WorldWideScience

Sample records for abnormal cortical asymmetry

  1. Cortical thickness abnormalities associated with dyslexia, independent of remediation status

    Science.gov (United States)

    Ma, Yizhou; Koyama, Maki S.; Milham, Michael P.; Castellanos, F. Xavier; Quinn, Brian T.; Pardoe, Heath; Wang, Xiuyuan; Kuzniecky, Ruben; Devinsky, Orrin; Thesen, Thomas; Blackmon, Karen

    2014-01-01

    Abnormalities in cortical structure are commonly observed in children with dyslexia in key regions of the “reading network.” Whether alteration in cortical features reflects pathology inherent to dyslexia or environmental influence (e.g., impoverished reading experience) remains unclear. To address this question, we compared MRI-derived metrics of cortical thickness (CT), surface area (SA), gray matter volume (GMV), and their lateralization across three different groups of children with a historical diagnosis of dyslexia, who varied in current reading level. We compared three dyslexia subgroups with: (1) persistent reading and spelling impairment; (2) remediated reading impairment (normal reading scores), and (3) remediated reading and spelling impairments (normal reading and spelling scores); and a control group of (4) typically developing children. All groups were matched for age, gender, handedness, and IQ. We hypothesized that the dyslexia group would show cortical abnormalities in regions of the reading network relative to controls, irrespective of remediation status. Such a finding would support that cortical abnormalities are inherent to dyslexia and are not a consequence of abnormal reading experience. Results revealed increased CT of the left fusiform gyrus in the dyslexia group relative to controls. Similarly, the dyslexia group showed CT increase of the right superior temporal gyrus, extending into the planum temporale, which resulted in a rightward CT asymmetry on lateralization indices. There were no group differences in SA, GMV, or their lateralization. These findings held true regardless of remediation status. Each reading level group showed the same “double hit” of atypically increased left fusiform CT and rightward superior temporal CT asymmetry. Thus, findings provide evidence that a developmental history of dyslexia is associated with CT abnormalities, independent of remediation status. PMID:25610779

  2. Asymmetry of cerebral glucose metabolism in very low-birth-weight infants without structural abnormalities.

    Directory of Open Access Journals (Sweden)

    Jae Hyun Park

    Full Text Available Thirty-six VLBW infants who underwent F-18 fluorodeoxyglucose (F-18 FDG brain PET and MRI were prospectively enrolled, while infants with evidence of parenchymal brain injury on MRI were excluded. The regional glucose metabolic ratio and asymmetry index were calculated. The asymmetry index more than 10% (right > left asymmetry or less than -10% (left > right asymmetry were defined as abnormal. Regional cerebral glucose metabolism were compared between right and left cerebral hemispheres, and between the following subgroups: multiple gestations, premature rupture of membrane, bronchopulmonary dysplasia, and low-grade intraventricular hemorrhage.In the individual analysis, 21 (58.3% of 36 VLBW infants exhibited asymmetric cerebral glucose metabolism. Fifteen infants (41.7% exhibited right > left asymmetry, while six (16.7% exhibited left > right asymmetry. In the regional analysis, right > left asymmetry was more extensive than left > right asymmetry. The metabolic ratio in the right frontal, temporal, and occipital cortices and right thalamus were significantly higher than those in the corresponding left regions. In the subgroup analyses, the cerebral glucose metabolism in infants with multiple gestations, premature rupture of membrane, bronchopulmonary dysplasia, or low-grade intraventricular hemorrhage were significantly lower than those in infants without these.VLBW infants without structural abnormalities have asymmetry of cerebral glucose metabolism. Decreased cerebral glucose metabolism are noted in infants with neurodevelopmental risk factors. F-18 FDG PET could show microstructural abnormalities not detected by MRI in VLBW infants.

  3. Right-frontal cortical asymmetry predicts increased proneness to nostalgia.

    Science.gov (United States)

    Tullett, Alexa M; Wildschut, Tim; Sedikides, Constantine; Inzlicht, Michael

    2015-08-01

    Nostalgia is often triggered by feelings-such as sadness, loneliness, or meaninglessness-that are typically associated with withdrawal motivation. Here, we examined whether a trait tendency to experience withdrawal motivation is associated with nostalgia proneness. Past work indicates that baseline right-frontal cortical asymmetry is a neural correlate of withdrawal-related motivation. We therefore hypothesized that higher baseline levels of right-frontal asymmetry would predict increased proneness to nostalgia. We assessed participants' baseline levels of frontal cortical activity using EEG. Results supported the hypothesis and demonstrated that the association between relative right-frontal asymmetry and increased nostalgia remained significant when controlling for the Big Five personality traits. Overall, these findings indicate that individuals with a stronger dispositional tendency to experience withdrawal-related motivation are more prone to nostalgia. © 2015 Society for Psychophysiological Research.

  4. Development of cortical asymmetry in typically developing children and its disruption in attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Shaw, Philip; Lalonde, Francois; Lepage, Claude; Rabin, Cara; Eckstrand, Kristen; Sharp, Wendy; Greenstein, Deanna; Evans, Alan; Giedd, J N; Rapoport, Judith

    2009-08-01

    Just as typical development of anatomical asymmetries in the human brain has been linked with normal lateralization of motor and cognitive functions, disruption of asymmetry has been implicated in the pathogenesis of neurodevelopmental disorders such as attention-deficit/hyperactivity disorder (ADHD). No study has examined the development of cortical asymmetry using longitudinal neuroanatomical data. To delineate the development of cortical asymmetry in children with and without ADHD. Longitudinal study. Government Clinical Research Institute. A total of 218 children with ADHD and 358 typically developing children, from whom 1133 neuroanatomical magnetic resonance images were acquired prospectively. Cortical thickness was estimated at 40 962 homologous points in the left and right hemispheres, and the trajectory of change in asymmetry was defined using mixed-model regression. In right-handed typically developing individuals, a mean (SE) increase in the relative thickness of the right orbitofrontal and inferior frontal cortex with age of 0.011 (0.0018) mm per year (t(337) = 6.2, P left-hemispheric increase in the occipital cortical regions of 0.013 (0.0015) mm per year (t(337) = 8.1, P right-handed typically developing individuals was less extensive and was localized to different cortical regions. In ADHD, the posterior component of this evolving asymmetry was intact, but the prefrontal component was lost. These findings explain the way that, in typical development, the increased dimensions of the right frontal and left occipital cortical regions emerge in adulthood from the reversed pattern of childhood cortical asymmetries. Loss of the prefrontal component of this evolving asymmetry in ADHD is compatible with disruption of prefrontal function in the disorder and demonstrates the way that disruption of typical processes of asymmetry can inform our understanding of neurodevelopmental disorders.

  5. Assessment of sensorimotor cortical representation asymmetries and motor skills in violin players.

    Science.gov (United States)

    Schwenkreis, Peter; El Tom, Susan; Ragert, Patrick; Pleger, Burkhard; Tegenthoff, Martin; Dinse, Hubert R

    2007-12-01

    As a model for use-dependent plasticity, the brains of professional musicians have been extensively studied to examine structural and functional adaptation to unique requirements of skilled performance. Here we provide a combination of data on motor performance and hand representation in the primary motor and somatosensory cortex of professional violin players, with the aim of assessing possible behavioural consequences of sensorimotor cortical asymmetries. We studied 15 healthy right-handed professional violin players and 35 healthy nonmusician controls. Motor and somatosensory cortex asymmetry was assessed by recording the motor output map after transcranial magnetic stimulation from a small hand muscle, and by dipole source localization of somatosensory evoked potentials after electrical stimulation of the median and ulnar nerves. Motor performance was examined using a series of standardized motor tasks covering different aspects of hand function. Violin players showed a significant right-larger-than-left asymmetry of the motor and somatosensory cortex, whereas nonmusician controls showed no significant interhemispheric difference. The amount of asymmetry in the motor and somatosensory cortices of musicians was significantly correlated. At the behavioural level, motor performance did not significantly differ between musicians and nonmusicians. The results support a use-dependent enlargement of the left hand representation in the sensorimotor cortex of violin players. However, these cortical asymmetries were not paralleled by accompanying altered asymmetries at a behavioural level, suggesting that the reorganisation might be task-specific and does not lead to improved motor abilities in general.

  6. A Surface-based Analysis of Language Lateralization and Cortical Asymmetry

    Science.gov (United States)

    Greve, Douglas N.; Van der Haegen, Lise; Cai, Qing; Stufflebeam, Steven; Sabuncu, Mert R.; Fischl, Bruce; Bysbaert, Marc

    2013-01-01

    Among brain functions, language is one of the most lateralized. Cortical language areas are also some of the most asymmetrical in the brain. An open question is whether the asymmetry in function is linked to the asymmetry in anatomy. To address this question, we measured anatomical asymmetry in 34 participants shown with fMRI to have language dominance of the left hemisphere (LLD) and 21 participants shown to have atypical right hemisphere dominance (RLD). All participants were healthy and left-handed, and most (80%) were female. Gray matter (GM) volume asymmetry was measured using an automated surface-based technique in both ROIs and exploratory analyses. In the ROI analysis, a significant difference between LLD and RLD was found in the insula. No differences were found in planum temporale (PT), pars opercularis (POp), pars triangularis (PTr), or Heschl’s gyrus (HG). The PT, POp, insula, and HG were all significantly left lateralized in both LLD and RLD participants. Both the positive and negative ROI findings replicate a previous study using manually labeled ROIs in a different cohort [Keller, S. S., Roberts, N., Garcia-Finana, M., Mohammadi, S., Ringelstein, E. B., Knecht, S., et al. Can the language-dominant hemisphere be predicted by brain anatomy? Journal of Cognitive Neuroscience, 23, 2013–2029, 2011]. The exploratory analysis was accomplished using a new surface-based registration that aligns cortical folding patterns across both subject and hemisphere. A small but significant cluster was found in the superior temporal gyrus that overlapped with the PT. A cluster was also found in the ventral occipitotemporal cortex corresponding to the visual word recognition area. The surface-based analysis also makes it possible to disentangle the effects of GM volume, thickness, and surface area while removing the effects of curvature. For both the ROI and exploratory analyses, the difference between LLD and RLD volume laterality was most strongly driven by

  7. Abnormalities of cortical structures in adolescent-onset conduct disorder.

    Science.gov (United States)

    Jiang, Y; Guo, X; Zhang, J; Gao, J; Wang, X; Situ, W; Yi, J; Zhang, X; Zhu, X; Yao, S; Huang, B

    2015-12-01

    Converging evidence has revealed both functional and structural abnormalities in adolescents with early-onset conduct disorder (EO-CD). The neurological abnormalities underlying EO-CD may be different from that of adolescent-onset conduct disorder (AO-CD) patients. However, the cortical structure in AO-CD patients remains largely unknown. The aim of the present study was to investigate the cortical alterations in AO-CD patients. We investigated T1-weighted brain images from AO-CD patients and age-, gender- and intelligence quotient-matched controls. Cortical structures including thickness, folding and surface area were measured using the surface-based morphometric method. Furthermore, we assessed impulsivity and antisocial symptoms using the Barratt Impulsiveness Scale (BIS) and the Antisocial Process Screening Device (APSD). Compared with the controls, we found significant cortical thinning in the paralimbic system in AO-CD patients. For the first time, we observed cortical thinning in the precuneus/posterior cingulate cortex (PCC) in AO-CD patients which has not been reported in EO-CD patients. Prominent folding abnormalities were found in the paralimbic structures and frontal cortex while diminished surface areas were shown in the precentral and inferior temporal cortex. Furthermore, cortical thickness of the paralimbic structures was found to be negatively correlated with impulsivity and antisocial behaviors measured by the BIS and APSD, respectively. The present study indicates that AO-CD is characterized by cortical structural abnormalities in the paralimbic system, and, in particular, we highlight the potential role of deficient structures including the precuneus and PCC in the etiology of AO-CD.

  8. Cortical gyrification is abnormal in children with prenatal alcohol exposure

    Directory of Open Access Journals (Sweden)

    Timothy J. Hendrickson

    2017-01-01

    Conclusions: Abnormalities in cortical development were seen across the brain in children with PAE compared to controls. Cortical gyrification and IQ were strongly correlated, suggesting that examining mechanisms by which alcohol disrupts cortical formation may yield clinically relevant insights and potential directions for early intervention.

  9. Motivated malleability: Frontal cortical asymmetry predicts the susceptibility to social influence.

    Science.gov (United States)

    Schnuerch, Robert; Pfattheicher, Stefan

    2017-07-16

    Humans, just as many other animals, regulate their behavior in terms of approaching stimuli associated with pleasure and avoiding stimuli linked to harm. A person's current and chronic motivational direction - that is, approach versus avoidance orientation - is reliably reflected in the asymmetry of frontal cortical low-frequency oscillations. Using resting electroencephalography (EEG), we show that frontal asymmetry is predictive of the tendency to yield to social influence: Stronger right- than left-side frontolateral activation during a resting-state session prior to the experiment was robustly associated with a stronger inclination to adopt a peer group's judgments during perceptual decision-making (Study 1). We posit that this reflects the role of a person's chronic avoidance orientation in socially adjusted behavior. This claim was strongly supported by additional survey investigations (Studies 2a, 2b, 2c), all of which consistently revealed that trait avoidance was positively linked to the susceptibility to social influence. The present contribution thus stresses the relevance of chronic avoidance orientation in social conformity, refining (yet not contradicting) the longstanding view that socially influenced behavior is motivated by approach-related goals. Moreover, our findings valuably underscore and extend our knowledge on the association between frontal cortical asymmetry and a variety of psychological variables.

  10. Abnormal functional brain asymmetry in depression: evidence of biologic commonality between major depression and dysthymia.

    Science.gov (United States)

    Bruder, Gerard E; Stewart, Jonathan W; Hellerstein, David; Alvarenga, Jorge E; Alschuler, Daniel; McGrath, Patrick J

    2012-04-30

    Prior studies have found abnormalities of functional brain asymmetry in patients having a major depressive disorder (MDD). This study aimed to replicate findings of reduced right hemisphere advantage for perceiving dichotic complex tones in depressed patients, and to determine whether patients having "pure" dysthymia show the same abnormality of perceptual asymmetry as MDD. It also examined gender differences in lateralization, and the extent to which abnormalities of perceptual asymmetry in depressed patients are dependent on gender. Unmedicated patients having either a MDD (n=96) or "pure" dysthymic disorder (n=42) and healthy controls (n=114) were tested on dichotic fused-words and complex-tone tests. Patient and control groups differed in right hemisphere advantage for complex tones, but not left hemisphere advantage for words. Reduced right hemisphere advantage for tones was equally present in MDD and dysthymia, but was more evident among depressed men than depressed women. Also, healthy men had greater hemispheric asymmetry than healthy women for both words and tones, whereas this gender difference was not seen for depressed patients. Dysthymia and MDD share a common abnormality of hemispheric asymmetry for dichotic listening. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Cortical thickness abnormalities in late adolescence with online gaming addiction.

    Science.gov (United States)

    Yuan, Kai; Cheng, Ping; Dong, Tao; Bi, Yanzhi; Xing, Lihong; Yu, Dahua; Zhao, Limei; Dong, Minghao; von Deneen, Karen M; Liu, Yijun; Qin, Wei; Tian, Jie

    2013-01-01

    Online gaming addiction, as the most popular subtype of Internet addiction, had gained more and more attention from the whole world. However, the structural differences in cortical thickness of the brain between adolescents with online gaming addiction and healthy controls are not well unknown; neither was its association with the impaired cognitive control ability. High-resolution magnetic resonance imaging scans from late adolescence with online gaming addiction (n = 18) and age-, education- and gender-matched controls (n = 18) were acquired. The cortical thickness measurement method was employed to investigate alterations of cortical thickness in individuals with online gaming addiction. The color-word Stroop task was employed to investigate the functional implications of the cortical thickness abnormalities. Imaging data revealed increased cortical thickness in the left precentral cortex, precuneus, middle frontal cortex, inferior temporal and middle temporal cortices in late adolescence with online gaming addiction; meanwhile, the cortical thicknesses of the left lateral orbitofrontal cortex (OFC), insula, lingual gyrus, the right postcentral gyrus, entorhinal cortex and inferior parietal cortex were decreased. Correlation analysis demonstrated that the cortical thicknesses of the left precentral cortex, precuneus and lingual gyrus correlated with duration of online gaming addiction and the cortical thickness of the OFC correlated with the impaired task performance during the color-word Stroop task in adolescents with online gaming addiction. The findings in the current study suggested that the cortical thickness abnormalities of these regions may be implicated in the underlying pathophysiology of online gaming addiction.

  12. Anatomical abnormalities in gray and white matter of the cortical surface in persons with schizophrenia.

    Directory of Open Access Journals (Sweden)

    Tiziano Colibazzi

    Full Text Available Although schizophrenia has been associated with abnormalities in brain anatomy, imaging studies have not fully determined the nature and relative contributions of gray matter (GM and white matter (WM disturbances underlying these findings. We sought to determine the pattern and distribution of these GM and WM abnormalities. Furthermore, we aimed to clarify the contribution of abnormalities in cortical thickness and cortical surface area to the reduced GM volumes reported in schizophrenia.We recruited 76 persons with schizophrenia and 57 healthy controls from the community and obtained measures of cortical and WM surface areas, of local volumes along the brain and WM surfaces, and of cortical thickness.We detected reduced local volumes in patients along corresponding locations of the brain and WM surfaces in addition to bilateral greater thickness of perisylvian cortices and thinner cortex in the superior frontal and cingulate gyri. Total cortical and WM surface areas were reduced. Patients with worse performance on the serial-position task, a measure of working memory, had a higher burden of WM abnormalities.Reduced local volumes along the surface of the brain mirrored the locations of abnormalities along the surface of the underlying WM, rather than of abnormalities of cortical thickness. Moreover, anatomical features of white matter, but not cortical thickness, correlated with measures of working memory. We propose that reductions in WM and smaller total cortical surface area could be central anatomical abnormalities in schizophrenia, driving, at least partially, the reduced regional GM volumes often observed in this illness.

  13. Neurodevelopmental origins of abnormal cortical morphology in dissociative identity disorder.

    Science.gov (United States)

    Reinders, A A T S; Chalavi, S; Schlumpf, Y R; Vissia, E M; Nijenhuis, E R S; Jäncke, L; Veltman, D J; Ecker, C

    2018-02-01

    To examine the two constitutes of cortical volume (CV), that is, cortical thickness (CT) and surface area (SA), in individuals with dissociative identity disorder (DID) with the view of gaining important novel insights into the underlying neurobiological mechanisms mediating DID. This study included 32 female patients with DID and 43 matched healthy controls. Between-group differences in CV, thickness, and SA, the degree of spatial overlap between differences in CT and SA, and their relative contribution to differences in regional CV were assessed using a novel spatially unbiased vertex-wise approach. Whole-brain correlation analyses were performed between measures of cortical anatomy and dissociative symptoms and traumatization. Individuals with DID differed from controls in CV, CT, and SA, with significantly decreased CT in the insula, anterior cingulate, and parietal regions and reduced cortical SA in temporal and orbitofrontal cortices. Abnormalities in CT and SA shared only about 3% of all significantly different cerebral surface locations and involved distinct contributions to the abnormality of CV in DID. Significant negative associations between abnormal brain morphology (SA and CV) and dissociative symptoms and early childhood traumatization (0 and 3 years of age) were found. In DID, neuroanatomical areas with decreased CT and SA are in different locations in the brain. As CT and SA have distinct genetic and developmental origins, our findings may indicate that different neurobiological mechanisms and environmental factors impact on cortical morphology in DID, such as early childhood traumatization. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Cortical thickness abnormalities in late adolescence with online gaming addiction.

    Directory of Open Access Journals (Sweden)

    Kai Yuan

    Full Text Available Online gaming addiction, as the most popular subtype of Internet addiction, had gained more and more attention from the whole world. However, the structural differences in cortical thickness of the brain between adolescents with online gaming addiction and healthy controls are not well unknown; neither was its association with the impaired cognitive control ability. High-resolution magnetic resonance imaging scans from late adolescence with online gaming addiction (n = 18 and age-, education- and gender-matched controls (n = 18 were acquired. The cortical thickness measurement method was employed to investigate alterations of cortical thickness in individuals with online gaming addiction. The color-word Stroop task was employed to investigate the functional implications of the cortical thickness abnormalities. Imaging data revealed increased cortical thickness in the left precentral cortex, precuneus, middle frontal cortex, inferior temporal and middle temporal cortices in late adolescence with online gaming addiction; meanwhile, the cortical thicknesses of the left lateral orbitofrontal cortex (OFC, insula, lingual gyrus, the right postcentral gyrus, entorhinal cortex and inferior parietal cortex were decreased. Correlation analysis demonstrated that the cortical thicknesses of the left precentral cortex, precuneus and lingual gyrus correlated with duration of online gaming addiction and the cortical thickness of the OFC correlated with the impaired task performance during the color-word Stroop task in adolescents with online gaming addiction. The findings in the current study suggested that the cortical thickness abnormalities of these regions may be implicated in the underlying pathophysiology of online gaming addiction.

  15. Amniotic fluid deficiency and congenital abnormalities both influence fluctuating asymmetry in developing limbs of human deceased fetuses.

    Directory of Open Access Journals (Sweden)

    Clara Mariquita Antoinette ten Broek

    Full Text Available Fluctuating asymmetry (FA, as an indirect measure of developmental instability (DI, has been intensively studied for associations with stress and fitness. Patterns, however, appear heterogeneous and the underlying causes remain largely unknown. One aspect that has received relatively little attention in the literature is the consequence of direct mechanical effects on asymmetries. The crucial prerequisite for FA to reflect DI is that environmental conditions on both sides should be identical. This condition may be violated during early human development if amniotic fluid volume is deficient, as the resulting mechanical pressures may increase asymmetries. Indeed, we showed that limb bones of deceased human fetuses exhibited increased asymmetry, when there was not sufficient amniotic fluid (and, thus, space in the uterine cavity. As amniotic fluid deficiency is known to cause substantial asymmetries and abnormal limb development, these subtle asymmetries are probably at least in part caused by the mechanical pressures. On the other hand, deficiencies in amniotic fluid volume are known to be associated with other congenital abnormalities that may disturb DI. More specifically, urogenital abnormalities can directly affect/reduce amniotic fluid volume. We disentangled the direct mechanical effects on FA from the indirect effects of urogenital abnormalities, the latter presumably representing DI. We discovered that both factors contributed significantly to the increase in FA. However, the direct mechanical effect of uterine pressure, albeit statistically significant, appeared less important than the effects of urogenital abnormalities, with an effect size only two-third as large. We, thus, conclude that correcting for the relevant direct factors allowed for a representative test of the association between DI and stress, and confirmed that fetuses form a suitable model system to increase our understanding in patterns of FA and symmetry development.

  16. Abnormalities of fixation, saccade and pursuit in posterior cortical atrophy.

    Science.gov (United States)

    Shakespeare, Timothy J; Kaski, Diego; Yong, Keir X X; Paterson, Ross W; Slattery, Catherine F; Ryan, Natalie S; Schott, Jonathan M; Crutch, Sebastian J

    2015-07-01

    The clinico-neuroradiological syndrome posterior cortical atrophy is the cardinal 'visual dementia' and most common atypical Alzheimer's disease phenotype, offering insights into mechanisms underlying clinical heterogeneity, pathological propagation and basic visual phenomena (e.g. visual crowding). Given the extensive attention paid to patients' (higher order) perceptual function, it is surprising that there have been no systematic analyses of basic oculomotor function in this population. Here 20 patients with posterior cortical atrophy, 17 patients with typical Alzheimer's disease and 22 healthy controls completed tests of fixation, saccade (including fixation/target gap and overlap conditions) and smooth pursuit eye movements using an infrared pupil-tracking system. Participants underwent detailed neuropsychological and neurological examinations, with a proportion also undertaking brain imaging and analysis of molecular pathology. In contrast to informal clinical evaluations of oculomotor dysfunction frequency (previous studies: 38%, current clinical examination: 33%), detailed eyetracking investigations revealed eye movement abnormalities in 80% of patients with posterior cortical atrophy (compared to 17% typical Alzheimer's disease, 5% controls). The greatest differences between posterior cortical atrophy and typical Alzheimer's disease were seen in saccadic performance. Patients with posterior cortical atrophy made significantly shorter saccades especially for distant targets. They also exhibited a significant exacerbation of the normal gap/overlap effect, consistent with 'sticky fixation'. Time to reach saccadic targets was significantly associated with parietal and occipital cortical thickness measures. On fixation stability tasks, patients with typical Alzheimer's disease showed more square wave jerks whose frequency was associated with lower cerebellar grey matter volume, while patients with posterior cortical atrophy showed large saccadic intrusions

  17. Investigation of cortical thickness abnormalities in lithium-free adults with bipolar type I disorder using cortical pattern matching

    Science.gov (United States)

    Foland-Ross, Lara C.; Thompson, Paul M.; Sugar, Catherine A.; Madsen, Sarah K.; Shen, Jim K.; Penfold, Conor; Ahlf, Kyle; Rasser, Paul E.; Fischer, Jeffrey; Yang, Yilan; Townsend, Jennifer; Bookheimer, Susan Y.; Altshuler, Lori L.

    2013-01-01

    Objective Several lines of evidence implicate gray matter abnormalities in the prefrontal cortex and anterior cingulate cortex in patients with bipolar disorder. Findings however, have been largely inconsistent across studies. Differences in patients’ medication status or mood state, or the application of traditional volumetric methods that are insensitive to subtle neuroanatomic differences may have contributed to these inconsistent findings. Given this, we used magnetic resonance imaging (MRI) in conjunction with cortical pattern matching methods to assess cortical thickness abnormalities in euthymic bipolar subjects who were not treated with lithium. Method Sixty-five subjects, including 34 lithium-free euthymic subjects with bipolar (type I) disorder and 31 healthy subjects were scanned using magnetic resonance imaging (MRI). Data were processed to measure cortical gray matter thickness. Cortical pattern matching methods associated homologous brain regions across subjects. Spatially normalized thickness maps were analyzed to assess illness effects and associations with clinical variables. Results Relative to healthy subjects, euthymic bipolar I subjects had significantly thinner gray matter in bilateral prefrontal cortex (Brodmann Areas 11, 10, 8 and 44) and left anterior cingulate cortex (Brodmann Areas 24/32). Additionally, thinning in these regions was more pronounced in patients with a history of psychosis. No areas of thicker cortex were detected in bipolar subjects versus healthy subjects. Conclusions Using a technique that is highly sensitive to subtle neuroanatomic differences, significant regional cortical thinning was found in euthymic subjects with bipolar disorder. Clinical implications are discussed. PMID:21285139

  18. No association between types of unilateral mandibular condylar abnormalities and facial asymmetry in orthopedic-treated patients with juvenile idiopathic arthritis

    DEFF Research Database (Denmark)

    Stoustrup, Peter Bangsgaard; Ahlefeldt-Laurvig-Lehn, Nicole; Kristensen, Kasper Dahl

    2018-01-01

    with JIA. The contralateral TMJ was thereafter scored as either "normal," "deformed," or "erosive," consistent with predefined criteria. Based on the bilateral radiologic TMJ appearances, 3 JIA groups were assigned: normal/normal, normal/deformed, and normal/erosive. The severity of the dentofacial...... of the cone-beam computed tomography. Significantly greater dentofacial asymmetries were observed in the 2 groups of JIA patients with unilateral condylar abnormalities (deformation or erosion) than in the other groups. A similar degree of dentofacial asymmetry was observed in JIA patients with bilateral...... normal TMJs and in the nonarthritic control group. CONCLUSIONS: JIA patients with unilateral condylar abnormalities (deformation or erosion) exhibited significantly more severe dentofacial asymmetries than did the JIA patients without condylar abnormalities and the control subjects. We found the same...

  19. Magnetic Resonance Perfusion Imaging in Malformations of Cortical Development

    International Nuclear Information System (INIS)

    Widjaja, ED.; Wilkinson, I.D.; Griffiths, P.D.

    2007-01-01

    Background: Malformations of cortical development vary in neuronal maturity and level of functioning. Purpose: To characterize regional relative cerebral blood volume (rCBV) and difference in first moment transit time (TTfm) in polymicrogyria and cortical tubers using magnetic resonance (MR) perfusion imaging. Material and Methods: MR imaging and dynamic T2*-weighted MR perfusion imaging were performed in 13 patients with tuberous sclerosis complex, 10 with polymicrogyria, and 18 controls with developmental delay but no macroscopic brain abnormality. Regions of interest were placed in cortical tubers or polymicrogyric cortex and in the contralateral normal-appearing side in patients with malformations. In 'control' subjects, regions of interest were placed in the frontal and parietal lobes in both hemispheres. The rCBV and TTfm of the tuber/contralateral side (rCBVRTSC and TTFMTSC) as well as those of the polymicrogyria/contralateral side (rCBVRPMG and TTFMPMG) were assessed. The right-to-left asymmetry of rCBV and TTfm in the control group was also assessed (rCBVRControls and TTFMControls). Results: There was no significant asymmetry between right and left rCBV or TTfm (P>0.05) in controls. There was significant reduction in rCBVRTSC compared to rCBVRControls (P 0.05). There were no significant differences between rCBVRPMG and rCBVRControls (P>0.05) or TTFMPMG and TTFMControls (P>0.05). Conclusion: Our findings imply that cerebral blood volume of polymicrogyria is similar to normal cortex, but there is reduced cerebral blood volume in cortical tubers. The lower rCBV ratio of cortical tubers may be related to known differences in pathogenetic timing of the underlying abnormalities during brain development or the presence of gliosis

  20. Abnormalities in structural covariance of cortical gyrification in schizophrenia

    OpenAIRE

    Palaniyappan, Lena; Park, Bert; Balain, Vijender; Dangi, Raj; Liddle, Peter

    2014-01-01

    The highly convoluted shape of the adult human brain results from several well-coordinated maturational events that start from embryonic development and extend through the adult life span. Disturbances in these maturational events can result in various neurological and psychiatric disorders, resulting in abnormal patterns of morphological relationship among cortical structures (structural covariance). Structural covariance can be studied using graph theory-based approaches that evaluate topol...

  1. Abnormalities in structural covariance of cortical gyrification in schizophrenia.

    Science.gov (United States)

    Palaniyappan, Lena; Park, Bert; Balain, Vijender; Dangi, Raj; Liddle, Peter

    2015-07-01

    The highly convoluted shape of the adult human brain results from several well-coordinated maturational events that start from embryonic development and extend through the adult life span. Disturbances in these maturational events can result in various neurological and psychiatric disorders, resulting in abnormal patterns of morphological relationship among cortical structures (structural covariance). Structural covariance can be studied using graph theory-based approaches that evaluate topological properties of brain networks. Covariance-based graph metrics allow cross-sectional study of coordinated maturational relationship among brain regions. Disrupted gyrification of focal brain regions is a consistent feature of schizophrenia. However, it is unclear if these localized disturbances result from a failure of coordinated development of brain regions in schizophrenia. We studied the structural covariance of gyrification in a sample of 41 patients with schizophrenia and 40 healthy controls by constructing gyrification-based networks using a 3-dimensional index. We found that several key regions including anterior insula and dorsolateral prefrontal cortex show increased segregation in schizophrenia, alongside reduced segregation in somato-sensory and occipital regions. Patients also showed a lack of prominence of the distributed covariance (hubness) of cingulate cortex. The abnormal segregated folding pattern in the right peri-sylvian regions (insula and fronto-temporal cortex) was associated with greater severity of illness. The study of structural covariance in cortical folding supports the presence of subtle deviation in the coordinated development of cortical convolutions in schizophrenia. The heterogeneity in the severity of schizophrenia could be explained in part by aberrant trajectories of neurodevelopment.

  2. Brain abnormalities in murderers indicated by positron emission tomography.

    Science.gov (United States)

    Raine, A; Buchsbaum, M; LaCasse, L

    1997-09-15

    Murderers pleading not guilty by reason of insanity (NGRI) are thought to have brain dysfunction, but there have been no previous studies reporting direct measures of both cortical and subcortical brain functioning in this specific group. Positron emission tomography brain imaging using a continuous performance challenge task was conducted on 41 murderers pleading not guilty by reason of insanity and 41 age- and sex-matched controls. Murderers were characterized by reduced glucose metabolism in the prefrontal cortex, superior parietal gyrus, left angular gyrus, and the corpus callosum, while abnormal asymmetries of activity (left hemisphere lower than right) were also found in the amygdala, thalamus, and medial temporal lobe. These preliminary findings provide initial indications of a network of abnormal cortical and subcortical brain processes that may predispose to violence in murderers pleading NGRI.

  3. Magnetic Resonance Perfusion Imaging in Malformations of Cortical Development

    Energy Technology Data Exchange (ETDEWEB)

    Widjaja, ED.; Wilkinson, I.D.; Griffiths, P.D. [Academic Section of Radiolog y, Univ. of Sheffield, Sheffield (United Kingdom)

    2007-10-15

    Background: Malformations of cortical development vary in neuronal maturity and level of functioning. Purpose: To characterize regional relative cerebral blood volume (rCBV) and difference in first moment transit time (TTfm) in polymicrogyria and cortical tubers using magnetic resonance (MR) perfusion imaging. Material and Methods: MR imaging and dynamic T2*-weighted MR perfusion imaging were performed in 13 patients with tuberous sclerosis complex, 10 with polymicrogyria, and 18 controls with developmental delay but no macroscopic brain abnormality. Regions of interest were placed in cortical tubers or polymicrogyric cortex and in the contralateral normal-appearing side in patients with malformations. In 'control' subjects, regions of interest were placed in the frontal and parietal lobes in both hemispheres. The rCBV and TTfm of the tuber/contralateral side (rCBVRTSC and TTFMTSC) as well as those of the polymicrogyria/contralateral side (rCBVRPMG and TTFMPMG) were assessed. The right-to-left asymmetry of rCBV and TTfm in the control group was also assessed (rCBVRControls and TTFMControls). Results: There was no significant asymmetry between right and left rCBV or TTfm (P>0.05) in controls. There was significant reduction in rCBVRTSC compared to rCBVRControls (P<0.05), but no significant difference in TTFMTSC compared to TTFMControls (P>0.05). There were no significant differences between rCBVRPMG and rCBVRControls (P>0.05) or TTFMPMG and TTFMControls (P>0.05). Conclusion: Our findings imply that cerebral blood volume of polymicrogyria is similar to normal cortex, but there is reduced cerebral blood volume in cortical tubers. The lower rCBV ratio of cortical tubers may be related to known differences in pathogenetic timing of the underlying abnormalities during brain development or the presence of gliosis.

  4. Abnormal cortical synaptic plasticity in primary motor area in progressive supranuclear palsy.

    Science.gov (United States)

    Conte, Antonella; Belvisi, Daniele; Bologna, Matteo; Ottaviani, Donatella; Fabbrini, Giovanni; Colosimo, Carlo; Williams, David R; Berardelli, Alfredo

    2012-03-01

    No study has yet investigated whether cortical plasticity in primary motor area (M1) is abnormal in patients with progressive supranuclear palsy (PSP). We studied M1 plasticity in 15 PSP patients and 15 age-matched healthy subjects. We used intermittent theta-burst stimulation (iTBS) to investigate long-term potentiation (LTP) and continuous TBS (cTBS) to investigate long-term depression (LTD)-like cortical plasticity in M1. Ten patients underwent iTBS again 1 year later. We also investigated short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in M1 with paired-pulse transcranial magnetic stimulation, tested H reflex from upper limb flexor muscles before and after iTBS, and measured motor evoked potential (MEP) input-output (I/O) curves before and after iTBS. iTBS elicited a significantly larger MEP facilitation after iTBS in patients than in healthy subjects. Whereas in healthy subjects, cTBS inhibited MEP, in patients it significantly facilitated MEPs. In patients, SICI was reduced, whereas ICF was normal. H reflex size remained unchanged after iTBS. Patients had steeper MEP I/O slopes than healthy subjects at baseline and became even more steeper after iTBS only in patients. The iTBS-induced abnormal MEP facilitation in PSP persisted at 1-year follow-up. In conclusion, patients with PSP have abnormal M1 LTP/LTD-like plasticity. The enhanced LTP-like cortical synaptic plasticity parallels disease progression.

  5. Visual Network Asymmetry and Default Mode Network Function in ADHD: An fMRI Study

    Directory of Open Access Journals (Sweden)

    T. Sigi eHale

    2014-07-01

    Full Text Available Background: A growing body of research has identified abnormal visual information processing in ADHD. In particular, slow processing speed and increased reliance on visuo-perceptual strategies have become evident. Objective: The current study used recently developed fMRI methods to replicate and further examine abnormal rightward biased visual information processing in ADHD and to further characterize the nature of this effect; we tested its association to several large-scale distributed network systems. Method: We examined fMRI BOLD response during letter and location judgment tasks, and directly assessed visual network asymmetry and its association to large-scale networks using both a voxelwise and an averaged signal approach. Results: Initial within-group analyses revealed a pattern of left lateralized visual cortical activity in controls but right lateralized visual cortical activity in ADHD children. Direct analyses of visual network asymmetry confirmed atypical rightward bias in ADHD children compared to controls. This ADHD characteristic was atypically associated with reduced activation across several extra-visual networks, including the default mode network (DMN. We also found atypical associations between DMN activation and ADHD subjects’ inattentive symptoms and task performance. Conclusion: The current study demonstrated rightward VNA in ADHD during a simple letter discrimination task. This result adds an important novel consideration to the growing literature identifying abnormal visual processing in ADHD. We postulate that this characteristic reflects greater perceptual engagement of task-extraneous content, and that it may be a basic feature of less efficient top-down task-directed control over visual processing. We additionally argue that abnormal DMN function may contribute to this characteristic.

  6. Altered structure of cortical sulci in gilles de la Tourette syndrome: Further support for abnormal brain development.

    Science.gov (United States)

    Muellner, Julia; Delmaire, Christine; Valabrégue, Romain; Schüpbach, Michael; Mangin, Jean-François; Vidailhet, Marie; Lehéricy, Stéphane; Hartmann, Andreas; Worbe, Yulia

    2015-04-15

    Gilles de la Tourette syndrome is a neurodevelopmental disorder characterized by the presence of motor and vocal tics. We hypothesized that patients with this syndrome would present an aberrant pattern of cortical formation, which could potentially reflect global alterations of brain development. Using 3 Tesla structural neuroimaging, we compared sulcal depth, opening, and length and thickness of sulcal gray matter in 52 adult patients and 52 matched controls. Cortical sulci were automatically reconstructed and identified over the whole brain, using BrainVisa software. We focused on frontal, parietal, and temporal cortical regions, in which abnormal structure and functional activity were identified in previous neuroimaging studies. Partial correlation analysis with age, sex, and treatment as covariables of noninterest was performed amongst relevant clinical and neuroimaging variables in patients. Patients with Gilles de la Tourette syndrome showed lower depth and reduced thickness of gray matter in the pre- and post-central as well as superior, inferior, and internal frontal sulci. In patients with associated obsessive-compulsive disorder, additional structural changes were found in temporal, insular, and olfactory sulci. Crucially, severity of tics and of obsessive-compulsive disorder measured by Yale Global Tic severity scale and Yale-Brown Obsessive-Compulsive scale, respectively, correlated with structural sulcal changes in sensorimotor, temporal, dorsolateral prefrontal, and middle cingulate cortical areas. Patients with Gilles de la Tourette syndrome displayed an abnormal structural pattern of cortical sulci, which correlated with severity of clinical symptoms. Our results provide further evidence of abnormal brain development in GTS. © 2015 International Parkinson and Movement Disorder Society.

  7. Abnormalities of hippocampal-cortical connectivity in temporal lobe epilepsy patients with hippocampal sclerosis

    Science.gov (United States)

    Li, Wenjing; He, Huiguang; Lu, Jingjing; Wang, Chunheng; Li, Meng; Lv, Bin; Jin, Zhengyu

    2011-03-01

    Hippocampal sclerosis (HS) is the most common damage seen in the patients with temporal lobe epilepsy (TLE). In the present study, the hippocampal-cortical connectivity was defined as the correlation between the hippocampal volume and cortical thickness at each vertex throughout the whole brain. We aimed to investigate the differences of ipsilateral hippocampal-cortical connectivity between the unilateral TLE-HS patients and the normal controls. In our study, the bilateral hippocampal volumes were first measured in each subject, and we found that the ipsilateral hippocampal volume significantly decreased in the left TLE-HS patients. Then, group analysis showed significant thinner average cortical thickness of the whole brain in the left TLE-HS patients compared with the normal controls. We found significantly increased ipsilateral hippocampal-cortical connectivity in the bilateral superior temporal gyrus, the right cingulate gyrus and the left parahippocampal gyrus of the left TLE-HS patients, which indicated structural vulnerability related to the hippocampus atrophy in the patient group. However, for the right TLE-HS patients, no significant differences were found between the patients and the normal controls, regardless of the ipsilateral hippocampal volume, the average cortical thickness or the patterns of hippocampal-cortical connectivity, which might be related to less atrophies observed in the MRI scans. Our study provided more evidence for the structural abnormalities in the unilateral TLE-HS patients.

  8. Brain perfusion abnormalities in patients with euthyroid autoimmune thyroiditis

    Energy Technology Data Exchange (ETDEWEB)

    Piga, M.; Serra, A.; Loi, G.L.; Satta, L. [University of Cagliari, Nuclear Medicine - Department of Medical Sciences ' ' M. Aresu' ' , Cagliari (Italy); Deiana, L.; Liberto, M. Di; Mariotti, S. [University of Cagliari, Endocrinology - Department of Medical Sciences ' ' M. Aresu' ' , Cagliari (Italy)

    2004-12-01

    Brain perfusion abnormalities have recently been demonstrated by single-photon emission computed tomography (SPECT) in rare cases of severe Hashimoto's thyroiditis (HT) encephalopathy; moreover, some degree of subtle central nervous system (CNS) involvement has been hypothesised in HT, but no direct evidence has been provided so far. The aim of this study was to assess cortical brain perfusion in patients with euthyroid HT without any clinical evidence of CNS involvement by means of {sup 99m}Tc-ECD brain SPECT. Sixteen adult patients with HT entered this study following informed consent. The diagnosis was based on the coexistence of high titres of anti-thyroid auto-antibodies and diffuse hypoechogenicity of the thyroid on ultrasound in association with normal circulating thyroid hormone and TSH concentrations. Nine consecutive adult patients with non-toxic nodular goitre (NTNG) and ten healthy subjects matched for age and sex were included as control groups. All patients underwent {sup 99m}Tc-ECD brain SPECT. Image assessment was both qualitative and semiquantitative. Semiquantitative analysis was performed by generation of four regions of interest (ROI) for each cerebral hemisphere - frontal, temporal, parietal and occipital - and one for each cerebellar hemisphere in order to evaluate cortical perfusion asymmetry. The Asymmetry Index (AI) was calculated to provide a measurement of both magnitude and direction of perfusion asymmetry. As assessed by visual examination, {sup 99m}Tc-ECD cerebral distribution was irregular and patchy in HT patients, hypoperfusion being more frequently found in frontal lobes. AI revealed abnormalities in 12/16 HT patients, in three of the nine NTNG patients and in none of the normal controls. A significant difference in the mean AI was found between patients with HT and both patients with NTNG (p<0.003) and normal controls (p<0.001), when only frontal lobes were considered. These results show the high prevalence of brain perfusion

  9. Quantifying cortical development in typically developing toddlers and young children, 1-6 years of age.

    Science.gov (United States)

    Remer, Justin; Croteau-Chonka, Elise; Dean, Douglas C; D'Arpino, Sara; Dirks, Holly; Whiley, Dannielle; Deoni, Sean C L

    2017-06-01

    Cortical maturation, including age-related changes in thickness, volume, surface area, and folding (gyrification), play a central role in developing brain function and plasticity. Further, abnormal cortical maturation is a suspected substrate in various behavioral, intellectual, and psychiatric disorders. However, in order to characterize the altered development associated with these disorders, appreciation of the normative patterns of cortical development in neurotypical children between 1 and 6 years of age, a period of peak brain development during which many behavioral and developmental disorders emerge, is necessary. To this end, we examined measures of cortical thickness, surface area, mean curvature, and gray matter volume across 34 bilateral regions in a cohort of 140 healthy children devoid of major risk factors for abnormal development. From these data, we observed linear, logarithmic, and quadratic patterns of change with age depending on brain region. Cortical thinning, ranging from 10% to 20%, was observed throughout most of the brain, with the exception of posterior brain structures, which showed initial cortical thinning from 1 to 5 years, followed by thickening. Cortical surface area expansion ranged from 20% to 108%, and cortical curvature varied by 1-20% across the investigated age range. Right-left hemisphere asymmetry was observed across development for each of the 4 cortical measures. Our results present new insight into the normative patterns of cortical development across an important but under studied developmental window, and provide a valuable reference to which trajectories observed in neurodevelopmental disorders may be compared. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Dynamic cortical participation during bilateral, cyclical ankle movements: Effects of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Takashi Yoshida

    Full Text Available Parkinson's disease (PD is known to increase asymmetry and variability of bilateral movements. However, the mechanisms of such abnormalities are not fully understood. Here, we aimed to investigate whether kinematic abnormalities are related to cortical participation during bilateral, cyclical ankle movements, which required i maintenance of a specific frequency and ii bilateral coordination of the lower limbs in an anti-phasic manner. We analyzed electroencephalographic and electromyographic signals from nine men with PD and nine aged-matched healthy men while they sat and cyclically dorsi- and plantarflexed their feet. This movement was performed at a similar cadence to normal walking under two conditions: i self-paced and ii externally paced by a metronome. Participants with PD exhibited reduced range of motion and more variable bilateral coordination. However, participants with and without PD did not differ in the magnitude of corticomuscular coherence between the midline cortical areas and tibialis anterior and medial gastrocnemius muscles. This finding suggests that either the kinematic abnormalities were related to processes outside linear corticomuscular communication or PD-related changes in neural correlates maintained corticomuscular communication but not motor performance.

  11. Os efeitos da estimulação elétrica funcional na assimetria cortical inter-hemisférica The effects of functional electrical stimulation on cortical interhemispheric asymmetry

    Directory of Open Access Journals (Sweden)

    Letícia Ecard

    2007-09-01

    Full Text Available O objetivo do presente estudo foi avaliar os efeitos da estimulação elétrica funcional na assimetria cortical inter-hemisférica. Para tal, simultaneamente ao registro da atividade eletroencefalográfica, realizou-se eletroestimulação no antebraço direito para estimulação da extensão do indicador. A amostra consistiu de 45 sujeitos randomizados em 3 grupos de 15 sujeitos cada: grupo controle (submetido a 24 blocos de estimulação com intensidade de corrente zero, grupo 1 (24 blocos e grupo 2 (36 blocos. A assimetria entre os pares de eletrodos F3-F4, C3-C4 e P3-P4 foi analisada ao longo dos grupos através de uma Anova. Os resultados apontaram para uma interação grupo x eletrodo e uma tendência de diminuição da assimetria inter-hemisférica após a eletroestimulação.The aim of the present study was to assess the effects of functional electrical stimulation (FES on cortical interhemispheric asymmetry. Electrostimulation was performed on the right forearm to stimulate the extension of the index finger. EEG activity was recorded simultaneously. The sample included 45 subjects randomly divided into 3 groups of 15 subjects each: control group (submitted to 24 blocks of stimulation at a null intensity current, group 1 (24 blocks and group 2 (36 blocks. Interhemispheric asymmetry between F3-F4, C3-C4 and P3-P4 was analyzed through an Anova. Results pointed out to a group x electrode interaction and a general tendency of asymmetry decrease after stimulation.

