume did not. More importantly, as the first multimodal analysis combining resting-state fMRI, T1-weighted, T2-weighted and MTR images in MS, we demonstrate how a combination of structural and functional changes may contribute to motor impairment or preservation in MS. Hum Brain Mapp 37:4262-4275, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Motor system dysfunction in the schizophrenia diathesis: Neural systems to neurotransmitters.

    Science.gov (United States)

    Abboud, R; Noronha, C; Diwadkar, V A

    2017-07-01

    Motor control is a ubiquitous aspect of human function, and from its earliest origins, abnormal motor control has been proposed as being central to schizophrenia. The neurobiological architecture of the motor system is well understood in primates and involves cortical and sub-cortical components including the primary motor cortex, supplementary motor area, dorsal anterior cingulate cortex, the prefrontal cortex, the basal ganglia, and cerebellum. Notably all of these regions are associated in some manner to the pathophysiology of schizophrenia. At the molecular scale, both dopamine and γ-Aminobutyric Acid (GABA) abnormalities have been associated with working memory dysfunction, but particularly relating to the basal ganglia and the prefrontal cortex respectively. As evidence from multiple scales (behavioral, regional and molecular) converges, here we provide a synthesis of the bio-behavioral relevance of motor dysfunction in schizophrenia, and its consistency across scales. We believe that the selective compendium we provide can supplement calls arguing for renewed interest in studying the motor system in schizophrenia. We believe that in addition to being a highly relevant target for the study of schizophrenia related pathways in the brain, such focus provides tractable behavioral probes for in vivo imaging studies in the illness. Our assessment is that the motor system is a highly valuable research domain for the study of schizophrenia. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Freud Was Right. . . about the Origins of Abnormal Behavior

    Science.gov (United States)

    Muris, Peter

    2006-01-01

    Freud's psychodynamic theory is predominantly based on case histories of patients who displayed abnormal behavior. From a scientific point of view, Freud's analyses of these cases are unacceptable because the key concepts of his theory cannot be tested empirically. However, in one respect, Freud was totally right: most forms of abnormal behavior…

  20. Interhemispheric motor networks are abnormal in patients with Gilles de la Tourette syndrome

    DEFF Research Database (Denmark)

    Bäumer, Tobias; Thomalla, Götz; Kroeger, Johan

    2010-01-01

    Brain imaging has shown altered corpus callosum (CC) morphology in patients with Gilles de la Tourette syndrome (GTS). Yet it is unclear whether these morphological changes are associated with altered interhemispheric interactions. Here, we combined transcranial magnetic stimulation (TMS) with di...... in control subjects but not in patients. Our combined TMS-DTI approach demonstrates abnormal functional interhemispheric connectivity in GTS accompanied by an altered structure-function relationship in the motor CC....

  1. Neonatal stroke causes poor midline motor behaviors and poor fine and gross motor skills during early infancy.

    Science.gov (United States)

    Chen, Chao-Ying; Lo, Warren D; Heathcock, Jill C

    2013-03-01

    Upper extremity movements, midline behaviors, fine, and gross motor skills are frequently impaired in hemiparesis and cerebral palsy. We investigated midline toy exploration and fine and gross motor skills in infants at risk for hemiplegic cerebral palsy. Eight infants with neonatal stroke (NS) and thirteen infants with typical development (TD) were assessed from 2 to 7 months of age. The following variables were analyzed: percentage of time in midline and fine and gross motor scores on the Bayley Scales of Infant Development (BSID-III). Infants with neonatal stroke demonstrated poor performance in midline behaviors and fine and gross motor scores on the BSID-III. These results suggest that infants with NS have poor midline behaviors and motor skill development early in infancy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Effect of the home environment on motor and cognitive behavior of infants.

    Science.gov (United States)

    Miquelote, Audrei F; Santos, Denise C C; Caçola, Priscila M; Montebelo, Maria Imaculada de L; Gabbard, Carl

    2012-06-01

    Although information is sparse, research suggests that affordances in the home provide essential resources that promote motor and cognitive skills in young children. The present study assessed over time, the association between motor affordances in the home and infant motor and cognitive behavior. Thirty-two (32) infants were assessed for characteristics of their home using the Affordances in the Home Environment for Motor Development--Infant Scale and motor and cognitive behavior with the Bayley Scales of Infant and Toddler Development--III. Infant's home and motor behavior were assessed at age 9 months and 6 months later with the inclusion of cognitive ability. Results for motor ability indicated that there was an overall improvement in performance from the 1st to the 2nd assessment. We found significant positive correlations between the dimensions of the home (daily activities and play materials) and global motor performance (1st assessment) and fine-motor performance on the 2nd assessment. In regard to cognitive performance (2nd assessment), results indicated a positive association with fine-motor performance. Our results suggest that motor affordances can have a positive impact on future motor ability and speculatively, later cognitive behavior in infants. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Olfaction in eating disorders and abnormal eating behavior: a systematic review.

    Science.gov (United States)

    Islam, Mohammed A; Fagundo, Ana B; Arcelus, Jon; Agüera, Zaida; Jiménez-Murcia, Susana; Fernández-Real, José M; Tinahones, Francisco J; de la Torre, Rafael; Botella, Cristina; Frühbeck, Gema; Casanueva, Felipe F; Menchón, José M; Fernandez-Aranda, Fernando

    2015-01-01

    The study provides a systematic review that explores the current literature on olfactory capacity in abnormal eating behavior. The objective is to present a basis for discussion on whether research in olfaction in eating disorders may offer additional insight with regard to the complex etiopathology of eating disorders (ED) and abnormal eating behaviors. Electronic databases (Medline, PsycINFO, PubMed, Science Direct, and Web of Science) were searched using the components in relation to olfaction and combining them with the components related to abnormal eating behavior. Out of 1352 articles, titles were first excluded by title (n = 64) and then by abstract and fulltext resulting in a final selection of 14 articles (820 patients and 385 control participants) for this review. The highest number of existing literature on olfaction in ED were carried out with AN patients (78.6%) followed by BN patients (35.7%) and obese individuals (14.3%). Most studies were only conducted on females. The general findings support that olfaction is altered in AN and in obesity and indicates toward there being little to no difference in olfactory capacity between BN patients and the general population. Due to the limited number of studies and heterogeneity this review stresses on the importance of more research on olfaction and abnormal eating behavior.

  4. Correlations between abnormal iron metabolism and non-motor symptoms in Parkinson's disease.

    Science.gov (United States)

    Xu, Wu; Zhi, Yan; Yuan, Yongsheng; Zhang, Bingfeng; Shen, Yuting; Zhang, Hui; Zhang, Kezhong; Xu, Yun

    2018-07-01

    Despite a growing body of evidence suggests that abnormal iron metabolism plays an important role in the pathogenesis of Parkinson's disease (PD), few studies explored its role in non-motor symptoms (NMS) of PD. The present study aimed to investigate the relationship between abnormal iron metabolism and NMS of PD. Seventy PD patients and 64 healthy controls were consecutively recruited to compare serum iron, ceruloplasmin, ferritin, and transferrin levels. We evaluated five classic NMS, including depression, anxiety, pain, sleep disorder, and autonomic dysfunction in PD patients using the Hamilton Depression Scale (HAMD), the Hamilton Anxiety Scale (HAMA), the short form of the McGill Pain Questionnaire, the Pittsburgh Sleep Quality Index and the Scale for Outcomes in Parkinson's disease for Autonomic Symptoms, respectively. Hierarchical multiple regression analysis was used to investigate the correlations between abnormal iron metabolism and NMS. No differences in serum ceruloplasmin and ferritin levels were examined between PD patients and healthy controls, but we observed significantly decreased serum iron levels and increased serum transferrin levels in PD patients in comparison with healthy controls. After eliminating confounding factors, HAMD scores and HAMA scores were both negatively correlated with serum iron levels and positively correlated with serum transferrin levels. In summary, abnormal iron metabolism might play a crucial role in the pathogenesis of depression and anxiety in PD. Serums levels of iron and transferrin could be peripheral markers for depression and anxiety in PD.

  5. Weak responses to auditory feedback perturbation during articulation in persons who stutter: evidence for abnormal auditory-motor transformation.

    Directory of Open Access Journals (Sweden)

    Shanqing Cai

    Full Text Available Previous empirical observations have led researchers to propose that auditory feedback (the auditory perception of self-produced sounds when speaking functions abnormally in the speech motor systems of persons who stutter (PWS. Researchers have theorized that an important neural basis of stuttering is the aberrant integration of auditory information into incipient speech motor commands. Because of the circumstantial support for these hypotheses and the differences and contradictions between them, there is a need for carefully designed experiments that directly examine auditory-motor integration during speech production in PWS. In the current study, we used real-time manipulation of auditory feedback to directly investigate whether the speech motor system of PWS utilizes auditory feedback abnormally during articulation and to characterize potential deficits of this auditory-motor integration. Twenty-one PWS and 18 fluent control participants were recruited. Using a short-latency formant-perturbation system, we examined participants' compensatory responses to unanticipated perturbation of auditory feedback of the first formant frequency during the production of the monophthong [ε]. The PWS showed compensatory responses that were qualitatively similar to the controls' and had close-to-normal latencies (∼150 ms, but the magnitudes of their responses were substantially and significantly smaller than those of the control participants (by 47% on average, p<0.05. Measurements of auditory acuity indicate that the weaker-than-normal compensatory responses in PWS were not attributable to a deficit in low-level auditory processing. These findings are consistent with the hypothesis that stuttering is associated with functional defects in the inverse models responsible for the transformation from the domain of auditory targets and auditory error information into the domain of speech motor commands.

  6. Abnormal resting-state connectivity of motor and cognitive networks in early manifest Huntington's disease.

    Science.gov (United States)

    Wolf, R C; Sambataro, F; Vasic, N; Depping, M S; Thomann, P A; Landwehrmeyer, G B; Süssmuth, S D; Orth, M

    2014-11-01

    Functional magnetic resonance imaging (fMRI) of multiple neural networks during the brain's 'resting state' could facilitate biomarker development in patients with Huntington's disease (HD) and may provide new insights into the relationship between neural dysfunction and clinical symptoms. To date, however, very few studies have examined the functional integrity of multiple resting state networks (RSNs) in manifest HD, and even less is known about whether concomitant brain atrophy affects neural activity in patients. Using MRI, we investigated brain structure and RSN function in patients with early HD (n = 20) and healthy controls (n = 20). For resting-state fMRI data a group-independent component analysis identified spatiotemporally distinct patterns of motor and prefrontal RSNs of interest. We used voxel-based morphometry to assess regional brain atrophy, and 'biological parametric mapping' analyses to investigate the impact of atrophy on neural activity. Compared with controls, patients showed connectivity changes within distinct neural systems including lateral prefrontal, supplementary motor, thalamic, cingulate, temporal and parietal regions. In patients, supplementary motor area and cingulate cortex connectivity indices were associated with measures of motor function, whereas lateral prefrontal connectivity was associated with cognition. This study provides evidence for aberrant connectivity of RSNs associated with motor function and cognition in early manifest HD when controlling for brain atrophy. This suggests clinically relevant changes of RSN activity in the presence of HD-associated cortical and subcortical structural abnormalities.

  7. The spectrum of motor function abnormalities in gastroesophageal reflux disease and Barrett's esophagus.

    Science.gov (United States)

    Ang, D; Blondeau, K; Sifrim, D; Tack, J

    2009-01-01

    Barrett's esophagus has traditionally been regarded as the most severe end of the spectrum of gastroesophageal reflux disease and is of great clinical importance in view of the association with esophageal adenocarcinoma. Studies have documented high levels of esophageal acid exposure in Barrett's esophagus. Various pathogenetic mechanisms underlie this phenomenon. These include abnormalities in esophageal peristalsis, defective lower esophageal sphincter pressures, gastric dysmotility and bile reflux. Whilst these factors provide evidence for an acquired cause of Barrett's esophagus, an underlying genetic predisposition cannot be ruled out. Although the past decade has brought about many new discoveries in the pathogenesis of Barrett's esophagus, it has also added further controversy to this complex disorder. A detailed analysis of the gastrointestinal motor abnormalities occurring in Barrett's esophagus follows, with a review of the currently available literature and an update on this condition that continues to be of interest to the gastroenterologist.

  8. A framework to describe, analyze and generate interactive motor behaviors.

    Directory of Open Access Journals (Sweden)

    Nathanaël Jarrassé

    Full Text Available While motor interaction between a robot and a human, or between humans, has important implications for society as well as promising applications, little research has been devoted to its investigation. In particular, it is important to understand the different ways two agents can interact and generate suitable interactive behaviors. Towards this end, this paper introduces a framework for the description and implementation of interactive behaviors of two agents performing a joint motor task. A taxonomy of interactive behaviors is introduced, which can classify tasks and cost functions that represent the way each agent interacts. The role of an agent interacting during a motor task can be directly explained from the cost function this agent is minimizing and the task constraints. The novel framework is used to interpret and classify previous works on human-robot motor interaction. Its implementation power is demonstrated by simulating representative interactions of two humans. It also enables us to interpret and explain the role distribution and switching between roles when performing joint motor tasks.

  9. Vitamin A depletion alters sensitivity of motor behavior to MK-801 in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Zhu Hui

    2010-01-01

    Full Text Available Abstract Background Vitamin A and its derivatives (retinoids are crucial for the development, maintenance and morphogenesis of the central nervous system (CNS. Although motor impairment has been reported in postnatal vitamin A depletion rodents, the effect of vitamin A depletion on homeostasis maintaining capability in response to external interference is not clear. Methods In the current study, we measured the effect of vitamin A depletion on motor ability and pain sensitivity under two different conditions: 1. prior to any injection and 2. after the injection of an N-methyl-D-aspartate (NMDA receptor antagonist (MK-801. Results Vitamin A depletion mice showed decreased body weight, enhanced locomotor activity, increased rearing and less tail flick latency. Vitamin A depletion also induced hypersensitivity of stereotypy, ataxia, rearing, and tail flick latency to MK-801, but hyposensitivity of locomotion to MK-801. Conclusions These findings suggest that vitamin A depletion affect broad basal behavior and disrupt homeostasis maintaining capability in response to glutamate perturbation. We provide a useful animal model for assessing the role of vitamin A depletion in regulating animal behavior, and for detecting how neurotransmitter pathways might be involved in vitamin A depletion related behavioral abnormalities.

  10. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase.

    Science.gov (United States)

    Bárez-López, Soledad; Bosch-García, Daniel; Gómez-Andrés, David; Pulido-Valdeolivas, Irene; Montero-Pedrazuela, Ana; Obregon, Maria Jesus; Guadaño-Ferraz, Ana

    2014-01-01

    Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4) but the intracellular concentrations of 3,5,3'-triiodothyronine (T3; the transcriptionally active hormone) in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2). To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO) did not find gross neurological alterations, possibly due to compensatory mechanisms. This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice). No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction) and skeletal muscle (33% reduction), but not in the cerebellum where other deiodinase (type 1) is expressed. The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.

  11. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase.

    Directory of Open Access Journals (Sweden)

    Soledad Bárez-López

    Full Text Available BACKGROUND: Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4 but the intracellular concentrations of 3,5,3'-triiodothyronine (T3; the transcriptionally active hormone in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2. To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO did not find gross neurological alterations, possibly due to compensatory mechanisms. AIM: This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. RESULTS: Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice. No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction and skeletal muscle (33% reduction, but not in the cerebellum where other deiodinase (type 1 is expressed. CONCLUSIONS: The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.

  12. Trained, generalized, and collateral behavior changes of preschool children receiving gross-motor skills training.

    OpenAIRE

    Kirby, K C; Holborn, S W

    1986-01-01

    Three preschool children participated in a behavioral training program to improve their gross-motor skills. Ten target behaviors were measured in the training setting to assess direct effects of the program. Generalization probes for two gross-motor behaviors, one fine-motor skill, and two social behaviors were conducted in other settings. Results indicated that the training program improved the gross-motor skills trained and that improvements sometimes generalized to other settings. Contrary...

  13. Long-Term Evaluation of Abnormal Behavior in Adult Ex-laboratory Chimpanzees (Pan troglodytes Following Re-socialization

    Directory of Open Access Journals (Sweden)

    Karl Crailsheim

    2013-01-01

    Full Text Available Adverse rearing conditions are considered a major factor in the development of abnormal behavior. We investigated the overall levels, the prevalence and the diversity of abnormal behavior of 18 adult former laboratory chimpanzees, who spent about 20 years single caged, over a two-year period following re-socialization. According to the onset of deprivation, the individuals were classified as early deprived (EDs, mean: 1.2 years or late deprived (LDs, mean: 3.6 years. The results are based on 187.5 hours of scan sampling distributed over three sample periods: subsequent to re-socialization and during the first and second year of group-living. While the overall levels and the diversity of abnormal behavior remained stable over time in this study population, the amplifying effects of age at onset of deprivation became apparent as the overall levels of abnormal behavior of EDs were far above those of LDs in the first and second year of group-living, but not immediately after re-socialization. The most prevalent abnormal behaviors, including eating disorders and self-directed behaviors, however, varied in their occurrence within subjects across the periods. Most important, the significance of social companionship became obvious as the most severe forms of abnormal behavior, such as dissociative and self-injurious behaviors declined.

  14. The compensatory interaction between motor unit firing behavior and muscle force during fatigue.

    Science.gov (United States)

    Contessa, Paola; De Luca, Carlo J; Kline, Joshua C

    2016-10-01

    Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. Copyright © 2016 the American Physiological Society.

  15. Focal Dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE)

    OpenAIRE

    David ePerruchoud; Micah M Murray; Micah M Murray; Jeremie eLefebvre; Silvio eIonta

    2014-01-01

    Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, and the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characteriz...

  16. Focal dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE)

    OpenAIRE

    Perruchoud David; Murray Micah; Lefebvre Jeremie; Ionta Silvio

    2014-01-01

    Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized b...

  17. Autism Spectrum Disorder: Correlation between aberrant behaviors, EEG abnormalities and seizures

    Directory of Open Access Journals (Sweden)

    Michelle Elena Hartley-McAndrew

    2010-04-01

    Full Text Available The relationship between epilepsy, epileptiform discharges, cognitive, language and behavioral symptoms is not clearly understood. Since difficulties with socialization and maladaptive behaviors are found in children with Autism Spectrum Disorder (ASD, we inquired whether epileptiform activity and seizures are associated with adverse behavioral manifestations in this population. We reviewed our EEG database between 1999-2006, and identified 123 children with ASD. EEG abnormalities were found in 39 children (31%. A control group of age and gender matched ASD children with normal EEG’s was obtained. Packets of questionnaires including the Vineland Adaptive Behavior Scale II (VABS, Aberrant Behavior Checklist (ABC and the Childhood Autism Rating Scale (CARS were sent by mail. Out of 21 packets received, 11 had normal and 10 had abnormal EEG’s. There were no statistically significant differences in behavior between the two groups. Statistical analysis of discharge location and frequency did not reveal a significant trend. However, children with ASD and seizures had statistically significant lower scores in VABS daily living (P=0.009 and socialization (P=0.007 as compared to those without seizures. ASD children with seizures had higher ABC levels of hyperactivity and irritability. Differences in irritability scores nearly reached statistical significance (P=0.058. There was no significant difference in the degree of CARS autism rating between the groups. Our study did not reveal statistically significant differences in behaviors between ASD children with and without EEG abnormalities. However, ASD children with seizures revealed significantly worse behaviors as compared to counterparts without seizures.

  18. The Neuronal Network Orchestration behind Motor Behaviors

    DEFF Research Database (Denmark)

    Petersen, Peter Christian

    to motoneurons during rhythmic motor behaviors, and specifically the hypothesis that motoneurons receive concurrent excitatory and inhibitory (E/I) inputs. Berg et al. (2007) presented the concurrent hypothesis, which goes against the classical feed forward reciprocal model for spinal motor networks that has...... gained widespread acceptance. We developed an adult turtle preparation where the spinal motor network was intact, which also allowed us to perform intracellular recordings from motoneurons during rhythmic motor activity. We estimated the synaptic excitatory and inhibitory conductances by two individual...... (Buzsáki and Mizuseki, 2014). Roxin et al. (2011) detailed the firing rate distribution in networks in the balanced regime, and found it to be similar to a lognormal distribution and describing the data from the population studies very well. Our experimental observations and analysis are in agreement...

  19. MicroRNA-128 governs neuronal excitability and motor behavior in mice

    DEFF Research Database (Denmark)

    Tan, Chan Lek; Plotkin, Joshua L.; Venø, Morten Trillingsgaard

    2013-01-01

    The control of motor behavior in animals and humans requires constant adaptation of neuronal networks to signals of various types and strengths. We found that microRNA-128 (miR-128), which is expressed in adult neurons, regulates motor behavior by modulating neuronal signaling networks and excita...

  20. Transgenerational effects of environmental enrichment on repetitive motor behavior development.

    Science.gov (United States)

    Bechard, Allison R; Lewis, Mark H

    2016-07-01

    The favorable consequences of environmental enrichment (EE) on brain and behavior development are well documented. Much less is known, however, about transgenerational benefits of EE on non-enriched offspring. We explored whether transgenerational effects of EE might extend to the development of repetitive motor behaviors in deer mice. Repetitive motor behaviors are invariant patterns of movement that, across species, can be reduced by EE. We found that EE not only attenuated the development of repetitive behavior in dams, but also in their non-enriched offspring. Moreover, maternal behavior did not seem to mediate the transgenerational effect we found, although repetitive behavior was affected by reproductive experience. These data support a beneficial transgenerational effect of EE on repetitive behavior development and suggest a novel benefit of reproductive experience. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Neuromodulation during motor development and behavior.

    Science.gov (United States)

    Pflüger, H J

    1999-12-01

    Important recent advances have been made in understanding the role of aminergic modulation during the maturation of Xenopus larvae swimming rhythms, including effects on particular ion channel types of component neurons, and the role of peptidergic modulation during development of adult central patterns generators in the stomatogastric ganglion of crustaceans. By recording from octopaminergic neuromodulatory neurons during ongoing motor behavior in the locust, new insights into the role of this peripheral neuromodulatory mechanism have been gained. In particular, it is now clear that the octopaminergic neuromodulatory system is automatically activated in parallel to the motor systems, and that both excitation and inhibition play important functional roles.

  2. Motor network plasticity and low-frequency oscillations abnormalities in patients with brain gliomas: a functional MRI study.

    Directory of Open Access Journals (Sweden)

    Chen Niu

    Full Text Available Brain plasticity is often associated with the process of slow-growing tumor formation, which remodels neural organization and optimizes brain network function. In this study, we aimed to investigate whether motor function plasticity would display deficits in patients with slow-growing brain tumors located in or near motor areas, but who were without motor neurological deficits. We used resting-state functional magnetic resonance imaging to probe motor networks in 15 patients with histopathologically confirmed brain gliomas and 15 age-matched healthy controls. All subjects performed a motor task to help identify individual motor activity in the bilateral primary motor cortex (PMC and supplementary motor area (SMA. Frequency-based analysis at three different frequencies was then used to investigate possible alterations in the power spectral density (PSD of low-frequency oscillations. For each group, the average PSD was determined for each brain region and a nonparametric test was performed to determine the difference in power between the two groups. Significantly reduced inter-hemispheric functional connectivity between the left and right PMC was observed in patients compared with controls (P<0.05. We also found significantly decreased PSD in patients compared to that in controls, in all three frequency bands (low: 0.01-0.02 Hz; middle: 0.02-0.06 Hz; and high: 0.06-0.1 Hz, at three key motor regions. These findings suggest that in asymptomatic patients with brain tumors located in eloquent regions, inter-hemispheric connection may be more vulnerable. A comparison of the two approaches indicated that power spectral analysis is more sensitive than functional connectivity analysis for identifying the neurological abnormalities underlying motor function plasticity induced by slow-growing tumors.

  3. Adult-onset stereotypical motor behaviors.

    Science.gov (United States)

    Maltête, D

    Stereotypies have been defined as non-goal-directed movement patterns repeated continuously for a period of time in the same form and on multiple occasions, and which are typically distractible. Stereotypical motor behaviors are a common clinical feature of a variety of neurological conditions that affect cortical and subcortical functions, including autism, tardive dyskinesia, excessive dopaminergic treatment of Parkinson's disease and frontotemporal dementia. The main differential diagnosis of stereotypies includes tic disorders, motor mannerisms, compulsion and habit. The pathophysiology of stereotypies may involve the corticostriatal pathways, especially the orbitofrontal and anterior cingulated cortices. Because antipsychotics have long been used to manage stereotypical behaviours in mental retardation, stereotypies that present in isolation tend not to warrant pharmacological intervention, as the benefit-to-risk ratio is not great enough. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Trained, Generalized, and Collateral Behavior Changes of Preschool Children Receiving Gross-Motor Skills Training.

    Science.gov (United States)

    Kirby, Kimberly C.; Holborn, Stephen W.

    1986-01-01

    Three preschool children participated in a behavioral training program to improve their gross-motor skills. Results indicated that the program improved the 10 targeted gross-motor skills and that improvements sometimes generalized to other settings. The program did not produce changes in fine-motor skills or social behaviors. Implications are…

  5. Behavioral, Pharmacological, and Immunological Abnormalities after Streptococcal Exposure: A Novel Rat Model of Sydenham Chorea and Related Neuropsychiatric Disorders

    Science.gov (United States)

    Brimberg, Lior; Benhar, Itai; Mascaro-Blanco, Adita; Alvarez, Kathy; Lotan, Dafna; Winter, Christine; Klein, Julia; Moses, Allon E; Somnier, Finn E; Leckman, James F; Swedo, Susan E; Cunningham, Madeleine W; Joel, Daphna

    2012-01-01

    Group A streptococcal (GAS) infections and autoimmunity are associated with the onset of a spectrum of neuropsychiatric disorders in children, with the prototypical disorder being Sydenham chorea (SC). Our aim was to develop an animal model that resembled the behavioral, pharmacological, and immunological abnormalities of SC and other streptococcal-related neuropsychiatric disorders. Male Lewis rats exposed to GAS antigen exhibited motor symptoms (impaired food manipulation and beam walking) and compulsive behavior (increased induced-grooming). These symptoms were alleviated by the D2 blocker haloperidol and the selective serotonin reuptake inhibitor paroxetine, respectively, drugs that are used to treat motor symptoms and compulsions in streptococcal-related neuropsychiatric disorders. Streptococcal exposure resulted in antibody deposition in the striatum, thalamus, and frontal cortex, and concomitant alterations in dopamine and glutamate levels in cortex and basal ganglia, consistent with the known pathophysiology of SC and related neuropsychiatric disorders. Autoantibodies (IgG) of GAS rats reacted with tubulin and caused elevated calcium/calmodulin-dependent protein kinase II signaling in SK-N-SH neuronal cells, as previously found with sera from SC and related neuropsychiatric disorders. Our new animal model translates directly to human disease and led us to discover autoantibodies targeted against dopamine D1 and D2 receptors in the rat model as well as in SC and other streptococcal-related neuropsychiatric disorders. PMID:22534626

  6. Low-Back Pain Patients Learn to Adapt Motor Behavior with Adverse Secondary Consequences

    NARCIS (Netherlands)

    van Dieën, Jaap H.; Flor, Herta; Hodges, Paul W.

    2017-01-01

    ABSTRACT: We hypothesize that changes in motor behavior in individuals with low-back pain are adaptations aimed at minimizing the real or perceived risk of further pain. Through reinforcement learning, pain and subsequent adaptions result in less dynamic motor behavior, leading to increased loading

  7. Neonatal Stroke Causes Poor Midline Motor Behaviors and Poor Fine and Gross Motor Skills during Early Infancy

    Science.gov (United States)

    Chen, Chao-Ying; Lo, Warren D.; Heathcock, Jill C.

    2013-01-01

    Upper extremity movements, midline behaviors, fine, and gross motor skills are frequently impaired in hemiparesis and cerebral palsy. We investigated midline toy exploration and fine and gross motor skills in infants at risk for hemiplegic cerebral palsy. Eight infants with neonatal stroke (NS) and thirteen infants with typical development (TD)…

  8. Physiological markers of motor inhibition during human behavior

    Science.gov (United States)

    Duque, Julie; Greenhouse, Ian; Labruna, Ludovica; Ivry, Richard B.

    2017-01-01

    Transcranial magnetic stimulation (TMS) studies in humans have shown that many behaviors engage processes that suppress excitability within the corticospinal tract. Inhibition of the motor output pathway has been extensively studied in the context of action stopping, where a planned movement needs to be abruptly aborted. Recent TMS work has also revealed markers of motor inhibition during the preparation of movement. Here, we review the evidence for motor inhibition during action stopping and action preparation, focusing on studies that have used TMS to monitor changes in the excitability of the corticospinal pathway. We discuss how these physiological results have motivated theoretical models of how the brain selects actions, regulates movement initiation and execution, and switches from one state to another. PMID:28341235

  9. Hypercholesterolemia causes psychomotor abnormalities in mice and alterations in cortico-striatal biogenic amine neurotransmitters: Relevance to Parkinson's disease.

    Science.gov (United States)

    Paul, Rajib; Choudhury, Amarendranath; Chandra Boruah, Dulal; Devi, Rajlakshmi; Bhattacharya, Pallab; Choudhury, Manabendra Dutta; Borah, Anupom

    2017-09-01

    The symptoms of Parkinson's disease (PD) include motor behavioral abnormalities, which appear as a result of the extensive loss of the striatal biogenic amine, dopamine. Various endogenous molecules, including cholesterol, have been put forward as putative contributors in the pathogenesis of PD. Earlier reports have provided a strong link between the elevated level of plasma cholesterol (hypercholesterolemia) and onset of PD. However, the role of hypercholesterolemia on brain functions in terms of neurotransmitter metabolism and associated behavioral manifestations remain elusive. We tested in Swiss albino mice whether hypercholesterolemia induced by high-cholesterol diet would affect dopamine and serotonin metabolism in discrete brain regions that would precipitate in psychomotor behavioral manifestations. High-cholesterol diet for 12 weeks caused a significant increase in blood total cholesterol level, which validated the model as hypercholesterolemic. Tests for akinesia, catalepsy, swimming ability and gait pattern (increased stride length) have revealed that hypercholesterolemic mice develop motor behavioral abnormalities, which are similar to the behavioral phenotypes of PD. Moreover, hypercholesterolemia caused depressive-like behavior in mice, as indicated by the increased immobility time in the forced swim test. We found a significant depletion of dopamine in striatum and serotonin in cortex of hypercholesterolemic mice. The significant decrease in tyrosine hydroxylase immunoreactivity in striatum supports the observed depleted level dopamine in striatum, which is relevant to the pathophysiology of PD. In conclusion, hypercholesterolemia-induced depleted levels of cortical and striatal biogenic amines reported hereby are similar to the PD pathology, which might be associated with the observed psychomotor behavioral abnormalities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Lack of tryptophan hydroxylase-1 in mice results in gait abnormalities.

    Science.gov (United States)

    Suidan, Georgette L; Duerschmied, Daniel; Dillon, Gregory M; Vanderhorst, Veronique; Hampton, Thomas G; Wong, Siu Ling; Voorhees, Jaymie R; Wagner, Denisa D

    2013-01-01

    The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (-/-) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system.

  11. Motor Behavior: From Telegraph Keys and Twins to Linear Slides and Stepping

    Science.gov (United States)

    Thomas, Jerry R.

    2006-01-01

    Motor behavior is a significant area of scholarship with 64 Fellows from the American Academy of Kinesiology and Physical Education engaged in that work since 1930. This paper provides a brief overview of the history of research in motor development and motor control/learning, particularly noting the contributions to scholarship of Academy…

  12. Abnormal animal behavior prior to the Vrancea (Romania) major subcrustal earthquakes

    Science.gov (United States)

    Constantin, Angela; Pantea, Aurelian

    2013-04-01

    The goal of this paper is to present some observations about abnormal animal behavior prior and during of some Romanian subcrustal earthquakes. The major Vrancea earthquakes of 4 March 1977 (Mw = 7.4, Imax = IX-X MSK), 30 August 1986 (Mw = 7.1, Io = VIII-IX MSK) and 30 May 1990 (Mw = 6.9, Io = VIII MSK), were preceded by extensive occurrences of anomalous animal behavior. These data were collected immediately after the earthquakes from the areas affected by these. Some species of animals became excited, nervous and panicked before and during the earthquakes, such as: dogs (barking and running in panic), cats, snakes, mice and rats (came into the houses and have lost their fear), birds (hens, geese, parrots), horses, fishes etc. These strange manifestations of the animals were observed on the entire territory of country, especially in the extra-Carpathian area. This unusual behavior was noticed within a few hours to days before the seismic events, but for the most of cases the time of occurrence was within two hours of the quakes. We can hope that maybe one day the abnormal animal behavior will be used as a reliable seismic precursor for the intermediate depth earthquakes.

  13. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors

    NARCIS (Netherlands)

    DiGiovanna, J.; Dominici, N.; Friedli, L.; Rigosa, J.; Duis, S.; Kreider, J.; Beauparlant, J.; van den Brand, R.; Schieppati, M.; Micera, S.; Courtine, G.

    2016-01-01

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral

  14. Localization of Motor Neurons and Central Pattern Generators for Motor Patterns Underlying Feeding Behavior in Drosophila Larvae.

    Directory of Open Access Journals (Sweden)

    Sebastian Hückesfeld

    Full Text Available Motor systems can be functionally organized into effector organs (muscles and glands, the motor neurons, central pattern generators (CPG and higher control centers of the brain. Using genetic and electrophysiological methods, we have begun to deconstruct the motor system driving Drosophila larval feeding behavior into its component parts. In this paper, we identify distinct clusters of motor neurons that execute head tilting, mouth hook movements, and pharyngeal pumping during larval feeding. This basic anatomical scaffold enabled the use of calcium-imaging to monitor the neural activity of motor neurons within the central nervous system (CNS that drive food intake. Simultaneous nerve- and muscle-recordings demonstrate that the motor neurons innervate the cibarial dilator musculature (CDM ipsi- and contra-laterally. By classical lesion experiments we localize a set of CPGs generating the neuronal pattern underlying feeding movements to the subesophageal zone (SEZ. Lesioning of higher brain centers decelerated all feeding-related motor patterns, whereas lesioning of ventral nerve cord (VNC only affected the motor rhythm underlying pharyngeal pumping. These findings provide a basis for progressing upstream of the motor neurons to identify higher regulatory components of the feeding motor system.

  15. What Behavioral and Psychological Symptoms of Dementia Affect Caregiver Burnout?

    Science.gov (United States)

    Hiyoshi-Taniguchi, Kazuko; Becker, Carl B; Kinoshita, Ayae

    2018-01-01

    Patients' irritability and aggression have been linked to caregiver depression, but the behaviors that most burden caregivers are not yet definitively identified. This study examines the connection between behavioral and psychological symptoms of dementia (BPSD) and the burnout of caregivers caring for home-dwelling elders with dementia symptoms in Japan. 80 Japanese rural and urban family caregivers completed detailed questionnaires about their experiences in caring for demented family members. We statistically analyzed the results for correlations between types of dementia, Pines Burnout, and Caregiver Distress. BPSD symptom severity significantly correlated with caregiver distress. The dementia symptoms most strongly correlated with caregiver burnout were: aggression, irritability, abnormal motor behavior, and hallucinations. Among the commonest symptoms, apathy, anxiety, and depression did not seriously aggravate caregiver burnout. Caregivers displayed higher burnout facing agitation/aggression, irritability, aberrant motor behavior, and hallucinations. Caregivers' reported distress was surprisingly dissimilar to their burnout scores; patients' delusions and anxiety led to higher distress reporting but not to burnout. Advance diagnosis of BPSD symptoms should be helpful to support nurses and caregivers of dementia patients. Particular support should be considered for caregivers and nurses of patients expressing aggression, irritability, abnormal motor behavior, and hallucination.

  16. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors

    OpenAIRE

    DiGiovanna, J.; Dominici, N.; Friedli, L.; Rigosa, J.; Duis, S.; Kreider, J.; Beauparlant, J.; van den Brand, R.; Schieppati, M.; Micera, S.; Courtine, G.

    2016-01-01

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor pr...

  17. Resveratrol Ameliorates the Depressive-Like Behaviors and Metabolic Abnormalities Induced by Chronic Corticosterone Injection

    Directory of Open Access Journals (Sweden)

    Yu-Cheng Li

    2016-10-01

    Full Text Available Chronic glucocorticoid exposure is known to cause depression and metabolic disorders. It is critical to improve abnormal metabolic status as well as depressive-like behaviors in patients with long-term glucocorticoid therapy. This study aimed to investigate the effects of resveratrol on the depressive-like behaviors and metabolic abnormalities induced by chronic corticosterone injection. Male ICR mice were administrated corticosterone (40 mg/kg by subcutaneous injection for three weeks. Resveratrol (50 and 100 mg/kg, fluoxetine (20 mg/kg and pioglitazone (10 mg/kg were given by oral gavage 30 min prior to corticosterone administration. The behavioral tests showed that resveratrol significantly reversed the depressive-like behaviors induced by corticosterone, including the reduced sucrose preference and increased immobility time in the forced swimming test. Moreover, resveratrol also increased the secretion of insulin, reduced serum level of glucose and improved blood lipid profiles in corticosterone-treated mice without affecting normal mice. However, fluoxetine only reverse depressive-like behaviors, and pioglitazone only prevent the dyslipidemia induced by corticosterone. Furthermore, resveratrol and pioglitazone decreased serum level of glucagon and corticosterone. The present results indicated that resveratrol can ameliorate depressive-like behaviors and metabolic abnormalities induced by corticosterone, which suggested that the multiple effects of resveratrol could be beneficial for patients with depression and/or metabolic syndrome associated with long-term glucocorticoid therapy.

  18. Abnormal Sexual Behavior in an Adult Male with Obsessive Compulsive Disorder

    OpenAIRE

    Raguraman, Janakiraman; Priyadharshini, Kothai R.; Chandrasekaran, R.; Vijaysagar, John

    2004-01-01

    A male patient with homosexual obsession in obsessive compulsive disorder shows a better outcome following a combination of pharmacotherapy and psychotherapy. This case report emphasizes the importance of combination therapy in obsessive compulsive disorder with abnormal sexual impulses and behavior.

  19. Nervous system disruption and concomitant behavioral abnormality in early hatched pufferfish larvae exposed to heavy oil.

    Science.gov (United States)

    Kawaguchi, Masahumi; Sugahara, Yuki; Watanabe, Tomoe; Irie, Kouta; Ishida, Minoru; Kurokawa, Daisuke; Kitamura, Shin-Ichi; Takata, Hiromi; Handoh, Itsuki C; Nakayama, Kei; Murakami, Yasunori

    2011-08-01

    Spills of heavy oil (HO) over the oceans have been proven to have an adverse effect on marine life. It has been hypothesized that exposure of early larvae of sinking eggs to HO leads largely to normal morphology, whereas abnormal organization of the developing neural scaffold is likely to be found. HO-induced disruption of the nervous system, which controls animal behavior, may in turn cause abnormalities in the swimming behavior of hatched larvae. To clarify the toxicological effects of HO, we performed exposure experiments and morphological and behavioral analyses in pufferfish (Takifugu rubripes) larvae. Fertilized eggs of pufferfish were exposed to 50 mg/L of HO for 8 days and transferred to fresh seawater before hatching. The hatched larvae were observed for their swimming behavior, morphological appearance, and construction of muscles and nervous system. In HO-exposed larvae, we did not detect any anomaly of body morphology. However, they showed an abnormal swimming pattern and disorganized midbrain, a higher center controlling movement. Our results suggest that HO-exposed fishes suffer developmental disorder of the brain that triggers an abnormal swimming behavior and that HO may be selectively toxic to the brain and cause physical disability throughout the life span of these fishes.

  20. Identification of age-dependent motor and neuropsychological behavioural abnormalities in a mouse model of Mucopolysaccharidosis Type II

    Science.gov (United States)

    Gleitz, Hélène F. E.; O’Leary, Claire; Holley, Rebecca J.

    2017-01-01

    Severe mucopolysaccharidosis type II (MPS II) is a progressive lysosomal storage disease caused by mutations in the IDS gene, leading to a deficiency in the iduronate-2-sulfatase enzyme that is involved in heparan sulphate and dermatan sulphate catabolism. In constitutive form, MPS II is a multi-system disease characterised by progressive neurocognitive decline, severe skeletal abnormalities and hepatosplenomegaly. Although enzyme replacement therapy has been approved for treatment of peripheral organs, no therapy effectively treats the cognitive symptoms of the disease and novel therapies are in development to remediate this. Therapeutic efficacy and subsequent validation can be assessed using a variety of outcome measures that are translatable to clinical practice, such as behavioural measures. We sought to consolidate current knowledge of the cognitive, skeletal and motor abnormalities present in the MPS II mouse model by performing time course behavioural examinations of working memory, anxiety, activity levels, sociability and coordination and balance, up to 8 months of age. Cognitive decline associated with alterations in spatial working memory is detectable at 8 months of age in MPS II mice using spontaneous alternation, together with an altered response to novel environments and anxiolytic behaviour in the open-field. Coordination and balance on the accelerating rotarod were also significantly worse at 8 months, and may be associated with skeletal changes seen in MPS II mice. We demonstrate that the progressive nature of MPS II disease is also seen in the mouse model, and that cognitive and motor differences are detectable at 8 months of age using spontaneous alternation, the accelerating rotarod and the open-field tests. This study establishes neurological, motor and skeletal measures for use in pre-clinical studies to develop therapeutic approaches in MPS II. PMID:28207863

  1. Trial-to-trial reoptimization of motor behavior due to changes in task demands is limited.

    Directory of Open Access Journals (Sweden)

    Orban de Xivry J-J

    Full Text Available Each task requires a specific motor behavior that is tuned to task demands. For instance, writing requires a lot of accuracy while clapping does not. It is known that the brain adjusts the motor behavior to different task demands as predicted by optimal control theory. In this study, the mechanism of this reoptimization process is investigated by varying the accuracy demands of a reaching task. In this task, the width of the reaching target (0.5 or 8 cm was varied either on a trial-to-trial basis (random schedule or in blocks (blocked schedule. On some trials, the hand of the subjects was clamped to a rectilinear trajectory that ended 2 cm on the left or right of the target center. The rejection of this perturbation largely varied with target width in the blocked schedule but not in the random schedule. That is, subjects exhibited different motor behavior in the different schedules despite identical accuracy demands. Therefore, while reoptimization has been considered immediate and automatic, the differences in motor behavior observed across schedules suggest that the reoptimization of the motor behavior is neither happening on a trial-by-trial basis nor obligatory. The absence of trial-to-trial mechanisms, the inability of the brain to adapt to two conflicting task demands and the existence of a switching cost are discussed as possible sources of the non-optimality of motor behavior during the random schedule.

  2. Abnormal motor patterns in the framework of the equilibrium-point hypothesis: a cause for dystonic movements?

    Science.gov (United States)

    Latash, M L; Gutman, S R

    1994-01-01

    Until now, the equilibrium-point hypothesis (lambda model) of motor control has assumed nonintersecting force-length characteristics of the tonic stretch reflex for individual muscles. Limited data from animal experiments suggest, however, that such intersections may occur. We have assumed the possibility of intersection of the characteristics of the tonic stretch reflex and performed a computer simulation of movement trajectories and electromyographic patterns. The simulation has demonstrated, in particular, that a transient change in the slope of the characteristic of an agonist muscle may lead to temporary movement reversals, hesitations, oscillations, and multiple electromyographic bursts that are typical of movements of patients with dystonia. The movement patterns of three patients with idiopathic dystonia during attempts at fast single-joint movements (in the elbow, wrist, and ankle) were recorded and compared with the results of the computer simulation. This approach considers that motor disorders in dystonia result from faulty control patterns that may not correlate with any morphological or neurophysiological changes. It provides a basis for the high variability of dystonic movements. The uniqueness of abnormal motor patterns in dystonia, that precludes statistical analysis across patients, may result from subtle differences in the patterns of intersecting characteristics of the tonic stretch reflex. The applicability of our analysis to disordered multijoint movement patterns is discussed.

  3. Fast social-like learning of complex behaviors based on motor motifs

    Science.gov (United States)

    Calvo Tapia, Carlos; Tyukin, Ivan Y.; Makarov, Valeri A.

    2018-05-01

    Social learning is widely observed in many species. Less experienced agents copy successful behaviors exhibited by more experienced individuals. Nevertheless, the dynamical mechanisms behind this process remain largely unknown. Here we assume that a complex behavior can be decomposed into a sequence of n motor motifs. Then a neural network capable of activating motor motifs in a given sequence can drive an agent. To account for (n -1 )! possible sequences of motifs in a neural network, we employ the winnerless competition approach. We then consider a teacher-learner situation: one agent exhibits a complex movement, while another one aims at mimicking the teacher's behavior. Despite the huge variety of possible motif sequences we show that the learner, equipped with the provided learning model, can rewire "on the fly" its synaptic couplings in no more than (n -1 ) learning cycles and converge exponentially to the durations of the teacher's motifs. We validate the learning model on mobile robots. Experimental results show that the learner is indeed capable of copying the teacher's behavior composed of six motor motifs in a few learning cycles. The reported mechanism of learning is general and can be used for replicating different functions, including, for example, sound patterns or speech.

  4. The relationship between the behavior problems and motor skills of students with intellectual disability.

    Science.gov (United States)

    Lee, Yangchool; Jeoung, Bogja

    2016-12-01

    The purpose of this study was to determine the relationship between the motor skills and the behavior problems of students with intellectual disabilities. The study participants were 117 students with intellectual disabilities who were between 7 and 25 years old (male, n=79; female, n=38) and attending special education schools in South Korea. Motor skill abilities were assessed by using the second version of the Bruininks-Oseretsky test of motor proficiency, which includes subtests in fine motor control, manual coordination, body coordination, strength, and agility. Data were analyzed with SPSS IBM 21 by using correlation and regression analyses, and the significance level was set at P Manual dexterity showed a statistically significant influence on somatic complaint and anxiety/depression, and bilateral coordination had a statistically significant influence on social problems, attention problem, and aggressive behavior. Our results showed that balance had a statistically significant influence on social problems and aggressive behavior, and speed and agility had a statistically significant influence on social problems and aggressive behavior. Upper limb coordination and strength had a statistically significant influence on social problems.

  5. Phrenic motor unit recruitment during ventilatory and non-ventilatory behaviors.

    Science.gov (United States)

    Mantilla, Carlos B; Sieck, Gary C

    2011-10-15

    Phrenic motoneurons are located in the cervical spinal cord and innervate the diaphragm muscle, the main inspiratory muscle in mammals. Similar to other skeletal muscles, phrenic motoneurons and diaphragm muscle fibers form motor units which are the final element of neuromotor control. In addition to their role in sustaining ventilation, phrenic motor units are active in other non-ventilatory behaviors important for airway clearance such as coughing or sneezing. Diaphragm muscle fibers comprise all fiber types and are commonly classified based on expression of contractile proteins including myosin heavy chain isoforms. Although there are differences in contractile and fatigue properties across motor units, there is a matching of properties for the motor neuron and muscle fibers within a motor unit. Motor units are generally recruited in order such that fatigue-resistant motor units are recruited earlier and more often than more fatigable motor units. Thus, in sustaining ventilation, fatigue-resistant motor units are likely required. Based on a series of studies in cats, hamsters and rats, an orderly model of motor unit recruitment was proposed that takes into consideration the maximum forces generated by single type-identified diaphragm muscle fibers as well as the proportion of the different motor unit types. Using this model, eupnea can be accomplished by activation of only slow-twitch diaphragm motor units and only a subset of fast-twitch, fatigue-resistant units. Activation of fast-twitch fatigable motor units only becomes necessary when accomplishing tasks that require greater force generation by the diaphragm muscle, e.g., sneezing and coughing. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Motility abnormalities in esophageal body in GERD: are they truly related to reflux?

    Science.gov (United States)

    Ciriza de los Ríos, C; García Menéndez, L; Díez Hernández, A; Fernández Eroles, A L; Vega Fernández, A; Enguix Armada, A

    2005-03-01

    Esophageal motility abnormalities have been observed in patients with gastroesophageal reflux disease. The aim of the present study was to determine if esophageal motor disorders in patients with a positive response to the omeprazole test are related to the existence of reflux or they are concomitant findings. A 24-hour pH monitoring and a stationary manometry were performed on 128 patients: 49 of them had normal manometry, 31 hypotensive lower esophageal sphincter, 29 motor disorder in esophageal body, and 19 hypotensive lower esophageal sphincter and motor disorder in esophageal body. We found an association between the presence of abnormal reflux and motor disorder in esophageal body (chi test; P esophageal motility was the disorder most strongly related to reflux, whereas the hypercontractile disorders were not clearly attributed to it. Esophageal manometric abnormalities should be considered cautiously before considering a motor disorder as a consequence of abnormal reflux.

  7. [DAILY AND ABNORMAL EATING BEHAVIORS IN A COMMUNITY SAMPLE OF CHILEAN ADULTS].

    Science.gov (United States)

    Oda-Montecinos, Camila; Saldaña, Carmina; Andrés Valle, Ana

    2015-08-01

    this research aimed to characterize the daily eating behavior in a sample of Chilean adults according to their Body Mass Index (BMI) and gender and to analyze the possible links between these variables and abnormal eating behaviors. 657 participants (437 women and 220 men, age range 18-64 years) were evaluated with a battery of self-administered questionnaires. Mean BMI was 25.50 kg/m2 (women 24.96 kg/m2, men 26.58 kg/m2), being significantly higher the mean of BMI in the men group, being the BMI mean of the total sample and that of the male group in the overweight range. participants with overweight (BMI ≥ 25 kg/m2), in contrast with normal-weight group, tended to do more frequently the following behaviors: skip meals, follow a diet, eat less homemade food, eat faster and in greater quantities, in addition to do a greater number of abnormal eating behaviors of various kinds and to rate significantly higher in clinical scales that evaluated eating restraint and overeating. Men showed significantly more eating behaviors linked with overeating, and women performed more behaviors related with eating restraint and emotional eating. the results suggest that, besides "what" people eat, "how" people eat, in terms of specific behaviors, may contribute to the rapid increase of overweight in Chilean population. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  8. Early communicative behaviors and their relationship to motor skills in extremely preterm infants.

    Science.gov (United States)

    Benassi, Erika; Savini, Silvia; Iverson, Jana M; Guarini, Annalisa; Caselli, Maria Cristina; Alessandroni, Rosina; Faldella, Giacomo; Sansavini, Alessandra

    2016-01-01

    Despite the predictive value of early spontaneous communication for identifying risk for later language concerns, very little research has focused on these behaviors in extremely low-gestational-age infants (ELGAmotor development. In this study, communicative behaviors (gestures, vocal utterances and their coordination) were evaluated during mother-infant play interactions in 20 ELGA infants and 20 full-term infants (FT) at 12 months (corrected age for ELGA infants). Relationships between gestures and motor skills, evaluated using the Bayley-III Scales were also examined. ELGA infants, compared with FT infants, showed less advanced communicative, motor, and cognitive skills. Giving and representational gestures were produced at a lower rate by ELGA infants. In addition, pointing gestures and words were produced by a lower percentage of ELGA infants. Significant positive correlations between gestures (pointing and representational gestures) and fine motor skills were found in the ELGA group. We discuss the relevance of examining spontaneous communicative behaviors and motor skills as potential indices of early development that may be useful for clinical assessment and intervention with ELGA infants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. [Non-motor symptoms in Parkinson's disease: cognition and behavior].

    Science.gov (United States)

    Bonnet, Anne Marie; Czernecki, Virginie

    2013-09-01

    Although the diagnosis of Parkinson disease is based on motor symptoms, it is now well known that non-motor symptoms are an integral part of this pathology, involving in fact multiple systems. These non-motor symptoms affect large population of patients and can appear sometimes before the motor disorders. The non-motor symptoms include mainly neuropsychological difficulties, neuropsychiatric symptoms, and autonomic disorders, but involve also pain and sleep disturbances for example. Depression may occur at any stage of the disease, and consists in major depressive disorder, minor depressive disorder, and dysthymia. During the course of the disease, 50% of patients experience anxiety. Apathy is present in up to 30-40% of patients, due to loss of motivation, appearing in emotional, intellectual and behavioral domains. Dopamine dysregulation syndrome and impulse control disorders are not rare, and in relation with dopaminergic therapies. Impulse control disorders include pathological gambling, hyper sexuality, compulsive shopping, and eating disorder. Visual hallucinations can occur in 30% of patients, mostly induced by dopaminergic therapies. Often, they have deeper impact on the quality of life than the motor symptoms themselves, which stay the focus of attention during consulting. Identifying those can help in providing better care with a positive impact on the quality of life of the patients.

  10. Abnormal eating behavior in video-recorded meals in anorexia nervosa.

    Science.gov (United States)

    Gianini, Loren; Liu, Ying; Wang, Yuanjia; Attia, Evelyn; Walsh, B Timothy; Steinglass, Joanna

    2015-12-01

    Eating behavior during meals in anorexia nervosa (AN) has long been noted to be abnormal, but little research has been done carefully characterizing these behaviors. These eating behaviors have been considered pathological, but are not well understood. The current study sought to quantify ingestive and non-ingestive behaviors during a laboratory lunch meal, compare them to the behaviors of healthy controls (HC), and examine their relationships with caloric intake and anxiety during the meal. A standardized lunch meal was video-recorded for 26 individuals with AN and 10 HC. Duration, frequency, and latency of 16 mealtime behaviors were coded using computer software. Caloric intake, dietary energy density (DEDS), and anxiety were also measured. Nine mealtime behaviors were identified that distinguished AN from HC: staring at food, tearing food, nibbling/picking, dissecting food, napkin use, inappropriate utensil use, hand fidgeting, eating latency, and nibbling/picking latency. Among AN, a subset of these behaviors was related to caloric intake and anxiety. These data demonstrate that the mealtime behaviors of patients with AN and HC differ significantly, and some of these behaviors may be associated with food intake and anxiety. These mealtime behaviors may be important treatment targets to improve eating behavior in individuals with AN. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Studies of planning behavior of aircraft pilots in normal, abnormal, and emergency situations

    Science.gov (United States)

    Johannsen, G.; Rouse, W. B.; Hillmann, K.

    1981-01-01

    A methodology for the study of human planning behavior in complex dynamic systems is presented and applied to the study of aircraft pilot behavior in normal, abnormal and emergency situations. The method measures the depth of planning, that is the level of detail employed with respect to a specific task, according to responses to a verbal questionnaire, and compares planning depth with variables relating to time, task criticality and the probability of increased task difficulty. In two series of experiments, depth of planning was measured on a five- or ten-point scale during various phases of flight in a HFB-320 simulator under normal flight conditions, abnormal scenarios involving temporary runway closure due to snow removal or temporary CAT-III conditions due to a dense fog, and emergency scenarios involving engine shut-down or hydraulic pressure loss. Results reveal a dichotomy between event-driven and time-driven planning, different effects of automation in abnormal and emergency scenarios and a low correlation between depth of planning and workload or flight performance.

  12. MOTORIC STIMULATION RELATED TO FINE MOTORIC DEVELOPMENT ON CHILD

    Directory of Open Access Journals (Sweden)

    Mira Triharini

    2017-07-01

    Full Text Available Introduction: Motor developmental stimulation is an activity undertaken to stimulate the children basic skills and so they can grow and develop optimally. Children who obtain a direct stimulus will grow faster than who get less stimulus. Mother’s behavior of stimulation is very important for children, it is considering as the basic needs of children and it must be fulfilled. Providing good stimulation could optimize fine motor development in children. The purpose of this study was to analyze mother’s behavior about motor stimulation with fine motor development in toddler age 4-5 years old. Method: Design have been  used in this study was cross sectional. Population were mothers and their toddler in Group A of Dharma Wanita Persatuan Driyorejo Gresik Preschool. Sample were 51 respondents recruited by using purposive sampling technique according to inclusion and exclusion criteria. The independent variable was mother’s behavior about motor stimulation whereas dependent variable was fine motor development in toddler. The data were collected using questionnaire and conducting observation on fine motor development based on Denver Development Screening Test (DDST. Data then analyzed using Spearman Rho (r test to find relation between mother’s behaviors about stimulation motor on their toddler fine motor development. Result: Results  of this study showed that there were correlations between mother’s knowledge and fine motor development in toddler (p=0.000, between mother’s attitude and fine motor development in toddler (p=0.000, and between mother’s actions and fine motor development in toddler (p=0.000. Analysis: In sort study found that there were relation between fine motor development and mother’s behavior. Discussion: Therefore mother’s behavior needed to be improved. Further research about stimulation motor and fine motor development aspects in toddler is required.

  13. The role of pre-school children motor behavior in developing their self-concept

    Directory of Open Access Journals (Sweden)

    Perić Dušan

    2014-01-01

    Full Text Available The assessment of motor behavior and general intellectual abilities were performed on a sample of 42 pre-school children (22 boys and 20 girls aged 6 (±3 months; moreover, the self-concept of those children was analysed. For the assessment of their motor behavior six movement tasks were chosen and the Mary Gutrich scale was applied for the analysis of the results. The children's intellectual abilities were assessed by the means of Raven's colored progressive matrices so as to enable the groups to homogenise, as well as to eliminate potential parasite factors when drawing conclusions. The self-concept analysis was performed using the pshychological interview during the course of which the children described their impression of their own abilities with regard to the past, present and future. The data related to the self-concept were complemented with the analysis of the children's drawings. The statistical analysis of the data gathered showed that motor behavior plays a significant role in developing one's self-concept, which is especially true of boys. Even though there is no significant statistical difference between boys and girls with respect to the quality of their motor behavior, there are significant differences between them pertaining to the vocabulary they use when describing their own selves, i.e. their self-concept, especially with respect to the present and future. Boys seem to use more extensive motor-related vocabulary when describing themselves, especially those with greater motor skills. Both boys and girls show a tendency to describe themselves as incapable in the past. When describing their present moment capabilities, girls tend to use vocabulary related to play and independence, whereas they mostly use vocabulary related to professions and sex roles when referring to the future. These findings indicate that social factors are of immense importance from a very early age, especially among girls. Moreover, the results show that

  14. Cerebellar Plasticity and Motor Learning Deficits in a Copy Number Variation Mouse Model of Autism

    Science.gov (United States)

    Piochon, Claire; Kloth, Alexander D; Grasselli, Giorgio; Titley, Heather K; Nakayama, Hisako; Hashimoto, Kouichi; Wan, Vivian; Simmons, Dana H; Eissa, Tahra; Nakatani, Jin; Cherskov, Adriana; Miyazaki, Taisuke; Watanabe, Masahiko; Takumi, Toru; Kano, Masanobu; Wang, Samuel S-H; Hansel, Christian

    2014-01-01

    A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behavior and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behavior deficits. We find that in patDp/+ mice delay eyeblink conditioning—a form of cerebellum-dependent motor learning—is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fiber-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibers—a model for activity-dependent synaptic pruning—is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism. PMID:25418414

  15. Motor learning in animal models of Parkinson's disease: Aberrant synaptic plasticity in the motor cortex.

    Science.gov (United States)

    Xu, Tonghui; Wang, Shaofang; Lalchandani, Rupa R; Ding, Jun B

    2017-04-01

    In Parkinson's disease (PD), dopamine depletion causes major changes in the brain, resulting in the typical cardinal motor features of the disease. PD neuropathology has been restricted to postmortem examinations, which are limited to only a single time of PD progression. Models of PD in which dopamine tone in the brain is chemically or physically disrupted are valuable tools in understanding the mechanisms of the disease. The basal ganglia have been well studied in the context of PD, and circuit changes in response to dopamine loss have been linked to the motor dysfunctions in PD. However, the etiology of the cognitive dysfunctions that are comorbid in PD patients has remained unclear until now. In this article, we review recent studies exploring how dopamine depletion affects the motor cortex at the synaptic level. In particular, we highlight our recent findings on abnormal spine dynamics in the motor cortex of PD mouse models through in vivo time-lapse imaging and motor skill behavior assays. In combination with previous studies, a role of the motor cortex in skill learning and the impairment of this ability with the loss of dopamine are becoming more apparent. Taken together, we conclude with a discussion on the potential role for the motor cortex in PD, with the possibility of targeting the motor cortex for future PD therapeutics. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  16. Cellular Mechanisms Underlying Behavioral State-Dependent Bidirectional Modulation of Motor Cortex Output

    Directory of Open Access Journals (Sweden)

    Julia Schiemann

    2015-05-01

    Full Text Available Neuronal activity in primary motor cortex (M1 correlates with behavioral state, but the cellular mechanisms underpinning behavioral state-dependent modulation of M1 output remain largely unresolved. Here, we performed in vivo patch-clamp recordings from layer 5B (L5B pyramidal neurons in awake mice during quiet wakefulness and self-paced, voluntary movement. We show that L5B output neurons display bidirectional (i.e., enhanced or suppressed firing rate changes during movement, mediated via two opposing subthreshold mechanisms: (1 a global decrease in membrane potential variability that reduced L5B firing rates (L5Bsuppressed neurons, and (2 a coincident noradrenaline-mediated increase in excitatory drive to a subpopulation of L5B neurons (L5Benhanced neurons that elevated firing rates. Blocking noradrenergic receptors in forelimb M1 abolished the bidirectional modulation of M1 output during movement and selectively impaired contralateral forelimb motor coordination. Together, our results provide a mechanism for how noradrenergic neuromodulation and network-driven input changes bidirectionally modulate M1 output during motor behavior.

  17. Perinatal Development of the Motor Systems Involved in Postural Control

    Directory of Open Access Journals (Sweden)

    Laurent Vinay

    2005-01-01

    Full Text Available Motor behaviors of some species, such as the rat and the human baby, are quite immature at birth. Here we review recent data on some of the mechanisms underlying the postnatal maturation of posture in the rat, in particular the development of pathways descending from the brain stem and projecting onto the lumbar enlargement of the spinal cord. A short-lasting depletion in serotonin affects both posture and the excitability of motoneurons. Here we try to extrapolate to human development and suggest that the abnormalities in motor control observed in childhood—e.g, deficits in motor coordination—might have their roots in the prenatal period, in particular serotonin depletion due to exposure to several environmental and toxicological factors during pregnancy.

  18. Streptozotocin induced oxidative stress, innate immune system responses and behavioral abnormalities in male mice.

    Science.gov (United States)

    Amiri, Shayan; Haj-Mirzaian, Arya; Momeny, Majid; Amini-Khoei, Hossein; Rahimi-Balaei, Maryam; Poursaman, Simin; Rastegar, Mojgan; Nikoui, Vahid; Mokhtari, Tahmineh; Ghazi-Khansari, Mahmoud; Hosseini, Mir-Jamal

    2017-01-06

    Recent evidence indicates the involvement of inflammatory factors and mitochondrial dysfunction in the etiology of psychiatric disorders such as anxiety and depression. To investigate the possible role of mitochondrial-induced sterile inflammation in the co-occurrence of anxiety and depression, in this study, we treated adult male mice with the intracerebroventricular (i.c.v.) infusion of a single low dose of streptozotocin (STZ, 0.2mg/mouse). Using valid and qualified behavioral tests for the assessment of depressive and anxiety-like behaviors, we showed that STZ-treated mice exhibited behaviors relevant to anxiety and depression 24h following STZ treatment. We observed that the co-occurrence of anxiety and depressive-like behaviors in animals were associated with abnormal mitochondrial function, nitric oxide overproduction and, the increased activity of cytosolic phospholipase A 2 (cPLA 2 ) in the hippocampus. Further, STZ-treated mice had a significant upregulation of genes associated with the innate immune system such as toll-like receptors 2 and 4. Pathological evaluations showed no sign of neurodegeneration in the hippocampus of STZ-treated mice. Results of this study revealed that behavioral abnormalities provoked by STZ, as a cytotoxic agent that targets mitochondria and energy metabolism, are associated with abnormal mitochondrial activity and, consequently the initiation of innate-inflammatory responses in the hippocampus. Our findings highlight the role of mitochondria and innate immunity in the formation of sterile inflammation and behaviors relevant to anxiety and depression. Also, we have shown that STZ injection (i.c.v.) might be an animal model for depression and anxiety disorders based on sterile inflammation. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Associations of Gross Motor Delay, Behavior, and Quality of Life in Young Children With Autism Spectrum Disorder.

    Science.gov (United States)

    Hedgecock, James B; Dannemiller, Lisa A; Shui, Amy M; Rapport, Mary Jane; Katz, Terry

    2018-04-01

    Young children with autism spectrum disorder (ASD) often have gross motor delays that may accentuate problem daytime behavior and health-related quality of life (QoL). The objective of this study was to describe the degree of gross motor delays in young children with ASD and associations of gross motor delays with problem daytime behavior and QoL. The primary hypothesis was that Gross motor delays significantly modifies the associations between internalizing or externalizing problem daytime behavior and QoL. This study used a cross-sectional, retrospective analysis. Data from 3253 children who were 2 to 6 years old and who had ASD were obtained from the Autism Speaks Autism Treatment Network and analyzed using unadjusted and adjusted linear regression. Measures included the Vineland Adaptive Behavior Scales, 2nd edition, gross motor v-scale score (VABS-GM) (for Gross motor delays), the Child Behavior Checklist (CBCL) (for Problem daytime behavior), and the Pediatric Quality of Life Inventory (PedsQL) (for QoL). The mean VABS-GM was 12.12 (SD = 2.2), representing performance at or below the 16th percentile. After adjustment for covariates, the internalizing CBCL t score decreased with increasing VABS-GM (β = - 0.64 SE = 0.12). Total and subscale PedsQL scores increased with increasing VABS-GM (for total score: β = 1.79 SE = 0.17; for subscale score: β = 0.9-2.66 SE = 0.17-0.25). CBCL internalizing and externalizing t scores decreased with increasing PedsQL total score (β = - 0.39 SE = 0.01; β = - 0.36 SE = 0.01). The associations between CBCL internalizing or externalizing t scores and PedsQL were significantly modified by VABSGM (β = - 0.026 SE = 0.005]; β = - 0.019 SE = 0.007). The study lacked ethnic and socioeconomic diversity. Measures were collected via parent report without accompanying clinical assessment. Cross motor delay was independently associated with Problem daytime behavior and QoL in children with ASD. Gross

  20. Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia.

    Science.gov (United States)

    Kita, Hitoshi; Kita, Takako

    2011-07-13

    The motor cortex (MC) sends massive projections to the basal ganglia. Motor disabilities in patients and animal models of Parkinson's disease (PD) may be caused by dopamine (DA)-depleted basal ganglia that abnormally process the information originating from MC. To study how DA depletion alters signal transfer in the basal ganglia, MC stimulation-induced (MC-induced) unitary responses were recorded from the basal ganglia of control and 6-hydroxydopamine-treated hemi-parkinsonian rats anesthetized with isoflurane. This report describes new findings about how DA depletion alters MC-induced responses. MC stimulation evokes an excitation in normally quiescent striatal (Str) neurons projecting to the globus pallidus external segment (GPe). After DA-depletion, the spontaneous firing of Str-GPe neurons increases, and MC stimulation evokes a shorter latency excitation followed by a long-lasting inhibition that was invisible under normal conditions. The increased firing activity and the newly exposed long inhibition generate tonic inhibition and a disfacilitation in GPe. The disfacilitation in GPe is then amplified in basal ganglia circuitry and generates a powerful long inhibition in the basal ganglia output nucleus, the globus pallidus internal segment. Intra-Str injections of a behaviorally effective dose of DA precursor l-3,4-dihydroxyphenylalanine effectively reversed these changes. These newly observed mechanisms also support the generation of pauses and burst activity commonly observed in the basal ganglia of parkinsonian subjects. These results suggest that the generation of abnormal response sequences in the basal ganglia contributes to the development of motor disabilities in PD and that intra-Str DA supplements effectively suppress abnormal signal transfer.

  1. Upper gastrointestinal sensory-motor dysfunction in diabetes mellitus

    Science.gov (United States)

    Zhao, Jing-Bo; Frøkjær, Jens Brøndum; Drewes, Asbjørn Mohr; Ejskjaer, Niels

    2006-01-01

    Gastrointestinal (GI) sensory-motor abnormalities are common in patients with diabetes mellitus and may involve any part of the GI tract. Abnormalities are frequently sub-clinical, and fortunately only rarely do severe and life-threatening problems occur. The pathogenesis of abnormal upper GI sensory-motor function in diabetes is incompletely understood and is most likely multi-factorial of origin. Diabetic autonomic neuropathy as well as acute suboptimal control of diabetes has been shown to impair GI motor and sensory function. Morphological and biomechanical remodeling of the GI wall develops during the duration of diabetes, and may contribute to motor and sensory dysfunction. In this review sensory and motility disorders of the upper GI tract in diabetes is discussed; and the morphological changes and biomechanical remodeling related to the sensory-motor dysfunction is also addressed. PMID:16718808

  2. Deprivation and Recovery of Sleep in Succession Enhances Reflexive Motor Behavior.

    Science.gov (United States)

    Sprenger, Andreas; Weber, Frederik D; Machner, Bjoern; Talamo, Silke; Scheffelmeier, Sabine; Bethke, Judith; Helmchen, Christoph; Gais, Steffen; Kimmig, Hubert; Born, Jan

    2015-11-01

    Sleep deprivation impairs inhibitory control over reflexive behavior, and this impairment is commonly assumed to dissipate after recovery sleep. Contrary to this belief, here we show that fast reflexive behaviors, when practiced during sleep deprivation, is consolidated across recovery sleep and, thereby, becomes preserved. As a model for the study of sleep effects on prefrontal cortex-mediated inhibitory control in humans, we examined reflexive saccadic eye movements (express saccades), as well as speeded 2-choice finger motor responses. Different groups of subjects were trained on a standard prosaccade gap paradigm before periods of nocturnal sleep and sleep deprivation. Saccade performance was retested in the next morning and again 24 h later. The rate of express saccades was not affected by sleep after training, but slightly increased after sleep deprivation. Surprisingly, this increase augmented even further after recovery sleep and was still present 4 weeks later. Additional experiments revealed that the short testing after sleep deprivation was sufficient to increase express saccades across recovery sleep. An increase in speeded responses across recovery sleep was likewise found for finger motor responses. Our findings indicate that recovery sleep can consolidate motor disinhibition for behaviors practiced during prior sleep deprivation, thereby persistently enhancing response automatization. © The Author 2015. Published by Oxford University Press.

