Sample records for abnormal fluid homeostasis

  1. Abnormal calcium homeostasis in peripheral neuropathies



    Abnormal neuronal calcium (Ca2+) homeostasis has been implicated in numerous diseases of the nervous system. The pathogenesis of two increasingly common disorders of the peripheral nervous system, namely neuropathic pain and diabetic polyneuropathy, has been associated with aberrant Ca2+ channel expression and function. Here we review the current state of knowledge regarding the role of Ca2+ dyshomeostasis and associated mitochondrial dysfunction in painful and diabetic neuropathies. The cent...

  2. Abnormal calcium homeostasis in peripheral neuropathies. (United States)

    Fernyhough, Paul; Calcutt, Nigel A


    Abnormal neuronal calcium (Ca2+) homeostasis has been implicated in numerous diseases of the nervous system. The pathogenesis of two increasingly common disorders of the peripheral nervous system, namely neuropathic pain and diabetic polyneuropathy, has been associated with aberrant Ca2+ channel expression and function. Here we review the current state of knowledge regarding the role of Ca2+ dyshomeostasis and associated mitochondrial dysfunction in painful and diabetic neuropathies. The central impact of both alterations of Ca2+ signalling at the plasma membrane and also intracellular Ca2+ handling on sensory neurone function is discussed and related to abnormal endoplasmic reticulum performance. We also present new data highlighting sub-optimal axonal Ca2+ signalling in diabetic neuropathy and discuss the putative role for this abnormality in the induction of axonal degeneration in peripheral neuropathies. The accumulating evidence implicating Ca2+ dysregulation in both painful and degenerative neuropathies, along with recent advances in understanding of regional variations in Ca2+ channel and pump structures, makes modulation of neuronal Ca2+ handling an increasingly viable approach for therapeutic interventions against the painful and degenerative aspects of many peripheral neuropathies.

  3. [Pulmonary surfactant homeostasis associated genetic abnormalities and lung diseases]. (United States)

    Jiang, Xiaojing; Sun, Xiuzhu; Du, Weihua; Hao, Haisheng; Zhao, Xueming; Wang, Dong; Zhu, Huabin; Liu, Yan


    Pulmonary surfactant (PS) is synthesized and secreted by alveolar epithelial type II (AEII) cells, which is a complex compound formed by proteins and lipids. Surfactant participates in a range of physiological processes such as reducing the surface tension, keeping the balance of alveolar fluid, maintaining normal alveolar morphology and conducting host defense. Genetic disorders of the surfactant homeostasis genes may result in lack of surfactant or cytotoxicity, and lead to multiple lung diseases in neonates, children and adults, including neonatal respiratory distress syndrome, interstitial pneumonia, pulmonary alveolar proteinosis, and pulmonary fibrosis. This paper has provided a review for the functions and processes of pulmonary surfactant metabolism, as well as the connection between disorders of surfactant homeostasis genes and lung diseases.

  4. Renal renin secretion as regulator of body fluid homeostasis

    DEFF Research Database (Denmark)

    Damkjær, Mads; Isaksson, Gustaf L; Stubbe, Jane;


    intake, but the specific pathways involved and the relations between them are not well defined. In animals, renin secretion is a log-linear function of sodium intake. Close associations exist between sodium intake, total body sodium, extracellular fluid volume, and blood volume. Plasma volume increases...... by about 1.5 mL/mmol increase in daily sodium intake. Several lines of evidence indicate that central blood volume may vary substantially without measurable changes in arterial blood pressure. At least five intertwining feedback loops of renin regulation are identifiable based on controlled variables......The renin-angiotensin system is essential for body fluid homeostasis and blood pressure regulation. This review focuses on the homeostatic regulation of the secretion of active renin in the kidney, primarily in humans. Under physiological conditions, renin secretion is determined mainly by sodium...

  5. The plasticity of extracellular fluid homeostasis in insects. (United States)

    Beyenbach, Klaus W


    In chemistry, the ratio of all dissolved solutes to the solution's volume yields the osmotic concentration. The present Review uses this chemical perspective to examine how insects deal with challenges to extracellular fluid (ECF) volume, solute content and osmotic concentration (pressure). Solute/volume plots of the ECF (hemolymph) reveal that insects tolerate large changes in all three of these ECF variables. Challenges beyond those tolerances may be 'corrected' or 'compensated'. While a correction simply reverses the challenge, compensation accommodates the challenge with changes in the other two variables. Most insects osmoregulate by keeping ECF volume and osmotic concentration within a wide range of tolerance. Other insects osmoconform, allowing the ECF osmotic concentration to match the ambient osmotic concentration. Aphids are unique in handling solute and volume loads largely outside the ECF, in the lumen of the gut. This strategy may be related to the apparent absence of Malpighian tubules in aphids. Other insects can suspend ECF homeostasis altogether in order to survive extreme temperatures. Thus, ECF homeostasis in insects is highly dynamic and plastic, which may partly explain why insects remain the most successful class of animals in terms of both species number and biomass.

  6. Homeostasis

    Directory of Open Access Journals (Sweden)

    Anna Negroni


    Full Text Available Intestinal epithelial cells (IECs form a physiochemical barrier that separates the intestinal lumen from the host’s internal milieu and is critical for electrolyte passage, nutrient absorption, and interaction with commensal microbiota. Moreover, IECs are strongly involved in the intestinal mucosal inflammatory response as well as in mucosal innate and adaptive immune responses. Cell death in the intestinal barrier is finely controlled, since alterations may lead to severe disorders, including inflammatory diseases. The emerging picture indicates that intestinal epithelial cell death is strictly related to the maintenance of tissue homeostasis. This review is focused on previous reports on different forms of cell death in intestinal epithelium.

  7. Disruption of Endothelial Cell Homeostasis Plays a Key Role in the Early Pathogenesis of Coronary Artery Abnormalities in Kawasaki Disease (United States)

    Ueno, Kentaro; Ninomiya, Yumiko; Hazeki, Daisuke; Masuda, Kiminori; Nomura, Yuichi; Kawano, Yoshifumi


    Disruption of endothelial cell homeostasis may be associated with the pathogenesis of coronary artery abnormalities (CAA) in Kawasaki disease (KD). We sought to clarify the poorly understood pathogenic role of endothelial cell survival and death in KD vasculitis. Human umbilical vein endothelial cells (HUVECs) stimulated with sera from KD patients, compared with sera from patients with bacterial infections, exhibited significant increases in cytotoxicity, high mobility group box protein 1 (HMGB-1), and caspase-3/7 and a decrease in phosphorylated Akt/Akt (pAkt/Akt) ratios. HUVECs stimulated with sera from KD patients treated with immunoglobulin (IG) showed significantly decreased cytotoxicity, HMGB-1, and caspase-3/7 levels and increased pAkt/Akt ratios, as compared with results for untreated HUVECs (P < 0.001, P = 0.008, P = 0.040, and P < 0.001, respectively). In HUVECs stimulated with sera from KD patients, the increased cytotoxicity levels and the suppression of increased pAkt/Akt ratios after subsequent IG treatment were closely related to the development of CAA (P = 0.002 and P = 0.035). Our data reveal that shifting the balance toward cell death rather than survival appears to perturb endothelial cell homeostasis and is closely related to the development of CAA. The cytoprotective effects of IG treatment appear to ameliorate endothelial cell homeostasis. PMID:28255175

  8. Abnormal Ca2+ homeostasis, atrial arrhythmogenesis and sinus node dysfunction in murine hearts modelling RyR2 modification

    Directory of Open Access Journals (Sweden)

    Yanmin eZhang


    Full Text Available RyR2 mutations are implicated in catecholaminergic polymorphic ventricular tachycardia thought to result from altered myocyte Ca2+ homeostasis reflecting inappropriate ‘leakiness’ of RyR2-Ca2+ release channels arising from increases in their basal activity, alterations in their phosphorylation, or defective interactions with other molecules or ions. The latter include calstabin, calsequestrin-2, Mg2+, and extraluminal or intraluminal Ca2+. Recent clinical studies additionally associate RyR2 abnormalities with atrial arrhythmias including atrial tachycardia, fibrillation and standstill, and sinus node dysfunction. Some RyR2 mutations associated with CPVT in mouse models also show such arrhythmias that similarly correlate with altered Ca2+ homeostasis. Some examples show evidence for increased Ca2+/calmodulin-dependent protein kinase II phosphorylation of RyR2. A homozygotic RyR2-P2328S variant demonstrates potential arrhythmic substrate resulting from reduced conduction velocity in addition to delayed afterdepolarizations and ectopic action potential firing. Finally, one model with an increased RyR2 activity in the sino-atrial node shows decreased automaticity in the presence of Ca2+-dependent decreases in ICa,L and diastolic sarcoplasmic reticular Ca2+ depletion.

  9. SAPHIR: a physiome core model of body fluid homeostasis and blood pressure regulation. (United States)

    Thomas, S Randall; Baconnier, Pierre; Fontecave, Julie; Françoise, Jean-Pierre; Guillaud, François; Hannaert, Patrick; Hernández, Alfredo; Le Rolle, Virginie; Mazière, Pierre; Tahi, Fariza; White, Ronald J


    We present the current state of the development of the SAPHIR project (a Systems Approach for PHysiological Integration of Renal, cardiac and respiratory function). The aim is to provide an open-source multi-resolution modelling environment that will permit, at a practical level, a plug-and-play construction of integrated systems models using lumped-parameter components at the organ/tissue level while also allowing focus on cellular- or molecular-level detailed sub-models embedded in the larger core model. Thus, an in silico exploration of gene-to-organ-to-organism scenarios will be possible, while keeping computation time manageable. As a first prototype implementation in this environment, we describe a core model of human physiology targeting the short- and long-term regulation of blood pressure, body fluids and homeostasis of the major solutes. In tandem with the development of the core models, the project involves database implementation and ontology development.

  10. Effects of Beer, Non-Alcoholic Beer and Water Consumption before Exercise on Fluid and Electrolyte Homeostasis in Athletes


    Mauricio Castro-Sepulveda; Neil Johannsen; Sebastián Astudillo; Carlos Jorquera; Cristian Álvarez; Hermann Zbinden-Foncea; Rodrigo Ramírez-Campillo


    Fluid and electrolyte status have a significant impact on physical performance and health. Pre-exercise recommendations cite the possibility of consuming beverages with high amounts of sodium. In this sense, non-alcoholic beer can be considered an effective pre-exercise hydration beverage. This double-blind, randomized study aimed to compare the effect of beer, non-alcoholic beer and water consumption before exercise on fluid and electrolyte homeostasis. Seven male soccer players performed 45...

  11. Genetic and infectious profiles influence cerebrospinal fluid IgG abnormality in Japanese multiple sclerosis patients.

    Directory of Open Access Journals (Sweden)

    Satoshi Yoshimura

    Full Text Available BACKGROUND: Abnormal intrathecal synthesis of IgG, reflected by cerebrospinal fluid (CSF oligoclonal IgG bands (OBs and increased IgG index, is much less frequently observed in Japanese multiple sclerosis (MS cohorts compared with Western cohorts. We aimed to clarify whether genetic and common infectious backgrounds influence CSF IgG abnormality in Japanese MS patients. METHODOLOGY: We analyzed HLA-DRB1 alleles, and IgG antibodies against Chlamydia pneumoniae, Helicobacter pylori, Epstein-Barr virus nuclear antigen (EBNA, and varicella zoster virus (VZV in 94 patients with MS and 367 unrelated healthy controls (HCs. We defined CSF IgG abnormality as the presence of CSF OBs and/or increased IgG index (>0.658. PRINCIPAL FINDINGS: CSF IgG abnormality was found in 59 of 94 (62.8% MS patients. CSF IgG abnormality-positive patients had a significantly higher frequency of brain MRI lesions meeting the Barkhof criteria compared with abnormality-negative patients. Compared with HCs, CSF IgG abnormality-positive MS patients showed a significantly higher frequency of DRB1 1501, whereas CSF IgG abnormality-negative patients had a significantly higher frequency of DRB1 0405. CSF IgG abnormality-positive MS patients had a significantly higher frequency of anti-C. pneumoniae IgG antibodies compared with CSF IgG abnormality-negative MS patients, although there was no difference in the frequency of anti-C. pneumoniae IgG antibodies between HCs and total MS patients. Compared with HCs, anti-H. pylori IgG antibodies were detected significantly less frequently in the total MS patients, especially in CSF IgG abnormality-negative MS patients. The frequencies of antibodies against EBNA and VZV did not differ significantly among the groups. CONCLUSIONS: CSF IgG abnormality is associated with Western MS-like brain MRI features. DRB1 1501 and C. pneumoniae infection confer CSF IgG abnormality, while DRB1 0405 and H. pylori infection are positively and negatively

  12. Characteristics of Abnormal Pressure Systems and Their Responses of Fluid in Huatugou Oil Field, Qaidam Basin

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiaozhi; XU Hao; TANG Dazhen; ZHANG Junfeng; HU Xiaolan; TAO Shu; CAI Yidong


    Based on the comprehensive study of core samples, well testing data, and reservoir fluid properties, the construction and the distribution of the abnormal pressure systems of the Huatugou oil field in Qaidam Basin are discussed. The correlation between the pressure systems and hydrocarbon accumulation is addressed by analyzing the corresponding fluid characteristics. The results show that the Huatugou oil field as a whole has low formation pressure and low fluid energy; therefore, the hydrocarbons are hard to migrate, which facilitates the forming of primary reservoirs. The study reservoirs, located at the Xiayoushashan Formation (N_2~1) and the Shangganchaigou Formation (N_1) are relatively shallow and have medium porosity and low permeability. They are abnormal low-pressure reservoirs with an average formation pressure coefficient of 0.61 and 0.72 respectively. According to the pressure coefficient and geothermal anomaly, the N_1 and N_2~1 Formations belong to two independent temperature-pressure systems, and the former has slightly higher energy. The low-pressure compartments consist of a distal bar as the main body, prodeita mud as the top boundary, and shore and shallow lake mud or algal mound as the bottom boundary. They are vertically overlapped and horizontally paralleled. The formation water is abundant in the Cl~- ion and can be categorized as CaCl_2 type with high salinity, which indicates that the abnormal low-pressure compartments are in good sealing condition and beneficial for oil and gas accumulation and preservation.

  13. Abnormal calcium homeostasis in heart failure with preserved ejection fraction is related to both reduced contractile function and incomplete relaxation: An electromechanically detailed biophysical modelling study

    Directory of Open Access Journals (Sweden)

    Ismail eAdeniran


    Full Text Available Heart failure with preserved ejection fraction (HFpEF accounts for about 50% of heart failure cases. It has features of incomplete relaxation and increased stiffness of the left ventricle. Studies from clinical electrophysiology and animal experiments have found that HFpEF is associated with impaired calcium homeostasis, ion channel remodelling and concentric left ventricle hypertrophy (LVH. However, it is still unclear how the abnormal calcium homeostasis, ion channel and structural remodelling affect the electro-mechanical dynamics of the ventricles. In this study we have developed multiscale models of the human left ventricle from single cells to the 3D organ, which take into consideration HFpEF-induced changes in calcium handling, ion channel remodelling and concentric LVH. Our simulation results suggest that at the cellular level, HFpEF reduces the systolic calcium level resulting in a reduced systolic contractile force, but elevates the diastolic calcium level resulting in an abnormal residual diastolic force. In our simulations, these abnormal electro-mechanical features of the ventricular cells became more pronounced with the increase of the heart rate. However, at the 3D organ level, the ejection fraction of the left ventricle was maintained due to the concentric LVH. The simulation results of this study mirror clinically observed features of HFpEF and provide new insights towards the understanding of the cellular bases of impaired cardiac electromechanical functions in heart failure.

  14. Abnormal chloride homeostasis in the substancia nigra pars reticulata contributes to locomotor deficiency in a model of acute liver injury.

    Directory of Open Access Journals (Sweden)

    Yan-Ling Yang

    Full Text Available BACKGROUND: Altered chloride homeostasis has been thought to be a risk factor for several brain disorders, while less attention has been paid to its role in liver disease. We aimed to analyze the involvement and possible mechanisms of altered chloride homeostasis of GABAergic neurons within the substantia nigra pars reticulata (SNr in the motor deficit observed in a model of encephalopathy caused by acute liver failure, by using glutamic acid decarboxylase 67 - green fluorescent protein knock-in transgenic mice. METHODS: Alterations in intracellular chloride concentration in GABAergic neurons within the SNr and changes in the expression of two dominant chloride homeostasis-regulating genes, KCC2 and NKCC1, were evaluated in mice with hypolocomotion due to hepatic encephalopathy (HE. The effects of pharmacological blockade and/or activation of KCC2 and NKCC1 functions with their specific inhibitors and/or activators on the motor activity were assessed. RESULTS: In our mouse model of acute liver injury, chloride imaging indicated an increase in local intracellular chloride concentration in SNr GABAergic neurons. In addition, the mRNA and protein levels of KCC2 were reduced, particularly on neuronal cell membranes; in contrast, NKCC1 expression remained unaffected. Furthermore, blockage of KCC2 reduced motor activity in the normal mice and led to a further deteriorated hypolocomotion in HE mice. Blockade of NKCC1 was not able to normalize motor activity in mice with liver failure. CONCLUSION: Our data suggest that altered chloride homeostasis is likely involved in the pathophysiology of hypolocomotion following HE. Drugs aimed at restoring normal chloride homeostasis would be a potential treatment for hepatic failure.

  15. Effects of Beer, Non-Alcoholic Beer and Water Consumption before Exercise on Fluid and Electrolyte Homeostasis in Athletes. (United States)

    Castro-Sepulveda, Mauricio; Johannsen, Neil; Astudillo, Sebastián; Jorquera, Carlos; Álvarez, Cristian; Zbinden-Foncea, Hermann; Ramírez-Campillo, Rodrigo


    Fluid and electrolyte status have a significant impact on physical performance and health. Pre-exercise recommendations cite the possibility of consuming beverages with high amounts of sodium. In this sense, non-alcoholic beer can be considered an effective pre-exercise hydration beverage. This double-blind, randomized study aimed to compare the effect of beer, non-alcoholic beer and water consumption before exercise on fluid and electrolyte homeostasis. Seven male soccer players performed 45 min of treadmill running at 65% of the maximal heart rate, 45 min after ingesting 0.7 L of water (W), beer (AB) or non-alcoholic beer (NAB). Body mass, plasma Na⁺ and K⁺ concentrations and urine specific gravity (USG) were assessed before fluid consumption and after exercise. After exercise, body mass decreased (p beer before exercise could help maintain electrolyte homeostasis during exercise. Alcoholic beer intake reduced plasma Na⁺ and increased plasma K⁺ during exercise, which may negatively affect health and physical performance, and finally, the consumption of water before exercise could induce decreases of Na⁺ in plasma during exercise.

  16. Connective tissue spectrum abnormalities associated with spontaneous cerebrospinal fluid leaks: a prospective study. (United States)

    Reinstein, Eyal; Pariani, Mitchel; Bannykh, Serguei; Rimoin, David L; Schievink, Wouter I


    We aimed to assess the frequency of connective tissue abnormalities among patients with cerebrospinal fluid (CSF) leaks in a prospective study using a large cohort of patients. We enrolled a consecutive group of 50 patients, referred for consultation because of CSF leak. All patients have been carefully examined for the presence of connective tissue abnormalities, and based on findings, patients underwent genetic testing. Ancillary diagnostic studies included echocardiography, eye exam, and histopathological examinations of skin and dura biopsies in selected patients. We identified nine patients with heritable connective tissue disorders, including Marfan syndrome, Ehlers-Danlos syndrome and other unclassified forms. In seven patients, spontaneous CSF leak was the first noted manifestation of the genetic disorder. We conclude that spontaneous CSF leaks are associated with a spectrum of connective tissue abnormalities and may be the first noted clinical presentation of the genetic disorder. We propose that there is a clinical basis for considering spontaneous CSF leak as a clinical manifestation of heritable connective tissue disorders, and we suggest that patients with CSF leaks should be screened for connective tissue and vascular abnormalities.

  17. Effects of Beer, Non-Alcoholic Beer and Water Consumption before Exercise on Fluid and Electrolyte Homeostasis in Athletes

    Directory of Open Access Journals (Sweden)

    Mauricio Castro-Sepulveda


    Full Text Available Fluid and electrolyte status have a significant impact on physical performance and health. Pre-exercise recommendations cite the possibility of consuming beverages with high amounts of sodium. In this sense, non-alcoholic beer can be considered an effective pre-exercise hydration beverage. This double-blind, randomized study aimed to compare the effect of beer, non-alcoholic beer and water consumption before exercise on fluid and electrolyte homeostasis. Seven male soccer players performed 45 min of treadmill running at 65% of the maximal heart rate, 45 min after ingesting 0.7 L of water (W, beer (AB or non-alcoholic beer (NAB. Body mass, plasma Na+ and K+ concentrations and urine specific gravity (USG were assessed before fluid consumption and after exercise. After exercise, body mass decreased (p < 0.05 in W (−1.1%, AB (−1.0% and NAB (−1.0%. In the last minutes of exercise, plasma Na+ was reduced (p < 0.05 in W (−3.9% and AB (−3.7%, plasma K+ was increased (p < 0.05 in AB (8.5%, and USG was reduced in W (−0.9% and NAB (−1.0%. Collectively, these results suggest that non-alcoholic beer before exercise could help maintain electrolyte homeostasis during exercise. Alcoholic beer intake reduced plasma Na+ and increased plasma K+ during exercise, which may negatively affect health and physical performance, and finally, the consumption of water before exercise could induce decreases of Na+ in plasma during exercise.

  18. [The status of acid-base homeostasis in oral fluid during gestation]. (United States)

    Pol'ovyĭ, P V


    The article presents information on the nature and dynamics of metabolic changes in oral fluid in women during gestation. It is shown that dystrophic-inflammatory processes of periodontal tissues grow backed by the progression of metabolic acidosis. High content of sulfhydryl groups and disulfide ties in soluble proteins and low molecular weight compounds of oral fluid during pregnancy and activation of enzymatic antioxidant defense system periodontal tissues are found.

  19. Canine cerebrospinal fluid total nucleated cell counts and cytology associations with the prevalence of magnetic resonance imaging abnormalities

    Directory of Open Access Journals (Sweden)

    Hugo TB


    Full Text Available Timothy B Hugo, Kathryn L Heading, Robert H Labuc Melbourne Veterinary Specialist Centre, Glen Waverley, Vic, Australia Introduction: The combination of cerebrospinal fluid (CSF analysis and magnetic resonance imaging (MRI are often used to investigate intracranial disease in dogs. The aim of this retrospective study was to determine if the total nucleated cell count (TNCC or cytology findings in abnormal CSF are associated with the prevalence of MRI abnormalities. Materials and methods: For each case, the TNCC was categorized into one of three groups: A (<25×106/L; B (25–100×106/L; and C (>100×106/L. Cytology findings were categorized by the predominant cell type as lymphocytic, monocytoid, neutrophilic, or eosinopilic. MRI descriptions were classified as either normal or abnormal, and abnormal studies were further evaluated for the presence of specific characteristics (multifocal or diffuse disease versus focal disease, positive T2-weighted hyperintensity, positive FLAIR hyperintensity, contrast enhancement, mass effect, and the presence of poorly or well-defined lesion margins. Results: Forty-five dogs met the inclusion criteria and MRI abnormalities were found in 29/45 (64% dogs. TNCCs were not associated with the prevalence of MRI abnormalities or specific characteristics. Cytology categories were significantly associated with the prevalence of MRI abnormalities (P<0.001. Specifically, monocytoid cytology was 22.8 times more likely to have an abnormal MRI than lymphocytic cytology. CSF cytology was not significantly associated with specific abnormal MRI characteristics. Conclusion: There are minimal associations between CSF abnormalities and the prevalence of MRI abnormalities. These results support the continued importance of utilizing both tests when investigating intracranial disease. When CSF analysis must be performed initially, this study has demonstrated that an abnormal CSF with a monocytoid cytology supports the value of

  20. Fluid and salt supplementation effect on body hydration and electrolyte homeostasis during bed rest and ambulation (United States)

    Zorbas, Yan G.; Kakurin, Vassily J.; Kuznetsov, Nikolai A.; Yarullin, Vladimir L.


    Bed rest (BR) induces significant urinary and blood electrolyte changes, but little is known about the effect of fluid and salt supplements (FSS) on catabolism, hydration and electrolytes. The aim was to measure the effect of FSS on catabolism, body hydration and electrolytes during BR. Studies were done during 7 days of a pre-bed rest period and during 30 days of a rigorous bed rest period. Thirty male athletes aged, 24.6±7.6 years were chosen as subjects. They were divided into three groups: unsupplemented ambulatory control subjects (UACS), unsupplemented bed rested subjects (UBRS) and supplemented bed rested subjects (SBRS). The UBRS and SBRS groups were kept under a rigorous bed rest regime for 30 days. The SBRS daily took 30 ml water per kg body weight and 0.1 sodium chloride per kg body weight. Plasma sodium (Na), potassium (K), calcium (Ca) and magnesium (Mg) levels, urinary Na, K, Ca and Mg excretion, plasma osmolality, plasma protein level, whole blood hemoglobin (Hb) and hematocrit (Hct) level increased significantly ( p≤0.05), while plasma volume (PV), body weight, body fat, peak oxygen uptake, food and fluid intake decreased significantly ( p≤0.05) in the UBRS group when compared with the SBRS and UACS groups. In contrast, plasma and urinary electrolytes, osmolality, protein level, whole blood Hct and Hb level decreased significantly ( p≤0.05), while PV, fluid intake, body weight and peak oxygen uptake increased significantly ( p≤0.05) in the SBRS group when compared with the UBRS group. The measured parameters did not change significantly in the UACS group when compared with their baseline control values. The data indicate that FSS stabilizes electrolytes and body hydration during BR, while BR alone induces significant changes in electrolytes and body hydration. We conclude that FSS may be used to prevent catabolism and normalize body hydration status and electrolyte values during BR.

  1. Chromosome abnormalities diagnosed in utero: a Japanese study of 28 983 amniotic fluid specimens collected before 22 weeks gestations. (United States)

    Nishiyama, Miyuki; Yan, Jim; Yotsumoto, Junko; Sawai, Hideaki; Sekizawa, Akihiko; Kamei, Yoshimasa; Sago, Haruhiko


    To investigate the frequency and type of abnormal karyotype in Japan by amniocentesis before 22 weeks of gestation. We performed a retrospective analysis of 28 983 amniotic fluid specimens in a local population collected before 22 weeks gestations for fetal karyotyping. The incidence of abnormal karyotype was 6.0%. The main indication was advanced maternal age (AMA) of 35 years and older, which represented over half of the clinical indications. Abnormal karyotype was most frequently reported among the referrals for abnormal ultrasound findings (21.8%), followed by positive maternal serum screen results (5.3%). Three-fourths of abnormal karyotype was either autosomal aneuploidy (64.0%) or sex chromosome aneuploidy (11.6%). Abnormal karyotype was detected in 2.8% of pregnant women referred for AMA. Clinically significant abnormal karyotype increased with advancing maternal age. The frequency and type of abnormal karyotype detected by amniocentesis for various indications were determined. Amniocentesis was mainly performed among the referrals for AMA, which is a characteristic distribution of indications of Japan.

  2. Amniotic fluid deficiency and congenital abnormalities both influence fluctuating asymmetry in developing limbs of human deceased fetuses.

    Directory of Open Access Journals (Sweden)

    Clara Mariquita Antoinette ten Broek

    Full Text Available Fluctuating asymmetry (FA, as an indirect measure of developmental instability (DI, has been intensively studied for associations with stress and fitness. Patterns, however, appear heterogeneous and the underlying causes remain largely unknown. One aspect that has received relatively little attention in the literature is the consequence of direct mechanical effects on asymmetries. The crucial prerequisite for FA to reflect DI is that environmental conditions on both sides should be identical. This condition may be violated during early human development if amniotic fluid volume is deficient, as the resulting mechanical pressures may increase asymmetries. Indeed, we showed that limb bones of deceased human fetuses exhibited increased asymmetry, when there was not sufficient amniotic fluid (and, thus, space in the uterine cavity. As amniotic fluid deficiency is known to cause substantial asymmetries and abnormal limb development, these subtle asymmetries are probably at least in part caused by the mechanical pressures. On the other hand, deficiencies in amniotic fluid volume are known to be associated with other congenital abnormalities that may disturb DI. More specifically, urogenital abnormalities can directly affect/reduce amniotic fluid volume. We disentangled the direct mechanical effects on FA from the indirect effects of urogenital abnormalities, the latter presumably representing DI. We discovered that both factors contributed significantly to the increase in FA. However, the direct mechanical effect of uterine pressure, albeit statistically significant, appeared less important than the effects of urogenital abnormalities, with an effect size only two-third as large. We, thus, conclude that correcting for the relevant direct factors allowed for a representative test of the association between DI and stress, and confirmed that fetuses form a suitable model system to increase our understanding in patterns of FA and symmetry development.

  3. Kidney injury, fluid, electrolyte and acid-base abnormalities in alcoholics. (United States)

    Adewale, Adebayo; Ifudu, Onyekachi


    In the 21(st) century, alcoholism and the consequences of ethyl alcohol abuse are major public health concerns in the United States, affecting approximately 14 million people. Pertinent to the global impact of alcoholism is the World Health Organisation estimate that 140 million people worldwide suffer from alcohol dependence. Alcoholism and alcohol abuse are the third leading causes of preventable death in the United States. Alcohol dependence and alcohol abuse cost the United State an estimated US$220 billion in 2005, eclipsing the expense associated with cancer (US$196 billion) or obesity (US$133 billion). Orally ingested ethyl alcohol is absorbed rapidly without chemical change from the stomach and intestine, reaching maximum blood concentration in about an hour. Alcohol crosses capillary membranes by simple diffusion, affecting almost every organ system in the body by impacting a wide range of cellular functions. Alcohol causes metabolic derangements either directly, via its chemical by-product or secondarily through alcohol-induced disorders. Many of these alcohol-related metabolic disturbances are increased in severity by the malnutrition that is common in those with chronic alcoholism. This review focuses on the acute and chronic injurious consequences of alcohol ingestion on the kidney, as well as the fluid, electrolyte and acid-base abnormalities associated with acute and chronic ingestion of alcohol.

  4. SAPHIR - a multi-scale, multi-resolution modeling environment targeting blood pressure regulation and fluid homeostasis. (United States)

    Thomas, S; Abdulhay, Enas; Baconnier, Pierre; Fontecave, Julie; Francoise, Jean-Pierre; Guillaud, Francois; Hannaert, Patrick; Hernandez, Alfredo; Le Rolle, Virginie; Maziere, Pierre; Tahi, Fariza; Zehraoui, Farida


    We present progress on a comprehensive, modular, interactive modeling environment centered on overall regulation of blood pressure and body fluid homeostasis. We call the project SAPHIR, for "a Systems Approach for PHysiological Integration of Renal, cardiac, and respiratory functions". The project uses state-of-the-art multi-scale simulation methods. The basic core model will give succinct input-output (reduced-dimension) descriptions of all relevant organ systems and regulatory processes, and it will be modular, multi-resolution, and extensible, in the sense that detailed submodules of any process(es) can be "plugged-in" to the basic model in order to explore, eg. system-level implications of local perturbations. The goal is to keep the basic core model compact enough to insure fast execution time (in view of eventual use in the clinic) and yet to allow elaborate detailed modules of target tissues or organs in order to focus on the problem area while maintaining the system-level regulatory compensations.

  5. Research into the Physiology of Cerebrospinal Fluid Reaches a New Horizon: Intimate Exchange between Cerebrospinal Fluid and Interstitial Fluid May Contribute to Maintenance of Homeostasis in the Central Nervous System (United States)

    MATSUMAE, Mitsunori; SATO, Osamu; HIRAYAMA, Akihiro; HAYASHI, Naokazu; TAKIZAWA, Ken; ATSUMI, Hideki; SORIMACHI, Takatoshi


    Cerebrospinal fluid (CSF) plays an essential role in maintaining the homeostasis of the central nervous system. The functions of CSF include: (1) buoyancy of the brain, spinal cord, and nerves; (2) volume adjustment in the cranial cavity; (3) nutrient transport; (4) protein or peptide transport; (5) brain volume regulation through osmoregulation; (6) buffering effect against external forces; (7) signal transduction; (8) drug transport; (9) immune system control; (10) elimination of metabolites and unnecessary substances; and finally (11) cooling of heat generated by neural activity. For CSF to fully mediate these functions, fluid-like movement in the ventricles and subarachnoid space is necessary. Furthermore, the relationship between the behaviors of CSF and interstitial fluid in the brain and spinal cord is important. In this review, we will present classical studies on CSF circulation from its discovery over 2,000 years ago, and will subsequently introduce functions that were recently discovered such as CSF production and absorption, water molecule movement in the interstitial space, exchange between interstitial fluid and CSF, and drainage of CSF and interstitial fluid into both the venous and the lymphatic systems. Finally, we will summarize future challenges in research. This review includes articles published up to February 2016. PMID:27245177

  6. Hormonal composition of follicular fluid from abnormal follicular structures in mares. (United States)

    Beltman, M E; Walsh, S W; Canty, M J; Duffy, P; Crowe, M A


    The objective was to characterise the hormonal composition of follicular fluid from mares with distinct anovulatory-cystic follicles. Follicular fluid was aspirated from six mares that presented with cystic follicles and from pre-ovulatory follicles of five normal mares (controls). Differences in progesterone, oestradiol, testosterone, IGF-I and IGF binding were analysed using Fisher's exact test. There were greater (P < 0.03) follicular fluid oestradiol concentrations in normal follicles and the testosterone concentration of the cystic fluid was greater (P < 0.05) than that of the normal fluid. There also was a greater (P < 0.03) percentage of IGF-I binding and lower (P < 0.02) IGF-I concentrations in the fluid collected from the cystic structures compared with the fluid from normal follicles. Despite the limited number of animals, the fact that fluid aspirated from cystic follicles had higher testosterone and lower oestradiol concentrations could be of diagnostic value when a practitioner wants to distinguish between a cystic and non-cystic persistent follicle. The research reported here also indicates a likely role for the IGF system in the pathogenesis of the development and maintenance of anovulatory follicular structures in mare ovaries.

  7. Abnormal expression of cerebrospinal fluid cation chloride cotransporters in patients with Rett syndrome.

    Directory of Open Access Journals (Sweden)

    Sofia Temudo Duarte

    Full Text Available OBJECTIVE: Rett Syndrome is a progressive neurodevelopmental disorder caused mainly by mutations in the gene encoding methyl-CpG-binding protein 2. The relevance of MeCP2 for GABAergic function was previously documented in animal models. In these models, animals show deficits in brain-derived neurotrophic factor, which is thought to contribute to the pathogenesis of this disease. Neuronal Cation Chloride Cotransporters (CCCs play a key role in GABAergic neuronal maturation, and brain-derived neurotrophic factor is implicated in the regulation of CCCs expression during development. Our aim was to analyse the expression of two relevant CCCs, NKCC1 and KCC2, in the cerebrospinal fluid of Rett syndrome patients and compare it with a normal control group. METHODS: The presence of bumetanide sensitive NKCC1 and KCC2 was analysed in cerebrospinal fluid samples from a control pediatric population (1 day to 14 years of life and from Rett syndrome patients (2 to 19 years of life, by immunoblot analysis. RESULTS: Both proteins were detected in the cerebrospinal fluid and their levels are higher in the early postnatal period. However, Rett syndrome patients showed significantly reduced levels of KCC2 and KCC2/NKCC1 ratio when compared to the control group. CONCLUSIONS: Reduced KCC2/NKCC1 ratio in the cerebrospinal fluid of Rett Syndrome patients suggests a disturbed process of GABAergic neuronal maturation and open up a new therapeutic perspective.

  8. Pathophysiology, treatment, and prevention of fluid and electrolyte abnormalities during refeeding syndrome. (United States)

    Parli, Sara E; Ruf, Kathryn M; Magnuson, Barbara


    Refeeding syndrome may occur after the reintroduction of carbohydrates in chronically malnourished or acutely hypermetabolic patients as a result of a rapid shift to glucose utilization as an energy source. Electrolyte abnormalities of phosphorus, potassium, and magnesium occur, leading to complications of various organ systems, and may result in death. Patients should be screened for risk factors of malnutrition to prevent refeeding syndrome. For those at risk, nutrition should be initiated and slowly advanced toward the patient's goal over several days. Electrolyte disturbances should be aggressively corrected.

  9. Immunosuppressive activity of human amniotic fluid of normal and abnormal pregnancies. (United States)

    Shohat, B; Faktor, J M


    Twenty specimens of amniotic fluid (AF) obtained between week 16 and 18 of gestation from normal pregnant women and six specimens from pregnant women in which trisomia of chromosome 21 was found were tested for immunosuppressive activity. Incubation of normal human donor lymphocytes with 0.2-1 mL of AF from normal pregnant women for one hour at 37 degrees C was sufficient for induction of significant inhibition of the ability of these cells to induce a local xenogeneic graft-versus-host reaction (GVHR) as well as inhibition of E and E-active rosette formation, the GVHR being the most sensitive test. On the other hand, amniotic fluid obtained from the six pregnant women in which trisomia of chromosome 21 was found showed no inhibitory activity in either the E or E-active rosette formation, nor in the local xenogeneic graft-versus-host reaction. AF from all the women tested was found to have no effect on phenotype expression of the lymphocytes, as tested by the monoclonal antibodies OKT4+ and OKT8+, nor on B-lymphocytes, as tested by surface immunoglobulins. No correlation was found between the alpha-fetoprotein levels in the sera of those women and the immunosuppressive activity. These findings indicate that genetic defects of the conceptus are not limited to the embryo but may affect the composition of immunosuppressive components present in normal amniotic fluid.

  10. The Effects of High Level Magnesium Dialysis/Substitution Fluid on Magnesium Homeostasis under Regional Citrate Anticoagulation in Critically Ill.

    Directory of Open Access Journals (Sweden)

    Mychajlo Zakharchenko

    Full Text Available The requirements for magnesium (Mg supplementation increase under regional citrate anticoagulation (RCA because citrate acts by chelation of bivalent cations within the blood circuit. The level of magnesium in commercially available fluids for continuous renal replacement therapy (CRRT may not be sufficient to prevent hypomagnesemia.Patients (n = 45 on CRRT (2,000 ml/h, blood flow (Qb 100 ml/min with RCA modality (4% trisodium citrate using calcium free fluid with 0.75 mmol/l of Mg with additional magnesium substitution were observed after switch to the calcium-free fluid with magnesium concentration of 1.50 mmol/l (n = 42 and no extra magnesium replenishment. All patients had renal indications for CRRT, were treated with the same devices, filters and the same postfilter ionized calcium endpoint (<0.4 mmol/l of prefilter citrate dosage. Under the high level Mg fluid the Qb, dosages of citrate and CRRT were consequently escalated in 9h steps to test various settings.Median balance of Mg was -0.91 (-1.18 to -0.53 mmol/h with Mg 0.75 mmol/l and 0.2 (0.06-0.35 mmol/h when fluid with Mg 1.50 mmol/l was used. It was close to zero (0.02 (-0.12-0.18 mmol/h with higher blood flow and dosage of citrate, increased again to 0.15 (-0.11-0.25 mmol/h with 3,000 ml/h of high magnesium containing fluid (p<0.001. The arterial levels of Mg were mildly increased after the change for high level magnesium containing fluid (p<0.01.Compared to ordinary dialysis fluid the mildly hypermagnesemic fluid provided even balances and adequate levels within ordinary configurations of CRRT with RCA and without a need for extra magnesium Identifier: NCT01361581.

  11. Characteristic abnormalities in cerebrospinal fluid biochemistry in children with cerebral malaria compared to viral encephalitis

    Directory of Open Access Journals (Sweden)

    Atmakuri RM


    Full Text Available Abstract Background In developing countries where Plasmodium falciparum malaria is endemic, viral encephalitis and cerebral malaria are found in the same population, and parasitemia with Plasmodium falciparum is common in asymptomatic children. The objective of this study was to investigate the cerebrospinal fluid (CSF biochemistry in children with cerebral malaria compared to those with presumed viral encephalitis. Methods We studied the following CSF parameters: cell count, glucose, protein, lactic dehydrogenase (LDH and adenosine deaminase (ADA levels, in children with cerebral malaria, with presumed viral encephalitis, and in control subjects who had a lumbar puncture after a febrile convulsion with postictal coma. Results We recruited 12 children with cerebral malaria, 14 children with presumed viral encephalitis and 20 controls prospectively, over 2 years in the Government General Hospital in Kakinada, India. Patients with cerebral malaria had significantly lower CSF glucose, and higher protein, LDH, CSF/blood LDH ratio and CSF ADA levels but a lower CSF/serum ADA ratio compared to controls (p Conclusion CSF/serum ADA ratio and CSF glucose levels were the best discriminators of cerebral malaria from presumed viral encephalitis in our study. Further studies are needed to explore their usefulness in epidemiological studies.

  12. Analysis of aluminium content and iron homeostasis in nipple aspirate fluids from healthy women and breast cancer-affected patients. (United States)

    Mannello, Ferdinando; Tonti, Gaetana A; Medda, Virginia; Simone, Patrizia; Darbre, Philippa D


    Aluminium is not a physiological component of the breast but has been measured recently in human breast tissues and breast cyst fluids at levels above those found in blood serum or milk. Since the presence of aluminium can lead to iron dyshomeostasis, levels of aluminium and iron-binding proteins (ferritin, transferrin) were measured in nipple aspirate fluid (NAF), a fluid present in the breast duct tree and mirroring the breast microenvironment. NAFs were collected noninvasively from healthy women (NoCancer; n = 16) and breast cancer-affected women (Cancer; n = 19), and compared with levels in serum (n = 15) and milk (n = 45) from healthy subjects. The mean level of aluminium, measured by ICP-mass spectrometry, was significantly higher in Cancer NAF (268.4 ± 28.1 μg l(-1) ; n = 19) than in NoCancer NAF (131.3 ± 9.6 μg l(-1) ; n = 16; P Cancer NAF (280.0 ± 32.3 μg l(-1) ) than in NoCancer NAF (55.5 ± 7.2 μg l(-1) ), and furthermore, a positive correlation was found between levels of aluminium and ferritin in the Cancer NAF (correlation coefficient R = 0.94, P breast cancer. The reasons for the high levels of aluminium in NAF remain unknown but possibilities include either exposure to aluminium-based antiperspirant salts in the adjacent underarm area and/or preferential accumulation of aluminium by breast tissues.

  13. Modelling of Non-isothermal Flow Abnormally Viscous Fluid in the Channels with Various Geometry of Boundaries

    Directory of Open Access Journals (Sweden)

    K. V. Litvinov


    Full Text Available In this paper, we analyzed the flat non-isothermal stationary flow of abnormally viscous fluid in the channels with asymmetric boundary conditions and an unknown output boundary. The geometry of the channels in which the problem is considered, is such regions, that at the transition to bipolar a system of coordinates map into rectangles. This greatly simplifies the boundary conditions, since it is possible to use an orthogonal grid and boundary conditions are given in its nodes. Fields of this type are often found in applications. The boundary conditions are set as follows: the liquid sticks to the boundaries of the channels, which rotate at different speeds and have different radius and temperature; moreover, temperature at the entrance to deformation is known, while on the boundary with the surface the material has the surface temperature; the pressure on the enter and exit of the region becomes zero. The rheological model only takes into account the anomaly of viscosity. The material is not compressible. This process can be described by a system consisting of continuity equations, the equations of conservation of momentum and an energy equation: ∇

  14. Chronic Treatment with a Clinically Relevant Dose of Methylphenidate Increases Glutamate Levels in Cerebrospinal Fluid and Impairs Glutamatergic Homeostasis in Prefrontal Cortex of Juvenile Rats. (United States)

    Schmitz, Felipe; Pierozan, Paula; Rodrigues, André F; Biasibetti, Helena; Coelho, Daniella M; Mussulini, Ben Hur; Pereira, Mery S L; Parisi, Mariana M; Barbé-Tuana, Florencia; de Oliveira, Diogo L; Vargas, Carmen R; Wyse, Angela T S


    The understanding of the consequences of chronic treatment with methylphenidate is very important since this psychostimulant is extensively prescribed to preschool age children, and little is known about the mechanisms underlying the persistent changes in behavior and neuronal function related with the use of methylphenidate. In this study, we initially investigate the effect of early chronic treatment with methylphenidate on amino acids profile in cerebrospinal fluid and prefrontal cortex of juvenile rats, as well as on glutamatergic homeostasis, Na(+),K(+)-ATPase function, and balance redox in prefrontal cortex of rats. Wistar rats at early age received intraperitoneal injections of methylphenidate (2.0 mg/kg) or an equivalent volume of 0.9% saline solution (controls), once a day, from the 15th to the 45th day of age. Twenty-four hours after the last injection, the animals were decapitated and the cerebrospinal fluid and prefrontal cortex were obtained. Results showed that methylphenidate altered amino acid profile in cerebrospinal fluid, increasing the levels of glutamate. Glutamate uptake was decreased by methylphenidate administration, but GLAST and GLT-1 were not altered by this treatment. In addition, the astrocyte marker GFAP was not altered by MPH. The activity and immunocontent of catalytic subunits (α1, α2, and α3) of Na(+),K(+)-ATPase were decreased in prefrontal cortex of rats subjected to methylphenidate treatment, as well as changes in α1 and α2 gene expression of catalytic α subunits of Na(+),K(+)-ATPase were also observed. CAT activity was increased and SOD/CAT ratio and sulfhydryl content were decreased in rat prefrontal cortex. Taken together, our results suggest that chronic treatment with methylphenidate at early age induces excitotoxicity, at least in part, due to inhibition of glutamate uptake probably caused by disturbances in the Na(+),K(+)-ATPase function and/or in protein damage observed in the prefrontal cortex.

  15. Role of α{sub 2}-adrenoceptors in the lateral parabrachial nucleus in the control of body fluid homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, C.A.F.; Andrade-Franzé, G.M.F.; De Paula, P.M.; De Luca, L.A. Jr.; Menani, J.V. [Departamento de Fisiologia e Patologia, Faculdade de Odontologia, Universidade Estadual Paulista, Araraquara, SP (Brazil)


    Central α{sub 2}-adrenoceptors and the pontine lateral parabrachial nucleus (LPBN) are involved in the control of sodium and water intake. Bilateral injections of moxonidine (α{sub 2}-adrenergic/imidazoline receptor agonist) or noradrenaline into the LPBN strongly increases 0.3 M NaCl intake induced by a combined treatment of furosemide plus captopril. Injection of moxonidine into the LPBN also increases hypertonic NaCl and water intake and reduces oxytocin secretion, urinary sodium, and water excreted by cell-dehydrated rats, causing a positive sodium and water balance, which suggests that moxonidine injected into the LPBN deactivates mechanisms that restrain body fluid volume expansion. Pretreatment with specific α{sub 2}-adrenoceptor antagonists injected into the LPBN abolishes the behavioral and renal effects of moxonidine or noradrenaline injected into the same area, suggesting that these effects depend on activation of LPBN α{sub 2}-adrenoceptors. In fluid-depleted rats, the palatability of sodium is reduced by ingestion of hypertonic NaCl, limiting intake. However, in rats treated with moxonidine injected into the LPBN, the NaCl palatability remains high, even after ingestion of significant amounts of 0.3 M NaCl. The changes in behavioral and renal responses produced by activation of α{sub 2}-adrenoceptors in the LPBN are probably a consequence of reduction of oxytocin secretion and blockade of inhibitory signals that affect sodium palatability. In this review, a model is proposed to show how activation of α{sub 2}-adrenoceptors in the LPBN may affect palatability and, consequently, ingestion of sodium as well as renal sodium excretion.

  16. Oxidized ATM promotes abnormal proliferation of breast CAFs through maintaining intracellular redox homeostasis and activating the PI3K-AKT, MEK-ERK, and Wnt-β-catenin signaling pathways. (United States)

    Tang, Shifu; Hou, Yixuan; Zhang, Hailong; Tu, Gang; Yang, Li; Sun, Yifan; Lang, Lei; Tang, Xi; Du, Yan-E; Zhou, Mingli; Yu, Tenghua; Xu, Liyun; Wen, Siyang; Liu, Chunming; Liu, Manran


    Abnormal proliferation is one characteristic of cancer-associated fibroblasts (CAFs), which play a key role in tumorigenesis and tumor progression. Oxidative stress (OS) is the root cause of CAFs abnormal proliferation. ATM (ataxia-telangiectasia mutated protein kinase), an important redox sensor, is involved in DNA damage response and cellular homeostasis. Whether and how oxidized ATM regulating CAFs proliferation remains unclear. In this study, we show that there is a high level of oxidized ATM in breast CAFs in the absence of double-strand breaks (DSBs) and that oxidized ATM plays a critical role in CAFs proliferation. The effect of oxidized ATM on CAFs proliferation is mediated by its regulation of cellular redox balance and the activity of the ERK, PI3K-AKT, and Wnt signaling pathways. Treating cells with antioxidant N-acetyl-cysteine (NAC) partially rescues the proliferation defect of the breast CAFs caused by ATM deficiency. Administrating cells with individual or a combination of specific inhibitors of the ERK, PI3K-AKT, and Wnt signaling pathways mimics the effect of ATM deficiency on breast CAF proliferation. This is mainly ascribed to the β-catenin suppression and down-regulation of c-Myc, thus further leading to the decreased cyclinD1, cyclinE, and E2F1 expression and the enhanced p21(Cip1) level. Our results reveal an important role of oxidized ATM in the regulation of the abnormal proliferation of breast CAFs. Oxidized ATM could serve as a potential target for treating breast cancer.

  17. A new methodology of viewing extra-axial fluid and cortical abnormalities in children with autism via transcranial ultrasonography

    Directory of Open Access Journals (Sweden)

    James Jeffrey Bradstreet


    Full Text Available Background: Autism spectrum disorders (ASDs are developmental conditions of uncertain etiology which have now affected more than 1% of the school-age population of children in many developed nations. Transcranial ultrasonography (TUS via the temporal bone appeared to be a potential window of investigation to determine the presence of both cortical abnormalities and increased extra-axial fluid (EAF. Methods: TUS was accomplished using a linear probe (10-5 MHz. Parents volunteered ASD subjects (N = 23; males 18, females 5 for evaluations (mean = 7.46 years + 3.97 years, and 15 neurotypical siblings were also examined (mean = 7.15 years + 4.49 years. Childhood Autism Rating Scale (CARS2® scores were obtained and the ASD score mean was 48.08 + 6.79 (Severe. Results: Comparisons of the extra-axial spaces indicated increases in the ASD subjects. For EAF we scored based on the gyral summit distances between the arachnoid membrane and the cortical pia layer (subarachnoid space: 1 0.10 cm. All of the neurotypical siblings scored 1, whereas the ASD mean score was 3.41 + 0.67. We also defined cortical dysplasia as the following: hypoechoic lesions within the substance of the cortex, or disturbed layering within the grey matter. For cortical dysplasia we scored: 1 none observed, 2 rare hypoechogenic lesions and/or mildly atypical cortical layering patterns, 3 more common, but separated areas of cortical hypoechogenic lesions, 4 very common or confluent areas of cortical hypoechogenicity. Again all of the neurotypical siblings scored 1, while the ASD subjects’ mean score was 2.79 + 0.93. Conclusions: TUS may be a useful screening technique for children at potential risk of ASDs which, if confirmed with repeated studies and high resolution MRI, provides rapid, noninvasive qualification of EAF and cortical lesions.

  18. Abnormal hyperintensity within the subarachnoid space evaluated by fluid-attenuated inversion-recovery MR imaging: a spectrum of central nervous system diseases

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, M.; Sakuma, H.; Takeda, K. [Dept. of Radiology, Mie Univ. School of Medicine, Mie (Japan); Yagishita, A. [Dept. of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Tokyo (Japan); Yamamoto, T. [Dept. of Radiology, Obama Municipal Hospital, Fukui (Japan)


    A variety of central nervous system (CNS) diseases are associated with abnormal hyperintensity within the subarachnoid space (SAS) by fluid-attenuated inversion-recovery (FLAIR) MR imaging. Careful attention to the SAS can provide additional useful information that may not be available with conventional MR sequences. The purpose of this article is to provide a pictorial essay about CNS diseases and FLAIR images with abnormal hyperintensity within the SAS. We present several CNS diseases including subarachnoid hemorrhage, meningitis, leptomeningeal metastases, acute infarction, and severe arterial occlusive diseases such as moya-moya disease. We also review miscellaneous diseases or normal conditions that may exhibit cerebrospinal fluid hyperintensity on FLAIR images. Although the detection of abnormal hyperintensity suggests the underlying CNS diseases and narrows differential diagnoses, FLAIR imaging sometimes presents artifactual hyperintensity within the SAS that can cause the misinterpretation of normal SAS as pathologic conditions; therefore, radiologists should be familiar with such artifactual conditions as well as pathologic conditions shown as hyperintensity by FLAIR images. This knowledge is helpful in establishing the correct diagnosis. (orig.)

  19. Cerebrospinal fluid abnormalities in HIV-negative patients with secondary and early latent syphilis and serum VDRL ≥ 1:32

    Directory of Open Access Journals (Sweden)

    Maciej Pastuszczak


    Full Text Available Background : Syphilis is caused by a spirochete Treponema pallidum. Invasion of the central nervous system (CNS by T. pallidum may appear early during the course of disease. The diagnosis of confirmed neurosyphilis is based on the reactive Venereal Disease Research Laboratory (VDRL in cerebrospinal fluid (CSF. Recent studies indicated that serum RPR ≥ 1:32 are associated with higher risk of reactivity of CSF VDRL. Aims : The main aim of the current study was to assess cerebrospinal fluid serological and biochemical abnormalities in HIV negative subjects with secondary and early latent syphilis and serum VDRL ≥ 1:32. Materials and Methods : Clinical and laboratory data of 33 HIV-negative patients with secondary and early latent syphilis, with the serum VDRL titer ≥ 1:32, who underwent a lumbar puncture and were treated in Department of Dermatology at Jagiellonian University School of Medicine in Cracow, were collected. Results : Clinical examination revealed no symptoms of CNS involvement in all patients. 18% ( n = 6 of patients met the criteria of confirmed neurosyphilis (reactive CSF-VDRL. In 14 (42% patients CSF WBC count ≥ 5/ul was found, and in 13 (39% subjects there was elevated CSF protein concentration (≥ 45 mg/dL. 10 patients had CSF WBC count ≥ 5/ul and/or elevated CSF protein concentration (≥ 45 mg/dL but CSF-VDRL was not reactive. Conclusions : Indications for CSF examination in HIV-negative patients with early syphilis are the subject of discussion. It seems that all patients with syphilis and with CSF abnormalities (reactive serological tests, elevated CSF WBC count, elevated protein concentration should be treated according to protocols for neurosyphilis. But there is a need for identification of biomarkes in order to identify a group of patients with syphilis, in whom risk of such abnormalities is high.

  20. Brain interstitial fluid glutamine homeostasis is controlled by blood-brain barrier SLC7A5/LAT1 amino acid transporter. (United States)

    Dolgodilina, Elena; Imobersteg, Stefan; Laczko, Endre; Welt, Tobias; Verrey, Francois; Makrides, Victoria


    L-glutamine (Gln) is the most abundant amino acid in plasma and cerebrospinal fluid and a precursor for the main central nervous system excitatory (L-glutamate) and inhibitory (γ-aminobutyric acid (GABA)) neurotransmitters. Concentrations of Gln and 13 other brain interstitial fluid amino acids were measured in awake, freely moving mice by hippocampal microdialysis using an extrapolation to zero flow rate method. Interstitial fluid levels for all amino acids including Gln were ∼5-10 times lower than in cerebrospinal fluid. Although the large increase in plasma Gln by intraperitoneal (IP) injection of (15)N2-labeled Gln (hGln) did not increase total interstitial fluid Gln, low levels of hGln were detected in microdialysis samples. Competitive inhibition of system A (SLC38A1&2; SNAT1&2) or system L (SLC7A5&8; LAT1&2) transporters in brain by perfusion with α-(methylamino)-isobutyric acid (MeAIB) or 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH) respectively, was tested. The data showed a significantly greater increase in interstitial fluid Gln upon BCH than MeAIB treatment. Furthermore, brain BCH perfusion also strongly increased the influx of hGln into interstitial fluid following IP injection consistent with transstimulation of LAT1-mediated transendothelial transport. Taken together, the data support the independent homeostatic regulation of amino acids in interstitial fluid vs. cerebrospinal fluid and the role of the blood-brain barrier expressed SLC7A5/LAT1 as a key interstitial fluid gatekeeper.

  1. Abnormality in glutamine-glutamate cycle in the cerebrospinal fluid of cognitively intact elderly individuals with major depressive disorder: a 3-year follow-up study. (United States)

    Hashimoto, K; Bruno, D; Nierenberg, J; Marmar, C R; Zetterberg, H; Blennow, K; Pomara, N


    Major depressive disorder (MDD), common in the elderly, is a risk factor for dementia. Abnormalities in glutamatergic neurotransmission via the N-methyl-D-aspartate receptor (NMDA-R) have a key role in the pathophysiology of depression. This study examined whether depression was associated with cerebrospinal fluid (CSF) levels of NMDA-R neurotransmission-associated amino acids in cognitively intact elderly individuals with MDD and age- and gender-matched healthy controls. CSF was obtained from 47 volunteers (MDD group, N=28; age- and gender-matched comparison group, N=19) at baseline and 3-year follow-up (MDD group, N=19; comparison group, N=17). CSF levels of glutamine, glutamate, glycine, L-serine and D-serine were measured by high-performance liquid chromatography. CSF levels of amino acids did not differ across MDD and comparison groups. However, the ratio of glutamine to glutamate was significantly higher at baseline in subjects with MDD than in controls. The ratio decreased in individuals with MDD over the 3-year follow-up, and this decrease correlated with a decrease in the severity of depression. No correlations between absolute amino-acid levels and clinical variables were observed, nor were correlations between amino acids and other biomarkers (for example, amyloid-β42, amyloid-β40, and total and phosphorylated tau protein) detected. These results suggest that abnormalities in the glutamine-glutamate cycle in the communication between glia and neurons may have a role in the pathophysiology of depression in the elderly. Furthermore, the glutamine/glutamate ratio in CSF may be a state biomarker for depression.

  2. Amniotic fluid water dynamics. (United States)

    Beall, M H; van den Wijngaard, J P H M; van Gemert, M J C; Ross, M G


    Water arrives in the mammalian gestation from the maternal circulation across the placenta. It then circulates between the fetal water compartments, including the fetal body compartments, the placenta and the amniotic fluid. Amniotic fluid is created by the flow of fluid from the fetal lung and bladder. A major pathway for amniotic fluid resorption is fetal swallowing; however in many cases the amounts of fluid produced and absorbed do not balance. A second resorption pathway, the intramembranous pathway (across the amnion to the fetal circulation), has been proposed to explain the maintenance of normal amniotic fluid volume. Amniotic fluid volume is thus a function both of the amount of water transferred to the gestation across the placental membrane, and the flux of water across the amnion. Membrane water flux is a function of the water permeability of the membrane; available data suggests that the amnion is the structure limiting intramembranous water flow. In the placenta, the syncytiotrophoblast is likely to be responsible for limiting water flow across the placenta. In human tissues, placental trophoblast membrane permeability increases with gestational age, suggesting a mechanism for the increased water flow necessary in late gestation. Membrane water flow can be driven by both hydrostatic and osmotic forces. Changes in both osmotic/oncotic and hydrostatic forces in the placenta my alter maternal-fetal water flow. A normal amniotic fluid volume is critical for normal fetal growth and development. The study of amniotic fluid volume regulation may yield important insights into the mechanisms used by the fetus to maintain water homeostasis. Knowledge of these mechanisms may allow novel treatments for amniotic fluid volume abnormalities with resultant improvement in clinical outcome.

  3. 水通道蛋白9与羊水量异常的研究进展%Research progress on relationship between expression of aquaporin 9 and amniotic fluid volume abnormality

    Institute of Scientific and Technical Information of China (English)

    解雁飞; 李红梅


    水通道蛋白普遍存在于人体组织器官的细胞膜上,跨过脂质双分子层转运水及其它小分子物质,调节人体内的水平衡代谢。近年来研究发现水通道蛋白是羊水平衡的重要通道,参与母胎的液体交换。水通道蛋白9作为水通道蛋白家族中重要成员之一,目前被认为表达于人类的胎膜和胎盘,可能是羊水膜内调节中的一种重要的水通道。对水通道蛋白9在人胎盘胎膜的分布以及水通道蛋白9与羊水量异常相关性的深入研究,有助于探索羊水量异常的发生机制,从而为治疗羊水量异常提供新的思路和方向。为进一步明确羊水量异常的发病机制以指导临床的诊治,该文就国内外水通道蛋白9及其与羊水量异常关系的研究进展进行了综述。%Aquaporin ( AQP ) , which exists widely in cell membrane of human tissues and organs , passes through lipidic bilayer ( phospholipid bilayer ) to transport water and other small molecules and regulates water metabolic balance in body .Recent studies have found that AQP is an important passage for amnion fluid balance and maternal-fetal fluid exchange .As one of the important members of the AQPs family, AQP9 is now believed to be expressed in human fetal membrane and placenta , and it may be an important water passage for amniotic fluid intramembrane regulation .Deep investigationes on distribution of AQP 9 in fetal membranes and placenta and its relationship with amniotic fluid volume abnormality is contributive to explore mechanisms of amniotic fluid volume abnormality , so as to provide a new idea and direction for the treatment .In order to further clarify the pathogenesis of abnormal amniotic fluid volume and to guide the clinical diagnosis and treatment , the article reviewed recent advance both at home and abroad in AQP 9 and its relationship with amniotic fluid volume abnormality .

  4. Silencing of the Charcot-Marie-Tooth disease-associated gene GDAP1 induces abnormal mitochondrial distribution and affects Ca2+ homeostasis by reducing store-operated Ca2+ entry. (United States)

    Pla-Martín, David; Rueda, Carlos B; Estela, Anna; Sánchez-Piris, Maribel; González-Sánchez, Paloma; Traba, Javier; de la Fuente, Sergio; Scorrano, Luca; Renau-Piqueras, Jaime; Alvarez, Javier; Satrústegui, Jorgina; Palau, Francesc


    GDAP1 is an outer mitochondrial membrane protein that acts as a regulator of mitochondrial dynamics. Mutations of the GDAP1 gene cause Charcot-Marie-Tooth (CMT) neuropathy. We show that GDAP1 interacts with the vesicle-organelle trafficking proteins RAB6B and caytaxin, which suggests that GDAP1 may participate in the mitochondrial movement within the cell. GDAP1 silencing in the SH-SY5Y cell line induces abnormal distribution of the mitochondrial network, reduces the contact between mitochondria and endoplasmic reticulum (ER) and alters the mobilization of mitochondria towards plasma membrane upon depletion of ER-Ca(2+) stores. GDAP1 silencing does not affect mitochondrial Ca(2+) uptake, ER-Ca(2+), or Ca(2+) flow from ER to mitochondria, but reduces Ca(2+) inflow through store-operated Ca(2+) entry (SOCE) following mobilization of ER-Ca(2+) and SOCE-driven Ca(2+) entry in mitochondria. Our studies suggest that the pathophysiology of GDAP1-related CMT neuropathies may be associated with abnormal distribution and movement of mitochondria throughout cytoskeleton towards the ER and subplasmalemmal microdomains, resulting in a decrease in SOCE activity and impaired SOCE-driven Ca(2+) uptake in mitochondria.

  5. Ecrg4 expression and its product augurin in the choroid plexus: impact on fetal brain development, cerebrospinal fluid homeostasis and neuroprogenitor cell response to CNS injury

    Directory of Open Access Journals (Sweden)

    Gonzalez Ana


    Full Text Available Abstract Background The content and composition of cerebrospinal fluid (CSF is determined in large part by the choroid plexus (CP and specifically, a specialized epithelial cell (CPe layer that responds to, synthesizes, and transports peptide hormones into and out of CSF. Together with ventricular ependymal cells, these CPe relay homeostatic signals throughout the central nervous system (CNS and regulate CSF hydrodynamics. One new candidate signal is augurin, a newly recognized 14 kDa protein that is encoded by esophageal cancer related gene-4 (Ecrg4, a putative tumor suppressor gene whose presence and function in normal tissues remains unexplored and enigmatic. The aim of this study was to explore whether Ecrg4 and its product augurin, can be implicated in CNS development and the response to CNS injury. Methods Ecrg4 gene expression in CNS and peripheral tissues was studied by in situ hybridization and quantitative RT-PCR. Augurin, the protein encoded by Ecrg4, was detected by immunoblotting, immunohistochemistry and ELISA. The biological consequence of augurin over-expression was studied in a cortical stab model of rat CNS injury by intra-cerebro-ventricular injection of an adenovirus vector containing the Ecrg4 cDNA. The biological consequences of reduced augurin expression were evaluated by characterizing the CNS phenotype caused by Ecrg4 gene knockdown in developing zebrafish embryos. Results Gene expression and immunohistochemical analyses revealed that, the CP is a major source of Ecrg4 in the CNS and that Ecrg4 mRNA is predominantly localized to choroid plexus epithelial (CPe, ventricular and central canal cells of the spinal cord. After a stab injury into the brain however, both augurin staining and Ecrg4 gene expression decreased precipitously. If the loss of augurin was circumvented by over-expressing Ecrg4 in vivo, BrdU incorporation by cells in the subependymal zone decreased. Inversely, gene knockdown of Ecrg4 in developing

  6. Meiotic abnormalities

    Energy Technology Data Exchange (ETDEWEB)



    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  7. Neuroendocrine control of body fluid homeostasis

    Directory of Open Access Journals (Sweden)

    McCann S.M.