  12. Movement-related cortical potentials in paraplegic patients: abnormal patterns and considerations for BCI-rehabilitation

    Directory of Open Access Journals (Sweden)

    Ren eXu

    2014-08-01

    Full Text Available Non-invasive EEG-based Brain-Computer Interfaces (BCI can be promising for the motor neuro-rehabilitation of paraplegic patients. However, this shall require detailed knowledge of the abnormalities in the EEG signatures of paraplegic patients. The association of abnormalities in different subgroups of patients and their relation to the sensorimotor integration are relevant for the design, implementation and use of BCI systems in patient populations. This study explores the patterns of abnormalities of movement related cortical potentials (MRCP during motor imagery tasks of feet and right hand in patients with paraplegia (including the subgroups with/without central neuropathic pain and complete/incomplete injury patients and the level of distinctiveness of abnormalities in these groups using pattern classification. The most notable observed abnormalities were the amplified execution negativity and its slower rebound in the patient group. The potential underlying mechanisms behind these changes and other minor dissimilarities in patients’ subgroups, as well as the relevance to BCI applications, are discussed. The findings are of interest from a neurological perspective as well as for BCI-assisted neuro-rehabilitation and therapy.

  13. Asymmetry of the structural brain connectome in healthy older adults.

    Directory of Open Access Journals (Sweden)

    Leonardo eBonilha

    2014-01-01

    Full Text Available Background: It is now possible to map neural connections in vivo across the whole brain (i.e., the brain connectome. This is a promising development in neuroscience since many health and disease processes are believed to arise from the architecture of neural networks.Objective: To describe the normal range of hemispheric asymmetry in structural connectivity in healthy older adults.Methods: We obtained high-resolution structural magnetic resonance images (MRI from 17 healthy older adults. For each subject, the brain connectome was reconstructed by parcelating the probabilistic map of gray matter into anatomically defined regions of interested (ROIs. White matter fiber tractography was reconstructed from diffusion tensor imaging and streamlines connecting gray matter ROIs were computed. Asymmetry indices were calculated regarding ROI connectivity (representing the sum of connectivity weight of each cortical ROI and for regional white matter links. All asymmetry measures were compared to a normal distribution with mean=0 through one sample t-tests.Results: Leftward cortical ROI asymmetry was observed in medial temporal, dorsolateral frontal and occipital regions. Rightward cortical ROI asymmetry was observed in middle temporal and orbito-frontal regions. Link-wise asymmetry revealed stronger connections in the left hemisphere between the medial temporal, anterior and posterior peri-Sylvian and occipito-temporal regions. Rightward link asymmetry was observed in lateral temporal, parietal and dorsolateral frontal connections.Conclusions: We postulate that asymmetry of specific connections may be related to functional hemispheric organization. This study may provide reference for future studies evaluating the architecture of the connectome in health and disease processes in senior individuals.

  14. Abnormalities in Structural Covariance of Cortical Gyrification in Parkinson's Disease.

    Science.gov (United States)

    Xu, Jinping; Zhang, Jiuquan; Zhang, Jinlei; Wang, Yue; Zhang, Yanling; Wang, Jian; Li, Guanglin; Hu, Qingmao; Zhang, Yuanchao

    2017-01-01

    Although abnormal cortical morphology and connectivity between brain regions (structural covariance) have been reported in Parkinson's disease (PD), the topological organizations of large-scale structural brain networks are still poorly understood. In this study, we investigated large-scale structural brain networks in a sample of 37 PD patients and 34 healthy controls (HC) by assessing the structural covariance of cortical gyrification with local gyrification index (lGI). We demonstrated prominent small-world properties of the structural brain networks for both groups. Compared with the HC group, PD patients showed significantly increased integrated characteristic path length and integrated clustering coefficient, as well as decreased integrated global efficiency in structural brain networks. Distinct distributions of hub regions were identified between the two groups, showing more hub regions in the frontal cortex in PD patients. Moreover, the modular analyses revealed significantly decreased integrated regional efficiency in lateral Fronto-Insula-Temporal module, and increased integrated regional efficiency in Parieto-Temporal module in the PD group as compared to the HC group. In summary, our study demonstrated altered topological properties of structural networks at a global, regional and modular level in PD patients. These findings suggests that the structural networks of PD patients have a suboptimal topological organization, resulting in less effective integration of information between brain regions.

  15. Gray and white matter distribution in dyslexia: a VBM study of superior temporal gyrus asymmetry.

    Directory of Open Access Journals (Sweden)

    Marjorie Dole

    Full Text Available In the present study, we investigated brain morphological signatures of dyslexia by using a voxel-based asymmetry analysis. Dyslexia is a developmental disorder that affects the acquisition of reading and spelling abilities and is associated with a phonological deficit. Speech perception disabilities have been associated with this deficit, particularly when listening conditions are challenging, such as in noisy environments. These deficits are associated with known neurophysiological correlates, such as a reduction in the functional activation or a modification of functional asymmetry in the cortical regions involved in speech processing, such as the bilateral superior temporal areas. These functional deficits have been associated with macroscopic morphological abnormalities, which potentially include a reduction in gray and white matter volumes, combined with modifications of the leftward asymmetry along the perisylvian areas. The purpose of this study was to investigate gray/white matter distribution asymmetries in dyslexic adults using automated image processing derived from the voxel-based morphometry technique. Correlations with speech-in-noise perception abilities were also investigated. The results confirmed the presence of gray matter distribution abnormalities in the superior temporal gyrus (STG and the superior temporal Sulcus (STS in individuals with dyslexia. Specifically, the gray matter of adults with dyslexia was symmetrically distributed over one particular region of the STS, the temporal voice area, whereas normal readers showed a clear rightward gray matter asymmetry in this area. We also identified a region in the left posterior STG in which the white matter distribution asymmetry was correlated to speech-in-noise comprehension abilities in dyslexic adults. These results provide further information concerning the morphological alterations observed in dyslexia, revealing the presence of both gray and white matter distribution

  16. Gray and white matter distribution in dyslexia: a VBM study of superior temporal gyrus asymmetry.

    Science.gov (United States)

    Dole, Marjorie; Meunier, Fanny; Hoen, Michel

    2013-01-01

    In the present study, we investigated brain morphological signatures of dyslexia by using a voxel-based asymmetry analysis. Dyslexia is a developmental disorder that affects the acquisition of reading and spelling abilities and is associated with a phonological deficit. Speech perception disabilities have been associated with this deficit, particularly when listening conditions are challenging, such as in noisy environments. These deficits are associated with known neurophysiological correlates, such as a reduction in the functional activation or a modification of functional asymmetry in the cortical regions involved in speech processing, such as the bilateral superior temporal areas. These functional deficits have been associated with macroscopic morphological abnormalities, which potentially include a reduction in gray and white matter volumes, combined with modifications of the leftward asymmetry along the perisylvian areas. The purpose of this study was to investigate gray/white matter distribution asymmetries in dyslexic adults using automated image processing derived from the voxel-based morphometry technique. Correlations with speech-in-noise perception abilities were also investigated. The results confirmed the presence of gray matter distribution abnormalities in the superior temporal gyrus (STG) and the superior temporal Sulcus (STS) in individuals with dyslexia. Specifically, the gray matter of adults with dyslexia was symmetrically distributed over one particular region of the STS, the temporal voice area, whereas normal readers showed a clear rightward gray matter asymmetry in this area. We also identified a region in the left posterior STG in which the white matter distribution asymmetry was correlated to speech-in-noise comprehension abilities in dyslexic adults. These results provide further information concerning the morphological alterations observed in dyslexia, revealing the presence of both gray and white matter distribution anomalies and the

  17. Cortical Abnormalities Associated With Pediatric and Adult Obsessive-Compulsive Disorder: Findings From the ENIGMA Obsessive-Compulsive Disorder Working Group.

    Science.gov (United States)

    Boedhoe, Premika S W; Schmaal, Lianne; Abe, Yoshinari; Alonso, Pino; Ameis, Stephanie H; Anticevic, Alan; Arnold, Paul D; Batistuzzo, Marcelo C; Benedetti, Francesco; Beucke, Jan C; Bollettini, Irene; Bose, Anushree; Brem, Silvia; Calvo, Anna; Calvo, Rosa; Cheng, Yuqi; Cho, Kang Ik K; Ciullo, Valentina; Dallaspezia, Sara; Denys, Damiaan; Feusner, Jamie D; Fitzgerald, Kate D; Fouche, Jean-Paul; Fridgeirsson, Egill A; Gruner, Patricia; Hanna, Gregory L; Hibar, Derrek P; Hoexter, Marcelo Q; Hu, Hao; Huyser, Chaim; Jahanshad, Neda; James, Anthony; Kathmann, Norbert; Kaufmann, Christian; Koch, Kathrin; Kwon, Jun Soo; Lazaro, Luisa; Lochner, Christine; Marsh, Rachel; Martínez-Zalacaín, Ignacio; Mataix-Cols, David; Menchón, José M; Minuzzi, Luciano; Morer, Astrid; Nakamae, Takashi; Nakao, Tomohiro; Narayanaswamy, Janardhanan C; Nishida, Seiji; Nurmi, Erika; O'Neill, Joseph; Piacentini, John; Piras, Fabrizio; Piras, Federica; Reddy, Y C Janardhan; Reess, Tim J; Sakai, Yuki; Sato, Joao R; Simpson, H Blair; Soreni, Noam; Soriano-Mas, Carles; Spalletta, Gianfranco; Stevens, Michael C; Szeszko, Philip R; Tolin, David F; van Wingen, Guido A; Venkatasubramanian, Ganesan; Walitza, Susanne; Wang, Zhen; Yun, Je-Yeon; Thompson, Paul M; Stein, Dan J; van den Heuvel, Odile A

    2018-05-01

    Brain imaging studies of structural abnormalities in OCD have yielded inconsistent results, partly because of limited statistical power, clinical heterogeneity, and methodological differences. The authors conducted meta- and mega-analyses comprising the largest study of cortical morphometry in OCD ever undertaken. T 1 -weighted MRI scans of 1,905 OCD patients and 1,760 healthy controls from 27 sites worldwide were processed locally using FreeSurfer to assess cortical thickness and surface area. Effect sizes for differences between patients and controls, and associations with clinical characteristics, were calculated using linear regression models controlling for age, sex, site, and intracranial volume. In adult OCD patients versus controls, we found a significantly lower surface area for the transverse temporal cortex and a thinner inferior parietal cortex. Medicated adult OCD patients also showed thinner cortices throughout the brain. In pediatric OCD patients compared with controls, we found significantly thinner inferior and superior parietal cortices, but none of the regions analyzed showed significant differences in surface area. However, medicated pediatric OCD patients had lower surface area in frontal regions. Cohen's d effect sizes varied from -0.10 to -0.33. The parietal cortex was consistently implicated in both adults and children with OCD. More widespread cortical thickness abnormalities were found in medicated adult OCD patients, and more pronounced surface area deficits (mainly in frontal regions) were found in medicated pediatric OCD patients. These cortical measures represent distinct morphological features and may be differentially affected during different stages of development and illness, and possibly moderated by disease profile and medication.

  18. Distinct temporal and anatomical distributions of amyloid-β and tau abnormalities following controlled cortical impact in transgenic mice.

    Directory of Open Access Journals (Sweden)

    Hien T Tran

    Full Text Available Traumatic brain injury (TBI is a major environmental risk factor for Alzheimer's disease. Intracellular accumulations of amyloid-β and tau proteins have been observed within hours following severe TBI in humans. Similar abnormalities have been recapitulated in young 3xTg-AD mice subjected to the controlled cortical impact model (CCI of TBI and sacrificed at 24 h and 7 days post injury. This study investigated the temporal and anatomical distributions of amyloid-β and tau abnormalities from 1 h to 24 h post injury in the same model. Intra-axonal amyloid-β accumulation in the fimbria was detected as early as 1 hour and increased monotonically over 24 hours following injury. Tau immunoreactivity in the fimbria and amygdala had a biphasic time course with peaks at 1 hour and 24 hours, while tau immunoreactivity in the contralateral CA1 rose in a delayed fashion starting at 12 hours after injury. Furthermore, rapid intra-axonal amyloid-β accumulation was similarly observed post controlled cortical injury in APP/PS1 mice, another transgenic Alzheimer's disease mouse model. Acute increases in total and phospho-tau immunoreactivity were also evident in single transgenic Tau(P301L mice subjected to controlled cortical injury. These data provide further evidence for the causal effects of moderately severe contusional TBI on acceleration of acute Alzheimer-related abnormalities and the independent relationship between amyloid-β and tau in this setting.

  19. Cortical Abnormalities Associated With Pediatric and Adult Obsessive-Compulsive Disorder : Findings From the ENIGMA Obsessive-Compulsive Disorder Working Group

    NARCIS (Netherlands)

    Boedhoe, Premika S W; Schmaal, Lianne; Abe, Yoshinari; Alonso, Pino; Ameis, Stephanie H; Anticevic, Alan; Arnold, Paul D; Batistuzzo, Marcelo C; Benedetti, Francesco; Beucke, Jan C; Bollettini, Irene; Bose, Anushree; Brem, Silvia; Calvo, Anna; Calvo, Rosa; Cheng, Yuqi; Cho, Kang Ik K; Ciullo, Valentina; Dallaspezia, Sara; Denys, D.; Feusner, Jamie D; Fitzgerald, Kate D; Fouche, Jean-Paul; Fridgeirsson, Egill A; Gruner, Patricia; Hanna, Gregory L; Hibar, Derrek P; Hoexter, Marcelo Q; Hu, Hao; Huyser, Chaim; Jahanshad, Neda; James, Anthony; Kathmann, Norbert; Kaufmann, Christian; Koch, Kathrin; Kwon, Jun Soo; Lazaro, Luisa; Lochner, Christine; Marsh, Rachel; Martínez-Zalacaín, Ignacio; Mataix-Cols, David; Menchón, José M; Minuzzi, Luciano; Morer, Astrid; Nakamae, Takashi; Nakao, Tomohiro; Narayanaswamy, Janardhanan C; Nishida, Seiji; Nurmi, Erika; O'Neill, Joseph; Piacentini, John; Piras, Fabrizio; Piras, Federica; Reddy, Y C Janardhan; Reess, Tim J; Sakai, Yuki; Sato, Joao R; Simpson, H Blair; Soreni, Noam; Soriano-Mas, Carles; Spalletta, Gianfranco; Stevens, Michael C; Szeszko, Philip R; Tolin, David F; van Wingen, Guido A; Venkatasubramanian, Ganesan; Walitza, Susanne; Wang, Zhen; Yun, Je-Yeon; Thompson, Paul M; Stein, Dan J; van den Heuvel, Odile A

    2018-01-01

    OBJECTIVE: Brain imaging studies of structural abnormalities in OCD have yielded inconsistent results, partly because of limited statistical power, clinical heterogeneity, and methodological differences. The authors conducted meta- and mega-analyses comprising the largest study of cortical

  20. Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain.

    Science.gov (United States)

    Gilmore, John H; Lin, Weili; Prastawa, Marcel W; Looney, Christopher B; Vetsa, Y Sampath K; Knickmeyer, Rebecca C; Evans, Dianne D; Smith, J Keith; Hamer, Robert M; Lieberman, Jeffrey A; Gerig, Guido

    2007-02-07

    Although there has been recent interest in the study of childhood and adolescent brain development, very little is known about normal brain development in the first few months of life. In older children, there are regional differences in cortical gray matter development, whereas cortical gray and white matter growth after birth has not been studied to a great extent. The adult human brain is also characterized by cerebral asymmetries and sexual dimorphisms, although very little is known about how these asymmetries and dimorphisms develop. We used magnetic resonance imaging and an automatic segmentation methodology to study brain structure in 74 neonates in the first few weeks after birth. We found robust cortical gray matter growth compared with white matter growth, with occipital regions growing much faster than prefrontal regions. Sexual dimorphism is present at birth, with males having larger total brain cortical gray and white matter volumes than females. In contrast to adults and older children, the left hemisphere is larger than the right hemisphere, and the normal pattern of fronto-occipital asymmetry described in older children and adults is not present. Regional differences in cortical gray matter growth are likely related to differential maturation of sensory and motor systems compared with prefrontal executive function after birth. These findings also indicate that whereas some adult patterns of sexual dimorphism and cerebral asymmetries are present at birth, others develop after birth.

  1. Cortical Abnormalities Associated With Pediatric and Adult Obsessive-Compulsive Disorder: Findings From the ENIGMA Obsessive-Compulsive Disorder Working Group

    NARCIS (Netherlands)

    Boedhoe, Premika S. W.; Schmaal, Lianne; Abe, Yoshinari; Alonso, Pino; Ameis, Stephanie H.; Anticevic, Alan; Arnold, Paul D.; Batistuzzo, Marcelo C.; Benedetti, Francesco; Beucke, Jan C.; Bollettini, Irene; Bose, Anushree; Brem, Silvia; Calvo, Anna; Calvo, Rosa; Cheng, Yuqi; Cho, Kang Ik K.; Ciullo, Valentina; Dallaspezia, Sara; Denys, Damiaan; Feusner, Jamie D.; Fitzgerald, Kate D.; Fouche, Jean-Paul; Fridgeirsson, Egill A.; Gruner, Patricia; Hanna, Gregory L.; Hibar, Derrek P.; Hoexter, Marcelo Q.; Hu, Hao; Huyser, Chaim; Jahanshad, Neda; James, Anthony; Kathmann, Norbert; Kaufmann, Christian; Koch, Kathrin; Kwon, Jun Soo; Lazaro, Luisa; Lochner, Christine; Marsh, Rachel; Martínez-Zalacaín, Ignacio; Mataix-Cols, David; Menchón, José M.; Minuzzi, Luciano; Morer, Astrid; Nakamae, Takashi; Nakao, Tomohiro; Narayanaswamy, Janardhanan C.; Nishida, Seiji; van Wingen, Guido A.; Figee, Martijn

    2017-01-01

    Brain imaging studies of structural abnormalities in OCD have yielded inconsistent results, partly because of limited statistical power, clinical heterogeneity, and methodological differences. The authors conducted meta- and mega-analyses comprising the largest study of cortical morphometry in OCD

  2. Abnormal asymmetry of white matter tracts between ventral posterior cingulate cortex and middle temporal gyrus in recent-onset schizophrenia.

    Science.gov (United States)

    Joo, Sung Woo; Chon, Myong-Wuk; Rathi, Yogesh; Shenton, Martha E; Kubicki, Marek; Lee, Jungsun

    2018-02-01

    Previous studies have reported abnormalities in the ventral posterior cingulate cortex (vPCC) and middle temporal gyrus (MTG) in schizophrenia patients. However, it remains unclear whether the white matter tracts connecting these structures are impaired in schizophrenia. Our study investigated the integrity of these white matter tracts (vPCC-MTG tract) and their asymmetry (left versus right side) in patients with recent onset schizophrenia. Forty-seven patients and 24 age-and sex-matched healthy controls were enrolled in this study. We extracted left and right vPCC-MTG tract on each side from T1W and diffusion MRI (dMRI) at 3T. We then calculated the asymmetry index of diffusion measures of vPCC-MTG tracts as well as volume and thickness of vPCC and MTG using the formula: 2×(right-left)/(right+left). We compared asymmetry indices between patients and controls and evaluated their correlations with the severity of psychiatric symptoms and cognition in patients using the Positive and Negative Syndrome Scale (PANSS), video-based social cognition scale (VISC) and the Wechsler Adult Intelligence Scale (WAIS-III). Asymmetry of fractional anisotropy (FA) and radial diffusivity (RD) in the vPCC-MTG tract, while present in healthy controls, was not evident in schizophrenia patients. Also, we observed that patients, not healthy controls, had a significant FA decrease and RD increase in the left vPCC-MTG tract. There was no significant association between the asymmetry indices of dMRI measures and IQ, VISC, or PANSS scores in schizophrenia. Disruption of asymmetry of the vPCC-MTG tract in schizophrenia may contribute to the pathophysiology of schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Multimodal surface-based morphometry reveals diffuse cortical atrophy in traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Sorenson Donna J

    2009-12-01

    Full Text Available Abstract Background Patients with traumatic brain injury (TBI often present with significant cognitive deficits without corresponding evidence of cortical damage on neuroradiological examinations. One explanation for this puzzling observation is that the diffuse cortical abnormalities that characterize TBI are difficult to detect with standard imaging procedures. Here we investigated a patient with severe TBI-related cognitive impairments whose scan was interpreted as normal by a board-certified radiologist in order to determine if quantitative neuroimaging could detect cortical abnormalities not evident with standard neuroimaging procedures. Methods Cortical abnormalities were quantified using multimodal surfaced-based morphometry (MSBM that statistically combined information from high-resolution structural MRI and diffusion tensor imaging (DTI. Normal values of cortical anatomy and cortical and pericortical DTI properties were quantified in a population of 43 healthy control subjects. Corresponding measures from the patient were obtained in two independent imaging sessions. These data were quantified using both the average values for each lobe and the measurements from each point on the cortical surface. The results were statistically analyzed as z-scores from the mean with a p Results The TBI patient showed significant regional abnormalities in cortical thickness, gray matter diffusivity and pericortical white matter integrity that replicated across imaging sessions. Consistent with the patient's impaired performance on neuropsychological tests of executive function, cortical abnormalities were most pronounced in the frontal lobes. Conclusions MSBM is a promising tool for detecting subtle cortical abnormalities with high sensitivity and selectivity. MSBM may be particularly useful in evaluating cortical structure in TBI and other neurological conditions that produce diffuse abnormalities in both cortical structure and tissue properties.

  4. White matter abnormalities in tuberous sclerosis complex

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, P.D. [Sheffield Univ. (United Kingdom). Academic Dept. of Radiology; Bolton, P. [Cambridge Univ. (United Kingdom). Section of Developmental Psychiatry; Verity, C. [Addenbrooke`s NHS Trust, Cambridge (United Kingdom). Dept. of Paediatric Radiology

    1998-09-01

    The aim of this study was to investigate and describe the range of white matter abnormalities in children with tuberous sclerosis complex by means of MR imaging. Material and Methods: A retrospective cross-sectional study was performed on the basis of MR imaging findings in 20 cases of tuberous sclerosis complex in children aged 17 years or younger. Results: White matter abnormalities were present in 19/20 (95%) cases of tuberous sclerosis complex. These were most frequently (19/20 cases) found in relation to cortical tubers in the supratentorial compartment. White matter abnormalities related to tubers were found in the cerebellum in 3/20 (15%) cases. White matter abnormalities described as radial migration lines were found in relation to 5 tubers in 3 (15%) children. In 4/20 (20%) cases, white matter abnormalities were found that were not related to cortical tubers. These areas had the appearance of white matter cysts in 3 cases and infarction in the fourth. In the latter case there was a definable event in the clinical history, supporting the diagnosis of stroke. Conclusion: A range of white matter abnormalities were found by MR imaging in tuberous sclerosis complex, the commonest being gliosis and hypomyelination related to cortical tubers. Radial migration lines were seen infrequently in relation to cortical tubers and these are thought to represent heterotopic glia and neurons along the expected path of cortical migration. (orig.)

  5. Aberrant cortical associative plasticity associated with severe adult Tourette syndrome.

    Science.gov (United States)

    Martín-Rodríguez, Juan Francisco; Ruiz-Rodríguez, María Adilia; Palomar, Francisco J; Cáceres-Redondo, María Teresa; Vargas, Laura; Porcacchia, Paolo; Gómez-Crespo, Mercedes; Huertas-Fernández, Ismael; Carrillo, Fátima; Madruga-Garrido, Marcos; Mir, Pablo

    2015-03-01

    Recent studies have shown altered cortical plasticity in adult patients with Tourette syndrome. However, the clinical significance of this finding remains elusive. Motor cortical plasticity was evaluated in 15 adult patients with severe Tourette syndrome and 16 healthy controls using the paired associative stimulation protocol by transcranial magnetic stimulation. Associations between paired associative stimulation-induced plasticity and relevant clinical variables, including cortical excitability, psychiatric comorbidities, drug treatment and tic severity, were assessed. Motor cortical plasticity was abnormally increased in patients with Tourette syndrome compared with healthy subjects. This abnormal plasticity was independently associated with tic severity. Patients with severe Tourette syndrome display abnormally increased cortical associative plasticity. This aberrant cortical plasticity was associated with tic severity, suggesting an underlying mechanism for tic pathophysiology. © 2015 International Parkinson and Movement Disorder Society.

  6. ASYMMETRY OF SOMATOSENSORY CORTICAL PLASTICITY IN PATIENT WITH BILATERAL CARPAL TUNNEL SYNDROME

    Directory of Open Access Journals (Sweden)

    Hikmat Hadoush

    2017-09-01

    Full Text Available Background: Following peripheral nerve lesion, the adult somatosensory system showedcortical reorganizational abilities.Previous studies identified the digits' somatotopy map changes and somatosensory cortical plasticity in response to the Carpal Tunnel Syndrome (CTS that affected the dominant hand only. Objective: Answering the remained question is that what the extent of the cortical plasticity would be in left and right somatosensory cortices in response to CTS affecting the right and left hands simultaneously. Methods: Cortical representations activated by tactile stimulation of median nerve (index and ulnar nerve (little of both dominant and non-dominant hands were evaluated by Magnetoencephalography (MEG systemfor healthy participants and patient with bilateral moderate CTS. index – little fingers'somatotopy map and inter-digit cortical distance was then mapped and calculated for each participant on the real MRI data and the 3D brain surface image. Results: in healthy participants, index – little inter-digit somatosensory cortical distance of right hand (dominant was significantly larger than the index – little inter-digitsomatosensory cortical distance of left hand (11.2±2.1mm vs.7.0±2.9mm, P = 0.006. However, in patient with bilateral CTS, the index – little inter-digit somatosensory cortical distance of righthand (dominant was significantly smaller than the index – little inter-digit somatosensory cortical distance of left hand (5.8mm vs. 7.4mm. Conclusion: our data could be interpreted as the hand use – dependency served more median nerve – cortical territory from the ulnar nerve invasion in the right somatotopy map (left hand than the left somatotopy map of the right hand.

  7. Deafferentation-Induced Plasticity of Visual Callosal Connections: Predicting Critical Periods and Analyzing Cortical Abnormalities Using Diffusion Tensor Imaging

    Directory of Open Access Journals (Sweden)

    Jaime F. Olavarria

    2012-01-01

    Full Text Available Callosal connections form elaborate patterns that bear close association with striate and extrastriate visual areas. Although it is known that retinal input is required for normal callosal development, there is little information regarding the period during which the retina is critically needed and whether this period correlates with the same developmental stage across species. Here we review the timing of this critical period, identified in rodents and ferrets by the effects that timed enucleations have on mature callosal connections, and compare it to other developmental milestones in these species. Subsequently, we compare these events to diffusion tensor imaging (DTI measurements of water diffusion anisotropy within developing cerebral cortex. We observed that the relationship between the timing of the critical period and the DTI-characterized developmental trajectory is strikingly similar in rodents and ferrets, which opens the possibility of using cortical DTI trajectories for predicting the critical period in species, such as humans, in which this period likely occurs prenatally. Last, we discuss the potential of utilizing DTI to distinguish normal from abnormal cerebral cortical development, both within the context of aberrant connectivity induced by early retinal deafferentation, and more generally as a potential tool for detecting abnormalities associated with neurodevelopmental disorders.

  8. Growth and Age-Related Abnormalities in Cortical Structure and Fracture Risk

    Directory of Open Access Journals (Sweden)

    Ego Seeman

    2015-12-01

    Full Text Available Vertebral fractures and trabecular bone loss have dominated thinking and research into the pathogenesis and the structural basis of bone fragility during the last 70 years. However, 80% of all fractures are non-vertebral and occur at regions assembled using large amounts of cortical bone; only 20% of fractures are vertebral. Moreover, ~80% of the skeleton is cortical and ~70% of all bone loss is cortical even though trabecular bone is lost more rapidly than cortical bone. Bone is lost because remodelling becomes unbalanced after midlife. Most cortical bone loss occurs by intracortical, not endocortical remodelling. Each remodelling event removes more bone than deposited enlarging existing canals which eventually coalesce eroding and thinning the cortex from 'within.' Thus, there is a need to study the decay of cortical as well as trabecular bone, and to develop drugs that restore the strength of both types of bone. It is now possible to accurately quantify cortical porosity and trabecular decay in vivo. The challenges still to be met are to determine whether measurement of porosity identifies persons at risk for fracture, whether this approach is compliments information obtained using bone densitometry, and whether changes in cortical porosity and other microstructural traits have the sensitivity to serve as surrogates of treatment success or failure.

  9. Cortical mechanics and myosin-II abnormalities associated with post-ovulatory aging: implications for functional defects in aged eggs

    Science.gov (United States)

    Mackenzie, Amelia C.L.; Kyle, Diane D.; McGinnis, Lauren A.; Lee, Hyo J.; Aldana, Nathalia; Robinson, Douglas N.; Evans, Janice P.

    2016-01-01

    STUDY HYPOTHESIS Cellular aging of the egg following ovulation, also known as post-ovulatory aging, is associated with aberrant cortical mechanics and actomyosin cytoskeleton functions. STUDY FINDING Post-ovulatory aging is associated with dysfunction of non-muscle myosin-II, and pharmacologically induced myosin-II dysfunction produces some of the same deficiencies observed in aged eggs. WHAT IS KNOWN ALREADY Reproductive success is reduced with delayed fertilization and when copulation or insemination occurs at increased times after ovulation. Post-ovulatory aged eggs have several abnormalities in the plasma membrane and cortex, including reduced egg membrane receptivity to sperm, aberrant sperm-induced cortical remodeling and formation of fertilization cones at the site of sperm entry, and reduced ability to establish a membrane block to prevent polyspermic fertilization. STUDY DESIGN, SAMPLES/MATERIALS, METHODS Ovulated mouse eggs were collected at 21–22 h post-human chorionic gonadotrophin (hCG) (aged eggs) or at 13–14 h post-hCG (young eggs), or young eggs were treated with the myosin light chain kinase (MLCK) inhibitor ML-7, to test the hypothesis that disruption of myosin-II function could mimic some of the effects of post-ovulatory aging. Eggs were subjected to various analyses. Cytoskeletal proteins in eggs and parthenogenesis were assessed using fluorescence microscopy, with further analysis of cytoskeletal proteins in immunoblotting experiments. Cortical tension was measured through micropipette aspiration assays. Egg membrane receptivity to sperm was assessed in in vitro fertilization (IVF) assays. Membrane topography was examined by low-vacuum scanning electron microscopy (SEM). MAIN RESULTS AND THE ROLE OF CHANCE Aged eggs have decreased levels and abnormal localizations of phosphorylated myosin-II regulatory light chain (pMRLC; P = 0.0062). Cortical tension, which is mediated in part by myosin-II, is reduced in aged mouse eggs when compared with

  10. Structural asymmetry of cortical visual areas is related to ocular dominance

    DEFF Research Database (Denmark)

    Jensen, Bettina H; Hougaard, Anders; Amin, Faisal M

    2015-01-01

    lateralized visual areas were identified, both right>left and left>right. When correlating the asymmetries to the functional parameters, we found a significant correlation to ocular dominance (P...The grey matter of the human brain is asymmetrically distributed between the cerebral hemispheres. This asymmetry includes visual areas, but its relevance to visual function is not understood. Voxel-based morphometry is a well-established technique for localization and quantification of cerebral...... was identified to be significantly larger in the left hemisphere for right-eyed participants and vice versa. These results suggest a cerebral basis for ocular dominance....

  11. Abnormal Spatial Asymmetry of Selective Attention in ADHD

    Science.gov (United States)

    Chan, Edgar; Mattingley, Jason B.; Huang-Pollock, Cynthia; English, Therese; Hester, Robert; Vance, Alasdair; Bellgrove, Mark A.

    2009-01-01

    Background: Evidence for a selective attention abnormality in children with attention deficit hyperactivity disorder (ADHD) has been hard to identify using conventional methods from cognitive science. This study tested whether the presence of selective attention abnormalities in ADHD may vary as a function of perceptual load and target…

  12. A voxel-based asymmetry study of the relationship between hemispheric asymmetry and language dominance in Wada tested patients.

    Science.gov (United States)

    Keller, Simon S; Roberts, Neil; Baker, Gus; Sluming, Vanessa; Cezayirli, Enis; Mayes, Andrew; Eldridge, Paul; Marson, Anthony G; Wieshmann, Udo C

    2018-03-23

    Determining the anatomical basis of hemispheric language dominance (HLD) remains an important scientific endeavor. The Wada test remains the gold standard test for HLD and provides a unique opportunity to determine the relationship between HLD and hemispheric structural asymmetries on MRI. In this study, we applied a whole-brain voxel-based asymmetry (VBA) approach to determine the relationship between interhemispheric structural asymmetries and HLD in a large consecutive sample of Wada tested patients. Of 135 patients, 114 (84.4%) had left HLD, 10 (7.4%) right HLD, and 11 (8.2%) bilateral language representation. Fifty-four controls were also studied. Right-handed controls and right-handed patients with left HLD had comparable structural brain asymmetries in cortical, subcortical, and cerebellar regions that have previously been documented in healthy people. However, these patients and controls differed in structural asymmetry of the mesial temporal lobe and a circumscribed region in the superior temporal gyrus, suggesting that only asymmetries of these regions were due to brain alterations caused by epilepsy. Additional comparisons between patients with left and right HLD, matched for type and location of epilepsy, revealed that structural asymmetries of insula, pars triangularis, inferior temporal gyrus, orbitofrontal cortex, ventral temporo-occipital cortex, mesial somatosensory cortex, and mesial cerebellum were significantly associated with the side of HLD. Patients with right HLD and bilateral language representation were significantly less right-handed. These results suggest that structural asymmetries of an insular-fronto-temporal network may be related to HLD. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  13. Congenital malformations of the supratentorial brain. Pt. 1. Disorders of cortical development

    International Nuclear Information System (INIS)

    Ertl-Wagner, B.; Rummeny, C.; Reiser, M.F.

    2003-01-01

    Disorders of supratentorial cortical development are usually divided into disorders of neuronal proliferation, neuronal migration and cortical organization. Based upon molecular biologic discoveries, a modified classification has recently been proposed. The category of malformations of abnormal neuronal and glial proliferation and apoptosis now includes microlissencephalies, megalencephalies, hemimegalencephalies and cortical dysplasias with balloon cells. Malformations due to abnormal neuronal migration now subsume the lissencephaly spectrum including the subcortical band heterotopias, the cobblestone complex and the group of heterotopias. Malformations due to abnormal cortical organization include the spectrum of polymicrogyria and schizencephaly as well as cortical dysplasias without balloon cells. High-resolution magnetic resonance imaging (MRI) has led to an increasing awareness of these malformations. This article aims to illustrate the classification, MRI presentation and relevant clinical features of the most commonly encountered disorders of cortical development. (orig.) [de

  14. Frontal Brain Asymmetry in Depression with Comorbid Anxiety: A Neuropsychological Investigation

    OpenAIRE

    Nelson, Brady D.; Sarapas, Casey; Robison-Andrew, E. Jenna; Altman, Sarah E.; Campbell, Miranda L.; Shankman, Stewart A.

    2012-01-01

    The approach-withdrawal model posits that depression and anxiety are associated with a relative right asymmetry in frontal brain activity. Most studies have tested this model using measures of cortical brain activity such as electroencephalography. However, neuropsychological tasks that differentially employ left vs. right frontal cortical regions can also be used to test hypotheses from the model. In two independent samples (Study 1 and 2), the present study investigated the performance of c...

  15. Regulatory behavior and frontal activity: Considering the role of revised-BIS in relative right frontal asymmetry.

    Science.gov (United States)

    Gable, Philip A; Neal, Lauren B; Threadgill, A Hunter

    2018-01-01

    Essential to human behavior are three core personality systems: approach, avoidance, and a regulatory system governing the two motivational systems. Decades of research has linked approach motivation with greater relative left frontal-cortical asymmetry. Other research has linked avoidance motivation with greater relative right frontal-cortical asymmetry. However, past work linking withdrawal motivation with greater relative right frontal asymmetry has been mixed. The current article reviews evidence suggesting that activation of the regulatory system (revised Behavioral Inhibition System [r-BIS]) may be more strongly related to greater relative right frontal asymmetry than withdrawal motivation. Specifically, research suggests that greater activation of the r-BIS is associated with greater relative right frontal activity, and reduced r-BIS activation is associated with reduced right frontal activity (greater relative left frontal activity). We review evidence examining trait and state frontal activity using EEG, source localization, lesion studies, neuronal stimulation, and fMRI supporting the idea that r-BIS may be the core personality system related to greater relative right frontal activity. In addition, the current review seeks to disentangle avoidance motivation and r-BIS as substrates of relative right frontal asymmetry. © 2017 Society for Psychophysiological Research.

  16. Focal cortical dysplasia – review

    International Nuclear Information System (INIS)

    Kabat, Joanna; Król, Przemysław

    2012-01-01

    Focal cortical dysplasia is a malformation of cortical development, which is the most common cause of medically refractory epilepsy in the pediatric population and the second/third most common etiology of medically intractable seizures in adults. Both genetic and acquired factors are involved in the pathogenesis of cortical dysplasia. Numerous classifications of the complex structural abnormalities of focal cortical dysplasia have been proposed – from Taylor et al. in 1971 to the last modification of Palmini classification made by Blumcke in 2011. In general, three types of cortical dysplasia are recognized. Type I focal cortical dysplasia with mild symptomatic expression and late onset, is more often seen in adults, with changes present in the temporal lobe. Clinical symptoms are more severe in type II of cortical dysplasia usually seen in children. In this type, more extensive changes occur outside the temporal lobe with predilection for the frontal lobes. New type III is one of the above dysplasias with associated another principal lesion as hippocampal sclerosis, tumor, vascular malformation or acquired pathology during early life. Brain MRI imaging shows abnormalities in the majority of type II dysplasias and in only some of type I cortical dysplasias. The most common findings on MRI imaging include: focal cortical thickening or thinning, areas of focal brain atrophy, blurring of the gray-white junction, increased signal on T2- and FLAIR-weighted images in the gray and subcortical white matter often tapering toward the ventricle. On the basis of the MRI findings, it is possible to differentiate between type I and type II cortical dysplasia. A complete resection of the epileptogenic zone is required for seizure-free life. MRI imaging is very helpful to identify those patients who are likely to benefit from surgical treatment in a group of patients with drug-resistant epilepsy. However, in type I cortical dysplasia, MR imaging is often normal, and also in both

  17. Mandibular asymmetry and the fourth dimension.

    Science.gov (United States)

    Kaban, Leonard B

    2009-03-01

    This paper represents more than 30 years of discussion and collaboration with Drs Joseph Murray and John Mulliken in an attempt to understand growth patterns over time (ie, fourth dimension) in patients with hemifacial microsomia (HFM). This is essential for the development of rational treatment protocols for children and adults with jaw asymmetry. Traditionally, HFM was thought of as a unilateral deformity, but it was recognized that 20% to 30% of patients had bilateral abnormalities. However, early descriptions of skeletal correction addressed almost exclusively lengthening of the short (affected) side of the face. Based on longitudinal clinical observations of unoperated HFM patients, we hypothesized that abnormal mandibular growth is the earliest skeletal manifestation and that restricted growth of the mandible plays a pivotal role in progressive distortion of both the ipsilateral and contralateral facial skeleton. This hypothesis explains the progressive nature of the asymmetry in patients with HFM and provides the rationale for surgical lengthening of the mandible in children to prevent end-stage deformity. During the past 30 years, we have learned that this phenomenon of progressive distortion of the adjacent and contralateral facial skeleton occurs with other asymmetric mandibular undergrowth (tumor resection, radiation therapy, or posttraumatic defects) and overgrowth (mandibular condylar hyperplasia) conditions. In this paper, I describe the progression of deformity with time in patients with mandibular asymmetry as a result of undergrowth and overgrowth. Understanding these concepts is critical for the development of rational treatment protocols for adults with end-stage asymmetry and for children to minimize secondary deformity.

  18. Temporal lobe epilepsy and focal cortical dysplasia in children: A tip to find the abnormality.

    Science.gov (United States)

    Bartolini, Luca; Whitehead, Matthew T; Ho, Cheng-Ying; Sepeta, Leigh N; Oluigbo, Chima O; Havens, Kathryn; Freilich, Emily R; Schreiber, John M; Gaillard, William D

    2017-01-01

    To demonstrate an association between magnetic resonance imaging (MRI) findings and pathologic characteristics in children who had surgery for medically refractory epilepsy due to focal cortical dysplasia (FCD). We retrospectively studied 110 children who had epilepsy surgery. Twenty-seven patients with FCD were included. Thirteen had temporal lobe epilepsy (TLE) and 14 had extra-temporal lobe epilepsy (ETLE). Three patients had associated mesial temporal sclerosis. Preoperative 3T MRIs interleaved with nine controls were blindly re-reviewed and categorized according to signal alteration. Pathologic specimens were classified according to the 2011 International League Against Epilepsy (ILAE) classification and compared to MRI studies. Rates of pathology subtypes differed between TLE and ETLE (χ 2 (3) = 8.57, p = 0.04). FCD type I was more frequent in TLE, whereas FCD type II was more frequent in ETLE. In the TLE group, nine patients had temporal tip abnormalities. They all exhibited gray-white matter blurring with decreased myelination and white matter hyperintense signal. Blurring involved the whole temporal tip, not just the area of dysplasia. These patients were less likely to demonstrate cortical thickening compared to those without temporal tip findings (χ 2 (1) = 9.55, p = 0.002). Three of them had FCD Ib, three had FCD IIa, two had FCD IIIa, and one had FCD IIb; MRI features could not entirely distinguish between FCD subtypes. TLE patients showed more pronounced findings than ETLE on MRI (χ 2 (1) = 11.95, p = 0.003, odds ratio [OR] 18.00). In all cases of FCD, isolated blurring was more likely to be associated with FCD II, whereas blurring with decreased myelination was seen with FCD I (χ 2 (6) = 13.07, p = 0.042). Our study described associations between MRI characteristics and pathology in children with FCD and offered a detailed analysis of temporal lobe tip abnormalities and FCD subtypes in children with TLE. These findings may contribute to the

  19. Assessment of cortical maturation with prenatal MRI. Part I: normal cortical maturation

    Energy Technology Data Exchange (ETDEWEB)

    Fogliarini, Celine [Faculte Timone, Centre de Resonance Magnetique Biologique et Medicale, Marseille (France); Chaumoitre, Katia [Hopital Nord, Department of Radiology, Marseille (France); Chapon, Frederique; Levrier, Olivier; Girard, Nadine [Hopital Timone, Department of Neuroradiology, Marseille Cedex 5 (France); Fernandez, Carla; Figarella-Branger, Dominique [Hopital Timone, Department of Pathology, Marseille (France)

    2005-08-01

    Cortical maturation, especially gyral formation, follows a temporospatial schedule and is a good marker of fetal maturation. Although ultrasonography is still the imaging method of choice to evaluate fetal anatomy, MRI has an increasingly important role in the detection of brain abnormalities, especially of cortical development. Knowledge of MRI techniques in utero with the advantages and disadvantages of some sequences is necessary, in order to try to optimize the different magnetic resonance sequences to be able to make an early diagnosis. The different steps of cortical maturation known from histology represent the background necessary for the understanding of maturation in order to be then able to evaluate brain maturation through neuroimaging. Illustrations of the normal cortical maturation are given for each step accessible to MRI for both the cerebral hemispheres and the posterior fossa. (orig.)

  20. Assessment of cortical maturation with prenatal MRI. Part I: normal cortical maturation

    International Nuclear Information System (INIS)

    Fogliarini, Celine; Chaumoitre, Katia; Chapon, Frederique; Levrier, Olivier; Girard, Nadine; Fernandez, Carla; Figarella-Branger, Dominique

    2005-01-01

    Cortical maturation, especially gyral formation, follows a temporospatial schedule and is a good marker of fetal maturation. Although ultrasonography is still the imaging method of choice to evaluate fetal anatomy, MRI has an increasingly important role in the detection of brain abnormalities, especially of cortical development. Knowledge of MRI techniques in utero with the advantages and disadvantages of some sequences is necessary, in order to try to optimize the different magnetic resonance sequences to be able to make an early diagnosis. The different steps of cortical maturation known from histology represent the background necessary for the understanding of maturation in order to be then able to evaluate brain maturation through neuroimaging. Illustrations of the normal cortical maturation are given for each step accessible to MRI for both the cerebral hemispheres and the posterior fossa. (orig.)

  1. Sall1 regulates cortical neurogenesis and laminar fate specification in mice: implications for neural abnormalities in Townes-Brocks syndrome

    Directory of Open Access Journals (Sweden)

    Susan J. Harrison

    2012-05-01

    Progenitor cells in the cerebral cortex undergo dynamic cellular and molecular changes during development. Sall1 is a putative transcription factor that is highly expressed in progenitor cells during development. In humans, the autosomal dominant developmental disorder Townes-Brocks syndrome (TBS is associated with mutations of the SALL1 gene. TBS is characterized by renal, anal, limb and auditory abnormalities. Although neural deficits have not been recognized as a diagnostic characteristic of the disease, ∼10% of patients exhibit neural or behavioral abnormalities. We demonstrate that, in addition to being expressed in peripheral organs, Sall1 is robustly expressed in progenitor cells of the central nervous system in mice. Both classical- and conditional-knockout mouse studies indicate that the cerebral cortex is particularly sensitive to loss of Sall1. In the absence of Sall1, both the surface area and depth of the cerebral cortex were decreased at embryonic day 18.5 (E18.5. These deficiencies are associated with changes in progenitor cell properties during development. In early cortical progenitor cells, Sall1 promotes proliferative over neurogenic division, whereas, at later developmental stages, Sall1 regulates the production and differentiation of intermediate progenitor cells. Furthermore, Sall1 influences the temporal specification of cortical laminae. These findings present novel insights into the function of Sall1 in the developing mouse cortex and provide avenues for future research into potential neural deficits in individuals with TBS.

  2. Correlation analysis of findings from neuroimaging and histopathology in focal cortical dysplasia

    International Nuclear Information System (INIS)

    Ma Mingping; Fan Jianzhong; Jiang Zirong; Bao Qiang; Du Ruibin; Ritter, J.L.

    2009-01-01

    Objective: To characterize neuroimaging features of focal cortical dysplasia (FCD) retrospectively and correlate those with pathological findings, which may improve our understanding of neuroimaging characteristics of FCD. Methods: Clinical information and neuroimaging findings of 28 cases with FCD proved by pathology were retrospectively reviewed, and neuroimaging features of FCD were correlated with the pathological changes. Results: MRI revealed abnormal changes in 24 of 28 patients (85.7%) and no abnormalities were observed in 4 cases. Focal cortical thickening and blurring of the gray- white matter junction were the major features of FCD on MRI. Accompanied abnormal MR signals can also be observed in cortical or subcortical white matter in FCD. The radial band of hyperintensity in subcortical white matter tapering to the ventricle is one of the characteristic features of FCD on MRI. On FDG-PET examination, focal hypometabolism were revealed in 9 of 14 cases (64.3%). Histologically, cortical dyslamination was accompanied by various degrees of dysmorphic neurons and balloon cells in cortical and subcortical areas. Subcortical white matter dysmyelination and spongiotic necrotic changes were found in some cases with FCD. Conclusion: High resolution MRI can reveal most of the lesions in FCD, including abnormal changes of cortical and subcortical white matter, which makes MRI the best pre-operation examination for FCD. (authors)

  3. Mapping hemispheric symmetries, relative asymmetries, and absolute asymmetries underlying the auditory laterality effect.

    Science.gov (United States)

    Westerhausen, René; Kompus, Kristiina; Hugdahl, Kenneth

    2014-01-01

    listening engages a bihemispheric cortical network, showing a symmetrical and mostly leftward asymmetrical pattern. The here obtained functional (a)symmetry map might serve as a basis for future studies which - by studying the relevance of the here identified regions - clarify the relationship between behavioral laterality measures and hemispheric asymmetry. © 2013 Elsevier Inc. All rights reserved.