  3. Abnormal Gait Behavior Detection for Elderly Based on Enhanced Wigner-Ville Analysis and Cloud Incremental SVM Learning

    Directory of Open Access Journals (Sweden)

    Jian Luo

    2016-01-01

    Full Text Available A cloud based health care system is proposed in this paper for the elderly by providing abnormal gait behavior detection, classification, online diagnosis, and remote aid service. Intelligent mobile terminals with triaxial acceleration sensor embedded are used to capture the movement and ambulation information of elderly. The collected signals are first enhanced by a Kalman filter. And the magnitude of signal vector features is then extracted and decomposed into a linear combination of enhanced Gabor atoms. The Wigner-Ville analysis method is introduced and the problem is studied by joint time-frequency analysis. In order to solve the large-scale abnormal behavior data lacking problem in training process, a cloud based incremental SVM (CI-SVM learning method is proposed. The original abnormal behavior data are first used to get the initial SVM classifier. And the larger abnormal behavior data of elderly collected by mobile devices are then gathered in cloud platform to conduct incremental training and get the new SVM classifier. By the CI-SVM learning method, the knowledge of SVM classifier could be accumulated due to the dynamic incremental learning. Experimental results demonstrate that the proposed method is feasible and can be applied to aged care, emergency aid, and related fields.

  4. Motor Neurons

    DEFF Research Database (Denmark)

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....

  5. Caracterization of the motor profile of students with autistic disorder

    Directory of Open Access Journals (Sweden)

    Paola Matiko Okuda

    2010-12-01

    Full Text Available Thematic focus: The motor abnormalities may be part of so-called comorbidities that can coexist with autistic disorder. Objective: To characterize the motor profile of students with autistic disorder. Method: the study included six children with autistic disorder in elementary school, male, aged 5 years and 5 months and 10 years and 9 months. After signing the consent form by parents or guardians, the students were submitted to the Motor Development Scale for assessment of fine motor, gross motor performance, balance, body scheme, spatial organization, temporal organization and laterality. Results: The results revealed a significant difference between the motor age and chronological age. According to the classification of the Scale of Motor Development, students in this study showed motor development lower than expected for age. Conclusion: The students with autistic disorder in this study presented a profile of Developmental Coordination Disorder in comorbidity, showing that participants of this research presented difficulties in activities that required skills such as handwriting. Thus, motor and psychomotor needs of these students were focused on educational and clinical environment to reduce the impact of behavioral and social manifestations.

  6. Relations of Preschoolers' Visual-Motor and Object Manipulation Skills With Executive Function and Social Behavior.

    Science.gov (United States)

    MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly

    2016-12-01

    The purpose of this article was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom during the preschool year. Ninety-two children aged 3 to 5 years old (M age  = 4.31 years) were recruited to participate. Comprehensive measures of visual-motor integration skills, object manipulation skills, executive function, and social behaviors were administered in the fall and spring of the preschool year. Our findings indicated that children who had better visual-motor integration skills in the fall had better executive function scores (B = 0.47 [0.20], p gender, Head Start status, and site location, but not after controlling for children's baseline levels of executive function. In addition, children who demonstrated better object manipulation skills in the fall showed significantly stronger social behavior in their classrooms (as rated by teachers) in the spring, including more self-control (B - 0.03 [0.00], p social behavior in the fall and other covariates. Children's visual-motor integration and object manipulation skills in the fall have modest to moderate relations with executive function and social behaviors later in the preschool year. These findings have implications for early learning initiatives and school readiness.

  7. Long-term post-stroke changes include myelin loss, specific deficits in sensory and motor behaviors and complex cognitive impairment detected using active place avoidance.

    Directory of Open Access Journals (Sweden)

    Jin Zhou

    Full Text Available Persistent neurobehavioral deficits and brain changes need validation for brain restoration. Two hours middle cerebral artery occlusion (tMCAO or sham surgery was performed in male Sprague-Dawley rats. Neurobehavioral and cognitive deficits were measured over 10 weeks included: (1 sensory, motor, beam balance, reflex/abnormal responses, hindlimb placement, forepaw foot fault and cylinder placement tests, and (2 complex active place avoidance learning (APA and simple passive avoidance retention (PA. Electroretinogram (ERG, hemispheric loss (infarction, hippocampus CA1 neuronal loss and myelin (Luxol Fast Blue staining in several fiber tracts were also measured. In comparison to Sham surgery, tMCAO surgery produced significant deficits in all behavioral tests except reflex/abnormal responses. Acute, short lived deficits following tMCAO were observed for forelimb foot fault and forelimb cylinder placement. Persistent, sustained deficits for the whole 10 weeks were exhibited for motor (p<0.001, sensory (p<0.001, beam balance performance (p<0.01 and hindlimb placement behavior (p<0.01. tMCAO produced much greater and prolonged cognitive deficits in APA learning (maximum on last trial of 604±83% change, p<0.05 but only a small, comparative effect on PA retention. Hemispheric loss/atrophy was measured 10 weeks after tMCAO and cross-validated by two methods (e.g., almost identical % ischemic hemispheric loss of 33.4±3.5% for H&E and of 34.2±3.5% for TTC staining. No visual dysfunction by ERG and no hippocampus neuronal loss were detected after tMCAO. Fiber tract damage measured by Luxol Fast Blue myelin staining intensity was significant (p<0.01 in the external capsule and striatum but not in corpus callosum and anterior commissure. In summary, persistent neurobehavioral deficits were validated as important endpoints for stroke restorative research in the future. Fiber myelin loss appears to contribute to these long term behavioral dysfunctions and

  8. Abnormal occipital event-related potentials in Parkinson's disease with concomitant REM sleep behavior disorder.

    Science.gov (United States)

    Gaudreault, Pierre-Olivier; Gagnon, Jean-François; Montplaisir, Jacques; Vendette, Mélanie; Postuma, Ronald B; Gagnon, Katia; Gosselin, Nadia

    2013-02-01

    Rapid eye movement sleep behavior disorder is found in 33-46% of patients with Parkinson's disease and was shown to be associated with cognitive deficits. Our goal was to improve our understanding of the role of this sleep disorder in cerebral dysfunction occurring in Parkinson's disease using a visual cognitive task and event-related potentials. Sixteen patients with Parkinson's disease and rapid eye movement sleep behavior disorder, 15 patients with Parkinson's disease without rapid eye movement sleep behavior disorder and 16 healthy control subjects were included. The amplitude and latency of event-related potentials were compared between groups. No group differences were found for reaction times or accuracy. A Group effect was found for P2 wave amplitude; patients with rapid eye movement sleep behavior disorder had increased P2 in comparison with the control group (p disorder were associated with abnormal visual P2 component of event-related potentials. Although patients with Parkinson's disease alone were not significantly different from patients with combined Parkinson's disease and rapid eye movement sleep behavior disorder, their P2 amplitudes were not sufficiently abnormal to differ from that of control subjects. This study confirms that rapid eye movement sleep behavior disorder accentuates cerebral dysfunctions in Parkinson's disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. A Model for the Transfer of Perceptual-Motor Skill Learning in Human Behaviors

    Science.gov (United States)

    Rosalie, Simon M.; Muller, Sean

    2012-01-01

    This paper presents a preliminary model that outlines the mechanisms underlying the transfer of perceptual-motor skill learning in sport and everyday tasks. Perceptual-motor behavior is motivated by performance demands and evolves over time to increase the probability of success through adaptation. Performance demands at the time of an event…

  10. Oseltamivir use and severe abnormal behavior in Japanese children and adolescents with influenza: Is a self-controlled case series study applicable?

    Science.gov (United States)

    Fukushima, Wakaba; Ozasa, Kotaro; Okumura, Akihisa; Mori, Masaaki; Hosoya, Mitsuaki; Nakano, Takashi; Tanabe, Takuya; Yamaguchi, Naoto; Suzuki, Hiroshi; Mori, Mitsuru; Hatayama, Hideaki; Ochiai, Hirotaka; Kondo, Kyoko; Ito, Kazuya; Ohfuji, Satoko; Nakamura, Yosikazu; Hirota, Yoshio

    2017-08-24

    Since the 1990s, self-controlled designs including self-controlled case series (SCCS) studies have been occasionally used in post-marketing evaluation of drug or vaccine safety. An SCCS study was tentatively applied to evaluate the relationship between oseltamivir use and abnormal behavior Type A (serious abnormal behavior potentially leading to an accident or harm to another person) in influenza patients. From the original prospective cohort study with approximately 10,000 Japanese children and adolescents with influenza (aged collaborating hospitals/clinics were analyzed. We hypothesized four combination patterns of the effect period (i.e., the period that effect of oseltamivir on occurrence of abnormal behavior Type A is likely) and the control period. Mantel-Haenszel rate ratio (M-H RR) and its 95% confidence interval (CI) were calculated as the relative risk estimate. Among 28 subjects in the SCCS study, 24 subjects (86%) were administered oseltamivir and 4 subjects (14%) were not. Abnormal behavior Type A was more likely to occur in the effect period than the control period in every pattern (M-H RR: 1.90-29.1). We observed the highest estimate when the effect period was set between the initial intake of oseltamivir and T max (M-H RR: 29.1, 95% CI: 4.21-201). Abnormal behavior Type A was more likely to develop up to approximately 30 times during the period between the initial intake of oseltamivir and T max . However, this period overlapped with the early period of influenza where high fever was observed. Since useful approaches to control the influence of the natural disease course of influenza were not available in this study, we could not deny the possibility that abnormal behavior was induced by influenza itself. The SCCS study was not an optimal method to evaluate the relationship between oseltamivir use and abnormal behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy

    Science.gov (United States)

    Mentis, George Z.; Blivis, Dvir; Liu, Wenfang; Drobac, Estelle; Crowder, Melissa E.; Kong, Lingling; Alvarez, Francisco J.; Sumner, Charlotte J.; O'Donovan, Michael J.

    2011-01-01

    SUMMARY To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes illustrating the reversibility of these synaptic defects. De-afferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention. PMID:21315257

  12. Force and complexity of tongue task training influences behavioral measures of motor learning

    DEFF Research Database (Denmark)

    Kothari, Mohit; Svensson, Peter; Huo, Xueliang

    2012-01-01

    Relearning of motor skills is important in neurorehabilitation. We investigated the improvement of training success during simple tongue protrusion (two force levels) and a more complex tongue-training paradigm using the Tongue Drive System (TDS). We also compared subject-based reports of fun, pain...... training influences behavioral aspects of tongue motor learning....

  13. Environmental enrichment attenuates behavioral abnormalities in valproic acid-exposed autism model mice.

    Science.gov (United States)

    Yamaguchi, Hiroshi; Hara, Yuta; Ago, Yukio; Takano, Erika; Hasebe, Shigeru; Nakazawa, Takanobu; Hashimoto, Hitoshi; Matsuda, Toshio; Takuma, Kazuhiro

    2017-08-30

    We recently demonstrated that prenatal exposure to valproic acid (VPA) at embryonic day 12.5 causes autism spectrum disorder (ASD)-like phenotypes such as hypolocomotion, anxiety-like behavior, social deficits and cognitive impairment in mice and that it decreases dendritic spine density in the hippocampal CA1 region. Previous studies show that some abnormal behaviors are improved by environmental enrichment in ASD rodent models, but it is not known whether environmental enrichment improves cognitive impairment. In the present study, we examined the effects of early environmental enrichment on behavioral abnormalities and neuromorphological changes in prenatal VPA-treated mice. We also examined the role of dendritic spine formation and synaptic protein expression in the hippocampus. Mice were housed for 4 weeks from 4 weeks of age under either a standard or enriched environment. Enriched housing was found to increase hippocampal brain-derived neurotrophic factor mRNA levels in both control and VPA-exposed mice. Furthermore, in VPA-treated mice, the environmental enrichment improved anxiety-like behavior, social deficits and cognitive impairment, but not hypolocomotion. Prenatal VPA treatment caused loss of dendritic spines in the hippocampal CA1 region and decreases in mRNA levels of postsynaptic density protein-95 and SH3 and multiple ankyrin repeat domains 2 in the hippocampus. These hippocampal changes were improved by the enriched housing. These findings suggest that the environmental enrichment improved most ASD-like behaviors including cognitive impairment in the VPA-treated mice by enhancing dendritic spine function. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Interindividual differences in motor network connectivity and behavioral response to iTBS in stroke patients.

    Science.gov (United States)

    Diekhoff-Krebs, Svenja; Pool, Eva-Maria; Sarfeld, Anna-Sophia; Rehme, Anne K; Eickhoff, Simon B; Fink, Gereon R; Grefkes, Christian

    2017-01-01

    Cerebral plasticity-inducing approaches like repetitive transcranial magnetic stimulation (rTMS) are of high interest in situations where reorganization of neural networks can be observed, e.g., after stroke. However, an increasing number of studies suggest that improvements in motor performance of the stroke-affected hand following modulation of primary motor cortex (M1) excitability by rTMS shows a high interindividual variability. We here tested the hypothesis that in stroke patients the interindividual variability of behavioral response to excitatory rTMS is related to interindividual differences in network connectivity of the stimulated region. Chronic stroke patients ( n  = 14) and healthy controls ( n  = 12) were scanned with functional magnetic resonance imaging (fMRI) while performing a simple hand motor task. Dynamic causal modeling (DCM) was used to investigate effective connectivity of key motor regions. On two different days after the fMRI experiment, patients received either intermittent theta-burst stimulation (iTBS) over ipsilesional M1 or control stimulation over the parieto-occipital cortex. Motor performance and TMS parameters of cortical excitability were measured before and after iTBS. Our results revealed that patients with better motor performance of the affected hand showed stronger endogenous coupling between supplemental motor area (SMA) and M1 before starting the iTBS intervention. Applying iTBS to ipsilesional M1 significantly increased ipsilesional M1 excitability and decreased contralesional M1 excitability as compared to control stimulation. Individual behavioral improvements following iTBS specifically correlated with neural coupling strengths in the stimulated hemisphere prior to stimulation, especially for connections targeting the stimulated M1. Combining endogenous connectivity and behavioral parameters explained 82% of the variance in hand motor performance observed after iTBS. In conclusion, the data suggest that the

  15. Feeding behaviors and other motor development in healthy children (2-24 months).

    Science.gov (United States)

    Carruth, Betty Ruth; Skinner, Jean D

    2002-04-01

    To monitor infant's gross, fine and oral motor development patterns related to feeding. An incomplete block design was used with 57 to 60 (sample = 98) mothers interviewed when their children were 2, 3, 4, 6, 8, 10, 12, 16 and 24 months (within +/- 5 days of birth date). Each mother had 5 to 6 interviews. Selected developmental feeding behaviors were monitored using in-home interviews conducted by trained interviewers (n = 2). At each interview, mothers reported the child's age when behaviors first occurred, and anthropometric measurements were performed. Subjects were healthy white children who lived mostly in homes with educated two-parent families of upper socioeconomic status. Mean behavioral ages were within normal ranges reported in the literature, whereas individuals exhibited a wide diversity in reported ages. Examples of gross motor skills (age in months, +/- SD) included sitting without help (5.50+/-2.08) and crawling (8.00+/-1.55). Mean ages for self-feeding fine motor skills showed children reaching for a spoon when hungry (5.47+/-1.44), using fingers to rake food toward self (8.87+/-2.58) and using fingers to self-feed soft foods (13.52+/-2.83). Oral behaviors included children opening their mouth when food approached (4.46+/-1.37), eating food with tiny lumps (8.70+/-2.03) and chewing and swallowing firmer foods without choking (12.17+/-2.28). Mean ages for feeding behaviors occurred within expected age ranges associated with normal development. However, mothers reported that individual children exhibited a wide age range for achieving these behaviors. Our results should be considered in counseling mothers about infant feeding practices.

  16. FGF-2 induces behavioral recovery after early adolescent injury to the motor cortex of rats.

    Science.gov (United States)

    Nemati, Farshad; Kolb, Bryan

    2011-11-20

    Motor cortex injuries in adulthood lead to poor performance in behavioral tasks sensitive to limb movements in the rat. We have shown previously that motor cortex injury on day 10 or day 55 allow significant spontaneous recovery but not injury in early adolescence (postnatal day 35 "P35"). Previous studies have indicated that injection of basic fibroblast growth factor (FGF-2) enhances behavioral recovery after neonatal cortical injury but such effect has not been studied following motor cortex lesions in early adolescence. The present study undertook to investigate the possibility of such behavioral recovery. Rats with unilateral motor cortex lesions were assigned to two groups in which they received FGF-2 or bovine serum albumin (BSA) and were tested in a number of behavioral tests (postural asymmetry, skilled reaching, sunflower seed manipulation, forepaw inhibition in swimming). Golgi-Cox analysis was used to examine the dendritic structure of pyramidal cells in the animals' parietal (layer III) and forelimb (layer V) area of the cortex. The results indicated that rats injected with FGF-2 (but not BSA) showed significant behavioral recovery that was associated with increased dendritic length and spine density. The present study suggests a role for FGF-2 in the recovery of function following injury during early adolescence. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. The Feldenkrais Method: A Dynamic Approach to Changing Motor Behavior.

    Science.gov (United States)

    Buchanan, Patricia A.; Ulrich, Beverly D.

    2001-01-01

    Describes the Feldenkrais Method of somatic education, noting parallels with a dynamic systems theory (DST) approach to motor behavior. Feldenkrais uses movement and perception to foster individualized improvement in function. DST explains that a human-environment system continually adapts to changing conditions and assembles behaviors…

  18. Is there an association among actual motor competence, perceived motor competence, physical activity, and sedentary behavior in preschool children?

    OpenAIRE

    Lopes, Vítor P.; Barnett, L.M.; Rodrigues, Luis Paulo

    2016-01-01

    The purpose is to explore relationships among moderate to vigorous physical activity (MVPA), sedentary behavior (SB), and actual gross motor competence (MC) and perceived motor competence (PMC) in young children. Data were collected in 101 children (M age = 4.9 ± 0.93 years). MVPA was measured with accelerometry. Gross MC was assessed with the Portuguese version of the Movement Assessment Battery for Children. PMC was evaluated with the Pictorial Scale of Perceived Competence and Social Accep...

  19. Astrocytic Contributions to Synaptic and Learning Abnormalities in a Mouse Model of Fragile X Syndrome.

    Science.gov (United States)

    Hodges, Jennifer L; Yu, Xinzhu; Gilmore, Anthony; Bennett, Hannah; Tjia, Michelle; Perna, James F; Chen, Chia-Chien; Li, Xiang; Lu, Ju; Zuo, Yi

    2017-07-15

    Fragile X syndrome (FXS) is the most common type of mental retardation attributable to a single-gene mutation. It is caused by FMR1 gene silencing and the consequent loss of its protein product, fragile X mental retardation protein. Fmr1 global knockout (KO) mice recapitulate many behavioral and synaptic phenotypes associated with FXS. Abundant evidence suggests that astrocytes are important contributors to neurological diseases. This study investigates astrocytic contributions to the progression of synaptic abnormalities and learning impairments associated with FXS. Taking advantage of the Cre-lox system, we generated and characterized mice in which fragile X mental retardation protein is selectively deleted or exclusively expressed in astrocytes. We performed in vivo two-photon imaging to track spine dynamics/morphology along dendrites of neurons in the motor cortex and examined associated behavioral defects. We found that adult astrocyte-specific Fmr1 KO mice displayed increased spine density in the motor cortex and impaired motor-skill learning. The learning defect coincided with a lack of enhanced spine dynamics in the motor cortex that normally occurs in response to motor skill acquisition. Although spine density was normal at 1 month of age in astrocyte-specific Fmr1 KO mice, new spines formed at an elevated rate. Furthermore, fragile X mental retardation protein expression in only astrocytes was insufficient to rescue most spine or behavioral defects. Our work suggests a joint astrocytic-neuronal contribution to FXS pathogenesis and reveals that heightened spine formation during adolescence precedes the overabundance of spines and behavioral defects found in adult Fmr1 KO mice. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Differential genetic regulation of motor activity and anxiety-related behaviors in mice using an automated home cage task.

    Science.gov (United States)

    Kas, Martien J H; de Mooij-van Malsen, Annetrude J G; Olivier, Berend; Spruijt, Berry M; van Ree, Jan M

    2008-08-01

    Traditional behavioral tests, such as the open field test, measure an animal's responsiveness to a novel environment. However, it is generally difficult to assess whether the behavioral response obtained from these tests relates to the expression level of motor activity and/or to avoidance of anxiogenic areas. Here, an automated home cage environment for mice was designed to obtain independent measures of motor activity levels and of sheltered feeding preference during three consecutive days. Chronic treatment with the anxiolytic drug chlordiazepoxide (5 and 10 mg/kg/day) in C57BL/6J mice reduced sheltered feeding preference without altering motor activity levels. Furthermore, two distinct chromosome substitution strains, derived from C57BL/6J (host strain) and A/J (donor strain) inbred strains, expressed either increased sheltering preference in females (chromosome 15) or reduced motor activity levels in females and males (chromosome 1) when compared to C57BL/6J. Longitudinal behavioral monitoring revealed that these phenotypic differences maintained after adaptation to the home cage. Thus, by using new automated behavioral phenotyping approaches, behavior can be dissociated into distinct behavioral domains (e.g., anxiety-related and motor activity domains) with different underlying genetic origin and pharmacological responsiveness.

  1. Abnormal motor cortex excitability during linguistic tasks in adductor-type spasmodic dysphonia.

    Science.gov (United States)

    Suppa, A; Marsili, L; Giovannelli, F; Di Stasio, F; Rocchi, L; Upadhyay, N; Ruoppolo, G; Cincotta, M; Berardelli, A

    2015-08-01

    In healthy subjects (HS), transcranial magnetic stimulation (TMS) applied during 'linguistic' tasks discloses excitability changes in the dominant hemisphere primary motor cortex (M1). We investigated 'linguistic' task-related cortical excitability modulation in patients with adductor-type spasmodic dysphonia (ASD), a speech-related focal dystonia. We studied 10 ASD patients and 10 HS. Speech examination included voice cepstral analysis. We investigated the dominant/non-dominant M1 excitability at baseline, during 'linguistic' (reading aloud/silent reading/producing simple phonation) and 'non-linguistic' tasks (looking at non-letter strings/producing oral movements). Motor evoked potentials (MEPs) were recorded from the contralateral hand muscles. We measured the cortical silent period (CSP) length and tested MEPs in HS and patients performing the 'linguistic' tasks with different voice intensities. We also examined MEPs in HS and ASD during hand-related 'action-verb' observation. Patients were studied under and not-under botulinum neurotoxin-type A (BoNT-A). In HS, TMS over the dominant M1 elicited larger MEPs during 'reading aloud' than during the other 'linguistic'/'non-linguistic' tasks. Conversely, in ASD, TMS over the dominant M1 elicited increased-amplitude MEPs during 'reading aloud' and 'syllabic phonation' tasks. CSP length was shorter in ASD than in HS and remained unchanged in both groups performing 'linguistic'/'non-linguistic' tasks. In HS and ASD, 'linguistic' task-related excitability changes were present regardless of the different voice intensities. During hand-related 'action-verb' observation, MEPs decreased in HS, whereas in ASD they increased. In ASD, BoNT-A improved speech, as demonstrated by cepstral analysis and restored the TMS abnormalities. ASD reflects dominant hemisphere excitability changes related to 'linguistic' tasks; BoNT-A returns these excitability changes to normal. © 2015 Federation of European Neuroscience Societies and John

  2. Effects of Bilateral Electrolytic Lesions of the Dorsomedial Striatum on Motor Behavior and Instrumental Learning in Rats

    Directory of Open Access Journals (Sweden)

    Pamphyle Abedi Mukutenga

    2012-08-01

    Full Text Available Introduction: The dorsal striatum plays an important role in the control of motor activity and learning processes within the basal ganglia circuitry. Furthermore, recent works have suggested functional differentiation between subregions of the dorsal striatum Methods: The present study examined the effects of bilateral electrolytic lesions of the dorsomedial striatum on motor behavior and learning ability in rats using a series of behavioral tests. 20 male wistar rats were used in the experiment and behavioral assessment were conducted using open field test, rotarod test and 8-arm radial maze. Results: In the open field test, rats with bilateral electrolytic lesions of the dorsomedial striatum showed a normal motor function in the horizontal locomotor activity, while in rearing activity they displayed a statistically significant motor impairment when compared to sham operated group. In the rotarod test, a deficit in motor coordination and acquisition of skilled behavior was observed in rats with bilateral electrolytic lesions of the dorsomedial striatum compared to sham. However, radial maze performance revealed similar capacity in the acquisition of learning task between experimental groups. Discussion: Our results support the premise of the existence of functional dissociation between the dorsomedial and the dorsolateral regions of the dorsal striatum. In addition, our data suggest that the associative dorsomedial striatum may be as critical in striatum-based motor control.

  3. Causal Role of Motor Simulation in Turn-Taking Behavior.

    Science.gov (United States)

    Hadley, Lauren V; Novembre, Giacomo; Keller, Peter E; Pickering, Martin J

    2015-12-16

    Overlap between sensory and motor representations has been documented for a range of human actions, from grasping (Rizzolatti et al., 1996b) to playing a musical instrument (Novembre and Keller, 2014). Such overlap suggests that individuals use motor simulation to predict the outcome of observed actions (Wolpert, 1997). Here we investigate motor simulation as a basis of human communication. Using a musical turn-taking task, we show that pianists call on motor representations of their partner's part to predict when to come in for their own turn. Pianists played alternating solos with a videoed partner, and double-pulse transcranial magnetic stimulation was applied around the turn-switch to temporarily disrupt processing in two cortical regions implicated previously in different forms of motor simulation: (1) the dorsal premotor cortex (dPMC), associated with automatic motor resonance during passive observation of hand actions, especially when the actions are familiar (Lahav et al., 2007); and (2) the supplementary motor area (SMA), involved in active motor imagery, especially when the actions are familiar (Baumann et al., 2007). Stimulation of the right dPMC decreased the temporal accuracy of pianists' (right-hand) entries relative to sham when the partner's (left-hand) part had been rehearsed previously. This effect did not occur for dPMC stimulation without rehearsal or for SMA stimulation. These findings support the role of the dPMC in predicting the time course of observed actions via resonance-based motor simulation during turn-taking. Because turn-taking spans multiple modes of human interaction, we suggest that simulation is a foundational mechanism underlying the temporal dynamics of joint action. Even during passive observation, seeing or hearing somebody execute an action from within our repertoire activates motor cortices of our brain. But what is the functional relevance of such "motor simulation"? By combining a musical duet task with a real

  4. Focal Dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE

    Directory of Open Access Journals (Sweden)

    David ePerruchoud

    2014-06-01

    Full Text Available Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, and the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized by sensory and motor deficits in the absence of basic motor impairments. Despite the fundamental impact of sensory-motor integration mechanisms on daily life, the general principles of healthy and pathological anatomic-functional organization of sensory-motor integration remain to be clarified. Based on the available data from experimental psychology, neurophysiology, and neuroimaging, we propose a bio-computational model of sensory-motor integration: the Sensory-Motor Integrative Loop for Enacting (SMILE. Aiming at direct therapeutic implementations and with the final target of implementing novel intervention protocols for motor rehabilitation, our main goal is to provide the information necessary for further validating the SMILE model. By translating neuroscientific hypotheses into empirical investigations and clinically relevant questions, the prediction based on the SMILE model can be further extended to other pathological conditions characterized by impaired sensory-motor integration.

  5. Focal dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE).

    Science.gov (United States)

    Perruchoud, David; Murray, Micah M; Lefebvre, Jeremie; Ionta, Silvio

    2014-01-01

    Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized by sensory and motor deficits in the absence of basic motor impairments. Despite the fundamental impact of sensory-motor integration mechanisms on daily life, the general principles of healthy and pathological anatomic-functional organization of sensory-motor integration remain to be clarified. Based on the available data from experimental psychology, neurophysiology, and neuroimaging, we propose a bio-computational model of sensory-motor integration: the Sensory-Motor Integrative Loop for Enacting (SMILE). Aiming at direct therapeutic implementations and with the final target of implementing novel intervention protocols for motor rehabilitation, our main goal is to provide the information necessary for further validating the SMILE model. By translating neuroscientific hypotheses into empirical investigations and clinically relevant questions, the prediction based on the SMILE model can be further extended to other pathological conditions characterized by impaired sensory-motor integration.

  6. Investigation of the Association Between Motor Stereotypy Behavior With Fundamental Movement Skills, Adaptive Functioning, and Autistic Spectrum Disorder Symptomology in Children With Intellectual Disabilities.

    Science.gov (United States)

    Powell, Joanne L; Pringle, Lydia; Greig, Matt

    2017-02-01

    Motor stereotypy behaviors are patterned, coordinated, repetitive behaviors that are particularly evident in those with an autistic spectrum disorder and intellectual disabilities. The extent to which motor stereotypy behavior severity is associated with motor skills and maladaptive behavior, measures of adaptive functioning, along with fundamental movement skills and degree of autistic spectrum disorder symptomology is assessed in this preliminary report. Twelve participants, aged 7 to 16 years, with a reported motor stereotypy behavior and either mild or severe intellectual disability comprising developmental or global delay took part in the study. Spearman rho correlational analysis showed that severity of motor stereotypy behavior was significantly positively correlated with autistic spectrum disorder symptomology ( P = .008) and maladaptive behavior ( P = .008) but not fundamental movement skills ( P > .05). An increase in fundamental movement skills score was associated with a decrease in autistic spectrum disorder symptomology ( P = .01) and an increase in motor skills ( P = .002). This study provides evidence showing a significant relationship between motor stereotypy behavior severity with degree of autistic spectrum disorder symptomology and maladaptive behavior.

  7. Mental and Behavioral Symptoms of Person's with Asperger's Syndrome: Relationships with Social Isolation and Handicaps

    Science.gov (United States)

    Tani, Masayuki; Kanai, Chieko; Ota, Haruhisa; Yamada, Takashi; Watanabe, Hiromi; Yokoi, Hideki; Takayama, Yuko; Ono, Taisei; Hashimoto, Ryuichiro; Kato, Nobumasa; Iwanami, Akira

    2012-01-01

    People with Asperger's syndrome (AS) experience mental comorbidities, and behavioral symptoms that can deepen social isolation and handicaps. We compared the frequency of mental and behavioral symptoms, motor abnormality, and life history between adults with AS and those with no mental disorders but with disturbance of social functions and…

  8. Interindividual differences in motor network connectivity and behavioral response to iTBS in stroke patients

    Directory of Open Access Journals (Sweden)

    Svenja Diekhoff-Krebs

    2017-01-01

    Full Text Available Cerebral plasticity-inducing approaches like repetitive transcranial magnetic stimulation (rTMS are of high interest in situations where reorganization of neural networks can be observed, e.g., after stroke. However, an increasing number of studies suggest that improvements in motor performance of the stroke-affected hand following modulation of primary motor cortex (M1 excitability by rTMS shows a high interindividual variability. We here tested the hypothesis that in stroke patients the interindividual variability of behavioral response to excitatory rTMS is related to interindividual differences in network connectivity of the stimulated region. Chronic stroke patients (n = 14 and healthy controls (n = 12 were scanned with functional magnetic resonance imaging (fMRI while performing a simple hand motor task. Dynamic causal modeling (DCM was used to investigate effective connectivity of key motor regions. On two different days after the fMRI experiment, patients received either intermittent theta-burst stimulation (iTBS over ipsilesional M1 or control stimulation over the parieto-occipital cortex. Motor performance and TMS parameters of cortical excitability were measured before and after iTBS. Our results revealed that patients with better motor performance of the affected hand showed stronger endogenous coupling between supplemental motor area (SMA and M1 before starting the iTBS intervention. Applying iTBS to ipsilesional M1 significantly increased ipsilesional M1 excitability and decreased contralesional M1 excitability as compared to control stimulation. Individual behavioral improvements following iTBS specifically correlated with neural coupling strengths in the stimulated hemisphere prior to stimulation, especially for connections targeting the stimulated M1. Combining endogenous connectivity and behavioral parameters explained 82% of the variance in hand motor performance observed after iTBS. In conclusion, the data suggest that

  9. Abnormal metabolic network activity in REM sleep behavior disorder.

    Science.gov (United States)

    Holtbernd, Florian; Gagnon, Jean-François; Postuma, Ron B; Ma, Yilong; Tang, Chris C; Feigin, Andrew; Dhawan, Vijay; Vendette, Mélanie; Soucy, Jean-Paul; Eidelberg, David; Montplaisir, Jacques

    2014-02-18

    To determine whether the Parkinson disease-related covariance pattern (PDRP) expression is abnormally increased in idiopathic REM sleep behavior disorder (RBD) and whether increased baseline activity is associated with greater individual risk of subsequent phenoconversion. For this cohort study, we recruited 2 groups of RBD and control subjects. Cohort 1 comprised 10 subjects with RBD (63.5 ± 9.4 years old) and 10 healthy volunteers (62.7 ± 8.6 years old) who underwent resting-state metabolic brain imaging with (18)F-fluorodeoxyglucose PET. Cohort 2 comprised 17 subjects with RBD (68.9 ± 4.8 years old) and 17 healthy volunteers (66.6 ± 6.0 years old) who underwent resting brain perfusion imaging with ethylcysteinate dimer SPECT. The latter group was followed clinically for 4.6 ± 2.5 years by investigators blinded to the imaging results. PDRP expression was measured in both RBD groups and compared with corresponding control values. PDRP expression was elevated in both groups of subjects with RBD (cohort 1: p abnormalities in subjects with idiopathic RBD are associated with a greater likelihood of subsequent phenoconversion to a progressive neurodegenerative syndrome.

  10. Evaluation of Esophageal Motor Function With High-resolution Manometry

    Science.gov (United States)

    2013-01-01

    For several decades esophageal manometry has been the test of choice to evaluate disorders of esophageal motor function. The recent introduction of high-resolution manometry for the study of esophageal motor function simplified performance of esophageal manometry, and revealed previously unidentified patterns of normal and abnormal esophageal motor function. Presentation of pressure data as color contour plots or esophageal pressure topography led to the development of new tools for analyzing and classifying esophageal motor patterns. The current standard and still developing approach to do this is the Chicago classification. While this methodical approach is improving our diagnosis of esophageal motor disorders, it currently does not address all motor abnormalities. We will explore the Chicago classification and disorders that it does not address. PMID:23875094

  11. Abnormal interhemispheric connectivity in male psychopathic offenders.

    Science.gov (United States)

    Hoppenbrouwers, Sylco S; De Jesus, Danilo R; Sun, Yinming; Stirpe, Tania; Hofman, Dennis; McMaster, Jeff; Hughes, Ginny; Daskalakis, Zafiris J; Schutter, Dennis J L G

    2014-01-01

    Psychopathic offenders inevitably violate interpersonal norms and frequently resort to aggressive and criminal behaviour. The affective and cognitive deficits underlying these behaviours have been linked to abnormalities in functional interhemispheric connectivity. However, direct neurophysiological evidence for dysfunctional connectivity in psychopathic offenders is lacking. We used transcranial magnetic stimulation combined with electroencephalography to examine interhemispheric connectivity in the dorsolateral and motor cortex in a sample of psychopathic offenders and healthy controls. We also measured intracortical inhibition and facilitation over the left and right motor cortex to investigate the effects of local cortical processes on interhemispheric connectivity. We enrolled 17 psychopathic offenders and 14 controls in our study. Global abnormalities in right to left functional connectivity were observed in psychopathic offenders compared with controls. Furthermore, in contrast to controls, psychopathic offenders showed increased intracortical inhibition in the right, but not the left, hemisphere. The relatively small sample size limited the sensitivity to show that the abnormalities in interhemispheric connectivity were specifically related to the dorsolateral prefrontal cortex in psychopathic offenders. To our knowledge, this study provides the first neurophysiological evidence for abnormal interhemispheric connectivity in psychopathic offenders and may further our understanding of the disruptive antisocial behaviour of these offenders.

  12. Evidence for a role of orexin/hypocretin system in vestibular lesion-induced locomotor abnormalities in rats

    Directory of Open Access Journals (Sweden)

    Leilei Pan

    2016-07-01

    Full Text Available Vestibular damage can induce locomotor abnormalities in both animals and humans. Rodents with bilateral vestibular loss showed vestibular deficits syndrome such as circling, opisthotonus as well as locomotor and exploratory hyperactivity. Previous studies have investigated the changes in the dopamine system after vestibular loss, but the results are inconsistent and inconclusive. Numerous evidences indicate that the orexin system is implicated in central motor control. We hypothesized that orexin may be potentially involved in vestibular loss-induced motor disorders. In this study, we examined the effects of arsanilate- or 3, 3′-iminodipropionitrile (IDPN-induced vestibular lesion (AVL or IVL on the orexin-A (OXA labeling in rat hypothalamus using immunohistochemistry. The vestibular lesion-induced locomotor abnormalities were recorded and verified using a histamine H4 receptor antagonist JNJ7777120 (20 mg/kg, i.p.. The effects of the orexin receptor type 1 antagonist SB334867 (16 μg, i.c.v. on these behavior responses were also investigated. At 72 h post-AVL and IVL, animals exhibited vestibular deficit syndrome and locomotor hyperactivity in the home cages. These responses were significantly alleviated by JNJ7777120 which also eliminated AVL-induced increases in exploratory behavior in an open field. The numbers of OXA-labeled neurons in the hypothalamus were significantly increased in the AVL animals at 72 h post-AVL and in the IVL animals at 24, 48 and 72 h post-IVL. SB334867 significantly attenuated the vestibular deficit syndrome and locomotor hyperactivity at 72 h post-AVL and IVL. It also decreased exploratory behavior in the AVL animals. These results suggested that the alteration of OXA expression might contribute to locomotor abnormalities after acute vestibular lesion. The orexin receptors might be the potential therapeutic targets for vestibular disorders.

  13. Investigation of Perceptual-Motor Behavior Across the Expert Athlete to Disabled Patient Skill Continuum can Advance Theory and Practical Application.

    Science.gov (United States)

    Müller, Sean; Vallence, Ann-Maree; Winstein, Carolee

    2017-12-14

    A framework is presented of how theoretical predictions can be tested across the expert athlete to disabled patient skill continuum. Common-coding theory is used as the exemplar to discuss sensory and motor system contributions to perceptual-motor behavior. Behavioral and neural studies investigating expert athletes and patients recovering from cerebral stroke are reviewed. They provide evidence of bi-directional contributions of visual and motor systems to perceptual-motor behavior. Majority of this research is focused on perceptual-motor performance or learning, with less on transfer. The field is ripe for research designed to test theoretical predictions across the expert athlete to disabled patient skill continuum. Our view has implications for theory and practice in sports science, physical education, and rehabilitation.

  14. The relationship of motor skills and adaptive behavior skills in young children with autism spectrum disorders.

    Science.gov (United States)

    MacDonald, Megan; Lord, Catherine; Ulrich, Dale

    2013-11-01

    To determine the relationship of motor skills and the core behaviors of young children with autism, social affective skills and repetitive behaviors, as indicated through the calibrated autism severity scores. The univariate GLM tested the relationship of gross and fine motor skills measured by the gross motor scale and the fine motor scale of the MSEL with autism symptomology as measured by calibrated autism severity scores. Majority of the data collected took place in an autism clinic. A cohort of 159 young children with ASD (n=110), PDD-NOS (n=26) and non-ASD (developmental delay, n=23) between the ages of 12-33 months were recruited from early intervention studies and clinical referrals. Children with non-ASD (developmental delay) were included in this study to provide a range of scores indicted through calibrated autism severity. Not applicable. The primary outcome measures in this study were calibrated autism severity scores. Fine motor skills and gross motor skills significantly predicted calibrated autism severity (p motor skills displayed higher levels of calibrated autism severity. The fine and gross motor skills are significantly related to autism symptomology. There is more to focus on and new avenues to explore in the realm of discovering how to implement early intervention and rehabilitation for young children with autism and motor skills need to be a part of the discussion.

  15. Glutamate receptor antibodies directed against AMPA receptors subunit 3 peptide B (GluR3B) can be produced in DBA/2J mice, lower seizure threshold and induce abnormal behavior.

    Science.gov (United States)

    Ganor, Yonatan; Goldberg-Stern, Hadassa; Cohen, Ran; Teichberg, Vivian; Levite, Mia

    2014-04-01

    Anti-GluR3B antibodies (GluR3B Ab's), directed against peptide B/aa372-395 of GluR3 subunit of glutamate/AMPA receptors, are found in ∼35% of epilepsy patients, activate glutamate/AMPA receptors, evoke ion currents, kill neurons and damage the brain. We recently found that GluR3B Ab's also associate with neurological/psychiatric/behavioral abnormalities in epilepsy patients. Here we asked if GluR3B Ab's could be produced in DBA/2J mice, and also modulate seizure threshold and/or cause behavioral/motor impairments in these mice. DBA/2J mice were immunized with the GluR3B peptide in Complete Freund's Adjuvant (CFA), or with controls: ovalbumin (OVA), CFA, or phosphate-buffer saline (PBS). GluR3B Ab's and OVA Ab's were tested. Seizures were induced in all mice by the chemoconvulsant pentylenetetrazole (PTZ) at three time points, each time with less PTZ to avoid non-specific death. Behavior was examined in Open-Field, RotaRod and Grip tests. GluR3B Ab's were produced only in GluR3B-immunized mice, while OVA Ab's were produced only in OVA-immunized mice, showing high Ab's specificity. In GluR3B Ab's negative mice, seizure severity scores and percentages of animals developing generalized seizures declined in response to decreasing PTZ doses. In contrast, both parameters remained unchanged/high in the GluR3B Ab's positive mice, showing that these mice were more susceptible to seizures. The seizure scores associated significantly with the GluR3B Ab's levels. GluR3B Ab's positive mice were also more anxious in Open-Field test, fell faster in RotaRod test, and fell more in Grip test, compared to all the control mice. GluR3B Ab's are produced in DBA/2J mice, facilitate seizures and induce behavioral/motor impairments. This animal model can therefore serve for studying autoimmune epilepsy and abnormal behavior mediated by pathogenic anti-GluR3B Ab's. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Changes in sensitivity of reward and motor behavior to dopaminergic, glutamatergic, and cholinergic drugs in a mouse model of fragile X syndrome.

    Directory of Open Access Journals (Sweden)

    Eric W Fish

    Full Text Available Fragile X syndrome (FXS is a leading cause of intellectual disability. FXS is caused by loss of function of the FMR1 gene, and mice in which Fmr1 has been inactivated have been used extensively as a preclinical model for FXS. We investigated the behavioral pharmacology of drugs acting through dopaminergic, glutamatergic, and cholinergic systems in fragile X (Fmr1 (-/Y mice with intracranial self-stimulation (ICSS and locomotor activity measurements. We also measured brain expression of tyrosine hydroxylase (TH, the rate-limiting enzyme in dopamine biosynthesis. Fmr1 (-/Y mice were more sensitive than wild type mice to the rewarding effects of cocaine, but less sensitive to its locomotor stimulating effects. Anhedonic but not motor depressant effects of the atypical neuroleptic, aripiprazole, were reduced in Fmr1 (-/Y mice. The mGluR5-selective antagonist, 6-methyl-2-(phenylethynylpyridine (MPEP, was more rewarding and the preferential M1 antagonist, trihexyphenidyl, was less rewarding in Fmr1 (-/Y than wild type mice. Motor stimulation by MPEP was unchanged, but stimulation by trihexyphenidyl was markedly increased, in Fmr1 (-/Y mice. Numbers of midbrain TH+ neurons in the ventral tegmental area were unchanged, but were lower in the substantia nigra of Fmr1 (-/Y mice, although no changes in TH levels were found in their forebrain targets. The data are discussed in the context of known changes in the synaptic physiology and pharmacology of limbic motor systems in the Fmr1 (-/Y mouse model. Preclinical findings suggest that drugs acting through multiple neurotransmitter systems may be necessary to fully address abnormal behaviors in individuals with FXS.

  17. Changes in sensitivity of reward and motor behavior to dopaminergic, glutamatergic, and cholinergic drugs in a mouse model of fragile X syndrome.

    Science.gov (United States)

    Fish, Eric W; Krouse, Michael C; Stringfield, Sierra J; Diberto, Jeffrey F; Robinson, J Elliott; Malanga, C J

    2013-01-01

    Fragile X syndrome (FXS) is a leading cause of intellectual disability. FXS is caused by loss of function of the FMR1 gene, and mice in which Fmr1 has been inactivated have been used extensively as a preclinical model for FXS. We investigated the behavioral pharmacology of drugs acting through dopaminergic, glutamatergic, and cholinergic systems in fragile X (Fmr1 (-/Y)) mice with intracranial self-stimulation (ICSS) and locomotor activity measurements. We also measured brain expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine biosynthesis. Fmr1 (-/Y) mice were more sensitive than wild type mice to the rewarding effects of cocaine, but less sensitive to its locomotor stimulating effects. Anhedonic but not motor depressant effects of the atypical neuroleptic, aripiprazole, were reduced in Fmr1 (-/Y) mice. The mGluR5-selective antagonist, 6-methyl-2-(phenylethynyl)pyridine (MPEP), was more rewarding and the preferential M1 antagonist, trihexyphenidyl, was less rewarding in Fmr1 (-/Y) than wild type mice. Motor stimulation by MPEP was unchanged, but stimulation by trihexyphenidyl was markedly increased, in Fmr1 (-/Y) mice. Numbers of midbrain TH+ neurons in the ventral tegmental area were unchanged, but were lower in the substantia nigra of Fmr1 (-/Y) mice, although no changes in TH levels were found in their forebrain targets. The data are discussed in the context of known changes in the synaptic physiology and pharmacology of limbic motor systems in the Fmr1 (-/Y) mouse model. Preclinical findings suggest that drugs acting through multiple neurotransmitter systems may be necessary to fully address abnormal behaviors in individuals with FXS.

  18. The Relationship between Personality Dimensions and Resiliency to Environmental Stress in Orange-Winged Amazon Parrots (Amazona amazonica), as Indicated by the Development of Abnormal Behaviors

    Science.gov (United States)

    Cussen, Victoria A.; Mench, Joy A.

    2015-01-01

    Parrots are popular companion animals, but are frequently relinquished because of behavioral problems, including abnormal repetitive behaviors like feather damaging behavior and stereotypy. In addition to contributing to pet relinquishment, these behaviors are important as potential indicators of diminished psychological well-being. While abnormal behaviors are common in captive animals, their presence and/or severity varies between animals of the same species that are experiencing the same environmental conditions. Personality differences could contribute to this observed individual variation, as they are known risk factors for stress sensitivity and affective disorders in humans. The goal of this study was to assess the relationship between personality and the development and severity of abnormal behaviors in captive-bred orange-winged Amazon parrots (Amazona amazonica). We monitored between-individual behavioral differences in enrichment-reared parrots of known personality types before, during, and after enrichment deprivation. We predicted that parrots with higher scores for neurotic-like personality traits would be more susceptible to enrichment deprivation and develop more abnormal behaviors. Our results partially supported this hypothesis, but also showed that distinct personality dimensions were related to different forms of abnormal behavior. While neuroticism-like traits were linked to feather damaging behavior, extraversion-like traits were negatively related to stereotypic behavior. More extraverted birds showed resiliency to environmental stress, developing fewer stereotypies during enrichment deprivation and showing lower levels of these behaviors following re-enrichment. Our data, together with the results of the few studies conducted on other species, suggest that, as in humans, certain personality types render individual animals more susceptible or resilient to environmental stress. Further, this susceptibility/resiliency can have a long

  19. The Relationship between Personality Dimensions and Resiliency to Environmental Stress in Orange-Winged Amazon Parrots (Amazona amazonica, as Indicated by the Development of Abnormal Behaviors.

    Directory of Open Access Journals (Sweden)

    Victoria A Cussen

    Full Text Available Parrots are popular companion animals, but are frequently relinquished because of behavioral problems, including abnormal repetitive behaviors like feather damaging behavior and stereotypy. In addition to contributing to pet relinquishment, these behaviors are important as potential indicators of diminished psychological well-being. While abnormal behaviors are common in captive animals, their presence and/or severity varies between animals of the same species that are experiencing the same environmental conditions. Personality differences could contribute to this observed individual variation, as they are known risk factors for stress sensitivity and affective disorders in humans. The goal of this study was to assess the relationship between personality and the development and severity of abnormal behaviors in captive-bred orange-winged Amazon parrots (Amazona amazonica. We monitored between-individual behavioral differences in enrichment-reared parrots of known personality types before, during, and after enrichment deprivation. We predicted that parrots with higher scores for neurotic-like personality traits would be more susceptible to enrichment deprivation and develop more abnormal behaviors. Our results partially supported this hypothesis, but also showed that distinct personality dimensions were related to different forms of abnormal behavior. While neuroticism-like traits were linked to feather damaging behavior, extraversion-like traits were negatively related to stereotypic behavior. More extraverted birds showed resiliency to environmental stress, developing fewer stereotypies during enrichment deprivation and showing lower levels of these behaviors following re-enrichment. Our data, together with the results of the few studies conducted on other species, suggest that, as in humans, certain personality types render individual animals more susceptible or resilient to environmental stress. Further, this susceptibility/resiliency can

  20. The Relationship between Personality Dimensions and Resiliency to Environmental Stress in Orange-Winged Amazon Parrots (Amazona amazonica), as Indicated by the Development of Abnormal Behaviors.

    Science.gov (United States)

    Cussen, Victoria A; Mench, Joy A

    2015-01-01

    Parrots are popular companion animals, but are frequently relinquished because of behavioral problems, including abnormal repetitive behaviors like feather damaging behavior and stereotypy. In addition to contributing to pet relinquishment, these behaviors are important as potential indicators of diminished psychological well-being. While abnormal behaviors are common in captive animals, their presence and/or severity varies between animals of the same species that are experiencing the same environmental conditions. Personality differences could contribute to this observed individual variation, as they are known risk factors for stress sensitivity and affective disorders in humans. The goal of this study was to assess the relationship between personality and the development and severity of abnormal behaviors in captive-bred orange-winged Amazon parrots (Amazona amazonica). We monitored between-individual behavioral differences in enrichment-reared parrots of known personality types before, during, and after enrichment deprivation. We predicted that parrots with higher scores for neurotic-like personality traits would be more susceptible to enrichment deprivation and develop more abnormal behaviors. Our results partially supported this hypothesis, but also showed that distinct personality dimensions were related to different forms of abnormal behavior. While neuroticism-like traits were linked to feather damaging behavior, extraversion-like traits were negatively related to stereotypic behavior. More extraverted birds showed resiliency to environmental stress, developing fewer stereotypies during enrichment deprivation and showing lower levels of these behaviors following re-enrichment. Our data, together with the results of the few studies conducted on other species, suggest that, as in humans, certain personality types render individual animals more susceptible or resilient to environmental stress. Further, this susceptibility/resiliency can have a long

  1. Distinct motor impairments of dopamine D1 and D2 receptor knockout mice revealed by three types of motor behavior

    Directory of Open Access Journals (Sweden)

    Toru eNakamura

    2014-07-01

    Full Text Available Both D1R and D2R knock out (KO mice of the major dopamine receptors show significant motor impairments. However, there are some discrepant reports, which may be due to the differences in genetic background and experimental procedures. In addition, only few studies directly compared the motor performance of D1R and D2R KO mice. In this paper, we examined the behavioral difference among N10 congenic D1R and D2R KO, and wild type (WT mice. First, we examined spontaneous motor activity in the home cage environment for consecutive five days. Second, we examined motor performance using the rota-rod task, a standard motor task in rodents. Third, we examined motor ability with the Step-Wheel task in which mice were trained to run in a motor-driven turning wheel adjusting their steps on foothold pegs to drink water. The results showed clear differences among the mice of three genotypes in three different types of behavior. In monitoring spontaneous motor activities, D1R and D2R KO mice showed higher and lower 24 h activities, respectively, than WT mice. In the rota-rod tasks, at a low speed, D1R KO mice showed poor performance but later improved, whereas D2R KO mice showed a good performance at early days without further improvement. When first subjected to a high speed task, the D2R KO mice showed poorer rota-rod performance at a low speed than the D1R KO mice. In the Step-Wheel task, across daily sessions, D2R KO mice increased the duration that mice run sufficiently close to the spout to drink water, and decreased time to touch the floor due to missing the peg steps and number of times the wheel was stopped, which performance was much better than that of D1R KO mice. These incongruent results between the two tasks for D1R and D2R KO mice may be due to the differences in the motivation for the rota-rod and Step-Wheel tasks, aversion- and reward-driven, respectively. The Step-Wheel system may become a useful tool for assessing the motor ability of WT

  2. Transcranial magnetic stimulation in lower motor neuron diseases.

    Science.gov (United States)

    Attarian, S; Azulay, J-Ph; Lardillier, D; Verschueren, A; Pouget, J

    2005-01-01

    To study the diagnostic value of transcranial magnetic stimulation (TMS) in a group of patients with lower motor neuron disease (LMND). Among LMND, several chronic immune mediate motor neuropathies may simulate amyotrophic lateral sclerosis (ALS). Forty patients with LMND were included TMS was performed at the first visit. The patients were seen prospectively every 3 months for a period of 1-4 years. Three different groups were distinguished at the end of follow-up: (1) ALS group with 7 patients, (2) Pure motor neuropathy with 14 patients and (3) Other LMND including 12 patients with hereditary spinal amyotrophy, 3 patients with Kennedy's disease and 4 patients with post-poliomyelitis. On the basis of the results of TMS variables, 6 out of 7 ALS patients had abnormality of silent period (SP) associated or not with abnormality of excitatory threshold or amplitude ratio. Patients with pure motor neuropathy had normal SP and amplitude ratio. Four out of 14 patients had increased central motor conduction time (CMCT), one had increased CMCT and excitatory threshold, and one patient had a slightly increased excitatory threshold. Considering the abnormality of TMS variables in the groups, SP, excitatory threshold, and amplitude ratio were chosen in a post-hoc attempt to select variables yielding high sensitivity and specificity. The overall sensitivity of TMS for diagnosis of ALS among LMND was 85.7%, its specificity was 93.9%. When only the abnormality of SP was taken into account, the sensitivity was unchanged. But the specificity was improved to 100%. TMS helped to distinguish suspected ALS from pure motor neuropathy.

  3. Phenotype abnormality: 31 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 31 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u537i abnormal for trait of behavior...al quality during process named localization of cell ... abnormal ... behavioral quality

  4. Phenotype abnormality: 33 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 33 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u539i abnormal for trait of behavior...al quality during process named response to auxin stimulus ... abnormal ... behavioral quality

  5. Abnormal regional homogeneity in patients with essential tremor revealed by resting-state functional MRI.

    Directory of Open Access Journals (Sweden)

    Weidong Fang

    Full Text Available Essential tremor (ET is one of the most common movement disorders in human adults. It can be characterized as a progressive neurological disorder of which the most recognizable feature is a tremor of the arms or hands that is apparent during voluntary movements such as eating and writing. The pathology of ET remains unclear. Resting-state fMRI (RS-fMRI, as a non-invasive imaging technique, was employed to investigate abnormalities of functional connectivity in ET in the brain. Regional homogeneity (ReHo was used as a metric of RS-fMRI to assess the local functional connectivity abnormality in ET with 20 ET patients and 20 age- and gender-matched healthy controls (HC. The ET group showed decreased ReHo in the anterior and posterior bilateral cerebellar lobes, the bilateral thalamus and the insular lobe, and increased ReHo in the bilateral prefrontal and parietal cortices, the left primary motor cortex and left supplementary motor area. The abnormal ReHo value of ET patients in the bilateral anterior cerebellar lobes and the right posterior cerebellar lobe were negatively correlated with the tremor severity score, while positively correlated with that in the left primary motor cortex. These findings suggest that the abnormality in cerebello-thalamo-cortical motor pathway is involved in tremor generation and propagation, which may be related to motor-related symptoms in ET patients. Meanwhile, the abnormality in the prefrontal and parietal regions may be associated with non-motor symptoms in ET. These findings suggest that the ReHo could be utilized for investigations of functional-pathological mechanism of ET.

  6. Monoaminergic orchestration of motor programs in a complex C. elegans behavior.

    Directory of Open Access Journals (Sweden)

    Jamie L Donnelly

    Full Text Available Monoamines provide chemical codes of behavioral states. However, the neural mechanisms of monoaminergic orchestration of behavior are poorly understood. Touch elicits an escape response in Caenorhabditis elegans where the animal moves backward and turns to change its direction of locomotion. We show that the tyramine receptor SER-2 acts through a Gαo pathway to inhibit neurotransmitter release from GABAergic motor neurons that synapse onto ventral body wall muscles. Extrasynaptic activation of SER-2 facilitates ventral body wall muscle contraction, contributing to the tight ventral turn that allows the animal to navigate away from a threatening stimulus. Tyramine temporally coordinates the different phases of the escape response through the synaptic activation of the fast-acting ionotropic receptor, LGC-55, and extrasynaptic activation of the slow-acting metabotropic receptor, SER-2. Our studies show, at the level of single cells, how a sensory input recruits the action of a monoamine to change neural circuit properties and orchestrate a compound motor sequence.

  7. REM Sleep Behavior and Motor Findings in Parkinson's Disease: A Cross-sectional Analysis

    Directory of Open Access Journals (Sweden)

    Abhimanyu Mahajan

    2014-06-01

    Full Text Available Background: Parkinson's disease (PD represents a major public health challenge that will only grow in our aging population. Understanding the connection between PD and associated prodromal conditions, such as rapid eye movement sleep behavioral disorder (RBD, is critical to identifying prevention strategies. However, the relationship between RBD and severity of motor findings in early PD is unknown. This study aims to examine this relationship. Methods: The study population consisted of 418 PD patients who completed the Movement Disorders Society‐United Parkinson's Disease Rating Scale (MDS‐UPDRS and rapid eye movement sleep (REM disorder questionnaires at the baseline visit of the Michael J. Fox's Parkinson's Progression Markers Initiative (PPMI. Cross‐sectional analysis was carried out to assess the association between REM Sleep Behavior Screening Questionnaire score and MDS UPDRS‐3 (motor score categories. Correlation with a higher score category was described as “worse motor findings”. A score of 5 on the REM disorder questionnaire was defined as predictive of RBD.Results: Out of the 418 PD patients, 113 (27.0% had RBD. With univariate logistic regression analysis, individuals with scores predictive of RBD were 1.66 times more likely to have worse motor findings (p = 0.028. Even with age, gender, and Geriatric Depression Scale scores taken into account, individuals with scores predictive of RBD were 1.69 times more likely to have worse motor findings (p = 0.025.Discussion: PD patients with RBD symptoms had worse motor findings than those unlikely to have RBD. This association provides further evidence for the relationship between RBD and PD.

  8. Phenotype abnormality: 42 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 42 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u548i abnormal for trait of behavior...al quality in organ named root during process named gravitropism ... root ... abnormal ... behavioral quality

  9. Phenotype abnormality: 47 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 47 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u553i abnormal for trait of behavior...al quality in organ named thylakoid membrane during process named thylakoid membrane organization ... abnormal ... behavioral quality

  10. Developmental alterations in motor coordination and medium spiny neuron markers in mice lacking pgc-1α.

    Directory of Open Access Journals (Sweden)

    Elizabeth K Lucas

    Full Text Available Accumulating evidence implicates the transcriptional coactivator peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α in the pathophysiology of Huntington Disease (HD. Adult PGC-1α (-/- mice exhibit striatal neurodegeneration, and reductions in the expression of PGC-1α have been observed in striatum and muscle of HD patients as well as in animal models of the disease. However, it is unknown whether decreased expression of PGC-1α alone is sufficient to lead to the motor phenotype and striatal pathology characteristic of HD. For the first time, we show that young PGC-1α (-/- mice exhibit severe rotarod deficits, decreased rearing behavior, and increased occurrence of tremor in addition to the previously described hindlimb clasping. Motor impairment and striatal vacuolation are apparent in PGC-1α (-/- mice by four weeks of age and do not improve or decline by twelve weeks of age. The behavioral and pathological phenotype of PGC-1α (-/- mice can be completely recapitulated by conditional nervous system deletion of PGC-1α, indicating that peripheral effects are not responsible for the observed abnormalities. Evaluation of the transcriptional profile of PGC-1α (-/- striatal neuron populations and comparison to striatal neuron profiles of R6/2 HD mice revealed that PGC-1α deficiency alone is not sufficient to cause the transcriptional changes observed in this HD mouse model. In contrast to R6/2 HD mice, PGC-1α (-/- mice show increases in the expression of medium spiny neuron (MSN markers with age, suggesting that the observed behavioral and structural abnormalities are not primarily due to MSN loss, the defining pathological feature of HD. These results indicate that PGC-1α is required for the proper development of motor circuitry and transcriptional homeostasis in MSNs and that developmental disruption of PGC-1α leads to long-term alterations in motor functioning.

  11. Phenotype abnormality: 44 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 44 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u550i abnormal for trait of behavior...al quality in organ named root during process named organ development ... root ... abnormal ... organ development ... behavioral quality

  12. Phenotype abnormality: 45 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 45 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u551i abnormal for trait of behavior...al quality in organ named stamen during process named organ development ... stamen ... abnormal ... organ development ... behavioral quality

  13. Phenotype abnormality: 37 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 37 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u543i abnormal for trait of behavior...al quality in organ named cotyledon during process named organ development ... cotyledon ... abnormal ... organ development ... behavioral quality

  14. Phenotype abnormality: 39 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 39 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u545i abnormal for trait of behavior...al quality in organ named flower during process named organ development ... flower ... abnormal ... organ development ... behavioral quality

  15. Inducible nitric oxide inhibitors block NMDA antagonist-stimulated motoric behaviors and medial prefrontal cortical glutamate efflux

    Directory of Open Access Journals (Sweden)

    Hadley C Bergstrom

    2015-12-01

    Full Text Available Nitric oxide (NO plays a critical role in the motoric and glutamate releasing action of N-methyl-D-aspartate (NMDA-antagonist stimulants. Earlier studies utilized neuronal nitric oxide synthase inhibitors (nNOS for studying the neurobehavioral effects of noncompetitive NMDA-antagonist stimulants such as dizocilpine (MK-801 and phencyclidine (PCP. This study explores the role of the inducible nitric oxide synthase inhibitors (iNOS aminoguanidine (AG and (--epigallocatechin-3-gallate (EGCG in NMDA-antagonist induced motoric behavior and prefrontal cortical glutamate efflux. Adult male rats were administered a dose range of AG, EGCG or vehicle prior to receiving NMDA antagonists MK-801, PCP or a conventional psychostimulant (cocaine and tested for motoric behavior in an open arena. Glutamate in the medial prefrontal cortex was measured using in vivo microdialysis after a combination of AG or EGCG prior to MK-801. Acute administration of AG or EGCG dose-dependently attenuated the locomotor and ataxic properties of MK-801 and PCP. Both AG and EGCG were unable to block the motoric effects of cocaine, indicating the acute pharmacologic action of AG and EGCG is specific to NMDA antagonism and not generalizable to all stimulant class drugs. AG and EGCG normalized MK-801-stimulated medial prefrontal cortical glutamate efflux. These data demonstrate that AG and EGCG attenuates NMDA antagonist-stimulated motoric behavior and cortical glutamate efflux. Our results suggest that EGCG-like polyphenol nutraceuticals (contained in green tea and chocolate may be clinically useful in protecting against the adverse behavioral dissociative and cortical glutamate stimulating effects of NMDA antagonists. Medications that interfere with NMDA antagonists such as MK-801 and PCP have been proposed as treatments for schizophrenia.

  16. Teaching a Course in Abnormal Psychology and Behavior Intervention Skills for Nursing Home Aides.

    Science.gov (United States)

    Glenwick, David S.; Slutzsky, Mitchel R.; Garfinkel, Eric

    2001-01-01

    Describes an 11-week course given at a nursing home to nursing home aides that focused on abnormal psychology and behavior intervention skills. Discusses the course goals, class composition, and course description. Addresses the problems and issues encountered with teaching this course to a nontraditional population in an unconventional setting.…

  17. Phenotype abnormality: 49 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 49 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u555i abnormal for trait of behavior...al quality in organ named whole plant during process named cell growth ... whole plant ... abnormal ... cell growth ... behavioral quality

  18. Phenotype abnormality: 48 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 48 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u554i abnormal for trait of behavior...al quality in organ named vascular leaf during process named organ development ... vascular leaf ... abnormal ... organ development ... behavioral quality

  19. Change the Collective Behaviors of Colloidal Motors by Tuning Electrohydrodynamic Flow at the Subparticle Level.

    Science.gov (United States)

    Yang, Xingfu; Wu, Ning

    2018-01-23

    As demonstrated in biological systems, breaking the symmetry of surrounding hydrodynamic flow is the key to achieve autonomous locomotion of microscopic objects. In recent years, a variety of synthetic motors have been developed based on different propulsion mechanisms. Most work, however, focuses on the propulsion of individual motors. Here, we study the collective behaviors of colloidal dimers actuated by a perpendicularly applied AC electric field, which controls the electrohydrodynamic flow at subparticle levels. Although these motors experience strong dipolar repulsion from each other and are highly active, surprisingly, they assemble into a family of stable planar clusters with handedness. We show that this type of unusual structure arises from the contractile hydrodynamic flow around small lobes but extensile flow around the large lobes. We further reveal that the collective behavior, assembled structure, and assembly dynamics of these motors all depend on the specific directions of electrohydrodynamic flow surrounding each lobe of the dimers. By fine-tuning the surface charge asymmetry on particles and salt concentration in solution, we demonstrate the ability to control their collective behaviors on demand. This novel type of active assembly via hydrodynamic interactions has the potential to grow monodisperse clusters in a self-limiting fashion. The underlying concept revealed in this work should also apply to other types of active and asymmetric particles.

  20. High-inertia drive motors and their starting characteristics

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The motor for a large reactor coolant pump failed while starting. The motor-application and the motor-failure are discussed in detail. A review of applications of motors for high-inertia drives shows that a motor designed and built to today's industry-standards might be overstressed while experiencing abnormal starting conditions, even though its protection is in accord with accepted practice. The inter-relationship between motor characteristics and characteristics of various types of protection are discussed, briefly. The review concludes that motor specifications and motor standards should be augmented. 1 ref

  1. Abnormal Brain Responses to Action Observation in Complex Regional Pain Syndrome.

    Science.gov (United States)

    Hotta, Jaakko; Saari, Jukka; Koskinen, Miika; Hlushchuk, Yevhen; Forss, Nina; Hari, Riitta

    2017-03-01

    Patients with complex regional pain syndrome (CRPS) display various abnormalities in central motor function, and their pain is intensified when they perform or just observe motor actions. In this study, we examined the abnormalities of brain responses to action observation in CRPS. We analyzed 3-T functional magnetic resonance images from 13 upper limb CRPS patients (all female, ages 31-58 years) and 13 healthy, age- and sex-matched control subjects. The functional magnetic resonance imaging data were acquired while the subjects viewed brief videos of hand actions shown in the first-person perspective. A pattern-classification analysis was applied to characterize brain areas where the activation pattern differed between CRPS patients and healthy subjects. Brain areas with statistically significant group differences (q frontal gyrus, secondary somatosensory cortex, inferior parietal lobule, orbitofrontal cortex, and thalamus. Our findings indicate that CRPS impairs action observation by affecting brain areas related to pain processing and motor control. This article shows that in CRPS, the observation of others' motor actions induces abnormal neural activity in brain areas essential for sensorimotor functions and pain. These results build the cerebral basis for action-observation impairments in CRPS. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  2. Tactile defensiveness and stereotyped behaviors.

    Science.gov (United States)

    Baranek, G T; Foster, L G; Berkson, G

    1997-02-01

    This study explores the constructs of stereotyped behaviors (e.g., repetitive motor patterns, object manipulations, behavioral rigidities) and tactile defensiveness as relevant to occupational therapy theory and practice and attempts to test their purported relationships in children with developmental disabilities. Twenty-eight children with developmental disabilities and autism were assessed on eight factors of stereotyped behavior via a questionnaire and by four measures of tactile defensiveness. The subjects' scores from the questionnaire were correlated with their scores on the tactile defensiveness measures to see what, if any, relationship among these behaviors exists. Significant relationships emerged from the data, indicating that subjects with higher levels of tactile defensiveness were also more likely to evidence rigid or inflexible behaviors, repetitive verbalizations, visual stereotypes, and abnormal focused affections that are often associated with autism. No significant association was found between motor and object stereotypes and tactile defensiveness. These relationships could not be explained solely by maturational factors. The results suggest that clinicians should include observations of stereotyped behaviors, particularly behavioral rigidities, in conjunction with assessments of sensory defensiveness because these are related phenomena that may pose unique challenges for children with developmental disabilities and autism. Further study is needed to determine the causal mechanisms responsible for these relationships.