    Full Text Available Angiotensin II and atrial natriuretic peptide (ANP play important and opposite roles in the control of water and salt intake, with angiotensin II promoting the intake of both and ANP inhibiting the intake of both. Following blood volume expansion, baroreceptor input to the brainstem induces the release of ANP within the hypothalamus that releases oxytocin (OT that acts on its receptors in the heart to cause the release of ANP. ANP activates guanylyl cyclase that converts guanosine triphosphate into cyclic guanosine monophosphate (cGMP. cGMP activates protein kinase G that reduces heart rate and force of contraction, decreasing cardiac output. ANP acts similarly to induce vasodilation. The intrinsic OT system in the heart and vascular system augments the effects of circulating OT to cause a rapid reduction in effective circulating blood volume. Furthermore, natriuresis is rapidly induced by the action of ANP on its tubular guanylyl cyclase receptors, resulting in the production of cGMP that closes Na+ channels. The OT released by volume expansion also acts on its tubular receptors to activate nitric oxide synthase. The nitric oxide released activates guanylyl cyclase leading to the production of cGMP that also closes Na+ channels, thereby augmenting the natriuretic effect of ANP. The natriuresis induced by cGMP finally causes blood volume to return to normal. At the same time, the ANP released acts centrally to decrease water and salt intake.

  8. Application of FISH in prenatal diagnosis of chromosome number abnormality in amniotic fluid cells%FISH在产前羊水细胞染色体数目异常诊断中的应用观察

    Institute of Scientific and Technical Information of China (English)

    张艳丽; 李华锋; 高刚


    Objective To observe effect of fluorescence in situ hybridization(FISH) on prenatal diagnosis of abnormal number of chromosomes in amniotic fluid cells. Methods The amniotic fluid of 1 121 cases of pregnant women with down syndrome screening in high-risk or age higher than 35 years old, were got by amniocentesis, and udenvent rapid prenatal diagnosis by FISH. Then the G banding karyotypes from standard cytogenetic analysis after cultured amniotic fluid cells were compared to the FISH results. Results 16 cases were found abnormal result, including 7 cases of trisomy 21 , 4 cases of trisomy 21, and other 5 cases with abnormal. It was consistent with G banding karyotypes results. Conclusion Prenatal diagnosis of chromosome humber sbnormality by FISH is satisfactory.%目的 观察应用荧光原位杂交( FISH)技术产前诊断羊水细胞染色体数目异常的效果.方法 唐氏综合征筛查高危或高龄(≥35岁)孕妇1 121例,经腹部穿刺抽取羊水,应用FISH技术进行羊水细胞染色体数目检测,并将其结果与羊水细胞常规G显带核型分析结果作比较.结果 均获得诊断结果,发现16例异常胎儿,其中7例为21三体,4例为18三体,5例为其他异常.FISH检测与核型分析结果一致.结论 用FISH产前诊断羊水细胞染色体数目异常效果满意.

  9. Brain iron homeostasis. (United States)

    Moos, Torben


    [125I]transferrin in the brain. Some of the 59Fe was detected in CSF in a fraction less than 30 kDa (III). It was estimated that the iron-binding capacity of transferrin in CSF was exceeded, suggesting that iron is transported into the brain in a quantity that exceeds that of transferrin. Accordingly, it was concluded that the paramount iron transport across the BBB is the result of receptor-mediated endocytosis of iron-containing transferrin by capillary endothelial cells, followed by recycling of transferrin to the blood and transport of non-transferrin-bound iron into the brain. It was found that retrograde axonal transport in a cranial motor nerve is age-dependent, varying from almost negligible in the neonatal brain to high in the adult brain. The principle sources of extracellular transferrin in the brain are hepatocytes, oligodendrocytes, and the choroid plexus. As the passage of liver-derived transferrin into the brain is restricted due to the BBB, other candidates for binding iron in the interstitium should be considered. In vitro studies have revealed secretion of transferrin from the choroid plexus and oligodendrocytes. The second part of the thesis encompasses the circulation of iron in the extracellular fluids of the brain, i.e. the brain interstitial fluid and the CSF. As the latter receives drainage from the interstitial fluid, the CSF of the ventricles can be considered a mixture of these fluids, which may allow for analysis of CSF in matters that relate to the brain interstitial fluid. As the choroid plexus is known to synthesize transferrin, a key question is whether transferrin of the CSF might play a role for iron homeostasis by diffusing from the ventricles and subarachnoid space to the brain interstitium. Intracerebroventricular injection of [59Fe125I]transferrin led to a higher accumulation of 59Fe than of [125I]transferrin in the brain. Except for uptake and axonal transport by certain neurons with access to the ventricular CSF, both iron and

  10. “盆”“山”耦合在异常高压盆地流体研究中的应用%Application of basin-orogeny coupling in study of abnormally high pressured basin fluids

    Institute of Scientific and Technical Information of China (English)

    吴根耀; 梁江平; 杨建国; 朱德丰; 陈均亮; 申家年


    这是以“盆”“山”耦合理论指导盆地异常高压研究的首次尝试.异常高压的成因和分布特征主要取决于区域构造应力场,在挤压型盆地中形成异常高压的主控因素是挤压应力和天然气(油气)充注,异常高压呈平行造山带的(宽)带状或连续的面状分布;拉张型盆地和剪切—拉分盆地的主控因素是热作用.异常高压在拉张型盆地中为散点状或被分隔的面状分布,在剪切型盆地中呈点状或散点状分布.不同类型的盆地内断裂的产状不同,决定了异常高压有不同的传导方向,挤压—反转时异常高压的保存或释放(泄压)也各具特点.这为“盆”“山”耦合从指导盆地动态演化的研究发展引伸为指导储层和流体动态演化的研究跨出了重要的一步.%The basin-orogeny coupling theory was applied to study the abnormally high pressure in basin for the first time in this paper. The formation and distribution of abnormally high pressure were controlled by regional stress fields. In compressed basins, the key contributing factors for abnormally high pressure were compressive stress and charging of natural gas (or oil-gas), where the abnormally high pressure distributed zonaly or planar-ly. In extended and pull-apart basins, the abnormally high pressure was mainly resulted from thermal activities. In extended basins, the abnormally high pressure distributed in the shape of scattered points or restricted planes, and it distributed pointedly or in the shape of scattered points in sheared basins. The reverse, normal and strike -slip faults had different occurrences, which decided the oblique or vertical conductions of abnormally high pressure. There were different ways for pressure reservation or releasing in compression or reversion. From the dynamic evolution of basin to the dynamic evolution of reservoir and fluid, it was an important step for the application of basin-orogeny coupling theory.

  11. Leukocyte abnormalities. (United States)

    Gabig, T G


    Certain qualitative abnormalities in neutrophils and blood monocytes are associated with frequent, severe, and recurrent bacterial infections leading to fatal sepsis, while other qualitative defects demonstrated in vitro may have few or no clinical sequelae. These qualitative defects are discussed in terms of the specific functions of locomotion, phagocytosis, degranulation, and bacterial killing.

  12. Abnormal organic-matter maturation in the Yinggehai Basin, South China Sea: Implications for hydrocarbon expulsion and fluid migration from overpressured systems (United States)

    Hao, F.; Li, S.; Dong, W.; Hu, Z.; Huang, B.


    Three superimposed pressure systems are present in the Yinggehai Basin, South China Sea. A number of commercial, thermogenic gas accumulations have been found in an area in which shale diapirs occur. Because the reservoir intervals are shallow and very young, they must have filled with gas rapidly. The thick (up to 17 km) Tertiary and Quaternary sedimentary succession is dominated by shales, and is not disrupted by major faulting in the study area, a factor which seems to have had an important effect on both hydrocarbon generation and fluid migration. Organic-matter maturation in the deepest, most overpressured compartment has been significantly retarded as a result of the combined effects of excess pressure, the presence of large volumes of water, and the retention of generated hydrocarbons. This retardation is indicated by both kerogen-related parameters (vitrinite reflectance and Rock-Eval T(max)); and also by parameters based on the analysis of soluble organic matter (such as the C15+ hydrocarbon content, and the concentration of isoprenoid hydrocarbons relative to adjacent normal alkanes). In contrast to this, organic-matter maturation in shallow, normally-pressured strata in the diapiric area has been enhanced by hydrothermal fluid flow, which is clearly not topography-driven in origin. As a result, the hydrocarbon generation 'window' in the basin is considerably wider than could be expected from traditional geochemical modelling. These two unusual and contrasting anomalies in organic-matter maturation, together with other lines of evidence, suggest that there was a closed fluid system in the overpressured compartment until shale diapirs developed. The diapirs developed as a result of the intense overpressuring, and their growth was triggered by regional extensional stresses. They served as conduits through which fluids (both water and hydrocarbons) retained in the closed system could rapidly migrate. Fluid migration led to the modification of the thermal

  13. Neurohumoral fluid regulation in chronic liver disease

    DEFF Research Database (Denmark)

    Møller, Søren; Henriksen, Jens Henrik


    Impaired homeostasis of the blood volume, with increased fluid and sodium retention, is a prevailing element in the deranged systemic and splanchnic haemodynamics in patients with liver disease. In this review, some basic elements of the circulatory changes that take place and of neurohumoral fluid...... regulation are outlined in order to provide an update of recent investigations on the neuroendocrine compensation of circulatory and volume dysfunction in chronic liver disease. The underlying pathophysiology is a systemic vasodilatation in which newly described potent vasoactive substances such as nitric...... and lungs. It is still an enigma why patients with chronic liver disease are at the same time overloaded and functional hypovolaemic with a hyperdynamic, hyporeactive circulation. Further research is needed to find the solution to this apparent haemodynamic conflict concerning the abnormal neurohumoral...

  14. Phosphate homeostasis and disorders. (United States)

    Manghat, P; Sodi, R; Swaminathan, R


    Recent studies of inherited disorders of phosphate metabolism have shed new light on the understanding of phosphate metabolism. Phosphate has important functions in the body and several mechanisms have evolved to regulate phosphate balance including vitamin D, parathyroid hormone and phosphatonins such as fibroblast growth factor-23 (FGF23). Disorders of phosphate homeostasis leading to hypo- and hyperphosphataemia are common and have clinical and biochemical consequences. Notably, recent studies have linked hyperphosphataemia with an increased risk of cardiovascular disease. This review outlines the recent advances in the understanding of phosphate homeostasis and describes the causes, investigation and management of hypo- and hyperphosphataemia.

  15. Abnormal Copper Homeostasis: Mechanisms and Roles in Neurodegeneration


    Mario Manto


    As a cofactor of proteins and enzymes involved in critical molecular pathways in mammals and low eukaryotes, copper is a transition metal essential for life. The intra-cellular and extra-cellular metabolism of copper is under tight control, in order to maintain free copper concentrations at very low levels. Copper is a critical element for major neuronal functions, and the central nervous system is a major target of disorders of copper metabolism. Both the accumulation of copper and copper d...

  16. Electrolytes and fluid management in hemodialysis and peritoneal dialysis. (United States)

    Nanovic, Lisa


    The kidney is a complex and vital organ, regulating the electrolyte and fluid status of the human body. As hemodialysis (HD) and peritoneal dialysis (PD) are forms of renal replacement therapy and not an actual kidney, they do not possess the same physiologic regulation of both fluid and electrolytes. Precise regulation of fluid and electrolytes in the HD and PD population remains a constant challenge. In this review, fluid status of both HD and PD will be examined, as well as sodium, potassium, phosphorous, and calcium. Each electrolyte will be analyzed by its physiological significance, the complications that arise when a proper balance cannot be maintained, and methods to correct these imbalances. An overview of the fluid compartments and volume of distribution within the body will be discussed. Ultrafiltration, a modality used in both forms of renal replacement therapy, will be defined, along with its impact on fluid status. Fluid assessment will be addressed, along with proper maintenance of fluid homeostasis. By having an understanding of the pathophysiology behind the fluid and electrolyte abnormalities that occur in end-stage renal disease, one can direct proper management with medications, diet, and alterations in dialysis to provide patients with the most optimal form of renal replacement therapy available.

  17. Serum and Glucocorticoid Regulated Kinase 1 in Sodium Homeostasis

    Directory of Open Access Journals (Sweden)

    Yiyun Lou


    Full Text Available The ubiquitously expressed serum and glucocorticoid regulated kinase 1 (SGK1 is tightly regulated by osmotic and hormonal signals, including glucocorticoids and mineralocorticoids. Recently, SGK1 has been implicated as a signal hub for the regulation of sodium transport. SGK1 modulates the activities of multiple ion channels and carriers, such as epithelial sodium channel (ENaC, voltage-gated sodium channel (Nav1.5, sodium hydrogen exchangers 1 and 3 (NHE1 and NHE3, sodium-chloride symporter (NCC, and sodium-potassium-chloride cotransporter 2 (NKCC2; as well as the sodium-potassium adenosine triphosphatase (Na+/K+-ATPase and type A natriuretic peptide receptor (NPR-A. Accordingly, SGK1 is implicated in the physiology and pathophysiology of Na+ homeostasis. Here, we focus particularly on recent findings of SGK1’s involvement in Na+ transport in renal sodium reabsorption, hormone-stimulated salt appetite and fluid balance and discuss the abnormal SGK1-mediated Na+ reabsorption in hypertension, heart disease, edema with diabetes, and embryo implantation failure.

  18. TSLP and Immune Homeostasis

    Directory of Open Access Journals (Sweden)

    Shino Hanabuchi


    Full Text Available In an immune system, dendritic cells (DCs are professional antigen-presenting cells (APCs as well as powerful sensors of danger signals. When DCs receive signals from infection and tissue stress, they immediately activate and instruct the initiation of appropriate immune responses to T cells. However, it has remained unclear how the tissue microenvironment in a steady state shapes the function of DCs. Recent many works on thymic stromal lymphopoietin (TSLP, an epithelial cell-derived cytokine that has the strong ability to activate DCs, provide evidence that TSLP mediates crosstalk between epithelial cells and DCs, involving in DC-mediated immune homeostasis. Here, we review recent progress made on how TSLP expressed within the thymus and peripheral lymphoid and non-lymphoid tissues regulates DC-mediated T-cell development in the thymus and T-cell homeostasis in the periphery.

  19. Alcohol disrupts sleep homeostasis. (United States)

    Thakkar, Mahesh M; Sharma, Rishi; Sahota, Pradeep


    Alcohol is a potent somnogen and one of the most commonly used "over the counter" sleep aids. In healthy non-alcoholics, acute alcohol decreases sleep latency, consolidates and increases the quality (delta power) and quantity of NREM sleep during the first half of the night. However, sleep is disrupted during the second half. Alcoholics, both during drinking periods and during abstinences, suffer from a multitude of sleep disruptions manifested by profound insomnia, excessive daytime sleepiness, and altered sleep architecture. Furthermore, subjective and objective indicators of sleep disturbances are predictors of relapse. Finally, within the USA, it is estimated that societal costs of alcohol-related sleep disorders exceeds $18 billion. Thus, although alcohol-associated sleep problems have significant economic and clinical consequences, very little is known about how and where alcohol acts to affect sleep. In this review, we have described our attempts to unravel the mechanism of alcohol-induced sleep disruptions. We have conducted a series of experiments using two different species, rats and mice, as animal models. We performed microdialysis, immunohistochemical, pharmacological, sleep deprivation and lesion studies which suggest that the sleep-promoting effects of alcohol may be mediated via alcohol's action on the mediators of sleep homeostasis: adenosine (AD) and the wake-promoting cholinergic neurons of the basal forebrain (BF). Alcohol, via its action on AD uptake, increases extracellular AD resulting in the inhibition of BF wake-promoting neurons. Since binge alcohol consumption is a highly prevalent pattern of alcohol consumption and disrupts sleep, we examined the effects of binge drinking on sleep-wakefulness. Our results suggest that disrupted sleep homeostasis may be the primary cause of sleep disruption observed following binge drinking. Finally, we have also shown that sleep disruptions observed during acute withdrawal, are caused due to impaired

  20. Amniotic fluid composition analysis of gestational diabetes mellitus patients with amniotic fluid volume abnormality and its effect on pregnancy outcome%妊娠期糖尿病患者羊水量异常羊水成分分析及其对妊娠结局的影响

    Institute of Scientific and Technical Information of China (English)

    张雅; 白润芳; 李艳川; 石紫云


    Objective To analyze the composition of amniotic fluid in gestational diabetes mellitus patients with amniotic fluid volume abnormality and its effect on pregnancy outcome. Methods A total of 133 cases of gesta-tional diabetes mellitus patients with abnormal amniotic fluid volume, who admitted to Department of Obstetrics of our hospital from February 2013 to August 2015, were selected and divided into the amniotic fluid too much group (n=108) and the amniotic fluid too little group (n=25) according to amniotic fluid volume. At the same period, 30 cases of normal delivery of women with normal amniotic fluid volume were selected as the control group. Amniotic fluid com-position was analyzed, and the patients were followed up to the end of pregnancy to analyze the gestational age distri-bution and clinical pregnancy outcome. Results The gestational distribution of abnormal amniotic fluid in the amni-otic fluid too much group was in 33~36 weeks and after 36 weeks, and the gestational distribution of abnormality am-niotic fluid in the amniotic fluid too little group was after 36 weeks. Na+, Ca2+and Osm levels in the amniotic fluid of the amniotic fluid too little group were significantly lower than those of the control group, with (121.45±5.49) mmol/L vs (124.72±4.91) mmol/L, (1.58±0.16) mmol/L vs (1.68±0.17) mmol/L, (241.23±10.09) mOsm/L vs (247.67±11.12) mOsm/L, respectively, P36周,羊水过少组孕妇的羊水量异常孕周主要分布在>36周;羊水过少组孕妇的羊水成分中,Na+(121.45±5.49) mmol/L、Ca2+(1.58±0.16) mmol/L及Osm (241.23±10.09) mOsm/L的水平明显低于对照组的(124.72±4.91) mmol/L、(1.68±0.17) mmol/L、(247.67±11.12) mOsm/L,而Crea (223.36±54.24)μmol/L及Glu (6.42±1.33) mmol/L的水平明显高于对照组的(191.98±29.64)μmol/L、(1.09±1.21) mmol/L,差异均有统计学意义(P<0.05);羊水过多组和羊水过少组孕妇的胎位异常(17.59%,20.00%)、胎儿窘迫(37.96%,24.00%)、早产(23.15%

  1. Homeostasis in anorexia nervosa

    Directory of Open Access Journals (Sweden)

    Per eSodersten


    Full Text Available Brainstem and hypothalamic orexigenic/anorexigenic networks are thought to maintain body weight homeostasis in response to hormonal and metabolic feedback from peripheral sites. This approach has not been successful in managing over- and underweight patients. It is suggested that concept of homeostasis has been misinterpreted; rather than exerting control, the brain permits eating in proportion to the amount of physical activity necessary to obtain food. In support, animal experiments have shown that while a hypothalamic orexigen excites eating when food is abundant, it inhibits eating and stimulates foraging when food is in short supply. As the physical price of food approaches zero, eating and body weight increase without constraints. Conversely, in anorexia nervosa body weight is homeostatically regulated, the high level of physical activity in anorexia is displaced hoarding for food that keeps body weight constantly low. A treatment based on this point of view, providing patients with computerized mealtime support to re-establish normal eating behavior, has brought 75% of patients with eating disorders into remission, reduced the rate of relapse to 10%, and eliminated mortality.

  2. Acid-Base Homeostasis. (United States)

    Hamm, L Lee; Nakhoul, Nazih; Hering-Smith, Kathleen S


    Acid-base homeostasis and pH regulation are critical for both normal physiology and cell metabolism and function. The importance of this regulation is evidenced by a variety of physiologic derangements that occur when plasma pH is either high or low. The kidneys have the predominant role in regulating the systemic bicarbonate concentration and hence, the metabolic component of acid-base balance. This function of the kidneys has two components: reabsorption of virtually all of the filtered HCO3(-) and production of new bicarbonate to replace that consumed by normal or pathologic acids. This production or generation of new HCO3(-) is done by net acid excretion. Under normal conditions, approximately one-third to one-half of net acid excretion by the kidneys is in the form of titratable acid. The other one-half to two-thirds is the excretion of ammonium. The capacity to excrete ammonium under conditions of acid loads is quantitatively much greater than the capacity to increase titratable acid. Multiple, often redundant pathways and processes exist to regulate these renal functions. Derangements in acid-base homeostasis, however, are common in clinical medicine and can often be related to the systems involved in acid-base transport in the kidneys.

  3. Regulation of cholesterol homeostasis. (United States)

    van der Wulp, Mariëtte Y M; Verkade, Henkjan J; Groen, Albert K


    Hypercholesterolemia is an important risk factor for cardiovascular disease. It is caused by a disturbed balance between cholesterol secretion into the blood versus uptake. The pathways involved are regulated via a complex interplay of enzymes, transport proteins, transcription factors and non-coding RNA's. The last two decades insight into underlying mechanisms has increased vastly but there are still a lot of unknowns, particularly regarding intracellular cholesterol transport. After decades of concentration on the liver, in recent years the intestine has come into focus as an important control point in cholesterol homeostasis. This review will discuss current knowledge of cholesterol physiology, with emphasis on cholesterol absorption, cholesterol synthesis and fecal excretion, and new (possible) therapeutic options for hypercholesterolemia.

  4. Pain emotion and homeostasis. (United States)

    Panerai, Alberto E


    Pain has always been considered as part of a defensive strategy, whose specific role is to signal an immediate, active danger. This definition partially fits acute pain, but certainly not chronic pain, that is maintained also in the absence of an active noxa or danger and that nowadays is considered a disease by itself. Moreover, acute pain is not only an automatic alerting system, but its severity and characteristics can change depending on the surrounding environment. The affective, emotional components of pain have been and are the object of extensive attention and research by psychologists, philosophers, physiologists and also pharmacologists. Pain itself can be considered to share the same genesis as emotions and as a specific emotion in contributing to the maintenance of the homeostasis of each unique subject. Interestingly, this role of pain reaches its maximal development in the human; some even argue that it is specific for the human primate.

  5. of Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Xian Liu


    Full Text Available Sex differences exist in the complex regulation of energy homeostasis that utilizes central and peripheral systems. It is widely accepted that sex steroids, especially estrogens, are important physiological and pathological components in this sex-specific regulation. Estrogens exert their biological functions via estrogen receptors (ERs. ERα, a classic nuclear receptor, contributes to metabolic regulation and sexual behavior more than other ER subtypes. Physiological and molecular studies have identified multiple ERα-rich nuclei in the hypothalamus of the central nervous system (CNS as sites of actions that mediate effects of estrogens. Much of our understanding of ERα regulation has been obtained using transgenic models such as ERα global or nuclei-specific knockout mice. A fundamental question concerning how ERα is regulated in wild-type animals, including humans, in response to alterations in steroid hormone levels, due to experimental manipulation (i.e., castration and hormone replacement or physiological stages (i.e., puberty, pregnancy, and menopause, lacks consistent answers. This review discusses how different sex hormones affect ERα expression in the hypothalamus. This information will contribute to the knowledge of estrogen action in the CNS, further our understanding of discrepancies in correlation of altered sex hormone levels with metabolic disturbances when comparing both sexes, and improve health issues in postmenopausal women.

  6. Disorders of body fluids, sodium and potassium in chronic renal failure. (United States)

    Mitch, W E; Wilcox, C S


    A stable volume and composition of extracellular fluid are essential for normal functioning of the body. Since the kidney is primarily responsible for regulating extracellular fluid, loss of kidney function should have catastrophic consequences. Fortunately, even with loss of more than 90 percent of renal function, a remarkable capacity to regulate body fluid volumes and sodium and potassium persists. Nevertheless, this capacity is limited to chronic renal disease and this has important consequences for clinical management of these patients. How can sodium and potassium homeostasis be assessed? Methods for evaluating the steady-state regulation of sodium include measurement of body fluids and their distribution in different compartments and measurement of exchangeable and intracellular sodium. Short-term regulation of body sodium can be assessed from measurement of sodium balance during changes in dietary salt. Potassium is predominantly contained within cells and thus the assessment of its regulation requires special emphasis on measurement of steady-state body stores and potassium distribution across cell membranes. However, the methods used to make all of these measurements require assumptions that may not hold in the altered state of uremia. This raises problems in interpretation requiring critical analysis before conclusions can be made regarding sodium and potassium homeostasis in patients with chronic renal failure. This review focuses on abnormalities of body fluids, sodium and potassium in patients with creatinine clearances of less than 20 ml/min due to chronic renal failure and the impact of conservative therapy, dialysis and renal transplantation on these patients.

  7. Mechanics of epithelial tissue homeostasis and morphogenesis. (United States)

    Guillot, Charlène; Lecuit, Thomas


    Epithelia are robust tissues that support the structure of embryos and organs and serve as effective barriers against pathogens. Epithelia also chemically separate different physiological environments. These vital functions require tight association between cells through the assembly of junctions that mechanically stabilize the tissue. Remarkably, epithelia are also dynamic and can display a fluid behavior. Cells continuously die or divide, thereby allowing functional tissue homeostasis. Epithelial cells can change shape or intercalate as tissues deform during morphogenesis. We review the mechanical basis of tissue robustness and fluidity, with an emphasis on the pivotal role of junction dynamics. Tissue fluidity emerges from local active stresses acting at cell interfaces and allows the maintenance of epithelial organization during morphogenesis and tissue renewal.

  8. Calcium Homeostasis in ageing neurons

    Directory of Open Access Journals (Sweden)

    Vassiliki eNikoletopoulou


    Full Text Available The nervous system becomes increasingly vulnerable to insults and prone to dysfunction during ageing. Age-related decline of neuronal function is manifested by the late onset of many neurodegenerative disorders, as well as by reduced signalling and processing capacity of individual neuron populations. Recent findings indicate that impairment of Ca2+ homeostasis underlies the increased susceptibility of neurons to damage, associated with the ageing process. However, the impact of ageing on Ca2+ homeostasis in neurons remains largely unknown. Here, we survey the molecular mechanisms that mediate neuronal Ca2+ homeostasis and discuss the impact of ageing on their efficacy. To address the question of how ageing impinges on Ca2+ homeostasis, we consider potential nodes through which mechanisms regulating Ca2+ levels interface with molecular pathways known to influence the process of ageing and senescent decline. Delineation of this crosstalk would facilitate the development of interventions aiming to fortify neurons against age-associated functional deterioration and death by augmenting Ca2+ homeostasis.

  9. Urine - abnormal color (United States)

    ... Urine - abnormal color To use the sharing features on this page, please enable JavaScript. The usual color of urine is straw-yellow. Abnormally colored urine ...

  10. Homeostasis of T Cell Diversity

    Institute of Scientific and Technical Information of China (English)

    VinayS.Mahajan; IlyaB.Leskov; JianzhuChen


    T cell homeostasis commonly refers to the maintenance of relatively stable T cell numbers in the peripheral lymphoid organs. Among the large numbers of T cells in the periphery, T cells exhibit structural diversity, i.e., the expression of a diverse repertoire of T cell receptors (TCRs), and functional diversity, i.e., the presence of T cells at naive, effector, and memory developmental stages. Although the homeostasis of T cell numbers has been extensively studied, investigation of the mechanisms underlying the maintenance of structural and functional diversity of T cells is still at an early stage. The fundamental feature throughout T cell development is the interaction between the TCR and either self or foreign peptides in association with MHC molecules. In this review, we present evidence showing that homeostasis of T cell number and diversity is mediated through competition for limiting resources. The number of T cells is maintained through competition for limiting cytokines, whereas the diversity of T cells is maintained by competition for self-peptide-MHC complexes. In other words, diversity of the self-peptide repertoire limits the structural (TCR) diversity of a T cell population. We speculate that cognate low affinity self-peptides, acting as weak agonists and antagonists, regulate the homeostasis of T cell diversity whereas non-cognate or null peptides which are extremely abundant for any given TCR, may contribute to the homeostasis of T cell number by providing survival signals. Moreover, self-peptides and cytokines may form specialized niches for the regulation of T cell homeostasis. Cellular & Molecular Immunology. 2005;2(1): 1-10.

  11. Homeostasis of T Cell Diversity

    Institute of Scientific and Technical Information of China (English)

    Vinay S. Mahajan; Ilya B. Leskov; Jianzhu Chen


    T cell homeostasis commonly refers to the maintenance of relatively stable T cell numbers in the peripheral lymphoid organs. Among the large numbers of T cells in the periphery, T cells exhibit structural diversity, I.e., the expression of a diverse repertoire of T cell receptors (TCRs), and functional diversity, I.e., the presence of T cells at na(I)ve, effector, and memory developmental stages. Although the homeostasis of T cell numbers has been extensively studied, investigation of the mechanisms underlying the maintenance of structural and functional diversity of T cells is still at an early stage. The fundamental feature throughout T cell development is the interaction between the TCR and either self or foreign peptides in association with MHC molecules. In this review, we present evidence showing that homeostasis of T cell number and diversity is mediated through competition for limiting resources.The number of T cells is maintained through competition for limiting cytokines, whereas the diversity of T cells is maintained by competition for self-peptide-MHC complexes. In other words, diversity of the self-peptide repertoire limits the structural (TCR) diversity of a T cell population. We speculate that cognate low affinity self-peptides,acting as weak agonists and antagonists, regulate the homeostasis of T cell diversity whereas non-cognate or null peptides which are extremely abundant for any given TCR, may contribute to the homeostasis of T cell number by providing survival signals. Moreover, self-peptides and cytokines may form specialized niches for the regulation of T cell homeostasis.

  12. Disorders of erythrocyte volume homeostasis. (United States)

    Glogowska, E; Gallagher, P G


    Inherited disorders of erythrocyte volume homeostasis are a heterogeneous group of rare disorders with phenotypes ranging from dehydrated to overhydrated erythrocytes. Clinical, laboratory, physiologic, and genetic heterogeneities characterize this group of disorders. A series of recent reports have provided novel insights into our understanding of the genetic bases underlying some of these disorders of red cell volume regulation. This report reviews this progress in understanding determinants that influence erythrocyte hydration and how they have yielded a better understanding of the pathways that influence cellular water and solute homeostasis.

  13. Prenatal Amniotic Fluid Cell Chromosome Examination in the Diagnosis of Fetal Abnormalities in the Elderly%羊膜腔穿刺羊水细胞染色体检查用于高龄孕妇胎儿畸形预见性诊断分析

    Institute of Scientific and Technical Information of China (English)



    目的:探讨高龄孕妇进行孕中期羊膜腔穿刺羊水细胞培养染色体核型分析,提高对胎儿畸形的预见性诊断分析结果。方法随机选取该院2013年1月―2015年12月收治的714例高龄孕妇给予羊膜腔穿刺前的检查及超声诊断,行羊膜腔穿刺抽取羊水的孕妇,进行羊水细胞培养,制备染色体标本,分析高龄孕妇羊水胎儿细胞的染色体核型和胎儿染色体异常情况。结果该研究选取的714例高龄孕妇中染色体异常的分类有21三体综合征、18三体综合征、性染色体异常和其它的染色体异常。有23例高龄孕妇的染色体出现异常,检出率为3.22%;714例高龄孕妇中35~39岁占450例,发现胎儿染色体异常例数9例,检出率为2..00%为最低;44~46岁高龄孕妇占31例,发现胎儿染色体异常例数为3例,检出率为9.68%为最高。结论在产前对高龄孕妇进行羊膜腔穿刺羊水细胞染色体培养可以有效的检测胎儿的染色体异常情况,有效的对高龄孕妇分娩畸形胎儿进行预见性的诊断,明显降低新生儿的缺陷率。%Objective Discussion older pregnant women were second-trimester amniocentesis amniotic fluid cells of fetal malformation predictive diagnostic analysis of cultured karyotype analysis. Methods The study selected from our hospital in January 2013 to December 2015 in 714 cases of advanced maternal age to give pre amniocentesis examination and ultra-sound diagnosis, underwent amniocentesis and amniotic fluid of pregnant women, the amniotic cell culture prepared chromo-some specimen, analysis of women of advanced maternal age and fetal amniotic fluid cells stained color karyotype and fetal chromosomal abnormalities. Results The classification of chromosomal abnormalities in 714 cases of elderly women is 21, 18,, sex chromosome abnormalities and other chromosomal abnormalities. Have abnormal chromosomes in 23 cases of ad-vanced maternal age, the

  14. Targeting p97 to Disrupt Protein Homeostasis in Cancer (United States)

    Vekaria, Pratikkumar Harsukhbhai; Home, Trisha; Weir, Scott; Schoenen, Frank J.; Rao, Rekha


    Cancer cells are addicted to numerous non-oncogenic traits that enable them to thrive. Proteotoxic stress is one such non-oncogenic trait that is experienced by all tumor cells owing to increased genomic abnormalities and the resulting synthesis and accumulation of non-stoichiometric amounts of cellular proteins. This imbalance in the amounts of proteins ultimately culminates in proteotoxic stress. p97, or valosin-containing protein (VCP), is an ATPase whose function is essential to restore protein homeostasis in the cells. Working in concert with the ubiquitin proteasome system, p97 promotes the retrotranslocation from cellular organelles and/or degradation of misfolded proteins. Consequently, p97 inhibition has emerged as a novel therapeutic target in cancer cells, especially those that have a highly secretory phenotype. This review summarizes our current understanding of the function of p97 in maintaining protein homeostasis and its inhibition with small molecule inhibitors as an emerging strategy to target cancer cells. PMID:27536557

  15. Disorders of Erythrocyte Volume Homeostasis


    Glogowska, Edyta; Gallagher, Patrick G.


    Inherited disorders of erythrocyte volume homeostasis are a heterogeneous group of rare disorders with phenotypes ranging from dehydrated to overhydrated erythrocytes. Clinical, laboratory, physiologic, and genetic heterogeneity characterize this group of disorders. A series of recent reports have provided novel insights into our understanding of the genetic bases underlying some of these disorders of red cell volume regulation. This report reviews this progress in understanding determinants ...

  16. Hereditary urea cycle abnormality (United States)

    ... vitro so the specific genetic cause is known. Teamwork between parents, the affected child, and doctors can help prevent severe illness. Alternative Names Abnormality of the urea cycle - hereditary; Urea cycle - hereditary abnormality Images Male urinary system Urea cycle References Lichter-Konecki ...

  17. Karyotype analysis of amniotic fluid cells and comparison of chromosomal abnormality rate during second trimester%孕中期羊水细胞染色体核型分析及其异常核型发生率的比较

    Institute of Scientific and Technical Information of China (English)

    张月萍; 伍俊萍; 李笑天; 雷彩霞; 徐建忠; 殷民


    ,占全部异常核型的35.6%( 138/388),其次为常染色体平衡性结构重排为20.6% (80/388)、嵌合体为12.4% (48/388)、18三体为11.3% (44/388),其他较常见的异常核型包括常染色体非平衡性结构重排和45,X0,各为4.1%(16/388),47,XXY为3.9%(15/388)。(3)父母淋巴细胞核型分析:153个胎儿进行了其父母淋巴细胞的核型分析,并最终确定了胎儿异常核型来源:家族性异常58个,新发生的异常95个。78个胎儿的荧光原位杂交技术诊断结果与G显带核型全部一致,其中2个为21三体。结论不同检查指征孕妇的胎儿异常核型的构成不同;孕中期胎儿异常核型种类繁多,致畸风险与异常核型种类有关。%Objective To investigate the karyotypes of amiotic fluid cells and compare the incidence of chromosomal abnormality as well as to evaluate the clinical significance of abnormal karyotypes. Methods A total of 13 648 pregnant women came to Shanghai Jiai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fuclan University to do amniocentesis from September 1998 to November 2010, and 13 795 amniotic fluid specimens were successfully extracted and cultured, thus 13 795 fetuses received karyotype diagnosis. These fetuses were grouped according to different indications. If maternal age was ≥ 35, the fetuses were grouped into the advanced maternal age group (4065) ; and if maternal serum screening test revealed high-risk of trisomy 18 or trisomy 21, the fetuses were grouped into the high-risk serum screening group (6462) ; and those with abnormal signs of ultrasound screening were grouped into the abnormal ultrasound signs group (1539); and if either of the parents was with chromosome abnormalities, the fetus was grouped into the paternal/maternal abnormality group ( 108 ) ; whereas the remainder were grouped in other factors group ( 1621 ). The amniotic fluid cells were in-situ cultured on coverslips, harvested by conventional G-banded methods

  18. Chronobiology, endocrinology, and energy- and food-reward homeostasis. (United States)

    Gonnissen, H K J; Hulshof, T; Westerterp-Plantenga, M S


    Energy- and food-reward homeostasis is the essential component for maintaining energy balance and its disruption may lead to metabolic disorders, including obesity and diabetes. Circadian alignment, quality sleep and sleep architecture in relation to energy- and food-reward homeostasis are crucial. A reduced sleep duration, quality sleep and rapid-eye movement sleep affect substrate oxidation, leptin and ghrelin concentrations, sleeping metabolic rate, appetite, food reward, hypothalamic-pituitary-adrenal (HPA)-axis activity, and gut-peptide concentrations, enhancing a positive energy balance. Circadian misalignment affects sleep architecture and the glucose-insulin metabolism, substrate oxidation, homeostasis model assessment of insulin resistance (HOMA-IR) index, leptin concentrations and HPA-axis activity. Mood disorders such as depression occur; reduced dopaminergic neuronal signaling shows decreased food reward. A good sleep hygiene, together with circadian alignment of food intake, a regular meal frequency, and attention for protein intake or diets, contributes in curing sleep abnormalities and overweight/obesity features by preventing overeating; normalizing substrate oxidation, stress, insulin and glucose metabolism including HOMA-IR index, and leptin, GLP-1 concentrations, lipid metabolism, appetite, energy expenditure and substrate oxidation; and normalizing food reward. Synchrony between circadian and metabolic processes including meal patterns plays an important role in the regulation of energy balance and body-weight control. Additive effects of circadian alignment including meal patterns, sleep restoration, and protein diets in the treatment of overweight and obesity are suggested.

  19. "Jeopardy" in Abnormal Psychology. (United States)

    Keutzer, Carolin S.


    Describes the use of the board game, Jeopardy, in a college level abnormal psychology course. Finds increased student interaction and improved application of information. Reports generally favorable student evaluation of the technique. (CFR)

  20. Chromosomal Abnormalities in ADHD

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap


    Full Text Available The prevalence of fragile X syndrome, velocardiofacial syndrome (VCFS, and other cytogenetic abnormalities among 100 children (64 boys with combined type ADHD and normal intelligence was assessed at the NIMH and Georgetown University Medical Center.

  1. Abnormal menstrual periods (image) (United States)

    ... may have a variety of causes, such as endometrial hyperplasia, endometrial polyps, uterine fibroids, and abnormal thyroid or ... the endometrium becomes unusually thick it is called endometrial ... Hyperplasia may cause profuse or extended menstrual bleeding.

  2. Chromosomal abnormalities and autism

    Directory of Open Access Journals (Sweden)

    Farida El-Baz


    Conclusion: Chromosomal abnormalities were not detected in the studied autistic children, and so the relation between the genetics and autism still needs further work up with different study methods and techniques.

  3. Abnormal protein aggregationand neurodegenerativediseases

    Institute of Scientific and Technical Information of China (English)


    Abnormal protein aggregation or amyloid is the major cause ofmany neurodegenerative disorders. The present review focuses on the correlation between sequence and structure features of proteins related to the diseases and abnormal protein aggregation. Recent progress has improved our knowledge on understand-ing the mechanism of amyloid formation. We suggest a nucleation model for ordered protein aggregation, which can also explain pathogenesis mechanisms of these neurodegenerative diseases in vivo.

  4. A physiologist's view of homeostasis. (United States)

    Modell, Harold; Cliff, William; Michael, Joel; McFarland, Jenny; Wenderoth, Mary Pat; Wright, Ann


    Homeostasis is a core concept necessary for understanding the many regulatory mechanisms in physiology. Claude Bernard originally proposed the concept of the constancy of the "milieu interieur," but his discussion was rather abstract. Walter Cannon introduced the term "homeostasis" and expanded Bernard's notion of "constancy" of the internal environment in an explicit and concrete way. In the 1960s, homeostatic regulatory mechanisms in physiology began to be described as discrete processes following the application of engineering control system analysis to physiological systems. Unfortunately, many undergraduate texts continue to highlight abstract aspects of the concept rather than emphasizing a general model that can be specifically and comprehensively applied to all homeostatic mechanisms. As a result, students and instructors alike often fail to develop a clear, concise model with which to think about such systems. In this article, we present a standard model for homeostatic mechanisms to be used at the undergraduate level. We discuss common sources of confusion ("sticky points") that arise from inconsistencies in vocabulary and illustrations found in popular undergraduate texts. Finally, we propose a simplified model and vocabulary set for helping undergraduate students build effective mental models of homeostatic regulation in physiological systems.

  5. Effect of lysosomotropic molecules on cellular homeostasis. (United States)

    Kuzu, Omer F; Toprak, Mesut; Noory, M Anwar; Robertson, Gavin P


    Weak bases that readily penetrate through the lipid bilayer and accumulate inside the acidic organelles are known as lysosomotropic molecules. Many lysosomotropic compounds exhibit therapeutic activity and are commonly used as antidepressant, antipsychotic, antihistamine, or antimalarial agents. Interestingly, studies also have shown increased sensitivity of cancer cells to certain lysosomotropic agents and suggested their mechanism of action as a promising approach for selective destruction of cancer cells. However, their chemotherapeutic utility may be limited due to various side effects. Hence, understanding the homeostatic alterations mediated by lysosomotropic compounds has significant importance for revealing their true therapeutic potential as well as toxicity. In this review, after briefly introducing the concept of lysosomotropism and classifying the lysosomotropic compounds into two major groups according to their cytotoxicity on cancer cells, we focused on the subcellular alterations mediated by class-II lysosomotropic compounds. Briefly, their effect on intracellular cholesterol homeostasis, autophagy and lysosomal sphingolipid metabolism was discussed. Accordingly, class-II lysosomotropic molecules inhibit intracellular cholesterol transport, leading to the accumulation of cholesterol inside the late endosomal-lysosomal cell compartments. However, the accumulated lysosomal cholesterol is invisible to the cellular homeostatic circuits, hence class-II lysosomotropic molecules also upregulate cholesterol synthesis pathway as a downstream event. Considering the fact that Niemann-Pick disease, a lysosomal cholesterol storage disorder, also triggers similar pathologic abnormalities, this review combines the knowledge obtained from the Niemann-Pick studies and lysosomotropic compounds. Taken together, this review is aimed at allowing readers a better understanding of subcellular alterations mediated by lysosomotropic drugs, as well as their potential

  6. Role of presenilins in neuronal calcium homeostasis. (United States)

    Zhang, Hua; Sun, Suya; Herreman, An; De Strooper, Bart; Bezprozvanny, Ilya


    Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder. Familial AD (FAD) mutations in presenilins have been linked to calcium (Ca(2+)) signaling abnormalities. To explain these results, we previously proposed that presenilins function as endoplasmic reticulum (ER) passive Ca(2+) leak channels. To directly investigate the role of presenilins in neuronal ER Ca(2+) homeostasis, we here performed a series of Ca(2+) imaging experiments with primary neuronal cultures from conditional presenilin double-knock-out mice (PS1(dTAG/dTAG), PS2(-/-)) and from triple-transgenic AD mice (KI-PS1(M146V), Thy1-APP(KM670/671NL), Thy1-tau(P301L)). Obtained results provided additional support to the hypothesis that presenilins function as ER Ca(2+) leak channels in neurons. Interestingly, we discovered that presenilins play a major role in ER Ca(2+) leak function in hippocampal but not in striatal neurons. We further discovered that, in hippocampal neurons, loss of presenilin-mediated ER Ca(2+) leak function was compensated by an increase in expression and function of ryanodine receptors (RyanRs). Long-term feeding of the RyanR inhibitor dantrolene to amyloid precursor protein-presenilin-1 mice (Thy1-APP(KM670/671NL), Thy1-PS1(L166P)) resulted in an increased amyloid load, loss of synaptic markers, and neuronal atrophy in hippocampal and cortical regions. These results indicate that disruption of ER Ca(2+) leak function of presenilins may play an important role in AD pathogenesis.

  7. Copper Homeostasis in Mycobacterium tuberculosis (United States)

    Shi, Xiaoshan; Darwin, K. Heran


    Copper (Cu) is a trace element essential for the growth and development of almost all organisms, including bacteria. However, Cu overload in most systems is toxic. Studies show Cu accumulates in macrophage phagosomes infected with bacteria, suggesting Cu provides an innate immune mechanism to combat invading pathogens. To counteract the host-supplied Cu, increasing evidence suggests that bacteria have evolved Cu resistance mechanisms to facilitate their pathogenesis. In particular, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, has evolved multiple pathways to respond to Cu. Here, we summarize what is currently known about Cu homeostasis in Mtb and discuss potential sources of Cu encountered by this and other pathogens in a mammalian host. PMID:25614981

  8. Sulfite disrupts brain mitochondrial energy homeostasis and induces mitochondrial permeability transition pore opening via thiol group modification. (United States)

    Grings, Mateus; Moura, Alana P; Amaral, Alexandre U; Parmeggiani, Belisa; Gasparotto, Juciano; Moreira, José C F; Gelain, Daniel P; Wyse, Angela T S; Wajner, Moacir; Leipnitz, Guilhian


    Sulfite oxidase (SO) deficiency is biochemically characterized by the accumulation of sulfite, thiosulfate and S-sulfocysteine in tissues and biological fluids of the affected patients. The main clinical symptoms include severe neurological dysfunction and brain abnormalities, whose pathophysiology is still unknown. The present study investigated the in vitro effects of sulfite and thiosulfate on mitochondrial homeostasis in rat brain mitochondria. It was verified that sulfite per se, but not thiosulfate, decreased state 3, CCCP-stimulated state and respiratory control ratio in mitochondria respiring with glutamate plus malate. In line with this, we found that sulfite inhibited the activities of glutamate and malate (MDH) dehydrogenases. In addition, sulfite decreased the activity of a commercial solution of MDH, that was prevented by antioxidants and dithiothreitol. Sulfite also induced mitochondrial swelling and reduced mitochondrial membrane potential, Ca(2+) retention capacity, NAD(P)H pool and cytochrome c immunocontent when Ca(2+) was present in the medium. These alterations were prevented by ruthenium red, cyclosporine A (CsA) and ADP, supporting the involvement of mitochondrial permeability transition (MPT) in these effects. We further observed that N-ethylmaleimide prevented the sulfite-elicited swelling and that sulfite decreased free thiol group content in brain mitochondria. These findings indicate that sulfite acts directly on MPT pore containing thiol groups. Finally, we verified that sulfite reduced cell viability in cerebral cortex slices and that this effect was prevented by CsA. Therefore, it may be presumed that disturbance of mitochondrial energy homeostasis and MPT induced by sulfite could be involved in the neuronal damage characteristic of SO deficiency.

  9. Temporal pole signal abnormality on MR imaging in temporal lobe epilepsy with hippocampal sclerosis: a fluid-attenuated inversion-recovery study; Anormalidade de sinal na imagem por RM do polo temporal na epilepsia do lobo temporal com esclerose hipocampal: um estudo pela sequencia inversao recuperacao com supressao da agua livre (FLAIR)

    Energy Technology Data Exchange (ETDEWEB)

    Carrete Junior, Henrique; Abdala, Nitamar; Szjenfeld, Jacob; Nogueira, Roberto Gomes [Universidade Federal de Sao Paulo (UNIFESP-EPM), Sao Paulo, SP (Brazil). Dept. de Diagnostico por Imagem; Lin, Katia; Caboclo, Luis Otavio; Centeno, Ricardo Silva; Sakamoto, Americo Ceiki; Yacubian, Elza Marcia Targas [Universidade Federal de Sao Paulo (UNIFESP-EPM), Sao Paulo, SP (Brazil). Dept. de Neurologia e Neurocirurgia


    Objective: To determine the frequency and regional involvement of temporal pole signal abnormality (TPA) in patients with hippocampal sclerosis (HS) using fluid-attenuated inversion-recovery (FLAIR) MR imaging, and to correlate this feature with history. Method: Coronal FLAIR images of the temporal pole were assessed in 120 patients with HS and in 30 normal subjects, to evaluate gray-white matter demarcation. Results: Ninety (75%) of 120 patients had associated TPA. The HS side made difference regarding the presence of TPA, with a left side prevalence (p=0.04, {chi}{sup 2} test). The anteromedial zone of temporal pole was affected in 27 (30%) out of 90 patients. In 63 (70%) patients the lateral zone were also affected. Patients with TPA were younger at seizure onset (p=0.018), but without association with duration of epilepsy. Conclusion: Our FLAIR study show temporal pole signal abnormality in 3/4 of patients with HS, mainly seen on the anteromedial region, with a larger prevalence when the left hippocampus was involved. (author)

  10. Refrigerating fluids; Fluides frigorigenes

    Energy Technology Data Exchange (ETDEWEB)



    Refrigerating fluids are experiencing a real revolution since few years. CFCs with their destructive effect on the ozone layer are now prohibited while HCFCs will be progressively eliminated and replaced by HFCs. However, HFCs can contribute to the increase of the greenhouse effect. The solutions proposed by thermal engineering professionals consist in the confinement of air-conditioning installations (elimination of recurrent leaks) and in the improvement of installations efficiency. HCFC fluids like the R 22 are still widely used in air-conditioning but they are supposed to be replaced by HFC fluids like the R 134a, the R 407C or the R 410A. This short paper gives a brief presentation of these fluids and of their chemical characteristics. (J.S.)

  11. [Hair shaft abnormalities]. (United States)

    Itin, P H; Düggelin, M


    Hair shaft disorders may lead to brittleness and uncombable hair. In general the hair feels dry and lusterless. Hair shaft abnormalities may occur as localized or generalized disorders. Genetic predisposition or exogenous factors are able to produce and maintain hair shaft abnormalities. In addition to an extensive history and physical examination the most important diagnostic examination to analyze a hair shaft problem is light microscopy. Therapy of hair shaft disorders should focus to the cause. In addition, minimizing traumatic influences to hair shafts, such as dry hair with an electric dryer, permanent waves and dyes is important. A short hair style is more suitable for such patients with hair shaft disorders.

  12. Fluid and Electrolyte Nutrition (United States)

    Lane, Helen W.; Smith, Scott M.; Leach, Carolyn S.; Rice, Barbara L.


    Studies of fluid and electrolyte homeostasis have been completed since the early human space flight programs, with comprehensive research completed on the Spacelab Life Sciences missions SLS-1 and SLS-2 flights, and more recently on the Mir 18 mission. This work documented the known shifts in fluids, the decrease in total blood volume, and indications of reduced thirst. Data from these flights was used to evaluate the nutritional needs for water, sodium, and potassium. Interpretations of the data are confounded by the inadequate energy intakes routinely observed during space flight. This in turn results in reduced fluid intake, as food provides approximately 70% water intake. Subsequently, body weight, lean body mass, total body water, and total body potassium may decrease. Given these issues, there is evidence to support a minimum required water intake of 2 L per day. Data from previous Shuttle flights indicated that water intake is 2285 +/- 715 ml/day (mean +/- SD, n=26). There are no indications that sodium intake or homeostasis is compromised during space flight. The normal or low aldosterone and urinary sodium levels suggest adequate sodium intake (4047 +/- 902 mg/day, n=26). Because excessive sodium intake is associated with hypercalciuria, the recommended maximum amount of sodium intake during flight is 3500 mg/day (i.e., similar to the Recommended Dietary Allowance, RDA). Potassium metabolism appears to be more complex. Data indicate loss of body potassium related to muscle atrophy and low dietary intake (2407 +/- 548 mg/day, n=26). Although possibly related to measurement error, the elevations in blood potassium suggest alterations in potassium homeostasis. The space RDA for minimum potassium intake is 3500 mg/day. With the documented inadequate intakes, efforts are being made to increase dietary consumption of potassium.

  13. Affected chromosome homeostasis and genomic instability of clonal yeast cultures. (United States)

    Adamczyk, Jagoda; Deregowska, Anna; Panek, Anita; Golec, Ewelina; Lewinska, Anna; Wnuk, Maciej


    Yeast cells originating from one single colony are considered genotypically and phenotypically identical. However, taking into account the cellular heterogeneity, it seems also important to monitor cell-to-cell variations within a clone population. In the present study, a comprehensive yeast karyotype screening was conducted using single chromosome comet assay. Chromosome-dependent and mutation-dependent changes in DNA (DNA with breaks or with abnormal replication intermediates) were studied using both single-gene deletion haploid mutants (bub1, bub2, mad1, tel1, rad1 and tor1) and diploid cells lacking one active gene of interest, namely BUB1/bub1, BUB2/bub2, MAD1/mad1, TEL1/tel1, RAD1/rad1 and TOR1/tor1 involved in the control of cell cycle progression, DNA repair and the regulation of longevity. Increased chromosome fragility and replication stress-mediated chromosome abnormalities were correlated with elevated incidence of genomic instability, namely aneuploid events-disomies, monosomies and to a lesser extent trisomies as judged by in situ comparative genomic hybridization (CGH). The tor1 longevity mutant with relatively balanced chromosome homeostasis was found the most genomically stable among analyzed mutants. During clonal yeast culture, spontaneously formed abnormal chromosome structures may stimulate changes in the ploidy state and, in turn, promote genomic heterogeneity. These alterations may be more accented in selected mutated genetic backgrounds, namely in yeast cells deficient in proper cell cycle regulation and DNA repair.

  14. Abnormalities of gonadal differentiation. (United States)

    Berkovitz, G D; Seeherunvong, T


    Gonadal differentiation involves a complex interplay of developmental pathways. The sex determining region Y (SRY) gene plays a key role in testis determination, but its interaction with other genes is less well understood. Abnormalities of gonadal differentiation result in a range of clinical problems. 46,XY complete gonadal dysgenesis is defined by an absence of testis determination. Subjects have female external genitalia and come to clinical attention because of delayed puberty. Individuals with 46,XY partial gonadal dysgenesis usually present in the newborn period for the valuation of ambiguous genitalia. Gonadal histology always shows an abnormality of seminiferous tubule formation. A diagnosis of 46,XY true hermaphroditism is made if the gonads contain well-formed testicular and ovarian elements. Despite the pivotal role of the SRY gene in testis development, mutations of SRY are unusual in subjects with a 46,XY karyotype and abnormal gonadal development. 46,XX maleness is defined by testis determination in an individual with a 46,XX karyotype. Most affected individuals have a phenotype similar to that of Klinefelter syndrome. In contrast, subjects with 46,XX true hermaphroditism usually present with ambiguous genitalia. The majority of subjects with 46,XX maleness have Y sequences including SRY in genomic DNA. However, only rare subjects with 46,XX true hermaphroditism have translocated sequences encoding SRY. Mosaicism and chimaerism involving the Y chromosome can also be associated with abnormal gonadal development. However, the vast majority of subjects with 45,X/46,XY mosaicism have normal testes and normal male external genitalia.

  15. Cortical Abnormalities in ADHD

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap


    Full Text Available Grey-matter abnormalities at the cortical surface and regional brain size were mapped by high-resolution MRI and surface-based, computational image analytical techniques in a group of 27 children and adolescents with attention deficit hyperactivity disorder (ADHD and 46 controls, matched by age and sex, at the University of California at Los Angeles.

  16. Neurological abnormalities predict disability

    DEFF Research Database (Denmark)

    Poggesi, Anna; Gouw, Alida; van der Flier, Wiesje


    To investigate the role of neurological abnormalities and magnetic resonance imaging (MRI) lesions in predicting global functional decline in a cohort of initially independent-living elderly subjects. The Leukoaraiosis And DISability (LADIS) Study, involving 11 European centres, was primarily aimed...

  17. Lacrimal system abnormalities. (United States)

    Moore, B D


    This report outlines several of the more important abnormalities of the lacrimal system in infants and young children. Although rare, alacrima can be a very difficult clinical problem to treat. The most common cause of alacrima is the Riley-Day syndrome. Nasolacrimal duct obstruction is a very common anomaly in children. The clinical appearance and treatment of this disorder are discussed.

  18. Redox Homeostasis in Pancreatic Cells

    Directory of Open Access Journals (Sweden)

    Petr Ježek


    Full Text Available We reviewed mechanisms that determine reactive oxygen species (redox homeostasis, redox information signaling and metabolic/regulatory function of autocrine insulin signaling in pancreatic β cells, and consequences of oxidative stress and dysregulation of redox/information signaling for their dysfunction. We emphasize the role of mitochondrion in β cell molecular physiology and pathology, including the antioxidant role of mitochondrial uncoupling protein UCP2. Since in pancreatic β cells pyruvate cannot be easily diverted towards lactate dehydrogenase for lactate formation, the respiration and oxidative phosphorylation intensity are governed by the availability of glucose, leading to a certain ATP/ADP ratio, whereas in other cell types, cell demand dictates respiration/metabolism rates. Moreover, we examine the possibility that type 2 diabetes mellitus might be considered as an inevitable result of progressive self-accelerating oxidative stress and concomitantly dysregulated information signaling in peripheral tissues as well as in pancreatic β cells. It is because the redox signaling is inherent to the insulin receptor signaling mechanism and its impairment leads to the oxidative and nitrosative stress. Also emerging concepts, admiting participation of redox signaling even in glucose sensing and insulin release in pancreatic β cells, fit in this view. For example, NADPH has been firmly established to be a modulator of glucose-stimulated insulin release.

  19. The Mammalian Tribbles Homolog TRIB3, Glucose Homeostasis, and Cardiovascular Diseases



    Insulin signaling plays a physiological role in traditional insulin target tissues controlling glucose homeostasis as well as in pancreatic β-cells and in the endothelium. Insulin signaling abnormalities may, therefore, be pathogenic for insulin resistance, impaired insulin secretion, endothelial dysfunction, and eventually, type 2 diabetes mellitus (T2DM) and cardiovascular disease. Tribbles homolog 3 (TRIB3) is a 45-kDa pseudokinase binding to and inhibiting Akt, a key mediator of insulin s...

  20. Nitrofurantoin and congenital abnormalities

    DEFF Research Database (Denmark)

    Czeizel, A.E.; Rockenbauer, M.; Sørensen, Henrik Toft;


    Objective: To study human teratogenic potential of oral nitrofurantoin treatment during pregnancy. Materials and Methods: Pair analysis of cases with congenital abnormalities and matched population controls in the population-based dataset of the Hungarian Case-Control Surveillance of Congenital...... or fetuses with Down’s syndrome (patient controls), 23 (2.8%) pregnant women were treated with nitrofurantoin. The above differences between population controls and cases may be connected with recall bias, because the case-control pair analysis did not indicate a teratogenic potential of nitrofurantoin use...... during the second and the third months of gestation, i.e. in the critical period for major congenital abnormalities. Conclusion: Treatment with nitrofurantoin during pregnancy does not present detectable teratogenic risk to the fetus....

  1. Amniotic fluid (United States)

    ... carefully. Removing a sample of the fluid through amniocentesis can provide information about the sex, health, and development of the fetus. Images Amniocentesis Amniotic fluid Polyhydramnios Amniotic fluid References Cunningham FG, ...

  2. Dopaminergic drugs in type 2 diabetes and glucose homeostasis. (United States)

    Lopez Vicchi, Felicitas; Luque, Guillermina Maria; Brie, Belen; Nogueira, Juan Patricio; Garcia Tornadu, Isabel; Becu-Villalobos, Damasia


    The importance of dopamine in central nervous system function is well known, but its effects on glucose homeostasis and pancreatic β cell function are beginning to be unraveled. Mutant mice lacking dopamine type 2 receptors (D2R) are glucose intolerant and have abnormal insulin secretion. In humans, administration of neuroleptic drugs, which block dopamine receptors, may cause hyperinsulinemia, increased weight gain and glucose intolerance. Conversely, treatment with the dopamine precursor l-DOPA in patients with Parkinson's disease reduces insulin secretion upon oral glucose tolerance test, and bromocriptine improves glycemic control and glucose tolerance in obese type 2 diabetic patients as well as in non diabetic obese animals and humans. The actions of dopamine on glucose homeostasis and food intake impact both the autonomic nervous system and the endocrine system. Different central actions of the dopamine system may mediate its metabolic effects such as: (i) regulation of hypothalamic noradrenaline output, (ii) participation in appetite control, and (iii) maintenance of the biological clock in the suprachiasmatic nucleus. On the other hand, dopamine inhibits prolactin, which has metabolic functions; and, at the pancreatic beta cell dopamine D2 receptors inhibit insulin secretion. We review the evidence obtained in animal models and clinical studies that posited dopamine receptors as key elements in glucose homeostasis and ultimately led to the FDA approval of bromocriptine in adults with type 2 diabetes to improve glycemic control. Furthermore, we discuss the metabolic consequences of treatment with neuroleptics which target the D2R, that should be monitored in psychiatric patients to prevent the development in diabetes, weight gain, and hypertriglyceridemia.

  3. Targeting p97 to disrupt protein homeostasis in cancer.

    Directory of Open Access Journals (Sweden)

    Pratikkumar Harsukhbhai Vekaria


    Full Text Available Cancer cells are addicted to numerous non-oncogenic traits that enable them to thrive. Proteotoxic stress is one such non-oncogenic trait that is experienced by all tumor cells, owing to increased genomic abnormalities and the resulting synthesis and accumulation of non-stoichiometric amounts of cellular proteins. This imbalance in the amounts of proteins ultimately culminates in proteotoxic stress. p97, or valosin containing protein (VCP is an ATP-ase whose function is essential to restore protein homeostasis in the cells. Working in concert with the ubiquitin proteasome system, p97 promotes the retrotranslocation from cellular organelles and/or degradation of misfolded proteins. Consequently, p97 inhibition has emerged as a novel therapeutic target in cancer cells, especially those that have a highly secretory phenotype. This review summarizes our current understanding of the function of p97 in maintaining protein homeostasis and its inhibition with small molecule inhibitors as an emerging strategy to target cancer cells.

  4. Intestinal antimicrobial peptides during homeostasis, infection and disease

    Directory of Open Access Journals (Sweden)

    Luciana R Muniz


    Full Text Available Antimicrobial peptides (AMPs, including defensins and cathelicidins, constitute an arsenal of innate regulators of paramount importance in the gut. The intestinal epithelium is exposed to myriad of enteric pathogens and these endogenous peptides are essential to fend off microbes and protect against infections. It is becoming increasingly evident that AMPs shape the composition of the commensal microbiota and help maintain intestinal homeostasis. They contribute to innate immunity, hence playing important functions in health and disease. AMP expression is tightly controlled by the engagement of pattern recognition receptors (PRRs and their impairment is linked to abnormal host responses to infection and inflammatory bowel diseases (IBD. In this review, we provide an overview of the mucosal immune barriers and the intricate crosstalk between the host and the microbiota during homeostasis. We focus on the AMPs and pay particular attention to how PRRs promote their secretion in the intestine. Furthermore, we discuss their production and main functions in three different scenarios, at steady state, throughout infection with enteric pathogens and IBD.

  5. Mouse middle ear ion homeostasis channels and intercellular junctions.

    Directory of Open Access Journals (Sweden)

    Lisa M Morris

    Full Text Available HYPOTHESIS: The middle ear contains homeostatic mechanisms that control the movement of ions and fluids similar to those present in the inner ear, and are altered during inflammation. BACKGROUND: The normal middle ear cavity is fluid-free and air-filled to allow for effective sound transmission. Within the inner ear, the regulation of fluid and ion movement is essential for normal auditory and vestibular function. The same ion and fluid channels active in the inner ear may have similar roles with fluid regulation in the middle ear. METHODS: Middle and inner ears from BALB/c mice were processed for immunohistochemistry of 10 specific ion homeostasis factors to determine if similar transport and barrier mechanisms are present in the tympanic cavity. Examination also was made of BALB/c mice middle ears after transtympanic injection with heat-killed Haemophilus influenza to determine if these channels are impacted by inflammation. RESULTS: The most prominent ion channels in the middle ear included aquaporins 1, 4 and 5, claudin 3, ENaC and Na(+,K(+-ATPase. Moderate staining was found for GJB2, KCNJ10 and KCNQ1. The inflamed middle ear epithelium showed increased staining due to expected cellular hypertrophy. Localization of ion channels was preserved within the inflamed middle ear epithelium. CONCLUSIONS: The middle ear epithelium is a dynamic environment with intrinsic mechanisms for the control of ion and water transport to keep the middle ear clear of fluids. Compromise of these processes during middle ear disease may underlie the accumulation of effusions and suggests they may be a therapeutic target for effusion control.

  6. Calcium homeostasis in barley aleurone

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.L.


    Under the auspices of the Department of Energy we investigated calcium homeostasis in aleurone cells of barley. This investigation was initiated to explore the role played by extracellular Ca{sup 2+} in gibberellic acid (GA)-induced synthesis and secretion of hydrolases in the aleurone layer. We have focused our attention on four topics that relate to the role of Ca{sup 2+} in regulating the synthesis of {alpha}-amylase. First, we determined the stoichiometry of Ca{sup 2+} binding to the two principal classes of barley {alpha}-amylase and examined some of the biochemical and physical properties of the native and Ca{sup 2+}-depleted forms of the enzyme. Second, since {alpha}-amylase is a Ca{sup 2+} containing metalloenzyme that binds one atom of Ca{sup 2+} per molecule, we developed methods to determine the concentration of Ca{sup 2+} in the cytosol of the aleurone cell. We developed a technique for introducing Ca{sup 2+}-sensitive dyes into aleurone protoplasts that allows the measurement of Ca{sup 2+} in both cytosol and endoplasmic reticulum (ER). Third, because the results of our Ca{sup 2+} measurements showed higher levels of Ca{sup 2+} in the ER than in the cytosol, we examined Ca{sup 2+} transport into the ER of control and GA-treated aleurone tissue. And fourth, we applied the technique of patch-clamping to the barley aleurone protoplast to examine ion transport at the plasma membrane. Our results with the patch-clamp technique established the presence of K{sup +} channels in the plasma membrane of the aleurone protoplast, and they showed that this cell is ideally suited for the application of this methodology for studying ion transport. 34 refs.