  4. Identification of Foot Pathologies Based on Plantar Pressure Asymmetry

    Directory of Open Access Journals (Sweden)

    Linah Wafai

    2015-08-01

    Full Text Available Foot pathologies can negatively influence foot function, consequently impairing gait during daily activity, and severely impacting an individual’s quality of life. These pathologies are often painful and correspond with high or abnormal plantar pressure, which can result in asymmetry in the pressure distribution between the two feet. There is currently no general consensus on the presence of asymmetry in able-bodied gait, and plantar pressure analysis during gait is in dire need of a standardized method to quantify asymmetry. This paper investigates the use of plantar pressure asymmetry for pathological gait diagnosis. The results of this study involving plantar pressure analysis in fifty one participants (31 healthy and 20 with foot pathologies support the presence of plantar pressure asymmetry in normal gait. A higher level of asymmetry was detected at the majority of the regions in the feet of the pathological population, including statistically significant differences in the plantar pressure asymmetry in two regions of the foot, metatarsophalangeal joint 3 (MPJ3 and the lateral heel. Quantification of plantar pressure asymmetry may prove to be useful for the identification and diagnosis of various foot pathologies.

  5. Abnormalities in cortical gray matter density in borderline personality disorder

    Science.gov (United States)

    Rossi, Roberta; Lanfredi, Mariangela; Pievani, Michela; Boccardi, Marina; Rasser, Paul E; Thompson, Paul M; Cavedo, Enrica; Cotelli, Maria; Rosini, Sandra; Beneduce, Rossella; Bignotti, Stefano; Magni, Laura R; Rillosi, Luciana; Magnaldi, Silvia; Cobelli, Milena; Rossi, Giuseppe; Frisoni, Giovanni B

    2015-01-01

    Background Borderline personality disorder (BPD) is a chronic condition with a strong impact on patients‘ affective,cognitive and social functioning. Neuroimaging techniques offer invaluable tools to understand the biological substrate of the disease. We aimed to investigate gray matter alterations over the whole cortex in a group of Borderline Personality Disorder (BPD) patients compared to healthy controls (HC). Methods Magnetic resonance-based cortical pattern matching was used to assess cortical gray matter density (GMD) in 26 BPD patients and in their age- and sex-matched HC (age: 38±11; females: 16, 61%). Results BPD patients showed widespread lower cortical GMD compared to HC (4% difference) with peaks of lower density located in the dorsal frontal cortex, in the orbitofrontal cortex, the anterior and posterior cingulate, the right parietal lobe, the temporal lobe (medial temporal cortex and fusiform gyrus) and in the visual cortex (p<0.005). Our BPD subjects displayed a symmetric distribution of anomalies in the dorsal aspect of the cortical mantle, but a wider involvement of the left hemisphere in the mesial aspect in terms of lower density. A few restricted regions of higher density were detected in the right hemisphere. All regions remained significant after correction for multiple comparisons via permutation testing. Conclusions BPD patients feature specific morphology of the cerebral structures involved in cognitive and emotional processing and social cognition/mentalization, consistent with clinical and functional data. PMID:25561291

  6. The validity of individual frontal alpha asymmetry EEG neurofeedback.

    Science.gov (United States)

    Quaedflieg, C W E M; Smulders, F T Y; Meyer, T; Peeters, F; Merckelbach, H; Smeets, T

    2016-01-01

    Frontal asymmetry in alpha oscillations is assumed to be associated with psychopathology and individual differences in emotional responding. Brain-activity-based feedback is a promising tool for the modulation of cortical activity. Here, we validated a neurofeedback protocol designed to change relative frontal asymmetry based on individual alpha peak frequencies, including real-time average referencing and eye-correction. Participants (N = 60) were randomly assigned to a right, left or placebo neurofeedback group. Results show a difference in trainability between groups, with a linear change in frontal alpha asymmetry over time for the right neurofeedback group during rest. Moreover, the asymmetry changes in the right group were frequency and location specific, even though trainability did not persist at 1 week and 1 month follow-ups. On the behavioral level, subjective stress on the second test day was reduced in the left and placebo neurofeedback groups, but not in the right neurofeedback group. We found individual differences in trainability that were dependent on training group, with participants in the right neurofeedback group being more likely to change their frontal asymmetry in the desired direction. Individual differences in trainability were also reflected in the ability to change frontal asymmetry during the feedback. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  7. Study of interhemispheric asymmetries in electroencephalographic signals by frequency analysis

    International Nuclear Information System (INIS)

    Zapata, J F; Garzon, J

    2011-01-01

    This study provides a new method for the detection of interhemispheric asymmetries in patients with continuous video-electroencephalography (EEG) monitoring at Intensive Care Unit (ICU), using wavelet energy. We obtained the registration of EEG signals in 42 patients with different pathologies, and then we proceeded to perform signal processing using the Matlab program, we compared the abnormalities recorded in the report by the neurophysiologist, the images of each patient and the result of signals analysis with the Discrete Wavelet Transform (DWT). Conclusions: there exists correspondence between the abnormalities found in the processing of the signal with the clinical reports of findings in patients; according to previous conclusion, the methodology used can be a useful tool for diagnosis and early quantitative detection of interhemispheric asymmetries.

  8. Functional MRI study of the brain with malformations of cortical development

    International Nuclear Information System (INIS)

    Zhang Lei; Zhou Wenjing; Jin Zhen; Li Ke; Zhang Chaoli

    2012-01-01

    Objective: To explore the patterns of motor and linguistic activation in cortical and its correlations with abnormal gray matter in patients with malformations of cortical development (MCD) and epilepsy. Methods: Seven MCD patients with epilepsy (2 patients with focal cortical dysplasia, 2 heterotopia, 2 schizencephaly, and 1 polymicrogyria) underwent blood-oxygen-level-dependent (BOLD) functional MRI (fMRI) in a 3 T MR scanner when practicing bilateral fingers tapping,toes twisting, verb generation, and picture naming.Functional images were post-processed by using SPM 5 software based on a general linear model (GLM) to generate activations above a uniform threshold with the cluster size (≥30 voxels, P<0.001 corrected). The activations were recognized and classified by two experienced neuroradiologists, and then compared with that in abnormal gray matter. Results: The clusters and intensities of motor activations were mainly located in the sensormotor cortex (SMC) and premotor area (PMA). In linguistic tasks, activations produced by verb generation were found in language-associated cortical regions and PMA with higher activation in Wernicke area, picture naming significantly in the visual cortex, and language in Broca area. Combination of the two linguistic tasks produced significant clusters and intensities in language cortex. For MCD patients with abnormal cortical abnormalities, motor and language task could produce neuronal activities within normal as well as abnormal cortex regions. In 6 patients who underwent respective surgery, epileptic seizures decreased significantly, and the follow-up images demonstrated no new neurological dysfunctions and cognitive impairments. Conclusions: fMRI can visualize neuronal activities in patients with MCD and epilepsy and demonstrate the motor and linguistic activations occurring in normal and abnormal gray matter. It should be cautious for surgery in patient with MCD and epilepsy. (authors)

  9. Widespread cortical morphologic changes in juvenile myoclonic epilepsy: evidence from structural MRI.

    LENUS (Irish Health Repository)

    Ronan, Lisa

    2012-04-01

    Atypical morphology of the surface of the cerebral cortex may be related to abnormal cortical folding (gyrification) and therefore may indicate underlying malformations of cortical development (MCDs). Using magnetic resonance imaging (MRI)-based analysis, we examined cortical morphology in patients with juvenile myoclonic epilepsy (JME).

  10. [11C]Flumazenil PET in patients with epilepsy with dual pathology.

    Science.gov (United States)

    Juhász, C; Nagy, F; Muzik, O; Watson, C; Shah, J; Chugani, H T

    1999-05-01

    Coexistence of hippocampal sclerosis and a potentially epileptogenic cortical lesion is referred to as dual pathology and can be responsible for poor surgical outcome in patients with medically intractable partial epilepsy. [11C]Flumazenil (FMZ) positron emission tomography (PET) is a sensitive method for visualizing epileptogenic foci. In this study of 12 patients with dual pathology, we addressed the sensitivity of FMZ PET to detect hippocampal abnormalities and compared magnetic resonance imaging (MRI) with visual as well as quantitative FMZ PET findings. All patients underwent volumetric MRI, prolonged video-EEG monitoring, and glucose metabolism PET before the FMZ PET. MRI-coregistered partial volume-corrected PET images were used to measure FMZ-binding asymmetries by using asymmetry indices (AIs) in the whole hippocampus and in three (anterior, middle, and posterior) hippocampal subregions. Cortical sites of decreased FMZ binding also were evaluated by using AIs for regions with MRI-verified cortical lesions as well as for non-lesional areas with visually detected asymmetry. Abnormally decreased FMZ binding could be detected by quantitative analysis in the atrophic hippocampus of all 12 patients, including three patients with discordant or inconclusive EEG findings. Decreased FMZ binding was restricted to only one subregion of the hippocampus in three patients. Areas of decreased cortical FMZ binding were obvious visually in all patients. Decreased FMZ binding was detected visually in nonlesional cortical areas in four patients. The AIs for these nonlesional regions with visual asymmetry were significantly lower than those for regions showing MRI lesions (paired t test, p = 0.0075). Visual as well as quantitative analyses of FMZ-binding asymmetry are sensitive methods to detect decreased benzodiazepine-receptor binding in the hippocampus and neocortex of patients with dual pathology. MRI-defined hippocampal atrophy is always associated with decreased FMZ

  11. FOCAL CORTICAL DYSPLASIAS: CLINICAL AND ELECTRO-NEUROIMAGING CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    K. Yu. Mukhin

    2016-01-01

    Full Text Available In spite of a notable advance made in epileptology, resistant epilepsies account for approximately 30 % of all forms of epilepsy particularly in patients with focal seizures. One of the main causes of therapy-resistant focal epilepsies is focal cortical dysplasias (FCD. This term was first introduced by D. Taylor et al. in 1971. FCD belongs to abnormal cortical development. Among all abnormalities of cortical development, FCD in surgically treated children amounts to 75 %. FCD is the most common cause of resistant epilepsy in children and the most frequent reason for diagnosing cryptogenic focal epilepsy with intractable seizures. The author gives a detailed literature review dedicated to FCD as a cause of resistant epilepsy, including the classification and histologic characteristics of FCD, its clinical manifestations and prognosis, and approaches to medical and surgical treatments. 

  12. MRI of a family with focal abnormalities of gyration

    International Nuclear Information System (INIS)

    Muntaner, L.; Perez-Ferron, J.J.; Herrera, M.; Rosell, J.; Taboada, D.; Climent, S.

    1997-01-01

    Focal abnormalities of gyration (FAG) are developmental disorders that may occur in isolated patients or, as in the case being reported, as part of a familial disorder. Analysis of individuals in a family spanning three generations was carried out using MRI. Abnormalities, present in all members of generations II and III, included focal cortical dysplasia (three patients), focal cortical infolding (two patients) and schizencephaly (one patient); associated minor anomalies, such as white matter abnormalities, were seen in the remaining three members of generations II and III. MRI recognition of FAG in the family being reported proved useful in defining their phenotypical expression and providing proper counselling for individual family members. (orig.). With 6 figs

  13. Gamma band oscillations: a key to understanding schizophrenia symptoms and neural circuit abnormalities.

    Science.gov (United States)

    McNally, James M; McCarley, Robert W

    2016-05-01

    We review our current understanding of abnormal γ band oscillations in schizophrenia, their association with symptoms and the underlying cortical circuit abnormality, with a particular focus on the role of fast-spiking parvalbumin gamma-aminobutyric acid (GABA) neurons in the disease state. Clinical electrophysiological studies of schizophrenia patients and pharmacological models of the disorder show an increase in spontaneous γ band activity (not stimulus-evoked) measures. These findings provide a crucial link between preclinical and clinical work examining the role of γ band activity in schizophrenia. MRI-based experiments measuring cortical GABA provides evidence supporting impaired GABAergic neurotransmission in schizophrenia patients, which is correlated with γ band activity level. Several studies suggest that stimulation of the cortical circuitry, directly or via subcortical structures, has the potential to modulate cortical γ activity, and improve cognitive function. Abnormal γ band activity is observed in patients with schizophrenia and disease models in animals, and is suggested to underlie the psychosis and cognitive/perceptual deficits. Convergent evidence from both clinical and preclinical studies suggest the central factor in γ band abnormalities is impaired GABAergic neurotransmission, particularly in a subclass of neurons which express parvalbumin. Rescue of γ band abnormalities presents an intriguing option for therapeutic intervention.

  14. The relationship between skull asymmetry and CT findings

    International Nuclear Information System (INIS)

    Yamori, Yuriko; Yuge, Mariko; Kanda, Toyoko; Ashida, Hiromi; Fukase, Hiroshi

    1987-01-01

    In order to clarify the relationship between brain damage and skull asymmetry or supine head position preference, we classified CT findings of 330 cases with cerebral palsy or risk of motor disturbance into 6 groups according to skull shape. Those were severe (I, n = 37) and mild (II, n = 114) grades in the right occipital flatness, severe (III, n = 34) and mild (IV, n = 58) grades in the left occipital flatness, long skull with temporal flatness (V, n = 33) and symmetric round skull (control, n = 54). It was considered that the asymmetry of cortical atrophy in appearance was formed physicaly by skull asymmetry but that the asymmetric dilatation in appearance of lateral ventricle was related to the asymmetry of brain damage. The severity and the asymmetry of brain damage were tend to increase the grade of skull asymmetry. The incidence of cases with the right occipital flatness was 1.6 times more frequently than the left sided. The incidence of cases whose left (lateral) ventricle was larger than the right was 4.1 times more than the cases whose right ventricle was larger than the left. The cases with occipital flatness in the contralateral side of the larger lateral ventricle were found more than the cases with occipital flatness in the ipsilateral side of the larger ventricle, that is to say, the direction of supine head position preference during early infant was suspected to be the more severely disturbed side of body. These results suggest that the supine head position preference to the right in newborn babies and infants with scoliosis or cerebral palsy might be the result of transient or permanent asymmetric (left > right) brain dysfunction. (author)

  15. Cortical Asymmetries during Hand Laterality Task Vary with Hand Laterality: A fMRI Study in 295 Participants

    Science.gov (United States)

    Mellet, Emmanuel; Mazoyer, Bernard; Leroux, Gaelle; Joliot, Marc; Tzourio-Mazoyer, Nathalie

    2016-01-01

    The aim of this study was to characterize, using fMRI, the functional asymmetries of hand laterality task (HLT) in a sample of 295 participants balanced for handedness. During HLT, participants have to decide whether the displayed picture of a hand represent a right or a left hand. Pictures of hands’ back view were presented for 150 ms in the right or left hemifield. At the whole hemisphere level, we evidenced that the laterality of the hand and of the hemifield in which the picture was displayed combined their effects on the hemispheric asymmetry in an additive way. We then identified a set of 17 functional homotopic regions of interest (hROIs) including premotor, motor, somatosensory and parietal regions, whose activity and asymmetry varied with the laterality of the presented hands. When the laterality of a right hand had to be evaluated, these areas showed stronger leftward asymmetry, the hROI located in the primary motor area showing a significant larger effect than all other hROIs. In addition a subset of six parietal regions involved in visuo-motor integration together with two postcentral areas showed a variation in asymmetry with hemifield of presentation. Finally, while handedness had no effect at the hemispheric level, two regions located in the parietal operculum and intraparietal sulcus exhibited larger leftward asymmetry with right handedness independently of the hand of presentation. The present results extend those of previous works in showing a shift of asymmetries during HLT according to the hand presented in sensorimotor areas including primary motor cortex. This shift was not affected by manual preference. They also demonstrate that the coordination of visual information and handedness identification of hands relied on the coexistence of contralateral motor and visual representations in the superior parietal lobe and the postcentral gyrus. PMID:27999536

  16. Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography

    Directory of Open Access Journals (Sweden)

    Ni Shu

    2015-01-01

    Full Text Available The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain.

  17. Curved planar reconstruction of MR images in focal cortical dysplasia of the brain

    International Nuclear Information System (INIS)

    Chung, Gyung Ho; Lee, Sang Yong; Kim, Chong So; Kim, Young Kon; Lee, Young Hwan; Jeong, Su Hyun

    2002-01-01

    To describe curved planar reconstruction imaging (CPR) and determine its usefulness in the evaluation of focal cortical dysplasia of the brain. In 17 cases of focal cortical dysplasia (cortical dysplasia (n=9), schizencephaly (n=5), and heterotopia (n=3), CPR images were created using a multiplanar reconstruction program and imaging data obtained during T1 magnetization prepared rapid acquisition gradient-echo MR imaging. We assessed the precise configuration of abnormalities and their relation to adjacent gyri and sulci. CPRI showed the brain cortex as a 2D panoramic image, demonstrating the precise configurations and locations of dysplasia-associated abnormalities and their relation to adjacent gyri and sulci, and the precise shape of the gray-white matter interface. CPRI can provide important radiological information about the extension and configuration of focal cortical dysplasia, and its relation to neighboring cortical structures. We believe that CPRI should form an essential part of the routine investigation os suspected cases of focal cortical dysplasia

  18. Abnormal left and right amygdala-orbitofrontal cortical functional connectivity to emotional faces: state versus trait vulnerability markers of depression in bipolar disorder.

    Science.gov (United States)

    Versace, Amelia; Thompson, Wesley K; Zhou, Donli; Almeida, Jorge R C; Hassel, Stefanie; Klein, Crystal R; Kupfer, David J; Phillips, Mary L

    2010-03-01

    Amygdala-orbitofrontal cortical (OFC) functional connectivity (FC) to emotional stimuli and relationships with white matter remain little examined in bipolar disorder individuals (BD). Thirty-one BD (type I; n = 17 remitted; n = 14 depressed) and 24 age- and gender-ratio-matched healthy individuals (HC) viewed neutral, mild, and intense happy or sad emotional faces in two experiments. The FC was computed as linear and nonlinear dependence measures between amygdala and OFC time series. Effects of group, laterality, and emotion intensity upon amygdala-OFC FC and amygdala-OFC FC white matter fractional anisotropy (FA) relationships were examined. The BD versus HC showed significantly greater right amygdala-OFC FC (p relationship (p = .001) between left amygdala-OFC FC to sad faces and FA in HC. In BD, antidepressants were associated with significantly reduced left amygdala-OFC FC to mild sad faces (p = .001). In BD, abnormally elevated right amygdala-OFC FC to sad stimuli might represent a trait vulnerability for depression, whereas abnormally elevated left amygdala-OFC FC to sad stimuli and abnormally reduced amygdala-OFC FC to intense happy stimuli might represent a depression state marker. Abnormal FC measures might normalize with antidepressant medications in BD. Nonlinear amygdala-OFC FC-FA relationships in BD and HC require further study. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. MEX-5 and MEX-6 function to establish soma/germline asymmetry in early C. elegans embryos

    NARCIS (Netherlands)

    Schubert, C. M.; Lin, R.; de Vries, C. J.; Plasterk, R. H.; Priess, J. R.

    2000-01-01

    An asymmetrical network of cortically localized PAR proteins forms shortly after fertilization of the C. elegans egg. This network is required for subsequent asymmetries in the expression patterns of several proteins that are encoded by nonlocalized, maternally expressed mRNAs. We provide evidence

  20. Similar cortical but not subcortical gray matter abnormalities in women with posttraumatic stress disorder with versus without dissociative identity disorder.

    Science.gov (United States)

    Chalavi, Sima; Vissia, Eline M; Giesen, Mechteld E; Nijenhuis, Ellert R S; Draijer, Nel; Barker, Gareth J; Veltman, Dick J; Reinders, Antje A T S

    2015-03-30

    Neuroanatomical evidence on the relationship between posttraumatic stress disorder (PTSD) and dissociative disorders is still lacking. We acquired brain structural magnetic resonance imaging (MRI) scans from 17 patients with dissociative identity disorder (DID) and co-morbid PTSD (DID-PTSD) and 16 patients with PTSD but without DID (PTSD-only), and 32 healthy controls (HC), and compared their whole-brain cortical and subcortical gray matter (GM) morphological measurements. Associations between GM measurements and severity of dissociative and depersonalization/derealization symptoms or lifetime traumatizing events were evaluated in the patient groups. DID-PTSD and PTSD-only patients, compared with HC, had similarly smaller cortical GM volumes of the whole brain and of frontal, temporal and insular cortices. DID-PTSD patients additionally showed smaller hippocampal and larger pallidum volumes relative to HC, and larger putamen and pallidum volumes relative to PTSD-only. Severity of lifetime traumatizing events and volume of the hippocampus were negatively correlated. Severity of dissociative and depersonalization/derealization symptoms correlated positively with volume of the putamen and pallidum, and negatively with volume of the inferior parietal cortex. Shared abnormal brain structures in DID-PTSD and PTSD-only, small hippocampal volume in DID-PTSD, more severe lifetime traumatizing events in DID-PTSD compared with PTSD-only, and negative correlations between lifetime traumatizing events and hippocampal volume suggest a trauma-related etiology for DID. Our results provide neurobiological evidence for the side-by-side nosological classification of PTSD and DID in the DSM-5. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Unusual cortical bone features in a patient with gorlin-goltz syndrome: a case report.

    Science.gov (United States)

    Tarnoki, Adam Domonkos; Tarnoki, David Laszlo; Klara Kiss, Katalin; Bata, Pal; Karlinger, Kinga; Banvolgyi, Andras; Wikonkal, Norbert; Berczi, Viktor

    2014-12-01

    Gorlin-Goltz syndrome (GGS) consists of ectodermal and mesodermal abnormalities. In this case report we will investigate lower extremity lesions of GGS. A 52-year-old man with GGS underwent skull and lower extremity computer tomography. Radiographic findings included cervical spondylosis, transparent areas with slurred margins, and cerebral falx calcification. Tibial and fibular specific cortical lesions (thin cortical and subcortical cystic lesions) were seen on the radiography, which was confirmed by computer tomography. To our knowledge, this is the first report of such a long lesion of the tibia and fibula. Specific lower extremity cortical lesions (thin cortical and subcortical cystic lesions) may occur and these abnormalities can be found on radiography or CT, which are most probably attributed to retinoid treatment.

  2. Unusual Cortical Bone Features in a Patient with Gorlin-Goltz Syndrome: A Case Report

    International Nuclear Information System (INIS)

    Tarnoki, Adam Domonkos; Tarnoki, David Laszlo; Klara Kiss, Katalin; Bata, Pal; Karlinger, Kinga; Banvolgyi, Andras; Wikonkal, Norbert; Berczi, Viktor

    2014-01-01

    Gorlin-Goltz syndrome (GGS) consists of ectodermal and mesodermal abnormalities. In this case report we will investigate lower extremity lesions of GGS. A 52-year-old man with GGS underwent skull and lower extremity computer tomography. Radiographic findings included cervical spondylosis, transparent areas with slurred margins, and cerebral falx calcification. Tibial and fibular specific cortical lesions (thin cortical and subcortical cystic lesions) were seen on the radiography, which was confirmed by computer tomography. To our knowledge, this is the first report of such a long lesion of the tibia and fibula. Specific lower extremity cortical lesions (thin cortical and subcortical cystic lesions) may occur and these abnormalities can be found on radiography or CT, which are most probably attributed to retinoid treatment

  3. Spatial distribution and longitudinal development of deep cortical sulcal landmarks in infants.

    Science.gov (United States)

    Meng, Yu; Li, Gang; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2014-10-15

    Sulcal pits, the locally deepest points in sulci of the highly convoluted and variable cerebral cortex, are found to be spatially consistent across human adult individuals. It is suggested that sulcal pits are genetically controlled and have close relationships with functional areas. To date, the existing imaging studies of sulcal pits are mainly focused on adult brains, yet little is known about the spatial distribution and temporal development of sulcal pits in the first 2 years of life, which is the most dynamic and critical period of postnatal brain development. Studying sulcal pits during this period would greatly enrich our limited understandings of the origins and developmental trajectories of sulcal pits, and would also provide important insights into many neurodevelopmental disorders associated with abnormal cortical foldings. In this paper, by using surface-based morphometry, for the first time, we systemically investigated the spatial distribution and temporal development of sulcal pits in major cortical sulci from 73 healthy infants, each with three longitudinal 3T MR scans at term birth, 1 year, and 2 years of age. Our results suggest that the spatially consistent distributions of sulcal pits in major sulci across individuals have already existed at term birth and this spatial distribution pattern keeps relatively stable in the first 2 years of life, despite that the cerebral cortex expands dramatically and the sulcal depth increases considerably during this period. Specially, the depth of sulcal pits increases regionally heterogeneously, with more rapid growth in the high-order association cortex, including the prefrontal and temporal cortices, than the sensorimotor cortex in the first 2 years of life. Meanwhile, our results also suggest that there exist hemispheric asymmetries of the spatial distributions of sulcal pits in several cortical regions, such as the central, superior temporal and postcentral sulci, consistently from birth to 2 years of age

  4. Transcranial magnetic stimulation reveals cortical hyperexcitability in episodic cluster headache.

    Science.gov (United States)

    Cosentino, Guiseppe; Brighina, Filippo; Brancato, Sara; Valentino, Francesca; Indovino, Serena; Fierro, Brigida

    2015-01-01

    Evidence shows involvement of the cerebral cortex in the pathophysiology of cluster headache (CH). Here we investigated cortical excitability in episodic CH patients by using transcranial magnetic stimulation. In 25 patients with episodic CH and 13 healthy subjects we evaluated the motor cortical response to single-pulse (ie, motor threshold, input-output curves, cortical silent period) and paired-pulse (ie, intracortical facilitation, short intracortical inhibition) transcranial magnetic stimulation in both hemispheres. Thirteen patients were evaluated outside bout and the remaining 12 patients inside bout. Our results showed increased slope of the input-output curves after stimulation of both hemispheres in patients outside bout and in the hemisphere contralateral to the headache side in patients inside bout. Increased intracortical facilitation was observed in the hemisphere ipsilateral to the headache side in patients evaluated both outside and inside bout; reduced short intracortical inhibition was observed in patients inside bout ipsilateral to the side of pain. In conclusion, we provide evidence of increased cortical excitability in episodic CH both outside and inside bout, especially in the hemisphere ipsilateral to the side of headache attacks. Our results suggest that an abnormal regulation of cortical excitability could be involved in the pathophysiology of CH. We investigated cortical excitability in episodic cluster headache by using transcranial magnetic stimulation, providing evidence of cortical hyperexcitability in patients both inside and outside bout. We suggest that an abnormal state of cortical excitability could be involved in the pathophysiology of the disease. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.

  5. Reduced cortical thickness in gambling disorder

    DEFF Research Database (Denmark)

    Grant, Jon E; Odlaug, Brian Lawrence; Chamberlain, Samuel R

    2015-01-01

    with significant reductions (average 15.8-19.9 %) in cortical thickness, versus controls, predominantly in right frontal cortical regions. Pronounced right frontal morphometric brain abnormalities occur in gambling disorder, supporting neurobiological overlap with substance disorders and its recent......Gambling disorder has recently been recognized as a prototype 'behavioral addiction' by virtue of its inclusion in the DSM-5 category of 'Substance-Related and Addictive Disorders.' Despite its newly acquired status and prevalence rate of 1-3 % globally, relatively little is known regarding...... the neurobiology of this disorder. The aim of this study was to explore cortical morphometry in untreated gambling disorder, for the first time. Subjects with gambling disorder (N = 16) free from current psychotropic medication or psychiatric comorbidities, and healthy controls (N = 17), were entered...

  6. Prominent microglial activation in cortical white matter is selectively associated with cortical atrophy in primary progressive aphasia.

    Science.gov (United States)

    Ohm, Daniel T; Kim, Garam; Gefen, Tamar; Rademaker, Alfred; Weintraub, Sandra; Bigio, Eileen; Mesulam, M-Marsel; Rogalski, Emily; Geula, Changiz

    2018-04-21

    Primary progressive aphasia (PPA) is a clinical syndrome characterized by selective language impairments associated with focal cortical atrophy favouring the language dominant hemisphere. PPA is associated with Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD), and significant accumulation of activated microglia. Activated microglia can initiate an inflammatory cascade that may contribute to neurodegeneration, but their quantitative distribution in cortical white matter and their relationship with cortical atrophy are unknown. We investigated white matter activated microglia and their association with grey matter atrophy in 10 PPA cases with either AD or FTLD-TDP pathology. Activated microglia were quantified with optical density measures of HLA-DR immunoreactivity in two regions with peak cortical atrophy, and one non-atrophied region within the language dominant hemisphere of each PPA case. Non-atrophied contralateral homologues of the language dominant regions were examined for hemispheric asymmetry. Qualitatively, greater densities of activated microglia were observed in cortical white matter when compared to grey matter. Quantitative analyses revealed significantly greater densities of activated microglia in the white matter of atrophied regions compared to non-atrophied regions in the language dominant hemisphere (p<0.05). Atrophied regions of the language dominant hemisphere also showed significantly more activated microglia compared to contralateral homologues (p<0.05). White matter activated microglia accumulate more in atrophied regions in the language dominant hemisphere of PPA. While microglial activation may constitute a response to neurodegenerative processes in white matter, the resultant inflammatory processes may also exacerbate disease progression and contribute to cortical atrophy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Hypoxic-Ischemic Encephalopathy With Clinical and Imaging Abnormalities Limited to Occipital Lobe.

    Science.gov (United States)

    Parmar, Hemant A; Trobe, Jonathan D

    2016-09-01

    The vulnerable brain areas in hypoxic-ischemic encephalopathy (HIE) following systemic hypotension are typically the neocortex, deep cerebral gray nuclei, hippocampus, cerebellum, and the parieto-occipital arterial border zone region. The visual cortex is not commonly recognized as a target in this setting. Single-institution review from 2007 to 2015 of patients who suffered cortical visual loss as an isolated clinical manifestation following systemic hypotension and whose brain imaging showed abnormalities limited to the occipital lobe. Nine patients met inclusion criteria. Visual loss at outset ranged from hand movements to 20/20, but all patients had homonymous field loss at best. In 1 patient, imaging was initially normal but 4 months later showed encephalomalacia. In 2 patients, imaging was initially subtle enough to be recognized as abnormal only when radiologists were advised that cortical visual loss was present. The occipital lobe may be an isolated target in HIE with cortical visual loss as the only clinical manifestation. Imaging performed in the acute period may appear normal or disclose abnormalities subtle enough to be overlooked. Radiologists informed of the clinical manifestations may be more attune to these abnormalities, which will become more apparent months later when occipital volume loss develops.

  8. Hypomelanosis of Ito and brain abnormalities: MRI findings and literature review

    International Nuclear Information System (INIS)

    Steiner, J.; Adamsbaum, C.; Desguerres, I.; Lalande, G.; Raynaud, F.; Ponsot, G.; Kalifa, G.

    1996-01-01

    We report the results of a 14-year retrospective study of brain MRI abnormalities in 12 pediatric patients presenting with hypomelanosis of Ito (HI). Miscellaneous brain abnormalities were found: one patient had a medulloblastoma, three had cortical malformations, and five demonstrated ''minor'' abnormalities such as dilated Virchow-Robin spaces or brain atrophy. We emphasize the polymorphism of brain abnormalities associated with HI. (orig.). With 5 figs., 1 tab

  9. Clinical and imaging characteristics of localized megalencephaly: a retrospective comparison of diffuse hemimegalencephaly and multilobar cortical dysplasia

    Energy Technology Data Exchange (ETDEWEB)

    Nakahashi, Masumi; Tsushima, Yoshito; Amanuma, Makoto; Endo, Keigo [Gunma University Graduate School of Medicine, Department of Diagnostic Radiology and Nuclear Medicine, Maebashi, Gunma (Japan); Sato, Noriko; Ota, Miho [National Center Hospital of Neurology and Psychiatry, Department of Radiology, Kodaira, Tokyo (Japan); Yagishita, Akira [Tokyo Metropolitan Neurological Hospital, Department of Neuroradiology, Kokubunji, Tokyo (Japan); Saito, Yoshiaki; Sugai, Kenji; Sasaki, Masayuki [National Center Hospital of Neurology and Psychiatry, Department of Child Neurology, Kodaira, Tokyo (Japan); Natsume, Jun [Nagoya University Graduate School of Medicine, Department of Pediatrics, Nagoya, Aichi (Japan)

    2009-12-15

    Hemimegalencephaly is a well-known congenital malformation. However, localized megalencephaly, which may be one of the subtypes of hemimegalencephaly, has not been separately investigated. In the present study, we attempted to characterize the clinical and magnetic resonance (MR) imaging features of localized megalencephaly in comparison with ordinary diffuse hemimegalencephaly and multilobar cortical dysplasia. MR findings for 43 patients with hemimegalencephaly and ten with multilobar cortical dysplasia, which is the differential diagnosis of localized megalencephaly, were retrospectively reviewed. Clinical findings such as the onset and severity of seizures and imaging findings including the affected area of the brain, structures outside of the hemisphere, and interval morphological changes were examined. Of the 43 patients, 11 showed signs of localized megalencephaly (25.6%). Localized megalencephaly was predominantly seen on the left side (72.7%) and had a tendency toward severe-grade seizures compared to multilobar cortical dysplasia. The frequencies of the extracerebral abnormalities in the diffuse hemimegalencephaly, localized megalencephaly, and multilobar cortical dysplasia groups were 84.4%, 36.4%, and 0.0%, respectively. There were three localized megalencephaly patients whose affected areas shrank and whose images were similar to those of multilobar cortical dysplasia. Localized megalencephaly accounts for one quarter of all hemimegalencephaly cases in this study. The incidence of extracerebral abnormalities in patients with localized hemimegalencephaly was almost half that of patients with diffuse hemimegalencephaly. Extracerebral abnormalities were absent in patients with multilobar cortical dysplasia. Associated extracerebral abnormalities may be a clue to differentiating localized megalencephaly from multilobar cortical dysplasia. (orig.)

  10. Gender differences in hemispheric asymmetry for face processing

    Directory of Open Access Journals (Sweden)

    Matarazzo Silvia

    2006-06-01

    Full Text Available Abstract Background Current cognitive neuroscience models predict a right-hemispheric dominance for face processing in humans. However, neuroimaging and electromagnetic data in the literature provide conflicting evidence of a right-sided brain asymmetry for decoding the structural properties of faces. The purpose of this study was to investigate whether this inconsistency might be due to gender differences in hemispheric asymmetry. Results In this study, event-related brain potentials (ERPs were recorded in 40 healthy, strictly right-handed individuals (20 women and 20 men while they observed infants' faces expressing a variety of emotions. Early face-sensitive P1 and N1 responses to neutral vs. affective expressions were measured over the occipital/temporal cortices, and the responses were analyzed according to viewer gender. Along with a strong right hemispheric dominance for men, the results showed a lack of asymmetry for face processing in the amplitude of the occipito-temporal N1 response in women to both neutral and affective faces. Conclusion Men showed an asymmetric functioning of visual cortex while decoding faces and expressions, whereas women showed a more bilateral functioning. These results indicate the importance of gender effects in the lateralization of the occipito-temporal response during the processing of face identity, structure, familiarity, or affective content.

  11. Harmful situations, impure people: an attribution asymmetry across moral domains.

    Science.gov (United States)

    Chakroff, Alek; Young, Liane

    2015-03-01

    People make inferences about the actions of others, assessing whether an act is best explained by person-based versus situation-based accounts. Here we examine people's explanations for norm violations in different domains: harmful acts (e.g., assault) and impure acts (e.g., incest). Across four studies, we find evidence for an attribution asymmetry: people endorse more person-based attributions for impure versus harmful acts. This attribution asymmetry is partly explained by the abnormality of impure versus harmful acts, but not by differences in the moral wrongness or the statistical frequency of these acts. Finally, this asymmetry persists even when the situational factors that lead an agent to act impurely are stipulated. These results suggest that, relative to harmful acts, impure acts are linked to person-based attributions. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Longitudinal changes in cortical thickness in autism and typical development.

    Science.gov (United States)

    Zielinski, Brandon A; Prigge, Molly B D; Nielsen, Jared A; Froehlich, Alyson L; Abildskov, Tracy J; Anderson, Jeffrey S; Fletcher, P Thomas; Zygmunt, Kristen M; Travers, Brittany G; Lange, Nicholas; Alexander, Andrew L; Bigler, Erin D; Lainhart, Janet E

    2014-06-01

    The natural history of brain growth in autism spectrum disorders remains unclear. Cross-sectional studies have identified regional abnormalities in brain volume and cortical thickness in autism, although substantial discrepancies have been reported. Preliminary longitudinal studies using two time points and small samples have identified specific regional differences in cortical thickness in the disorder. To clarify age-related trajectories of cortical development, we examined longitudinal changes in cortical thickness within a large mixed cross-sectional and longitudinal sample of autistic subjects and age- and gender-matched typically developing controls. Three hundred and forty-five magnetic resonance imaging scans were examined from 97 males with autism (mean age = 16.8 years; range 3-36 years) and 60 males with typical development (mean age = 18 years; range 4-39 years), with an average interscan interval of 2.6 years. FreeSurfer image analysis software was used to parcellate the cortex into 34 regions of interest per hemisphere and to calculate mean cortical thickness for each region. Longitudinal linear mixed effects models were used to further characterize these findings and identify regions with between-group differences in longitudinal age-related trajectories. Using mean age at time of first scan as a reference (15 years), differences were observed in bilateral inferior frontal gyrus, pars opercularis and pars triangularis, right caudal middle frontal and left rostral middle frontal regions, and left frontal pole. However, group differences in cortical thickness varied by developmental stage, and were influenced by IQ. Differences in age-related trajectories emerged in bilateral parietal and occipital regions (postcentral gyrus, cuneus, lingual gyrus, pericalcarine cortex), left frontal regions (pars opercularis, rostral middle frontal and frontal pole), left supramarginal gyrus, and right transverse temporal gyrus, superior parietal lobule, and

  13. Amygdalo-cortical sprouting continues into early adulthood: implications for the development of normal and abnormal function during adolescence.

    Science.gov (United States)

    Cunningham, Miles Gregory; Bhattacharyya, Sujoy; Benes, Francine Mary

    2002-11-11

    Adolescence is a critical stage for the development of emotional maturity and diverse forms of psychopathology. The posterior basolateral nucleus of the amygdala is known to mediate fear and anxiety and is important in assigning emotional valence to cognitive processes. The medial prefrontal cortex, a homologue of the human anterior cingulate cortex, mediates emotional, attentional, and motivational behaviors at the cortical level. We postulate that the development of connectivity between these two corticolimbic regions contributes to an enhanced integration of emotion and cognition during the postnatal period. In order to characterize the development of this relay, injections of the anterograde tracer biocytin were stereotaxically placed within the posterior basolateral nucleus of the amygdala of rats at successive postnatal time points (postnatal days 6-120). Labeled fibers in the medial prefrontal cortex were evaluated using a combination of brightfield, confocal, and electron microscopy. We found that the density of labeled fibers originating from the posterior basolateral nucleus shows a sharp curvilinear increase within layers II and V of the anterior cingulate cortex and the infralimbic subdivisions of medial prefrontal cortex during the late postweanling period. This increase was paralleled by a linear rise in the number of axospinous and axodendritic synapses present in the neuropil. Based on these results, we propose that late maturation of amygdalo-cortical connectivity may provide an anatomical basis for the development and integration of normal and possibly abnormal emotional behavior during adolescence and early adulthood. Copyright 2002 Wiley-Liss, Inc.

  14. Influences of brain development and ageing on cortical interactive networks.

    Science.gov (United States)

    Zhu, Chengyu; Guo, Xiaoli; Jin, Zheng; Sun, Junfeng; Qiu, Yihong; Zhu, Yisheng; Tong, Shanbao

    2011-02-01

    To study the effect of brain development and ageing on the pattern of cortical interactive networks. By causality analysis of multichannel electroencephalograph (EEG) with partial directed coherence (PDC), we investigated the different neural networks involved in the whole cortex as well as the anterior and posterior areas in three age groups, i.e., children (0-10 years), mid-aged adults (26-38 years) and the elderly (56-80 years). By comparing the cortical interactive networks in different age groups, the following findings were concluded: (1) the cortical interactive network in the right hemisphere develops earlier than its left counterpart in the development stage; (2) the cortical interactive network of anterior cortex, especially at C3 and F3, is demonstrated to undergo far more extensive changes, compared with the posterior area during brain development and ageing; (3) the asymmetry of the cortical interactive networks declines during ageing with more loss of connectivity in the left frontal and central areas. The age-related variation of cortical interactive networks from resting EEG provides new insights into brain development and ageing. Our findings demonstrated that the PDC analysis of EEG is a powerful approach for characterizing the cortical functional connectivity during brain development and ageing. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Longitudinal MRI study of cortical thickness, perfusion, and metabolite levels in major depressive disorder

    DEFF Research Database (Denmark)

    Järnum, Hanna; Eskildsen, Simon Fristed; Steffensen, Elena G

    2011-01-01

    OBJECTIVE: To determine whether patients with major depressive disorder (MDD) display morphologic, functional, and metabolic brain abnormalities in limbic-cortical regions at a baseline magnetic resonance (MR) scan and whether these changes are normalized in MDD patients in remission at a follow......-acetylaspartate, myo-inositol, and glutamate levels in MDD patients compared with healthy controls at baseline. CONCLUSION: Using novel MRI techniques, we have found abnormalities in cerebral regions related to cortical-limbic pathways in MDD patients....

  16. Frontal alpha asymmetry in OCD patients and unaffected first-degree relatives.

    Science.gov (United States)

    Grützmann, Rosa; Riesel, Anja; Klawohn, Julia; Heinzel, Stephan; Kaufmann, Christian; Bey, Katharina; Lennertz, Leonard; Wagner, Michael; Kathmann, Norbert

    2017-08-01

    Frontal electroencephalographic alpha asymmetry as an indicator of trait approach and trait inhibition systems has previously been studied in individuals with obsessive-compulsive disorder (OCD) with mixed results. We explored frontal alpha asymmetry as a possible risk factor in OCD by investigating a large sample of OCD patients (n = 113), healthy control participants (n = 113), and unaffected 1st-degree relatives of OCD patients (n = 37). Additionally, the relationship between OCD symptom dimensions and frontal alpha asymmetry was explored. OCD patients and healthy control participants did not differ in alpha asymmetry scores. Hence, the current results do not support the notion that OCD as a diagnostic entity is associated with a shift in frontal cortical activity. Furthermore, alpha asymmetry scores were not statistically related to specific OCD symptom dimensions. Reasons for inconsistent results in OCD are discussed and should be explored in future studies. Compared to OCD patients and healthy control participants, unaffected 1st-degree relatives of OCD patients showed increased left frontal activity. Such asymmetry has previously been found to be associated with positive affect and adaptive emotion regulation under stress. Because stressful life events play an important role in the onset and exacerbation of OCD, increased left frontal activity might serve as a resilience factor in unaffected 1st-degree relatives. Future studies should follow up on these results with longitudinal risk studies and pre- and posttherapy assessments to further explore causality of this putative factor. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Modulation of Cortical-subcortical Networks in Parkinson’s Disease by Applied Field Effects

    Directory of Open Access Journals (Sweden)

    Christopher William Hess

    2013-09-01

    Full Text Available Studies suggest that endogenous field effects may play a role in neuronal oscillations and communication. Non-invasive transcranial electrical stimulation with low-intensity currents can also have direct effects on the underlying cortex as well as distant network effects. While Parkinson's disease (PD is amenable to invasive neuromodulation in the basal ganglia by deep brain stimulation, techniques of non-invasive neuromodulation like transcranial direct current stimulation (tDCS and transcranial alternating current stimulation (tACS are being investigated as possible therapies. tDCS and tACS have the potential to influence the abnormal cortical-subcortical network activity that occurs in PD through sub-threshold changes in cortical excitability or through entrainment or disruption of ongoing rhythmic cortical activity. This may allow for the targeting of specific features of the disease involving abnormal oscillatory activity, as well as the enhancement of potential cortical compensation for basal ganglia dysfunction and modulation of cortical plasticity in neurorehabilitation. However, little is currently known about how cortical stimulation will affect subcortical structures, the size of any effect, and the factors of stimulation that will influence these effects.

  18. Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth.

    Directory of Open Access Journals (Sweden)

    Olga Kapellou

    2006-08-01

    Full Text Available We postulated that during ontogenesis cortical surface area and cerebral volume are related by a scaling law whose exponent gives a quantitative measure of cortical development. We used this approach to investigate the hypothesis that premature termination of the intrauterine environment by preterm birth reduces cortical development in a dose-dependent manner, providing a neural substrate for functional impairment.We analyzed 274 magnetic resonance images that recorded brain growth from 23 to 48 wk of gestation in 113 extremely preterm infants born at 22 to 29 wk of gestation, 63 of whom underwent neurodevelopmental assessment at a median age of 2 y. Cortical surface area was related to cerebral volume by a scaling law with an exponent of 1.29 (95% confidence interval, 1.25-1.33, which was proportional to later neurodevelopmental impairment. Increasing prematurity and male gender were associated with a lower scaling exponent (p < 0.0001 independent of intrauterine or postnatal somatic growth.Human brain growth obeys an allometric scaling relation that is disrupted by preterm birth in a dose-dependent, sexually dimorphic fashion that directly parallels the incidence of neurodevelopmental impairments in preterm infants. This result focuses attention on brain growth and cortical development during the weeks following preterm delivery as a neural substrate for neurodevelopmental impairment after premature delivery.

  19. Mild cognitive disorders are associated with different patterns of brain asymmetry than normal ageing: the PATH through life study

    Directory of Open Access Journals (Sweden)

    Nicolas Cherbuin

    2010-05-01

    Full Text Available Background and Purpose: Defining how brain structures differ in pre-clinical dementia is important to better understand the pathological processes involved and to inform clinical practice. The aim of this study was to identify significant brain correlates (volume and asymmetry in volume of mild cognitive disorders when compared to normal controls in a large community-based sample of young-old individuals who were assessed for cognitive impairment. Methods: Cortical and sub-cortical volumes were measured using a semi-automated method in 398 participants aged 65-70 years who were selected from a larger randomly sampled cohort and who agreed to undergo an MRI scan. Diagnoses were reached based on established protocols for MCI and a more inclusive category of any Mild Cognitive Disorder (any-MCD: which includes AAMI, AACD, OCD, MNC, CDR, MCI. Logistic regression analyses were used to assess the relationship between volume and asymmetry of theoretically relevant cerebral structures (predictors and MCI or any-MCD while controlling for age, sex, and intra-cranial volume. Results: The main correlates of cognitive impairment assessed in multivariate analyses were hippocampal asymmetry (more to left, MCI: OR 0.83, 95%CI 0.71-0.96, p = .013; MCD: OR 0.86, 95%CI 0.77-0.97, p = .011, lateral ventricle asymmetry (more to left, MCI: OR 0.95, 95%CI 0.91-0.99, p = .009; MCD: OR 0.95, 95%CI 0.92-0.98, p = .004, and cerebellar cortex asymmetry (more to left, MCI: OR 1.51, 95%CI 1.13-2.01, p = .005. Conclusions: In this population-based cohort stronger associations were found between asymmetry measures, rather than raw volumes in cerebral structures, and mild cognitive disorders.