  3. Motor tics evoked by striatal disinhibition in the rat

    Science.gov (United States)

    Bronfeld, Maya; Yael, Dorin; Belelovsky, Katya; Bar-Gad, Izhar

    2013-01-01

    Motor tics are sudden, brief, repetitive movements that constitute the main symptom of Tourette syndrome (TS). Multiple lines of evidence suggest the involvement of the cortico-basal ganglia system, and in particular the basal ganglia input structure—the striatum in tic formation. The striatum receives somatotopically organized cortical projections and contains an internal GABAergic network of interneurons and projection neurons' collaterals. Disruption of local striatal GABAergic connectivity has been associated with TS and was found to induce abnormal movements in model animals. We have previously described the behavioral and neurophysiological characteristics of motor tics induced in monkeys by local striatal microinjections of the GABAA antagonist bicuculline. In the current study we explored the abnormal movements induced by a similar manipulation in freely moving rats. We targeted microinjections to different parts of the dorsal striatum, and examined the effects of this manipulation on the induced tic properties, such as latency, duration, and somatic localization. Tics induced by striatal disinhibition in monkeys and rats shared multiple properties: tics began within several minutes after microinjection, were expressed solely in the contralateral side, and waxed and waned around a mean inter-tic interval of 1–4 s. A clear somatotopic organization was observed only in rats, where injections to the anterior or posterior striatum led to tics in the forelimb or hindlimb areas, respectively. These results suggest that striatal disinhibition in the rat may be used to model motor tics such as observed in TS. Establishing this reliable and accessible animal model could facilitate the study of the neural mechanisms underlying motor tics, and the testing of potential therapies for tic disorders. PMID:24065893

  4. REM sleep behavior disorder: association with motor complications and impulse control disorders in Parkinson's disease.

    Science.gov (United States)

    Kim, Young Eun; Jeon, Beom S; Yang, Hui-Jun; Ehm, Gwanhee; Yun, Ji Young; Kim, Han-Joon; Kim, Jong-Min

    2014-10-01

    Clinical phenotypes such as old age, longer disease duration, motor disability, akineto-rigid type, dementia and hallucinations are known to be associated with REM sleep behavior disorder (RBD) in Parkinson's disease (PD). However, the relationship between motor fluctuations/impulse control and related behaviors (ICRB) and RBD is not clear. We designed this study to elucidate the clinical manifestations associated with RBD to determine the implications of RBD in PD. In a cross-sectional study, a total of 994 patients with PD were interviewed to determine the presence of RBD and their associated clinical features including motor complications and ICRB. Of the 944 patients, 578 (61.2%) had clinical RBD. When comparing the clinical features between patients with RBD (RBD group) and without RBD (non-RBD group), older age, longer disease duration, higher Hoehn and Yahr stage (H&Y stage), higher levodopa equivalent daily dose (LEDD), and the existence of wearing off, dyskinesia, freezing, and ICRB, especially punding, were associated with the RBD group compared to the non-RBD group (P < .05 in all). Multivariate analysis showed that motor complications including wearing off, peak dose dyskinesia, and diphasic dyskinesia were the only relevant factors for RBD after adjusting for age and disease duration. Motor complications and ICRB are more frequent in patients with RBD than in patients without RBD. In addition, motor complications are related to RBD even after adjusting for age and disease duration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The BACHD Rat Model of Huntington Disease Shows Specific Deficits in a Test Battery of Motor Function.

    Science.gov (United States)

    Manfré, Giuseppe; Clemensson, Erik K H; Kyriakou, Elisavet I; Clemensson, Laura E; van der Harst, Johanneke E; Homberg, Judith R; Nguyen, Huu Phuc

    2017-01-01

    Rationale : Huntington disease (HD) is a progressive neurodegenerative disorder characterized by motor, cognitive and neuropsychiatric symptoms. HD is usually diagnosed by the appearance of motor deficits, resulting in skilled hand use disruption, gait abnormality, muscle wasting and choreatic movements. The BACHD transgenic rat model for HD represents a well-established transgenic rodent model of HD, offering the prospect of an in-depth characterization of the motor phenotype. Objective : The present study aims to characterize different aspects of motor function in BACHD rats, combining classical paradigms with novel high-throughput behavioral phenotyping. Methods : Wild-type (WT) and transgenic animals were tested longitudinally from 2 to 12 months of age. To measure fine motor control, rats were challenged with the pasta handling test and the pellet reaching test. To evaluate gross motor function, animals were assessed by using the holding bar and the grip strength tests. Spontaneous locomotor activity and circadian rhythmicity were assessed in an automated home-cage environment, namely the PhenoTyper. We then integrated existing classical methodologies to test motor function with automated home-cage assessment of motor performance. Results : BACHD rats showed strong impairment in muscle endurance at 2 months of age. Altered circadian rhythmicity and locomotor activity were observed in transgenic animals. On the other hand, reaching behavior, forepaw dexterity and muscle strength were unaffected. Conclusions : The BACHD rat model exhibits certain features of HD patients, like muscle weakness and changes in circadian behavior. We have observed modest but clear-cut deficits in distinct motor phenotypes, thus confirming the validity of this transgenic rat model for treatment and drug discovery purposes.

  6. Hypnagogic behavior disorder: complex motor behaviors during wake-sleep transitions in 2 young children.

    Science.gov (United States)

    Pareja, Juan A; Cuadrado, María Luz; García-Morales, Irene; Gil-Nagel, Antonio; Franch, Oriol

    2008-08-01

    A nondescribed behavioral disorder was observed during wake-sleep transitions in 2 young children. Two boys had episodes of abnormal behavior in hypnagogic-and occasionally hypnopompic-periods for 1 year from the time they were 1 year and several months old. The episodes consisted of irregular body movements, which could be either gentle or violent but never made the children get out of bed. They lasted from a few seconds to 2 hours and were associated with poor reactivity and amnesia of the events. Electroencephalography (EEG) recordings showed wake-state features, with brief bursts of hypnagogic hypersynchrony, and did not display seizure activity. A distinctive behavior disorder occurring during wake-sleep transitions with a wake EEG pattern has been identified in very early childhood. The clinical profile does not fit any of the known parasomnias and might belong to a new category of parasomnia.

  7. Why New Spinal Cord Plasticity Does Not Disrupt Old Motor Behaviors.

    Science.gov (United States)

    Chen, Yi; Chen, Lu; Wang, Yu; Chen, Xiang Yang; Wolpaw, Jonathan R

    2017-08-23

    When new motor learning changes the spinal cord, old behaviors are not impaired; their key features are preserved by additional compensatory plasticity. To explore the mechanisms responsible for this compensatory plasticity, we transected the spinal dorsal ascending tract before or after female rats acquired a new behavior-operantly conditioned increase or decrease in the right soleus H-reflex-and examined an old behavior-locomotion. Neither spinal dorsal ascending tract transection nor H-reflex conditioning alone impaired locomotion. Nevertheless, when spinal dorsal ascending tract transection and H-reflex conditioning were combined, the rats developed a limp and a tilted posture that correlated in direction and magnitude with the H-reflex change. When the right H-reflex was increased by conditioning, the right step lasted longer than the left and the right hip was higher than the left; when the right H-reflex was decreased by conditioning, the opposite occurred. These results indicate that ascending sensory input guides the compensatory plasticity that normally prevents the plasticity underlying H-reflex change from impairing locomotion. They support the concept of the state of the spinal cord as a negotiated equilibrium that reflects the concurrent influences of all the behaviors in an individual's repertoire; and they support the new therapeutic strategies this concept introduces. SIGNIFICANCE STATEMENT The spinal cord provides a reliable final common pathway for motor behaviors throughout life. Until recently, its reliability was explained by the assumption that it is hardwired; but it is now clear that the spinal cord changes continually as new behaviors are acquired. Nevertheless, old behaviors are preserved. This study shows that their preservation depends on sensory feedback from the spinal cord to the brain: if feedback is removed, the acquisition of a new behavior may disrupt an old behavior. In sum, when a new behavior changes the spinal cord, sensory

  8. Effects of Interventions Based in Behavior Analysis on Motor Skill Acquisition: A Meta-Analysis

    Science.gov (United States)

    Alstot, Andrew E.; Kang, Minsoo; Alstot, Crystal D.

    2013-01-01

    Techniques based in applied behavior analysis (ABA) have been shown to be useful across a variety of settings to improve numerous behaviors. Specifically within physical activity settings, several studies have examined the effect of interventions based in ABA on a variety of motor skills, but the overall effects of these interventions are unknown.…

  9. Neonatal disruption of serine racemase causes schizophrenia-like behavioral abnormalities in adulthood: clinical rescue by d-serine.

    Directory of Open Access Journals (Sweden)

    Hiroko Hagiwara

    Full Text Available D-Serine, an endogenous co-agonist of the N-methyl-D-aspartate (NMDA receptor, is synthesized from L-serine by serine racemase (SRR. Given the role of D-serine in both neurodevelopment and the pathophysiology of schizophrenia, we examined whether neonatal disruption of D-serine synthesis by SRR inhibition could induce behavioral abnormalities relevant to schizophrenia, in later life.Neonatal mice (7-9 days were injected with vehicle or phenazine methosulfate (Met-Phen: 3 mg/kg/day, an SRR inhibitor. Behavioral evaluations, such as spontaneous locomotion, novel object recognition test (NORT, and prepulse inhibition (PPI were performed at juvenile (5-6 weeks old and adult (10-12 weeks old stages. In addition, we tested the effects of D-serine on PPI deficits in adult mice after neonatal Met-Phen exposure. Finally, we assessed whether D-serine could prevent the onset of schizophrenia-like behavior in these mice. Neonatal Met-Phen treatment reduced D-serine levels in the brain, 24 hours after the final dose. Additionally, this treatment caused behavioral abnormalities relevant to prodromal symptoms in juveniles and to schizophrenia in adults. A single dose of D-serine improved PPI deficits in adult mice. Interestingly, chronic administration of D-serine (900 mg/kg/day from P35 to P70 significantly prevented the onset of PPI deficits after neonatal Met-Phen exposure.This study shows that disruption of D-serine synthesis during developmental stages leads to behavioral abnormalities relevant to prodromal symptoms and schizophrenia, in later life. Furthermore, early pharmacological intervention with D-serine may prevent the onset of psychosis in adult.

  10. Correlations between Motor Symptoms across Different Motor Tasks, Quantified via Random Forest Feature Classification in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Andreas Kuhner

    2017-11-01

    Full Text Available BackgroundObjective assessments of Parkinson’s disease (PD patients’ motor state using motion capture techniques are still rarely used in clinical practice, even though they may improve clinical management. One major obstacle relates to the large dimensionality of motor abnormalities in PD. We aimed to extract global motor performance measures covering different everyday motor tasks, as a function of a clinical intervention, i.e., deep brain stimulation (DBS of the subthalamic nucleus.MethodsWe followed a data-driven, machine-learning approach and propose performance measures that employ Random Forests with probability distributions. We applied this method to 14 PD patients with DBS switched-off or -on, and 26 healthy control subjects performing the Timed Up and Go Test (TUG, the Functional Reach Test (FRT, a hand coordination task, walking 10-m straight, and a 90° curve.ResultsFor each motor task, a Random Forest identified a specific set of metrics that optimally separated PD off DBS from healthy subjects. We noted the highest accuracy (94.6% for standing up. This corresponded to a sensitivity of 91.5% to detect a PD patient off DBS, and a specificity of 97.2% representing the rate of correctly identified healthy subjects. We then calculated performance measures based on these sets of metrics and applied those results to characterize symptom severity in different motor tasks. Task-specific symptom severity measures correlated significantly with each other and with the Unified Parkinson’s Disease Rating Scale (UPDRS, part III, correlation of r2 = 0.79. Agreement rates between different measures ranged from 79.8 to 89.3%.ConclusionThe close correlation of PD patients’ various motor abnormalities quantified by different, task-specific severity measures suggests that these abnormalities are only facets of the underlying one-dimensional severity of motor deficits. The identification and characterization of this underlying motor deficit

  11. Phenotype abnormality: 35 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 35 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u541i abnormal for trait of behavioral quality... during process named response to gravity ... abnormal ... behavioral quality

  12. COMMUNICATION: On variability and use of rat primary motor cortex responses in behavioral task discrimination

    Science.gov (United States)

    Jensen, Winnie; Rousche, Patrick J.

    2006-03-01

    The success of a cortical motor neuroprosthetic system will rely on the system's ability to effectively execute complex motor tasks in a changing environment. Invasive, intra-cortical electrodes have been successfully used to predict joint movement and grip force of a robotic arm/hand with a non-human primate (Chapin J K, Moxon K A, Markowitz R S and Nicolelis M A L 1999 Real-time control of a robotic arm using simultaneously recorded neurons in the motor cortex Nat. Neurosci. 2 664-70). It is well known that cortical encoding occurs with a high degree of cortical plasticity and depends on both the functional and behavioral context. Questions on the expected robustness of future motor prosthesis systems therefore still remain. The objective of the present work was to study the effect of minor changes in functional movement strategies on the M1 encoding. We compared the M1 encoding in freely moving, non-constrained animals that performed two similar behavioral tasks with the same end-goal, and investigated if these behavioral tasks could be discriminated based on the M1 recordings. The rats depressed a response paddle either with a set of restrictive bars ('WB') or without the bars ('WOB') placed in front of the paddle. The WB task required changes in the motor strategy to complete the paddle press and resulted in highly stereotyped movements, whereas in the WOB task the movement strategy was not restricted. Neural population activity was recorded from 16-channel micro-wire arrays and data up to 200 ms before a paddle hit were analyzed off-line. The analysis showed a significant neural firing difference between the two similar WB and WOB tasks, and using principal component analysis it was possible to distinguish between the two tasks with a best classification at 76.6%. While the results are dependent upon a small, randomly sampled neural population, they indicate that information about similar behavioral tasks may be extracted from M1 based on relatively few

  13. Phenotype abnormality: 32 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 32 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u538i abnormal for trait of behavioral quality... during process named organ development ... abnormal ... organ development ... behavioral quality

  14. Phenotype abnormality: 34 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 34 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u540i abnormal for trait of behavioral quality... during process named response to cytokinin stimulus ... abnormal ... behavioral quality

  15. Induction Motors by Electric Measurements

    Directory of Open Access Journals (Sweden)

    Andrzej M. Trzynadlowski

    1999-01-01

    Full Text Available The paper gives an overview of the issues and means of detection of mechanical abnormalities in induction motors by electric measurements. If undetected and untreated, the worn or damaged bearings, rotor imbalance and eccentricity, broken bars of the rotor cage, and torsional and lateral vibration lead to roughly a half of all failures of induction motor drives. The detection of abnormalities is based on the fact that they cause periodic disturbance of motor variables, such as the speed, torque, current, and magnetic flux. Thus, spectral analysis of those or related quantities may yield a warning about an incipient failure of the drive system. Although the traditional non-invasive diagnostics has mostly been based on the signature analysis of the stator current, other media can also be employed. In particular, the partial instantaneous input power is shown, theoretically and experimentally, to offer distinct advantages under noisy operating conditions. Use of torque and flux estimates is also discussed.

  16. Are we missing non-motor seizures in Parkinson's disease? Two case reports.

    Science.gov (United States)

    Son, Andre Y; Cucca, Alberto; Agarwal, Shashank; Liu, Anli; Di Rocco, Alessandro; Biagioni, Milton C

    2017-01-01

    Parkinson's disease (PD) is predominantly recognized for its motor symptoms, but patients struggle from a morbid and heterogeneous collection of non-motor symptoms (NMS-PD) that can affect their quality of life even more. NMS-PD is a rather generalized term and the heterogeneity and non-specific nature of many symptoms poses a clinical challenge when a PD patient presents with non-motor complaints that may not be NMS-PD. We report two patients with idiopathic PD who presented with acute episodes of cognitive changes. Structural brain images, cardiovascular and laboratory assessment were unremarkable. Both patients experienced a considerable delay before receiving an epilepsy-evaluation, at which point electroencephalogram abnormalities supported the diagnosis of focal non-motor seizures with alteration of awareness. Antiepileptic therapy was implemented and was effective in both cases. Diagnosing non-motor seizures can be challenging. However, PD patients pose an even greater challenge given their eclectic non-motor clinical manifestations and other disease-related complications that could confound and mislead adequate clinical interpretation. Our two cases provide examples of non-motor seizures that may mimic non-motor symptoms of PD. Treating physicians should always consider other possible causes of non-motor symptoms that may coexist in PD patients. Epilepsy work-up should be contemplated in the differential of acute changes in cognition, behavior, or alertness.

  17. Phenotype abnormality: 40 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 40 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u546i abnormal for trait of behavioral quality... in organ named hypocotyl during process named gravitropism ... hypocotyl ... abnormal ... behavioral quality

  18. Phenotype abnormality: 43 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 43 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u549i abnormal for trait of behavioral quality... in organ named root during process named growth ... root ... abnormal ... growth ... behavioral quality

  19. Social factors affect motor and anxiety behaviors in the animal model of attention-deficit hyperactivity disorders: A housing-style factor.

    Science.gov (United States)

    Tsai, Meng-Li; Kozłowska, Anna; Li, Yu-Sheng; Shen, Wen-Ling; Huang, Andrew Chih Wei

    2017-08-01

    The present study examines whether housing style (e.g., single housing, same-strain-grouped housing, and different-strain-grouped housing) and rat strain (e.g., spontaneous hypertension rats [SHR] and Wistar-Kyoto rats [WKY]) mediate motor function and anxiety behavior in the open field task. From week 4 through week 10 following birth, the rats were measured 30min for locomotor activity and anxiety once per week in the open field task. The SHR rats exhibited hyperactivity in total distance traveled and movement time to form the animal model of ADHD. The SHR rats spent more time inside the square and crossed the inside-outside line more often than the WKY rats, indicating the SHR rats exhibited less anxiety behavior. The different-strain-grouped housing style (but neither the same-strain-grouped housing style nor the single housing style) decreased total distance traveled and facilitated anxiety behavior. The motor function was negatively correlated with anxiety behavior for SHR rats but not for WKY rats. Housing styles had a negative correlation between motor function and anxiety behavior. The present findings provide some insights regarding how social factors (such as housing style) affect motor function and anxiety behavior related to ADHD in a clinical setting. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  20. Graphonomics and its contribution to the field of motor behavior: A position statement.

    Science.gov (United States)

    Van Gemmert, Arend W A; Contreras-Vidal, Jose L

    2015-10-01

    The term graphonomics was conceived in the early 1980s; it defined a multidisciplinary emerging field focused on handwriting and drawing movements. Researchers in the field of graphonomics have made important contribution to the field of motor behavior by developing models aimed to conceptualize the production of fine motor movements using graphical tools. Although skeptics have argued that recent technological advancements would reduce the impact of graphonomic research, a shift of focus within in the field of graphonomics into fine motor tasks in general proves the resilience of the field. Moreover, it has been suggested that the use of fine motor movements due to technological advances has increased in importance in everyday life. It is concluded that the International Graphonomics Society can have a leading role in fostering collaborative multidisciplinary efforts and can help with the dissemination of findings contributing to the field of human movement sciences to a larger public. Copyright © 2015. Published by Elsevier B.V.

  1. Housing conditions influence motor functions and exploratory behavior following focal damage of the rat brain.

    Science.gov (United States)

    Gornicka-Pawlak, Elzbieta; Jabłońska, Anna; Chyliński, Andrzej; Domańska-Janik, Krystyna

    2009-01-01

    The present study investigated influence of housing conditions on motor functions recovery and exploratory behavior following ouabain focal brain lesion in the rat. During 30 days post-surgery period rats were housed individually in standard cages (IS) or in groups in enriched environment (EE) and behaviorally tested. The EE lesioned rats showed enhanced recovery from motor impairments in walking beam task, comparing with IS animals. Contrarily, in the open field IS rats (both lesioned and control) traveled a longer distance, showed less habituation and spent less time resting at the home base than the EE animals. Unlike the EE lesioned animals, the lesioned IS rats, presented a tendency to hyperactivity in postinjury period. Turning tendency was significantly affected by unilateral brain lesion only in the EE rats. We can conclude that housing conditions distinctly affected the rat's behavior in classical laboratory tests.

  2. Structural and functional brain signatures of C9orf72 in motor neuron disease.

    Science.gov (United States)

    Agosta, Federica; Ferraro, Pilar M; Riva, Nilo; Spinelli, Edoardo Gioele; Domi, Teuta; Carrera, Paola; Copetti, Massimiliano; Falzone, Yuri; Ferrari, Maurizio; Lunetta, Christian; Comi, Giancarlo; Falini, Andrea; Quattrini, Angelo; Filippi, Massimo

    2017-09-01

    This study investigated structural and functional magnetic resonance imaging abnormalities in hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9orf72) motor neuron disease (MND) relative to disease severity-matched sporadic MND cases. We enrolled 19 C9orf72 and 67 disease severity-matched sporadic MND patients, and 22 controls. Sporadic cases were grouped in patients with: no cognitive/behavioral deficits (sporadic-motor); same patterns of cognitive/behavioral impairment as C9orf72 cases (sporadic-cognitive); shorter disease duration versus other sporadic groups (sporadic-early). C9orf72 patients showed cerebellar and thalamic atrophy versus all sporadic cases. All MND patients showed motor, frontal, and temporoparietal cortical thinning and motor and extramotor white matter damage versus controls, independent of genotype and presence of cognitive impairment. Compared with sporadic-early, C9orf72 patients revealed an occipital cortical thinning. C9orf72 patients had enhanced visual network functional connectivity versus sporadic-motor and sporadic-early cases. Structural cerebellar and thalamic damage and posterior cortical alterations are the brain magnetic resonance imaging signatures of C9orf72 MND. Frontotemporal cortical and widespread white matter involvement are likely to be an effect of the disease evolution rather than a C9orf72 marker. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Phenotype abnormality: 50 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 50 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u556i abnormal for trait of behavioral quality... in organ named whole plant during process named photomorphogenesis ... whole plant ... abnormal ... behavioral quality

  4. Investigation on Abnormal Iron Metabolism and Related Inflammation in Parkinson Disease Patients with Probable RBD

    Science.gov (United States)

    Hu, Yang; Yu, Shu-Yang; Zuo, Li-Jun; Piao, Ying-Shan; Cao, Chen-Jie; Wang, Fang; Chen, Ze-Jie; Du, Yang; Lian, Teng-Hong; Liu, Gai-Fen; Wang, Ya-Jie; Chan, Piu; Chen, Sheng-Di; Wang, Xiao-Min; Zhang, Wei

    2015-01-01

    Objective To investigate potential mechanisms involving abnormal iron metabolism and related inflammation in Parkinson disease (PD) patients with probable rapid eye movement sleep behavior disorder (PRBD). Methods Total 210 PD patients and 31 controls were consecutively recruited. PD patients were evaluated by RBD Screening Questionnaire (RBDSQ) and classified into PRBD and probable no RBD (NPRBD) groups. Demographics information were recorded and clinical symptoms were evaluated by series of rating scales. Levels of iron and related proteins and inflammatory factors in cerebrospinal fluid (CSF) and serum were detected. Comparisons among control, NPRBD and PRBD groups and correlation analyses between RBDSQ score and levels of above factors were performed. Results (1)The frequency of PRBD in PD patients is 31.90%. (2)PRBD group has longer disease duration, more advanced disease stage, severer motor symptoms and more non-motor symptoms than NPRBD group. (3)In CSF, levels of iron, transferrin, NO and IL–1β in PRBD group are prominently increased. RBDSQ score is positively correlated with the levels of iron, transferrin, NO and IL–1β in PD group. Iron level is positively correlated with the levels of NO and IL–1β in PD group. (4)In serum, transferrin level is prominently decreased in PRBD group. PGE2 level in PRBD group is drastically enhanced. RBDSQ score exhibits a positive correlation with PGE2 level in PD group. Conclusions PRBD is common in PD patients. PRBD group has severer motor symptoms and more non-motor symptoms. Excessive iron in brain resulted from abnormal iron metabolism in central and peripheral systems is correlated with PRBD through neuroinflammation. PMID:26431210

  5. Neurons other than motor neurons in motor neuron disease.

    Science.gov (United States)

    Ruffoli, Riccardo; Biagioni, Francesca; Busceti, Carla L; Gaglione, Anderson; Ryskalin, Larisa; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is typically defined by a loss of motor neurons in the central nervous system. Accordingly, morphological analysis for decades considered motor neurons (in the cortex, brainstem and spinal cord) as the neuronal population selectively involved in ALS. Similarly, this was considered the pathological marker to score disease severity ex vivo both in patients and experimental models. However, the concept of non-autonomous motor neuron death was used recently to indicate the need for additional cell types to produce motor neuron death in ALS. This means that motor neuron loss occurs only when they are connected with other cell types. This concept originally emphasized the need for resident glia as well as non-resident inflammatory cells. Nowadays, the additional role of neurons other than motor neurons emerged in the scenario to induce non-autonomous motor neuron death. In fact, in ALS neurons diverse from motor neurons are involved. These cells play multiple roles in ALS: (i) they participate in the chain of events to produce motor neuron loss; (ii) they may even degenerate more than and before motor neurons. In the present manuscript evidence about multi-neuronal involvement in ALS patients and experimental models is discussed. Specific sub-classes of neurons in the whole spinal cord are reported either to degenerate or to trigger neuronal degeneration, thus portraying ALS as a whole spinal cord disorder rather than a disease affecting motor neurons solely. This is associated with a novel concept in motor neuron disease which recruits abnormal mechanisms of cell to cell communication.

  6. Milk fat globule membrane supplementation with voluntary running exercise attenuates age-related motor dysfunction by suppressing neuromuscular junction abnormalities in mice.

    Science.gov (United States)

    Yano, Michiko; Minegishi, Yoshihiko; Sugita, Satoshi; Ota, Noriyasu

    2017-10-15

    Age-related loss of skeletal muscle mass and function attenuates physical performance, and maintaining fine muscle innervation is known to play an important role in its prevention. We had previously shown that consumption of milk fat globule membrane (MFGM) with habitual exercise improves the muscle mass and motor function in humans and mice. Improvement of neuromuscular junction (NMJ) was suggested as one of the mechanisms underlying these effects. In this study, we evaluated the effect of MFGM intake combined with voluntary running (MFGM-VR) on morphological changes of NMJ and motor function in aging mice. Seven months following the intervention, the MFGM-VR group showed a significantly improved motor coordination in the rotarod test and muscle force in the grip strength test compared with the control group at 13 and 14months of age, respectively. In 14-month old control mice, the extensor digitorum longus muscle showed increased abnormal NMJs, such as fragmentation and denervation, compared with 6-month old young mice. However, such age-related deteriorations of NMJs were significantly suppressed in the MFGM-VR group. Increase in the expression of NMJ formation-related genes, such as agrin and LDL Receptor Related Protein 4 (LRP4), might contribute to this beneficial effect. Rotarod performance and grip strength showed significant negative correlation with the status of denervation and fragmentation of NMJs. These results suggest that MFGM intake with voluntary running exercise effectively suppresses age-related morphological deterioration of NMJ, thus contributing to improvement of motor function. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Anatomic defects and behavioral abnormalities in rats irradiated in utero

    International Nuclear Information System (INIS)

    Kimler, B.F.; Norton, S.

    1987-01-01

    Pregnant rats were irradiated with 1.0 Gy whole-body doses of Cs-137 γ-rays on gestational days 11, 13, 15 and 17. Postnatal growth and preweaning behavior of the offspring were monitored prior to sacrifice or post-partuition day 28. Brain (sensory motor cortex) and pituitary tissues were processed for histological evaluation and morphometric analysis. The gestational days on which irradiation produced significant (rho<0.05) changes relative to controls are enclosed in parentheses, with the day(s) on which irradiation produced the maximum effect being underlined for the various parameters: body weight on post-partuition day 7, pituitary nuclear area, percent acidophils, and percent vacuolization, thickness of cortical layer I, II, III, IV, V, VI, and total cortical thickness; negative geotaxis, reflex suspension, continuous corridor activity, and gait. These data indicate that the critical period of development for radiation-induced alterations in post-natal growth, development, and behavior changes from the pituitary at gestational day 11 to the brain (primitive cortex) at days 13 to 17 with a peak of sensitivity at day 15

  8. Phenotype abnormality: 46 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 46 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u552i abnormal for trait of behavior.../cria224u2ria224u38i stomatal complex ... abnormal ... response to light stimulus ... behavioral quality

  9. Global dysrhythmia of cerebro-basal ganglia-cerebellar networks underlies motor tics following striatal disinhibition.

    Science.gov (United States)

    McCairn, Kevin W; Iriki, Atsushi; Isoda, Masaki

    2013-01-09

    Motor tics, a cardinal symptom of Tourette syndrome (TS), are hypothesized to arise from abnormalities within cerebro-basal ganglia circuits. Yet noninvasive neuroimaging of TS has previously identified robust activation in the cerebellum. To date, electrophysiological properties of cerebellar activation and its role in basal ganglia-mediated tic expression remain unknown. We performed multisite, multielectrode recordings of single-unit activity and local field potentials from the cerebellum, basal ganglia, and primary motor cortex using a pharmacologic monkey model of motor tics/TS. Following microinjections of bicuculline into the sensorimotor putamen, periodic tics occurred predominantly in the orofacial region, and a sizable number of cerebellar neurons showed phasic changes in activity associated with tic episodes. Specifically, 64% of the recorded cerebellar cortex neurons exhibited increases in activity, and 85% of the dentate nucleus neurons displayed excitatory, inhibitory, or multiphasic responses. Critically, abnormal discharges of cerebellar cortex neurons and excitatory-type dentate neurons mostly preceded behavioral tic onset, indicating their central origins. Latencies of pathological activity in the cerebellum and primary motor cortex substantially overlapped, suggesting that aberrant signals may be traveling along divergent pathways to these structures from the basal ganglia. Furthermore, the occurrence of tic movement was most closely associated with local field potential spikes in the cerebellum and primary motor cortex, implying that these structures may function as a gate to release overt tic movements. These findings indicate that tic-generating networks in basal ganglia mediated tic disorders extend beyond classical cerebro-basal ganglia circuits, leading to global network dysrhythmia including cerebellar circuits.

  10. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder.

    Science.gov (United States)

    Voon, Valerie; Brezing, Christina; Gallea, Cecile; Hallett, Mark

    2011-11-01

    Conversion disorder (CD) is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that CD with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amygdala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Subjects performed either an internally or externally generated 2-button action selection task in a functional MRI study. Eleven CD patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula, and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system, which is both hypoactive and functionally disconnected from prefrontal top-down regulation. Copyright © 2011 Movement Disorder Society.

  11. Aberrant supplementary motor complex and limbic activity during motor preparation in motor conversion disorder

    Science.gov (United States)

    Voon, V; Brezing, C; Gallea, C; Hallett, M

    2014-01-01

    Background Conversion disorder is characterized by unexplained neurological symptoms presumed related to psychological issues. The main hypotheses to explain conversion paralysis, characterized by a lack of movement, include impairments in either motor intention or disruption of motor execution, and further, that hyperactive self-monitoring, limbic processing or top-down regulation from higher order frontal regions may interfere with motor execution. We have recently shown that conversion disorder with positive abnormal or excessive motor symptoms was associated with greater amygdala activity to arousing stimuli along with greater functional connectivity between the amgydala and supplementary motor area. Here we studied patients with such symptoms focusing on motor initiation. Methods Subjects performed either an internally or externally generated two-button action selection task in a functional MRI study. Results Eleven conversion disorder patients without major depression and 11 age- and gender-matched normal volunteers were assessed. During both internally and externally generated movement, conversion disorder patients relative to normal volunteers had lower left supplementary motor area (SMA) (implicated in motor initiation) and higher right amygdala, left anterior insula and bilateral posterior cingulate activity (implicated in assigning emotional salience). These findings were confirmed in a subgroup analysis of patients with tremor symptoms. During internally versus externally generated action in CD patients, the left SMA had lower functional connectivity with bilateral dorsolateral prefrontal cortices. Conclusion We propose a theory in which previously mapped conversion motor representations may in an arousing context hijack the voluntary action selection system which is both hypoactive and functionally disconnected from prefrontal top-down regulation. PMID:21935985

  12. Assessment of motor function, sensory motor gating and recognition memory in a novel BACHD transgenic rat model for huntington disease.

    Science.gov (United States)

    Abada, Yah-Se K; Nguyen, Huu Phuc; Schreiber, Rudy; Ellenbroek, Bart

    2013-01-01

    Huntington disease (HD) is frequently first diagnosed by the appearance of motor symptoms; the diagnosis is subsequently confirmed by the presence of expanded CAG repeats (> 35) in the HUNTINGTIN (HTT) gene. A BACHD rat model for HD carrying the human full length mutated HTT with 97 CAG-CAA repeats has been established recently. Behavioral phenotyping of BACHD rats will help to determine the validity of this model and its potential use in preclinical drug discovery studies. The present study seeks to characterize the progressive emergence of motor, sensorimotor and cognitive deficits in BACHD rats. Wild type and transgenic rats were tested from 1 till 12 months of age. Motor tests were selected to measure spontaneous locomotor activity (open field) and gait coordination. Sensorimotor gating was assessed in acoustic startle response paradigms and recognition memory was evaluated in an object recognition test. Transgenic rats showed hyperactivity at 1 month and hypoactivity starting at 4 months of age. Motor coordination imbalance in a Rotarod test was present at 2 months and gait abnormalities were seen in a Catwalk test at 12 months. Subtle sensorimotor changes were observed, whereas object recognition was unimpaired in BACHD rats up to 12 months of age. The current BACHD rat model recapitulates certain symptoms from HD patients, especially the marked motor deficits. A subtle neuropsychological phenotype was found and further studies are needed to fully address the sensorimotor phenotype and the potential use of BACHD rats for drug discovery purposes.

  13. Behavior of high efficiency electric motors; Comportamiento de motores electricos de alta eficiencia

    Energy Technology Data Exchange (ETDEWEB)

    Bonett, Austin H. [IEEE, (United States)

    2001-09-01

    The energy efficiency is one of the main parameters in the design of the industrial motors of general purpose; nevertheless, it is avoided that it is at the cost of the reliability or to the global performance of the motor. Exist user groups of this equipment that consider that, in the search of a greater efficiency, the useful life period is diminished and the characteristics of operation of the motor are affected. During the past last years, the author has studied the aspects of quality and reliability, as well as the operative advantages of the high efficiency motors and written down the increasing interest for these aspects. Also he has detected that a great number of users has realized that, additionally to the obvious energy saving, the efficient motor offers a greater reliability and a longer useful life in most of the industrial applications. The objective of this article is to present the differences in the quality levels, reliability and operation parameters of high efficiency squirrel cage type electrical motors with those of the motors of standard manufacture. [Spanish] La eficiencia energetica es uno de los principales parametros en el diseno de los motores industriales de proposito general; sin embargo, se evita que sea a costa de la confiabilidad o del desempeno global del motor. Existen grupos de usuarios de estos equipos que consideran que, en la busqueda de una mayor eficiencia, se disminuye el periodo de vida util y se afectan las caracteristicas de operacion del motor. Durante los ultimos anos, el autor ha estudiado los aspectos de calidad y confiabilidad, asi como las ventajas operativas de los motores de alta eficiencia y anotado el incremento del interes por estos aspectos. Tambien ha detectado que un gran numero de usuarios se ha dado cuenta que, adicionalmente a los obvios ahorros de energia, el motor eficiente ofrece una mayor confiabilidad y una vida util mas larga en la mayoria de las aplicaciones industriales. El objetivo de este

  14. Bimanual coupling paradigm as an effective tool to investigate productive behaviors in motor and body awareness impairments.

    Science.gov (United States)

    Garbarini, Francesca; Pia, Lorenzo

    2013-11-05

    When humans move simultaneously both hands strong coupling effects arise and neither of the two hands is able to perform independent actions. It has been suggested that such motor constraints are tightly linked to action representation rather than to movement execution. Hence, bimanual tasks can represent an ideal experimental tool to investigate internal motor representations in those neurological conditions in which the movement of one hand is impaired. Indeed, any effect on the "moving" (healthy) hand would be caused by the constraints imposed by the ongoing motor program of the 'impaired' hand. Here, we review recent studies that successfully utilized the above-mentioned paradigms to investigate some types of productive motor behaviors in stroke patients. Specifically, bimanual tasks have been employed in left hemiplegic patients who report illusory movements of their contralesional limbs (anosognosia for hemiplegia). They have also been administered to patients affected by a specific monothematic delusion of body ownership, namely the belief that another person's arm and his/her voluntary action belong to them. In summary, the reviewed studies show that bimanual tasks are a simple and valuable experimental method apt to reveal information about the motor programs of a paralyzed limb. Therefore, it can be used to objectively examine the cognitive processes underpinning motor programming in patients with different delusions of motor behavior. Additionally, it also sheds light on the mechanisms subserving bimanual coordination in the intact brain suggesting that action representation might be sufficient to produce these effects.

  15. Comparison of symptoms of delirium across various motoric subtypes.

    Science.gov (United States)

    Grover, Sandeep; Sharma, Akhilesh; Aggarwal, Munish; Mattoo, Surendra K; Chakrabarti, Subho; Malhotra, Savita; Avasthi, Ajit; Kulhara, Parmanand; Basu, Debasish

    2014-04-01

    The aim of this study was to determine the correlation between delirium motor subtypes and other symptoms of delirium. Three hundred and twenty-one (n = 321) consecutive patients referred to consultation-liaison psychiatry services were evaluated on Delirium Rating scale-Revised-98 version and amended Delirium Motor Symptom Scale. Half of the patients had hyperactive subtype (n = 161; 50.15%) delirium. One-quarter of the study sample met the criteria for mixed subtype (n = 79; 24.61%), about one-fifth of the study sample met the criteria for hypoactive delirium subtype (n = 64; 19.93%), and only very few patients (n = 17; 5.29%) did not meet the required criteria for any of these three subtypes and were categorized as 'no subtype'. When the hyperactive and hypoactive subtypes were compared, significant differences were seen in the prevalence of perceptual disturbances, delusions, lability of affect, thought process abnormality, motor agitation and motor retardation. All the symptoms were more common in the hyperactive subtype except for thought process abnormality and motor retardation. Compared to hyperactive subtype, the mixed subtype had significantly higher prevalence of thought process abnormality and motor retardation. Significant differences emerged with regard to perceptual disturbances, delusions, lability of affect and motor agitation when comparing the patients with mixed subtype with those with hypoactive subtype. All these symptoms were found to be more common in the mixed subtype. No significant differences emerged for the cognitive symptoms as assessed on Delirium Rating scale-Revised-98 across the different motoric subtypes. Different motoric subtypes of delirium differ on non-cognitive symptoms. © 2013 The Authors. Psychiatry and Clinical Neurosciences © 2013 Japanese Society of Psychiatry and Neurology.

  16. Proficient motor impulse control in Parkinson disease patients with impulsive and compulsive behaviors

    NARCIS (Netherlands)

    Claassen, D.O.; van den Wildenberg, W.P.; Harrison, M.B.; van Wouwe, N.C.; Kanoff, K.; Neimat, J.S.; Wylie, S.A.

    2015-01-01

    BACKGROUND: Parkinson disease (PD) patients treated with dopamine agonist therapy can develop maladaptive reward-driven behaviors, known as impulse control disorder (ICD). In this study, we assessed if ICD patients have evidence of motor-impulsivity. METHODS: We used the stop-signal task in a cohort

  17. [Parkinson Disease With Rapid Eye Movement Sleep Behavior Disorder].

    Science.gov (United States)

    Hu, Yang; Zhang, Wei

    2015-06-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is characterized by lack of muscle atonia during REM sleep and enactment of dream content. RBD is associated with Parkinson disease (PD) and has high incidence in PD patients. PD patient with RBD mainly presents rigid type, has longer disease duration, more severe motor and non-motor symptoms and poorer activity of daily living and life quality. The pathophysiological mechanisms of RBD may be related to dysfunctions of pontine tegmentum, locus coeruleus/sub-locus coeruleus complex and related projections. The diagnosis of RBD depends on clinical histories and video-polysomnography (v-PSG). Besides treatment for PD, protective measures have to be taken for patients and their sleep partners. If abnormal behaviors during sleep cause distress and danger,patients should be given drug therapy.

  18. Laminar-specific distribution of zinc: evidence for presence of layer IV in forelimb motor cortex in the rat.

    Science.gov (United States)

    Alaverdashvili, Mariam; Hackett, Mark J; Pickering, Ingrid J; Paterson, Phyllis G

    2014-12-01

    The rat is the most widely studied pre-clinical model system of various neurological and neurodegenerative disorders affecting hand function. Although brain injury to the forelimb region of the motor cortex in rats mostly induces behavioral abnormalities in motor control of hand movements, behavioral deficits in the sensory-motor domain are also observed. This questions the prevailing view that cortical layer IV, a recipient of sensory information from the thalamus, is absent in rat motor cortex. Because zinc-containing neurons are generally not found in pathways that run from the thalamus, an absence of zinc (Zn) in a cortical layer would be suggestive of sensory input from the thalamus. To test this hypothesis, we used synchrotron micro X-ray fluorescence imaging to measure Zn distribution across cortical layers. Zn maps revealed a heterogeneous layered Zn distribution in primary and secondary motor cortices of the forelimb region in the adult rat. Two wider bands with elevated Zn content were separated by a narrow band having reduced Zn content, and this was evident in two rat strains. The Zn distribution pattern was comparable to that in sensorimotor cortex, which is known to contain a well demarcated layer IV. Juxtaposition of Zn maps and the images of brain stained for Nissl bodies revealed a "Zn valley" in primary motor cortex, apparently starting at the ventral border of pyramidal layer III and ending at the close vicinity of layer V. This finding indicates the presence of a conspicuous cortical layer between layers III and V, i.e. layer IV, the presence of which previously has been disputed. The results have implications for the use of rat models to investigate human brain function and neuropathology, such as after stroke. The presence of layer IV in the forelimb region of the motor cortex suggests that therapeutic interventions used in rat models of motor cortex injury should target functional abnormalities in both motor and sensory domains. The finding

  19. A common optimization principle for motor execution in healthy subjects and parkinsonian patients.

    Science.gov (United States)

    Baraduc, Pierre; Thobois, Stéphane; Gan, Jing; Broussolle, Emmanuel; Desmurget, Michel

    2013-01-09

    Recent research on Parkinson's disease (PD) has emphasized that parkinsonian movement, although bradykinetic, shares many attributes with healthy behavior. This observation led to the suggestion that bradykinesia in PD could be due to a reduction in motor motivation. This hypothesis can be tested in the framework of optimal control theory, which accounts for many characteristics of healthy human movement while providing a link between the motor behavior and a cost/benefit trade-off. This approach offers the opportunity to interpret movement deficits of PD patients in the light of a computational theory of normal motor control. We studied 14 PD patients with bilateral subthalamic nucleus (STN) stimulation and 16 age-matched healthy controls, and tested whether reaching movements were governed by similar rules in these two groups. A single optimal control model accounted for the reaching movements of healthy subjects and PD patients, whatever the condition of STN stimulation (on or off). The choice of movement speed was explained in all subjects by the existence of a preset dynamic range for the motor signals. This range was idiosyncratic and applied to all movements regardless of their amplitude. In PD patients this dynamic range was abnormally narrow and correlated with bradykinesia. STN stimulation reduced bradykinesia and widened this range in all patients, but did not restore it to a normal value. These results, consistent with the motor motivation hypothesis, suggest that constrained optimization of motor effort is the main determinant of movement planning (choice of speed) and movement production, in both healthy and PD subjects.

  20. Slitrk1-deficient mice display elevated anxiety-like behavior and noradrenergic abnormalities.

    Science.gov (United States)

    Katayama, K; Yamada, K; Ornthanalai, V G; Inoue, T; Ota, M; Murphy, N P; Aruga, J

    2010-02-01

    Mutations in SLITRK1 are found in patients with Tourette's syndrome and trichotillomania. SLITRK1 encodes a transmembrane protein containing leucine-rich repeats that is produced predominantly in the nervous system. However, the role of this protein is largely unknown, except that it can modulate neurite outgrowth in vitro. To clarify the role of Slitrk1 in vivo, we developed Slitrk1-knockout mice and analyzed their behavioral and neurochemical phenotypes. Slitrk1-deficient mice exhibited elevated anxiety-like behavior in the elevated plus-maze test as well as increased immobility time in forced swimming and tail suspension tests. Neurochemical analysis revealed that Slitrk1-knockout mice had increased levels of norepinephrine and its metabolite 3-methoxy-4-hydroxyphenylglycol. Administration of clonidine, an alpha2-adrenergic agonist that is frequently used to treat patients with Tourette's syndrome, attenuated the anxiety-like behavior of Slitrk1-deficient mice in the elevated plus-maze test. These results lead us to conclude that noradrenergic mechanisms are involved in the behavioral abnormalities of Slitrk1-deficient mice. Elevated anxiety due to Slitrk1 dysfunction may contribute to the pathogenesis of neuropsychiatric diseases such as Tourette's syndrome and trichotillomania.

  1. A structured assessment of motor function, behavior, and communication in patients with Wolf-Hirschhorn syndrome.

    Science.gov (United States)

    Nag, Heidi E; Bergsaker, David K; Hunn, Bente S; Schmidt, Susanne; Hoxmark, Lise B

    2017-11-01

    The present study aimed to increase the knowledge about Wolf-Hirschhorn syndrome (WHS), especially concerning motor function, autism spectrum disorders (ASD), and adapted behavior, but also regarding clinical symptoms in general. Motor function was evaluated via systematic observation. Standardized assessments such as the Vineland Adapted Behavior Scales II (VABS II), the Social Communication Questionnaire (SCQ), and the Child Behavior Checklist (CBCL) or Adult Behavior Checklist (ABCL) were used for the behavioral assessment. In total, two males and eight females between one and 48 years of age with a genetically confirmed diagnosis of WHS and their parents participated in this study. Deletion sizes were known for seven of the ten patients and varied between 55 Kb and 20 Mb. The chromosome coordinates were known for six of them, and none of those had the same break points in their deletion. The main finding in this study was that patients with WHS may have a better outcome regarding motor skills and expressive communication than previously described. We could confirm the main medical findings described earlier, but found also a population with a less severe dysmorphology, fewer congenital malformations, and fewer medical challenges than expected. Sleep problems may persist into adulthood and need a more thorough investigation. Research on possible indications of ASD is strongly needed for targeted interventions. In conclusion, a more thorough assessment of communication, possible ASD, and sleep in larger groups of patients with WHS are needed to confirm and further investigate the findings from this study and to provide more targeted interventions for WHS patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Changes in food intake and abnormal behavior using a puzzle feeder in newly acquired sub-adult rhesus monkeys (Macaca mulatta): a short term study.

    Science.gov (United States)

    Lee, Jae-Il; Lee, Chi-Woo; Kwon, Hyouk-Sang; Kim, Young-Tae; Park, Chung-Gyu; Kim, Sang-Joon; Kang, Byeong-Cheol

    2008-10-01

    The majority of newly acquired nonhuman primates encounter serious problems adapting themselves to new environments or facilities. In particular, loss of appetite and abnormal behavior can occur in response to environmental stresses. These adaptation abnormalities can ultimately have an affect on the animal's growth and well-being. In this study, we evaluated the affects of a puzzle feeder on the food intake and abnormal behavior of newly acquired rhesus monkeys for a short period. The puzzle feeder was applied to 47- to 58-month-old animals that had never previously encountered one. We found that there was no difference in the change of food intake between the bucket condition and the puzzle feeder condition. In contrast, the time spent for consumption of food was three times longer in the puzzle feeder condition than in the bucket condition. Two monkeys initially exhibited stereotypic behavior. One showed a decreasing, and the other an increasing pattern of abnormal behavior after introduction of the puzzle feeder. In conclusion, this result suggests that over a short period, the puzzle feeder can only affect the time for food consumption since it failed to affect the food intake and did not consistently influence stereotypic behaviors in newly acquired rhesus monkeys.

  3. Omnivores Going Astray: A Review and New Synthesis of Abnormal Behavior in Pigs and Laying Hens

    Science.gov (United States)

    Brunberg, Emma I.; Rodenburg, T. Bas; Rydhmer, Lotta; Kjaer, Joergen B.; Jensen, Per; Keeling, Linda J.

    2016-01-01

    Pigs and poultry are by far the most omnivorous of the domesticated farm animals and it is in their nature to be highly explorative. In the barren production environments, this motivation to explore can be expressed as abnormal oral manipulation directed toward pen mates. Tail biting (TB) in pigs and feather pecking (FP) in laying hens are examples of unwanted behaviors that are detrimental to the welfare of the animals. The aim of this review is to draw these two seemingly similar abnormalities together in a common framework, in order to seek underlying mechanisms and principles. Both TB and FP are affected by the physical and social environment, but not all individuals in a group express these behaviors and individual genetic and neurobiological characteristics play an important role. By synthesizing what is known about environmental and individual influences, we suggest a novel possible mechanism, common for pigs and poultry, involving the brain–gut–microbiota axis. PMID:27500137

  4. Baseline Cognition, Behavior, and Motor Skills in Children with New-Onset, Idiopathic Epilepsy

    Science.gov (United States)

    Bhise, Vikram V.; Burack, Gail D.; Mandelbaum, David E.

    2010-01-01

    Aim: Epilepsy is associated with difficulties in cognition and behavior in children. These problems have been attributed to genetics, ongoing seizures, psychosocial issues, underlying abnormality of the brain, and/or antiepileptic drugs. In a previous study, we found baseline cognitive differences between children with partial versus generalized…

  5. Motoric subtypes of delirium in geriatric patients

    Directory of Open Access Journals (Sweden)

    Sandeep Grover

    2014-01-01

    Results: On amended DMSS, hyperactive subtype (N = 45; 45.9% was the most common motoric subtype of delirium, followed by hypoactive subtype (N = 23; 23.5%, and mixed subtype (N = 21; 21.4%. On DRS-R-98, all patients fulfilled the criteria of ′acute (temporal onset of symptoms′, ′presence of an underlying physical disorder′ and ′difficulty in attention′. In the total sample, >90% of the patients had disturbances in sleep-wake cycle, orientation and fluctuation of symptoms. The least common symptoms were delusions, visuospatial disturbances and motor retardation. When compared to hypoactive group, significantly higher proportion of patients with hyperactive subtype had delusions, perceptual disturbances, and motor agitation. Whereas, compared to hyperactive subtype, significantly higher proportion of patients with hypoactive subtype had thought process abnormality and motor retardation. When the hyperactive and mixed motoric subtype groups were compared, patients with mixed subtype group had significantly higher prevalence of thought process abnormality and motor retardation. Comparison of hypoactive and mixed subtype revealed significant differences in the frequency of perceptual disturbances, delusions and motor agitation and all these symptoms being found more commonly in patients with the mixed subtype. Severity of symptoms were found to be significantly different across the various motoric subtypes for some of the non-cognitive symptoms, but significant differences were not seen for the cognitive symptoms as assessed on DRS-R-98. Conclusion: In elderly patients, motor subtypes of delirium differ from each other on non-cognitive symptom profile in terms of frequency and severity.

  6. Co-occurring motor, language and emotional-behavioral problems in children 3-6 years of age.

    Science.gov (United States)

    King-Dowling, Sara; Missiuna, Cheryl; Rodriguez, M Christine; Greenway, Matt; Cairney, John

    2015-02-01

    Developmental Coordination Disorder (DCD) has been shown to co-occur with behavioral and language problems in school-aged children, but little is known as to when these problems begin to emerge, or if they are inherent in children with DCD. The purpose of this study was to determine if deficits in language and emotional-behavioral problems are apparent in preschool-aged children with movement difficulties. Two hundred and fourteen children (mean age 4years 11months, SD 9.8months, 103 male) performed the Movement Assessment Battery for Children 2nd Edition (MABC-2). Children falling at or below the 16th percentile were classified as being at risk for movement difficulties (MD risk). Auditory comprehension and expressive communication were examined using the Preschool Language Scales 4th Edition (PLS-4). Parent-reported emotional and behavioral problems were assessed using the Child Behavior Checklist (CBCL). Preschool children with diminished motor coordination (n=37) were found to have lower language scores, higher externalizing behaviors in the form of increased aggression, as well as increased withdrawn and other behavior symptoms compared with their typically developing peers. Motor coordination, language and emotional-behavioral difficulties tend to co-occur in young children aged 3-6years. These results highlight the need for early intervention. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Oseltamivir prescription and regulatory actions vis-à-vis abnormal behavior risk in Japan: drug utilization study using a nationwide pharmacy database.

    Science.gov (United States)

    Urushihara, Hisashi; Doi, Yuko; Arai, Masaru; Matsunaga, Toshiyuki; Fujii, Yosuke; Iino, Naoko; Kawamura, Takashi; Kawakami, Koji

    2011-01-01

    In March 2007, a regulatory advisory was issued in Japan to restrict oseltamivir use in children aged 10-19 years because of safety concerns over abnormal behavior. The effectiveness and validity of regulatory risk minimization actions remain to be reviewed, despite their significant public health implications. To assess the impact of the regulatory actions on prescribing practices and safety reporting. METHODOLOY/PRINICPAL FINDINGS: In this retrospective review of a nationwide pharmacy database, we analyzed 100,344 dispensation records for oseltamivir and zanamivir for the period from November 2006 to March 2009. The time trend in dispensations for these antiviral agents was presented before and after the regulatory actions, contrasted with intensity of media coverage and the numbers of spontaneous adverse reaction reports with regard to antivirals. The 2007 regulatory actions, together with its intense media coverage, reduced oseltamivir dispensation in targeted patients in fiscal year 2008 to 20.4% of that in fiscal year 2006, although influenza activities were comparable between these fiscal years. In contrast, zanamivir dispensation increased approximately nine-fold across all age groups. The number of abnormal behavior reports associated with oseltamivir in children aged 10-19 years decreased from fiscal year 2006 to 2008 (24 to 9 cases); this decline was offset by the increased number of reports of abnormal behavior in children under age 10 (12 to 28 cases). The number of reports associated with zanamivir increased in proportion to increased dispensation of this drug (11 to 114 cases). The 2007 actions effectively reduced oseltamivir prescriptions and the number of reports of abnormal behavior in the targeted group. The observed increase in abnormal behavior reports in oseltamivir patients under age 10 and in zanamivir patients suggests that these patient groups may also be at risk, calling into question the validity of the current discrimination by age and

  8. Oseltamivir prescription and regulatory actions vis-à-vis abnormal behavior risk in Japan: drug utilization study using a nationwide pharmacy database.

    Directory of Open Access Journals (Sweden)

    Hisashi Urushihara

    Full Text Available BACKGROUND: In March 2007, a regulatory advisory was issued in Japan to restrict oseltamivir use in children aged 10-19 years because of safety concerns over abnormal behavior. The effectiveness and validity of regulatory risk minimization actions remain to be reviewed, despite their significant public health implications. To assess the impact of the regulatory actions on prescribing practices and safety reporting. METHODOLOY/PRINICPAL FINDINGS: In this retrospective review of a nationwide pharmacy database, we analyzed 100,344 dispensation records for oseltamivir and zanamivir for the period from November 2006 to March 2009. The time trend in dispensations for these antiviral agents was presented before and after the regulatory actions, contrasted with intensity of media coverage and the numbers of spontaneous adverse reaction reports with regard to antivirals. The 2007 regulatory actions, together with its intense media coverage, reduced oseltamivir dispensation in targeted patients in fiscal year 2008 to 20.4% of that in fiscal year 2006, although influenza activities were comparable between these fiscal years. In contrast, zanamivir dispensation increased approximately nine-fold across all age groups. The number of abnormal behavior reports associated with oseltamivir in children aged 10-19 years decreased from fiscal year 2006 to 2008 (24 to 9 cases; this decline was offset by the increased number of reports of abnormal behavior in children under age 10 (12 to 28 cases. The number of reports associated with zanamivir increased in proportion to increased dispensation of this drug (11 to 114 cases. CONCLUSIONS/SIGNIFICANCE: The 2007 actions effectively reduced oseltamivir prescriptions and the number of reports of abnormal behavior in the targeted group. The observed increase in abnormal behavior reports in oseltamivir patients under age 10 and in zanamivir patients suggests that these patient groups may also be at risk, calling into question

  9. Polyphasic Temporal Behavior of Finger-Tapping Performance: A Measure of Motor Skills and Fatigue.

    Science.gov (United States)

    Aydin, Leyla; Kiziltan, Erhan; Gundogan, Nimet Unay

    2016-01-01

    Successive voluntary motor movement involves a number of physiological mechanisms and may reflect motor skill development and neuromuscular fatigue. In this study, the temporal behavior of finger tapping was investigated in relation to motor skills and fatigue by using a long-term computer-based test. The finger-tapping performances of 29 healthy male volunteers were analyzed using linear and nonlinear regression models established for inter-tapping interval. The results suggest that finger-tapping performance exhibits a polyphasic nature, and has several characteristic time points, which may be directly related to muscle dynamics and energy consumption. In conclusion, we believe that future studies evaluating the polyphasic nature of the maximal voluntary movement will lead to the definition of objective scales that can be used in the follow up of some neuromuscular diseases, as well as, the determination of motor skills, individual ability, and peripheral fatigue through the use of a low cost, easy-to-use computer-based finger-tapping test.

  10. Bimanual coupling paradigm as an effective tool to investigate productive behaviors in motor and body awareness impairments

    Directory of Open Access Journals (Sweden)

    Francesca eGarbarini

    2013-11-01

    Full Text Available When humans move simultaneously both hands strong coupling effects arise and neither of the two hands is able to perform independent actions. It has been suggested that such motor constraints are tightly linked to action representation rather than to movement execution. Hence, bimanual tasks can represent an ideal experimental tool to investigate internal motor representations in those neurological conditions in which the movement of one hand is impaired. Indeed, any effect on the ‘moving’ (healthy hand would be caused by the constraints imposed by the ongoing motor program of the ‘impaired’ hand. Here, we review recent studies that successfully utilized the above-mentioned paradigms to investigate some types of productive motor behaviors in stroke patients. Specifically, bimanual tasks have been employed in left hemiplegic patients who report illusory movements of their contralesional limbs (anosognosia for hemiplegia. They have also been administered to patients affected by a specific monothematic delusion of body ownership, namely the belief that another person’s arm and his/her voluntary action belong to them. In summary, the reviewed studies show that bimanual tasks are a simple and valuable experimental method apt to reveal information about the motor programs of a paralyzed limb. Therefore, it can be used to objectively examine the cognitive processes underpinning motor programming in patients with different delusions of motor behavior. Additionally, it also sheds light on the mechanisms subserving bimanual coordination in the intact brain suggesting that action representation might be sufficient to produce these effects.

  11. Effect of preterm birth on motor development, behavior, and school performance of school-age children: a systematic review

    Directory of Open Access Journals (Sweden)

    Rafaela S. Moreira

    2014-04-01

    Full Text Available OBJECTIVES: to examine and synthesize the available knowledge in the literature about the effects of preterm birth on the development of school-age children. SOURCES: This was a systematic review of studies published in the past ten years indexed in MEDLINE/Pubmed, MEDLINE/BVS; LILACS/BVS; IBECS/BVS; Cochrane/BVS, CINAHL, Web of Science, Scopus, and PsycNET in three languages (Portuguese, Spanish, and English. Observational and experimental studies that assessed motor development and/or behavior and/or academic performance and whose target-population consisted of preterm children aged 8 to 10 years were included. Article quality was assessed by the Strengthening the reporting of observational studies in epidemiology (STROBE and Physiotherapy Evidence Database (PEDro scales; articles that did not achieve a score of 80% or more were excluded. SUMMARY OF FINDINGS: the electronic search identified 3,153 articles, of which 33 were included based on the eligibility criteria. Only four studies found no effect of prematurity on the outcomes (two articles on behavior, one on motor performance and one on academic performance. Among the outcomes of interest, behavior was the most searched (20 articles, 61%, followed by academic performance (16 articles, 48% and motor impairment (11 articles, 33%. CONCLUSION: premature infants are more susceptible to motor development, behavior and academic performance impairment when compared to term infants. These types of impairments, whose effects are manifested in the long term, can be prevented through early parental guidance, monitoring by specialized professionals, and interventions.

  12. Translocation and neurotoxicity of CdTe quantum dots in RMEs motor neurons in nematode Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Zhao, Yunli; Wang, Xiong; Wu, Qiuli; Li, Yiping; Wang, Dayong

    2015-01-01

    Graphical abstract: - Highlights: • We investigated in vivo neurotoxicity of CdTe QDs on RMEs motor neurons in C. elegans. • CdTe QDs in the range of μg/L caused neurotoxicity on RMEs motor neurons. • Bioavailability of CdTe QDs may be the primary inducer for CdTe QDs neurotoxicity. • Both oxidative stress and cell identity regulate the CdTe QDs neurotoxicity. • CdTe QDs were translocated and deposited into RMEs motor neurons. - Abstract: We employed Caenorhabditis elegans assay system to investigate in vivo neurotoxicity of CdTe quantum dots (QDs) on RMEs motor neurons, which are involved in controlling foraging behavior, and the underlying mechanism of such neurotoxicity. After prolonged exposure to 0.1–1 μg/L of CdTe QDs, abnormal foraging behavior and deficits in development of RMEs motor neurons were observed. The observed neurotoxicity from CdTe QDs on RMEs motor neurons might be not due to released Cd 2+ . Overexpression of genes encoding Mn-SODs or unc-30 gene controlling cell identity of RMEs neurons prevented neurotoxic effects of CdTe QDs on RMEs motor neurons, suggesting the crucial roles of oxidative stress and cell identity in regulating CdTe QDs neurotoxicity. In nematodes, CdTe QDs could be translocated through intestinal barrier and be deposited in RMEs motor neurons. In contrast, CdTe@ZnS QDs could not be translocated into RMEs motor neurons and therefore, could only moderately accumulated in intestinal cells, suggesting that ZnS coating might reduce neurotoxicity of CdTe QDs on RMEs motor neurons. Therefore, the combinational effects of oxidative stress, cell identity, and bioavailability may contribute greatly to the mechanism of CdTe QDs neurotoxicity on RMEs motor neurons. Our results provide insights into understanding the potential risks of CdTe QDs on the development and function of nervous systems in animals

  13. Differentiating children with attention-deficit/hyperactivity disorder, conduct disorder, learning disabilities and autistic spectrum disorders by means of their motor behavior characteristics.

    Science.gov (United States)

    Efstratopoulou, Maria; Janssen, Rianne; Simons, Johan

    2012-01-01

    The study was designed to investigate the discriminant validity of the Motor Behavior Checklist (MBC) for distinguishing four group of children independently classified with Attention-Deficit/Hyperactivity Disorder, (ADHD; N=22), Conduct Disorder (CD; N=17), Learning Disabilities (LD; N=24) and Autistic Spectrum Disorders (ASD; N=20). Physical education teachers used the MBC for children to rate their pupils based on their motor related behaviors. A multivariate analysis revealed significant differences among the groups on different problem scales. The results indicated that the MBC for children may be effective in discriminating children with similar disruptive behaviors (e.g., ADHD, CD) and autistic disorders, based on their motor behavior characteristics, but not children with Learning Disabilities (LD), when used by physical education teachers in school settings. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Progress and perspectives of the Brazilian scientific production in international journals in the field of motor behavior

    Directory of Open Access Journals (Sweden)

    Ana Paula Kogake Claudio

    2009-09-01

    Full Text Available In view of the fact that one of the key indicators of scientific production is the number of papers published in international journals, and of the apparent growing interest in the area of motor behavior, we conducted a survey of articles published by Brazilian researchers in this area over the last 10 years (1999-2008 in international journals rated “Qualis International-A” and “Qualis International-B” by CAPES. This quantification was performed to provide a qualified viewpoint regarding the profile of Brazilian scientific production of international repercussion in the area of motor behavior. Articles were identified using the Google Scholar, Pubmed, Science Direct, and Scopus search systems, with the search being restricted to characteristic terms involving motor behavior and to researchers associated with Brazilian universities. The results showed an increase in production over the last 5 years of the period studied, with the peak in 2006. In addition, Brazilian scientific production was concentrated in four public universities. These results suggest that in order to keep growing, the new groups should work in collaboration with productive laboratories, decentralizing the scientific production.

  15. Movement-related cortical potentials in paraplegic patients: abnormal patterns and considerations for BCI-rehabilitation

    Directory of Open Access Journals (Sweden)

    Ren eXu

    2014-08-01

    Full Text Available Non-invasive EEG-based Brain-Computer Interfaces (BCI can be promising for the motor neuro-rehabilitation of paraplegic patients. However, this shall require detailed knowledge of the abnormalities in the EEG signatures of paraplegic patients. The association of abnormalities in different subgroups of patients and their relation to the sensorimotor integration are relevant for the design, implementation and use of BCI systems in patient populations. This study explores the patterns of abnormalities of movement related cortical potentials (MRCP during motor imagery tasks of feet and right hand in patients with paraplegia (including the subgroups with/without central neuropathic pain and complete/incomplete injury patients and the level of distinctiveness of abnormalities in these groups using pattern classification. The most notable observed abnormalities were the amplified execution negativity and its slower rebound in the patient group. The potential underlying mechanisms behind these changes and other minor dissimilarities in patients’ subgroups, as well as the relevance to BCI applications, are discussed. The findings are of interest from a neurological perspective as well as for BCI-assisted neuro-rehabilitation and therapy.

  16. On the origin of grasshopper oviposition behavior: structural homology in pregenital and genital motor systems.

    Science.gov (United States)

    Thompson, Karen J; Jones, Alaine D; Miller, Sandra A

    2014-01-01

    In female grasshoppers, oviposition is a highly specialized behavior involving a rhythm-generating neural circuit, the oviposition central pattern generator, unusual abdominal appendages, and dedicated muscles. This study of Schistocerca americana (Drury) grasshoppers was undertaken to determine whether the simpler pregenital abdominal segments, which do not contain ovipositor appendages, share common features with the genital segment, suggesting a roadmap for the genesis of oviposition behavior. Our study revealed that although 5 of the standard pregenital body wall muscles were missing in the female genital segment, homologous lateral nerves were, indeed, present and served 4 ovipositor muscles. Retrograde labeling of the corresponding pregenital nerve branches in male and female grasshoppers revealed motor neurons, dorsal unpaired median neurons, and common inhibitor neurons which appear to be structural homologues of those filled from ovipositor muscles. Some pregenital motor neurons displayed pronounced contralateral neurites; in contrast, some ovipositor motor neurons were exclusively ipsilateral. Strong evidence of structural homology was also obtained for pregenital and ovipositor skeletal muscles supplied by the identified neurons and of the pregenital and ovipositor skeletons. For example, transient embryonic segmental appendages were maintained in the female genital segments, giving rise to ovipositor valves, but were lost in pregenital abdominal segments. Significant proportional differences in sternal apodemes and plates were observed, which partially obscure the similarities between the pregenital and genital skeletons. Other changes in reorganization included genital muscles that displayed adult hypertrophy, 1 genital muscle that appeared to represent 2 fused pregenital muscles, and the insertion points of 2 ovipositor muscles that appeared to have been relocated. Together, the comparisons support the idea that the oviposition behavior of genital

  17. Abnormal magnetization behaviors in Sm–Ni–Fe–Cu alloys

    International Nuclear Information System (INIS)

    Yang, W.Y.; Zhang, Y.F.; Zhao, H.; Chen, G.F.; Zhang, Y.; Du, H.L.; Liu, S.Q.; Wang, C.S.; Han, J.Z.; Yang, Y.C.; Yang, J.B.

    2016-01-01

    The magnetization behaviors in Sm–Ni–Fe–Cu alloys at low temperatures have been investigated. It was found that the hysteresis loops show wasp-waisted character at low temperatures, which has been proved to be related to the existence of multi-phases, the Fe/Ni soft magnetic phases and the CaCu 5 -type hard magnetic phase. A smooth-jump behavior of the magnetization is observed at T>5 K, whereas a step-like magnetization process appears at T<5 K. The CaCu 5 -type phase is responsible for such abnormal magnetization behavior. The magnetic moment reversal model with thermal activation is used to explain the relation of the critical magnetic field (H cm ) to the temperature (T>5 K). The reversal of the moment direction has to cross over an energy barrier of about 6.6×10 −15 erg. The step-like jumps of the magnetization below 5 K is proposed to be resulted from a sharp increase of the sample temperature under the heat released by the irreversible domain wall motion. - Highlights: • Two different magnetization mechanisms, controlled by temperature, have been found in the Sm–Ni–Fe–Cu alloys. The smooth-jump behavior of the magnetization is observed at T>5 K and the step-like magnetization process appears at T<5 K. • The magnetic moment reversal model with thermal activation has been successfully used to explain the relation of the critical magnetic field (H cm ) to the temperature (T>5 K). The energy barrier for the reversal of the moment direction has been found to be about 6.6×10 −15 erg. • The transition field for the step-like jumps is very strict, independent from the magnetic sweep rate. This is remarkably different from the similar step-like jump behavior in reference [20]. • According to the SEM images and EDX analysis, two kinds of regions are found in the alloys. The Fe–Ni–Cu regions are surrounded by the 1:5 Sm–Ni–Fe–Cu regions and shows fish-bone like structure. An interesting thing is that the Fe–Ni–Cu regions are

  18. [Motor behavior of human fetuses during the second trimester of gestation: a longitudinal ultrasound study].