  7. [Molecular abnormalities in lymphomas]. (United States)

    Delsol, G


    Numerous molecular abnormalities have been described in lymphomas. They are of diagnostic and prognostic value and are taken into account for the WHO classification of these tumors. They also shed some light on the underlying molecular mechanisms involved in lymphomas. Overall, four types of molecular abnormalities are involved: mutations, translocations, amplifications and deletions of tumor suppressor genes. Several techniques are available to detect these molecular anomalies: conventional cytogenetic analysis, multicolor FISH, CGH array or gene expression profiling using DNA microarrays. In some lymphomas, genetic abnormalities are responsible for the expression of an abnormal protein (e.g. tyrosine-kinase, transcription factor) detectable by immunohistochemistry. In the present review, molecular abnormalities observed in the most frequent B, T or NK cell lymphomas are discussed. In the broad spectrum of diffuse large B-cell lymphomas microarray analysis shows mostly two subgroups of tumors, one with gene expression signature corresponding to germinal center B-cell-like (GCB: CD10+, BCL6 [B-Cell Lymphoma 6]+, centerine+, MUM1-) and a subgroup expressing an activated B-cell-like signature (ABC: CD10-, BCL6-, centerine-, MUM1+). Among other B-cell lymphomas with well characterized molecular abnormalies are follicular lymphoma (BCL2 deregulation), MALT lymphoma (Mucosa Associated Lymphoid Tissue) [API2-MALT1 (mucosa-associated-lymphoid-tissue-lymphoma-translocation-gene1) fusion protein or deregulation BCL10, MALT1, FOXP1. MALT1 transcription factors], mantle cell lymphoma (cycline D1 [CCND1] overexpression) and Burkitt lymphoma (c-Myc expression). Except for ALK (anaplastic lymphoma kinase)-positive anaplastic large cell lymphoma, well characterized molecular anomalies are rare in lymphomas developed from T or NK cells. Peripheral T cell lymphomas not otherwise specified are a heterogeneous group of tumors with frequent but not recurrent molecular abnormalities

  8. Air pollution particles and iron homeostasis (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, fun...

  9. Does microbiota composition affect thyroid homeostasis? (United States)

    Virili, Camilla; Centanni, Marco


    The intestinal microbiota is essential for the host to ensure digestive and immunologic homeostasis. When microbiota homeostasis is impaired and dysbiosis occurs, the malfunction of epithelial barrier leads to intestinal and systemic disorders, chiefly immunologic and metabolic. The role of the intestinal tract is crucial in the metabolism of nutrients, drugs, and hormones, including exogenous and endogenous iodothyronines as well as micronutrients involved in thyroid homeostasis. However, the link between thyroid homeostasis and microbiota composition is not yet completely ascertained. A pathogenetic link with dysbiosis has been described in different autoimmune disorders but not yet fully elucidated in autoimmune thyroid disease which represents the most frequent of them. Anyway, it has been suggested that intestinal dysbiosis may trigger autoimmune thyroiditis. Furthermore, hypo- and hyper-thyroidism, often of autoimmune origin, were respectively associated to small intestinal bacterial overgrowth and to changes in microbiota composition. Whether some steps of this thyroid network may be affected by intestinal microbiota composition is briefly discussed below.

  10. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses. (United States)

    Fernald, Charles D.


    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  11. Iron Homeostasis and Nutritional Iron Deficiency123



    Nonheme food ferritin (FTN) iron minerals, nonheme iron complexes, and heme iron contribute to the balance between food iron absorption and body iron homeostasis. Iron absorption depends on membrane transporter proteins DMT1, PCP/HCP1, ferroportin (FPN), TRF2, and matriptase 2. Mutations in DMT1 and matriptase-2 cause iron deficiency; mutations in FPN, HFE, and TRF2 cause iron excess. Intracellular iron homeostasis depends on coordinated regulation of iron trafficking and storage proteins enc...

  12. Russia: An Abnormal Country

    Directory of Open Access Journals (Sweden)

    Steven Rosefielde


    Full Text Available Andrei Shleifer and Daniel Treisman recently rendered a summary verdict on the post Soviet Russian transition experience finding that the Federation had become a normal country with the west's assistance, and predicting that it would liberalize and develop further like other successful nations of its type. This essay demonstrates that they are mistaken on the first count, and are likely to be wrong on the second too. It shows factually, and on the norms elaborated by Pareto, Arrow and Bergson that Russia is an abnormal political economy unlikely to democratize, westernize or embrace free enterprise any time soon

  13. Abnormal ionization in sonoluminescence (United States)

    Zhang, Wen-Juan; An, Yu


    Sonoluminescence is a complex phenomenon, the mechanism of which remains unclear. The present study reveals that an abnormal ionization process is likely to be present in the sonoluminescing bubble. To fit the experimental data of previous studies, we assume that the ionization energies of the molecules and atoms in the bubble decrease as the gas density increases and that the decrease of the ionization energy reaches about 60%-70% as the bubble flashes, which is difficult to explain by using previous models. Project supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120002110031) and the National Natural Science Foundation of China (Grant No. 11334005).

  14. Multiple fluid-filled bone metastases. (United States)

    Frenzel, Laurent; Javier, Rose-Marie; Eichler, Francoise; Zollner, Goerg; Sibilia, Jean


    Bone metastases are usually seen on imaging studies as lytic lesions and less often as sclerotic or mixed lesions. We report an exceedingly unusual case of breast cancer identified after magnetic resonance imaging showed bone metastases with fluid-fluid levels in the spine and sacrum. Bone images containing fluid-fluid levels are usually solitary abnormalities produced by aneurismal bone cysts. The fluid-fluid level is due to bleeding within the tumor followed by layering of the blood components based on density differences. Only two other cases of bone metastases with multiple fluid-fluid levels have been reported. Although fluid-fluid levels are exceedingly rare, clinicians should be aware that they might indicate a malignancy, particularly when they are multiple.

  15. Cranial computed tomographic abnormalities in leptomeningeal metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.Y.; Glass, J.P.; Geoffray, A.; Wallace, S.


    Sixty-four (57.6%) of 111 cancer patients with cerebrospinal fluid cytology positive for malignant cells had cranial computed tomographic (CT) scans within 2 weeks before or after a lumbar puncture. Twenty-two (34.3%) of the 64 had abnormal CT findings indicative of leptomeningeal metastasis. Thirteen (59.6%) of these 22 patients had associated parenchymal metastases. Recognition of leptomeningeal disease may alter the management of patients with parenchymal metastases. Communicating hydrocephalus in cancer patients should be considered to be related to leptomeningeal metastasis until proven otherwise.

  16. The SH2B1 obesity locus and abnormal glucose homeostasis

    DEFF Research Database (Denmark)

    Prudente, S; Copetti, M; Morini, E


    affecting risk of obesity and insulin resistance might also modulate risk of T2D. Recently, 32 loci have been associated with body mass index (BMI) by genome-wide studies, including one locus on chromosome 16p11 containing the SH2B1 gene. Animal studies have suggested that SH2B1 is a physiological enhancer...

  17. The Abnormal Measures of Iron Homeostasis in Pediatric Obesity Are Associated with the Inflammation of Obesity

    Directory of Open Access Journals (Sweden)

    Visintainer PaulF


    Full Text Available Objectives. To determine if the low iron state described in obese children is associated with the chronic inflammatory state seen in obesity. Study Design. Obese children age from 2 to 19 years seen at a weight management clinic were studied prospectively. Data were collected on age, gender, BMI, BMI -score, serum iron, ferritin, transferrin saturation, free erythrocyte protoporphyrin, high sensitivity creactive protein (hs-crp, and hemoglobin concentration. Results. 107 subjects were studied. Hs-crp levels correlated positively with BMI and BMI -score and negatively with serum iron . 11.2% of subjects had low serum iron. Median serum iron was significantly lower for subjects with American Heart Association high risk hs-crp values (3 mg/L compared to those with low risk hs-crp (1 mg/L, (65 mcg/dL versus 96 mcg/dL, . After adjusting for age, gender, and BMI -score, serum iron was still negatively associated with hs-crp . Conclusions. We conclude that the chronic inflammation of obesity results in the low iron state previously reported in obese children, similar to what is seen in other inflammatory diseases.

  18. A Rare Stapes Abnormality

    Directory of Open Access Journals (Sweden)

    Hala Kanona


    Full Text Available The aim of this study is to increase awareness of rare presentations, diagnostic difficulties alongside management of conductive hearing loss and ossicular abnormalities. We report the case of a 13-year-old female reporting progressive left-sided hearing loss and high resolution computed tomography was initially reported as normal. Exploratory tympanotomy revealed an absent stapedius tendon and lack of connection between the stapes superstructure and footplate. The footplate was fixed. Stapedotomy and stapes prosthesis insertion resulted in closure of the air-bone gap by 50 dB. A review of world literature was performed using MedLine. Middle ear ossicular discontinuity can result in significant conductive hearing loss. This can be managed effectively with surgery to help restore hearing. However, some patients may not be suitable or decline surgical intervention and can be managed safely conservatively.

  19. Secondary Abnormalities of Neurotransmitters in Infants with Neurological Disorders (United States)

    Garcia-Cazorla, A.; Serrano, M.; Perez-Duenas, B.; Gonzalez, V.; Ormazabal, A.; Pineda, M.; Fernandez-Alvarez, E.; Campistol, J. M. D.; Artuch, R. M. D.


    Neurotransmitters are essential in young children for differentiation and neuronal growth of the developing nervous system. We aimed to identify possible factors related to secondary neurotransmitter abnormalities in pediatric patients with neurological disorders. We analyzed cerebrospinal fluid (CSF) and biogenic amine metabolites in 56 infants…

  20. Iron homeostasis: new players, newer insights. (United States)

    Edison, Eunice S; Bajel, Ashish; Chandy, Mammen


    Although iron is a relatively abundant element in the universe, it is estimated that more than 2 billion people worldwide suffer from iron deficiency anemia. Iron deficiency results in impaired production of iron-containing proteins, the most prominent of which is hemoglobin. Cellular iron deficiency inhibits cell growth and subsequently leads to cell death. Hemochromatosis, an inherited disorder results in disproportionate absorption of iron and the extra iron builds up in tissues resulting in organ damage. As both iron deficiency and iron overload have adverse effects, cellular and systemic iron homeostasis is critically important. Recent advances in the field of iron metabolism have led to newer understanding of the pathways involved in iron homeostasis and the diseases which arise from alteration in the regulators. Although insight into this complex regulation of the proteins involved in iron homeostasis has been obtained mainly through animal studies, it is most likely that this knowledge can be directly extrapolated to humans.

  1. Fluid Interfaces

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius


    Fluid interaction, interaction by the user with the system that causes few breakdowns, is essential to many user interfaces. We present two concrete software systems that try to support fluid interaction for different work practices. Furthermore, we present specificity, generality, and minimality...... as design goals for fluid interfaces....

  2. Fluid Mechanics. (United States)

    Drazin, Philip


    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  3. Amniotic fluid embolism

    Directory of Open Access Journals (Sweden)

    Kiranpreet Kaur


    Full Text Available Amniotic fluid embolism (AFE is one of the catastrophic complications of pregnancy in which amniotic fluid, fetal cells, hair, or other debris enters into the maternal pulmonary circulation, causing cardiovascular collapse. Etiology largely remains unknown, but may occur in healthy women during labour, during cesarean section, after abnormal vaginal delivery, or during the second trimester of pregnancy. It may also occur up to 48 hours post-delivery. It can also occur during abortion, after abdominal trauma, and during amnio-infusion. The pathophysiology of AFE is not completely understood. Possible historical cause is that any breach of the barrier between maternal blood and amniotic fluid forces the entry of amniotic fluid into the systemic circulation and results in a physical obstruction of the pulmonary circulation. The presenting signs and symptoms of AFE involve many organ systems. Clinical signs and symptoms are acute dyspnea, cough, hypotension, cyanosis, fetal bradycardia, encephalopathy, acute pulmonary hypertension, coagulopathy etc. Besides basic investigations lung scan, serum tryptase levels, serum levels of C3 and C4 complements, zinc coproporphyrin, serum sialyl Tn etc are helpful in establishing the diagnosis. Treatment is mainly supportive, but exchange transfusion, extracorporeal membrane oxygenation, and uterine artery embolization have been tried from time to time. The maternal prognosis after amniotic fluid embolism is very poor though infant survival rate is around 70%.

  4. Communication and abnormal behaviour. (United States)

    Crown, S


    In this paper the similarities between normal and abnormal behaviour are emphasized and selected aspects of communication, normal and aberrant, between persons are explored. Communication in a social system may be verbal or non-verbal: one person's actions cause a response in another person. This response may be cognitive, behavioural or physiological. Communication may be approached through the individual, the social situation or social interaction. Psychoanalysis approaches the individual in terms of the coded communications of psychoneurotic symptoms or psychotic behaviour; the humanist-existential approach is concerned more with emotional expression. Both approaches emphasize the development of individual identity. The interaction between persons and their social background is stressed. Relevant are sociological concepts such as illness behaviour, stigma, labelling, institutionalization and compliance. Two approaches to social interactions are considered: the gamesplaying metaphor, e.g. back pain as a psychosocial manipulation--the 'pain game'; and the 'spiral of reciprocal perspectives' which emphasizes the interactional complexities of social perceptions. Communicatory aspects of psychological treatments are noted: learning a particular metaphor such as 'resolution' of the problem (psychotherapy), learning more 'rewarding' behaviour (learning theory) or learning authenticity or self-actualization (humanist-existential).

  5. Mitochondrial genome regulates mitotic fidelity by maintaining centrosomal homeostasis. (United States)

    Donthamsetty, Shashikiran; Brahmbhatt, Meera; Pannu, Vaishali; Rida, Padmashree C G; Ramarathinam, Sujatha; Ogden, Angela; Cheng, Alice; Singh, Keshav K; Aneja, Ritu


    Centrosomes direct spindle morphogenesis to assemble a bipolar mitotic apparatus to enable error-free chromosome segregation and preclude chromosomal instability (CIN). Amplified centrosomes, a hallmark of cancer cells, set the stage for CIN, which underlies malignant transformation and evolution of aggressive phenotypes. Several studies report CIN and a tumorigenic and/or aggressive transformation in mitochondrial DNA (mtDNA)-depleted cells. Although several nuclear-encoded proteins are implicated in centrosome duplication and spindle organization, the involvement of mtDNA encoded proteins in centrosome amplification (CA) remains elusive. Here we show that disruption of mitochondrial function by depletion of mtDNA induces robust CA and mitotic aberrations in osteosarcoma cells. We found that overexpression of Aurora A, Polo-like kinase 4 (PLK4), and Cyclin E was associated with emergence of amplified centrosomes. Supernumerary centrosomes in rho0 (mtDNA-depleted) cells resulted in multipolar mitoses bearing "real" centrosomes with paired centrioles at the multiple poles. This abnormal phenotype was recapitulated by inhibition of respiratory complex I in parental cells, suggesting a role for electron transport chain (ETC) in maintaining numeral centrosomal homeostasis. Furthermore, rho0 cells displayed a decreased proliferative capacity owing to a G 2/M arrest. Downregulation of nuclear-encoded p53 in rho0 cells underscores the importance of mitochondrial and nuclear genome crosstalk and may perhaps underlie the observed mitotic aberrations. By contrast, repletion of wild-type mtDNA in rho0 cells (cybrid) demonstrated a much lesser extent of CA and spindle multipolarity, suggesting partial restoration of centrosomal homeostasis. Our study provides compelling evidence to implicate the role of mitochondria in regulation of centrosome duplication, spindle architecture, and spindle pole integrity.

  6. Regulation of amniotic fluid volume. (United States)

    Beall, M H; van den Wijngaard, J P H M; van Gemert, M J C; Ross, M G


    Water arrives in the mammalian gestation from the maternal circulation across the placenta. It then circulates between the fetal water compartments, including the fetal body compartments, the placenta and the amniotic fluid. Amniotic fluid is created by the flow of fluid from the fetal lung and bladder. A major pathway for amniotic fluid resorption is fetal swallowing; however, in many cases the amounts of fluid produced and absorbed do not balance. A second resorption pathway, the intramembranous pathway (across the amnion to the fetal circulation), has been proposed to explain the maintenance of normal amniotic fluid volume. Amniotic fluid volume is thus a function both of the amount of water transferred to the gestation across the placental membrane, and the flux of water across the amnion. Water flux across biologic membranes may be driven by osmotic or hydrostatic forces; existing data suggest that intramembranous flow in humans is driven by the osmotic difference between the amniotic fluid and the fetal serum. The driving force for placental flow is more controversial, and both forces may be in effect. The mechanism(s) responsible for regulating water flow to and from the amniotic fluid is unknown. In other parts of the body, notably the kidney, water flux is regulated by the expression of aquaporin water channels on the cell membrane. We hypothesize that aquaporins have a role in regulating water flux across both the amnion and the placenta, and present evidence in support of this theory. Current knowledge of gestational water flow is sufficient to allow prediction of fetal outcome when water flow is abnormal, as in twin-twin transfusion syndrome. Further insight into these mechanisms may allow novel treatments for amniotic fluid volume abnormalities with resultant improvement in clinical outcome.

  7. Calcium homeostasis in fly photoreceptor cells

    NARCIS (Netherlands)

    Oberwinkler, J


    In fly photoreceptor cells, two processes dominate the Ca2+ homeostasis: light-induced Ca2+ influx through members of the TRP family of ion channels, and Ca2+ extrusion by Na+/Ca2+ exchange.Ca2+ release from intracellular stores is quantitatively insignificant. Both, the light-activated channels and

  8. Molecular monitoring of equine joint homeostasis

    NARCIS (Netherlands)

    de Grauw, J.C.


    Chronic joint disorders are a major cause of impaired mobility and loss of quality of life in both humans and horses. Regardless of the primary insult, any joint disorder is characterized by an upset in normal joint homeostasis, the balance between tissue anabolism and catabolism that is normally ma

  9. Molecular and clinical aspects of iron homeostasis: From anemia to hemochromatosis. (United States)

    Nairz, Manfred; Weiss, Günter


    The discovery in recent years of a plethora of new genes whose products are implicated in iron homeostasis has led to rapid expansion of our knowledge in the field of iron metabolism and its underlying complex regulation in both health and disease. Abnormalities of iron metabolism are among the most common disorders encountered in practical medicine and may have significant negative impact on physical condition and life expectancy. Basic insights into the principles of iron homeostasis and the pathophysiological and clinical consequences of iron overload, iron deficiency and misdistribution are thus of crucial importance in modern medicine. This review summarizes our current understanding of human iron metabolism and focuses on the clinically relevant features of hereditary and secondary hemochromatosis, iron deficiency anemia, anemia of chronic disease and anemia of critical illness. The interconnections between iron metabolism and immunity are also addressed, in as much as they may affect the risk and course of infections and malignancies.

  10. Systemic abnormalities in liver disease

    Institute of Scientific and Technical Information of China (English)

    Masami Minemura; Kazuto Tajiri; Yukihiro Shimizu


    Systemic abnormalities often occur in patients with liver disease. In particular, cardiopulmonary or renal diseases accompanied by advanced liver disease can be serious and may determine the quality of life and prognosis of patients. Therefore, both hepatologists and non-hepatologists should pay attention to such abnormalities in the management of patients with liver diseases.

  11. Abnormal pressure in hydrocarbon environments (United States)

    Law, B.E.; Spencer, C.W.


    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  12. Presenilin 1 maintains lysosomal Ca2+ homeostasis by regulating vATPase-mediated lysosome acidification (United States)

    Lee, Ju-Hyun; McBrayer, Mary Kate; Wolfe, Devin M.; Haslett, Luke J.; Kumar, Asok; Sato, Yutaka; Lie, Pearl P. Y.; Mohan, Panaiyur; Coffey, Erin E.; Kompella, Uday; Mitchell, Claire H.; Lloyd-Evans, Emyr; Nixon, Ralph A.


    Summary Presenilin-1 (PS1) deletion or Alzheimer’s Disease (AD)-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in PS1KO cells induces abnormal Ca2+ efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca2+. In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca2+ homeostasis, but correcting lysosomal Ca2+ deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss of function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca2+ homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism. PMID:26299959

  13. Fluid mechanics

    CERN Document Server

    Kundu, Pijush K; Dowling, David R


    Fluid mechanics, the study of how fluids behave and interact under various forces and in various applied situations-whether in the liquid or gaseous state or both-is introduced and comprehensively covered in this widely adopted text. Revised and updated by Dr. David Dowling, Fluid Mechanics, 5e is suitable for both a first or second course in fluid mechanics at the graduate or advanced undergraduate level. Along with more than 100 new figures, the text has been reorganized and consolidated to provide a better flow and more cohesion of topics.Changes made to the

  14. Imaging findings of sternal abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Franquet, T. [Dept. of Radiology, Hospital de Sant Pau, Universidad Autonoma de Barcelona (Spain); Gimenez, A. [Dept. of Radiology, Hospital de Sant Pau, Universidad Autonoma de Barcelona (Spain); Alegret, X. [Dept. of Radiology, Hospital de Sant Pau, Universidad Autonoma de Barcelona (Spain); Sanchis, E. [Dept. of Radiology, Hospital de Sant Pau, Universidad Autonoma de Barcelona (Spain); Rivas, A. [Dept. of Radiology, Hospital Vall d`Hebron, Universidad Autonoma de Barcelona (Spain)


    Radiographic findings in the sternal abnormalities are often nonspecific, showing appearances from a localized benign lesion to an aggressive lesion as seen with infections and malignant neoplasms. A specific diagnosis of sternal abnormalities can be suggested on the basis of CT and MR characteristics. Familiarity with the presentation and variable appearance of sternal abnormalities may aid the radiologist is suggesting a specific diagnosis. We present among others characteristic radiographic findings of hemangioma, chondrosarcoma, hydatid disease, and SAPHO syndrome. In those cases in which findings are not specific, cross-sectional imaging modalities may help the clinician in their management. (orig.)

  15. Molecular regulators of phosphate homeostasis in plants. (United States)

    Lin, Wei-Yi; Lin, Shu-I; Chiou, Tzyy-Jen


    An appropriate cellular phosphate (Pi) concentration is indispensable for essential physiological and biochemical processes. To maintain cellular Pi homeostasis, plants have developed a series of adaptive responses to facilitate external Pi acquisition and to limit Pi consumption and to adjust Pi recycling internally when the Pi supply is inadequate. Over the past decade, significant progress has been made toward understanding such regulation at the molecular level. In this review, the focus is on the molecular regulators that mediate cellular Pi concentrations. The regulators are introduced and organized according to their original identification procedures, by the forward genetic approach of mutant screening or by reverse genetic analysis. These genes are involved in Pi uptake, allocation or remobilization or are upstream regulators, such as transcriptional factors or signalling molecules. In the future, integration of current knowledge and exploration of new technology is expected to offer new insights into molecular mechanisms that maintain Pi homeostasis.

  16. Transcranial electrical stimulation accelerates human sleep homeostasis.

    Directory of Open Access Journals (Sweden)

    Davide Reato

    Full Text Available The sleeping brain exhibits characteristic slow-wave activity which decays over the course of the night. This decay is thought to result from homeostatic synaptic downscaling. Transcranial electrical stimulation can entrain slow-wave oscillations (SWO in the human electro-encephalogram (EEG. A computational model of the underlying mechanism predicts that firing rates are predominantly increased during stimulation. Assuming that synaptic homeostasis is driven by average firing rates, we expected an acceleration of synaptic downscaling during stimulation, which is compensated by a reduced drive after stimulation. We show that 25 minutes of transcranial electrical stimulation, as predicted, reduced the decay of SWO in the remainder of the night. Anatomically accurate simulations of the field intensities on human cortex precisely matched the effect size in different EEG electrodes. Together these results suggest a mechanistic link between electrical stimulation and accelerated synaptic homeostasis in human sleep.

  17. The Impact of Melatonin on Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Zeynep Arzu Yeğin


    Full Text Available Objective: Melatonin is a pineal product mainly charged with the maintenance of antioxidant conditions in human. This study is performed to identify the short-term effect of melatonin on glucose homeostasis in diabetic patients. Materials and Methods: Melatonin and placebo were given perorally to sixty patients. Blood glucose and insulin levels were measured with constant intervals. Results: No significant correlation was found among the levels of glucose, insulin and HOMA-IR index at any time after melatonin/placebo administration.Conclusions: Prospective studies with long-term use of melatonin are needed to define the exact role of melatonin in glucose homeostasis. Turk Jem 2009; 13: 52-5

  18. Homeostasis as the Mechanism of Evolution

    Directory of Open Access Journals (Sweden)

    John S. Torday


    Full Text Available Homeostasis is conventionally thought of merely as a synchronic (same time servo-mechanism that maintains the status quo for organismal physiology. However, when seen from the perspective of developmental physiology, homeostasis is a robust, dynamic, intergenerational, diachronic (across-time mechanism for the maintenance, perpetuation and modification of physiologic structure and function. The integral relationships generated by cell-cell signaling for the mechanisms of embryogenesis, physiology and repair provide the needed insight to the scale-free universality of the homeostatic principle, offering a novel opportunity for a Systems approach to Biology. Starting with the inception of life itself, with the advent of reproduction during meiosis and mitosis, moving forward both ontogenetically and phylogenetically through the evolutionary steps involved in adaptation to an ever-changing environment, Biology and Evolution Theory need no longer default to teleology.

  19. Thiol/disulfide homeostasis in asphalt workers. (United States)

    Yilmaz, Ömer Hınç; Bal, Ceylan; Neşelioglu, Salim; Büyükşekerci, Murat; Gündüzöz, Meşide; Eren, Funda; Tutkun, Lutfiye; Yilmaz, Fatma Meric


    The aim of this study was to investigate thiol/disulfide homeostasis in asphalt workers who are exposed to polycyclic aromatic hydrocarbons occupationally. The study was carried out in 34 nonsmoker asphalt workers. Additionally, 35 healthy nonsmoker volunteers were recruited as control group. Thiol and disulfide concentrations were determined using the novel automated measurement method. Levels of urinary 1-OH-pyrene were analyzed by liquid chromatography. Disulfide/thiol ratio was significantly higher in exposed group (p = .034). Also, a positive correlation was detected between disulfide/thiol ratio and 1-OH-pyrene values (r = .249, p = .036). Thiol/disulfide homeostasis was found to be disturbed in asphalt workers. The novel test used in this study may be useful for evaluating the oxidative status in polycyclic aromatic hydrocarbon (PAH) exposure.

  20. Iron Homeostasis in Health and Disease

    Directory of Open Access Journals (Sweden)

    Raffaella Gozzelino


    Full Text Available Iron is required for the survival of most organisms, including bacteria, plants, and humans. Its homeostasis in mammals must be fine-tuned to avoid iron deficiency with a reduced oxygen transport and diminished activity of Fe-dependent enzymes, and also iron excess that may catalyze the formation of highly reactive hydroxyl radicals, oxidative stress, and programmed cell death. The advance in understanding the main players and mechanisms involved in iron regulation significantly improved since the discovery of genes responsible for hemochromatosis, the IRE/IRPs machinery, and the hepcidin-ferroportin axis. This review provides an update on the molecular mechanisms regulating cellular and systemic Fe homeostasis and their roles in pathophysiologic conditions that involve alterations of iron metabolism, and provides novel therapeutic strategies to prevent the deleterious effect of its deficiency/overload.


    Directory of Open Access Journals (Sweden)

    Marina Yur’evna Neronova


    Full Text Available The paper presents the relationship between the phenomenon of world view and sociocultural identity both individuals and the community as a whole. The research is being carried out in the context of current crisis of world view accepted in so-called art Nouveau era. This paper also presents the identity crisis typical for modern civilized societies. A new notion of sociocultural homeostasis is introduced in connection with analyzable phenomena and their mutual relations.Purpose. Study of the relationship between the phenomenon of the world view and sociocultural identity as a structural and functional mechanism.Methodology. Phenomenological and systematic methods with the elements of historical method were employed. Cultural analysis is based on using both axiological and phenomenological approach, and also the elements of semiotic approach.Results. The dependence of identity on the world view is revealed (or is being revealed?, the phenomenon of sociocultural homeostasis is singled out (or is being singled out in the capacity of the mechanism setting up the correspondence in the contradictory unity between the world view as a subjective image and concrete reality as an objective part of this contradictory. The analysis of sociocultural homeostasis is carried out (or is being carried out and the conclusion is being drown that instability of the latter leads to serious problems in the identification of both individuals and communities as a whole. Besides, (moreover the relationship between the legitimacy level of the world view and stability of sociocultural homeostasis is established. (is being established.Practical implications: the system of education.

  2. Neonatal insulin secretion: implications for the programming of metabolic homeostasis. (United States)

    Aynsley-Green, A; Hawdon, J M; Deshpande, S; Platt, M W; Lindley, K; Lucas, A


    Patterns of metabolic adaptation are described in the neonate, which generate two fundamental concepts. First, that early nutritional experiences may have long-term effects on the control of metabolic homeostasis, and second, that insulin has a fundamental role in this process. The endocrine pancreas in the neonate is unable to regulate insulin secretion in relation to blood glucose concentration with the same level of tight control seen in the older child and adult. Moreover, the pattern of metabolic adaptation in the fullterm infant in the first postnatal week is different to that of the preterm baby and the infant born small-for-gestational-age (SGA), with both preterm and SGA infants being unable to generate counter-regulatory ketogenesis as blood glucose concentrations fall. The inability to initiate ketogenesis and switch off insulin secretion after birth persists for several weeks in preterm infants. Methods of feeding term and preterm infants have profound effects on the neonatal endocrine milieu and it is suggested that patterns of insulin secretion provoked in the newborn period may 'programme' the subsequent development of metabolic control. The recently described molecular mechanisms that underlie the pathogenesis of abnormal insulin secretion in the syndrome of persistent hyperinsulinaemic hypoglycemia of infancy (or pancreatic nesidioblastosis) may offer insights into how such programming may occur.

  3. Sleep and bodily functions: the physiological interplay between body homeostasis and sleep homeostasis. (United States)

    Amici, R; Bastianini, S; Berteotti, C; Cerri, M; Del Vecchio, F; Lo Martire, V; Luppi, M; Perez, E; Silvani, A; Zamboni, G; Zoccoli, G


    Body homeostasis and sleep homeostasis may both rely on the complex integrative activity carried out by the hypothalamus. Thus, the three main wake-sleep (WS) states (i.e. wakefulness, NREM sleep, and REM sleep) may be better understood if the different cardio-respiratory and metabolic parameters, which are under the integrated control of the autonomic and the endocrine systems, are studied during sleep monitoring. According to this view, many physiological events can be considered as an expression of the activity that physiological regulations should perform in order to cope with the need to fulfill body and sleep homeostasis. This review is aimed at making an assessment of data showing the existence of a physiological interplay between body homeostasis and sleep homeostasis, starting from the spontaneous changes observed in the somatic and autonomic activity during sleep, through evidence showing the deep changes occurring in the central integration of bodily functions during the different WS states, to the changes in the WS states observed when body homeostasis is challenged by the external environment and when the return to normal ambient conditions allows sleep homeo- stasis to run without apparent physiological restrictions. The data summarized in this review suggest that an approach to the dichotomy between NREM and REM sleep based on physiological regulations may offer a framework within which observations that a traditional behavioral approach may overlook can be interpreted. The study of the interplay between body and sleep homeostasis appears, therefore, to be a way to understand the function of complex organisms beyond that of the specific regulations.

  4. Endocannabinoids and energy homeostasis: an update. (United States)

    Cristino, Luigia; Becker, Thorsten; Di Marzo, Vincenzo


    The endocannabinoid system (ECS) is a widespread intercellular signaling system that plays a critical role in energy homeostasis, meant as the precise matching of caloric intake with energy expenditure which normally keeps body weight stable over time. Complex interactions between environmental and neurohormonal systems directly contribute to the balance of energy homeostasis. This review highlights established and more recent data on the brain circuits in which the ECS plays an important regulatory role, with focus on the hypothalamus, a region where numerous interacting systems regulating feeding, satiety, stress, and other motivational states coexist. Although not meant as an exhaustive review of the field, this article will discuss how endocannabinoid tone, in addition to reinforcing reward circuitries and modulating food intake and the salience of food, controls lipid and glucose metabolism in several peripheral organs, particularly the liver and adipose tissue. Direct actions in the skeletal muscle and pancreas are also emerging and are briefly discussed. This review provides new perspectives into endocannabinoid control of the neurochemical causes and consequences of energy homeostasis imbalance, a knowledge that might lead to new potential treatments for obesity and related morbidities.

  5. Regulation of energy homeostasis via GPR120

    Directory of Open Access Journals (Sweden)

    Atsuhiko eIchimura


    Full Text Available Free fatty acids (FFAs are fundamental units of key nutrients. FFAs exert various biological functions, depending on the chain length and degree of desaturation. Recent studies have shown that several FFAs act as ligands of G-protein-coupled receptors (GPCRs, activate intracellular signaling and exert physiological functions via these GPCRs. GPR120 (also known as free fatty acid receptor 4, FFAR4 is activated by unsaturated medium- to long-chain FFAs and has a critical role in various physiological homeostasis mechanisms such as incretin hormone secretion, food preference, anti-inflammation and adipogenesis. Recent studies showed that a lipid sensor GPR120 has a key role in sensing dietary fat in white adipose tissue and regulates the whole body energy homeostasis in both humans and rodents. Genetic study in human identified the loss-of-functional mutation of GPR120 associated with obesity and insulin resistance. In addition, dysfunction of GPR120 has been linked as a novel risk factor for diet-induced obesity. This review aims to provide evidence from the recent development in physiological function of GPR120 and discusses its functional roles in regulation of energy homeostasis and its potential as drug targets.

  6. Bitter taste receptors influence glucose homeostasis. (United States)

    Dotson, Cedrick D; Zhang, Lan; Xu, Hong; Shin, Yu-Kyong; Vigues, Stephan; Ott, Sandra H; Elson, Amanda E T; Choi, Hyun Jin; Shaw, Hillary; Egan, Josephine M; Mitchell, Braxton D; Li, Xiaodong; Steinle, Nanette I; Munger, Steven D


    TAS1R- and TAS2R-type taste receptors are expressed in the gustatory system, where they detect sweet- and bitter-tasting stimuli, respectively. These receptors are also expressed in subsets of cells within the mammalian gastrointestinal tract, where they mediate nutrient assimilation and endocrine responses. For example, sweeteners stimulate taste receptors on the surface of gut enteroendocrine L cells to elicit an increase in intracellular Ca(2+) and secretion of the incretin hormone glucagon-like peptide-1 (GLP-1), an important modulator of insulin biosynthesis and secretion. Because of the importance of taste receptors in the regulation of food intake and the alimentary responses to chemostimuli, we hypothesized that differences in taste receptor efficacy may impact glucose homeostasis. To address this issue, we initiated a candidate gene study within the Amish Family Diabetes Study and assessed the association of taste receptor variants with indicators of glucose dysregulation, including a diagnosis of type 2 diabetes mellitus and high levels of blood glucose and insulin during an oral glucose tolerance test. We report that a TAS2R haplotype is associated with altered glucose and insulin homeostasis. We also found that one SNP within this haplotype disrupts normal responses of a single receptor, TAS2R9, to its cognate ligands ofloxacin, procainamide and pirenzapine. Together, these findings suggest that a functionally compromised TAS2R receptor negatively impacts glucose homeostasis, providing an important link between alimentary chemosensation and metabolic disease.

  7. Bitter taste receptors influence glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    Cedrick D Dotson

    Full Text Available TAS1R- and TAS2R-type taste receptors are expressed in the gustatory system, where they detect sweet- and bitter-tasting stimuli, respectively. These receptors are also expressed in subsets of cells within the mammalian gastrointestinal tract, where they mediate nutrient assimilation and endocrine responses. For example, sweeteners stimulate taste receptors on the surface of gut enteroendocrine L cells to elicit an increase in intracellular Ca(2+ and secretion of the incretin hormone glucagon-like peptide-1 (GLP-1, an important modulator of insulin biosynthesis and secretion. Because of the importance of taste receptors in the regulation of food intake and the alimentary responses to chemostimuli, we hypothesized that differences in taste receptor efficacy may impact glucose homeostasis. To address this issue, we initiated a candidate gene study within the Amish Family Diabetes Study and assessed the association of taste receptor variants with indicators of glucose dysregulation, including a diagnosis of type 2 diabetes mellitus and high levels of blood glucose and insulin during an oral glucose tolerance test. We report that a TAS2R haplotype is associated with altered glucose and insulin homeostasis. We also found that one SNP within this haplotype disrupts normal responses of a single receptor, TAS2R9, to its cognate ligands ofloxacin, procainamide and pirenzapine. Together, these findings suggest that a functionally compromised TAS2R receptor negatively impacts glucose homeostasis, providing an important link between alimentary chemosensation and metabolic disease.

  8. Fluid Dynamics

    DEFF Research Database (Denmark)

    Brorsen, Michael

    These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University.......These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University....

  9. Skin - abnormally dark or light (United States)

    ... ency/article/003242.htm Skin - abnormally dark or light To use the sharing features on this page, ... the hands. The bronze color can range from light to dark (in fair-skinned people) with the ...

  10. Pregnancy Complications: Umbilical Cord Abnormalities (United States)

    ... defects. These tests may include a detailed ultrasound, amniocentesis (to check for chromosomal abnormalities) and in some ... the provider may recommend additional tests, such as amniocentesis and a detailed ultrasound, to diagnose or rule ...

  11. First trimester ultrasound screening of chromosomal abnormalities

    Directory of Open Access Journals (Sweden)

    Trninić-Pjević Aleksandra


    Full Text Available Introduction: A retrocervical subcutaneous collection of fluid at 11-14 weeks of gestation, can be visualized by ultrasound as nuchal translucency (NT. Objective. To examine the distribution of fetal nuchal translucency in low risk population, to determine the detection rate of chromosomal abnormalities in the population of interest based on maternal age and NT measurement. Method. Screening for chromosomal defects, advocated by The Fetal Medicine Foundation (FMF, was performed in 1,341 pregnancies in the period January 2000 - April 2004. Initial risk for chromosomal defects (based on maternal and gestational age and corrected risk, after the NT measurement, were calculated. Complete data were collected from 1,048 patients. Results. Out of 1,048 pregnancies followed, 8 cases of Down’s syndrome were observed, 7 were detected antenatally and 6 out of 7 were detected due to screening that combines maternal age and NT measurement. According to our results, sensitivity of the screening for aneuploidies based on maternal age alone was 12.5% and false positive rate 13.1%, showing that screening based on NT measurement is of great importance. Screening by a combination of maternal age and NT, and selecting a screening-positive group for invasive testing enabled detection of 75% of fetuses with trisomy 21. Conclusion. In screening for chromosomal abnormalities, an approach which combines maternal age and NT is effective and increases the detection rate compared to the use of any single test. .

  12. Fluid dynamics of dilatant fluid

    DEFF Research Database (Denmark)

    Nakanishi, Hiizu; Nagahiro, Shin-ichiro; Mitarai, Namiko


    A dense mixture of granules and liquid often shows a severe shear thickening and is called a dilatant fluid. We construct a fluid dynamics model for the dilatant fluid by introducing a phenomenological state variable for a local state of dispersed particles. With simple assumptions for an equation...... of the state variable, we demonstrate that the model can describe basic features of the dilatant fluid such as the stress-shear rate curve that represents discontinuous severe shear thickening, hysteresis upon changing shear rate, and instantaneous hardening upon external impact. An analysis of the model...... reveals that the shear thickening fluid shows an instability in a shear flow for some regime and exhibits the shear thickening oscillation (i.e., the oscillatory shear flow alternating between the thickened and the relaxed states). The results of numerical simulations are presented for one- and two...

  13. Fluid therapy in small ruminants and camelids. (United States)

    Jones, Meredyth; Navarre, Christine


    Body water, electrolytes, and acid-base balance are important considerations in the evaluation and treatment of small ruminants and camelids with any disease process, with restoration of these a priority as adjunctive therapy. The goals of fluid therapy should be to maintain cardiac output and tissue perfusion, and to correct acid-base and electrolyte abnormalities. Hypoglycemia, hyperkalemia, and acidosis are the most life-threatening abnormalities, and require most immediate correction.

  14. [Diagnosticum of abnormalities of plant meiotic division]. (United States)

    Shamina, N V


    Abnormalities of plant meiotic division leading to abnormal meiotic products are summarized schematically in the paper. Causes of formation of monads, abnormal diads, triads, pentads, polyads, etc. have been observed in meiosis with both successive and simultaneous cytokinesis.

  15. Memetics clarification of abnormal behavior

    Institute of Scientific and Technical Information of China (English)


    AIM: Biological medicine is hard to fully and scientifically explain the etiological factor and pathogenesis of abnormal behaviors; while, researches on philosophy and psychology (including memetics) are beneficial to better understand and explain etiological factor and pathogenesis of abnormal behaviors. At present, the theory of philosophy and psychology is to investigate the entity of abnormal behavior based on the views of memetics.METHODS: Abnormal behavior was researched in this study based on three aspects, including instinctive behavior disorder, poorly social-adapted behavior disorder and mental or body disease associated behavior disorder. Most main viewpoints of memetics were derived from "The Meme Machine", which was written by Susan Blackmore. When questions about abnormal behaviors induced by mental and psychological diseases and conduct disorder of teenagers were discussed, some researching achievements which were summarized by authors previously were added in this study, such as aggressive behaviors, pathologically aggressive behaviors, etc.RESULTS: The abnormal behaviors mainly referred to a part of people's substandard behaviors which were not according with the realistic social environment, culture background and the pathologic behaviors resulted from people's various psychological diseases. According to the theory of "meme", it demonstrated that the relevant behavioral obstacles of various psychological diseases, for example, the unusual behavior of schizophrenia, were caused, because the old meme was destroyed thoroughly but the new meme was unable to establish; psychoneurosis and personality disorder were resulted in hard establishment of meme; the behavioral obstacles which were ill-adapted to society, for example, various additional and homosexual behaviors, were because of the selfish replications and imitations of "additional meme" and "homosexual meme"; various instinct behavioral and congenital intelligent obstacles were not significance

  16. Thyroid abnormality in perimenopausal women with abnormal uterine bleeding

    Directory of Open Access Journals (Sweden)

    Prasanna Byna


    Full Text Available Background: AUB is a common but complicated clinical presentation and occurs in 15-20% of women between menarche to menopause and significantly affects the women's health. Women with thyroid dysfunction often have menstrual irregularities, infertility and increased morbidity during pregnancy. The objective of present study is to find the correlation between thyroid disorders and AUB in perimenopausal women attending gynecology OPD. Methods: In the present study, fifty five patients with AUB were included and were evaluated for the cause including thyroid abnormality. Thyroid function tests were done in all patients. Results: Among 55 patients, 12 patients were diagnosed as hypothyroidism and 7 as hyperthyroidism, women with AUB 36 (65.4% were euthyroid. Among 19 women with thyroid abnormality, heavy menstrual bleeding was seen in 8 (42% women, 6 (31.57% had polymenorrhagia, 5 (26.31% had oligomenorrhoea. The frequent menstrual abnormality in women with hypothyroidism (12 women was heavy menstrual bleeding in 5 (41.6% women, 3 (25% had oligomennorhoea, 4 (33.3% had polymenorrhagia. Out of 7 women with hyperthyroidism, 2 (28.57% had oligomenorrhoea, 3 (42.8% had heavy menstrual bleeding, 2 (28.57% had polymenorrhagia. In a total of 55 patients with AUB, 11 (20% had structural abnormalities in uterus and ovaries. 5 (9% had adenomyosis, 3 (5.4% had ovarian cysts, 3 (5.4% had fibroids. Conclusions: It is important to screen all women for thyroid abnormality who are presenting with AUB especially with non-structural causes of AUB. Correction of thyroid abnormalities also relieves AUB. This will avoid unnecessary hormonal treatment and surgery. [Int J Res Med Sci 2015; 3(11.000: 3250-3253

  17. Fluid dynamics

    CERN Document Server

    Bernard, Peter S


    This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter Bernard also covers the motivation behind many fundamental concepts such as Bernoulli's equation and the stream function. Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.

  18. Zinc and Copper Homeostasis in Head and Neck Cancer: Review and Meta-Analysis. (United States)

    Ressnerova, Alzbeta; Raudenska, Martina; Holubova, Monika; Svobodova, Marketa; Polanska, Hana; Babula, Petr; Masarik, Michal; Gumulec, Jaromir


    Metals are known for playing essential roles in human physiology. Copper and zinc are trace elements closely dependent on one another and are involved in cell proliferation, growth, gene expression, apoptosis and other processes. Their homeostasis is crucial and tightly controlled by a resourceful system of transporters and transport proteins which deliver copper and zinc ions to their target sites. Abnormal zinc and copper homeostasis can be seen in a number of malignancies and also in head and neck cancer. Imbalance in this homeostasis is observed as an elevation or decrease of copper and zinc ions in serum or tissue levels in patients with cancer. In head and neck cancer these altered levels stand out from those of other malignancies which makes them an object of interest and therefore zinc and copper ions might be a good target for further research of head and neck cancer development and progression. This review aims to summarize the physiological roles of copper and zinc, its binding and transport mechanisms, and based on those, its role in head and neck cancer. To provide stronger evidence, dysregulation of levels is analysed by a meta-analytical approach.

  19. Epididymis cholesterol homeostasis and sperm fertilizing ability

    Institute of Scientific and Technical Information of China (English)

    Fabrice Saez; Aurélia Ouvrier; Jo(e)l R Drevet


    Cholesterol, being the starting point of steroid hormone synthesis, is a long known modulator of both female and male reproductive physiology especially at the level of the gonads and the impact cholesterol has on gametogenesis. Less is known about the effects cholesterol homeostasis may have on postgonadic reproductive functions. Lately, several data have been reported showing how imbalanced cholesterol levels may particularly affect the post-testicular events of sperm maturation that lead to fully fertile male gametes. This review will focus on that aspect and essentially centers on how cholesterol is important for the physiology of the mammalian epididymis and spermatozoa.

  20. Potassium homeostasis in chronic kidney disease. (United States)

    Palmer, Biff F


    Adaptive increases in renal and gastrointestinal excretion of K+ help to prevent hyperkalemia in patients with CKD as long as the GFR remains > 15-20 mL/min. Once the GFR falls below these values, the impact of factors known to adversely affect K+ homeostasis is significantly magnified. Impaired renal K+ excretion can be the result of conditions that severely limit distal Na+ delivery, decreased mineralocorticoid levels or activity, or a distal tubular defect (Table 2). In clinical practice, hyperkalemia is usually the result of a combination of factors superimposed on renal dysfunction.

  1. The commensal microbiota drives immune homeostasis

    Directory of Open Access Journals (Sweden)

    Marie-Claire eArrieta


    Full Text Available For millions of years, microbes have coexisted with eukaryotic cells at the mucosal surfaces of vertebrates in a complex, yet usually harmonious symbiosis. An ever-expanding number of reports describe how eliminating or shifting the intestinal microbiota has profound effects on the development and functionality of the mucosal and systemic immune systems. Here, we examine some of the mechanisms by which bacterial signals affect immune homeostasis. Focusing on the strategies that microbes use to keep our immune system healthy, as opposed to trying to correct the immune imbalances caused by dysbiosis, may prove to be a more astute and efficient way of treating immune-mediated disease.

  2. Nickel metallomics: general themes guiding nickel homeostasis. (United States)

    Sydor, Andrew M; Zamble, Deborah B


    The nickel metallome describes the distribution and speciation of nickel within the cells of organisms that utilize this element. This distribution is a consequence of nickel homeostasis, which includes import, storage, and export of nickel, incorporation into metalloenzymes, and the modulation of these and associated cellular systems through nickel-regulated transcription. In this chapter, we review the current knowledge of the most common nickel proteins in prokaryotic organisms with a focus on their coordination environments. Several underlying themes emerge upon review of these nickel systems, which illustrate the common principles applied by nature to shape the nickel metallome of the cell.

  3. Nitric oxide and plant iron homeostasis. (United States)

    Buet, Agustina; Simontacchi, Marcela


    Like all living organisms, plants demand iron (Fe) for important biochemical and metabolic processes. Internal imbalances, as a consequence of insufficient or excess Fe in the environment, lead to growth restriction and affect crop yield. Knowledge of signals and factors affecting each step in Fe uptake from the soil and distribution (long-distance transport, remobilization from old to young leaves, and storage in seeds) is necessary to improve our understanding of plant mineral nutrition. In this context, the role of nitric oxide (NO) is discussed as a key player in maintaining Fe homeostasis through its cross talk with hormones, ferritin, and frataxin and the ability to form nitrosyl-iron complexes.

  4. Airway surface liquid homeostasis in cystic fibrosis: pathophysiology and therapeutic targets. (United States)

    Haq, Iram J; Gray, Michael A; Garnett, James P; Ward, Christopher; Brodlie, Malcolm


    Cystic fibrosis (CF) is a life-limiting disease characterised by recurrent respiratory infections, inflammation and lung damage. The volume and composition of the airway surface liquid (ASL) are important in maintaining ciliary function, mucociliary clearance and antimicrobial properties of the airway. In CF, these homeostatic mechanisms are impaired, leading to a dehydrated and acidic ASL. ASL volume depletion in CF is secondary to defective anion transport by the abnormal cystic fibrosis transmembrane conductance regulator protein (CFTR). Abnormal CFTR mediated bicarbonate transport creates an unfavourable, acidic environment, which impairs antimicrobial function and alters mucus properties and clearance. These disease mechanisms create a disordered airway milieu, consisting of thick mucopurulent secretions and chronic bacterial infection. In addition to CFTR, there are additional ion channels and transporters in the apical airway epithelium that play a role in maintaining ASL homeostasis. These include the epithelial sodium channel (ENaC), the solute carrier 26A (SLC26A) family of anion exchangers, and calcium-activated chloride channels. In this review we discuss how the ASL is abnormal in CF and how targeting these alternative channels and transporters could provide an attractive therapeutic strategy to correct the underlying ASL abnormalities evident in CF.

  5. Incidental sinus abnormalities in 256 patients referred for brain MRI

    Directory of Open Access Journals (Sweden)

    Ghanaati H


    Full Text Available Background: Imaging abnormalities in the paranasal sinuses are regularly noted as incidental findings on MRI, however, little is known about their prevalence in the Iranian population. The purpose of this study was to classify these findings in the paranasal sinuses as seen on MRI and to investigate the prevalence, according to site and type of paranasal abnormality. Methods: In this cross-sectional study, the T2-weighted axial MRI of 256 patients with diseases unrelated to their paranasal sinuses were reviewed between May 2002 and June 2003. The findings were categorized according to the anatomic location and the imaging characteristics of the abnormality. The abnormalities recorded included total sinus opacification, mucoperiosteal thickening >5mm, air fluid levels and retention cysts or polyps. Unilateral or bilateral involvement and septal deviation were also noted. A sinus was considered normal if it was fully aerated and no soft-tissue density was apparent within the cavity. Results: Among our cases, 111 (43.5% were male and 145 (56.5% were female. Of these patients, abnormalities in one or more of the sinus groups were found in 110 subjects (42.9%, 55.5% of which were male and 44.5% were female (P=0.001. Maxillary sinus abnormalities were observed in 66.4% of the patients, while ethmoid sinus abnormalities were found in 63.6%. Of the ethmoid abnormalities, 21% were found in the anterior section, 9% in the middle ethmoid, and 8% in the posterior ethmoid. The most common abnormality found was mucosal thickening. Among our cases, 23.4% had septal deviation, which was significantly higher among those with sinusitis (29% versus 19.1%; P<0.01. Of those patients with sinus involvement, 16% were involved in the sphenoid sinus and 5% in the frontal sinus. The results obtained from the patients with sinus abnormality revealed that 85% suffered from cough, nasal obstruction, runny nose, facial pain and post nasal discharge and 24% had been diagnosed

  6. Histone deacetylases 1 and 2 regulate autophagy flux and skeletal muscle homeostasis in mice (United States)

    Moresi, Viviana; Carrer, Michele; Grueter, Chad E.; Rifki, Oktay F.; Shelton, John M.; Richardson, James A.; Bassel-Duby, Rhonda; Olson, Eric N.


    Maintenance of skeletal muscle structure and function requires efficient and precise metabolic control. Autophagy plays a key role in metabolic homeostasis of diverse tissues by recycling cellular constituents, particularly under conditions of caloric restriction, thereby normalizing cellular metabolism. Here we show that histone deacetylases (HDACs) 1 and 2 control skeletal muscle homeostasis and autophagy flux in mice. Skeletal muscle-specific deletion of both HDAC1 and HDAC2 results in perinatal lethality of a subset of mice, accompanied by mitochondrial abnormalities and sarcomere degeneration. Mutant mice that survive the first day of life develop a progressive myopathy characterized by muscle degeneration and regeneration, and abnormal metabolism resulting from a blockade to autophagy. HDAC1 and HDAC2 regulate skeletal muscle autophagy by mediating the induction of autophagic gene expression and the formation of autophagosomes, such that myofibers of mice lacking these HDACs accumulate toxic autophagic intermediates. Strikingly, feeding HDAC1/2 mutant mice a high-fat diet from the weaning age releases the block in autophagy and prevents myopathy in adult mice. These findings reveal an unprecedented and essential role for HDAC1 and HDAC2 in maintenance of skeletal muscle structure and function and show that, at least in some pathological conditions, myopathy may be mitigated by dietary modifications. PMID:22307625

  7. 铁稳态与骨质疏松%Iron homeostasis and osteoporosis

    Institute of Scientific and Technical Information of China (English)

    张伟; 李光飞; 徐又佳


    Iron plays an important role in the normal physiological activity in human body.The regulatory mechanism of iron homeostasis has become a hot topic in domain of iron metabolism.Studies in recent years have revealed that the iron homeostasis disorders ( iron overload or iron deficiency) is closely related to bone metabolism abnormality, and it can also lead to osteoporosis. Hence, this paper reviews the recent related literatures about iron mediated bone metabolism abnormality, in order to provide theoretical evidence for the study of iron and bone metabolism.%铁在机体正常的生理活动中扮演着重要角色,铁稳态调节机制已成为目前铁代谢领域研究的热点。近年研究表明,铁稳态失调(铁过载或铁缺乏)与骨代谢异常密切相关,可导致骨质疏松的发生。因此,将近年“铁介导的骨代谢异常”相关文献进行梳理综述,以期为铁代谢与骨代谢的研究提供一定的参考。

  8. Two-compartment model as a teaching tool for cholesterol homeostasis. (United States)

    Wrona, Artur; Balbus, Joanna; Hrydziuszko, Olga; Kubica, Krystian


    Cholesterol is a vital structural and functional molecule in the human body that is only slightly soluble in water and therefore does not easily travels by itself in the bloodstream. To enable cholesterol's targeted delivery to cells and tissues, it is encapsulated by different fractions of lipoproteins, complex particles containing both proteins and lipids. Maintaining cholesterol homeostasis is a highly regulated process with multiple factors acting at both molecular and tissue levels. Furthermore, to regulate the circulatory transport of cholesterol in lipoproteins, the amount of cholesterol present depends on and is controlled by cholesterol dietary intake, de novo synthesis, usage, and excretion; abnormal and/or unbalanced cholesterol levels have been shown to lead to severe outcomes, e.g., cardiovascular diseases. To investigate cholesterol transport in the circulatory system, we have previously developed a two-compartment mathematical model. Here, we show how this model can be used as a teaching tool for cholesterol homeostasis. Using the model and a hands-on approach, students can familiarize themselves with the basic components and mechanisms behind balanced cholesterol circulatory transport as well as investigate the consequences of and countermeasures to abnormal cholesterol levels. Among others, various treatments of high blood cholesterol levels can be simulated, e.g., with commonly prescribed de novo cholesterol synthesis inhibitors.

  9. Abnormal insulin levels and vertigo. (United States)

    Proctor, C A


    Fifty patients with unexplained vertigo (36) or lightheadedness (14) are evaluated, all of whom had abnormal ENGs and normal audiograms. Five hour insulin glucose tolerance tests were performance on all patients, with insulin levels being obtained fasting and at one-half, one, two, and three hours. The results of this investigation were remarkable. Borderline or abnormal insulin levels were discovered in 82% of patients; 90% were found to have either an abnormal glucose tolerance test or at least borderline insulin levels. The response to treatment in these dizzy patients was also startling, with appropriate low carbohydrate diets improving the patient's symptoms in 90% of cases. It is, therefore, apparent that the earliest identification of carbohydrate imbalance with an insulin glucose tolerance test is extremely important in the work-up of the dizzy patients.

  10. Abnormalities on diffusion-weighted magnetic resonance imaging in patients with transient ischemic attack

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Tomomi; Shibagaki, Yasuro [Ushiku Aiwa General Hospital, Ibaraki (Japan); Uchiyama, Shinichiro; Iwata, Makoto [Tokyo Women' s Medical Coll. (Japan)


    We studied abnormalities on diffusion-weighted magnetic resonance imaging (DWI) in patients with transient ischemic attack (TIA). Out of 18 consecutive TIA patients, 9 patients had relevant focal abnormalities on DWI. Among TIA patients, six patients were associated with atrial fibrillation (Af), and all of these patients had focal abnormalities on DWI as well. TIA patients with Af had significantly more frequent focal abnormalities on DWI than those without Af (p=0.009; Fisher's exact probability test). In addition, the duration of TIA symptoms was not related to the presence of focal abnormalities on DWI. These results indicate that embolic mechanism may cause focal abnormalities on DWI. DWI was more sensitive to detect responsible ischemic lesions in these patients than T2-weighted image or fluid-attenuated inversion recovery image. (author)

  11. The Regulation of Iron Absorption and Homeostasis (United States)

    Wallace, Daniel F


    Iron is an essential element in biology, required for numerous cellular processes. Either too much or too little iron can be detrimental, and organisms have developed mechanisms for balancing iron within safe limits. In mammals there are no controlled mechanisms for the excretion of excess iron, hence body iron homeostasis is regulated at the sites of absorption, utilisation and recycling. This review will discuss the discoveries that have been made in the past 20 years into advancing our understanding of iron homeostasis and its regulation. The study of iron-associated disorders, such as the iron overload condition hereditary haemochromatosis and various forms of anaemia have been instrumental in increasing our knowledge in this area, as have cellular and animal model studies. The liver has emerged as the major site of systemic iron regulation, being the location where the iron regulatory hormone hepcidin is produced. Hepcidin is a negative regulator of iron absorption and recycling, achieving this by binding to the only known cellular iron exporter ferroportin and causing its internalisation and degradation, thereby reducing iron efflux from target cells and reducing serum iron levels. Much of the research in the iron metabolism field has focussed on the regulation of hepcidin and its interaction with ferroportin. The advances in this area have greatly increased our knowledge of iron metabolism and its regulation and have led to the development of novel diagnostics and therapeutics for iron-associated disorders.

  12. Circadian dysregulation disrupts bile acid homeostasis.

    Directory of Open Access Journals (Sweden)

    Ke Ma

    Full Text Available BACKGROUND: Bile acids are potentially toxic compounds and their levels of hepatic production, uptake and export are tightly regulated by many inputs, including circadian rhythm. We tested the impact of disrupting the peripheral circadian clock on integral steps of bile acid homeostasis. METHODOLOGY/PRINCIPAL FINDINGS: Both restricted feeding, which phase shifts peripheral clocks, and genetic ablation in Per1(-/-/Per2(-/- (PERDKO mice disrupted normal bile acid control and resulted in hepatic cholestasis. Restricted feeding caused a dramatic, transient elevation in hepatic bile acid levels that was associated with activation of the xenobiotic receptors CAR and PXR and elevated serum aspartate aminotransferase (AST, indicative of liver damage. In the PERDKO mice, serum bile acid levels were elevated and the circadian expression of key bile acid synthesis and transport genes, including Cyp7A1 and NTCP, was lost. This was associated with blunted expression of a primary clock output, the transcription factor DBP, which transactivates the promoters of both genes. CONCLUSIONS/SIGNIFICANCE: We conclude that disruption of the circadian clock results in dysregulation of bile acid homeostasis that mimics cholestatic disease.

  13. Acute calcium homeostasis in MHS swine. (United States)

    Harrison, G G; Morrell, D F; Brain, V; Jaros, G G


    To elucidate a pathogenesis for the reduction in bone calcium content observed in MHS individuals, we studied the acute calcium homeostasis of MHS swine. This was achieved by the serial measurement, with a calcium selective electrode, of calcium transients in Landrace MHS (five) and control Landrace/large white cross MH negative (five) swine following IV bolus injection of calcium gluconate 0.1 mmol X kg-1--a dose which induced an acute 45 per cent increase in plasma ionised calcium. Experimental animals were anaesthetised with ketamine 10 mg X kg-1 IM, thiopentone (intermittent divided doses) 15-25 mg X kg-1 (total) IV and N2O/O2 (FIO2 0.3) by IPPV to maintain a normal blood gas, acid/base state. The plasma ionised calcium decay curve observed in MHS swine did not differ from that of control normal swine. Further it was noted that the induced acute rise in plasma ionised calcium failed to trigger the MH syndrome in any MHS swine. It is concluded that the mechanisms of acute calcium homeostasis in MHS swine are normal. An explanation for the reduction in bone calcium content observed in MHS individuals must be sought, therefore, through study of the slow long-term component of the calcium regulatory process. In addition, the conventional strictures placed on the use, in MHS patients, of calcium gluconate are called in question.

  14. Maternal dietary restriction alters offspring's sleep homeostasis.

    Directory of Open Access Journals (Sweden)

    Noriyuki Shimizu

    Full Text Available Nutritional state in the gestation period influences fetal growth and development. We hypothesized that undernutrition during gestation would affect offspring sleep architecture and/or homeostasis. Pregnant female mice were assigned to either control (fed ad libitum; AD or 50% dietary restriction (DR groups from gestation day 12 to parturition. After parturition, dams were fed AD chow. After weaning, the pups were also fed AD into adulthood. At adulthood (aged 8-9 weeks, we carried out sleep recordings. Although offspring mice displayed a significantly reduced body weight at birth, their weights recovered three days after birth. Enhancement of electroencephalogram (EEG slow wave activity (SWA during non-rapid eye movement (NREM sleep was observed in the DR mice over a 24-hour period without changing the diurnal pattern or amounts of wake, NREM, or rapid eye movement (REM sleep. In addition, DR mice also displayed an enhancement of EEG-SWA rebound after a 6-hour sleep deprivation and a higher threshold for waking in the face of external stimuli. DR adult offspring mice exhibited small but significant increases in the expression of hypothalamic peroxisome proliferator-activated receptor α (Pparα and brain-specific carnitine palmitoyltransferase 1 (Cpt1c mRNA, two genes involved in lipid metabolism. Undernutrition during pregnancy may influence sleep homeostasis, with offspring exhibiting greater sleep pressure.

  15. MAVS maintains mitochondrial homeostasis via autophagy (United States)

    Sun, Xiaofeng; Sun, Liwei; Zhao, Yuanyuan; Li, Ying; Lin, Wei; Chen, Dahua; Sun, Qinmiao


    Mitochondrial antiviral signalling protein (MAVS) acts as a critical adaptor protein to transduce antiviral signalling by physically interacting with activated RIG-I and MDA5 receptors. MAVS executes its functions at the outer membrane of mitochondria to regulate downstream antiviral signalling, indicating that the mitochondria provides a functional platform for innate antiviral signalling transduction. However, little is known about whether and how MAVS-mediated antiviral signalling contributes to mitochondrial homeostasis. Here we show that the activation of MAVS is sufficient to induce autophagic signalling, which may mediate the turnover of the damaged mitochondria. Importantly, we find MAVS directly interacts with LC3 through its LC3-binding motif ‘YxxI’, suggesting that MAVS might act as an autophagy receptor to mediate mitochondrial turnover upon excessive activation of RLR signalling. Furthermore, we provide evidence that both MAVS self-aggregation and its interaction with TRAF2/6 proteins are important for MAVS-mediated mitochondrial turnover. Collectively, our findings suggest that MAVS acts as a potential receptor for mitochondria-associated autophagic signalling to maintain mitochondrial homeostasis. PMID:27551434

  16. Intestinal barrier homeostasis in inflammatory bowel disease. (United States)

    Goll, Rasmus; van Beelen Granlund, Atle


    The single-cell thick intestinal epithelial cell (IEC) lining with its protective layer of mucus is the primary barrier protecting the organism from the harsh environment of the intestinal lumen. Today it is clear that the balancing act necessary to maintain intestinal homeostasis is dependent on the coordinated action of all cell types of the IEC, and that there are no passive bystanders to gut immunity solely acting as absorptive or regenerative cells: Mucin and antimicrobial peptides on the epithelial surface are continually being replenished by goblet and Paneth's cells. Luminal antigens are being sensed by pattern recognition receptors on the enterocytes. The enteroendocrine cells sense the environment and coordinate the intestinal function by releasing neuropeptides acting both on IEC and inflammatory cells. All this while cells are continuously and rapidly being regenerated from a limited number of stem cells close to the intestinal crypt base. This review seeks to describe the cell types and structures of the intestinal epithelial barrier supporting intestinal homeostasis, and how disturbance in these systems might relate to inflammatory bowel disease.

  17. Lipoproteins, cholesterol homeostasis and cardiac health

    Directory of Open Access Journals (Sweden)

    Tyler F. Daniels, Karen M. Killinger, Jennifer J. Michal, Raymond W. Wright Jr., Zhihua Jiang


    Full Text Available Cholesterol is an essential substance involved in many functions, such as maintaining cell membranes, manufacturing vitamin D on surface of the skin, producing hormones, and possibly helping cell connections in the brain. When cholesterol levels rise in the blood, they can, however, have dangerous consequences. In particular, cholesterol has generated considerable notoriety for its causative role in atherosclerosis, the leading cause of death in developed countries around the world. Homeostasis of cholesterol is centered on the metabolism of lipoproteins, which mediate transport of the lipid to and from tissues. As a synopsis of the major events and proteins that manage lipoprotein homeostasis, this review contributes to the substantial attention that has recently been directed to this area. Despite intense scrutiny, the majority of phenotypic variation in total cholesterol and related traits eludes explanation by current genetic knowledge. This is somewhat disappointing considering heritability estimates have established these traits as highly genetic. Thus, the continued search for candidate genes, mutations, and mechanisms is vital to our understanding of heart disease at the molecular level. Furthermore, as marker development continues to predict risk of vascular illness, this knowledge has the potential to revolutionize treatment of this leading human disease.