  20. EEG asymmetry in borderline personality disorder and depression following rejection.

    Science.gov (United States)

    Beeney, Joseph E; Levy, Kenneth N; Gatzke-Kopp, Lisa M; Hallquist, Michael N

    2014-04-01

    Borderline personality disorder (BPD) and major depressive disorder (MDD) share numerous features, including dysphoric affect, irritability, suicidality, and a heightened sensitivity to perceived interpersonal rejection. However, these disorders are associated with divergent profiles of reactivity to rejection: Individuals with MDD are more likely to respond with withdrawal and isolation, and those with BPD appear to respond with increased approach behaviors and greater hostility. Potential mechanisms underlying these divergent patterns of response have not been elaborated. The goal of the present study was to assess whether prefrontal cortical asymmetry is associated with these behavioral profiles. EEG alpha activity was recorded at baseline and after individuals with BPD, MDD and healthy controls (HCs) participated in a rejection task. Although no differences were found at baseline, results demonstrated that following rejection, individuals with BPD showed greater left cortical activation, consistent with approach motivation, whereas those with MDD showed greater right cortical activation, consistent with withdrawal motivation. HCs evidenced a more balanced cortical profile, as hypothesized. Although BPD and MDD are highly comorbid, are easily confused, and are phenomenologically similar in a number of ways, individuals with these two disorders respond in very different ways to perceived rejection. PsycINFO Database Record (c) 2014 APA, all rights reserved

  1. Cortical spreading depression in migraine-time to reconsider?

    Directory of Open Access Journals (Sweden)

    Alan J McComas

    2015-08-01

    Full Text Available New evidence concerning the pathophysiology of migraine has come from the results of therapeutic transcranial magnetic stimulation (tTMS. The instantaneous responses to single pulses applied during the aura or headache phase, together with a number of other observations, make it unlikely that cortical spreading depression is involved in migraine. tTMS is considered to act by abolishing abnormal impulse activity in cortical pyramidal neurons and a suggestion is made as to how this activity could arise.

  2. Radiation-induced abnormal cortical thickness in patients with nasopharyngeal carcinoma after radiotherapy

    Directory of Open Access Journals (Sweden)

    Jiabao Lin

    2017-01-01

    Full Text Available Conventional MRI studies showed that radiation-induced brain necrosis in patients with nasopharyngeal carcinoma (NPC in years after radiotherapy (RT could involve brain gray matter (GM and impair brain function. However, it is still unclear the radiation-induced brain morphological changes in NPC patients with normal-appearing GM in the early period after RT. In this study, we acquired high-resolution brain structural MRI data from three groups of patients, 22 before radiotherapy (pre-RT NPC patients with newly diagnosed but not yet medically treated, 22 NPC patients in the early-delayed stage after radiotherapy (post-RT-ED, and 20 NPC patients in the late-delayed stage after radiotherapy (post-RT-LD, and then analyzed the radiation-induced cortical thickness alteration in NPC patients after RT. Using a vertex-wise surface-based morphometry (SBM approach, we detected significantly decreased cortical thickness in the precentral gyrus (PreCG in the post-RT-ED group compared to the pre-RT group. And the post-RT-LD group showed significantly increased cortical thickness in widespread brain regions, including the bilateral inferior parietal, left isthmus of the cingulate, left bank of the superior temporal sulcus and left lateral occipital regions, compared to the pre-RT group, and in the bilateral PreCG compared to the post-RT-ED group. Similar analysis with ROI-wise SBM method also found the consistent results. These results indicated that radiation-induced brain injury mainly occurred in the post-RT-LD group and the cortical thickness alterations after RT were dynamic in different periods. Our findings may reflect the pathogenesis of radiation-induced brain injury in NPC patients with normal-appearing GM and an early intervention is necessary for protecting GM during RT.

  3. Frontal brain asymmetry in adult attention-deficit/hyperactivity disorder (ADHD): extending the motivational dysfunction hypothesis.

    Science.gov (United States)

    Keune, Philipp M; Wiedemann, Eva; Schneidt, Alexander; Schönenberg, Michael

    2015-04-01

    Attention-deficit/hyperactivity disorder (ADHD) involves motivational dysfunction, characterized by excessive behavioral approach tendencies. Frontal brain asymmetry in the alpha band (8-13 Hz) in resting-state electroencephalogram (EEG) represents a neural correlate of global motivational tendencies, and abnormal asymmetry, indicating elevated approach motivation, was observed in pediatric and adult patients. To date, the relation between ADHD symptoms, depression and alpha asymmetry, its temporal metric properties and putative gender-specificity remain to be explored. Adult ADHD patients (n=52) participated in two resting-state EEG recordings, two weeks apart. Asymmetry measures were aggregated across recordings to increase trait specificity. Putative region-specific associations between asymmetry, ADHD symptoms and depression, its gender-specificity and test-retest reliability were examined. ADHD symptoms were associated with approach-related asymmetry (stronger relative right-frontal alpha power). Approach-related asymmetry was pronounced in females, and also associated with depression. The latter association was mediated by ADHD symptoms. Test-retest reliability was sufficient. The association between reliably assessable alpha asymmetry and ADHD symptoms supports the motivational dysfunction hypothesis. ADHD symptoms mediating an atypical association between asymmetry and depression may be attributed to depression arising secondary to ADHD. Gender-specific findings require replication. Frontal alpha asymmetry may represent a new reliable marker of ADHD symptoms. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Bilateral Cerebellar Cortical Dysplasia without Other Malformations: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jung Seok; Ahn Kook Jin; Kim, Jee Young; Lee, Sun Jin; Park, Jeong Mi [Catholic University Yeouido St. Mary' s Hospital, College of Medicine, Seoul (Korea, Republic of)

    2010-06-15

    Recent advances in MRI have revealed congenital brain malformations and subtle developmental abnormalities of the cerebral and cerebellar cortical architecture. Typical cerebellar cortical dysplasia as a newly categorized cerebellar malformation, has been seen in patients with Fukuyama congenital muscular dystrophy. Cerebellar cortical dysplasia occurs at the embryonic stage and is often observed in healthy newborns. It is also incidentally and initially detected in adults without symptoms. To the best of our knowledge, cerebellar dysplasia without any related disorders is very rare. We describe the MRI findings in one patient with disorganized foliation of both cerebellar hemispheres without a related disorder or syndrome

  5. [Perception of asymmetry smile: Attempt to evaluation through Photoshop].

    Science.gov (United States)

    Diakite, C; Diep, D; Labbe, D

    2016-04-01

    In the labial palliative surgery of facial paralysis, it can persist asymmetry smile. Evaluate the impact of an augmentation or reduction of the commissural course on the perception of a smile anomaly, and determine from which asymmetry threshold, the smile is estimated unsightly. We took a picture of two people with a smile not forced; including one with a "cuspid smile", and the another one with a "Mona Lisa" smile. The pictures obtained were modified by the Photoshop software, to simulate an asymmetry labial smile. The changes were related to the move of the left labial commissure, the left nasolabial furrow, and the left cheek using under-correction and overcorrection, every 4 mm. Three pictures with under-correction and four pictures with over-correction were obtained. These smiles were shown to three groups of five people, which included doctors in smile specialties, doctors in other specialties, and non-doctors. Participants were then asked to indicate on which of the pictures, the smile seemed abnormal. Between -8 mm under-correction, and +8 mm over-correction, the asymmetry of the commissural course does not hinder the perception of smile. In the labial palliative surgery of facial paralysis, in the case of persistent asymmetry, there is a tolerance in the perception of "normality" of smile concerning the amplitude of the commissural course going up to 8 mm of asymmetric with under-correction or over-correction. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Diurnal trend in EEG interhemispheric asymmetry in endogenous depressions

    Directory of Open Access Journals (Sweden)

    T S Melnikova

    2011-01-01

    Full Text Available A trend in EEG interhemispheric asymmetry was studied in patients with endogenous depressions in morning and evening hours. In the morning, the spectral power of alpha rhythm particularly in the occipital cortical regions, proved to be higher than that in the evening. In the morning, the interhemispheric differences in the power of occipital alpha rhythm were leveled off while in the evening there was normalization of interhemispheric balance with the higher power of alpha rhythm in the right occipital region. Analysis of the mean coherence (mean Coh of alpha rhythm in individual cortical regions revealed that the patients with endogenous depression had higher readings mainly in the parietal and central regions of both hemispheres and in the right temporal regions in the morning than in the evening. The occipital and posttemporal regions showed an inverse trend in the mean Coh - it was lower in the morning than in the evening

  7. Speech processing: from peripheral to hemispheric asymmetry of the auditory system.

    Science.gov (United States)

    Lazard, Diane S; Collette, Jean-Louis; Perrot, Xavier

    2012-01-01

    Language processing from the cochlea to auditory association cortices shows side-dependent specificities with an apparent left hemispheric dominance. The aim of this article was to propose to nonspeech specialists a didactic review of two complementary theories about hemispheric asymmetry in speech processing. Starting from anatomico-physiological and clinical observations of auditory asymmetry and interhemispheric connections, this review then exposes behavioral (dichotic listening paradigm) as well as functional (functional magnetic resonance imaging and positron emission tomography) experiments that assessed hemispheric specialization for speech processing. Even though speech at an early phonological level is regarded as being processed bilaterally, a left-hemispheric dominance exists for higher-level processing. This asymmetry may arise from a segregation of the speech signal, broken apart within nonprimary auditory areas in two distinct temporal integration windows--a fast one on the left and a slower one on the right--modeled through the asymmetric sampling in time theory or a spectro-temporal trade-off, with a higher temporal resolution in the left hemisphere and a higher spectral resolution in the right hemisphere, modeled through the spectral/temporal resolution trade-off theory. Both theories deal with the concept that lower-order tuning principles for acoustic signal might drive higher-order organization for speech processing. However, the precise nature, mechanisms, and origin of speech processing asymmetry are still being debated. Finally, an example of hemispheric asymmetry alteration, which has direct clinical implications, is given through the case of auditory aging that mixes peripheral disorder and modifications of central processing. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  8. Brain cortical thickness in male adolescents with serious substance use and conduct problems.

    Science.gov (United States)

    Chumachenko, Serhiy Y; Sakai, Joseph T; Dalwani, Manish S; Mikulich-Gilbertson, Susan K; Dunn, Robin; Tanabe, Jody; Young, Susan; McWilliams, Shannon K; Banich, Marie T; Crowley, Thomas J

    2015-01-01

    Adolescents with substance use disorder (SUD) and conduct problems exhibit high levels of impulsivity and poor self-control. Limited work to date tests for brain cortical thickness differences in these youths. To investigate differences in cortical thickness between adolescents with substance use and conduct problems and controls. We recruited 25 male adolescents with SUD, and 19 male adolescent controls, and completed structural 3T magnetic resonance brain imaging. Using the surface-based morphometry software FreeSurfer, we completed region-of-interest (ROI) analyses for group cortical thickness differences in left, and separately right, inferior frontal gyrus (IFG), orbitofrontal cortex (OFC) and insula. Using FreeSurfer, we completed whole-cerebrum analyses of group differences in cortical thickness. Versus controls, the SUD group showed no cortical thickness differences in ROI analyses. Controlling for age and IQ, no regions with cortical thickness differences were found using whole-cerebrum analyses (though secondary analyses co-varying IQ and whole-cerebrum cortical thickness yielded a between-group cortical thickness difference in the left posterior cingulate/precuneus). Secondary findings showed that the SUD group, relative to controls, demonstrated significantly less right > left asymmetry in IFG, had weaker insular-to-whole-cerebrum cortical thickness correlations, and showed a positive association between conduct disorder symptom count and cortical thickness in a superior temporal gyrus cluster. Functional group differences may reflect a more nuanced cortical morphometric difference than ROI cortical thickness. Further investigation of morphometric differences is needed. If replicable findings can be established, they may aid in developing improved diagnostic or more targeted treatment approaches.

  9. Abnormal Structure–Function Relationship in Spasmodic Dysphonia

    Science.gov (United States)

    Ludlow, Christy L.

    2012-01-01

    Spasmodic dysphonia (SD) is a primary focal dystonia characterized by involuntary spasms in the laryngeal muscles during speech production. Although recent studies have found abnormal brain function and white matter organization in SD, the extent of gray matter alterations, their structure–function relationships, and correlations with symptoms remain unknown. We compared gray matter volume (GMV) and cortical thickness (CT) in 40 SD patients and 40 controls using voxel-based morphometry and cortical distance estimates. These measures were examined for relationships with blood oxygen level–dependent signal change during symptomatic syllable production in 15 of the same patients. SD patients had increased GMV, CT, and brain activation in key structures of the speech control system, including the laryngeal sensorimotor cortex, inferior frontal gyrus (IFG), superior/middle temporal and supramarginal gyri, and in a structure commonly abnormal in other primary dystonias, the cerebellum. Among these regions, GMV, CT and activation of the IFG and cerebellum showed positive relationships with SD severity, while CT of the IFG correlated with SD duration. The left anterior insula was the only region with decreased CT, which also correlated with SD symptom severity. These findings provide evidence for coupling between structural and functional abnormalities at different levels within the speech production system in SD. PMID:21666131

  10. Impaired cognitive control mediates the relationship between cortical thickness of the superior frontal gyrus and role functioning in schizophrenia.

    Science.gov (United States)

    Tully, Laura M; Lincoln, Sarah Hope; Liyanage-Don, Nadia; Hooker, Christine I

    2014-02-01

    Structural abnormalities in the lateral prefrontal cortex (LPFC) are well-documented in schizophrenia and recent evidence suggests that these abnormalities relate to functional outcome. Cognitive control mechanisms, reliant on the LPFC, are impaired in schizophrenia and predict functional outcome, thus impaired cognitive control could mediate the relationship between neuroanatomical abnormalities in the LPFC and functional outcome. We used surface-based morphometry to investigate relationships between cortical surface characteristics, cognitive control, and measures of social and role functioning in 26 individuals with schizophrenia and 29 healthy controls. Results demonstrate that schizophrenia participants had thinner cortex in a region of the superior frontal gyrus (BA10). Across all participants, decreased cortical thickness in this region related to decreased cognitive control and decreased role functioning. Moreover, cognitive control fully mediated the relationship between cortical thickness in the superior frontal gyrus and role functioning, indicating that neuroanatomical abnormalities in the LPFC adversely impact role functioning via impaired cognitive control processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. PET in malformations of cortical development

    International Nuclear Information System (INIS)

    Bouilleret, V.; O'Brien, T.J.; Bouilleret, V.; Bouilleret, V.; Chiron, C.; Chiron, C.

    2009-01-01

    Within the group of malformations of cortical development, focal cortical dysplasia (FCD) are an increasingly recognized cause of intractable epilepsy that can be cured by surgery. The success of cortical resection for intractable epilepsy is highly dependent on the accurate pre-surgical delineation of the regions responsible for generating seizures. [ 18 F]-FDG PET, which images cerebral metabolism studying brain glucose uptake, is the most established functional imaging modality in the evaluation of patients with epilepsy. The aim of this article is to review [ 18 F]-FDG PET usefulness as a pre-surgical tool in the evaluation of medically refractory partial epilepsy. It has an established place in assisting in the localisation and definition of FCD in patients with no lesion, or only a subtle abnormality, on MRI. The role of FDG-PET in defining the extent of the surgical resection is still uncertain and needs to be the focus of future research. (authors)

  12. Value of renal cortical scintigraphy in children with acute pyelonephritis

    International Nuclear Information System (INIS)

    Paul, A.K.; Miah, M.S.R.; Rahman, H.A.; Hasan, M.H.

    2004-01-01

    Purpose: Acute pyelonephritis is a major cause of morbidity in children with urinary tract infection and can result in irreversible renal scarring leading to hypertension and end-stage renal disease. Tc-99m-dimercaptosuccinic acid (DMSA) scintigraphy is the imaging modality of choice for the detection of acute pyelonephhfis and renal scarfing. This study evaluated the importance of renal cortical scintigraphy to identify children at risk from renal damage due to acute pyelonephritis. Methods: Forty-nine children (ages 9 months to 11 years) with urinary tract infection having positive urine culture were studied. A DMSA scan was performed within 72 hours of receiving antibiotic during acute infection. Single or multiple areas of varying degrees of diminished cortical uptake or diffusely decreased uptake in an enlarged kidney was considered for the diagnosis of acute pyelonephrifis. Follow-up scintigraphy was done at 6 months of initial scan in children with acute pyelonephritis documented by DMSA scan. Renal scarring was considered if the affected kidney shows cortical thinning or focal cortical defect with loss of volume or become small kidney. Children with known renal tract abnormalities were excluded from the study. RESULTS: Twenty-seven children (55%) wine considered acute pyelonephritis by DMSA scintigraphy and the abnormality was bilateral in 17(63%) cases and unilateral in 10(37%) cases. Among these 44 abnormal kidneys, scintigraphy showed solitary defect in 29 kidneys, multiple defects in 6 kidneys and diffuse decreased uptake in 9 kidneys. Of them, twenty children were available for follow-up evaluation and scintigraphy demonstrated complete recovery in 21 of 34 (62%) kidneys and renal scarfing in 13 of 34 (38%) kidneys. Renal scarring was found in 5 of 7 kidneys (71%) with diffuse decreased uptake, 2 of 5 kidneys (40%) with multiple cortical defect and 6 of 22 (27%) with single focal detect. Conclusion: The scintigraphic pattern of acute pyelonephritis

  13. The determination factors of left-right asymmetry disorders- a short review.

    Science.gov (United States)

    Catana, Andreea; Apostu, Adina Patricia

    2017-01-01

    Laterality defects in humans, situs inversus and heterotaxy, are rare disorders, with an incidence of 1:8000 to 1:10 000 in the general population, and a multifactorial etiology. It has been proved that 1.44/10 000 of all cardiac problems are associated with malformations of left-right asymmetry and heterotaxy accounts for 3% of all congenital heart defects. It is considered that defects of situs appear due to genetic and environmental factors. Also, there is evidence that the ciliopathies (defects of structure or function) are involved in development abnormalities. Over 100 genes have been reported to be involved in left-right patterning in model organisms, but only a few are likely to candidate for left-right asymmetry defects in humans. Left-right asymmetry disorders are genetically heterogeneous and have variable manifestations (from asymptomatic to serious clinical problems). The discovery of the right mechanism of left-right development will help explain the clinical complexity and may contribute to a therapy of these disorders.

  14. Self-Referential Processing, Rumination, and Cortical Midline Structures in Major Depression

    Science.gov (United States)

    Nejad, Ayna Baladi; Fossati, Philippe; Lemogne, Cédric

    2013-01-01

    Major depression is associated with a bias toward negative emotional processing and increased self-focus, i.e., the process by which one engages in self-referential processing. The increased self-focus in depression is suggested to be of a persistent, repetitive and self-critical nature, and is conceptualized as ruminative brooding. The role of the medial prefrontal cortex in self-referential processing has been previously emphasized in acute major depression. There is increasing evidence that self-referential processing as well as the cortical midline structures play a major role in the development, course, and treatment response of major depressive disorder. However, the links between self-referential processing, rumination, and the cortical midline structures in depression are still poorly understood. Here, we reviewed brain imaging studies in depressed patients and healthy subjects that have examined these links. Self-referential processing in major depression seems associated with abnormally increased activity of the anterior cortical midline structures. Abnormal interactions between the lateralized task-positive network, and the midline cortical structures of the default mode network, as well as the emotional response network, may underlie the pervasiveness of ruminative brooding. Furthermore, targeting this maladaptive form of rumination and its underlying neural correlates may be key for effective treatment. PMID:24124416

  15. Mechanisms of Gait Asymmetry Due to Push-Off Deficiency in Unilateral Amputees.

    Science.gov (United States)

    Adamczyk, Peter Gabriel; Kuo, Arthur D

    2015-09-01

    Unilateral lower-limb amputees exhibit asymmetry in many gait features, such as ground force, step time, step length, and joint mechanics. Although these asymmetries result from weak prosthetic-side push-off, there is no proven mechanistic explanation of how that impairment propagates to the rest of the body. We used a simple dynamic walking model to explore possible consequences of a unilateral impairment similar to that of a transtibial amputee. The model compensates for reduced push-off work from one leg by performing more work elsewhere, for example during the middle of stance by either or both legs. The model predicts several gait abnormalities, including slower forward velocity of the body center-of-mass during intact-side stance, greater energy dissipation in the intact side, and more positive work overall. We tested these predictions with data from unilateral transtibial amputees (N = 11) and nonamputee control subjects (N = 10) walking on an instrumented treadmill. We observed several predicted asymmetries, including forward velocity during stance phases and energy dissipation from the two limbs, as well as greater work overall. Secondary adaptations, such as to reduce discomfort, may exacerbate asymmetry, but these simple principles suggest that some asymmetry may be unavoidable in cases of unilateral limb loss.

  16. Cortical Thinning and Altered Cortico-Cortical Structural Covariance of the Default Mode Network in Patients with Persistent Insomnia Symptoms.

    Science.gov (United States)

    Suh, Sooyeon; Kim, Hosung; Dang-Vu, Thien Thanh; Joo, Eunyeon; Shin, Chol

    2016-01-01

    Recent studies have suggested that structural abnormalities in insomnia may be linked with alterations in the default-mode network (DMN). This study compared cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia (PI) and good sleepers (GS). The current study used a clinical subsample from the longitudinal community-based Korean Genome and Epidemiology Study (KoGES). Cortical thickness and structural connectivity linked to the DMN in patients with persistent insomnia symptoms (PIS; n = 57) were compared to good sleepers (GS; n = 40). All participants underwent MRI acquisition. Based on literature review, we selected cortical regions corresponding to the DMN. A seed-based structural covariance analysis measured cortical thickness correlation between each seed region of the DMN and other cortical areas. Association of cortical thickness and covariance with sleep quality and neuropsychological assessments were further assessed. Compared to GS, cortical thinning was found in PIS in the anterior cingulate cortex, precentral cortex, and lateral prefrontal cortex. Decreased structural connectivity between anterior and posterior regions of the DMN was observed in the PIS group. Decreased structural covariance within the DMN was associated with higher PSQI scores. Cortical thinning in the lateral frontal lobe was related to poor performance in executive function in PIS. Disrupted structural covariance network in PIS might reflect malfunctioning of antero-posterior disconnection of the DMN during the wake to sleep transition that is commonly found during normal sleep. The observed structural network alteration may further implicate commonly observed sustained sleep difficulties and cognitive impairment in insomnia. © 2016 Associated Professional Sleep Societies, LLC.

  17. Neuregulin 3 Mediates Cortical Plate Invasion and Laminar Allocation of GABAergic Interneurons

    Directory of Open Access Journals (Sweden)

    Giorgia Bartolini

    2017-01-01

    Full Text Available Neural circuits in the cerebral cortex consist of excitatory pyramidal cells and inhibitory interneurons. These two main classes of cortical neurons follow largely different genetic programs, yet they assemble into highly specialized circuits during development following a very precise choreography. Previous studies have shown that signals produced by pyramidal cells influence the migration of cortical interneurons, but the molecular nature of these factors has remained elusive. Here, we identified Neuregulin 3 (Nrg3 as a chemoattractive factor expressed by developing pyramidal cells that guides the allocation of cortical interneurons in the developing cortical plate. Gain- and loss-of-function approaches reveal that Nrg3 modulates the migration of interneurons into the cortical plate in a process that is dependent on the tyrosine kinase receptor ErbB4. Perturbation of Nrg3 signaling in conditional mutants leads to abnormal lamination of cortical interneurons. Nrg3 is therefore a critical mediator in the assembly of cortical inhibitory circuits.

  18. Quantifying Normal Craniofacial Form and Baseline Craniofacial Asymmetry in the Pediatric Population.

    Science.gov (United States)

    Cho, Min-Jeong; Hallac, Rami R; Ramesh, Jananie; Seaward, James R; Hermann, Nuno V; Darvann, Tron A; Lipira, Angelo; Kane, Alex A

    2018-03-01

    Restoring craniofacial symmetry is an important objective in the treatment of many craniofacial conditions. Normal form has been measured using anthropometry, cephalometry, and photography, yet all of these modalities have drawbacks. In this study, the authors define normal pediatric craniofacial form and craniofacial asymmetry using stereophotogrammetric images, which capture a densely sampled set of points on the form. After institutional review board approval, normal, healthy children (n = 533) with no known craniofacial abnormalities were recruited at well-child visits to undergo full head stereophotogrammetric imaging. The children's ages ranged from 0 to 18 years. A symmetric three-dimensional template was registered and scaled to each individual scan using 25 manually placed landmarks. The template was deformed to each subject's three-dimensional scan using a thin-plate spline algorithm and closest point matching. Age-based normal facial models were derived. Mean facial asymmetry and statistical characteristics of the population were calculated. The mean head asymmetry across all pediatric subjects was 1.5 ± 0.5 mm (range, 0.46 to 4.78 mm), and the mean facial asymmetry was 1.2 ± 0.6 mm (range, 0.4 to 5.4 mm). There were no significant differences in the mean head or facial asymmetry with age, sex, or race. Understanding the "normal" form and baseline distribution of asymmetry is an important anthropomorphic foundation. The authors present a method to quantify normal craniofacial form and baseline asymmetry in a large pediatric sample. The authors found that the normal pediatric craniofacial form is asymmetric, and does not change in magnitude with age, sex, or race.

  19. Altered brain structural networks in attention deficit/hyperactivity disorder children revealed by cortical thickness.

    Science.gov (United States)

    Liu, Tian; Chen, Yanni; Li, Chenxi; Li, Youjun; Wang, Jue

    2017-07-04

    This study investigated the cortical thickness and topological features of human brain anatomical networks related to attention deficit/hyperactivity disorder. Data were collected from 40 attention deficit/hyperactivity disorder children and 40 normal control children. Interregional correlation matrices were established by calculating the correlations of cortical thickness between all pairs of cortical regions (68 regions) of the whole brain. Further thresholds were applied to create binary matrices to construct a series of undirected and unweighted graphs, and global, local, and nodal efficiencies were computed as a function of the network cost. These experimental results revealed abnormal cortical thickness and correlations in attention deficit/hyperactivity disorder, and showed that the brain structural networks of attention deficit/hyperactivity disorder subjects had inefficient small-world topological features. Furthermore, their topological properties were altered abnormally. In particular, decreased global efficiency combined with increased local efficiency in attention deficit/hyperactivity disorder children led to a disorder-related shift of the network topological structure toward regular networks. In addition, nodal efficiency, cortical thickness, and correlation analyses revealed that several brain regions were altered in attention deficit/hyperactivity disorder patients. These findings are in accordance with a hypothesis of dysfunctional integration and segregation of the brain in patients with attention deficit/hyperactivity disorder and provide further evidence of brain dysfunction in attention deficit/hyperactivity disorder patients by observing cortical thickness on magnetic resonance imaging.

  20. Correlation between temporal pole MRI abnormalities and surface ictal EEG patterns in patients with unilateral mesial temporal lobe epilepsy.

    Science.gov (United States)

    Caboclo, Luís Otávio S F; Garzon, Eliana; Oliveira, Pedro A L; Carrete, Henrique; Centeno, Ricardo S; Bianchin, Marino M; Yacubian, Elza Márcia T; Sakamoto, Américo C

    2007-01-01

    The objective of this retrospective study is to analyze ictal patterns observed during continuous Video-EEG monitoring in patients with temporal lobe epilepsy (TLE) due to unilateral hippocampal sclerosis (HS), and to correlate these EEG patterns to temporal pole abnormalities observed on magnetic resonance imaging exams. We analyzed 147 seizures from 35 patients with TLE and unilateral HS. Ictal patterns were classified and correlated to signal abnormalities and volumetric measures of the temporal poles. Volume differences over 10% were considered abnormal. The most frequent type of ictal pattern was rhythmic theta activity (RTA), encountered in 65.5% of the seizures. Rhythmic beta activity (RBA) was observed in 11% of the seizures, localized attenuation in 8%, interruption of epileptiform discharges in 6%, repetitive discharges in 5.5%, and rhythmic delta activity (RDA) in 4%. Sixty-six percent of the patients presented signal abnormalities in the temporal pole that were always ipsilateral to the HS. Sixty percent presented significant asymmetry of the temporal poles consisting of reduced volume that was also always ipsilateral to HS. Although patients with RTA as the predominant ictal pattern tended to present asymmetry of temporal poles (p=0.305), the ictal EEG pattern did not correlate with temporal pole asymmetry or signal abnormalities. RTA is the most frequent initial ictal pattern in patients with TLE due to unilateral HS. Temporal pole signal changes and volumetric reduction were commonly found in this group of patients, both abnormalities appearing always ipsilateral to the HS. However, neither temporal pole volume reduction nor signal abnormalities correlated with the predominant ictal pattern, suggesting that the temporal poles are not crucially involved in the process of epileptogenesis.

  1. Morphometric Changes in the Cortical Microvascular Network in Alzheimer's Disease

    NARCIS (Netherlands)

    Richard, E.; van Gool, W.A.; Hoozemans, J.J.M.; van Haastert, E.S.; Eikelenboom, P.; Rozemuller, A.J.M.; van de Berg, W.D.J.

    2010-01-01

    Alzheimer's disease (AD) pathology is accompanied by abnormalities of the microvasculature. Despite the potential importance of morphometric changes in the cortical capillary network on neuronal dysfunction and cognitive impairment, few autopsy studies have addressed this issue. In the present

  2. Abnormal functional connectivity and cortical integrity influence dominant hand motor disability in multiple sclerosis: a multimodal analysis.

    Science.gov (United States)

    Zhong, Jidan; Nantes, Julia C; Holmes, Scott A; Gallant, Serge; Narayanan, Sridar; Koski, Lisa

    2016-12-01

    Functional reorganization and structural damage occur in the brains of people with multiple sclerosis (MS) throughout the disease course. However, the relationship between resting-state functional connectivity (FC) reorganization in the sensorimotor network and motor disability in MS is not well understood. This study used resting-state fMRI, T1-weighted and T2-weighted, and magnetization transfer (MT) imaging to investigate the relationship between abnormal FC in the sensorimotor network and upper limb motor disability in people with MS, as well as the impact of disease-related structural abnormalities within this network. Specifically, the differences in FC of the left hemisphere hand motor region between MS participants with preserved (n = 17) and impaired (n = 26) right hand function, compared with healthy controls (n = 20) was investigated. Differences in brain atrophy and MT ratio measured at the global and regional levels were also investigated between the three groups. Motor preserved MS participants had stronger FC in structurally intact visual information processing regions relative to motor impaired MS participants. Motor impaired MS participants showed weaker FC in the sensorimotor and somatosensory association cortices and more severe structural damage throughout the brain compared with the other groups. Logistic regression analysis showed that regional MTR predicted motor disability beyond the impact of global atrophy whereas regional grey matter volume did not. More importantly, as the first multimodal analysis combining resting-state fMRI, T1-weighted, T2-weighted and MTR images in MS, we demonstrate how a combination of structural and functional changes may contribute to motor impairment or preservation in MS. Hum Brain Mapp 37:4262-4275, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Nasopupillary asymmetry.

    Science.gov (United States)

    Arenas, Eduardo; Muñoz, Diana; Matheus, Evelyn; Morales, Diana

    2014-01-01

    To establish the prevalence of nasopupillary asymmetry (difference in nasopupillary distances) in the population and its relation with the interpupillary distance. A retrospective descriptive study was conducted by reviewing of 1262 medical records. The values of nasopupillary asymmetry and the interpupillary distance were obtained. A statistical analysis was made and the correlation between these variables was established. Seventy-nine percent of the population presented some degree of nasopupillary asymmetry. The interpupillary distance had a very low correlation with the nasopupillary asymmetry (r = 0.074, P = 0.0). It is advisable to use the nasopupillary distance of each eye as a standard measurement.

  4. Left-right cortical asymmetries of regional cerebral blood flow during listening to words

    DEFF Research Database (Denmark)

    Nishizawa, Y; Olsen, T S; Larsen, B

    1982-01-01

    1. Regional cerebral blood flow (rCBF) was measured during rest and during listening to simple words. The xenon-133 intracarotid technique was used and results were obtained from 254 regions of seven right hemispheres and seven left hemispheres. The measurements were performed just after carotid...... of the entire hemisphere. The focal rCBF increases were localized to the superior part of the temporal regions, the prefrontal regions, the frontal eye fields, and the orbitofrontal regions. Significant asymmetries were found in particular in the superior temporal region with the left side showing a more...

  5. Diagnosis of renal perfusion abnormalities by sequential CT

    Energy Technology Data Exchange (ETDEWEB)

    Treugut, H; Andersson, I; Hildell, J; Nyman, U; Weibull, H

    1981-10-01

    Abnormalities of renal perfusion can be recognised more readily by sequential CT than by plain CT scan or after static enhancement with contrast medium. Haemodynamically significant stenoses of the renal arteries and total, or partial, infarcts can be diagnosed in this way. Intrarenal and capsular collaterals can be recognised by slow contrast accumulation in the infarcted area, or by the development of contrast in the sub-capsular portion of the cortex. Renal cortical necrosis is very well demonstrated by the absence of cortical perfusion; this is seen, for instance, in the DIC syndrome or during rejection after renal transplant.

  6. Does 3H-imipramine binding asymmetry indicate psychiatric illness?

    International Nuclear Information System (INIS)

    Demeter, E.; Somogyi, E.; Tekes, K.; Majorossy, K.; Arato, M.

    1988-01-01

    We have accepted that serotonin is essentially an inhibitory neurotransmitter in the human brain, so we propose that it is precisely this inhibiting effect that has weakened in psychiatric cases. We have investigated the asymmetry of tritiated imipramine binding sites (Bmax) in the frontal cortices of homicide victims (n = 6) and controls (n = 6) who died of natural causes. Of these homicide victimes examined in our experiment, five proved to have been psychiatric cases and one case had no psychiatric record. The two groups were comparable in age, gender and postmortem delay. The number of imipramine binding sites (Bmax) in the frontal cortices of controls was significantly higher in the right hemisphere than in the left hemisphere. But the homicide victims who were psychiatric cases had significantly higher (Bmax) values in the left hemisphere. While we only found higher Bmax values in the left hemisphere of homicide victims with mental diseases, our data may serve to prove the direct role of the serotonergic mechanism in the development of psychiatric cases. 15 refs. (author)

  7. Cortical thickness as a contributor to abnormal oscillations in schizophrenia?

    Directory of Open Access Journals (Sweden)

    J. Christopher Edgar

    2014-01-01

    Discussion: Left STG low-frequency and steady-state gamma abnormalities distinguish SZ and HC. Disease-associated damage to STG gray matter in schizophrenia may disrupt the age-related left STG gamma-band function–structure relationships observed in controls.

  8. Cortical surface area and cortical thickness in the precuneus of adult humans.

    Science.gov (United States)

    Bruner, E; Román, F J; de la Cuétara, J M; Martin-Loeches, M; Colom, R

    2015-02-12

    The precuneus has received considerable attention in the last decade, because of its cognitive functions, its role as a central node of the brain networks, and its involvement in neurodegenerative processes. Paleoneurological studies suggested that form changes in the deep parietal areas represent a major character associated with the origin of the modern human brain morphology. A recent neuroanatomical survey based on shape analysis suggests that the proportions of the precuneus are also a determinant source of overall brain geometrical differences among adult individuals, influencing the brain spatial organization. Here, we evaluate the variation of cortical thickness and cortical surface area of the precuneus in a sample of adult humans, and their relation with geometry and cognition. Precuneal thickness and surface area are not correlated. There is a marked individual variation. The right precuneus is thinner and larger than the left one, but there are relevant fluctuating asymmetries, with only a modest correlation between the hemispheres. Males have a thicker cortex but differences in cortical area are not significant between sexes. The surface area of the precuneus shows a positive allometry with the brain surface area, although the correlation is modest. The dilation/contraction of the precuneus, described as a major factor of variability within adult humans, is associated with absolute increase/decrease of its surface, but not with variation in thickness. Precuneal thickness, precuneal surface area and precuneal morphology are not correlated with psychological factors such as intelligence, working memory, attention control, and processing speed, stressing further possible roles of this area in supporting default mode functions. Beyond gross morphology, the processes underlying the large phenotypic variation of the precuneus must be further investigated through specific cellular analyses, aimed at considering differences in cellular size, density

  9. Abnormal Cortical Plasticity in Youth with Autism Spectrum Disorder: A Transcranial Magnetic Stimulation Case-Control Pilot Study.

    Science.gov (United States)

    Pedapati, Ernest V; Gilbert, Donald L; Erickson, Craig A; Horn, Paul S; Shaffer, Rebecca C; Wink, Logan K; Laue, Cameron S; Wu, Steve W

    2016-09-01

    This case-control study investigated the use of a low-intensity repetitive transcranial magnetic stimulation (rTMS) protocol to measure motor cortex (M1) plasticity in youth with autism spectrum disorder (ASD) compared with typically developing children (TDC). We hypothesized that impairments in long-term potentiation-like properties represent a neurophysiological biomarker of abnormal cortical function in ASD. We studied youth with ASD aged 11-18 years and matched controls (TDC). Intermittent theta burst stimulation (iTBS) was delivered to the dominant M1 at an intensity of 70% of resting motor threshold. Suprathreshold single-pulse TMS was performed to compare amplitudes of motor-evoked potentials (MEP) measured from surface electromyography electrodes on a target muscle before (20 pulses) and after (10 pulses/time point) iTBS at predefined timepoints (up to 30 minutes) to measure any potentiation effects. A linear mixed model was used to examine group differences in MEP amplitudes over time following iTBS. Nine youth with ASD (mean age 15.6; 7 males; 6 right-hand dominant) and 9 TDC (mean age 14.5; 5 males; 9 right-hand dominant) participated. All subjects tolerated the procedure well. Both groups had a mean increase in excitability after iTBS for 30 minutes; however, the time course of excitability changes differed (F9,144 = 2.05; p = 0.038). Post-hoc testing identified a significant decrease in amplitude of the ASD group at 20 minutes following iTBS compared with the TDC after correcting for multiple comparisons. In this study, we demonstrate early evidence for a potential physiological biomarker of cortical plasticity in youth with ASD using a rapid low-intensity rTMS protocol with a discriminate measure at 20 minutes following stimulation. The procedure was well tolerated by all 18 participants. Future work will include modification of the protocol to improve the ability to distinguish subtypes of ASD based on behavioral and cognitive testing.

  10. Abnormal Cortical Plasticity in Youth with Autism Spectrum Disorder: A Transcranial Magnetic Stimulation Case–Control Pilot Study

    Science.gov (United States)

    Gilbert, Donald L.; Erickson, Craig A.; Horn, Paul S.; Shaffer, Rebecca C.; Wink, Logan K.; Laue, Cameron S.; Wu, Steve W.

    2016-01-01

    Abstract Objective: This case–control study investigated the use of a low-intensity repetitive transcranial magnetic stimulation (rTMS) protocol to measure motor cortex (M1) plasticity in youth with autism spectrum disorder (ASD) compared with typically developing children (TDC). We hypothesized that impairments in long-term potentiation-like properties represent a neurophysiological biomarker of abnormal cortical function in ASD. Methods: We studied youth with ASD aged 11–18 years and matched controls (TDC). Intermittent theta burst stimulation (iTBS) was delivered to the dominant M1 at an intensity of 70% of resting motor threshold. Suprathreshold single-pulse TMS was performed to compare amplitudes of motor-evoked potentials (MEP) measured from surface electromyography electrodes on a target muscle before (20 pulses) and after (10 pulses/time point) iTBS at predefined timepoints (up to 30 minutes) to measure any potentiation effects. A linear mixed model was used to examine group differences in MEP amplitudes over time following iTBS. Results: Nine youth with ASD (mean age 15.6; 7 males; 6 right-hand dominant) and 9 TDC (mean age 14.5; 5 males; 9 right-hand dominant) participated. All subjects tolerated the procedure well. Both groups had a mean increase in excitability after iTBS for 30 minutes; however, the time course of excitability changes differed (F9,144 = 2.05; p = 0.038). Post-hoc testing identified a significant decrease in amplitude of the ASD group at 20 minutes following iTBS compared with the TDC after correcting for multiple comparisons. Conclusion: In this study, we demonstrate early evidence for a potential physiological biomarker of cortical plasticity in youth with ASD using a rapid low-intensity rTMS protocol with a discriminate measure at 20 minutes following stimulation. The procedure was well tolerated by all 18 participants. Future work will include modification of the protocol to improve the ability to distinguish subtypes of

  11. Effect of aerobic training on EEG alpha asymmetry and depressive symptoms in the elderly: a 1-year follow-up study

    Directory of Open Access Journals (Sweden)

    A.C. Deslandes

    2010-06-01

    Full Text Available The effect of physical exercise on the treatment of depressive elderly adults has not been investigated thus far in terms of changes in cortical hemispheric activity. The objective of the present study was to identify changes in depressive symptoms, quality of life, and cortical asymmetry produced by aerobic activity. Elderly subjects with a diagnosis of major depressive disorder (DSM-IV were included. Twenty patients (70% females, 71 ± 3 years were divided into an exercise group (pharmacological treatment plus aerobic training and a control group (undergoing pharmacological treatment in a quasi-experimental design. Pharmacological treatment was maintained stable throughout the study (antidepressants and anxiolytics. Subjects were evaluated by depression scales (Beck Depression Inventory, Hamilton Depression Rating Scale, Montgomery-Asberg Depression Rating Scale and the Short Form Health Survey-36, and electroencephalographic measurements (frontal and parietal alpha asymmetry before and after 1 year of treatment. After 1 year, the control group showed a decrease in cortical activity on the right hemisphere (increase of alpha power, which was not observed in the exercise group. The exercise group showed a significant decrease of depressive symptoms, which was not observed in the control group. This result was also accompanied by improved treatment response and remission rate after 1 year of aerobic exercise associated with treatment. This study provides support for the effect of aerobic training on alpha activity and on depressive symptoms in elderly patients. Exercise facilitates the treatment of depressive elderly adults, leading to clinical and physical improvement and protecting against a decrease in cortical activity.

  12. The cortical microstructural basis of lateralised cognition: a review

    Directory of Open Access Journals (Sweden)

    Steven A. Chance

    2014-07-01

    Full Text Available The presence of asymmetry in the human cerebral hemispheres is detectable at both the macroscopic and microscopic scales. The expansion of cortical surface during development and across evolutionary time is largely due to the proliferation and spacing of the microscopic vertical columns of cells that form the cortex. In the asymmetric planum temporale, minicolumn width asymmetry is associated with surface area asymmetry. This asymmetry of minicolumn spacing is absent in the equivalent areas of the brains of other apes.The left hemisphere dominance for speech depends, partly, on a bias for higher resolution processing across widely spaced minicolumns with less overlapping dendritic fields, whereas narrow minicolumn spacing in the right hemisphere is associated with overlapping, low resolution, holistic processing. This concept refines the simple notion that a larger brain area is associated with dominance for a function with a mechanistic explanation associated with ‘processing type’. Face processing provides a test case - it is the opposite of language, being dominant in the right hemisphere. Consistent with the bias for holistic, configural processing of faces, the minicolumns in the right hemisphere fusiform gyrus are narrower than in the left hemisphere, which is associated with featural processing. Again, this asymmetry is not found in chimpanzees.The difference between hemispheres may also be seen in terms of processing speed, facilitated by asymmetric myelination of white matter tracts. By cross-referencing the differences between the active fields of the two hemispheres, via tracts such as the corpus callous, the relationship of local features to global features may be encoded. Altered minicolumn organisation is also observed in neuropsychiatric disorders such as autism and schizophrenia. This may be a consequence of disequilibrium in the processing of local and global features related to disorganisation of asymmetric minicolumnar

  13. The cortical signature of impaired gesturing: Findings from schizophrenia

    Directory of Open Access Journals (Sweden)

    Petra Verena Viher

    2018-01-01

    Full Text Available Schizophrenia is characterized by deficits in gesturing that is important for nonverbal communication. Research in healthy participants and brain-damaged patients revealed a left-lateralized fronto-parieto-temporal network underlying gesture performance. First evidence from structural imaging studies in schizophrenia corroborates these results. However, as of yet, it is unclear if cortical thickness abnormalities contribute to impairments in gesture performance. We hypothesized that patients with deficits in gesture production show cortical thinning in 12 regions of interest (ROIs of a gesture network relevant for gesture performance and recognition. Forty patients with schizophrenia and 41 healthy controls performed hand and finger gestures as either imitation or pantomime. Group differences in cortical thickness between patients with deficits, patients without deficits, and controls were explored using a multivariate analysis of covariance. In addition, the relationship between gesture recognition and cortical thickness was investigated. Patients with deficits in gesture production had reduced cortical thickness in eight ROIs, including the pars opercularis of the inferior frontal gyrus, the superior and inferior parietal lobes, and the superior and middle temporal gyri. Gesture recognition correlated with cortical thickness in fewer, but mainly the same, ROIs within the patient sample. In conclusion, our results show that impaired gesture production and recognition in schizophrenia is associated with cortical thinning in distinct areas of the gesture network.

  14. The cortical signature of symptom laterality in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Elizabeth Heinrichs-Graham

    2017-01-01

    Full Text Available Patients with Parkinson's disease (PD often present with unilateral motor symptoms that eventually spread to the other side. This symptom lateralization is diagnostically important, as it serves to distinguish PD from other motor disorders with overlapping symptom profiles. Further, recent studies have shown that the side of symptom onset is important for prognosis, as there are differences in the rate of disease progression and the incidence of secondary symptoms between right- and left-dominant (RD, LD patients. Physiologically, previous studies have shown asymmetrical decline in structure and metabolism throughout the basal ganglia, although connecting this directly to motor function has been difficult. To identify the neurophysiological basis of symptom laterality in PD, we recorded magnetoencephalography (MEG during left- and right-hand movement paradigms in patients with PD who exhibited either RD or LD symptomatology. The beta oscillations serving these movements were then imaged using beamforming methods, and we extracted the time series of the peak voxel in the left and right primary motor cortices for each movement. In addition, each patient's symptom asymmetry was quantitated using the Unified Parkinson's Disease Rating Scale (UPDRS, which allowed the relationship between symptom asymmetry and neural asymmetry to be assessed. We found that LD patients had stronger beta suppression during movement, as well as greater post-movement beta rebound compared to patients with RD symptoms, independent of the hand that was moved. Interestingly, the asymmetry of beta activity during right-hand movement uniquely correlated with symptom asymmetry, such that the more LD the symptom profile, the more left-lateralized (i.e., contralateral to movement the beta response; conversely, the more RD the symptom profile, the more right-lateralized (i.e., ipsilateral to movement the beta response. This study is the first to directly probe the relationship

  15. [Lateralization of behavioral reactions and otolith asymmetry].

    Science.gov (United States)

    Lychakov, D V

    2013-01-01

    Lateralized behavior is widely spread among vertebrate animals and is determined first of ally by structural-functional brain asymmetry as well as by the presence of somatic and visceral asymmetry. Some kinds of asymmetric reactions are suggested to be due to the presence of asymmetry at the level of sense organs, in particular, of otolith organs. This review presents data on value and character of otolith asymmetry (OA) in animals of various species and classes, on action upon it of weightlessness and hypergravity; the problem of effect of OA on vestibular and auditory functions is considered. In symmetric vertebrates, OA has been shown to be of fluctuation character and its chi coefficient varies in diapason from -0.2 to 0.2; in the overwhelmed majority of individuals, /chi/ otolith organs to work coordinately; this it why OA is at the equally low level regardless of the individual's taxonomic and ecologic position, its size, age, and otolith growth rate. Individuals with abnormally high OA level can experience difficulties in analysis of auditory and vestibular stimuli, therefore in nature the majority of such individuals are eliminated in the process of natural selection. Unlike symmetrical vertebrates, labyrinths of many Pleuronectiformes have pronounced OA--otoliths of the lower labyrinth, on a average, are significantly heavier than those of the upper labyrinth. Their organs are the only example when OA with directed character seem to play an essential role in lateralized behavior and are suggested to be used in the spatial localization of the sound source. The short-time action of weightlessness and relatively weak hypergravity ( or = 3g, as well as some diseases and shifts connected with processes of aging can enhance OA and cause several functional disturbances.