    Science.gov (United States)

    Reynoso, C; Crespo-Eguílaz, N; Alcázar, J L; Narbona, J

    2015-03-01

    The aim of this research is to contribute to knowledge of the normal spontaneous motor behavior of the human fetus during the second trimester of pregnancy. This study focuses on five patterns of spontaneous fetal movement: startle (S), axo-rhizomelic rhythmia (ARR), axial stretching (AS), general movement (GM), and diaphragmatic contraction (DC). A cohort of 13 subjects was followed up using 2D obstetrical ultrasound images at 12, 16, 20, and 24 weeks of gestation. As inclusion criteria, neonatal neurological examination and general movements after eutocic delivery at term were normal in all of the subjects, and their neuromotor and cognitive development until the end of pre-school age were also normal. All these five motor patterns are present at the beginning of the 2(nd) gestational trimester, but their quantitative and qualitative traits are diverse according to gestational ages. The phasic, isolated or rhythmically repeated movements, S and ARR, are prominent at 12 and 16 weeks of gestation, and then their presence gradually diminishes. By contrast, tonic and complex AS and GM movements increase their presence and quality at 20 and 24 weeks. RAR constitute a particular periodic motor pattern not described in previous literature. Moreover, the incidence of DC is progressive throughout the trimester, in clusters of 2-6 arrhythmic and irregular beats. Fetal heart rate increases during fetal motor active periods. All five normal behavioral patterns observed in the ultrasounds reflect the progressive tuning of motor generators in human nervous system during mid-pregnancy. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  19. White-matter tract abnormalities and antisocial behavior: A systematic review of diffusion tensor imaging studies across development

    Directory of Open Access Journals (Sweden)

    Rebecca Waller

    2017-01-01

    Full Text Available Antisocial behavior (AB, including aggression, violence, and theft, is thought be underpinned by abnormal functioning in networks of the brain critical to emotion processing, behavioral control, and reward-related learning. To better understand the abnormal functioning of these networks, research has begun to investigate the structural connections between brain regions implicated in AB using diffusion tensor imaging (DTI, which assesses white-matter tract microstructure. This systematic review integrates findings from 22 studies that examined the relationship between white-matter microstructure and AB across development. In contrast to a prior hypothesis that AB is associated with greater diffusivity specifically in the uncinate fasciculus, findings suggest that adult AB is associated with greater diffusivity across a range of white-matter tracts, including the uncinate fasciculus, inferior fronto-occipital fasciculus, cingulum, corticospinal tract, thalamic radiations, and corpus callosum. The pattern of findings among youth studies was inconclusive with both higher and lower diffusivity found across association, commissural, and projection and thalamic tracts.

  20. The Small GTP-Binding Protein Rhes Influences Nigrostriatal-Dependent Motor Behavior During Aging.

    Science.gov (United States)

    Pinna, Annalisa; Napolitano, Francesco; Pelosi, Barbara; Di Maio, Anna; Wardas, Jadwiga; Casu, Maria Antonietta; Costa, Giulia; Migliarini, Sara; Calabresi, Paolo; Pasqualetti, Massimo; Morelli, Micaela; Usiello, Alessandro

    2016-04-01

    Here we aimed to evaluate: (1) Rhes mRNA expression in mouse midbrain, (2) the effect of Rhes deletion on the number of dopamine neurons, (3) nigrostriatal-sensitive behavior during aging in knockout mice. Radioactive in situ hybridization was assessed in adult mice. The beam-walking test was executed in 3-, 6- and 12-month-old mice. Immunohistochemistry of midbrain tyrosine hydroxylase (TH)-positive neurons was performed in 6- and 12-month-old mice. Rhes mRNA is expressed in TH-positive neurons of SNpc and the ventral tegmental area. Moreover, lack of Rhes leads to roughly a 20% loss of nigral TH-positive neurons in both 6- and 12-month-old mutants, when compared with their age-matched controls. Finally, lack of Rhes triggers subtle alterations in motor performance and coordination during aging. Our findings indicate a fine-tuning role of Rhes in regulating the number of TH-positive neurons of the substantia nigra and nigrostriatal-sensitive motor behavior during aging. © 2016 International Parkinson and Movement Disorder Society.

  1. Motor control is decision-making.

    Science.gov (United States)

    Wolpert, Daniel M; Landy, Michael S

    2012-12-01

    Motor behavior may be viewed as a problem of maximizing the utility of movement outcome in the face of sensory, motor and task uncertainty. Viewed in this way, and allowing for the availability of prior knowledge in the form of a probability distribution over possible states of the world, the choice of a movement plan and strategy for motor control becomes an application of statistical decision theory. This point of view has proven successful in recent years in accounting for movement under risk, inferring the loss function used in motor tasks, and explaining motor behavior in a wide variety of circumstances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Zebrafish embryos exposed to alcohol undergo abnormal development of motor neurons and muscle fibers.

    Science.gov (United States)

    Sylvain, Nicole J; Brewster, Daniel L; Ali, Declan W

    2010-01-01

    Children exposed to alcohol in utero have significantly delayed gross and fine motor skills, as well as deficiencies in reflex development. The reasons that underlie the motor deficits caused by ethanol (EtOH) exposure remain to be fully elucidated. The present study was undertaken to investigate the effects of embryonic alcohol exposure (1.5%, 2% and 2.5% EtOH) on motor neuron and muscle fiber morphology in 3 days post fertilization (dpf) larval zebrafish. EtOH treated fish exhibited morphological deformities and fewer bouts of swimming in response to touch, compared with untreated fish. Immunolabelling with anti-acetylated tubulin indicated that fish exposed to 2.5% EtOH had significantly higher rates of motor neuron axon defects. Immunolabelling of primary and secondary motor neurons, using znp-1 and zn-8, revealed that fish exposed to 2% and 2.5% EtOH exhibited significantly higher rates of primary and secondary motor neuron axon defects compared to controls. Examination of red and white muscle fibers revealed that fish exposed to EtOH had significantly smaller fibers compared with controls. These findings indicate that motor neuron and muscle fiber morphology is affected by early alcohol exposure in zebrafish embryos, and that this may be related to deficits in locomotion. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Triphasic behavioral response of motor units to submaximal fatiguing exercise.

    Science.gov (United States)

    Dorfman, L J; Howard, J E; McGill, K C

    1990-07-01

    We have measured the firing rate and amplitude of 4551 motor unit action potentials (MUAPs) recorded with concentric needle electrodes from the brachial biceps muscles of 10 healthy young adults before, during, and after 45 minutes of intermittent isometric exercise at 20% of maximum voluntary contraction (MVC), using an automatic method for decomposition of electromyographic activity (ADEMG). During and after exercise, MUAPs derived from contractions of 30% MVC showed progressive increase in mean firing rate (P less than or equal to .01) and amplitude (P less than or equal to .05). The firing rate increase preceded the rise in mean amplitude, and was evident prior to the development of fatigue, defined as reduction of MVC. Analysis of individual potentials revealed that the increase in firing rate and in amplitude reflected different MUAP subpopulations. A short-term (less than 1 minute) reduction in MUAP firing rates (P less than or equal to .05) was also observed at the onset of each test contraction. These findings suggest that motor units exhibit a triphasic behavioral response to prolonged submaximal exercise: (1) short-term decline and stabilization of onset firing rates, followed by (2) gradual and progressive increase in firing rates and firing variability, and then by (3) recruitment of additional (larger) motor units. The (2) and (3) components presumably compensate for loss of force-generating capacity in the exercising muscle, and give rise jointly to the well-known increase in total surface EMG which accompanies muscle fatigue.

  4. Gastric myoelectrical and antroduodenal motor activity in patients with achalasia

    NARCIS (Netherlands)

    Verhagen, M. A.; Samsom, M.; Smout, A. J.

    1998-01-01

    Achalasia is a primary motor disorder of the oesophagus, in which the myenteric plexus is involved. However, abnormalities in other parts of the digestive tract have also been described in achalasia. Whether gastric myoelectrical and duodenal motor activity in these patients is also affected is

  5. Altered synaptic phospholipid signaling in PRG-1 deficient mice induces exploratory behavior and motor hyperactivity resembling psychiatric disorders.

    Science.gov (United States)

    Schneider, Patrick; Petzold, Sandra; Sommer, Angela; Nitsch, Robert; Schwegler, Herbert; Vogt, Johannes; Roskoden, Thomas

    2018-01-15

    Plasticity related gene 1 (PRG-1) is a neuron specific membrane protein located at the postsynaptic density of glutamatergic synapses. PRG-1 modulates signaling pathways of phosphorylated lipid substrates such as lysophosphatidic acid (LPA). Deletion of PRG-1 increases presynaptic glutamate release probability leading to neuronal over-excitation. However, due to its cortical expression, PRG-1 deficiency leading to increased glutamatergic transmission is supposed to also affect motor pathways. We therefore analyzed the effects of PRG-1 function on exploratory and motor behavior using homozygous PRG-1 knockout (PRG-1 -/- ) mice and PRG-1/LPA 2 -receptor double knockout (PRG-1 -/- /LPA 2 -/- ) mice in two open field settings of different size and assessing motor behavior in the Rota Rod test. PRG-1 -/- mice displayed significantly longer path lengths and higher running speed in both open field conditions. In addition, PRG-1 -/- mice spent significantly longer time in the larger open field and displayed rearing and self-grooming behavior. Furthermore PRG-1 -/- mice displayed stereotypical behavior resembling phenotypes of psychiatric disorders in the smaller sized open field arena. Altogether, this behavior is similar to the stereotypical behavior observed in animal models for psychiatric disease of autistic spectrum disorders which reflects a disrupted balance between glutamatergic and GABAergic synapses. These differences indicate an altered excitation/inhibition balance in neuronal circuits in PRG-1 -/- mice as recently shown in the somatosensory cortex [38]. In contrast, PRG-1 -/- /LPA 2 -/- did not show significant changes in behavior in the open field suggesting that these specific alterations were abolished when the LPA 2 -receptor was lacking. Our findings indicate that PRG-1 deficiency led to over-excitability caused by an altered LPA/LPA 2 -R signaling inducing a behavioral phenotype typically observed in animal models for psychiatric disorders. Copyright

  6. The effect of L-dopa in Parkinson's disease as revealed by neurophysiological studies of motor and sensory functions.

    Science.gov (United States)

    Suppa, Antonio; Bologna, Matteo; Conte, Antonella; Berardelli, Alfredo; Fabbrini, Giovanni

    2017-02-01

    This review will first discuss evidence of motor and sensory abnormalities as yielded by neurophysiological techniques in patients with PD. It will then go on to describe the effects of L-dopa replacement on motor and sensory abnormalities in PD as assessed by neurophysiological studies. Areas covered: We analyzed papers in English using Pubmed with the following keywords: L-dopa, dopamine, bradykinesia, basal ganglia, kinematic analysis, TMS, motor cortex plasticity, motor cortex excitability, somatosensory discrimination threshold, pain Expert commentary: L-dopa improves the amplitude and speed of upper limb voluntary movements, but it does not restore abnormalities in the sequence effect or voluntary facial movements. L-dopa only partially normalizes changes in motor cortex excitability and plasticity and has also contrasting effects on the sensory system and on sensory-motor integration. The neurophysiological studies reviewed here show that PD is more than a hypo-dopaminergic disease, and non-dopaminergic mechanisms should also be considered.

  7. Borneol, a Bicyclic Monoterpene Alcohol, Reduces Nociceptive Behavior and Inflammatory Response in Mice

    Directory of Open Access Journals (Sweden)

    Jackson Roberto Guedes da Silva Almeida

    2013-01-01

    Full Text Available Borneol, a bicyclic monoterpene, has been evaluated for antinociceptive and anti-inflammatory activities. Antinociceptive and anti-inflammatory activities were studied by measuring nociception by acetic acid, formalin, hot plate, and grip strength tests, while inflammation was prompted by carrageenan-induced peritonitis. The rotarod test was used to evaluate motor coordination. Borneol produced a significant (P<0.01 reduction of the nociceptive behavior at the early and late phases of paw licking and reduced the writhing reflex in mice (formalin and writhing tests, resp.. When the hot plate test was conducted, borneol (in higher dose produced an inhibition (P<0.05 of the nociceptive behavior. Such results were unlikely to be provoked by motor abnormality. Additionally, borneol-treated mice reduced the carrageenan-induced leukocytes migration to the peritoneal cavity. Together, our results suggest that borneol possess significant central and peripheral antinociceptive activity; it has also anti-inflammatory activity. In addition, borneol did not impair motor coordination.

  8. Benefit on motor and non-motor behavior in a specialized unit for Parkinson's disease.

    Science.gov (United States)

    Müller, Thomas; Öhm, Gabi; Eilert, Kathrin; Möhr, Katharina; Rotter, Stephanie; Haas, Thomas; Küchler, Matthias; Lütge, Sven; Marg, Marion; Rothe, Hartmut

    2017-06-01

    Treatment of patients with Parkinson's disease in specialized units is quite common in Germany. Data on the benefit of this hospitalization of patients with Parkinson's disease on motor and non-motor symptoms in conjunction with standardized tests are rare. Objective was to determine the efficacy of this therapeutic setting. We scored disease severity and performed clinical tests, respectively, instrumental procedures under standardized conditions in consecutively referred in-patients initially and at the end of their hospital stay. There was a decrease of motor and non-motor symptoms. The extent of improvement of non-motor and motor symptoms correlated to each other. Performance of complex movement sequences became better, whereas execution of simple movement series did not ameliorate. The interval for the timed up and go test went down. We demonstrate the effectiveness of an in-patient stay in a specialized unit for Parkinson's disease. Objective standardized testing supplements subjective clinical scoring with established rating scales.

  9. The effect of ACTH analogues on motor behavior and visual evoked responses in rats

    NARCIS (Netherlands)

    Wolthuis, O.L.; Wied, D. de

    1976-01-01

    Averaged visual evoked responses (VER) in cortical area 17 were recorded one hour after the administration of 7-l-phe ACTH(4-10) or 7-d-phe ACTH(4-10) to artificially ventilated rats, paralysed with gallamine. In addition, the effects of these peptides on spontaneous motor behavior were analyzed.

  10. Distinct alterations in motor & reward seeking behavior are dependent on the gestational age of exposure to LPS-induced maternal immune activation.

    Science.gov (United States)

    Straley, Megan E; Van Oeffelen, Wesley; Theze, Sarah; Sullivan, Aideen M; O'Mahony, Siobhain M; Cryan, John F; O'Keeffe, Gerard W

    2017-07-01

    The dopaminergic system is involved in motivation, reward and the associated motor activities. Mesodiencephalic dopaminergic neurons in the ventral tegmental area (VTA) regulate motivation and reward, whereas those in the substantia nigra (SN) are essential for motor control. Defective VTA dopaminergic transmission has been implicated in schizophrenia, drug addiction and depression whereas dopaminergic neurons in the SN are lost in Parkinson's disease. Maternal immune activation (MIA) leading to in utero inflammation has been proposed to be a risk factor for these disorders, yet it is unclear how this stimulus can lead to the diverse disturbances in dopaminergic-driven behaviors that emerge at different stages of life in affected offspring. Here we report that gestational age is a critical determinant of the subsequent alterations in dopaminergic-driven behavior in rat offspring exposed to lipopolysaccharide (LPS)-induced MIA. Behavioral analysis revealed that MIA on gestational day 16 but not gestational day 12 resulted in biphasic impairments in motor behavior. Specifically, motor impairments were evident in early life, which were resolved by adolescence, but subsequently re-emerged in adulthood. In contrast, reward seeking behaviors were altered in offspring exposed MIA on gestational day 12. These changes were not due to a loss of dopaminergic neurons per se in the postnatal period, suggesting that they reflect functional changes in dopaminergic systems. This highlights that gestational age may be a key determinant of how MIA leads to distinct alterations in dopaminergic-driven behavior across the lifespan of affected offspring. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Ocular Motor Function in Patients with Bilateral Vestibular Weakness

    Directory of Open Access Journals (Sweden)

    Seyyed Amir Hossein Ghazizadeh Hashemi

    2016-05-01

    Full Text Available Introduction: Patients with bilateral weakness (BW have many difficulties in gaze stability that interfere with their normal function. The aim of this study was to evaluate ocular motor functions in patients with BW to better understand the problem of gaze instability in these patients.   Materials and Methods: Patients were referred from the Otolaryngology Department for Vestibular Assessment to our clinic between November 2014 and March 2015. We assessed ocular motor function (gaze, saccade, and smooth pursuit in patients over the age of 18 years with BW, as verified by a caloric test.   Results: Seventy-eight patients completed all the tests. The mean age of patients was 51.9 (±15.9 years, and 47 (60% were female. Abnormal results were found in five (6.4%, 32 (41%, and seven (9% patients with respect to gaze, smooth pursuit, and saccade, respectively. There were positive but relatively weak relationships between age and ocular motor results.   Conclusion:  Patients with BW suffer from dizziness and unsteadiness. These patients have abnormal function in ocular motor (especially smooth pursuit tests. The ocular motor dysfunction is responsible for gaze instability in static positions such as standing.

  12. An exact approach for studying cargo transport by an ensemble of molecular motors

    International Nuclear Information System (INIS)

    Materassi, Donatello; Roychowdhury, Subhrajit; Hays, Thomas; Salapaka, Murti

    2013-01-01

    Intracellular transport is crucial for many cellular processes where a large fraction of the cargo is transferred by motor-proteins over a network of microtubules. Malfunctions in the transport mechanism underlie a number of medical maladies. Existing methods for studying how motor-proteins coordinate the transfer of a shared cargo over a microtubule are either analytical or are based on Monte-Carlo simulations. Approaches that yield analytical results, while providing unique insights into transport mechanism, make simplifying assumptions, where a detailed characterization of important transport modalities is difficult to reach. On the other hand, Monte-Carlo based simulations can incorporate detailed characteristics of the transport mechanism; however, the quality of the results depend on the number and quality of simulation runs used in arriving at results. Here, for example, it is difficult to simulate and study rare-events that can trigger abnormalities in transport. In this article, a semi-analytical methodology that determines the probability distribution function of motor-protein behavior in an exact manner is developed. The method utilizes a finite-dimensional projection of the underlying infinite-dimensional Markov model, which retains the Markov property, and enables the detailed and exact determination of motor configurations, from which meaningful inferences on transport characteristics of the original model can be derived. Under this novel probabilistic approach new insights about the mechanisms of action of these proteins are found, suggesting hypothesis about their behavior and driving the design and realization of new experiments. The advantages provided in accuracy and efficiency make it possible to detect rare events in the motor protein dynamics, that could otherwise pass undetected using standard simulation methods. In this respect, the model has allowed to provide a possible explanation for possible mechanisms under which motor proteins could

  13. Deficits in vision and visual attention associated with motor performance of very preterm/very low birth weight children.

    Science.gov (United States)

    Geldof, Christiaan J A; van Hus, Janeline W P; Jeukens-Visser, Martine; Nollet, Frans; Kok, Joke H; Oosterlaan, Jaap; van Wassenaer-Leemhuis, Aleid G

    2016-01-01

    To extend understanding of impaired motor functioning of very preterm (VP)/very low birth weight (VLBW) children by investigating its relationship with visual attention, visual and visual-motor functioning. Motor functioning (Movement Assessment Battery for Children, MABC-2; Manual Dexterity, Aiming & Catching, and Balance component), as well as visual attention (attention network and visual search tests), vision (oculomotor, visual sensory and perceptive functioning), visual-motor integration (Beery Visual Motor Integration), and neurological status (Touwen examination) were comprehensively assessed in a sample of 106 5.5-year-old VP/VLBW children. Stepwise linear regression analyses were conducted to investigate multivariate associations between deficits in visual attention, oculomotor, visual sensory, perceptive and visual-motor integration functioning, abnormal neurological status, neonatal risk factors, and MABC-2 scores. Abnormal MABC-2 Total or component scores occurred in 23-36% of VP/VLBW children. Visual and visual-motor functioning accounted for 9-11% of variance in MABC-2 Total, Manual Dexterity and Balance scores. Visual perceptive deficits only were associated with Aiming & Catching. Abnormal neurological status accounted for an additional 19-30% of variance in MABC-2 Total, Manual Dexterity and Balance scores, and 5% of variance in Aiming & Catching, and neonatal risk factors for 3-6% of variance in MABC-2 Total, Manual Dexterity and Balance scores. Motor functioning is weakly associated with visual and visual-motor integration deficits and moderately associated with abnormal neurological status, indicating that motor performance reflects long term vulnerability following very preterm birth, and that visual deficits are of minor importance in understanding motor functioning of VP/VLBW children. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Infant Motor Delay and Early Symptomatic Syndromes Eliciting Neurodevelopmental Clinical Examinations in Japan.

    Science.gov (United States)

    Hatakenaka, Yuhei; Kotani, Haruko; Yasumitsu-Lovell, Kahoko; Suzuki, Keita; Fernell, Elisabeth; Gillberg, Christopher

    2016-01-01

    Abnormalities of early motor development have been reported in autism spectrum disorder, attention-deficit/hyperactivity disorder, intellectual developmental disorder, developmental coordination disorder, and other Early Symptomatic Syndromes Eliciting Neurodevelopmental Clinical Examinations (ESSENCE). However, few studies have been conducted with a view to following up a clinically representative cohort of children coming for assessment of motor delay before age two years. We performed a prospective clinical cohort study to examine whether or not early motor delay is often an indication of ESSENCE. The sample comprised a one-year cohort of all children who came to a Japanese neurodevelopmental center before their second birthday because of delayed or abnormal gross motor development. The children were followed up from the ESSENCE viewpoint. Of the 30 children, 28 (18 boys and 10 girls) (93%) were given diagnoses subsumed under the ESSENCE umbrella. Of the 15 children with an identified or strongly suspected etiology, 13 (8 boys and 5 girls) (87%) had ESSENCE disorders or symptoms. Of the 15 children without a known etiology, all had ESSENCE disorders or symptoms. This study indicated that the vast majority of children with motor delay or abnormality in the first two years of life meet criteria for a disorder within the group of ESSENCE at follow-up; this means that young children, presenting with motor problems always need a broad clinical assessment, not just related to motor function, and systematic follow-up. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Abnormal gastric and small intestinal motor function in diabetes mellitus

    NARCIS (Netherlands)

    Samsom, M.; Smout, A. J.

    1997-01-01

    It is now well recognized that the prevalence of delayed gastric emptying in both insulin-dependent as well as noninsulin-dependent diabetes mellitus is high. Recently performed studies have shown that motor disorders of several parts of the upper gastrointestinal tract contribute to this delay in

  16. Neurodegenerative diseases of the central motor system in MRI

    International Nuclear Information System (INIS)

    Alfke, K.

    2005-01-01

    Neurodegenerative diseases of the central motor system often lead to discrete but functionally important parenchymal abnormalities in various parts of the brain. MRI is the most sensitive imaging method to detect these abnormalities. Various neurodegenerative diseases are presented with their clinical symptoms and MRI findings. Criteria for differential diagnosis are provided as well. (orig.)

  17. Translocation and neurotoxicity of CdTe quantum dots in RMEs motor neurons in nematode Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yunli; Wang, Xiong; Wu, Qiuli; Li, Yiping; Wang, Dayong, E-mail: dayongw@seu.edu.cn

    2015-02-11

    Graphical abstract: - Highlights: • We investigated in vivo neurotoxicity of CdTe QDs on RMEs motor neurons in C. elegans. • CdTe QDs in the range of μg/L caused neurotoxicity on RMEs motor neurons. • Bioavailability of CdTe QDs may be the primary inducer for CdTe QDs neurotoxicity. • Both oxidative stress and cell identity regulate the CdTe QDs neurotoxicity. • CdTe QDs were translocated and deposited into RMEs motor neurons. - Abstract: We employed Caenorhabditis elegans assay system to investigate in vivo neurotoxicity of CdTe quantum dots (QDs) on RMEs motor neurons, which are involved in controlling foraging behavior, and the underlying mechanism of such neurotoxicity. After prolonged exposure to 0.1–1 μg/L of CdTe QDs, abnormal foraging behavior and deficits in development of RMEs motor neurons were observed. The observed neurotoxicity from CdTe QDs on RMEs motor neurons might be not due to released Cd{sup 2+}. Overexpression of genes encoding Mn-SODs or unc-30 gene controlling cell identity of RMEs neurons prevented neurotoxic effects of CdTe QDs on RMEs motor neurons, suggesting the crucial roles of oxidative stress and cell identity in regulating CdTe QDs neurotoxicity. In nematodes, CdTe QDs could be translocated through intestinal barrier and be deposited in RMEs motor neurons. In contrast, CdTe@ZnS QDs could not be translocated into RMEs motor neurons and therefore, could only moderately accumulated in intestinal cells, suggesting that ZnS coating might reduce neurotoxicity of CdTe QDs on RMEs motor neurons. Therefore, the combinational effects of oxidative stress, cell identity, and bioavailability may contribute greatly to the mechanism of CdTe QDs neurotoxicity on RMEs motor neurons. Our results provide insights into understanding the potential risks of CdTe QDs on the development and function of nervous systems in animals.

  18. Morphological and behavioral markers of environmentally induced retardation of brain development: an animal model

    International Nuclear Information System (INIS)

    Altman, J.

    1987-01-01

    In most neurotoxicological studies morphological assessment focuses on pathological effects, like degenerative changes in neuronal perikarya, axonopathy, demyelination, and glial and endothelial cell reactions. Similarly, the assessment of physiological and behavioral effects center on evident neurological symptoms, like EEG and EMG abnormalities, resting and intention tremor, abnormal gait, and abnormal reflexes. This paper reviews briefly another central nervous system target of harmful environmental agents, which results in behavioral abnormalities without any qualitatively evident neuropathology. This is called microneuronal hypoplasia, a retardation of brain development characterized by a quantitative reduction in the normal population of late-generated, short-axoned neurons in specific brain regions. Correlated descriptive and experimental neurogenetic studies in the rat have established that all the cerebellar granule cells and a very high proportion of hippocampal granule cells are produced postnatally, and that focal, low-dose X-irradiation either of the cerebellum or of the hippocampus after birth selectively interferes with the acquisition of the full complement of granule cells (microneuronal hypoplasia). Subsequent behavioral investigations showed that cerebellar microneuronal hypoplasia results in profound hyperactivity without motor abnormalities, while hippocampal microneuronal hypoplasia results in hyperactivity, as well as attentional and learning deficits. There is much indirect clinical evidence that various harmful environmental agents affecting the pregnant mother and/or the infant lead to such childhood disorders as hyperactivity and attentional and learning disorders. 109 references

  19. One hand clapping: lateralization of motor control

    Directory of Open Access Journals (Sweden)

    Quentin eWelniarz

    2015-06-01

    Full Text Available Lateralization of motor control refers to the ability to produce pure unilateral or asymmetric movements. It is required for a variety of coordinated activities, including skilled bimanual tasks and locomotion. Here we discuss the neuroanatomical substrates and pathophysiological underpinnings of lateralized motor outputs. Significant breakthroughs have been made in the past few years by studying the two known conditions characterized by the inability to properly produce unilateral or asymmetric movements, namely human patients with congenital mirror movements and model rodents with a hopping gait. Whereas mirror movements are associated with altered interhemispheric connectivity and abnormal corticospinal projections, abnormal spinal cord interneurons trajectory is responsible for the hopping gait. Proper commissural axon guidance is a critical requirement for these mechanisms. Interestingly, the analysis of these two conditions reveals that the production of asymmetric movements involves similar anatomical and functional requirements but in two different structures: i lateralized activation of the brain or spinal cord through contralateral silencing by cross-midline inhibition; and ii unilateral transmission of this activation, resulting in lateralized motor output.

  20. Effects of short-term training on behavioral learning and skill acquisition during intraoral fine motor task

    DEFF Research Database (Denmark)

    Kumar, Abhishek; Grigoriadis, Joannis; Trulsson, Mats

    2015-01-01

    Sensory information from the orofacial mechanoreceptors are used by the nervous system to optimize the positioning of food, determine the force levels, and force vectors involved in biting of food morsels. Moreover, practice resulting from repetition could be a key to learning and acquiring a motor...... movements. Thirty healthy volunteers were asked to intraorally manipulate and split a chocolate candy, into two equal halves. The participants performed three series (with ten 10 trials) of the task before and after a short-term (approximately 30min) training. The accuracy of the split and vertical jaw...... task induces behavior learning, skill acquisition and optimization of jaw movements in terms of better performance and reduction in the duration of jaw movements, during the task. The finding of the present study provides insights on into how humans learn oral motor behaviors or the kind of adaptation...

  1. Brain structural abnormalities in behavior therapy-resistant obsessive-compulsive disorder revealed by voxel-based morphometry

    Directory of Open Access Journals (Sweden)

    Hashimoto N

    2014-10-01

    Full Text Available Nobuhiko Hashimoto,1 Shutaro Nakaaki,2 Akiko Kawaguchi,1 Junko Sato,1 Harumasa Kasai,3 Takashi Nakamae,4 Jin Narumoto,4 Jun Miyata,5 Toshi A Furukawa,6,7 Masaru Mimura2 1Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan; 2Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; 3Department of Central Radiology, Nagoya City University Hospital, Nagoya, Japan; 4Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; 5Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan; 6Department of Health Promotion and Human Behavior, 7Department of Clinical Epidemiology, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto, Japan Background: Although several functional imaging studies have demonstrated that behavior therapy (BT modifies the neural circuits involved in the pathogenesis of obsessive-compulsive disorder (OCD, the structural abnormalities underlying BT-resistant OCD remain unknown. Methods: In this study, we examined the existence of regional structural abnormalities in both the gray matter and the white matter of patients with OCD at baseline using voxel-based morphometry in responders (n=24 and nonresponders (n=15 to subsequent BT. Three-dimensional T1-weighted magnetic resonance imaging was performed before the completion of 12 weeks of BT. Results: Relative to the responders, the nonresponders exhibited significantly smaller gray matter volumes in the right ventromedial prefrontal cortex, the right orbitofrontal cortex, the right precentral gyrus, and the left anterior cingulate cortex. In addition, relative to the responders, the nonresponders exhibited significantly smaller white matter volumes in the left cingulate bundle and the left superior frontal white matter. Conclusion: These results suggest that the brain

  2. Safety analyses for transient behavior of plasma and in-vessel components during plasma abnormal events in fusion reactor

    International Nuclear Information System (INIS)

    Honda, Takuro; Okazaki, Takashi; Bartels, H.W.; Uckan, N.A.; Seki, Yasushi.

    1997-01-01

    Safety analyses on plasma abnormal events have been performed using a hybrid code of a plasma dynamics model and a heat transfer model of in-vessel components. Several abnormal events, e.g., increase in fueling rate, were selected for the International Thermonuclear Experimental Reactor (ITER) and transient behavior of the plasma and the invessel components during the events was analyzed. The physics model for safety analysis was conservatively prepared. In most cases, the plasma is terminated by a disruption or it returns to the original operation point. When the energy confinement improves by a factor of 2.0 in the steady state, which is a hypothetical assumption under the present plasma data, the maximum fusion power reaches about 3.3 GW at about 3.6 s and the plasma is terminated due to a disruption. However, the results obtained in this study show the confinement boundary of ITER can be kept almost intact during the abnormal plasma transients, as long as the cooling system works normally. Several parametric studies are needed to comprehend the overpower transient including structure behavior, since many uncertainties are connected to the filed of the plasma physics. And, future work will need to discuss the burn control scenario considering confinement mode transition, system specifications, experimental plans and safety regulations, etc. to confirm the safety related to the plasma anomaly. (author)

  3. Concurrent TMS to the primary motor cortex augments slow motor learning

    Science.gov (United States)

    Narayana, Shalini; Zhang, Wei; Rogers, William; Strickland, Casey; Franklin, Crystal; Lancaster, Jack L.; Fox, Peter T.

    2013-01-01

    Transcranial magnetic stimulation (TMS) has shown promise as a treatment tool, with one FDA approved use. While TMS alone is able to up- (or down-) regulate a targeted neural system, we argue that TMS applied as an adjuvant is more effective for repetitive physical, behavioral and cognitive therapies, that is, therapies which are designed to alter the network properties of neural systems through Hebbian learning. We tested this hypothesis in the context of a slow motor learning paradigm. Healthy right-handed individuals were assigned to receive 5 Hz TMS (TMS group) or sham TMS (sham group) to the right primary motor cortex (M1) as they performed daily motor practice of a digit sequence task with their non-dominant hand for 4 weeks. Resting cerebral blood flow (CBF) was measured by H215O PET at baseline and after 4 weeks of practice. Sequence performance was measured daily as the number of correct sequences performed, and modeled using a hyperbolic function. Sequence performance increased significantly at 4 weeks relative to baseline in both groups. The TMS group had a significant additional improvement in performance, specifically, in the rate of skill acquisition. In both groups, an improvement in sequence timing and transfer of skills to non-trained motor domains was also found. Compared to the sham group, the TMS group demonstrated increases in resting CBF specifically in regions known to mediate skill learning namely, the M1, cingulate cortex, putamen, hippocampus, and cerebellum. These results indicate that TMS applied concomitantly augments behavioral effects of motor practice, with corresponding neural plasticity in motor sequence learning network. These findings are the first demonstration of the behavioral and neural enhancing effects of TMS on slow motor practice and have direct application in neurorehabilitation where TMS could be applied in conjunction with physical therapy. PMID:23867557

  4. Grey matter abnormalities in children and adolescents with functional neurological symptom disorder.

    Science.gov (United States)

    Kozlowska, Kasia; Griffiths, Kristi R; Foster, Sheryl L; Linton, James; Williams, Leanne M; Korgaonkar, Mayuresh S

    2017-01-01

    Functional neurological symptom disorder refers to the presence of neurological symptoms not explained by neurological disease. Although this disorder is presumed to reflect abnormal function of the brain, recent studies in adults show neuroanatomical abnormalities in brain structure . These structural brain abnormalities have been presumed to reflect long-term adaptations to the disorder, and it is unknown whether child and adolescent patients, with illness that is typically of shorter duration, show similar deficits or have normal brain structure. High-resolution, three-dimensional T1-weighted magnetic resonance images (MRIs) were acquired in 25 patients (aged 10-18 years) and 24 healthy controls. Structure was quantified in terms of grey matter volume using voxel-based morphometry. Post hoc, we examined whether regions of structural difference related to a measure of motor readiness to emotional signals and to clinical measures of illness duration, illness severity, and anxiety/depression. Patients showed greater volumes in the left supplementary motor area (SMA) and right superior temporal gyrus (STG) and dorsomedial prefrontal cortex (DMPFC) (corrected p disorder.

  5. Variations in Static Force Control and Motor Unit Behavior with Error Amplification Feedback in the Elderly

    Directory of Open Access Journals (Sweden)

    Yi-Ching Chen

    2017-11-01

    Full Text Available Error amplification (EA feedback is a promising approach to advance visuomotor skill. As error detection and visuomotor processing at short time scales decline with age, this study examined whether older adults could benefit from EA feedback that included higher-frequency information to guide a force-tracking task. Fourteen young and 14 older adults performed low-level static isometric force-tracking with visual guidance of typical visual feedback and EA feedback containing augmented high-frequency errors. Stabilogram diffusion analysis was used to characterize force fluctuation dynamics. Also, the discharge behaviors of motor units and pooled motor unit coherence were assessed following the decomposition of multi-channel surface electromyography (EMG. EA produced different behavioral and neurophysiological impacts on young and older adults. Older adults exhibited inferior task accuracy with EA feedback than with typical visual feedback, but not young adults. Although stabilogram diffusion analysis revealed that EA led to a significant decrease in critical time points for both groups, EA potentiated the critical point of force fluctuations <ΔFc2>, short-term effective diffusion coefficients (Ds, and short-term exponent scaling only for the older adults. Moreover, in older adults, EA added to the size of discharge variability of motor units and discharge regularity of cumulative discharge rate, but suppressed the pooled motor unit coherence in the 13–35 Hz band. Virtual EA alters the strategic balance between open-loop and closed-loop controls for force-tracking. Contrary to expectations, the prevailing use of closed-loop control with EA that contained high-frequency error information enhanced the motor unit discharge variability and undermined the force steadiness in the older group, concerning declines in physiological complexity in the neurobehavioral system and the common drive to the motoneuronal pool against force destabilization.

  6. Motor aphasia after cervical myelography with Metrizamide

    International Nuclear Information System (INIS)

    Boeker, D.K.; Sartor, K.; Winkler, D.; Allgemeines Krankenhaus Altona, Hamburg

    1980-01-01

    Two cases of transient motor aphasia after cervical myelography with Metrizamide are described. A possible mechanism is thought to be prolonged contact of contrast with a brain already damaged by a pre-existing vascular abnormality. (orig.) [de

  7. Motor Skill Competence and Perceived Motor Competence: Which Best Predicts Physical Activity among Girls?

    OpenAIRE

    Khodaverdi, Zeinab; Bahram, Abbas; Khalaji, Hassan; Kazemnejad, Anoshirvan

    2013-01-01

    Abstract Background The main purpose of this study was to determine which correlate, perceived motor competence or motor skill competence, best predicts girls? physical activity behavior. Methods A sample of 352 girls (mean age=8.7, SD=0.3 yr) participated in this study. To assess motor skill competence and perceived motor competence, each child completed the Test of Gross Motor Development-2 and Physical Ability sub-scale of Marsh?s Self-Description Questionnaire. Children?s physical activit...

  8. The effects of yoga practice in school physical education on children's motor abilities and social behavior.

    Science.gov (United States)

    Folleto, Júlia C; Pereira, Keila Rg; Valentini, Nadia Cristina

    2016-01-01

    In recent years, yoga programs in childhood have been implemented in schools, to promote the development for children. To investigate the effects of yoga program in physical education classes on the motor abilities and social behavior parameters of 6-8-year-old children. The study included 16 children from the 1(st) grade of a public elementary school in the South of Brazil. The children participated in a 12-week intervention, twice weekly, with 45 min each session. To assess children's performance, we used the Bruininks-Oseretsky Test of Motor Proficiency - Second Edition, the flexibility test (sit and reach - Eurofit, 1988), the Pictorial Scale of Perceived Competence and Social Acceptance for Young Children and semi-structured interviews with children, parents, and classroom' teacher. Data were analyzed with Wilcoxon test and level of significance was 5%. The yoga program was well accepted by children, children also demonstrated significant and positive changes in overall motor abilities scores (balance, strength, and flexibility). In addition, the interviews reported changing in social behavior and the use of the knowledge learned in the program in contexts outside of school. These findings suggest that the implementation of yoga practice in physical education lessons contributed to children's development.

  9. The hydroxylated form of docosahexaenoic acid (DHA-H) modifies the brain lipid composition in a model of Alzheimer's disease, improving behavioral motor function and survival.

    Science.gov (United States)

    Mohaibes, Raheem J; Fiol-deRoque, María A; Torres, Manuel; Ordinas, Margarita; López, David J; Castro, José A; Escribá, Pablo V; Busquets, Xavier

    2017-09-01

    We have compared the effect of the commonly used ω-3 fatty acid, docosahexaenoic acid ethyl ester (DHA-EE), and of its 2-hydroxylated DHA form (DHA-H), on brain lipid composition, behavior and lifespan in a new human transgenic Drosophila melanogaster model of Alzheimer's disease (AD). The transgenic flies expressed human Aβ42 and tau, and the overexpression of these human transgenes in the CNS of these flies produced progressive defects in motor function (antigeotaxic behavior) while reducing the animal's lifespan. Here, we demonstrate that both DHA-EE and DHA-H increase the longer chain fatty acids (≥18C) species in the heads of the flies, although only DHA-H produced an unknown chromatographic peak that corresponded to a non-hydroxylated lipid. In addition, only treatment with DHA-H prevented the abnormal climbing behavior and enhanced the lifespan of these transgenic flies. These benefits of DHA-H were confirmed in the well characterized transgenic PS1/APP mouse model of familial AD (5xFAD mice), mice that develop defects in spatial learning and in memory, as well as behavioral deficits. Hence, it appears that the modulation of brain lipid composition by DHA-H could have remedial effects on AD associated neurodegeneration. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017. Published by Elsevier B.V.

  10. Early MR abnormality indicating functional recovery from spontaneous intracerebral hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Fumeya, Hiroshi; Hideshima, Hiroshi [Hideshima Hospital, Musashino, Tokyo (Japan)

    1991-10-01

    Magnetic resonance (MR) imaging as an indicator of recovery from hemiparesis was evaluated in 60 patients with spontaneous intracerebral hemorrhage. T{sub 2}-weighted MR images revealed early MR abnormality (EMA) of the corticospinal tract within 1 week of ictus. Most patients without EMA recovered beyond Brunnstrom's Recovery Stage 3 while only a few patients with EMA did so. Patients with EMA cannot regain motor function because EMA is almost always followed by complete tract degeneration. EMA in the brainstem and poor motor function recovery are closely correlated. (author).

  11. Early MR abnormality indicating functional recovery from spontaneous intracerebral hemorrhage

    Energy Technology Data Exchange (ETDEWEB)

    Fumeya, Hiroshi; Hideshima, Hiroshi (Hideshima Hospital, Musashino, Tokyo (Japan))

    1991-10-01

    Magnetic resonance (MR) imaging as an indicator of recovery from hemiparesis was evaluated in 60 patients with spontaneous intracerebral hemorrhage. T{sub 2}-weighted MR images revealed early MR abnormality (EMA) of the corticospinal tract within 1 week of ictus. Most patients without EMA recovered beyond Brunnstrom's Recovery Stage 3 while only a few patients with EMA did so. Patients with EMA cannot regain motor function because EMA is almost always followed by complete tract degeneration. EMA in the brainstem and poor motor function recovery are closely correlated. (author).

  12. Abnormal devitrification behavior and mechanical response of cold-rolled Mg-rich Mg-Cu-Gd metallic glasses

    International Nuclear Information System (INIS)

    Lee, J.I.; Kim, J.W.; Oh, H.S.; Park, J.S.; Park, E.S.

    2016-01-01

    Abnormal devitrification behavior and mechanical response of Mg 75 Cu 15 Gd 10 (relatively strong glass former with higher structural stability) and Mg 85 Cu 5 Gd 10 (relatively fragile glass former with lower structural stability) metallic glasses, fabricated by repeated forced cold rolling, have been investigated. When metallic glasses were cold-rolled up to a thickness reduction ratio of ∼33%, the heat of relaxation (ΔH relax. ) below T g of the cold-rolled specimens was reduced, which indicates the formation of local structural ordering via cold rolling due to stress-induced relaxation. The local structural ordering results in abnormal devitrification behavior, such as higher resistance of glass-to-supercooled liquid transition and delayed growth, in the following heat treatment due to increased nuclei density and pinning site. In particular, the fragility index, m, could assist in understanding structural stability and local structural variation by mechanical processing as well as compositional tuning. Indeed, we examine the shear avalanche size to rationalize the variation of the deformation unit size depending on the structural instability before and after cold rolling. The deformation mode in Mg 85 Cu 5 Gd 10 metallic glass might change from self-organized critical state to chaotic state by cold rolling, which results in unique hardening behavior under the condition for coexisting well distributed local structural ordering and numerous thinner shear deformed areas. These results would give us a guideline for atomic scale structural manipulation of metallic glasses, and help develop novel metallic glass matrix composites with optimal properties through effective mechanical processing as well as heat treatment.

  13. Rat hippocampal alterations could underlie behavioral abnormalities induced by exposure to moderate noise levels.

    Science.gov (United States)

    Uran, S L; Aon-Bertolino, M L; Caceres, L G; Capani, F; Guelman, L R

    2012-08-30

    Noise exposure is known to affect auditory structures in living organisms. However, it should not be ignored that many of the effects of noise are extra-auditory. Previous findings of our laboratory demonstrated that noise was able to induce behavioral alterations that are mainly related to the cerebellum (CE) and the hippocampus (HC). Therefore, the aim of this work was to reveal new data about the vulnerability of developing rat HC to moderate noise levels through the assessment of potential histological changes and hippocampal-related behavioral alterations. Male Wistar rats were exposed to noise (95-97 dB SPL, 2h daily) either for 1 day (acute noise exposure, ANE) or between postnatal days 15 and 30 (sub-acute noise exposure, SANE). Hippocampal histological evaluation as well as short (ST) and long term (LT) habituation and recognition memory assessments were performed. Results showed a mild disruption in the different hippocampal regions after ANE and SANE schemes, along with significant behavioral abnormalities. These data suggest that exposure of developing rats to noise levels of moderate intensity is able to trigger changes in the HC, an extra-auditory structure of the Central Nervous System (CNS), that could underlie the observed behavioral effects. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Abnormal social behavior, hyperactivity, impaired remote spatial memory, and increased D1-mediated dopaminergic signaling in neuronal nitric oxide synthase knockout mice

    Directory of Open Access Journals (Sweden)

    Tanda Koichi

    2009-06-01

    Full Text Available Abstract Background Neuronal nitric oxide synthase (nNOS is involved in the regulation of a diverse population of intracellular messenger systems in the brain. In humans, abnormal NOS/nitric oxide metabolism is suggested to contribute to the pathogenesis and pathophysiology of some neuropsychiatric disorders, such as schizophrenia and bipolar disorder. Mice with targeted disruption of the nNOS gene exhibit abnormal behaviors. Here, we subjected nNOS knockout (KO mice to a battery of behavioral tests to further investigate the role of nNOS in neuropsychiatric functions. We also examined the role of nNOS in dopamine/DARPP-32 signaling in striatal slices from nNOS KO mice and the effects of the administration of a dopamine D1 receptor agonist on behavior in nNOS KO mice. Results nNOS KO mice showed hyperlocomotor activity in a novel environment, increased social interaction in their home cage, decreased depression-related behavior, and impaired spatial memory retention. In striatal slices from nNOS KO mice, the effects of a dopamine D1 receptor agonist, SKF81297, on the phosphorylation of DARPP-32 and AMPA receptor subunit GluR1 at protein kinase A sites were enhanced. Consistent with the biochemical results, intraperitoneal injection of a low dose of SKF81297 significantly decreased prepulse inhibition in nNOS KO mice, but not in wild-type mice. Conclusion These findings indicate that nNOS KO upregulates dopamine D1 receptor signaling, and induces abnormal social behavior, hyperactivity and impaired remote spatial memory. nNOS KO mice may serve as a unique animal model of psychiatric disorders.

  15. Delta-9-tetrahydrocannabinol (THC) affects forelimb motor map expression but has little effect on skilled and unskilled behavior.

    Science.gov (United States)

    Scullion, K; Guy, A R; Singleton, A; Spanswick, S C; Hill, M N; Teskey, G C

    2016-04-05

    It has previously been shown in rats that acute administration of delta-9-tetrahydrocannabinol (THC) exerts a dose-dependent effect on simple locomotor activity, with low doses of THC causing hyper-locomotion and high doses causing hypo-locomotion. However the effect of acute THC administration on cortical movement representations (motor maps) and skilled learned movements is completely unknown. It is important to determine the effects of THC on motor maps and skilled learned behaviors because behaviors like driving place people at a heightened risk. Three doses of THC were used in the current study: 0.2mg/kg, 1.0mg/kg and 2.5mg/kg representing the approximate range of the low to high levels of available THC one would consume from recreational use of cannabis. Acute peripheral administration of THC to drug naïve rats resulted in dose-dependent alterations in motor map expression using high resolution short duration intracortical microstimulation (SD-ICMS). THC at 0.2mg/kg decreased movement thresholds and increased motor map size, while 1.0mg/kg had the opposite effect, and 2.5mg/kg had an even more dramatic effect. Deriving complex movement maps using long duration (LD)-ICMS at 1.0mg/kg resulted in fewer complex movements. Dosages of 1.0mg/kg and 2.5mg/kg THC reduced the number of reach attempts but did not affect percentage of success or the kinetics of reaching on the single pellet skilled reaching task. Rats that received 2.5mg/kg THC did show an increase in latency of forelimb removal on the bar task, while dose-dependent effects of THC on unskilled locomotor activity using the rotorod and horizontal ladder tasks were not observed. Rats may be employing compensatory strategies after receiving THC, which may account for the robust changes in motor map expression but moderate effects on behavior. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Cerebral hemorrhage without manifest motor paralysis

    International Nuclear Information System (INIS)

    Taketani, Torao; Dohi, Ichiro; Miyazaki, Tadahiko; Handa, Akihisa

    1982-01-01

    Before the introduction of computerized tomography (CT) there were some cases of intracerebral bleeding who were wrongly diagnosed as hypertensive encephalopathy or senile psychosis. We here report 5 cases who did not show any sign of motor paralysis. The clinical aspects of these cases were nausea and vomiting with dizziness (case 1), nausea and vomiting with slight headache (case 2), agnosia of left side with several kinds of disorientation (case 3), nausea and vomiting (case 4), and visual disturbance of right, lower quadrant (case 5). All of these cases showed no motor paralysis or abnormal reflex activities. By examination with CT each of them exhibited a high density area in the subcortical area of the right parietal lobe, the subcortical area of the right occipital lobe, the right temporal and parietal lobe, rather small portion of the left putamen and external capsule, and the subcortical area of left occipital lobe, respectively. Patients of cerebral hemorrhage without motor or sensory disturbances might often be taken for some psychic abnormality. We here have emphasized the importance of CT in such a group of patients. But for this technique, most of them would not be given adequate treatment and might be exposed to lifethreatening situations. (author)

  17. Social Motor Synchronization: Insights for Understanding Social Behavior in Autism.

    Science.gov (United States)

    Fitzpatrick, Paula; Romero, Veronica; Amaral, Joseph L; Duncan, Amie; Barnard, Holly; Richardson, Michael J; Schmidt, R C

    2017-07-01

    Impairments in social interaction and communication are critical features of ASD but the underlying processes are poorly understood. An under-explored area is the social motor synchronization that happens when we coordinate our bodies with others. Here, we explored the relationships between dynamical measures of social motor synchronization and assessments of ASD traits. We found (a) spontaneous social motor synchronization was associated with responding to joint attention, cooperation, and theory of mind while intentional social motor synchronization was associated with initiating joint attention and theory of mind; and (b) social motor synchronization was associated with ASD severity but not fully explained by motor problems. Findings suggest that objective measures of social motor synchronization may provide insights into understanding ASD traits.

  18. Proficient motor impulse control in Parkinson disease patients with impulsive and compulsive behaviors.

    Science.gov (United States)

    Claassen, Daniel O; van den Wildenberg, Wery P M; Harrison, Madaline B; van Wouwe, Nelleke C; Kanoff, Kristen; Neimat, Joseph S; Wylie, Scott A

    2015-02-01

    Parkinson disease (PD) patients treated with dopamine agonist therapy can develop maladaptive reward-driven behaviors, known as impulse control disorder (ICD). In this study, we assessed if ICD patients have evidence of motor-impulsivity. We used the stop-signal task in a cohort of patients with and without active symptoms of ICD to evaluate motor-impulsivity. Of those with PD, 12 were diagnosed with ICD symptoms (PD-ICD) and were assessed before clinical reduction of dopamine agonist medication; 12 were without symptoms of ICD [PD-control] and taking equivalent dosages of dopamine agonist. Levodopa, if present, was maintained in both settings. Groups were similar in age, duration, and severity of motor symptoms, levodopa co-therapy, and total levodopa daily dose. All were tested in the dopamine agonist medicated and acutely withdrawn (24 h) state, in a counterbalanced manner. Primary outcome measures were mean reaction time to correct go trials (go reaction time), and mean stop-signal reaction time (SSRT). ICD patients produce faster SSRT than both Healthy Controls, and PD-Controls. Faster SSRT in ICD patients is apparent in both dopamine agonist medication states. Also, we show unique dopamine medication effects on Go Reaction time (GoRT). In dopamine agonist monotherapy patients, dopamine agonist administration speeds GoRT. Conversely, in those with levodopa co-therapy, dopamine agonist administration slows. PD patients with active ICD symptoms are significantly faster at stopping initiated motor actions, and this is not altered by acute dopamine agonist withdrawal. In addition, the effect of dopamine agonist on GoRT is strongly influenced by the presence or absence of levodopa, even though levodopa co-therapy does not appear to influence SSRT. We discuss these findings as they pertain to the multifaceted definition of 'impulsivity,' the lack of evidence for motor-impulsivity in PD-ICD, and dopamine effects on motor-control in PD. Copyright © 2014 Elsevier Inc

  19. Prenatal Exposure to Organohalogens, Including Brominated Flame Retardants, Influences Motor, Cognitive, and Behavioral Performance at School Age

    NARCIS (Netherlands)

    Roze, Elise; Meijer, Lisethe; Bakker, Attie; Van Braeckel, Koenraad N. J. A.; Sauer, Pieter J. J.; Bos, Arend F.

    2009-01-01

    BACKGROUND: Organohalogen compounds (OHCs) are known to have neurotoxic effects on the developing brain. OBJECTIVE: We investigated the influence of prenatal exposure to OHCs, including brominated flame retardants, on motor, cognitive, and behavioral outcome in healthy children of school age.

  20. Abnormal laughter-like vocalisations replacing speech in primary progressive aphasia

    Science.gov (United States)

    Rohrer, Jonathan D.; Warren, Jason D.; Rossor, Martin N.

    2009-01-01

    We describe ten patients with a clinical diagnosis of primary progressive aphasia (PPA) (pathologically confirmed in three cases) who developed abnormal laughter-like vocalisations in the context of progressive speech output impairment leading to mutism. Failure of speech output was accompanied by increasing frequency of the abnormal vocalisations until ultimately they constituted the patient's only extended utterance. The laughter-like vocalisations did not show contextual sensitivity but occurred as an automatic vocal output that replaced speech. Acoustic analysis of the vocalisations in two patients revealed abnormal motor features including variable note duration and inter-note interval, loss of temporal symmetry of laugh notes and loss of the normal decrescendo. Abnormal laughter-like vocalisations may be a hallmark of a subgroup in the PPA spectrum with impaired control and production of nonverbal vocal behaviour due to disruption of fronto-temporal networks mediating vocalisation. PMID:19435636

  1. Effect of hippotherapy on motor control, adaptive behaviors, and participation in children with autism spectrum disorder: a pilot study.

    Science.gov (United States)

    Ajzenman, Heather F; Standeven, John W; Shurtleff, Tim L

    2013-01-01

    The purpose of this investigation was to determine whether hippotherapy increased function and participation in children with autism spectrum disorder (ASD). We hypothesized improvements in motor control, which might increase adaptive behaviors and participation in daily activities. Six children with ASD ages 5-12 participated in 12 weekly 45-min hippotherapy sessions. Measures pre- and post-hippotherapy included the Vineland Adaptive Behavior Scales-II and the Child Activity Card Sort. Motor control was measured preintervention and postintervention using a video motion capture system and force plates. Postural sway significantly decreased postintervention. Significant increases were observed in overall adaptive behaviors (receptive communication and coping) and in participation in self-care, low-demand leisure, and social interactions. These results suggest that hippotherapy has a positive influence on children with ASD and can be a useful treatment tool for this population. Copyright © 2013 by the American Occupational Therapy Association, Inc.

  2. The effects of gestational and chronic atrazine exposure on motor behaviors and striatal dopamine in male Sprague-Dawley rats

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Jennifer L., E-mail: Jennifer.l.walters@wmich.edu [Western Michigan University, Department of Psychology, 1903 W Michigan Ave, Kalamazoo, MI 49008-5439 (United States); Lansdell, Theresa A., E-mail: lansdel1@msu.edu [Michigan State University, Department of Pharmacology and Toxicology, 1355 Bogue Street, East Lansing, MI 48824 (United States); Lookingland, Keith J., E-mail: lookingl@msu.edu [Michigan State University, Department of Pharmacology and Toxicology, 1355 Bogue Street, East Lansing, MI 48824 (United States); Baker, Lisa E., E-mail: lisa.baker@wmich.edu [Western Michigan University, Department of Psychology, 1903 W Michigan Ave, Kalamazoo, MI 49008-5439 (United States)

    2015-12-01

    This study sought to investigate the effects of environmentally relevant gestational followed by continued chronic exposure to the herbicide, atrazine, on motor function, cognition, and neurochemical indices of nigrostriatal dopamine (DA) activity in male rats. Dams were treated with 100 μg/kg atrazine, 10 mg/kg atrazine, or vehicle on gestational day 1 through postnatal day 21. Upon weaning, male offspring continued daily vehicle or atrazine gavage treatments for an additional six months. Subjects were tested in a series of behavioral assays, and 24 h after the last treatment, tissue samples from the striatum were analyzed for DA and 3,4-dihydroxyphenylacetic acid (DOPAC). At 10 mg/kg, this herbicide was found to produce modest disruptions in motor functioning, and at both dose levels it significantly lowered striatal DA and DOPAC concentrations. These results suggest that exposures to atrazine have the potential to disrupt nigrostriatal DA neurons and behaviors associated with motor functioning. - Highlights: • Male rats received gestational and chronic exposure to ATZ (10 mg/kg and 100 μg/kg). • ATZ altered locomotor activity and impaired motor coordination. • ATZ lowered striatal DA and DOPAC concentrations. • ATZ produced a potential anxiogenic effect. • ATZ did not impair performance in learning and memory assessments.

  3. The effects of gestational and chronic atrazine exposure on motor behaviors and striatal dopamine in male Sprague-Dawley rats

    International Nuclear Information System (INIS)

    Walters, Jennifer L.; Lansdell, Theresa A.; Lookingland, Keith J.; Baker, Lisa E.

    2015-01-01

    This study sought to investigate the effects of environmentally relevant gestational followed by continued chronic exposure to the herbicide, atrazine, on motor function, cognition, and neurochemical indices of nigrostriatal dopamine (DA) activity in male rats. Dams were treated with 100 μg/kg atrazine, 10 mg/kg atrazine, or vehicle on gestational day 1 through postnatal day 21. Upon weaning, male offspring continued daily vehicle or atrazine gavage treatments for an additional six months. Subjects were tested in a series of behavioral assays, and 24 h after the last treatment, tissue samples from the striatum were analyzed for DA and 3,4-dihydroxyphenylacetic acid (DOPAC). At 10 mg/kg, this herbicide was found to produce modest disruptions in motor functioning, and at both dose levels it significantly lowered striatal DA and DOPAC concentrations. These results suggest that exposures to atrazine have the potential to disrupt nigrostriatal DA neurons and behaviors associated with motor functioning. - Highlights: • Male rats received gestational and chronic exposure to ATZ (10 mg/kg and 100 μg/kg). • ATZ altered locomotor activity and impaired motor coordination. • ATZ lowered striatal DA and DOPAC concentrations. • ATZ produced a potential anxiogenic effect. • ATZ did not impair performance in learning and memory assessments.

  4. Relations of Preschoolers' Visual-Motor and Object Manipulation Skills with Executive Function and Social Behavior

    Science.gov (United States)

    MacDonald, Megan; Lipscomb, Shannon; McClelland, Megan M.; Duncan, Rob; Becker, Derek; Anderson, Kim; Kile, Molly

    2016-01-01

    Purpose: The purpose of this article was to examine specific linkages between early visual-motor integration skills and executive function, as well as between early object manipulation skills and social behaviors in the classroom during the preschool year. Method: Ninety-two children aged 3 to 5 years old (M[subscript age] = 4.31 years) were…

  5. Acute administration of fluoxetine normalizes rapid eye movement sleep abnormality, but not depressive behaviors in olfactory bulbectomized rats.

    Science.gov (United States)

    Wang, Yi-Qun; Tu, Zhi-Cai; Xu, Xing-Yuan; Li, Rui; Qu, Wei-Min; Urade, Yoshihiro; Huang, Zhi-Li

    2012-01-01

    In humans, depression is associated with altered rapid eye movement (REM) sleep. However, the exact nature of the relationship between depressive behaviors and sleep abnormalities is debated. In this study, bilateral olfactory bulbectomy (OBX) was carried out to create a model of depression in rats. The sleep-wake profiles were assayed using a cutting-edge sleep bioassay system, and depressive behaviors were evaluated by open field and forced swimming tests. The monoamine content and monoamine metabolite levels in the brain were determined by a HPLC-electrochemical detection system. OBX rats exhibited a significant increase in REM sleep, especially between 15:00 and 18:00 hours during the light period. Acute treatment with fluoxetine (10 mg/kg, i.p.) immediately abolished the OBX-induced increase in REM sleep, but hyperactivity in the open field test and the time spent immobile in the forced swimming test remained unchanged. Neurochemistry studies revealed that acute administration of fluoxetine increased serotonin (5-HT) levels in the hippocampus, thalamus, and midbrain and decreased levels of the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA). The ratio of 5-HIAA to 5-HT decreased in almost all regions of the brain. These results indicate that acute administration of fluoxetine can reduce the increase in REM sleep but does not change the depressive behaviors in OBX rats, suggesting that there was no causality between REM sleep abnormalities and depressive behaviors in OBX rats. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  6. Independent mediation of unconditioned motor behavior by striatal D1 and D2 receptors in rats depleted of dopamine as neonates.

    Science.gov (United States)

    Bruno, J P; Byrnes, E M; Johnson, B J

    1995-11-01

    The effects of systemic administration of DA receptor antagonists suggest that unconditioned motor behavior in rats depleted of DA as neonates continues to be dependent upon dopaminergic transmission, yet the specific contribution of D1 and D2 receptors to these behaviors has been altered. The purpose of the present study was to determine whether these depletion-induced receptor changes are occurring at the level of striatal DA terminals and their targets. The ability of bilateral intrastriatal injections (0.5 microliter) of DA receptor antagonists to induce motoric deficits was determined in adult rats treated with vehicle or 6-OHDA (100 micrograms, intraventricular) on postnatal day 3. Administration of the D1-like antagonist SCH 23390 (0.5-2.0 micrograms) or the D2-like antagonist clebopride (1.0-4.0 micrograms) induced dose-dependent akinesia, catalepsy, and somatosensory neglect in vehicle-treated controls. In contrast, neither antagonist produced deficits in rats depleted of forebrain DA as neonates. However, combined administration of SCH 23390 + clebopride induced similar akinesia, catalepsy, and somatosensory neglect in both controls and DA depleted animals. Animals depleted of DA were more sensitive than controls to the low doses of this combined D1 + D2 antagonism. These results demonstrate that activation of striatal DA receptors remains necessary for unconditioned motor behavior in rats depleted of DA as neonates. However, the specific contributions of D1- and D2-like receptors to these behaviors differ between intact animals and those depleted of DA as neonates. The ability of endogenous DA acting at either D1 or D2 receptors to support spontaneous motor behavior in rats depleted of DA as neonates may contribute to their relative sparing from parkinsonian deficits.

  7. Motor fuel prices in Turkey

    International Nuclear Information System (INIS)

    Erdogdu, Erkan

    2014-01-01

    The world's most expensive motor fuel (gasoline, diesel and LPG) is sold most likely in the Republic of Turkey. This paper investigates the key issues related to the motor fuel prices in Turkey. First of all, the paper analyses the main reason behind high prices, namely motor fuel taxes in Turkey. Then, it estimates the elasticity of motor fuel demand in Turkey using an econometric analysis. The findings indicate that motor fuel demand in Turkey is quite inelastic and, therefore, not responsive to price increases caused by an increase in either pre-tax prices or taxes. Therefore, fuel market in Turkey is open to opportunistic behavior by firms (through excessive profits) and the government (through excessive taxes). Besides, the paper focuses on the impact of high motor fuel prices on road transport associated activities, including the pattern of passenger transportation, motorization rate, fuel use, total kilometers traveled and CO 2 emissions from road transportation. The impact of motor fuel prices on income distribution in Turkey and Turkish public opinion about high motor fuel prices are also among the subjects investigated in the course of the study. - Highlights: • The key issues (e.g. taxes) related to motor fuel prices in Turkey are explored. • Their impact on transport activities and income distribution is also investigated. • An econometric analysis is performed to estimate motor fuel demand in Turkey. • Motor fuel demand in Turkey is found to be quite inelastic. • Turkish fuel market is open to opportunistic behavior by firms and the government

  8. Understanding molecular motor walking along a microtubule: a themosensitive asymmetric Brownian motor driven by bubble formation.

    Science.gov (United States)

    Arai, Noriyoshi; Yasuoka, Kenji; Koishi, Takahiro; Ebisuzaki, Toshikazu; Zeng, Xiao Cheng

    2013-06-12

    The "asymmetric Brownian ratchet model", a variation of Feynman's ratchet and pawl system, is invoked to understand the kinesin walking behavior along a microtubule. The model system, consisting of a motor and a rail, can exhibit two distinct binding states, namely, the random Brownian state and the asymmetric potential state. When the system is transformed back and forth between the two states, the motor can be driven to "walk" in one direction. Previously, we suggested a fundamental mechanism, that is, bubble formation in a nanosized channel surrounded by hydrophobic atoms, to explain the transition between the two states. In this study, we propose a more realistic and viable switching method in our computer simulation of molecular motor walking. Specifically, we propose a thermosensitive polymer model with which the transition between the two states can be controlled by temperature pulses. Based on this new motor system, the stepping size and stepping time of the motor can be recorded. Remarkably, the "walking" behavior observed in the newly proposed model resembles that of the realistic motor protein. The bubble formation based motor not only can be highly efficient but also offers new insights into the physical mechanism of realistic biomolecule motors.

  9. Abnormal Eye Movements in Creutzfeldt-Jakob Disease

    Science.gov (United States)

    Grant, Michael P.; Cohen, Mark; Petersen, Robert B.; Halmagyi, G. Michael; McDougall, Alan; Tusa, Ronald J.; Leigh, R. John

    1993-01-01

    We report 3 patients with autopsy-proven Creutzfeldt-Jakob disease who, early in their course, developed abnormal eye movements that included periodic alternating nystagmus and slow vertical saccades. These findings suggested involvement of the cerebellar nodulus and uvula, and the brainstem reticular formation, respectively. Cerebellar ataxia was also an early manifestation and, in one patient, a frontal lobe brain biopsy was normal at a time when ocular motor and cerebellar signs were conspicuous. As the disease progressed, all saccades and quick phases of nystagmus were lost, but periodic alternating gaze deviation persisted. At autopsy, 2 of the 3 patients had pronounced involvement of the cerebellum, especially of the midline structures. Creutzfeldt-Jakob disease should be considered in patients with subacute progressive neurological disease when cognitive changes are overshadowed by ocular motor findings or ataxia.

  10. Identifying specific prefrontal neurons that contribute to autism-associated abnormalities in physiology and social behavior

    DEFF Research Database (Denmark)

    Brumback, A C; Ellwood, I T; Kjaerby, C

    2017-01-01

    Functional imaging and gene expression studies both implicate the medial prefrontal cortex (mPFC), particularly deep-layer projection neurons, as a potential locus for autism pathology. Here, we explored how specific deep-layer prefrontal neurons contribute to abnormal physiology and behavior...... in mouse models of autism. First, we find that across three etiologically distinct models-in utero valproic acid (VPA) exposure, CNTNAP2 knockout and FMR1 knockout-layer 5 subcortically projecting (SC) neurons consistently exhibit reduced input resistance and action potential firing. To explore how altered...... SC neuron physiology might impact behavior, we took advantage of the fact that in deep layers of the mPFC, dopamine D2 receptors (D2Rs) are mainly expressed by SC neurons, and used D2-Cre mice to label D2R+ neurons for calcium imaging or optogenetics. We found that social exploration preferentially...

  11. The motor way: Clinical implications of understanding and shaping actions with the motor system in autism and drug addiction.

    Science.gov (United States)

    Casartelli, Luca; Chiamulera, Cristiano

    2016-04-01

    To understand others' minds is crucial for survival; however, it is quite puzzling how access to others' minds can be--to some extent--direct and not necessarily mediated by conceptual reasoning. Recent advances in neuroscience have led to hypothesize a role for motor circuits not only in controlling the elementary physical features of movement (e.g., force, direction, and amplitude), but also in understanding and shaping human behavior. The concept of "motor cognition" refers to these aspects, and neurophysiological, neuroimaging, and behavioral studies in human and nonhuman primates support this view. From a clinical perspective, motor cognition represents a challenge in several domains. A thorough investigation of the neural mechanisms mediating motor action/intention understanding and automatized/compulsive behaviors seems to be a promising way to tackle a range of neurodevelopmental and drug-related disorders. On the one hand, anomalies in motor cognition may have cascade effects on social functioning in individuals with autism spectrum disorder (ASD); on the other, motor cognition may help explain the pathophysiology of drug-seeking and drug-taking behaviors in the most severe phase of drug addiction (i.e., see drug dependence, motor low-order cue reactivity). This may represent a promising approach that could improve the efficacy of rehabilitative interventions. The only way to shed light on multifactorial disorders such as ASD and drug addiction is through the investigation of their multiple factors. This motor way can promote new theoretical and experimental perspectives that would help bridge the gap between the basic neuroscience approach and clinical practice.

  12. A Synergetic Approach to Describe the Stability and Variability of Motor Behavior

    Science.gov (United States)

    Witte, Kersttn; Bock, Holger; Storb, Ulrich; Blaser, Peter

    At the beginning of the 20th century, the Russian physiologist and biomechanist Bernstein developed his cyclograms, in which he showed in the non-repetition of the same movement under constant conditions. We can also observe this phenomenon when we analyze several cyclic sports movements. For example, we investigated the trajectories of single joints and segments of the body in breaststroke, walking, and running. The problem of the stability and variability of movement, and the relation between the two, cannot be satisfactorily tackled by means of linear methods. Thus, several authors (Turvey, 1977; Kugler et al., 1980; Haken et al., 1985; Schöner et al., 1986; Mitra et al., 1997; Kay et al., 1991; Ganz et al., 1996; Schöllhorn, 1999) use nonlinear models to describe human movement. These models and approaches have shown that nonlinear theories of complex systems provide a new understanding of the stability and variability of motor control. The purpose of this chapter is a presentation of a common synergetic model of motor behavior and its application to foot tapping, walking, and running.