  18. Iron homeostasis related genes in rice

    Directory of Open Access Journals (Sweden)

    Gross Jeferson


    Full Text Available Iron is essential for plants. However, excess iron is toxic, leading to oxidative stress and decreased productivity. Therefore, plants must use finely tuned mechanisms to keep iron homeostasis in each of their organs, tissues, cells and organelles. A few of the genes involved in iron homeostasis in plants have been identified recently, and we used some of their protein sequences as queries to look for corresponding genes in the rice (Oryza sativa genome. We have assigned possible functions to thirty-nine new rice genes. Together with four previously reported sequences, we analyzed a total of forty-three genes belonging to five known protein families: eighteen YS (Yellow Stripe, two FRO (Fe3+-chelate reductase oxidase, thirteen ZIP (Zinc regulated transporter / Iron regulated transporter Protein, eight NRAMP (Natural Resistance - Associated Macrophage Protein, and two Ferritin proteins. The possible cellular localization and number of potential transmembrane domains were evaluated, and phylogenetic analysis performed for each gene family. Annotation of genomic sequences was performed. The presence and number of homologues in each gene family in rice and Arabidopsis is discussed in light of the established iron acquisition strategies used by each one of these two plants.

  19. Vitamin D, calcium homeostasis and aging (United States)

    Veldurthy, Vaishali; Wei, Ran; Oz, Leyla; Dhawan, Puneet; Jeon, Yong Heui; Christakos, Sylvia


    Osteoporosis is characterized by low bone mass and microarchitecture deterioration of bone tissue, leading to enhanced bone fragility and consequent increase in fracture risk. Evidence is accumulating for an important role of calcium deficiency as the process of aging is associated with disturbed calcium balance. Vitamin D is the principal factor that maintains calcium homeostasis. Increasing evidence indicates that the reason for disturbed calcium balance with age is inadequate vitamin D levels in the elderly. In this article, an overview of our current understanding of vitamin D, its metabolism, and mechanisms involved in vitamin D-mediated maintenance of calcium homeostasis is presented. In addition, mechanisms involved in age-related dysregulation of 1,25(OH)2D3 action, recommended daily doses of vitamin D and calcium, and the use of vitamin D analogs for the treatment of osteoporosis (which remains controversial) are reviewed. Elucidation of the molecular pathways of vitamin D action and modifications that occur with aging will be an active area of future research that has the potential to reveal new therapeutic strategies to maintain calcium balance. PMID:27790378

  20. Plant transporters involved in heavy metal homeostasis

    Directory of Open Access Journals (Sweden)

    Dorina Podar


    Full Text Available Transition metal ions (predominately manganese, iron, cobalt, nickel, copper and zinc havean array of catalytic and regulatory roles in the growth and development of all living organisms.However, an excess of these metal ions can also be toxic to any life form and therefore every cell andwhole organism needs to maintain the concentration of these essential nutrient metals within a narrowrange: a process known as metal homeostasis. Heavy metal ions are taken up into cells by selectivetransporters and as they cannot be degraded, the “desired” levels of metal ions are achieved by anumber of strategies that involve: chelation, sequestration and export out of the cell. Cation DiffusionFacilitators (CDF is a large family of transporters involved in maintaining the cytosolic metalconcentration. They transport different heavy metal divalent ions, but exhibit main affinity for zinc, ironand manganese. Metal Tolerance Proteins (MTPs are a subfamily of the Cation Diffusion Facilitator (CDFfamily found in plants. There has been much interest in these heavy metal transporters in order toprovide an insight into plant metal homeostasis, which has significant implications in human health andphytoremediation. Although data regarding the CDFs/MTPs mechanism is gathering there is still littleinformation with respect to metal selectivity determinants.

  1. R fluids

    Directory of Open Access Journals (Sweden)

    Caimmi R.


    Full Text Available A theory of collisionless fluids is developed in a unified picture, where nonrotating (Ωf1 = Ωf2 = Ωf3 = 0 figures with some given random velocity component distributions, and rotating (Ωf1 = Ωf2 = Ωf3 figures with a different random velocity component distributions, make adjoint configurations to the same system. R fluids are defined as ideal, self-gravitating fluids satisfying the virial theorem assumptions, in presence of systematic rotation around each of the principal axes of inertia. To this aim, mean and rms angular velocities and mean and rms tangential velocity components are expressed, by weighting on the moment of inertia and the mass, respectively. The figure rotation is defined as the mean angular velocity, weighted on the moment of inertia, with respect to a selected axis. The generalized tensor virial equations (Caimmi and Marmo 2005 are formulated for R fluids and further attention is devoted to axisymmetric configurations where, for selected coordinate axes, a variation in figure rotation has to be counterbalanced by a variation in anisotropy excess and vice versa. A microscopical analysis of systematic and random motions is performed under a few general hypotheses, by reversing the sign of tangential or axial velocity components of an assigned fraction of particles, leaving the distribution function and other parameters unchanged (Meza 2002. The application of the reversion process to tangential velocity components is found to imply the conversion of random motion rotation kinetic energy into systematic motion rotation kinetic energy. The application of the reversion process to axial velocity components is found to imply the conversion of random motion translation kinetic energy into systematic motion translation kinetic energy, and the loss related to a change of reference frame is expressed in terms of systematic motion (imaginary rotation kinetic energy. A number of special situations are investigated in greater

  2. TGF-βand BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease

    Institute of Scientific and Technical Information of China (English)

    Mengrui Wu; Guiqian Chen; and Yi-Ping Li


    Transforming growth factor-beta (TGF-β) and bone morphogenic protein (BMP) signaling has fundamental roles in both embryonic skeletal development and postnatal bone homeostasis. TGF-βs and BMPs, acting on a tetrameric receptor complex, transduce signals to both the canonical Smad-dependent signaling pathway (that is, TGF-β/BMP ligands, receptors, and Smads) and the non-canonical-Smad-independent signaling pathway (that is, p38 mitogen-activated protein kinase/p38 MAPK) to regulate mesenchymal stem cell differentiation during skeletal development, bone formation and bone homeostasis. Both the Smad and p38 MAPK signaling pathways converge at transcription factors, for example, Runx2 to promote osteoblast differentiation and chondrocyte differentiation from mesenchymal precursor cells. TGF-βand BMP signaling is controlled by multiple factors, including the ubiquitin–proteasome system, epigenetic factors, and microRNA. Dysregulated TGF-βand BMP signaling result in a number of bone disorders in humans. Knockout or mutation of TGF-βand BMP signaling-related genes in mice leads to bone abnormalities of varying severity, which enable a better understanding of TGF-β/BMP signaling in bone and the signaling networks underlying osteoblast differentiation and bone formation. There is also crosstalk between TGF-β/BMP signaling and several critical cytokines’ signaling pathways (for example, Wnt, Hedgehog, Notch, PTHrP, and FGF) to coordinate osteogenesis, skeletal development, and bone homeostasis. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in osteoblast differentiation, chondrocyte differentiation, skeletal development, cartilage formation, bone formation, bone homeostasis, and related human bone diseases caused by the disruption of TGF-β/BMP signaling.

  3. Cardiac abnormalities after subarachnoid hemorrhage

    NARCIS (Netherlands)

    Bilt, I.A.C. van der


    Aneurysmal subarachnoid hemorrhage(aSAH) is a devastating neurological disease. During the course of the aSAH several neurological and medical complications may occur. Cardiac abnormalities after aSAH are observed often and resemble stress cardiomyopathy or Tako-tsubo cardiomyopathy(Broken Heart Syn

  4. Congenital abnormalities in methylmercury poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Gilani, S.H.


    This study was undertaken to determine the teratogenic potential of methylmercury on chick embryogenesis. Methylmercuric chloride was dissolved in sodium bicarbonate (0.2%) and administered to the chick embryos at doses ranging from 0.0009 to 0.010 mg per egg. The injections were made at days 2 and 3 on incubation (Groups A and B). All the embryos including controls were examined on the 7th day of incubation. Methylmercury poisoning was observed to be both embryolethal and teratogenic. Within the two groups, embryolethality was higher in Group A. The following congenital abnormalities were observed: exencephaly, shortened and twisted limbs, microphthalmia, shortened and twisted neck, beak abnormalities, everted viscera, reduced body size and hemorrhage all over the body. Exencephaly and limb abnormalities were very common. No differences in the incidence and types of gross abnormalities within both the groups (A and B) were noted. The incidence of malformations among the controls was low. The results of present investigation show that methylmercury poisoning is both embryolethal and teratogenic to early chick embryogenesis. (auth)

  5. R Fluids

    Directory of Open Access Journals (Sweden)

    Caimmi, R.


    Full Text Available A theory of collisionless fluids is developed in a unified picture, where nonrotating $(widetilde{Omega_1}=widetilde{Omega_2}= widetilde{Omega_3}=0$ figures with some given random velocity component distributions, and rotating $(widetilde{Omega_1} ewidetilde{Omega_2} e widetilde{Omega_3} $ figures with a different random velocity component distributions, make adjoint configurations to the same system. R fluids are defined as ideal, self-gravitating fluids satisfying the virial theorem assumptions, in presence of systematic rotation around each of the principal axes of inertia. To this aim, mean and rms angular velocities and mean and rms tangential velocity components are expressed, by weighting on the moment of inertia and the mass, respectively. The figure rotation is defined as the mean angular velocity, weighted on the moment of inertia, with respectto a selected axis. The generalized tensor virial equations (Caimmi and Marmo 2005 are formulated for R fluidsand further attention is devoted to axisymmetric configurations where, for selected coordinateaxes, a variation in figure rotation has to be counterbalanced by a variation in anisotropy excess and viceversa. A microscopical analysis of systematic and random motions is performed under a fewgeneral hypotheses, by reversing the sign of tangential or axial velocity components of anassigned fraction of particles, leaving the distribution function and other parametersunchanged (Meza 2002. The application of the reversion process to tangential velocitycomponents is found to imply the conversion of random motion rotation kinetic energy intosystematic motion rotation kinetic energy. The application ofthe reversion process to axial velocity components is found to imply the conversionof random motion translation kinetic energy into systematic motion translation kinetic energy, and theloss related to a change of reference frame is expressed in terms of systematic motion (imaginary rotation kinetic

  6. Fluid Shifts (United States)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; Liu, J.; Macias, B.; Martin, D. S.; Minkoff, L.; Ploutz-Snyder, R.; Ribeiro, L. C.; Sargsyan, A.; Smith, S. M.


    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  7. Environmental stresses disrupt telomere length homeostasis.

    Directory of Open Access Journals (Sweden)

    Gal Hagit Romano

    Full Text Available Telomeres protect the chromosome ends from degradation and play crucial roles in cellular aging and disease. Recent studies have additionally found a correlation between psychological stress, telomere length, and health outcome in humans. However, studies have not yet explored the causal relationship between stress and telomere length, or the molecular mechanisms underlying that relationship. Using yeast as a model organism, we show that stresses may have very different outcomes: alcohol and acetic acid elongate telomeres, whereas caffeine and high temperatures shorten telomeres. Additional treatments, such as oxidative stress, show no effect. By combining genome-wide expression measurements with a systematic genetic screen, we identify the Rap1/Rif1 pathway as the central mediator of the telomeric response to environmental signals. These results demonstrate that telomere length can be manipulated, and that a carefully regulated homeostasis may become markedly deregulated in opposing directions in response to different environmental cues.

  8. Satellite Cell Heterogeneity in Skeletal Muscle Homeostasis. (United States)

    Tierney, Matthew T; Sacco, Alessandra


    The cellular turnover required for skeletal muscle maintenance and repair is mediated by resident stem cells, also termed satellite cells. Satellite cells normally reside in a quiescent state, intermittently entering the cell cycle to fuse with neighboring myofibers and replenish the stem cell pool. However, the mechanisms by which satellite cells maintain the precise balance between self-renewal and differentiation necessary for long-term homeostasis remain unclear. Recent work has supported a previously unappreciated heterogeneity in the satellite cell compartment that may underlie the observed variability in cell fate and function. In this review, we examine the work supporting this notion as well as the potential governing principles, developmental origins, and principal determinants of satellite cell heterogeneity.

  9. Cholesterol metabolism and homeostasis in the brain. (United States)

    Zhang, Juan; Liu, Qiang


    Cholesterol is an essential component for neuronal physiology not only during development stage but also in the adult life. Cholesterol metabolism in brain is independent from that in peripheral tissues due to blood-brain barrier. The content of cholesterol in brain must be accurately maintained in order to keep brain function well. Defects in brain cholesterol metabolism has been shown to be implicated in neurodegenerative diseases, such as Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), and some cognitive deficits typical of the old age. The brain contains large amount of cholesterol, but the cholesterol metabolism and its complex homeostasis regulation are currently poorly understood. This review will seek to integrate current knowledge about the brain cholesterol metabolism with molecular mechanisms.

  10. Interference between nanoparticles and metal homeostasis (United States)

    Petit, A. N.; Aude Garcia, C.; Candéias, S.; Casanova, A.; Catty, P.; Charbonnier, P.; Chevallet, M.; Collin-Faure, V.; Cuillel, M.; Douki, T.; Herlin-Boime, N.; Lelong, C.; Luche, S.; Mintz, E.; Moulis, J. M.; Nivière, V.; Ollagnier de Choudens, S.; Rabilloud, T.; Ravanat, J. L.; Sauvaigo, S.; Carrière, M.; Michaud-Soret, I.


    The TiO2 nanoparticles (NPs) are now produced abundantly and widely used in a variety of consumer products. Due to the important increase in the production of TiO2-NPs, potential widespread exposure of humans and environment may occur during both the manufacturing process and final use. Therefore, the potential toxicity of TiO2-NPs on human health and environment has attracted particular attention. Unfortunately, the results of the large number of studies on the toxicity of TiO2-NPs differ significantly, mainly due to an incomplete characterization of the used nanomaterials in terms of size, shape and crystalline structure and to their unknown state of agglomeration/aggregation. The purpose of our project entitled NanoBioMet is to investigate if interferences between nanoparticles and metal homeostasis could be observed and to study the toxicity mechanisms of TiO2-NPs with well-characterized physicochemical parameters, using proteomic and molecular approaches. A perturbation of metal homeostasis will be evaluated upon TiO2-NPs exposure which could generate reactive oxygen species (ROS) production. Moreover, oxidative stress consequences such as DNA damage and lipid peroxidation will be studied. The toxicity of TiO2-NPs of different sizes and crystalline structures will be evaluated both in prokaryotic (E. coli) and eukaryotic cells (A549 human pneumocytes, macrophages, and hepatocytes). First results of the project will be presented concerning the dispersion of TiO2-NPs in bacterial medium, proteomic studies on total extracts of macrophages and genotoxicity on pneumocytes.

  11. Cyclophilin A in cardiovascular homeostasis and diseases. (United States)

    Satoh, Kimio


    Vascular homeostasis is regulated by complex interactions between many vascular cell components, including endothelial cells, vascular smooth muscle cells (VSMCs), adventitial inflammatory cells, and autonomic nervous system. The balance between oxidant and antioxidant systems determines intracellular redox status, and their imbalance can cause oxidative stress. Excessive oxidative stress is one of the important stimuli that induce cellular damage and dysregulation of vascular cell components, leading to vascular diseases through multiple pathways. Cyclophilin A (CyPA) is one of the causative proteins that mediate oxidative stress-induced cardiovascular dysfunction. CyPA was initially discovered as the intracellular receptor of the immunosuppressive drug cyclosporine 30 years ago. However, recent studies have established that CyPA is secreted from vascular cell components, such as endothelial cells and VSMCs. Extracellular CyPA augments the development of cardiovascular diseases. CyPA secretion is regulated by Rho-kinase, which contributes to the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, and heart failure. We recently reported that plasma CyPA levels are significantly higher in patients with coronary artery disease, which is associated with increased numbers of stenotic coronary arteries and the need for coronary intervention in such patients. Furthermore, we showed that the vascular erythropoietin (Epo)/Epo receptor system plays an important role in production of nitric oxide and maintenance of vascular redox state and homeostasis, with a potential mechanistic link to the Rho-kinase-CyPA pathway. In this article, I review the data on the protective role of the vascular Epo/Epo receptor system and discuss the roles of the CyPA/Rho-kinase system in cardiovascular diseases.

  12. Interference between nanoparticles and metal homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Petit, A N; Catty, P; Charbonnier, P; Cuillel, M; Mintz, E; Moulis, J M; Niviere, V; Choudens, S Ollagnier de [Laboratoire de Chimie et Biologie des Metaux UMR 5249 CEA-CNRS-UJF, 17 rue des Martyrs, 38054 Grenoble Cedex 09 (France); Garcia, C Aude; Candeias, S; Chevallet, M; Collin-Faure, V; Lelong, C; Luche, S; Rabilloud, T [Laboratoire de Biochimie et Biophysique des Systemes Integres UMR 5092 CNRS-CEA-UJF, 17 rue des martyrs, 38054 Grenoble Cedex 09 (France); Casanova, A; Herlin-Boime, N [Laboratoire Edifices Nanometriques URA 2453 CEA-CNRS-IRAMIS, 91191 Gif-sur-Yvette (France); Douki, T; Ravanat, J L; Sauvaigo, S, E-mail: [Laboratoire Lesions des Acides Nucleiques UMR E3 CEA-UJF, 17 rue des Martyrs, 38054 Grenoble Cedex 09 (France)


    The TiO{sub 2} nanoparticles (NPs) are now produced abundantly and widely used in a variety of consumer products. Due to the important increase in the production of TiO{sub 2}-NPs, potential widespread exposure of humans and environment may occur during both the manufacturing process and final use. Therefore, the potential toxicity of TiO{sub 2}-NPs on human health and environment has attracted particular attention. Unfortunately, the results of the large number of studies on the toxicity of TiO{sub 2}-NPs differ significantly, mainly due to an incomplete characterization of the used nanomaterials in terms of size, shape and crystalline structure and to their unknown state of agglomeration/aggregation. The purpose of our project entitled NanoBioMet is to investigate if interferences between nanoparticles and metal homeostasis could be observed and to study the toxicity mechanisms of TiO{sub 2}-NPs with well-characterized physicochemical parameters, using proteomic and molecular approaches. A perturbation of metal homeostasis will be evaluated upon TiO{sub 2}-NPs exposure which could generate reactive oxygen species (ROS) production. Moreover, oxidative stress consequences such as DNA damage and lipid peroxidation will be studied. The toxicity of TiO{sub 2}-NPs of different sizes and crystalline structures will be evaluated both in prokaryotic (E. coli) and eukaryotic cells (A549 human pneumocytes, macrophages, and hepatocytes). First results of the project will be presented concerning the dispersion of TiO{sub 2}-NPs in bacterial medium, proteomic studies on total extracts of macrophages and genotoxicity on pneumocytes.

  13. Nail abnormalities in rheumatoid arthritis. (United States)

    Michel, C; Cribier, B; Sibilia, J; Kuntz, J L; Grosshans, E


    Many nail abnormalities have traditionally been described in association with rheumatoid arthritis (RA), but their specificity has never been assessed in a controlled study. Our purpose was to evaluate the frequency and the specificity of nail changes associated with RA in a case-controlled study including 50 patients suffering from RA and 50 controls. For each patient, a general skin examination was performed and the 20 nails were examined. The nail features were noted and classified. A chi 2 test or a Fisher test was used to compare the two groups. The only nail abnormalities significantly associated with RA were longitudinal ridging on nine or 10 finger nails (29 patients in the RA group vs. three in the controls, chi 2: P nail (24 patients vs. 10, chi 2: P nail changes were noticed but were not frequent enough to be significant. The presence of longitudinal ridging on the finger nails was significantly associated with RA.

  14. Neuroendocrine abnormalities in Parkinson's disease. (United States)

    De Pablo-Fernández, Eduardo; Breen, David P; Bouloux, Pierre M; Barker, Roger A; Foltynie, Thomas; Warner, Thomas T


    Neuroendocrine abnormalities are common in Parkinson's disease (PD) and include disruption of melatonin secretion, disturbances of glucose, insulin resistance and bone metabolism, and body weight changes. They have been associated with multiple non-motor symptoms in PD and have important clinical consequences, including therapeutics. Some of the underlying mechanisms have been implicated in the pathogenesis of PD and represent promising targets for the development of disease biomarkers and neuroprotective therapies. In this systems-based review, we describe clinically relevant neuroendocrine abnormalities in Parkinson's disease to highlight their role in overall phenotype. We discuss pathophysiological mechanisms, clinical implications, and pharmacological and non-pharmacological interventions based on the current evidence. We also review recent advances in the field, focusing on the potential targets for development of neuroprotective drugs in Parkinson's disease and suggest future areas for research.

  15. Radiological appearances of sinonasal abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    El-Beltagi, A.H.; Sobeih, A.A.; Valvoda, M.; Dahniya, M.H.; Badr, S.S


    The aim of this pictorial review is to present a variety of abnormalities of the sinonasal cavities to emphasize the diversity of lesions occurring in this region. These include congenital, neoplastic and granulomatous disorders and some allergic and inflammatory lesions with uncommon radiological appearances, as well as expanding lesions of the facial bones or of dental origin with secondary involvement of the related sinus(es). El-Beltagi, A.H. et al. (2002). Clinical Radiology 57, 702-718.

  16. Computed tomography of thymic abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, P.; Candardjis, G.


    Computed tomographic examinations of 38 patients with surgically and histologically proven diagnosis were reviewed. Twenty subjects (52%) had an invasive thymoma and 16% an hyperplastic thymus. Myasthenia gravis was present in 6 cases (16%) of thymic abnormalities, four (10,5%) with invasive thymoma and two (5%) with thymic hyperplasia. Graves' disease was also present in one case of thymic hyperplasia. We emphasize the contribution of CT to the diagnosis and the prognosis.

  17. Meiotic abnormalities in infertile males. (United States)

    Egozcue, J; Sarrate, Z; Codina-Pascual, M; Egozcue, S; Oliver-Bonet, M; Blanco, J; Navarro, J; Benet, J; Vidal, F


    Meiotic anomalies, as reviewed here, are synaptic chromosome abnormalities, limited to germ cells that cannot be detected through the study of the karyotype. Although the importance of synaptic errors has been underestimated for many years, their presence is related to many cases of human male infertility. Synaptic anomalies can be studied by immunostaining of synaptonemal complexes (SCs), but in this case their frequency is probably underestimated due to the phenomenon of synaptic adjustment. They can also be studied in classic meiotic preparations, which, from a clinical point of view, is still the best approach, especially if multiplex fluorescence in situ hybridization is at hand to solve difficult cases. Sperm chromosome FISH studies also provide indirect evidence of their presence. Synaptic anomalies can affect the rate of recombination of all bivalents, produce achiasmate small univalents, partially achiasmate medium-sized or large bivalents, or affect all bivalents in the cell. The frequency is variable, interindividually and intraindividually. The baseline incidence of synaptic anomalies is 6-8%, which may be increased to 17.6% in males with a severe oligozoospermia, and to 27% in normozoospermic males with one or more previous IVF failures. The clinical consequences are the production of abnormal spermatozoa that will produce a higher number of chromosomally abnormal embryos. The indications for a meiotic study in testicular biopsy are provided.


    Directory of Open Access Journals (Sweden)

    Deepak Nayak


    Full Text Available Rhabdomyosarcoma (RMS is an aggressive soft tissue malignancy, not uncommonly seen in adults. The location of this malignancy is quite ubiquitous. However, a parameningeal location is uncommon and accounts for about 16% of all rhabdomyosarcomas. We report an instance where rhabdomyoblasts were seen infiltrati ng the cerebrospinal fluid (CSF. A 35 year old female patient presented to our hospita l with the primary complaints of bilateral nose block and left sided headache since1 month. Clinically, a deviated nasal septum was diagnosed which needed a septal surgery. Since t he hematological parameters showed a pancytopenia, the surgery was postponed. The patient pr esented 3 weeks later with additional complaints of worsening headache and significant blu rring of vision in her left eye. The MRI scan revealed a midline, dural-based mass. A therape utic tap of the cerebrospinal fluid sent to the clinical laboratory for analysis which showed l arge abnormal cells (figure 1. The bone marrow also showed similar cells, with karyomegaly, dense chromatin, and coalescing vacuoles which were Periodic Acid Schiff (PAS negative. The biopsy from the mass was diagnosed as rhabdomyosarcoma (parameningeal type. Immunohistoc hemistry showed positivity for Myogenin and Myo-D1.

  19. Mechanosensitive subcellular rheostasis drives emergent single-cell mechanical homeostasis (United States)

    Weng, Shinuo; Shao, Yue; Chen, Weiqiang; Fu, Jianping


    Mechanical homeostasis--a fundamental process by which cells maintain stable states under environmental perturbations--is regulated by two subcellular mechanotransducers: cytoskeleton tension and integrin-mediated focal adhesions (FAs). Here, we show that single-cell mechanical homeostasis is collectively driven by the distinct, graduated dynamics (rheostasis) of subcellular cytoskeleton tension and FAs. Such rheostasis involves a mechanosensitive pattern wherein ground states of cytoskeleton tension and FA determine their distinct reactive paths through either relaxation or reinforcement. Pharmacological perturbations of the cytoskeleton and molecularly modulated integrin catch-slip bonds biased the rheostasis and induced non-homeostasis of FAs, but not of cytoskeleton tension, suggesting a unique sensitivity of FAs in regulating homeostasis. Theoretical modelling revealed myosin-mediated cytoskeleton contractility and catch-slip-bond-like behaviours in FAs and the cytoskeleton as sufficient and necessary mechanisms for quantitatively recapitulating mechanosensitive rheostasis. Our findings highlight the previously underappreciated physical nature of the mechanical homeostasis of cells.

  20. A conceptual framework for homeostasis: development and validation. (United States)

    McFarland, Jenny; Wenderoth, Mary Pat; Michael, Joel; Cliff, William; Wright, Ann; Modell, Harold


    We have developed and validated a conceptual framework for understanding and teaching organismal homeostasis at the undergraduate level. The resulting homeostasis conceptual framework details critical components and constituent ideas underlying the concept of homeostasis. It has been validated by a broad range of physiology faculty members from community colleges, primarily undergraduate institutions, research universities, and medical schools. In online surveys, faculty members confirmed the relevance of each item in the framework for undergraduate physiology and rated the importance and difficulty of each. The homeostasis conceptual framework was constructed as a guide for teaching and learning of this critical core concept in physiology, and it also paves the way for the development of a concept inventory for homeostasis.

  1. Mapping and signaling of neural pathways involved in the regulation of hydromineral homeostasis

    Directory of Open Access Journals (Sweden)

    J. Antunes-Rodrigues


    Full Text Available Several forebrain and brainstem neurochemical circuitries interact with peripheral neural and humoral signals to collaboratively maintain both the volume and osmolality of extracellular fluids. Although much progress has been made over the past decades in the understanding of complex mechanisms underlying neuroendocrine control of hydromineral homeostasis, several issues still remain to be clarified. The use of techniques such as molecular biology, neuronal tracing, electrophysiology, immunohistochemistry, and microinfusions has significantly improved our ability to identify neuronal phenotypes and their signals, including those related to neuron-glia interactions. Accordingly, neurons have been shown to produce and release a large number of chemical mediators (neurotransmitters, neurohormones and neuromodulators into the interstitial space, which include not only classic neurotransmitters, such as acetylcholine, amines (noradrenaline, serotonin and amino acids (glutamate, GABA, but also gaseous (nitric oxide, carbon monoxide and hydrogen sulfide and lipid-derived (endocannabinoids mediators. This efferent response, initiated within the neuronal environment, recruits several peripheral effectors, such as hormones (glucocorticoids, angiotensin II, estrogen, which in turn modulate central nervous system responsiveness to systemic challenges. Therefore, in this review, we shall evaluate in an integrated manner the physiological control of body fluid homeostasis from the molecular aspects to the systemic and integrated responses.

  2. Presenilin 1 Maintains Lysosomal Ca(2+) Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification. (United States)

    Lee, Ju-Hyun; McBrayer, Mary Kate; Wolfe, Devin M; Haslett, Luke J; Kumar, Asok; Sato, Yutaka; Lie, Pearl P Y; Mohan, Panaiyur; Coffey, Erin E; Kompella, Uday; Mitchell, Claire H; Lloyd-Evans, Emyr; Nixon, Ralph A


    Presenilin 1 (PS1) deletion or Alzheimer's disease (AD)-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit, causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in Presenilin 1 knockout (PS1KO) cells induces abnormal Ca(2+) efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca(2+). In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca(2+) homeostasis, but correcting lysosomal Ca(2+) deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss-of-function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca(2+) homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism.

  3. Presenilin 1 Maintains Lysosomal Ca2+ Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification

    Directory of Open Access Journals (Sweden)

    Ju-Hyun Lee


    Full Text Available Presenilin 1 (PS1 deletion or Alzheimer’s disease (AD-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit, causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in Presenilin 1 knockout (PS1KO cells induces abnormal Ca2+ efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca2+. In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca2+ homeostasis, but correcting lysosomal Ca2+ deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss-of-function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca2+ homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism.

  4. Fluid dynamics

    CERN Document Server

    Ruban, Anatoly I

    This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is d...

  5. Abnormal Liver Function Tests in an Anorexia Nervosa Patient and an Atypical Manifestation of Refeeding Syndrome. (United States)

    Vootla, Vamshidhar R; Daniel, Myrta


    Refeeding syndrome is defined as electrolyte and fluid abnormalities that occur in significantly malnourished patients when they are refed orally, enterally, or parenterally. The principal manifestations include hypophosphatemia, hypokalemia, vitamin deficiencies, volume overload and edema. This can affect multiple organ systems, such as the cardiovascular, pulmonary, or neurological systems, secondary to the above-mentioned abnormalities. Rarely, patients may develop gastrointestinal symptoms and show abnormal liver function test results. We report the case of a 52-year-old woman with anorexia nervosa who developed refeeding syndrome and simultaneous elevations of liver function test results, which normalized upon the resolution of the refeeding syndrome.

  6. Abnormal Liver Function Tests in an Anorexia Nervosa Patient and an Atypical Manifestation of Refeeding Syndrome

    Directory of Open Access Journals (Sweden)

    Vamshidhar R. Vootla


    Full Text Available Refeeding syndrome is defined as electrolyte and fluid abnormalities that occur in significantly malnourished patients when they are refed orally, enterally, or parenterally. The principal manifestations include hypophosphatemia, hypokalemia, vitamin deficiencies, volume overload and edema. This can affect multiple organ systems, such as the cardiovascular, pulmonary, or neurological systems, secondary to the above-mentioned abnormalities. Rarely, patients may develop gastrointestinal symptoms and show abnormal liver function test results. We report the case of a 52-year-old woman with anorexia nervosa who developed refeeding syndrome and simultaneous elevations of liver function test results, which normalized upon the resolution of the refeeding syndrome.

  7. Low-set ears and pinna abnormalities (United States)

    Low-set ears; Microtia; "Lop" ear; Pinna abnormalities; Genetic defect-pinna; Congenital defect-pinna ... conditions: Abnormal folds or location of the pinna Low-set ears No opening to the ear canal ...


    Directory of Open Access Journals (Sweden)

    Yongqiang eZhang


    Full Text Available Ion signaling and transduction networks are central to fungal development and virulence because they regulate gene expression, filamentation, host association and invasion, pathogen stress response and survival. Dysregulation of ion homeostasis rapidly mediates cell death, forming the mechanistic basis by which a growing number of amphipathic but structurally unrelated compounds elicit antifungal activity. Included in this group is carvacrol, a terpenoid phenol that is a prominent component of oregano and other plant essential oils. Carvacrol triggers an early dose dependent Ca2+ burst and long lasting pH changes in the model yeast S. cerevisiae. The distinct phases of ionic transients and a robust transcriptional response that overlaps with Ca2+ stress and nutrient starvation point to specific signaling events elicited by plant terpenoid phenols, rather than a non-specific lesion of the membrane as was previously considered. We discuss the potential use of plant essential oils and other agents that disrupt ion signaling pathways as chemosensitizers to augment conventional antifungal therapy, and to convert fungistatic drugs with strong safety profiles into fungicides.

  9. Vitamin A homeostasis endangered by environmental pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zile, M.H. (Department of Food Science and Human Nutrition, Michigan State University, East Lansing (United States))


    Normal vitamin A function depends on adequate stores of the vitamin, a finely regulated supply of the vitamin to target tissues, and an ability of cells to generate functionally active forms of the vitamin. Both endogenous and exogenous factors can adversely affect vitamin A homeostasis. Polyhalogenated aromatic hydrocarbons are ubiquitous environmental pollutants and cause severe disturbances in vitamin A metabolism, manifested by an accelerated metabolism and breakdown of vitamin A and its metabolites and a depletion of vitamin A from the body; this sequence of events accounts for the vitamin A deficiency-like symptoms associated with PHAH intoxication. The mechanism(s) responsible for these events most likely includes altered activities of enzymes that are either directly or indirectly involved in critical vitamin A metabolic pathways. Human populations that continue to be exposed to environmental pollutants, may accumulate critical levels of polyhalogenated aromatic hydrocarbons and will be at risk for inadequate vitamin A function as well as for other health impairments that have been difficult to link to any specific causes. Therefore, it is important to seriously evaluate the similarities in physiological disturbances across species that have become apparent in studies with wildlife inhabiting polluted environments similar to ours; the relevance to human health is evident.197 references.

  10. Regulation of energy homeostasis by GPR41

    Directory of Open Access Journals (Sweden)

    Daisuke eInoue


    Full Text Available Imbalances in energy regulation lead to metabolic disorders such as obesity and diabetes. Diet plays an essential role in the maintenance of body energy homeostasis by acting not only as energy source but also as a signaling modality. Excess energy increases energy expenditure, leading to a consumption of them. In addition to glucose, mammals utilize short-chain fatty acids (SCFAs, which are produced by colonic bacterial fermentation of dietary fiber, as a metabolic fuel. The roles of SCFAs in energy regulation have remained unclear, although the roles of glucose are well studied. Recently, a G protein-coupled receptor (GPCR deorphanizing strategy successfully identified GPR41 (also called free fatty acid receptor 3 or FFAR3 as a receptor for SCFAs. GPR41 is expressed in adipose tissue, gut, and the peripheral nervous system, and it is involved in SCFA-dependent energy regulation. In this mini-review, we focus on the role of GPR41 in host energy regulation.

  11. Cellular Auxin Homeostasis:Gatekeeping Is Housekeeping

    Institute of Scientific and Technical Information of China (English)

    Michel Ruiz Rosquete; Elke Barbez; Jürgen Kleine-Vehn


    The phytohormone auxin is essential for plant development and contributes to nearly every aspect of the plant life cycle.The spatio-temporal distribution of auxin depends on a complex interplay between auxin metabolism and cell-to-cell auxin transport.Auxin metabolism and transport are both crucial for plant development;however,it largely remains to be seen how these processes are integrated to ensure defined cellular auxin levels or even gradients within tissues or organs.In this review,we provide a glance at very diverse topics of auxin biology,such as biosynthesis,conjugation,oxidation,and transport of auxin.This broad,but certainly superficial,overview highlights the mutual importance of auxin metabolism and transport.Moreover,it allows pinpointing how auxin metabolism and transport get integrated to jointly regulate cellular auxin homeostasis.Even though these processes have been so far only separately studied,we assume that the phytohormonal crosstalk integrates and coordinates auxin metabolism and transport.Besides the integrative power of the global hormone signaling,we additionally introduce the hypothetical concept considering auxin transport components as gatekeepers for auxin responses.

  12. Dysregulation of glutathione homeostasis in neurodegenerative diseases. (United States)

    Johnson, William M; Wilson-Delfosse, Amy L; Mieyal, John J


    Dysregulation of glutathione homeostasis and alterations in glutathione-dependent enzyme activities are increasingly implicated in the induction and progression of neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, and Friedreich's ataxia. In this review background is provided on the steady-state synthesis, regulation, and transport of glutathione, with primary focus on the brain. A brief overview is presented on the distinct but vital roles of glutathione in cellular maintenance and survival, and on the functions of key glutathione-dependent enzymes. Major contributors to initiation and progression of neurodegenerative diseases are considered, including oxidative stress, protein misfolding, and protein aggregation. In each case examples of key regulatory mechanisms are identified that are sensitive to changes in glutathione redox status and/or in the activities of glutathione-dependent enzymes. Mechanisms of dysregulation of glutathione and/or glutathione-dependent enzymes are discussed that are implicated in pathogenesis of each neurodegenerative disease. Limitations in information or interpretation are identified, and possible avenues for further research are described with an aim to elucidating novel targets for therapeutic interventions. The pros and cons of administration of N-acetylcysteine or glutathione as therapeutic agents for neurodegenerative diseases, as well as the potential utility of serum glutathione as a biomarker, are critically evaluated.

  13. [Phenomenology of abnormal body perceptions]. (United States)

    Schäfer, M L


    The present paper deals with the problematic nature of the phenomenological grasping of the consciousness of the body and its pathological modifications. The reasoning is oriented by the doctrine of Husserl of the so-called sentiments as the fundamentals of the experience of the own body. This basic approach does not only seem to be basically for a psychology of the consciousness of the body, but also to give the theoretical-conceptual structure for a great number of psychopathological modifications. Subsequent to a criticism of the conventional use of the term 'hallucination of the body' we attempt to chart elements of a scheme of the abnormal consciousness of the body.

  14. On Regularity of Abnormal Subriemannian Geodesics

    CERN Document Server

    Tan, Kanghai


    We prove the smoothness of abnormal minimizers of subriemannian manifolds of step 3 with a nilpotent basis. We prove that rank 2 Carnot groups of step 4 admit no strictly abnormal minimizers. For any subriemannian manifolds of step less than 7, we show all abnormal minimizers have no corner type singularities, which partly generalize the main result of Leonardi-Monti.

  15. Peritoneal Fluid Analysis (United States)

    ... Home Visit Global Sites Search Help? Peritoneal Fluid Analysis Share this page: Was this page helpful? Formal name: Peritoneal Fluid Analysis Related tests: Pleural Fluid Analysis , Pericardial Fluid Analysis , ...

  16. Pleural Fluid Analysis Test (United States)

    ... Home Visit Global Sites Search Help? Pleural Fluid Analysis Share this page: Was this page helpful? Formal name: Pleural Fluid Analysis Related tests: Pericardial Fluid Analysis , Peritoneal Fluid Analysis , ...

  17. Pericardial Fluid Analysis (United States)

    ... Home Visit Global Sites Search Help? Pericardial Fluid Analysis Share this page: Was this page helpful? Formal name: Pericardial Fluid Analysis Related tests: Pleural Fluid Analysis , Peritoneal Fluid Analysis , ...

  18. Chromosomal phenotypes and submicroscopic abnormalities

    Directory of Open Access Journals (Sweden)

    Devriendt Koen


    Full Text Available Abstract The finding, during the last decade, that several common, clinically delineated syndromes are caused by submicroscopic deletions or, more rarely, by duplications, has provided a powerful tool in the annotation of the human genome. Since most microdeletion/microduplication syndromes are defined by a common deleted/duplicated region, abnormal dosage of genes located within these regions can explain the phenotypic similarities among individuals with a specific syndrome. As such, they provide a unique resource towards the genetic dissection of complex phenotypes such as congenital heart defects, mental and growth retardation and abnormal behaviour. In addition, the study of phenotypic differences in individuals with the same microdeletion syndrome may also become a treasury for the identification of modifying factors for complex phenotypes. The molecular analysis of these chromosomal anomalies has led to a growing understanding of their mechanisms of origin. Novel tools to uncover additional submicroscopic chromosomal anomalies at a higher resolution and higher speed, as well as the novel tools at hand for deciphering the modifying factors and epistatic interactors, are 'on the doorstep' and will, besides their obvious diagnostic role, play a pivotal role in the genetic dissection of complex phenotypes.

  19. Abnormal visuomotor processing in schizophrenia

    Directory of Open Access Journals (Sweden)

    Siân E. Robson


    Full Text Available Subtle disturbances of visual and motor function are known features of schizophrenia and can greatly impact quality of life; however, few studies investigate these abnormalities using simple visuomotor stimuli. In healthy people, electrophysiological data show that beta band oscillations in sensorimotor cortex decrease during movement execution (event-related beta desynchronisation (ERBD, then increase above baseline for a short time after the movement (post-movement beta rebound (PMBR; whilst in visual cortex, gamma oscillations are increased throughout stimulus presentation. In this study, we used a self-paced visuomotor paradigm and magnetoencephalography (MEG to contrast these responses in patients with schizophrenia and control volunteers. We found significant reductions in the peak-to-peak change in amplitude from ERBD to PMBR in schizophrenia compared with controls. This effect was strongest in patients who made fewer movements, whereas beta was not modulated by movement in controls. There was no significant difference in the amplitude of visual gamma between patients and controls. These data demonstrate that clear abnormalities in basic sensorimotor processing in schizophrenia can be observed using a very simple MEG paradigm.

  20. Regulation of post-Golgi LH3 trafficking is essential for collagen homeostasis (United States)

    Banushi, Blerida; Forneris, Federico; Straatman-Iwanowska, Anna; Strange, Adam; Lyne, Anne-Marie; Rogerson, Clare; Burden, Jemima J.; Heywood, Wendy E.; Hanley, Joanna; Doykov, Ivan; Straatman, Kornelis R.; Smith, Holly; Bem, Danai; Kriston-Vizi, Janos; Ariceta, Gema; Risteli, Maija; Wang, Chunguang; Ardill, Rosalyn E.; Zaniew, Marcin; Latka-Grot, Julita; Waddington, Simon N.; Howe, S. J.; Ferraro, Francesco; Gjinovci, Asllan; Lawrence, Scott; Marsh, Mark; Girolami, Mark; Bozec, Laurent; Mills, Kevin; Gissen, Paul


    Post-translational modifications are necessary for collagen precursor molecules (procollagens) to acquire final shape and function. However, the mechanism and contribution of collagen modifications that occur outside the endoplasmic reticulum and Golgi are not understood. We discovered that VIPAR, with its partner proteins, regulate sorting of lysyl hydroxylase 3 (LH3, also known as PLOD3) into newly identified post-Golgi collagen IV carriers and that VIPAR-dependent sorting is essential for modification of lysines in multiple collagen types. Identification of structural and functional collagen abnormalities in cells and tissues from patients and murine models of the autosomal recessive multisystem disorder Arthrogryposis, Renal dysfunction and Cholestasis syndrome caused by VIPAR and VPS33B deficiencies confirmed our findings. Thus, regulation of post-Golgi LH3 trafficking is essential for collagen homeostasis and for the development and function of multiple organs and tissues. PMID:27435297

  1. Functions of innate immune cells and commensal bacteria in gut homeostasis. (United States)

    Kayama, Hisako; Takeda, Kiyoshi


    The intestinal immune system remains unresponsive to beneficial microbes and dietary antigens while activating pro-inflammatory responses against pathogens for host defence. In intestinal mucosa, abnormal activation of innate immunity, which directs adaptive immune responses, causes the onset and/or progression of inflammatory bowel diseases. Thus, innate immunity is finely regulated in the gut. Multiple innate immune cell subsets have been identified in both murine and human intestinal lamina propria. Some innate immune cells play a key role in the maintenance of gut homeostasis by preventing inappropriate adaptive immune responses while others are associated with the pathogenesis of intestinal inflammation through development of Th1 and Th17 cells. In addition, intestinal microbiota and their metabolites contribute to the regulation of innate/adaptive immune responses. Accordingly, perturbation of microbiota composition can trigger intestinal inflammation by driving inappropriate immune responses.

  2. MR evaluation of fetal abnormalities by SSFP sequence

    Energy Technology Data Exchange (ETDEWEB)

    Amanuma, Makoto; Hasegawa, Makoto; Enomoto, Kyoko; Watabe, Tsuneya; Heshiki, Atsuko (Saitama Medical School, Moroyama (Japan))


    We examined the feasibility of fast steady-state free precession (SSFP) MR imaging with time-reversed free induction decay (FID) signal for detecting fetal abnormality. Its strong T[sub 2]-weighted contrast enabled to clearly differentiate fetal part from the amniotic fluid and detect some fluid-filled organs. Although the sequence is very sensitive to motion, short imaging time (20 seconds) with breath-holding minimized motion-related artifacts and provided high quality images. It was also possible to image repeatedly in arbitrary slice orientations within a reasonable examination time. This technique was particularly useful to demonstrate gross fetal anomalies of the body surface and central nervous system without need for a potentially harmful fetal anesthesia. However, due to poor soft tissue contrast supplemental T[sub 1]-weighted images were mandatory. (author).

  3. Dietary fructose aggravates the pathobiology of traumatic brain injury by influencing energy homeostasis and plasticity. (United States)

    Agrawal, Rahul; Noble, Emily; Vergnes, Laurent; Ying, Zhe; Reue, Karen; Gomez-Pinilla, Fernando


    Fructose consumption has been on the rise for the last two decades and is starting to be recognized as being responsible for metabolic diseases. Metabolic disorders pose a particular threat for brain conditions characterized by energy dysfunction, such as traumatic brain injury. Traumatic brain injury patients experience sudden abnormalities in the control of brain metabolism and cognitive function, which may worsen the prospect of brain plasticity and function. The mechanisms involved are poorly understood. Here we report that fructose consumption disrupts hippocampal energy homeostasis as evidenced by a decline in functional mitochondria bioenergetics (oxygen consumption rate and cytochrome C oxidase activity) and an aggravation of the effects of traumatic brain injury on molecular systems engaged in cell energy homeostasis (sirtuin 1, peroxisome proliferator-activated receptor gamma coactivator-1alpha) and synaptic plasticity (brain-derived neurotrophic factor, tropomyosin receptor kinase B, cyclic adenosine monophosphate response element binding, synaptophysin signaling). Fructose also worsened the effects of traumatic brain injury on spatial memory, which disruption was associated with a decrease in hippocampal insulin receptor signaling. Additionally, fructose consumption and traumatic brain injury promoted plasma membrane lipid peroxidation, measured by elevated protein and phenotypic expression of 4-hydroxynonenal. These data imply that high fructose consumption exacerbates the pathology of brain trauma by further disrupting energy metabolism and brain plasticity, highlighting the impact of diet on the resilience to neurological disorders.

  4. Temporal pole signal abnormality on MR imaging in temporal lobe epilepsy with hippocampal sclerosis: a fluid-attenuated inversion-recovery study Anormalidade de sinal na imagem por RM do pólo temporal na epilepsia do lobo temporal com esclerose hipocampal: um estudo pela seqüência inversão recuperação com supressão da água livre (FLAIR

    Directory of Open Access Journals (Sweden)

    Henrique Carrete Junior


    Full Text Available OBJECTIVE: To determine the frequency and regional involvement of temporal pole signal abnormality (TPA in patients with hippocampal sclerosis (HS using fluid-attenuated inversion-recovery (FLAIR MR imaging, and to correlate this feature with history. METHOD: Coronal FLAIR images of the temporal pole were assessed in 120 patients with HS and in 30 normal subjects, to evaluate gray-white matter demarcation. RESULTS: Ninety (75% of 120 patients had associated TPA. The HS side made difference regarding the presence of TPA, with a left side prevalence (p=0.04, chi2 test. The anteromedial zone of temporal pole was affected in 27 (30% out of 90 patients. In 63 (70% patients the lateral zone were also affected. Patients with TPA were younger at seizure onset (p=0.018, but without association with duration of epilepsy. CONCLUSION: Our FLAIR study show temporal pole signal abnormality in 3/4 of patients with HS, mainly seen on the anteromedial region, with a larger prevalence when the left hippocampus was involved.OBJETIVO: Determinar a freqüência e o envolvimento regional da anormalidade de sinal do pólo temporal (APT em pacientes com esclerose hipocampal (EH utilizando seqüência inversão recuperação com supressão da água (FLAIR por RM, e correlacioná-la com a história. MÉTODO: Foram analisadas as imagens coronais FLAIR dos pólos temporais de 120 pacientes com EH e de 30 indivíduos normais, para avaliar a demarcação entre substâncias branca e cinzenta. RESULTADOS: Noventa (75% dos 120 pacientes tinham APT associada. Houve prevalência do lado esquerdo (p=0.04, chi2 teste na relação entre APT e o lado da EH. A zona ântero-medial estava acometida em 27 (30% destes pacientes. Em 63 (70% pacientes também a zona lateral estava acometida. Pacientes com APT apresentaram início da epilepsia quando mais jovens (p=0.018, porém sem associação com a sua duração. CONCLUSÃO: A seqüência FLAIR mostra haver ATP em 3/4 dos pacientes com EH

  5. ERR gamma Regulates Cardiac, Gastric, and Renal Potassium Homeostasis

    NARCIS (Netherlands)

    Alaynick, William A.; Way, James M.; Wilson, Stephanie A.; Benson, William G.; Pei, Liming; Downes, Michael; Yu, Ruth; Jonker, Johan W.; Holt, Jason A.; Rajpal, Deepak K.; Li, Hao; Stuart, Joan; McPherson, Ruth; Remlinger, Katja S.; Chang, Ching-Yi; McDonnell, Donald P.; Evans, Ronald M.; Billin, Andrew N.


    Energy production by oxidative metabolism in kidney, stomach, and heart, is primarily expended in establishing ion gradients to drive renal electrolyte homeostasis, gastric acid secretion, and cardiac muscle contraction, respectively. In addition to orchestrating transcriptional control of oxidative

  6. Abnormal Returns and Contrarian Strategies

    Directory of Open Access Journals (Sweden)

    Ivana Dall'Agnol


    Full Text Available We test the hypothesis that strategies which are long on portfolios of looser stocks and short on portfolios of winner stocks generate abnormal returns in Brazil. This type of evidence for the US stock market was interpreted by The Bondt and Thaler (1985 as reflecting systematic evaluation mistakes caused by investors overreaction to news related to the firm performance. We found evidence of contrarian strategies profitability for horizons from 3 months to 3 years in a sample of stock returns from BOVESPA and SOMA from 1986 to 2000. The strategies are more profitable for shorter horizons. Therefore, there was no trace of the momentum effect found by Jagadeesh and Titman (1993 for the same horizons with US data. There are remaing unexplained positive returns for contrarian strategies after accounting for risk, size, and liquidity. We also found that the strategy profitability is reduced after the Real Plan, which suggests that the Brazilian stock market became more efficient after inflation stabilization.

  7. Correlation of in vivo neuroimaging abnormalities with postmortem human immunodeficiency virus encephalitis and dendritic loss

    DEFF Research Database (Denmark)

    Archibald, Sarah L.; Masliah, Eliezer; Fennema-Notestine, Christine;


    BACKGROUND: In the absence of significant opportunistic infection, the most common alterations on neuroimaging in the brains of patients with AIDS include enlarged cerebrospinal fluid spaces, white-matter loss, volume loss in striatal structures, and white-matter signal abnormalities. Although pr...

  8. Mice deficient in GEM GTPase show abnormal glucose homeostasis due to defects in beta-cell calcium handling.

    Directory of Open Access Journals (Sweden)

    Jenny E Gunton

    Full Text Available AIMS AND HYPOTHESIS: Glucose-stimulated insulin secretion from beta-cells is a tightly regulated process that requires calcium flux to trigger exocytosis of insulin-containing vesicles. Regulation of calcium handling in beta-cells remains incompletely understood. Gem, a member of the RGK (Rad/Gem/Kir family regulates calcium channel handling in other cell types, and Gem over-expression inhibits insulin release in insulin-secreting Min6 cells. The aim of this study was to explore the role of Gem in insulin secretion. We hypothesised that Gem may regulate insulin secretion and thus affect glucose tolerance in vivo. METHODS: Gem-deficient mice were generated and their metabolic phenotype characterised by in vivo testing of glucose tolerance, insulin tolerance and insulin secretion. Calcium flux was measured in isolated islets. RESULTS: Gem-deficient mice were glucose intolerant and had impaired glucose stimulated insulin secretion. Furthermore, the islets of Gem-deficient mice exhibited decreased free calcium responses to glucose and the calcium oscillations seen upon glucose stimulation were smaller in amplitude and had a reduced frequency. CONCLUSIONS: These results suggest that Gem plays an important role in normal beta-cell function by regulation of calcium signalling.

  9. Redox homeostasis: The Golden Mean of healthy living

    Directory of Open Access Journals (Sweden)

    Fulvio Ursini


    Full Text Available The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve “reactive oxygen species” rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles

  10. Hormonal regulation of energy-protein homeostasis in hemodialysis patients: an anorexigenic profile that may predispose to adverse cardiovascular outcomes. (United States)

    Suneja, Manish; Murry, Daryl J; Stokes, John B; Lim, Victoria S


    To assess whether endocrine dysfunction may cause derangement in energy homeostasis in patients undergoing hemodialysis (HD), we profiled hormones, during a 3-day period, from the adipose tissue and the gut and the nervous system around the circadian clock in 10 otherwise healthy HD patients and 8 normal controls. The protocol included a 40-h fast. We also measured energy-protein intake and output and assessed appetite and body composition. We found many hormonal abnormalities in HD patients: 1) leptin levels were elevated, due, in part, to increased production, and nocturnal surge in response to daytime feeding, exaggerated. 2) Peptide YY (PYY), an anorexigenic gut hormone, was markedly elevated and displayed an augmented response to feeding. 3) Acylated ghrelin, an orexigenic gut hormone, was lower and did not exhibit the premeal spike as observed in the controls. 4) neuropeptide Y (NPY), a potent orexigenic peptide, was markedly elevated and did not display any circadian variation. 5) Norepinephrine, marginally elevated, did not exhibit the normal nocturnal dip. By contrast, α-melanocyte-stimulating hormone and glucagon-like peptide-1 were not different between the two groups. Despite these hormonal abnormalities, HD patients maintained a good appetite and had normal body lean and fat mass, and there was no evidence of increased energy expenditure or protein catabolism. We explain the hormonal abnormalities as well as the absence of anorexia on suppression of parasympathetic activity (vagus nerve dysfunction), a phenomenon well documented in dialysis patients. Unexpectedly, we noted that the combination of high leptin, PYY, and NPY with suppressed ghrelin may increase arterial blood pressure, impair vasodilatation, and induce cardiac hypertrophy, and thus could predispose to adverse cardiovascular events that are the major causes of morbidity and mortality in the HD population. This is the first report attempting to link hormonal abnormalities associated with

  11. Mechanoregulation of Wound Healing and Skin Homeostasis

    Directory of Open Access Journals (Sweden)

    Joanna Rosińczuk


    Full Text Available Basic and clinical studies on mechanobiology of cells and tissues point to the importance of mechanical forces in the process of skin regeneration and wound healing. These studies result in the development of new therapies that use mechanical force which supports effective healing. A better understanding of mechanobiology will make it possible to develop biomaterials with appropriate physical and chemical properties used to treat poorly healing wounds. In addition, it will make it possible to design devices precisely controlling wound mechanics and to individualize a therapy depending on the type, size, and anatomical location of the wound in specific patients, which will increase the clinical efficiency of the therapy. Linking mechanobiology with the science of biomaterials and nanotechnology will enable in the near future precise interference in abnormal cell signaling responsible for the proliferation, differentiation, cell death, and restoration of the biological balance. The objective of this study is to point to the importance of mechanobiology in regeneration of skin damage and wound healing. The study describes the influence of rigidity of extracellular matrix and special restrictions on cell physiology. The study also defines how and what mechanical changes influence tissue regeneration and wound healing. The influence of mechanical signals in the process of proliferation, differentiation, and skin regeneration is tagged in the study.

  12. Energy and Redox Homeostasis in Tumor Cells

    Directory of Open Access Journals (Sweden)

    Marcus Fernandes de Oliveira


    Full Text Available Cancer cells display abnormal morphology, chromosomes, and metabolism. This review will focus on the metabolism of tumor cells integrating the available data by way of a functional approach. The first part contains a comprehensive introduction to bioenergetics, mitochondria, and the mechanisms of production and degradation of reactive oxygen species. This will be followed by a discussion on the oxidative metabolism of tumor cells including the morphology, biogenesis, and networking of mitochondria. Tumor cells overexpress proteins that favor fission, such as GTPase dynamin-related protein 1 (Drp1. The interplay between proapoptotic members of the Bcl-2 family that promotes Drp 1-dependent mitochondrial fragmentation and fusogenic antiapoptotic proteins such as Opa-1 will be presented. It will be argued that contrary to the widespread belief that in cancer cells, aerobic glycolysis completely replaces oxidative metabolism, a misrepresentation of Warburg’s original results, mitochondria of tumor cells are fully viable and functional. Cancer cells also carry out oxidative metabolism and generally conform to the orthodox model of ATP production maintaining as well an intact electron transport system. Finally, data will be presented indicating that the key to tumor cell survival in an ROS rich environment depends on the overexpression of antioxidant enzymes and high levels of the nonenzymatic antioxidant scavengers.

  13. Fluid and electrolyte homeostasis in space - A primate model to look at mechanisms (United States)

    Moore-Ede, M. C.; Churchill, S. E.; Leach, C. S.; Sulzman, F. M.; Fuller, C. A.; Kass, D.


    To elucidate the physiological mechanisms involved in the cardiovascular and renal responses to spaceflight, a ground-based primate model has been developed which uses lower body positive pressure (LBPP) to simulate the chronic central vascular expansion associated with weightlessnes. Four male squirrel monkeys with chronically implanted arterial and venous catheters and the capacity for continuous urine collection were subjected to LBPP for 4 days. Onset of LBPP resulted in an immediate diuresis, natriuresis and kaliuresis and a significant fall in plasma aldosterone and potassium levels. By day 2 the level of natriuresis had decreased by half, while potassium excretion and plasma aldosterone values had returned to control levels despite the persistence of a significantly reduced plasma potassium concentration. It is concluded that the low plasma potassium level appears not to stimulate a compensatory fall in plasma aldosterone because of the simultaneous presence of body volume contraction acting to raise aldosterone levels.

  14. Thermophysical Properties of Fluids and Fluid Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Sengers, Jan V.; Anisimov, Mikhail A.


    The major goal of the project was to study the effect of critical fluctuations on the thermophysical properties and phase behavior of fluids and fluid mixtures. Long-range fluctuations appear because of the presence of critical phase transitions. A global theory of critical fluctuations was developed and applied to represent thermodynamic properties and transport properties of molecular fluids and fluid mixtures. In the second phase of the project, the theory was extended to deal with critical fluctuations in complex fluids such as polymer solutions and electrolyte solutions. The theoretical predictions have been confirmed by computer simulations and by light-scattering experiments. Fluctuations in fluids in nonequilibrium states have also been investigated.

  15. EGFR signaling regulates cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis. (United States)

    Fraguas, Susanna; Barberán, Sara; Cebrià, Francesc


    Similarly to development, the process of regeneration requires that cells accurately sense and respond to their external environment. Thus, intrinsic cues must be integrated with signals from the surrounding environment to ensure appropriate temporal and spatial regulation of tissue regeneration. Identifying the signaling pathways that control these events will not only provide insights into a fascinating biological phenomenon but may also yield new molecular targets for use in regenerative medicine. Among classical models to study regeneration, freshwater planarians represent an attractive system in which to investigate the signals that regulate cell proliferation and differentiation, as well as the proper patterning of the structures being regenerated. Recent studies in planarians have begun to define the role of conserved signaling pathways during regeneration. Here, we extend these analyses to the epidermal growth factor (EGF) receptor pathway. We report the characterization of three epidermal growth factor (EGF) receptors in the planarian Schmidtea mediterranea. Silencing of these genes by RNA interference (RNAi) yielded multiple defects in intact and regenerating planarians. Smed-egfr-1(RNAi) resulted in decreased differentiation of eye pigment cells, abnormal pharynx regeneration and maintenance, and the development of dorsal outgrowths. In contrast, Smed-egfr-3(RNAi) animals produced smaller blastemas associated with abnormal differentiation of certain cell types. Our results suggest important roles for the EGFR signaling in controlling cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis.


    Institute of Scientific and Technical Information of China (English)

    戈峰; 李泽坚; 柯美云


    Using 3 non-invasive tests,abnormalities of cardiovascular reflex function were found in 7 of 15 patients with achalasia.Abnormalities of heart rate responses to the Valsalva maneuver,deep breathing ,and standing were moted in patients with autonomic neuropathy defect.The findings are consistent with the hypothesis that an abnormality of vagal function may contribute to the pathogenesis of achalasia.

  17. Analysis of abnormalities of snubbers in nuclear-reactor service (Report 1)

    Energy Technology Data Exchange (ETDEWEB)

    Butler, J.H.; O' Hara, F.M. Jr.


    An investigation was conducted of malfunctions of snubbers (seismic-shock arrestors) in service in nuclear power plants. The construction and use of snubbers is summarized, and the history of snubber problems in nuclear service is reviewed. Reports of many hundreds of snubber malfunctions were found in the abnormal-occurrence reports of the docket literature. The great majority of these abnormal occurrences consisted of hydraulic snubbers whose hydraulic fluid had leaked out because of deteriorated seals; snubbers that were damaged in manufacture, shipping, installation, refitting, or use; and snubbers whose performance did not match service requirements. Additional information about the failures was obtained from the reactor operators, snubber manufacturers, reactor vendors, and independent laboratories. The abnormal occurrences were classified into 12 categories. Analyses of the causes of the individual abnormalities are presented, and preliminary comments on the current state of snubber manufacture and use are made.

  18. Semen abnormalities with SSRI antidepressants. (United States)


    Despite decades of widespread use, the adverse effect profile of "selective" serotonin reuptake inhibitor (SSRI) antidepressants has still not been fully elucidated. Studies in male animals have shown delayed sexual development and reduced fertility. Three prospective cohort studies conducted in over one hundred patients exposed to an SSRI for periods ranging from 5 weeks to 24 months found altered semen param-eters after as little as 3 months of exposure: reduced sperm concentration, reduced sperm motility, a higher percentage of abnormal spermatozoa, and increased levels of sperm DNA fragmentation. One clinical trial showed growth retardation in children considered depressed who were exposed to SSRls. SSRls may have endocrine disrupting properties. Dapoxetine is a short-acting serotonin reuptake inhibitor that is chemically related to fluoxetine and marketed in the European Union for men complaining of premature ejaculation. But the corresponding European summary of product characteristics does not mention any effects on fertility. In practice, based on the data available as of mid-2014, the effects of SSRI exposure on male fertility are unclear. However, it is a risk that should be taken into account and pointed out to male patients who would like to father a child or who are experiencing fertility problems.

  19. [Renal abnormalities in ankylosing spondylitis]. (United States)

    Samia, Barbouch; Hazgui, Faiçal; Abdelghani, Khaoula Ben; Hamida, Fethi Ben; Goucha, Rym; Hedri, Hafedh; Taarit, Chokri Ben; Maiz, Hedi Ben; Kheder, Adel


    We will study the epidemiologic, clinical, biological, therapeutic, prognostic characteristics and predictive factors of development of nephropathy in ankylosing spondylitis patients. We retrospectively reviewed the medical record of 32 cases with renal involvement among 212 cases of ankylosing spondylitis followed in our service during the period spread out between 1978 and 2006. The renal involvement occurred in all patients a mean of 12 years after the clinical onset of the rheumatic disease. Thirty-two patients presented one or more signs of renal involvement: microscopic hematuria in 22 patients, proteinuria in 23 patients, nephrotic syndrome in 11 patients and decreased renal function in 24 patients (75%). Secondary renal amyloidosis (13 patients), which corresponds to a prevalence of 6,1% and tubulointerstitial nephropathy (7 patients) were the most common cause of renal involvement in ankylosing spondylitis followed by IgA nephropathy (4 patients). Seventeen patients evolved to the end stage renal disease after an average time of 29.8 ± 46 months. The average follow-up of the patients was 4,4 years. By comparing the 32 patients presenting a SPA and renal disease to 88 with SPA and without nephropathy, we detected the predictive factors of occurred of nephropathy: tobacco, intense inflammatory syndrome, sacroileite stage 3 or 4 and presence of column bamboo. The finding of 75% of the patients presented a renal failure at the time of the diagnosis of renal involvement suggests that evidence of renal abnormality involvement should be actively sought in this disease.

  20. Biochemical abnormalities in Pearson syndrome. (United States)

    Crippa, Beatrice Letizia; Leon, Eyby; Calhoun, Amy; Lowichik, Amy; Pasquali, Marzia; Longo, Nicola


    Pearson marrow-pancreas syndrome is a multisystem mitochondrial disorder characterized by bone marrow failure and pancreatic insufficiency. Children who survive the severe bone marrow dysfunction in childhood develop Kearns-Sayre syndrome later in life. Here we report on four new cases with this condition and define their biochemical abnormalities. Three out of four patients presented with failure to thrive, with most of them having normal development and head size. All patients had evidence of bone marrow involvement that spontaneously improved in three out of four patients. Unique findings in our patients were acute pancreatitis (one out of four), renal Fanconi syndrome (present in all patients, but symptomatic only in one), and an unusual organic aciduria with 3-hydroxyisobutyric aciduria in one patient. Biochemical analysis indicated low levels of plasma citrulline and arginine, despite low-normal ammonia levels. Regression analysis indicated a significant correlation between each intermediate of the urea cycle and the next, except between ornithine and citrulline. This suggested that the reaction catalyzed by ornithine transcarbamylase (that converts ornithine to citrulline) might not be very efficient in patients with Pearson syndrome. In view of low-normal ammonia levels, we hypothesize that ammonia and carbamylphosphate could be diverted from the urea cycle to the synthesis of nucleotides in patients with Pearson syndrome and possibly other mitochondrial disorders.

  1. Hemostatic abnormalities in liver cirrhosis

    Directory of Open Access Journals (Sweden)

    Kendal YALÇIN


    Full Text Available In this study, 44 patients with liver cirrhosis were investigated for hemostatic parameters. Patients with spontaneous bacterial peritonitis, hepatocellular carcinoma, hepatorenal syndrome and cholestatic liver diseases were excluded. Patients were classified by Child-Pugh criterion and according to this 4 patients were in Class A, 20 in Class B and 20 in C. Regarding to these results, it was aimed to investigate the haematological disturbances in liver cirrhotic patients.In the result there was a correlation between activated partial thromboplastin time, serum iron, ferritin, transferrin, haptoglobin and Child-Pugh classification. Besides there was no correlation between prothrombin time, factor 8 and 9, protein C and S, anti-thrombin 3, fibrinogen, fibrin degradation products, serum iron binding capacity, hemoglobin, leukocyte, mean corpuscular volume and Child-Pugh classification.There were significant difference, in terms of AST, ferritin, haptoglobulin, sex and presence of ascites between groups (p0.05. In the summary, we have found correlation between hemostatic abnormalities and disease activity and clinical prognosis in patients with liver cirrhosis which is important in the management of these patients. This is also important for identification of liver transplant candidiates earlier.