  16. Motor-related brain abnormalities in HIV-infected patients. A multimodal MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yawen; Wang, Xiaoxiao; Miao, Hui; Wei, Yarui; Ali, Rizwan [University of Science and Technology of China, Centers for Biomedical Engineering, Hefei, Anhui (China); Li, Ruili; Li, Hongjun [Capital Medical University, Department of Radiology, Beijing Youan Hospital, Beijing (China); Qiu, Bensheng [University of Science and Technology of China, Centers for Biomedical Engineering, Hefei, Anhui (China); Anhui Computer Application Institute of Traditional Chinese Medicine, Hefei, Anhui (China)

    2017-11-15

    It is generally believed that HIV infection could cause HIV-associated neurocognitive disorders (HAND) across a broad range of functional domains. Some of the most common findings are deficits in motor control. However, to date no neuroimaging studies have evaluated basic motor control in HIV-infected patients using a multimodal approach. In this study, we utilized high-resolution structural imaging and task-state functional magnetic resonance imaging (fMRI) to assess brain structure and motor function in a homogeneous cohort of HIV-infected patients. We found that HIV-infected patients had significantly reduced gray matter (GM) volume in cortical regions, which are involved in motor control, including the bilateral posterior insula cortex, premotor cortex, and supramarginal gyrus. Increased activation in bilateral posterior insula cortices was also demonstrated by patients during hand movement tasks compared with healthy controls. More importantly, the reduced GM in bilateral posterior insula cortices was spatially coincident with abnormal brain activation in HIV-infected patients. In addition, the results of partial correlation analysis indicated that GM reduction in bilateral posterior insula cortices and premotor cortices was significantly correlated with immune system deterioration. This study is the first to demonstrate spatially coincident GM reduction and abnormal activation during motor performance in HIV-infected patients. Although it remains unknown whether the brain deficits can be recovered, our findings may yield new insights into neurologic injury underlying motor dysfunction in HAND. (orig.)

  17. Motor-related brain abnormalities in HIV-infected patients. A multimodal MRI study

    International Nuclear Information System (INIS)

    Zhou, Yawen; Wang, Xiaoxiao; Miao, Hui; Wei, Yarui; Ali, Rizwan; Li, Ruili; Li, Hongjun; Qiu, Bensheng

    2017-01-01

    It is generally believed that HIV infection could cause HIV-associated neurocognitive disorders (HAND) across a broad range of functional domains. Some of the most common findings are deficits in motor control. However, to date no neuroimaging studies have evaluated basic motor control in HIV-infected patients using a multimodal approach. In this study, we utilized high-resolution structural imaging and task-state functional magnetic resonance imaging (fMRI) to assess brain structure and motor function in a homogeneous cohort of HIV-infected patients. We found that HIV-infected patients had significantly reduced gray matter (GM) volume in cortical regions, which are involved in motor control, including the bilateral posterior insula cortex, premotor cortex, and supramarginal gyrus. Increased activation in bilateral posterior insula cortices was also demonstrated by patients during hand movement tasks compared with healthy controls. More importantly, the reduced GM in bilateral posterior insula cortices was spatially coincident with abnormal brain activation in HIV-infected patients. In addition, the results of partial correlation analysis indicated that GM reduction in bilateral posterior insula cortices and premotor cortices was significantly correlated with immune system deterioration. This study is the first to demonstrate spatially coincident GM reduction and abnormal activation during motor performance in HIV-infected patients. Although it remains unknown whether the brain deficits can be recovered, our findings may yield new insights into neurologic injury underlying motor dysfunction in HAND. (orig.)

  18. Frontal alpha asymmetry and aerobic exercise: are changes due to cardiovascular demand or bilateral rhythmic movement?

    Science.gov (United States)

    Hicks, Robert A; Hall, Peter A; Staines, William R; McIlroy, William E

    2018-02-01

    The left and right prefrontal cortices are linked to networks that control approach and withdrawal motivation, respectively. The relationship between activity in the left and right prefrontal activity is used to assess brain states and specifically their link to motivational behaviours and tendencies. The most common measure used in this context is called the frontal alpha asymmetry (FAA), which compares alpha (8-13Hz) power at each region. Interestingly, research shows that FAA is influenced by aerobic exercise by increasing relative left prefrontal cortex activity. In turn this effect may be beneficial for individuals with mood disorders that are associated with abnormal motivational tendencies. However, it is unknown whether changes in FAA after exercise are due to cardiovascular demands of activity or simply the movement required for the exercise. Therefore, this study aimed to investigate the influence of aerobic exercise and 'no intensity' bilateral movement cycling on FAA in young healthy adults. Results showed aerobic exercise caused a significant increase in FAA scores 22-38min after exercise. However, movement did not lead to a significant change in FAA. This suggests there is an intensity required for physical activity to evoke a change in FAA. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Motor features in posterior cortical atrophy and their imaging correlates.

    Science.gov (United States)

    Ryan, Natalie S; Shakespeare, Timothy J; Lehmann, Manja; Keihaninejad, Shiva; Nicholas, Jennifer M; Leung, Kelvin K; Fox, Nick C; Crutch, Sebastian J

    2014-12-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by impaired higher visual processing skills; however, motor features more commonly associated with corticobasal syndrome may also occur. We investigated the frequency and clinical characteristics of motor features in 44 PCA patients and, with 30 controls, conducted voxel-based morphometry, cortical thickness, and subcortical volumetric analyses of their magnetic resonance imaging. Prominent limb rigidity was used to define a PCA-motor subgroup. A total of 30% (13) had PCA-motor; all demonstrating asymmetrical left upper limb rigidity. Limb apraxia was more frequent and asymmetrical in PCA-motor, as was myoclonus. Tremor and alien limb phenomena only occurred in this subgroup. The subgroups did not differ in neuropsychological test performance or apolipoprotein E4 allele frequency. Greater asymmetry of atrophy occurred in PCA-motor, particularly involving right frontoparietal and peri-rolandic cortices, putamen, and thalamus. The 9 patients (including 4 PCA-motor) with pathology or cerebrospinal fluid all showed evidence of Alzheimer's disease. Our data suggest that PCA patients with motor features have greater atrophy of contralateral sensorimotor areas but are still likely to have underlying Alzheimer's disease. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Motor features in posterior cortical atrophy and their imaging correlates☆

    Science.gov (United States)

    Ryan, Natalie S.; Shakespeare, Timothy J.; Lehmann, Manja; Keihaninejad, Shiva; Nicholas, Jennifer M.; Leung, Kelvin K.; Fox, Nick C.; Crutch, Sebastian J.

    2014-01-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by impaired higher visual processing skills; however, motor features more commonly associated with corticobasal syndrome may also occur. We investigated the frequency and clinical characteristics of motor features in 44 PCA patients and, with 30 controls, conducted voxel-based morphometry, cortical thickness, and subcortical volumetric analyses of their magnetic resonance imaging. Prominent limb rigidity was used to define a PCA-motor subgroup. A total of 30% (13) had PCA-motor; all demonstrating asymmetrical left upper limb rigidity. Limb apraxia was more frequent and asymmetrical in PCA-motor, as was myoclonus. Tremor and alien limb phenomena only occurred in this subgroup. The subgroups did not differ in neuropsychological test performance or apolipoprotein E4 allele frequency. Greater asymmetry of atrophy occurred in PCA-motor, particularly involving right frontoparietal and peri-rolandic cortices, putamen, and thalamus. The 9 patients (including 4 PCA-motor) with pathology or cerebrospinal fluid all showed evidence of Alzheimer's disease. Our data suggest that PCA patients with motor features have greater atrophy of contralateral sensorimotor areas but are still likely to have underlying Alzheimer's disease. PMID:25086839

  1. Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 tesla MRI and pathology.

    Directory of Open Access Journals (Sweden)

    Justin Y Kwan

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive neurodegenerative disorder characterized by cortical and spinal motor neuron dysfunction. Routine magnetic resonance imaging (MRI studies have previously shown hypointense signal in the motor cortex on T(2-weighted images in some ALS patients, however, the cause of this finding is unknown. To investigate the utility of this MR signal change as a marker of cortical motor neuron degeneration, signal abnormalities on 3T and 7T MR images of the brain were compared, and pathology was obtained in two ALS patients to determine the origin of the motor cortex hypointensity. Nineteen patients with clinically probable or definite ALS by El Escorial criteria and 19 healthy controls underwent 3T MRI. A 7T MRI scan was carried out on five ALS patients who had motor cortex hypointensity on the 3T FLAIR sequence and on three healthy controls. Postmortem 7T MRI of the brain was performed in one ALS patient and histological studies of the brains and spinal cords were obtained post-mortem in two patients. The motor cortex hypointensity on 3T FLAIR images was present in greater frequency in ALS patients. Increased hypointensity correlated with greater severity of upper motor neuron impairment. Analysis of 7T T(2(*-weighted gradient echo imaging localized the signal alteration to the deeper layers of the motor cortex in both ALS patients. Pathological studies showed increased iron accumulation in microglial cells in areas corresponding to the location of the signal changes on the 3T and 7T MRI of the motor cortex. These findings indicate that the motor cortex hypointensity on 3T MRI FLAIR images in ALS is due to increased iron accumulation by microglia.

  2. The diagnosis of renal perfusion abnormalities by sequential CT

    International Nuclear Information System (INIS)

    Treugut, H.; Andersson, I.; Hildell, J.; Nyman, U.; Weibull, H.

    1981-01-01

    Abnormalities of renal perfusion can be recognised more readily by sequential CT than by plain CT scan or after static enhancement with contrast medium. Haemodynamically significant stenoses of the renal arteries and total, or partial, infarcts can be diagnosed in this way. Intrarenal and capsular collaterals can be recognised by slow contrast accumulation in the infarcted area, or by the development of contrast in the sub-capsular portion of the cortex. Renal cortical necrosis is very well demonstrated by the absence of cortical perfusion; this is seen, for instance, in the DIC syndrome or during rejection after renal transplant. (orig.) [de

  3. Functional neuroimaging abnormalities in idiopathic generalized epilepsy

    Directory of Open Access Journals (Sweden)

    Megan L. McGill

    2014-01-01

    Full Text Available Magnetic resonance imaging (MRI techniques have been used to quantitatively assess focal and network abnormalities. Idiopathic generalized epilepsy (IGE is characterized by bilateral synchronous spike–wave discharges on electroencephalography (EEG but normal clinical MRI. Dysfunctions involving the neocortex, particularly the prefrontal cortex, and thalamus likely contribute to seizure activity. To identify possible morphometric and functional differences in the brains of IGE patients and normal controls, we employed measures of thalamic volumes, cortical thickness, gray–white blurring, fractional anisotropy (FA measures from diffusion tensor imaging (DTI and fractional amplitude of low frequency fluctuations (fALFF in thalamic subregions from resting state functional MRI. Data from 27 patients with IGE and 27 age- and sex-matched controls showed similar thalamic volumes, cortical thickness and gray–white contrast. There were no differences in FA values on DTI in tracts connecting the thalamus and prefrontal cortex. Functional analysis revealed decreased fALFF in the prefrontal cortex (PFC subregion of the thalamus in patients with IGE. We provide minimum detectable effect sizes for each measure used in the study. Our analysis indicates that fMRI-based methods are more sensitive than quantitative structural techniques for characterizing brain abnormalities in IGE.

  4. Does /sup 3/H-imipramine binding asymmetry indicate psychiatric illness

    Energy Technology Data Exchange (ETDEWEB)

    Demeter, E.; Somogyi, E.; Tekes, K.; Majorossy, K.; Arato, M.

    1988-01-01

    We have accepted that serotonin is essentially an inhibitory neurotransmitter in the human brain, so we propose that it is precisely this inhibiting effect that has weakened in psychiatric cases. We have investigated the asymmetry of tritiated imipramine binding sites (Bmax) in the frontal cortices of homicide victims (n = 6) and controls (n = 6) who died of natural causes. Of these homicide victimes examined in our experiment, five proved to have been psychiatric cases and one case had no psychiatric record. The two groups were comparable in age, gender and postmortem delay. The number of imipramine binding sites (Bmax) in the frontal cortices of controls was significantly higher in the right hemisphere than in the left hemisphere. But the homicide victims who were psychiatric cases had significantly higher (Bmax) values in the left hemisphere. While we only found higher Bmax values in the left hemisphere of homicide victims with mental diseases, our data may serve to prove the direct role of the serotonergic mechanism in the development of psychiatric cases. 15 refs.

  5. Altered cortical thickness and attentional deficits in adolescent girls and women with bulimia nervosa.

    Science.gov (United States)

    Berner, Laura A; Stefan, Mihaela; Lee, Seonjoo; Wang, Zhishun; Terranova, Kate; Attia, Evelyn; Marsh, Rachel

    2018-05-01

    Frontostriatal and frontoparietal abnormalities likely contribute to deficits in control and attentional processes in individuals with bulimia nervosa and to the persistence of dysregulated eating across development. This study assessed these processes and cortical thickness in a large sample of adolescent girls and women with bulimia nervosa compared with healthy controls. We collected anatomical MRI data from adolescent girls and women (ages 12-38 yr) with full or subthreshold bulimia nervosa and age-matched healthy controls who also completed the Conners Continuous Performance Test-II (CPT-II). Groups were compared on task performance and cortical thickness. Mediation analyses explored associations among cortical thickness, CPT-II variables, bulimia nervosa symptoms and age. We included 60 girls and women with bulimia nervosa and 54 controls in the analyses. Compared with healthy participants, those with bulimia nervosa showed increased impulsivity and inattention on the CPT-II, along with reduced thickness of the right pars triangularis, right superior parietal and left dorsal posterior cingulate cortices. In the bulimia nervosa group, exploratory analyses revealed that binge eating frequency correlated inversely with cortical thickness of frontoparietal and insular regions and that reduced frontoparietal thickness mediated the association between age and increased symptom severity and inattention. Binge eating frequency also mediated the association between age and lower prefrontal cortical thickness. These findings are applicable to only girls and women with bulimia nervosa, and our cross-sectional design precludes understanding of whether cortical thickness alterations precede or result from bulimia nervosa symptoms. Structural abnormalities in the frontoparietal and posterior cingulate regions comprising circuits that support control and attentional processes should be investigated as potential contributors to the maintenance of bulimia nervosa and useful

  6. Altered cortical thickness and attentional deficits in adolescent girls and women with bulimia nervosa.

    Science.gov (United States)

    Berner, Laura A; Stefan, Mihaela; Lee, Seonjoo; Wang, Zhishun; Terranova, Kate; Attia, Evelyn; Marsh, Rachel

    2018-01-12

    Frontostriatal and frontoparietal abnormalities likely contribute to deficits in control and attentional processes in individuals with bulimia nervosa and to the persistence of dysregulated eating across development. This study assessed these processes and cortical thickness in a large sample of adolescent girls and women with bulimia nervosa compared with healthy controls. We collected anatomical MRI data from adolescent girls and women (ages 12-38 yr) with full or subthreshold bulimia nervosa and age-matched healthy controls who also completed the Conners Continuous Performance Test-II (CPT-II). Groups were compared on task performance and cortical thickness. Mediation analyses explored associations among cortical thickness, CPT-II variables, bulimia nervosa symptoms and age. We included 60 girls and women with bulimia nervosa and 54 controls in the analyses. Compared with healthy participants, those with bulimia nervosa showed increased impulsivity and inattention on the CPT-II, along with reduced thickness of the right pars triangularis, right superior parietal and left dorsal posterior cingulate cortices. In the bulimia nervosa group, exploratory analyses revealed that binge eating frequency correlated inversely with cortical thickness of frontoparietal and insular regions and that reduced frontoparietal thickness mediated the association between age and increased symptom severity and inattention. Binge eating frequency also mediated the association between age and lower prefrontal cortical thickness. These findings are applicable to only girls and women with bulimia nervosa, and our cross-sectional design precludes understanding of whether cortical thickness alterations precede or result from bulimia nervosa symptoms. Structural abnormalities in the frontoparietal and posterior cingulate regions comprising circuits that support control and attentional processes should be investigated as potential contributors to the maintenance of bulimia nervosa and useful

  7. Cortical cholinergic innervation: Distribution and source in monkeys

    International Nuclear Information System (INIS)

    Struble, R.G.; Cork, L.C.; Coyle, J.T.; Lehmann, J.; Mitchell, S.J.; Price, D.L.

    1986-01-01

    In Alzheimer's disease (AD) and its late-life variant, senile dementia of the Alzheimer's type (SDAT), the predominant neurochemical abnormalities are marked decrements in the activities of ChAT and AChE, the high affinity uptake of tritium-choline, and synthesis of acetylcholine. Two studies are undertaken to delineate more clearly the variability of cortical cholinergic innervation and the contribution of the Ch system, particularly the Ch4, to this cholinergic innervation. In the first study, ChAT activity was assessed in multiple samples of neocortex from seven normal cynomolgus monkeys. In the second study, the nbM was lesioned in order to determine the contribution of the Ch system to cortical cholinergic innervation

  8. Abnormal Development of the Earliest Cortical Circuits in a Mouse Model of Autism Spectrum Disorder.

    Science.gov (United States)

    Nagode, Daniel A; Meng, Xiangying; Winkowski, Daniel E; Smith, Ed; Khan-Tareen, Hamza; Kareddy, Vishnupriya; Kao, Joseph P Y; Kanold, Patrick O

    2017-01-31

    Autism spectrum disorder (ASD) involves deficits in speech and sound processing. Cortical circuit changes during early development likely contribute to such deficits. Subplate neurons (SPNs) form the earliest cortical microcircuits and are required for normal development of thalamocortical and intracortical circuits. Prenatal valproic acid (VPA) increases ASD risk, especially when present during a critical time window coinciding with SPN genesis. Using optical circuit mapping in mouse auditory cortex, we find that VPA exposure on E12 altered the functional excitatory and inhibitory connectivity of SPNs. Circuit changes manifested as "patches" of mostly increased connection probability or strength in the first postnatal week and as general hyper-connectivity after P10, shortly after ear opening. These results suggest that prenatal VPA exposure severely affects the developmental trajectory of cortical circuits and that sensory-driven activity may exacerbate earlier, subtle connectivity deficits. Our findings identify the subplate as a possible common pathophysiological substrate of deficits in ASD. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. No Association between Cortical Gyrification or Intrinsic Curvature and Attention-deficit/Hyperactivity Disorder in Adolescents and Young Adults

    Directory of Open Access Journals (Sweden)

    Natalie J. Forde

    2017-04-01

    Full Text Available Magnetic resonance imaging (MRI studies have highlighted subcortical, cortical, and structural connectivity abnormalities associated with attention-deficit/hyperactivity disorder (ADHD. Gyrification investigations of the cortex have been inconsistent and largely negative, potentially due to a lack of sensitivity of the previously used morphological parameters. The innovative approach of applying intrinsic curvature analysis, which is predictive of gyrification pattern, to the cortical surface applied herein allowed us greater sensitivity to determine whether the structural connectivity abnormalities thus far identified at a centimeter scale also occur at a millimeter scale within the cortical surface. This could help identify neurodevelopmental processes that contribute to ADHD. Structural MRI datasets from the NeuroIMAGE project were used [n = 306 ADHD, n = 164 controls, and n = 148 healthy siblings of individuals with ADHD (age in years, mean(sd; 17.2 (3.4, 16.8 (3.2, and 17.7 (3.8, respectively]. Reconstructions of the cortical surfaces were computed with FreeSurfer. Intrinsic curvature (taken as a marker of millimeter-scale surface connectivity and local gyrification index were calculated for each point on the surface (vertex with Caret and FreeSurfer, respectively. Intrinsic curvature skew and mean local gyrification index were extracted per region; frontal, parietal, temporal, occipital, cingulate, and insula. A generalized additive model was used to compare the trajectory of these measures between groups over age, with sex, scanner site, total surface area of hemisphere, and familiality accounted for. After correcting for sex, scanner site, and total surface area no group differences were found in the developmental trajectory of intrinsic curvature or local gyrification index. Despite the increased sensitivity of intrinsic curvature, compared to gyrification measures, to subtle morphological abnormalities of the cortical surface we found

  10. Sensory migraine aura is not associated with structural grey matter abnormalities

    DEFF Research Database (Denmark)

    Hougaard, Anders; Amin, Faisal Mohammad; Arngrim, Nanna

    2016-01-01

    Migraine with aura (MA) is characterized by cortical dysfunction. Frequent aura attacks may alter cerebral cortical structure in patients, or structural grey matter abnormalities may predispose MA patients to aura attacks. In the present study we aimed to investigate cerebral grey matter structure...... sensory aura regularly. We analysed high-resolution structural MR images using two complimentary approaches and compared patients with and without sensory aura. Patients were also compared to controls. We found no differences of grey matter density or cortical thickness between patients with and without...... sensory aura and no differences for the cortical visual areas between patients and controls. The somatosensory cortex was thinner in patients (1.92 mm vs. 1.96 mm, P = 0.043) and the anterior cingulate cortex of patients had a decreased grey matter density (P = 0.039) compared to controls...

  11. A family affair: brain abnormalities in siblings of patients with schizophrenia

    Science.gov (United States)

    Hulshoff Pol, Hilleke; Gogtay, Nitin

    2013-01-01

    Schizophrenia is a severe mental disorder that has a strong genetic basis. Converging evidence suggests that schizophrenia is a progressive neurodevelopmental disorder, with earlier onset cases resulting in more profound brain abnormalities. Siblings of patients with schizophrenia provide an invaluable resource for differentiating between trait and state markers, thus highlighting possible endophenotypes for ongoing research. However, findings from sibling studies have not been systematically put together in a coherent story across the broader age span. We review here the cortical grey matter abnormalities in siblings of patients with schizophrenia from childhood to adulthood, by reviewing sibling studies from both childhood-onset schizophrenia, and the more common adult-onset schizophrenia. When reviewed together, studies suggest that siblings of patients with schizophrenia display significant brain abnormalities that highlight both similarities and differences between the adult and childhood populations, with shared developmental risk patterns, and segregating trajectories. Based on current research it appears that the cortical grey matter abnormalities in siblings are likely to be an age-dependent endophenotype, which normalize by the typical age of onset of schizophrenia unless there has been more genetic or symptom burdening. With increased genetic burdening (e.g. discordant twins of patients) the grey matter abnormalities in (twin) siblings are progressive in adulthood. This synthesis of the literature clarifies the importance of brain plasticity in the pathophysiology of the illness, indicating that probands may lack protective factors critical for healthy development. PMID:23698280

  12. Dysplasia and overgrowth. Magnetic resonance imaging of pediatric brain abnormalities secondary to alterations in the mechanistic target of rapamycin pathway

    International Nuclear Information System (INIS)

    Shrot, Shai; Hwang, Misun; Huisman, Thierry A.G.M.; Soares, Bruno P.; Stafstrom, Carl E.

    2018-01-01

    The current classification of malformations of cortical development is based on the type of disrupted embryological process (cell proliferation, migration, or cortical organization/post-migrational development) and the resulting morphological anomalous pattern of findings. An ideal classification would include knowledge of biological pathways. It has recently been demonstrated that alterations affecting the mechanistic target of rapamycin (mTOR) signaling pathway result in diverse abnormalities such as dysplastic megalencephaly, hemimegalencephaly, ganglioglioma, dysplastic cerebellar gangliocytoma, focal cortical dysplasia type IIb, and brain lesions associated with tuberous sclerosis. We review the neuroimaging findings in brain abnormalities related to alterations in the mTOR pathway, following the emerging trend from morphology towards genetics in the classification of malformations of cortical development. This approach improves the understanding of anomalous brain development and allows precise diagnosis and potentially targeted therapies that may regulate mTOR pathway function. (orig.)

  13. Dysplasia and overgrowth. Magnetic resonance imaging of pediatric brain abnormalities secondary to alterations in the mechanistic target of rapamycin pathway

    Energy Technology Data Exchange (ETDEWEB)

    Shrot, Shai [Johns Hopkins University School of Medicine, Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Sheba Medical Center, Department of Diagnostic Imaging, Ramat-Gan (Israel); Hwang, Misun; Huisman, Thierry A.G.M.; Soares, Bruno P. [Johns Hopkins University School of Medicine, Division of Pediatric Radiology and Pediatric Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD (United States); Stafstrom, Carl E. [Johns Hopkins University School of Medicine, Division of Pediatric Neurology, Department of Neurology, Baltimore, MD (United States)

    2018-02-15

    The current classification of malformations of cortical development is based on the type of disrupted embryological process (cell proliferation, migration, or cortical organization/post-migrational development) and the resulting morphological anomalous pattern of findings. An ideal classification would include knowledge of biological pathways. It has recently been demonstrated that alterations affecting the mechanistic target of rapamycin (mTOR) signaling pathway result in diverse abnormalities such as dysplastic megalencephaly, hemimegalencephaly, ganglioglioma, dysplastic cerebellar gangliocytoma, focal cortical dysplasia type IIb, and brain lesions associated with tuberous sclerosis. We review the neuroimaging findings in brain abnormalities related to alterations in the mTOR pathway, following the emerging trend from morphology towards genetics in the classification of malformations of cortical development. This approach improves the understanding of anomalous brain development and allows precise diagnosis and potentially targeted therapies that may regulate mTOR pathway function. (orig.)

  14. Digitizing the moving face: asymmetries of emotion and gender

    Directory of Open Access Journals (Sweden)

    Ashish Desai

    2009-04-01

    Full Text Available In a previous study with dextral males, Richardson and Bowers (1999 digitized real time video signals and found movement asymmetries over the left lower face for emotional, but not non-emotional expressions. These findings correspond to observations, based on subjective ratings of static pictures, that the left side of the face is more intensely expressive than the right (Sackeim, 1978. From a neuropsychological perspective, one possible interpretation of these findings is that emotional priming of the right hemisphere of the brain results in more muscular activity over the contralateral left than ipsilateral right side of the lower face. The purpose of the present study was to use computer-imaging methodology to determine whether there were gender differences in movement asymmetries across the face. We hypothesized that females would show less evidence of facial movement asymmetries during the expression of emotion. This hypothesis was based on findings of gender differences in the degree to which specific cognitive functions may be lateralized in the brain (i.e., females less lateralized than males. Forty-eight normal dextral college students (25 females, 23 males were videotaped while they displayed voluntary emotional expressions. A quantitative measure of movement change (called entropy was computed by subtracting the values of corresponding pixel intensities between adjacent frames and summing their differences. The upper and lower hemiface regions were examined separately due to differences in the cortical enervation of facial muscles in the upper (bilateral versus lower face (contralateral. Repeated measures ANOVA’s were used to analyze for the amount of overall facial movement and for facial asymmetries. Certain emotions were associated with significantly greater overall facial movement than others (p fear > (angry =sad > neutral. Both males and females showed this same pattern, with no gender differences in the total amount of facial

  15. Altered cortical anatomical networks in temporal lobe epilepsy

    Science.gov (United States)

    Lv, Bin; He, Huiguang; Lu, Jingjing; Li, Wenjing; Dai, Dai; Li, Meng; Jin, Zhengyu

    2011-03-01

    Temporal lobe epilepsy (TLE) is one of the most common epilepsy syndromes with focal seizures generated in the left or right temporal lobes. With the magnetic resonance imaging (MRI), many evidences have demonstrated that the abnormalities in hippocampal volume and the distributed atrophies in cortical cortex. However, few studies have investigated if TLE patients have the alternation in the structural networks. In the present study, we used the cortical thickness to establish the morphological connectivity networks, and investigated the network properties using the graph theoretical methods. We found that all the morphological networks exhibited the small-world efficiency in left TLE, right TLE and normal groups. And the betweenness centrality analysis revealed that there were statistical inter-group differences in the right uncus region. Since the right uncus located at the right temporal lobe, these preliminary evidences may suggest that there are topological alternations of the cortical anatomical networks in TLE, especially for the right TLE.

  16. Human cerebral cortices: signal variation on diffusion-weighted MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Asao, Chiaki [Kumamoto Regional Medical Center, Department of Radiology, Kumamoto (Japan); National Hospital Organization Kumamoto Medical Center, Department of Radiology, Kumamoto (Japan); Hirai, Toshinori; Yamashita, Yasuyuki [Kumamoto University Graduate School of Medical Sciences, Department of Diagnostic Radiology, Kumamoto (Japan); Yoshimatsu, Shunji [National Hospital Organization Kumamoto Medical Center, Department of Radiology, Kumamoto (Japan); Matsukawa, Tetsuya; Imuta, Masanori [Kumamoto Regional Medical Center, Department of Radiology, Kumamoto (Japan); Sagara, Katsuro [Kumamoto Regional Medical Center, Department of Internal Medicine, Kumamoto (Japan)

    2008-03-15

    We have often encountered high signal intensity (SI) of the cingulate gyrus and insula during diffusion-weighted magnetic resonance imaging (DW-MRI) on neurologically healthy adults. To date, cortical signal heterogeneity on DW images has not been investigated systematically. The purpose of our study was to determine whether there is regional signal variation in the brain cortices of neurologically healthy adults on DW-MR images. The SI of the cerebral cortices on DW-MR images at 1.5 T was evaluated in 50 neurologically healthy subjects (34 men, 16 women; age range 33-84 years; mean age 57.6 years). The cortical SI in the cingulate gyrus, insula, and temporal, occipital, and parietal lobes was graded relative to the SI of the frontal lobe. Contrast-to-noise ratios (CNRs) on DW-MR images were compared for each cortical area. Diffusion changes were analyzed by visually assessment of the differences in appearance among the cortices on apparent diffusion coefficient (ADC) maps. Increased SI was frequently seen in the cingulate gyrus and insula regardless of patient age. There were no significant gender- or laterality-related differences. The CNR was significantly higher in the cingulate gyrus and insula than in the other cortices (p <.01), and significant differences existed among the cortical regions (p <.001). There were no apparent ADC differences among the cortices on ADC maps. Regional signal variation of the brain cortices was observed on DW-MR images of healthy subjects, and the cingulate gyrus and insula frequently manifested high SI. These findings may help in the recognition of cortical signal abnormalities as visualized on DW-MR images. (orig.)

  17. Human cerebral cortices: signal variation on diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Asao, Chiaki; Hirai, Toshinori; Yamashita, Yasuyuki; Yoshimatsu, Shunji; Matsukawa, Tetsuya; Imuta, Masanori; Sagara, Katsuro

    2008-01-01

    We have often encountered high signal intensity (SI) of the cingulate gyrus and insula during diffusion-weighted magnetic resonance imaging (DW-MRI) on neurologically healthy adults. To date, cortical signal heterogeneity on DW images has not been investigated systematically. The purpose of our study was to determine whether there is regional signal variation in the brain cortices of neurologically healthy adults on DW-MR images. The SI of the cerebral cortices on DW-MR images at 1.5 T was evaluated in 50 neurologically healthy subjects (34 men, 16 women; age range 33-84 years; mean age 57.6 years). The cortical SI in the cingulate gyrus, insula, and temporal, occipital, and parietal lobes was graded relative to the SI of the frontal lobe. Contrast-to-noise ratios (CNRs) on DW-MR images were compared for each cortical area. Diffusion changes were analyzed by visually assessment of the differences in appearance among the cortices on apparent diffusion coefficient (ADC) maps. Increased SI was frequently seen in the cingulate gyrus and insula regardless of patient age. There were no significant gender- or laterality-related differences. The CNR was significantly higher in the cingulate gyrus and insula than in the other cortices (p <.01), and significant differences existed among the cortical regions (p <.001). There were no apparent ADC differences among the cortices on ADC maps. Regional signal variation of the brain cortices was observed on DW-MR images of healthy subjects, and the cingulate gyrus and insula frequently manifested high SI. These findings may help in the recognition of cortical signal abnormalities as visualized on DW-MR images. (orig.)

  18. Congenital brain abnormalities: an update on malformations of cortical development and infratentorial malformations.

    Science.gov (United States)

    Poretti, Andrea; Boltshauser, Eugen; Huisman, Thierry A G M

    2014-07-01

    In the past two decades, significant progress in neuroimaging and genetic techniques has allowed for advances in the correct definition/classification of congenital brain abnormalities, which have resulted in a better understanding of their pathogenesis. In addition, new groups of diseases, such as axonal guidance disorders or tubulinopathies, are increasingly reported. Well-defined neuroimaging diagnostic criteria have been suggested for the majority of congenital brain abnormalities. Accurate diagnoses of these complex abnormalities, including distinction between malformations and disruptions, are of paramount significance for management, prognosis, and family counseling. In the next decade, these advances will hopefully be translated into deeper understanding of these disorders and more specific treatments. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  19. Basal ganglia impairments in autism spectrum disorder are related to abnormal signal gating to prefrontal cortex.

    Science.gov (United States)

    Prat, Chantel S; Stocco, Andrea; Neuhaus, Emily; Kleinhans, Natalia M

    2016-10-01

    Research on the biological basis of autism spectrum disorder has yielded a list of brain abnormalities that are arguably as diverse as the set of behavioral symptoms that characterize the disorder. Among these are patterns of abnormal cortical connectivity and abnormal basal ganglia development. In attempts to integrate the existing literature, the current paper tests the hypothesis that impairments in the basal ganglia's function to flexibly select and route task-relevant neural signals to the prefrontal cortex underpins patterns of abnormal synchronization between the prefrontal cortex and other cortical processing centers observed in individuals with autism spectrum disorder (ASD). We tested this hypothesis using a Dynamic Causal Modeling analysis of neuroimaging data collected from 16 individuals with ASD (mean age=25.3 years; 6 female) and 17 age- and IQ-matched neurotypical controls (mean age=25.6, 6 female), who performed a Go/No-Go test of executive functioning. Consistent with the hypothesis tested, a random-effects Bayesian model selection procedure determined that a model of network connectivity in which basal ganglia activation modulated connectivity between the prefrontal cortex and other key cortical processing centers best fit the data of both neurotypicals and individuals with ASD. Follow-up analyses suggested that the largest group differences were observed for modulation of connectivity between prefrontal cortex and the sensory input region in the occipital lobe [t(31)=2.03, p=0.025]. Specifically, basal ganglia activation was associated with a small decrease in synchronization between the occipital region and prefrontal cortical regions in controls; however, in individuals with ASD, basal ganglia activation resulted in increased synchronization between the occipital region and the prefrontal cortex. We propose that this increased synchronization may reflect a failure in basal ganglia signal gating mechanisms, resulting in a non-selective copying

  20. Is Love Right? Prefrontal Resting Brain Asymmetry is Related to the Affiliation Motive

    Directory of Open Access Journals (Sweden)

    Markus eQuirin

    2013-12-01

    Full Text Available Previous research on relationships between affective-motivational traits and hemispheric asymmetries in resting frontal alpha band power as measured by electroencephalography (EEG has focused on individual differences in motivational direction (approach vs. withdrawal or behavioral activation. The present study investigated resting frontal alpha asymmetries in 72 participants as a function of individual differences in the implicit affiliation motive as measured with the operant motive test (OMT and explored the brain source thereof. As predicted, relative right frontal activity as indexed by increased alpha band suppression was related to the implicit affiliation motive. No relationships were found for explicit personality measures. Intracranial current density distributions of alpha based on Variable Resolution Electromagnetic Tomography (VARETA source estimations suggests that the source of cortical alpha distribution is located within the right ventromedial prefrontal cortex (PFC. The present results are discussed with respect to differential roles of the two hemispheres in social motivation.

  1. Mapping cortical mesoscopic networks of single spiking cortical or sub-cortical neurons.

    Science.gov (United States)

    Xiao, Dongsheng; Vanni, Matthieu P; Mitelut, Catalin C; Chan, Allen W; LeDue, Jeffrey M; Xie, Yicheng; Chen, Andrew Cn; Swindale, Nicholas V; Murphy, Timothy H

    2017-02-04

    Understanding the basis of brain function requires knowledge of cortical operations over wide-spatial scales, but also within the context of single neurons. In vivo, wide-field GCaMP imaging and sub-cortical/cortical cellular electrophysiology were used in mice to investigate relationships between spontaneous single neuron spiking and mesoscopic cortical activity. We make use of a rich set of cortical activity motifs that are present in spontaneous activity in anesthetized and awake animals. A mesoscale spike-triggered averaging procedure allowed the identification of motifs that are preferentially linked to individual spiking neurons by employing genetically targeted indicators of neuronal activity. Thalamic neurons predicted and reported specific cycles of wide-scale cortical inhibition/excitation. In contrast, spike-triggered maps derived from single cortical neurons yielded spatio-temporal maps expected for regional cortical consensus function. This approach can define network relationships between any point source of neuronal spiking and mesoscale cortical maps.

  2. Therapeutic potential of the novel hybrid molecule JM-20 against focal cortical ischemia in rats

    Directory of Open Access Journals (Sweden)

    Yanier Núñez Figueredo

    2016-08-01

    Full Text Available Context: Despite the great mortality and morbidity of stroke, treatment options remain limited. We previously showed that JM-20, a novel synthetic molecule, possessed a strong neuroprotective effect in rats subjected to transient middle cerebral artery occlusion. However, to verify the robustness of the pre-clinical neuroprotective effects of JM-20 to get good prognosis in the translation to the clinic, it is necessary to use other experimental models of brain ischemia. Aims: To evaluate the neuroprotective effects of JM-20 following the onset of permanent focal cerebral ischemia induced in rats by thermocoagulation of blood into pial blood vessels of cerebral cortices. Methods: Ischemic lesion was induced by thermocoagulation of blood into pial blood vessels of primary motor and somatosensory cortices. Behavioral performance was evaluated by the cylinder testing for a period of 2, 3 and 7 days after surgery, and was followed by histopathological study in brain cortex stained with hematoxylin- eosin. Results: Ischemic injury resulted in impaired function of the forelimb evidenced by high asymmetry punctuation, and caused histopathological alterations indicative of tissue damage at cerebral cortex. JM-20 treatment (4 and 8 mg/kg significantly decreased asymmetry scores and histological alterations with a marked preservation of cortical neurons. Conclusions: The effects of permanent brain ischemia were strongly attenuated by JM-20 administration, which expands and improves the current preclinical data of JM-20 as neuroprotector against cerebral ischemia, and strongly support the examination of its translation to the clinic to treat acute ischemic stroke.

  3. Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders

    Science.gov (United States)

    Kana, Rajesh K.; Libero, Lauren E.; Moore, Marie S.

    2011-12-01

    Recent findings of neurological functioning in autism spectrum disorder (ASD) point to altered brain connectivity as a key feature of its pathophysiology. The cortical underconnectivity theory of ASD (Just et al., 2004) provides an integrated framework for addressing these new findings. This theory suggests that weaker functional connections among brain areas in those with ASD hamper their ability to accomplish complex cognitive and social tasks successfully. We will discuss this theory, but will modify the term underconnectivity to ‘disrupted cortical connectivity’ to capture patterns of both under- and over-connectivity in the brain. In this paper, we will review the existing literature on ASD to marshal supporting evidence for hypotheses formulated on the disrupted cortical connectivity theory. These hypotheses are: 1) underconnectivity in ASD is manifested mainly in long-distance cortical as well as subcortical connections rather than in short-distance cortical connections; 2) underconnectivity in ASD is manifested only in complex cognitive and social functions and not in low-level sensory and perceptual tasks; 3) functional underconnectivity in ASD may be the result of underlying anatomical abnormalities, such as problems in the integrity of white matter; 4) the ASD brain adapts to underconnectivity through compensatory strategies such as overconnectivity mainly in frontal and in posterior brain areas. This may be manifested as deficits in tasks that require frontal-parietal integration. While overconnectivity can be tested by examining the cortical minicolumn organization, long-distance underconnectivity can be tested by cognitively demanding tasks; and 5) functional underconnectivity in brain areas in ASD will be seen not only during complex tasks but also during task-free resting states. We will also discuss some empirical predictions that can be tested in future studies, such as: 1) how disrupted connectivity relates to cognitive impairments in skills

  4. Anterior Cortical Development During Adolescence in Bipolar Disorder.

    Science.gov (United States)

    Najt, Pablo; Wang, Fei; Spencer, Linda; Johnston, Jennifer A Y; Cox Lippard, Elizabeth T; Pittman, Brian P; Lacadie, Cheryl; Staib, Lawrence H; Papademetris, Xenophon; Blumberg, Hilary P

    2016-02-15

    Increasing evidence supports a neurodevelopmental model for bipolar disorder (BD), with adolescence as a critical period in its development. Developmental abnormalities of anterior paralimbic and heteromodal frontal cortices, key structures in emotional regulation processes and central in BD, are implicated. However, few longitudinal studies have been conducted, limiting understanding of trajectory alterations in BD. In this study, we performed longitudinal neuroimaging of adolescents with and without BD and assessed volume changes over time, including changes in tissue overall and within gray and white matter. Larger decreases over time in anterior cortical volumes in the adolescents with BD were hypothesized. Gray matter decreases and white matter increases are typically observed during adolescence in anterior cortices. It was hypothesized that volume decreases over time in BD would reflect alterations in those processes, showing larger gray matter contraction and decreased white matter expansion. Two high-resolution magnetic resonance imaging scans were obtained approximately 2 years apart for 35 adolescents with bipolar I disorder (BDI) and 37 healthy adolescents. Differences over time between groups were investigated for volume overall and specifically for gray and white matter. Relative to healthy adolescents, adolescents with BDI showed greater volume contraction over time in a region including insula and orbitofrontal, rostral, and dorsolateral prefrontal cortices (p adolescence in BDI in anterior cortices, including altered developmental trajectories of anterior gray and white matter. Published by Elsevier Inc.

  5. Thickened cortical bones in congenital neutropenia

    International Nuclear Information System (INIS)

    Boechat, M.I.; Gormley, L.S.; O'Laughlin, B.J.

    1987-01-01

    Congenital neutropenia is an uncommon entity which may be familial and has a wide spectrum of clinical expression. Three sisters with the severe form of the disease, that suffered from recurrent infections which lead to their demise are described. Review of their radiographs revealed the presence of cortical thickening of the bones. Although several syndroms with different bone abnormalities have been reported associated with neutropenia, the radiographic finding of thickened cortex in children with congenital neutropenia has not been previously described. (orig.)

  6. Thickened cortical bones in congenital neutropenia

    Energy Technology Data Exchange (ETDEWEB)

    Boechat, M.I.; Gormley, L.S.; O' Laughlin, B.J.

    1987-02-01

    Congenital neutropenia is an uncommon entity which may be familial and has a wide spectrum of clinical expression. Three sisters with the severe form of the disease, that suffered from recurrent infections which lead to their demise are described. Review of their radiographs revealed the presence of cortical thickening of the bones. Although several syndroms with different bone abnormalities have been reported associated with neutropenia, the radiographic finding of thickened cortex in children with congenital neutropenia has not been previously described.

  7. Altered cortical thickness and attentional deficits in adolescent girls and women with bulimia nervosa

    Science.gov (United States)

    Stefan, Mihaela; Lee, Seonjoo; Wang, Zhishun; Terranova, Kate; Attia, Evelyn; Marsh, Rachel

    2018-01-01

    Background Frontostriatal and frontoparietal abnormalities likely contribute to deficits in control and attentional processes in individuals with bulimia nervosa and to the persistence of dysregulated eating across development. This study assessed these processes and cortical thickness in a large sample of adolescent girls and women with bulimia nervosa compared with healthy controls. Methods We collected anatomical MRI data from adolescent girls and women (ages 12–38 yr) with full or subthreshold bulimia nervosa and age-matched healthy controls who also completed the Conners Continuous Performance Test-II (CPT-II). Groups were compared on task performance and cortical thickness. Mediation analyses explored associations among cortical thickness, CPT-II variables, bulimia nervosa symptoms and age. Results We included 60 girls and women with bulimia nervosa and 54 controls in the analyses. Compared with healthy participants, those with bulimia nervosa showed increased impulsivity and inattention on the CPT-II, along with reduced thickness of the right pars triangularis, right superior parietal and left dorsal posterior cingulate cortices. In the bulimia nervosa group, exploratory analyses revealed that binge eating frequency correlated inversely with cortical thickness of frontoparietal and insular regions and that reduced frontoparietal thickness mediated the association between age and increased symptom severity and inattention. Binge eating frequency also mediated the association between age and lower prefrontal cortical thickness. Limitations These findings are applicable to only girls and women with bulimia nervosa, and our cross-sectional design precludes understanding of whether cortical thickness alterations precede or result from bulimia nervosa symptoms. Conclusion Structural abnormalities in the frontoparietal and posterior cingulate regions comprising circuits that support control and attentional processes should be investigated as potential

  8. Relationship between higher cortical dysfunction and the findings of magnetic resonance imaging in systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Maeshima, Etsuko; Maeshima, Shinichiro; Yamada, Yoichi; Yukawa, Susumu [Wakayama Medical Coll. (Japan)

    1996-04-01

    The relationship between systemic lupus erythematosus (SLE) and organic lesions was investigated by magnetic resonance imaging (MRI) to clarify the etiology of higher cortical dysfunction in SLE. The subjects were 10 patients with SLE, and higher cortical dysfunction was observed in 8 (80%) of the 10 patients. Five (82.5%) of the 8 patients showed abnormal MRI findings. The findings of higher cortical dysfunction were consistent with the MRI findings in 1 of the 5 patients, but not in the remaining four. MRI revealed no lesion despite the presence of higher cortical dysfunction in three patients. These results suggest that the association of organic changes and functional changes in cerebral nerve cells is important for etiology of higher cortical dysfunction in SLE. (author).

  9. Relationship between higher cortical dysfunction and the findings of magnetic resonance imaging in systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Maeshima, Etsuko; Maeshima, Shinichiro; Yamada, Yoichi; Yukawa, Susumu

    1996-01-01

    The relationship between systemic lupus erythematosus (SLE) and organic lesions was investigated by magnetic resonance imaging (MRI) to clarify the etiology of higher cortical dysfunction in SLE. The subjects were 10 patients with SLE, and higher cortical dysfunction was observed in 8 (80%) of the 10 patients. Five (82.5%) of the 8 patients showed abnormal MRI findings. The findings of higher cortical dysfunction were consistent with the MRI findings in 1 of the 5 patients, but not in the remaining four. MRI revealed no lesion despite the presence of higher cortical dysfunction in three patients. These results suggest that the association of organic changes and functional changes in cerebral nerve cells is important for etiology of higher cortical dysfunction in SLE. (author)

  10. The relationship of impulsivity and cortical thickness in depressed and non-depressed adolescents.

    Science.gov (United States)

    Fradkin, Yuli; Khadka, Sabin; Bessette, Katie L; Stevens, Michael C

    2017-10-01

    Major Depressive Disorder (MDD) is recognized to be heterogeneous in terms of brain structure abnormality findings across studies, which might reflect previously unstudied traits that confer variability to neuroimaging measurements. The purpose of this study was to examine the relationships between different types of trait impulsivity and MDD diagnosis on adolescent brain structure. We predicted that adolescents with depression who were high on trait impulsivity would have more abnormal cortical structure than depressed patients or non-MDD who were low on impulsivity. We recruited 58 subjects, including 29 adolescents (ages 12-19) with a primary DSM-IV diagnosis of MDD and a history of suicide attempt and 29 demographically-matched healthy control participants. Our GLM-based analyses sought to describe differences in the linear relationships between cortical thickness and impulsivity trait levels. As hypothesized, we found significant moderation effects in rostral middle frontal gyrus and right paracentral lobule cortical thickness for different subscales of the Barratt Impulsiveness Scale. However, although these brain-behavior relationships differed between diagnostic study groups, they were not simple additive effects as we had predicted. For the middle frontal gyrus, non-MDD participants showed a strong positive association between cortical thickness and BIS-11 Motor scores, while MDD-diagnosed participants showed a negative association. For Non-Planning Impulsiveness, paracentral lobule cortical thickness was observed with greater impulsivity in MDD, but no association was found for controls. In conclusion, the findings confirm that dimensions of impulsivity have discrete neural correlates, and show that relationships between impulsivity and brain structure are expressed differently in adolescents with MDD compared to non-MDD.