  13. Genetic heterogeneity of motor neuropathies.

    Science.gov (United States)

    Bansagi, Boglarka; Griffin, Helen; Whittaker, Roger G; Antoniadi, Thalia; Evangelista, Teresinha; Miller, James; Greenslade, Mark; Forester, Natalie; Duff, Jennifer; Bradshaw, Anna; Kleinle, Stephanie; Boczonadi, Veronika; Steele, Hannah; Ramesh, Venkateswaran; Franko, Edit; Pyle, Angela; Lochmüller, Hanns; Chinnery, Patrick F; Horvath, Rita

    2017-03-28

    To study the prevalence, molecular cause, and clinical presentation of hereditary motor neuropathies in a large cohort of patients from the North of England. Detailed neurologic and electrophysiologic assessments and next-generation panel testing or whole exome sequencing were performed in 105 patients with clinical symptoms of distal hereditary motor neuropathy (dHMN, 64 patients), axonal motor neuropathy (motor Charcot-Marie-Tooth disease [CMT2], 16 patients), or complex neurologic disease predominantly affecting the motor nerves (hereditary motor neuropathy plus, 25 patients). The prevalence of dHMN is 2.14 affected individuals per 100,000 inhabitants (95% confidence interval 1.62-2.66) in the North of England. Causative mutations were identified in 26 out of 73 index patients (35.6%). The diagnostic rate in the dHMN subgroup was 32.5%, which is higher than previously reported (20%). We detected a significant defect of neuromuscular transmission in 7 cases and identified potentially causative mutations in 4 patients with multifocal demyelinating motor neuropathy. Many of the genes were shared between dHMN and motor CMT2, indicating identical disease mechanisms; therefore, we suggest changing the classification and including dHMN also as a subcategory of Charcot-Marie-Tooth disease. Abnormal neuromuscular transmission in some genetic forms provides a treatable target to develop therapies. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  14. SmartFABER: Recognizing fine-grained abnormal behaviors for early detection of mild cognitive impairment.

    Science.gov (United States)

    Riboni, Daniele; Bettini, Claudio; Civitarese, Gabriele; Janjua, Zaffar Haider; Helaoui, Rim

    2016-02-01

    In an ageing world population more citizens are at risk of cognitive impairment, with negative consequences on their ability of independent living, quality of life and sustainability of healthcare systems. Cognitive neuroscience researchers have identified behavioral anomalies that are significant indicators of cognitive decline. A general goal is the design of innovative methods and tools for continuously monitoring the functional abilities of the seniors at risk and reporting the behavioral anomalies to the clinicians. SmartFABER is a pervasive system targeting this objective. A non-intrusive sensor network continuously acquires data about the interaction of the senior with the home environment during daily activities. A novel hybrid statistical and knowledge-based technique is used to analyses this data and detect the behavioral anomalies, whose history is presented through a dashboard to the clinicians. Differently from related works, SmartFABER can detect abnormal behaviors at a fine-grained level. We have fully implemented the system and evaluated it using real datasets, partly generated by performing activities in a smart home laboratory, and partly acquired during several months of monitoring of the instrumented home of a senior diagnosed with MCI. Experimental results, including comparisons with other activity recognition techniques, show the effectiveness of SmartFABER in terms of recognition rates. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. [The cerebellum as a major player in motor disturbances related to Autistic Syndrome Disorders].

    Science.gov (United States)

    Jaber, M

    2017-04-01

    Autism spectrum disorders (ASD) are neurodevelopmental disorders associated with disturbances in communication, social interactions, cognition and affect. ASD are also accompanied by complex movement disorders, including ataxia. A special focus of recent research in this area is made on the striatum and the cerebellum, two structures known not only to control movement but also to be involved in cognitive functions such as memory and language. Dysfunction within the motor system may be associated with abnormal movements in ASD that are translated into ataxia, abnormal pattern of righting, gait sequencing, development of walking, and hand positioning. This line of study may generate new knowledge and understanding of motor symptoms associated with ASD and aims to deliver fresh perspectives for early diagnosis and therapeutic strategies against ASD. Despite the relative paucity of research in this area (compared to the social, linguistic, and behavioural disturbances in ASD), there is evidence that the frontostriatal motor system and/or the cerebellar motor systems may be the site of dysfunction in ASD. Indeed, the cerebellum seems to be essential in the development of basic social capabilities, communication, repetitive/restrictive behaviors, and motor and cognitive behaviors that are all impaired in ASD. Cerebellar neuropathology including cerebellar hypoplasia and reduced cerebellar Purkinje cell numbers are the most consistent neuropathologies linked to ASD. The functional state of the cerebellum and its impact on brain function in ASD is the focus of this review. This review starts by recapitulating historical findings pointing towards an implication of the cerebellum, and to a lesser extent the basal ganglia structures, in TSA. We then detail the structure/function of the cerebellum at the regional and cellular levels before describing human and animal findings indicating a role of the cerebellum and basal ganglia in ASD. Several studies have attempted to

  16. Effect of preterm birth on motor development, behavior, and school performance of school‐age children: a systematic review

    Directory of Open Access Journals (Sweden)

    Rafaela S. Moreira

    2014-03-01

    Full Text Available Objectives: to examine and synthesize the available knowledge in the literature about the effects of preterm birth on the development of school‐age children. Sources: this was a systematic review of studies published in the past ten years indexed in MEDLINE/Pubmed, MEDLINE/BVS; LILACS/BVS; IBECS/BVS; Cochrane/BVS, CINAHL, Web of Science, Scopus, and PsycNET in three languages (Portuguese, Spanish, and English. Observational and experimental studies that assessed motor development and/or behavior and/or academic performance and whose target‐population consisted of preterm children aged 8 to 10 years were included. Article quality was assessed by the Strengthening the reporting of observational studies in epidemiology (STROBE and Physiotherapy Evidence Database (PEDro scales; articles that did not achieve a score of 80% or more were excluded. Summary of findings: the electronic search identified 3,153 articles, of which 33 were included based on the eligibility criteria. Only four studies found no effect of prematurity on the outcomes (two articles on behavior, one on motor performance and one on academic performance. Among the outcomes of interest, behavior was the most searched (20 articles, 61%, followed by academic performance (16 articles, 48% and motor impairment (11 articles, 33%. Conclusion: premature infants are more susceptible to motor development, behavior and academic performance impairment when compared to term infants. These types of impairments, whose effects are manifested in the long term, can be prevented through early parental guidance, monitoring by specialized professionals, and interventions. Resumo: Objetivos: examinar e sintetizar o conhecimento da literatura sobre os efeitos do nascimento prematuro no desenvolvimento de crianças em idade escolar. Fontes de dados: revisão sistemática de estudos dos últimos 10 anos indexados nas bases de dados Medline/Pubmed; Medline/BVS; Lilacs/BVS; IBECS/BVS; Cochrane/BVS; Cinahl

  17. Primary Lateral Sclerosis and Early Upper Motor Neuron Disease: Characteristics of a Cross-Sectional Population.

    Science.gov (United States)

    Fournier, Christina N; Murphy, Alyssa; Loci, Lorena; Mitsumoto, Hiroshi; Lomen-Hoerth, Catherine; Kisanuki, Yasushi; Simmons, Zachary; Maragakis, Nicholas J; McVey, April L; Al-Lahham, Tawfiq; Heiman-Patterson, Terry D; Andrews, Jinsy; McDonnell, Erin; Cudkowicz, Merit; Atassi, Nazem

    2016-03-01

    The goals of this study were to characterize clinical and electrophysiologic findings of subjects with upper motor neuron disease and to explore feasibility of clinical trials in this population. Twenty northeast amyotrophic lateral sclerosis consortium (northeast amyotrophic lateral sclerosis) sites performed chart reviews to identify active clinical pure upper motor neuron disease patients. Patients with hereditary spastic paraplegia or meeting revised El Escorial electrodiagnostic criteria for amyotrophic lateral sclerosis were excluded. Patients were classified into 2 groups according to the presence or absence of minor electromyography (EMG) abnormalities. Two hundred thirty-three subjects with upper motor neuron disease were identified; 217 had available EMG data. Normal EMGs were seen in 140 subjects, and 77 had minor denervation. Mean disease duration was 84 (±80) months for the entire cohort with no difference seen between the 2 groups. No difference was seen in clinical symptoms, disability, or outcome measures between the 2 groups after correcting for multiple comparisons. Minor EMG abnormalities were not associated with phenotypic differences in a clinical upper motor neuron disease population. These findings suggest that subtle EMG abnormalities can not necessarily be used as a prognostic tool in patients with clinical upper motor neuron disease. This study also demonstrates the availability of a large number of patients with upper motor neuron diseases within the northeast amyotrophic lateral sclerosis network and suggests feasibility for conducting clinical trials in this population.

  18. Obesity Reduces Cognitive and Motor Functions across the Lifespan

    Science.gov (United States)

    Wang, Chuanming; Chan, John S. Y.; Ren, Lijie; Yan, Jin H.

    2016-01-01

    Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised. PMID:26881095

  19. Obesity Reduces Cognitive and Motor Functions across the Lifespan.

    Science.gov (United States)

    Wang, Chuanming; Chan, John S Y; Ren, Lijie; Yan, Jin H

    2016-01-01

    Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised.

  20. Obesity Reduces Cognitive and Motor Functions across the Lifespan

    Directory of Open Access Journals (Sweden)

    Chuanming Wang

    2016-01-01

    Full Text Available Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised.

  1. Time-varying motor control of autotomized leopard gecko tails: multiple inputs and behavioral modulation.

    Science.gov (United States)

    Higham, Timothy E; Russell, Anthony P

    2012-02-01

    Autotomy (voluntary loss of an appendage) is common among diverse groups of vertebrates and invertebrates, and much attention has been given to ecological and developmental aspects of tail autotomy in lizards. Although most studies have focused on the ramifications for the lizard (behavior, biomechanics, energetics, etc.), the tail itself can exhibit interesting behaviors once segregated from the body. For example, recent work highlighted the ability of leopard gecko tails to jump and flip, in addition to being able to swing back and forth. Little is known, however, about the control mechanisms underlying these movements. Using electromyography, we examined the time-varying in vivo motor patterns at four sites (two proximal and two distal) in the tail of the leopard gecko, Eublepharis macularius, following autotomy. Using these data we tested the hypothesis that the disparity in movements results simply from overlapping pattern generators within the tail. We found that burst duration, but not cycle duration, of the rhythmic swings reached a plateau at approximately 150 s following autotomy. This is likely because of physiological changes related to muscle fatigue and ischemia. For flips and jumps, burst and cycle duration exhibited no regular pattern. The coefficient of variation in motor patterns was significantly greater for jumps and flips than for rhythmic swings. This supports the conclusion that the different tail behaviors do not stem from overlapping pattern generators, but that they rely upon independent neural circuits. The signal controlling jumps and flips may be modified by sensory information from the environment. Finally, we found that jumps and flips are initiated using relatively synchronous activity between the two sides of the tail. In contrast, alternating activation of the right and left sides of the tail result in rhythmic swings. The mechanism underlying this change in tail behavior is comparable to locomotor gait changes in vertebrates.

  2. Human spinal motor control

    DEFF Research Database (Denmark)

    Nielsen, Jens Bo

    2016-01-01

    Human studies in the past three decades have provided us with an emerging understanding of how cortical and spinal networks collaborate to ensure the vast repertoire of human behaviors. We differ from other animals in having direct cortical connections to spinal motoneurons, which bypass spinal...... the central motor command by opening or closing sensory feedback pathways. In the future, human studies of spinal motor control, in close collaboration with animal studies on the molecular biology of the spinal cord, will continue to document the neural basis for human behavior. Expected final online...

  3. D2 receptor genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans.

    Science.gov (United States)

    Fazio, Leonardo; Blasi, Giuseppe; Taurisano, Paolo; Papazacharias, Apostolos; Romano, Raffaella; Gelao, Barbara; Ursini, Gianluca; Quarto, Tiziana; Lo Bianco, Luciana; Di Giorgio, Annabella; Mancini, Marina; Popolizio, Teresa; Rubini, Giuseppe; Bertolino, Alessandro

    2011-02-14

    Pre-synaptic D2 receptors regulate striatal dopamine release and DAT activity, key factors for modulation of motor pathways. A functional SNP of DRD2 (rs1076560 G>T) is associated with alternative splicing such that the relative expression of D2S (mainly pre-synaptic) vs. D2L (mainly post-synaptic) receptor isoforms is decreased in subjects with the T allele with a putative increase of striatal dopamine levels. To evaluate how DRD2 genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans, we have investigated the association of rs1076560 with BOLD fMRI activity during a motor task. To further evaluate the relationship of this circuitry with dopamine signaling, we also explored the correlation between genotype based differences in motor brain activity and pre-synaptic striatal DAT binding measured with [(123)I] FP-CIT SPECT. Fifty healthy subjects, genotyped for DRD2 rs1076560 were studied with BOLD-fMRI at 3T while performing a visually paced motor task with their right hand; eleven of these subjects also underwent [(123)I]FP-CIT SPECT. SPM5 random-effects models were used for statistical analyses. Subjects carrying the T allele had greater BOLD responses in left basal ganglia, thalamus, supplementary motor area, and primary motor cortex, whose activity was also negatively correlated with reaction time at the task. Moreover, left striatal DAT binding and activity of left supplementary motor area were negatively correlated. The present results suggest that DRD2 genetic variation was associated with focusing of responses in the whole motor network, in which activity of predictable nodes was correlated with reaction time and with striatal pre-synaptic dopamine signaling. Our results in humans may help shed light on genetic risk for neurobiological mechanisms involved in the pathophysiology of disorders with dysregulation of striatal dopamine like Parkinson's disease. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Olfaction in Eating Disorders and Abnormal Eating Behaviour: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Mohammed Anisul eIslam

    2015-09-01

    Full Text Available The study provides a systematic review that explores the current literature on olfactory capacity in abnormal eating behavior to present a basis for discussion on whether research in olfaction in eating disorders may offer additional insights with regard to the complex etiopathology of ED and abnormal eating behaviors. Electronic databases (Medline, PsycINFO, PubMed, Science Direct and Web of Science were searched using the components in relation to olfaction and combining them with the components related to abnormal eating behavior. Out of 1,352 articles, 14 articles were selected (820 patients and 385 control participants for this review. The highest number of existing literature on olfaction in ED were carried out with AN patients (78.6% followed by BN (35.7% and obesity (14.3%. The general findings support that olfaction is altered in AN and Obesity and indicates towards there being no differences in olfactory capacity between BN patients and the general population. Due to the limited number of studies and heterogeneity this review stresses on the importance of more research on olfaction and abnormal eating behavior.

  5. Detector for flow abnormalities in gaseous diffusion plant compressors

    Science.gov (United States)

    Smith, S.F.; Castleberry, K.N.

    1998-06-16

    A detector detects a flow abnormality in a plant compressor which outputs a motor current signal. The detector includes a demodulator/lowpass filter demodulating and filtering the motor current signal producing a demodulated signal, and first, second, third and fourth bandpass filters connected to the demodulator/lowpass filter, and filtering the demodulated signal in accordance with first, second, third and fourth bandpass frequencies generating first, second, third and fourth filtered signals having first, second, third and fourth amplitudes. The detector also includes first, second, third and fourth amplitude detectors connected to the first, second, third and fourth bandpass filters respectively, and detecting the first, second, third and fourth amplitudes, and first and second adders connected to the first and fourth amplitude detectors and the second and third amplitude detectors respectively, and adding the first and fourth amplitudes and the second and third amplitudes respectively generating first and second added signals. Finally, the detector includes a comparator, connected to the first and second adders, and comparing the first and second added signals and detecting the abnormal condition in the plant compressor when the second added signal exceeds the first added signal by a predetermined value. 6 figs.

  6. A cholinergic-regulated circuit coordinates the maintenance and bi-stable states of a sensory-motor behavior during Caenorhabditis elegans male copulation.

    Directory of Open Access Journals (Sweden)

    Yishi Liu

    2011-03-01

    Full Text Available Penetration of a male copulatory organ into a suitable mate is a conserved and necessary behavioral step for most terrestrial matings; however, the detailed molecular and cellular mechanisms for this distinct social interaction have not been elucidated in any animal. During mating, the Caenorhabditis elegans male cloaca is maintained over the hermaphrodite's vulva as he attempts to insert his copulatory spicules. Rhythmic spicule thrusts cease when insertion is sensed. Circuit components consisting of sensory/motor neurons and sex muscles for these steps have been previously identified, but it was unclear how their outputs are integrated to generate a coordinated behavior pattern. Here, we show that cholinergic signaling between the cloacal sensory/motor neurons and the posterior sex muscles sustains genital contact between the sexes. Simultaneously, via gap junctions, signaling from these muscles is transmitted to the spicule muscles, thus coupling repeated spicule thrusts with vulval contact. To transit from rhythmic to sustained muscle contraction during penetration, the SPC sensory-motor neurons integrate the signal of spicule's position in the vulva with inputs from the hook and cloacal sensilla. The UNC-103 K(+ channel maintains a high excitability threshold in the circuit, so that sustained spicule muscle contraction is not stimulated by fewer inputs. We demonstrate that coordination of sensory inputs and motor outputs used to initiate, maintain, self-monitor, and complete an innate behavior is accomplished via the coupling of a few circuit components.

  7. Prospective associations between measures of gross and fine motor coordination in infants and objectively measured physical activity and sedentary behavior in childhood.

    Science.gov (United States)

    Sánchez, Guillermo F López; Williams, Genevieve; Aggio, Daniel; Vicinanza, Domenico; Stubbs, Brendon; Kerr, Catherine; Johnstone, James; Roberts, Justin; Smith, Lee

    2017-11-01

    One important determinant of childhood physical activity and sedentary behavior may be that of motor development in infancy. The present analyses aimed to investigate whether gross and fine motor delays in infants were associated with objective and self-reported activity in childhood. Data were from the UK Millennium Cohort Study, a prospective cohort study, involving UK children born on or around the millennium (September 2000 and January 2002). When children were 9 months old, parents reported children's fine and gross motor-coordination, and at 7 years, sports club attendance and daily TV viewing time. Children's physical activity was measured using accelerometers at 7 years. Adjusted regression models were used to examine associations between delayed motor development and accelerometry measured moderate-to-vigorous physical activity and sedentary behavior, and parent-reported sport club attendance and TV viewing time. In this sample (n = 13,021), gross motor delay in infancy was associated with less time in moderate-to-vigorous physical activity (B -5.0 95% confidence interval [CI] -6.8, -3.2) and more time sedentary (B 13.5 95% CI 9.3, 17.8) in childhood. Gross and fine motor delays during infancy were associated with a reduced risk of having high attendance at sports clubs in childhood (both relative risk [RR] 0.7, 95% CI 0.6, 0.9). Fine motor delays, but not gross delays, were also associated with an increased risk of having high TV viewing time (RR 1.3 95% CI 1.0, 1.6). Findings from the present study suggest that delays in motor development in infancy are associated with physical activity and sedentary time in childhood.

  8. Exaggerated acquisition and resistance to extinction of avoidance behavior in treated heroin-dependent males

    Science.gov (United States)

    Sheynin, Jony; Moustafa, Ahmed A.; Beck, Kevin D.; Servatius, Richard J.; Casbolt, Peter A.; Haber, Paul; Elsayed, Mahmoud; Hogarth, Lee; Myers, Catherine E.

    2015-01-01

    Objective Addiction is often conceptualized as a behavioral strategy for avoiding negative experiences. In rodents, opioid intake has been associated with abnormal acquisition and extinction of avoidance behavior. Here, we tested the hypothesis that these findings would generalize to human opioid-dependent subjects. Method Adults meeting DSM-IV criteria for heroin-dependence and treated with opioid medication (n=27), and healthy controls (n=26), were recruited between March–October 2013 and given a computer-based task to assess avoidance behavior. On this task, subjects controlled a spaceship and could either gain points by shooting an enemy spaceship, or hide in safe areas to avoid on-screen aversive events. Results While groups did not differ on escape responding (hiding) during the aversive event, heroin-dependent males (but not females) made more avoidance responses during a warning signal that predicted the aversive event (ANOVA, sex × group interaction, p=0.007). This group was also slower to extinguish the avoidance response when the aversive event no longer followed the warning signal (p=0.011). This behavioral pattern resulted in reduced opportunity to obtain reward without reducing risk of punishment. Results suggest that differences in avoidance behavior cannot be easily explained by impaired task performance or by exaggerated motor activity in male patients. Conclusion This study provides evidence for abnormal acquisition and extinction of avoidance behavior in opioid-dependent patients. Interestingly, data suggest abnormal avoidance is demonstrated only by male patients. Findings shed light on cognitive and behavioral manifestations of opioid addiction, and may facilitate development of therapeutic approaches to help affected individuals. PMID:27046310

  9. Studies in Motor Behavior: 75 Years of Research in Motor Development, Learning, and Control

    Science.gov (United States)

    Ulrich, Beverly D.; Reeve, T. Gilmour

    2005-01-01

    Research focused on human motor development, learning, and control has been a prominent feature in the Research Quarterly for Exercise and Sport (RQES) since it was first published in 1930. The purpose of this article is to provide an overview of the papers in the RQES that demonstrate the journal's contributions to the study of motor development,…

  10. Early life seizures in female rats lead to anxiety-related behavior and abnormal social behavior characterized by reduced motivation to novelty and deficit in social discrimination.

    Science.gov (United States)

    Castelhano, Adelisandra Silva Santos; Ramos, Fabiane Ochai; Scorza, Fulvio Alexandre; Cysneiros, Roberta Monterazzo

    2015-03-01

    Previously, we demonstrated that male Wistar rats submitted to neonatal status epilepticus showed abnormal social behavior characterized by deficit in social discrimination and enhanced emotionality. Taking into account that early insult can produce different biological manifestations in a gender-dependent manner, we aimed to investigate the social behavior and anxiety-like behavior in female Wistar rats following early life seizures. Neonate female Wistar rats at 9 days postnatal were subject to pilocarpine-induced status epilepticus and the control received saline. Behavioral tests started from 60 days postnatal and were carried out only during the diestrus phase of the reproductive cycle. In sociability test experimental animals exhibited reduced motivation for social encounter and deficit in social discrimination. In open field and the elevated plus maze, experimental animals showed enhanced emotionality with no changes in basal locomotor activity. The results showed that female rats submitted to neonatal status epipepticus showed impaired social behavior, characterized by reduced motivation to novelty and deficit in social discrimination in addition to enhanced emotionality.

  11. Supplementation of Korean Red Ginseng improves behavior deviations in animal models of autism

    Directory of Open Access Journals (Sweden)

    Edson Luck T. Gonzales

    2016-02-01

    Full Text Available Background: Autism spectrum disorder (ASD is heterogeneous neurodevelopmental disorders that primarily display social and communication impairments and restricted/repetitive behaviors. ASD prevalence has increased in recent years, yet very limited therapeutic targets and treatments are available to counteract the incapacitating disorder. Korean Red Ginseng (KRG is a popular herbal plant in South Korea known for its wide range of therapeutic effects and nutritional benefits and has recently been gaining great scientific attention, particularly for its positive effects in the central nervous system. Objectives: Thus, in this study, we investigated the therapeutic potential of KRG in alleviating the neurobehavioral deficits found in the valproic acid (VPA-exposed mice models of ASD. Design: Starting at 21 days old (P21, VPA-exposed mice were given daily oral administrations of KRG solution (100 or 200 mg/kg until the termination of all experiments. From P28, mice behaviors were assessed in terms of social interaction capacity (P28–29, locomotor activity (P30, repetitive behaviors (P32, short-term spatial working memory (P34, motor coordination (P36, and seizure susceptibility (P38. Results: VPA-exposed mice showed sociability and social novelty preference deficits, hyperactivity, increased repetitive behavior, impaired spatial working memory, slightly affected motor coordination, and high seizure susceptibility. Remarkably, long-term KRG treatment in both dosages normalized all the ASD-related behaviors in VPA-exposed mice, except motor coordination ability. Conclusion: As a food and herbal supplement with various known benefits, KRG demonstrated its therapeutic potential in rescuing abnormal behaviors related to autism caused by prenatal environmental exposure to VPA.

  12. Transcriptomics of aged Drosophila motor neurons reveals a matrix metalloproteinase that impairs motor function.

    Science.gov (United States)

    Azpurua, Jorge; Mahoney, Rebekah E; Eaton, Benjamin A

    2018-04-01

    The neuromuscular junction (NMJ) is responsible for transforming nervous system signals into motor behavior and locomotion. In the fruit fly Drosophila melanogaster, an age-dependent decline in motor function occurs, analogous to the decline experienced in mice, humans, and other mammals. The molecular and cellular underpinnings of this decline are still poorly understood. By specifically profiling the transcriptome of Drosophila motor neurons across age using custom microarrays, we found that the expression of the matrix metalloproteinase 1 (dMMP1) gene reproducibly increased in motor neurons in an age-dependent manner. Modulation of physiological aging also altered the rate of dMMP1 expression, validating dMMP1 expression as a bona fide aging biomarker for motor neurons. Temporally controlled overexpression of dMMP1 specifically in motor neurons was sufficient to induce deficits in climbing behavior and cause a decrease in neurotransmitter release at neuromuscular synapses. These deficits were reversible if the dMMP1 expression was shut off again immediately after the onset of motor dysfunction. Additionally, repression of dMMP1 enzymatic activity via overexpression of a tissue inhibitor of metalloproteinases delayed the onset of age-dependent motor dysfunction. MMPs are required for proper tissue architecture during development. Our results support the idea that matrix metalloproteinase 1 is acting as a downstream effector of antagonistic pleiotropy in motor neurons and is necessary for proper development, but deleterious when reactivated at an advanced age. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  13. Clinical Spectrum, Risk Factors, and Behavioral Abnormalities among Dementia Subtypes in a North Indian Population: A Hospital-Based Study

    Directory of Open Access Journals (Sweden)

    Suman Kushwaha

    2017-07-01

    Full Text Available Background: As variability in the clinical profile of dementia subtypes had been reported with regional differences across the world, we conducted a retrospective hospital-based study in a North Indian population. Methods: We retrieved patient records from 2007 to 2014 for details of clinical evaluation, diagnosis, neuroimaging, biochemical investigations, and follow-up of 1,876 patients with dementia (PwD, and the data were analyzed using descriptive statistics. Results: Of the total PwD, Alzheimer disease (AD accounted for 30% followed by vascular dementia (VaD 26%, mixed dementia (MD 21%, Parkinson-related dementia 11%, frontotemporal dementia (FTD 7%, and infective dementia 5%. Of all PwD excluding the infective group (n = 1,777, 63% were men, 39% were from rural areas, 87% had behavioral abnormalities along with cognitive deficits, and 73% had impaired ADLs. Among dementia subtypes, a positive family history, cardiovascular and metabolic risk factors, and behavioral abnormalities were found to be distributed. However, there existed a predominance of specific behavioral pattern in each subtype. The mean duration of follow-up varied from 2.9 ± 2.3 (VaD to 3.6 ± 2.1 (AD and greater than 30% were found to be stable on treatment (except in dementia with Lewy body. Conclusions: This large hospital-based study provides a distribution pattern and clinical spectrum of dementia subtypes in a North Indian population.

  14. Motor Development of Premature Infants Born between 32 and 34 Weeks

    Directory of Open Access Journals (Sweden)

    S. A. Prins

    2010-01-01

    Full Text Available Little is known about motor development in late preterm born infants. Our objective was to determine long-term outcome of motor skills of infants born between 32 and 34 weeks. All infants were assessed at corrected ages of 3 and 9 months, using the Alberta Infant Motor Scale. At corrected ages of 4 years, the Movement Assessment Battery for Children was done. Seventy infants were seen at 4 years of age (median of 3 assessments per infant. Abnormal assessment at 3 or 9 months of age resulted in normal outcome in almost 80% at 4 years. On the other hand, a normal outcome in the first year of life resulted in an abnormal outcome at 4 years in 10% of the infants. Our results suggest that long-term followup of these late preterm born infants is necessary, as the assessments in the first year do not predict the long-term outcome.

  15. A Recommended New Approach on Motorization Ratio Calculations of Stepper Motors

    Science.gov (United States)

    Nalbandian, Ruben; Blais, Thierry; Horth, Richard

    2014-01-01

    Stepper motors are widely used on most spacecraft mechanisms requiring repeatable and reliable performance. The unique detent torque characteristics of these type of motors makes them behave differently when subjected to low duty cycle excitations where the applied driving pulses are only energized for a fraction of the pulse duration. This phenomenon is even more pronounced in discrete permanent magnet stepper motors used in the space industry. While the inherent high detent properties of discrete permanent magnets provide desirable unpowered holding performance characteristics, it results in unique behavior especially in low duty cycles. Notably, the running torque reduces quickly to the unpowered holding torque when the duty cycle is reduced. The space industry's accepted methodology of calculating the Motorization Ratio (or Torque Margin) is more applicable to systems where the power is continuously applied to the motor coils like brushless DC motors where the cogging torques are low enough not to affect the linear performance of the motors as a function of applied current. This paper summarizes the theoretical and experimental studies performed on a number of space qualified motors under different pulse rates and duty cycles. It is the intention of this paper to introduce a new approach to calculate the Motorization Ratios for discrete permanent magnet steppers under all full and partial duty cycle regimes. The recommended approach defines two distinct relationships to calculate the Motorization Ratio for 100 percent duty cycle and partial duty cycle, when the motor detent (unpowered holding torque) is the main contributor to holding position. These two computations reflect accurately the stepper motor physical behavior as a function of the command phase (ON versus OFF times of the pulses), pointing out how the torque contributors combine. Important points highlighted under this study are the torque margin computations, in particular for well characterized

  16. Esophageal hypomotility and spastic motor disorders: current diagnosis and treatment.

    Science.gov (United States)

    Valdovinos, Miguel A; Zavala-Solares, Monica R; Coss-Adame, Enrique

    2014-11-01

    Esophageal hypomotility (EH) is characterized by abnormal esophageal peristalsis, either from a reduction or absence of contractions, whereas spastic motor disorders (SMD) are characterized by an increase in the vigor and/or propagation velocity of esophageal body contractions. Their pathophysiology is not clearly known. The reduced excitation of the smooth muscle contraction mediated by cholinergic neurons and the impairment of inhibitory ganglion neuronal function mediated by nitric oxide are likely mechanisms of the peristaltic abnormalities seen in EH and SMD, respectively. Dysphagia and chest pain are the most frequent clinical manifestations for both of these dysfunctions, and gastroesophageal reflux disease (GERD) is commonly associated with these motor disorders. The introduction of high-resolution manometry (HRM) and esophageal pressure topography (EPT) has significantly enhanced the ability to diagnose EH and SMD. Novel EPT metrics in particular the development of the Chicago Classification of esophageal motor disorders has enabled improved characterization of these abnormalities. The first step in the management of EH and SMD is to treat GERD, especially when esophageal testing shows pathologic reflux. Smooth muscle relaxants (nitrates, calcium channel blockers, 5-phosphodiesterase inhibitors) and pain modulators may be useful in the management of dysphagia or pain in SMD. Endoscopic Botox injection and pneumatic dilation are the second-line therapies. Extended myotomy of the esophageal body or peroral endoscopic myotomy (POEM) may be considered in highly selected cases but lack evidence.

  17. Functional connectivity between somatosensory and motor brain areas predicts individual differences in motor learning by observing.

    Science.gov (United States)

    McGregor, Heather R; Gribble, Paul L

    2017-08-01

    Action observation can facilitate the acquisition of novel motor skills; however, there is considerable individual variability in the extent to which observation promotes motor learning. Here we tested the hypothesis that individual differences in brain function or structure can predict subsequent observation-related gains in motor learning. Subjects underwent an anatomical MRI scan and resting-state fMRI scans to assess preobservation gray matter volume and preobservation resting-state functional connectivity (FC), respectively. On the following day, subjects observed a video of a tutor adapting her reaches to a novel force field. After observation, subjects performed reaches in a force field as a behavioral assessment of gains in motor learning resulting from observation. We found that individual differences in resting-state FC, but not gray matter volume, predicted postobservation gains in motor learning. Preobservation resting-state FC between left primary somatosensory cortex and bilateral dorsal premotor cortex, primary motor cortex, and primary somatosensory cortex and left superior parietal lobule was positively correlated with behavioral measures of postobservation motor learning. Sensory-motor resting-state FC can thus predict the extent to which observation will promote subsequent motor learning. NEW & NOTEWORTHY We show that individual differences in preobservation brain function can predict subsequent observation-related gains in motor learning. Preobservation resting-state functional connectivity within a sensory-motor network may be used as a biomarker for the extent to which observation promotes motor learning. This kind of information may be useful if observation is to be used as a way to boost neuroplasticity and sensory-motor recovery for patients undergoing rehabilitation for diseases that impair movement such as stroke. Copyright © 2017 the American Physiological Society.

  18. Traffic collisions between electric mobility devices (wheelchairs) and motor vehicles: Accidents, hubris, or self-destructive behavior?

    Science.gov (United States)

    LaBan, Myron M; Nabity, Thomas S

    2010-07-01

    This study had its genesis in a personally observed collision between a motor vehicle and a motorized wheelchair (electric mobility device) on a busy street in the middle of the block at an unmarked crossing. To the observer, at the time, this appeared to be a suicidal act. This investigation was initiated to both delineate the number of these crashes nationally and understand this phenomena as a potentially planned act of self-destruction. An initial survey of police reports was immediately frustrated by an inability to separate motor vehicle and electric mobility device collisions from the much larger group that involved ambulatory citizens because both types were classified together as "pedestrian" accidents. Instead, the search engine NexisLexis was used to identify 107 newspaper articles each of which described a motor vehicle and electric mobility device accident. In the motor vehicle and electric mobility device collisions, men predominated women (3:1 ratio) with an average age of 56 yrs. Sixty of these accidents were fatal. Ninety-four percent involved an electric mobility device and 6% a manual wheelchair. In 50% of the cases, the motor vehicle was a truck, van, or sport utility vehicle. Fifty percent occurred at dusk or dawn or at night. The electric mobility device occupant was cited as the guilty party in 39% of the cases and the driver of the motor vehicle in 27%. Twenty percent were unwitnessed hit-and-run accidents, whereas "no fault" was found in 8% of the cases. Although many accidents do happen by chance, when an electric mobility device operator openly challenges busy traffic by attempting to traverse it in the middle of the block at an unmarked crossing, predisposing psychosocial factors must also be considered. Hubris or premeditated self-destructive behavior or both need to be explored as preeminent issues with reference to the prodromal of the "accident process."

  19. Behavioral characterization of mouse models of neuroferritinopathy.

    Science.gov (United States)

    Capoccia, Sara; Maccarinelli, Federica; Buffoli, Barbara; Rodella, Luigi F; Cremona, Ottavio; Arosio, Paolo; Cirulli, Francesca

    2015-01-01

    Ferritin is the main intracellular protein of iron storage with a central role in the regulation of iron metabolism and detoxification. Nucleotide insertions in the last exon of the ferritin light chain cause a neurodegenerative disease known as Neuroferritinopathy, characterized by iron deposition in the brain, particularly in the cerebellum, basal ganglia and motor cortex. The disease progresses relentlessly, leading to dystonia, chorea, motor disability and neuropsychiatry features. The characterization of a good animal model is required to compare and contrast specific features with the human disease, in order to gain new insights on the consequences of chronic iron overload on brain function and behavior. To this aim we studied an animal model expressing the pathogenic human FTL mutant 498InsTC under the phosphoglycerate kinase (PGK) promoter. Transgenic (Tg) mice showed strong accumulation of the mutated protein in the brain, which increased with age, and this was accompanied by brain accumulation of ferritin/iron bodies, the main pathologic hallmark of human neuroferritinopathy. Tg-mice were tested throughout development and aging at 2-, 8- and 18-months for motor coordination and balance (Beam Walking and Footprint tests). The Tg-mice showed a significant decrease in motor coordination at 8 and 18 months of age, with a shorter latency to fall and abnormal gait. Furthermore, one group of aged naïve subjects was challenged with two herbicides (Paraquat and Maneb) known to cause oxidative damage. The treatment led to a paradoxical increase in behavioral activation in the transgenic mice, suggestive of altered functioning of the dopaminergic system. Overall, data indicate that mice carrying the pathogenic FTL498InsTC mutation show motor deficits with a developmental profile suggestive of a progressive pathology, as in the human disease. These mice could be a powerful tool to study the neurodegenerative mechanisms leading to the disease and help developing

  20. Effects of prenatal dexamethasone treatment on physical growth, pituitary-adrenal hormones, and performance of motor, motivational, and cognitive tasks in juvenile and adolescent common marmoset monkeys.

    Science.gov (United States)

    Hauser, Jonas; Knapman, Alana; Zürcher, Nicole R; Pilloud, Sonia; Maier, Claudia; Diaz-Heijtz, Rochellys; Forssberg, Hans; Dettling, Andrea; Feldon, Joram; Pryce, Christopher R

    2008-12-01

    Synthetic glucocorticoids such as dexamethasone (DEX) are commonly used to prevent respiratory distress syndrome in preterm infants, but there is emerging evidence of subsequent neurobehavioral abnormalities (e.g. problems with inattention/hyperactivity). In the present study, we exposed pregnant common marmosets (Callithrix jacchus, primates) to daily repeated DEX (5 mg/kg by mouth) during either early (d 42-48) or late (d 90-96) pregnancy (gestation period of 144 days). Relative to control, and with a longitudinal design, we investigated DEX effects in offspring in terms of physical growth, plasma ACTH and cortisol titers, social and maintenance behaviors, skilled motor reaching, motivation for palatable reward, and learning between infancy and adolescence. Early DEX resulted in reduced sociability in infants and increased motivation for palatable reward in adolescents. Late DEX resulted in a mild transient increase in knee-heel length in infants and enhanced reversal learning of stimulus-reward association in adolescents. There was no effect of either early or late DEX on basal plasma ACTH or cortisol titers. Both treatments resulted in impaired skilled motor reaching in juveniles, which attenuated in early DEX but persisted in late DEX across test sessions. The increased palatable-reward motivation and decreased social motivation observed in early DEX subjects provide experimental support for the clinical reports that prenatal glucocorticoid treatment impairs social development and predisposes to metabolic syndrome. These novel primate findings indicate that fetal glucocorticoid overexposure can lead to abnormal development of motor, affective, and cognitive behaviors. Importantly, the outcome is highly dependent upon the timing of glucocorticoid overexposure.

  1. Neurologic abnormalities in murderers.

    Science.gov (United States)

    Blake, P Y; Pincus, J H; Buckner, C

    1995-09-01

    Thirty-one individuals awaiting trial or sentencing for murder or undergoing an appeal process requested a neurologic examination through legal counsel. We attempted in each instance to obtain EEG, MRI or CT, and neuropsychological testing. Neurologic examination revealed evidence of "frontal" dysfunction in 20 (64.5%). There were symptoms or some other evidence of temporal lobe abnormality in nine (29%). We made a specific neurologic diagnosis in 20 individuals (64.5%), including borderline or full mental retardation (9) and cerebral palsy (2), among others. Neuropsychological testing revealed abnormalities in all subjects tested. There were EEG abnormalities in eight of the 20 subjects tested, consisting mainly of bilateral sharp waves with slowing. There were MRI or CT abnormalities in nine of the 19 subjects tested, consisting primarily of atrophy and white matter changes. Psychiatric diagnoses included paranoid schizophrenia (8), dissociative disorder (4), and depression (9). Virtually all subjects had paranoid ideas and misunderstood social situations. There was a documented history of profound, protracted physical abuse in 26 (83.8%) and of sexual abuse in 10 (32.3%). It is likely that prolonged, severe physical abuse, paranoia, and neurologic brain dysfunction interact to form the matrix of violent behavior.

  2. Development of Abnormality Detection System for Bathers using Ultrasonic Sensors

    Science.gov (United States)

    Ohnishi, Yosuke; Abe, Takehiko; Nambo, Hidetaka; Kimura, Haruhiko; Ogoshi, Yasuhiro

    This paper proposes an abnormality detection system for bather sitting in bathtub. Increasing number of in-bathtub drowning accidents in Japan draws attention. Behind this large number of bathing accidents, Japan's unique social and cultural background come surface. For majority of people in Japan, bathing serves purpose in deep warming up of body, relax and enjoyable time. Therefore it is the custom for the Japanese to soak in bathtub. However overexposure to hot water may cause dizziness or fainting, which is possible to cause in-bathtub drowning. For drowning prevention, the system detects bather's abnormal state using an ultrasonic sensor array. The array, which has many ultrasonic sensors, is installed on the ceiling of bathroom above bathtub. The abnormality detection system uses the following two methods: posture detection and behavior detection. The function of posture detection is to estimate the risk of drowning by monitoring bather's posture. Meanwhile, the function of behavior detection is to estimate the risk of drowning by monitoring bather's behavior. By using these methods, the system detects bathers' different state from normal. As a result of experiment with a subject in the bathtub, the system was possible to detect abnormal state using subject's posture and behavior. Therefore the system is useful for monitoring bather to prevent drowning in bathtub.

  3. Motor Cortex Activity During Functional Motor Skills: An fNIRS Study.

    Science.gov (United States)

    Nishiyori, Ryota; Bisconti, Silvia; Ulrich, Beverly

    2016-01-01

    Assessments of brain activity during motor task performance have been limited to fine motor movements due to technological constraints presented by traditional neuroimaging techniques, such as functional magnetic resonance imaging. Functional near-infrared spectroscopy (fNIRS) offers a promising method by which to overcome these constraints and investigate motor performance of functional motor tasks. The current study used fNIRS to quantify hemodynamic responses within the primary motor cortex in twelve healthy adults as they performed unimanual right, unimanual left, and bimanual reaching, and stepping in place. Results revealed that during both unimanual reaching tasks, the contralateral hemisphere showed significant activation in channels located approximately 3 cm medial to the C3 (for right-hand reach) and C4 (for left-hand reach) landmarks. Bimanual reaching and stepping showed activation in similar channels, which were located bilaterally across the primary motor cortex. The medial channels, surrounding Cz, showed significantly higher activations during stepping when compared to bimanual reaching. Our results extend the viability of fNIRS to study motor function and build a foundation for future investigation of motor development in infants during nascent functional behaviors and monitor how they may change with age or practice.

  4. Effect of preterm birth on motor development, behavior, and school performance of school-age children: a systematic review

    Directory of Open Access Journals (Sweden)

    Rafaela S. Moreira

    2014-03-01

    Conclusion: premature infants are more susceptible to motor development, behavior and academic performance impairment when compared to term infants. These types of impairments, whose effects are manifested in the long term, can be prevented through early parental guidance, monitoring by specialized professionals, and interventions.

  5. Abnormal intrinsic functional hubs in alcohol dependence: evidence from a voxelwise degree centrality analysis

    Directory of Open Access Journals (Sweden)

    Luo X

    2017-07-01

    to be disrupted by alcohol intoxication, which implicates at least three principal neural systems: including cerebellar, executive control, and visual cortex, which may further affect the normal motor behavior such as an explicit type of impaired driving behavior. These findings expand our understanding of the functional characteristics of alcohol dependence and may provide a new insight into the understanding of the dysfunction and pathophysiology of alcohol dependence. Keywords: alcohol addiction, substance dependence, degree centrality, functional magnetic resonance imaging, functional connectivity driving behavior

  6. Evidence for a Resting State Network Abnormality in Adults Who Stutter

    Directory of Open Access Journals (Sweden)

    Amir H. Ghaderi

    2018-04-01

    Full Text Available Neural network-based investigations of stuttering have begun to provide a possible integrative account for the large number of brain-based anomalies associated with stuttering. Here we used resting-state EEG to investigate functional brain networks in adults who stutter (AWS. Participants were 19 AWS and 52 age-, and gender-matched normally fluent speakers. EEGs were recorded and connectivity matrices were generated by LORETA in the theta (4–8 Hz, alpha (8–12 Hz, beta1 (12–20 Hz, and beta2 (20–30 Hz bands. Small-world propensity (SWP, shortest path, and clustering coefficients were computed for weighted graphs. Minimum spanning tree analysis was also performed and measures were compared by non-parametric permutation test. The results show that small-world topology was evident in the functional networks of all participants. Three graph indices (diameter, clustering coefficient, and shortest path exhibited significant differences between groups in the theta band and one [maximum betweenness centrality (BC] measure was significantly different between groups in the beta2 band. AWS show higher BC than control in right temporal and inferior frontal areas and lower BC in the right primary motor cortex. Abnormal functional networks during rest state suggest an anomaly of DMN activity in AWS. Furthermore, functional segregation/integration deficits in the theta network are evident in AWS. These deficits reinforce the hypothesis that there is a neural basis for abnormal executive function in AWS. Increased beta2 BC in the right speech–motor related areas confirms previous evidence that right audio–speech areas are over-activated in AWS. Decreased beta2 BC in the right primary motor cortex is discussed in relation to abnormal neural mechanisms associated with time perception in AWS.

  7. Vapb/Amyotrophic lateral sclerosis 8 knock-in mice display slowly progressive motor behavior defects accompanying ER stress and autophagic response.

    Science.gov (United States)

    Larroquette, Frédérique; Seto, Lesley; Gaub, Perrine L; Kamal, Brishna; Wallis, Deeann; Larivière, Roxanne; Vallée, Joanne; Robitaille, Richard; Tsuda, Hiroshi

    2015-11-15

    Missense mutations (P56S) in Vapb are associated with autosomal dominant motor neuron diseases: amyotrophic lateral sclerosis and lower motor neuron disease. Although transgenic mice overexpressing the mutant vesicle-associated membrane protein-associated protein B (VAPB) protein with neuron-specific promoters have provided some insight into the toxic properties of the mutant proteins, their role in pathogenesis remains unclear. To identify pathological defects in animals expressing the P56S mutant VAPB protein at physiological levels in the appropriate tissues, we have generated Vapb knock-in mice replacing wild-type Vapb gene with P56S mutant Vapb gene and analyzed the resulting pathological phenotypes. Heterozygous P56S Vapb knock-in mice show mild age-dependent defects in motor behaviors as characteristic features of the disease. The homozygous P56S Vapb knock-in mice show more severe defects compared with heterozygous mice reflecting the dominant and dose-dependent effects of P56S mutation. Significantly, the knock-in mice demonstrate accumulation of P56S VAPB protein and ubiquitinated proteins in cytoplasmic inclusions, selectively in motor neurons. The mutant mice demonstrate induction of ER stress and autophagic response in motor neurons before obvious onset of behavioral defects, suggesting that these cellular biological defects might contribute to the initiation of the disease. The P56S Vapb knock-in mice could be a valuable tool to gain a better understanding of the mechanisms by which the disease arises. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Sex-dependent alterations in motor and anxiety-like behavior of aged bacterial peptidoglycan sensing molecule 2 knockout mice.

    Science.gov (United States)

    Arentsen, Tim; Khalid, Roksana; Qian, Yu; Diaz Heijtz, Rochellys

    2018-01-01

    Peptidoglycan recognition proteins (PGRPs) are key sensing-molecules of the innate immune system that specifically detect bacterial peptidoglycan (PGN) and its derivates. PGRPs have recently emerged as potential key regulators of normal brain development and behavior. To test the hypothesis that PGRPs play a role in motor control and anxiety-like behavior in later life, we used 15-month old male and female peptidoglycan recognition protein 2 (Pglyrp2) knockout (KO) mice. Pglyrp2 is an N-acetylmuramyl-l-alanine amidase that hydrolyzes PGN between the sugar backbone and the peptide chain (which is unique among the mammalian PGRPs). Using a battery of behavioral tests, we demonstrate that Pglyrp2 KO male mice display decreased levels of anxiety-like behavior compared with wild type (WT) males. In contrast, Pglyrp2 KO female mice show reduced rearing activity and increased anxiety-like behavior compared to WT females. In the accelerated rotarod test, however, Pglyrp2 KO female mice performed better compared to WT females (i.e., they had longer latency to fall off the rotarod). Further, Pglyrp2 KO male mice exhibited decreased expression levels of synaptophysin, gephyrin, and brain-derived neurotrophic factor in the frontal cortex, but not in the amygdala. Pglyrp2 KO female mice exhibited increased expression levels of spinophilin and alpha-synuclein in the frontal cortex, while exhibiting decreased expression levels of synaptophysin, gephyrin and spinophilin in the amygdala. Our findings suggest a novel role for Pglyrp2asa key regulator of motor and anxiety-like behavior in late life. Copyright © 2017. Published by Elsevier Inc.

  9. Chromosomal abnormalities in a psychiatric population

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, K.E.; Lubetsky, M.J.; Wenger, S.L.; Steele, M.W. [Univ. of Pittsburgh Medical Center, PA (United States)

    1995-02-27

    Over a 3.5 year period of time, 345 patients hospitalized for psychiatric problems were evaluated cytogenetically. The patient population included 76% males and 94% children with a mean age of 12 years. The criteria for testing was an undiagnosed etiology for mental retardation and/or autism. Cytogenetic studies identified 11, or 3%, with abnormal karyotypes, including 4 fragile X positive individuals (2 males, 2 females), and 8 with chromosomal aneuploidy, rearrangements, or deletions. While individuals with chromosomal abnormalities do not demonstrate specific behavioral, psychiatric, or developmental problems relative to other psychiatric patients, our results demonstrate the need for an increased awareness to order chromosomal analysis and fragile X testing in those individuals who have combinations of behavioral/psychiatric, learning, communication, or cognitive disturbance. 5 refs., 1 fig., 2 tabs.

  10. Behavioral evidence for left-hemisphere specialization of motor planning

    NARCIS (Netherlands)

    Janssen, L.; Meulenbroek, R.G.; Steenbergen, B.

    2011-01-01

    Recent studies suggest that the left hemisphere is dominant for the planning of motor actions. This left-hemisphere specialization hypothesis was proposed in various lines of research, including patient studies, motor imagery studies, and studies involving neurophysiological techniques. However,

  11. Altered neuronal activities in the motor cortex with impaired motor performance in adult rats observed after infusion of cerebrospinal fluid from amyotrophic lateral sclerosis patients.

    Science.gov (United States)

    Sankaranarayani, R; Nalini, A; Rao Laxmi, T; Raju, T R

    2010-01-05

    Although definite evidences are available to state that, neuronal activity is a prime determinant of animal behavior, the specific relationship between local field potentials of the motor cortex after intervention with CSF from human patients and animal behavior have remained opaque. The present study has investigated whether cerebrospinal fluid from sporadic amyotrophic lateral sclerosis (sALS) patients could disrupt neuronal activity of the motor cortex, which could be associated with disturbances in the motor performance of adult rats. CSF from ALS patients (ALS-CSF) was infused into the lateral ventricle of Wistar rats. After 24h, the impact of ALS-CSF on the local field potentials (LFPs) of the motor cortex and on the motor behavior of animals were examined. The results indicate that ALS-CSF produced a bivariate distribution on the relative power values of the LFPs of the motor cortex 24h following infusion. However, the behavioral results did not show bimodality, instead showed consistent decrease in motor performance: on rotarod and grip strength meter. The neuronal activity of the motor cortex negatively correlated with the duration of ALS symptoms at the time of lumbar puncture. Although the effect of ALS-CSF was more pronounced at 24h following infusion, the changes observed in LFPs and motor performance appeared to revert to baseline values at later time points of testing. In the current study, we have shown that, ALS-CSF has the potential to perturb neuronal activity of the rat motor cortex which was associated with poor performance on motor function tests.

  12. Motor activation SPECT for the neurosurgical diseases. Examination protocol and basic study

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Hiroshi; Kawaguchi, Shoichiro; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime [Nara Medical Univ., Kashihara (Japan)

    1999-07-01

    We examined and analyzed the region activated by the unilateral finger opposition task using motor activation single photon emission computed tomography (M-SPECT). M-SPECT studies were carried out on 11 cases, all of whom were normal volunteers (mean age: 49.4 years), none of whom showed any abnormal findings on magnetic resonance images (MRIs) or any neurological abnormalities. The SPECT images for each case were superimposed on the MRIs using Image Fusion Software. The result of the M-SPECT study was expressed as positive or negative. The cases with a marked increase of blood flow in the sensori-motor cortex during the finger opposition task were categorized as positive, and those cases showing no marked increase of blood flow were categorized as negative. Among 11 patients, 10 cases (90.9%) showed positive M-SPECT findings, and the eleventh case showed negative M-SPECT findings. The asymmetry index (AI) was calculated on the sensorio-motor cortex in the SPECT images before and after motor activation, with the 10 cases with positive M-SPECT having an AI before motor activation of 0.99{+-}0.06 (mean{+-}standard deviation) and an AI after motor activation of 1.14{+-}0.07. This change was statistically significant (p<0.05). In the single case categorized as negative, the AI before motor activation was 1.04, and the AI after motor activation was 1.01. There was no significant difference of AI values between the resting and motor activation stages. The positive M-SPECT was seen in 90.9% of the normal volunteer series using a visual inspection method. In these cases, the blood flow in the sensorio-motor cortex significantly increased after application of the finger opposition task using the semi-quantitative method. (author)

  13. Persistent abnormalities of membrane excitability in regenerated mature motor axons in cat

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Krarup, Christian

    2004-01-01

    The purpose of our study was to assess by threshold tracking internodal and nodal membrane excitability during the maturation process after tibial nerve crush in cat. Various excitability indices (EI) were computed non-invasively by comparing the threshold of a submaximal compound motor potential...

  14. Motor Skill Competence and Perceived Motor Competence: Which Best Predicts Physical Activity among Girls?

    Science.gov (United States)

    Khodaverdi, Zeinab; Bahram, Abbas; Khalaji, Hassan; Kazemnejad, Anoshirvan

    2013-10-01

    The main purpose of this study was to determine which correlate, perceived motor competence or motor skill competence, best predicts girls' physical activity behavior. A sample of 352 girls (mean age=8.7, SD=0.3 yr) participated in this study. To assess motor skill competence and perceived motor competence, each child completed the Test of Gross Motor Development-2 and Physical Ability sub-scale of Marsh's Self-Description Questionnaire. Children's physical activity was assessed by the Physical Activity Questionnaire for Older Children. Multiple linear regression model was used to determine whether perceived motor competence or motor skill competence best predicts moderate-to-vigorous self-report physical activity. Multiple regression analysis indicated that motor skill competence and perceived motor competence predicted 21% variance in physical activity (R(2)=0.21, F=48.9, P=0.001), and motor skill competence (R(2)=0.15, ᵝ=0.33, P= 0.001) resulted in more variance than perceived motor competence (R(2)=0.06, ᵝ=0.25, P=0.001) in physical activity. Results revealed motor skill competence had more influence in comparison with perceived motor competence on physical activity level. We suggest interventional programs based on motor skill competence and perceived motor competence should be administered or implemented to promote physical activity in young girls.

  15. Pump Coupling & Motor bearing damage detection using Condition Monitoring at DTPS

    Science.gov (United States)

    Bari, H. M.; Deshpande, A. A.; Jalkote, P. S.; Patil, S. S.

    2012-05-01

    This paper shares a success story out of the implementation of Co-ordinated Condition Monitoring techniques at DTPS, wherein imminent Mis-alignment of HT auxiliary BFP - 1B and Motor bearing failure of ID FAN - 1B was diagnosed. On 30/12/2010, Booster Pump DE horizontal reading increased from 4.8 to 5.1 and then upto 5.9 mm/sec. It was suspected that Booster pump was mis-aligned with Motor. To confirm misalignment, Phase Analysis was also done which showed that Coupling phase difference was 180 Degrees. Vibration & Phase Analysis helped in diagnosing the exact root cause of abnormity in advance, saving plant from huge losses which could have caused total cost of £ 104,071. On 06/01/2011, ID fan 1B Motor NDE & DE horizontal vibration readings deviated from 0.5 to 0.8 and 0.6 to 0.8 mm/sec (RMS) respectively. Noise level increased from 99.1 to 101.9 db. It was suspected that Motor bearings had loosened over the shaft. Meanwhile, after opening of Motor, Inner race of NDE side was found cracked and loosened over the shaft. Vibration Analysis & Noise Monitoring helped in diagnosing the exact root cause of abnormity in advance, saving plant from huge losses which could have caused total cost of £ 308,857.

  16. Automatic REM sleep detection associated with idiopathic rem sleep Behavior Disorder

    DEFF Research Database (Denmark)

    Kempfner, J; Sørensen, Gertrud Laura; Sorensen, H B D

    2011-01-01

    Rapid eye movement sleep Behavior Disorder (RBD) is a strong early marker of later development of Parkinsonism. Currently there are no objective methods to identify and discriminate abnormal from normal motor activity during REM sleep. Therefore, a REM sleep detection without the use of chin...... electromyography (EMG) is useful. This is addressed by analyzing the classification performance when implementing two automatic REM sleep detectors. The first detector uses the electroencephalography (EEG), electrooculography (EOG) and EMG to detect REM sleep, while the second detector only uses the EEG and EOG....

  17. Obesity Reduces Cognitive and Motor Functions across the Lifespan

    OpenAIRE

    Wang, Chuanming; Chan, John S. Y.; Ren, Lijie; Yan, Jin H.

    2016-01-01

    Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has ...

  18. Comparison of Behavioral Problems and Skills of 7-12-Year-Old Students With a Physical/Motor Disability at Mainstream aewnd Special Schools

    Directory of Open Access Journals (Sweden)

    Tahereh Hendi

    2018-03-01

    Discussion: Our data demonstrate that behavioral problems of students with a physical/motor disability are fewer in mainstream schools indicating stronger behavior skills than their peers in special schools. In view of our data, we recommend the possibility of integrating the education of special needs students at regular schools.

  19. Relationships between Fine-Motor, Visual-Motor, and Visual Perception Scores and Handwriting Legibility and Speed

    Science.gov (United States)

    Klein, Sheryl; Guiltner, Val; Sollereder, Patti; Cui, Ying

    2011-01-01

    Occupational therapists assess fine motor, visual motor, visual perception, and visual skill development, but knowledge of the relationships between scores on sensorimotor performance measures and handwriting legibility and speed is limited. Ninety-nine students in grades three to six with learning and/or behavior problems completed the Upper-Limb…

  20. A BDNF loop-domain mimetic acutely reverses spontaneous apneas and respiratory abnormalities during behavioral arousal in a mouse model of Rett syndrome

    Directory of Open Access Journals (Sweden)

    Miriam Kron

    2014-09-01

    Full Text Available Reduced levels of brain-derived neurotrophic factor (BDNF are thought to contribute to the pathophysiology of Rett syndrome (RTT, a severe neurodevelopmental disorder caused by loss-of-function mutations in the gene encoding methyl-CpG-binding protein 2 (MeCP2. In Mecp2 mutant mice, BDNF deficits have been associated with breathing abnormalities, a core feature of RTT, as well as with synaptic hyperexcitability within the brainstem respiratory network. Application of BDNF can reverse hyperexcitability in acute brainstem slices from Mecp2-null mice, suggesting that therapies targeting BDNF or its receptor, TrkB, could be effective at acute reversal of respiratory abnormalities in RTT. Therefore, we examined the ability of LM22A-4, a small-molecule BDNF loop-domain mimetic and TrkB partial agonist, to modulate synaptic excitability within respiratory cell groups in the brainstem nucleus tractus solitarius (nTS and to acutely reverse abnormalities in breathing at rest and during behavioral arousal in Mecp2 mutants. Patch-clamp recordings in Mecp2-null brainstem slices demonstrated that LM22A-4 decreases excitability at primary afferent synapses in the nTS by reducing the amplitude of evoked excitatory postsynaptic currents and the frequency of spontaneous and miniature excitatory postsynaptic currents. In vivo, acute treatment of Mecp2-null and -heterozygous mutants with LM22A-4 completely eliminated spontaneous apneas in resting animals, without sedation. Moreover, we demonstrate that respiratory dysregulation during behavioral arousal, a feature of human RTT, is also reversed in Mecp2 mutants by acute treatment with LM22A-4. Together, these data support the hypothesis that reduced BDNF signaling and respiratory dysfunction in RTT are linked, and establish the proof-of-concept that treatment with a small-molecule structural mimetic of a BDNF loop domain and a TrkB partial agonist can acutely reverse abnormal breathing at rest and in response to

  1. ENU-mutagenesis mice with a non-synonymous mutation in Grin1 exhibit abnormal anxiety-like behaviors, impaired fear memory, and decreased acoustic startle response

    Science.gov (United States)

    2013-01-01

    Background The Grin1 (glutamate receptor, ionotropic, NMDA1) gene expresses a subunit of N-methyl-D-aspartate (NMDA) receptors that is considered to play an important role in excitatory neurotransmission, synaptic plasticity, and brain development. Grin1 is a candidate susceptibility gene for neuropsychiatric disorders, including schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD). In our previous study, we examined an N-ethyl-N-nitrosourea (ENU)-generated mutant mouse strain (Grin1Rgsc174/Grin1+) that has a non-synonymous mutation in Grin1. These mutant mice showed hyperactivity, increased novelty-seeking to objects, and abnormal social interactions. Therefore, Grin1Rgsc174/Grin1+ mice may serve as a potential animal model of neuropsychiatric disorders. However, other behavioral characteristics related to these disorders, such as working memory function and sensorimotor gating, have not been fully explored in these mutant mice. In this study, to further investigate the behavioral phenotypes of Grin1Rgsc174/Grin1+ mice, we subjected them to a comprehensive battery of behavioral tests. Results There was no significant difference in nociception between Grin1Rgsc174/Grin1+ and wild-type mice. The mutants did not display any abnormalities in the Porsolt forced swim and tail suspension tests. We confirmed the previous observations that the locomotor activity of these mutant mice increased in the open field and home cage activity tests. They displayed abnormal anxiety-like behaviors in the light/dark transition and the elevated plus maze tests. Both contextual and cued fear memory were severely deficient in the fear conditioning test. The mutant mice exhibited slightly impaired working memory in the eight-arm radial maze test. The startle amplitude was markedly decreased in Grin1Rgsc174/Grin1+ mice, whereas no significant differences between genotypes were detected in the prepulse inhibition (PPI) test. The mutant mice showed no obvious

  2. Analysis of the motor behavior of a patient submitted to radical mastectomy - doi:10.5020/18061230.2009.p61

    Directory of Open Access Journals (Sweden)

    Lucas Flocke Hack

    2012-01-01

    Full Text Available Objective: To analyze the motor behavior of a patient in late postoperative of radical mastectomy during the accomplishment of some daily life activities, her gait and her body posture. Methods: This was an observational and descriptive case report study developed in an academic institution at Novo Hamburgo/RS, Brazil. By means of video recording, the accomplishment of daily life activities, the gait and body posture of a mastectomy patient were evaluated. Results: The most important alterations found were: increased base of support, torso swinging on gait, “S” shape scoliosis, accentuation of the spine physiologic curves and compensatory attitudes for reaching greater amplitudes of arm elevation at the same side of the surgery. Conclusion: We conclude that motor behavior alterations after surgery of radical mastectomy can be reasonably minimized, remaining a small reduction of movement amplitude and of muscular strength on upper limb and torso.

  3. Autism-relevant social abnormalities and cognitive deficits in engrailed-2 knockout mice.

    Directory of Open Access Journals (Sweden)

    Jennifer Brielmaier

    Full Text Available ENGRAILED 2 (En2, a homeobox transcription factor, functions as a patterning gene in the early development and connectivity of rodent hindbrain and cerebellum, and regulates neurogenesis and development of monoaminergic pathways. To further understand the neurobiological functions of En2, we conducted neuroanatomical expression profiling of En2 wildtype mice. RTQPCR assays demonstrated that En2 is expressed in adult brain structures including the somatosensory cortex, hippocampus, striatum, thalamus, hypothalamus and brainstem. Human genetic studies indicate that EN2 is associated with autism. To determine the consequences of En2 mutations on mouse behaviors, including outcomes potentially relevant to autism, we conducted comprehensive phenotyping of social, communication, repetitive, and cognitive behaviors. En2 null mutants exhibited robust deficits in reciprocal social interactions as juveniles and adults, and absence of sociability in adults, replicated in two independent cohorts. Fear conditioning and water maze learning were impaired in En2 null mutants. High immobility in the forced swim test, reduced prepulse inhibition, mild motor coordination impairments and reduced grip strength were detected in En2 null mutants. No genotype differences were found on measures of ultrasonic vocalizations in social contexts, and no stereotyped or repetitive behaviors were observed. Developmental milestones, general health, olfactory abilities, exploratory locomotor activity, anxiety-like behaviors and pain responses did not differ across genotypes, indicating that the behavioral abnormalities detected in En2 null mutants were not attributable to physical or procedural confounds. Our findings provide new insight into the role of En2 in complex behaviors and suggest that disturbances in En2 signaling may contribute to neuropsychiatric disorders marked by social and cognitive deficits, including autism spectrum disorders.

  4. Improvement of the thermal behavior of linear motors through insulation layer

    International Nuclear Information System (INIS)

    Eun, I. U.; Lee, C. M.; Chung, W. J.; Choi, Y. H.

    2001-01-01

    Linear motors can drive a linear motion without intermediate gears, screws or crank shafts. Linear motors can successfully replace ball lead screw in machine tools, because they have a high velocity, acceleration and good positioning accuracy. On the other hand, linear motors emit large amounts of heat and have low efficiency. In this paper, heat sources of a synchronous linear motor with high velocity and force are measured and analyzed. To improve the thermal stiffness of the linear motor, an insulation layer with low thermal conductivity is inserted between cooler and machine table. Some effects of the insulation layer are presented

  5. Two is better than one: Physical interactions improve motor performance in humans

    OpenAIRE

    G. Ganesh; A. Takagi; R. Osu; T. Yoshioka; M. Kawato; E. Burdet

    2014-01-01

    How do physical interactions with others change our own motor behavior? Utilizing a novel motor learning paradigm in which the hands of two - individuals are physically connected without their conscious awareness, we investigated how the interaction forces from a partner adapt the motor behavior in physically interacting humans. We observed the motor adaptations during physical interactions to be mutually beneficial such that both the worse and better of the interacting partners improve motor...

  6. Behavioural and neural basis of anomalous motor learning in children with autism.

    Science.gov (United States)

    Marko, Mollie K; Crocetti, Deana; Hulst, Thomas; Donchin, Opher; Shadmehr, Reza; Mostofsky, Stewart H

    2015-03-01

    Autism spectrum disorder is a developmental disorder characterized by deficits in social and communication skills and repetitive and stereotyped interests and behaviours. Although not part of the diagnostic criteria, individuals with autism experience a host of motor impairments, potentially due to abnormalities in how they learn motor control throughout development. Here, we used behavioural techniques to quantify motor learning in autism spectrum disorder, and structural brain imaging to investigate the neural basis of that learning in the cerebellum. Twenty children with autism spectrum disorder and 20 typically developing control subjects, aged 8-12, made reaching movements while holding the handle of a robotic manipulandum. In random trials the reach was perturbed, resulting in errors that were sensed through vision and proprioception. The brain learned from these errors and altered the motor commands on the subsequent reach. We measured learning from error as a function of the sensory modality of that error, and found that children with autism spectrum disorder outperformed typically developing children when learning from errors that were sensed through proprioception, but underperformed typically developing children when learning from errors that were sensed through vision. Previous work had shown that this learning depends on the integrity of a region in the anterior cerebellum. Here we found that the anterior cerebellum, extending into lobule VI, and parts of lobule VIII were smaller than normal in children with autism spectrum disorder, with a volume that was predicted by the pattern of learning from visual and proprioceptive errors. We suggest that the abnormal patterns of motor learning in children with autism spectrum disorder, showing an increased sensitivity to proprioceptive error and a decreased sensitivity to visual error, may be associated with abnormalities in the cerebellum. © The Author (2015). Published by Oxford University Press on behalf

  7. A Perceptual Motor Intervention Improves Play Behavior In Children With Moderate To Severe Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Brigette Oliver Ryalls

    2016-05-01

    Full Text Available For children with moderate or severe cerebral palsy (CP, a foundational early goal is independent sitting. Sitting offers additional opportunities for object exploration, play and social engagement. The achievement of sitting coincides with important milestones in other developmental areas, such as social engagement with others, understanding of spatial relationships, and the use of both hands to explore objects. These milestones are essential skills necessary for play behavior. However, little is known about how sitting and play behavior might be affected by a physical therapy intervention in children with moderate or severe CP. Therefore, our overall purpose in this study was to determine if sitting skill could be advanced in children with moderate to severe CP using a perceptual motor intervention, and if play skills would change significantly as sitting advanced. Thirty children between the ages of 18 months and 6 years who were able to hold prop sitting for at least 10 seconds were recruited for this study. Outcome measures were the sitting subsection of the Gross Motor Function Measure (GMFM, and the Play Assessment of Children with Motor Impairment (PACMI play assessment scale, which is a modified version of the Play in Early Childhood Evaluation System (PIECES. Significant improvements in GMFM sitting scores (p<0.001 and marginally significant improvement in play assessment scores (p=0.067 were found from pre- to post-intervention. Sitting change explained a significant portion of the variance in play change for children over the age of 3 years, who were more severely affected by CP. The results of this study indicate that advances in sitting skill may be a factor in supporting improvements in functional play, along with age and severity of physical impairment.

  8. Functional Neuroimaging of Motor Control inParkinson’s Disease

    DEFF Research Database (Denmark)

    Herz, Damian M; Eickhoff, Simon B; Løkkegaard, Annemette

    2014-01-01

    Functional neuroimaging has been widely used to study the activation patterns of the motor network in patients with Parkinson's disease (PD), but these studies have yielded conflicting results. This meta-analysis of previous neuroimaging studies was performed to identify patterns of abnormal...... movement-related activation in PD that were consistent across studies. We applied activation likelihood estimation (ALE) of functional neuroimaging studies probing motor function in patients with PD. The meta-analysis encompassed data from 283 patients with PD reported in 24 functional neuroimaging studies...