  2. Synovial fluid analysis (United States)

    Joint fluid analysis; Joint fluid aspiration ... El-Gabalawy HS. Synovial fluid analysis, synovial biopsy, and synovial pathology. In: Firestein GS, Budd RC, Gabriel SE, McInnes IB, O'Dell JR, eds. Kelly's Textbook of ...

  3. Platelet enzyme abnormalities in leukemias

    Directory of Open Access Journals (Sweden)

    S Sharma


    Full Text Available Aim of the Study: The aim of this study was to evaluate platelet enzyme activity in cases of leukemia. Materials and Methods: Platelet enzymes glucose-6-phosphate dehydrogenase (G6PD, pyruvate kinase (PK and hexokinase (HK were studied in 47 patients of acute and chronic leukemia patients, 16 patients with acute myeloid leukemia (AML(13 relapse, three in remission, 12 patients with acute lymphocytic leukemia (ALL (five in relapse, seven in remission, 19 patients with chronic myeloid leukemia (CML. Results: The platelet G6PD activity was significantly low in cases of AML, ALL and also in CML. G6PD activity was normalized during AML remission. G6PD activity, although persistently low during ALL remission, increased significantly to near-normal during remission (P < 0.05 as compared with relapse (P < 0.01. Platelet PK activity was high during AML relapse (P < 0.05, which was normalized during remission. Platelet HK however was found to be decreased during all remission (P < 0.05. There was a significant positive correlation between G6PD and PK in cases of AML (P < 0.001 but not in ALL and CML. G6PD activity did not correlate with HK activity in any of the leukemic groups. A significant positive correlation was however seen between PK and HK activity in cases of ALL remission (P < 0.01 and CML (P < 0.05. Conclusions: Both red cell and platelet enzymes were studied in 36 leukemic patients and there was no statistically significant correlation between red cell and platelet enzymes. Platelet enzyme defect in leukemias suggests the inherent abnormality in megakaryopoiesis and would explain the functional platelet defects in leukemias.

  4. Nail abnormalities in patients with vitiligo* (United States)

    Topal, Ilteris Oguz; Gungor, Sule; Kocaturk, Ozgur Emek; Duman, Hatice; Durmuscan, Mustafa


    Background Vitiligo is an acquired pigmentary skin disorder affecting 0.1-4% of the general population. The nails may be affected in patients with an autoimmune disease such as psoriasis, and in those with alopecia areata. It has been suggested that nail abnormalities should be apparent in vitiligo patients. Objective We sought to document the frequency and clinical presentation of nail abnormalities in vitiligo patients compared to healthy volunteers. We also examined the correlations between nail abnormalities and various clinical parameters. Methods This study included 100 vitiligo patients and 100 healthy subjects. Full medical histories were collected from the subjects, who underwent thorough general and nail examinations. All nail changes were noted. In the event of clinical suspicion of a fungal infection, additional mycological investigations were performed. Results Nail abnormalities were more prevalent in the patients (78%) than in the controls (55%) (p=0.001). Longitudinal ridging was the most common finding (42%), followed by (in descending order): leukonychia, an absent lunula, onycholysis, nail bed pallor, onychomycosis, splinter hemorrhage and nail plate thinning. The frequency of longitudinal ridging was significantly higher in patients than in controls (p<0.001). Conclusions Nail abnormalities were more prevalent in vitiligo patients than in controls. Systematic examination of the nails in such patients is useful because nail abnormalities are frequent. However, the causes of such abnormalities require further study. Longitudinal ridging and leukonychia were the most common abnormalities observed in this study. PMID:27579738

  5. An Abnormal Psychology Community Based Interview Assignment (United States)

    White, Geoffry D.


    A course option in abnormal psychology involves students in interviewing and observing the activities of individuals in the off-campus community who are concerned with some aspect of abnormal psychology. The technique generates student interest in the field when they interview people about topics such as drug abuse, transsexualism, and abuse of…

  6. Abnormal Event Detection Using Local Sparse Representation

    DEFF Research Database (Denmark)

    Ren, Huamin; Moeslund, Thomas B.


    measurement based on the difference between the normal space and local space. Specifically, we provide a reasonable normal bases through repeated K spectral clustering. Then for each testing feature we first use temporal neighbors to form a local space. An abnormal event is found if any abnormal feature...

  7. An Abnormal Vibrational Mode of Torsion Pendulum

    Institute of Scientific and Technical Information of China (English)

    赵亮; 涂英; 顾邦明; 胡忠坤; 罗俊


    In the experiment for the determination of the gravitational constant G, we found an abnormal vibrational mode of the torsion pendulum. The abnormal mode disappeared as a magnetic damper was introduced to the torsion pendulum system. Our experimental results also show that the magnetic damper can be used to suppress the high frequency vibrational noises to torsion pendulums effectively.

  8. Abnormal Raman spectral phenomenon of silicon nanowires

    Institute of Scientific and Technical Information of China (English)


    The Raman spectra of two one-dimensional silicon nanowire samples with different excitation wavelengths were measured and an abnormal phenomenon was discovered that the Raman spectral features change with the wavelengths of excitation. Closer analysis of the crystalline structure of samples and the changes in Raman spectral features showed that the abnormal behavior is the result of resonance Raman scattering selection effect.

  9. Spectral luminescence analysis of amniotic fluid (United States)

    Slobozhanina, Ekaterina I.; Kozlova, Nataly M.; Kasko, Leonid P.; Mamontova, Marina V.; Chernitsky, Eugene A.


    It is shown that the amniotic fluid has intensive ultra-violet luminescence caused by proteins. Along with it amniotic fluid radiated in the field of 380 - 650 nm with maxima at 430 - 450 nm and 520 - 560 nm. The first peak of luminescence ((lambda) exc equals 350 nm; (lambda) em equals 430 - 440 nm) is caused (most probably) by the presence in amniotic fluid of some hormones, NADH2 and NADPH2. A more long-wave component ((lambda) exc equals 460 nm; (lambda) em equals 520 - 560 nm) is most likely connected with the presence in amniotic fluid pigments (bilirubin connected with protein and other). It is shown that intensity and maximum of ultra-violet luminescence spectra of amniotic fluid in normality and at pathology are identical. However both emission spectra and excitation spectra of long-wave ((lambda) greater than 450 nm) luminescence of amniotic fluid from pregnant women with such prenatal abnormal developments of a fetus as anencephaly and spina bifida are too long-wave region in comparison with the norm. Results of research testify that spectral luminescent analysis of amniotic fluid can be used for screening of malformations of the neural tube. It is very difficult for a practical obstetrician to reveal pregnant women with a high risk of congenital malformations of the fetus. Apart from ultrasonic examination, cytogenetic examination of amniotic fluid and defumination of concentrations of alpha-fetoprotein and acetylcholin-esterases in the amniotic fluid and blood plasma are the most widely used diagnostic approaches. However, biochemical and cytogenetic diagnostic methods are time-consuming. In the present work spectral luminescence properties of the amniotic fluid are investigated to determine spectral parameters that can be used to reveal pregnant women with a high risk of congenital malformations of their offsprings.

  10. Alteration of brain insulin and leptin signaling promotes energy homeostasis impairment and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Taouis Mohammed


    Full Text Available The central nervous system (CNS controls vital functions, by efficiently coordinating peripheral and central cascades of signals and networks in a coordinated manner. Historically, the brain was considered to be an insulin-insensitive tissue. But, new findings demonstrating that insulin is present in different regions of themammalian brain, in particular the hypothalamus and the hippocampus. Insulin acts through specific receptors and dialogues with numerous peptides, neurotransmitters and adipokines such as leptin. The cross-talk between leptin and insulin signaling pathways at the hypothalamic level is clearly involved in the control of energy homeostasis. Both hormones are anorexigenic through their action on hypothalamic arcuate nucleus by inducing the expression of anorexigenic neuropetides such as POMC (pro-opiomelanocortin, the precursor of aMSH and reducing the expression of orexigenic neuropeptide such as NPY (Neuropeptide Y. Central defect of insulin and leptin signaling predispose to obesity (leptin-resistant state and type-2 diabetes (insulin resistant state. Obesity and type-2 diabetes are associated to deep alterations in energy homeostasis control but also to other alterations of CNS functions as the predisposition to neurodegenerative diseases such as Alzheimer’s disease (AD. AD is a neurodegenerative disorder characterized by distinct hallmarks within the brain. Postmortem observation of AD brains showed the presence of parenchymal plaques due to the accumulation of the amyloid beta (AB peptide and neurofibrillary tangles. These accumulations result from the hyperphosphorylation of tau (a mictrotubule-interacting protein. Both insulin and leptin have been described to modulate tau phosphorylation and therefore in leptin and insulin resistant states may contribute to AD. The concentrations of leptin and insulin cerebrospinal fluid are decreased type2 diabetes and obese patients. In addition, the concentration of insulin in the

  11. Neurohypophyseal hormones: novel actors of striated muscle development and homeostasis

    Directory of Open Access Journals (Sweden)

    Alessandra Costa


    Full Text Available Since the 1980's, novel functional roles of the neurohypophyseal hormones vasopressin and oxytocin have emerged. Several studies have investigated the effects of these two neurohormones on striated muscle tissues, both in vitro and in vivo. The effects of vasopressin on skeletal myogenic cells, developing muscle and muscle homeostasis have been documented. Oxytocin appears to have a greater influence on cardiomyocite differentiation and heart homeostasis. This review summarizes the studies on these novel roles of the two neurohypophyseal hormones, and open the possibility of new therapeutic approaches for diseases affecting striated muscle.

  12. Immune Homeostasis of Human Gastric Mucosa in Helicobacter pylori Infection. (United States)

    Reva, I V; Yamamoto, T; Vershinina, S S; Reva, G V


    We present the results of electron microscopic, microbiological, immunohistochemical, and molecular genetic studies of gastric biopsy specimens taken for diagnostic purposes according by clinical indications during examination of patients with gastrointestinal pathology. Immune homeostasis of the gastric mucosa against the background of infection with various pathogen strains of Helicobacter pylori was studied in patients of different age groups with peptic ulcer, gastritis, metaplasia, and cancer. Some peculiarities of Helicobacter pylori contamination in the gastric mucosa were demonstrated. Immune homeostasis of the gastric mucosa in different pathologies was analyzed depending on the Helicobacter pylori genotype.

  13. Plasticity and dedifferentiation within the pancreas: development, homeostasis, and disease. (United States)

    Puri, Sapna; Folias, Alexandra E; Hebrok, Matthias


    Cellular identity is established by genetic, epigenetic, and environmental factors that regulate organogenesis and tissue homeostasis. Although some flexibility in fate potential is beneficial to overall organ health, dramatic changes in cellular identity can have disastrous consequences. Emerging data within the field of pancreas biology are revising current beliefs about how cellular identity is shaped by developmental and environmental cues under homeostasis and stress conditions. Here, we discuss the changes occurring in cellular states upon fate modulation and address how our understanding of the nature of this fluidity is shaping therapeutic approaches to pancreatic disorders such as diabetes and cancer.

  14. Chromosomal abnormalities in patients with sperm disorders

    Directory of Open Access Journals (Sweden)

    L. Y. Pylyp


    Full Text Available Chromosomal abnormalities are among the most common genetic causes of spermatogenic disruptions. Carriers of chromosomal abnormalities are at increased risk of infertility, miscarriage or birth of a child with unbalanced karyotype due to the production of unbalanced gametes. The natural selection against chromosomally abnormal sperm usually prevents fertilization with sperm barring in cases of serious chromosomal abnormalities. However, assisted reproductive technologies in general and intracytoplasmic sperm injection in particular, enable the transmission of chromosomal abnormalities to the progeny. Therefore, cytogenetic studies are important in patients with male factor infertility before assisted reproduction treatment. The purpose of the current study was to investigate the types and frequencies of chromosomal abnormalities in 724 patients with infertility and to estimate the risk of chromosomal abnormalities detection in subgroups of patients depending on the severity of spermatogenic disruption, aiming at identifying groups of patients in need of cytogenetic studies. Karyotype analysis was performed in 724 blood samples of men attending infertility clinic. Chromosomal preparation was performed by standard techniques. At least 20 GTG-banded metaphase plates with the resolution from 450 to 750 bands per haploid set were analysed in each case. When chromosomal mosaicism was suspected, this number was increased to 50. Abnormal karyotypes were observed in 48 (6.6% patients, including 67% of autosomal abnormalities and 33% of gonosomal abnormalities. Autosomal abnormalities were represented by structural rearrangements. Reciprocal translocations were the most common type of structural chromosomal abnormalities in the studied group, detected with the frequency of 2.6% (n = 19, followed by Robertsonian translocation, observed with the frequency of 1.2% (n = 9. The frequency of inversions was 0.6% (n = 4. Gonosomal abnormalities included 14 cases

  15. Simulating Cerebrospinal Fluid Flow and Spinal Cord Movement Associated with Syringomyelia


    Vinje, Vegard


    Syringomyelia is a progressive disease where fluid filled cavities develop inside the spinal cord, and is frequently seen together with Chiari Malformation I (CMI). CMI is characterized by downwards displacements of the Cerebellar Tonsils obstructing flow in the Subarachnoid space, (SAS) which causes abnormal Cerebrospinal fluid (CSF) flow. Many theories on the pathogenesis of syringomyelia have been proposed, many related to abnormal CSF flow, but a full explanation has not yet been given. I...

  16. Fluid mechanics in fluids at rest. (United States)

    Brenner, Howard


    Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.

  17. Auxillary Fluid Flowmeter

    DEFF Research Database (Denmark)

    RezaNejad Gatabi, Javad; Forouzbakhsh, Farshid; Ebrahimi Darkhaneh, Hadi


    and with measuring its travel time between two different positions, its velocity could be calculated. Given the velocity of the auxiliary fluid, the velocity of the main fluid could be calculated. Using this technique, it is possible to measure the velocity of any kind of fluids, if an appropriate auxiliary fluid...

  18. Transcriptional regulation of rod photoreceptor homeostasis revealed by in vivo NRL targetome analysis.

    Directory of Open Access Journals (Sweden)

    Hong Hao

    Full Text Available A stringent control of homeostasis is critical for functional maintenance and survival of neurons. In the mammalian retina, the basic motif leucine zipper transcription factor NRL determines rod versus cone photoreceptor cell fate and activates the expression of many rod-specific genes. Here, we report an integrated analysis of NRL-centered gene regulatory network by coupling chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq data from Illumina and ABI platforms with global expression profiling and in vivo knockdown studies. We identified approximately 300 direct NRL target genes. Of these, 22 NRL targets are associated with human retinal dystrophies, whereas 95 mapped to regions of as yet uncloned retinal disease loci. In silico analysis of NRL ChIP-Seq peak sequences revealed an enrichment of distinct sets of transcription factor binding sites. Specifically, we discovered that genes involved in photoreceptor function include binding sites for both NRL and homeodomain protein CRX. Evaluation of 26 ChIP-Seq regions validated their enhancer functions in reporter assays. In vivo knockdown of 16 NRL target genes resulted in death or abnormal morphology of rod photoreceptors, suggesting their importance in maintaining retinal function. We also identified histone demethylase Kdm5b as a novel secondary node in NRL transcriptional hierarchy. Exon array analysis of flow-sorted photoreceptors in which Kdm5b was knocked down by shRNA indicated its role in regulating rod-expressed genes. Our studies identify candidate genes for retinal dystrophies, define cis-regulatory module(s for photoreceptor-expressed genes and provide a framework for decoding transcriptional regulatory networks that dictate rod homeostasis.

  19. Videotapes and Movies on Fluid Dynamics and Fluid Machines


    Carr, Bobbie; Young, Virginia E.


    Chapter 17 of Handbook of Fluid Dynamics and Fluid Machinery: Experimental and Computational Fluid Dynamics, Volume 11. A list of videorecordings and 16mm motion pictures about Fluid Dynamics and Fluid Machines.

  20. Numerically abnormal chromosome constitutions in humans

    Energy Technology Data Exchange (ETDEWEB)



    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  1. TRPV5, the gateway to Ca2+ homeostasis.

    NARCIS (Netherlands)

    Mensenkamp, A.R.; Hoenderop, J.G.J.; Bindels, R.J.M.


    Ca2+ homeostasis in the body is tightly controlled, and is a balance between absorption in the intestine, excretion via the urine, and exchange from bone. Recently, the epithelial Ca2+ channel (TRPV5) has been identified as the gene responsible for the Ca2+ influx in epithelial cells of the renal di

  2. Neurobiology: Setting the Set Point for Neural Homeostasis. (United States)

    Truszkowski, Torrey L S; Aizenman, Carlos D


    Neural homeostasis allows neural networks to maintain a dynamic range around a given set point. How this set point is determined remains unknown. New evidence shows that alterations of activity during a critical developmental period can alter the homeostatic set point, resulting in epilepsy-like activity.

  3. Multilevel control of glucose homeostasis by adenylyl cyclase 8

    NARCIS (Netherlands)

    Raoux, Matthieu; Vacher, Pierre; Papin, Julien; Picard, Alexandre; Kostrzewa, Elzbieta; Devin, Anne; Gaitan, Julien; Limon, Isabelle; Kas, Martien J.; Magnan, Christophe; Lang, Jochen


    Aims/hypothesis: Nutrient homeostasis requires integration of signals generated by glucose metabolism and hormones. Expression of the calcium-stimulated adenylyl cyclase ADCY8 is regulated by glucose and the enzyme is capable of integrating signals from multiple pathways. It may thus have an importa

  4. A lysosome-centered view of nutrient homeostasis. (United States)

    Mony, Vinod K; Benjamin, Shawna; O'Rourke, Eyleen J


    Lysosomes are highly acidic cellular organelles traditionally viewed as sacs of enzymes involved in digesting extracellular or intracellular macromolecules for the regeneration of basic building blocks, cellular housekeeping, or pathogen degradation. Bound by a single lipid bilayer, lysosomes receive their substrates by fusing with endosomes or autophagosomes, or through specialized translocation mechanisms such as chaperone-mediated autophagy or microautophagy. Lysosomes degrade their substrates using up to 60 different soluble hydrolases and release their products either to the cytosol through poorly defined exporting and efflux mechanisms or to the extracellular space by fusing with the plasma membrane. However, it is becoming evident that the role of the lysosome in nutrient homeostasis goes beyond the disposal of waste or the recycling of building blocks. The lysosome is emerging as a signaling hub that can integrate and relay external and internal nutritional information to promote cellular and organismal homeostasis, as well as a major contributor to the processing of energy-dense molecules like glycogen and triglycerides. Here we describe the current knowledge of the nutrient signaling pathways governing lysosomal function, the role of the lysosome in nutrient mobilization, and how lysosomes signal other organelles, distant tissues, and even themselves to ensure energy homeostasis in spite of fluctuations in energy intake. At the same time, we highlight the value of genomics approaches to the past and future discoveries of how the lysosome simultaneously executes and controls cellular homeostasis.

  5. nfluence of antidepressants on glucose homeostasis : effects and mechanisms

    NARCIS (Netherlands)

    Derijks, H.J.


    Depression has shown to be a common morbidity in patients with diabetes mellitus and comorbid depression in diabetes mellitus patients is frequently treated with antidepressants. It has been postulated that antidepressants may interfere with glucose homeostasis and that the interference of antidepre

  6. Deficiency of a alpha-1-antitrypsin influences systemic iron homeostasis (United States)

    Abstract Background: There is evidence that proteases and anti-proteases participate in the iron homeostasis of cells and living systems. We tested the postulate that alpha-1 antitrypsin (A1AT) polymorphism and the consequent deficiency of this anti-protease in humans are asso...

  7. Exploring the role of glucagon in glucose homeostasis

    NARCIS (Netherlands)

    Dongen, Maria Gertrud Jobina van


    The aim of this thesis was to gain further insight into the role of glucagon in glucose homeostasis in healthy volunteers and type 2 diabetes mellitus (T2DM) patients, and to explore the novel antisense glucagon receptor antagonist. Chapter 2 showed that the effect of meal replacers containing prote

  8. A systems approach to mapping transcriptional networks controlling surfactant homeostasis

    Directory of Open Access Journals (Sweden)

    Dave Vrushank


    Full Text Available Abstract Background Pulmonary surfactant is required for lung function at birth and throughout life. Lung lipid and surfactant homeostasis requires regulation among multi-tiered processes, coordinating the synthesis of surfactant proteins and lipids, their assembly, trafficking, and storage in type II cells of the lung. The mechanisms regulating these interrelated processes are largely unknown. Results We integrated mRNA microarray data with array independent knowledge using Gene Ontology (GO similarity analysis, promoter motif searching, protein interaction and literature mining to elucidate genetic networks regulating lipid related biological processes in lung. A Transcription factor (TF - target gene (TG similarity matrix was generated by integrating data from different analytic methods. A scoring function was built to rank the likely TF-TG pairs. Using this strategy, we identified and verified critical components of a transcriptional network directing lipogenesis, lipid trafficking and surfactant homeostasis in the mouse lung. Conclusions Within the transcriptional network, SREBP, CEBPA, FOXA2, ETSF, GATA6 and IRF1 were identified as regulatory hubs displaying high connectivity. SREBP, FOXA2 and CEBPA together form a common core regulatory module that controls surfactant lipid homeostasis. The core module cooperates with other factors to regulate lipid metabolism and transport, cell growth and development, cell death and cell mediated immune response. Coordinated interactions of the TFs influence surfactant homeostasis and regulate lung function at birth.

  9. Rapid cold hardening improves recovery of ion homeostasis and chill coma recovery time in the migratory locust, Locusta migratoria. (United States)

    Findsen, Anders; Andersen, Jonas Lembcke; Calderon, Sofia; Overgaard, Johannes


    Chill tolerance of insects is defined as the ability to tolerate low temperature under circumstances not involving freezing of intracellular or extracellular fluids. For many insects chill tolerance is crucial for their ability to persist in cold environments and mounting evidence indicates that chill tolerance is associated with the ability to maintain ion and water homeostasis, thereby ensuring muscular function and preventing chill injury at low temperature. The present study describes the relationship between muscle and haemolymph ion homeostasis and time to regain posture following cold shock (CS, 2 h at -4°C) in the chill-susceptible locust Locusta migratoria. This relationship was examined in animals with and without a prior rapid cold-hardening treatment (RCH, 2 h at 0°C) to investigate the physiological underpinnings of RCH. CS elicited a doubling of haemolymph [K(+)] and this disturbance was greater in locusts pre-exposed to RCH. Recovery of ion homeostasis was, however, markedly faster in RCH-treated animals, which correlated well with whole-organism performance as hardened individuals regained posture faster than non-hardened individuals following CS. The present study indicates that loss and recovery of muscular function are associated with the resting membrane potential of excitable membranes as attested by the changes in the equilibrium potential for K(+) (EK) following CS. Both hardened and non-hardened animals regained movement once K(+) homeostasis had recovered to a fixed level (EK≈-41 mV). RCH is therefore not associated with altered sensitivity to ion disturbance but instead is correlated to a faster recovery of haemolymph [K(+)].

  10. Normal and abnormal US findings at the mastectomy site. (United States)

    Kim, Sun Mi; Park, Jeong Mi


    Evaluation of a mastectomy site is more effective with ultrasonography (US) than with either mammography or chest computed tomography because abnormalities are usually small and close to the skin surface. US does not involve the use of ionizing radiation and has a multiplanar scanning capability. The technique is readily available and inexpensive, and it allows real-time monitoring of needle tip placement during biopsy of a lesion. Normal US anatomy of the chest wall after mastectomy usually consists of four layers: skin, subcutaneous fat, pectoral muscles, and rib and intercostal muscle. The axilla is changed in appearance after lymph node dissection, but it remains the same in patients who have undergone simple mastectomy. US can accurately depict benign and malignant conditions in the mastectomy site, including fluid collection, fibrosis, local recurrent tumor, and metastatic lymphadenopathy, and can enable accurate diagnosis based on findings at fine needle aspiration biopsy.

  11. Oxidative stress homeostasis in grapevine (Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Luisa C Carvalho


    Full Text Available Plants can maintain growth and reproductive success by sensing changes in the environment and reacting through mechanisms at molecular, cellular, physiological and developmental levels. Each stress condition prompts a unique response although some overlap between the reactions to abiotic stress (drought, heat, cold, salt or high light and to biotic stress (pathogens does occur. A common feature in the response to all stresses is the onset of oxidative stress, through the production of reactive oxygen species (ROS. As hydrogen peroxide and superoxide are involved in stress signaling, a tight control in ROS homeostasis requires a delicate balance of systems involved in their generation and degradation. If the plant lacks the capacity to generate scavenging potential, this can ultimately lead to death. In grapevine, antioxidant homeostasis can be considered at whole plant levels and during the development cycle. The most striking example lies in berries and their derivatives, such as wine, with nutraceutical properties associated with their antioxidant capacity. Antioxidant homeostasis is tightly regulated in leaves, assuring a positive balance between photosynthesis and respiration, explaining the tolerance of many grapevine varieties to extreme environments.In this review we will focus on antioxidant metabolites, antioxidant enzymes, transcriptional regulation and cross-talk with hormones prompted by abiotic stress conditions. We will also discuss three situations that require specific homeostasis balance: biotic stress, the oxidative burst in berries at veraison and in vitro systems. The genetic plasticity of the antioxidant homeostasis response put in evidence by the different levels of tolerance to stress presented by grapevine varieties will be addressed. The gathered information is relevant to foster varietal adaptation to impending climate changes, to assist breeders in choosing the more adapted varieties and to suitable viticulture

  12. The glycometabolism abnormality among schizophrenia patients

    Institute of Scientific and Technical Information of China (English)



    Objective To explore the potential glycometabolism abnormality and the related factors of schizophrenia patients in China. Methods This cross-sectional study included 44 healthy controls(group 1) and 178 inpatient

  13. Amphibian abnormalities on National Wildlife Refuges (United States)

    US Fish and Wildlife Service, Department of the Interior — This fact sheet outlines a study done to 1) find the percentage of abnormal frogs and toads on the nation’s National Wildlife Refuges and 2) determine how the...

  14. Molecular cytogenetic studies in structural abnormalities of chromosome 13

    Energy Technology Data Exchange (ETDEWEB)

    Lozzio, C.B.; Bamberger, E.; Anderson, I. [Univ. of Tennessee, Knoxville, TN (United States)] [and others


    A partial trisomy 13 was detected prenatally in an amniocentesis performed due to the following ultrasound abnormalities: open sacral neural tube defect (NTD), a flattened cerebellum, and lumbar/thoracic hemivertebrae. Elevated AFP and positive acetylcholinesterase in amniotic fluid confirmed the open NTD. Chromosome analysis showed an extra acrocentric chromosome marker. FISH analysis with the painting probe 13 showed that most of the marker was derived from this chromosome. Chromosomes on the parents revealed that the mother had a balanced reciprocal translocation t(2;13)(q23;q21). Dual labeling with painting chromosomes 2 and 13 on cells from the mother and from the amniotic fluid identified the marker as a der(13)t(2;13)(p23;q21). Thus, the fetus had a partial trisomy 13 and a small partial trisomy 2p. The maternal grandfather was found to be a carrier for this translocation. Fetal demise occurred a 29 weeks of gestation. The fetus had open lumbar NTD and showed dysmorphic features, overlapping fingers and imperforate anus. This woman had a subsequent pregnancy and chorionic villi sample showed that this fetus was normal. Another case with an abnormal chromosome 13 was a newborn with partial monosomy 13 due to the presence of a ring chromosome 13. This infant had severe intrauterine growth retardation, oligohydramnios, dysmorphic features and multiple congenital microphthalmia, congenital heart disease, absent thumbs and toes and cervical vertebral anomalies. Chromosome studies in blood and skin fibroblast cultures showed that one chromosome 3 was replaced by a ring chromosome of various sizes. This ring was confirmed to be derived from chromosome 13 using the centromeric 21/13 probe.

  15. Heterotaxy syndromes and abnormal bowel rotation

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Beverley [Stanford University, Lucile Packard Children' s Hospital, Department of Radiology, Stanford, CA (United States); Koppolu, Raji; Sylvester, Karl [Lucile Packard Children' s Hospital at Stanford, Department of Surgery, Stanford, CA (United States); Murphy, Daniel [Lucile Packard Children' s Hospital at Stanford, Department of Cardiology, Stanford, CA (United States)


    Bowel rotation abnormalities in heterotaxy are common. As more children survive cardiac surgery, the management of gastrointestinal abnormalities has become controversial. To evaluate imaging of malrotation in heterotaxy with surgical correlation and provide an algorithm for management. Imaging reports of heterotaxic children with upper gastrointestinal (UGI) and/or small bowel follow-through (SBFT) were reviewed. Subsequently, fluoroscopic images were re-reviewed in conjunction with CT/MR studies. The original reports and re-reviewed images were compared and correlated with surgical findings. Nineteen of 34 children with heterotaxy underwent UGI, 13/19 also had SBFT. In 15/19 reports, bowel rotation was called abnormal: 11 malrotation, 4 non-rotation, no cases of volvulus. Re-review, including CT (10/19) and MR (2/19), designated 17/19 (90%) as abnormal, 10 malrotation (abnormal bowel arrangement, narrow or uncertain length of mesentery) and 7 non-rotation (small bowel and colon on opposite sides plus low cecum with probable broad mesentery). The most useful CT/MR findings were absence of retroperitoneal duodenum in most abnormal cases and location of bowel, especially cecum. Abnormal orientation of mesenteric vessels suggested malrotation but was not universal. Nine children had elective bowel surgery; non-rotation was found in 4/9 and malrotation was found in 5/9, with discrepancies (non-rotation at surgery, malrotation on imaging) with 4 original interpretations and 1 re-review. We recommend routine, early UGI and SBFT studies once other, urgent clinical concerns have been stabilized, with elective laparoscopic surgery in abnormal or equivocal cases. Cross-sectional imaging, usually obtained for other reasons, can contribute diagnostically. Attempting to assess mesenteric width is important in differentiating non-rotation from malrotation and more accurately identifies appropriate surgical candidates. (orig.)

  16. Abnormal Chromosome Segregation May Trigger Tumors

    Institute of Scientific and Technical Information of China (English)


    @@ Cancer is a primary threat to human health as it kills millions of people each year.Scientists have shown that 75% of human cancers have an abnormal number of chromosomes in cells,and the proportion of the cells with an abnormal chromosome number is tightly and positively related to malignance progression and metastasis of cancers. But the pathological mechanism behind the anomaly still remains unknown.

  17. Nail abnormalities in patients with vitiligo


    Topal, Ilteris Oguz; Gungor, Sule; Kocaturk, Ozgur Emek; Duman, Hatice; Durmuscan, Mustafa


    Abstract: Background: Vitiligo is an acquired pigmentary skin disorder affecting 0.1-4% of the general population. The nails may be affected in patients with an autoimmune disease such as psoriasis, and in those with alopecia areata. It has been suggested that nail abnormalities should be apparent in vitiligo patients. Objective: We sought to document the frequency and clinical presentation of nail abnormalities in vitiligo patients compared to healthy volunteers. We also examined the corre...

  18. Prevalence of asymptomatic urinary abnormalities among adolescents

    Directory of Open Access Journals (Sweden)

    Mohamed Fouad


    Full Text Available To determine the prevalence of asymptomatic urinary abnormalities in adolescents, first morning clean mid-stream urine specimens were obtained from 2500 individuals and examined by dipstick and light microscopy. Adolescents with abnormal screening results were reexamined after two weeks and those who had abnormal results twice were subjected to systemic clinical examination and further clinical and laboratory investigations. Eight hundred and three (32.1% individuals had urinary abnormalities at the first screening, which significantly decreased to 345 (13.8% at the second screening, (P <0.001. Hematuria was the most common urinary abnormalities detected in 245 (9.8% adolescents who had persistent urine abnormalities; 228 (9.1% individuals had non glomerular hematuria. The hematuria was isolated in 150 (6% individuals, combined with leukocyturia in 83 (3.3% individuals, and combined with proteinuria in 12 (0.5% individuals. Leukocyturia was detected in 150 (6% of all studied adolescents; it was isolated in 39 (1.6% individuals and combined with proteinuria in 28 (1.1% of them. Asymp- tomatic bacteriuria was detected in 23 (0.9% of all studied adolescents; all the cases were females. Proteinuria was detected in 65 (2.6% of all the studied adolescents; 45 (1.8% indivi- duals had <0.5 g/day and twenty (0.8% individuals had 0.5-3 g/day. Asymptomatic urinary abnormalities were more common in males than females and adolescents from rural than urban areas (P <0.01 and (P <0.001, respectively. The present study found a high prevalence of asymptomatic urinary abnormalities among adolescents in our population.

  19. Basilar artery migraine and reversible imaging abnormalities. (United States)

    Maytal, J; Libman, R B; Lustrin, E S


    We report a case of a basilar artery migraine in a 17-year-old boy with transient CT and MR abnormalities after each of two migraine episodes. A repeat MR study 6 months after the last event showed complete resolution of the lesion. Transient abnormalities on brain images similar to those shown in our case have been reported in patients with migraine and other neurologic conditions and are most likely related to cerebral vasogenic edema.

  20. Abnormal Asymmetry of Brain Connectivity in Schizophrenia


    Ribolsi, Michele; Zafiris J Daskalakis; Siracusano, Alberto; Koch, Giacomo


    Recently, a growing body of data has revealed that beyond a dysfunction of connectivity among different brain areas in schizophrenia patients (SCZ), there is also an abnormal asymmetry of functional connectivity compared with healthy subjects. The loss of the cerebral torque and the abnormalities of gyrification, with an increased or more complex cortical folding in the right hemisphere may provide an anatomical basis for such aberrant connectivity in SCZ. Furthermore, diffusion tensor imagin...

  1. Partial restoration of mutant enzyme homeostasis in three distinct lysosomal storage disease cell lines by altering calcium homeostasis.

    Directory of Open Access Journals (Sweden)

    Ting-Wei Mu


    Full Text Available A lysosomal storage disease (LSD results from deficient lysosomal enzyme activity, thus the substrate of the mutant enzyme accumulates in the lysosome, leading to pathology. In many but not all LSDs, the clinically most important mutations compromise the cellular folding of the enzyme, subjecting it to endoplasmic reticulum-associated degradation instead of proper folding and lysosomal trafficking. A small molecule that restores partial mutant enzyme folding, trafficking, and activity would be highly desirable, particularly if one molecule could ameliorate multiple distinct LSDs by virtue of its mechanism of action. Inhibition of L-type Ca2+ channels, using either diltiazem or verapamil-both US Food and Drug Administration-approved hypertension drugs-partially restores N370S and L444P glucocerebrosidase homeostasis in Gaucher patient-derived fibroblasts; the latter mutation is associated with refractory neuropathic disease. Diltiazem structure-activity studies suggest that it is its Ca2+ channel blocker activity that enhances the capacity of the endoplasmic reticulum to fold misfolding-prone proteins, likely by modest up-regulation of a subset of molecular chaperones, including BiP and Hsp40. Importantly, diltiazem and verapamil also partially restore mutant enzyme homeostasis in two other distinct LSDs involving enzymes essential for glycoprotein and heparan sulfate degradation, namely alpha-mannosidosis and type IIIA mucopolysaccharidosis, respectively. Manipulation of calcium homeostasis may represent a general strategy to restore protein homeostasis in multiple LSDs. However, further efforts are required to demonstrate clinical utility and safety.


    Introduction: Fe homeostasis can be disrupted in human cardiovascular diseases (CVD). We addressed how dysregulation of Fe homeostasis affected the pulmonary inflammation/oxidative stress response and disease progression after exposure to Libby amphibole (LA), an asbestifonn mine...

  3. Electrocardiographic abnormalities and serum magnesium in patients with subarachnoid hemorrhage

    NARCIS (Netherlands)

    van den Bergh, Walter M; Algra, Ale; Rinkel, Gabriël J E


    BACKGROUND AND PURPOSE: ECG abnormalities and hypomagnesemia frequently occur after aneurysmal subarachnoid hemorrhage (SAH). Because hypomagnesemia is associated with several ECG abnormalities, we studied whether hypomagnesemia mediates ECG abnormalities after SAH. METHODS: We prospectively studied

  4. Fetal calcifications are associated with chromosomal abnormalities.

    Directory of Open Access Journals (Sweden)

    Ellika Sahlin

    Full Text Available The biological importance of calcifications occasionally noted in fetal tissues (mainly liver at autopsy or ultrasound is largely unexplored. Previous reports hint at an association to infection, circulatory compromise, malformations or chromosomal abnormalities. To identify factors associated with calcifications, we have performed a case-control study on the largest cohort of fetuses with calcifications described thus far.One-hundred and fifty-one fetuses with calcifications and 302 matched controls were selected from the archives of the Department of Pathology, Karolinska University Hospital. Chromosome analysis by karyotyping or quantitative fluorescence-polymerase chain reaction was performed. Autopsy and placenta reports were scrutinized for presence of malformations and signs of infection.Calcifications were mainly located in the liver, but also in heart, bowel, and other tissues. Fetuses with calcifications showed a significantly higher proportion of chromosomal abnormalities than controls; 50% vs. 20% (p<0.001. The most frequent aberrations among cases included trisomy 21 (33%, trisomy 18 (22%, and monosomy X (18%. A similar distribution was seen among controls. When comparing cases and controls with chromosomal abnormalities, the cases had a significantly higher prevalence of malformations (95% vs. 77%, p=0.004. Analyzed the other way around, cases with malformations had a significantly higher proportion of chromosomal abnormalities compared with controls, (66% vs. 31%, p<0.001.The presence of fetal calcifications is associated with high risk of chromosomal abnormality in combination with malformations. Identification of a calcification together with a malformation at autopsy more than doubles the probability of detecting a chromosomal abnormality, compared with identification of a malformation only. We propose that identification of a fetal tissue calcification at autopsy, and potentially also at ultrasound examination, should infer

  5. Seminal plasma hexosaminidase in patients with normal and abnormal spermograms

    Directory of Open Access Journals (Sweden)

    Renata Julia Menendez-Helman


    Full Text Available Background: Glycosidases profusion in male reproductive fluids suggests a possible relationship with sperm function. Although Hexosaminidase (Hex is the most active glycosidase in epididymal fluid and seminal plasma, as well as in spermatozoa, Glucosidase is considered a marker for epididymal function and azoospermia. Objective: The aim of this study was to determine Hex activity in seminal plasma from patients with normal and abnormal spermograms and analyze its correlation with seminal parameters. Materials and Methods: In this cross sectional study, seminal plasma from azoospermic, asthenozoospermic, teratozoospermic, and normozoospermic patients was analyzed for the activity of: total Hex, HexA isoform, and glucosidase. Besides, hexosamine levels were determined, and the amount of Hex was quantified by immunoblot with a specific antibody. Correlation of Hex activity with seminal parameters was also analyzed. Results: Hex activity, like glucosidase, was significantly reduced in azoospermic samples (44, 49, and 60% reduction for total Hex, HexA and glucosidase, respectively. A reduced amount of Hex in azoospermic samples was confirmed by western immunoblot. Hex activity was negatively correlated with round cells in azoospermic samples and positively correlated with motility in asthenozoospermic ones. Conclusion: The results suggested that Hex activity was reduced in azoospermic samples and this was due to a lower amount of enzyme. The correlation to seminal parameters related to particular pathologies suggests a possible relationship of Hex with fertilizing capacity.

  6. The underestimated compression effect of neoprene wetsuit on divers hydromineral homeostasis. (United States)

    Castagna, O; Blatteau, J-E; Vallee, N; Schmid, B; Regnard, J


    This study aimed at demonstrating that the neoprene wetsuit provides not only thermal protection. Compression it exerts on the diver's shell significantly impacts hydromineral homeostasis by restraining the systemic vascular capacity and secondarily increasing urine output on dry land and during scuba diving. 8 healthy divers underwent five 2-h sessions: sitting out of water in trunks (control situation), sitting out of water wearing a wetsuit, and 3 wetsuit scuba-immersed sessions at 1, 6 and 12 msw depth, respectively. Urine volumes and blood samples were collected. Hemoglobin (Hb), hematocrit (Ht) and plasma sodium concentration were measured. Interface pressure between the garment and the skin was measured at 17 sites of the body shell, with a pressure transducer. Mean interface pressures between wetsuit and skin amounted to: 25.8±2.8 mm Hg. Whatever the depth, elastic recoil tension of wetsuit material was unchanged by immersion. Weight loss was respectively 2 and 3 times greater when wetsuit was worn out of water (430 g) and during immersion (710 g) than when divers did not wear any wetsuit out of water (235 g; p<0.05). Urine volume accounted for 85% of weight loss in either session. Weight loss and urine volume were similar whatever immersion depth. The decrease in plasma volume amounted to 8% of urine volume when divers did not wear any wetsuit out of water, and to 30% when wetsuit was worn out of water or during immersion. Diving wetsuit develops a pressure effect that alters diver's hydromineral homeostasis. During immersion, the wetsuit pressure merges into the larger main effect of hydrostatic pressure to reduce water content of body fluids, unrelated to immersion depth.

  7. Iron homeostasis and oxidative stress in idiopathic pulmonary alveolar proteinosis: a case-control study

    Directory of Open Access Journals (Sweden)

    Roggli Victor L


    Full Text Available Abstract Background Lung injury caused by both inhaled dusts and infectious agents depends on increased availability of iron and metal-catalyzed oxidative stress. Because inhaled particles, such as silica, and certain infections can cause secondary pulmonary alveolar proteinosis (PAP, we tested the hypothesis that idiopathic PAP is associated with an altered iron homeostasis in the human lung. Methods Healthy volunteers (n = 20 and patients with idiopathic PAP (n = 20 underwent bronchoalveolar lavage and measurements were made of total protein, iron, tranferrin, transferrin receptor, lactoferrin, and ferritin. Histochemical staining for iron and ferritin was done in the cell pellets from control subjects and PAP patients, and in lung specimens of patients without cardiopulmonary disease and with PAP. Lavage concentrations of urate, glutathione, and ascorbate were also measured as indices of oxidative stress. Results Lavage concentrations of iron, transferrin, transferrin receptor, lactoferrin, and ferritin were significantly elevated in PAP patients relative to healthy volunteers. The cells of PAP patients had accumulated significant iron and ferritin, as well as considerable amounts of extracellular ferritin. Immunohistochemistry for ferritin in lung tissue revealed comparable amounts of this metal-storage protein in the lower respiratory tract of PAP patients both intracellularly and extracellularly. Lavage concentrations of ascorbate, glutathione, and urate were significantly lower in the lavage fluid of the PAP patients. Conclusion Iron homeostasis is altered in the lungs of patients with idiopathic PAP, as large amounts of catalytically-active iron and low molecular weight anti-oxidant depletion are present. These findings suggest a metal-catalyzed oxidative stress in the maintenance of this disease.

  8. The salutary effects of DHA dietary supplementation on cognition, neuroplasticity, and membrane homeostasis after brain trauma. (United States)

    Wu, Aiguo; Ying, Zhe; Gomez-Pinilla, Fernando


    The pathology of traumatic brain injury (TBI) is characterized by the decreased capacity of neurons to metabolize energy and sustain synaptic function, likely resulting in cognitive and emotional disorders. Based on the broad nature of the pathology, we have assessed the potential of the omega-3 fatty acid docosahexaenoic acid (DHA) to counteract the effects of concussive injury on important aspects of neuronal function and cognition. Fluid percussion injury (FPI) or sham injury was performed, and rats were then maintained on a diet high in DHA (1.2% DHA) for 12 days. We found that DHA supplementation, which elevates brain DHA content, normalized levels of brain-derived neurotrophic factor (BDNF), synapsin I (Syn-1), cAMP-responsive element-binding protein (CREB), and calcium/calmodulin-dependent kinase II (CaMKII), and improved learning ability in FPI rats. It is known that BDNF facilitates synaptic transmission and learning ability by modulating Syn-I, CREB, and CaMKII signaling. The DHA diet also counteracted the FPI-reduced manganese superoxide dismutase (SOD) and Sir2 (a NAD+-dependent deacetylase). Given the involvement of SOD and Sir2 in promoting metabolic homeostasis, DHA may help the injured brain by providing resistance to oxidative stress. Furthermore, DHA normalized levels of calcium-independent phospholipase A2 (iPLA2) and syntaxin-3, which may help preserve membrane homeostasis and function after FPI. The overall results emphasize the potential of dietary DHA to counteract broad and fundamental aspects of TBI pathology that may translate into preserved cognitive capacity.

  9. Genome wide expression analysis suggests perturbation of vascular homeostasis during high altitude pulmonary edema.

    Directory of Open Access Journals (Sweden)

    Manish Sharma

    Full Text Available BACKGROUND: High altitude pulmonary edema (HAPE is a life-threatening form of non-cardiogenic edema which occurs in unacclimatized but otherwise normal individuals within two to four days after rapid ascent to altitude beyond 3000 m. The precise pathoetiology and inciting mechanisms regulating HAPE remain unclear. METHODOLOGY/PRINCIPLE FINDINGS: We performed global gene expression profiling in individuals with established HAPE compared to acclimatized individuals. Our data suggests concurrent modulation of multiple pathways which regulate vascular homeostasis and consequently lung fluid dynamics. These pathways included those which regulate vasoconstriction through smooth muscle contraction, cellular actin cytoskeleton rearrangements and endothelial permeability/dysfunction. Some notable genes within these pathways included MYLK; rho family members ARGEF11, ARHGAP24; cell adhesion molecules such as CLDN6, CLDN23, PXN and VCAM1 besides other signaling intermediates. Further, several important regulators of systemic/pulmonary hypertension including ADRA1D, ECE1, and EDNRA were upregulated in HAPE. We also observed significant upregulation of genes involved in paracrine signaling through chemokines and lymphocyte activation pathways during HAPE represented by transcripts of TNF, JAK2, MAP2K2, MAP2K7, MAPK10, PLCB1, ARAF, SOS1, PAK3 and RELA amongst others. Perturbation of such pathways can potentially skew vascular homeostatic equilibrium towards altered vascular permeability. Additionally, differential regulation of hypoxia-sensing, hypoxia-response and OXPHOS pathway genes in individuals with HAPE were also observed. CONCLUSIONS/SIGNIFICANCE: Our data reveals specific components of the complex molecular circuitry underlying HAPE. We show concurrent perturbation of multiple pathways regulating vascular homeostasis and suggest multi-genic nature of regulation of HAPE.

  10. Peritoneal fluid culture (United States)

    Culture - peritoneal fluid ... sent to the laboratory for Gram stain and culture. The sample is checked to see if bacteria ... based on more than just the peritoneal fluid culture (which may be negative even if you have ...

  11. Electric fluid pump (United States)

    Van Dam, Jeremy Daniel; Turnquist, Norman Arnold; Raminosoa, Tsarafidy; Shah, Manoj Ramprasad; Shen, Xiaochun


    An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.

  12. Amniotic fluid (image) (United States)

    Amniotic fluid surrounds the growing fetus in the womb and protects the fetus from injury and temperature changes. ... of fetal movement and permits musculoskeletal development. The amniotic fluid can be withdrawn in a procedure called amniocentsis ...

  13. MRI of joint fluid in femoral head osteonecrosis

    Energy Technology Data Exchange (ETDEWEB)

    Chan, W.P. [Chief in Department of Radiology, Taipei Medical University, Municipal Wan Fang Hospital, 111 Hsing-Long Road, Section 3, Taipei 116 (Taiwan); Liu, Y.-J. [Institute of Electric Engineering, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 106 (Taiwan); Huang, G.-S. [Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, 325 Cheng-Kung Road, Section 2, Taipei 114 (Taiwan); Jiang, C.-C.; Huang, S. [Department of Orthopedic Surgery, National Taiwan University Hospital, 7 Chung-San S. Road, Taipei 100 (Taiwan); Chang, Y.-C. [Department of Mathematics, Tamkang University, 151 Ying-Chuan Road, Tamsui, Taipei 251 (Taiwan)


    To evaluate the relationship between joint fluid, intramedullary pressure (IMP), bone marrow edema, and stages of osteonecrosis of the femoral head (ONFH). Material and methods: We reviewed the magnetic resonance (MR) images of 28 patients with 40 documented ONFHs. IMP was measured in 16 symptomatic hips. The amount of joint fluid was graded as 0 (no fluid), 1 (fluid <5 mm in width), or 2 (fluid {>=} 5 mm in width) adjacent to the entire length of the femoral neck. Associated focal and diffuse bone marrow abnormalities were evaluated. A control group of 29 recruited individuals without symptoms related to hip disease were examined. Follow-up MR images were obtained in four patients (five affected hips) 6-10 months after core decompression. Results: Of the 40 affected hips, the severity of ONFH was divided into stages 0 (n=4), I (n=28), and II (n=8 hips) on MR findings. The correlation of joint fluid to IMP and to the presence of bone marrow edema was poor. The amount of joint fluid correlated significantly with the stage of ONFH. None of the five affected hips showed decreased joint fluid on follow-up MR images. Conclusion: The amount of joint fluid correlates well with the stage of ONFH. The amount of joint fluid does not correlate with IMP or bone marrow edema. (orig.)

  14. Cell Junction Pathology of Neural Stem Cells Is Associated With Ventricular Zone Disruption, Hydrocephalus, and Abnormal Neurogenesis

    NARCIS (Netherlands)

    Montserrat Guerra, Maria; Henzi, Roberto; Ortloff, Alexander; Lichtin, Nicole; Vio, Karin; Jimenez, Antonio J.; Dolores Dominguez-Pinos, Maria; Gonzalez, Cesar; Clara Jara, Maria; Hinostroza, Fernando; Rodriguez, Sara; Jara, Maryoris; Ortega, Eduardo; Guerra, Francisco; Sival, Deborah A.; den Dunnen, Wilfred F. A.; Perez-Figares, Jose M.; McAllister, James P.; Johanson, Conrad E.; Rodriguez, Esteban M.


    Fetal-onset hydrocephalus affects 1 to 3 per 1,000 live births. It is not only a disorder of cerebrospinal fluid dynamics but also a brain disorder that corrective surgery does not ameliorate. We hypothesized that cell junction abnormalities of neural stem cells (NSCs) lead to the inseparable phenom

  15. Dopaminergic system abnormalities Etiopathogenesis of dystonia

    Institute of Scientific and Technical Information of China (English)

    Shuhui Wu; Huifang Shang; Xiaoyi Zou


    BACKGROUND: Much research has focused on the close relationship between etiopathogenesis of dystonia and abnormalities of the dopaminergic system. Nevertheless, details of the mechanism are still not clear.OBJECTIVE: To review studies from the past few years about pathogenesis and molecular interactions involved in the relationship between dystonia and abnormalities of the dopaminergic system.RETRIEVAL STRATEGY: Using the key words "dystonia" and "dopamine", PubMed database and SCI databases were searched from January 1990 to December 2005 for relevant English publications. A total of 73 articles were searched and, initially, all articles were selected. Inclusive criteria: studies based on pathogenesis and molecular interactions involved in the relationship between dystonia and abnormalities of the dopaminergic system. Exclusive criteria: duplicated studies. A total of 19 articles were extracted after preliminary screening.LITERATURE EVALUATION: The data sources were the PubMed and SCI databases. The types of articles chosen were reviews and original articles.DATA SYNTHESIS: Metabolism and function of dopamine in the central nervous system: the chemical constitution of dopamine is a single benzene ring. The encephalic regions of dopamine synthesis and their fiber projections comprise four nervous system pathways. One of these pathways is the substantia nigra-striatum dopamine pathway, which is a side-loop of the basal ganglia circuitry that participates in movement control and plays a main role in the adjustment of extracorticospinal tract movement. Dopamine can lead to the facilitation of movement. Dystonia and abnormalities of the dopaminergic system: different modes of dopamine abnormality exist in various forms of dystonia. Abnormalities of the dopaminergic system in several primary dystonias: at present, fifteen gene loci of primary dystonia have been reported (DYT1-DYT15). The relationship between abnormalities of the dopaminergic system and the

  16. Regulation of systemic energy homeostasis by serotonin in adipose tissues. (United States)

    Oh, Chang-Myung; Namkung, Jun; Go, Younghoon; Shong, Ko Eun; Kim, Kyuho; Kim, Hyeongseok; Park, Bo-Yoon; Lee, Ho Won; Jeon, Yong Hyun; Song, Junghan; Shong, Minho; Yadav, Vijay K; Karsenty, Gerard; Kajimura, Shingo; Lee, In-Kyu; Park, Sangkyu; Kim, Hail


    Central serotonin (5-HT) is an anorexigenic neurotransmitter in the brain. However, accumulating evidence suggests peripheral 5-HT may affect organismal energy homeostasis. Here we show 5-HT regulates white and brown adipose tissue function. Pharmacological inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermogenesis in brown adipose tissue (BAT). Mice with inducible Tph1 KO in adipose tissues exhibit a similar phenotype as mice in which 5-HT synthesis is inhibited pharmacologically, suggesting 5-HT has localized effects on adipose tissues. In addition, Htr3a KO mice exhibit increased energy expenditure and reduced weight gain when fed a high-fat diet. Treatment with an Htr2a antagonist reduces lipid accumulation in 3T3-L1 adipocytes. These data suggest important roles for adipocyte-derived 5-HT in controlling energy homeostasis.

  17. Disrupted iron homeostasis causes dopaminergic neurodegeneration in mice. (United States)

    Matak, Pavle; Matak, Andrija; Moustafa, Sarah; Aryal, Dipendra K; Benner, Eric J; Wetsel, William; Andrews, Nancy C


    Disrupted brain iron homeostasis is a common feature of neurodegenerative disease. To begin to understand how neuronal iron handling might be involved, we focused on dopaminergic neurons and asked how inactivation of transport proteins affected iron homeostasis in vivo in mice. Loss of the cellular iron exporter, ferroportin, had no apparent consequences. However, loss of transferrin receptor 1, involved in iron uptake, caused neuronal iron deficiency, age-progressive degeneration of a subset of dopaminergic neurons, and motor deficits. There was gradual depletion of dopaminergic projections in the striatum followed by death of dopaminergic neurons in the substantia nigra. Damaged mitochondria accumulated, and gene expression signatures indicated attempted axonal regeneration, a metabolic switch to glycolysis, oxidative stress, and the unfolded protein response. We demonstrate that loss of transferrin receptor 1, but not loss of ferroportin, can cause neurodegeneration in a subset of dopaminergic neurons in mice.

  18. The role of CDX2 in intestinal homeostasis and inflammation

    DEFF Research Database (Denmark)

    Coskun, Mehmet; Troelsen, Jesper Thorvald; Nielsen, Ole Haagen


    a causal role in a large number of diseases and developmental disorders. Inflammatory bowel disease (IBD) is characterized by a chronically inflamed mucosa caused by dysregulation of the intestinal immune homeostasis. The aetiology of IBD is thought to be a combination of genetic and environmental factors......, including luminal bacteria. The Caudal-related homeobox transcription factor 2 (CDX2) is critical in early intestinal differentiation and has been implicated as a master regulator of the intestinal homeostasis and permeability in adults. When expressed, CDX2 modulates a diverse set of processes including...... cell proliferation, differentiation, cell adhesion, migration, and tumorigenesis. In addition to these critical cellular processes, there is increasing evidence for linking CDX2 to intestinal inflammation. The aim of the present paper was to review the current knowledge of CDX2 in regulation...

  19. Microbiota-Produced Succinate Improves Glucose Homeostasis via Intestinal Gluconeogenesis

    DEFF Research Database (Denmark)

    De Vadder, Filipe; Kovatcheva-Datchary, Petia; Zitoun, Carine


    Beneficial effects of dietary fiber on glucose and energy homeostasis have long been described, focusing mostly on the production of short-chain fatty acids by the gut commensal bacteria. However, bacterial fermentation of dietary fiber also produces large amounts of succinate and, to date......, no study has focused on the role of succinate on host metabolism. Here, we fed mice a fiber-rich diet and found that succinate was the most abundant carboxylic acid in the cecum. Dietary succinate was identified as a substrate for intestinal gluconeogenesis (IGN), a process that improves glucose...... homeostasis. Accordingly, dietary succinate improved glucose and insulin tolerance in wild-type mice, but those effects were absent in mice deficient in IGN. Conventional mice colonized with the succinate producer Prevotella copri exhibited metabolic benefits, which could be related to succinate-activated IGN...

  20. Transport, signaling, and homeostasis of potassium and sodium in plants

    Institute of Scientific and Technical Information of China (English)

    Eri Adams; Ryoung Shin


    Potassium (Kþ) is an essential macronutrient in plants and a lack of Kþ significantly reduces the potential for plant growth and development. By contrast, sodium (Naþ), while beneficial to some extent, at high concentrations it disturbs and inhibits various physiological processes and plant growth. Due to their chemical similarities, some functions of Kþ can be undertaken by Naþ but Kþ homeostasis is severely affected by salt stress, on the other hand. Recent advances have highlighted the fascinating regulatory mechanisms of Kþ and Naþ transport and signaling in plants. This review summarizes three major topics:(i) the transport mechanisms of Kþ and Naþ from the soil to the shoot and to the cellular compartments; (i ) the mechanisms through which plants sense and respond to Kþ and Naþ availability; and (i i) the components involved in maintenance of Kþ/Naþ homeostasis in plants under salt stress.

  1. MRI of fetal GI tract abnormalities. (United States)

    Veyrac, C; Couture, A; Saguintaah, M; Baud, C


    We describe the magnetic resonance (MR) patterns of a variety of fetal gastrointestinal (GI) abnormalities. Thirty-two fetuses between 23 and 38 weeks' gestation with abnormal appearance of the GI tract by ultrasound underwent MR imaging with T1- and T2-weighted sequences. The MR aspect of intestinal atresia (duodenal atresia, one case; small bowel atresia, nine cases) included dilatation of the bowel loops, accurate assessment of the normal bowel distal to the atresia (except in the patient with multiple atresia and apple-peel syndrome), and micro-rectum with decreased T1 signal (except in the patient with duodenal atresia). Megacystis-microcolon-intestinal hypoperistalsis syndrome (one case) was indicated by an abnormal signal of the entire bowel and an abnormal pattern for the urinary tract. Meconium pseudocysts (two cases) were easily differentiated from enteric cysts (two cases). High anorectal malformations with (two cases) or without (one case) urinary fistula and cloacal malformation (one case) are described and MR findings are discussed. The capability of MR imaging to demonstrate the normal bowel with intraperitoneal anomalies (e.g., congenital diaphragmatic hernia, and sacrococcygeal teratoma) is emphasized. MR imaging is informative in the diagnosis of GI tract abnormalities, especially the severe malformations, with much more accuracy than sonography.

  2. Prevalence of asymptomatic urinary abnormalities among adolescents. (United States)

    Fouad, Mohamed; Boraie, Maher


    To determine the prevalence of asymptomatic urinary abnormalities in adolescents, first morning clean mid-stream urine specimens were obtained from 2500 individuals and examined by dipstick and light microscopy. Adolescents with abnormal screening results were reexamined after two weeks and those who had abnormal results twice were subjected to systemic clinical examination and further clinical and laboratory investigations. Eight hundred and three (32.1%) individuals had urinary abnormalities at the first screening, which significantly decreased to 345 (13.8%) at the second screening, (P adolescents who had persistent urine abnormalities; 228 (9.1%) individuals had non glomerular hematuria. The hematuria was isolated in 150 (6%) individuals, combined with leukocyturia in 83 (3.3%) individuals, and combined with proteinuria in 12 (0.5%) individuals. Leukocyturia was detected in 150 (6%) of all studied adolescents; it was isolated in 39 (1.6%) individuals and combined with proteinuria in 28 (1.1%) of them. Asymptomatic bacteriuria was detected in 23 (0.9%) of all studied adolescents; all the cases were females. Proteinuria was detected in 65 (2.6%) of all the studied adolescents; 45 (1.8%) individuals had adolescents from rural than urban areas (P adolescents in our population.

  3. Abnormal cervical cytology and health care use

    DEFF Research Database (Denmark)

    Frederiksen, Maria Eiholm; Baillet, Miguel Vázquez-Prada; Dugué, Pierre-Antoine


    OBJECTIVE: This study aimed to assess the long-term use of health care services in women with abnormal cytology results compared to women with normal cytology results. METHODS: We did a nationwide population-based study, using women aged 23 to 59years participating in the national organized cervi...... they have the abnormal cytology. This difference is further enhanced after the abnormal cytology result.......OBJECTIVE: This study aimed to assess the long-term use of health care services in women with abnormal cytology results compared to women with normal cytology results. METHODS: We did a nationwide population-based study, using women aged 23 to 59years participating in the national organized...... cervical cancer screening program. We included a study population of 40,153 women with abnormal cytology (exposed) and 752,627 women with normal cytology (non-exposed). We retrieved data from the Danish Civil Registration System, the Danish Pathology Data Bank, the National Health Service, the National...


    Directory of Open Access Journals (Sweden)



    Full Text Available AIM: To determine the nature of ophthalmologic abnormalities in severe and profound grades of hearing impaired children and to treat visual impairment if any at the earliest . MATERIAL AND METHODS: Study was conducted on100 children in the age group of 5 - 14 years with severe and profound hearing loss visiting outpatient department of Ram Lal Eye and ENT hospital Govt. Medical College Amritsar and subjected to detailed ophthalmological examination. RESULTS: 100 children in the age group 5 - 14 years with hearing impairment were enrolled for t he study , 68 had profound and 32 had severe hearing loss . Visual disorders were found to be as high as 71%. Highest percentage was seen in children aged 7 years. Majority of them (50% had refractive error. Out of these 50 children , 28(56% had myopia , 10 (20% hypermetropia and 12(24% had astigmatism . The other ophthalmic abnormalities in our study were conjunctivitis 14(19.71% , fundus abnormalities and squint 11(15.49% , blepharitis 5 (7.04% , vitamin A deficiency 6 (8.04% , amblyopia 8 (11.26% , pupil disorder 3 (4.22% , cataract 3 (4.22% and heterochromia iridis 7 (9.85%. CONCLUSION : The high prevalence of ophthalmic abnormalities in deaf children mandate screening them for possible ophthalmic abnormalities. Early diagnosis and correction of visual d isturbances would go a long way in social and professional performance of these children.

  5. Importance of pH Homeostasis in Metabolic Health and Diseases: Crucial Role of Membrane Proton Transport

    Directory of Open Access Journals (Sweden)

    Wataru Aoi


    Full Text Available Protons dissociated from organic acids in cells are partly buffered. If not, they are transported to the extracellular fluid through the plasma membrane and buffered in circulation or excreted in urine and expiration gas. Several transporters including monocarboxylate transporters and Na+/H+ exchanger play an important role in uptake and output of protons across plasma membranes in cells of metabolic tissues including skeletal muscle and the liver. They also contribute to maintenance of the physiological pH of body fluid. Therefore, impairment of these transporters causes dysfunction of cells, diseases, and a decrease in physical performance associated with abnormal pH. Additionally, it is known that fluid pH in the interstitial space of metabolic tissues is easily changed due to little pH buffering capacitance in interstitial fluids and a reduction in the interstitial fluid pH may mediate the onset of insulin resistance unlike blood containing pH buffers such as Hb (hemoglobin and albumin. In contrast, habitual exercise and dietary intervention regulate expression/activity of transporters and maintain body fluid pH, which could partly explain the positive effect of healthy lifestyle on disease prognosis.

  6. Hepatic miRNA profiles and thyroid hormone homeostasis in rats exposed to dietary potassium perfluorooctanesulfonate (PFOS). (United States)

    Dong, Hongyan; Curran, Ivan; Williams, Andrew; Bondy, Genevieve; Yauk, Carole L; Wade, Michael G


    Perfluorooctanesulfonate (PFOS) has been widely used in a variety of industrial and commercial applications as a surfactant and stain repellent. PFOS causes liver damage (including liver tumors) in experimental animals, primarily via interaction with PPARα and CAR/PXR. We investigated the involvement of microRNAs (miRNAs) in PFOS-induced hepatotoxicity, and mechanisms involved in abnormal thyroid hormone (TH) homeostasis, in the livers of adult male rats exposed in feed to 50mg PFOS/kg diet for 28 days. PFOS-treated rats exhibited expected histopathological and clinical chemistry changes, and global gene expression changes consistent with the involvement of PPARα and CAR/PXR. Thirty-eight miRNAs were significantly altered. Three members of the miR-200 family were the most increased, while miR-122-5p and miR-21-5p were the most decreased, in PFOS-treated rats. Expression of the miR-23b-3p/27b-3p/24-3p cluster also decreased in PFOS-treated animals. Pathway analysis of miRNAs and associated gene expression changes suggests involvement of epithelial to mesenchymal transition (EMT), which is a primary process of tumor cell motility and cancer metastasis. Our analysis also revealed transcripts that may mediate PFOS-induced effects on TH homeostasis including: activation of the CAR/PXR pathway, phase II/III enzymes, and deiodinase. These changes are consistent with low serum TH due to enhanced metabolic clearance of TH. However, most TH hepatic target genes were not altered in a manner consistent with reduced TH signaling, suggesting that PFOS exposure did not induce functional hypothyroidism. Collectively, the study suggests an important role for miRNAs in PFOS-induced hepatotoxicity and provides insight into the effects of PFOS on TH homeostasis.