  11. Persistent renal cortical scintigram defects in children 2 years after urinary tract infection

    International Nuclear Information System (INIS)

    Ditchfield, Michael R.; Cook, David J.; Campo, John F. de; Grimwood, Keith; Powell, Harley R.; Gulati, Sanjeev; Sloane, Robert

    2004-01-01

    Background: Renal cortical scintigraphic studies challenge the role of vesicoureteric reflux in renal scar development, emphasizing instead the part played by acute pyelonephritis. Objective: To determine the prevalence of renal cortical defects in a child cohort 2 years after the child's first diagnosed urinary tract infection and to analyze the relationship of these defects with acute illness variables, primary vesicoureteric reflux and recurrent infections. Materials and methods: In a prospective cohort study, 193 children younger than 5 years with their first proven urinary tract infection underwent renal sonography, voiding cystourethrogram, and renal cortical scintigraphy within 15 days of diagnosis. Two years later, 150 of the 193 children, or 77.7%, had a further renal cortical scintigram, including 75, or 86.2%, of the 87 children who had acute scintigraphic defects. The relationship of cortical defects to age, gender, pre-treatment symptom duration, hospitalization, presence and grade of vesicoureteric reflux, and recurrent urinary tract infections was evaluated. Results: Overall, 20 of the 150 (13.3%; 95% confidence interval (CI) 8.3, 19.8) children had persistent defects 2 years after infection. This included 20 of 75 (26.7%; 95% CI 17.1, 38.1) with initially abnormal scintigrams. No new defects were detected. Although acute defects were more common in the young, those with persistent defects were older (median ages 16.4 vs. 6.8 months, P=0.004) than those with transient abnormalities. After adjustment for age, persistent defects were no longer associated with gender and were not predicted by acute illness variables, primary vesicoureteric reflux or recurrent infections. (orig.)

  12. Tensor-based cortical surface morphometry via weighted spherical harmonic representation.

    Science.gov (United States)

    Chung, Moo K; Dalton, Kim M; Davidson, Richard J

    2008-08-01

    We present a new tensor-based morphometric framework that quantifies cortical shape variations using a local area element. The local area element is computed from the Riemannian metric tensors, which are obtained from the smooth functional parametrization of a cortical mesh. For the smooth parametrization, we have developed a novel weighted spherical harmonic (SPHARM) representation, which generalizes the traditional SPHARM as a special case. For a specific choice of weights, the weighted-SPHARM is shown to be the least squares approximation to the solution of an isotropic heat diffusion on a unit sphere. The main aims of this paper are to present the weighted-SPHARM and to show how it can be used in the tensor-based morphometry. As an illustration, the methodology has been applied in the problem of detecting abnormal cortical regions in the group of high functioning autistic subjects.

  13. Planum Temporale Morphology in Children with Developmental Dyslexia

    Science.gov (United States)

    Bloom, Juliana Sanchez; Garcia-Barrera, Mauricio A.; Miller, Carlin J.; Miller, Scott R.; Hynd, George W.

    2013-01-01

    The planum temporale is a highly lateralized cortical region, located within Wernicke’s area, which is thought to be involved in auditory processing, phonological processing, and language. Research has linked abnormal morphology of the planum temporale to developmental dyslexia, although results have varied in large part due to methodological inconsistencies in the literature. This study examined the asymmetry of the planum temporale in 29 children who met criteria for dyslexia and 26 children whose reading was unimpaired. Leftward asymmetry of the planum temporale was found in the total sample and this leftward asymmetry was significantly reduced in children with dyslexia. This reduced leftward asymmetry in children with dyslexia was due to a planum temporale that is larger in the right hemisphere. This study lends support to the idea that planum temporale asymmetry is altered in children with developmental dyslexia. PMID:23707683

  14. Congenital visual pathway abnormalities : A window onto cortical stability and plasticity

    NARCIS (Netherlands)

    Hoffmann, Michael B.; Dumoulin, Serge O.

    2015-01-01

    Sensory systems project information in a highly organized manner to the brain, where it is preserved in maps of the sensory structures. These sensory projections are altered in congenital abnormalities, such as anophthalmia, albinism, achiasma, and hemihydranencephaly. Consequently, these

  15. Anterior-posterior and lateral hemispheric alterations in cortical glucose utilization in Alzheimer's disease

    International Nuclear Information System (INIS)

    Friedland, T.F.; Budinger, T.F.; Jaqust, W.J.; Yano, Y.; Huesman, R.H.; Knittel, B.; Koss, E.; Ober, B.A.

    1984-01-01

    The anatomical and chemical features of Alzheimer's disease (AD) are not distributed evenly throughout the brain. However, the nature of this focality has not been well established in vivo. Dynamic studies using the Donner 280-Crystal Positron Tomograph with (F-18)2-fluorodeoxyglucose were performed in 17 subjects meeting current research criteria for AD, and in 7 healthy age-matched control subjects. Glucose metabolic rates in the temporal-parietal cortex are 27% lower in AD than in controls. Ratios of activity density reveal consistently lower metabolic rates in temporal-parietal than frontal cortex in the AD group, while healthy aged subjects have equal metabolic rates in the two areas. Similar findings have been reported by other laboratories. A major finding is a striking lateral asymmetry of cortical metabolism in AD which does not favor either hemisphere. (The asymmetry is 13% in the AD group, 3% in controls, p<.005.) This has not been previously reported in AD. The consistency with which anterior-posterior metabolic differences are found in AD suggests that the focality of the metabolic changes may be used to develop a noninvasive diagnostic test for the disorder. The metabolic asymmetry in AD may be compared to the clinical and pathological asymmetry found in Creutzfeldt-Jakob disease, and may represent an additional link between AD and the subacute spongiform encephalopathies

  16. Reversal of brain metabolic abnormalities following treatment of AIDS dementia complex with 3'-azido-2',3'-dideoxythymidine (AZT, zidovudine): a PET-FDG study

    International Nuclear Information System (INIS)

    Brunetti, A.; Berg, G.; Di Chiro, G.

    1989-01-01

    Brain glucose metabolism was evaluated in four patients with acquired immunodeficiency syndrome (AIDS) dementia complex using [ 18 F]fluorodeoxyglucose (FDG) and positron emission tomography (PET) scans at the beginning of therapy with 3'-azido-2',3'-dideoxythymidine (AZT, zidovudine), and later in the course of therapy. In two patients, baseline, large focal cortical abnormalities of glucose utilization were reversed during the course of therapy. In the other two patients, the initial PET study did not reveal pronounced focal alterations, while the post-treatment scans showed markedly increased cortical glucose metabolism. The improved cortical glucose utilization was accompanied in all patients by immunologic and neurologic improvement. PET-FDG studies can detect cortical metabolic abnormalities associated with AIDS dementia complex, and may be used to monitor the metabolic improvement in response to AZT treatment

  17. Head and pelvic movement asymmetries at trot in riding horses in training and perceived as free from lameness by the owner

    Science.gov (United States)

    Egenvall, Agneta; Haubro Andersen, Pia; Pfau, Thilo

    2017-01-01

    Recent studies evaluating horses in training and considered free from lameness by their owners have identified a large proportion of horses with motion asymmetries. However the prevalence, type and magnitude of asymmetries when trotting in a straight line or on the lunge have not been investigated. The aim of this study was to objectively investigate the presence of motion asymmetries in riding horses in training by identifying the side and quantifying the degree and type (impact, pushoff) of forelimb and hind limb asymmetries found during straight line trot and on the lunge. In a cross-sectional study, vertical head and pelvic movement symmetry was measured in 222 Warmblood type riding horses, all without perceived performance issues and considered free from lameness by their owners. Body-mounted uni-axial accelerometers were used and differences between maximum and minimum head (HDmax, HDmin) and pelvic (PDmax, PDmin) vertical displacement between left and right forelimb and hind limb stances were calculated during straight line trot and on the lunge. Previously reported symmetry thresholds were used. The thresholds for symmetry were exceeded in 161 horses for at least one variable while trotting in a straight line, HDmin (n = 58, mean 14.3 mm, SD 7.1), HDmax (n = 41, mean 12.7 mm, SD 5.5), PDmax (n = 87, mean 6.5 mm, SD 3.10), PDmin (n = 79, mean 5.7 mm, SD 2.1). Contralateral and ipsilateral concurrent forelimb and hind limb asymmetries were detected in 41 and 49 horses, respectively. There was a linear association between the straight line PDmin values and the values on the lunge with the lame limb to the inside of the circle. A large proportion (72.5%) of horses in training which were perceived as free from lameness by their owner showed movement asymmetries above previously reported asymmetry thresholds during straight line trot. It is not known to what extent these asymmetries are related to pain or to mechanical abnormalities. Therefore, one of the most

  18. Experimental investigation of transverse spin asymmetries in muon-p SIDIS processes: Sivers asymmetries

    CERN Document Server

    Adolph, C.; Alexakhin, V.Yu.; Alexandrov, Yu.; Alexeev, G.D.; Amoroso, A.; Antonov, A.A.; Austregesilo, A.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Bedfer, Y.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Crespo, M.L.; Dalla Torre, S.; Das, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Fischer, H.; Franco, C.; von Hohenesche, N.du Fresne; Friedrich, J.M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Grabmuller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Guthorl, T.; Haas, F.; von Harrach, D.; Heinsius, F.H.; Herrmann, F.; Hess, C.; Hinterberger, F.; Horikawa, N.; Hoppner, Ch.; d'Hose, N.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Joosten, R.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Korzenev, A.; Kotzinian, A.M.; Kouznetsov, O.; Kramer, M.; Kroumchtein, Z.V.; Kunne, F.; Kurek, K.; Lauser, L.; Lednev, A.A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Liska, T.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G.K.; Mann, A.; Marchand, C.; Martin, A.; Marzec, J.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu.V.; Moinester, M.A.; Morreale, A.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Negrini, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.I.; Nowak, W.D.; Nunes, A.S.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Perevalova, E.; Pesaro, G.; Peshekhonov, D.V.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Rajotte, J.F.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Richter, A.; Rocco, E.; Rondio, E.; Rossiyskaya, N.S.; Ryabchikov, D.I.; Samoylenko, V.D.; Sandacz, A.; Sapozhnikov, M.G.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schluter, T.; Schmidt, K.; Schmitt, L.; Schonning, K.; Schopferer, S.; Schott, M.; Schroder, W.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Sissakian, A.N.; Slunecka, M.; Smirnov, G.I.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Sznajder, P.; Takekawa, S.; Wolbeek, J.Ter; Tessaro, S.; Tessarotto, F.; Tkatchev, L.G.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Vlassov, N.V.; Wang, L.; Wilfert, M.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zhuravlev, N.; Zvyagin, A.

    2012-10-31

    The COMPASS Collaboration at CERN has measured the transverse spin azimuthal asymmetry of charged hadrons produced in semi-inclusive deep inelastic scattering using a 160 GeV positive muon beam and a transversely polarised NH_3 target. The Sivers asymmetry of the proton has been extracted in the Bjorken x range 0.003 0.03. The asymmetry is different from zero and positive also in the low x region, where sea-quarks dominate. The kinematic dependence of the asymmetry has also been investigated and results are given for various intervals of hadron and virtual photon fractional energy. In contrast to the case of the Collins asymmetry, the results on the Sivers asymmetry suggest a strong dependence on the four-momentum transfer to the nucleon, in agreement with the most recent calculations.

  19. Repair of Neocortex in a Model of Cortical Dysplasia

    Science.gov (United States)

    2007-03-27

    as dyslexia, intractable epilepsy, and schizophrenia which has been linked to abnormal reelin expression (Grayson et al., 2005; Brigman et al., 2006...exposure to ethanol on glutamate and GABA immunoreactivity in macaque somatosensory and motor cortices: critical timing of exposure. Neuroscience...Rothblat LA (2006) Executive functions in the heterozygous reeler mouse model of schizophrenia . Behav Neurosci 120:984-988. Caldwell MA, He X

  20. Study of asymmetry in motor areas related to handedness using the fMRI BOLD response Gaussian convolution model

    Energy Technology Data Exchange (ETDEWEB)

    Gao Qing [School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); School of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Chen Huafu [School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); School of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu 610054 (China)], E-mail: Chenhf@uestc.edu.cn; Gong Qiyong [Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041 (China)

    2009-10-30

    Brain asymmetry is a phenomenon well known for handedness, and has been studied in the motor cortex. However, few studies have quantitatively assessed the asymmetrical cortical activities for handedness in motor areas. In the present study, we systematically and quantitatively investigated asymmetry in the left and right primary motor cortices during sequential finger movements using the Gaussian convolution model approach based on the functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) response. Six right-handed and six left-handed subjects were recruited to perform three types of hand movement tasks. The results for the expected value of the Gaussian convolution model showed that it took the dominant hand a longer average interval of response delay regardless of the handedness and bi- or uni-manual performance. The results for the standard deviation of the Gaussian model suggested that in the mass neurons, these intervals of the dominant hand were much more variable than those of the non-dominant hand. When comparing bi-manual movement conditions with uni-manual movement conditions in the primary motor cortex (PMC), both the expected value and standard deviation in the Gaussian function were significantly smaller (p < 0.05) in the bi-manual conditions, showing that the movement of the non-dominant hand influenced that of the dominant hand.

  1. Study of asymmetry in motor areas related to handedness using the fMRI BOLD response Gaussian convolution model

    International Nuclear Information System (INIS)

    Gao Qing; Chen Huafu; Gong Qiyong

    2009-01-01

    Brain asymmetry is a phenomenon well known for handedness, and has been studied in the motor cortex. However, few studies have quantitatively assessed the asymmetrical cortical activities for handedness in motor areas. In the present study, we systematically and quantitatively investigated asymmetry in the left and right primary motor cortices during sequential finger movements using the Gaussian convolution model approach based on the functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) response. Six right-handed and six left-handed subjects were recruited to perform three types of hand movement tasks. The results for the expected value of the Gaussian convolution model showed that it took the dominant hand a longer average interval of response delay regardless of the handedness and bi- or uni-manual performance. The results for the standard deviation of the Gaussian model suggested that in the mass neurons, these intervals of the dominant hand were much more variable than those of the non-dominant hand. When comparing bi-manual movement conditions with uni-manual movement conditions in the primary motor cortex (PMC), both the expected value and standard deviation in the Gaussian function were significantly smaller (p < 0.05) in the bi-manual conditions, showing that the movement of the non-dominant hand influenced that of the dominant hand.

  2. Auditory cortical volumes and musical ability in Williams syndrome.

    Science.gov (United States)

    Martens, Marilee A; Reutens, David C; Wilson, Sarah J

    2010-07-01

    Individuals with Williams syndrome (WS) have been shown to have atypical morphology in the auditory cortex, an area associated with aspects of musicality. Some individuals with WS have demonstrated specific musical abilities, despite intellectual delays. Primary auditory cortex and planum temporale volumes were manually segmented in 25 individuals with WS and 25 control participants, and the participants also underwent testing of musical abilities. Left and right planum temporale volumes were significantly larger in the participants with WS than in controls, with no significant difference noted between groups in planum temporale asymmetry or primary auditory cortical volumes. Left planum temporale volume was significantly increased in a subgroup of the participants with WS who demonstrated specific musical strengths, as compared to the remaining WS participants, and was highly correlated with scores on a musical task. These findings suggest that differences in musical ability within WS may be in part associated with variability in the left auditory cortical region, providing further evidence of cognitive and neuroanatomical heterogeneity within this syndrome. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Alterations of cortical GABA neurons and network oscillations in schizophrenia.

    Science.gov (United States)

    Gonzalez-Burgos, Guillermo; Hashimoto, Takanori; Lewis, David A

    2010-08-01

    The hypothesis that alterations of cortical inhibitory gamma-aminobutyric acid (GABA) neurons are a central element in the pathology of schizophrenia has emerged from a series of postmortem studies. How such abnormalities may contribute to the clinical features of schizophrenia has been substantially informed by a convergence with basic neuroscience studies revealing complex details of GABA neuron function in the healthy brain. Importantly, activity of the parvalbumin-containing class of GABA neurons has been linked to the production of cortical network oscillations. Furthermore, growing knowledge supports the concept that gamma band oscillations (30-80 Hz) are an essential mechanism for cortical information transmission and processing. Herein we review recent studies further indicating that inhibition from parvalbumin-positive GABA neurons is necessary to produce gamma oscillations in cortical circuits; provide an update on postmortem studies documenting that deficits in the expression of glutamic acid decarboxylase67, which accounts for most GABA synthesis in the cortex, are widely observed in schizophrenia; and describe studies using novel, noninvasive approaches directly assessing potential relations between alterations in GABA, oscillations, and cognitive function in schizophrenia.

  4. Major Superficial White Matter Abnormalities in Huntington's Disease

    Science.gov (United States)

    Phillips, Owen R.; Joshi, Shantanu H.; Squitieri, Ferdinando; Sanchez-Castaneda, Cristina; Narr, Katherine; Shattuck, David W.; Caltagirone, Carlo; Sabatini, Umberto; Di Paola, Margherita

    2016-01-01

    Background: The late myelinating superficial white matter at the juncture of the cortical gray and white matter comprising the intracortical myelin and short-range association fibers has not received attention in Huntington's disease. It is an area of the brain that is late myelinating and is sensitive to both normal aging and neurodegenerative disease effects. Therefore, it may be sensitive to Huntington's disease processes. Methods: Structural MRI data from 25 Pre-symptomatic subjects, 24 Huntington's disease patients and 49 healthy controls was run through a cortical pattern-matching program. The surface corresponding to the white matter directly below the cortical gray matter was then extracted. Individual subject's Diffusion Tensor Imaging (DTI) data was aligned to their structural MRI data. Diffusivity values along the white matter surface were then sampled at each vertex point. DTI measures with high spatial resolution across the superficial white matter surface were then analyzed with the General Linear Model to test for the effects of disease. Results: There was an overall increase in the axial and radial diffusivity across much of the superficial white matter (p < 0.001) in Pre-symptomatic subjects compared to controls. In Huntington's disease patients increased diffusivity covered essentially the whole brain (p < 0.001). Changes are correlated with genotype (CAG repeat number) and disease burden (p < 0.001). Conclusions: This study showed broad abnormalities in superficial white matter even before symptoms are present in Huntington's disease. Since, the superficial white matter has a unique microstructure and function these abnormalities suggest it plays an important role in the disease. PMID:27242403

  5. Abnormal fetal cerebral laminar organization in cobblestone complex as seen on post-mortem MRI and DTI

    International Nuclear Information System (INIS)

    Widjaja, Elysa; Geibprasert, Sasikhan; Blaser, Susan; Rayner, Tammy; Shannon, Patrick

    2009-01-01

    We report a unique case of cobblestone complex using post-mortem MR and diffusion tensor imaging to assess the laminar organization of the fetal cerebrum. The imaging findings were correlated with autopsy findings. Abnormal cortical development in cobblestone complex resulted in disruption of normal laminar organization of the fetal brain, which was seen as interruption and nodularity of the high-signal T1 cortical band with increased anisotropy and medium diffusivity extending beyond the cortical band into the cerebral mantle on post-mortem MR and diffusion tensor imaging. (orig.)

  6. Abnormal fetal cerebral laminar organization in cobblestone complex as seen on post-mortem MRI and DTI

    Energy Technology Data Exchange (ETDEWEB)

    Widjaja, Elysa; Geibprasert, Sasikhan; Blaser, Susan; Rayner, Tammy [Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Shannon, Patrick [University of Toronto, Department of Pathology, Mount Sinai Hospital, Toronto (Canada)

    2009-08-15

    We report a unique case of cobblestone complex using post-mortem MR and diffusion tensor imaging to assess the laminar organization of the fetal cerebrum. The imaging findings were correlated with autopsy findings. Abnormal cortical development in cobblestone complex resulted in disruption of normal laminar organization of the fetal brain, which was seen as interruption and nodularity of the high-signal T1 cortical band with increased anisotropy and medium diffusivity extending beyond the cortical band into the cerebral mantle on post-mortem MR and diffusion tensor imaging. (orig.)

  7. Time course of transient cortical scintigraphic defects associated with acute pyelonephritis

    Energy Technology Data Exchange (ETDEWEB)

    Ditchfield, Michael R.; Summerville, Dianne; Cook, David J.; Campo, John F. de [Department of Radiology, Royal Children' s Hospital, Melbourne 3052 (Australia); Grimwood, Keith; Nolan, Terrance M. [Department of General Paediatrics, Royal Children' s Hospital, Melbourne (Australia); Department of Paediatrics, University of Melbourne, Melbourne (Australia); Powell, Harley R. [Department of Nephrology, Royal Children' s Hospital, Melbourne (Australia); Sloane, Robert [Department of General Paediatrics, Royal Children' s Hospital, Melbourne (Australia)

    2002-12-01

    Acute pyelonephritis is distinguished from renal scarring using repeat cortical scintigraphy. The defects of acute pyelonephritis resolve, while those of scars persist. To determine the duration of reversible cortical defects following acute pyelonephritis and the time interval required to differentiate infection from scars. Materials and methods. An observational prospective study of 193 children (386 kidneys) aged less than 5 years following their first proven urinary tract infection (UTI). Renal cortical scintigraphic defects were detected in 112 (29%) kidneys within 15 days of diagnosis. Of these, 95 underwent repeat renal cortical scans 2 years after the UTI, including 50 with additional scans performed within 2-6 months of infection. Of the 50 kidneys undergoing a second renal cortical scan within 2-6 months of the first UTI, 22 (44%) had persistent defects. A third scan was performed on 17 (77%) kidneys after 2 years, by which time defects had resolved in another 8 (47%) kidneys. The predictive value of defects detected within 2-6 months of UTI representing scars is 53% (95% CI 28, 77). Overall, nine (18%) kidneys with initial renal cortical abnormalities had permanent defects. In the 45 kidneys undergoing a second cortical scan more than 6 months after the UTI, 11 (24%) had persistent defects. None of the 95 kidneys undergoing serial scans developed new or larger defects. Renal scars may not be reliably diagnosed by cortical scintigraphy performed within 6 months of UTI because the inflammatory lesions may not have fully resolved. (orig.)

  8. Time course of transient cortical scintigraphic defects associated with acute pyelonephritis

    International Nuclear Information System (INIS)

    Ditchfield, Michael R.; Summerville, Dianne; Cook, David J.; Campo, John F. de; Grimwood, Keith; Nolan, Terrance M.; Powell, Harley R.; Sloane, Robert

    2002-01-01

    Acute pyelonephritis is distinguished from renal scarring using repeat cortical scintigraphy. The defects of acute pyelonephritis resolve, while those of scars persist. To determine the duration of reversible cortical defects following acute pyelonephritis and the time interval required to differentiate infection from scars. Materials and methods. An observational prospective study of 193 children (386 kidneys) aged less than 5 years following their first proven urinary tract infection (UTI). Renal cortical scintigraphic defects were detected in 112 (29%) kidneys within 15 days of diagnosis. Of these, 95 underwent repeat renal cortical scans 2 years after the UTI, including 50 with additional scans performed within 2-6 months of infection. Of the 50 kidneys undergoing a second renal cortical scan within 2-6 months of the first UTI, 22 (44%) had persistent defects. A third scan was performed on 17 (77%) kidneys after 2 years, by which time defects had resolved in another 8 (47%) kidneys. The predictive value of defects detected within 2-6 months of UTI representing scars is 53% (95% CI 28, 77). Overall, nine (18%) kidneys with initial renal cortical abnormalities had permanent defects. In the 45 kidneys undergoing a second cortical scan more than 6 months after the UTI, 11 (24%) had persistent defects. None of the 95 kidneys undergoing serial scans developed new or larger defects. Renal scars may not be reliably diagnosed by cortical scintigraphy performed within 6 months of UTI because the inflammatory lesions may not have fully resolved. (orig.)

  9. Neurochemical abnormalities in brains of renal failure patients treated by repeated hemodialysis.

    Science.gov (United States)

    Perry, T L; Yong, V W; Kish, S J; Ito, M; Foulks, J G; Godolphin, W J; Sweeney, V P

    1985-10-01

    We examined autopsied brain from 10 patients with end-stage renal failure who had undergone repeated hemodialysis. Eight had classic symptoms, and two had suggestive symptoms of dialysis encephalopathy. Findings were compared with those in autopsied brain from control adults who had never been hemodialyzed. Mean gamma-aminobutyric acid (GABA) contents were significantly reduced in frontal and occipital cortex, cerebellar cortex, dentate nucleus, caudate nucleus, and medial-dorsal thalamus of the hemodialyzed patients, the reduction being greater than 40% in cerebral cortex and thalamus. Choline acetyltransferase activity was reduced by 25-35% in three cortical regions in the hemodialyzed patients. These two abnormalities were observed in the brain of each hemodialyzed patient, regardless of whether or not the patient died with unequivocal dialysis encephalopathy. Pyridoxal phosphate contents were substantially reduced in brains of the hemodialyzed patients, but metabolites of noradrenaline, 3,4-dihydroxyphenylethylamine (dopamine), and 5-hydroxytryptamine (serotonin) were present in normal amounts. Aluminum levels were abnormally high in frontal cortical gray matter in the hemodialyzed patients. Although this study does not clarify the role played by aluminum toxicity in the pathogenesis of dialysis encephalopathy, the abnormalities we found suggest the need for further neurochemical investigations in this disorder.

  10. Quantitative Folding Pattern Analysis of Early Primary Sulci in Human Fetuses with Brain Abnormalities.

    Science.gov (United States)

    Im, K; Guimaraes, A; Kim, Y; Cottrill, E; Gagoski, B; Rollins, C; Ortinau, C; Yang, E; Grant, P E

    2017-07-01

    Aberrant gyral folding is a key feature in the diagnosis of many cerebral malformations. However, in fetal life, it is particularly challenging to confidently diagnose aberrant folding because of the rapid spatiotemporal changes of gyral development. Currently, there is no resource to measure how an individual fetal brain compares with normal spatiotemporal variations. In this study, we assessed the potential for automatic analysis of early sulcal patterns to detect individual fetal brains with cerebral abnormalities. Triplane MR images were aligned to create a motion-corrected volume for each individual fetal brain, and cortical plate surfaces were extracted. Sulcal basins were automatically identified on the cortical plate surface and compared with a combined set generated from 9 normal fetal brain templates. Sulcal pattern similarities to the templates were quantified by using multivariate geometric features and intersulcal relationships for 14 normal fetal brains and 5 fetal brains that were proved to be abnormal on postnatal MR imaging. Results were compared with the gyrification index. Significantly reduced sulcal pattern similarities to normal templates were found in all abnormal individual fetuses compared with normal fetuses (mean similarity [normal, abnormal], left: 0.818, 0.752; P the primary distinguishing features. The gyrification index was not significantly different between the normal and abnormal groups. Automated analysis of interrelated patterning of early primary sulci could outperform the traditional gyrification index and has the potential to quantitatively detect individual fetuses with emerging abnormal sulcal patterns. © 2017 by American Journal of Neuroradiology.

  11. Differences in hemispherical thalamo-cortical causality analysis during resting-state fMRI.

    Science.gov (United States)

    Anwar, Abdul Rauf; Muthalib, Makii; Perrey, Stephane; Wolff, Stephan; Deuschl, Guunther; Heute, Ulrich; Muthuraman, Muthuraman

    2014-01-01

    Thalamus is a very important part of the human brain. It has been reported to act as a relay for the messaging taking place between the cortical and sub-cortical regions of the brain. In the present study, we analyze the functional network between both hemispheres of the brain with the focus on thalamus. We used conditional Granger causality (CGC) and time-resolved partial directed coherence (tPDC) to investigate the functional connectivity. Results of CGC analysis revealed the asymmetry between connection strengths of the bilateral thalamus. Upon testing the functional connectivity of the default-mode network (DMN) at low-frequency fluctuations (LFF) and comparing coherence vectors using Spearman's rank correlation, we found that thalamus is a better source for the signals directed towards the contralateral regions of the brain, however, when thalamus acts as sink, it is a better sink for signals generated from ipsilateral regions of the brain.

  12. Structural Brain Abnormalities of Attention-Deficit/Hyperactivity Disorder With Oppositional Defiant Disorder.

    Science.gov (United States)

    Noordermeer, Siri D S; Luman, Marjolein; Greven, Corina U; Veroude, Kim; Faraone, Stephen V; Hartman, Catharina A; Hoekstra, Pieter J; Franke, Barbara; Buitelaar, Jan K; Heslenfeld, Dirk J; Oosterlaan, Jaap

    2017-11-01

    Attention-deficit/hyperactivity disorder (ADHD) is associated with structural abnormalities in total gray matter, basal ganglia, and cerebellum. Findings of structural abnormalities in frontal and temporal lobes, amygdala, and insula are less consistent. Remarkably, the impact of comorbid oppositional defiant disorder (ODD) (comorbidity rates up to 60%) on these neuroanatomical differences is scarcely studied, while ODD (in combination with conduct disorder) has been associated with structural abnormalities of the frontal lobe, amygdala, and insula. The aim of this study was to investigate the effect of comorbid ODD on cerebral volume and cortical thickness in ADHD. Three groups, 16 ± 3.5 years of age (mean ± SD; range 7-29 years), were studied on volumetric and cortical thickness characteristics using structural magnetic resonance imaging (surface-based morphometry): ADHD+ODD (n = 67), ADHD-only (n = 243), and control subjects (n = 233). Analyses included the moderators age, gender, IQ, and scan site. ADHD+ODD and ADHD-only showed volumetric reductions in total gray matter and (mainly) frontal brain areas. Stepwise volumetric reductions (ADHD+ODD attention, (working) memory, and decision-making. Volumetric reductions of frontal lobes were largest in the ADHD+ODD group, possibly underlying observed larger impairments in neurocognitive functions. Previously reported striatal abnormalities in ADHD may be caused by comorbid conduct disorder rather than ODD. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Sex, age, and cognitive correlates of asymmetries in thickness of the cortical mantle across the life span

    DEFF Research Database (Denmark)

    Plessen, Kerstin J; Hugdahl, Kenneth; Bansal, Ravi

    2014-01-01

    hemisphere than in the left on the lateral surface, whereas it derived from a steeper decline with age in the left hemisphere than in the right on the mesial surface. Finally, measures of performance on working memory and vocabulary tasks improved with increasing magnitudes of normal asymmetries in regions...... thought to support these cognitive capacities....

  14. Adams Oliver syndrome: Description of a new phenotype with cerebellar abnormalities in a family

    International Nuclear Information System (INIS)

    D’Amico, Alessandra; Melis, Daniela; D’Arco, Felice; Di Paolo, Nilde; Carotenuto, Barbara; D’Anna, Gennaro; Russo, Carmela; Boemio, Pasquale; Brunetti, Arturo

    2013-01-01

    To describe cerebellar abnormalities in a family composed by a father and two affected sibs with Adams Oliver syndrome (AOS) (OMIM 100300). Brain MRI and MR angiography were performed at 1.5T. The siblings presented cerebellar cortex dysplasia characterized by the presence of cysts. Abnormalities of CNS are an unusual manifestation of AOS. To our knowledge, this is the first report of cerebellar cortical dysplasia in a family with AOS

  15. Born criminal? Differences in structural, functional and behavioural lateralization between criminals and noncriminals.

    Science.gov (United States)

    Savopoulos, Priscilla; Lindell, Annukka K

    2018-02-15

    Over 100 years ago Lombroso [(1876/2006). Criminal man. Durham: Duke University Press] proposed a biological basis for criminality. Based on inspection of criminals' skulls he theorized that an imbalance of the cerebral hemispheres was amongst 18 distinguishing features of the criminal brain. Specifically, criminals were less lateralized than noncriminals. As the advent of neuroscientific techniques makes more fine-grained inspection of differences in brain structure and function possible, we review criminals' and noncriminals' structural, functional, and behavioural lateralization to evaluate the merits of Lombroso's thesis and investigate the evidence for the biological underpinning of criminal behaviour. Although the body of research is presently small, it appears consistent with Lombroso's proposal: criminal psychopaths' brains show atypical structural asymmetries, with reduced right hemisphere grey and white matter volumes, and abnormal interhemispheric connectivity. Functional asymmetries are also atypical, with criminal psychopaths showing a less lateralized cortical response than noncriminals across verbal, visuo-spatial, and emotional tasks. Finally, the incidence of non-right-handedness is higher in criminal than non-criminal populations, consistent with reduced cortical lateralization. Thus despite Lombroso's comparatively primitive and inferential research methods, his conclusion that criminals' lateralization differs from that of noncriminals is borne out by the neuroscientific research. How atypical cortical asymmetries predispose criminal behaviour remains to be determined.

  16. Thalamocortical functional connectivity in Lennox-Gastaut syndrome is abnormally enhanced in executive-control and default-mode networks.

    Science.gov (United States)

    Warren, Aaron E L; Abbott, David F; Jackson, Graeme D; Archer, John S

    2017-12-01

    To identify abnormal thalamocortical circuits in the severe epilepsy of Lennox-Gastaut syndrome (LGS) that may explain the shared electroclinical phenotype and provide potential treatment targets. Twenty patients with a diagnosis of LGS (mean age = 28.5 years) and 26 healthy controls (mean age = 27.6 years) were compared using task-free functional magnetic resonance imaging (MRI). The thalamus was parcellated according to functional connectivity with 10 cortical networks derived using group-level independent component analysis. For each cortical network, we assessed between-group differences in thalamic functional connectivity strength using nonparametric permutation-based tests. Anatomical locations were identified by quantifying spatial overlap with a histologically informed thalamic MRI atlas. In both groups, posterior thalamic regions showed functional connectivity with visual, auditory, and sensorimotor networks, whereas anterior, medial, and dorsal thalamic regions were connected with networks of distributed association cortex (including the default-mode, anterior-salience, and executive-control networks). Four cortical networks (left and right executive-control network; ventral and dorsal default-mode network) showed significantly enhanced thalamic functional connectivity strength in patients relative to controls. Abnormal connectivity was maximal in mediodorsal and ventrolateral thalamic nuclei. Specific thalamocortical circuits are affected in LGS. Functional connectivity is abnormally enhanced between the mediodorsal and ventrolateral thalamus and the default-mode and executive-control networks, thalamocortical circuits that normally support diverse cognitive processes. In contrast, thalamic regions connecting with primary and sensory cortical networks appear to be less affected. Our previous neuroimaging studies show that epileptic activity in LGS is expressed via the default-mode and executive-control networks. Results of the present study suggest that

  17. Renal cortical involvement in children with first UTI: does it differ in the presence of primary VUR?

    Science.gov (United States)

    Aktaş, Gül Ege; Inanir, Sabahat; Turoğlu, Halil Turgut

    2008-12-01

    The aim of this study was to investigate the influence of vesicoureteral reflux (VUR) on dimercaptosuccinic acid (DMSA) scintigraphic patterns in children with first symptomatic urinary tract infection (UTI). A total of 45 children with the diagnosis of first symptomatic UTI (28 girls, 17 boys, mean age 18 months, range 1 month-11 years) were reviewed. All DMSA scans were obtained within 2 months of bacteriologically proven UTI (median 21 days, mean 26 +/- 21, 14). After the exclusion of the patients with bilateral cortical lesions, 82 renal units were analyzed. The scintigraphic patterns included regional and global description of renal cortical abnormality (normal or decreased differential renal function, regional renal function (RRF), and the number and severity of cortical lesions). Vesicoureteral reflux was detected in 26 (32%) renal units (15 with grade 1-2, 11 with grade 3-4). Renal cortical abnormality was observed in 10 renal units without VUR (10/56, 17%) and 13 renal units with VUR (13/26: 50%). Of the 15 renal units, 5 with grade 1-2 VUR (5/15) and 8 of the 11 renal units with grade 3-4 VUR (8/11) had renal cortical involvement. The most common scintigraphic pattern in the patients without VUR was the preserved RRF (>or=45%) and two or fewer photon-deficient areas. On the other hand, a decreased RRF (children with first symptomatic UTI.

  18. Cortical Plasticity Induction by Pairing Subthalamic Nucleus Deep-Brain Stimulation and Primary Motor Cortical Transcranial Magnetic Stimulation in Parkinson's Disease.

    Science.gov (United States)

    Udupa, Kaviraja; Bahl, Nina; Ni, Zhen; Gunraj, Carolyn; Mazzella, Filomena; Moro, Elena; Hodaie, Mojgan; Lozano, Andres M; Lang, Anthony E; Chen, Robert

    2016-01-13

    Noninvasive brain stimulation studies have shown abnormal motor cortical plasticity in Parkinson's disease (PD). These studies used peripheral nerve stimulation paired with transcranial magnetic stimulation (TMS) to primary motor cortex (M1) at specific intervals to induce plasticity. Induction of cortical plasticity through stimulation of the basal ganglia (BG)-M1 connections has not been studied. In the present study, we used a novel technique of plasticity induction by repeated pairing of deep-brain stimulation (DBS) of the BG with M1 stimulation using TMS. We hypothesize that repeated pairing of subthalamic nucleus (STN)-DBS and M1-TMS at specific time intervals will lead to plasticity in the M1. Ten PD human patients with STN-DBS were studied in the on-medication state with DBS set to 3 Hz. The interstimulus intervals (ISIs) between STN-DBS and TMS that produced cortical facilitation were determined individually for each patient. Three plasticity induction conditions with repeated pairings (180 times) at specific ISIs (∼ 3 and ∼ 23 ms) that produced cortical facilitation and a control ISI of 167 ms were tested in random order. Repeated pairing of STN-DBS and M1-TMS at short (∼ 3 ms) and medium (∼ 23 ms) latencies increased M1 excitability that lasted for at least 45 min, whereas the control condition (fixed ISI of 167 ms) had no effect. There were no specific changes in motor thresholds, intracortical circuits, or recruitment curves. Our results indicate that paired-associative cortical plasticity can be induced by repeated STN and M1 stimulation at specific intervals. These results show that STN-DBS can modulate cortical plasticity. We introduced a new experimental paradigm to test the hypothesis that pairing subthalamic nucleus deep-brain stimulation (STN-DBS) with motor cortical transcranial magnetic stimulation (M1-TMS) at specific times can induce cortical plasticity in patients with Parkinson's disease (PD). We found that repeated pairing of STN

  19. The relationship between asymmetry, size and unusual venation in honey bees (Apis mellifera).

    Science.gov (United States)

    Łopuch, S; Tofilski, A

    2016-06-01

    Despite the fact that symmetry is common in nature, it is rarely perfect. Because there is a wide range of phenotypes which differs from the average one, the asymmetry should increase along with deviation. Therefore, the aim of this study was to assess the level of asymmetry in normal individuals as well as in phenodeviants categorized as minor or major based on abnormalities in forewing venation in honey bees. Shape fluctuating asymmetry (FA) was lower in normal individuals and minor phenodeviants compared with major phenodeviants, whereas the former two categories were comparable in drones. In workers and queens, there were not significant differences in FA shape between categories. FA size was significantly lower in normal individuals compared with major phenodeviant drones and higher compared with minor phenodeviant workers. In queens, there were no significant differences between categories. The correlation between FA shape and FA size was significantly positive in drones, and insignificant in workers and queens. Moreover, a considerable level of directional asymmetry was found as the right wing was constantly bigger than the left one. Surprisingly, normal individuals were significantly smaller than minor phenodeviants in queens and drones, and they were comparable with major phenodeviants in all castes. The correlation between wing size and wing asymmetry was negative, indicating that smaller individuals were more asymmetrical. The high proportion of phenodeviants in drones compared with workers and queens confirmed their large variability. Thus, the results of the present study showed that minor phenodeviants were not always intermediate as might have been expected.

  20. Cortical sensorimotor alterations classify clinical phenotype and putative genotype of spasmodic dysphonia.

    Science.gov (United States)

    Battistella, G; Fuertinger, S; Fleysher, L; Ozelius, L J; Simonyan, K

    2016-10-01

    Spasmodic dysphonia (SD), or laryngeal dystonia, is a task-specific isolated focal dystonia of unknown causes and pathophysiology. Although functional and structural abnormalities have been described in this disorder, the influence of its different clinical phenotypes and genotypes remains scant, making it difficult to explain SD pathophysiology and to identify potential biomarkers. We used a combination of independent component analysis and linear discriminant analysis of resting-state functional magnetic resonance imaging data to investigate brain organization in different SD phenotypes (abductor versus adductor type) and putative genotypes (familial versus sporadic cases) and to characterize neural markers for genotype/phenotype categorization. We found abnormal functional connectivity within sensorimotor and frontoparietal networks in patients with SD compared with healthy individuals as well as phenotype- and genotype-distinct alterations of these networks, involving primary somatosensory, premotor and parietal cortices. The linear discriminant analysis achieved 71% accuracy classifying SD and healthy individuals using connectivity measures in the left inferior parietal and sensorimotor cortices. When categorizing between different forms of SD, the combination of measures from the left inferior parietal, premotor and right sensorimotor cortices achieved 81% discriminatory power between familial and sporadic SD cases, whereas the combination of measures from the right superior parietal, primary somatosensory and premotor cortices led to 71% accuracy in the classification of adductor and abductor SD forms. Our findings present the first effort to identify and categorize isolated focal dystonia based on its brain functional connectivity profile, which may have a potential impact on the future development of biomarkers for this rare disorder. © 2016 EAN.

  1. Age-Associated Reduction of Asymmetry in Human Central Auditory Function: A 1H-Magnetic Resonance Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Xianming Chen

    2013-01-01

    Full Text Available The aim of this study was to investigate the effects of age on hemispheric asymmetry in the auditory cortex after pure tone stimulation. Ten young and 8 older healthy volunteers took part in this study. Two-dimensional multivoxel 1H-magnetic resonance spectroscopy scans were performed before and after stimulation. The ratios of N-acetylaspartate (NAA, glutamate/glutamine (Glx, and γ-amino butyric acid (GABA to creatine (Cr were determined and compared between the two groups. The distribution of metabolites between the left and right auditory cortex was also determined. Before stimulation, left and right side NAA/Cr and right side GABA/Cr were significantly lower, whereas right side Glx/Cr was significantly higher in the older group compared with the young group. After stimulation, left and right side NAA/Cr and GABA/Cr were significantly lower, whereas left side Glx/Cr was significantly higher in the older group compared with the young group. There was obvious asymmetry in right side Glx/Cr and left side GABA/Cr after stimulation in young group, but not in older group. In summary, there is marked hemispheric asymmetry in auditory cortical metabolites following pure tone stimulation in young, but not older adults. This reduced asymmetry in older adults may at least in part underlie the speech perception difficulties/presbycusis experienced by aging adults.

  2. Abnormal interhemispheric connectivity in male psychopathic offenders.

    Science.gov (United States)

    Hoppenbrouwers, Sylco S; De Jesus, Danilo R; Sun, Yinming; Stirpe, Tania; Hofman, Dennis; McMaster, Jeff; Hughes, Ginny; Daskalakis, Zafiris J; Schutter, Dennis J L G

    2014-01-01

    Psychopathic offenders inevitably violate interpersonal norms and frequently resort to aggressive and criminal behaviour. The affective and cognitive deficits underlying these behaviours have been linked to abnormalities in functional interhemispheric connectivity. However, direct neurophysiological evidence for dysfunctional connectivity in psychopathic offenders is lacking. We used transcranial magnetic stimulation combined with electroencephalography to examine interhemispheric connectivity in the dorsolateral and motor cortex in a sample of psychopathic offenders and healthy controls. We also measured intracortical inhibition and facilitation over the left and right motor cortex to investigate the effects of local cortical processes on interhemispheric connectivity. We enrolled 17 psychopathic offenders and 14 controls in our study. Global abnormalities in right to left functional connectivity were observed in psychopathic offenders compared with controls. Furthermore, in contrast to controls, psychopathic offenders showed increased intracortical inhibition in the right, but not the left, hemisphere. The relatively small sample size limited the sensitivity to show that the abnormalities in interhemispheric connectivity were specifically related to the dorsolateral prefrontal cortex in psychopathic offenders. To our knowledge, this study provides the first neurophysiological evidence for abnormal interhemispheric connectivity in psychopathic offenders and may further our understanding of the disruptive antisocial behaviour of these offenders.

  3. Cortical venous disease severity in MELAS syndrome correlates with brain lesion development.

    Science.gov (United States)

    Whitehead, M T; Wien, M; Lee, B; Bass, N; Gropman, A

    2017-08-01

    MELAS syndrome is a mitochondrial disorder typified by recurrent stroke-like episodes, seizures, and progressive brain injury. Abnormal mitochondria have been found in arterial walls implicating a vasculogenic etiology. We have observed abnormal cortical vein T2/FLAIR signal in MELAS patients, potentially representing wall thickening and sluggish flow. We sought to examine the relationship of hyperintense veins and brain lesions in MELAS. Imaging databases at two children's hospitals were searched for brain MRIs from MELAS patients. Artifact, sedated exams, and lack of 2D-T2/FLAIR sequences were exclusion criteria. Each exam was assigned a venous score based on number of T2/FLAIR hyperintense veins: 1 = 20. Cumulative brain lesions and venous score in MELAS and aged-matched normal exams were compared by Mann-Whitney test. A total of 106 exams from 14 unique MELAS patients (mean 16 ± 3 years) and 30 exams from normal aged-matched patients (mean 15 ± 3 years) were evaluated. Median venous score between MELAS and control patients significantly differed (3 versus 1; p MELAS group, venous score correlated with presence (median = 3) or absence (median = 1) of cumulative brain lesions. In all 8 MELAS patients who developed lesions, venous hyperintensity was present prior to, during, and after lesion onset. Venous score did not correlate with brain lesion acuity. Abnormal venous signal correlates with cumulative brain lesion severity in MELAS syndrome. Cortical venous stenosis, congestion, and venous ischemia may be mechanisms of brain injury. Identification of cortical venous pathology may aid in diagnosis and could be predictive of lesion development.

  4. Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders.

    Science.gov (United States)

    Kana, Rajesh K; Libero, Lauren E; Moore, Marie S

    2011-12-01

    Recent findings of neurological functioning in autism spectrum disorder (ASD) point to altered brain connectivity as a key feature of its pathophysiology. The cortical underconnectivity theory of ASD (Just et al., 2004) provides an integrated framework for addressing these new findings. This theory suggests that weaker functional connections among brain areas in those with ASD hamper their ability to accomplish complex cognitive and social tasks successfully. We will discuss this theory, but will modify the term underconnectivity to 'disrupted cortical connectivity' to capture patterns of both under- and over-connectivity in the brain. In this paper, we will review the existing literature on ASD to marshal supporting evidence for hypotheses formulated on the disrupted cortical connectivity theory. These hypotheses are: 1) underconnectivity in ASD is manifested mainly in long-distance cortical as well as subcortical connections rather than in short-distance cortical connections; 2) underconnectivity in ASD is manifested only in complex cognitive and social functions and not in low-level sensory and perceptual tasks; 3) functional underconnectivity in ASD may be the result of underlying anatomical abnormalities, such as problems in the integrity of white matter; 4) the ASD brain adapts to underconnectivity through compensatory strategies such as overconnectivity mainly in frontal and in posterior brain areas. This may be manifested as deficits in tasks that require frontal-parietal integration. While overconnectivity can be tested by examining the cortical minicolumn organization, long-distance underconnectivity can be tested by cognitively demanding tasks; and 5) functional underconnectivity in brain areas in ASD will be seen not only during complex tasks but also during task-free resting states. We will also discuss some empirical predictions that can be tested in future studies, such as: 1) how disrupted connectivity relates to cognitive impairments in skills such

  5. Interrelations between motivational stance, cortical excitability, and the frontal electroencephalogram asymmetry of emotion: A Transcranial magnetic stimulation study

    NARCIS (Netherlands)

    Schutter, D.J.L.G.; Weijer, A.D. de; Meuwese, J.D.I.; Morgan, B.E.; Honk, E.J. van

    2008-01-01

    everal electrophysiological studies have provided evidence for the frontal asymmetry of emotion. In this model the motivation to approach is lateralized to the left, whereas the motivation to avoidance is lateralized to the right hemisphere. The aim of the present experiment was to seek evidence for

  6. [Dextrals and sinistrals (right-handers and left-handers): specificity of interhemispheric brain asymmetry and EEG coherence parameters].