  9. Report to Congress on abnormal occurrences, October-December 1986

    International Nuclear Information System (INIS)

    1987-07-01

    Section 208 of the Energy Reorganization Act of 1974 identifies an abnormal occurrence as an unscheduled incident or event which the Nuclear Regulatory Commission determines to be significant from the standpoint of public health or safety and requires a quarterly report of such events to be made to Congress. This report covers the period from October 1 to December 31, 1986. The report states that for this reporting period, there were three abnormal occurrences at the nuclear power plants licensed to operate. The events were (1) loss of low pressure service water systems at Oconee, (2) degraded safety systems due to incorrect torque switch settings on Rotors motor operators at Catawba and McGuire Nuclear Stations, and (3) a secondary system pipe break resulting in the death of four persons at Surry Unit 2. There were six abnormal occurrences at the other NRC licensees. One involved release of americium-241 inside a waste storage building at Wright-Patterson Air Force Base; three involved medical misadministrations, one therapeutic and two diagnostic; one involved a suspension of license for servicing teletherapy and radiography units; and one involved an immediately effective order modifying license and order to show cause issued to an industrial radiography company. There were no abnormal occurrences reported by the Agreement States. The report also contains information updating some previously reported abnormal occurrences

  10. The Knockout of Secretin in Cerebellar Purkinje Cells Impairs Mouse Motor Coordination and Motor Learning

    Science.gov (United States)

    Zhang, Li; Chung, Sookja Kim; Chow, Billy Kwok Chong

    2014-01-01

    Secretin (SCT) was first considered to be a gut hormone regulating gastrointestinal functions when discovered. Recently, however, central actions of SCT have drawn intense research interest and are supported by the broad distribution of SCT in specific neuronal populations and by in vivo physiological studies regarding its role in water homeostasis and food intake. The direct action of SCT on a central neuron was first discovered in cerebellar Purkinje cells in which SCT from cerebellar Purkinje cells was found to potentiate GABAergic inhibitory transmission from presynaptic basket cells. Because Purkinje neurons have a major role in motor coordination and learning functions, we hypothesize a behavioral modulatory function for SCT. In this study, we successfully generated a mouse model in which the SCT gene was deleted specifically in Purkinje cells. This mouse line was tested together with SCT knockout and SCT receptor knockout mice in a full battery of behavioral tasks. We found that the knockout of SCT in Purkinje neurons did not affect general motor ability or the anxiety level in open field tests. However, knockout mice did exhibit impairments in neuromuscular strength, motor coordination, and motor learning abilities, as shown by wire hanging, vertical climbing, and rotarod tests. In addition, SCT knockout in Purkinje cells possibly led to the delayed development of motor neurons, as supported by the later occurrence of key neural reflexes. In summary, our data suggest a role in motor coordination and motor learning for SCT expressed in cerebellar Purkinje cells. PMID:24356714

  11. Primary motor cortex of the parkinsonian monkey: altered encoding of active movement

    Science.gov (United States)

    Pasquereau, Benjamin; DeLong, Mahlon R.

    2016-01-01

    Abnormalities in the movement-related activation of the primary motor cortex (M1) are thought to be a major contributor to the motor signs of Parkinson’s disease. The existing evidence, however, variably indicates that M1 is under-activated with movement, overactivated (due to a loss of functional specificity) or activated with abnormal timing. In addition, few models consider the possibility that distinct cortical neuron subtypes may be affected differently. Those gaps in knowledge were addressed by studying the extracellular activity of antidromically-identified lamina 5b pyramidal-tract type neurons (n = 153) and intratelencephalic-type corticostriatal neurons (n = 126) in the M1 of two monkeys as they performed a step-tracking arm movement task. We compared movement-related discharge before and after the induction of parkinsonism by administration of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and quantified the spike rate encoding of specific kinematic parameters of movement using a generalized linear model. The fraction of M1 neurons with movement-related activity declined following MPTP but only marginally. The strength of neuronal encoding of parameters of movement was reduced markedly (mean 29% reduction in the coefficients from the generalized linear model). This relative decoupling of M1 activity from kinematics was attributable to reductions in the coefficients that estimated the spike rate encoding of movement direction (−22%), speed (−40%), acceleration (−49%) and hand position (−33%). After controlling for MPTP-induced changes in motor performance, M1 activity related to movement itself was reduced markedly (mean 36% hypoactivation). This reduced activation was strong in pyramidal tract-type neurons (−50%) but essentially absent in corticostriatal neurons. The timing of M1 activation was also abnormal, with earlier onset times, prolonged response durations, and a 43% reduction in the prevalence of movement-related changes

  12. Motor development in individuals with congenital adrenal hyperplasia: strength, targeting, and fine motor skill.

    Science.gov (United States)

    Collaer, Marcia L; Brook, Charles G D; Conway, Gerard S; Hindmarsh, Peter C; Hines, Melissa

    2009-02-01

    This study investigated early androgen influence on the development of human motor and visuomotor characteristics. Participants, ages 12-45 years, were individuals with congenital adrenal hyperplasia (CAH), a disorder causing increased adrenal androgen production before birth (40 females, 29 males) and their unaffected relatives (29 females, 30 males). We investigated grip strength and visuomotor targeting tasks on which males generally outperform females, and fine motor pegboard tasks on which females generally outperform males. Physical characteristics (height and weight) were measured to explore whether body parameters could explain differences in motor skills. Females with CAH were stronger and showed better targeting than unaffected females and showed reduced fine visuomotor skill on one pegboard measure, with no difference on the other. Males with CAH were weaker than unaffected males in grip strength but did not differ on the targeting or pegboard measures. Correction for body size could not explain the findings for females, but suggests that the reduced strength of males with CAH may relate to their smaller stature. Further, the targeting advantage in females with CAH persisted following adjustment for their greater strength. Results in females support the hypothesis that androgen may masculinize, or promote, certain motor characteristics at which males excel, and contribute to defeminization of certain fine motor characteristics at which females excel. Thus, these data suggest that organizational effects of androgens on behavior during prenatal life may extend to motor characteristics and may contribute to general sex differences in motor-related behaviors; however, alternative explanations based on activational influences of androgen or altered experiential factors cannot be excluded without further study.

  13. Increased cortico-striatal connectivity during motor practice contributes to the consolidation of motor memory in writer's cramp patients

    Directory of Open Access Journals (Sweden)

    C. Gallea

    2015-01-01

    Full Text Available Sensorimotor representations of movements are created in the sensorimotor network through repeated practice to support successful and effortless performance. Writer's cramp (WC is a disorder acquired through extensive practice of finger movements, and it is likely associated with the abnormal acquisition of sensorimotor representations. We investigated (i the activation and connectivity changes in the brain network supporting the acquisition of sensorimotor representations of finger sequences in patients with WC and (ii the link between these changes and consolidation of motor performance 24 h after the initial practice. Twenty-two patients with WC and 22 age-matched healthy volunteers practiced a complex sequence with the right (pathological hand during functional MRI recording. Speed and accuracy were measured immediately before and after practice (day 1 and 24 h after practice (day 2. The two groups reached equivalent motor performance on day 1 and day 2. During motor practice, patients with WC had (i reduced hippocampal activation and hippocampal–striatal functional connectivity; and (ii overactivation of premotor–striatal areas, whose connectivity correlated with motor performance after consolidation. These results suggest that patients with WC use alternative networks to reach equiperformance in the acquisition of new motor memories.

  14. Organization of the human motor system as studied by functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mattay, Venkata S.; Weinberger, Daniel R.

    1999-01-01

    Blood oxygenation level dependent functional magnetic resonance imaging (BOLD fMRI), because of its superior resolution and unlimited repeatability, can be particularly useful in studying functional aspects of the human motor system, especially plasticity, and somatotopic and temporal organization. In this survey, while describing studies that have reliably used BOLD fMRI to examine these aspects of the motor system, we also discuss studies that investigate the neural substrates underlying motor skill acquisition, motor imagery, production of motor sequences; effect of rate and force of movement on brain activation and hemispheric control of motor function. In the clinical realm, in addition to the presurgical evaluation of neurosurgical patients, BOLD fMRI has been used to explore the mechanisms underlying motor abnormalities in patients with neuropsychiatric disorders and the mechanisms underlying reorganization or plasticity of the motor system following a cerebral insult

  15. A comparative study of methods for automatic detection of rapid eye movement abnormal muscular activity in narcolepsy

    DEFF Research Database (Denmark)

    Olesen, Alexander Neergaard; Cesari, Matteo; Christensen, Julie Anja Engelhard

    2018-01-01

    atonia index (RAI), supra-threshold REM EMG activit ymetric (STREAM), and Frandsen method (FR) were calculated from polysomnography recordings of 20 healthy controls, 18 clinic controls (subjects suspected with narcolepsy but finally diagnosed without any sleep abnormality), 16 narcolepsy type 1 without...... REM sleep behavior disorder (RBD), 9 narcolepsy type 1 with RBD, and 18 narcolepsy type 2. Diagnostic value of metrics in differentiating between groups was quantified by area under the receiver operating characteristic curve (AUC). Correlations among the metrics and cerebrospinal fluid hypocretin-1...... in narcolepsy 1 compared to controls. This finding might play a supportive role in diagnosing narcolepsy and in discriminating narcolepsy subtypes. Moreover, the negative correlation between CSF-hcrt-1 level and REM muscular activity supported a role for hypocretin in the control of motor tone during REM sleep....

  16. Abnormal flow behavior and necklace microstructure of powder metallurgy superalloys with previous particle boundaries (PPBs)

    Energy Technology Data Exchange (ETDEWEB)

    Ning, Yongquan, E-mail: luckyning@nwpu.edu.cn [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Zhou, Cong; Liang, Houquan [School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072 (China); Fu, M.W., E-mail: mmmwfu@polyu.edu.hk [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2016-01-15

    Powder metallurgy (P/M) has been introduced as an innovative process to manufacture high performance components with fine, homogenous and segregation-free microstructure. Unfortunately, previous particle boundary (PPB) precipitated during the powder metallurgy process. Since undesirable PPB is detrimental to mechanical properties, hot extrusion or/and isothermal forging are needed. In present research, isothermal compression tests were conducted on P/M FGH4096 superalloys with typical PPBs. Abnormal flow behavior during high-speed deformation has been quantitatively investigated. Caused by the competition mechanism between work-hardening and dynamic-softening, abnormal flow behaves typical four stages (viz., work-hardening, stable, softening and steady). Microstructure observation for hardening or/and softening mechanism has been investigated. Meanwhile, necklace microstructure was observed by scanning electron microscope, and the grain fraction analysis was performed by using electron backscatter diffraction. Transmission electron microscopy was used for characterizing the boundary structure. Necklace microstructural mechanism for processing P/M superalloys has been developed, and the dynamic recrystallization model has also been conducted. Bulge–corrugation model is the primary nucleation mechanism for P/M superalloys with PPBs. When PPB is entirely covered with new grains, necklace microstructure has formed. Bulge–corrugation mechanism can repeatedly take place in the following necklace DRX.

  17. A contribution to the study of the thermal behavior and of the electric performance of squirrel-cage induction motors; Uma contribuicao ao estudo do comportamento termico e do desempenho eletrico de motores de inducao com rotor em gaiola

    Energy Technology Data Exchange (ETDEWEB)

    Avolio, Edwin

    1992-03-01

    A thermal-electric mathematical model for a squirrel cage induction motors which permits to specify the best motor for specific drive, under thermal and electric aspects based, only on manufacturer technical bulletins and technical information is presented. Changes of rotor parameters due Skin Effect and changes of winding resistances (both stator and rotor) with the temperature are considered. The accuracy of this model is appraised using experimental results. The thermal behavior and electric performance for some motors are obtained for continuos and intermittent duties with sinusoidal and non-sinusoidal voltages. (author)

  18. Condition monitoring of machinery using motor current signature analysis

    International Nuclear Information System (INIS)

    Kryter, R.C.; Haynes, H.D.

    1989-01-01

    Motor current signature analysis (MCSA) is a powerful monitoring tool for motor-driven equipment that provides a nonintrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment, including altered conditions in the process ''downstream'' of the motor-driven equipment. It was developed at the Oak Ridge National Laboratory as a means for determining the effects of aging and service wear systems, but it is applicable to a broad range of machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. These motor current variations are carried by the electrical cables processes as desired. Motor current signatures, obtained in both time and over time to provide early indication of degradation. Successful applications of MCSA technology (patent applied for) include not only motor-operated valves but also pumps of various designs, blowers, and air conditioning systems. Examples are presented briefly, and speculation regarding the applicability of MCSA to a broader range of equipment monitoring and production line testing is also given. 1 ref., 13 figs

  19. Abnormalities in brain structure and behavior in GSK-3alpha mutant mice

    Directory of Open Access Journals (Sweden)

    Kaidanovich-Beilin Oksana

    2009-11-01

    Full Text Available Abstract Background Glycogen synthase kinase-3 (GSK-3 is a widely expressed and highly conserved serine/threonine protein kinase encoded by two genes that generate two related proteins: GSK-3α and GSK-3β. Mice lacking a functional GSK-3α gene were engineered in our laboratory; they are viable and display insulin sensitivity. In this study, we have characterized brain functions of GSK-3α KO mice by using a well-established battery of behavioral tests together with neurochemical and neuroanatomical analysis. Results Similar to the previously described behaviours of GSK-3β+/-mice, GSK-3α mutants display decreased exploratory activity, decreased immobility time and reduced aggressive behavior. However, genetic inactivation of the GSK-3α gene was associated with: decreased locomotion and impaired motor coordination, increased grooming activity, loss of social motivation and novelty; enhanced sensorimotor gating and impaired associated memory and coordination. GSK-3α KO mice exhibited a deficit in fear conditioning, however memory formation as assessed by a passive avoidance test was normal, suggesting that the animals are sensitized for active avoidance of a highly aversive stimulus in the fear-conditioning paradigm. Changes in cerebellar structure and function were observed in mutant mice along with a significant decrease of the number and size of Purkinje cells. Conclusion Taken together, these data support a role for the GSK-3α gene in CNS functioning and possible involvement in the development of psychiatric disorders.

  20. Abbreviated exposure to hypoxia is sufficient to induce CNS dysmyelination, modulate spinal motor neuron composition, and impair motor development in neonatal mice.

    Directory of Open Access Journals (Sweden)

    Jens O Watzlawik

    Full Text Available Neonatal white matter injury (nWMI is an increasingly common cause of cerebral palsy that results predominantly from hypoxic injury to progenitor cells including those of the oligodendrocyte lineage. Existing mouse models of nWMI utilize prolonged periods of hypoxia during the neonatal period, require complex cross-fostering and exhibit poor growth and high mortality rates. Abnormal CNS myelin composition serves as the major explanation for persistent neuro-motor deficits. Here we developed a simplified model of nWMI with low mortality rates and improved growth without cross-fostering. Neonatal mice are exposed to low oxygen from postnatal day (P 3 to P7, which roughly corresponds to the period of human brain development between gestational weeks 32 and 36. CNS hypomyelination is detectable for 2-3 weeks post injury and strongly correlates with levels of body and brain weight loss. Immediately following hypoxia treatment, cell death was evident in multiple brain regions, most notably in superficial and deep cortical layers as well as the subventricular zone progenitor compartment. PDGFαR, Nkx2.2, and Olig2 positive oligodendrocyte progenitor cell were significantly reduced until postnatal day 27. In addition to CNS dysmyelination we identified a novel pathological marker for adult hypoxic animals that strongly correlates with life-long neuro-motor deficits. Mice reared under hypoxia reveal an abnormal spinal neuron composition with increased small and medium diameter axons and decreased large diameter axons in thoracic lateral and anterior funiculi. Differences were particularly pronounced in white matter motor tracts left and right of the anterior median fissure. Our findings suggest that 4 days of exposure to hypoxia are sufficient to induce experimental nWMI in CD1 mice, thus providing a model to test new therapeutics. Pathological hallmarks of this model include early cell death, decreased OPCs and hypomyelination in early postnatal life

  1. Theory of mind mediates the prospective relationship between abnormal social brain network morphology and chronic behavior problems after pediatric traumatic brain injury.

    Science.gov (United States)

    Ryan, Nicholas P; Catroppa, Cathy; Beare, Richard; Silk, Timothy J; Crossley, Louise; Beauchamp, Miriam H; Yeates, Keith Owen; Anderson, Vicki A

    2016-04-01

    Childhood and adolescence coincide with rapid maturation and synaptic reorganization of distributed neural networks that underlie complex cognitive-affective behaviors. These regions, referred to collectively as the 'social brain network' (SBN) are commonly vulnerable to disruption from pediatric traumatic brain injury (TBI); however, the mechanisms that link morphological changes in the SBN to behavior problems in this population remain unclear. In 98 children and adolescents with mild to severe TBI, we acquired 3D T1-weighted MRIs at 2-8 weeks post-injury. For comparison, 33 typically developing controls of similar age, sex and education were scanned. All participants were assessed on measures of Theory of Mind (ToM) at 6 months post-injury and parents provided ratings of behavior problems at 24-months post-injury. Severe TBI was associated with volumetric reductions in the overall SBN package, as well as regional gray matter structural change in multiple component regions of the SBN. When compared with TD controls and children with milder injuries, the severe TBI group had significantly poorer ToM, which was associated with more frequent behavior problems and abnormal SBN morphology. Mediation analysis indicated that impaired theory of mind mediated the prospective relationship between abnormal SBN morphology and more frequent chronic behavior problems. Our findings suggest that sub-acute alterations in SBN morphology indirectly contribute to long-term behavior problems via their influence on ToM. Volumetric change in the SBN and its putative hub regions may represent useful imaging biomarkers for prediction of post-acute social cognitive impairment, which may in turn elevate risk for chronic behavior problems. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. Proposed torque optimized behavior for digital speed control of induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, H.M.B.; El-Shewy, H.M.; El-Kholy, M.M. [Zagazig Univ., Dept. of Electrical Engineering, Zagazig (Egypt); Abdel-Kader, F.E. [Menoufyia Univ., Dept. of Electrical Engineering, Menoufyia (Egypt)

    2002-09-01

    In this paper, a control strategy for speed control of induction motors with field orientation is proposed. The proposed method adjusts the output voltage and frequency of the converter to operate the motor at the desired speed with maximum torque per ampere at all load torques keeping the torque angle equal to 90 deg. A comparison between the performance characteristics of a 2 hp induction motor using three methods of speed control is presented. These methods are the proposed method, the direct torque control method and the constant V/f method. The comparison showed that better performance characteristics are obtained using the proposed speed control strategy. A computer program, based on this method, is developed. Starting from the motor parameters, the program calculates a data set for the stator voltage and frequency required to obtain maximum torque per ampere at any motor speed and load torque. This data set can be used by the digital speed control system of induction motors. (Author)

  3. Sexual motivation is reflected by stimulus-dependent motor cortex excitability.

    Science.gov (United States)

    Schecklmann, Martin; Engelhardt, Kristina; Konzok, Julian; Rupprecht, Rainer; Greenlee, Mark W; Mokros, Andreas; Langguth, Berthold; Poeppl, Timm B

    2015-08-01

    Sexual behavior involves motivational processes. Findings from both animal models and neuroimaging in humans suggest that the recruitment of neural motor networks is an integral part of the sexual response. However, no study so far has directly linked sexual motivation to physiologically measurable changes in cerebral motor systems in humans. Using transcranial magnetic stimulation in hetero- and homosexual men, we here show that sexual motivation modulates cortical excitability. More specifically, our results demonstrate that visual sexual stimuli corresponding with one's sexual orientation, compared with non-corresponding visual sexual stimuli, increase the excitability of the motor cortex. The reflection of sexual motivation in motor cortex excitability provides evidence for motor preparation processes in sexual behavior in humans. Moreover, such interrelationship links theoretical models and previous neuroimaging findings of sexual behavior. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. Rai1 Haploinsufficiency Is Associated with Social Abnormalities in Mice

    Directory of Open Access Journals (Sweden)

    Nalini R. Rao

    2017-04-01

    Full Text Available Background: Autism is characterized by difficulties in social interaction, communication, and repetitive behaviors; with different degrees of severity in each of the core areas. Haploinsufficiency and point mutations of RAI1 are associated with Smith-Magenis syndrome (SMS, a genetic condition that scores within the autism spectrum range for social responsiveness and communication, and is characterized by neurobehavioral abnormalities, intellectual disability, developmental delay, sleep disturbance, and self-injurious behaviors. Methods: To investigate the relationship between Rai1 and social impairment, we evaluated the Rai1+/− mice with a battery of tests to address social behavior in mice. Results: We found that the mutant mice showed diminished interest in social odors, abnormal submissive tendencies, and increased repetitive behaviors when compared to wild type littermates. Conclusions: These findings suggest that Rai1 contributes to social behavior in mice, and prompt it as a candidate gene for the social behaviors observed in Smith-Magenis Syndrome patients.

  5. New insights into sucking, swallowing and breathing central generators: A complexity analysis of rhythmic motor behaviors.

    Science.gov (United States)

    Samson, Nathalie; Praud, Jean-Paul; Quenet, Brigitte; Similowski, Thomas; Straus, Christian

    2017-01-18

    Sucking, swallowing and breathing are dynamic motor behaviors. Breathing displays features of chaos-like dynamics, in particular nonlinearity and complexity, which take their source in the automatic command of breathing. In contrast, buccal/gill ventilation in amphibians is one of the rare motor behaviors that do not display nonlinear complexity. This study aimed at assessing whether sucking and swallowing would also follow nonlinear complex dynamics in the newborn lamb. Breathing movements were recorded before, during and after bottle-feeding. Sucking pressure and the integrated EMG of the thyroartenoid muscle, as an index of swallowing, were recorded during bottle-feeding. Nonlinear complexity of the whole signals was assessed through the calculation of the noise limit value (NL). Breathing and swallowing always exhibited chaos-like dynamics. The NL of breathing did not change significantly before, during or after bottle-feeding. On the other hand, sucking inconsistently and significantly less frequently than breathing exhibited a chaos-like dynamics. Therefore, the central pattern generator (CPG) that drives sucking may be functionally different from the breathing CPG. Furthermore, the analogy between buccal/gill ventilation and sucking suggests that the latter may take its phylogenetic origin in the gill ventilation CPG of the common ancestor of extant amphibians and mammals. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. [Hysteroscopic polypectomy, treatment of abnormal uterine bleeding].

    Science.gov (United States)

    de Los Rios, P José F; López, R Claudia; Cifuentes, P Carolina; Angulo, C Mónica; Palacios-Barahona, Arlex U

    2015-07-01

    To evaluate the effectiveness of the hysteroscopic polypectomy in terms of the decrease of the abnormal uterine bleeding. A cross-sectional and analytical study was done with patients to whom a hysteroscopic polypectomy was done for treating the abnormal uterine bleeding, between January 2009 and December 2013. The response to the treatment was evaluated via a survey given to the patients about the behavior of the abnormal uterine bleeding after the procedure and about overall satisfaction. The results were obtained after a hysteroscopic polypectomy done to 128 patients and were as follows. The average time from the polypectomy applied until the survey was 30.5 months, with a standard deviation of 18 months. 67.2% of the patients reported decreased abnormal uterine bleeding and the 32.8% reported a persistence of symptoms. On average 82.8% of the. patients were satisfied with the treatment. Bivariate and multivariate analysis showed no association between the variables studied and no improvement of abnormal uterine bleeding after surgery (polypectomy). There were no complications. Hysteroscopic polypectomy is a safe surgical treatment, which decreases on two of three patients the abnormal uterine bleeding in the presence of endometrial polyps, with an acceptable level of satisfaction.

  7. Auditory-Motor Control of Vocal Production during Divided Attention: Behavioral and ERP Correlates.

    Science.gov (United States)

    Liu, Ying; Fan, Hao; Li, Jingting; Jones, Jeffery A; Liu, Peng; Zhang, Baofeng; Liu, Hanjun

    2018-01-01

    When people hear unexpected perturbations in auditory feedback, they produce rapid compensatory adjustments of their vocal behavior. Recent evidence has shown enhanced vocal compensations and cortical event-related potentials (ERPs) in response to attended pitch feedback perturbations, suggesting that this reflex-like behavior is influenced by selective attention. Less is known, however, about auditory-motor integration for voice control during divided attention. The present cross-modal study investigated the behavioral and ERP correlates of auditory feedback control of vocal pitch production during divided attention. During the production of sustained vowels, 32 young adults were instructed to simultaneously attend to both pitch feedback perturbations they heard and flashing red lights they saw. The presentation rate of the visual stimuli was varied to produce a low, intermediate, and high attentional load. The behavioral results showed that the low-load condition elicited significantly smaller vocal compensations for pitch perturbations than the intermediate-load and high-load conditions. As well, the cortical processing of vocal pitch feedback was also modulated as a function of divided attention. When compared to the low-load and intermediate-load conditions, the high-load condition elicited significantly larger N1 responses and smaller P2 responses to pitch perturbations. These findings provide the first neurobehavioral evidence that divided attention can modulate auditory feedback control of vocal pitch production.

  8. Reactor coolant pump testing using motor current signatures analysis

    Energy Technology Data Exchange (ETDEWEB)

    Burstein, N.; Bellamy, J.

    1996-12-01

    This paper describes reactor coolant pump motor testing carried out at Florida Power Corporation`s Crystal River plant using Framatome Technologies` new EMPATH (Electric Motor Performance Analysis and Trending Hardware) system. EMPATH{trademark} uses an improved form of Motor Current Signature Analysis (MCSA), technology, originally developed at Oak Ridge National Laboratories, for detecting deterioration in the rotors of AC induction motors. Motor Current Signature Analysis (MCSA) is a monitoring tool for motor driven equipment that provides a non-intrusive means for detecting the presence of mechanical and electrical abnormalities in the motor and the driven equipment. The base technology was developed at the Oak Ridge National Laboratory as a means for determining the affects of aging and service wear specifically on motor-operated valves used in nuclear power plant safety systems, but it is applicable to a broad range of electric machinery. MCSA is based on the recognition that an electric motor (ac or dc) driving a mechanical load acts as an efficient and permanently available transducer by sensing mechanical load variations, large and small, long-term and rapid, and converting them into variations in the induced current generated in the motor windings. The motor current variations, resulting from changes in load caused by gears, pulleys, friction, bearings, and other conditions that may change over the life of the motor, are carried by the electrical cables powering the motor and are extracted at any convenient location along the motor lead. These variations modulate the 60 Hz carrier frequency and appear as sidebands in the spectral plot.

  9. Early oral-motor management on feeding performance in premature neonates

    Directory of Open Access Journals (Sweden)

    Yan-Lin Liu

    2013-03-01

    Conclusion: Abnormal brain sonography [odds ratio (OR: 2.222, p = 0.047 and necrotizing enterocolitis (NEC (OR: 2.857, p = 0.017 did affect the first trial in the study group. Early intervention of oral-motor management in very-low-birth-weight premature infants improved feeding performance and neonatal outcome in terms of shorter hospital days. Abnormal brain image and NEC could interfere with the success rate of initial challenge of transitioning from tube to oral feeding in the study group.

  10. Transcranial magnetic stimulation (TMS): compared sensitivity of different motor response parameters in ALS.

    Science.gov (United States)

    Pouget, J; Trefouret, S; Attarian, S

    2000-06-01

    Owing to the low sensitivity of clinical signs in assessing upper motor neuron (UMN) involvement in ALS, there is a need for investigative tools capable of detecting abnormal function of the pyramidal tract. Transcranial magnetic stimulation (TMS) may contribute to the diagnosis by reflecting a UMN dysfunction that is not clinically detectable. Several parameters for the motor responses to TMS can be evaluated with different levels of significance in healthy subjects compared with ALS patients. The central motor conduction time, however, is not sensitive in detecting subclinical UMN defects in individual ALS patients. The amplitude of the motor evoked potential (MEP), expressed as the percentage of the maximum wave, also has a low sensitivity. In some cases, the corticomotor threshold is decreased early in the disease course as a result of corticomotor neuron hyperexcitability induced by glutamate. Later, the threshold increases, indicating a loss of UMN. In our experience, a decreased silent period duration appears to be the most sensitive parameter when using motor TMS in ALS. TMS is also a sensitive technique for investigating the corticobulbar tract, which is difficult to study by other methods. TMS is a widely available, painless and safe technique with a good sensitivity that can visualize both corticospinal and corticobulbar tract abnormalities. The sensitivity can be improved further by taking into account the several MEP parameters, including latency and cortical silent period decreased duration.

  11. Behavioral characterization of mouse models of neuroferritinopathy.

    Directory of Open Access Journals (Sweden)

    Sara Capoccia

    Full Text Available Ferritin is the main intracellular protein of iron storage with a central role in the regulation of iron metabolism and detoxification. Nucleotide insertions in the last exon of the ferritin light chain cause a neurodegenerative disease known as Neuroferritinopathy, characterized by iron deposition in the brain, particularly in the cerebellum, basal ganglia and motor cortex. The disease progresses relentlessly, leading to dystonia, chorea, motor disability and neuropsychiatry features. The characterization of a good animal model is required to compare and contrast specific features with the human disease, in order to gain new insights on the consequences of chronic iron overload on brain function and behavior. To this aim we studied an animal model expressing the pathogenic human FTL mutant 498InsTC under the phosphoglycerate kinase (PGK promoter. Transgenic (Tg mice showed strong accumulation of the mutated protein in the brain, which increased with age, and this was accompanied by brain accumulation of ferritin/iron bodies, the main pathologic hallmark of human neuroferritinopathy. Tg-mice were tested throughout development and aging at 2-, 8- and 18-months for motor coordination and balance (Beam Walking and Footprint tests. The Tg-mice showed a significant decrease in motor coordination at 8 and 18 months of age, with a shorter latency to fall and abnormal gait. Furthermore, one group of aged naïve subjects was challenged with two herbicides (Paraquat and Maneb known to cause oxidative damage. The treatment led to a paradoxical increase in behavioral activation in the transgenic mice, suggestive of altered functioning of the dopaminergic system. Overall, data indicate that mice carrying the pathogenic FTL498InsTC mutation show motor deficits with a developmental profile suggestive of a progressive pathology, as in the human disease. These mice could be a powerful tool to study the neurodegenerative mechanisms leading to the disease and help

  12. Low-level human equivalent gestational lead exposure produces sex-specific motor and coordination abnormalities and late-onset obesity in year-old mice.

    Science.gov (United States)

    Leasure, J Leigh; Giddabasappa, Anand; Chaney, Shawntay; Johnson, Jerry E; Pothakos, Konstantinos; Lau, Yuen Sum; Fox, Donald A

    2008-03-01

    Low-level developmental lead exposure is linked to cognitive and neurological disorders in children. However, the long-term effects of gestational lead exposure (GLE) have received little attention. Our goals were to establish a murine model of human equivalent GLE and to determine dose-response effects on body weight, motor functions, and dopamine neurochemistry in year-old offspring. We exposed female C57BL/6 mice to water containing 0, 27 (low), 55 (moderate), or 109 ppm (high) of lead from 2 weeks prior to mating, throughout gestation, and until postnatal day 10 (PN10). Maternal and litter measures, blood lead concentrations ([BPb]), and body weights were obtained throughout the experiment. Locomotor behavior in the absence and presence of amphetamine, running wheel activity, rotarod test, and dopamine utilization were examined in year-old mice. Peak [BPb] were obesity. Similarly, we observed male-specific decreased spontaneous motor activity, increased amphetamine-induced motor activity, and decreased rotarod performance in year-old GLE mice. Levels of dopamine and its major metabolite were altered in year-old male mice, although only forebrain utilization increased. GLE-induced alterations were consistently larger in low-dose GLE mice. Our novel results show that GLE produced permanent male-specific deficits. The nonmonotonic dose-dependent responses showed that low-level GLE produced the most adverse effects. These data reinforce the idea that lifetime measures of dose-response toxicant exposure should be a component of the neurotoxic risk assessment process.

  13. Movement Sonification: Effects on Motor Learning beyond Rhythmic Adjustments

    Science.gov (United States)

    Effenberg, Alfred O.; Fehse, Ursula; Schmitz, Gerd; Krueger, Bjoern; Mechling, Heinz

    2016-01-01

    Motor learning is based on motor perception and emergent perceptual-motor representations. A lot of behavioral research is related to single perceptual modalities but during last two decades the contribution of multimodal perception on motor behavior was discovered more and more. A growing number of studies indicates an enhanced impact of multimodal stimuli on motor perception, motor control and motor learning in terms of better precision and higher reliability of the related actions. Behavioral research is supported by neurophysiological data, revealing that multisensory integration supports motor control and learning. But the overwhelming part of both research lines is dedicated to basic research. Besides research in the domains of music, dance and motor rehabilitation, there is almost no evidence for enhanced effectiveness of multisensory information on learning of gross motor skills. To reduce this gap, movement sonification is used here in applied research on motor learning in sports. Based on the current knowledge on the multimodal organization of the perceptual system, we generate additional real-time movement information being suitable for integration with perceptual feedback streams of visual and proprioceptive modality. With ongoing training, synchronously processed auditory information should be initially integrated into the emerging internal models, enhancing the efficacy of motor learning. This is achieved by a direct mapping of kinematic and dynamic motion parameters to electronic sounds, resulting in continuous auditory and convergent audiovisual or audio-proprioceptive stimulus arrays. In sharp contrast to other approaches using acoustic information as error-feedback in motor learning settings, we try to generate additional movement information suitable for acceleration and enhancement of adequate sensorimotor representations and processible below the level of consciousness. In the experimental setting, participants were asked to learn a closed

  14. Movement sonification: Effects on motor learning beyond rhythmic adjustments

    Directory of Open Access Journals (Sweden)

    Alfred Oliver Effenberg

    2016-05-01

    Full Text Available Motor learning is based on motor perception and emergent perceptual-motor representations. A lot of behavioral research is related to single perceptual modalities, but during last two decades the contribution of multimodal perception on motor behavior was discovered more and more. A growing number of studies indicate an enhanced impact of multimodal stimuli on motor perception, motor control and motor learning in terms of better precision and higher reliability of the related actions. Behavioral research is supported by neurophysiological data, revealing that multisensory integration supports motor control and learning. But the overwhelming part of both research lines is dedicated to basic research. Besides research in the domains of music, dance and motor rehabilitation there is nearly no evidence about enhanced effectiveness of multisensory information on learning of gross motor skills. To reduce this gap movement sonification is used here in applied research on motor learning in sports.Based on the current knowledge on the multimodal organization of the perceptual system we generate additional real-time movement information being suitable for integration with perceptual feedback streams of visual and proprioceptive modality. With ongoing training synchronously processed auditory information should be initially integrated into the emerging internal models, enhancing the efficacy of motor learning. This is achieved by a direct mapping of kinematic and dynamic motion parameters to electronic sounds, resulting in continuous auditory and convergent audiovisual or audio-proprioceptive stimulus arrays. In sharp contrast to other approaches using acoustic information as error feedback in motor learning settings we try to generate additional movement information suitable for acceleration and enhancement of adequate sensorimotor representations and processible below the level of consciousness. In the experimental setting participants were asked to

  15. Movement Sonification: Effects on Motor Learning beyond Rhythmic Adjustments.

    Science.gov (United States)

    Effenberg, Alfred O; Fehse, Ursula; Schmitz, Gerd; Krueger, Bjoern; Mechling, Heinz

    2016-01-01

    Motor learning is based on motor perception and emergent perceptual-motor representations. A lot of behavioral research is related to single perceptual modalities but during last two decades the contribution of multimodal perception on motor behavior was discovered more and more. A growing number of studies indicates an enhanced impact of multimodal stimuli on motor perception, motor control and motor learning in terms of better precision and higher reliability of the related actions. Behavioral research is supported by neurophysiological data, revealing that multisensory integration supports motor control and learning. But the overwhelming part of both research lines is dedicated to basic research. Besides research in the domains of music, dance and motor rehabilitation, there is almost no evidence for enhanced effectiveness of multisensory information on learning of gross motor skills. To reduce this gap, movement sonification is used here in applied research on motor learning in sports. Based on the current knowledge on the multimodal organization of the perceptual system, we generate additional real-time movement information being suitable for integration with perceptual feedback streams of visual and proprioceptive modality. With ongoing training, synchronously processed auditory information should be initially integrated into the emerging internal models, enhancing the efficacy of motor learning. This is achieved by a direct mapping of kinematic and dynamic motion parameters to electronic sounds, resulting in continuous auditory and convergent audiovisual or audio-proprioceptive stimulus arrays. In sharp contrast to other approaches using acoustic information as error-feedback in motor learning settings, we try to generate additional movement information suitable for acceleration and enhancement of adequate sensorimotor representations and processible below the level of consciousness. In the experimental setting, participants were asked to learn a closed

  16. The effects of poliomyelitis on motor unit behavior during repetitive muscle actions: a case report.

    Science.gov (United States)

    Trevino, Michael A; Herda, Trent J; Cooper, Michael A

    2014-09-06

    Acute paralytic poliomyelitis is caused by the poliovirus and usually results in muscle atrophy and weakness occurring in the lower limbs. Indwelling electromyography has been used frequently to investigate the denervation and innervation characteristics of the affected muscle. Recently developed technology allows the decomposition of the raw surface electromyography signals into the firing instances of single motor units. There is limited information regarding this electromyographic decomposition in clinical populations. In addition, regardless of electromyographic methods, no study has examined muscle activation parameters during repetitive muscle actions in polio patients. Therefore, the purpose of this study was to examine the motor unit firing rates and electromyographic amplitude and center frequency of the vastus lateralis during 20 repetitive isometric muscle actions at 50% maximal voluntary contraction in healthy subjects and one patient that acquired acute paralytic poliomyelitis. One participant that acquired acute type III spinal poliomyelitis (Caucasian male, age = 29 yrs) at 3 months of age and three healthy participants (Caucasian females, age = 19.7 ± 2.1 yrs) participated in this study. The polio participant reported neuromuscular deficiencies as a result of disease in the hips, knees, buttocks, thighs, and lower legs. None of the healthy participants reported any current or ongoing neuromuscular diseases or musculoskeletal injuries. An acute bout of poliomyelitis altered motor unit behavior, such as, healthy participants displayed greater firing rates than the polio patient. The reduction in motor unit firing rates was likely a fatigue protecting mechanism since denervation via poliomyelitis results in a reduction of motorneurons. In addition, the concurrent changes in motor unit firing rates, electromyography amplitude and frequency for the polio participant would suggest that the entire motorneuron pool was utilized in each contraction unlike

  17. Association between vestibular function and motor performance in hearing-impaired children.

    Science.gov (United States)

    Maes, Leen; De Kegel, Alexandra; Van Waelvelde, Hilde; Dhooge, Ingeborg

    2014-12-01

    The clinical balance performance of normal-hearing (NH) children was compared with the balance performance of hearing-impaired (HI) children with and without vestibular dysfunction to identify an association between vestibular function and motor performance. Prospective study. Tertiary referral center. Thirty-six children (mean age, 7 yr 5 mo; range, 3 yr 8 mo-12 yr 11 mo) divided into three groups: NH children with normal vestibular responses, HI children with normal vestibular responses, and HI children with abnormal vestibular function. A vestibular test protocol (rotatory and collic vestibular evoked myogenic potential testing) in combination with three clinical balance tests (balance beam walking, one-leg hopping, one-leg stance). Clinical balance performance. HI children with abnormal vestibular test results obtained the lowest quotients of motor performance, which were significantly lower compared with the NH group (p beam walking and one-leg stance; p = 0.003 for one-leg hopping). The balance performance of the HI group with normal vestibular responses was better in comparison with the vestibular impaired group but still significantly lower compared with the NH group (p = 0.020 for balance beam walking; p = 0.001 for one-leg stance; not significant for one-leg hopping). These results indicate an association between vestibular function and motor performance in HI children, with a more distinct motor deterioration if a vestibular impairment is superimposed to the auditory dysfunction.

  18. Age-Dependent Relationship between Socio-Adaptability and Motor Coordination in High Functioning Children with Autism Spectrum Disorder

    Science.gov (United States)

    Kostrubiec, Viviane; Huys, Raoul; Jas, Brunhilde; Kruck, Jeanne

    2018-01-01

    Abnormal perceptual-motor coordination is hypothesized here to be involved in social deficits of autism spectrum disorder (ASD). To test this hypothesis, high functioning children with ASD and typical controls, similar in age as well as verbal and perceptive performance, performed perceptual-motor coordination tasks and several social competence…

  19. The potential roles of T-type Ca2+ channels in motor coordination

    Directory of Open Access Journals (Sweden)

    Young-Gyun ePark

    2013-10-01

    Full Text Available Specific behavioral patterns are expressed by complex combinations of muscle coordination. Tremors are simple behavioral patterns and are the focus of studies investigating motor coordination mechanisms in the brain. T-type Ca2+ channels mediate intrinsic neuronal oscillations and rhythmic burst spiking, and facilitate the generation of tremor rhythms in motor circuits. Despite substantial evidence that T-type Ca2+ channels mediate pathological tremors, their roles in physiological motor coordination and behavior remain unknown. Here, we review recent progress in understanding the roles that T-type Ca2+ channels play under pathological conditions, and discuss the potential relevance of these channels in mediating physiological motor coordination.

  20. Evolution of Motor Control: From Reflexes and Motor Programs to the Equilibrium-Point Hypothesis.

    Science.gov (United States)

    Latash, Mark L

    2008-01-01

    This brief review analyzes the evolution of motor control theories along two lines that emphasize active (motor programs) and reactive (reflexes) features of voluntary movements. It suggests that the only contemporary hypothesis that integrates both approaches in a fruitful way is the equilibrium-point hypothesis. Physical, physiological, and behavioral foundations of the EP-hypothesis are considered as well as relations between the EP-hypothesis and the recent developments of the notion of motor synergies. The paper ends with a brief review of the criticisms of the EP-hypothesis and challenges that the hypothesis faces at this time.

  1. Associations Among Cardiometabolic Abnormalities, Obesity, and Sociobehavioral Factors in a Southern Nevada Adult Population.

    Science.gov (United States)

    Feng, Jing; Johnson, Michael D; Iser, Joseph P

    Cardiometabolic abnormalities underlie many health risks associated with obesity. We determined the relationship between cardiometabolic abnormalities, sociodemographic characteristics, and modifiable risk factors among adults in Southern Nevada. We included 2415 participants older than 20 years from the Behavioral Risk Factor Surveillance System surveys conducted in 2011, 2013, and 2015 in Southern Nevada. Cardiometabolic abnormalities were assessed on the combined basis of blood pressure, cholesterol, and diabetes status. Logistic regression stratified by body mass index status was used to examine cardiometabolic abnormalities in different body mass index classes. Odds ratio estimates for cardiometabolic abnormalities after accounting for sociodemographic and health behavior characteristics. Cardiometabolic abnormalities followed a socioeconomic gradient, although adjustment for lifestyle variables attenuated the associative link. Non-Hispanic black (vs white) race did not elevate cardiometabolic abnormalities risk among nonobese adults, yet conferred a multivariable-adjusted odds ratio of 2.18 (95% confidence interval [CI], 1.03-4.61) among obese adults. By comparison, odds of cardiometabolic abnormalities among nonobese adults were 2.42 (95% CI, 0.99-5.92) times higher for Hispanics and 2.83 (95% CI, 1.23-6.55) times higher for other or multiracial minorities. Among obese adults, male gender (odds ratio: 1.84; 95% CI, 1.03-3.27) and former (odds ratio: 2.09; 95% CI, 1.14-3.85) smoker status were associated with cardiometabolic abnormalities independent of other covariates. The present data support intervention strategies tailored to reinforce and promote positive health behaviors among disadvantaged groups. There were variable patterns of ethnic group disparities in clustered cardiometabolic abnormalities across body mass index classes. Targeted prevention approaches incorporating an explicit health equity perspective may help mitigate observed differences.

  2. High Working Memory Load Increases Intracortical Inhibition in Primary Motor Cortex and Diminishes the Motor Affordance Effect.

    Science.gov (United States)

    Freeman, Scott M; Itthipuripat, Sirawaj; Aron, Adam R

    2016-05-18

    Motor affordances occur when the visual properties of an object elicit behaviorally relevant motor representations. Typically, motor affordances only produce subtle effects on response time or on motor activity indexed by neuroimaging/neuroelectrophysiology, but sometimes they can trigger action itself. This is apparent in "utilization behavior," where individuals with frontal cortex damage inappropriately grasp affording objects. This raises the possibility that, in healthy-functioning individuals, frontal cortex helps ensure that irrelevant affordance provocations remain below the threshold for actual movement. In Experiment 1, we tested this "frontal control" hypothesis by "loading" the frontal cortex with an effortful working memory (WM) task (which ostensibly consumes frontal resources) and examined whether this increased EEG measures of motor affordances to irrelevant affording objects. Under low WM load, there were typical motor affordance signatures: an event-related desynchronization in the mu frequency and an increased P300 amplitude for affording (vs nonaffording) objects over centroparietal electrodes. Contrary to our prediction, however, these affordance measures were diminished under high WM load. In Experiment 2, we tested competing mechanisms responsible for the diminished affordance in Experiment 1. We used paired-pulse transcranial magnetic stimulation over primary motor cortex to measure long-interval cortical inhibition. We found greater long-interval cortical inhibition for high versus low load both before and after the affording object, suggesting that a tonic inhibition state in primary motor cortex could prevent the affordance from provoking the motor system. Overall, our results suggest that a high WM load "sets" the motor system into a suppressed state that mitigates motor affordances. Is an irrelevant motor affordance more likely to be triggered when you are under low or high cognitive load? We examined this using physiological measures

  3. Extracting foreground ensemble features to detect abnormal crowd behavior in intelligent video-surveillance systems

    Science.gov (United States)

    Chan, Yi-Tung; Wang, Shuenn-Jyi; Tsai, Chung-Hsien

    2017-09-01

    Public safety is a matter of national security and people's livelihoods. In recent years, intelligent video-surveillance systems have become important active-protection systems. A surveillance system that provides early detection and threat assessment could protect people from crowd-related disasters and ensure public safety. Image processing is commonly used to extract features, e.g., people, from a surveillance video. However, little research has been conducted on the relationship between foreground detection and feature extraction. Most current video-surveillance research has been developed for restricted environments, in which the extracted features are limited by having information from a single foreground; they do not effectively represent the diversity of crowd behavior. This paper presents a general framework based on extracting ensemble features from the foreground of a surveillance video to analyze a crowd. The proposed method can flexibly integrate different foreground-detection technologies to adapt to various monitored environments. Furthermore, the extractable representative features depend on the heterogeneous foreground data. Finally, a classification algorithm is applied to these features to automatically model crowd behavior and distinguish an abnormal event from normal patterns. The experimental results demonstrate that the proposed method's performance is both comparable to that of state-of-the-art methods and satisfies the requirements of real-time applications.

  4. The aging motor system as a model for plastic changes of GABA-mediated intracortical inhibition and their behavioral relevance.

    Science.gov (United States)

    Heise, Kirstin-F; Zimerman, Maximo; Hoppe, Julia; Gerloff, Christian; Wegscheider, Karl; Hummel, Friedhelm C

    2013-05-22

    Since GABAA-mediated intracortical inhibition has been shown to underlie plastic changes throughout the lifespan from development to aging, here, the aging motor system was used as a model to analyze the interdependence of plastic alterations within the inhibitory motorcortical network and level of behavioral performance. Double-pulse transcranial magnetic stimulation (dpTMS) was used to examine inhibition by means of short-interval intracortical inhibition (SICI) of the contralateral primary motor cortex in a sample of 64 healthy right-handed human subjects covering a wide range of the adult lifespan (age range 20-88 years, mean 47.6 ± 20.7, 34 female). SICI was evaluated during resting state and in an event-related condition during movement preparation in a visually triggered simple reaction time task. In a subgroup (N = 23), manual motor performance was tested with tasks of graded dexterous demand. Weak resting-state inhibition was associated with an overall lower manual motor performance. Better event-related modulation of inhibition correlated with better performance in more demanding tasks, in which fast alternating activation of cortical representations are necessary. Declining resting-state inhibition was associated with weakened event-related modulation of inhibition. Therefore, reduced resting-state inhibition might lead to a subsequent loss of modulatory capacity, possibly reflecting malfunctioning precision in GABAAergic neurotransmission; the consequence is an inevitable decline in motor function.

  5. PKA Controls Calcium Influx into Motor Neurons during a Rhythmic Behavior

    Science.gov (United States)

    Wang, Han; Sieburth, Derek

    2013-01-01

    Cyclic adenosine monophosphate (cAMP) has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine) rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR) signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels. PMID:24086161

  6. PKA controls calcium influx into motor neurons during a rhythmic behavior.

    Directory of Open Access Journals (Sweden)

    Han Wang

    Full Text Available Cyclic adenosine monophosphate (cAMP has been implicated in the execution of diverse rhythmic behaviors, but how cAMP functions in neurons to generate behavioral outputs remains unclear. During the defecation motor program in C. elegans, a peptide released from the pacemaker (the intestine rhythmically excites the GABAergic neurons that control enteric muscle contractions by activating a G protein-coupled receptor (GPCR signaling pathway that is dependent on cAMP. Here, we show that the C. elegans PKA catalytic subunit, KIN-1, is the sole cAMP target in this pathway and that PKA is essential for enteric muscle contractions. Genetic analysis using cell-specific expression of dominant negative or constitutively active PKA transgenes reveals that knockdown of PKA activity in the GABAergic neurons blocks enteric muscle contractions, whereas constitutive PKA activation restores enteric muscle contractions to mutants defective in the peptidergic signaling pathway. Using real-time, in vivo calcium imaging, we find that PKA activity in the GABAergic neurons is essential for the generation of synaptic calcium transients that drive GABA release. In addition, constitutively active PKA increases the duration of calcium transients and causes ectopic calcium transients that can trigger out-of-phase enteric muscle contractions. Finally, we show that the voltage-gated calcium channels UNC-2 and EGL-19, but not CCA-1 function downstream of PKA to promote enteric muscle contractions and rhythmic calcium influx in the GABAergic neurons. Thus, our results suggest that PKA activates neurons during a rhythmic behavior by promoting presynaptic calcium influx through specific voltage-gated calcium channels.

  7. Effects of sex and housing on social, spatial, and motor behavior in adult rats exposed to moderate levels of alcohol during prenatal development.

    Science.gov (United States)

    Rodriguez, Carlos I; Magcalas, Christy M; Barto, Daniel; Fink, Brandi C; Rice, James P; Bird, Clark W; Davies, Suzy; Pentkowski, Nathan S; Savage, Daniel D; Hamilton, Derek A

    2016-10-15

    Persistent deficits in social behavior, motor behavior, and behavioral flexibility are among the major negative consequences associated with exposure to ethanol during prenatal development. Prior work from our laboratory has linked moderate prenatal alcohol exposure (PAE) in the rat to deficits in these behavioral domains, which depend upon the ventrolateral frontal cortex (Hamilton et al., 2014) [20]. Manipulations of the social environment cause modifications of dendritic morphology and experience-dependent immediate early gene expression in ventrolateral frontal cortex (Hamilton et al., 2010) [19], and may yield positive behavioral outcomes following PAE. In the present study we evaluated the effects of housing PAE rats with non-exposed control rats on adult behavior. Rats of both sexes were either paired with a partner from the same prenatal treatment condition (ethanol or saccharin) or from the opposite condition (mixed housing condition). At four months of age (∼3 months after the housing manipulation commenced), social behavior, tongue protrusion, and behavioral flexibility in the Morris water task were measured as in (Hamilton et al., 2014) [20]. The behavioral effects of moderate PAE were primarily limited to males and were not ameliorated by housing with a non-ethanol exposed partner. Unexpectedly, social behavior, motor behavior, and spatial flexibility were adversely affected in control rats housed with a PAE rat (i.e., in mixed housing), indicating that housing with a PAE rat has broad behavioral consequences beyond the social domain. These observations provide further evidence that moderate PAE negatively affects social behavior, and underscore the importance of considering potential negative effects of housing with PAE animals on the behavior of critical comparison groups. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Mechanisms of hyperpolarization in regenerated mature motor axons in cat

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Krarup, Christian

    2004-01-01

    We found persistent abnormalities in the recovery of membrane excitability in long-term regenerated motor nerve fibres in the cat as indicated in the companion paper. These abnormalities could partly be explained by membrane hyperpolarization. To further investigate this possibility, we compared...... the changes in excitability in control nerves and long-term regenerated cat nerves (3-5 years after tibial nerve crush) during manoeuvres known to alter axonal membrane Na(+)-K(+) pump function: polarization, cooling to 20 degrees C, reperfusion after 10 min ischaemia, and up to 60 s of repetitive stimulation...

  9. Abnormal meiotic behavior in three species of Crotalaria Comportamento meiótico anormal em três espécies de Crotalaria

    Directory of Open Access Journals (Sweden)

    Kátia Ferreira

    2009-12-01

    Full Text Available The objective of this work was to compare the meiotic behavior and pollen grain viability of three species of Crotalaria. Slides for meiotic analysis were prepared by the air-drying technique. Pollen grain viability was measured by three staining procedures (Alexander's solution, tetrazolium chloride and fluorescein diacetate and in vitro germination in a sucrose solution. Eight bivalents were observed, confirming previous reports on populations from other regions of Brazil, as well as from other countries. All species showed abnormal meiotic behavior as follows: in Crotalaria micans, cytomixis and abnormal chromosome pairing in diakinesis; in C. spectabilis, abnormal chromosome pairing in diplotene; in C. zanzibarica, shrunk nuclei in leptotene and zygotene. Pollen grains of all three species show low viability, which may be associated with the irregularities of the meiotic behavior.O objetivo deste trabalho foi comparar o comportamento meiótico e a viabilidade dos grãos de pólen de três espécies de Crotalaria. A análise meiótica foi realizada por meio da técnica de secagem ao ar. A viabilidade dos grãos de pólen foi avaliada por testes de coloração (corante de Alexander, cloreto de tetrazólio e diacetato de fluoresceína e por teste de germinação em solução de sacarose. Foram observados oito bivalentes, confirmando relatos prévios em populações de outras regiões do Brasil e de outros países. As três espécies apresentaram comportamento meiótico irregular: em Crotalaria micans, citomixia e pareamento irregular na diacinese; em C. spectabilis, pareamento irregular no diplóteno; e em C. zanzibarica, núcleo fortemente condensado nas fases de leptóteno e zigóteno. A viabilidade dos grãos de pólen das três espécies é baixa, o que pode estar associado às irregularidades do comportamento meiótico.

  10. Selective disruption of acetylcholine synthesis in subsets of motor neurons: a new model of late-onset motor neuron disease.

    Science.gov (United States)

    Lecomte, Marie-José; Bertolus, Chloé; Santamaria, Julie; Bauchet, Anne-Laure; Herbin, Marc; Saurini, Françoise; Misawa, Hidemi; Maisonobe, Thierry; Pradat, Pierre-François; Nosten-Bertrand, Marika; Mallet, Jacques; Berrard, Sylvie

    2014-05-01

    Motor neuron diseases are characterized by the selective chronic dysfunction of a subset of motor neurons and the subsequent impairment of neuromuscular function. To reproduce in the mouse these hallmarks of diseases affecting motor neurons, we generated a mouse line in which ~40% of motor neurons in the spinal cord and the brainstem become unable to sustain neuromuscular transmission. These mice were obtained by conditional knockout of the gene encoding choline acetyltransferase (ChAT), the biosynthetic enzyme for acetylcholine. The mutant mice are viable and spontaneously display abnormal phenotypes that worsen with age including hunched back, reduced lifespan, weight loss, as well as striking deficits in muscle strength and motor function. This slowly progressive neuromuscular dysfunction is accompanied by muscle fiber histopathological features characteristic of neurogenic diseases. Unexpectedly, most changes appeared with a 6-month delay relative to the onset of reduction in ChAT levels, suggesting that compensatory mechanisms preserve muscular function for several months and then are overwhelmed. Deterioration of mouse phenotype after ChAT gene disruption is a specific aging process reminiscent of human pathological situations, particularly among survivors of paralytic poliomyelitis. These mutant mice may represent an invaluable tool to determine the sequence of events that follow the loss of function of a motor neuron subset as the disease progresses, and to evaluate therapeutic strategies. They also offer the opportunity to explore fundamental issues of motor neuron biology. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Proportionate Responses to Life Events Influence Clinicians' Judgments of Psychological Abnormality

    Science.gov (United States)

    Kim, Nancy S.; Paulus, Daniel J.; Gonzalez, Jeffrey S.; Khalife, Danielle

    2012-01-01

    Psychological abnormality is a fundamental concept in the "Diagnostic and Statistical Manual of Mental Disorders" ("DSM-IV-TR"; American Psychiatric Association, 2000) and in all clinical evaluations. How do practicing clinical psychologists use the context of life events to judge the abnormality of a person's current behaviors? The appropriate…

  12. Relationship between motor abilities and severity of autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Cvijetić Marija

    2017-01-01

    Full Text Available According to the findings in literature, motor skills of children with autism spectrum disorders generally differ from age expectations and are increasingly being associated with speech and language and social development, and adaptive behavior. The aim of the research was to determine the relationship between the development level of fine and gross motor skills and autism severity of children with autism spectrum disorder. The sample included 30 children with autism spectrum disorder and associated intellectual disability, seven to 19 years of age (M=11.97; SD=3.70. The assessment was conducted using the Peabody Motor Development Scale, the Vineland Adaptive Behavior Scale, and the criteria for describing the level of severity of autism spectrum disorder (APA, 2013. The results have shown that participants' motor skills significantly correlate with social communication (Peabody fine motor skills r=-0.452; p=0.012; Vineland fine motor skills r=-0.511; p=0.004; Vineland total r=-0.391; p=0.032 and restricted, repetitive behaviors (Peabody fine motor skills r=-0.383; p=0.037; Vineland fine motor skills r=-0.433; p=0.017; Vineland total r=-0.371; p=0.044. Lower level of autistic symptomatology is associated with higher motor achievements. It is necessary to pay more attention to the assessment and treatment of motor skills in children with autism spectrum disorder, given the established delay in the development of these skills, and bearing in mind their relationship with the severity of the symptoms of autism spectrum disorder. Timely identification of motor disorders would allow the use of early treatment and potentially lead to better results, compared to later inclusion in intervention programs.

  13. Cytogenetic abnormalities and fragile-x syndrome in Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Reddy Kavita S

    2005-01-01

    Full Text Available Abstract Background Autism is a behavioral disorder with impaired social interaction, communication, and repetitive and stereotypic behaviors. About 5–10 % of individuals with autism have 'secondary' autism in which an environmental agent, chromosome abnormality, or single gene disorder can be identified. Ninety percent have idiopathic autism and a major gene has not yet been identified. We have assessed the incidence of chromosome abnormalities and Fragile X syndrome in a population of autistic patients referred to our laboratory. Methods Data was analyzed from 433 patients with autistic traits tested using chromosome analysis and/or fluorescence in situ hybridization (FISH and/or molecular testing for fragile X syndrome by Southern and PCR methods. Results The median age was 4 years. Sex ratio was 4.5 males to 1 female [354:79]. A chromosome (cs abnormality was found in 14/421 [3.33 %] cases. The aberrations were: 4/14 [28%] supernumerary markers; 4/14 [28%] deletions; 1/14 [7%] duplication; 3/14 [21%] inversions; 2/14 [14%] translocations. FISH was performed on 23 cases for reasons other than to characterize a previously identified cytogenetic abnormality. All 23 cases were negative. Fragile-X testing by Southern blots and PCR analysis found 7/316 [2.2 %] with an abnormal result. The mutations detected were: a full mutation (fM and abnormal methylation in 3 [43 %], mosaic mutations with partial methylation of variable clinical significance in 3 [43%] and a permutation carrier [14%]. The frequency of chromosome and fragile-X abnormalities appears to be within the range in reported surveys (cs 4.8-1.7%, FRAX 2–4%. Limitations of our retrospective study include paucity of behavioral diagnostic information, and a specific clinical criterion for testing. Conclusions Twenty-eight percent of chromosome abnormalities detected in our study were subtle; therefore a high resolution cytogenetic study with a scrutiny of 15q11.2q13, 2q37 and Xp23

  14. Cerebral hemorrhage without manifest motor paralysis. Reports of 5 cases

    Energy Technology Data Exchange (ETDEWEB)

    Taketani, T.; Dohi, I.; Miyazaki, T.; Handa, A. (Central Hospital of JNR, Tokyo (Japan))

    1982-01-01

    Before the introduction of computerized tomography (CT) there were some cases of intracerebral bleeding who were wrongly diagnosed as hypertensive encephalopathy or senile psychosis. We here report 5 cases who did not show any sign of motor paralysis. The clinical aspects of these cases were nausea and vomiting with dizziness (case 1), nausea and vomiting with slight headache (case 2), agnosia of left side with several kinds of disorientation (case 3), nausea and vomiting (case 4), and visual disturbance of right, lower quadrant (case 5). All of these cases showed no motor paralysis or abnormal reflex activities. By examination with CT each of them exhibited a high density area in the subcortical area of the right parietal lobe, the subcortical area of the right occipital lobe, the right temporal and parietal lobe, rather small portion of the left putamen and external capsule, and the subcortical area of left occipital lobe, respectively. Patients of cerebral hemorrhage without motor or sensory disturbances might often be taken for some psychic abnormality. We here have emphasized the importance of CT in such a group of patients. But for this technique, most of them would not be given adequate treatment and might be exposed to lifethreatening situations.

  15. Motor heuristics and embodied choices: how to choose and act.

    Science.gov (United States)

    Raab, Markus

    2017-08-01

    Human performance requires choosing what to do and how to do it. The goal of this theoretical contribution is to advance understanding of how the motor and cognitive components of choices are intertwined. From a holistic perspective I extend simple heuristics that have been tested in cognitive tasks to motor tasks, coining the term motor heuristics. Similarly I extend the concept of embodied cognition, that has been tested in simple sensorimotor processes changing decisions, to complex sport behavior coining the term embodied choices. Thus both motor heuristics and embodied choices explain complex behavior such as studied in sport and exercise psychology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Fundamental motor skill, physical activity, and sedentary behavior in socioeconomically disadvantaged kindergarteners.

    Science.gov (United States)

    Gu, Xiangli

    2016-10-01

    Guided by Stodden et al's conceptual model, the main purpose of the study was to examine the relation between fundamental motor skills (FMS; locomotor and objective control skills), different intensity levels of physical activity (light PA [LPA], moderate-to-vigorous PA [MVPA], and vigorous PA[VPA]), and sedentary behavior (SB) in socioeconomically disadvantaged kindergarteners. A prospective design was used in this study and the data were collected across the 2013-2014 academic school year. Participants were 256 (129 boys; 127 girls; Mage = 5.37, SD = 0.48) kindergarteners recruited from three public schools in the southern United States. Results found that FMS were significantly related to LPA, MVPA, VPA, and SB. Regression analyses indicate that locomotor skills explained significant variance for LPA (6.4%; p < .01), MVPA (7.9%; p < .001), and VPA (5.3%; p < .01) after controlling for weight status. Mediational analysis supports the significant indirect effect of MVPA on the relation between FMS and SB (95% CI: [-0.019, -0.006]). Adequate FMS development during early childhood may result in participating in more varied physical activities, thus leading to lower risk of obesity-related behaviors.

  17. Energy Optimal Control of Induction Motor Drives

    DEFF Research Database (Denmark)

    Abrahamsen, Flemming

    This thesis deals with energy optimal control of small and medium-size variable speed induction motor drives for especially Heating, Ventilation and Air-Condition (HVAC) applications. Optimized efficiency is achieved by adapting the magnetization level in the motor to the load, and the basic...... demonstrated that energy optimal control will sometimes improve and sometimes deteriorate the stability. Comparison of small and medium-size induction motor drives with permanent magnet motor drives indicated why, and in which applications, PM motors are especially good. Calculations of economical aspects...... improvement by energy optimal control for any standard induction motor drive between 2.2 kW and 90 kW. A simple method to evaluate the robustness against load disturbances was developed and used to compare the robustness of different motor types and sizes. Calculation of the oscillatory behavior of a motor...

  18. IGF-1 delivery to CNS attenuates motor neuron cell death but does not improve motor function in type III SMA mice.

    Science.gov (United States)

    Tsai, Li-Kai; Chen, Yi-Chun; Cheng, Wei-Cheng; Ting, Chen-Hung; Dodge, James C; Hwu, Wuh-Liang; Cheng, Seng H; Passini, Marco A

    2012-01-01

    The efficacy of administering a recombinant adeno-associated virus (AAV) vector encoding human IGF-1 (AAV2/1-hIGF-1) into the deep cerebellar nucleus (DCN) of a type III SMA mouse model was evaluated. High levels of IGF-1 transcripts and protein were detected in the spinal cord at 2 months post-injection demonstrating that axonal connections between the cerebellum and spinal cord were able to act as conduits for the viral vector and protein to the spinal cord. Mice treated with AAV2/1-hIGF-1 and analyzed 8 months later showed changes in endogenous Bax and Bcl-xl levels in spinal cord motor neurons that were consistent with IGF-1-mediated anti-apoptotic effects on motor neurons. However, although AAV2/1-hIGF-1 treatment reduced the extent of motor neuron cell death, the majority of rescued motor neurons were non-functional, as they lacked axons that innervated the muscles. Furthermore, treated SMA mice exhibited abnormal muscle fibers, aberrant neuromuscular junction structure, and impaired performance on motor function tests. These data indicate that although CNS-directed expression of IGF-1 could reduce motor neuron cell death, this did not translate to improvements in motor function in an adult mouse model of type III SMA. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Development of a Method to Determine Abnormal Joint Torque Coupling Patterns During Walking In Chronic Hemiparetic Stroke

    NARCIS (Netherlands)

    Fricke, S.S.; Dragunas, Andrew C.; Gordon, Keith E.; van der Kooij, H.; van Asseldonk, E.H.F.; Dewald, Julius P. A.

    Motor impairments following stroke may lead to a reduced walking ability, however, no reliable assessments to quantify these impairments during walking are available [1]. For example, abnormal joint torque coupling between hip extension and hip adduction, previously reported under isometric

  20. Does surgery correct esophageal motor dysfunction in gastroesophageal reflux

    International Nuclear Information System (INIS)

    Russell, C.O.; Pope, C.E.; Gannan, R.M.; Allen, F.D.; Velasco, N.; Hill, L.D.

    1981-01-01

    The high incidence of dysphagia in patients with symptomatic gastroesophageal reflux (GER) but no evidence of peptic stricture suggests esophageal motor dysfunction. Conventional methods for detecting dysfunction (radiologic and manometric examinations) often fail to detect abnormality in these patients. Radionuclide transit (RT), a new method for detecting esophageal motor dysfunction, was used to prospectively assess function in 29 patients with symptomatic GER uncomplicated by stricture before and three months after antireflux surgery (HILL). The preoperative incidence of dysphagia and esophageal dysfunction was 73% and 52%, respectively. During operation (Hill repair), intraoperative measurement of the lower esophageal sphincter pressure was performed and the LESP raised to levels between 45 and 55 mmHg. The preoperative lower esophageal sphincter pressure was raised from a mean of 8.6 mmHg, to mean of 18.5 mmHg after operation. No patient has free reflux after operation. Postoperative studies on 20 patients demonstrated persistence of all preoperative esophageal dysfunction despite loss of dysphagia. RT has demonstrated a disorder of esophageal motor function in 52% of patients with symptomatic GER that may be responsible for impaired esophageal clearance. This abnormality is not contraindication to surgery. The results indicate that construction of an effective barrier to reflex corrects symptoms of reflux, even in the presence of impaired esophageal transit. Radionuclide transit is a safe noninvasive test for assessment of esophageal function

  1. Does surgery correct esophageal motor dysfunction in gastroesophageal reflux

    Energy Technology Data Exchange (ETDEWEB)

    Russell, C.O.; Pope, C.E.; Gannan, R.M.; Allen, F.D.; Velasco, N.; Hill, L.D.

    1981-09-01

    The high incidence of dysphagia in patients with symptomatic gastroesophageal reflux (GER) but no evidence of peptic stricture suggests esophageal motor dysfunction. Conventional methods for detecting dysfunction (radiologic and manometric examinations) often fail to detect abnormality in these patients. Radionuclide transit (RT), a new method for detecting esophageal motor dysfunction, was used to prospectively assess function in 29 patients with symptomatic GER uncomplicated by stricture before and three months after antireflux surgery (HILL). The preoperative incidence of dysphagia and esophageal dysfunction was 73% and 52%, respectively. During operation (Hill repair), intraoperative measurement of the lower esophageal sphincter pressure was performed and the LESP raised to levels between 45 and 55 mmHg. The preoperative lower esophageal sphincter pressure was raised from a mean of 8.6 mmHg, to mean of 18.5 mmHg after operation. No patient has free reflux after operation. Postoperative studies on 20 patients demonstrated persistence of all preoperative esophageal dysfunction despite loss of dysphagia. RT has demonstrated a disorder of esophageal motor function in 52% of patients with symptomatic GER that may be responsible for impaired esophageal clearance. This abnormality is not contraindication to surgery. The results indicate that construction of an effective barrier to reflex corrects symptoms of reflux, even in the presence of impaired esophageal transit. Radionuclide transit is a safe noninvasive test for assessment of esophageal function.