  7. Hepatocyte nuclear factor 4 alpha is a key factor related to depression and physiological homeostasis in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Kyosuke Yamanishi

    Full Text Available Major depressive disorder (MDD is a common psychiatric disorder that involves marked disabilities in global functioning, anorexia, and severe medical comorbidities. MDD is associated with not only psychological and sociocultural problems, but also pervasive physical dysfunctions such as metabolic, neurobiological and immunological abnormalities. Nevertheless, the mechanisms underlying the interactions between these factors have yet to be determined in detail. The aim of the present study was to identify the molecular mechanisms responsible for the interactions between MDD and dysregulation of physiological homeostasis, including immunological function as well as lipid metabolism, coagulation, and hormonal activity in the brain. We generated depression-like behavior in mice using chronic mild stress (CMS as a model of depression. We compared the gene expression profiles in the prefrontal cortex (PFC of CMS and control mice using microarrays. We subsequently categorized genes using two web-based bioinformatics applications: Ingenuity Pathway Analysis and The Database for Annotation, Visualization, and Integrated Discovery. We then confirmed significant group-differences by analyzing mRNA and protein expression levels not only in the PFC, but also in the thalamus and hippocampus. These web tools revealed that hepatocyte nuclear factor 4 alpha (Hnf4a may exert direct effects on various genes specifically associated with amine synthesis, such as genes involved in serotonin metabolism and related immunological functions. Moreover, these genes may influence lipid metabolism, coagulation, and hormonal activity. We also confirmed the significant effects of Hnf4a on both mRNA and protein expression levels in the brain. These results suggest that Hnf4a may have a critical influence on physiological homeostasis under depressive states, and may be associated with the mechanisms responsible for the interactions between MDD and the dysregulation of

  8. FAD-linked Presenilin-1 V97L mutation impede tranport regulation and intracellular Ca(2+) homeostasis under ER stress. (United States)

    Shao, Yankun; Li, Miao; Wu, Miao; Shi, Kai; Fang, Boyan; Wang, Jie


    We report a PS1 gene mutation (Val 97Leu) in a Chinese familial Alzheimer's disease (FAD) pedigree and a cell model of FAD built by transfecting PS1 v97L mutants into human neuroblastoma SH-SY5Y cells. To test our hypothesis that the PS1 v97L mutation is pathogenic, we investigated possible alterations in transport regulation and intracellular Ca(2+) homeostasis in endoplasmic reticulum (ER). Grp78 is an ER-resident chaperone mediating the unfolded protein response (UPR) and is a key regulator of ER stress transducers. KDEL is a 4-amino-acid retention sequence made of Lys-Asp-Glu-Leu-COO. KDEL is a "resident" sequence as protein residence in ER is consistently associated with KDEL at the C-extremity. Our group used KDEL recognizing anti-Grp78 monoclonal antibody to detect the level of Grp78. We found increased KDEL level in all the transfected cells including cells transfected with PS1 V97L genes, wild-type and the mock. However cells with PS1 V97L mutation expressed a relatively lower KDEL compared with the wild-type and the mock, and a significantly lower Grp78 level compared with the wild-type, the mock and control. These results suggest that PS1 V97L mutation impedes intracellular transport regulation in ER. PS1 V97L mutation mediates increased ER Ca(2+) content in human neuroblastoma SH-SY5Y cells. The increased intracellular Ca(2+) release is due to depleted Ca(2+) storing content of ER but not due to extracellular environment as capacitative Ca(2+) entry (CCE) is invariant. PS1 V97L mutation interferes with intracellular Ca(2+) homeostasis. Abnormal transport regulation and Ca(2+) homeostasis attributed to PS1 V97L mutation may be associated with the pathology of Chinese familial FAD.

  9. Synaptic Homeostasis and Restructuring across the Sleep-Wake Cycle.

    Directory of Open Access Journals (Sweden)

    Wilfredo Blanco


    Full Text Available Sleep is critical for hippocampus-dependent memory consolidation. However, the underlying mechanisms of synaptic plasticity are poorly understood. The central controversy is on whether long-term potentiation (LTP takes a role during sleep and which would be its specific effect on memory. To address this question, we used immunohistochemistry to measure phosphorylation of Ca2+/calmodulin-dependent protein kinase II (pCaMKIIα in the rat hippocampus immediately after specific sleep-wake states were interrupted. Control animals not exposed to novel objects during waking (WK showed stable pCaMKIIα levels across the sleep-wake cycle, but animals exposed to novel objects showed a decrease during subsequent slow-wave sleep (SWS followed by a rebound during rapid-eye-movement sleep (REM. The levels of pCaMKIIα during REM were proportional to cortical spindles near SWS/REM transitions. Based on these results, we modeled sleep-dependent LTP on a network of fully connected excitatory neurons fed with spikes recorded from the rat hippocampus across WK, SWS and REM. Sleep without LTP orderly rescaled synaptic weights to a narrow range of intermediate values. In contrast, LTP triggered near the SWS/REM transition led to marked swaps in synaptic weight ranking. To better understand the interaction between rescaling and restructuring during sleep, we implemented synaptic homeostasis and embossing in a detailed hippocampal-cortical model with both excitatory and inhibitory neurons. Synaptic homeostasis was implemented by weakening potentiation and strengthening depression, while synaptic embossing was simulated by evoking LTP on selected synapses. We observed that synaptic homeostasis facilitates controlled synaptic restructuring. The results imply a mechanism for a cognitive synergy between SWS and REM, and suggest that LTP at the SWS/REM transition critically influences the effect of sleep: Its lack determines synaptic homeostasis, its presence causes

  10. Redox homeostasis: The Golden Mean of healthy living


    Fulvio Ursini; Matilde Maiorino; Henry Jay Forman


    The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the...

  11. Impact of the Oral Commensal Flora on Alveolar Bone Homeostasis


    Irie, K; Novince, C.M.; Darveau, R. P.


    Homeostasis of healthy periodontal tissues is affected by innate and adaptive immunosurveillance mechanisms in response to the normal oral flora. Recent comparisons of germ-free (GF) and normal specific-pathogen-free (SPF) mice have revealed the impact of host immunosurveillance mechanisms in response to the normal oral flora on alveolar bone height. Prior reports that alveolar bone height is significantly less in normal SPF mice compared with their age- and strain-matched GF counterparts sug...

  12. Osmolytes contribute to pH homeostasis of Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Ryan D Kitko

    Full Text Available BACKGROUND: Cytoplasmic pH homeostasis in Escherichia coli includes numerous mechanisms involving pH-dependent catabolism and ion fluxes. An important contributor is transmembrane K+ flux, but the actual basis of K+ compensation for pH stress remains unclear. Osmoprotection could mediate the pH protection afforded by K+ and other osmolytes. METHODS AND PRINCIPAL FINDINGS: The cytoplasmic pH of E. coli K-12 strains was measured by GFPmut3 fluorimetry. The wild-type strain Frag1 was exposed to rapid external acidification by HCl addition. Recovery of cytoplasmic pH was enhanced equally by supplementation with NaCl, KCl, proline, or sucrose. A triple mutant strain TK2420 defective for the Kdp, Trk and Kup K+ uptake systems requires exogenous K+ for steady-state pH homeostasis and for recovery from sudden acid shift. The K+ requirement however was partly compensated by supplementation with NaCl, choline chloride, proline, or sucrose. Thus, the K+ requirement was mediated in part by osmolarity, possibly by relieving osmotic stress which interacts with pH stress. The rapid addition of KCl to strain TK2420 suspended at external pH 5.6 caused a transient decrease in cytoplasmic pH, followed by slow recovery to an elevated steady-state pH. In the presence of 150 mM KCl, however, rapid addition of another 150 mM KCl caused a transient increase in cytoplasmic pH. These transient effects may arise from secondary K+ fluxes occurring through other transport processes in the TK2420 strain. CONCLUSIONS: Diverse osmolytes including NaCl, KCl, proline, or sucrose contribute to cytoplasmic pH homeostasis in E. coli, and increase the recovery from rapid acid shift. Osmolytes other than K+ restore partial pH homeostasis in a strain deleted for K+ transport.

  13. The PICALM protein plays a key role in iron homeostasis and cell proliferation.

    Directory of Open Access Journals (Sweden)

    Paula B Scotland

    Full Text Available The ubiquitously expressed phosphatidylinositol binding clathrin assembly (PICALM protein associates with the plasma membrane, binds clathrin, and plays a role in clathrin-mediated endocytosis. Alterations of the human PICALM gene are present in aggressive hematopoietic malignancies, and genome-wide association studies have recently linked the PICALM locus to late-onset Alzheimer's disease. Inactivating and hypomorphic Picalm mutations in mice cause different degrees of severity of anemia, abnormal iron metabolism, growth retardation and shortened lifespan. To understand PICALM's function, we studied the consequences of PICALM overexpression and characterized PICALM-deficient cells derived from mutant fit1 mice. Our results identify a role for PICALM in transferrin receptor (TfR internalization and demonstrate that the C-terminal PICALM residues are critical for its association with clathrin and for the inhibitory effect of PICALM overexpression on TfR internalization. Murine embryonic fibroblasts (MEFs that are deficient in PICALM display several characteristics of iron deficiency (increased surface TfR expression, decreased intracellular iron levels, and reduced cellular proliferation, all of which are rescued by retroviral PICALM expression. The proliferation defect of cells that lack PICALM results, at least in part, from insufficient iron uptake, since it can be corrected by iron supplementation. Moreover, PICALM-deficient cells are particularly sensitive to iron chelation. Taken together, these data reveal that PICALM plays a critical role in iron homeostasis, and offer new perspectives into the pathogenesis of PICALM-associated diseases.

  14. Iron homeostasis and infIammatory biomarker analysis in patients with type 1 Gaucher disease. (United States)

    Medrano-Engay, B; Irun, P; Gervas-Arruga, J; Andrade-Campos, M; Andreu, V; Alfonso, P; Pocovi, M; Giraldo, P


    Gaucher disease induces some metabolic abnormalities so increased serum ferritin appears in more than 60% at diagnosis. The storage of glucosylceramide in macrophages produces an inflammatory response with iron recycling deregulation and release of cytokines. Iron homeostasis is controlled by the circulating peptide hepcidin and its production is influenced by inflammatory cytokines. Iron damages cells by excess of catalyzing reactive oxygen species, removal of the excess iron has a positive influence on the response to treatment and survival in patients with iron overload. We have analyzed some inflammatory biomarkers of macrophage activation and related to the iron profile, including hepcidin and liver iron deposits determined by MRI, in 8 type 1 GD patients with hyperferritinemia. We have explored the changes in this profile after 4 months under therapy with two different iron chelators, deferoxamine or deferasirox, by evaluating response, adverse events and quality of life. We observed a significant reduction in serum ferritin and hepcidin levels and in liver iron deposits. No differences were observed in chitotriosidase activity, CCL18/PARC concentration and IL-4, IL-6, IL-7, IL-10, IL-13, MIP-1α, MIP-1β,TNF-α cytokine levels. After two years on follow-up, clinical and analytical data were improved and stable ferritin levels maintained less than 700 ng/dL.

  15. Phospholipid homeostasis and lipotoxic cardiomyopathy: a matter of balance. (United States)

    Lim, Hui-Ying; Bodmer, Rolf


    Obesity has reached pandemic proportions globally and is often associated with lipotoxic heart diseases. In the obese state, caloric surplus is accommodated in the adipocytes as triglycerides. As the storage capacity of adipocytes is exceeded or malfunctioning, lipids begin to infiltrate and accumulate in non-adipose tissues, including the myocardium of the heart, leading to organ dysfunction. While the disruption of caloric homeostasis has been widely viewed as a principal mechanism in contributing to peripheral tissue steatosis and lipotoxicity, our recent studies in Drosophila have led to the novel finding that deregulation of phospholipid homeostasis may also significantly contribute to the pathogenesis of lipotoxic cardiomyopathy. Fly mutants that bear perturbations in phosphatidylethanolamine (PE) biosynthesis, such as the easily-shocked (eas) mutants defective in ethanolamine kinase, incurred aberrant activation of the sterol regulatory element binding protein (SREBP) pathway, thereby causing chronic lipogenesis and cardiac steatosis that culminates in the development of lipotoxic cardiomyopathy. Here, we describe the potential relationship between SREBP and other eas-associated phenotypes, such as neuronal excitability defects. We will further discuss the additional implications presented by our work toward the effects of altered lipid metabolism on cellular growth and/or proliferation in response to defective phospholipid homeostasis.

  16. Melatonin improves glucose homeostasis in young Zucker diabetic fatty rats. (United States)

    Agil, Ahmad; Rosado, Isaac; Ruiz, Rosario; Figueroa, Adriana; Zen, Nourahouda; Fernández-Vázquez, Gumersindo


    The aim of this study was to investigate the effects of melatonin on glucose homeostasis in young male Zucker diabetic fatty (ZDF) rats, an experimental model of metabolic syndrome and type 2 diabetes mellitus (T2DM). ZDF rats (n=30) and lean littermates (ZL) (n=30) were used. At 6wk of age, both lean and fatty animals were subdivided into three groups, each composed of ten rats: naive (N), vehicle treated (V), and melatonin treated (M) (10mg/kg/day) for 6wk. Vehicle and melatonin were added to the drinking water. ZDF rats developed DM (fasting hyperglycemia, 460±39.8mg/dL; HbA(1) c 8.3±0.5%) with both insulin resistance (HOMA-IR 9.28±0.9 versus 1.2±0.1 in ZL) and decreased β-cell function (HOMA1-%B) by 75%, compared with ZL rats. Melatonin reduced fasting hyperglycemia by 18.6% (Pmelatonin lowered insulinemia by 15.9% (Pmelatonin decreased hyperleptinemia by 34% (Pmelatonin reduced serum free fatty acid levels by 13.5% (Pmelatonin administration ameliorates glucose homeostasis in young ZDF rats by improving both insulin action and β-cell function. These observations have implications on melatonin's possible use as a new pharmacologic therapy for improving glucose homeostasis and of obesity-related T2DM, in young subjects.

  17. Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings. (United States)

    Hu, Yan Feng; Zhou, Guoying; Na, Xiao Fan; Yang, Lijing; Nan, Wen Bin; Liu, Xu; Zhang, Yong Qiang; Li, Jiao Long; Bi, Yu Rong


    Auxin and its homeostasis play key roles in many aspects of plant growth and development. Cadmium (Cd) is a phytotoxic heavy metal and its inhibitory effects on plant growth and development have been extensively studied. However, the underlying molecular mechanism of the effects of Cd stress on auxin homeostasis is still unclear. In the present study, we found that the root elongation, shoot weight, hypocotyl length and chlorophyll content in wild-type (WT) Arabidopsis seedlings were significantly reduced after exposure to Cd stress. However, the lateral root (LR) formation was markedly promoted by Cd stress. The level and distribution of auxin were both greatly altered in primary root tips and cotyledons of Cd-treated plants. The results also showed that after Cd treatment, the IAA content was significantly decreased, which was accompanied by increases in the activity of the IAA oxidase and alteration in the expression of several putative auxin biosynthetic and catabolic genes. Application of the auxin transport inhibitor, 1-naphthylphthalamic acid (NPA) and 1-naphthoxyacetic acid (1-NOA), reversed the effects of Cd on LR formation. Additionally, there was less promotion of LR formation by Cd treatment in aux1-7 and pin2 mutants than that in the WT. Meanwhile, Cd stress also altered the expression of PINs and AUX1 in Arabidopsis roots, implying that the auxin transport pathway is required for Cd-modulated LR development. Taken together, these findings suggest that Cd stress disturbs auxin homeostasis through affecting auxin level, distribution, metabolism, and transport in Arabidopsis seedling.

  18. Iron Homeostasis in Yellowstone National Park Hot Spring Microbial Communities (United States)

    Brown, I.; Tringe, S. G.; Franklin, H.; Bryant, D. A.; Klatt, C. G.; Sarkisova, S. A.; Guevara, M.


    It has been postulated that life may have originated on Earth, and possibly on Mars, in association with hydrothermal activity and high concentrations of ferrous iron. However, it is not clear how an iron-rich thermal hydrosphere could be hospitable to microbes, since reduced iron appears to stimulate oxidative stress in all domains of life and particularly in oxygenic phototrophs. Therefore, the study of microbial diversity in iron-depositing hot springs (IDHS) and the mechanisms of iron homeostasis and suppression of oxidative stress may help elucidate how Precambrian organisms could withstand the extremely high concentrations of reactive oxygen species (ROS) produced by interaction between environmental Fe(2+) and O2. Proteins and clusters of orthologous groups (COGs) involved in the maintenance of Fe homeostasis found in cyanobacteria (CB) inhabiting environments with high and low [Fe] were main target of this analysis. Preliminary results of the analysis suggest that the Chocolate Pots (CP) microbial community is heavily dominated by phototrophs from the cyanobacteria (CB), Chloroflexi and Chlorobi phyla, while the Mushroom Spring (MS) effluent channel harbors a more diverse community in which Chloroflexi are the dominant phototrophs. It is speculated that CB inhabiting IDHS have an increased tolerance to both high concentrations of Fe(2+) and ROS produced in the Fenton reaction. This hypothesis was explored via a comparative analysis of the diversity of proteins and COGs involved in Fe and redox homeostasis in the CP and MS microbiomes.

  19. Homeostasis and its disruption in the lung microbiome. (United States)

    Dickson, Robert P; Erb-Downward, John R; Huffnagle, Gary B


    The disciplines of physiology and ecology are united by the shared centrality of the concept of homeostasis: the stability of a complex system via internal mechanisms of self-regulation, resilient to external perturbation. In the past decade, these fields of study have been bridged by the discovery of the lung microbiome. The respiratory tract, long considered sterile, is in fact a dynamic ecosystem of microbiota, intimately associated with the host inflammatory response, altered in disease states. If the microbiome is a "newly discovered organ," ecology is the language we use to explain how it establishes, maintains, and loses homeostasis. In this essay, we review recent insights into the feedback mechanisms by which the lung microbiome and the host response are regulated in health and dysregulated in acute and chronic lung disease. We propose three explanatory models supported by recent studies: the adapted island model of lung biogeography, nutritional homeostasis at the host-microbiome interface, and interkingdom signaling and the community stress response.

  20. Manganese Disturbs Metal and Protein Homeostasis in Caenorhabditis elegans (United States)

    Angeli, Suzanne; Barhydt, Tracy; Jacobs, Ross; Killilea, David W.; Lithgow, Gordon J.; Andersen, Julie K.


    Parkinson's disease (PD) is a debilitating motor and cognitive neurodegenerative disorder for which there is no cure. While aging is the major risk factor for developing PD, clear environmental risks have also been identified. Environmental exposure to the metal manganese (Mn) is a prominent risk factor for developing PD and occupational exposure to high levels of Mn can cause a syndrome known as manganism, which has symptoms that closely resemble PD. In this study, we developed a model of manganism in the environmentally tractable nematode, Caenorhabditis elegans. We find that, in addition to previously described modes of Mn toxicity, which primarily include mitochondrial dysfunction and oxidative stress, Mn exposure also significantly antagonizes protein homeostasis, another key pathological feature associated with PD and many age-related neurodegenerative diseases. Mn treatment activates the ER unfolded protein response, severely exacerbates toxicity in a disease model of protein misfolding, and alters aggregate solubility. Further, aged animals, which have previously been shown to exhibit decreased protein homeostasis, are particularly susceptible to Mn toxicity when compared to young animals, indicating the aging process sensitizes animals to metal toxicity. Mn exposure also significantly alters iron (Fe) and calcium (Ca) homeostasis, which are important for mitochondrial and ER health and which may further compound toxicity. These finding indicate that modeling manganism in C. elegans can provide a useful platform for identifying therapeutic interventions for ER stress, proteotoxicity, and age-dependent susceptibilities, key pathological features of PD and other related neurodegenerative diseases. PMID:25057947

  1. Hydrogen sulfide induced disruption of Na+ homeostasis in the cortex. (United States)

    Chao, Dongman; He, Xiaozhou; Yang, Yilin; Balboni, Gianfranco; Salvadori, Severo; Kim, Dong H; Xia, Ying


    Maintenance of ionic balance is essential for neuronal functioning. Hydrogen sulfide (H(2)S), a known toxic environmental gaseous pollutant, has been recently recognized as a gasotransmitter involved in numerous biological processes and is believed to play an important role in the neural activities under both physiological and pathological conditions. However, it is unclear if it plays any role in maintenance of ionic homeostasis in the brain under physiological/pathophysiological conditions. Here, we report by directly measuring Na(+) activity using Na(+) selective electrodes in mouse cortical slices that H(2)S donor sodium hydrosulfide (NaHS) increased Na(+) influx in a concentration-dependent manner. This effect could be partially blocked by either Na(+) channel blocker or N-methyl-D-aspartate receptor (NMDAR) blocker alone or almost completely abolished by coapplication of both blockers but not by non-NMDAR blocker. These data suggest that increased H(2)S in pathophysiological conditions, e.g., hypoxia/ischemia, potentially causes a disruption of ionic homeostasis by massive Na(+) influx through Na(+) channels and NMDARs, thus injuring neural functions. Activation of delta-opioid receptors (DOR), which reduces Na(+) currents/influx in normoxia, had no effect on H(2)S-induced Na(+) influx, suggesting that H(2)S-induced disruption of Na(+) homeostasis is resistant to DOR regulation and may play a major role in neuronal injury in pathophysiological conditions, e.g., hypoxia/ischemia.

  2. Iron transport & homeostasis mechanisms: their role in health & disease. (United States)

    Nadadur, S S; Srirama, K; Mudipalli, Anuradha


    Iron is an essential trace metal required by all living organisms and is toxic in excess. Nature has evolved a delicately balanced network to monitor iron entry, transport it to sites of need, and serve as a unique storage and recycling system, in the absence of an excretory system, to remove excess iron. Due to the unique nature of iron metabolism, iron homeostasis is achieved by integrated specialized mechanisms that operate at the cellular and organism level. The use of positional cloning approaches by multiple researchers has led to the identification and characterization of various proteins and peptides that play a critical role in iron metabolism. These efforts have led to elucidation of the molecular mechanisms involved in the uptake of iron by the enterocytes, transportation across the membrane to circulation, and delivery to diverse tissues for use and storage and sensor system to co-ordinate and achieve homeostasis. Molecular understanding of these processes and the key regulatory molecules involved in maintaining homeostasis will provide novel insights into understanding human disorders associated with either iron deficiency or overload.

  3. Activation of epithelial STAT3 regulates intestinal homeostasis. (United States)

    Neufert, Clemens; Pickert, Geethanjali; Zheng, Yan; Wittkopf, Nadine; Warntjen, Moritz; Nikolaev, Alexei; Ouyang, Wenjun; Neurath, Markus F; Becker, Christoph


    The intestinal epithelium that lines the mucosal surface along the GI-tract is a key player for the intestinal homeostasis of the healthy individual. In case of a mucosal damage or a barrier defect as seen in patients with inflammatory bowel disease, the balance is disturbed, and translocation of intestinal microbes to the submucosa is facilitated. We recently demonstrated a pivotal role of STAT3 activation in intestinal epithelial cells (IEC) for the restoration of the balance at the mucosal surface of the gut in an experimental colitis model. STAT3 was rapidly induced in intestinal epithelial cells upon challenge of mice in both experimental colitis and intestinal wound healing models. STAT3 activation was found to be dispensable in the steady-state conditions but was important for efficient regeneration of the epithelium in response to injury. Here, we extend our previous findings by showing epithelial STAT3 activation in human patients suffering from IBD and provide additional insights how the activation of epithelial STAT3 by IL-22 regulates intestinal homeostasis and mucosal wound healing. We also demonstrate that antibody-mediated neutralization of IL-22 has little impact on the development of experimental colitis in mice, but significantly delays recovery from colitis. Thus, our data suggest that targeting the STAT3 signaling pathway in IEC is a promising therapeutic approach in situations when the intestinal homeostasis is disturbed, e.g., as seen in Crohn's disease or Ulcerative colitis.

  4. The Loss of Myocardial Benefit following Ischemic Preconditioning Is Associated with Dysregulation of Iron Homeostasis in Diet-Induced Diabetes.

    Directory of Open Access Journals (Sweden)

    Vladimir Vinokur

    Full Text Available Whether the diabetic heart benefits from ischemic preconditioning (IPC, similar to the non-diabetic heart, is a subject of controversy. We recently proposed new roles for iron and ferritin in IPC-protection in Type 1-like streptozotocin-induced diabetic rat heart. Here, we investigated iron homeostasis in Cohen diabetic sensitive rat (CDs that develop hyperglycemia when fed on a high-sucrose/low-copper diet (HSD, but maintain normoglycemia on regular-diet (RD. Control Cohen-resistant rats (CDr maintain normoglycemia on either diet. The IPC procedure improved the post-ischemic recovery of normoglycemic hearts (CDr-RD, CDr-HSD and CDs-RD. CDs-HSD hearts failed to show IPC-associated protection. The recovery of these CDs-HSD hearts following I/R (without prior IPC was better than their RD controls. During IPC ferritin levels increased in normoglycemic hearts, and its level was maintained nearly constant during the subsequent prolonged ischemia, but decayed to its baseline level during the reperfusion phase. In CDs-HSD hearts the baseline levels of ferritin and ferritin-saturation with iron were notably higher than in the controls, and remained unchanged during the entire experiment. This unique and abnormal pattern of post-ischemic recovery of CDs-HSD hearts is associated with marked changes in myocardial iron homeostasis, and suggests that iron and iron-proteins play a causative role/s in the etiology of diabetes-associated cardiovascular disorders.

  5. Missense UROS mutations causing congenital erythropoietic porphyria reduce UROS homeostasis that can be rescued by proteasome inhibition. (United States)

    Blouin, Jean-Marc; Bernardo-Seisdedos, Ganeko; Sasso, Emma; Esteve, Julie; Ged, Cécile; Lalanne, Magalie; Sanz-Parra, Arantza; Urquiza, Pedro; de Verneuil, Hubert; Millet, Oscar; Richard, Emmanuel


    Congenital erythropoietic porphyria (CEP) is an inborn error of heme biosynthesis characterized by uroporphyrinogen III synthase (UROS) deficiency resulting in deleterious porphyrin accumulation in blood cells responsible for hemolytic anemia and cutaneous photosensitivity. We analyzed here the molecular basis of UROS impairment associated with twenty nine UROS missense mutations actually described in CEP patients. Using a computational and biophysical joint approach we predicted that most disease-causing mutations would affect UROS folding and stability. Through the analysis of enhanced green fluorescent protein-tagged versions of UROS enzyme we experimentally confirmed these data and showed that thermodynamic instability and premature protein degradation is a major mechanism accounting for the enzymatic deficiency associated with twenty UROS mutants in human cells. Since the intracellular loss in protein homeostasis is in excellent agreement with the in vitro destabilization, we used molecular dynamic simulation to rely structural 3D modification with UROS disability. We found that destabilizing mutations could be clustered within three types of mechanism according to side chain rearrangements or contact alterations within the pathogenic UROS enzyme so that the severity degree correlated with cellular protein instability. Furthermore, proteasome inhibition using bortezomib, a clinically available drug, significantly enhanced proteostasis of each unstable UROS mutant. Finally, we show evidence that abnormal protein homeostasis is a prevalent mechanism responsible for UROS deficiency and that modulators of UROS proteolysis such as proteasome inhibitors or chemical chaperones may represent an attractive therapeutic option to reduce porphyrin accumulation and prevent skin photosensitivity in CEP patients when the genotype includes a missense variant.

  6. VAMP-associated Proteins (VAP) as Receptors That Couple Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Proteostasis with Lipid Homeostasis. (United States)

    Ernst, Wayne L; Shome, Kuntala; Wu, Christine C; Gong, Xiaoyan; Frizzell, Raymond A; Aridor, Meir


    Unesterified cholesterol accumulates in late endosomes in cells expressing the misfolded cystic fibrosis transmembrane conductance regulator (CFTR). CFTR misfolding in the endoplasmic reticulum (ER) or general activation of ER stress led to dynein-mediated clustering of cholesterol-loaded late endosomes at the Golgi region, a process regulated by ER-localized VAMP-associated proteins (VAPs). We hypothesized that VAPs serve as intracellular receptors that couple lipid homeostasis through interactions with two phenylalanines in an acidic track (FFAT) binding signals (found in lipid sorting and sensing proteins, LSS) with proteostasis regulation. VAPB inhibited the degradation of ΔF508-CFTR. The activity was mapped to the ligand-binding major sperm protein (MSP) domain, which was sufficient in regulating CFTR biogenesis. We identified mutations in an unstructured loop within the MSP that uncoupled VAPB-regulated CFTR biogenesis from basic interactions with FFAT. Using this information, we defined functional and physical interactions between VAPB and proteostasis regulators (ligands), including the unfolded protein response sensor ATF6 and the ER degradation cluster that included FAF1, VCP, BAP31, and Derlin-1. VAPB inhibited the degradation of ΔF508-CFTR in the ER through interactions with the RMA1-Derlin-BAP31-VCP pathway. Analysis of pseudoligands containing tandem FFAT signals supports a competitive model for VAP interactions that direct CFTR biogenesis. The results suggest a model in which VAP-ligand binding couples proteostasis and lipid homeostasis leading to observed phenotypes of lipid abnormalities in protein folding diseases.

  7. Advances in understanding paternally transmitted Chromosomal Abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, F; Sloter, E; Wyrobek, A J


    Multicolor FISH has been adapted for detecting the major types of chromosomal abnormalities in human sperm including aneuploidies for clinically-relevant chromosomes, chromosomal aberrations including breaks and rearrangements, and other numerical abnormalities. The various sperm FISH assays have been used to evaluate healthy men, men of advanced age, and men who have received mutagenic cancer therapy. The mouse has also been used as a model to investigate the mechanism of paternally transmitted genetic damage. Sperm FISH for the mouse has been used to detect chromosomally abnormal mouse sperm, while the PAINT/DAPI analysis of mouse zygotes has been used to evaluate the types of chromosomal defects that can be paternally transmitted to the embryo and their effects on embryonic development.

  8. Persistent Pain and Sensory Abnormalities after Abdominoplasty

    DEFF Research Database (Denmark)

    Presman, Benjamin; Finnerup, Kenneth; Andresen, Sven Robert


    University Hospital, Denmark. The questionnaire included questions about pain and sensory abnormalities located to the abdominal skin, and physical and psychological function; patient satisfaction with surgery was rated on a 4-point scale. RESULTS: One hundred seventy patients answered the questionnaire......%) patients. The majority of patients reported improvement on all physical and psychological factors. Patients with pain were more often disappointed with the surgery and unwilling to recommend the surgery. CONCLUSIONS: Overall, patients were satisfied with the procedure, although abnormal abdominal skin....... Fourteen patients (8.2%) reported pain within the past 7 days related to the abdominoplasty. Abnormal abdominal skin sensation was common and reported by 138 patients (81%). Sensory hypersensitivity was associated with the presence of persistent pain. Satisfaction with the procedure was reported by 149 (88...

  9. Neurological abnormalities associated with CDMA exposure. (United States)

    Hocking, B; Westerman, R


    Dysaesthesiae of the scalp and neurological abnormality after mobile phone use have been reported previously, but the roles of the phone per se or the radiations in causing these findings have been questioned. We report finding a neurological abnormality in a patient after accidental exposure of the left side of the face to mobile phone radiation [code division multiple access (CDMA)] from a down-powered mobile phone base station antenna. He had headaches, unilateral left blurred vision and pupil constriction, unilateral altered sensation on the forehead, and abnormalities of current perception thresholds on testing the left trigeminal ophthalmic nerve. His nerve function recovered during 6 months follow-up. His exposure was 0.015-0.06 mW/cm(2) over 1-2 h. The implications regarding health effects of radiofrequency radiation are discussed.

  10. XYY chromosome abnormality in sexual homicide perpetrators. (United States)

    Briken, Peer; Habermann, Niels; Berner, Wolfgang; Hill, Andreas


    In a retrospective investigation of the court reports about sexual homicide perpetrators chromosome analysis had been carried out in 13 of 166 (7.8%) men. Three men (1.8%) with XYY chromosome abnormality were found. This rate is much higher than that found in unselected samples of prisoners (0.7-0.9%) or in the general population (0.01%). The three men had shown prepubescent abnormalities, school problems, and had suffered from physical abuse. The chromosome analysis in all cases had been carried out in connection with the forensic psychiatric court report due to the sexual homicide. However, two men had earlier psychiatric referrals. All were diagnosed as sexual sadistic, showed a psychopathic syndrome or psychopathy according to the Psychopathy Checklist-Revised [Hare RD, 1991, The Hare Psychopathy Checklist-Revised, Toronto, Ontario, Canada: Multi-Health Systems]. Two were multiple murderers. Especially forensic psychiatrists should be vigilant of the possibility of XYY chromosome abnormalities in sexual offenders.

  11. Parsing abnormal grain growth in specialty aluminas (United States)

    Lawrence, Abigail Kremer

    Grain growth in alumina is strongly affected by the impurities present in the material. Certain impurity elements are known to have characteristic effects on abnormal grain growth in alumina. Specialty alumina powders contain multiple impurity species including MgO, CaO, SiO2, and Na 2O. In this work, sintered samples made from alumina powders containing various amounts of the impurities in question were characterized by their grain size and aspect ratio distributions. Multiple quantitative methods were used to characterize and classify samples with varying microstructures. The grain size distributions were used to partition the grain size population into subpopulations depending on the observed deviation from normal behavior. Using both grain size and aspect ratio a new visual representation for a microstructure was introduced called a morphology frequency map that gives a fingerprint for the material. The number of subpopulations within a sample and the shape of the distribution on the morphology map provided the basis for a classification scheme for different types of microstructures. Also using the two parameters a series of five metrics were calculated that describe the character of the abnormal grains in the sample, these were called abnormal character values. The abnormal character values describe the fraction of grains that are considered abnormal, the average magnitude of abnormality (including both grain size and aspect ratio), the average size, and variance in size. The final metric is the correlation between grain size and aspect ratio for the entire population of grains. The abnormal character values give a sense of how different from "normal" the sample is, given the assumption that a normal sample has a lognormal distribution of grain size and a Gaussian distribution of aspect ratios. In the second part of the work the quantified measures of abnormality were correlated with processing parameters such as composition and heat treatment conditions. A

  12. Abnormal Head Position in Infantile Nystagmus Syndrome (United States)

    Noval, Susana; González-Manrique, Mar; Rodríguez-Del Valle, José María; Rodríguez-Sánchez, José María


    Infantile nystagmus is an involuntary, bilateral, conjugate, and rhythmic oscillation of the eyes which is present at birth or develops within the first 6 months of life. It may be pendular or jerk-like and, its intensity usually increases in lateral gaze, decreasing with convergence. Up to 64% of all patients with nystagmus also present strabismus, and even more patients have an abnormal head position. The abnormal head positions are more often horizontal, but they may also be vertical or take the form of a tilt, even though the nystagmus itself is horizontal. The aim of this article is to review available information about the origin and treatment of the abnormal head position associated to nystagmus, and to describe our treatment strategies. PMID:24533187

  13. Enhanced monitoring of abnormal emergency department demands

    KAUST Repository

    Harrou, Fouzi


    This paper presents a statistical technique for detecting signs of abnormal situation generated by the influx of patients at emergency department (ED). The monitoring strategy developed was able to provide early alert mechanisms in the event of abnormal situations caused by abnormal patient arrivals to the ED. More specifically, This work proposed the application of autoregressive moving average (ARMA) models combined with the generalized likelihood ratio (GLR) test for anomaly-detection. ARMA was used as the modelling framework of the ARMA-based GLR anomaly-detection methodology. The GLR test was applied to the uncorrelated residuals obtained from the ARMA model to detect anomalies when the data did not fit the reference ARMA model. The ARMA-based GLR hypothesis testing scheme was successfully applied to the practical data collected from the database of the pediatric emergency department (PED) at Lille regional hospital center, France. © 2015 IEEE.

  14. Mutual antagonism between hypoxia-inducible factors 1α and 2α regulates oxygen sensing and cardio-respiratory homeostasis. (United States)

    Yuan, Guoxiang; Peng, Ying-Jie; Reddy, Vaddi Damodara; Makarenko, Vladislav V; Nanduri, Jayasri; Khan, Shakil A; Garcia, Joseph A; Kumar, Ganesh K; Semenza, Gregg L; Prabhakar, Nanduri R


    Breathing and blood pressure are under constant homeostatic regulation to maintain optimal oxygen delivery to the tissues. Chemosensory reflexes initiated by the carotid body and catecholamine secretion from the adrenal medulla are the principal mechanisms for maintaining respiratory and cardiovascular homeostasis; however, the underlying molecular mechanisms are not known. Here, we report that balanced activity of hypoxia-inducible factor-1 (HIF-1) and HIF-2 is critical for oxygen sensing by the carotid body and adrenal medulla, and for their control of cardio-respiratory function. In Hif2α(+/-) mice, partial HIF-2α deficiency increased levels of HIF-1α and NADPH oxidase 2, leading to an oxidized intracellular redox state, exaggerated hypoxic sensitivity, and cardio-respiratory abnormalities, which were reversed by treatment with a HIF-1α inhibitor or a superoxide anion scavenger. Conversely, in Hif1α(+/-) mice, partial HIF-1α deficiency increased levels of HIF-2α and superoxide dismutase 2, leading to a reduced intracellular redox state, blunted oxygen sensing, and impaired carotid body and ventilatory responses to chronic hypoxia, which were corrected by treatment with a HIF-2α inhibitor. None of the abnormalities observed in Hif1α(+/-) mice or Hif2α(+/-) mice were observed in Hif1α(+/-);Hif2α(+/-) mice. These observations demonstrate that redox balance, which is determined by mutual antagonism between HIF-α isoforms, establishes the set point for hypoxic sensing by the carotid body and adrenal medulla, and is required for maintenance of cardio-respiratory homeostasis.

  15. Hemorheological abnormalities in human arterial hypertension (United States)

    Lo Presti, Rosalia; Hopps, Eugenia; Caimi, Gregorio


    Blood rheology is impaired in hypertensive patients. The alteration involves blood and plasma viscosity, and the erythrocyte behaviour is often abnormal. The hemorheological pattern appears to be related to some pathophysiological mechanisms of hypertension and to organ damage, in particular left ventricular hypertrophy and myocardial ischemia. Abnormalities have been observed in erythrocyte membrane fluidity, explored by fluorescence spectroscopy and electron spin resonance. This may be relevant for red cell flow in microvessels and oxygen delivery to tissues. Although blood viscosity is not a direct target of antihypertensive therapy, the rheological properties of blood play a role in the pathophysiology of arterial hypertension and its vascular complications.

  16. Nonpathologizing trauma interventions in abnormal psychology courses. (United States)

    Hoover, Stephanie M; Luchner, Andrew F; Pickett, Rachel F


    Because abnormal psychology courses presuppose a focus on pathological human functioning, nonpathologizing interventions within these classes are particularly powerful and can reach survivors, bystanders, and perpetrators. Interventions are needed to improve the social response to trauma on college campuses. By applying psychodynamic and feminist multicultural theory, instructors can deliver nonpathologizing interventions about trauma and trauma response within these classes. We recommend class-based interventions with the following aims: (a) intentionally using nonpathologizing language, (b) normalizing trauma responses, (c) subjectively defining trauma, (d) challenging secondary victimization, and (e) questioning the delineation of abnormal and normal. The recommendations promote implications for instructor self-reflection, therapy interventions, and future research.

  17. Occult intraspinal abnormalities and congenital scoliosis

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Erfani


    Full Text Available

    BACKGROUND: Congenital scoliosis occurs because of either the failure of formation or the failure of segmentation or both. Evaluation of the incidence and the types of occult intraspinal abnormalities in congenital scoliosis is the subject of this study.

    METHODS: During a period of 29 years, 103 patients with congenital scoliosis were studied. MRI was used in 46 patients, myelography or CT myelography was used in 64 patients and both MRI and myelography or CT myelography were used in 7 patients for intraspinal abnormalities.

    RESULTS: In the MRI group, among the 46 patients, 19 patients (41.3% had intraspinal abnormalities consisting syringomyelia in 9 (19.5% diastematomyelia in 8 (17.4%, tethered cord syndrome in 6 (13%, low conus in 5 (10.8% and diplomyelia in 3 (6.5% of the patients. In the myelography group, among the 64 patients, 17 (26.5% had intraspinal abnormalities and diastematomyelia was the most common one found in 14 (21.8% patients.

    CONCLUSIONS: Intraspinal abnormalities are frequent in congenital scoliosis. Syringomyelia may be associated with congenital scoliosis. In congenital scoliosis, rib fusion may be an indicator of intraspinal abnormalities in MRI. A significant difference between clinical findings and intraspinal anomalies (P<0.05 was noted. Moreover, we believe that total spinal MRI with coronal, sagittal and axial views is a valuable tool in determining the intraspinal abnormalities in congenital scoliosis. This method is highly

  18. Anaesthesia in operations of congenital craniofacial abnormalities

    Directory of Open Access Journals (Sweden)

    Jahangirie B


    Full Text Available Some syndromes that are characterized by abnormalities of the skull, facial bones, and mandibule, most of these patients are from the pediatric population. For the anaesthetic management of patients with various craniofacial dysostosis are as follows: 1 The necessary for careful evaluation of the airway by simply observing the patient. 2 Evaluation of the patient for abnormalities of the heart and lungs. 3 Patients may also have increased intracranial pressure. 4 Anaesthetic drugs and techniques: no particular drugs is recommended. Techniques controlled ventilation. 5 All patients should be cared in the intensive care unit after operation between 24-48 hours

  19. Temporal abnormalities in children with developmental dyscalculia. (United States)

    Vicario, Carmelo Mario; Rappo, Gaetano; Pepi, Annamaria; Pavan, Andrea; Martino, Davide


    Recent imaging studies have associated Developmental dyscalculia (DD) to structural and functional alterations corresponding Parietal and the Prefrontal cortex (PFC). Since these areas were shown also to be involved in timing abilities, we hypothesized that time processing is abnormal in DD. We compared time processing abilities between 10 children with pure DD (8 years old) and 11 age-matched healthy children. Results show that the DD group underestimated duration of a sub-second scale when asked to perform a time comparison task. The timing abnormality observed in our DD participants is consistent with evidence of a shared fronto-parietal neural network for representing time and quantity.

  20. Fluid and particle mechanics

    CERN Document Server

    Michell, S J


    Fluid and Particle Mechanics provides information pertinent to hydraulics or fluid mechanics. This book discusses the properties and behavior of liquids and gases in motion and at rest. Organized into nine chapters, this book begins with an overview of the science of fluid mechanics that is subdivided accordingly into two main branches, namely, fluid statics and fluid dynamics. This text then examines the flowmeter devices used for the measurement of flow of liquids and gases. Other chapters consider the principle of resistance in open channel flow, which is based on improper application of th

  1. Detection of chromosomal abnormalities and the 22q11 microdeletion in fetuses with congenital heart defects. (United States)

    Lv, Wei; Wang, Shuyu


    Chromosomal abnormalities and the 22q11 microdeletion are implicated in congenital heart defects (CHDs). This study was designed to detect these abnormalities in fetuses and determine the effect of genetic factors on CHD etiology. Between January 2010 and December 2011, 113 fetuses with CHD treated at the Beijing Obstetrics and Gynecology Hospital were investigated, using chromosome karyotyping of either amniotic fluid cell or umbilical cord blood cell samples. Fetuses with a normal result were then investigated for the 22q11 microdeletion by fluorescence in situ hybridization. Of the 113 patients, 12 (10.6%) exhibited chromosomal abnormalities, while 6 (5.3%) of the remaining 101 cases presented with a 22q11 microdeletion. The incidence of chromosomal abnormalities was significantly higher in the group of fetuses presenting with extracardiac malformations in addition to CHD (Pdefects, additional chromosomal analysis is required to detect extracardiac abnormalities. Fetuses with heart defects should also be considered for 22q11 microdeletion detection to evaluate fetal prognosis, particularly prior to surgery.

  2. Spinning fluids reactor (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert


    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  3. Fluid cooled electrical assembly (United States)

    Rinehart, Lawrence E.; Romero, Guillermo L.


    A heat producing, fluid cooled assembly that includes a housing made of liquid-impermeable material, which defines a fluid inlet and a fluid outlet and an opening. Also included is an electrical package having a set of semiconductor electrical devices supported on a substrate and the second major surface is a heat sink adapted to express heat generated from the electrical apparatus and wherein the second major surface defines a rim that is fit to the opening. Further, the housing is constructed so that as fluid travels from the fluid inlet to the fluid outlet it is constrained to flow past the opening thereby placing the fluid in contact with the heat sink.

  4. Cerebrospinal fluid tau proteins in status epilepticus. (United States)

    Monti, Giulia; Tondelli, Manuela; Giovannini, Giada; Bedin, Roberta; Nichelli, Paolo F; Trenti, Tommaso; Meletti, Stefano; Chiari, Annalisa


    Tau protein is a phosphorylated microtubule-associated protein, principally localized at neuronal level in the central nervous system (CNS). Tau levels in the cerebrospinal fluid (CSF) are considered to index both axonal and neuronal damage. To date, however, no study has specifically evaluated the CSF levels of tau proteins in patients with status epilepticus (SE). We evaluated these established biomarkers of neuronal damage in patients with SE who received a lumbar puncture during SE between 2007 and 2014. Status epilepticus cases due to acute structural brain damage, including CNS infection, were excluded. Clinical, biological, therapeutic, and follow-up data were collected. Group comparison between patients stratified according to SE response to antiepileptic drugs (AEDs), disability, and epilepsy outcomes were performed. Twenty-eight patients were considered for the analyses (mean age 56 years): 14 patients had abnormally high CSF t-tau level, six patients had abnormally high CSF p-tau level, and only three patients had abnormally low Aβ1-42 level. Cerebrospinal fluid t-tau value was higher in patients who developed a refractory SE compared to patients with seizures controlled by AED. Cerebrospinal fluid t-tau values were positively correlated with SE duration and were higher in patients treated with propofol anesthesia compared to patients that had not received this treatment. Patients with higher CSF t-tau had higher risk of developing disability (OR = 32.5, p = 0.004) and chronic epilepsy (OR = 12; p = 0.016) in comparison with patients with lower CSF t-tau level. Our results suggest that CSF t-tau level might be proposed as a biomarker of SE severity and prognosis. Prospective studies are needed to evaluate the effects of propofol on tau pathology in this setting. This article is part of a Special Issue entitled "Status Epilepticus".

  5. Craniofacial abnormalities among patients with Edwards Syndrome

    Directory of Open Access Journals (Sweden)

    Rafael Fabiano M. Rosa


    Full Text Available OBJECTIVE To determine the frequency and types of craniofacial abnormalities observed in patients with trisomy 18 or Edwards syndrome (ES. METHODS This descriptive and retrospective study of a case series included all patients diagnosed with ES in a Clinical Genetics Service of a reference hospital in Southern Brazil from 1975 to 2008. The results of the karyotypic analysis, along with clinical data, were collected from medical records. RESULTS: The sample consisted of 50 patients, of which 66% were female. The median age at first evaluation was 14 days. Regarding the karyotypes, full trisomy of chromosome 18 was the main alteration (90%. Mosaicism was observed in 10%. The main craniofacial abnormalities were: microretrognathia (76%, abnormalities of the ear helix/dysplastic ears (70%, prominent occiput (52%, posteriorly rotated (46% and low set ears (44%, and short palpebral fissures/blepharophimosis (46%. Other uncommon - but relevant - abnormalities included: microtia (18%, orofacial clefts (12%, preauricular tags (10%, facial palsy (4%, encephalocele (4%, absence of external auditory canal (2% and asymmetric face (2%. One patient had an initial suspicion of oculo-auriculo-vertebral spectrum (OAVS or Goldenhar syndrome. CONCLUSIONS: Despite the literature description of a characteristic clinical presentation for ES, craniofacial alterations may be variable among these patients. The OAVS findings in this sample are noteworthy. The association of ES with OAVS has been reported once in the literature.

  6. Engineering molecular crystals with abnormally weak cohesion. (United States)

    Maly, Kenneth E; Gagnon, Eric; Wuest, James D


    Adding astutely placed methyl groups to hexaphenylbenzene increases molecular weight but simultaneously weakens key C-H···π interactions, thereby leading to decreased enthalpies of sublimation and showing that materials with abnormally weak cohesion can be made by identifying and then obstructing interactions that help control association.

  7. Schizophrenogenic Parenting in Abnormal Psychology Textbooks. (United States)

    Wahl, Otto F.


    Considers the treatment of family causation of schizophrenia in undergraduate abnormal psychology textbooks. Reviews texts published only after 1986. Points out a number of implications for psychologists which arise from the inclusion in these texts of the idea that parents cause schizophrenia, not the least of which is the potential for…

  8. Teaching Abnormal Psychology in a Multimedia Classroom. (United States)

    Brewster, JoAnne


    Examines the techniques used in teaching an abnormal psychology class in a multimedia environment with two computers and a variety of audiovisual equipment. Students respond anonymously to various questions via keypads mounted on their desks, then immediately view and discuss summaries of their responses. (MJP)

  9. Psychology Faculty Perceptions of Abnormal Psychology Textbooks (United States)

    Rapport, Zachary


    The problem. The purpose of the current study was to investigate the perceptions and opinions of psychology professors regarding the accuracy and inclusiveness of abnormal psychology textbooks. It sought answers from psychology professors to the following questions: (1) What are the expectations of the psychology faculty at a private university of…

  10. [Y chromosome structural abnormalities and Turner's syndrome]. (United States)

    Ravel, C; Siffroi, J-P


    Although specifically male, the human Y chromosome may be observed in female karyotypes, mostly in women with Turner syndrome stigmata. In women with isolated gonadal dysgenesis but otherwise normal stature, the testis determining factor or SRY gene may have been removed from the Y chromosome or may be mutated. In other women with Turner syndrome, the karyotype is usually abnormal and shows a frequent 45,X/46,XY mosaicism. In these cases, the phenotype depends on the ratio between Y positive and 45,X cell lines in the body. When in mosaicism, Y chromosomes are likely to carry structural abnormalities which explain mitotic instability, such as the existence of two centromeres. Dicentric Y isochromosomes for the short arm (idic[Yp]) or ring Y chromosomes (r[Y]) are the most frequent abnormal Y chromosomes found in infertile patients and in Turner syndrome in mosaic with 45,X cells. Although monocentric, deleted Y chromosomes for the long arm and those carrying microdeletions in the AZF region are also instable and are frequently associated with a 45,X cell line. Management of infertile patients carrying such abnormal Y chromosomes must take into account the risk and the consequences of a mosaicism in the offspring.

  11. Neurobehavioural Correlates of Abnormal Repetitive Behaviour

    Directory of Open Access Journals (Sweden)

    R. A. Ford


    Full Text Available Conditions in which echolalia and echopraxia occur are reviewed, followed by an attempt to elicit possible mechanisms of these phenomena. A brief description of stereotypical and perseverative behaviour and obsessional phenomena is given. It is suggested that abnormal repetitive behaviour may occur partly as a result of central dopaminergic dysfunction.

  12. Metabolic Abnormalities in Children with Asthma



    Rationale: Childhood asthma and obesity have reached epidemic proportions worldwide, and the latter is also contributing to increasing rates of related metabolic disorders, such as diabetes. Yet, the relationship between asthma, obesity, and abnormal lipid and glucose metabolism is not well understood, nor has it been adequately explored in children.

  13. Morphological Abnormalities of Thalamic Subnuclei in Migraine

    DEFF Research Database (Denmark)

    Magon, Stefano; May, Arne; Stankewitz, Anne


    . SIGNIFICANCE STATEMENT: This multicenter imaging study shows morphological thalamic abnormalities in a large cohort of patients with episodic migraine compared with healthy subjects using state-of-the-art MRI and advanced, fully automated multiatlas segmentation techniques. The results stress that migraine...

  14. Abnormal Events for Emergency Trip in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Guk Hun; Choi, M. J.; Park, S. I.; Kim, H. W.; Kim, S. J.; Park, J. H.; Kwon, I. C


    This report gathers abnormal events related to emergency trip of HANARO that happened during its operation over 10 years since the first criticality on February 1995. The collected examples will be utilized to the HANARO's operators as a useful guide.

  15. Esophageal motility abnormalities in gastroesophageal reflux disease

    Institute of Scientific and Technical Information of China (English)

    Irene; Martinucci; Nicola; de; Bortoli; Maria; Giacchino; Giorgia; Bodini; Elisa; Marabotto; Santino; Marchi; Vincenzo; Savarino; Edoardo; Savarino


    Esophageal motility abnormalities are among the main factors implicated in the pathogenesis of gastroesophageal reflux disease. The recent introduction in clinical and research practice of novel esophageal testing has markedly improved our understanding of the mechanisms contributing to the development of gastroesophageal reflux disease, allowing a better management of patients with this disorder. In this context, the present article intends to provide an overview of the current literature about esophageal motility dysfunctions in patients with gastroesophageal reflux disease. Esophageal manometry, by recording intraluminal pressure, represents the gold standard to diagnose esophagealmotility abnormalities. In particular, using novel techniques, such as high resolution manometry with or without concurrent intraluminal impedance monitoring, transient lower esophageal sphincter (LES) relaxations, hypotensive LES, ineffective esophageal peristalsis and bolus transit abnormalities have been better defined and strongly implicated in gastroesophageal reflux disease development. Overall, recent findings suggest that esophageal motility abnormalities are increasingly prevalent with increasing severity of reflux disease, from nonerosive reflux disease to erosive reflux disease and Barrett’s esophagus. Characterizing esophageal dysmotility among different subgroups of patients with reflux disease may represent a fundamental approach to properly diagnose these patients and, thus, to set up the best therapeutic management. Currently, surgery represents the only reliable way to restore the esophagogastric junction integrity and to reduce transient LES relaxations that are considered to be the predominant mechanism by which gastric contents can enter the esophagus. On that ground, more in depth future studies assessing the pathogenetic role of dysmotility in patients with reflux disease are warranted.

  16. Esophageal motility abnormalities in gastroesophageal reflux disease. (United States)

    Martinucci, Irene; de Bortoli, Nicola; Giacchino, Maria; Bodini, Giorgia; Marabotto, Elisa; Marchi, Santino; Savarino, Vincenzo; Savarino, Edoardo


    Esophageal motility abnormalities are among the main factors implicated in the pathogenesis of gastroesophageal reflux disease. The recent introduction in clinical and research practice of novel esophageal testing has markedly improved our understanding of the mechanisms contributing to the development of gastroesophageal reflux disease, allowing a better management of patients with this disorder. In this context, the present article intends to provide an overview of the current literature about esophageal motility dysfunctions in patients with gastroesophageal reflux disease. Esophageal manometry, by recording intraluminal pressure, represents the gold standard to diagnose esophageal motility abnormalities. In particular, using novel techniques, such as high resolution manometry with or without concurrent intraluminal impedance monitoring, transient lower esophageal sphincter (LES) relaxations, hypotensive LES, ineffective esophageal peristalsis and bolus transit abnormalities have been better defined and strongly implicated in gastroesophageal reflux disease development. Overall, recent findings suggest that esophageal motility abnormalities are increasingly prevalent with increasing severity of reflux disease, from non-erosive reflux disease to erosive reflux disease and Barrett's esophagus. Characterizing esophageal dysmotility among different subgroups of patients with reflux disease may represent a fundamental approach to properly diagnose these patients and, thus, to set up the best therapeutic management. Currently, surgery represents the only reliable way to restore the esophagogastric junction integrity and to reduce transient LES relaxations that are considered to be the predominant mechanism by which gastric contents can enter the esophagus. On that ground, more in depth future studies assessing the pathogenetic role of dysmotility in patients with reflux disease are warranted.

  17. Meiotic chromosome abnormalities in human spermatogenesis. (United States)

    Martin, Renée H


    The last few years have witnessed an explosion in the information about chromosome abnormalities in human sperm and the meiotic events that predispose to these abnormalities. We have determined that all chromosomes are susceptible to nondisjunction, but chromosomes 21 and 22 and, especially, the sex chromosomes have an increased frequency of aneuploidy. Studies are just beginning on the effects of potential mutagens on the chromosomal constitution of human sperm. The effects of pesticides and cancer therapeutic agents have been reviewed. In the last decade, there has been a great impetus to study chromosome abnormalities in sperm from infertile men because the advent of intracytoplasmic sperm injection (ICSI) made it possible for these men to father pregnancies. A large number of studies have demonstrated that infertile men have an increased frequency of chromosomally abnormal sperm and children, even when they have a normal somatic karyotype. Meiotic studies on the pachytene stage of spermatogenesis have demonstrated that infertile men have impaired chromosome synapsis, a significantly decreased frequency of recombination, and an increased frequency of chromosomes completely lacking a recombination site. Such errors make these cells susceptible to meiotic arrest and the production of aneuploid gametes.

  18. Abnormal Selective Attention Normalizes P3 Amplitudes in PDD (United States)

    Hoeksma, Marco R.; Kemner, Chantal; Kenemans, J. Leon; van Engeland, Herman


    This paper studied whether abnormal P3 amplitudes in PDD are a corollary of abnormalities in ERP components related to selective attention in visual and auditory tasks. Furthermore, this study sought to clarify possible age differences in such abnormalities. Children with PDD showed smaller P3 amplitudes than controls, but no abnormalities in…

  19. Abnormal Wnt and PI3Kinase signaling in the malformed intestine of lama5 deficient mice.

    Directory of Open Access Journals (Sweden)

    Léa Ritié

    Full Text Available Laminins are major constituents of basement membranes and are essential for tissue homeostasis. Laminin-511 is highly expressed in the intestine and its absence causes severe malformation of the intestine and embryonic lethality. To understand the mechanistic role of laminin-511 in tissue homeostasis, we used RNA profiling of embryonic intestinal tissue of lama5 knockout mice and identified a lama5 specific gene expression signature. By combining cell culture experiments with mediated knockdown approaches, we provide a mechanistic link between laminin α5 gene deficiency and the physiological phenotype. We show that laminin α5 plays a crucial role in both epithelial and mesenchymal cell behavior by inhibiting Wnt and activating PI3K signaling. We conclude that conflicting signals are elicited in the absence of lama5, which alter cell adhesion, migration as well as epithelial and muscle differentiation. Conversely, adhesion to laminin-511 may serve as a potent regulator of known interconnected PI3K/Akt and Wnt signaling pathways. Thus deregulated adhesion to laminin-511 may be instrumental in diseases such as human pathologies of the gut where laminin-511 is abnormally expressed as it is shown here.

  20. Temperature Stress and Redox Homeostasis in Agricultural Crops

    Directory of Open Access Journals (Sweden)

    Rashmi eAwasthi


    Full Text Available Plants are exposed to a wide range of environmental conditions and one of the major forces that shape the structure and function of plants are temperature stresses, which include low and high temperature stresses and considered as major abiotic stresses for crop plants. Due to global climate change, temperature stress is becoming the major area of concern for the researchers worldwide. The reactions of plants to these stresses are complex and have devastating effects on plant metabolism, disrupting cellular homeostasis and uncoupling major physiological and biochemical processes. Temperature stresses disrupt photosynthesis and increase photorespiration altering the normal homeostasis of plant cells. The constancy of temperature, among different metabolic equilibria present in plant cells, depends to a certain extent on a homeostatically regulated ratio of redox components, which are present virtually in all plant cells. Several pathways, which are present in plant cells, enable correct equilibrium of the plant cellular redox state and balance fluctuations in plant cells caused by changes in environment due to stressful conditions. In temperature stresses, high temperature stress is considered to be one of the major abiotic stresses for restricting crop production. The responses of plants to heat stress vary with extent of temperature increase, its duration and the type of plant. On other hand, low temperature as major environmental factor often affects plant growth and crop productivity and leads to substantial crop loses. The present review discusses how oxidative damage as a result of temperature stress is detrimental for various crops. Various strategies adapted by the plants to main redox homeostasis are described along with use of exogenous application of some stress protectants.

  1. Sustained sleep fragmentation induces sleep homeostasis in mice

    KAUST Repository

    Baud, Maxime O.


    Study Objectives: Sleep fragmentation (SF) is an integral feature of sleep apnea and other prevalent sleep disorders. Although the effect of repetitive arousals on cognitive performance is well documented, the effects of long-term SF on electroencephalography (EEG) and molecular markers of sleep homeostasis remain poorly investigated. To address this question, we developed a mouse model of chronic SF and characterized its effect on EEG spectral frequencies and the expression of genes previously linked to sleep homeostasis including clock genes, heat shock proteins, and plasticity-related genes. Design: N/A. Setting: Animal sleep research laboratory. Participants : Sixty-six C57BL6/J adult mice. Interventions: Instrumental sleep disruption at a rate of 60/h during 14 days Measurements and Results: Locomotor activity and EEG were recorded during 14 days of SF followed by recovery for 2 days. Despite a dramatic number of arousals and decreased sleep bout duration, SF minimally reduced total quantity of sleep and did not significantly alter its circadian distribution. Spectral analysis during SF revealed a homeostatic drive for slow wave activity (SWA; 1-4 Hz) and other frequencies as well (4-40 Hz). Recordings during recovery revealed slow wave sleep consolidation and a transient rebound in SWA, and paradoxical sleep duration. The expression of selected genes was not induced following chronic SF. Conclusions: Chronic sleep fragmentation (SF) increased sleep pressure confirming that altered quality with preserved quantity triggers core sleep homeostasis mechanisms. However, it did not induce the expression of genes induced by sleep loss, suggesting that these molecular pathways are not sustainably activated in chronic diseases involving SF.

  2. Deficiency of α-1-antitrypsin influences systemic iron homeostasis

    Directory of Open Access Journals (Sweden)

    Ghio AJ


    Full Text Available Andrew J Ghio,1 Joleen M Soukup,1 Judy H Richards,1 Bernard M Fischer,2 Judith A Voynow,2 Donald E Schmechel31US Environmental Protection Agency, Chapel Hill, NC, USA; 2Division of Pediatric Pulmonary Medicine, Department of Pediatrics,3Joseph and Kathleen Bryan Alzheimer Disease Research Center, Department of Medicine (Neurology, Duke University Medical Center, Durham, NC, USAAbstract: There is evidence that proteases and antiproteases participate in the iron homeostasis of cells and living systems. We tested the postulate that α-1 antitrypsin (A1AT polymorphism and the consequent deficiency of this antiprotease in humans are associated with a systemic disruption in iron homeostasis. Archived plasma samples from Alpha-1 Foundation (30 MM, 30 MZ, and 30 ZZ individuals were analyzed for A1AT, ferritin, transferrin, and C-reactive protein (CRP. Plasma samples were also assayed for metals using inductively coupled plasma atomic emission spectroscopy (ICPAES. Plasma levels of A1AT in MZ and ZZ individuals were approximately 60% and 20% of those for MM individuals respectively. Plasma ferritin concentrations in those with the ZZ genotype were greater relative to those individuals with either MM or MZ genotype. Plasma transferrin for MM, MZ, and ZZ genotypes showed no significant differences. Linear regression analysis revealed a significant (negative relationship between plasma concentrations of A1AT and ferritin while that between A1AT and transferrin levels was not significant. Plasma CRP concentrations were not significantly different between MM, MZ, and ZZ individuals. ICPAES measurement of metals confirmed elevated plasma concentrations of nonheme iron among ZZ individuals. Nonheme iron concentrations correlated (negatively with levels of A1AT. A1AT deficiency is associated with evidence of a disruption in iron homeostasis with plasma ferritin and nonheme iron concentrations being elevated among those with the ZZ genotype.Keywords: α-1

  3. Maintenance of Bone Homeostasis by DLL1-Mediated Notch Signaling. (United States)

    Muguruma, Yukari; Hozumi, Katsuto; Warita, Hiroyuki; Yahata, Takashi; Uno, Tomoko; Ito, Mamoru; Ando, Kiyoshi


    Adult bone mass is maintained through a balance of the activities of osteoblasts and osteoclasts. Although Notch signaling has been shown to maintain bone homeostasis by controlling the commitment, differentiation, and function of cells in both the osteoblast and osteoclast lineages, the precise mechanisms by which Notch performs such diverse and complex roles in bone physiology remain unclear. By using a transgenic approach that modified the expression of delta-like 1 (DLL1) or Jagged1 (JAG1) in an osteoblast-specific manner, we investigated the ligand-specific effects of Notch signaling in bone homeostasis. This study demonstrated for the first time that the proper regulation of DLL1 expression, but not JAG1 expression, in osteoblasts is essential for the maintenance of bone remodeling. DLL1-induced Notch signaling was responsible for the expansion of the bone-forming cell pool by promoting the proliferation of committed but immature osteoblasts. However, DLL1-Notch signaling inhibited further differentiation of the expanded osteoblasts to become fully matured functional osteoblasts, thereby substantially decreasing bone formation. Osteoblast-specific expression of DLL1 did not alter the intrinsic differentiation ability of cells of the osteoclast lineage. However, maturational arrest of osteoblasts caused by the DLL1 transgene impaired the maturation and function of osteoclasts due to a failed osteoblast-osteoclast coupling, resulting in severe suppression of bone metabolic turnover. Taken together, DLL1-mediated Notch signaling is critical for proper bone remodeling as it regulates the differentiation and function of both osteoblasts and osteoclasts. Our study elucidates the importance of ligand-specific activation of Notch signaling in the maintenance of bone homeostasis. This article is protected by copyright. All rights reserved.

  4. Embryonic Blood-Cerebrospinal Fluid Barrier Formation and Function

    Directory of Open Access Journals (Sweden)

    David eBueno


    Full Text Available During embryonic development and adult life, brain cavities and ventricles are filled with cerebrospinal fluid (CSF. CSF has attracted interest as an active signaling medium that regulates brain development, homeostasis and disease. CSF is a complex protein-rich fluid containing growth factors and signaling molecules that regulate multiple cell functions in the central nervous system (CNS. The composition and substance concentrations of CSF are tightly controlled. In recent years, it has been demonstrated that embryonic CSF (eCSF has a key function as a fluid pathway for delivering diffusible signals to the developing brain, thus contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the expansion and patterning of the brain. From fetal stages through to adult life, CSF is primarily produced by the choroid plexus. The development and functional activities of the choroid plexus and other blood–brain barrier (BBB systems in adults and fetuses have been extensively analyzed. However, eCSF production and control of its homeostasis in embryos, from the closure of the anterior neuropore when the brain cavities become physiologically sealed, to the formation of the functional fetal choroid plexus, has not been studied in as much depth and remains open to debate. This review brings together the existing literature, some of which is based on experiments conducted by our research group, concerning the formation and function of a temporary embryonic blood–CSF barrier in the context of the crucial roles played by the molecules in eCSF.