    Science.gov (United States)

    Zhavoronkova, L A

    2007-01-01

    Data of literature about morphological, functional and biochemical specificity of the brain interhemispheric asymmetry of healthy right-handers and left-handers and about peculiarity of dynamics of cerebral pathology in patients with different individual asymmetry profiles are presented at the present article. Results of our investigation by using coherence parameters of electroencephalogram (EEG) in healthy right-handers and left-handers in state of rest, during functional tests and sleeping and in patients with different forms of the brain organic damage were analyzed too. EEG coherence analysis revealed the reciprocal changing of alpha-beta and theta-delta spectral bands in right-handers whilein left-handers synchronous changing of all EEG spectral bands were observed. Data about regional-frequent specificity of EEG coherence, peculiarity of EEG asymmetry in right-handers and left-handers, aslo about specificity of EEG spectral band genesis and point of view about a role of the brain regulator systems in forming of interhemispheric asymmetry in different functional states allowed to propose the conception about principle of interhermispheric brain asymmetry formation in left-handers and left-handers. Following this conception in dextrals elements of concurrent (summary-reciprocal) cooperation are predominant at the character of interhemispheric and cortical-subcortical interaction while in sinistrals a principle of concordance (supplementary) is preferable. These peculiarities the brain organization determine, from the first side, the quicker revovery of functions damaged after cranio-cerebral trauma in left-handers in comparison right-handers and from the other side - they determine the forming of the more expressed pathology in the remote terms after exposure the low dose of radiation.

  7. MR imaging of hemimegalencephaly in children

    International Nuclear Information System (INIS)

    Kalifa, G.; Sellier, N.; Demange, P.; Ponsot, G.; Chiron, C.; Robain, O.

    1986-01-01

    Hemimegalencephaly is a rare brain malformation characterized by cerebral asymmetry and cortical dysplasia. Affected infants are seen initially with early seizures and a severe encephalopathy. The author report five new cases studied with MR imaging. MR imaging clearly demonstrated brain hemihypertrophy, abnormal gyration, and poor differentiation between gray and white matter. A highly abnormal disposition of the cellular layers was observed. MR imaging turned out to be the most efficient diagnostic method for hemimegalencephaly. The examination may facilitate understanding and classification of this rare entity. Autopsy findings correlated well with MR imaging appearances

  8. The clinical application of 99Tcm-DMSA renal cortical scintigraphy in children with urinary tract infection

    International Nuclear Information System (INIS)

    Zhao Ruifang; Zeng Jihua; Xu Hong; Ji Zhiying; Yuan Hong

    2002-01-01

    Objective: To study the value of 99 Tc m -dimercaptosuccinic acid (DMSA) renal cortical scintigraphy in distinguishing between upper urinary tract infection (UUTI) and lower UTI (LUTI), determining renal scarring, and following-up curative effect for UTI in children. Methods: The authors reviewed 252 results of 99 Tc m -DMSA renal cortical scintigraphy in children with UTIs during a period of the past five years. The age of the patients was from 1 month to 14 years. The ratio of males: females was 94:158. A standard 99 Tc m -DMSA renal cortical scintigraphic protocol was used. The studies were scored as normal (indicating LUTI) and abnormal (indicating acute pyelonephritis or renal scarring). And differential function of renal was calculated. Results: Of 252 children with UTI, 110 cases had normal images diagnosed as with LUTI. 142 cases had abnormal images, 116 cases were diagnosed as with acute pyelonephritis, 26 cases were diagnosed as with renal cortical scars. The differential function range of LUTI was 46%-54%. Of UUTIs, the differential function of single renal involved was less than 45%. Of 142 UUTIs, 17 cases repeatedly underwent renal cortical scan after therapy. 12 of 13 cases with acute pyelonephritis completely recovered normal or obviously ameliorated after 6 months, 1 cases did not show any change after 4 months. Four cases were found with renal scarring, and showed little change on repeated images for the following 6 months. conclusions: 99 Tc m -DMSA renal cortical scintigraphy is of valuable significance in distinguishing between upper and lower UTI, and in estimating renal scarring. The sequelae of renal infection can be monitored by renal cortical scan. A follow-up of 6 months may be recommended after therapy

  9. Aging affects hemispheric asymmetry in the neural representation of speech sounds.

    Science.gov (United States)

    Bellis, T J; Nicol, T; Kraus, N

    2000-01-15

    Hemispheric asymmetries in the processing of elemental speech sounds appear to be critical for normal speech perception. This study investigated the effects of age on hemispheric asymmetry observed in the neurophysiological responses to speech stimuli in three groups of normal hearing, right-handed subjects: children (ages, 8-11 years), young adults (ages, 20-25 years), and older adults (ages > 55 years). Peak-to-peak response amplitudes of the auditory cortical P1-N1 complex obtained over right and left temporal lobes were examined to determine the degree of left/right asymmetry in the neurophysiological responses elicited by synthetic speech syllables in each of the three subject groups. In addition, mismatch negativity (MMN) responses, which are elicited by acoustic change, were obtained. Whereas children and young adults demonstrated larger P1-N1-evoked response amplitudes over the left temporal lobe than over the right, responses from elderly subjects were symmetrical. In contrast, MMN responses, which reflect an echoic memory process, were symmetrical in all subject groups. The differences observed in the neurophysiological responses were accompanied by a finding of significantly poorer ability to discriminate speech syllables involving rapid spectrotemporal changes in the older adult group. This study demonstrates a biological, age-related change in the neural representation of basic speech sounds and suggests one possible underlying mechanism for the speech perception difficulties exhibited by aging adults. Furthermore, results of this study support previous findings suggesting a dissociation between neural mechanisms underlying those processes that reflect the basic representation of sound structure and those that represent auditory echoic memory and stimulus change.

  10. CT abnormality in multiple sclerosis analysis based on 28 probable cases and correlation with clinical manifestations

    International Nuclear Information System (INIS)

    Kakigi, Ryusuke; Shibasaki, Hiroshi; Tabira, Takeshi; Kuroiwa, Yoshigoro; Numaguchi, Yuji.

    1981-01-01

    In order to investigate the occurrence and nature of CT abnormality and its correlation with clinical manifestations in multiple sclerosis, 34 CT records obtained from 28 consecutive patients with probable multiple sclerosis were reviewed. Forty-six percent of all cases showed abnormal CT. Dilatation of cortical sulci was found in 39%; dilatation of the lateral ventricle in 36%; dilatation of prepontine or cerebello-pontine cistern and the fourth ventricle, suggesting brainstem atrophy, in 18%; dilatation of cerebellar sulci, superior cerebellar cistern and cisterna magna, suggesting cerebellar atrophy, in 11%. Low density area was found in the cerebral hemisphere in 11% of cases. Contrast enhancement, performed on 25 CT records, did not show any change. There was no correlation between CT abnormality and duration of the illness. Although abnormal CT tended to occur more frequently during exacerbations and chronic stable state than during remissions, the difference was not statistically significant. CT abnormalities suggesting brainstem atrophy, cerebellar atrophy or plaques were found exclusively during exacerbations and chronic stable state. The occurrence of CT abnormalities was not significantly different among various clinical forms which were classified based on clinically estimated sites of lesion, except that abnormal CT tended to occur less frequently in cases classified as the optic-spinal form. It is noteworthy that cerebral cortical atrophy and/or dilatation of the lateral ventricle were found in 31% of cases who did not show any clinical sign of cerebral involvement. There was a statistically significant correlation between CT abnormalities and levels of clinical disability. Eighty percent of the bedridden or severely disabled patients showed abnormal CT, in contrast with only 29% of those with moderate, slight or no disability. (author)

  11. CT abnormality in multiple sclerosis analysis based on 28 probable cases and correlation with clinical manifestations

    Energy Technology Data Exchange (ETDEWEB)

    Kakigi, R.; Shibasaki, H.; Tabira, T.; Kuroiwa, Y. (Kyushu Univ., Fukuoka (Japan). Faculty of Medicine); Numaguchi, Y.

    1981-10-01

    In order to investigate the occurrence and nature of CT abnormality and its correlation with clinical manifestations in multiple sclerosis, 34 CT records obtained from 28 consecutive patients with probable multiple sclerosis were reviewed. Forty-six percent of all cases showed abnormal CT. Dilatation of cortical sulci was found in 39%; dilatation of the lateral ventricle in 36%; dilatation of prepontine or cerebello-pontine cistern and the fourth ventricle, suggesting brainstem atrophy, in 18%; dilatation of cerebellar sulci, superior cerebellar cistern and cisterna magna, suggesting cerebellar atrophy, in 11%. Low density area was found in the cerebral hemisphere in 11% of cases. Contrast enhancement, performed on 25 CT records, did not show any change. There was no correlation between CT abnormality and duration of the illness. Although abnormal CT tended to occur more frequently during exacerbations and chronic stable state than during remissions, the difference was not statistically significant. CT abnormalities suggesting brainstem atrophy, cerebellar atrophy or plaques were found exclusively during exacerbations and chronic stable state. The occurrence of CT abnormalities was not significantly different among various clinical forms which were classified based on clinically estimated sites of lesion, except that abnormal CT tended to occur less frequently in cases classified as the optic-spinal form. It is noteworthy that cerebral cortical atrophy and/or dilatation of the lateral ventricle were found in 31% of cases who did not show any clinical sign of cerebral involvement. There was a statistically significant correlation between CT abnormalities and levels of clinical disability. Eighty percent of the bedridden or severely disabled patients showed abnormal CT, in contrast with only 29% of those with moderate, slight or no disability.

  12. Anterior-posterior and lateral hemispheric alterations in cortical glucose utilization in Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Friedland, T.F.; Budinger, T.F.; Jaqust, W.J.; Yano, Y.; Huesman, R.H.; Knittel, B.; Koss, E.; Ober, B.A.

    1984-01-01

    The anatomical and chemical features of Alzheimer's disease (AD) are not distributed evenly throughout the brain. However, the nature of this focality has not been well established in vivo. Dynamic studies using the Donner 280-Crystal Positron Tomograph with (F-18)2-fluorodeoxyglucose were performed in 17 subjects meeting current research criteria for AD, and in 7 healthy age-matched control subjects. Glucose metabolic rates in the temporal-parietal cortex are 27% lower in AD than in controls. Ratios of activity density reveal consistently lower metabolic rates in temporal-parietal than frontal cortex in the AD group, while healthy aged subjects have equal metabolic rates in the two areas. Similar findings have been reported by other laboratories. A major finding is a striking lateral asymmetry of cortical metabolism in AD which does not favor either hemisphere. (The asymmetry is 13% in the AD group, 3% in controls, p<.005.) This has not been previously reported in AD. The consistency with which anterior-posterior metabolic differences are found in AD suggests that the focality of the metabolic changes may be used to develop a noninvasive diagnostic test for the disorder. The metabolic asymmetry in AD may be compared to the clinical and pathological asymmetry found in Creutzfeldt-Jakob disease, and may represent an additional link between AD and the subacute spongiform encephalopathies.

  13. Lowering of Asymmetry

    Indian Academy of Sciences (India)

    et al. 2002, 2003). The N–S asymmetries of different activity manifestations have been .... 2006), the N–S asymmetry of FISXR. (Joshi et al. 2015). In the present study, we use this ..... Howe, R., Christensen-Dalsgaard, J., Hill, F., Komm, R. W.,.

  14. Slowed EEG rhythmicity in patients with chronic pancreatitis: evidence of abnormal cerebral pain processing?

    DEFF Research Database (Denmark)

    Olesen, Søren Schou; Hansen, Tine Maria; Gravesen, Carina

    2011-01-01

    Intractable pain usually dominates the clinical presentation of chronic pancreatitis (CP). Slowing of electroencephalogram (EEG) rhythmicity has been associated with abnormal cortical pain processing in other chronic pain disorders. The aim of this study was to investigate the spectral distribution...

  15. Combined DTI Tractography and Functional MRI Study of the Language Connectome in Healthy Volunteers: Extensive Mapping of White Matter Fascicles and Cortical Activations.

    Directory of Open Access Journals (Sweden)

    François Vassal

    Full Text Available Despite a better understanding of brain language organization into large-scale cortical networks, the underlying white matter (WM connectivity is still not mastered. Here we combined diffusion tensor imaging (DTI fiber tracking (FT and language functional magnetic resonance imaging (fMRI in twenty healthy subjects to gain new insights into the macroscopic structural connectivity of language. Eight putative WM fascicles for language were probed using a deterministic DTI-FT technique: the arcuate fascicle (AF, superior longitudinal fascicle (SLF, uncinate fascicle (UF, temporo-occipital fascicle, inferior fronto-occipital fascicle (IFOF, middle longitudinal fascicle (MdLF, frontal aslant fascicle and operculopremotor fascicle. Specific measurements (i.e. volume, length, fractional anisotropy and precise cortical terminations were derived for each WM fascicle within both hemispheres. Connections between these WM fascicles and fMRI activations were studied to determine which WM fascicles are related to language. WM fascicle volumes showed asymmetries: leftward for the AF, temporoparietal segment of SLF and UF, and rightward for the frontoparietal segment of the SLF. The lateralization of the AF, IFOF and MdLF extended to differences in patterns of anatomical connections, which may relate to specific hemispheric abilities. The leftward asymmetry of the AF was correlated to the leftward asymmetry of fMRI activations, suggesting that the lateralization of the AF is a structural substrate of hemispheric language dominance. We found consistent connections between fMRI activations and terminations of the eight WM fascicles, providing a detailed description of the language connectome. WM fascicle terminations were also observed beyond fMRI-confirmed language areas and reached numerous cortical areas involved in different functional brain networks. These findings suggest that the reported WM fascicles are not exclusively involved in language and might be

  16. Combined DTI Tractography and Functional MRI Study of the Language Connectome in Healthy Volunteers: Extensive Mapping of White Matter Fascicles and Cortical Activations.

    Science.gov (United States)

    Vassal, François; Schneider, Fabien; Boutet, Claire; Jean, Betty; Sontheimer, Anna; Lemaire, Jean-Jacques

    2016-01-01

    Despite a better understanding of brain language organization into large-scale cortical networks, the underlying white matter (WM) connectivity is still not mastered. Here we combined diffusion tensor imaging (DTI) fiber tracking (FT) and language functional magnetic resonance imaging (fMRI) in twenty healthy subjects to gain new insights into the macroscopic structural connectivity of language. Eight putative WM fascicles for language were probed using a deterministic DTI-FT technique: the arcuate fascicle (AF), superior longitudinal fascicle (SLF), uncinate fascicle (UF), temporo-occipital fascicle, inferior fronto-occipital fascicle (IFOF), middle longitudinal fascicle (MdLF), frontal aslant fascicle and operculopremotor fascicle. Specific measurements (i.e. volume, length, fractional anisotropy) and precise cortical terminations were derived for each WM fascicle within both hemispheres. Connections between these WM fascicles and fMRI activations were studied to determine which WM fascicles are related to language. WM fascicle volumes showed asymmetries: leftward for the AF, temporoparietal segment of SLF and UF, and rightward for the frontoparietal segment of the SLF. The lateralization of the AF, IFOF and MdLF extended to differences in patterns of anatomical connections, which may relate to specific hemispheric abilities. The leftward asymmetry of the AF was correlated to the leftward asymmetry of fMRI activations, suggesting that the lateralization of the AF is a structural substrate of hemispheric language dominance. We found consistent connections between fMRI activations and terminations of the eight WM fascicles, providing a detailed description of the language connectome. WM fascicle terminations were also observed beyond fMRI-confirmed language areas and reached numerous cortical areas involved in different functional brain networks. These findings suggest that the reported WM fascicles are not exclusively involved in language and might be related to

  17. Characteristics of lesional and extra-lesional cortical grey matter in relapsing-remitting and secondary progressive multiple sclerosis: A magnetisation transfer and diffusion tensor imaging study.

    Science.gov (United States)

    Yaldizli, Özgür; Pardini, Matteo; Sethi, Varun; Muhlert, Nils; Liu, Zheng; Tozer, Daniel J; Samson, Rebecca S; Wheeler-Kingshott, Claudia Am; Yousry, Tarek A; Miller, David H; Chard, Declan T

    2016-02-01

    In multiple sclerosis (MS), diffusion tensor and magnetisation transfer imaging are both abnormal in lesional and extra-lesional cortical grey matter, but differences between clinical subtypes and associations with clinical outcomes have only been partly assessed. To compare mean diffusivity, fractional anisotropy and magnetisation transfer ratio (MTR) in cortical grey matter lesions (detected using phase-sensitive inversion recovery (PSIR) imaging) and extra-lesional cortical grey matter, and assess associations with disability in relapse-onset MS. Seventy-two people with MS (46 relapsing-remitting (RR), 26 secondary progressive (SP)) and 36 healthy controls were included in this study. MTR, mean diffusivity and fractional anisotropy were measured in lesional and extra-lesional cortical grey matter. Mean fractional anisotropy was higher and MTR lower in lesional compared with extra-lesional cortical grey matter. In extra-lesional cortical grey matter mean fractional anisotropy and MTR were lower, and mean diffusivity was higher in the MS group compared with controls. Mean MTR was lower and mean diffusivity was higher in lesional and extra-lesional cortical grey matter in SPMS when compared with RRMS. These differences were independent of disease duration. In multivariate analyses, MTR in extra-lesional more so than lesional cortical grey matter was associated with disability. Magnetic resonance abnormalities in lesional and extra-lesional cortical grey matter are greater in SPMS than RRMS. Changes in extra-lesional compared with lesional cortical grey matter are more consistently associated with disability. © The Author(s), 2015.

  18. Brain perfusion abnormalities associated to drug abuse in recent abstinent patients using SPECT 99m Tc-ethylen-cysteinate-dimer (ECD)

    Energy Technology Data Exchange (ETDEWEB)

    Massardo, Teresa [University of Chile Clinical Hospital Nuclear Medicine Section, Department of Medicine, Santiago (Chile); Pallavicini, Julio [Addiction Unit, Psychiatric Clinic. University of Chile Clinical Hospital (Chile); Gonzalez, Patricio; Jaimovich, Rodrigo [University of Chile Clinical Hospital Nuclear Medicine Section, Department of Medicine, Santiago (Chile); Servat, Monica [Addiction Unit, Psychiatric Clinic. University of Chile Clinical Hospital (Chile); Lavados, Hugo [University of Chile Clinical Hospital Nuclear Medicine Section, Department of Medicine, Santiago (Chile); Arancibia, Pablo [Addiction Unit, Psychiatric Clinic. University of Chile Clinical Hospital (Chile); Padilla, Pamela [University of Chile Clinical Hospital Nuclear Medicine Section, Department of Medicine, Santiago (Chile)

    2009-04-15

    Several substances may produce brain perfusion abnormalities in drug-dependent patients. Their mechanism is unclear and several causes might be involved, especially vasospasm in cocaine consumption. Goal: To characterize residual brain perfusion abnormalities in substance-dependent population. We analyzed brain perfusion in 100 dependant patients (DSM-IV criteria) following a month of strict in-hospital abstinence (age:35{+-}12 y.o.; 86% men); 55% corresponded to poly-drug dependents, mainly to cocaine, alcohol and cannabis; 44% mono-drug users, mostly to alcohol. Results: Single Photon Emission Computed Tomography (SPECT) with 99mTc-ethylen-cysteinate-dimer (ECD) was abnormal in 54% of the cases, with bilateral cortical hypo-perfusion in 89%, focal in 54% and diffuse in 46% of them, with moderate or severe intensity in 61%. The abnormal perfusion group's age was 38{+-}12 versus 31{+-}10 years in the normal SPECT group (P=0.005) with a consumption period of 16{+-}11 versus 11{+-}8 years, respectively (P=0.043). Only 29% of women had abnormal perfusion versus 58% of men (P=0.047). Abnormal brain perfusion in 64% of mono and 45% in poly-drug dependents (P=0.07). Psychometric tests performed in 25 patients demonstrated association between perfusion defects and cognitive abnormalities. Relative risk for abnormal psychometric test was 2.5 [95%;CI=1.1-5.6] for abnormal SPECT. Conclusion: Dependent population after a month of abstinence persists with cortical brain perfusion abnormalities, associated to age, sex and type of drug consumption.

  19. Cortical sources of resting state EEG rhythms are related to brain hypometabolism in subjects with Alzheimer's disease: an EEG-PET study.

    Science.gov (United States)

    Babiloni, Claudio; Del Percio, Claudio; Caroli, Anna; Salvatore, Elena; Nicolai, Emanuele; Marzano, Nicola; Lizio, Roberta; Cavedo, Enrica; Landau, Susan; Chen, Kewei; Jagust, William; Reiman, Eric; Tedeschi, Gioacchino; Montella, Patrizia; De Stefano, Manuela; Gesualdo, Loreto; Frisoni, Giovanni B; Soricelli, Andrea

    2016-12-01

    Cortical sources of resting state electroencephalographic (EEG) delta (2-4 Hz) and low-frequency alpha (8-10.5 Hz) rhythms show abnormal activity (i.e., current density) in patients with dementia due to Alzheimer's disease (AD). Here, we hypothesized that abnormality of this activity is related to relevant disease processes as revealed by cortical hypometabolism typically observed in AD patients by fluorodeoxyglucose positron emission tomography. Resting state eyes-closed EEG data were recorded in 19 AD patients with dementia and 40 healthy elderly (Nold) subjects. EEG frequency bands of interest were delta and low-frequency alpha. EEG sources were estimated in these bands by low-resolution brain electromagnetic tomography (LORETA). Fluorodeoxyglucose positron emission tomography images were recorded only in the AD patients, and cortical hypometabolism was indexed by the so-called Alzheimer's discrimination analysis tool (PALZ) in the frontal association, ventromedial frontal, temporoparietal association, posterior cingulate, and precuneus areas. Results showed that compared with the Nold group, the AD group pointed to higher activity of delta sources and lower activity of low-frequency alpha sources in a cortical region of interest formed by all cortical areas of the PALZ score. In the AD patients, there was a positive correlation between the PALZ score and the activity of delta sources in the cortical region of interest (p < 0.05). These results suggest a relationship between resting state cortical hypometabolism and synchronization of cortical neurons at delta rhythms in AD patients with dementia. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Effects of positive emotion, extraversion, and dopamine on cognitive stability-flexibility and frontal EEG asymmetry.

    Science.gov (United States)

    Wacker, Jan

    2018-01-01

    The influence of positive emotions on the balance between cognitive stability and flexibility has been suggested to (a) differ among various positive emotional/motivational states (e.g., of varying approach motivation intensity), and (b) be mediated by brain dopamine (DA). Frontal EEG alpha asymmetry (ASY) is considered an indicator of approach motivational states and may be modulated by DA. The personality trait of extraversion is strongly linked to positive emotions and is now thought to reflect DA-based individual differences in incentive/approach motivation. The present study independently manipulated positive emotion (high approach wanting-expectancy [WE] vs. low approach warmth-liking [WL]) and dopamine (placebo vs. DA D2 blocker sulpiride) to examine their effects on both cognitive stability-flexibility and emotion-related ASY changes. The results showed numerically lower stability-flexibility in WE versus WL under placebo and a complete reversal of this effect under the D2 blocker, no differentiation between WE and WL groups in terms of emotion-related ASY change, but an association between self-reported WE and WL and ASY changes toward left and right frontal cortical activity, respectively. Finally, extraversion was positively associated with both stability-flexibility and ASY changes toward left frontal cortical activity under placebo, and these associations were completely reversed under the D2 blocker. The results (a) support a dopaminergic basis for frontal EEG asymmetry, extraversion, and the modulating effect of positive emotions on stability-flexibility, and (b) extend previous reports of cognitive differences between introverts and extraverts. © 2017 Society for Psychophysiological Research.

  1. Transient MRI abnormalities associated with partial status epilepticus: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Amato, Carmelo; Elia, Maurizio; Musumeci, Sebastiano A; Bisceglie, Pierluigi; Moschini, Massimo

    2001-04-01

    We report the case of an 18-year-old woman who presented a long-lasting cluster of partial seizures, and MRI cortical abnormalities localized in the left parietal lobe. The MRI changes correlated with the site of the epileptogenic focus, and disappeared within 2 weeks. The recognition of these reversible MRI abnormalities, which are presumably due to a temporary alteration of blood-brain barrier in the epileptogenic zone with subsequent edema, and are not associated with any underlying organic conditions, is extremely useful in the medical management of the patient and allows to avoid other invasive diagnostic procedures.

  2. Transient MRI abnormalities associated with partial status epilepticus: a case report

    International Nuclear Information System (INIS)

    Amato, Carmelo; Elia, Maurizio; Musumeci, Sebastiano A.; Bisceglie, Pierluigi; Moschini, Massimo

    2001-01-01

    We report the case of an 18-year-old woman who presented a long-lasting cluster of partial seizures, and MRI cortical abnormalities localized in the left parietal lobe. The MRI changes correlated with the site of the epileptogenic focus, and disappeared within 2 weeks. The recognition of these reversible MRI abnormalities, which are presumably due to a temporary alteration of blood-brain barrier in the epileptogenic zone with subsequent edema, and are not associated with any underlying organic conditions, is extremely useful in the medical management of the patient and allows to avoid other invasive diagnostic procedures

  3. Lateralized occipital degeneration in posterior cortical atrophy predicts visual field deficits.

    Science.gov (United States)

    Millington, Rebecca S; James-Galton, Merle; Maia Da Silva, Mari N; Plant, Gordon T; Bridge, Holly

    2017-01-01

    Posterior cortical atrophy (PCA), the visual variant of Alzheimer's disease, leads to high-level visual deficits such as alexia or agnosia. Visual field deficits have also been identified, but often inconsistently reported. Little is known about the pattern of visual field deficits or the underlying cortical changes leading to this visual loss. Multi-modal magnetic resonance imaging was used to investigate differences in gray matter volume, cortical thickness, white matter microstructure and functional activity in patients with PCA compared to age-matched controls. Additional analyses investigated hemispheric asymmetries in these metrics according to the visual field most affected by the disease. Analysis of structural data indicated considerable loss of gray matter in the occipital and parietal cortices, lateralized to the hemisphere contralateral to the visual loss. This lateralized pattern of gray matter loss was also evident in the hippocampus and parahippocampal gyrus. Diffusion-weighted imaging showed considerable effects of PCA on white matter microstructure in the occipital cortex, and in the corpus callosum. The change in white matter was only lateralized in the occipital lobe, however, with greatest change in the optic radiation contralateral to the visual field deficit. Indeed, there was a significant correlation between the laterality of the optic radiation microstructure and visual field loss. Detailed brain imaging shows that the asymmetric visual field deficits in patients with PCA reflect the pattern of degeneration of both white and gray matter in the occipital lobe. Understanding the nature of both visual field deficits and the neurodegenerative brain changes in PCA may improve diagnosis and understanding of this disease.

  4. Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia.

    Science.gov (United States)

    Kita, Hitoshi; Kita, Takako

    2011-07-13

    The motor cortex (MC) sends massive projections to the basal ganglia. Motor disabilities in patients and animal models of Parkinson's disease (PD) may be caused by dopamine (DA)-depleted basal ganglia that abnormally process the information originating from MC. To study how DA depletion alters signal transfer in the basal ganglia, MC stimulation-induced (MC-induced) unitary responses were recorded from the basal ganglia of control and 6-hydroxydopamine-treated hemi-parkinsonian rats anesthetized with isoflurane. This report describes new findings about how DA depletion alters MC-induced responses. MC stimulation evokes an excitation in normally quiescent striatal (Str) neurons projecting to the globus pallidus external segment (GPe). After DA-depletion, the spontaneous firing of Str-GPe neurons increases, and MC stimulation evokes a shorter latency excitation followed by a long-lasting inhibition that was invisible under normal conditions. The increased firing activity and the newly exposed long inhibition generate tonic inhibition and a disfacilitation in GPe. The disfacilitation in GPe is then amplified in basal ganglia circuitry and generates a powerful long inhibition in the basal ganglia output nucleus, the globus pallidus internal segment. Intra-Str injections of a behaviorally effective dose of DA precursor l-3,4-dihydroxyphenylalanine effectively reversed these changes. These newly observed mechanisms also support the generation of pauses and burst activity commonly observed in the basal ganglia of parkinsonian subjects. These results suggest that the generation of abnormal response sequences in the basal ganglia contributes to the development of motor disabilities in PD and that intra-Str DA supplements effectively suppress abnormal signal transfer.

  5. Asymmetry and coherence weight of quantum states

    Science.gov (United States)

    Bu, Kaifeng; Anand, Namit; Singh, Uttam

    2018-03-01

    The asymmetry of quantum states is an important resource in quantum information processing tasks such as quantum metrology and quantum communication. In this paper, we introduce the notion of asymmetry weight—an operationally motivated asymmetry quantifier in the resource theory of asymmetry. We study the convexity and monotonicity properties of asymmetry weight and focus on its interplay with the corresponding semidefinite programming (SDP) forms along with its connection to other asymmetry measures. Since the SDP form of asymmetry weight is closely related to asymmetry witnesses, we find that the asymmetry weight can be regarded as a (state-dependent) asymmetry witness. Moreover, some specific entanglement witnesses can be viewed as a special case of an asymmetry witness—which indicates a potential connection between asymmetry and entanglement. We also provide an operationally meaningful coherence measure, which we term coherence weight, and investigate its relationship to other coherence measures like the robustness of coherence and the l1 norm of coherence. In particular, we show that for Werner states in any dimension d all three coherence quantifiers, namely, the coherence weight, the robustness of coherence, and the l1 norm of coherence, are equal and are given by a single letter formula.

  6. Auditory verbal hallucinations are related to cortical thinning in the left middle temporal gyrus of patients with schizophrenia.

    Science.gov (United States)

    Cui, Y; Liu, B; Song, M; Lipnicki, D M; Li, J; Xie, S; Chen, Y; Li, P; Lu, L; Lv, L; Wang, H; Yan, H; Yan, J; Zhang, H; Zhang, D; Jiang, T

    2018-01-01

    Auditory verbal hallucinations (AVHs) are one of the most common and severe symptoms of schizophrenia, but the neuroanatomical abnormalities underlying AVHs are not well understood. The present study aims to investigate whether AVHs are associated with cortical thinning. Participants were schizophrenia patients from four centers across China, 115 with AVHs and 93 without AVHs, as well as 261 healthy controls. All received 3 T T1-weighted brain scans, and whole brain vertex-wise cortical thickness was compared across groups. Correlations between AVH severity and cortical thickness were also determined. The left middle part of the middle temporal gyrus (MTG) was significantly thinner in schizophrenia patients with AVHs than in patients without AVHs and healthy controls. Inferences were made using a false discovery rate approach with a threshold at p < 0.05. Left MTG thickness did not differ between patients without AVHs and controls. These results were replicated by a meta-analysis showing them to be consistent across the four centers. Cortical thickness of the left MTG was also found to be inversely correlated with hallucination severity across all schizophrenia patients. The results of this multi-center study suggest that an abnormally thin left MTG could be involved in the pathogenesis of AVHs in schizophrenia.

  7. Measurements of W Charge Asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Holzbauer, J. L. [Mississippi U.

    2015-10-06

    We discuss W boson and lepton charge asymmetry measurements from W decays in the electron channel, which were made using 9.7 fb$^{-1}$ of RunII data collected by the D0 detector at the Fermilab Tevatron Collider. The electron charge asymmetry is presented as a function of pseudo-rapidity out to |$\\eta$| $\\le$ 3.2, in five symmetric and asymmetric kinematic bins of electron transverse momentum and the missing transverse energy of the event. We also give the W charge asymmetry as a function of W boson rapidity. The asymmetries are compared with next-to-leading order perturbative quantum chromodynamics calculations. These charge asymmetry measurements will allow more accurate determinations of the proton parton distribution functions and are the most precise to date.

  8. Glial activation colocalizes with structural abnormalities in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Alshikho, Mohamad J; Zürcher, Nicole R; Loggia, Marco L; Cernasov, Paul; Chonde, Daniel B; Izquierdo Garcia, David; Yasek, Julia E; Akeju, Oluwaseun; Catana, Ciprian; Rosen, Bruce R; Cudkowicz, Merit E; Hooker, Jacob M; Atassi, Nazem

    2016-12-13

    In this cross-sectional study, we aimed to evaluate brain structural abnormalities in relation to glial activation in the same cohort of participants. Ten individuals with amyotrophic lateral sclerosis (ALS) and 10 matched healthy controls underwent brain imaging using integrated MR/PET and the radioligand [ 11 C]-PBR28. Diagnosis history and clinical assessments including Upper Motor Neuron Burden Scale (UMNB) were obtained from patients with ALS. Diffusion tensor imaging (DTI) analyses including tract-based spatial statistics and tractography were applied. DTI metrics including fractional anisotropy (FA) and diffusivities (mean, axial, and radial) were measured in regions of interest. Cortical thickness was assessed using surface-based analysis. The locations of structural changes, measured by DTI and the areas of cortical thinning, were compared to regional glial activation measured by relative [ 11 C]-PBR28 uptake. In this cohort of individuals with ALS, reduced FA and cortical thinning colocalized with regions demonstrating higher radioligand binding. [ 11 C]-PBR28 binding in the left motor cortex was correlated with FA (r = -0.68, p < 0.05) and cortical thickness (r = -0.75, p < 0.05). UMNB was correlated with glial activation (r = +0.75, p < 0.05), FA (r = -0.77, p < 0.05), and cortical thickness (r = -0.75, p < 0.05) in the motor cortex. Increased uptake of the glial marker [ 11 C]-PBR28 colocalizes with changes in FA and cortical thinning. This suggests a link between disease mechanisms (gliosis and inflammation) and structural changes (cortical thinning and white and gray matter changes). In this multimodal neuroimaging work, we provide an in vivo model to investigate the pathogenesis of ALS. © 2016 American Academy of Neurology.

  9. [X-ray computed tomographic abnormalities in schizophrenia. Trial of relationship with clinical data].

    Science.gov (United States)

    D'Amato, T; Rochet, T; Dalery, J; Chauchat, J H; Terra, J L; Arteaga, C; Marie-Cardine, M

    1992-01-01

    Computerized tomography (CT-scan) studies in schizophrenia revealed that some patients have neuromorphological abnormalities. The structural changes consist mainly in lateral and third ventricle enlargement, and in cortical atrophy. The present study evaluates these three changes in 42 schizophrenics aged 18 to 50, compared to 24 healthy controls. Diagnosis were established from information gathered by personal interview with the SADS-LA. Clinical sub-types were evaluated according to the DSM III-R criteria. Moreover, detailed symptoms were rated according to the Positive And Negative Syndrome Scale (PANSS). CT scans were recorded in floppy disks and blindly analyzed. Schizophrenics shown significant higher mean size of lateral and third ventricles, and higher mean anterior cortical atrophy than healthy subjects. Significant differences were also found between subtypes, with more marked abnormalities in the disorganized group. The relationship between brain abnormalities and clinical symptoms recorded with the PANSS, were analysed using Pearson correlates. Positive correlations concerned mainly negative symptoms like blunted affect, emotional withdrawal, difficulties in abstract thinking, passive apathetic social withdrawal and lack of spontaneity of conversation. Positive correlations are also observed with some symptoms classified with the PANSS in the General Psychopathology scale such as mannerism and disorientation. Negative correlation concerned most of PANSS positive symptoms.

  10. Abnormal early gamma responses to emotional faces differentiate unipolar from bipolar disorder patients.

    Science.gov (United States)

    Liu, T Y; Chen, Y S; Su, T P; Hsieh, J C; Chen, L F

    2014-01-01

    This study investigates the cortical abnormalities of early emotion perception in patients with major depressive disorder (MDD) and bipolar disorder (BD) using gamma oscillations. Twenty-three MDD patients, twenty-five BD patients, and twenty-four normal controls were enrolled and their event-related magnetoencephalographic responses were recorded during implicit emotional tasks. Our results demonstrated abnormal gamma activity within 100 ms in the emotion-related regions (amygdala, orbitofrontal (OFC) cortex, anterior insula (AI), and superior temporal pole) in the MDD patients, suggesting that these patients may have dysfunctions or negativity biases in perceptual binding of emotional features at very early stage. Decreased left superior medial frontal cortex (smFC) responses to happy faces in the MDD patients were correlated with their serious level of depression symptoms, indicating that decreased smFC activity perhaps underlies irregular positive emotion processing in depressed patients. In the BD patients, we showed abnormal activation in visual regions (inferior/middle occipital and middle temporal cortices) which responded to emotional faces within 100 ms, supporting that the BD patients may hyperactively respond to emotional features in perceptual binding. The discriminant function of gamma activation in the left smFC, right medial OFC, right AI/inferior OFC, and the right precentral cortex accurately classified 89.6% of patients as unipolar/bipolar disorders.

  11. Regional vulnerability of longitudinal cortical association connectivity

    Directory of Open Access Journals (Sweden)

    Rafael Ceschin

    2015-01-01

    Full Text Available Preterm born children with spastic diplegia type of cerebral palsy and white matter injury or periventricular leukomalacia (PVL, are known to have motor, visual and cognitive impairments. Most diffusion tensor imaging (DTI studies performed in this group have demonstrated widespread abnormalities using averaged deterministic tractography and voxel-based DTI measurements. Little is known about structural network correlates of white matter topography and reorganization in preterm cerebral palsy, despite the availability of new therapies and the need for brain imaging biomarkers. Here, we combined novel post-processing methodology of probabilistic tractography data in this preterm cohort to improve spatial and regional delineation of longitudinal cortical association tract abnormalities using an along-tract approach, and compared these data to structural DTI cortical network topology analysis. DTI images were acquired on 16 preterm children with cerebral palsy (mean age 5.6 ± 4 and 75 healthy controls (mean age 5.7 ± 3.4. Despite mean tract analysis, Tract-Based Spatial Statistics (TBSS and voxel-based morphometry (VBM demonstrating diffusely reduced fractional anisotropy (FA reduction in all white matter tracts, the along-tract analysis improved the detection of regional tract vulnerability. The along-tract map-structural network topology correlates revealed two associations: (1 reduced regional posterior–anterior gradient in FA of the longitudinal visual cortical association tracts (inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, optic radiation, posterior thalamic radiation correlated with reduced posterior–anterior gradient of intra-regional (nodal efficiency metrics with relative sparing of frontal and temporal regions; and (2 reduced regional FA within frontal–thalamic–striatal white matter pathways (anterior limb/anterior thalamic radiation, superior longitudinal fasciculus and cortical spinal tract

  12. Technetium-99m HM-PAO-SPECT study of regional cerebral perfusion in early Alzheimer's disease

    International Nuclear Information System (INIS)

    Perani, D.; Di Piero, V.; Vallar, G.

    1988-01-01

    Regional cerebral perfusion was evaluated by single photon emission computed tomography (SPECT) using technetium-99m hexamethylpropyleneamine oxime ([/sup 99m/Tc]HM-PAO) in sixteen patients with Alzheimer's disease (AD) in early clinical phase and in 16 healthy elderly controls. In all patients transmission computed tomography (TCT) and/or magnetic resonance imaging (MRI) did not show focal brain abnormalities. Relative to normal subjects, AD patients showed significant reductions in cortical/cerebellar activity ratio: cortical perfusion was globally depressed with the largest reductions in frontal and posterior temporo-parietal cortices. Asymmetries of relative perfusion between cerebral hemispheres were also demonstrated when language was affected or visuospatial functions were unevenly impaired. In patients with early AD, SPECT provides functional information to be compared with clinical and psychometric data

  13. Strength asymmetry of the shoulders in elite volleyball players.

    Science.gov (United States)

    Hadzic, Vedran; Sattler, Tine; Veselko, Matjaž; Markovic, Goran; Dervisevic, Edvin

    2014-01-01

    Volleyball players are reported to have shoulder strength imbalances. Previous authors have primarily investigated small samples of male players at a single skill level, without considering playing position, and with inconsistent findings. To evaluate shoulder strength asymmetry and a history of shoulder injury in a large sample of professional volleyball players of both sexes across different playing positions and skill levels. Descriptive laboratory study. A sample of 183 volleyball players (99 men, 84 women). We assessed shoulder internal-rotator and external-rotator concentric strength at 60°/s using an isokinetic dynamometer and dominant-nondominant differences in shoulder strength and strength ratios using repeated-measures analyses of variance. Peak torque was normalized for body mass and external-rotation/internal-rotation concentric strength. Internal-rotation strength was asymmetric in favor of the dominant side in both sexes, regardless of previous shoulder injury status. Male volleyball players had a lower shoulder strength ratio on the dominant side, regardless of previous shoulder injury status. However, this finding was valid only when hand dominance was taken into account. Female volleyball players playing at a higher level (ie, first versus second division) were 3.43 times more likely to have an abnormal strength ratio. Playing position was not associated with an abnormal shoulder strength ratio or strength asymmetry. In male volleyball players, the external-rotation/internal-rotation strength ratio of the dominant shoulder was lower, regardless of playing position, skill level, or a previous shoulder injury. In female players, the ratio was less only in those at a higher skill level. Although speculative, these findings generally suggest that female volleyball players could have a lower risk of developing shoulder-related problems than male volleyball players. Isokinetic shoulder testing may reveal important information about the possible risk

  14. Case-control study of six genes asymmetrically expressed in the two cerebral hemispheres: association of BAIAP2 with attention-deficit/hyperactivity disorder

    DEFF Research Database (Denmark)

    Ribasés, Marta; Bosch, Rosa; Hervás, Amaia

    2009-01-01

    BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a childhood-onset neuropsychiatric disease that persists into adulthood in at least 30% of patients. There is evidence suggesting that abnormal left-right brain asymmetries in ADHD patients may be involved in a variety of ADHD......-related cognitive processes, including sustained attention, working memory, response inhibition and planning. Although mechanisms underlying cerebral lateralization are unknown, left-right cortical asymmetry has been associated with transcriptional asymmetry at embryonic stages and several genes differentially...... expressed between hemispheres have been identified. METHODS: We selected six functional candidate genes showing at least 1.9-fold differential expression between hemispheres (BAIAP2, DAPPER1, LMO4, NEUROD6, ATP2B3, and ID2) and performed a case-control association study in an initial Spanish sample of 587...

  15. Progressive posterior cortical dysfunction

    Directory of Open Access Journals (Sweden)

    Fábio Henrique de Gobbi Porto

    Full Text Available Abstract Progressive posterior cortical dysfunction (PPCD is an insidious syndrome characterized by prominent disorders of higher visual processing. It affects both dorsal (occipito-parietal and ventral (occipito-temporal pathways, disturbing visuospatial processing and visual recognition, respectively. We report a case of a 67-year-old woman presenting with progressive impairment of visual functions. Neurologic examination showed agraphia, alexia, hemispatial neglect (left side visual extinction, complete Balint's syndrome and visual agnosia. Magnetic resonance imaging showed circumscribed atrophy involving the bilateral parieto-occipital regions, slightly more predominant to the right . Our aim was to describe a case of this syndrome, to present a video showing the main abnormalities, and to discuss this unusual presentation of dementia. We believe this article can contribute by improving the recognition of PPCD.

  16. Progressive posterior cortical dysfunction

    Science.gov (United States)

    Porto, Fábio Henrique de Gobbi; Machado, Gislaine Cristina Lopes; Morillo, Lilian Schafirovits; Brucki, Sonia Maria Dozzi

    2010-01-01

    Progressive posterior cortical dysfunction (PPCD) is an insidious syndrome characterized by prominent disorders of higher visual processing. It affects both dorsal (occipito-parietal) and ventral (occipito-temporal) pathways, disturbing visuospatial processing and visual recognition, respectively. We report a case of a 67-year-old woman presenting with progressive impairment of visual functions. Neurologic examination showed agraphia, alexia, hemispatial neglect (left side visual extinction), complete Balint’s syndrome and visual agnosia. Magnetic resonance imaging showed circumscribed atrophy involving the bilateral parieto-occipital regions, slightly more predominant to the right. Our aim was to describe a case of this syndrome, to present a video showing the main abnormalities, and to discuss this unusual presentation of dementia. We believe this article can contribute by improving the recognition of PPCD. PMID:29213665

  17. [Diagnosis of facial and craniofacial asymmetry].

    Science.gov (United States)

    Arnaud, E; Marchac, D; Renier, D

    2001-10-01

    Craniofacial asymmetry is caused by various aetiologies but clinical examination remains the most important criteria since minor asymmetry is always present. The diagnosis can be confirmed by anthropometric measurements and radiological examinations but only severe asymmetries or asymmetries with an associated functional impairment should be treated. The treatment depends on the cause, and on the time of appearance. Congenital asymmetries might be treated early, during the first year of life if a craniosynostosis is present. Hemifacial microsomia are treated later if there is no breathing impairment. Since the pediatricians have recommended the dorsal position for infant sleeping, an increasing number of posterior flattening of the skull has been appearing, and could be prevented by adequate nursing. Other causes of craniofacial asymmetries are rare and should be adapted to the cause (tumors, atrophies, neurological paralysis, hypertrophies) by a specialized multidisciplinar team.

  18. Assessing and conceptualizing frontal EEG asymmetry: An updated primer on recording, processing, analyzing, and interpreting frontal alpha asymmetry.

    Science.gov (United States)

    Smith, Ezra E; Reznik, Samantha J; Stewart, Jennifer L; Allen, John J B

    2017-01-01

    Frontal electroencephalographic (EEG) alpha asymmetry is widely researched in studies of emotion, motivation, and psychopathology, yet it is a metric that has been quantified and analyzed using diverse procedures, and diversity in procedures muddles cross-study interpretation. The aim of this article is to provide an updated tutorial for EEG alpha asymmetry recording, processing, analysis, and interpretation, with an eye towards improving consistency of results across studies. First, a brief background in alpha asymmetry findings is provided. Then, some guidelines for recording, processing, and analyzing alpha asymmetry are presented with an emphasis on the creation of asymmetry scores, referencing choices, and artifact removal. Processing steps are explained in detail, and references to MATLAB-based toolboxes that are helpful for creating and investigating alpha asymmetry are noted. Then, conceptual challenges and interpretative issues are reviewed, including a discussion of alpha asymmetry as a mediator/moderator of emotion and psychopathology. Finally, the effects of two automated component-based artifact correction algorithms-MARA and ADJUST-on frontal alpha asymmetry are evaluated. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Dichotic listening in patients with situs inversus: brain asymmetry and situs asymmetry.

    Science.gov (United States)

    Tanaka, S; Kanzaki, R; Yoshibayashi, M; Kamiya, T; Sugishita, M

    1999-06-01

    In order to investigate the relation between situs asymmetry and functional asymmetry of the human brain, a consonant-vowel syllable dichotic listening test known as the Standard Dichotic Listening Test (SDLT) was administered to nine subjects with situs inversus (SI) that ranged in age from 6 to 46 years old (mean of 21.8 years old, S.D. = 15.6); the four males and five females all exhibited strong right-handedness. The SDLT was also used to study twenty four age-matched normal subjects that were from 6 to 48 years old (mean 21.7 years old, S.D. = 15.3); the twelve males and twelve females were all strongly right-handed and served as a control group. Eight out of the nine subjects (88.9%) with SI more often reproduced the sounds from the right ear than sounds from the left ear; this is called right ear advantage (REA). The ratio of REA in the control group was almost the same, i.e., nineteen out of the twenty-four subjects (79.1%) showed REA. Results of the present study suggest that the left-right reversal in situs inversus does not involve functional asymmetry of the brain. As such, the system that produces functional asymmetry in the human brain must independently recognize laterality from situs asymmetry.