  2. Fetal behavioral teratology.

    Science.gov (United States)

    Visser, Gerard H A; Mulder, Eduard J H; Tessa Ververs, F F

    2010-10-01

    Ultrasound studies of fetal motor behavior provide direct – in vivo – insight in the functioning of the motor component of the fetal central nervous system. In this article, studies are reviewed showing changes in the first timetable of appearance of fetal movements, changes in quality and/or quantity of movements and disturbances in the development of fetal behavioral states in case of endogenous malfunctions, maternal diseases and exogenous behavioral teratogens.

  3. Frequency of sensory motor neuropathy in type 2 diabetics

    International Nuclear Information System (INIS)

    Ather, N.A.; Sattar, R.A.; Ara, J.

    2008-01-01

    To determine the frequency of sensory motor neuropathy in type 2 diabetics at the time of presentation to the hospital. The study was conducted at Medical Unit-1, Jinnah Postgraduate Medical Center, Karachi, from November 2005 to April 2006. Patients of different ages and either gender with history of confirmed diabetes for ten years and above, on regular follow up were included. Those with non-diabetic causes of hyperglycemia or neuropathy were excluded. Relevant features like age, gender, treatment, symptoms , signs, nerve conduction study (NCS) results, duration of Diabetes mellitus (DM), fasting blood sugar (FBS) and serum values of glycosylated hemoglobin (HB1Ac) were recorded. Out of a total of 300 patients, there were 111 female and 189 male patients. Mean age was 58 +- 11.23 years. Mean duration of diabetes was 13.6+-5.48 years. One hundred and twenty three patients had symptoms of neuropathy. Clinical examination revealed mixed sensory and motor signs in 135 (45%) patients. Nerve conduction studies revealed abnormalities in 159 (53%) patients. Among patients having an abnormal NCS, the fasting blood glucose (FBS) was 120mg/dl in 147 (91%) patients. The glycosylated hemoglobin ranged from 4-15% with mean of 8.1% and standard deviation of 2.5%. This showed significant association (p <0.001) of peripheral neuropathy with abnormal FBS, HB1Ac and duration of diabetes. NCS diagnosed the neuropathy in more than half of the total number of patients, including both symptomatic and asymptomatic patients. Majority of the patients revealed symmetrical and a mixed type (motor and sensory) polyneuropathy. This shows that nerve conduction may not be concordant with the clinical signs and symptoms. NCS detects neuropathy much earlier, before it becomes evident clinically. The neuropathy is associated with abonromal fasting blood sugar, HBIAC and duration of diabetes. (author)

  4. Motor Control Research Requires Nonlinear Dynamics

    Science.gov (United States)

    Guastello, Stephen J.

    2006-01-01

    The author comments on the original article "The Cinderella of psychology: The neglect of motor control in the science of mental life and behavior," by D. A. Rosenbaum. Rosenbaum draws attention to the study of motor control and evaluates seven possible explanations for why the topic has been relatively neglected. The point of this comment is that…

  5. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.

    Science.gov (United States)

    Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J

    2012-06-20

    The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.

  6. Intrinsic and extrinsic neuromodulation of motor circuits.

    Science.gov (United States)

    Katz, P S

    1995-12-01

    Neuromodulation of motor circuits by extrinsic inputs provides enormous flexibility in the production of behavior. Recent work has shown that neurons intrinsic to central pattern-generating circuits can evoke neuromodulatory effects in addition to their neurotransmitting actions. Modulatory neurons often elicit a multitude of different effects attributable to actions at different receptors and/or through the release of co-transmitters. Differences in neuromodulation between species can account for differences in behavior. Modulation of neuromodulation may provide an additional level of flexibility to motor circuits.

  7. Enteric glial cells and their role in gastrointestinal motor abnormalities: Introducing the neuro-gliopathies

    Institute of Scientific and Technical Information of China (English)

    Gabrio Bassotti; Vincenzo Villanacci; Simona Fisogni; Elisa Rossi; Paola Baronio; Carlo Clerici; Christoph A Maurer; Gieri Cathomas; Elisabetta Antonelli

    2007-01-01

    The role of enteric glial cells has somewhat changed from that of mere mechanical support elements, gluing together the various components of the enteric nervous system, to that of active participants in the complex interrelationships of the gut motor and inflammatory events. Due to their multiple functions, spanning from supporting elements in the myenteric plexuses to neurotransmitters, to neuronal homeostasis, to antigen presenting cells, this cell population has probably more intriguing abilities than previously thought. Recently,some evidence has been accumulating that shows how these cells may be involved in the pathophysiological aspects of some diseases. This review will deal with the properties of the enteric glial cells more strictly related to gastrointestinal motor function and the human pathological conditions in which these cells may play a role, suggesting the possibility of enteric neurogliopathies.

  8. The effects of yoga practice in school physical education on children's motor abilities and social behavior

    OpenAIRE

    Folleto, J?lia C; Pereira, Keila RG; Valentini, Nadia Cristina

    2016-01-01

    Background: In recent years, yoga programs in childhood have been implemented in schools, to promote the development for children. Aim: To investigate the effects of yoga program in physical education classes on the motor abilities and social behavior parameters of 6–8-year-old children. Methods: The study included 16 children from the 1st grade of a public elementary school in the South of Brazil. The children participated in a 12-week intervention, twice weekly, with 45 min each sessi...

  9. Evolution of Motor Control: From Reflexes and Motor Programs to the Equilibrium-Point Hypothesis

    OpenAIRE

    Latash, Mark L.

    2008-01-01

    This brief review analyzes the evolution of motor control theories along two lines that emphasize active (motor programs) and reactive (reflexes) features of voluntary movements. It suggests that the only contemporary hypothesis that integrates both approaches in a fruitful way is the equilibrium-point hypothesis. Physical, physiological, and behavioral foundations of the EP-hypothesis are considered as well as relations between the EP-hypothesis and the recent developments of the notion of m...

  10. Effects of electroacupuncture on metabolic changes in motor cortex and striatum of 6-hydroxydopamine-induced Parkinsonian rats.

    Science.gov (United States)

    Li, Min; Wang, Ke; Su, Wen-Ting; Jia, Jun; Wang, Xiao-Min

    2017-10-06

    To explore the possible underlying mechanism by investigating the effect of electroacupuncture (EA) treatment on the primary motor cortex and striatum in a unilateral 6-hydroxydopamine (6-OHDA) induced rat Parkinson's disease (PD) model. Male Sprague-Dawley rats were randomly divided into sham group (n=16), model group (n=14), and EA group (n=14). EA stimulation at Dazhui (GV 14) and Baihui (GV20) was applied to PD rats in the EA group for 4 weeks. Behavioral tests were conducted to evaluate the effectiveness of EA treatment. Metabolites were detected by 7.0 T proton nuclear magnetic resonance. Following 4 weeks of EA treatment in PD model rats, the abnormal behavioral impairment induced by 6-OHDA was alleviated. In monitoring changes in metabolic activity, ratios of myoinositol/creatine (Cr) and N-acetyl aspartate (NAA)/Cr in the primary motor cortex were significantly lower at the injected side than the non-injected side in PD rats (P=0.024 and 0.020). The ratios of glutamate + glutamine (Glx)/Cr and NAA/Cr in the striatum were higher and lower, respectively, at the injected side than the non-injected side (P=0.046 and 0.008). EA treatment restored the balance of metabolic activity in the primary motor cortex and striatum. In addition, the taurine/Cr ratio and Glx/Cr ratio were elevated in the striatum of PD model rats compared to sham-lesioned rats (P=0.026 and 0.000). EA treatment alleviated the excessive glutamatergic transmission by down-regulating the striatal Glx/Cr ratio (P=0.001). The Glx/Cr ratio was negatively correlated with floor plane spontaneous locomotion in PD rats (P=0.027 and P=0.0007). EA treatment is able to normalize the metabolic balance in the primary motor cortex and striatum of PD rats, which may contribute to its therapeutic effect on motor deficits. The striatal Glx/Cr ratio may serve as a potential indicator of PD and a therapeutic target of EA treatment.

  11. Interaction between Sex Hormones and Matricaria Chamomilla Hydroalcholic Extract on Motor Activity Behavior in Gonadectomized Male and Female Mice

    Directory of Open Access Journals (Sweden)

    H. Raie

    2006-04-01

    Full Text Available Introduction & Objective: Locomotor activity is an important physiologic phenomenon that is influenced by several factors. In previous study we showed that the matricaria chamomilla (chamomile hydroalcholic extract acts differently in male and female mice. Therefore in this study, the role of sex hormones and chamomile hydroalcholic extract were investigated on motor activity behavior in absence of sex glands in adult male and female NMRI mice. Materials and Methods: Gonadectomized male and female mice were divided into groups (seven mice in each group including: receiving testosterone (2 mg/kg S.C., estradiol benzoate (0.1 mg/kg S.C., and progesterone (0.5 mg/kg S.C. with and without hydroalcholic extract of chamomile (50 mg/kg i.p. Motor activity monitor system was used to evaluate locomotor activity parameters (fast and slow activity, fast and slow stereotype activity, fast and slow rearing in all groups. Results: 1 Testosterone had no any effect on motor activity parameters, but extract of chamomile with and without testosterone decreased motor activity parameters in male mice. 2 Estradiol benzoate and chamomile hydroalcholic extract in presence and absence of each other increased locomotor activity parameters in female mice. 3 Progesterone also did not change motor activity parameters in presence and absence of chamomile hydroalcholic extract in female mice. 4 Administration of Estradiol benzoate with progestrone in presence and absence of chamomile hydroalcholic extract did not alter motor activity parameters in female mice. Conclusion: It seems both of the chamomile hydroalcholic extract and estradiol enhance motor activity and probably act through same system and potentiate the effect of each other. Also it seems there are interaction between estradiol and progesterone and also between chamomile extract and progesterone. Testosterone probably did not have any interaction with chamomile extract in locomotor activity.

  12. The effects of load-sensitive behavior on the operability margins of motor-operated gate valves

    International Nuclear Information System (INIS)

    Steele, R. Jr.; Russell, M.J.; DeWall, K.G.; Watkins, J.C.

    1993-01-01

    Testing of motor-operated gate valves at various loads has produced a phenomenon we call load-sensitive behavior. This phenomenon has a significant effect on the accuracy of the methods used (and proposed) in the nuclear industry for determining that these valves can perform their design basis function. A valve subjected to tests with low flow and pressure loadings may achieve a stem thrust (at seating) analytically determined to be adequate for design basis flows and pressures, but this is no guarantee that the valve will achieve the same stem thrust when actually subjected to those design basis loads. This is because the friction at the interface between the stem and the stem nut is higher in tests with higher flow and pressure loadings, and this loss to friction is outside the control of the motor-operator's torque switch. This paper identifies a tentative method for determining, a stable, useful value for the stem/stem-nut coefficient of friction, one that can possibly be extrapolated and used in calculations to accurately estimate the design basis thrust requirements of these valves

  13. Beta-band intermuscular coherence: a novel biomarker of upper motor neuron dysfunction in motor neuron disease

    Science.gov (United States)

    Fisher, Karen M.; Zaaimi, Boubker; Williams, Timothy L.; Baker, Stuart N.

    2012-01-01

    In motor neuron disease, the focus of therapy is to prevent or slow neuronal degeneration with neuroprotective pharmacological agents; early diagnosis and treatment are thus essential. Incorporation of needle electromyographic evidence of lower motor neuron degeneration into diagnostic criteria has undoubtedly advanced diagnosis, but even earlier diagnosis might be possible by including tests of subclinical upper motor neuron disease. We hypothesized that beta-band (15–30 Hz) intermuscular coherence could be used as an electrophysiological marker of upper motor neuron integrity in such patients. We measured intermuscular coherence in eight patients who conformed to established diagnostic criteria for primary lateral sclerosis and six patients with progressive muscular atrophy, together with 16 age-matched controls. In the primary lateral sclerosis variant of motor neuron disease, there is selective destruction of motor cortical layer V pyramidal neurons and degeneration of the corticospinal tract, without involvement of anterior horn cells. In progressive muscular atrophy, there is selective degeneration of anterior horn cells but a normal corticospinal tract. All patients with primary lateral sclerosis had abnormal motor-evoked potentials as assessed using transcranial magnetic stimulation, whereas these were similar to controls in progressive muscular atrophy. Upper and lower limb intermuscular coherence was measured during a precision grip and an ankle dorsiflexion task, respectively. Significant beta-band coherence was observed in all control subjects and all patients with progressive muscular atrophy tested, but not in the patients with primary lateral sclerosis. We conclude that intermuscular coherence in the 15–30 Hz range is dependent on an intact corticospinal tract but persists in the face of selective anterior horn cell destruction. Based on the distributions of coherence values measured from patients with primary lateral sclerosis and control

  14. Abnormal neuronal activity in Tourette syndrome and its modulation using deep brain stimulation

    Science.gov (United States)

    Israelashvili, Michal; Loewenstern, Yocheved

    2015-01-01

    Tourette syndrome (TS) is a common childhood-onset disorder characterized by motor and vocal tics that are typically accompanied by a multitude of comorbid symptoms. Pharmacological treatment options are limited, which has led to the exploration of deep brain stimulation (DBS) as a possible treatment for severe cases. Multiple lines of evidence have linked TS with abnormalities in the motor and limbic cortico-basal ganglia (CBG) pathways. Neurophysiological data have only recently started to slowly accumulate from multiple sources: noninvasive imaging and electrophysiological techniques, invasive electrophysiological recordings in TS patients undergoing DBS implantation surgery, and animal models of the disorder. These converging sources point to system-level physiological changes throughout the CBG pathway, including both general altered baseline neuronal activity patterns and specific tic-related activity. DBS has been applied to different regions along the motor and limbic pathways, primarily to the globus pallidus internus, thalamic nuclei, and nucleus accumbens. In line with the findings that also draw on the more abundant application of DBS to Parkinson's disease, this stimulation is assumed to result in changes in the neuronal firing patterns and the passage of information through the stimulated nuclei. We present an overview of recent experimental findings on abnormal neuronal activity associated with TS and the changes in this activity following DBS. These findings are then discussed in the context of current models of CBG function in the normal state, during TS, and finally in the wider context of DBS in CBG-related disorders. PMID:25925326

  15. Periventricular white matter abnormalities and restricted repetitive behavior in autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Karen Blackmon

    2016-01-01

    Full Text Available Malformations of cortical development are found at higher rates in autism spectrum disorder (ASD than in healthy controls on postmortem neuropathological evaluation but are more variably observed on visual review of in-vivo MRI brain scans. This may be due to the visually elusive nature of many malformations on MRI. Here, we utilize a quantitative approach to determine whether a volumetric measure of heterotopic gray matter in the white matter is elevated in people with ASD, relative to typically developing controls (TDC. Data from a primary sample of 48 children/young adults with ASD and 48 age-, and gender-matched TDCs, selected from the Autism Brain Imaging Data Exchange (ABIDE open-access database, were analyzed to compare groups on (1 blinded review of high-resolution T1-weighted research sequences; and (2 quantitative measurement of white matter hypointensity (WMH volume calculated from the same T1-weighted scans. Groupwise WMH volume comparisons were repeated in an independent, multi-site sample (80 ASD/80 TDC, also selected from ABIDE. Visual review resulted in equivalent proportions of imaging abnormalities in the ASD and TDC group. However, quantitative analysis revealed elevated periventricular and deep subcortical WMH volumes in ASD. This finding was replicated in the independent, multi-site sample. Periventricular WMH volume was not associated with age but was associated with greater restricted repetitive behaviors on both parent-reported and clinician-rated assessment inventories. Thus, findings demonstrate that periventricular WMH volume is elevated in ASD and associated with a higher degree of repetitive behaviors and restricted interests. Although the etiology of focal WMH clusters is unknown, the absence of age effects suggests that they may reflect a static anomaly.

  16. Development of uncoupling between D1- and D2-mediated motor behavior in rats depleted of dopamine as neonates.

    Science.gov (United States)

    Byrnes, E M; Bruno, J P

    1994-09-01

    The D1- and D2-mediation of stimulated motor behavior was studied in pups (Days 10-11) and weanlings (Days 20-21) that had been depleted of dopamine (DA) on postnatal Day 3. Administration of the D1-like agonist SKF 38393 (30.0 mg/kg) or the D2-like agonist quinpirole (3.0 mg/kg) increased the incidence of sniffing and locomotion in intact and DA-depleted animals tested at either age. However, the ability of selective DA antagonists to reduce these stimulated responses interacted with both the depletion and the age at the time of testing. When tested as pups, both the D1 antagonist SCH 23390 (0.2 or 0.4 mg/kg) and the D2 antagonist clebopride (10.0 mg/kg) suppressed the behaviors induced by either class of DA agonist. When tested as weanlings, intact animals exhibited the profile of pups (i.e., either antagonist blocked each agonist). In DA-depleted weanlings, however, only the D1 antagonist blocked the D1 agonist-induced responses and only the D2 antagonist blocked the D2 agonist-induced responses. These data demonstrate that the interactions between D1 and D2 receptors in the expression of stimulated motor behaviors are altered following DA depletions in neonates. Moreover, this change in receptor function occurs sometime between 7 and 13 days after the DA depletion.

  17. Phenomenological and neuropsychological profile across motor variants of delirium in a palliative care unit

    LENUS (Irish Health Repository)

    Leonard, Maeve

    2011-01-01

    Studies using composite measurement of cognition suggest that cognitive performance is similar across motor variants of delirium. The authors assessed neuropsychological and symptom profiles in 100 consecutive cases of DSM-IV delirium allocated to motor subtypes in a palliative-care unit: Hypoactive (N=33), Hyperactive (N=18), Mixed (N=26), and No-Alteration motor groups (N=23). The Mixed group had more severe delirium, with highest scores for DRS-R-98 sleep-wake cycle disturbance, hallucinations, delusions, and language abnormalities. Neither the total Cognitive Test for Delirium nor its five neuropsychological domains differed across Hyperactive, Mixed, and Hypoactive motor groups. Most patients (70%) with no motor alteration had DRS-R-98 scores in the mild or subsyndromal range even though they met DSM-IV criteria. Motor variants in delirium have similar cognitive profiles, but mixed cases differ in expression of several noncognitive features.

  18. Model Studies of the Dynamics of Bacterial Flagellar Motors

    Science.gov (United States)

    Bai, Fan; Lo, Chien-Jung; Berry, Richard M.; Xing, Jianhua

    2009-01-01

    Abstract The bacterial flagellar motor is a rotary molecular machine that rotates the helical filaments that propel swimming bacteria. Extensive experimental and theoretical studies exist on the structure, assembly, energy input, power generation, and switching mechanism of the motor. In a previous article, we explained the general physics underneath the observed torque-speed curves with a simple two-state Fokker-Planck model. Here, we further analyze that model, showing that 1), the model predicts that the two components of the ion motive force can affect the motor dynamics differently, in agreement with latest experiments; 2), with explicit consideration of the stator spring, the model also explains the lack of dependence of the zero-load speed on stator number in the proton motor, as recently observed; and 3), the model reproduces the stepping behavior of the motor even with the existence of the stator springs and predicts the dwell-time distribution. The predicted stepping behavior of motors with two stators is discussed, and we suggest future experimental procedures for verification. PMID:19383460

  19. Model Studies of the Dynamics of Bacterial Flagellar Motors

    Energy Technology Data Exchange (ETDEWEB)

    Bai, F; Lo, C; Berry, R; Xing, J

    2009-03-19

    The Bacterial Flagellar Motor is a rotary molecular machine that rotates the helical filaments which propel swimming bacteria. Extensive experimental and theoretical studies exist on the structure, assembly, energy input, power generation and switching mechanism of the motor. In our previous paper, we explained the general physics underneath the observed torque-speed curves with a simple two-state Fokker-Planck model. Here we further analyze this model. In this paper we show (1) the model predicts that the two components of the ion motive force can affect the motor dynamics differently, in agreement with the latest experiment by Lo et al.; (2) with explicit consideration of the stator spring, the model also explains the lack of dependence of the zero-load speed on stator number in the proton motor, recently observed by Yuan and Berg; (3) the model reproduces the stepping behavior of the motor even with the existence of the stator springs and predicts the dwelling time distribution. Predicted stepping behavior of motors with two stators is discussed, and we suggest future experimental verification.

  20. Detecting acute neurotoxicity during platinum chemotherapy by neurophysiological assessment of motor nerve hyperexcitability

    International Nuclear Information System (INIS)

    Hill, Andrew; Bergin, Peter; Hanning, Fritha; Thompson, Paul; Findlay, Michael; Damianovich, Dragan; McKeage, Mark J

    2010-01-01

    Platinum-based drugs, such as cisplatin and oxaliplatin, are well-known for inducing chronic sensory neuropathies but their acute and motor neurotoxicities are less well characterised. Use was made of nerve conduction studies and needle electromyography (EMG) to assess motor nerve excitability in cancer patients during their first treatment cycle with platinum-based chemotherapy in this study. Twenty-nine adult cancer patients had a neurophysiological assessment either before oxaliplatin plus capecitabine, on days 2 to 4 or 14 to 20 after oxaliplatin plus capecitabine, or on days 2 to 4 after carboplatin plus paclitaxel or cisplatin, undertaken by a neurophysiologist who was blinded to patient and treatment details. Patients completed a symptom questionnaire at the end of the treatment cycle. Abnormal spontaneous high frequency motor fibre action potentials were detected in 100% of patients (n = 6) and 72% of muscles (n = 22) on days 2 to 4 post-oxaliplatin, and in 25% of patients (n = 8) and 13% of muscles (n = 32) on days 14 to 20 post-oxaliplatin, but in none of the patients (n = 14) or muscles (n = 56) tested prior to oxaliplatin or on days 2 to 4 after carboplatin plus paclitaxel or cisplatin. Repetitive compound motor action potentials were less sensitive and less specific than spontaneous high frequency motor fibre action potentials for detection of acute oxaliplatin-induced motor nerve hyperexcitability but were present in 71% of patients (n = 7) and 32% of muscles (n = 32) on days 2 to 4 after oxaliplatin treatment. Acute neurotoxicity symptoms, most commonly cold-induced paraesthesiae and jaw or throat tightness, were reported by all patients treated with oxaliplatin (n = 22) and none of those treated with carboplatin plus paclitaxel or cisplatin (n = 6). Abnormal spontaneous high frequency motor fibre activity is a sensitive and specific endpoint of acute oxaliplatin-induced motor nerve hyperexcitability, detectable on EMG on days 2 to 4 post

  1. Detecting acute neurotoxicity during platinum chemotherapy by neurophysiological assessment of motor nerve hyperexcitability

    Directory of Open Access Journals (Sweden)

    Hill Andrew

    2010-08-01

    Full Text Available Abstract Background Platinum-based drugs, such as cisplatin and oxaliplatin, are well-known for inducing chronic sensory neuropathies but their acute and motor neurotoxicities are less well characterised. Use was made of nerve conduction studies and needle electromyography (EMG to assess motor nerve excitability in cancer patients during their first treatment cycle with platinum-based chemotherapy in this study. Methods Twenty-nine adult cancer patients had a neurophysiological assessment either before oxaliplatin plus capecitabine, on days 2 to 4 or 14 to 20 after oxaliplatin plus capecitabine, or on days 2 to 4 after carboplatin plus paclitaxel or cisplatin, undertaken by a neurophysiologist who was blinded to patient and treatment details. Patients completed a symptom questionnaire at the end of the treatment cycle. Results Abnormal spontaneous high frequency motor fibre action potentials were detected in 100% of patients (n = 6 and 72% of muscles (n = 22 on days 2 to 4 post-oxaliplatin, and in 25% of patients (n = 8 and 13% of muscles (n = 32 on days 14 to 20 post-oxaliplatin, but in none of the patients (n = 14 or muscles (n = 56 tested prior to oxaliplatin or on days 2 to 4 after carboplatin plus paclitaxel or cisplatin. Repetitive compound motor action potentials were less sensitive and less specific than spontaneous high frequency motor fibre action potentials for detection of acute oxaliplatin-induced motor nerve hyperexcitability but were present in 71% of patients (n = 7 and 32% of muscles (n = 32 on days 2 to 4 after oxaliplatin treatment. Acute neurotoxicity symptoms, most commonly cold-induced paraesthesiae and jaw or throat tightness, were reported by all patients treated with oxaliplatin (n = 22 and none of those treated with carboplatin plus paclitaxel or cisplatin (n = 6. Conclusions Abnormal spontaneous high frequency motor fibre activity is a sensitive and specific endpoint of acute oxaliplatin-induced motor nerve

  2. Objective markers for upper motor neuron involvement in amyotrophic lateral sclerosis

    International Nuclear Information System (INIS)

    Iwata, Nobue K.

    2007-01-01

    A reliable objective marker of upper motor neuron (UMN) involvement is critical for early diagnosis and monitoring disease course in patients with amyotrophic lateral sclerosis (ALS). Lower motor neuron (LMN) involvement can be identified by electromyography, whereas UMN dysfunction has been currently distinguished solely by neurological examination. In the search for diagnostic tests to evaluate UMN involvement in ALS, numerous reports on new markers using neurophysiological and imaging techniques are accumulating. Transcranial magnetic stimulation evaluates the neurophysiological integrity of UMN. Although the diagnostic reliability and sensitivity of various parameters of central motor conduction measurement differ, central motor conduction time measurement using brainstem stimulation is potentially useful for determining UMN dysfunction by distinguishing lesions above the pyramidal decussation. MR-based techniques also have the potential to be used as diagnostic markers and are continuously improving as a modality to pursue early diagnosis and monitoring of the disease progression. Conventional MRI reveals hyperintensity along the corticospinal tract, hypointensity in the motor cortex, and atrophy of the precentral gyrus. There is a lack of agreement regarding sensitivity and specificity in detecting UMN abnormalities. Recent advances in magnetizing transfer imaging (MTI) provide more sensitive and accurate detection of corticospinal tract abnormality than conventional MRI. Reduction in N-acetyl-aspartate by proton magnetic spectroscopy in the motor cortex or the brainstem of the patients with ALS is reported with different techniques. Its diagnostic value in clinical assessment is uncertain and remains to be established. Diffusion tensor imaging (DTI) reveals the structural integrity of neuronal fibers, and has great diagnostic promise for ALS. It shows reduced diffusion anisotropy in the corticospinal tract with good correlation with physiological index

  3. Excitability properties of motor axons in adults with cerebral palsy

    Directory of Open Access Journals (Sweden)

    Cliff S. Klein

    2015-06-01

    Full Text Available Cerebral Palsy (CP is a permanent disorder caused by a lesion to the developing brain that significantly impairs motor function. The neurophysiological mechanisms underlying motor impairment are not well understood. Specifically, few have addressed whether motoneuron or peripheral axon properties are altered in CP, even though disruption of descending inputs to the spinal cord may cause them to change. In the present study, we have compared nerve excitability properties in seven adults with CP and fourteen healthy controls using threshold tracking techniques by stimulating the median nerve at the wrist and recording the compound muscle action potential (CMAP over the abductor pollicis brevis. The excitability properties in the CP subjects were found to be abnormal. Early and late depolarizing and hyperpolarizing threshold electrotonus was significantly larger (i.e., fanning out, and resting current-threshold (I/V slope was smaller, in CP compared to control. In addition resting threshold and rheobase tended to be larger in CP. According to a modeling analysis of the data, an increase in leakage current under or through the myelin sheath, i.e., the Barrett-Barrett conductance (GBB, combined with a slight hyperpolarization of the resting membrane potential, best explained the group differences in excitability properties. There was a trend for those with greater impairment in gross motor function to have more abnormal axon properties. The findings indicate plasticity of motor axon properties far removed from the site of the lesion. We suspect that this plasticity is caused by disruption of descending inputs to the motoneurons at an early age around the time of their injury.

  4. In Vivo Neuromechanics: Decoding Causal Motor Neuron Behavior with Resulting Musculoskeletal Function.

    Science.gov (United States)

    Sartori, Massimo; Yavuz, Utku Ş; Farina, Dario

    2017-10-18

    Human motor function emerges from the interaction between the neuromuscular and the musculoskeletal systems. Despite the knowledge of the mechanisms underlying neural and mechanical functions, there is no relevant understanding of the neuro-mechanical interplay in the neuro-musculo-skeletal system. This currently represents the major challenge to the understanding of human movement. We address this challenge by proposing a paradigm for investigating spinal motor neuron contribution to skeletal joint mechanical function in the intact human in vivo. We employ multi-muscle spatial sampling and deconvolution of high-density fiber electrical activity to decode accurate α-motor neuron discharges across five lumbosacral segments in the human spinal cord. We use complete α-motor neuron discharge series to drive forward subject-specific models of the musculoskeletal system in open-loop with no corrective feedback. We perform validation tests where mechanical moments are estimated with no knowledge of reference data over unseen conditions. This enables accurate blinded estimation of ankle function purely from motor neuron information. Remarkably, this enables observing causal associations between spinal motor neuron activity and joint moment control. We provide a new class of neural data-driven musculoskeletal modeling formulations for bridging between movement neural and mechanical levels in vivo with implications for understanding motor physiology, pathology, and recovery.

  5. Protein-Energy Malnutrition Exacerbates Stroke-Induced Forelimb Abnormalities and Dampens Neuroinflammation.

    Science.gov (United States)

    Alaverdashvili, Mariam; Caine, Sally; Li, Xue; Hackett, Mark J; Bradley, Michael P; Nichol, Helen; Paterson, Phyllis G

    2018-02-03

    Protein-energy malnutrition (PEM) pre-existing at stroke onset is believed to worsen functional outcome, yet the underlying mechanisms are not fully understood. Since brain inflammation is an important modulator of neurological recovery after stroke, we explored the impact of PEM on neuroinflammation in the acute period in relation to stroke-initiated sensori-motor abnormalities. Adult rats were fed a low-protein (LP) or normal protein (NP) diet for 28 days before inducing photothrombotic stroke (St) in the forelimb region of the motor cortex or sham surgery; the diets continued for 3 days after the stroke. Protein-energy status was assessed by a combination of body weight, food intake, serum acute phase proteins and corticosterone, and liver lipid content. Deficits in motor function were evaluated in the horizontal ladder walking and cylinder tasks at 3 days after stroke. The glial response and brain elemental signature were investigated by immunohistochemistry and micro-X-ray fluorescence imaging, respectively. The LP-fed rats reduced food intake, resulting in PEM. Pre-existing PEM augmented stroke-induced abnormalities in forelimb placement accuracy on the ladder; LP-St rats made more errors (29 ± 8%) than the NP-St rats (15 ± 3%; P < 0.05). This was accompanied by attenuated astrogliosis in the peri-infarct area by 18% and reduced microglia activation by up to 41 and 21% in the peri-infarct area and the infarct rim, respectively (P < 0.05). The LP diet altered the cortical Zn, Ca, and Cl signatures (P < 0.05). Our data suggest that proactive treatment of pre-existing PEM could be essential for optimal post-stroke recovery.

  6. Two is better than one: Physical interactions improve motor performance in humans

    Science.gov (United States)

    Ganesh, G.; Takagi, A.; Osu, R.; Yoshioka, T.; Kawato, M.; Burdet, E.

    2014-01-01

    How do physical interactions with others change our own motor behavior? Utilizing a novel motor learning paradigm in which the hands of two - individuals are physically connected without their conscious awareness, we investigated how the interaction forces from a partner adapt the motor behavior in physically interacting humans. We observed the motor adaptations during physical interactions to be mutually beneficial such that both the worse and better of the interacting partners improve motor performance during and after interactive practice. We show that these benefits cannot be explained by multi-sensory integration by an individual, but require physical interaction with a reactive partner. Furthermore, the benefits are determined by both the interacting partner's performance and similarity of the partner's behavior to one's own. Our results demonstrate the fundamental neural processes underlying human physical interactions and suggest advantages of interactive paradigms for sport-training and physical rehabilitation.

  7. Voltage directive drive with claw pole motor and control without rotor position indicator

    Science.gov (United States)

    Stroenisch, Volker Ewald

    Design and testing of a voltage directive drive for synchronous variable speed claw pole motor and control without rotor position indicator is described. Economic analysis of the designed regulation is performed. Computations of stationary and dynamic behavior are given and experimental operational behavior is determined. The motors can be used for electric transportation vehicles, diesel motors, and electric railway engines.

  8. MOTOR FUEL TAXES AND THE ENVIRONMENTAL PROTECTION

    OpenAIRE

    Michal Ptak

    2011-01-01

    Motor fuel taxes are primarily revenue-raising taxes. However, due to high fuel consumption these taxes can be quite an efficient source of general budget revenue in many countries. It seems that the taxes on motor fuels may also be useful instruments for environmental policy or climate change policy. Environmental objectives can be achieved through change of behavior of drivers. The paper presents theoretical basis for taxes levied on motor fuels. Attention is paid to the problem of external...

  9. Abnormal growth of faceted (WC) grains in a (Co) liquid matrix

    International Nuclear Information System (INIS)

    Park, Y.J.; Yoon, D.Y.

    1996-01-01

    If the grains dispersed in a liquid matrix are spherical, their surface atomic structure is expected to be rough (diffuse), and their coarsening has been observed to be controlled by diffusion in the matrix. They do not, furthermore, undergo abnormal growth. On the other hand, in some compound material systems, the grains in liquid matrices are faceted and often show abnormal coarsening behavior. Their faceted surface planes are expected to be singular (atomically flat) and therefore grow by a defect-assisted process and two-dimensional (2-D) nucleation. Contrary to the usual coarsening theories, their growth velocity is not linearly dependent on the driving force arising from the grain size difference. If the growth of the faceted grains occurs by 2-D nucleation, the rate is expected to increase abruptly at a critical supersaturation, as has been observed in crystal growth in melts and solutions. It is proposed that this growth mechanism leads to the abnormal grain coarsening. The 2-D nucleation theory predicts that there is a threshold initial grain size for the abnormal grain growth (AGG), and the propensity for AGG will increase with the heat-treatment temperature. The AGG behavior will also vary with the defects in the grains. These predictions are qualitatively confirmed in the sintered WC-Co alloy prepared from fine (0.85-microm) and coarse (5.48-microm) WC powders and their mixtures. The observed dependence of the AGG behavior on the sintering temperature and the milling of the WC powder is also qualitatively consistent with the predicted behavior

  10. Stimulation of serotonin2C receptors elicits abnormal oral movements by acting on pathways other than the sensorimotor one in the rat basal ganglia.

    Science.gov (United States)

    Beyeler, A; Kadiri, N; Navailles, S; Boujema, M Ben; Gonon, F; Moine, C Le; Gross, C; De Deurwaerdère, P

    2010-08-11

    Serotonin2C (5-HT(2C)) receptors act in the basal ganglia, a group of sub-cortical structures involved in motor behavior, where they are thought to modulate oral activity and participate in iatrogenic motor side-effects in Parkinson's disease and Schizophrenia. Whether abnormal movements initiated by 5-HT(2C) receptors are directly consequent to dysfunctions of the motor circuit is uncertain. In the present study, we combined behavioral, immunohistochemical and extracellular single-cell recordings approaches in rats to investigate the effect of the 5-HT(2C) agonist Ro-60-0175 respectively on orofacial dyskinesia, the expression of the marker of neuronal activity c-Fos in basal ganglia and the electrophysiological activity of substantia nigra pars reticulata (SNr) neuron connected to the orofacial motor cortex (OfMC) or the medial prefrontal cortex (mPFC). The results show that Ro-60-0175 (1 mg/kg) caused bouts of orofacial movements that were suppressed by the 5-HT(2C) antagonist SB-243213 (1 mg/kg). Ro-60-0175 (0.3, 1, 3 mg/kg) dose-dependently enhanced Fos expression in the striatum and the nucleus accumbens. At the highest dose, it enhanced Fos expression in the subthalamic nucleus, the SNr and the entopeduncular nucleus but not in the external globus pallidus. However, the effect of Ro-60-0175 was mainly associated with associative/limbic regions of basal ganglia whereas subregions of basal ganglia corresponding to sensorimotor territories were devoid of Fos labeling. Ro-60-0175 (1-3 mg/kg) did not affect the electrophysiological activity of SNr neurons connected to the OfMC nor their excitatory-inhibitory-excitatory responses to the OfMC electrical stimulation. Conversely, Ro-60-0175 (1 mg/kg) enhanced the late excitatory response of SNr neurons evoked by the mPFC electrical stimulation. These results suggest that oral dyskinesia induced by 5-HT(2C) agonists are not restricted to aberrant signalling in the orofacial motor circuit and demonstrate discrete

  11. Motor learning and working memory in children born preterm: a systematic review.

    NARCIS (Netherlands)

    Jongbloed-Pereboom, M.; Janssen, A.J.W.M.; Steenbergen, B.; Nijhuis-Van der Sanden, M.W.G.

    2012-01-01

    Children born preterm have a higher risk for developing motor, cognitive, and behavioral problems. Motor problems can occur in combination with working memory problems, and working memory is important for explicit learning of motor skills. The relation between motor learning and working memory has

  12. Motor learning and working memory in children born preterm: A systematic review

    NARCIS (Netherlands)

    Jongbloed-Pereboom, M.; Janssen, A.J.W.M.; Steenbergen, B.; Nijhuis-Van der Sanden, M.W.G.

    2012-01-01

    Children born preterm have a higher risk for developing motor, cognitive, and behavioral problems. Motor problems can occur in combination with working memory problems, and working memory is important for explicit learning of motor skills. The relation between motor learning and working memory has

  13. Identifying Motor, Emotional-Behavioral, and Cognitive Deficits that Comprise the Triad of HD Symptoms from Patient, Caregiver, and Provider Perspectives

    Directory of Open Access Journals (Sweden)

    David Victorson

    2014-04-01

    Full Text Available Background: The objective of this study was to identify important attributes associated with the triad of symptoms (cognition, emotional–behavioral, and motor of Huntington's disease (HD from patient, caregiver, and medical provider perspectives to facilitate development of a new disease‐specific, health‐related quality of life (HRQOL instrument. Methods: We conducted a targeted literature review of HD and HRQOL instruments, expert surveys, and patient and caregiver phone‐based interviews to extract information on the symptoms and issues most relevant to the HD symptom triad (HD triad. The data collected from these sources were used to generate themes and subdomains and to develop an integrated schema that highlights the key dimensions of the triad. Results: The search identified the following areas: emotional functioning/behavioral changes (e.g., positive emotions, sadness/depression; cognitive functioning (e.g., memory/learning, attention/comprehension; physical functioning (e.g., motor functioning, medication; social functioning (e.g., leisure, interpersonal relationships; end‐of‐life concerns/planning; and gene testing. Fifteen individuals diagnosed with HD and 16 HD caregivers, recruited from several Huntington's Disease Society of America support group networks, completed phone interviews. Nineteen US medical providers who specialize in HD completed the online survey. Twenty‐six subdomains of the HD symptom triad (seven cognition, 12 emotional–behavioral, and seven motor emerged relatively consistently across patient, caregiver, and provider samples. These included movements/chorea, memory impairment, depression, and anxiety. Discussion: Based on an integrated, mixed‐methods approach, important HD triad symptom were identified and organized into a guiding schema. These patient‐, caregiver‐, and provider‐triangulated data served as the basis for development of a HD‐specific HRQOL instrument, the HD‐PRO‐TRIAD™.

  14. Abnormal neuronal migration: radiologic-clinic study

    International Nuclear Information System (INIS)

    Martinez Fernandez, M.; Menor Serrano, F.; Bordon Ferre, F.; Garcia Tena, J.; Esteban Hernandez, E.; Sanguesa Nebot, C.; Marti Bonnati, L.

    1994-01-01

    We present our experience in 18 pediatric patients with abnormal neuronal migration. Seven cases of heterotopia of the gray matter, 7 agyria-pachygyria complexes, 1 case of polymicrogyria, 2 cases of schizencephaly and 1 case of hemimegalencephaly were diagnosed by means of ultrasonography, computed tomography and magnetic resonance. The clinical picture was reviewed in each case, with special attention to the occurrence of convulsions, psycho motor development and visual changes. In general, the greater the morphological change, the greater the neurological involvement in these patients. However, the two cases of schizencephaly presented mild clinical expression. Magnetic resonance increases the diagnostic yield in neuronal migration disorders. Nevertheless, either ultrasonography or, especially, computed tomography is useful as a first diagnostic approach in these malformative disorders. (Author)

  15. Abnormal brain iron metabolism in Irp2 deficient mice is associated with mild neurological and behavioral impairments.

    Directory of Open Access Journals (Sweden)

    Kimberly B Zumbrennen-Bullough

    Full Text Available Iron Regulatory Protein 2 (Irp2, Ireb2 is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2-/- mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc, expression are increased and decreased, respectively, in the brain from Irp2-/- mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments.

  16. Developmental profile and diagnoses in children presenting with motor stereotypies

    Directory of Open Access Journals (Sweden)

    Francesco Cardona

    2016-11-01

    Full Text Available Introduction: Motor stereotypies represent a typical example of the difficulty in distinguishing non-clinical behaviors (physiological and transient from symptoms or among different disorders (primary stereotypies, associated with Autistic Spectrum Disorder (ASD, Intellectual Disabilities, genetic syndromes, sensory impairment. The aim of this study was to obtain an accurate assessment on the relationship between stereotypies and neurodevelopmental disorders.Methods: We studied 23 children (3 girls aged 36 to 95 months, who requested a consultation due to the persistence or increased severity of motor stereotypies. None of patients had a previous diagnosis of ASD. The assessment included the Motor Severity Stereotypy Scale (MSSS, the Repetitive Behavior Scale-Revised (RBS-R, the Raven’s Colored Progressive Matrices (CPM, the Child Behavior Checklist for ages 1 ½ -5 or 4-18 (CBCL, the Social Responsiveness Scale (SRS and the Autism Diagnostic Observation Schedule- Second edition (ADOS 2. Results: All patients were showing motor stereotypies for periods of time varying from 6 to 77 months. The MSSS showed each child had a limited number of stereotypies; their frequency and intensity were mild. The interference of stereotypies was variable; the impairment in daily life was mild. The RBS-R scores were positive for the subscale of Stereotypic behaviors in all children. Moreover, several children presented other repetitive behaviors, mainly Ritualistic behavior and Sameness behavior. All patients showed a normal cognitive level. The CBCL evidenced behavioral problems in 22% of the children: Internalizing problems, Attention and Withdrawn were the main complaints. On the SRS, all but one of the tested patients obtained clinical scores in the clinical range for at least one area. On the ADOS 2, four patients obtained scores indicating a moderate level of ASD symptoms, four had a mild level and fifteen showed no or minimal signs of ASD

  17. Quantitative assessment of motor speech abnormalities in idiopathic rapid eye movement sleep behaviour disorder.

    Science.gov (United States)

    Rusz, Jan; Hlavnička, Jan; Tykalová, Tereza; Bušková, Jitka; Ulmanová, Olga; Růžička, Evžen; Šonka, Karel

    2016-03-01

    Patients with idiopathic rapid eye movement sleep behaviour disorder (RBD) are at substantial risk for developing Parkinson's disease (PD) or related neurodegenerative disorders. Speech is an important indicator of motor function and movement coordination, and therefore may be an extremely sensitive early marker of changes due to prodromal neurodegeneration. Speech data were acquired from 16 RBD subjects and 16 age- and sex-matched healthy control subjects. Objective acoustic assessment of 15 speech dimensions representing various phonatory, articulatory, and prosodic deviations was performed. Statistical models were applied to characterise speech disorders in RBD and to estimate sensitivity and specificity in differentiating between RBD and control subjects. Some form of speech impairment was revealed in 88% of RBD subjects. Articulatory deficits were the most prominent findings in RBD. In comparison to controls, the RBD group showed significant alterations in irregular alternating motion rates (p = 0.009) and articulatory decay (p = 0.01). The combination of four distinctive speech dimensions, including aperiodicity, irregular alternating motion rates, articulatory decay, and dysfluency, led to 96% sensitivity and 79% specificity in discriminating between RBD and control subjects. Speech impairment was significantly more pronounced in RBD subjects with the motor score of the Unified Parkinson's Disease Rating Scale greater than 4 points when compared to other RBD individuals. Simple quantitative speech motor measures may be suitable for the reliable detection of prodromal neurodegeneration in subjects with RBD, and therefore may provide important outcomes for future therapy trials. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Odd sensation induced by moving-phantom which triggers subconscious motor program.

    Science.gov (United States)

    Fukui, Takao; Kimura, Toshitaka; Kadota, Koji; Shimojo, Shinsuke; Gomi, Hiroaki

    2009-06-03

    Our motor actions are sometimes not properly performed despite our having complete understanding of the environmental situation with a suitable action intention. In most cases, insufficient skill for motor control can explain the improper performance. A notable exception is the action of stepping onto a stopped escalator, which causes clumsy movements accompanied by an odd sensation. Previous studies have examined short-term sensorimotor adaptations to treadmills and moving sleds, but the relationship between the odd sensation and behavioral properties in a real stopped-escalator situation has never been examined. Understanding this unique action-perception linkage would help us to assess the brain function connecting automatic motor controls and the conscious awareness of action. Here we directly pose a question: Does the odd sensation emerge because of the unfamiliar motor behavior itself toward the irregular step-height of a stopped escalator or as a consequence of an automatic habitual motor program cued by the escalator itself. We compared the properties of motor behavior toward a stopped escalator (SE) with those toward moving escalator and toward a wooden stairs (WS) that mimicked the stopped escalator, and analyzed the subjective feeling of the odd sensation in the SE and WS conditions. The results show that moving escalator-specific motor actions emerged after participants had stepped onto the stopped escalator despite their full awareness that it was stopped, as if the motor behavior was guided by a "phantom" of a moving escalator. Additionally, statistical analysis reveals that postural forward sway that occurred after the stepping action is directly linked with the odd sensation. The results suggest a dissociation between conscious awareness and subconscious motor control: the former makes us perfectly aware of the current environmental situation, but the latter automatically emerges as a result of highly habituated visual input no matter how unsuitable

  19. Mind wandering and motor control: off-task thinking disrupts the online adjustment of behavior.

    Science.gov (United States)

    Kam, Julia W Y; Dao, Elizabeth; Blinn, Patricia; Krigolson, Olav E; Boyd, Lara A; Handy, Todd C

    2012-01-01

    Mind wandering episodes have been construed as periods of "stimulus-independent" thought, where our minds are decoupled from the external sensory environment. In two experiments, we used behavioral and event-related potential (ERP) measures to determine whether mind wandering episodes can also be considered as periods of "response-independent" thought, with our minds disengaged from adjusting our behavioral outputs. In the first experiment, participants performed a motor tracking task and were occasionally prompted to report whether their attention was "on-task" or "mind wandering." We found greater tracking error in periods prior to mind wandering vs. on-task reports. To ascertain whether this finding was due to attenuation in visual perception per se vs. a disruptive effect of mind wandering on performance monitoring, we conducted a second experiment in which participants completed a time-estimation task. They were given feedback on the accuracy of their estimations while we recorded their EEG, and were also occasionally asked to report their attention state. We found that the sensitivity of behavior and the P3 ERP component to feedback signals were significantly reduced just prior to mind wandering vs. on-task attentional reports. Moreover, these effects co-occurred with decreases in the error-related negativity elicited by feedback signals (fERN), a direct measure of behavioral feedback assessment in cortex. Our findings suggest that the functional consequences of mind wandering are not limited to just the processing of incoming stimulation per se, but extend as well to the control and adjustment of behavior.

  20. Neurophysiological basis of rapid eye movement sleep behavior disorder: informing future drug development

    Directory of Open Access Journals (Sweden)

    Jennum P

    2016-04-01

    Full Text Available Poul Jennum, Julie AE Christensen, Marielle Zoetmulder Department of Clinical Neurophysiology, Faculty of Health Sciences, Danish Center for Sleep Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark Abstract: Rapid eye movement (REM sleep behavior disorder (RBD is a parasomnia characterized by a history of recurrent nocturnal dream enactment behavior and loss of skeletal muscle atonia and increased phasic muscle activity during REM sleep: REM sleep without atonia. RBD and associated comorbidities have recently been identified as one of the most specific and potentially sensitive risk factors for later development of any of the alpha-synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and other atypical parkinsonian syndromes. Several other sleep-related abnormalities have recently been identified in patients with RBD/Parkinson’s disease who experience abnormalities in sleep electroencephalographic frequencies, sleep–wake transitions, wake and sleep stability, occurrence and morphology of sleep spindles, and electrooculography measures. These findings suggest a gradual involvement of the brainstem and other structures, which is in line with the gradual involvement known in these disorders. We propose that these findings may help identify biomarkers of individuals at high risk of subsequent conversion to parkinsonism. Keywords: motor control, brain stem, hypothalamus, hypocretin

  1. Cerebral white matter changes are associated with abnormalities on neurological examination in non-disabled elderly: the LADIS study

    NARCIS (Netherlands)

    Poggesi, A.; Gouw, A.A.; van der Flier, W.M.; Pracucci, G.; Chabriat, H.; Erkinjuntti, T.; Fazekas, F.; Ferro, J.M.; Hennerici, M.; Langhorne, P.; O'Brien, J. T.; Visser, M.C.; Wahlund, L.O.; Waldemar, G.; Wallin, A.; Scheltens, P.; Inzitari, D.; Pantoni, L.

    2013-01-01

    Cerebral white matter changes (WMC) are associated with motor, cognitive, mood, urinary disturbances, and disability, but little is known about the prevalence of neurological signs in patients with these brain lesions. We assessed the presence and occurrence of neurological abnormalities over a

  2. Prenatal chlorpyrifos exposure alters motor behavior and ultrasonic vocalization in CD-1 mouse pups.

    Science.gov (United States)

    Venerosi, Aldina; Ricceri, Laura; Scattoni, Maria Luisa; Calamandrei, Gemma

    2009-03-30

    Chlorpyrifos (CPF) is a non-persistent organophosphate (OP) largely used as pesticide. Studies from animal models indicate that CPF is a developmental neurotoxicant able to target immature central nervous system at dose levels well below the threshold of systemic toxicity. So far, few data are available on the potential short- and long-term adverse effects in children deriving from low-level exposures during prenatal life and infancy. Late gestational exposure [gestational day (GD) 14-17] to CPF at the dose of 6 mg/kg was evaluated in CD-1 mice during early development, by assessment of somatic and sensorimotor maturation [reflex-battery on postnatal days (PNDs) 3, 6, 9, 12 and 15] and ultrasound emission after isolation from the mother and siblings (PNDs 4, 7 and 10). Pups' motor skills were assessed in a spontaneous activity test on PND 12. Maternal behavior of lactating dams in the home cage and in response to presentation of a pup previously removed from the nest was scored on PND 4, to verify potential alterations in maternal care directly induced by CPF administration. As for the effects on the offspring, results indicated that on PND 10, CPF significantly decreased number and duration of ultrasonic calls while increasing latency to emit the first call after isolation. Prenatal CPF also reduced motor behavior on PND 12, while a tendency to hyporeflexia was observed in CPF pups by means of reflex-battery scoring. Dams administered during gestation with CPF showed baseline levels of maternal care comparable to those of controls, but higher levels of both pup-directed (licking) and explorative (wall rearing) responses. Overall our results are consistent with previous epidemiological data on OP neurobehavioral toxicity, and also indicate ultrasonic vocalization as an early marker of CPF exposure during development in rodent studies, with potential translational value to human infants.

  3. A Hybrid Model of a Brushless DC Motor

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Hansen, Hans Brink; Kallesøe, Carsten Skovmose

    2007-01-01

    in this work consists of a general automaton with discrete states, combined with a set of continuous dynamic equations describing the electro-mechanical behavior of the motor. One of the significant benefits of this strategy is that the model describes the motor under all possible operating conditions...

  4. Sequential motor task (Luria's Fist-Edge-Palm Test in children with benign focal epilepsy of childhood with centrotemporal spikes

    Directory of Open Access Journals (Sweden)

    Carmen Silvia Molleis Galego Miziara

    2013-06-01

    Full Text Available This study evaluated the sequential motor manual actions in children with benign focal epilepsy of childhood with centrotemporal spikes (BECTS and compares the results with matched control group, through the application of Luria's fist-edge-palm test. The children with BECTS underwent interictal single photon emission computed tomography (SPECT and School Performance Test (SPT. Significant difference occurred between the study and control groups for manual motor action through three equal and three different movements. Children with lower school performance had higher error rate in the imitation of hand gestures. Another factor significantly associated with the failure was the abnormality in SPECT. Children with BECTS showed abnormalities in the test that evaluated manual motor programming/planning. This study may suggest that the functional changes related to epileptiform activity in rolandic region interfere with the executive function in children with BECTS.

  5. Motor cortex synchronization influences the rhythm of motor performance in premanifest huntington's disease.

    Science.gov (United States)

    Casula, Elias P; Mayer, Isabella M S; Desikan, Mahalekshmi; Tabrizi, Sarah J; Rothwell, John C; Orth, Michael

    2018-03-01

    In Huntington's disease there is evidence of structural damage in the motor system, but it is still unclear how to link this to the behavioral disorder of movement. One feature of choreic movement is variable timing and coordination between sequences of actions. We postulate this results from desynchronization of neural activity in cortical motor areas. The objective of this study was to explore the ability to synchronize activity in a motor network using transcranial magnetic stimulation and to relate this to timing of motor performance. We examined synchronization in oscillatory activity of cortical motor areas in response to an external input produced by a pulse of transcranial magnetic stimulation. We combined this with EEG to compare the response of 16 presymptomatic Huntington's disease participants with 16 age-matched healthy volunteers to test whether the strength of synchronization relates to the variability of motor performance at the following 2 tasks: a grip force task and a speeded-tapping task. Phase synchronization in response to M1 stimulation was lower in Huntington's disease than healthy volunteers (P synchronization (r = -0.356; P synchronization and desynchronization could be a physiological basis for some key clinical features of Huntington's disease. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  6. Toward a more personalized motor function rehabilitation in Myotonic dystrophy type 1: The role of neuroplasticity.

    Directory of Open Access Journals (Sweden)

    Simona Portaro

    Full Text Available Myotonic dystrophy type 1 (DM1 is the most prevalent adult muscular dystrophy, often accompanied by impairments in attention, memory, visuospatial and executive functions. Given that DM1 is a multi-system disorder, it requires a multi-disciplinary approach, including effective rehabilitation programs, focusing on the central nervous system neuroplasticity, in order to develop patient-tailored rehabilitative procedures for motor function recovery. Herein, we performed a transcranial magnetic stimulation (TMS study aimed at investigating central motor conduction time, sensory-motor plasticity, and cortical excitability in 7 genetically defined DM1 patients. As compared to healthy individuals, DM1 patients showed a delayed central motor conduction time and an abnormal sensory-motor plasticity, with no alteration of cortical excitability. These findings may be useful to define patient-tailored motor rehabilitative programs.

  7. Brain infusion of α-synuclein oligomers induces motor and non-motor Parkinson's disease-like symptoms in mice.

    Science.gov (United States)

    Fortuna, Juliana T S; Gralle, Matthias; Beckman, Danielle; Neves, Fernanda S; Diniz, Luan P; Frost, Paula S; Barros-Aragão, Fernanda; Santos, Luís E; Gonçalves, Rafaella A; Romão, Luciana; Zamberlan, Daniele C; Soares, Felix A A; Braga, Carolina; Foguel, Debora; Gomes, Flávia C A; De Felice, Fernanda G; Ferreira, Sergio T; Clarke, Julia R; Figueiredo, Cláudia P

    2017-08-30

    Parkinson's disease (PD) is characterized by motor dysfunction, which is preceded by a number of non-motor symptoms including olfactory deficits. Aggregation of α-synuclein (α-syn) gives rise to Lewy bodies in dopaminergic neurons and is thought to play a central role in PD pathology. However, whether amyloid fibrils or soluble oligomers of α-syn are the main neurotoxic species in PD remains controversial. Here, we performed a single intracerebroventricular (i.c.v.) infusion of α-syn oligomers (α-SYOs) in mice and evaluated motor and non-motor symptoms. Familiar bedding and vanillin essence discrimination tasks showed that α-SYOs impaired olfactory performance of mice, and decreased TH and dopamine levels in the olfactory bulb early after infusion. The olfactory deficit persisted until 45days post-infusion (dpi). α- SYO-infused mice behaved normally in the object recognition and forced swim tests, but showed increased anxiety-like behavior in the open field and elevated plus maze tests 20 dpi. Finally, administration of α-SYOs induced late motor impairment in the pole test and rotarod paradigms, along with reduced TH and dopamine content in the caudate putamen, 45 dpi. Reduced number of TH-positive cells was also seen in the substantia nigra of α-SYO-injected mice compared to control. In conclusion, i.c.v. infusion of α-SYOs recapitulated some of PD-associated non-motor symptoms, such as increased anxiety and olfactory dysfunction, but failed to recapitulate memory impairment and depressive-like behavior typical of the disease. Moreover, α-SYOs i.c.v. administration induced motor deficits and loss of TH and dopamine levels, key features of PD. Results point to α-syn oligomers as the proximal neurotoxins responsible for early non-motor and motor deficits in PD and suggest that the i.c.v. infusion model characterized here may comprise a useful tool for identification of PD novel therapeutic targets and drug screening. Copyright © 2017 Elsevier B.V. All

  8. Detection of Abnormal Events via Optical Flow Feature Analysis

    Directory of Open Access Journals (Sweden)

    Tian Wang

    2015-03-01

    Full Text Available In this paper, a novel algorithm is proposed to detect abnormal events in video streams. The algorithm is based on the histogram of the optical flow orientation descriptor and the classification method. The details of the histogram of the optical flow orientation descriptor are illustrated for describing movement information of the global video frame or foreground frame. By combining one-class support vector machine and kernel principal component analysis methods, the abnormal events in the current frame can be detected after a learning period characterizing normal behaviors. The difference abnormal detection results are analyzed and explained. The proposed detection method is tested on benchmark datasets, then the experimental results show the effectiveness of the algorithm.

  9. Detection of Abnormal Events via Optical Flow Feature Analysis

    Science.gov (United States)

    Wang, Tian; Snoussi, Hichem

    2015-01-01

    In this paper, a novel algorithm is proposed to detect abnormal events in video streams. The algorithm is based on the histogram of the optical flow orientation descriptor and the classification method. The details of the histogram of the optical flow orientation descriptor are illustrated for describing movement information of the global video frame or foreground frame. By combining one-class support vector machine and kernel principal component analysis methods, the abnormal events in the current frame can be detected after a learning period characterizing normal behaviors. The difference abnormal detection results are analyzed and explained. The proposed detection method is tested on benchmark datasets, then the experimental results show the effectiveness of the algorithm. PMID:25811227

  10. Brain tissue- and region-specific abnormalities on volumetric MRI scans in 21 patients with Bardet-Biedl syndrome (BBS

    Directory of Open Access Journals (Sweden)

    Johnston Jennifer

    2011-07-01

    Full Text Available Abstract Background Bardet-Biedl syndrome (BBS is a heterogeneous human disorder inherited in an autosomal recessive pattern, and characterized by the primary findings of obesity, polydactyly, hypogonadism, and learning and behavioural problems. BBS mouse models have a neuroanatomical phenotype consisting of third and lateral ventriculomegaly, thinning of the cerebral cortex, and reduction in the size of the corpus striatum and hippocampus. These abnormalities raise the question of whether humans with BBS have a characteristic morphologic brain phenotype. Further, although behavioral, developmental, neurological and motor defects have been noted in patients with BBS, to date, there are limited reports of brain findings in BBS. The present study represents the largest systematic evaluation for the presence of structural brain malformations and/or progressive changes, which may contribute to these functional problems. Methods A case-control study of 21 patients, most aged 13-35 years, except for 2 patients aged 4 and 8 years, who were diagnosed with BBS by clinical criteria and genetic analysis of known BBS genes, and were evaluated by qualitative and volumetric brain MRI scans. Healthy controls were matched 3:1 by age, sex and race. Statistical analysis was performed using SAS language with SAS STAT procedures. Results All 21 patients with BBS were found to have statistically significant region- and tissue-specific patterns of brain abnormalities. There was 1 normal intracranial volume; 2 reduced white matter in all regions of the brain, but most in the occipital region; 3 preserved gray matter volume, with increased cerebral cortex volume in only the occipital lobe; 4 reduced gray matter in the subcortical regions of the brain, including the caudate, putamen and thalamus, but not in the cerebellum; and 5 increased cerebrospinal fluid volume. Conclusions There are distinct and characteristic abnormalities in tissue- and region- specific volumes

  11. Modeling an electric motor in 1-D

    Science.gov (United States)

    Butler, Thomas G.

    1991-01-01

    Quite often the dynamicist will be faced with having an electric drive motor as a link in the elastic path of a structure such that the motor's characteristics must be taken into account to properly represent the dynamics of the primary structure. He does not want to model it so accurately that he could get detailed stress and displacements in the motor proper, but just sufficiently to represent its inertia loading and elastic behavior from its mounting bolts to its drive coupling. Described here is how the rotor and stator of such a motor can be adequately modeled as a colinear pair of beams.

  12. Learning-performance distinction and memory processes for motor skills: a focused review and perspective.

    Science.gov (United States)

    Kantak, Shailesh S; Winstein, Carolee J

    2012-03-01

    Behavioral research in cognitive psychology provides evidence for an important distinction between immediate performance that accompanies practice and long-term performance that reflects the relative permanence in the capability for the practiced skill (i.e. learning). This learning-performance distinction is strikingly evident when challenging practice conditions may impair practice performance, but enhance long-term retention of motor skills. A review of motor learning studies with a specific focus on comparing differences in performance between that at the end of practice and at delayed retention suggests that the delayed retention or transfer performance is a better indicator of motor learning than the performance at (or end of) practice. This provides objective evidence for the learning-performance distinction. This behavioral evidence coupled with an understanding of the motor memory processes of encoding, consolidation and retrieval may provide insight into the putative mechanism that implements the learning-performance distinction. Here, we propose a simplistic empirically-based framework--motor behavior-memory framework--that integrates the temporal evolution of motor memory processes with the time course of practice and delayed retention frequently used in behavioral motor learning paradigms. In the context of the proposed framework, recent research has used noninvasive brain stimulation to decipher the role of each motor memory process, and specific cortical brain regions engaged in motor performance and learning. Such findings provide beginning insights into the relationship between the time course of practice-induced performance changes and motor memory processes. This in turn has promising implications for future research and practical applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Reducing Fall Risk with Combined Motor and Cognitive Training in Elderly Fallers

    Directory of Open Access Journals (Sweden)

    Francesco Barban

    2017-02-01

    Full Text Available Background. Falling is a major clinical problem in elderly people, demanding effective solutions. At present, the only effective intervention is motor training of balance and strength. Executive function-based training (EFt might be effective at preventing falls according to evidence showing a relationship between executive functions and gait abnormalities. The aim was to assess the effectiveness of a motor and a cognitive treatment developed within the EU co-funded project I-DONT-FALL. Methods. In a sample of 481 elderly people at risk of falls recruited in this multicenter randomised controlled trial, the effectiveness of a motor treatment (pure motor or mixed with EFt of 24 one-hour sessions delivered through an i-Walker with a non-motor treatment (pure EFt or control condition was evaluated. Similarly, a 24 one-hour session cognitive treatment (pure EFt or mixed with motor training, delivered through a touch-screen computer was compared with a non-cognitive treatment (pure motor or control condition. Results. Motor treatment, particularly when mixed with EFt, reduced significantly fear of falling (F(1,478 = 6.786, p = 0.009 although to a limited extent (ES −0.25 restricted to the period after intervention. Conclusions. This study suggests the effectiveness of motor treatment empowered by EFt in reducing fear of falling.

  14. Psychiatric Symptoms in Children with Gross Motor Problems

    Science.gov (United States)

    Emck, Claudia; Bosscher, Ruud J.; van Wieringen, Piet C. W.; Doreleijers, Theo; Beek, Peter J.

    2012-01-01

    Children with psychiatric disorders often demonstrate gross motor problems. This study investigates if the reverse also holds true by assessing psychiatric symptoms present in children with gross motor problems. Emotional, behavioral, and autism spectrum disorders (ASD), as well as psychosocial problems, were assessed in a sample of 40 children…

  15. Parallel changes in cortical neuron biochemistry and motor function in protein-energy malnourished adult rats.

    Science.gov (United States)

    Alaverdashvili, Mariam; Hackett, Mark J; Caine, Sally; Paterson, Phyllis G

    2017-04-01

    While protein-energy malnutrition in the adult has been reported to induce motor abnormalities and exaggerate motor deficits caused by stroke, it is not known if alterations in mature cortical neurons contribute to the functional deficits. Therefore, we explored if PEM in adult rats provoked changes in the biochemical profile of neurons in the forelimb and hindlimb regions of the motor cortex. Fourier transform infrared spectroscopic imaging using a synchrotron generated light source revealed for the first time altered lipid composition in neurons and subcellular domains (cytosol and nuclei) in a cortical layer and region-specific manner. This change measured by the area under the curve of the δ(CH 2 ) band may indicate modifications in membrane fluidity. These PEM-induced biochemical changes were associated with the development of abnormalities in forelimb use and posture. The findings of this study provide a mechanism by which PEM, if not treated, could exacerbate the course of various neurological disorders and diminish treatment efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Cognitive aspects of human motor activity: Contribution of right hemisphere and cerebellum

    Directory of Open Access Journals (Sweden)

    Sedov A. S.

    2017-09-01

    Full Text Available Background. Concepts of movement and action are not completely synonymous, but what distinguishes one from the other? Movement may be defined as stimulus- driven motor acts, while action implies realization of a specific motor goal, essential for cognitively driven behavior. Although recent clinical and neuroimaging studies have revealed some areas of the brain that mediate cognitive aspects of human motor behavior, the identification of the basic neural circuit underlying the interaction between cognitive and motor functions remains a challenge for neurophysiology and psychology. Objective. In the current study, we used functional magnetic resonance imaging (fMRI to investigate elementary cognitive aspects of human motor behavior. Design. Twenty healthy right-handed volunteers were asked to perform stimulus-driven and goal-directed movements by clenching the right hand into a fist (7 times. The cognitive component lay in anticipation of simple stimuli signals. In order to disentangle the purely motor component of stimulus-driven movements, we used the event-related (ER paradigm. FMRI was performed on a 3 Tesla Siemens Magnetom Verio MR-scanner with 32-channel head coil. Results. We have shown differences in the localization of brain activity depending on the involvement of cognitive functions. These differences testify to the role of the cerebellum and the right hemisphere in motor cognition. In particular, our results suggest that right associative cortical areas, together with the right posterolateral cerebellum (Crus I and lobule VI and basal ganglia, de ne cognitive control of motor activity, promoting a shift from a stimulus-driven to a goal-directed mode. Conclusion. These results, along with recent data from research on cerebro-cerebellar circuitry, redefine the scope of tasks for exploring the contribution of the cerebellum to diverse aspects of human motor behavior and cognition.

  17. Analysis and Stabilization of Chaos in Permanent Magnet DC Motor Driver

    Science.gov (United States)

    Tahir, Fadhil Rahma; Abdul-Hassan, Khalid M.; Abdullah, Mohammed Abbas; Pham, Viet-Thanh; Hoang, Thang Manh; Wang, Xiong

    In this paper, the nonlinear dynamics of permanent magnet (PM) DC motor drive with proportional (P) controller have been investigated. The drive system shows different dynamical behaviors; periodic, quasi-periodic, and chaotic behaviors, and those are characterized by using bifurcation diagram, phase portrait, and time series. The stability analysis of period-1 behavior is studied by using Filippov’s method, the analytic results show good agreement with simulation ones. Then, the stabilization of chaos to fixed point is carried out by using the sliding mode control (SMC). In addition, experimentally the nonlinear dynamics and the proposed stabilization method to PM DC motor drive system have been achieved by using a microcontroller. For the first time, it is noted that when the system is in chaotic dynamics, the vibration of the motor is increased approximately 400% compared with the system in periodic dynamical behavior.

  18. Aberrant cerebellar connectivity in motor and association networks in schizophrenia

    Directory of Open Access Journals (Sweden)

    Ann K. Shinn

    2015-03-01

    Full Text Available Schizophrenia is a devastating illness characterized by disturbances in multiple domains. The cerebellum is involved in both motor and non-motor functions, and the cognitive dysmetria and dysmetria of thought models propose that abnormalities of the cerebellum may contribute to schizophrenia signs and symptoms. The cerebellum and cerebral cortex are reciprocally connected via a modular, closed-loop network architecture, but few schizophrenia neuroimaging studies have taken into account the topographical and functional heterogeneity of the cerebellum. In this study, using a previously defined 17-network cerebral cortical parcellation system as the basis for our functional connectivity seeds, we systematically investigated connectivity abnormalities within the cerebellum of 44 schizophrenia patients and 28 healthy control participants. We found selective alterations in cerebro-cerebellar functional connectivity. Specifically, schizophrenia patients showed decreased cerebro-cerebellar functional connectivity in higher level association networks (ventral attention, salience, control, and default mode networks relative to healthy control participants. Schizophrenia patients also showed increased cerebro-cerebellar connectivity in somatomotor and default mode networks, with the latter showing no overlap with the regions found to be hypoconnected within the same default mode network. Finally, we found evidence to suggest that somatomotor and default mode networks may be inappropriately linked in schizophrenia. The relationship of these dysconnectivities to schizophrenia symptoms, such as neurological soft signs and altered sense of agency, is discussed. We conclude that the cerebellum ought to be considered for analysis in all future studies of network abnormalities in SZ, and further suggest the cerebellum as a potential target for further elucidation, and possibly treatment, of the underlying mechanisms and network abnormalities producing symptoms of

  19. Convergence of pattern generator outputs on a common mechanism of diaphragm motor unit recruitment.

    Science.gov (United States)

    Mantilla, Carlos B; Seven, Yasin B; Sieck, Gary C

    2014-01-01

    Motor units are the final element of neuromotor control. In manner analogous to the organization of neuromotor control in other skeletal muscles, diaphragm motor units comprise phrenic motoneurons located in the cervical spinal cord that innervate the diaphragm muscle, the main inspiratory muscle in mammals. Diaphragm motor units play a primary role in sustaining ventilation but are also active in other nonventilatory behaviors, including coughing, sneezing, vomiting, defecation, and parturition. Diaphragm muscle fibers comprise all fiber types. Thus, diaphragm motor units display substantial differences in contractile and fatigue properties, but importantly, properties of the motoneuron and muscle fibers within a motor unit are matched. As in other skeletal muscles, diaphragm motor units are recruited in order such that motor units that display greater fatigue resistance are recruited earlier and more often than more fatigable motor units. The properties of the motor unit population are critical determinants of the function of a skeletal muscle across the range of possible motor tasks. Accordingly, fatigue-resistant motor units are sufficient to generate the forces necessary for ventilatory behaviors, whereas more fatigable units are only activated during expulsive behaviors important for airway clearance. Neuromotor control of diaphragm motor units may reflect selective inputs from distinct pattern generators distributed according to the motor unit properties necessary to accomplish these different motor tasks. In contrast, widely distributed inputs to phrenic motoneurons from various pattern generators (e.g., for breathing, coughing, or vocalization) would dictate recruitment order based on intrinsic electrophysiological properties. © 2014 Elsevier B.V. All rights reserved.