  5. Apoptosis, Necrosis, and Necroptosis in the Gut and Intestinal Homeostasis. (United States)

    Negroni, Anna; Cucchiara, Salvatore; Stronati, Laura


    Intestinal epithelial cells (IECs) form a physiochemical barrier that separates the intestinal lumen from the host's internal milieu and is critical for electrolyte passage, nutrient absorption, and interaction with commensal microbiota. Moreover, IECs are strongly involved in the intestinal mucosal inflammatory response as well as in mucosal innate and adaptive immune responses. Cell death in the intestinal barrier is finely controlled, since alterations may lead to severe disorders, including inflammatory diseases. The emerging picture indicates that intestinal epithelial cell death is strictly related to the maintenance of tissue homeostasis. This review is focused on previous reports on different forms of cell death in intestinal epithelium.

  6. [Homeostasis changes during rehabilitation period after acute chemical poisoning]. (United States)

    Badalian, A V; Luzhnikov, E A; Gol'dfarb, Iu S; Godkov, M A; Khvatov, V B; Bitkova, E E; El'kov, A N; Il'iashenko, K K; Nikulina, V P; Matveev, S B


    The article deals with review of 78 patients of rehabilitation toxicological unit. The patients received resuscitation and detoxification. All patients were divided into three groups; 1st group--patients after poisoning with psychopharmaceuticals, 2nd group--patients after poisoning with cauterizing liquids and 3rd group--patients with encephalopathy after poisoning with neurotoxin (psychopharmaceuticals, narcotics and ethanol). Disorders of rheology, haemostasis and endotoxicosis accrued in all groups. These disorders were a signs of the erythrocytes and platelets aggregation developing and viscoelasticity disorder. Homeostasis changes during rehabilitation period need an accurate diagnostics for purposeful treatment of the defined disorders.

  7. Cholesterol homeostasis: How do cells sense sterol excess? (United States)

    Howe, Vicky; Sharpe, Laura J; Alexopoulos, Stephanie J; Kunze, Sarah V; Chua, Ngee Kiat; Li, Dianfan; Brown, Andrew J


    Cholesterol is vital in mammals, but toxic in excess. Consequently, elaborate molecular mechanisms have evolved to maintain this sterol within narrow limits. How cells sense excess cholesterol is an intriguing area of research. Cells sense cholesterol, and other related sterols such as oxysterols or cholesterol synthesis intermediates, and respond to changing levels through several elegant mechanisms of feedback regulation. Cholesterol sensing involves both direct binding of sterols to the homeostatic machinery located in the endoplasmic reticulum (ER), and indirect effects elicited by sterol-dependent alteration of the physical properties of membranes. Here, we examine the mechanisms employed by cells to maintain cholesterol homeostasis.

  8. Role of Vitamin D Glucosiduronate in Calcium Homeostasis


    Nagubandi, Sreeramulu; Kumar, Rajiv; Londowski, James M.; Corradino, R. A.; Tietz, Pamela S


    Evidence has been presented suggesting the presence of vitamin D3 3β-glucosiduronate and 1,25-dihydroxyvitamin D3 glucosiduronate in rat bile. To evaluate the role of vitamin D glucosiduronates in calcium and phosphorus homeostasis, we synthesized vitamin D3 3β-glucosiduronate and tested its biological activity in calcium- and vitamin D-deficient rats. After the intravenous administration of vitamin D3 3β-glucosiduronate to rats maintained on a low calcium diet, there was an increase in duode...

  9. Organelle communication: signaling crossroads between homeostasis and disease. (United States)

    Bravo-Sagua, Roberto; Torrealba, Natalia; Paredes, Felipe; Morales, Pablo E; Pennanen, Christian; López-Crisosto, Camila; Troncoso, Rodrigo; Criollo, Alfredo; Chiong, Mario; Hill, Joseph A; Simmen, Thomas; Quest, Andrew F; Lavandero, Sergio


    Cellular organelles do not function as isolated or static units, but rather form dynamic contacts between one another that can be modulated according to cellular needs. The physical interfaces between organelles are important for Ca2+ and lipid homeostasis, and serve as platforms for the control of many essential functions including metabolism, signaling, organelle integrity and execution of the apoptotic program. Emerging evidence also highlights the importance of organelle communication in disorders such as Alzheimer's disease, pulmonary arterial hypertension, cancer, skeletal and cardiac muscle dysfunction. Here, we provide an overview of the current literature on organelle communication and the link to human pathologies.

  10. Osteopontin: Relation between Adipose Tissue and Bone Homeostasis (United States)

    Messina, Antonietta; Monda, Vincenzo; Viggiano, Emanuela; Valenzano, Anna; Esposito, Teresa; Cibelli, Giuseppe


    Osteopontin (OPN) is a multifunctional protein mainly associated with bone metabolism and remodeling. Besides its physiological functions, OPN is implicated in the pathogenesis of a variety of disease states, such as obesity and osteoporosis. Importantly, during the last decades obesity and osteoporosis have become among the main threats to health worldwide. Because OPN is a protein principally expressed in cells with multifaceted effects on bone morphogenesis and remodeling and because it seems to be one of the most overexpressed genes in the adipose tissue of the obese contributing to osteoporosis, this mini review will highlight recent insights about relation between adipose tissue and bone homeostasis.

  11. Effects of Adding Chymosin to Milk on Calcium Homeostasis

    DEFF Research Database (Denmark)

    Møller, Ulla Kristine; Jensen, Lars Thorbjørn; Mosekilde, Leif


    Calcium intake and absorption is important for bone health. In a randomized double-blind cross-over trial, we investigated effects of adding chymosin to milk on the intestinal calcium absorption as measured by renal calcium excretion and indices of calcium homeostasis. The primary outcome...... of the study was 24-h renal calcium excretion that is considered a proxy measure of the amount of calcium absorbed from the intestine. We studied 125 healthy men and women, aged 34 (25-45) years on two separate days. On each day, a light breakfast was served together with 500 ml of semi-skimmed milk to which...

  12. Metalworking and machining fluids (United States)

    Erdemir, Ali; Sykora, Frank; Dorbeck, Mark


    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  13. Electromagnetic homeostasis and the role of low-amplitude electromagnetic fields on life organization. (United States)

    De Ninno, Antonella; Pregnolato, Massimo


    The appearance of endogenous electromagnetic fields in biological systems is a widely debated issue in modern science. The electrophysiological fields have very tiny intensities and it can be inferred that they are rapidly decreasing with the distance from the generating structure, vanishing at very short distances. This makes very hard their detection using standard experimental methods. However, the existence of fast-moving charged particles in the macromolecules inside both intracellular and extracellular fluids may envisage the generation of localized electric currents as well as the presence of closed loops, which implies the existence of magnetic fields. Moreover, the whole set of oscillatory frequencies of various substances, enzymes, cell membranes, nucleic acids, bioelectrical phenomena generated by the electrical rhythm of coherent groups of cells, cell-to-cell communication among population of host bacteria, forms the increasingly complex hierarchies of electromagnetic signals of different frequencies which cover the living being and represent a fundamental information network controlling the cell metabolism. From this approach emerges the concept of electromagnetic homeostasis: that is, the capability of the human body to maintain the balance of highly complex electromagnetic interactions within, in spite of the external electromagnetic noisy environment. This concept may have an important impact on the actual definitions of heal and disease.

  14. Metformin inhibits Branched Chain Amino Acid (BCAA) derived ketoacidosis and promotes metabolic homeostasis in MSUD (United States)

    S. Sonnet, Davis; N. O’Leary, Monique; A. Gutierrez, Mark; M. Nguyen, Steven; Mateen, Samiha; Hsu, Yuehmei; P. Mitchell, Kylie; J. Lopez, Antonio; Vockley, Jerry; K. Kennedy, Brian; Ramanathan, Arvind


    Maple Syrup Urine Disease (MSUD) is an inherited disorder caused by the dysfunction in the branched chain keto-acid dehydrogenase (BCKDH) enzyme. This leads to buildup of branched-chain keto-acids (BCKA) and branched-chain amino acids (BCAA) in body fluids (e.g. keto-isocaproic acid from the BCAA leucine), leading to numerous clinical features including a less understood skeletal muscle dysfunction in patients. KIC is an inhibitor of mitochondrial function at disease relevant concentrations. A murine model of intermediate MSUD (iMSUD) shows significant skeletal muscle dysfunction as by judged decreased muscle fiber diameter. MSUD is an orphan disease with a need for novel drug interventions. Here using a 96-well plate (liquid chromatography- mass spectrometry (LC-MS) based drug-screening platform we show that Metformin, a widely used anti-diabetic drug, reduces levels of KIC in patient-derived fibroblasts by 20–50%. This Metformin-mediated effect was conserved in vivo; Metformin-treatment significantly reduced levels of KIC in the muscle (by 69%) and serum (by 56%) isolated from iMSUD mice, and restored levels of mitochondrial metabolites (e.g. AMP and other TCA). The drug also decreased the expression of mitochondrial branched chain amino transferase (BCAT) which produces KIC in skeletal muscle. This suggests that Metformin can restore skeletal muscle homeostasis in MSUD by decreasing mitochondrial KIC production. PMID:27373929

  15. Metformin inhibits Branched Chain Amino Acid (BCAA) derived ketoacidosis and promotes metabolic homeostasis in MSUD. (United States)

    S Sonnet, Davis; N O'Leary, Monique; A Gutierrez, Mark; M Nguyen, Steven; Mateen, Samiha; Hsu, Yuehmei; P Mitchell, Kylie; J Lopez, Antonio; Vockley, Jerry; K Kennedy, Brian; Ramanathan, Arvind


    Maple Syrup Urine Disease (MSUD) is an inherited disorder caused by the dysfunction in the branched chain keto-acid dehydrogenase (BCKDH) enzyme. This leads to buildup of branched-chain keto-acids (BCKA) and branched-chain amino acids (BCAA) in body fluids (e.g. keto-isocaproic acid from the BCAA leucine), leading to numerous clinical features including a less understood skeletal muscle dysfunction in patients. KIC is an inhibitor of mitochondrial function at disease relevant concentrations. A murine model of intermediate MSUD (iMSUD) shows significant skeletal muscle dysfunction as by judged decreased muscle fiber diameter. MSUD is an orphan disease with a need for novel drug interventions. Here using a 96-well plate (liquid chromatography- mass spectrometry (LC-MS) based drug-screening platform we show that Metformin, a widely used anti-diabetic drug, reduces levels of KIC in patient-derived fibroblasts by 20-50%. This Metformin-mediated effect was conserved in vivo; Metformin-treatment significantly reduced levels of KIC in the muscle (by 69%) and serum (by 56%) isolated from iMSUD mice, and restored levels of mitochondrial metabolites (e.g. AMP and other TCA). The drug also decreased the expression of mitochondrial branched chain amino transferase (BCAT) which produces KIC in skeletal muscle. This suggests that Metformin can restore skeletal muscle homeostasis in MSUD by decreasing mitochondrial KIC production.

  16. Apelin在能量平衡中的作用%Role of apelin in energy homeostasis

    Institute of Scientific and Technical Information of China (English)

    吕双瑜; 秦耀军; 杨艳杰; 姚文亮; 陈强


    新发现的生物活性肽apelin是APJ受体的天然配体,广泛分布于中枢系统和外周组织.研究表明apelin具有广泛的生理作用.该文总结了近几年来关于apelin在摄食、消化、体液平衡、肥胖和糖代谢等方面所取得的最新进展,并结合本实验室的工作,提出了今后的发展趋势.%Apelin, a recently identified bioactive peptide, is i-dentified as the natural ligand for the APJ receptor, and has a wide distribution in both the central nervous system and peripheral tissues.The current studies show that apelin has extensive physiological functions.This review summarizes the latest progress of apelin on feeding, indigestion, fluid homeostasis, obesity and glucose metabolism etc, and the trend of the research development for the future is proposed.

  17. Theoretical Fluid Dynamics

    CERN Document Server

    Shivamoggi, Bhimsen K


    "Although there are many texts and monographs on fluid dynamics, I do not know of any which is as comprehensive as the present book. It surveys nearly the entire field of classical fluid dynamics in an advanced, compact, and clear manner, and discusses the various conceptual and analytical models of fluid flow." - Foundations of Physics on the first edition. Theoretical Fluid Dynamics functions equally well as a graduate-level text and a professional reference. Steering a middle course between the empiricism of engineering and the abstractions of pure mathematics, the author focuses

  18. The Fluids RAP (United States)

    Nedyalkov, Ivaylo


    After fifteen years of experience in rap, and ten in fluid mechanics, "I am coming here with high-Reynolds-number stamina; I can beat these rap folks whose flows are... laminar." The rap relates fluid flows to rap flows. The fluid concepts presented in the song have varying complexity and the listeners/viewers will be encouraged to read the explanations on a site dedicated to the rap. The music video will provide an opportunity to share high-quality fluid visualizations with a general audience. This talk will present the rap lyrics, the vision for the video, and the strategy for outreach. Suggestions and comments will be welcomed.

  19. Electrorheological fluids and methods

    Energy Technology Data Exchange (ETDEWEB)

    Green, Peter F.; McIntyre, Ernest C.


    Electrorheological fluids and methods include changes in liquid-like materials that can flow like milk and subsequently form solid-like structures under applied electric fields; e.g., about 1 kV/mm. Such fluids can be used in various ways as smart suspensions, including uses in automotive, defense, and civil engineering applications. Electrorheological fluids and methods include one or more polar molecule substituted polyhedral silsesquioxanes (e.g., sulfonated polyhedral silsesquioxanes) and one or more oils (e.g., silicone oil), where the fluid can be subjected to an electric field.

  20. Fluid dynamics transactions

    CERN Document Server

    Fiszdon, W


    Fluid Dynamics Transactions, Volume 2 compiles 46 papers on fluid dynamics, a subdiscipline of fluid mechanics that deals with fluid flow. The topics discussed in this book include developments in interference theory for aeronautical applications; diffusion from sources in a turbulent boundary layer; unsteady motion of a finite wing span in a compressible medium; and wall pressure covariance and comparison with experiment. The certain classes of non-stationary axially symmetric flows in magneto-gas-dynamics; description of the phenomenon of secondary flows in curved channels by means of co

  1. Cerebral venous outflow and cerebrospinal fluid dynamics

    Directory of Open Access Journals (Sweden)

    Clive B. Beggs


    Full Text Available In this review, the impact of restricted cerebral venous outflow on the biomechanics of the intracranial fluid system is investigated. The cerebral venous drainage system is often viewed simply as a series of collecting vessels channeling blood back to the heart. However there is growing evidence that it plays an important role in regulating the intracranial fluid system. In particular, there appears to be a link between increased cerebrospinal fluid (CSF pulsatility in the Aqueduct of Sylvius and constricted venous outflow. Constricted venous outflow also appears to inhibit absorption of CSF into the superior sagittal sinus. The compliance of the cortical bridging veins appears to be critical to the behaviour of the intracranial fluid system, with abnormalities at this location implicated in normal pressure hydrocephalus. The compliance associated with these vessels appears to be functional in nature and dependent on the free egress of blood out of the cranium via the extracranial venous drainage pathways. Because constricted venous outflow appears to be linked with increased aqueductal CSF pulsatility, it suggests that inhibited venous blood outflow may be altering the compliance of the cortical bridging veins.

  2. Inhibition of NAPDH Oxidase 2 (NOX2 Prevents Oxidative Stress and Mitochondrial Abnormalities Caused by Saturated Fat in Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Leroy C Joseph

    Full Text Available Obesity and high saturated fat intake increase the risk of heart failure and arrhythmias. The molecular mechanisms are poorly understood. We hypothesized that physiologic levels of saturated fat could increase mitochondrial reactive oxygen species (ROS in cardiomyocytes, leading to abnormalities of calcium homeostasis and mitochondrial function. We investigated the effect of saturated fat on mitochondrial function and calcium homeostasis in isolated ventricular myocytes. The saturated fatty acid palmitate causes a decrease in mitochondrial respiration in cardiomyocytes. Palmitate, but not the monounsaturated fatty acid oleate, causes an increase in both total cellular ROS and mitochondrial ROS. Palmitate depolarizes the mitochondrial inner membrane and causes mitochondrial calcium overload by increasing sarcoplasmic reticulum calcium leak. Inhibitors of PKC or NOX2 prevent mitochondrial dysfunction and the increase in ROS, demonstrating that PKC-NOX2 activation is also required for amplification of palmitate induced-ROS. Cardiomyocytes from mice with genetic deletion of NOX2 do not have palmitate-induced ROS or mitochondrial dysfunction. We conclude that palmitate induces mitochondrial ROS that is amplified by NOX2, causing greater mitochondrial ROS generation and partial depolarization of the mitochondrial inner membrane. The abnormal sarcoplasmic reticulum calcium leak caused by palmitate could promote arrhythmia and heart failure. NOX2 inhibition is a potential therapy for heart disease caused by diabetes or obesity.

  3. The Greater Phenotypic Homeostasis of the Allopolyploid Coffea arabica Improved the Transcriptional Homeostasis Over that of Both Diploid Parents. (United States)

    Bertrand, Benoît; Bardil, Amélie; Baraille, Hélène; Dussert, Stéphane; Doulbeau, Sylvie; Dubois, Emeric; Severac, Dany; Dereeper, Alexis; Etienne, Hervé


    Polyploidy impacts the diversity of plant species, giving rise to novel phenotypes and leading to ecological diversification. In order to observe adaptive and evolutionary capacities of polyploids, we compared the growth, primary metabolism and transcriptomic expression level in the leaves of the newly formed allotetraploid Coffea arabica species compared with its two diploid parental species (Coffea eugenioides and Coffea canephora), exposed to four thermal regimes (TRs; 18-14, 23-19, 28-24 and 33-29°C). The growth rate of the allopolyploid C. arabica was similar to that of C. canephora under the hottest TR and that of C. eugenioides under the coldest TR. For metabolite contents measured at the hottest TR, the allopolyploid showed similar behavior to C. canephora, the parent which tolerates higher growth temperatures in the natural environment. However, at the coldest TR, the allopolyploid displayed higher sucrose, raffinose and ABA contents than those of its two parents and similar linolenic acid leaf composition and Chl content to those of C. eugenioides. At the gene expression level, few differences between the allopolyploid and its parents were observed for studied genes linked to photosynthesis, respiration and the circadian clock, whereas genes linked to redox activity showed a greater capacity of the allopolyploid for homeostasis. Finally, we found that the overall transcriptional response to TRs of the allopolyploid was more homeostatic compared with its parents. This better transcriptional homeostasis of the allopolyploid C. arabica afforded a greater phenotypic homeostasis when faced with environments that are unsuited to the diploid parental species.

  4. Chromosomal abnormalities in a psychiatric population

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, K.E.; Lubetsky, M.J.; Wenger, S.L.; Steele, M.W. [Univ. of Pittsburgh Medical Center, PA (United States)


    Over a 3.5 year period of time, 345 patients hospitalized for psychiatric problems were evaluated cytogenetically. The patient population included 76% males and 94% children with a mean age of 12 years. The criteria for testing was an undiagnosed etiology for mental retardation and/or autism. Cytogenetic studies identified 11, or 3%, with abnormal karyotypes, including 4 fragile X positive individuals (2 males, 2 females), and 8 with chromosomal aneuploidy, rearrangements, or deletions. While individuals with chromosomal abnormalities do not demonstrate specific behavioral, psychiatric, or developmental problems relative to other psychiatric patients, our results demonstrate the need for an increased awareness to order chromosomal analysis and fragile X testing in those individuals who have combinations of behavioral/psychiatric, learning, communication, or cognitive disturbance. 5 refs., 1 fig., 2 tabs.

  5. Migraine and structural abnormalities in the brain

    DEFF Research Database (Denmark)

    Hougaard, Anders; Amin, Faisal Mohammad; Ashina, Messoud


    PURPOSE OF REVIEW: The aim is to provide an overview of recent studies of structural brain abnormalities in migraine and to discuss the potential clinical significance of their findings. RECENT FINDINGS: Brain structure continues to be a topic of extensive research in migraine. Despite advances...... in neuroimaging techniques, it is not yet clear if migraine is associated with grey matter changes. Recent large population-based studies sustain the notion of increased prevalence of white matter abnormalities in migraine, and possibly of silent infarct-like lesions. The clinical relevance of this association...... is not clear. Structural changes are not related to cognitive decline, but a link to an increased risk of stroke, especially in patients with aura, cannot be ruled out. SUMMARY: Migraine may be a risk factor for structural changes in the brain. It is not yet clear how factors such as migraine sub-type, attack...

  6. Developmental pragmatics in normal and abnormal children. (United States)

    Bara, B G; Bosco, F M; Bucciarelli, M


    We propose a critical review of current theories of developmental pragmatics. The underlying assumption is that such a theory ought to account for both normal and abnormal development. From a clinical point of view, we are concerned with the effects of brain damage on the emergence of pragmatic competence. In particular, the paper deals with direct speech acts, indirect speech acts, irony, and deceit in children with head injury, closed head injury, hydrocephalus, focal brain damage, and autism. Since no single theory covers systematically the emergence of pragmatic capacity in normal children, it is not surprising that we have not found a systematic account of deficits in the communicative performance of brain injured children. In our view, the challenge for a pragmatic theory is the determination of the normal developmental pattern within which different pragmatic phenomena may find a precise role. Such a framework of normal behavior would then permit the systematic study of abnormal pragmatic development.

  7. [Abnormal hemoglobins in Negroid Ecuadorian populations]. (United States)

    Jara, N O; Guevara Espinoza, A; Guderian, R H


    The prevalence of hemoglobinopathies was determined in the black race located in two distinct geographical areas in Ecuador; in the coastal province of Esmeraldas, particularly the Santiago basin (Rio Cayapas and Rio Onzoles) and in the province of Imbabura, particularly in the intermoutain valley, Valle de Chota. A total of 2038 blood samples were analyzed, 1734 in Esmeraldas and 304 in Inbabura, of which 23.2% (473 individuals) were found to be carriers of abnormal hemoglobins, 25.4% (441) in Esmeraldas and 10.5% (32) in Imbabura. The abnormal hemoglobins found in Esmeraldas were Hb AS (19.2%), Hb AC (5.0%), Hb SS (0.6%) and Hb SC (0.5%) while in Imbabura only Hb AS (9.5%) and Hb AC (0.9%) were found. The factors that could influence the difference in prevalence found in the two geographical areas are discussed.

  8. Spinal cord injury without radiographic abnormality

    Directory of Open Access Journals (Sweden)

    Singh Anil


    Full Text Available Spinal cord injury without radiological abnormality is rare in adults. Below we present a case report of 20 yrs old male with isolated cervical cord injury, without accompanying vertebral dislocation or fracture involving the spinal canal rim. He fell down on plain and smooth ground while carrying 40 kg weight overhead and developed quadriparesis with difficulty in respiration. Plain radiographs of the neck revealed no fractures or dislocations. MRI showed bulky spinal cord and an abnormal hyper intense signal on the T2W image from C2 vertebral body level to C3/4 intervertebral disc level predominantly in the anterior aspect of the cord The patient was managed conservatively with head halter traction and invasive ventilatory support for the initial 7 days period in the ICU. In our patient recovery was good and most of the neurological deficit improved over 4 weeks with conservative management.

  9. Mitochondrial abnormalities in the myofibrillar myopathies. (United States)

    Jackson, S; Schaefer, J; Meinhardt, M; Reichmann, H


    Myofibrillar myopathies are a genetically diverse group of skeletal muscle disorders, with distinctive muscle histopathology. Causative mutations have been identified in the genes MYOT, LDB3, DES, CRYAB, FLNC, BAG3, DNAJB6, FHL1, PLEC and TTN, which encode proteins which either reside in the Z-disc or associate with the Z-disc. Mitochondrial abnormalities have been described in muscle from patients with a myofibrillar myopathy. We reviewed the literature to determine the extent of mitochondrial dysfunction in each of the myofibrillar myopathy subtypes. Abnormal mitochondrial distribution is a frequent finding in each of the subtypes, but a high frequency of COX-negative or ragged red fibres, a characteristic finding in some of the conventional mitochondrial myopathies, is a rare finding. Few in vitro studies of mitochondrial function have been performed in affected patients.

  10. Binocular combination in abnormal binocular vision. (United States)

    Ding, Jian; Klein, Stanley A; Levi, Dennis M


    We investigated suprathreshold binocular combination in humans with abnormal binocular visual experience early in life. In the first experiment we presented the two eyes with equal but opposite phase shifted sine waves and measured the perceived phase of the cyclopean sine wave. Normal observers have balanced vision between the two eyes when the two eyes' images have equal contrast (i.e., both eyes contribute equally to the perceived image and perceived phase = 0°). However, in observers with strabismus and/or amblyopia, balanced vision requires a higher contrast image in the nondominant eye (NDE) than the dominant eye (DE). This asymmetry between the two eyes is larger than predicted from the contrast sensitivities or monocular perceived contrast of the two eyes and is dependent on contrast and spatial frequency: more asymmetric with higher contrast and/or spatial frequency. Our results also revealed a surprising NDE-to-DE enhancement in some of our abnormal observers. This enhancement is not evident in normal vision because it is normally masked by interocular suppression. However, in these abnormal observers the NDE-to-DE suppression was weak or absent. In the second experiment, we used the identical stimuli to measure the perceived contrast of a cyclopean grating by matching the binocular combined contrast to a standard contrast presented to the DE. These measures provide strong constraints for model fitting. We found asymmetric interocular interactions in binocular contrast perception, which was dependent on both contrast and spatial frequency in the same way as in phase perception. By introducing asymmetric parameters to the modified Ding-Sperling model including interocular contrast gain enhancement, we succeeded in accounting for both binocular combined phase and contrast simultaneously. Adding binocular contrast gain control to the modified Ding-Sperling model enabled us to predict the results of dichoptic and binocular contrast discrimination experiments



    Inderjit; Jagdeepak; Prempal; Anup Narayanrao


    AIM: To determine the nature of ophthalmologic abnormalities in severe and profound grades of hearing impaired children and to treat visual impairment if any at the earliest . MATERIAL AND METHODS: Study was conducted on100 children in the age group of 5 - 14 years with severe and profound hearing loss visiting outpatient department of Ram Lal Eye and ENT hospital Govt. Medical College Amritsar and subjected to detailed ophthalmological examination. R...


    Institute of Scientific and Technical Information of China (English)


    Congenital aniridia is generally associated with nystagmus, corneal pannus, cataract, ectopia lentis, glaucoma, macular hypoplasia, optic nerve hypoplasia and compromised visual function. Many theories have been proposed, including a failure in the development of the neural ectoderm and/or an aberrant development of mesoderm. We observed the ERG from 19 patients with congenital aniridia. Fourteen patients had abnormal ERG, including the reduced a wave trough under dark adapted red stimuli with dark adap...

  13. Dysglycemia induces abnormal circadian blood pressure variability

    Directory of Open Access Journals (Sweden)

    Kumarasamy Sivarajan


    Full Text Available Abstract Background Prediabetes (PreDM in asymptomatic adults is associated with abnormal circadian blood pressure variability (abnormal CBPV. Hypothesis Systemic inflammation and glycemia influence circadian blood pressure variability. Methods Dahl salt-sensitive (S rats (n = 19 after weaning were fed either an American (AD or a standard (SD diet. The AD (high-glycemic-index, high-fat simulated customary human diet, provided daily overabundant calories which over time lead to body weight gain. The SD (low-glycemic-index, low-fat mirrored desirable balanced human diet for maintaining body weight. Body weight and serum concentrations for fasting glucose (FG, adipokines (leptin and adiponectin, and proinflammatory cytokines [monocyte chemoattractant protein-1 (MCP-1 and tumor necrosis factor-α (TNF-α] were measured. Rats were surgically implanted with C40 transmitters and blood pressure (BP-both systolic; SBP and diastolic; DBP and heart rate (HR were recorded by telemetry every 5 minutes during both sleep (day and active (night periods. Pulse pressure (PP was calculated (PP = SBP-DBP. Results [mean(SEM]: The AD fed group displayed significant increase in body weight (after 90 days; p Conclusion These data validate our stated hypothesis that systemic inflammation and glycemia influence circadian blood pressure variability. This study, for the first time, demonstrates a cause and effect relationship between caloric excess, enhanced systemic inflammation, dysglycemia, loss of blood pressure control and abnormal CBPV. Our results provide the fundamental basis for examining the relationship between dysglycemia and perturbation of the underlying mechanisms (adipose tissue dysfunction induced local and systemic inflammation, insulin resistance and alteration of adipose tissue precursors for the renin-aldosterone-angiotensin system which generate abnormal CBPV.

  14. Trading networks, abnormal motifs and stock manipulation



    We study trade-based manipulation of stock prices from the perspective of complex trading networks constructed by using detailed information of trades. A stock trading network consists of nodes and directed links, where every trader is a node and a link is formed from one trader to the other if the former sells shares to the latter. Specifically, three abnormal network motifs are investigated, which are found to be formed by a few traders, implying potential intention of price manipulation. W...

  15. Computed tomography in abnormalities of the hip

    Energy Technology Data Exchange (ETDEWEB)

    Visser, J.D.; Jonkers, A.; Klasen, H.J. (Rijksuniversiteit Groningen (Netherlands). Academisch Ziekenhuis); Hillen, B. (Rijksuniversiteit Groningen (Netherlands). Lab. voor Anatomie en Embryologie)


    The value of computed tomography in the assessment of abnormalities of the hip is demonstrated with the aid of an anatomical preparation and in patients with, respectively, congenital dislocation of a hip, dislocation of the hip in spina bifida, an acetabular fracture and a Ewing tumour. The anteversion of the acetabulum and femur and the instability index of the hip joint can be measured by means of computed tomography.

  16. Energy homeostasis regulatory peptides in hibernating grizzly bears. (United States)

    Gardi, János; Nelson, O Lynne; Robbins, Charles T; Szentirmai, Eva; Kapás, Levente; Krueger, James M


    Grizzly bears (Ursus arctos horribilis) are inactive for up to 6 months during hibernation. They undergo profound seasonal changes in food intake, body mass, and energy expenditure. The circa-annual regulation of metabolism is poorly understood. In this study, we measured plasma ghrelin, leptin, obestatin, and neuropeptide-Y (NPY) levels, hormones known to be involved in the regulation of energy homeostasis, in ten grizzly bears. Blood samples were collected during the active summer period, early hibernation and late hibernation. Plasma levels of leptin, obestatin, and NPY did not change between the active and the hibernation periods. Plasma total ghrelin and desacyl-ghrelin concentrations significantly decreased during the inactive winter period compared to summer levels. The elevated ghrelin levels may help enhance body mass during pre-hibernation, while the low plasma ghrelin concentrations during hibernation season may contribute to the maintenance of hypophagia, low energy utilization and behavioral inactivity. Our results suggest that ghrelin plays a potential role in the regulation of metabolic changes and energy homeostasis during hibernation in grizzly bears.

  17. Analysis of vegetative homeostasis state of elite handball players

    Directory of Open Access Journals (Sweden)

    Prystupa Y.N.


    Full Text Available Purpose: to study characteristics and dynamic of elite handball players’ physiological indicators. Material: In experiment elite handball players (n=112, age 18-35 years participated. For determination of vegetative homeostasis state we analyzed variability of heart rhythm. The researches were conducted in laboratory conditions in rest state, in lying position during 5 minutes. Results: it was found that organism’s adaptation reactions to training loads go with different tension of regulation systems. At the end of competition period there appears hyper-kinetic syndrome. It witnessed insufficiency of means, which permit to maintain optimal regulation of cardio-vascular system and increase its functional potentials. Conclusions: indicators of cardio-vascular system and their dynamic w3itnessed maintaining of high level of handball players’ organism hemodynamic provisioning. High level of vegetative homeostasis pointed at certain degree of sportsmen’s fitness. Such state is sufficient for preservation of high potential of sympathetic -adrenaline system and overcoming of fatigue processes.

  18. Limbal stem cells: Central concepts of corneal epithelial homeostasis

    Institute of Scientific and Technical Information of China (English)

    Jinny; J; Yoon; Salim; Ismail; Trevor; Sherwin


    A strong cohort of evidence exists that supports the localisation of corneal stem cells at the limbus. The distinguishing characteristics of limbal cells as stem cells include slow cycling properties, high proliferative potential when required, clonogenicity, absence of differentiation marker expression coupled with positive expression of progenitor markers, multipotency, centripetal migration, requirement for a distinct niche environment and the ability of transplanted limbal cells to regenerate the entire corneal epithelium. The existence of limbal stem cells supports the prevailing theory of corneal homeostasis, known as the XYZ hypothesis where X represents proliferation and stratification of limbal basal cells, Y centripetal migration of basal cells and Z desquamation of superficial cells. To maintain the mass of cornea, the sum of X and Y must equal Z and very elegant cell tracking experiments provide strong evidence in support of this theory. However, several recent stud-ies have suggested the existence of oligopotent stem cells capable of corneal maintenance outside of the limbus. This review presents a summary of data which led to the current concepts of corneal epithelial homeostasis and discusses areas of controversy surrounding the existence of a secondary stem cell reservoir on the corneal surface

  19. The nucleolus—guardian of cellular homeostasis and genome integrity. (United States)

    Grummt, Ingrid


    All organisms sense and respond to conditions that stress their homeostasis by downregulating the synthesis of rRNA and ribosome biogenesis, thus designating the nucleolus as the central hub in coordinating the cellular stress response. One of the most intriguing roles of the nucleolus, long regarded as a mere ribosome-producing factory, is its participation in monitoring cellular stress signals and transmitting them to the RNA polymerase I (Pol I) transcription machinery. As rRNA synthesis is a most energy-consuming process, switching off transcription of rRNA genes is an effective way of saving the energy required to maintain cellular homeostasis during acute stress. The Pol I transcription machinery is the key convergence point that collects and integrates a vast array of information from cellular signaling cascades to regulate ribosome production which, in turn, guides cell growth and proliferation. This review focuses on the mechanisms that link cell physiology to rDNA silencing, a prerequisite for nucleolar integrity and cell survival.

  20. Effect of Ghrelin on Glucose-Insulin Homeostasis: Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    Susana Sangiao-Alvarellos


    Full Text Available Ghrelin is a 28-amino-acid peptide that displays a strong growth hormone- (GH- releasing activity through the activation of the growth hormone secretagogue receptor (GHSR. The first studies about role of ghrelin were focused on its orexigenic ability, but despite indisputable pharmacological data, the evidence for a physiological role for ghrelin in the control of appetite is much less clear. Mice with targeted deletion of either ghrelin or the GHSR exhibit an essentially normal metabolic phenotype when fed a regular chow diet, suggesting that ghrelin may have a redundant role in the regulation of food intake. RNAs for ghrelin as well as GHSR are expressed in the pancreas of rats and humans and several studies propose that ghrelin could have an important function in glucose homeostasis and insulin release, independent of GH secretion. Low plasma ghrelin levels are associated with elevated fasting insulin levels and insulin resistance, suggesting both physiological and pathophysiological roles for ghrelin. For this reason, at least theoretically, ghrelin and/or its signalling manipulation could be useful for the treatment or prevention of diseases of glucose homeostasis such as type 2 diabetes.

  1. Physiological Roles for mafr-1 in Reproduction and Lipid Homeostasis

    Directory of Open Access Journals (Sweden)

    Akshat Khanna


    Full Text Available Maf1 is a conserved repressor of RNA polymerase (Pol III transcription; however, its physiological role in the context of a multicellular organism is not well understood. Here, we show that C. elegans MAFR-1 is functionally orthologous to human Maf1, represses the expression of both RNA Pol III and Pol II transcripts, and mediates organismal fecundity and lipid homeostasis. MAFR-1 impacts lipid transport by modulating intestinal expression of the vitellogenin family of proteins, resulting in cell-nonautonomous defects in the developing reproductive system. MAFR-1 levels inversely correlate with stored intestinal lipids, in part by influencing the expression of the lipogenesis enzymes fasn-1/FASN and pod-2/ACC1. Animals fed a high carbohydrate diet exhibit reduced mafr-1 expression and mutations in the insulin signaling pathway genes daf-18/PTEN and daf-16/FoxO abrogate the lipid storage defects associated with deregulated mafr-1 expression. Our results reveal physiological roles for mafr-1 in regulating organismal lipid homeostasis, which ensure reproductive success.

  2. MicroRNAs and the regulation of intestinal homeostasis

    Directory of Open Access Journals (Sweden)

    Marah C Runtsch


    Full Text Available The mammalian intestinal tract is a unique site in which a large portion of our immune system and the 10^14 commensal organisms that make up the microbiota reside in intimate contact with each other. Despite the potential for inflammatory immune responses, this complex interface contains host immune cells and epithelial cells interacting with the microbiota in a manner that promotes symbiosis. Due to the complexity of the cell types and microorganisms involved, this process requires elaborate regulatory mechanisms to ensure mutualism and prevent disease. While many studies have described critical roles for protein regulators of intestinal homeostasis, recent reports indicate that noncoding RNAs are also major contributors to optimal host-commensal interactions. In particular, there is emerging evidence that microRNAs (miRNAs have evolved to fine tune host gene expression networks and signaling pathways that modulate cellular physiology in the intestinal tract. Here, we review our present knowledge of the influence miRNAs have on both immune and epithelial cell biology in the mammalian intestines and the impact this has on the microbiota. We also discuss a need for further studies to decipher the functions of specific miRNAs within the gut to better understand cellular mechanisms that promote intestinal homeostasis and to identify potential molecular targets underlying diseases such as inflammatory bowel disease (IBD and colorectal cancer (CRC.

  3. MicroRNAs and the regulation of intestinal homeostasis. (United States)

    Runtsch, Marah C; Round, June L; O'Connell, Ryan M


    The mammalian intestinal tract is a unique site in which a large portion of our immune system and the 10(14) commensal organisms that make up the microbiota reside in intimate contact with each other. Despite the potential for inflammatory immune responses, this complex interface contains host immune cells and epithelial cells interacting with the microbiota in a manner that promotes symbiosis. Due to the complexity of the cell types and microorganisms involved, this process requires elaborate regulatory mechanisms to ensure mutualism and prevent disease. While many studies have described critical roles for protein regulators of intestinal homeostasis, recent reports indicate that non-coding RNAs are also major contributors to optimal host-commensal interactions. In particular, there is emerging evidence that microRNAs (miRNAs) have evolved to fine tune host gene expression networks and signaling pathways that modulate cellular physiology in the intestinal tract. Here, we review our present knowledge of the influence miRNAs have on both immune and epithelial cell biology in the mammalian intestines and the impact this has on the microbiota. We also discuss a need for further studies to decipher the functions of specific miRNAs within the gut to better understand cellular mechanisms that promote intestinal homeostasis and to identify potential molecular targets underlying diseases such as inflammatory bowel disease and colorectal cancer.

  4. The homeostasis of Plasmodium falciparum-infected red blood cells.

    Directory of Open Access Journals (Sweden)

    Jakob M A Mauritz


    Full Text Available The asexual reproduction cycle of Plasmodium falciparum, the parasite responsible for severe malaria, occurs within red blood cells. A merozoite invades a red cell in the circulation, develops and multiplies, and after about 48 hours ruptures the host cell, releasing 15-32 merozoites ready to invade new red blood cells. During this cycle, the parasite increases the host cell permeability so much that when similar permeabilization was simulated on uninfected red cells, lysis occurred before approximately 48 h. So how could infected cells, with a growing parasite inside, prevent lysis before the parasite has completed its developmental cycle? A mathematical model of the homeostasis of infected red cells suggested that it is the wasteful consumption of host cell hemoglobin that prevents early lysis by the progressive reduction in the colloid-osmotic pressure within the host (the colloid-osmotic hypothesis. However, two critical model predictions, that infected cells would swell to near prelytic sphericity and that the hemoglobin concentration would become progressively reduced, remained controversial. In this paper, we are able for the first time to correlate model predictions with recent experimental data in the literature and explore the fine details of the homeostasis of infected red blood cells during five model-defined periods of parasite development. The conclusions suggest that infected red cells do reach proximity to lytic rupture regardless of their actual volume, thus requiring a progressive reduction in their hemoglobin concentration to prevent premature lysis.

  5. Polyamines as redox homeostasis regulators during salt stress in plants

    Directory of Open Access Journals (Sweden)

    Jayita eSaha


    Full Text Available The balance between accumulation of stress-induced polyamines and reactive oxygen species (ROS is arguably a critical factor in plant tolerance to salt stress. Polyamines are compounds, which accumulate in plants under salt stress and help maintain cellular ROS homeostasis. In this review we first outline the role of polyamines in mediating salt stress responses through their modulation of redox homeostasis. The two proposed roles of polyamines in regulating ROS – as antioxidative molecules and source of ROS synthesis – are discussed and exemplified with recent studies. Second, the proposed function of polyamines as modulators of ion transport is discussed in the context of plant salt stress. Finally, we highlight the apparent connection between polyamine accumulation and programmed cell death induction during stress. Thus polyamines have a complex functional role in regulating cellular signaling and metabolism during stress. By focusing future efforts on how polyamine accumulation and turnover is regulated, research in this area may provide novel targets for developing stress tolerance.

  6. Affect development as a need to preserve homeostasis. (United States)

    Dönmez, Aslıhan; Ceylan, Mehmet Emin; Ünsalver, Barış Önen


    In this review, we aim to present our hypothesis about the neural development of affect. According to this view, affect develops at a multi-layered process, and as a mediator between drives, emotion and cognition. This development is parallel to the evolution of the brain from reptiles to mammals. There are five steps in this process: (1) Because of the various environmental challenges, changes in the autonomic nervous system occur and homeostasis becomes destabilized; (2) Drives arise from the destabilized homeostasis; (3) Drives trigger the neural basis of the basic emotional systems; (4) These basic emotions evolve into affect to find the particular object to invest the emotional energy; and (5) In the final stage, cognition is added to increase the possibility of identifying a particular object. In this paper, we will summarize the rationale behind this view, which is based on neuroscientific proofs, such as evolution of autonomic nervous system, neural basis the raw affective states, the interaction between affect and cognition, related brain areas, related neurotransmitters, as well as some clinical examples.

  7. Negative elongation factor controls energy homeostasis in cardiomyocytes. (United States)

    Pan, Haihui; Qin, Kunhua; Guo, Zhanyong; Ma, Yonggang; April, Craig; Gao, Xiaoli; Andrews, Thomas G; Bokov, Alex; Zhang, Jianhua; Chen, Yidong; Weintraub, Susan T; Fan, Jian-Bing; Wang, Degeng; Hu, Yanfen; Aune, Gregory J; Lindsey, Merry L; Li, Rong


    Negative elongation factor (NELF) is known to enforce promoter-proximal pausing of RNA polymerase II (Pol II), a pervasive phenomenon observed across multicellular genomes. However, the physiological impact of NELF on tissue homeostasis remains unclear. Here, we show that whole-body conditional deletion of the B subunit of NELF (NELF-B) in adult mice results in cardiomyopathy and impaired response to cardiac stress. Tissue-specific knockout of NELF-B confirms its cell-autonomous function in cardiomyocytes. NELF directly supports transcription of those genes encoding rate-limiting enzymes in fatty acid oxidation (FAO) and the tricarboxylic acid (TCA) cycle. NELF also shares extensively transcriptional target genes with peroxisome proliferator-activated receptor α (PPARα), a master regulator of energy metabolism in the myocardium. Mechanistically, NELF helps stabilize the transcription initiation complex at the metabolism-related genes. Our findings strongly indicate that NELF is part of the PPARα-mediated transcription regulatory network that maintains metabolic homeostasis in cardiomyocytes.

  8. COPI complex is a regulator of lipid homeostasis.

    Directory of Open Access Journals (Sweden)

    Mathias Beller


    Full Text Available Lipid droplets are ubiquitous triglyceride and sterol ester storage organelles required for energy storage homeostasis and biosynthesis. Although little is known about lipid droplet formation and regulation, it is clear that members of the PAT (perilipin, adipocyte differentiation related protein, tail interacting protein of 47 kDa protein family coat the droplet surface and mediate interactions with lipases that remobilize the stored lipids. We identified key Drosophila candidate genes for lipid droplet regulation by RNA interference (RNAi screening with an image segmentation-based optical read-out system, and show that these regulatory functions are conserved in the mouse. Those include the vesicle-mediated Coat Protein Complex I (COPI transport complex, which is required for limiting lipid storage. We found that COPI components regulate the PAT protein composition at the lipid droplet surface, and promote the association of adipocyte triglyceride lipase (ATGL with the lipid droplet surface to mediate lipolysis. Two compounds known to inhibit COPI function, Exo1 and Brefeldin A, phenocopy COPI knockdowns. Furthermore, RNAi inhibition of ATGL and simultaneous drug treatment indicate that COPI and ATGL function in the same pathway. These data indicate that the COPI complex is an evolutionarily conserved regulator of lipid homeostasis, and highlight an interaction between vesicle transport systems and lipid droplets.

  9. The GARP complex is required for cellular sphingolipid homeostasis (United States)

    Fröhlich, Florian; Petit, Constance; Kory, Nora; Christiano, Romain; Hannibal-Bach, Hans-Kristian; Graham, Morven; Liu, Xinran; Ejsing, Christer S; Farese, Robert V; Walther, Tobias C


    Sphingolipids are abundant membrane components and important signaling molecules in eukaryotic cells. Their levels and localization are tightly regulated. However, the mechanisms underlying this regulation remain largely unknown. In this study, we identify the Golgi-associated retrograde protein (GARP) complex, which functions in endosome-to-Golgi retrograde vesicular transport, as a critical player in sphingolipid homeostasis. GARP deficiency leads to accumulation of sphingolipid synthesis intermediates, changes in sterol distribution, and lysosomal dysfunction. A GARP complex mutation analogous to a VPS53 allele causing progressive cerebello-cerebral atrophy type 2 (PCCA2) in humans exhibits similar, albeit weaker, phenotypes in yeast, providing mechanistic insights into disease pathogenesis. Inhibition of the first step of de novo sphingolipid synthesis is sufficient to mitigate many of the phenotypes of GARP-deficient yeast or mammalian cells. Together, these data show that GARP is essential for cellular sphingolipid homeostasis and suggest a therapeutic strategy for the treatment of PCCA2. DOI: PMID:26357016

  10. Cell-size distribution in epithelial tissue formation and homeostasis. (United States)

    Puliafito, Alberto; Primo, Luca; Celani, Antonio


    How cell growth and proliferation are orchestrated in living tissues to achieve a given biological function is a central problem in biology. During development, tissue regeneration and homeostasis, cell proliferation must be coordinated by spatial cues in order for cells to attain the correct size and shape. Biological tissues also feature a notable homogeneity of cell size, which, in specific cases, represents a physiological need. Here, we study the temporal evolution of the cell-size distribution by applying the theory of kinetic fragmentation to tissue development and homeostasis. Our theory predicts self-similar probability density function (PDF) of cell size and explains how division times and redistribution ensure cell size homogeneity across the tissue. Theoretical predictions and numerical simulations of confluent non-homeostatic tissue cultures show that cell size distribution is self-similar. Our experimental data confirm predictions and reveal that, as assumed in the theory, cell division times scale like a power-law of the cell size. We find that in homeostatic conditions there is a stationary distribution with lognormal tails, consistently with our experimental data. Our theoretical predictions and numerical simulations show that the shape of the PDF depends on how the space inherited by apoptotic cells is redistributed and that apoptotic cell rates might also depend on size.

  11. Temporal aspects of copper homeostasis and its crosstalk with hormones

    Directory of Open Access Journals (Sweden)

    Lola ePeñarrubia


    Full Text Available To cope with the dual nature of copper as being essential and toxic for cells, plants temporarily adapt the expression of copper homeostasis components to assure its delivery to cuproproteins while avoiding the interference of potential oxidative damage derived from both copper uptake and photosynthetic reactions during light hours. The circadian clock participates in the temporal organization of coordination of plant nutrition adapting metabolic responses to the daily oscillations. This timely control improves plant fitness and reproduction and holds biotechnological potential to drive increased crop yields. Hormonal pathways, including those of abscisic acid, gibberellins, ethylene, auxins, and jasmonates are also under direct clock and light control, both in mono and dicotyledons. In this review, we focus on copper transport in Arabidopsis thaliana and Oryza sativa and the presumable role of hormones in metal homeostasis matching nutrient availability to growth requirements and preventing metal toxicity. The presence of putative hormone-dependent regulatory elements in the promoters of copper transporters genes suggests hormonal regulation to match special copper requirements during plant development. Spatial and temporal processes that can be affected by hormones include the regulation of copper uptake into roots, intracellular trafficking and compartmentalisation, and long-distance transport to developing vegetative and reproductive tissues. In turn, hormone biosynthesis and signalling are also influenced by copper availability, which suggests reciprocal regulation subjected to temporal control by the central oscillator of the circadian clock. This transcriptional regulatory network, coordinates environmental and hormonal signalling with developmental pathways to allow enhanced micronutrient acquisition efficiency.

  12. Osteopontin Deficiency Alters Biliary Homeostasis and Protects against Gallstone Formation. (United States)

    Lin, Jing; Shao, Wei-Qing; Chen, Zong-You; Zhu, Wen-Wei; Lu, Lu; Cai, Duan; Qin, Lun-Xiu; Jia, Hu-Liang; Lu, Ming; Chen, Jin-Hong


    The precipitation of excess biliary cholesterol as solid crystals is a prerequisite for cholesterol gallstone formation, which occurs due to disturbed biliary homeostasis. Biliary homeostasis is regulated by an elaborate network of genes in hepatocytes. If unmanaged, the cholesterol crystals will aggregate, fuse and form gallstones. We have previously observed that the levels of osteopontin (OPN) in bile and gallbladder were reduced in gallstone patients. However, the role and mechanism for hepatic OPN in cholesterol gallstone formation is undetermined. In this study, we found that the expression of hepatic OPN was increased in gallstone patients compared with gallstone-free counterparts. Then, we observed that OPN-deficient mice were less vulnerable to cholesterol gallstone formation than wild type mice. Further mechanistic studies revealed that this protective effect was associated with alterations of bile composition and was caused by the increased hepatic CYP7A1 expression and the reduced expression of hepatic SHP, ATP8B1, SR-B1 and SREBP-2. Finally, the correlations between the expression of hepatic OPN and the expression of these hepatic genes were validated in gallstone patients. Taken together, our findings reveal that hepatic OPN contributes to cholesterol gallstone formation by regulating biliary metabolism and might be developed as a therapeutic target for gallstone treatments.

  13. Telomere homeostasis in mammalian germ cells: a review. (United States)

    Reig-Viader, Rita; Garcia-Caldés, Montserrat; Ruiz-Herrera, Aurora


    Telomeres protect against genome instability and participate in chromosomal movements during gametogenesis, especially in meiosis. Thus, maintaining telomere structure and telomeric length is essential to both cell integrity and the production of germ cells. As a result, alteration of telomere homeostasis in the germ line may result in the generation of aneuploid gametes or gametogenesis disruption, triggering fertility problems. In this work, we provide an overview on fundamental aspects of the literature regarding the organization of telomeres in mammalian germ cells, paying special attention to telomere structure and function, as well as the maintenance of telomeric length during gametogenesis. Moreover, we discuss the different roles recently described for telomerase and TERRA in maintaining telomere functionality. Finally, we review how new findings in the field of reproductive biology underscore the role of telomere homeostasis as a potential biomarker for infertility. Overall, we anticipate that the study of telomere stability and equilibrium will contribute to improve diagnoses of patients; assess the risk of infertility in the offspring; and in turn, find new treatments.

  14. Space Station fluid management logistics (United States)

    Dominick, Sam M.


    Viewgraphs and discussion on space station fluid management logistics are presented. Topics covered include: fluid management logistics - issues for Space Station Freedom evolution; current fluid logistics approach; evolution of Space Station Freedom fluid resupply; launch vehicle evolution; ELV logistics system approach; logistics carrier configuration; expendable fluid/propellant carrier description; fluid carrier design concept; logistics carrier orbital operations; carrier operations at space station; summary/status of orbital fluid transfer techniques; Soviet progress tanker system; and Soviet propellant resupply system observations.

  15. Schizophrenia, abnormal connection, and brain evolution. (United States)

    Randall, P L


    Abnormalities of functional connection between specialized areas in the human brain may underlie the symptoms which constitute the schizophrenia syndrome. Callosal and intrahemispheric fibres may be equally involved. The clinical emergence of symptoms in the later stages of brain maturation may be dependent on myelination of these fibre groups, both of which have extended myelination cycles. Ontogenetically earlier variants of the same mechanism could theoretically result in dyslexia and the syndromes of Kanner and Gilles de la Tourette. As new and unique extensions of specialized function emerge within the evolving brain, biological trial and error of connection both within and between them may produce individuals possessing phylogenetically advanced abilities, or equally, others possessing a wide range of abnormalities including those which comprise the schizophrenia syndrome. A dormant phenotypic potential for schizophrenia may exist in individuals who never develop symptoms during the course of a lifetime though some of these may become clinically apparent under the influence of various precipitating factors. It is concluded that abnormal functional connection and its normal and "supernormal" counterparts may be natural, essential, and inevitable consequences of brain evolution, and that this may have been so throughout the history of vertebrate brain evolution.

  16. Abnormal parietal encephalomalacia associated with schizophrenia (United States)

    Pan, Fen; Wang, Jun-Yuan; Xu, Yi; Huang, Man-Li


    Abstract Rationale: It is widely believed that structural abnormalities of the brain contribute to the pathophysiology of schizophrenia. The parietal lobe is a central hub of multisensory integration, and abnormities in this region might account for the clinical features of schizophrenia. However, few cases of parietal encephalomalacia associated with schizophrenia have been described. Patient concerns and Diagnoses: In this paper, we present a case of a 25-year-old schizophrenia patient with abnormal parietal encephalomalacia. The patient had poor nutrition and frequently had upper respiratory infections during childhood and adolescence. She showed severe schizophrenic symptoms such as visual hallucinations for 2 years. After examining all her possible medical conditions, we found that the patient had a lesion consistent with the diagnosis of encephalomalacia in her right parietal lobe and slight brain atrophy. Interventions: The patient was prescribed olanzapine (10 mg per day). Outcomes: Her symptoms significantly improved after antipsychotic treatment and were still well controlled 1 year later. Lessons: This case suggested that parietal encephalomalacia, which might be caused by inflammatory and infectious conditions in early life and be aggravated by undernutrition, might be implicated in the etiology of schizophrenia. PMID:28272261

  17. Abnormal Activity Detection Using Pyroelectric Infrared Sensors

    Directory of Open Access Journals (Sweden)

    Xiaomu Luo


    Full Text Available Healthy aging is one of the most important social issues. In this paper, we propose a method for abnormal activity detection without any manual labeling of the training samples. By leveraging the Field of View (FOV modulation, the spatio-temporal characteristic of human activity is encoded into low-dimension data stream generated by the ceiling-mounted Pyroelectric Infrared (PIR sensors. The similarity between normal training samples are measured based on Kullback-Leibler (KL divergence of each pair of them. The natural clustering of normal activities is discovered through a self-tuning spectral clustering algorithm with unsupervised model selection on the eigenvectors of a modified similarity matrix. Hidden Markov Models (HMMs are employed to model each cluster of normal activities and form feature vectors. One-Class Support Vector Machines (OSVMs are used to profile the normal activities and detect abnormal activities. To validate the efficacy of our method, we conducted experiments in real indoor environments. The encouraging results show that our method is able to detect abnormal activities given only the normal training samples, which aims to avoid the laborious and inconsistent data labeling process.

  18. Abnormal Activity Detection Using Pyroelectric Infrared Sensors. (United States)

    Luo, Xiaomu; Tan, Huoyuan; Guan, Qiuju; Liu, Tong; Zhuo, Hankz Hankui; Shen, Baihua


    Healthy aging is one of the most important social issues. In this paper, we propose a method for abnormal activity detection without any manual labeling of the training samples. By leveraging the Field of View (FOV) modulation, the spatio-temporal characteristic of human activity is encoded into low-dimension data stream generated by the ceiling-mounted Pyroelectric Infrared (PIR) sensors. The similarity between normal training samples are measured based on Kullback-Leibler (KL) divergence of each pair of them. The natural clustering of normal activities is discovered through a self-tuning spectral clustering algorithm with unsupervised model selection on the eigenvectors of a modified similarity matrix. Hidden Markov Models (HMMs) are employed to model each cluster of normal activities and form feature vectors. One-Class Support Vector Machines (OSVMs) are used to profile the normal activities and detect abnormal activities. To validate the efficacy of our method, we conducted experiments in real indoor environments. The encouraging results show that our method is able to detect abnormal activities given only the normal training samples, which aims to avoid the laborious and inconsistent data labeling process.

  19. Abnormal asymmetry of brain connectivity in schizophrenia. (United States)

    Ribolsi, Michele; Daskalakis, Zafiris J; Siracusano, Alberto; Koch, Giacomo


    Recently, a growing body of data has revealed that beyond a dysfunction of connectivity among different brain areas in schizophrenia patients (SCZ), there is also an abnormal asymmetry of functional connectivity compared with healthy subjects. The loss of the cerebral torque and the abnormalities of gyrification, with an increased or more complex cortical folding in the right hemisphere may provide an anatomical basis for such aberrant connectivity in SCZ. Furthermore, diffusion tensor imaging studies have shown a significant reduction of leftward asymmetry in some key white-matter tracts in SCZ. In this paper, we review the studies that investigated both structural brain asymmetry and asymmetry of functional connectivity in healthy subjects and SCZ. From an analysis of the existing literature on this topic, we can hypothesize an overall generally attenuated asymmetry of functional connectivity in SCZ compared to healthy controls. Such attenuated asymmetry increases with the duration of the disease and correlates with psychotic symptoms. Finally, we hypothesize that structural deficits across the corpus callosum may contribute to the abnormal asymmetry of intra-hemispheric connectivity in schizophrenia.

  20. Abnormalities Occurring during Female Gametophyte Development Result in the Diversity of Abnormal Embryo Sacs and Leads to Abnormal Fertilization in indicaljaponica Hybrids in Rice

    Institute of Scientific and Technical Information of China (English)

    Yu-Xiang Zeng; Chao-Yue Hu; Yong-Gen Lu; Jin-Quan Li; Xiang-Dong Liu


    Embryo sac abortion is one of the major masons for sterility in indicaljaponica hybrids In rice. To clarify the causal mechanism of embryo sac abortion, we studied the female gametophyte development in two indicaljaponica hybrids via an eosin B staining procedure for embryo sac scanning using confocal laser scanning microscope. Different types of abnormalities occurred during megasporogenesis and megagamatogenesis were demonstrated. The earliest abnormality was observed in the megasporocyte. A lot of the chalazal-most megaspores were degenerated before the mono-nucleate embryo sac stage. Disordered positioning of nucleus and abnormal nucallus tissue were characteristics of the abnormal female gametes from the mono-nucleate to four-nucleate embryo sac stages. The abnormalities that occurred from the early stage of the eight-nucleate embryo sac development to the mature embryo sac stage were characterized by smaller sizes and wrinkled antipodals. Asynchronous nuclear migration, abnormal positioning of nucleus, and degeneration of egg apparatus were also found at the eight-nucleate embryo sac stage. The abnormalities that occurred during female gametophyte development resulted in five major types of abnormal embryo sacs. These abnormal embryo sacs led to abnormal fertilization. Hand pollination using normal pollens on the spikelets during anthesis showed that normal pollens could not exclude the effect of abnormal embryo sac on seed setting.

  1. Dynamics of Complex Fluid-Fluid Interfaces

    NARCIS (Netherlands)

    Sagis, L.M.C.


    This chapter presents an overview of recent progress in modelling the behaviour of complex fluid–fluid interfaces with non-equilibrium thermodynamics. We will limit ourselves to frameworks employing the Gibbs dividing surface model, and start with a general discussion of the surface excess variables

  2. Abnormal antenatal sonogram: an indicator of disease severity in children with posterior urethral valves

    Energy Technology Data Exchange (ETDEWEB)

    Harvie, S. [Peterborough Health Centre, Dept. of Radiology, Peterborough, Ontario (Canada); McLeod, L. [IWK Health Centre, Dept. of Obstetrics and Gynaecology, Halifax, Nova Scotia (Canada); Acott, P. [IWK Health Centre, Dept. of Nephrology, Halifax, Nova Scotia (Canada); Walsh, E. [Dr. Charles A. Janeway Children' s Health Centre, Dept. of Radiology, St. John' s, Newfoundland (Canada); Abdolell, M. [QE II Health Sciences Centre, Dept. of Radiology, Halifax, Nova Scotia (Canada); Macken, M.B., E-mail: [IWK Health Centre, Dept. of Diagnostic Imaging, Halifax, Nova Scotia (Canada)


    To review the association of an abnormal prenatal sonogram with most recent serum creatinine in patients with proven posterior urethral valves (PUV). Since 1992, all live-born patients between 1992-2004 with clinically proven PUV, with postnatally proven PUV, from 2 pediatric tertiary care centers, were reviewed for age at diagnosis, most recent serum creatinine, presence of chronic renal failure (CRF) (serum creatinine >2 standard deviations above normal for age), or end stage renal disease (dialysis or transplant). Available antenatal reports from the 2 centres and surrounding community hospitals were reviewed for gestational age (GA) at the time of ultrasound, volume of amniotic fluid, and urinary-tract abnormality. Thirty-four patients with proven PUV and prenatal sonograms were identified (1992-2004). Eighteen patients had abnormalities on their prenatal sonogram, with poor outcome in 5 (mean follow-up, 8 years [1-13 y]). No specific features were identified on prenatal sonogram. Sixteen patients had normal prenatal sonograms, with poor outcomes in 2 (mean follow-up, 8 years [3-13 y]). There is an increased risk of an abnormal serum creatinine among those patients with an abnormal prenatal study, odds ratio (OR) 2.6 (95% confidence interval, 0.35-32). PUV represents a spectrum of disease severity. A normal prenatal ultrasound does not preclude PUV. The majority of patients with a normal prenatal examination have good outcomes. The OR suggests that there may be increased risk for poor outcome in those with an abnormal prenatal examination. A multicenter study is necessary to obtain a larger sample size and more precise ORs. (author)

  3. Debra-mediated Ci degradation controls tissue homeostasis in Drosophila adult midgut. (United States)

    Li, Zhouhua; Guo, Yueqin; Han, Lili; Zhang, Yan; Shi, Lai; Huang, Xudong; Lin, Xinhua


    Adult tissue homeostasis is maintained by resident stem cells and their progeny. However, the underlying mechanisms that control tissue homeostasis are not fully understood. Here, we demonstrate that Debra-mediated Ci degradation is important for intestinal stem cell (ISC) proliferation in Drosophila adult midgut. Debra inhibition leads to increased ISC activity and tissue homeostasis loss, phenocopying defects observed in aging flies. These defects can be suppressed by depleting Ci, suggesting that increased Hedgehog (Hh) signaling contributes to ISC proliferation and tissue homeostasis loss. Consistently, Hh signaling activation causes the same defects, whereas depletion of Hh signaling suppresses these defects. Furthermore, the Hh ligand from multiple sources is involved in ISC proliferation and tissue homeostasis. Finally, we show that the JNK pathway acts downstream of Hh signaling to regulate ISC proliferation. Together, our results provide insights into the mechanisms of stem cell proliferation and tissue homeostasis control.

  4. The S-Lagrangian and a theory of homeostasis in living systems (United States)

    Sandler, U.; Tsitolovsky, L.


    A major paradox of living things is their ability to actively counteract degradation in a continuously changing environment or being injured through homeostatic protection. In this study, we propose a dynamic theory of homeostasis based on a generalized Lagrangian approach (S-Lagrangian), which can be equally applied to physical and nonphysical systems. Following discoverer of homeostasis Cannon (1935), we assume that homeostasis results from tendency of the organisms to decrease of the stress and avoid of death. We show that the universality of homeostasis is a consequence of analytical properties of the S-Lagrangian, while peculiarities of the biochemical and physiological mechanisms of homeostasis determine phenomenological parameters of the S-Lagrangian. Additionally, we reveal that plausible assumptions about S-Lagrangian features lead to good agreement between theoretical descriptions and observed homeostatic behavior. Here, we have focused on homeostasis of living systems, however, the proposed theory is also capable of being extended to social systems.

  5. Applications of fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Round, G.R.; Garg, V.K.


    This book describes flexible and practical approach to learning the basics of fluid dynamics. Each chapter is a self-contained work session and includes a fluid dynamics concept, an explanation of the principles involved, an illustration of their application and references on where more detailed discussions can be found.

  6. Fluid loading responsiveness

    NARCIS (Netherlands)

    Geerts, Bart


    Patients in the intensive care unit (ICU) and in the peri-operative phase are dependent on physicians and nurses for their fluid intake. Volume status optimization is required to maximize oxygen delivery to vital organs. Unnecessary fluid administration can, however, lead to general and pulmonary oe

  7. Amniotic fluid as a vital sign for fetal wellbeing. (United States)

    Dubil, Elizabeth A; Magann, Everett F


    Introduction: Amniotic fluid, once thought to merely provide protection and room for necessary movement and growth for the fetus, is now understood to be a highly complex and dynamic system that is studied as a data point to interpret fetal wellbeing. Methods: Assessment of amniotic fluid volume is now routine when performing a sonographic evaluation of fetal status and is an important consideration in the assessment and management of perinatal morbidity and mortality.(1)(,)(2) In this review, we will cover the dynamics that affect amniotic fluid volume, review methods for measurement and quantification of volume, review definitions for normative data as related to neonatal outcomes, and provide evidence based guidance on the workup and management options for oligoydramnios and polyhydramnios in singleton and twin pregnancies. Conclusions: When abnormalities of fluid exist, appropriate workup to uncover the underlying etiology should be initiated as adverse fetal outcomes are sometimes associated with these variations from normalcy.

  8. Cognitive abnormalities and hippocampal alterations in monoamine oxidase A and B knockout mice. (United States)

    Singh, Chanpreet; Bortolato, Marco; Bali, Namrata; Godar, Sean C; Scott, Anna L; Chen, Kevin; Thompson, Richard F; Shih, Jean C


    The monoamine oxidase isoenzymes (MAOs) A and B play important roles in the homeostasis of monoaminergic neurotransmitters. The combined deficiency of MAO A and B results in significantly elevated levels of serotonin (5-hydroxytryptamine), norepinephrine, dopamine, and β-phenylethylamine; in humans and mice, these neurochemical changes are accompanied by neurodevelopmental perturbations as well as autistic-like responses. Ample evidence indicates that normal levels of monoamines in the hippocampus, amygdala, frontal cortex, and cerebellum are required for the integrity of learning and memory. Thus, in the present study, the cognitive status of MAO A/B knockout (KO) mice was examined with a wide array of behavioral tests. In comparison with male wild-type littermates, MAO A/B KO mice exhibited abnormally high and overgeneralized fear conditioning and enhanced eye-blink conditioning. These alterations were accompanied by significant increases in hippocampal long-term potentiation and alterations in the relative expression of NMDA glutamate receptor subunits. Our data suggest that chronic elevations of monoamines, because of the absence of MAO A and MAO B, cause functional alterations that are accompanied with changes in the cellular mechanisms underlying learning and memory. The characteristics exhibited by MAO A/B KO mice highlight the potential of these animals as a useful tool to provide further insight into the molecular bases of disorders associated with abnormal monoaminergic profiles.