  20. The Case for Motor Involvement in Perceiving Conspecifics

    Science.gov (United States)

    Wilson, Margaret; Knoblich, Gunther

    2005-01-01

    Perceiving other people's behaviors activates imitative motor plans in the perceiver, but there is disagreement as to the function of this activation. In contrast to other recent proposals (e.g., that it subserves overt imitation, identification and understanding of actions, or working memory), here it is argued that imitative motor activation…

  1. Differentiating Children with Attention-Deficit/Hyperactivity Disorder, Conduct Disorder, Learning Disabilities and Autistic Spectrum Disorders by Means of Their Motor Behavior Characteristics

    Science.gov (United States)

    Efstratopoulou, Maria; Janssen, Rianne; Simons, Johan

    2012-01-01

    The study was designed to investigate the discriminant validity of the Motor Behavior Checklist (MBC) for distinguishing four group of children independently classified with Attention-Deficit/Hyperactivity Disorder, (ADHD; N = 22), Conduct Disorder (CD; N = 17), Learning Disabilities (LD; N = 24) and Autistic Spectrum Disorders (ASD; N = 20).…

  2. Online maintenance of sensory and motor representations: effects on corticospinal excitability.

    NARCIS (Netherlands)

    Hurk, P. van den; Mars, R.B.; Elswijk, G.A.F. van; Hegeman, J.; Pasman, J.W.; Bloem, B.R.; Toni, I.

    2007-01-01

    Flexible behavior requires the ability to delay a response until it is appropriate. This can be achieved by holding either a sensory or a motor representation online. Here we assess whether maintenance of sensory or motor material drives the motor system to different functional states, as indexed by

  3. Online maintenance of sensory and motor representations: Effects on corticospinal excitability

    NARCIS (Netherlands)

    Hurk, P.A.M. van den; Mars, R.B.; Elswijk, G.A.F. van; Hegeman, J.; Pasman, J.W.; Bloem, B.R.; Toni, I.

    2007-01-01

    Flexible behavior requires the ability to delay a response until it is appropriate. This can be achieved by holding either a sensory or a motor representation online. Here we assess whether maintenance of sensory or motor material drives the motor system to different functional states, as indexed by

  4. Cocaine Self-Administration Experience Induces Pathological Phasic Accumbens Dopamine Signals and Abnormal Incentive Behaviors in Drug-Abstinent Rats.

    Science.gov (United States)

    Saddoris, Michael P; Wang, Xuefei; Sugam, Jonathan A; Carelli, Regina M

    2016-01-06

    Chronic exposure to drugs of abuse is linked to long-lasting alterations in the function of limbic system structures, including the nucleus accumbens (NAc). Although cocaine acts via dopaminergic mechanisms within the NAc, less is known about whether phasic dopamine (DA) signaling in the NAc is altered in animals with cocaine self-administration experience or if these animals learn and interact normally with stimuli in their environment. Here, separate groups of rats self-administered either intravenous cocaine or water to a receptacle (controls), followed by 30 d of enforced abstinence. Next, all rats learned an appetitive Pavlovian discrimination and voltammetric recordings of real-time DA release were taken in either the NAc core or shell of cocaine and control subjects. Cocaine experience differentially impaired DA signaling in the core and shell relative to controls. Although phasic DA signals in the shell were essentially abolished for all stimuli, in the core, DA did not distinguish between cues and was abnormally biased toward reward delivery. Further, cocaine rats were unable to learn higher-order associations and even altered simple conditioned approach behaviors, displaying enhanced preoccupation with cue-associated stimuli (sign-tracking; ST) but diminished time at the food cup awaiting reward delivery (goal-tracking). Critically, whereas control DA signaling correlated with ST behaviors, cocaine experience abolished this relationship. These findings show that cocaine has persistent, differential, and pathological effects on both DA signaling and DA-dependent behaviors and suggest that psychostimulant experience may remodel the very circuits that bias organisms toward repeated relapse. Relapsing to drug abuse despite periods of abstinence and sincere attempts to quit is one of the most pernicious facets of addiction. Unfortunately, little is known about how the dopamine (DA) system functions after periods of drug abstinence, particularly its role in

  5. Cocaine Self-Administration Experience Induces Pathological Phasic Accumbens Dopamine Signals and Abnormal Incentive Behaviors in Drug-Abstinent Rats

    Science.gov (United States)

    Wang, Xuefei; Sugam, Jonathan A.; Carelli, Regina M.

    2016-01-01

    Chronic exposure to drugs of abuse is linked to long-lasting alterations in the function of limbic system structures, including the nucleus accumbens (NAc). Although cocaine acts via dopaminergic mechanisms within the NAc, less is known about whether phasic dopamine (DA) signaling in the NAc is altered in animals with cocaine self-administration experience or if these animals learn and interact normally with stimuli in their environment. Here, separate groups of rats self-administered either intravenous cocaine or water to a receptacle (controls), followed by 30 d of enforced abstinence. Next, all rats learned an appetitive Pavlovian discrimination and voltammetric recordings of real-time DA release were taken in either the NAc core or shell of cocaine and control subjects. Cocaine experience differentially impaired DA signaling in the core and shell relative to controls. Although phasic DA signals in the shell were essentially abolished for all stimuli, in the core, DA did not distinguish between cues and was abnormally biased toward reward delivery. Further, cocaine rats were unable to learn higher-order associations and even altered simple conditioned approach behaviors, displaying enhanced preoccupation with cue-associated stimuli (sign-tracking; ST) but diminished time at the food cup awaiting reward delivery (goal-tracking). Critically, whereas control DA signaling correlated with ST behaviors, cocaine experience abolished this relationship. These findings show that cocaine has persistent, differential, and pathological effects on both DA signaling and DA-dependent behaviors and suggest that psychostimulant experience may remodel the very circuits that bias organisms toward repeated relapse. SIGNIFICANCE STATEMENT Relapsing to drug abuse despite periods of abstinence and sincere attempts to quit is one of the most pernicious facets of addiction. Unfortunately, little is known about how the dopamine (DA) system functions after periods of drug abstinence

  6. Imaging of muscular denervation secondary to motor cranial nerve dysfunction

    International Nuclear Information System (INIS)

    Connor, S.E.J.; Chaudhary, N.; Fareedi, S.; Woo, E.K.

    2006-01-01

    The effects of motor cranial nerve dysfunction on the computed tomography (CT) and magnetic resonance imaging (MRI) appearances of head and neck muscles are reviewed. Patterns of denervation changes are described and illustrated for V, VII, X, XI and XII cranial nerves. Recognition of the range of imaging manifestations, including the temporal changes in muscular appearances and associated muscular grafting or compensatory hypertrophy, will avoid misinterpretation as local disease. It will also prompt the radiologist to search for underlying cranial nerve pathology, which may be clinically occult. The relevant cranial nerve motor division anatomy will be described to enable a focussed search for such a structural abnormality

  7. Imaging of muscular denervation secondary to motor cranial nerve dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Connor, S.E.J. [Neuroradiology Department, Kings College Hospital, Denmark Hill, London SE5 9RS (United Kingdom)]. E-mail: sejconnor@tiscali.co.uk; Chaudhary, N. [Neuroradiology Department, Kings College Hospital, Denmark Hill, London SE5 9RS (United Kingdom); Fareedi, S. [Neuroradiology Department, Kings College Hospital, Denmark Hill, London SE5 9RS (United Kingdom); Woo, E.K. [Neuroradiology Department, Kings College Hospital, Denmark Hill, London SE5 9RS (United Kingdom)

    2006-08-15

    The effects of motor cranial nerve dysfunction on the computed tomography (CT) and magnetic resonance imaging (MRI) appearances of head and neck muscles are reviewed. Patterns of denervation changes are described and illustrated for V, VII, X, XI and XII cranial nerves. Recognition of the range of imaging manifestations, including the temporal changes in muscular appearances and associated muscular grafting or compensatory hypertrophy, will avoid misinterpretation as local disease. It will also prompt the radiologist to search for underlying cranial nerve pathology, which may be clinically occult. The relevant cranial nerve motor division anatomy will be described to enable a focussed search for such a structural abnormality.

  8. The frames of reference of the motor-visual aftereffect.

    Directory of Open Access Journals (Sweden)

    Guido Barchiesi

    Full Text Available Repeatedly performing similar motor acts produces short-term adaptive changes in the agent's motor system. One striking use-dependent effect is the motor-to-visual aftereffect (MVA, a short-lasting negative bias in the conceptual categorization of visually-presented training-related motor behavior. The MVA is considered the behavioral counterpart of the adaptation of visuomotor neurons that code for congruent executed and observed motor acts. Here we characterize which features of the motor training generate the MVA, along 3 main dimensions: a the relative role of motor acts vs. the semantics of the task-set; b the role of muscular-specific vs. goal-specific training and c the spatial frame of reference with respect to the whole body. Participants were asked to repeatedly push or pull some small objects in a bowl as we varied different components of adapting actions across three experiments. The results show that a the semantic value of the instructions given to the participant have no role in generating the MVA, which depends only on the motor meaning of the training act; b both intrinsic body movements and extrinsic action goals contribute simultaneously to the genesis of the MVA and c changes in the relative position of the acting hand compared to the observed hand, when they do not involve changes to the movement performed or to the action meaning, do not have an effect on the MVA. In these series of experiments we confirm that recent motor experiences produce measurable changes in how humans see each others' actions. The MVA is an exquisite motor effect generated by two distinct motor sub-systems, one operating in an intrinsic, muscular specific, frame of reference and the other operating in an extrinsic motor space.

  9. Factors affecting development of motor skills in extremely low birth weight children.

    Science.gov (United States)

    O'Connor, Anna R; Birch, Eileen E; Spencer, Rand

    2009-01-01

    The aim of this study is to analyze the impact of ophthalmic and neonatal factors on motor development in extremely low birth weight (ELBW) children. Sixty-four ELBW children at least 3 years of age were recruited. Visual acuity (VA) was assessed using the Teller acuity cards (TACs) and a letter test, if possible. A validated questionnaire assessing 25 fine (part A) and 20 gross motor (part B) skills was administered to the parents. Data were collected on retinopathy of prematurity (ROP) zone, intraventricular haemorrhage (IVH), length of stay in hospital, and number of days on oxygen. Abnormal TAC acuity was associated with significantly lower scores on both parts A and B (part A: 21.5 versus 11.8, p development, particularly fine motor development.

  10. Innervation zones of fasciculating motor units: observations by a linear electrode array.

    Science.gov (United States)

    Jahanmiri-Nezhad, Faezeh; Barkhaus, Paul E; Rymer, William Z; Zhou, Ping

    2015-01-01

    This study examines the innervation zone (IZ) in the biceps brachii muscle in healthy subjects and those with amyotrophic lateral sclerosis (ALS) using a 20-channel linear electromyogram (EMG) electrode array. Raster plots of individual waveform potentials were studied to estimate the motor unit IZ. While this work mainly focused on fasciculation potentials (FPs), a limited number of motor unit potentials (MUPs) from voluntary activity of 12 healthy and seven ALS subjects were also examined. Abnormal propagation of MUPs and scattered IZs were observed in fasciculating units, compared with voluntarily activated MUPs in healthy and ALS subjects. These findings can be related to muscle fiber reinnervation following motor neuron degeneration in ALS and the different origin sites of FPs compared with voluntary MUPs.

  11. Research on combustion instability and application to solid propellant rocket motors. II.

    Science.gov (United States)

    Culick, F. E. C.

    1972-01-01

    Review of the current state of analyses of combustion instability in solid-propellant rocket motors, citing appropriate measurements and observations. The work discussed has become increasingly important, both for the interpretation of laboratory data and for predicting the transient behavior of disturbances in full-scale motors. Two central questions are considered - namely, linear stability and nonlinear behavior. Several classes of problems are discussed as special cases of a general approach to the analysis of combustion instability. Application to motors, and particularly the limitations presently understood, are stressed.

  12. Experimental device for measuring the dynamic properties of diaphragm motors

    Science.gov (United States)

    Fojtášek, Kamil; Dvořák, Lukáš; Mejzlík, Jan

    The subject of this paper is to design and description of the experimental device for the determination dynamic properties of diaphragm pneumatic motors. These motors are structurally quite different from conventional pneumatic linear cylinders. The working fluid is typically compressed air, the piston of motor is replaced by an elastic part and during the working cycle there is a contact of two elastic environments. In the manufacturers catalogs of these motors are not given any working characteristics. Description of the dynamic behavior of diaphragm motor will be used for verification of mathematical models.

  13. Abnormal mitochondrial transport and morphology as early pathological changes in human models of spinal muscular atrophy

    Directory of Open Access Journals (Sweden)

    Chong-Chong Xu

    2016-01-01

    Full Text Available Spinal muscular atrophy (SMA, characterized by specific degeneration of spinal motor neurons, is caused by mutations in the survival of motor neuron 1, telomeric (SMN1 gene and subsequent decreased levels of functional SMN. How the deficiency of SMN, a ubiquitously expressed protein, leads to spinal motor neuron-specific degeneration in individuals affected by SMA remains unknown. In this study, we examined the role of SMN in mitochondrial axonal transport and morphology in human motor neurons by generating SMA type 1 patient-specific induced pluripotent stem cells (iPSCs and differentiating these cells into spinal motor neurons. The initial specification of spinal motor neurons was not affected, but these SMA spinal motor neurons specifically degenerated following long-term culture. Moreover, at an early stage in SMA spinal motor neurons, but not in SMA forebrain neurons, the number of mitochondria, mitochondrial area and mitochondrial transport were significantly reduced in axons. Knocking down of SMN expression led to similar mitochondrial defects in spinal motor neurons derived from human embryonic stem cells, confirming that SMN deficiency results in impaired mitochondrial dynamics. Finally, the application of N-acetylcysteine (NAC mitigated the impairment in mitochondrial transport and morphology and rescued motor neuron degeneration in SMA long-term cultures. Furthermore, NAC ameliorated the reduction in mitochondrial membrane potential in SMA spinal motor neurons, suggesting that NAC might rescue apoptosis and motor neuron degeneration by improving mitochondrial health. Overall, our data demonstrate that SMN deficiency results in abnormal mitochondrial transport and morphology and a subsequent reduction in mitochondrial health, which are implicated in the specific degeneration of spinal motor neurons in SMA.

  14. Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context. Experiments and an Information-Theoretic Ambiguity Model.

    Science.gov (United States)

    Grau-Moya, Jordi; Ortega, Pedro A; Braun, Daniel A

    2016-01-01

    A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects' choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects' choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain.

  15. Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context. Experiments and an Information-Theoretic Ambiguity Model.

    Directory of Open Access Journals (Sweden)

    Jordi Grau-Moya

    Full Text Available A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects' choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects' choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain.

  16. Decision-Making under Ambiguity Is Modulated by Visual Framing, but Not by Motor vs. Non-Motor Context. Experiments and an Information-Theoretic Ambiguity Model

    Science.gov (United States)

    Grau-Moya, Jordi; Ortega, Pedro A.; Braun, Daniel A.

    2016-01-01

    A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects’ choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects’ choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain. PMID:27124723

  17. Morphometric Brain Abnormalities in Boys with Conduct Disorder

    Science.gov (United States)

    Huebner, Thomas; Vloet, Timo D.; Marx, Ivo; Konrad, Kerstin; Fink, Gereon R.; Herpertz, Sabine C.; Herpertz-Dahlmann, Beate

    2008-01-01

    Conduct disorder (CD) is associated with antisocial personality behavior that violates the basic rights of others. Results, on examining the structural brain aberrations in boys' CD, show that boys with CD and cormobid attention-deficit/hyperactivity disorder showed abnormalities in frontolimbic areas that could contribute to antisocial…

  18. Neurological abnormalities in recent-onset schizophrenia and Asperger-Syndrome

    Directory of Open Access Journals (Sweden)

    Dusan eHirjak

    2014-08-01

    Full Text Available Background: Neurological abnormalities including a variety of subtle deficits such as discrete impairments in sensory integration, motor coordination, and sequencing of complex motor acts are frequently found in patients with schizophrenia and commonly referred to as neurological soft signs (NSS. Asperger-Syndrome (AS is characterized by sensory-motor difficulties as well. However, the question whether the two disorders share a common or a disease-specific pattern of NSS remains unresolved. Method: A total of 78 age- and education-matched participants (26 patients with recent-onset schizophrenia, 26 individuals with AS, and 26 healthy controls were recruited for the study. Analyses of covariance (ANCOVAs, with age, years of education and medication included as covariates, were used to examine group differences on total NSS and the five subscale scores. Discriminant analyses were employed to identify the NSS subscales that maximally discriminate between the three groups. Results: Significant differences among the three groups were found in NSS total score and on the five NSS subscales. The two clinical groups differed significantly in the NSS subscale „motor coordination. The correct discriminant rate between patients with schizophrenia and individuals with AS was 61.5%. The correct discriminant rate was 92.3% between individuals with AS and healthy controls, and 80.8% between schizophrenia patients and healthy controls, respectively. Conclusions: Our findings provide new evidence for the presence of NSS in AS and lend further support to previously reported difficulties in movement control in this disorder. According to the present results, schizophrenia and AS seem to be characterized by a different pattern of NSS.

  19. Correlations between computerized tomography of the head and motor developmental disturbances of children with cerebral palsy

    International Nuclear Information System (INIS)

    Chen, Yu-Herng

    1981-01-01

    Two hundred and eighty-two children with cerebral palsy (C.P.) and thirty-seven normal children were studied by computerized tomography (C.T.) of the head for finding out the correlations between the organic damage of the brain and the motor developmental disturbance. The abnormal findings of C.T. were: enlargement of the ventricular system, high density area, low density area and porencephalus, enlargement of the sulcus and anomaly of the medial structure. Enlargement of the ventricular system seemed to have correlation with spasticity; the portion and the extent of the enlargement corresponded to the affected extremities and the severity of the spasticity. Children of other types also showed various abnormal C.T. findings but, in general, less than that of spastic types. The prognosis of the motor development of C.P. children cannot be predicted by serial C.T. examinations strictly, because early treatment could cause improvement to that of these children. However, it is of worthy notice that C.T. is an effective method of helping to diagnose the motor developmental disturbance in earlier childhood. (author)

  20. Spinal cord stimulation for the treatment of abnormal posture and gait disorder in patients with Parkinson's disease.

    Science.gov (United States)

    Agari, Takashi; Date, Isao

    2012-01-01

    Patients with advanced Parkinson's disease (PD) often present with axial symptoms, including abnormal posture, postural instability, and gait disorder. Although spinal cord stimulation (SCS) is effective for pain, little is known about the effect of SCS on motor function in PD patients. The present study investigated the effect of SCS on posture and gait in 15 PD patients, 5 men and 10 women aged 63-79 years (mean 71.1 years), with low back pain and leg pain who received SCS. A visual analog scale (VAS) was used for pain evaluation pre- and postoperatively. The Unified Parkinson's Disease Rating Scale, Timed Up and Go tests, and Timed 10-Meter Walk tests were used to evaluate motor function and activities of daily living of patients. Preoperative mean VAS score was 8.9 (range 7.8-10), which showed significant postoperative improvement at 3 months to mean VAS score of 2.0 (range 0-3.3). The improvements in VAS scores persisted at 12 months after surgery with mean VAS score of 2.3 (range 0-4). Posture and postural stability motor subscores were improved at 3 months after SCS, and gait had significantly improved at 3 months and 1 year after surgery. Timed 10-Meter Walk tests also demonstrated that patient gait was significantly improved at 3 months and 12 months after surgery. Most advanced stage PD patients suffer considerable pain that causes abnormal posture and gait disturbance. SCS is expected to lead to both amelioration of pain and improvement of motor function in such patients.

  1. A Direct Comparison of Self-Injurious and Stereotyped Motor Behavior Between Preschool-Aged Children With and Without Developmental Delays.

    Science.gov (United States)

    Hoch, John; Spofford, Lisa; Dimian, Adele; Tervo, Raymond; MacLean, William E; Symons, Frank J

    2016-06-01

    To compare the prevalence of self-injurious behavior (SIB) and stereotyped motor behavior (STY) of preschool-aged children with developmental delays (DD group) and their peers without developmental delays (TD group) using a standardized caregiver report scale. The Repetitive Behavior Scale-Revised was completed by caregivers of children with developmental delays and their peers without developmental delays. Frequency of occurrence and severity ratings for SIB and STY were compared between groups. SIB and STY were reported more often and at a greater level of severity in the DD group. Older chronological age was associated with more severe STY in the DD group but not the TD group. Gender was not related to STY or SIB for either group. Differences in STY and SIB were evident between preschoolers with and without DD. Findings are discussed from developmental and behavioral psychology perspectives regarding the expression of repetitive behavior in developmentally at-risk pediatric populations. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Therapy induces widespread reorganization of motor cortex after complete spinal transection that supports motor recovery.

    Science.gov (United States)

    Ganzer, Patrick D; Manohar, Anitha; Shumsky, Jed S; Moxon, Karen A

    2016-05-01

    Reorganization of the somatosensory system and its relationship to functional recovery after spinal cord injury (SCI) has been well studied. However, little is known about the impact of SCI on organization of the motor system. Recent studies suggest that step-training paradigms in combination with spinal stimulation, either electrically or through pharmacology, are more effective than step training alone at inducing recovery and that reorganization of descending corticospinal circuits is necessary. However, simpler, passive exercise combined with pharmacotherapy has also shown functional improvement after SCI and reorganization of, at least, the sensory cortex. In this study we assessed the effect of passive exercise and serotonergic (5-HT) pharmacological therapies on behavioral recovery and organization of the motor cortex. We compared the effects of passive hindlimb bike exercise to bike exercise combined with daily injections of 5-HT agonists in a rat model of complete mid-thoracic transection. 5-HT pharmacotherapy combined with bike exercise allowed the animals to achieve unassisted weight support in the open field. This combination of therapies also produced extensive expansion of the axial trunk motor cortex into the deafferented hindlimb motor cortex and, surprisingly, reorganization within the caudal and even the rostral forelimb motor cortex areas. The extent of the axial trunk expansion was correlated to improvement in behavioral recovery of hindlimbs during open field locomotion, including weight support. From a translational perspective, these data suggest a rationale for developing and optimizing cost-effective, non-invasive, pharmacological and passive exercise regimes to promote plasticity that supports restoration of movement after spinal cord injury. Copyright © 2016. Published by Elsevier Inc.

  3. Behavioral Abnormalities and Circuit Defects in the Basal Ganglia of a Mouse Model of 16p11.2 Deletion Syndrome

    Directory of Open Access Journals (Sweden)

    Thomas Portmann

    2014-05-01

    Full Text Available A deletion on human chromosome 16p11.2 is associated with autism spectrum disorders. We deleted the syntenic region on mouse chromosome 7F3. MRI and high-throughput single-cell transcriptomics revealed anatomical and cellular abnormalities, particularly in cortex and striatum of juvenile mutant mice (16p11+/−. We found elevated numbers of striatal medium spiny neurons (MSNs expressing the dopamine D2 receptor (Drd2+ and fewer dopamine-sensitive (Drd1+ neurons in deep layers of cortex. Electrophysiological recordings of Drd2+ MSN revealed synaptic defects, suggesting abnormal basal ganglia circuitry function in 16p11+/− mice. This is further supported by behavioral experiments showing hyperactivity, circling, and deficits in movement control. Strikingly, 16p11+/− mice showed a complete lack of habituation reminiscent of what is observed in some autistic individuals. Our findings unveil a fundamental role of genes affected by the 16p11.2 deletion in establishing the basal ganglia circuitry and provide insights in the pathophysiology of autism.

  4. Ravages of Diabetes on Gastrointestinal Sensory-Motor Function: Implications for Pathophysiology and Treatment.

    Science.gov (United States)

    Gregersen, Hans; Liao, Donghua; Drewes, Anne Mohr; Drewes, Asbjørn Mohr; Zhao, Jingbo

    2016-02-01

    Symptoms related to functional and sensory abnormalities are frequently encountered in patients with diabetes mellitus. Most symptoms are associated with impaired gastric and intestinal function. In this review, we discuss basic concepts of sensory-motor dysfunction and how they relate to clinical findings and gastrointestinal abnormalities that are commonly seen in diabetes. In addition, we review techniques that are available for investigating the autonomic nervous system, neuroimaging and neurophysiology of sensory-motor function. Such technological advances, while not readily available in the clinical setting, may facilitate stratification and individualization of therapy in diabetic patients in the future. Unraveling the structural, mechanical, and sensory remodeling in diabetes disease is based on a multidisciplinary approach that can bridge the knowledge from a variety of scientific disciplines. The final goal is to increase the understanding of the damage to GI structures and to sensory processing of symptoms, in order to assist clinicians with developing an optimal mechanics based treatment.

  5. Rotating bouncing disks, tossing pizza dough, and the behavior of ultrasonic motors

    Science.gov (United States)

    Liu, Kuang-Chen; Friend, James; Yeo, Leslie

    2009-10-01

    Pizza tossing and certain forms of standing-wave ultrasonic motors (SWUMs) share a similar process for converting reciprocating input into continuous rotary motion. We show that the key features of this motion conversion process such as collision, separation and friction coupling are captured by the dynamics of a disk bouncing on a vibrating platform. The model shows that the linear or helical hand motions commonly used by pizza chefs and dough-toss performers for single tosses maximize energy efficiency and the dough’s airborne rotational speed; on the other hand, the semielliptical hand motions used for multiple tosses make it easier to maintain dough rotation at the maximum speed. The system’s bifurcation diagram and basins of attraction also provide a physical basis for understanding the peculiar behavior of SWUMs and provide a means to design them. The model is able to explain the apparently chaotic oscillations that occur in SWUMs and predict the observed trends in steady-state speed and stall torque as preload is increased.

  6. Comparison of two motor subtype classifications in de novo Parkinson's disease.

    Science.gov (United States)

    Choi, Seong-Min; Kim, Byeong C; Cho, Bang-Hoon; Kang, Kyung Wook; Choi, Kang-Ho; Kim, Joon-Tae; Lee, Seung-Han; Park, Man-Seok; Kim, Myeong-Kyu; Cho, Ki-Hyun

    2018-04-18

    Clinical subtypes of Parkinson's disease (PD) have been empirically defined based on the prominent motor symptoms. The aim of this study was to compare the prevalence of non-motor symptoms across PD motor subtypes in patients with PD. A total of 192 patients with de novo PD were included. The patients were classified into the tremor-dominant/mixed/akinetic-rigid (TD/mixed/AR) and tremor-dominant/mixed/postural instability and gait disturbance (TD/mixed/PIGD) subtypes, according to previous reports. In the TD/mixed/AR classification, scores for scales related to motor symptoms and activities of daily living (ADL) were significantly different among the groups, and patients with the AR subtype demonstrated more severe scores than patients with the TD subtype. In the TD/mixed/PIGD classification, age, age at symptom onset, scores on motor-related scales, ADL, and non-motor symptoms were significantly different among the groups. Scores including the modified Hoehn and Yahr stages, the motor and ADL subscores of the Unified Parkinson's Disease Rating Scale, the Beck Depression Inventory, and the Non-Motor Symptom Assessment Scale were significantly different after adjustments for age and age at symptom onset, and patients with the PIGD subtype obtained more severe scores than patients with the TD subtype. The TD/mixed/PIGD classification seems to be more suitable for identifying non-motor abnormalities than the TD/mixed/AR classification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Generalized motor abilities and timing behavior in children with specific language impairment.

    Science.gov (United States)

    Zelaznik, Howard N; Goffman, Lisa

    2010-04-01

    To examine whether children with specific language impairment (SLI) differ from normally developing peers in motor skills, especially those skills related to timing. Standard measures of gross and fine motor development were obtained. Furthermore, finger and hand movements were recorded while children engaged in 4 different timing tasks, including tapping and drawing circles in time with a metronome or a visual target. Fourteen children with SLI (age 6 to 8 years) and 14 age-matched peers who were typically developing participated. As expected, children with SLI showed poorer performance on a standardized test of gross and fine motor skill than did their normally developing peers. However, timing skill in the manual domain was equivalent to that seen in typically developing children. Consistent with earlier findings, relatively poor gross and fine motor performance is observed in children with SLI. Surprisingly, rhythmic timing is spared.

  8. Sleep and Sex: What Can Go Wrong? A Review of the Literature on Sleep Related Disorders and Abnormal Sexual Behaviors and Experiences

    Science.gov (United States)

    Schenck, Carlos H.; Arnulf, Isabelle; Mahowald, Mark W.

    2007-01-01

    Study Objectives: To formulate the first classification of sleep related disorders and abnormal sexual behaviors and experiences. Design: A computerized literature search was conducted, and other sources, such as textbooks, were searched. Results: Many categories of sleep related disorders were represented in the classification: parasomnias (confusional arousals/sleepwalking, with or without obstructive sleep apnea; REM sleep behavior disorder); sleep related seizures; Kleine-Levin syndrome (KLS); severe chronic insomnia; restless legs syndrome; narcolepsy; sleep exacerbation of persistent sexual arousal syndrome; sleep related painful erections; sleep related dissociative disorders; nocturnal psychotic disorders; miscellaneous states. Kleine-Levin syndrome (78 cases) and parasomnias (31 cases) were most frequently reported. Parasomnias and sleep related seizures had overlapping and divergent clinical features. Thirty-one cases of parasomnias (25 males; mean age, 32 years) and 7 cases of sleep related seizures (4 males; mean age, 38 years) were identified. A full range of sleep related sexual behaviors with self and/or bed partners or others were reported, including masturbation, sexual vocalizations, fondling, sexual intercourse with climax, sexual assault/rape, ictal sexual hyperarousal, ictal orgasm, and ictal automatism. Adverse physical and/or psychosocial effects from the sleepsex were present in all parasomnia and sleep related seizure cases, but pleasurable effects were reported by 5 bed partners and by 3 patients with sleep related seizures. Forensic consequences were common, occurring in 35.5% (11/31) of parasomnia cases, with most (9/11) involving minors. All parasomnias cases reported amnesia for the sleepsex, in contrast to 28.6% (2/7) of sleep related seizure cases. Polysomnography (without penile tumescence monitoring), performed in 26 of 31 parasomnia cases, documented sexual moaning from slow wave sleep in 3 cases and sexual intercourse during

  9. Unsupervised behaviour-specific dictionary learning for abnormal event detection

    DEFF Research Database (Denmark)

    Ren, Huamin; Liu, Weifeng; Olsen, Søren Ingvor

    2015-01-01

    the training data is only a small proportion of the surveillance data. Therefore, we propose behavior-specific dictionaries (BSD) through unsupervised learning, pursuing atoms from the same type of behavior to represent one behavior dictionary. To further improve the dictionary by introducing information from...... potential infrequent normal patterns, we refine the dictionary by searching ‘missed atoms’ that have compact coefficients. Experimental results show that our BSD algorithm outperforms state-of-the-art dictionaries in abnormal event detection on the public UCSD dataset. Moreover, BSD has less false alarms...

  10. Dynamic modeling and characteristics analysis of a modal-independent linear ultrasonic motor.

    Science.gov (United States)

    Li, Xiang; Yao, Zhiyuan; Zhou, Shengli; Lv, Qibao; Liu, Zhen

    2016-12-01

    In this paper, an integrated model is developed to analyze the fundamental characteristics of a modal-independent linear ultrasonic motor with double piezoelectric vibrators. The energy method is used to model the dynamics of the two piezoelectric vibrators. The interface forces are coupled into the dynamic equations of the two vibrators and the moving platform, forming a whole machine model of the motor. The behavior of the force transmission of the motor is analyzed via the resulting model to understand the drive mechanism. In particular, the relative contact length is proposed to describe the intermittent contact characteristic between the stator and the mover, and its role in evaluating motor performance is discussed. The relations between the output speed and various inputs to the motor and the start-stop transients of the motor are analyzed by numerical simulations, which are validated by experiments. Furthermore, the dead-zone behavior is predicted and clarified analytically using the proposed model, which is also observed in experiments. These results are useful for designing servo control scheme for the motor. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Evaluation of tributyltin toxicity in Chinese rare minnow larvae by abnormal behavior, energy metabolism and endoplasmic reticulum stress.

    Science.gov (United States)

    Li, Zhi-Hua; Li, Ping

    2015-02-05

    Tributyltin (TBT) is a ubiquitous contaminant in aquatic environment, but the detailed mechanisms underlying the toxicity of TBT have not been fully understood. In this study, the effects of TBT on behavior, energy metabolism and endoplasmic reticulum (ER) stress were investigated by using Chinese rare minnow larvae. Fish larvae were exposed at sublethal concentrations of TBT (100, 400 and 800 ng/L) for 7 days. Compared with the control, energy metabolic parameters (RNA/DNA ratio, Na(+)-K(+)-ATPase) were significantly inhibited in fish exposed at highest concentration (800 ng/L), as well as abnormal behaviors observed. Moreover, we found that the PERK (PKR-like ER kinase)-eIF2α (eukaryotic translation initiation factor 2α) pathway, as the main branch was activated by TBT exposure in fish larvae. In short, TBT-induced physiological, biochemical and molecular responses in fish larvae were reflected in parameters measured in this study, which suggest that these biomarkers could be used as potential indicators for monitoring organotin compounds present in aquatic environment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Classification of esophageal motor findings in gastro-esophageal reflux disease: Conclusions from an international consensus group.

    Science.gov (United States)

    Gyawali, C P; Roman, S; Bredenoord, A J; Fox, M; Keller, J; Pandolfino, J E; Sifrim, D; Tatum, R; Yadlapati, R; Savarino, E

    2017-12-01

    High-resolution manometry (HRM) has resulted in new revelations regarding the pathophysiology of gastro-esophageal reflux disease (GERD). The impact of new HRM motor paradigms on reflux burden needs further definition, leading to a modern approach to motor testing in GERD. Focused literature searches were conducted, evaluating pathophysiology of GERD with emphasis on HRM. The results were discussed with an international group of experts to develop a consensus on the role of HRM in GERD. A proposed classification system for esophageal motor abnormalities associated with GERD was generated. Physiologic gastro-esophageal reflux is inherent in all humans, resulting from transient lower esophageal sphincter (LES) relaxations that allow venting of gastric air in the form of a belch. In pathological gastro-esophageal reflux, transient LES relaxations are accompanied by reflux of gastric contents. Structural disruption of the esophagogastric junction (EGJ) barrier, and incomplete clearance of the refluxate can contribute to abnormally high esophageal reflux burden that defines GERD. Esophageal HRM localizes the LES for pH and pH-impedance probe placement, and assesses esophageal body peristaltic performance prior to invasive antireflux therapies and antireflux surgery. Furthermore, HRM can assess EGJ and esophageal body mechanisms contributing to reflux, and exclude conditions that mimic GERD. Structural and motor EGJ and esophageal processes contribute to the pathophysiology of GERD. A classification scheme is proposed incorporating EGJ and esophageal motor findings, and contraction reserve on provocative tests during HRM. © 2017 John Wiley & Sons Ltd.

  13. Spliceosome integrity is defective in the motor neuron diseases ALS and SMA

    Science.gov (United States)

    Tsuiji, Hitomi; Iguchi, Yohei; Furuya, Asako; Kataoka, Ayane; Hatsuta, Hiroyuki; Atsuta, Naoki; Tanaka, Fumiaki; Hashizume, Yoshio; Akatsu, Hiroyasu; Murayama, Shigeo; Sobue, Gen; Yamanaka, Koji

    2013-01-01

    Two motor neuron diseases, amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), are caused by distinct genes involved in RNA metabolism, TDP-43 and FUS/TLS, and SMN, respectively. However, whether there is a shared defective mechanism in RNA metabolism common to these two diseases remains unclear. Here, we show that TDP-43 and FUS/TLS localize in nuclear Gems through an association with SMN, and that all three proteins function in spliceosome maintenance. We also show that in ALS, Gems are lost, U snRNA levels are up-regulated and spliceosomal U snRNPs abnormally and extensively accumulate in motor neuron nuclei, but not in the temporal lobe of FTLD with TDP-43 pathology. This aberrant accumulation of U snRNAs in ALS motor neurons is in direct contrast to SMA motor neurons, which show reduced amounts of U snRNAs, while both have defects in the spliceosome. These findings indicate that a profound loss of spliceosome integrity is a critical mechanism common to neurodegeneration in ALS and SMA, and may explain cell-type specific vulnerability of motor neurons. PMID:23255347

  14. DNA-assisted swarm control in a biomolecular motor system.

    Science.gov (United States)

    Keya, Jakia Jannat; Suzuki, Ryuhei; Kabir, Arif Md Rashedul; Inoue, Daisuke; Asanuma, Hiroyuki; Sada, Kazuki; Hess, Henry; Kuzuya, Akinori; Kakugo, Akira

    2018-01-31

    In nature, swarming behavior has evolved repeatedly among motile organisms because it confers a variety of beneficial emergent properties. These include improved information gathering, protection from predators, and resource utilization. Some organisms, e.g., locusts, switch between solitary and swarm behavior in response to external stimuli. Aspects of swarming behavior have been demonstrated for motile supramolecular systems composed of biomolecular motors and cytoskeletal filaments, where cross-linkers induce large scale organization. The capabilities of such supramolecular systems may be further extended if the swarming behavior can be programmed and controlled. Here, we demonstrate that the swarming of DNA-functionalized microtubules (MTs) propelled by surface-adhered kinesin motors can be programmed and reversibly regulated by DNA signals. Emergent swarm behavior, such as translational and circular motion, can be selected by tuning the MT stiffness. Photoresponsive DNA containing azobenzene groups enables switching between solitary and swarm behavior in response to stimulation with visible or ultraviolet light.

  15. Daily oral intake of theanine prevents the decline of 5-bromo-2′-deoxyuridine incorporation in hippocampal dentate gyrus with concomitant alleviation of behavioral abnormalities in adult mice with severe traumatic stress

    Directory of Open Access Journals (Sweden)

    Takeshi Takarada

    2015-03-01

    Full Text Available Posttraumatic stress disorder is a long-lasting psychiatric disease with the consequence of hippocampal atrophy in humans exposed to severe fatal stress. We demonstrated a positive correlation between the transient decline of 5-bromo-2′-deoxyuridine (BrdU incorporation in the hippocampal dentate gyrus (DG and long-lasting behavioral abnormalities in mice with traumatic stress. Here, we investigated pharmacological properties of theanine on the declined BrdU incorporation and abnormal behaviors in mice with traumatic stress. Prior daily oral administration of theanine at 50–500 mg/kg for 5 days significantly prevented the decline of BrdU incorporation, while theanine significantly prevented the decline in the DG even when administered for 5 days after stress. Consecutive daily administration of theanine significantly inhibited the prolonged immobility in mice with stress in forced swimming test seen 14 days later. Although traumatic stress significantly increased spontaneous locomotor activity over 30 min even when determined 14 days later, the increased total locomotion was significantly ameliorated following the administration of theanine at 50 mg/kg for 14 days after stress. These results suggest that theanine alleviates behavioral abnormalities together with prevention of the transient decline of BrdU incorporation in the hippocampal DG in adult mice with severe traumatic stress.

  16. Motor Experts Care about Consistency and Are Reluctant to Change Motor Outcome.

    Directory of Open Access Journals (Sweden)

    Volker Kast

    Full Text Available Thousands of hours of physical practice substantially change the way movements are performed. The mechanisms underlying altered behavior in highly-trained individuals are so far little understood. We studied experts (handballers and untrained individuals (novices in visuomotor adaptation of free throws, where subjects had to adapt their throwing direction to a visual displacement induced by prismatic glasses. Before visual displacement, experts expressed lower variability of motor errors than novices. Experts adapted and de-adapted slower, and also forgot the adaptation slower than novices. The variability during baseline was correlated with the learning rate during adaptation. Subjects adapted faster when variability was higher. Our results indicate that experts produced higher consistency of motor outcome. They were still susceptible to the sensory feedback informing about motor error, but made smaller adjustments than novices. The findings of our study relate to previous investigations emphasizing the importance of action exploration, expressed in terms of outcome variability, to facilitate learning.

  17. Motor Experts Care about Consistency and Are Reluctant to Change Motor Outcome.

    Science.gov (United States)

    Kast, Volker; Leukel, Christian

    2016-01-01

    Thousands of hours of physical practice substantially change the way movements are performed. The mechanisms underlying altered behavior in highly-trained individuals are so far little understood. We studied experts (handballers) and untrained individuals (novices) in visuomotor adaptation of free throws, where subjects had to adapt their throwing direction to a visual displacement induced by prismatic glasses. Before visual displacement, experts expressed lower variability of motor errors than novices. Experts adapted and de-adapted slower, and also forgot the adaptation slower than novices. The variability during baseline was correlated with the learning rate during adaptation. Subjects adapted faster when variability was higher. Our results indicate that experts produced higher consistency of motor outcome. They were still susceptible to the sensory feedback informing about motor error, but made smaller adjustments than novices. The findings of our study relate to previous investigations emphasizing the importance of action exploration, expressed in terms of outcome variability, to facilitate learning.

  18. Hereditary motor and sensory neuropathy with proximal predominance (HMSN-P).

    Science.gov (United States)

    Campellone, Joseph V

    2013-06-01

    Hereditary motor and sensory neuropathy with proximal predominance (HMSN-P) is a rare disorder inherited in an autosomal dominant fashion. Patients present with slowly progressive proximal-predominant weakness, painful muscle cramps, fasciculations, large-fiber sensory loss, and areflexia. Electrodiagnostic (EDX) studies typically reveal abnormalities consistent with a sensorimotor neuronopathy. A patient with HMSN-P underwent EDX studies, revealing ongoing and chronic neurogenic denervation, motor unit instability, and neuromyotonic discharges, further defining the spectrum of EDX findings in HMSN-P. The clinical, pathological, and genetic features are also reviewed. The appearance of HMSN-P in the United States and elsewhere calls for clinicians in nonendemic regions to be familiar with this rare disorder, which has typically been geographically confined.

  19. Prenatal chlorpyrifos exposure alters motor behavior and ultrasonic vocalization in cd-1 mouse pups

    Directory of Open Access Journals (Sweden)

    Calamandrei Gemma

    2009-03-01

    Full Text Available Abstract Background Chlorpyrifos (CPF is a non-persistent organophosphate (OP largely used as pesticide. Studies from animal models indicate that CPF is a developmental neurotoxicant able to target immature central nervous system at dose levels well below the threshold of systemic toxicity. So far, few data are available on the potential short- and long-term adverse effects in children deriving from low-level exposures during prenatal life and infancy. Methods Late gestational exposure [gestational day (GD 14–17] to CPF at the dose of 6 mg/kg was evaluated in CD-1 mice during early development, by assessment of somatic and sensorimotor maturation [reflex-battery on postnatal days (PNDs 3, 6, 9, 12 and 15] and ultrasound emission after isolation from the mother and siblings (PNDs 4, 7 and 10. Pups' motor skills were assessed in a spontaneous activity test on PND 12. Maternal behavior of lactating dams in the home cage and in response to presentation of a pup previously removed from the nest was scored on PND 4, to verify potential alterations in maternal care directly induced by CPF administration. Results As for the effects on the offspring, results indicated that on PND 10, CPF significantly decreased number and duration of ultrasonic calls while increasing latency to emit the first call after isolation. Prenatal CPF also reduced motor behavior on PND 12, while a tendency to hyporeflexia was observed in CPF pups by means of reflex-battery scoring. Dams administered during gestation with CPF showed baseline levels of maternal care comparable to those of controls, but higher levels of both pup-directed (licking and explorative (wall rearing responses. Conclusion Overall our results are consistent with previous epidemiological data on OP neurobehavioral toxicity, and also indicate ultrasonic vocalization as an early marker of CPF exposure during development in rodent studies, with potential translational value to human infants.

  20. Individualized behavioral assessments and maternal ratings of mastery motivation in mental age-matched toddlers with and without motor delay.

    Science.gov (United States)

    Wang, Pei-Jung; Morgan, George A; Hwang, Ai-Wen; Liao, Hua-Fang

    2013-01-01

    Mastery motivation is a precursor of future developmental outcomes. Evidence about whether toddlers with motor delay have lower mastery motivation is inconclusive. The purpose of this study was to examine differences between mental age-matched toddlers with and without motor delay on various mastery motivation indicators. A mental age- and sex-matched case-control study was performed. Twenty-two children with motor delay, aged 23 to 47 months, and 22 children who were developing typically, aged 15 to 29 months, were recruited. Persistence and mastery pleasure were measured with behavioral tasks that were moderately challenging for each child and with maternal ratings using the Dimensions of Mastery Questionnaire (DMQ). The DMQ was rated by each child's mother based on her perception of her child's motivation. Two types of structured tasks (a puzzle and a cause-effect toy selected to be moderately challenging for each child) were administered in a laboratory setting and recorded on videos. Paired t tests or Wilcoxon signed rank tests were used to examine group differences in persistence and mastery pleasure (α=.007, 2-tailed). Children with motor delay were rated lower on DMQ persistence than the typically developing group, but they did not show significantly lower persistence on the structured tasks. There were no significant differences in mastery pleasure between the 2 groups on either measure. Large within-sample variability on the tasks and small sample size makes subgroup analysis (eg, different severities) difficult. Toddlers with motor delay did not show lower persistence and pleasure when given tasks that were moderately challenging; however, their mothers tended to view them as having lower motivation. Clinicians and parents should provide appropriately challenging tasks to increase children's success and motivation.

  1. Sub-processes of motor learning revealed by a robotic manipulandum for rodents.

    Science.gov (United States)

    Lambercy, O; Schubring-Giese, M; Vigaru, B; Gassert, R; Luft, A R; Hosp, J A

    2015-02-01

    Rodent models are widely used to investigate neural changes in response to motor learning. Usually, the behavioral readout of motor learning tasks used for this purpose is restricted to a binary measure of performance (i.e. "successful" movement vs. "failure"). Thus, the assignability of research in rodents to concepts gained in human research - implying diverse internal models that constitute motor learning - is still limited. To solve this problem, we recently introduced a three-degree-of-freedom robotic platform designed for rats (the ETH-Pattus) that combines an accurate behavioral readout (in the form of kinematics) with the possibility to invasively assess learning related changes within the brain (e.g. by performing immunohistochemistry or electrophysiology in acute slice preparations). Here, we validate this platform as a tool to study motor learning by establishing two forelimb-reaching paradigms that differ in degree of skill. Both conditions can be precisely differentiated in terms of their temporal pattern and performance levels. Based on behavioral data, we hypothesize the presence of several sub-processes contributing to motor learning. These share close similarities with concepts gained in humans or primates. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Instructors' Use of Trigger Warnings and Behavior Warnings in Abnormal Psychology

    Science.gov (United States)

    Boysen, Guy A.; Wells, Anna Mae; Dawson, Kaylee J.

    2016-01-01

    College students have been increasingly demanding warnings and accommodations in relation to course topics they believe will elicit strong, negative emotions. These "trigger warnings" are highly relevant to Abnormal Psychology because of the sensitive topics covered in the course (e.g., suicide, trauma, sex). A survey of Abnormal…

  3. Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism.

    Science.gov (United States)

    Piochon, Claire; Kloth, Alexander D; Grasselli, Giorgio; Titley, Heather K; Nakayama, Hisako; Hashimoto, Kouichi; Wan, Vivian; Simmons, Dana H; Eissa, Tahra; Nakatani, Jin; Cherskov, Adriana; Miyazaki, Taisuke; Watanabe, Masahiko; Takumi, Toru; Kano, Masanobu; Wang, Samuel S-H; Hansel, Christian

    2014-11-24

    A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behaviour and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behaviour deficits. We find that in patDp/+ mice delay eyeblink conditioning--a form of cerebellum-dependent motor learning--is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fibre-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibres--a model for activity-dependent synaptic pruning--is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism.

  4. Autism-related behavioral abnormalities in synapsin knockout mice.

    Science.gov (United States)

    Greco, Barbara; Managò, Francesca; Tucci, Valter; Kao, Hung-Teh; Valtorta, Flavia; Benfenati, Fabio

    2013-08-15

    Several synaptic genes predisposing to autism-spectrum disorder (ASD) have been identified. Nonsense and missense mutations in the SYN1 gene encoding for Synapsin I have been identified in families segregating for idiopathic epilepsy and ASD and genetic mapping analyses have identified variations in the SYN2 gene as significantly contributing to epilepsy predisposition. Synapsins (Syn I/II/III) are a multigene family of synaptic vesicle-associated phosphoproteins playing multiple roles in synaptic development, transmission and plasticity. Lack of SynI and/or SynII triggers a strong epileptic phenotype in mice associated with mild cognitive impairments that are also present in the non-epileptic SynIII(-/-) mice. SynII(-/-) and SynIII(-/-) mice also display schizophrenia-like traits, suggesting that Syns could be involved in the regulation of social behavior. Here, we studied social interaction and novelty, social recognition and social dominance, social transmission of food preference and social memory in groups of male SynI(-/-), SynII(-/-) and SynIII(-/-) mice before and after the appearance of the epileptic phenotype and compared their performances with control mice. We found that deletion of Syn isoforms widely impairs social behaviors and repetitive behaviors, resulting in ASD-related phenotypes. SynI or SynIII deletion altered social behavior, whereas SynII deletion extensively impaired various aspects of social behavior and memory, altered exploration of a novel environment and increased self-grooming. Social impairments of SynI(-/-) and SynII(-/-) mice were evident also before the onset of seizures. The results demonstrate an involvement of Syns in generation of the behavioral traits of ASD and identify Syn knockout mice as a useful experimental model of ASD and epilepsy. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Generalized Motor Abilities and Timing Behavior in Children with Specific Language Impairment

    Science.gov (United States)

    Zelaznik, Howard N.; Goffman, Lisa

    2010-01-01

    Purpose: To examine whether children with specific language impairment (SLI) differ from normally developing peers in motor skills, especially those skills related to timing. Method: Standard measures of gross and fine motor development were obtained. Furthermore, finger and hand movements were recorded while children engaged in 4 different timing…

  6. Fetal alcohol exposure leads to abnormal olfactory bulb development and impaired odor discrimination in adult mice

    NARCIS (Netherlands)

    K.G. Akers (Katherine); S.A. Kushner (Steven); A.T. Leslie (Ana); L. Clarke (Laura); D. van der Kooy (Derek); J.P. Lerch (Jason); P.W. Frankland (Paul)

    2011-01-01

    textabstractBackground: Children whose mothers consumed alcohol during pregnancy exhibit widespread brain abnormalities and a complex array of behavioral disturbances. Here, we used a mouse model of fetal alcohol exposure to investigate relationships between brain abnormalities and specific

  7. Abnormal illness behavior and Internet addiction severity: The role of disease conviction, irritability, and alexithymia

    Science.gov (United States)

    Scimeca, Giuseppe; Bruno, Antonio; Crucitti, Manuela; Conti, Claudio; Quattrone, Diego; Pandolfo, Gianluca; Zoccali, Rocco Antonio; Muscatello, Maria Rosaria Anna

    2017-01-01

    Background and aims While the association between health anxiety and maladaptive Internet use is a well-established finding, no studies have been performed to examine the possible effect of abnormal illness behavior (AIB). AIB is a maladaptive manner of experiencing, evaluating, or acting in response to health and illness that is disproportionate to evident pathology. The aim of this study was to investigate the association between AIB and Internet addiction (IA) severity in a sample of Italian University students. The possible effect of alexithymia, anxiety, and depression was also taken into account. Methods Participants were 115 men and 163 women (mean age = 23.62 ± 4.38 years); AIB was measured via the Illness Behavior Questionnaire (IBQ), and IA severity by the Internet Addiction Test (IAT). Results The most powerful IBQ factor predicting IA severity scores was disease conviction. Irritability was the only emotional IBQ factor associated with IA severity. Nevertheless, disease conviction and alexithymia remained the only significant predictors of IAT scores when hierarchical regression analysis was executed. Discussion and conclusions Our results support previous findings showing that those characterized by health anxiety are more prone to an excessive and maladaptive use of Internet. Moreover, this study showed that irritability was the only emotional aspect of AIB predicting IA severity. This finding is consistent with the cognitive model of hypochondria, which states that cognitive factors (dysfunctional beliefs and assumptions) play a major role in the explanation of this psychopathological condition. PMID:28245678

  8. Abnormal illness behavior and Internet addiction severity: The role of disease conviction, irritability, and alexithymia.

    Science.gov (United States)

    Scimeca, Giuseppe; Bruno, Antonio; Crucitti, Manuela; Conti, Claudio; Quattrone, Diego; Pandolfo, Gianluca; Zoccali, Rocco Antonio; Muscatello, Maria Rosaria Anna

    2017-03-01

    Background and aims While the association between health anxiety and maladaptive Internet use is a well-established finding, no studies have been performed to examine the possible effect of abnormal illness behavior (AIB). AIB is a maladaptive manner of experiencing, evaluating, or acting in response to health and illness that is disproportionate to evident pathology. The aim of this study was to investigate the association between AIB and Internet addiction (IA) severity in a sample of Italian University students. The possible effect of alexithymia, anxiety, and depression was also taken into account. Methods Participants were 115 men and 163 women (mean age = 23.62 ± 4.38 years); AIB was measured via the Illness Behavior Questionnaire (IBQ), and IA severity by the Internet Addiction Test (IAT). Results The most powerful IBQ factor predicting IA severity scores was disease conviction. Irritability was the only emotional IBQ factor associated with IA severity. Nevertheless, disease conviction and alexithymia remained the only significant predictors of IAT scores when hierarchical regression analysis was executed. Discussion and conclusions Our results support previous findings showing that those characterized by health anxiety are more prone to an excessive and maladaptive use of Internet. Moreover, this study showed that irritability was the only emotional aspect of AIB predicting IA severity. This finding is consistent with the cognitive model of hypochondria, which states that cognitive factors (dysfunctional beliefs and assumptions) play a major role in the explanation of this psychopathological condition.

  9. Possible linkage between visual and motor development in children with cerebral palsy.

    Science.gov (United States)

    Lew, Helen; Lee, Hee Song; Lee, Jae Yeun; Song, Junyoung; Min, Kyunghoon; Kim, MinYoung

    2015-03-01

    The purpose of this study was to examine ophthalmic disorders associated with neurological disorders in children with cerebral palsy. Children clinically diagnosed as cerebral palsy with supportive abnormal magnetic resonance imaging results were included in this prospective study. All participants were recommended to have comprehensive ophthalmic exams. To assess motor function, the Gross Motor Function Classification System and the Gross Motor Function Measure were used. To assess motor and cognitive function, the Bayley Scales of Infant Development-II was used. Forty-seven children completed all the evaluations and the data were analyzed. Ametropia was seen in 78.7% and strabismus was seen in 44.7% of the 47 children. When subjects were divided into severely impaired and mildly impaired groups based on Gross Motor Function Classification System level, ametropia was more prevalent in the severely impaired than the mildly impaired (95.8% versus 60.9%, P gross motor impairment correlated with the degree of refractive error in the subjects older than 36 months (r = -0.65 for the Bayley Scales of Infant Development-II motor scale, P gross motor function have a high possibility of severe refractive disorder that becomes evident from 36 months after birth. These results suggest that brain injury and impaired motor development negatively affect ophthalmic development. Hence, an ophthalmic examination is recommended for young children with cerebral palsy to start early management. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The Effect of Voice Ambulatory Biofeedback on the Daily Performance and Retention of a Modified Vocal Motor Behavior in Participants with Normal Voices

    Science.gov (United States)

    Van Stan, Jarrad H.; Mehta, Daryush D.; Hillman, Robert E.

    2015-01-01

    Purpose: Ambulatory biofeedback has potential to improve carryover of newly established vocal motor behaviors into daily life outside of the clinic and warrants systematic research that is lacking in the literature. This proof-of-concept study was designed to establish an empirical basis for future work in this area by formally assessing whether…

  11. Distribution of Esophageal Motor Disorders in Diabetic Patients With Dysphagia.

    Science.gov (United States)

    George, Nina S; Rangan, Vikram; Geng, Zhuo; Khan, Freeha; Kichler, Adam; Gabbard, Scott; Ganocy, Stephen; Fass, Ronnie

    Diabetes mellitus can cause various gastrointestinal symptoms. Assessment of esophageal dysmotility in diabetic patients has been scarcely studied. The aim of this study was to determine the esophageal motor characteristics of diabetic versus nondiabetic patients who present with dysphagia. High-resolution esophageal manometries (HREMs) of 83 diabetic patients and 83 age and gender-matched nondiabetic patients with dysphagia from 2 medical centers were included in this study. Demographic information, medical comorbidities, and medication usage were recorded for each patient in a single registry. HREM of each patient was evaluated and the different functional parameters were recorded. Overall, 46% of diabetic patients were found to have an esophageal motor disorder. Diabetic patients with dysphagia were more likely to have failed swallows on HREM (50.6% vs. 33.7%; P=0.03) as compared with nondiabetic patients. Among diabetic patients, those being treated with insulin were more likely to have failed (69.0% vs. 40.7%; P=0.01) and weak (65.5% vs. 33.3%; P=0.005) swallows as compared with diabetic patients not on insulin. Among diabetic patients, those with abnormal manometry were more likely to demonstrate diabetic retinopathy (27.0% vs. 8.7%; P=0.04). There was a trend toward increased incidence of esophagogastric junction outflow obstruction in diabetic patients (10.8% vs. 2.4%; P=0.057) as compared with nondiabetic patients. Nearly half of diabetic patients with dysphagia have some type of an esophageal motility disorder. Diabetic retinopathy and the use of insulin are predictive of esophageal motor abnormalities among diabetic patients.

  12. Abnormal transient analysis by using PWR plant simulator, (2)

    International Nuclear Information System (INIS)

    Naitoh, Akira; Murakami, Yoshimitsu; Yokobayashi, Masao.

    1983-06-01

    This report describes results of abnormal transient analysis by using a PWR plant simulator. The simulator is based on an existing 822MWe power plant with 3 loops, and designed to cover wide range of plant operation from cold shutdown to full power at EOL. In the simulator, malfunctions are provided for abnormal conditions of equipment failures, and in this report, 17 malfunctions for secondary system and 4 malfunctions for nuclear instrumentation systems were simulated. The abnormal conditions are turbine and generator trip, failure of condenser, feedwater system and valve and detector failures of pressure and water level. Fathermore, failure of nuclear instrumentations are involved such as source range channel, intermediate range channel and audio counter. Transient behaviors caused by added malfunctions were reasonable and detail information of dynamic characteristics for turbine-condenser system were obtained. (author)

  13. Possible use of psychological corrective measures for people with abnormal sexual preferences

    Directory of Open Access Journals (Sweden)

    Babina S.V.

    2015-08-01

    Full Text Available The paper studies the possibility of psychological corrective measures aimed at persons with abnormal sexual preferences. We reviewed domestic and foreign scientific publications described the treatment of sexual disorders and the basic directions of the therapy, and indicated its positive and negative aspects. We have studied progress notes and etiology of "personality disorders and behavior in adulthood" disease class, "disorders of sexual preference" disease subsection and analyzed the efficiency of the psychopharmacological treatment, cognitive-behavioral therapy, and psychotherapy for each violation of sexual preference. The most productive methods of therapeutic intervention are identified. This analysis allows making the most appropriate scheme of psychological correction and treatment for persons with abnormalities of sexual preference.

  14. Abnormal gray matter volume and impulsivity in young adults with Internet gaming disorder.

    Science.gov (United States)

    Lee, Deokjong; Namkoong, Kee; Lee, Junghan; Jung, Young-Chul

    2017-09-08

    Reduced executive control is one of the central components of model on the development and maintenance of Internet gaming disorder (IGD). Among the various executive control problems, high impulsivity has consistently been associated with IGD. We performed voxel-based morphometric analysis with diffeomorphic anatomical registration by using an exponentiated Lie algebra algorithm (DARTEL) to investigate the relationship of gray matter abnormalities to impulsivity in IGD. Thirty-one young male adults whose excessive Internet gaming began in early adolescence, and 30 age-matched male healthy controls were examined. IGD subjects showed smaller gray matter volume (GMV) in brain regions implicated in executive control, such as the anterior cingulate cortex and the supplementary motor area. The GMVs in the anterior cingulate cortex and the supplementary motor area were negatively correlated with self-reporting scales of impulsiveness. IGD subjects also exhibited smaller GMV in lateral prefrontal and parietal cortices comprising the left ventrolateral prefrontal cortex and the left inferior parietal lobule when compared with healthy controls. The GMVs in the left ventrolateral prefrontal cortex were negatively correlated with lifetime usage of Internet gaming. These findings suggest that gray matter abnormalities in areas related to executive control may contribute to high impulsivity of young adults with IGD. Furthermore, alterations in the prefrontal cortex were related with long-term excessive Internet gaming during adolescence. © 2017 Society for the Study of Addiction.

  15. Fetal Origin of Sensorimotor Behavior

    Directory of Open Access Journals (Sweden)

    Jaqueline Fagard

    2018-05-01

    Full Text Available The aim of this article is to track the fetal origin of infants’ sensorimotor behavior. We consider development as the self-organizing emergence of complex forms from spontaneously generated activity, governed by the innate capacity to detect and memorize the consequences of spontaneous activity (contingencies, and constrained by the sensory and motor maturation of the body. In support of this view, we show how observations on fetuses and also several fetal experiments suggest that the fetus’s first motor activity allows it to feel the space around it and to feel its body and the consequences of its movements on its body. This primitive motor babbling gives way progressively to sensorimotor behavior which already possesses most of the characteristics of infants’ later behavior: repetition of actions leading to sensations, intentionality, some motor control and oriented reactions to sensory stimulation. In this way the fetus can start developing a body map and acquiring knowledge of its limited physical and social environment.

  16. Muscle Mitochondrial Uncoupling Dismantles Neuromuscular Junction and Triggers Distal Degeneration of Motor Neurons

    Science.gov (United States)

    Dupuis, Luc; Gonzalez de Aguilar, Jose-Luis; Echaniz-Laguna, Andoni; Eschbach, Judith; Rene, Frédérique; Oudart, Hugues; Halter, Benoit; Huze, Caroline; Schaeffer, Laurent; Bouillaud, Frédéric; Loeffler, Jean-Philippe

    2009-01-01

    Background Amyotrophic lateral sclerosis (ALS), the most frequent adult onset motor neuron disease, is associated with hypermetabolism linked to defects in muscle mitochondrial energy metabolism such as ATP depletion and increased oxygen consumption. It remains unknown whether muscle abnormalities in energy metabolism are causally involved in the destruction of neuromuscular junction (NMJ) and subsequent motor neuron degeneration during ALS. Methodology/Principal Findings We studied transgenic mice with muscular overexpression of uncoupling protein 1 (UCP1), a potent mitochondrial uncoupler, as a model of muscle restricted hypermetabolism. These animals displayed age-dependent deterioration of the NMJ that correlated with progressive signs of denervation and a mild late-onset motor neuron pathology. NMJ regeneration and functional recovery were profoundly delayed following injury of the sciatic nerve and muscle mitochondrial uncoupling exacerbated the pathology of an ALS animal model. Conclusions/Significance These findings provide the proof of principle that a muscle restricted mitochondrial defect is sufficient to generate motor neuron degeneration and suggest that therapeutic strategies targeted at muscle metabolism might prove useful for motor neuron diseases. PMID:19404401

  17. A short history of ideo-motor action.

    Science.gov (United States)

    Stock, Armin; Stock, Claudia

    2004-04-01

    The ideo-motor theory, which is currently receiving heightened interest in cognitive psychology, looks back on a long history. Essentially two historical roots can be presented. A British one, initiated by Laycock (1845) and Carpenter (1852), which was developed in order to explain ideo-motor phenomena by means of cerebral reflex actions. A second and older root is the German one by Herbart (1816, 1825), Lotze (1852), and Harless (1861), which considered the ideo-motor principle a fundamental mechanism of all intentional human behaviour. Both roots converged in James' (1890) Principles of Psychology before they fell into oblivion due to the dominance of behaviorism in the first half of the 20th century. The few empirical ideo-motor studies of the early 20th century are briefly described. Finally, similarities and differences in the history of the ideo-motor theory are delineated and a perspective is given covering research questions that could be examined in the future. Copyright 2003 Springer-Verlag

  18. Induction of motor associative plasticity in the posterior parietal cortex-primary motor network

    DEFF Research Database (Denmark)

    Chao, Chi-Chao; Karabanov, Anke Ninija; Paine, Rainer

    2015-01-01

    There is anatomical and functional connectivity between the primary motor cortex (M1) and posterior parietal cortex (PPC) that plays a role in sensorimotor integration. In this study, we applied corticocortical paired-associative stimuli to ipsilateral PPC and M1 (parietal ccPAS) in healthy right......-handed subjects to test if this procedure could modulate M1 excitability and PPC–M1 connectivity. One hundred and eighty paired transcranial magnetic stimuli to the PPC and M1 at an interstimulus interval (ISI) of 8 ms were delivered at 0.2 Hz. We found that parietal ccPAS in the left hemisphere increased...... the excitability of conditioned left M1 assessed by motor evoked potentials (MEPs) and the input–output curve. Motor behavior assessed by the Purdue pegboard task was unchanged compared with controls. At baseline, conditioning stimuli over the left PPC potentiated MEPs from left M1 when ISI was 8 ms...

  19. From bench to bed: putative animal models of REM sleep behavior disorder (RBD).

    Science.gov (United States)

    Krenzer, Martina; Lu, Jun; Mayer, Geert; Oertel, Wolfgang

    2013-04-01

    REM behavior disorder (RBD) is a parasomnia characterized by REM sleep without atonia, leading to abnormal and potentially injurious behavior during REM sleep. It is considered one of the most specific predictors of neurodegenerative disorders, such as Parkinson's disease. In this paper, we provide an overview of animal models contributing to our current understanding of REM-associated atonia, and, as a consequence, the pathophysiology of RBD. The generator of REM-associated atonia is located in glutamatergic neurons of the pontine sublaterodorsal nucleus (SLD), as shown in cats, rats and mice. These findings are supported by clinical cases of patients with lesions of the homologous structure in humans. Glutamatergic SLD neurons, presumably in conjunction with others, project to (a) the ventromedial medulla, where they either directly target inhibitory interneurons to alpha motor neurons or are relayed, and (b) the spinal cord directly. At the spinal level, alpha motor neurons are inhibited by GABAergic and glycinergic interneurons. Our current understanding is that lesions of the glutamatergic SLD are the key factor for REM sleep behavior disorder. However, open questions remain, e.g. other features of RBD (such as the typically aggressive dream content) or the frequent progression from idiopathic RBD to neurodegenerative disorders, to name only a few. In order to elucidate these questions, a constant interaction between basic and clinical researchers is required, which might, ultimately, create an early therapeutic window for neurodegenerative disorders.

  20. Ginsenoside Rg1 Ameliorates Behavioral Abnormalities and Modulates the Hippocampal Proteomic Change in Triple Transgenic Mice of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Lulin Nie

    2017-01-01

    Full Text Available Alzheimer’s disease (AD is one of the most common neurodegenerative diseases, so far, there are no effective measures to prevent and cure this deadly condition. Ginsenoside Rg1 (Rg1 was shown to improve behavioral abnormalities in AD; however, the potential mechanisms remain unclear. In this study, we pretreated 7-month-old 3xTg-AD mice for 6 weeks with Rg1 and evaluated the effects of Rg1 on the behaviors and the protein expression of hippocampal tissues. The behavioral tests showed that Rg1 could improve the memory impairment and ameliorate the depression-like behaviors of 3xTg-AD mice. Proteomic results revealed a total of 28 differentially expressed hippocampal proteins between Rg1-treated and nontreated 3xTg-AD mice. Among these proteins, complexin-2 (CPLX2, synapsin-2 (SYN2, and synaptosomal-associated protein 25 (SNP25 were significantly downregulated in the hippocampus of 3xTg-AD mice compared with the WT mice, and the treatment of Rg1 modulated the expression of CPLX2 and SNP25 in the hippocampus of 3xTg-AD mice. The expression of CPLX2, SYN2, and SNP25 was further validated by Western blot analysis. Taken together, we concluded that Rg1 could be a potential candidate drug to improve the behavioral deficits in AD via modulating the expression of the proteins (i.e., CPLX2, SYN2, and SNP25.