  9. Calorie Restriction Prevents Metabolic Aging Caused by Abnormal SIRT1 Function in Adipose Tissues. (United States)

    Xu, Cheng; Cai, Yu; Fan, Pengcheng; Bai, Bo; Chen, Jie; Deng, Han-Bing; Che, Chi-Ming; Xu, Aimin; Vanhoutte, Paul M; Wang, Yu


    Adipose tissue is a pivotal organ determining longevity, due largely to its role in maintaining whole-body energy homeostasis and insulin sensitivity. SIRT1 is a NAD-dependent protein deacetylase possessing antiaging activities in a wide range of organisms. The current study demonstrates that mice with adipose tissue-selective overexpression of hSIRT1(H363Y), a dominant-negative mutant that disrupts endogenous SIRT1 activity, show accelerated development of metabolic aging. These mice, referred to as Adipo-H363Y, exhibit hyperglycemia, dyslipidemia, ectopic lipid deposition, insulin resistance, and glucose intolerance at a much younger age than their wild-type littermates. The metabolic defects of Adipo-H363Y are associated with abnormal epigenetic modifications and chromatin remodeling in their adipose tissues, as a result of excess accumulation of biotin, which inhibits endogenous SIRT1 activity, leading to increased inflammation, cellularity, and collagen deposition. The enzyme acetyl-CoA carboxylase 2 plays an important role in biotin accumulation within adipose tissues of Adipo-H363Y. Calorie restriction prevents biotin accumulation, abolishes abnormal histone biotinylation, and completely restores the metabolic and adipose functions of Adipo-H363Y. The effects are mimicked by short-term restriction of biotin intake, an approach potentially translatable to humans for maintaining the epigenetic and chromatin remodeling capacity of adipose tissues and preventing aging-associated metabolic disorders.

  10. Trypanosoma cruzi disrupts thymic homeostasis by altering intrathymic and systemic stress-related endocrine circuitries.

    Directory of Open Access Journals (Sweden)

    Ailin Lepletier


    Full Text Available We have previously shown that experimental infection caused by Trypanosoma cruzi is associated with changes in the hypothalamus-pituitary-adrenal axis. Increased glucocorticoid (GC levels are believed to be protective against the effects of acute stress during infection but result in depletion of CD4(+CD8(+ thymocytes by apoptosis, driving to thymic atrophy. However, very few data are available concerning prolactin (PRL, another stress-related hormone, which seems to be decreased during T. cruzi infection. Considering the immunomodulatory role of PRL upon the effects caused by GC, we investigated if intrathymic cross-talk between GC and PRL receptors (GR and PRLR, respectively might influence T. cruzi-induced thymic atrophy. Using an acute experimental model, we observed changes in GR/PRLR cross-activation related with the survival of CD4(+CD8(+ thymocytes during infection. These alterations were closely related with systemic changes, characterized by a stress hormone imbalance, with progressive GC augmentation simultaneously to PRL reduction. The intrathymic hormone circuitry exhibited an inverse modulation that seemed to counteract the GC-related systemic deleterious effects. During infection, adrenalectomy protected the thymus from the increase in apoptosis ratio without changing PRL levels, whereas an additional inhibition of circulating PRL accelerated the thymic atrophy and led to an increase in corticosterone systemic levels. These results demonstrate that the PRL impairment during infection is not caused by the increase of corticosterone levels, but the opposite seems to occur. Accordingly, metoclopramide (MET-induced enhancement of PRL secretion protected thymic atrophy in acutely infected animals as well as the abnormal export of immature and potentially autoreactive CD4(+CD8(+ thymocytes to the periphery. In conclusion, our findings clearly show that Trypanosoma cruzi subverts mouse thymus homeostasis by altering intrathymic and


    Energy Technology Data Exchange (ETDEWEB)

    Subhash Shah


    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  12. Micromachined Fluid Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Shiqiang Liu


    Full Text Available Micromachined fluid inertial sensors are an important class of inertial sensors, which mainly includes thermal accelerometers and fluid gyroscopes, which have now been developed since the end of the last century for about 20 years. Compared with conventional silicon or quartz inertial sensors, the fluid inertial sensors use a fluid instead of a solid proof mass as the moving and sensitive element, and thus offer advantages of simple structures, low cost, high shock resistance, and large measurement ranges while the sensitivity and bandwidth are not competitive. Many studies and various designs have been reported in the past two decades. This review firstly introduces the working principles of fluid inertial sensors, followed by the relevant research developments. The micromachined thermal accelerometers based on thermal convection have developed maturely and become commercialized. However, the micromachined fluid gyroscopes, which are based on jet flow or thermal flow, are less mature. The key issues and technologies of the thermal accelerometers, mainly including bandwidth, temperature compensation, monolithic integration of tri-axis accelerometers and strategies for high production yields are also summarized and discussed. For the micromachined fluid gyroscopes, improving integration and sensitivity, reducing thermal errors and cross coupling errors are the issues of most concern.

  13. Placental loctogen levels associated with gross fetal abnormality. (United States)

    Gau, G S; Cadle, G


    Four cases of severe congenital abnormality associated with persistently low maternal serum human placental lactogen levels are described. It is thought that this pattern might act as a warning of severe fetal abnormality.

  14. Phenotype abnormality: 36 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 36 abnormal for trait of behavioral quality...tyledon ... abnormal ... anatomical structure arrangement ... behavioral quality

  15. Phenotype abnormality: 41 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 41 abnormal for trait of behavioral quality...ganelle ... abnormal ... anatomical structure arrangement ... behavioral quality

  16. Phenotype abnormality: 38 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 38 abnormal for trait of behavioral quality...idermis ... abnormal ... anatomical structure arrangement ... behavioral quality

  17. Independent Stem Cell Lineages Regulate Adipose Organogenesis and Adipose Homeostasis

    Directory of Open Access Journals (Sweden)

    Yuwei Jiang


    Full Text Available Adipose tissues have striking plasticity, highlighted by childhood and adult obesity. Using adipose lineage analyses, smooth muscle actin (SMA-mural cell-fate mapping, and conditional PPARγ deletion to block adipocyte differentiation, we find two phases of adipocyte generation that emanate from two independent adipose progenitor compartments: developmental and adult. These two compartments are sequentially required for organ formation and maintenance. Although both developmental and adult progenitors are specified during the developmental period and express PPARγ, they have distinct microanatomical, functional, morphogenetic, and molecular profiles. Furthermore, the two compartments derive from different lineages; whereas adult adipose progenitors fate-map from an SMA+ mural lineage, developmental progenitors do not. Remarkably, the adult progenitor compartment appears to be specified earlier than the developmental cells and then enters the already developmentally formed adipose depots. Thus, two distinct cell compartments control adipose organ development and organ homeostasis, which may provide a discrete therapeutic target for childhood and adult obesity.

  18. Circadian Disruption Leads to Loss of Homeostasis and Disease

    Directory of Open Access Journals (Sweden)

    Carolina Escobar


    Full Text Available The relevance of a synchronized temporal order for adaptation and homeostasis is discussed in this review. We present evidence suggesting that an altered temporal order between the biological clock and external temporal signals leads to disease. Evidence mainly based on a rodent model of “night work” using forced activity during the sleep phase suggests that altered activity and feeding schedules, out of phase from the light/dark cycle, may be the main cause for the loss of circadian synchrony and disease. It is proposed that by avoiding food intake during sleep hours the circadian misalignment and adverse consequences can be prevented. This review does not attempt to present a thorough revision of the literature, but instead it aims to highlight the association between circadian disruption and disease with special emphasis on the contribution of feeding schedules in circadian synchrony.

  19. CART in the Regulation of Appetite and Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Jackie eLau


    Full Text Available The cocaine- and amphetamine-regulated transcript (CART has been the subject of significant interest for over a decade. Work to decipher the detailed mechanism of CART function has been hampered by the lack of specific pharmacological tools like antagonists and the absence of a specific CART receptor(s. However, extensive research has been devoted to elucidate the role of the CART peptide and it is now evident that CART is a key neurotransmitter and hormone involved in the regulation of diverse biological processes, including food intake, maintenance of body weight, reward and addiction, stress response, psychostimulant effects and endocrine functions1,2. In this review, we focus on knowledge gained on CART’s role in controlling appetite and energy homeostasis, and also address certain species differences between rodents and humans.

  20. Renal control of calcium, phosphate, and magnesium homeostasis. (United States)

    Blaine, Judith; Chonchol, Michel; Levi, Moshe


    Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys.

  1. TOR Complexes and the Maintenance of Cellular Homeostasis. (United States)

    Eltschinger, Sandra; Loewith, Robbie


    The Target of Rapamycin (TOR) is a conserved serine/threonine (ser/thr) kinase that functions in two, distinct, multiprotein complexes called TORC1 and TORC2. Each complex regulates different aspects of eukaryote growth: TORC1 regulates cell volume and/or mass by influencing protein synthesis and turnover, while TORC2, as detailed in this review, regulates cell surface area by influencing lipid production and intracellular turgor. TOR complexes function in feedback loops, implying that downstream effectors are also likely to be involved in upstream regulation. In this regard, the notion that TORCs function primarily as mediators of cellular and organismal homeostasis is fundamentally different from the current, predominate view of TOR as a direct transducer of extracellular biotic and abiotic signals.

  2. Caenorhabditis elegans ATAD-3 modulates mitochondrial iron and heme homeostasis. (United States)

    van den Ecker, Daniela; Hoffmann, Michael; Müting, Gesine; Maglioni, Silvia; Herebian, Diran; Mayatepek, Ertan; Ventura, Natascia; Distelmaier, Felix


    ATAD3 (ATPase family AAA domain-containing protein 3) is a mitochondrial protein, which is essential for cell viability and organismal development. ATAD3 has been implicated in several important cellular processes such as apoptosis regulation, respiratory chain function and steroid hormone biosynthesis. Moreover, altered expression of ATAD3 has been associated with several types of cancer. However, the exact mechanisms underlying ATAD3 effects on cellular metabolism remain largely unclear. Here, we demonstrate that Caenorhabditis elegans ATAD-3 is involved in mitochondrial iron and heme homeostasis. Knockdown of atad-3 caused mitochondrial iron- and heme accumulation. This was paralleled by changes in the expression levels of several iron- and heme-regulatory genes as well as an increased heme uptake. In conclusion, our data indicate a regulatory role of C. elegans ATAD-3 in mitochondrial iron and heme metabolism.

  3. Ghrelin O-Acyl Transferase: Bridging Ghrelin and Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Andrew Shlimun


    Full Text Available Ghrelin O-acyl transferase (GOAT is a recently identified enzyme responsible for the unique n-acyl modification of ghrelin, a multifunctional metabolic hormone. GOAT structure and activity appears to be conserved from fish to man. Since the acyl modification is critical for most of the biological actions of ghrelin, especially metabolic functions, GOAT emerged as a very important molecule of interest. The research on GOAT is on the rise, and several important results reiterating its significance have been reported. Notable among these discoveries are the identification of GOAT tissue expression patterns, effects on insulin secretion, blood glucose levels, feeding, body weight, and metabolism. Several attempts have been made to design and test synthetic compounds that can modulate endogenous GOAT, which could turn beneficial in favorably regulating whole body energy homeostasis. This paper will focus to provide an update on recent advances in GOAT research and its broader implications in the regulation of energy balance.

  4. K+ homeostasis in the brain: a new role for glycogenolysis. (United States)

    Mangia, S; Giove, F; Dinuzzo, M


    The results of the study of Xu and colleagues in this issue constitute a critical new piece of information on the functional specialization of astrocytes for K(+) homeostasis in the brain. The relationship between astrocytes and potassium has been long recognized in half a century of research. Now this relation appears to have found its metabolic correlate in astrocytic glycogen. Xu et al. showed that glycogen is committed to fuel astrocytic K(+) uptake, as this process is abolished when glycogenolysis is inhibited even in the presence of glucose. They went further by showing that the cellular mechanisms which selectively mobilize glycogen involve the participation of several intracellular signaling cascades. As with all good science, these findings generate a number of fundamental questions that are open for experimental research.

  5. Chronic Sleep Disturbance Impairs Glucose Homeostasis in Rats

    Directory of Open Access Journals (Sweden)

    R. Paulien Barf


    Full Text Available Epidemiological studies have shown an association between short or disrupted sleep and an increased risk for metabolic disorders. To assess a possible causal relationship, we examined the effects of experimental sleep disturbance on glucose regulation in Wistar rats under controlled laboratory conditions. Three groups of animals were used: a sleep restriction group (RS, a group subjected to moderate sleep disturbance without restriction of sleep time (DS, and a home cage control group. To establish changes in glucose regulation, animals were subjected to intravenous glucose tolerance tests (IVGTTs before and after 1 or 8 days of sleep restriction or disturbance. Data show that both RS and DS reduce body weight without affecting food intake and also lead to hyperglycemia and decreased insulin levels during an IVGTT. Acute sleep disturbance also caused hyperglycemia during an IVGTT, yet, without affecting the insulin response. In conclusion, both moderate and severe disturbances of sleep markedly affect glucose homeostasis and body weight control.

  6. Epoxyeicosatrienoic acids and glucose homeostasis in mice and men. (United States)

    Luther, James M; Brown, Nancy J


    Epoxyeicosatrienoic acids (EETs) are formed from arachidonic acid by the action of P450 epoxygenases (CYP2C and CYP2J). Effects of EETs are limited by hydrolysis by soluble epoxide hydrolase to less active dihydroxyeicosatrienoic acids. Studies in rodent models provide compelling evidence that epoxyeicosatrienoic acids exert favorable effects on glucose homeostasis, either by enhancing pancreatic islet cell function or by increasing insulin sensitivity in peripheral tissues. Specifically, the tissue expression of soluble epoxide hydrolase appears to be increased in rodent models of obesity and diabetes. Pharmacological inhibition of epoxide hydrolase or deletion of the gene encoding soluble epoxide hydrolase (Ephx2) preserves islet cells in rodent models of type 1 diabetes and enhances insulin sensitivity in models of type 2 diabetes, as does administration of epoxyeicosatrienoic acids or their stable analogues. In humans, circulating concentrations of epoxyeicosatrienoic acids correlate with insulin sensitivity, and a loss-of-function genetic polymorphism in EPHX2 is associated with insulin sensitivity.

  7. Peroxisome Ca(2+) homeostasis in animal and plant cells. (United States)

    Costa, Alex; Drago, Ilaria; Zottini, Michela; Pizzo, Paola; Pozzan, Tullio


    Ca(2+) homeostasis in peroxisomes has been an unsolved problem for many years. Recently novel probes to monitor Ca(2+) levels in the lumen of peroxisomes in living cells of both animal and plant cells have been developed. Here we discuss the contrasting results obtained in mammalian cells with chemiluminecsent (aequorin) and fluorescent (cameleon) probes targeted to peroxisomes. We briefly discuss the different characteristics of these probes and the possible pitfalls of the two approaches. We conclude that the contrasting results obtained with the two probes may reflect a heterogeneity among peroxisomes in mammalian cells. We also discuss the results obtained in plant peroxisomes. In particular we demonstrate that Ca(2+) increases in the cytoplasm are mirrored by similar rises of Ca(2+) concentration the lumen of peroxisomes. The increases in peroxisome Ca(2+) level results in the activation of a catalase isoform, CAT3. Other functional roles of peroxisomal Ca(2+) changes in plant physiology are briefly discussed.

  8. CART in the regulation of appetite and energy homeostasis. (United States)

    Lau, Jackie; Herzog, Herbert


    The cocaine- and amphetamine-regulated transcript (CART) has been the subject of significant interest for over a decade. Work to decipher the detailed mechanism of CART function has been hampered by the lack of specific pharmacological tools like antagonists and the absence of a specific CART receptor(s). However, extensive research has been devoted to elucidate the role of the CART peptide and it is now evident that CART is a key neurotransmitter and hormone involved in the regulation of diverse biological processes, including food intake, maintenance of body weight, reward and addiction, stress response, psychostimulant effects and endocrine functions (Rogge et al., 2008; Subhedar et al., 2014). In this review, we focus on knowledge gained on CART's role in controlling appetite and energy homeostasis, and also address certain species differences between rodents and humans.

  9. CART in the regulation of appetite and energy homeostasis (United States)

    Lau, Jackie; Herzog, Herbert


    The cocaine- and amphetamine-regulated transcript (CART) has been the subject of significant interest for over a decade. Work to decipher the detailed mechanism of CART function has been hampered by the lack of specific pharmacological tools like antagonists and the absence of a specific CART receptor(s). However, extensive research has been devoted to elucidate the role of the CART peptide and it is now evident that CART is a key neurotransmitter and hormone involved in the regulation of diverse biological processes, including food intake, maintenance of body weight, reward and addiction, stress response, psychostimulant effects and endocrine functions (Rogge et al., 2008; Subhedar et al., 2014). In this review, we focus on knowledge gained on CART's role in controlling appetite and energy homeostasis, and also address certain species differences between rodents and humans. PMID:25352770

  10. Perinatal exercise improves glucose homeostasis in adult offspring. (United States)

    Carter, Lindsay G; Lewis, Kaitlyn N; Wilkerson, Donald C; Tobia, Christine M; Ngo Tenlep, Sara Y; Shridas, Preetha; Garcia-Cazarin, Mary L; Wolff, Gretchen; Andrade, Francisco H; Charnigo, Richard J; Esser, Karyn A; Egan, Josephine M; de Cabo, Rafael; Pearson, Kevin J


    Emerging research has shown that subtle factors during pregnancy and gestation can influence long-term health in offspring. In an attempt to be proactive, we set out to explore whether a nonpharmacological intervention, perinatal exercise, might improve offspring health. Female mice were separated into sedentary or exercise cohorts, with the exercise cohort having voluntary access to a running wheel prior to mating and during pregnancy and nursing. Offspring were weaned, and analyses were performed on the mature offspring that did not have access to running wheels during any portion of their lives. Perinatal exercise caused improved glucose disposal following an oral glucose challenge in both female and male adult offspring (P wheels (P nursing can enhance long-term glucose homeostasis in offspring.

  11. Macrophages in cardiac homeostasis, injury responses and progenitor cell mobilisation

    Directory of Open Access Journals (Sweden)

    Alexander R. Pinto


    Full Text Available Macrophages are an immune cell type found in every organ of the body. Classically, macrophages are recognised as housekeeping cells involved in the detection of foreign antigens and danger signatures, and the clearance of tissue debris. However, macrophages are increasingly recognised as a highly versatile cell type with a diverse range of functions that are important for tissue homeostasis and injury responses. Recent research findings suggest that macrophages contribute to tissue regeneration and may play a role in the activation and mobilisation of stem cells. This review describes recent advances in our understanding of the role played by macrophages in cardiac tissue maintenance and repair following injury. We examine the involvement of exogenous and resident tissue macrophages in cardiac inflammatory responses and their potential activity in regulating cardiac regeneration.

  12. Electrocardiographic and Echocardiographic Abnormalities in Chronic Alcoholics

    Directory of Open Access Journals (Sweden)

    H.D. Attar


    Full Text Available Objective: Alcohol is most commonly abused drug worldwide. It has been shown to produce toxic effects in almost every organ system in the body. Many of these medical conditions can be attributed to direct effects of alcohol whereas others are indirect sequelae that may result from nutritional deficiencies or predisposition to trauma. Alcohol consumption has been associated with a variety of cardio vascular disorders this study was thus undertaken to know the Electrocardiographic and Echocardiographic abnormalities in asymptomatic chronic alcoholic patients. Materials and Methods: 50 Patients attending the out-patient clinic & who were admitted in Al Ameen Medical College Hospital and District hospital, Bijapur were selected for the study. It was a prospective study design subjects in age group 20-40, having history of chronic alcoholism as defined, for more than 5 years were evaluated by electrocardiography and echocardiography. Patients with known diabetics, hypertensive and cardiovascular disorders were excluded from the study group. Results: The prevalence of cardiovascular abnormalities in patients of chronic alcoholism is 37% in our study. Most common ECG changes are sinus tachycardia (18%, and Non specific ST-T changes (9%. Most common 2D ECHO changes was increased posterior wall thickness (11% and followed by increased interventricular septum thickness and decreased ejection fraction (<40%. The prevalence of cardio vascular abnormalities are more with increased duration of alcohol consumption and also high in advanced age group. Conclusions: This study confirms that many electrocardiographic as well as echocardiographic changes occur prior to symptomatic cardiac disorders established to be caused by chronic alcohol intake such as alcoholic cardiomyopathy .which probably are early indictors of ongoing effects of alcohol and are reversible during the early stages detected by non invasive investigations like Electrocardiography and

  13. Hereditary sideroblastic anemia with associated platelet abnormalities. (United States)

    Soslau, G; Brodsky, I


    A 62 year old male (R.H.) presented with a mild anemia (Hb 11-12 gm%) and a history of multiple hemorrhagic episodes. The marrow had 40-50% sideroblasts. Marrow chromosomes were normal. His wife was hematologically normal, while one daughter, age 30 years, had a sideroblastic anemia (Hb 11-12 gm%) with 40-50% sideroblasts in the marrow. Her anemia was first noted at age 15 years. Administration of vitamin B6 did not correct the anemia in either the father or daughter. Platelet abnormalities inherited jointly with this disorder are described for the first time. Both R.H. and his daughter had prolonged bleeding times, with normal PTT, PT times, fVIII:C, fVIII:Ag levels, and vWF multimers, which may rule out a von Willebrand's disease. They have normal platelet numbers but abnormally low platelet adhesiveness and greatly depressed ADP, collagen, and epinephrine responsiveness. Response to ristocetin was in the low normal range, and aggregation with thrombin was normal. While desmopressin completely normalized R.H.'s bleeding time, none of these platelet parameters were improved. No differences in the SDS PAGE protein patterns of RH platelets could be detected in comparison to normal samples. His platelets took up and released serotonin (5HT) normally, and electron micrographs defined no morphological abnormalities. However, no ATP was released from platelets activated with collagen, and when followed by thrombin about fourfold greater ATP was released by control platelets as compared to RH platelets. The dense granule fraction derived from RH platelets contained about 20% the level of ATP, 40% the level of ADP, and 50% the level of 5HT detected in a normal sample. The results indicate that the bleeding disorder is related to a non-classical heritable storage pool defect. The connection between the inherited sideroblastic anemia and platelet defects is obscure.

  14. Synthetic Base Fluids (United States)

    Brown, M.; Fotheringham, J. D.; Hoyes, T. J.; Mortier, R. M.; Orszulik, S. T.; Randles, S. J.; Stroud, P. M.

    The chemical nature and technology of the main synthetic lubricant base fluids is described, covering polyalphaolefins, alkylated aromatics, gas-to-liquid (GTL) base fluids, polybutenes, aliphatic diesters, polyolesters, polyalkylene glycols or PAGs and phosphate esters.Other synthetic lubricant base oils such as the silicones, borate esters, perfluoroethers and polyphenylene ethers are considered to have restricted applications due to either high cost or performance limitations and are not considered here.Each of the main synthetic base fluids is described for their chemical and physical properties, manufacture and production, their chemistry, key properties, applications and their implications when used in the environment.

  15. Supercritical fluid extraction (United States)

    Wai, Chien M.; Laintz, Kenneth


    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  16. Fundamentals of fluid lubrication (United States)

    Hamrock, Bernard J.


    The aim is to coordinate the topics of design, engineering dynamics, and fluid dynamics in order to aid researchers in the area of fluid film lubrication. The lubrication principles that are covered can serve as a basis for the engineering design of machine elements. The fundamentals of fluid film lubrication are presented clearly so that students that use the book will have confidence in their ability to apply these principles to a wide range of lubrication situations. Some guidance on applying these fundamentals to the solution of engineering problems is also provided.

  17. Geophysical fluid flow experiment (United States)

    Broome, B. G.; Fichtl, G.; Fowlis, W.


    The essential fluid flow processes associated with the solar and Jovian atmospheres will be examined in a laboratory experiment scheduled for performance on Spacelab Missions One and Three. The experimental instrumentation required to generate and to record convective fluid flow is described. Details of the optical system configuration, the lens design, and the optical coatings are described. Measurement of thermal gradient fields by schlieren techniques and measurement of fluid flow velocity fields by photochromic dye tracers is achieved with a common optical system which utilizes photographic film for data recording. Generation of the photochromic dye tracers is described, and data annotation of experimental parameters on the film record is discussed.

  18. Physics of Fluids



    Periodic motion of three stirrers in a two-dimensional flow can lead to chaotic transport of the surrounding fluid. For certain stirrer motions, the generation of chaos is guaranteed solely by the topology of that motion and continuity of the fluid. Work in this area has focused largely on using physical rods as stirrers, but the theory also applies when the "stirrers" are passive fluid particles. We demonstrate the occurrence of topological chaos for Stokes flow in a two-dimensional lid-driv...

  19. Sexsomnia: abnormal sexual behavior during sleep. (United States)

    Andersen, Monica L; Poyares, Dalva; Alves, Rosana S C; Skomro, Robert; Tufik, Sergio


    This review attempts to assemble the characteristics of a distinct variant of sleepwalking called sexsomnia/sleepsex from the seemingly scarce literature into a coherent theoretical framework. Common features of sexsomnia include sexual arousal with autonomic activation (e.g. nocturnal erection, vaginal lubrication, nocturnal emission, dream orgasms). Somnambulistic sexual behavior and its clinical implications, the role of precipitating factors, diagnostic, treatment, and medico-legal issues are also reviewed. The characteristics of several individuals described in literature including their family/personal history of parasomnia as well as the abnormal behaviors occurring during sleep are reported.

  20. Radiological and orthopedic abnormalities in Satoyoshi syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Haymon, M.L. [Children`s Hospital, New Orleans, LA (United States). Dept. of Radiology; Willis, R.B. [Children`s Hospital, New Orleans, LA (United States). Dept. of Orthopedics; Ehlayel, M.S. [Div. of Genetics, Dept. of Pediatrics, Louisiana State Univ. Medical Center, Orleans, LA (United States)]|[Louisiana State Medical Center, New Orleans, LA (United States). Center for Molecular and Human Genetics; Lacassie, Y. [Div. of Genetics, Dept. of Pediatrics, Louisiana State Univ. Medical Center, Orleans, LA (United States)]|[Louisiana State Medical Center, New Orleans, LA (United States). Center for Molecular and Human Genetics]|[Children`s Hospital, New Orleans, LA (United States). Dept. of Pediatrics


    Satoyoshi syndrome is a are disorder on unknown etiology characterized by progressive, painful intermittent muscle spasms, serve skeletal abnormalities mimicking a skeletal dyplasia, malabsorption, alopecia, and amenorrhea. We further report on a 20{sup 1}/{sub 2}-year-old Caucasian woman whith characteristic manifestation of the syndrome. Since the establishment of the diagnostic 1 year ago, she has been treated with prednisone with good response. However, treatment of the multiple deformities and fractures has been difficult and challenging. The early recognition and treatment of this disorder is of utmost importance, as the skeletal deformities and fractures seem to be secondary to the muscular spasms, as suggested by Satoyoshi.

  1. Skeletal abnormalities of acrogeria, a progeroid syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Ho, A.; White, S.J.; Rasmussen, J.E.


    We report the skeletal abnormalities in a 4 1/2-year-old boy with acrogeria, a progeroid syndrome of premature aging of the skin without the involvement of internal organs seen in Hutchinson-Gilford progeria syndrome. Acro-osteolysis of the distal phalanges, delayed cranial suture closure with wormian bones, linear lucent defects of the metaphyses, and antegonial notching of the mandible are the predominant skeletal features of the disorder. The skeletal features described in 21 other reported cases of acrogeria are summarized.

  2. Mesenchymal dental pulp cells attenuate dentin resorption in homeostasis. (United States)

    Zheng, Y; Chen, M; He, L; Marão, H F; Sun, D M; Zhou, J; Kim, S G; Song, S; Wang, S L; Mao, J J


    Dentin in permanent teeth rarely undergoes resorption in development, homeostasis, or aging, in contrast to bone that undergoes periodic resorption/remodeling. The authors hypothesized that cells in the mesenchymal compartment of dental pulp attenuate osteoclastogenesis. Mononucleated and adherent cells from donor-matched rat dental pulp (dental pulp cells [DPCs]) and alveolar bone (alveolar bone cells [ABCs]) were isolated and separately cocultured with primary rat splenocytes. Primary splenocytes readily aggregated and formed osteoclast-like cells in chemically defined osteoclastogenesis medium with 20 ng/mL of macrophage colony-stimulating factor (M-CSF) and 50 ng/mL of receptor activator of nuclear factor κB ligand (RANKL). Strikingly, DPCs attenuated osteoclastogenesis when cocultured with primary splenocytes, whereas ABCs slightly but significantly promoted osteoclastogenesis. DPCs yielded ~20-fold lower RANKL expression but >2-fold higher osteoprotegerin (OPG) expression than donor-matched ABCs, yielding a RANKL/OPG ratio of 41:1 (ABCs:DPCs). Vitamin D3 significantly promoted RANKL expression in ABCs and OPG in DPCs. In vivo, rat maxillary incisors were atraumatically extracted (without any tooth fractures), followed by retrograde pulpectomy to remove DPCs and immediate replantation into the extraction sockets to allow repopulation of the surgically treated root canal with periodontal and alveolar bone-derived cells. After 8 wk, multiple dentin/root resorption lacunae were present in root dentin with robust RANKL and OPG expression. There were areas of dentin resoprtion alternating with areas of osteodentin formation in root dentin surface in the observed 8 wk. These findings suggest that DPCs of the mesenchymal compartment have an innate ability to attenuate osteoclastogenesis and that this innate ability may be responsible for the absence of dentin resorption in homeostasis. Mesenchymal attenuation of dentin resorption may have implications in internal

  3. Bistable dynamics underlying excitability of ion homeostasis in neuron models.

    Directory of Open Access Journals (Sweden)

    Niklas Hübel


    Full Text Available When neurons fire action potentials, dissipation of free energy is usually not directly considered, because the change in free energy is often negligible compared to the immense reservoir stored in neural transmembrane ion gradients and the long-term energy requirements are met through chemical energy, i.e., metabolism. However, these gradients can temporarily nearly vanish in neurological diseases, such as migraine and stroke, and in traumatic brain injury from concussions to severe injuries. We study biophysical neuron models based on the Hodgkin-Huxley (HH formalism extended to include time-dependent ion concentrations inside and outside the cell and metabolic energy-driven pumps. We reveal the basic mechanism of a state of free energy-starvation (FES with bifurcation analyses showing that ion dynamics is for a large range of pump rates bistable without contact to an ion bath. This is interpreted as a threshold reduction of a new fundamental mechanism of ionic excitability that causes a long-lasting but transient FES as observed in pathological states. We can in particular conclude that a coupling of extracellular ion concentrations to a large glial-vascular bath can take a role as an inhibitory mechanism crucial in ion homeostasis, while the Na⁺/K⁺ pumps alone are insufficient to recover from FES. Our results provide the missing link between the HH formalism and activator-inhibitor models that have been successfully used for modeling migraine phenotypes, and therefore will allow us to validate the hypothesis that migraine symptoms are explained by disturbed function in ion channel subunits, Na⁺/K⁺ pumps, and other proteins that regulate ion homeostasis.

  4. Host Antimicrobial Peptides in Bacterial Homeostasis and Pathogenesis of Disease

    Directory of Open Access Journals (Sweden)

    Derek R. Heimlich


    Full Text Available Innate immune responses function as a first line of host defense against the development of bacterial infection, and in some cases to preserve the sterility of privileged sites in the human host. Bacteria that enter these sites must counter host responses for colonization. From the host’s perspective, the innate immune system works expeditiously to minimize the bacterial threat before colonization and subsequent dysbiosis. The multifactorial nature of disease further challenges predictions of how each independent variable influences bacterial pathogenesis. From bacterial colonization to infection and through disease, the microenvironments of the host are in constant flux as bacterial and host factors contribute to changes at the host-pathogen interface, with the host attempting to eradicate bacteria and the bacteria fighting to maintain residency. A key component of this innate host response towards bacterial infection is the production of antimicrobial peptides (AMPs. As an early component of the host response, AMPs modulate bacterial load and prevent establishment of infection. Under quiescent conditions, some AMPs are constitutively expressed by the epithelium. Bacterial infection can subsequently induce production of other AMPs in an effort to maintain sterility, or to restrict colonization. As demonstrated in various studies, the absence of a single AMP can influence pathogenesis, highlighting the importance of AMP concentration in maintaining homeostasis. Yet, AMPs can increase bacterial virulence through the co-opting of the peptides or alteration of bacterial virulence gene expression. Further, bacterial factors used to subvert AMPs can modify host microenvironments and alter colonization of the residential flora that principally maintain homeostasis. Thus, the dynamic interplay between host defense peptides and bacterial factors produced to quell peptide activity play a critical role in the progression and outcome of disease.

  5. Abnormal immune parameters in HIV-seronegative haemophilic patients

    NARCIS (Netherlands)

    Allersma, DP; Smid, WM; Briet, E


    In HIV-seronegative haemophiliac patients abnormal immune parameters have been demonstrated. In this review data on these abnormalities, their aetiology and clinical consequences are summarized and discussed. The data reviewed show abnormalities at different levels of the adaptive immune system. Mos

  6. Abnormal Behavior in Relation to Cage Size in Rhesus Monkeys (United States)

    Paulk, H. H.; And Others


    Examines the effects of cage size on stereotyped and normal locomotion and on other abnormal behaviors in singly caged animals, whether observed abnormal behaviors tend to co-occur, and if the development of an abnormal behavior repertoire leads to reduction in the number of normal behavior categories. (Author/RK)

  7. The Spacing Principle for Unlearning Abnormal Neuronal Synchrony


    Popovych, Oleksandr V.; Markos N Xenakis; Tass, Peter A.


    Desynchronizing stimulation techniques were developed to specifically counteract abnormal neuronal synchronization relevant to several neurological and psychiatric disorders. The goal of our approach is to achieve an anti-kindling, where the affected neural networks unlearn abnormal synaptic connectivity and, hence, abnormal neuronal synchrony, by means of desynchronizing stimulation, in particular, Coordinated Reset (CR) stimulation. As known from neuroscience, psychology and education, lear...

  8. Seizure increases electroencephalographic abnormalities in children with tuberculous meningitis

    Directory of Open Access Journals (Sweden)

    Prastiya Indra Gunawan


    The EEG pattern in children with TBM varies, and EEG abnormalities were more frequently localized in the frontotemporal region. Seizures were associated with EEG abnormalities in children with TBM. EEG abnormalities occurring simultaneously with seizures may predict the occurrence of seizures.

  9. NOS2 is critical to the development of emphysema in Sftpd deficient mice but does not affect surfactant homeostasis.

    Directory of Open Access Journals (Sweden)

    Lars Knudsen

    Full Text Available RATIONALE: Surfactant protein D (SP-D has important immuno-modulatory properties. The absence of SP-D results in an inducible NO synthase (iNOS, coded by NOS2 gene related chronic inflammation, development of emphysema-like pathophysiology and alterations of surfactant homeostasis. OBJECTIVE: In order to test the hypothesis that SP-D deficiency related abnormalities in pulmonary structure and function are a consequence of iNOS induced inflammation, we generated SP-D and iNOS double knockout mice (DiNOS. METHODS: Structural data obtained by design-based stereology to quantify the emphysema-like phenotype and disturbances of the intracellular surfactant were correlated to invasive pulmonary function tests and inflammatory markers including activation markers of alveolar macrophages and compared to SP-D (Sftpd(-/- and iNOS single knockout mice (NOS2(-/- as well as wild type (WT littermates. MEASUREMENTS AND RESULTS: DiNOS mice had reduced inflammatory cells in BAL and BAL-derived alveolar macrophages showed an increased expression of markers of an alternative activation as well as reduced inflammation. As evidenced by increased alveolar numbers and surface area, emphysematous changes were attenuated in DiNOS while disturbances of the surfactant system remained virtually unchanged. Sftpd(-/- demonstrated alterations of intrinsic mechanical properties of lung parenchyma as shown by reduced stiffness and resistance at its static limits, which could be corrected by additional ablation of NOS2 gene in DiNOS. CONCLUSION: iNOS related inflammation in the absence of SP-D is involved in the emphysematous remodeling leading to a loss of alveoli and associated alterations of elastic properties of lung parenchyma while disturbances of surfactant homeostasis are mediated by different mechanisms.

  10. Plasma metabolomic profiles reflective of glucose homeostasis in non-diabetic and type 2 diabetic obese African-American women.

    Directory of Open Access Journals (Sweden)

    Oliver Fiehn

    Full Text Available Insulin resistance progressing to type 2 diabetes mellitus (T2DM is marked by a broad perturbation of macronutrient intermediary metabolism. Understanding the biochemical networks that underlie metabolic homeostasis and how they associate with insulin action will help unravel diabetes etiology and should foster discovery of new biomarkers of disease risk and severity. We examined differences in plasma concentrations of >350 metabolites in fasted obese T2DM vs. obese non-diabetic African-American women, and utilized principal components analysis to identify 158 metabolite components that strongly correlated with fasting HbA1c over a broad range of the latter (r = -0.631; p<0.0001. In addition to many unidentified small molecules, specific metabolites that were increased significantly in T2DM subjects included certain amino acids and their derivatives (i.e., leucine, 2-ketoisocaproate, valine, cystine, histidine, 2-hydroxybutanoate, long-chain fatty acids, and carbohydrate derivatives. Leucine and valine concentrations rose with increasing HbA1c, and significantly correlated with plasma acetylcarnitine concentrations. It is hypothesized that this reflects a close link between abnormalities in glucose homeostasis, amino acid catabolism, and efficiency of fuel combustion in the tricarboxylic acid (TCA cycle. It is speculated that a mechanism for potential TCA cycle inefficiency concurrent with insulin resistance is "anaplerotic stress" emanating from reduced amino acid-derived carbon flux to TCA cycle intermediates, which if coupled to perturbation in cataplerosis would lead to net reduction in TCA cycle capacity relative to fuel delivery.

  11. Mitochondrial TCA cycle intermediates regulate body fluid and acid-base balance


    Peti-Peterdi, János


    Intrarenal control mechanisms play an important role in the maintenance of body fluid and electrolyte balance and pH homeostasis. Recent discoveries of new ion transport and regulatory pathways in the distal nephron and collecting duct system have helped to better our understanding of these critical kidney functions and identified new potential therapeutic targets and approaches. In this issue of the JCI, Tokonami et al. report on the function of an exciting new paracrine mediator, the mitoch...

  12. Amniotic fluid embolism and isolated coagulopathy: atypical presentation of amniotic fluid embolism.

    LENUS (Irish Health Repository)

    Awad, I T


    A 41-year-old multigravida presented at 32 weeks of gestation with polyhydramnios and an anencephalic fetus. Abnormal bleeding as a result of disseminated intravascular coagulation complicated an emergency Caesarean section for severe abdominal pain thought to be due to uterine rupture. Massive transfusion with blood products was necessary and the abdomen packed to control bleeding. The patient was transferred to the intensive care unit where she made a slow but complete recovery. Amniotic fluid embolism with atypical presentation of isolated coagulopathy is the likely diagnosis in this case. The case serves to demonstrate that amniotic fluid embolism may present with symptoms and signs other than the classical pattern of dyspnoea, cyanosis and hypotension.

  13. Cerebrospinal fluid (CSF) culture (United States)

    ... is a laboratory test to look for bacteria, fungi, and viruses in the fluid that moves in ... culture medium. Laboratory staff then observe if bacteria, fungi, or viruses grow in the dish. Growth means ...

  14. Culture - joint fluid (United States)

    Joint fluid culture ... fungi, or viruses grow. This is called a culture. If these germs are detected, other tests may ... is no special preparation needed for the lab culture. How to prepare for the removal of joint ...

  15. Polymer Fluid Dynamics. (United States)

    Bird, R. Byron


    Problems in polymer fluid dynamics are described, including development of constitutive equations, rheometry, kinetic theory, flow visualization, heat transfer studies, flows with phase change, two-phase flow, polymer unit operations, and drag reduction. (JN)

  16. Nonpolluting drilling fluid composition

    Energy Technology Data Exchange (ETDEWEB)

    Larson, D.E.; Mocek, C.J.; Mouton, R.J.


    Disclosed is a nonpolluting drilling fluid composition. The composition mixture consisting essentially of a concentrate and any nonpolluting oil. The concentrate consists essentially of diethanolamide, a fatty acid, and a imidazoline/amide mixture.

  17. Amniotic Fluid Analysis (United States)

    ... page: Was this page helpful? Also known as: Amniocentesis; Amnio; Culture - amniotic fluid; Culture - amniotic cells; Fetal ... Back to top When is it ordered? While amniocentesis is safe and has been performed for many ...

  18. Functional neuroimaging abnormalities in idiopathic generalized epilepsy

    Directory of Open Access Journals (Sweden)

    Megan L. McGill


    Full Text Available Magnetic resonance imaging (MRI techniques have been used to quantitatively assess focal and network abnormalities. Idiopathic generalized epilepsy (IGE is characterized by bilateral synchronous spike–wave discharges on electroencephalography (EEG but normal clinical MRI. Dysfunctions involving the neocortex, particularly the prefrontal cortex, and thalamus likely contribute to seizure activity. To identify possible morphometric and functional differences in the brains of IGE patients and normal controls, we employed measures of thalamic volumes, cortical thickness, gray–white blurring, fractional anisotropy (FA measures from diffusion tensor imaging (DTI and fractional amplitude of low frequency fluctuations (fALFF in thalamic subregions from resting state functional MRI. Data from 27 patients with IGE and 27 age- and sex-matched controls showed similar thalamic volumes, cortical thickness and gray–white contrast. There were no differences in FA values on DTI in tracts connecting the thalamus and prefrontal cortex. Functional analysis revealed decreased fALFF in the prefrontal cortex (PFC subregion of the thalamus in patients with IGE. We provide minimum detectable effect sizes for each measure used in the study. Our analysis indicates that fMRI-based methods are more sensitive than quantitative structural techniques for characterizing brain abnormalities in IGE.

  19. Klinefelter syndrome: cardiovascular abnormalities and metabolic disorders. (United States)

    Calogero, A E; Giagulli, V A; Mongioì, L M; Triggiani, V; Radicioni, A F; Jannini, E A; Pasquali, D


    Klinefelter syndrome (KS) is one of the most common genetic causes of male infertility. This condition is associated with much comorbidity and with a lower life expectancy. The aim of this review is to explore more in depth cardiovascular and metabolic disorders associated to KS. KS patients have an increased risk of cerebrovascular disease (standardized mortality ratio, SMR, 2.2; 95% confidence interval, CI, 1.6-3.0), but it is not clear whether the cause of the death is of thrombotic or hemorrhagic nature. Cardiovascular congenital anomalies (SMR, 7.3; 95% CI, 2.4-17.1) and the development of thrombosis or leg ulcers (SMR, 7.9; 95% CI, 2.9-17.2) are also more frequent in these subjects. Moreover, cardiovascular abnormalities may be at least partially reversed by testosterone replacement therapy (TRT). KS patients have also an increased probability of endocrine and/or metabolic disease, especially obesity, metabolic syndrome and type 2 diabetes mellitus. The effects of TRT on these abnormalities are not entirely clear.

  20. DNA methylation abnormalities in congenital heart disease. (United States)

    Serra-Juhé, Clara; Cuscó, Ivon; Homs, Aïda; Flores, Raquel; Torán, Núria; Pérez-Jurado, Luis A


    Congenital heart defects represent the most common malformation at birth, occurring also in ∼50% of individuals with Down syndrome. Congenital heart defects are thought to have multifactorial etiology, but the main causes are largely unknown. We have explored the global methylation profile of fetal heart DNA in comparison to blood DNA from control subjects: an absolute correlation with the type of tissue was detected. Pathway analysis revealed a significant enrichment of differential methylation at genes related to muscle contraction and cardiomyopathies in the developing heart DNA. We have also searched for abnormal methylation profiles on developing heart-tissue DNA of syndromic and non-syndromic congenital heart defects. On average, 3 regions with aberrant methylation were detected per sample and 18 regions were found differentially methylated between groups. Several epimutations were detected in candidate genes involved in growth regulation, apoptosis and folate pathway. A likely pathogenic hypermethylation of several intragenic sites at the MSX1 gene, involved in outflow tract morphogenesis, was found in a fetus with isolated heart malformation. In addition, hypermethylation of the GATA4 gene was present in fetuses with Down syndrome with or without congenital heart defects, as well as in fetuses with isolated heart malformations. Expression deregulation of the abnormally methylated genes was detected. Our data indicate that epigenetic alterations of relevant genes are present in developing heart DNA in fetuses with both isolated and syndromic heart malformations. These epimutations likely contribute to the pathogenesis of the malformation by cis-acting effects on gene expression.

  1. Brain Abnormalities in Neuromyelitis Optica Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Woojun Kim


    Full Text Available Neuromyelitis optica (NMO is an idiopathic inflammatory syndrome of the central nervous system that is characterized by severe attacks of optic neuritis (ON and myelitis. Until recently, NMO was considered a disease without brain involvement. However, since the discovery of NMO-IgG/antiaqaporin-4 antibody, the concept of NMO was broadened to NMO spectrum disorder (NMOSD, and brain lesions are commonly recognized. Furthermore, some patients present with brain symptoms as their first manifestation and develop recurrent brain symptoms without ON or myelitis. Brain lesions with characteristic locations and configurations can be helpful in the diagnosis of NMOSD. Due to the growing recognition of brain abnormalities in NMOSD, these have been included in the NMO and NMOSD diagnostic criteria or guidelines. Recent technical developments such as diffusion tensor imaging, MR spectroscopy, and voxel-based morphometry reveal new findings related to brain abnormalities in NMOSD that were not identified using conventional MRI. This paper focuses on the incidence and characteristics of the brain lesions found in NMOSD and the symptoms that they cause. Recent studies using advanced imaging techniques are also introduced.

  2. Conventional cerebrospinal fluid scanning

    Energy Technology Data Exchange (ETDEWEB)

    Schicha, H.


    Conventional cerebrospinal fluid scanning (CSF scanning) today is mainly carried out in addition to computerized tomography to obtain information about liquor flow kinetics. Especially in patients with communicating obstructive hydrocephalus, CSF scanning is clinically useful for the decision for shunt surgery. In patients with intracranial cysts, CSF scanning can provide information about liquor circulation. Further indications for CSF scanning include the assessment of shunt patency especially in children, as well as the detection and localization of cerebrospinal fluid leaks.

  3. Fullerol ionic fluids

    KAUST Repository

    Fernandes, Nikhil


    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine® (liquid-like) and the control (solid-like). © 2010 The Royal Society of Chemistry.

  4. Pathophysiology of the cochlear intrastrial fluid-blood barrier (review). (United States)

    Shi, Xiaorui


    The blood-labyrinth barrier (BLB) in the stria vascularis is a highly specialized capillary network that controls exchanges between blood and the intrastitial space in the cochlea. The barrier shields the inner ear from blood-born toxic substances and selectively passes ions, fluids, and nutrients to the cochlea, playing an essential role in the maintenance of cochlear homeostasis. Anatomically, the BLB is comprised of endothelial cells (ECs) in the strial microvasculature, elaborated tight and adherens junctions, pericytes (PCs), basement membrane (BM), and perivascular resident macrophage-like melanocytes (PVM/Ms), which together form a complex "cochlear-vascular unit" in the stria vascularis. Physical interactions between the ECs, PCs, and PVM/Ms, as well as signaling between the cells, is critical for controlling vascular permeability and providing a proper environment for hearing function. Breakdown of normal interactions between components of the BLB is seen in a wide range of pathological conditions, including genetic defects and conditions engendered by inflammation, loud sound trauma, and ageing. In this review, we will discuss prevailing views of the structure and function of the strial cochlear-vascular unit (also referred to as the "intrastrial fluid-blood barrier"). We will also discuss the disrupted homeostasis seen in a variety of hearing disorders. Therapeutic targeting of the strial barrier may offer opportunities for improvement of hearing health and amelioration of auditory disorders. This article is part of a Special Issue entitled .

  5. Regulation of protein homeostasis in neurodegenerative diseases : the role of coding and non-coding genes

    NARCIS (Netherlands)

    Alvarenga Fernandes Sin, Olga; Nollen, Ellen A. A.


    Protein homeostasis is fundamental for cell function and survival, because proteins are involved in all aspects of cellular function, ranging from cell metabolism and cell division to the cell's response to environmental challenges. Protein homeostasis is tightly regulated by the synthesis, folding,

  6. Real-time Multiple Abnormality Detection in Video Data

    DEFF Research Database (Denmark)

    Have, Simon Hartmann; Ren, Huamin; Moeslund, Thomas B.


    Automatic abnormality detection in video sequences has recently gained an increasing attention within the research community. Although progress has been seen, there are still some limitations in current research. While most systems are designed at detecting specific abnormality, others which...... are capable of detecting more than two types of abnormalities rely on heavy computation. Therefore, we provide a framework for detecting abnormalities in video surveillance by using multiple features and cascade classifiers, yet achieve above real-time processing speed. Experimental results on two datasets...... show that the proposed framework can reliably detect abnormalities in the video sequence, outperforming the current state-of-the-art methods....

  7. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult.

    Directory of Open Access Journals (Sweden)

    Vinicius S Carreira

    Full Text Available The Developmental Origins of Health and Disease (DOHaD Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR, either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease.

  8. Cerebrospinal fluid hypersecretion in pediatric hydrocephalus. (United States)

    Karimy, Jason K; Duran, Daniel; Hu, Jamie K; Gavankar, Charuta; Gaillard, Jonathan R; Bayri, Yasar; Rice, Hunter; DiLuna, Michael L; Gerzanich, Volodymyr; Marc Simard, J; Kahle, Kristopher T


    Hydrocephalus, despite its heterogeneous causes, is ultimately a disease of disordered CSF homeostasis that results in pathological expansion of the cerebral ventricles. Our current understanding of the pathophysiology of hydrocephalus is inadequate but evolving. Over this past century, the majority of hydrocephalus cases has been explained by functional or anatomical obstructions to bulk CSF flow. More recently, hydrodynamic models of hydrocephalus have emphasized the role of abnormal intracranial pulsations in disease pathogenesis. Here, the authors review the molecular mechanisms of CSF secretion by the choroid plexus epithelium, the most efficient and actively secreting epithelium in the human body, and provide experimental and clinical evidence for the role of increased CSF production in hydrocephalus. Although the choroid plexus epithelium might have only an indirect influence on the pathogenesis of many types of pediatric hydrocephalus, the ability to modify CSF secretion with drugs newer than acetazolamide or furosemide would be an invaluable component of future therapies to alleviate permanent shunt dependence. Investigation into the human genetics of developmental hydrocephalus and choroid plexus hyperplasia, and the molecular physiology of the ion channels and transporters responsible for CSF secretion, might yield novel targets that could be exploited for pharmacotherapeutic intervention.

  9. Meiotic abnormalities and spermatogenic parameters in severe oligoasthenozoospermia. (United States)

    Vendrell, J M; García, F; Veiga, A; Calderón, G; Egozcue, S; Egozcue, J; Barri, P N


    The incidence of meiotic abnormalities and their relationship with different spermatogenic parameters was assessed in 103 male patients with presumably idiopathic severe oligoasthenozoospermia (motile sperm concentration Meiotic patterns included normal meiosis and two meiotic abnormalities, i.e. severe arrest and synaptic anomalies. A normal pattern was found in 64 (62.1%), severe arrest in 21 (20.4%) and synaptic anomalies in 18 (17.5%). The overall rate of meiotic abnormalities was 37.9%. Most (66.7%) meiotic abnormalities occurred in patients with a sperm concentration meiotic abnormalities were found in 57.8% of the patients; of these, 26.7% had synaptic anomalies. When the sperm concentration was meiotic abnormalities occurred in 54.8% (synaptic anomalies in 22.6%). There were statistically significant differences among the three meiotic patterns in relation to sperm concentration (P 10 IU/l were the only predictors of meiotic abnormalities.

  10. Interacting influence of diuretics and diet on BK channel-regulated K homeostasis (United States)

    Wen, Donghai; Cornelius, Ryan J.; Sansom, Steven C.


    Large conductance, Ca-activated K channels are abundantly located in cells of vasculature, glomerulus and distal nephron, where they are involved in maintaining blood volume, blood pressure and K homeostasis. In mesangial cells and smooth muscle cells of vessels, the BK-α pore associates with BK-β1 subunits and regulates contraction in a Ca-mediated feedback manner. The BK-β1 also resides in connecting tubule cells of the nephron. BK-β1 knockout mice (β1KO) exhibit fluid retention, hypertension, and compromised K handling. The BK-α/β4resides in acid/base transporting intercalated cells (IC) of the distal nephron, where they mediate K secretion in mammals on a high K, alkaline diet. BK-α expression in IC is increased by a high K diet via aldosterone. The BK-β4 subunit and alkaline urine are necessary for the luminal expression and function of BK-α in mouse IC. In distal nephron cells, membrane BK-α expression is inhibited by WNK4 in in vitro expression systems, indicating a role in the hyperkalemic phenotype in patients with familial hyperkalemic hypertension type 2 (FHHt2). β1KO and BK-β4 knockout mice (β4KO) are hypertensive because of exaggerated ENaC-mediated Na retention in an effort to secrete K via only ROMK. BK hypertension is resistant to thiazides and furosemide, and would be more amenable to ENaC and aldosterone inhibiting drugs. Activators of BK-α/β1 or BK-α/β4 might be effective blood pressure lowering agents for a subset of hypertensive patients. Inhibitors of renal BK would effectively spare K in patients with Bartter Syndrome, a renal K wasting disease. PMID:24721651

  11. Evaluation of nuclear imaging for detecting posttransplant fluid collection. [Comparison of /sup 99/Tc-DTPA imaging and ultrasonography for detection of fluid accumulation or lymphoceles

    Energy Technology Data Exchange (ETDEWEB)

    Burt, R.W. (Indiana Univ. Medical Center, Indianapolis); Reddy, R.K.


    A series of 26 renal allograft recipients studied by both B-mode gray scale ultrasonography and /sup 99m/Tc-DTPA renal nuclear imaging was reviewed. All conclusions were based on written reports generated at the original examination, and B-mode gray scale ultrasonography was considered the definitive examination for fluid collection detection. Sensitivity of nuclear imaging for the detection of fluid was 73%; however, it becomes 85% when fluid collections in close proximity to the bladder are excluded. Renal allograft nuclear imaging is a useful examination for primary detection of lymphoceles and also for demonstrating abnormalities in renal dynamics and drainage.

  12. Behavioral Abnormality Induced by Enhanced Hypothalamo-Pituitary-Adrenocortical Axis Activity under Dietary Zinc Deficiency and Its Usefulness as a Model (United States)

    Takeda, Atsushi; Tamano, Haruna; Nishio, Ryusuke; Murakami, Taku


    Dietary zinc deficiency increases glucocorticoid secretion from the adrenal cortex via enhanced hypothalamo-pituitary-adrenocortical (HPA) axis activity and induces neuropsychological symptoms, i.e., behavioral abnormality. Behavioral abnormality is due to the increase in glucocorticoid secretion rather than disturbance of brain zinc homeostasis, which occurs after the increase in glucocorticoid secretion. A major target of glucocorticoids is the hippocampus and their actions are often associated with disturbance of glutamatergic neurotransmission, which may be linked to behavioral abnormality, such as depressive symptoms and aggressive behavior under zinc deficiency. Glucocorticoid-mediated disturbance of glutamatergic neurotransmission in the hippocampus is also involved in the pathophysiology of, not only psychiatric disorders, such as depression, but also neurodegenerative disorders, e.g., Alzheimer’s disease. The evidence suggests that zinc-deficient animals are models for behavioral and psychological symptoms of dementia (BPSD), as well as depression. To understand validity to apply zinc-deficient animals as a behavioral abnormality model, this paper deals with the effect of antidepressive drugs and herbal medicines on hippocampal dysfunctions and behavioral abnormality, which are induced by enhanced HPA axis activity under dietary zinc deficiency. PMID:27438830

  13. Behavioral Abnormality Induced by Enhanced Hypothalamo-Pituitary-Adrenocortical Axis Activity under Dietary Zinc Deficiency and Its Usefulness as a Model

    Directory of Open Access Journals (Sweden)

    Atsushi Takeda


    Full Text Available Dietary zinc deficiency increases glucocorticoid secretion from the adrenal cortex via enhanced hypothalamo-pituitary-adrenocortical (HPA axis activity and induces neuropsychological symptoms, i.e., behavioral abnormality. Behavioral abnormality is due to the increase in glucocorticoid secretion rather than disturbance of brain zinc homeostasis, which occurs after the increase in glucocorticoid secretion. A major target of glucocorticoids is the hippocampus and their actions are often associated with disturbance of glutamatergic neurotransmission, which may be linked to behavioral abnormality, such as depressive symptoms and aggressive behavior under zinc deficiency. Glucocorticoid-mediated disturbance of glutamatergic neurotransmission in the hippocampus is also involved in the pathophysiology of, not only psychiatric disorders, such as depression, but also neurodegenerative disorders, e.g., Alzheimer’s disease. The evidence suggests that zinc-deficient animals are models for behavioral and psychological symptoms of dementia (BPSD, as well as depression. To understand validity to apply zinc-deficient animals as a behavioral abnormality model, this paper deals with the effect of antidepressive drugs and herbal medicines on hippocampal dysfunctions and behavioral abnormality, which are induced by enhanced HPA axis activity under dietary zinc deficiency.

  14. Impaired striatal Akt signaling disrupts dopamine homeostasis and increases feeding.

    Directory of Open Access Journals (Sweden)

    Nicole Speed

    Full Text Available BACKGROUND: The prevalence of obesity has increased dramatically worldwide. The obesity epidemic begs for novel concepts and therapeutic targets that cohesively address "food-abuse" disorders. We demonstrate a molecular link between impairment of a central kinase (Akt involved in insulin signaling induced by exposure to a high-fat (HF diet and dysregulation of higher order circuitry involved in feeding. Dopamine (DA rich brain structures, such as striatum, provide motivation stimuli for feeding. In these central circuitries, DA dysfunction is posited to contribute to obesity pathogenesis. We identified a mechanistic link between metabolic dysregulation and the maladaptive behaviors that potentiate weight gain. Insulin, a hormone in the periphery, also acts centrally to regulate both homeostatic and reward-based HF feeding. It regulates DA homeostasis, in part, by controlling a key element in DA clearance, the DA transporter (DAT. Upon HF feeding, nigro-striatal neurons rapidly develop insulin signaling deficiencies, causing increased HF calorie intake. METHODOLOGY/PRINCIPAL FINDINGS: We show that consumption of fat-rich food impairs striatal activation of the insulin-activated signaling kinase, Akt. HF-induced Akt impairment, in turn, reduces DAT cell surface expression and function, thereby decreasing DA homeostasis and amphetamine (AMPH-induced DA efflux. In addition, HF-mediated dysregulation of Akt signaling impairs DA-related behaviors such as (AMPH-induced locomotion and increased caloric intake. We restored nigro-striatal Akt phosphorylation using recombinant viral vector expression technology. We observed a rescue of DAT expression in HF fed rats, which was associated with a return of locomotor responses to AMPH and normalization of HF diet-induced hyperphagia. CONCLUSIONS/SIGNIFICANCE: Acquired disruption of brain insulin action may confer risk for and/or underlie "food-abuse" disorders and the recalcitrance of obesity. This molecular

  15. Impaired Bile Acid Homeostasis in Children with Severe Acute Malnutrition.

    Directory of Open Access Journals (Sweden)

    Ling Zhang

    Full Text Available Severe acute malnutrition (SAM is a major cause of mortality in children under 5 years and is associated with hepatic steatosis. Bile acids are synthesized in the liver and participate in dietary fat digestion, regulation of energy expenditure, and immune responses. The aim of this work was to investigate whether SAM is associated with clinically relevant changes in bile acid homeostasis.An initial discovery cohort with 5 healthy controls and 22 SAM-patients was used to identify altered bile acid homeostasis. A follow up cohort of 40 SAM-patients were then studied on admission and 3 days after clinical stabilization to assess recovery in bile acid metabolism. Recruited children were 6-60 months old and admitted for SAM in Malawi. Clinical characteristics, feces and blood were collected on admission and prior to discharge. Bile acids, 7α-hydroxy-4-cholesten-3-one (C4 and FGF-19 were quantified.On admission, total serum bile acids were higher in children with SAM than in healthy controls and glycine-conjugates accounted for most of this accumulation with median and interquartile range (IQR of 24.6 μmol/L [8.6-47.7] compared to 1.9 μmol/L [1.7-3.3] (p = 0.01 in controls. Total serum bile acid concentrations did not decrease prior to discharge. On admission, fecal conjugated bile acids were lower and secondary bile acids higher at admission compared to pre- discharge, suggesting increased bacterial conversion. FGF19 (Fibroblast growth factor 19, a marker of intestinal bile acid signaling, was higher on admission and was associated with decreased C4 concentrations as a marker of bile acid synthesis. Upon recovery, fecal calprotectin, a marker of intestinal inflammation, was lower.SAM is associated with increased serum bile acid levels despite reduced synthesis rates. In SAM, there tends to be increased deconjugation of bile acids and conversion from primary to secondary bile acids, which may contribute to the development of liver disease.

  16. Abnormal epidermal changes after argon laser treatment

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, R.A.; Knobler, R.M.; Aberer, E.; Klein, W.; Kocsis, F.; Ott, E. (Univ. of Vienna (Austria))


    A 26-year-old woman with a congenital port-wine stain on the forehead was treated three times at 2-month intervals with an argon laser. Six months after the last treatment, moderate blanching and mild scaling confined to the treated area was observed. A biopsy specimen of the treated area revealed a significant decrease in ectatic vessels. However, epidermal changes similar to those of actinic keratosis with disorganized cell layers and marked cytologic abnormalities were seen. Analysis of peripheral blood lymphocytes for a defect in DNA repair was negative. Multiple, argon laser-induced photothermal effects may be responsible for the changes observed in our case and may lead to premalignant epidermal transformation.

  17. Residual gait abnormalities in surgically treated spondylolisthesis. (United States)

    Shelokov, A; Haideri, N; Roach, J


    The authors retrospectively studied seven patients who had in situ fusion as adolescents for high-grade (IV, V) spondylolisthesis unresponsive to more conservative means. All patients achieved solid bony union; their pain was relieved; and hamstring spasm had resolved. The authors sought to determine whether crouch gait or any other abnormalities could be demonstrated in patients exhibiting clinical parameters of success. Each patient underwent gait analysis, radiographic analysis, and a physical examination. Four of seven patients demonstrated slight degrees of forward trunk lean during varying phases of gait accompanied by increased hip flexion. One patient demonstrated increased trunk extension accompanied by limited hip flexion. Two patients were essentially normal. The authors were unable to quantify residual crouch in these patients with solidly fused high-grade spondylolisthesis.

  18. Kidney abnormalities in sickle cell disease. (United States)

    López Revuelta, K; Ricard Andrés, M P


    Patients with sickle cell disease exhibits numerous kidney structural and functional abnormalities, changes that are seen along the entire length of the nephron. Changes are most marked in patients with homozygous sickle cell anemia, but are also seen in those with compound heterozygous states and the sickle cell trait. The renal features of sickle cell disease include some of the most common reasons for referral to nephrologists, such as hematuria, proteinuria, tubular disturbances and chronic kidney disease. Therapy of these conditions requires specialized knowledge of their distinct pathogenic mechanisms. Spanish Haemathology and Hemotherapy Association has recently publicated their Clinical Practice Guidelines of SCD management. Renal chapter is reproduced in this article for Nefrología difussion.

  19. Abnormal uterine bleeding: a clinicohistopathological analysis

    Directory of Open Access Journals (Sweden)

    Anupamasuresh Y


    Methods: In our prospective study of 359 Patients of the age between 46 and 73 years, clinical characteristics and the pattern of endometrial histopathology and their association in women, who present with abnormal uterine bleeding, are categorised into six groups. Results: In our study, a significant correlation of histopathology and BMI was observed with endometrial hyperplasia and malignancy in obese patient i.e. 37 out 96 and 13 out of 23 respectively. The incidence of malignancy has been increasing with the age being 1.6% in 46-50 years to 60% in 70-75 years. In our study 116 (32.3% had hypertension, 33 patients (9.2% had diabetes mellitus, 40 patients (11.1% had hypothyroidism. Conclusions: We found a maximum incidence of AUB in multiparous women. Clinicohistopathological analysis of AUB revealed endometrial hyperplasia in majority of patients. [Int J Reprod Contracept Obstet Gynecol 2014; 3(3.000: 656-661

  20. Computed tomography of the abnormal thymus

    Energy Technology Data Exchange (ETDEWEB)

    Baron, R.L.; Lee, J.K.T.; Sagel, S.S.; Levitt, R.G.


    Computed tomography (CT) should be the imaging method of choice following plain chest radiographs when a suspected thymic abnormality requires further evaluation. Based upon a six-year experience, including the evaluation of 25 patients with thymic pathology, CT was found useful in suggesting or excluding a diagnosis of thymoma and in distinguishing thymic hyperplasis from thymoma in patients with myasthenia gravis. The thickness of the thymic lobes determined by CT was found to be a more accurate indicator of infiltrative disease (thymic hyperplasia and lymphoma) than the width. CT was helpful in differentiating benign thymic cysts from solid tumors, and in defining the extent of a thymic neoplasms. On occasion, CT may suggest the specific histologic nature of a thymic lesion.