  20. Abnormal resting-state cortical coupling in chronic tinnitus

    Directory of Open Access Journals (Sweden)

    Langguth Berthold

    2009-02-01

    Full Text Available Abstract Background Subjective tinnitus is characterized by an auditory phantom perception in the absence of any physical sound source. Consequently, in a quiet environment, tinnitus patients differ from control participants because they constantly perceive a sound whereas controls do not. We hypothesized that this difference is expressed by differential activation of distributed cortical networks. Results The analysis was based on a sample of 41 participants: 21 patients with chronic tinnitus and 20 healthy control participants. To investigate the architecture of these networks, we used phase locking analysis in the 1–90 Hz frequency range of a minute of resting-state MEG recording. We found: 1 For tinnitus patients: A significant decrease of inter-areal coupling in the alpha (9–12 Hz band and an increase of inter-areal coupling in the 48–54 Hz gamma frequency range relative to the control group. 2 For both groups: an inverse relationship (r = -.71 of the alpha and gamma network coupling. 3 A discrimination of 83% between the patient and the control group based on the alpha and gamma networks. 4 An effect of manifestation on the distribution of the gamma network: In patients with a tinnitus history of less than 4 years, the left temporal cortex was predominant in the gamma network whereas in patients with tinnitus duration of more than 4 years, the gamma network was more widely distributed including more frontal and parietal regions. Conclusion In the here presented data set we found strong support for an alteration of long-range coupling in tinnitus. Long-range coupling in the alpha frequency band was decreased for tinnitus patients while long-range gamma coupling was increased. These changes discriminate well between tinnitus and control participants. We propose a tinnitus model that integrates this finding in the current knowledge about tinnitus. Furthermore we discuss the impact of this finding to tinnitus therapies using Transcranial

  1. Self-referential processing, rumination, and cortical midline structures in major depression

    Directory of Open Access Journals (Sweden)

    Ayna Baladi Nejad

    2013-10-01

    Full Text Available Major depression is associated with a bias towards negative emotional processing and increased self-focus, i.e. the process by which one engages in self-referential processing. The increased self-focus in depression is suggested to be of a persistent, repetitive and self-critical nature and is conceptualised as ruminative brooding. The role of the medial prefrontal cortex in self-referential processing has been previously emphasised in acute major depression. There is increasing evidence that self-referential processing as well as the cortical midline structures play a major role in the development, course and treatment response of major depressive disorder. However, the links between self-referential processing, rumination, and the cortical midline structures in depression are still poorly understood. Here, we reviewed brain imaging studies in depressed patients and healthy subjects that have examined these links. The literature suggests that self-referential processing in major depression is associated with increased activity of the anterior cortical midline structures. Abnormal interactions between the lateralised task-positive network, and the midline cortical structures of the default mode network, as well as the emotional response network, may underlie the pervasiveness of ruminative brooding. Furthermore, targeting this maladaptive form of rumination and its underlying neural correlates may be key for effective treatment.

  2. Abnormal regional homogeneity in patients with essential tremor revealed by resting-state functional MRI.

    Directory of Open Access Journals (Sweden)

    Weidong Fang

    Full Text Available Essential tremor (ET is one of the most common movement disorders in human adults. It can be characterized as a progressive neurological disorder of which the most recognizable feature is a tremor of the arms or hands that is apparent during voluntary movements such as eating and writing. The pathology of ET remains unclear. Resting-state fMRI (RS-fMRI, as a non-invasive imaging technique, was employed to investigate abnormalities of functional connectivity in ET in the brain. Regional homogeneity (ReHo was used as a metric of RS-fMRI to assess the local functional connectivity abnormality in ET with 20 ET patients and 20 age- and gender-matched healthy controls (HC. The ET group showed decreased ReHo in the anterior and posterior bilateral cerebellar lobes, the bilateral thalamus and the insular lobe, and increased ReHo in the bilateral prefrontal and parietal cortices, the left primary motor cortex and left supplementary motor area. The abnormal ReHo value of ET patients in the bilateral anterior cerebellar lobes and the right posterior cerebellar lobe were negatively correlated with the tremor severity score, while positively correlated with that in the left primary motor cortex. These findings suggest that the abnormality in cerebello-thalamo-cortical motor pathway is involved in tremor generation and propagation, which may be related to motor-related symptoms in ET patients. Meanwhile, the abnormality in the prefrontal and parietal regions may be associated with non-motor symptoms in ET. These findings suggest that the ReHo could be utilized for investigations of functional-pathological mechanism of ET.

  3. Abnormalities of white matter microstructure in unmedicated obsessive-compulsive disorder and changes after medication.

    Directory of Open Access Journals (Sweden)

    Qing Fan

    Full Text Available BACKGROUND: Abnormalities of myelin integrity have been reported in obsessive-compulsive disorder (OCD using multi-parameter maps of diffusion tensor imaging (DTI. However, it was still unknown to what degree these abnormalities might be affected by pharmacological treatment. OBJECTIVE: To investigate whether the abnormalities of white matter microstructure including myelin integrity exist in OCD and whether they are affected by medication. METHODOLOGY AND PRINCIPAL FINDINGS: Parameter maps of DTI, including fractional anisotropy (FA, axial diffusivity (AD, radial diffusivity (RD and mean diffusivity (MD, were acquired from 27 unmedicated OCD patients (including 13 drug-naïve individuals and 23 healthy controls. Voxel-based analysis was then performed to detect regions with significant group difference. We compared the DTI-derived parameters of 15 patients before and after 12-week Selective Serotonin Reuptake Inhibitor (SSRI therapies. Significant differences of DTI-derived parameters were observed between OCD and healthy groups in multiple structures, mainly within the fronto-striato-thalamo-cortical loop. An increased RD in combination with no change in AD among OCD patients was found in the left medial superior frontal gyrus, temporo-parietal lobe, occipital lobe, striatum, insula and right midbrain. There was no statistical difference in DTI-derived parameters between drug-naive and previously medicated OCD patients. After being medicated, OCD patients showed a reduction in RD of the left striatum and right midbrain, and in MD of the right midbrain. CONCLUSION: Our preliminary findings suggest that abnormalities of white matter microstructure, particularly in terms of myelin integrity, are primarily located within the fronto-striato-thalamo-cortical circuit of individuals with OCD. Some abnormalities may be partly reversed by SSRI treatment.

  4. Vestibulo-Ocular Reflex Abnormalities in Posterior Semicircular Canal Benign Paroxysmal Positional Vertigo: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Tayyebe Fallahnezhad

    2017-09-01

    Full Text Available Introduction: Benign paroxysmal positional vertigo (BPPV, involving the semicircular canals, is one of the most common diseases of the inner ear. The video head impulse test (vHIT is a new test that examines the function of the canals. This study aimed to investigate the vestibulo-ocular reflex (VOR gain, gain asymmetry and saccades after stimulating all six canals in patients definitively diagnosed with posterior semicircular canal BPPV (PSC-BPPV.   Materials and Methods: Twenty-nine unilateral PSC-BPPV patients with normal oculographic and caloric results were enrolled in this study. vHIT was performed on six canals, and VOR gain, gain asymmetry and saccades were measured.   Results: Sixteen (55.17% patients had abnormal posterior canal VOR gains in the ipsilesional ear. VOR gains in both horizontal canals were within normal limits. Superior canal VOR gains were mostly lower than normal and were not correlated to PSC abnormalities (P>0.05. No corrective saccades could be observed.   Conclusion: VOR gain in the direction of the posterior semicircular canal may be reduced in PSC-BPPV patients. Evaluation of PSC-VOR parameters could be beneficial, although superior canal measurements should be interpreted with caution.

  5. Adolescent cortical thickness pre- and post marijuana and alcohol initiation.

    Science.gov (United States)

    Jacobus, Joanna; Castro, Norma; Squeglia, Lindsay M; Meloy, M J; Brumback, Ty; Huestis, Marilyn A; Tapert, Susan F

    Cortical thickness abnormalities have been identified in youth using both alcohol and marijuana. However, limited studies have followed individuals pre- and post initiation of alcohol and marijuana use to help identify to what extent discrepancies in structural brain integrity are pre-existing or substance-related. Adolescents (N=69) were followed from ages 13 (pre-initiation of substance use, baseline) to ages 19 (post-initiation, follow-up). Three subgroups were identified, participants that initiated alcohol use (ALC, n=23, >20 alcohol use episodes), those that initiated both alcohol and marijuana use (ALC+MJ, n=23, >50 marijuana use episodes) and individuals that did not initiate either substance regularly by follow-up (CON, n=23, marijuana use episodes). All adolescents underwent neurocognitive testing, neuroimaging, and substance use and mental health interviews. Significant group by time interactions and main effects on cortical thickness estimates were identified for 18 cortical regions spanning the left and right hemisphere (pseffect, in cortical thickness by follow-up for individuals who have not initiated regular substance use or alcohol use only by age 19; modest between-group differences were identified at baseline in several cortical regions (ALC and CON>ALC+MJ). Minimal neurocognitive differences were observed in this sample. Findings suggest pre-existing neural differences prior to marijuana use may contribute to initiation of use and observed neural outcomes. Marijuana use may also interfere with thinning trajectories that contribute to morphological differences in young adulthood that are often observed in cross-sectional studies of heavy marijuana users. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Parenchymal abnormalities associated with developmental venous anomalies

    Energy Technology Data Exchange (ETDEWEB)

    San Millan Ruiz, Diego; Gailloud, Philippe [Johns Hopkins Hospital, Division of Interventional Neuroradiology, Baltimore, MD (United States); Delavelle, Jacqueline [Geneva University Hospital, Neuroradiology Section, Department of Radiology and Medical Informatics, Geneva (Switzerland); Yilmaz, Hasan; Ruefenacht, Daniel A. [Geneva University Hospital, Section of Interventional Neuroradiology, Department of Clinical Neurosciences, Geneva (Switzerland); Piovan, Enrico; Bertramello, Alberto; Pizzini, Francesca [Verona City Hospital, Service of Neuroradiology, Verona (Italy)

    2007-12-15

    To report a retrospective series of 84 cerebral developmental venous anomalies (DVAs), focusing on associated parenchymal abnormalities within the drainage territory of the DVA. DVAs were identified during routine diagnostic radiological work-up based on magnetic resonance imaging (MRI) (60 cases), computed tomography (CT) (62 cases) or both (36 cases). Regional parenchymal modifications within the drainage territory of the DVA, such as cortical or subcortical atrophy, white matter density or signal alterations, dystrophic calcifications, presence of haemorrhage or a cavernous-like vascular malformation (CVM), were noted. A stenosis of the collecting vein of the DVA was also sought for. Brain abnormalities within the drainage territory of a DVA were encountered in 65.4% of the cases. Locoregional brain atrophy occurred in 29.7% of the cases, followed by white matter lesions in 28.3% of MRI investigations and 19.3% of CT investigations, CVMs in 13.3% of MRI investigations and dystrophic calcification in 9.6% of CT investigations. An intracranial haemorrhage possibly related to a DVA occurred in 2.4% cases, and a stenosis on the collecting vein was documented in 13.1% of cases. Parenchymal abnormalities were identified for all DVA sizes. Brain parenchymal abnormalities were associated with DVAs in close to two thirds of the cases evaluated. These abnormalities are thought to occur secondarily, likely during post-natal life, as a result of chronic venous hypertension. Outflow obstruction, progressive thickening of the walls of the DVA and their morphological organization into a venous convergence zone are thought to contribute to the development of venous hypertension in DVA. (orig.)

  7. Cortical sensorimotor alterations classify clinical phenotype and putative genotype of spasmodic dysphonia

    Science.gov (United States)

    Battistella, Giovanni; Fuertinger, Stefan; Fleysher, Lazar; Ozelius, Laurie J.; Simonyan, Kristina

    2017-01-01

    Background Spasmodic dysphonia (SD), or laryngeal dystonia, is a task-specific isolated focal dystonia of unknown causes and pathophysiology. Although functional and structural abnormalities have been described in this disorder, the influence of its different clinical phenotypes and genotypes remains scant, making it difficult to explain SD pathophysiology and to identify potential biomarkers. Methods We used a combination of independent component analysis and linear discriminant analysis of resting-state functional MRI data to investigate brain organization in different SD phenotypes (abductor vs. adductor type) and putative genotypes (familial vs. sporadic cases) and to characterize neural markers for genotype/phenotype categorization. Results We found abnormal functional connectivity within sensorimotor and frontoparietal networks in SD patients compared to healthy individuals as well as phenotype- and genotype-distinct alterations of these networks, involving primary somatosensory, premotor and parietal cortices. The linear discriminant analysis achieved 71% accuracy classifying SD and healthy individuals using connectivity measures in the left inferior parietal and sensorimotor cortex. When categorizing between different forms of SD, the combination of measures from left inferior parietal, premotor and right sensorimotor cortices achieved 81% discriminatory power between familial and sporadic SD cases, whereas the combination of measures from the right superior parietal, primary somatosensory and premotor cortices led to 71% accuracy in the classification of adductor and abductor SD forms. Conclusions Our findings present the first effort to identify and categorize isolated focal dystonia based on its brain functional connectivity profile, which may have a potential impact on the future development of biomarkers for this rare disorder. PMID:27346568

  8. Abnormalities of cerebellar foliation and fissuration: classification, neurogenetics and clinicoradiological correlations

    Energy Technology Data Exchange (ETDEWEB)

    Demaerel, P. [University Hospital, Department of Radiology, Herestraat 49, 3000 Leuven (Belgium)

    2002-08-01

    Several genes have been found to influence the different cells involved in the processes of foliation and fissuration in the mouse and rat cerebellum. In the light of these new concepts and on the basis of the imaging findings in 42 patients, a classification is proposed for abnormalities of foliation and fissuration. On the basis of recent genetic and experimental evidence on mechanisms which control the origin of the cerebellum, it is suggested that abnormalities of foliation and fissuration form a single group, with a spectrum of severity. Some patients have only abnormal fissuration of the anterior lobe (type 1a) and others additional dysplasia of the anterior and part of the posterior lobe (type 1b). Extension of abnormalities into the hemispheres is often seen in the latter group. A second group has vermian and hemisphere abnormalities (type 2). In addition to the malformation of the anterior lobe of the vermis, three different hemispheric lesions can be seen in this group: cortical dysgenesis, hypertrophy of the cerebellar cortex, and malorientation of the folia. The mild abnormalities (type 1a) can be considered an incidental observation without clinical relevance. The moderate and severe cerebellar anomalies (type 1b and 2) are always associated with cerebellar symptoms and/or signs. (orig.)

  9. Abnormalities of cerebellar foliation and fissuration: classification, neurogenetics and clinicoradiological correlations

    International Nuclear Information System (INIS)

    Demaerel, P.

    2002-01-01

    Several genes have been found to influence the different cells involved in the processes of foliation and fissuration in the mouse and rat cerebellum. In the light of these new concepts and on the basis of the imaging findings in 42 patients, a classification is proposed for abnormalities of foliation and fissuration. On the basis of recent genetic and experimental evidence on mechanisms which control the origin of the cerebellum, it is suggested that abnormalities of foliation and fissuration form a single group, with a spectrum of severity. Some patients have only abnormal fissuration of the anterior lobe (type 1a) and others additional dysplasia of the anterior and part of the posterior lobe (type 1b). Extension of abnormalities into the hemispheres is often seen in the latter group. A second group has vermian and hemisphere abnormalities (type 2). In addition to the malformation of the anterior lobe of the vermis, three different hemispheric lesions can be seen in this group: cortical dysgenesis, hypertrophy of the cerebellar cortex, and malorientation of the folia. The mild abnormalities (type 1a) can be considered an incidental observation without clinical relevance. The moderate and severe cerebellar anomalies (type 1b and 2) are always associated with cerebellar symptoms and/or signs. (orig.)

  10. Mitotic Spindle Asymmetry: A Wnt/PCP-Regulated Mechanism Generating Asymmetrical Division in Cortical Precursors

    Directory of Open Access Journals (Sweden)

    Delphine Delaunay

    2014-01-01

    Full Text Available The regulation of asymmetric cell division (ACD during corticogenesis is incompletely understood. We document that spindle-size asymmetry (SSA between the two poles occurs during corticogenesis and parallels ACD. SSA appears at metaphase and is maintained throughout division, and we show it is necessary for proper neurogenesis. Imaging of spindle behavior and division outcome reveals that neurons preferentially arise from the larger-spindle pole. Mechanistically, SSA magnitude is controlled by Wnt7a and Vangl2, both members of the Wnt/planar cell polarity (PCP-signaling pathway, and relayed to the cell cortex by P-ERM proteins. In vivo, Vangl2 and P-ERM downregulation promotes early cell-cycle exit and prevents the proper generation of late-born neurons. Thus, SSA is a core component of ACD that is conserved in invertebrates and vertebrates and plays a key role in the tight spatiotemporal control of self-renewal and differentiation during mammalian corticogenesis.

  11. Experimental investigation of transverse spin asymmetries in muon-p SIDIS processes: Collins asymmetries

    CERN Document Server

    Adolph, C.; Alexakhin, V.Yu.; Alexandrov, Yu.; Alexeev, G.D.; Amoroso, A.; Antonov, A.A.; Austregesilo, A.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Bedfer, Y.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Crespo, M.L.; Dalla Torre, S.; Das, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Fischer, H.; Franco, C.; von Hohenesche, N.du Fresne; Friedrich, J.M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Grabmuller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Guthorl, T.; Haas, F.; von Harrach, D.; Heinsius, F.H.; Herrmann, F.; Hess, C.; Hinterberger, F.; Horikawa, N.; Hoppner, Ch.; d'Hose, N.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Joosten, R.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Korzenev, A.; Kotzinian, A.M.; Kouznetsov, O.; Kramer, M.; Kroumchtein, Z.V.; Kunne, F.; Kurek, K.; Lauser, L.; Lednev, A.A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Liska, T.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G.K.; Mann, A.; Marchand, C.; Martin, A.; Marzec, J.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu.V.; Moinester, M.A.; Morreale, A.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Negrini, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.I.; Nowak, W.D.; Nunes, A.S.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Perevalova, E.; Pesaro, G.; Peshekhonov, D.V.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Rajotte, J.F.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Richter, A.; Rocco, E.; Rondio, E.; Rossiyskaya, N.S.; Ryabchikov, D.I.; Samoylenko, V.D.; Sandacz, A.; Sapozhnikov, M.G.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schluter, T.; Schmidt, K.; Schmitt, L.; Schonning, K.; Schopferer, S.; Schott, M.; Schroder, W.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Sissakian, A.N.; Slunecka, M.; Smirnov, G.I.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Sznajder, P.; Takekawa, S.; Wolbeek, J.Ter; Tessaro, S.; Tessarotto, F.; Tkatchev, L.G.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Vlassov, N.V.; Wang, L.; Wilfert, M.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zhuravlev, N.; Zvyagin, A.

    2012-10-31

    The COMPASS Collaboration at CERN has measured the transverse spin azimuthal asymmetry of charged hadrons produced in semi-inclusive deep inelastic scattering using a 160 GeV positive muon beam and a transversely polarised NH_3 target. The Collins asymmetry of the proton was extracted in the Bjorken x range 0.003asymmetries for negative and positive hadrons are similar in magnitude and opposite in sign. They are compatible with model calculations in which the u-quark transversity is opposite in sign and somewhat larger than the d-quark transversity distribution function. The asymmetry is extracted as a function of Bjorken $x$, the relative hadron energy $z$ and the hadron transverse momentum p_T^h. The high statistics and quality of the data also allow for more detailed investigations of the dependence on the ki...

  12. [Schizophrenia and cortical GABA neurotransmission].

    Science.gov (United States)

    Hashimoto, Takanori; Matsubara, Takuro; Lewis, David A

    2010-01-01

    Individuals with schizophrenia show disturbances in a number of brain functions that regulate cognitive, affective, motor, and sensory processing. The cognitive deficits associated with dysfunction of the dorsolateral prefrontal cortex result, at least in part, from abnormalities in GABA neurotransmission, as reflected in a specific pattern of altered expression of GABA-related molecules. First, mRNA levels for the 67-kilodalton isoform of glutamic acid decarboxylase (GAD67), an enzyme principally responsible for GABA synthesis, and the GABA membrane transporter GAT1, which regulates the reuptake of synaptically released GABA, are decreased in a subset of GABA neurons. Second, affected GABA neurons include those that express the calcium-binding protein parvalbumin (PV), because PV mRNA levels are decreased in the prefrontal cortex of subjects with schizophrenia and GAD67 mRNA is undetectable in almost half of PV-containing neurons. These changes are accompanied by decreased GAT1 expression in the presynaptic terminals of PV-containing neurons and by increased postsynaptic GABA-A receptor alpha2 subunit expression at the axon initial segments of pyramidal neurons. These findings indicate decreased GABA synthesis/release by PV-containing GABA neurons and compensatory changes at synapses formed by these neurons. Third, another subset of GABA neurons that express the neuropeptide somatostatin (SST) also appear to be affected because their specific markers, SST and neuropeptide Y mRNAs, are decreased in a manner highly correlated with the decreases in GAD67 mRNA. Finally, mRNA levels for GABA-A receptor subunits for synaptic (alpha1 and gamma2) and extra-synaptic (delta) receptors are decreased, indicating alterations in both synaptic and extra-synaptic GABA neurotransmission. Together, this pattern of changes indicates that the altered GABA neurotransmission is specific to PV-containing and SST-containing GABA neuron subsets and involves both synaptic and extra

  13. Fluctuating Asymmetry of Human Populations: A Review

    Directory of Open Access Journals (Sweden)

    John H. Graham

    2016-12-01

    Full Text Available Fluctuating asymmetry, the random deviation from perfect symmetry, is a widely used population-level index of developmental instability, developmental noise, and robustness. It reflects a population’s state of adaptation and genomic coadaptation. Here, we review the literature on fluctuating asymmetry of human populations. The most widely used bilateral traits include skeletal, dental, and facial dimensions; dermatoglyphic patterns and ridge counts; and facial shape. Each trait has its advantages and disadvantages, but results are most robust when multiple traits are combined into a composite index of fluctuating asymmetry (CFA. Both environmental (diet, climate, toxins and genetic (aneuploidy, heterozygosity, inbreeding stressors have been linked to population-level variation in fluctuating asymmetry. In general, these stressors increase average fluctuating asymmetry. Nevertheless, there have been many conflicting results, in part because (1 fluctuating asymmetry is a weak signal in a sea of noise; and (2 studies of human fluctuating asymmetry have not always followed best practices. The most serious concerns are insensitive asymmetry indices (correlation coefficient and coefficient of indetermination, inappropriate size scaling, unrecognized mixture distributions, inappropriate corrections for directional asymmetry, failure to use composite indices, and inattention to measurement error. Consequently, it is often difficult (or impossible to compare results across traits, and across studies.

  14. Fluctuating Asymmetry and Intelligence

    Science.gov (United States)

    Bates, Timothy C.

    2007-01-01

    The general factor of mental ability ("g") may reflect general biological fitness. If so, "g"-loaded measures such as Raven's progressive matrices should be related to morphological measures of fitness such as fluctuating asymmetry (FA: left-right asymmetry of a set of typically left-right symmetrical body traits such as finger…

  15. Lepton forward-backward asymmetries

    International Nuclear Information System (INIS)

    Pain, R.

    1992-01-01

    Results of Forward-Backward Asymmetries with Leptons measured at Z 0 energies are presented. Details of the analysis by the DELPHI Collaboration are given together with the most recent values of the peak Asymmetries for electrons, muons and taus obtained by ALEPH, DELPHI, L3 and OPAL Collaborations at LEP

  16. The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction.

    Science.gov (United States)

    Makropoulos, Antonios; Robinson, Emma C; Schuh, Andreas; Wright, Robert; Fitzgibbon, Sean; Bozek, Jelena; Counsell, Serena J; Steinweg, Johannes; Vecchiato, Katy; Passerat-Palmbach, Jonathan; Lenz, Gregor; Mortari, Filippo; Tenev, Tencho; Duff, Eugene P; Bastiani, Matteo; Cordero-Grande, Lucilio; Hughes, Emer; Tusor, Nora; Tournier, Jacques-Donald; Hutter, Jana; Price, Anthony N; Teixeira, Rui Pedro A G; Murgasova, Maria; Victor, Suresh; Kelly, Christopher; Rutherford, Mary A; Smith, Stephen M; Edwards, A David; Hajnal, Joseph V; Jenkinson, Mark; Rueckert, Daniel

    2018-06-01

    The Developing Human Connectome Project (dHCP) seeks to create the first 4-dimensional connectome of early life. Understanding this connectome in detail may provide insights into normal as well as abnormal patterns of brain development. Following established best practices adopted by the WU-MINN Human Connectome Project (HCP), and pioneered by FreeSurfer, the project utilises cortical surface-based processing pipelines. In this paper, we propose a fully automated processing pipeline for the structural Magnetic Resonance Imaging (MRI) of the developing neonatal brain. This proposed pipeline consists of a refined framework for cortical and sub-cortical volume segmentation, cortical surface extraction, and cortical surface inflation, which has been specifically designed to address considerable differences between adult and neonatal brains, as imaged using MRI. Using the proposed pipeline our results demonstrate that images collected from 465 subjects ranging from 28 to 45 weeks post-menstrual age (PMA) can be processed fully automatically; generating cortical surface models that are topologically correct, and correspond well with manual evaluations of tissue boundaries in 85% of cases. Results improve on state-of-the-art neonatal tissue segmentation models and significant errors were found in only 2% of cases, where these corresponded to subjects with high motion. Downstream, these surfaces will enhance comparisons of functional and diffusion MRI datasets, supporting the modelling of emerging patterns of brain connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Pitch-Responsive Cortical Regions in Congenital Amusia.

    Science.gov (United States)

    Norman-Haignere, Sam V; Albouy, Philippe; Caclin, Anne; McDermott, Josh H; Kanwisher, Nancy G; Tillmann, Barbara

    2016-03-09

    Congenital amusia is a lifelong deficit in music perception thought to reflect an underlying impairment in the perception and memory of pitch. The neural basis of amusic impairments is actively debated. Some prior studies have suggested that amusia stems from impaired connectivity between auditory and frontal cortex. However, it remains possible that impairments in pitch coding within auditory cortex also contribute to the disorder, in part because prior studies have not measured responses from the cortical regions most implicated in pitch perception in normal individuals. We addressed this question by measuring fMRI responses in 11 subjects with amusia and 11 age- and education-matched controls to a stimulus contrast that reliably identifies pitch-responsive regions in normal individuals: harmonic tones versus frequency-matched noise. Our findings demonstrate that amusic individuals with a substantial pitch perception deficit exhibit clusters of pitch-responsive voxels that are comparable in extent, selectivity, and anatomical location to those of control participants. We discuss possible explanations for why amusics might be impaired at perceiving pitch relations despite exhibiting normal fMRI responses to pitch in their auditory cortex: (1) individual neurons within the pitch-responsive region might exhibit abnormal tuning or temporal coding not detectable with fMRI, (2) anatomical tracts that link pitch-responsive regions to other brain areas (e.g., frontal cortex) might be altered, and (3) cortical regions outside of pitch-responsive cortex might be abnormal. The ability to identify pitch-responsive regions in individual amusic subjects will make it possible to ask more precise questions about their role in amusia in future work. Copyright © 2016 the authors 0270-6474/16/362986-09$15.00/0.

  18. Responses of vibrissa-sensitive cortical neurons in normal and prenatally x-irradiated rat

    International Nuclear Information System (INIS)

    Ito, M.; Kawabata, M.; Shoji, R.

    1979-01-01

    Rats were irradiated by 200 R of x ray on day 17 of gestation through the body wall of the mother. When they underwent the following electrophysiological tests at the age of 3 to 4 month, the somatosensory cortex showed a lack of layers II, III, IV, and Va. Spike responses to quick whisker deflections were recorded from single cells in the somatosenory cortex of normal and prenatally x-irradiated rats. For the irradiated rats the response latency was prolonged when compared to the normal controls. Cortical laminar analysis of field potentials revealed that there was no difference in the latency of these potentials between the two groups, suggesting that vibrissal sensory signals reach the cortical level normally even in the irradiated rats. The prolonged latency of the irradiated cortical neuronal response could thus be ascribed to an abnormal intracortical delay, which was most likely associated with the failure of development of layer IV stellate cells in these preparations

  19. Relationships between rotator cuff tear types and radiographic abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Soo Hyun; Chun, Kyung Ah; Lee Soo Jung; Kang, Min Ho; Yi, Kyung Sik; Zhang, Ying [Dept. of Diagnostic Radiology, College of Medicine, Chungbuk National University, Cheongju (Korea, Republic of)

    2014-11-15

    To determine relationships between different types of rotator cuff tears and radiographic abnormalities. The shoulder radiographs of 104 patients with an arthroscopically proven rotator cuff tear were compared with similar radiographs of 54 age-matched controls with intact cuffs. Two radiologists independently interpreted all radiographs for; cortical thickening with subcortical sclerosis, subcortical cysts, osteophytes in the humeral greater tuberosity, humeral migration, degenerations of the acromioclavicular and glenohumeral joints, and subacromial spurs. Statistical analysis was performed to determine relationships between each type of rotator cuff tears and radiographic abnormalities. Inter-observer agreements with respect to radiographic findings were analyzed. Humeral migration and degenerative change of the greater tuberosity, including sclerosis, subcortical cysts, and osteophytes, were more associated with full-thickness tears (p < 0.01). Subacromial spurs were more common for full-thickness and bursal-sided tears (p < 0.01). No association was found between degeneration of the acromioclavicular or glenohumeral joint and the presence of a cuff tear. Different types of rotator cuff tears are associated with different radiographic abnormalities.

  20. Relationships between rotator cuff tear types and radiographic abnormalities

    International Nuclear Information System (INIS)

    Lee, Soo Hyun; Chun, Kyung Ah; Lee Soo Jung; Kang, Min Ho; Yi, Kyung Sik; Zhang, Ying

    2014-01-01

    To determine relationships between different types of rotator cuff tears and radiographic abnormalities. The shoulder radiographs of 104 patients with an arthroscopically proven rotator cuff tear were compared with similar radiographs of 54 age-matched controls with intact cuffs. Two radiologists independently interpreted all radiographs for; cortical thickening with subcortical sclerosis, subcortical cysts, osteophytes in the humeral greater tuberosity, humeral migration, degenerations of the acromioclavicular and glenohumeral joints, and subacromial spurs. Statistical analysis was performed to determine relationships between each type of rotator cuff tears and radiographic abnormalities. Inter-observer agreements with respect to radiographic findings were analyzed. Humeral migration and degenerative change of the greater tuberosity, including sclerosis, subcortical cysts, and osteophytes, were more associated with full-thickness tears (p < 0.01). Subacromial spurs were more common for full-thickness and bursal-sided tears (p < 0.01). No association was found between degeneration of the acromioclavicular or glenohumeral joint and the presence of a cuff tear. Different types of rotator cuff tears are associated with different radiographic abnormalities.

  1. A functional Magnetic Resonance Imaging study of neurohemodynamic abnormalities during emotion processing in subjects at high risk for schizophrenia

    Science.gov (United States)

    Venkatasubramanian, Ganesan; Puthumana, Dawn Thomas K.; Jayakumar, Peruvumba N.; Gangadhar, B. N.

    2010-01-01

    Background: Emotion processing abnormalities are considered among the core deficits in schizophrenia. Subjects at high risk (HR) for schizophrenia also show these deficits. Structural neuroimaging studies examining unaffected relatives at high risk for schizophrenia have demonstrated neuroanatomical abnormalities involving neo-cortical and sub-cortical brain regions related to emotion processing. The brain functional correlates of emotion processing in these HR subjects in the context of ecologically valid, real-life dynamic images using functional Magnetic Resonance Imaging (fMRI) has not been examined previously. Aim: To examine the neurohemodynamic abnormalities during emotion processing in unaffected subjects at high risk for schizophrenia in comparison with age-, sex-, handedness- and education-matched healthy controls, using fMRI. Materials and Methods: HR subjects for schizophrenia (n=17) and matched healthy controls (n=16) were examined. The emotion processing of fearful facial expression was examined using a culturally appropriate and valid tool for Indian subjects. The fMRI was performed in a 1.5-T scanner during an implicit emotion processing paradigm. The fMRI analyses were performed using the Statistical Parametric Mapping 2 (SPM2) software. Results: HR subjects had significantly reduced brain activations in left insula, left medial frontal gyrus, left inferior frontal gyrus, right cingulate gyrus, right precentral gyrus and right inferior parietal lobule. Hypothesis-driven region-of-interest analysis revealed hypoactivation of right amygdala in HR subjects. Conclusions: Study findings suggest that neurohemodynamic abnormalities involving limbic and frontal cortices could be potential indicators for increased vulnerability toward schizophrenia. The clinical utility of these novel findings in predicting the development of psychosis needs to be evaluated. PMID:21267363

  2. PET and SPECT in medically non-refractory complex partial seizures. Temporal asymmetries of glucose consumption, Benzodiazepine receptor density

    International Nuclear Information System (INIS)

    Matheja, P.; Kuwert, T.; Wolf, K.; Schober, O.; Stodieck, S.R.G.; Diehl, B.; Ringelstein, E.B.; Schuierer, G.

    1998-01-01

    Aim: In contrast to medically refractory complex partial seizures (CPS), only limited knowledge exists on cerebral perfusion and metabolism in medically non-refractory CPS. The aim of this study was to investigate the frequency of temporal asymmetries in regional cerebral glucose consumption (rCMRGlc), regional cerebral blood flow (rCBF), and regional cerebral benzodiazepine receptor density (BRD) in this group of patients. Methods: The study included 49 patients with medically non-refractory cryptogenic CPS (age: 36.0±16.1 years). rCMRGlc was studied with F-18-FDG-PET (FDG), rCBF with Tc-99m-ECD-SPECT (ECD), and BRD with I-123-iomazenil-SPECT (IMZ). All studies were performed interictally and within four weeks in each patient. Duration of epilepsy ranged from 0.1 to 42 years (median 4.0 years). SPECT was performed with the triple-headed SPECT camera Multispect 3, PET with the PET camera ECAT EXACT 47. Using linear profiles, glucose consumption, as well as uptake of ECD and IMZ, were measured in four temporal regions of interest (ROIs), and asymmetry indices were calculated (ASY). The results were compared to 95% confidence intervals determined in control subjects. Results: Thirty-five of the 49 (71%) patients had at least one significantly elevated ASY; temporal rCMRGlc was asymmetrical in 41% of the patients, temporal BRD in 29%, and temporal rCBF in 24%. One patient had an asymmetry of all three variables, two of temporal rCMRGlc and BRD, three of temporal rCMRGlc and rCBF, and another four of rCBF and BRD. Fourteen patients had an isolated temporal asymmetry in rCMRGlc, seven in BRD, and four in rCBF. A discrepancy in lateralization between the three modalities was not observed. Conclusion: The majority of patients with medically non-refractory CPS have focal abnormalities of blood flow and metabolism in their temporal lobe. In this group of patients, FDG-PET demonstrates abnormalities with the highest frequency of the three modalities studied, followed by IMZ

  3. ``Green's function'' approach & low-mode asymmetries

    Science.gov (United States)

    Masse, Laurent; Clark, Dan; Salmonson, Jay; MacLaren, Steve; Ma, Tammy; Khan, Shahab; Pino, Jesse; Ralph, Jo; Czajka, C.; Tipton, Robert; Landen, Otto; Kyrala, Georges; 2 Team; 1 Team

    2017-10-01

    Long wavelength, low mode asymmetries are believed to play a leading role in limiting the performance of current ICF implosions on NIF. These long wavelength modes are initiated and driven by asymmetries in the x-ray flux from the hohlraum; however, the underlying hydrodynamics of the implosion also act to amplify these asymmetries. The work presented here aim to deepen our understanding of the interplay of the drive asymmetries and the underlying implosion hydrodynamics in determining the final imploded configuration. This is accomplished through a synthesis of numerical modeling, analytic theory, and experimental data. In detail, we use a Green's function approach to connect the drive asymmetry seen by the capsule to the measured inflight and hot spot symmetries. The approach has been validated against a suite of numerical simulations. Ultimately, we hope this work will identify additional measurements to further constrain the asymmetries and increase hohlraum illumination design flexibility on the NIF. The technique and derivation of associated error bars will be presented. LLC, (LLNS) Contract No. DE-AC52-07NA27344.

  4. Symmetry and Asymmetry Level Measures

    Directory of Open Access Journals (Sweden)

    Angel Garrido

    2010-04-01

    Full Text Available Usually, Symmetry and Asymmetry are considered as two opposite sides of a coin: an object is either totally symmetric, or totally asymmetric, relative to pattern objects. Intermediate situations of partial symmetry or partial asymmetry are not considered. But this dichotomy on the classification lacks of a necessary and realistic gradation. For this reason, it is convenient to introduce "shade regions", modulating the degree of Symmetry (a fuzzy concept. Here, we will analyze the Asymmetry problem by successive attempts of description and by the introduction of the Asymmetry Level Function, as a new Normal Fuzzy Measure. Our results (both Theorems and Corollaries suppose to be some new and original contributions to such very active and interesting field of research. Previously, we proceed to the analysis of the state of art.

  5. Cortical visual impairment

    OpenAIRE

    Koželj, Urša

    2013-01-01

    In this thesis we discuss cortical visual impairment, diagnosis that is in the developed world in first place, since 20 percent of children with blindness or low vision are diagnosed with it. The objectives of the thesis are to define cortical visual impairment and the definition of characters suggestive of the cortical visual impairment as well as to search for causes that affect the growing diagnosis of cortical visual impairment. There are a lot of signs of cortical visual impairment. ...

  6. Can zero-hour cortical biopsy predict early graft outcomes after living donor renal transplantation?

    Science.gov (United States)

    Rathore, Ranjeet Singh; Mehta, Nisarg; Mehta, Sony Bhaskar; Babu, Manas; Bansal, Devesh; Pillai, Biju S; Sam, Mohan P; Krishnamoorthy, Hariharan

    2017-11-01

    The aim of this study was to identify relevance of subclinical pathological findings in the kidneys of living donors and correlate these with early graft renal function. This was a prospective study on 84 living donor kidney transplant recipients over a period of two years. In all the donors, cortical wedge biopsy was taken and sent for assessment of glomerular, mesangial, and tubule status. The graft function of patients with normal histology was compared with those of abnormal histological findings at one, three, and six months, and one year post-surgery. Most abnormal histological findings were of mild degree. Glomerulosclerosis (GS, 25%), interstitial fibrosis (IF, 13%), acute tubular necrosis (ATN 5%), and focal tubal atrophy (FTA, 5%) were the commonly observed pathological findings in zero-hour biopsies. Only those donors who had histological changes of IF and ATN showed progressive deterioration of renal function at one month, three months, six months, and one year post-transplantation. In donors with other histological changes, no significant effect on graft function was observed. Zero-hour cortical biopsy gave us an idea of the general status of the donor kidney and presence or absence of subclinical pathological lesions. A mild degree of subclinical and pathological findings on zero-hour biopsy did not affect early graft renal function in living donor kidney transplantation. Zero-hour cortical biopsy could also help in discriminating donor-derived lesions from de novo alterations in the kidney that could happen subsequently.

  7. Primary cortical folding in the human newborn: an early marker of later functional development

    Science.gov (United States)

    Benders, M.; Borradori-Tolsa, C.; Cachia, A.; Lazeyras, F.; Ha-Vinh Leuchter, R.; Sizonenko, S. V.; Warfield, S. K.; Mangin, J. F.; Hüppi, P. S.

    2008-01-01

    In the human brain, the morphology of cortical gyri and sulci is complex and variable among individuals, and it may reflect pathological functioning with specific abnormalities observed in certain developmental and neuropsychiatric disorders. Since cortical folding occurs early during brain development, these structural abnormalities might be present long before the appearance of functional symptoms. So far, the precise mechanisms responsible for such alteration in the convolution pattern during intra-uterine or post-natal development are still poorly understood. Here we compared anatomical and functional brain development in vivo among 45 premature newborns who experienced different intra-uterine environments: 22 normal singletons, 12 twins and 11 newborns with intrauterine growth restriction (IUGR). Using magnetic resonance imaging (MRI) and dedicated post-processing tools, we investigated early disturbances in cortical formation at birth, over the developmental period critical for the emergence of convolutions (26–36 weeks of gestational age), and defined early ‘endophenotypes’ of sulcal development. We demonstrated that twins have a delayed but harmonious maturation, with reduced surface and sulcation index compared to singletons, whereas the gyrification of IUGR newborns is discordant to the normal developmental trajectory, with a more pronounced reduction of surface in relation to the sulcation index compared to normal newborns. Furthermore, we showed that these structural measurements of the brain at birth are predictors of infants’ outcome at term equivalent age, for MRI-based cerebral volumes and neurobehavioural development evaluated with the assessment of preterm infant's behaviour (APIB). PMID:18587151

  8. Cortical asymmetry: catching an object in free fall Assimetria cortical: apreensão de um objeto em queda livre

    Directory of Open Access Journals (Sweden)

    Bruna Velasques

    2007-09-01

    Full Text Available The main goal of the present study was to analyze theta asymmetry through quantitative electroencephalography (qEEG when individuals were exposed to a sequential motor task, i.e. catching a ball. The sample was composed of 23 healthy subjects, male and female, between 25 and 40 years of age. A two-way factor Anova was applied to compare pre and post moments related to the balls' drop and scalp regions (i.e., frontal and parieto-occipital cortices. The first analysis of the frontal region compared electrodes in the left, right and left/right hemispheres combined, with the frontal midline electrode (FZ included in the analysis. The results showed moment and region main effects. The second analysis compared left versus right hemisphere without the FZ site. The findings demonstrated an interaction effect between moment and region. The first parieto-occipital analysis, comparing left, right and central regions, with PZ included in all regions, showed main effects of moment and region. The second analysis, comparing left, right (without Pz and central regions strictly demonstrated a region main effect. Thus, we observed an asymmetric pattern in the frontal cortex (i.e., planning and response selection when the subjects were waiting for the balls' drop. Moreover, the left hemisphere seems to engage differently from the other regions when the central nervous system needs to prepare for a motor action. On the other hand, the parieto-occipital cortex, which is related to attentive processes, demonstrated a more asymmetric activity towards the right region which implies a participation of this area in cognitive strategies in this particular task. Taken together, we concluded that the adopted experimental approach can be useful to explore several others directions combining sensorimotor integration tasks with different pathologies, such as depression, Alzheimer's and Parkinson's diseases.O objetivo do presente experimento foi avaliar medidas de assimetria

  9. Parallel changes in cortical neuron biochemistry and motor function in protein-energy malnourished adult rats.

    Science.gov (United States)

    Alaverdashvili, Mariam; Hackett, Mark J; Caine, Sally; Paterson, Phyllis G

    2017-04-01

    While protein-energy malnutrition in the adult has been reported to induce motor abnormalities and exaggerate motor deficits caused by stroke, it is not known if alterations in mature cortical neurons contribute to the functional deficits. Therefore, we explored if PEM in adult rats provoked changes in the biochemical profile of neurons in the forelimb and hindlimb regions of the motor cortex. Fourier transform infrared spectroscopic imaging using a synchrotron generated light source revealed for the first time altered lipid composition in neurons and subcellular domains (cytosol and nuclei) in a cortical layer and region-specific manner. This change measured by the area under the curve of the δ(CH 2 ) band may indicate modifications in membrane fluidity. These PEM-induced biochemical changes were associated with the development of abnormalities in forelimb use and posture. The findings of this study provide a mechanism by which PEM, if not treated, could exacerbate the course of various neurological disorders and diminish treatment efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Cortical morphology of adolescents with bipolar disorder and with schizophrenia.

    Science.gov (United States)

    Janssen, Joost; Alemán-Gómez, Yasser; Schnack, Hugo; Balaban, Evan; Pina-Camacho, Laura; Alfaro-Almagro, Fidel; Castro-Fornieles, Josefina; Otero, Soraya; Baeza, Inmaculada; Moreno, Dolores; Bargalló, Nuria; Parellada, Mara; Arango, Celso; Desco, Manuel

    2014-09-01

    Recent evidence points to overlapping decreases in cortical thickness and gyrification in the frontal lobe of patients with adult-onset schizophrenia and bipolar disorder with psychotic symptoms, but it is not clear if these findings generalize to patients with a disease onset during adolescence and what may be the mechanisms underlying a decrease in gyrification. This study analyzed cortical morphology using surface-based morphometry in 92 subjects (age range 11-18 years, 52 healthy controls and 40 adolescents with early-onset first-episode psychosis diagnosed with schizophrenia (n=20) or bipolar disorder with psychotic symptoms (n=20) based on a two year clinical follow up). Average lobar cortical thickness, surface area, gyrification index (GI) and sulcal width were compared between groups, and the relationship between the GI and sulcal width was assessed in the patient group. Both patients groups showed decreased cortical thickness and increased sulcal width in the frontal cortex when compared to healthy controls. The schizophrenia subgroup also had increased sulcal width in all other lobes. In the frontal cortex of the combined patient group sulcal width was negatively correlated (r=-0.58, padolescents with schizophrenia and bipolar disorder with psychotic symptoms there is cortical thinning, decreased GI and increased sulcal width of the frontal cortex present at the time of the first psychotic episode. Decreased frontal GI is associated with the widening of the frontal sulci which may reduce sulcal surface area. These results suggest that abnormal growth (or more pronounced shrinkage during adolescence) of the frontal cortex represents a shared endophenotype for psychosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Cortico-Cortical Receptive Field Estimates in Human Visual Cortex

    Directory of Open Access Journals (Sweden)

    Koen V Haak

    2012-05-01

    Full Text Available Human visual cortex comprises many visual areas that contain a map of the visual field (Wandell et al 2007, Neuron 56, 366–383. These visual field maps can be identified readily in individual subjects with functional magnetic resonance imaging (fMRI during experimental sessions that last less than an hour (Wandell and Winawer 2011, Vis Res 718–737. Hence, visual field mapping with fMRI has been, and still is, a heavily used technique to examine the organisation of both normal and abnormal human visual cortex (Haak et al 2011, ACNR, 11(3, 20–21. However, visual field mapping cannot reveal every aspect of human visual cortex organisation. For example, the information processed within a visual field map arrives from somewhere and is sent to somewhere, and visual field mapping does not derive these input/output relationships. Here, we describe a new, model-based analysis for estimating the dependence between signals in distinct cortical regions using functional magnetic resonance imaging (fMRI data. Just as a stimulus-referred receptive field predicts the neural response as a function of the stimulus contrast, the neural-referred receptive field predicts the neural response as a function of responses elsewhere in the nervous system. When applied to two cortical regions, this function can be called the cortico-cortical receptive field (CCRF. We model the CCRF as a Gaussian-weighted region on the cortical surface and apply the model to data from both stimulus-driven and resting-state experimental conditions in visual cortex.

  12. Multiple photon emission and b quark asymmetries

    International Nuclear Information System (INIS)

    Jadach, S.; Ward, B.F.L.

    1989-08-01

    We discuss the effects of multiple photon final states in high precision tests of the SU 2L x U 1 model wherein one measures the b quark asymmetries at a very high luminosity Z 0 factory, such as the possible high luminosity upgrade of the CERN LEP collider. The specific asymmetries analyzed are the forward-backward asymmetry A FB , the left-right polarized asymmetry A LR and the polarized forward-backward asymmetry A FB,pol. . The radiative effects are found to be significant for A FB as expected, but they are not as large, on a percentage basis, as the corresponding result for muons. (author). 5 refs, 1 tab

  13. Delineation of cortical pathology in multiple sclerosis using multi-surface magnetization transfer ratio imaging

    Directory of Open Access Journals (Sweden)

    David A. Rudko

    2016-01-01

    Full Text Available The purpose of our study was to evaluate the utility of measurements of cortical surface magnetization transfer ratio (csMTR on the inner, mid and outer cortical boundaries as clinically accessible biomarkers of cortical gray matter pathology in multiple sclerosis (MS. Twenty-five MS patients and 12 matched controls were recruited from the MS Clinic of the Montreal Neurological Institute. Anatomical and magnetization transfer ratio (MTR images were acquired using 3 Tesla MRI at baseline and two-year time-points. MTR maps were smoothed along meshes representing the inner, mid and outer neocortical boundaries. To evaluate csMTR reductions suggestive of sub-pial demyelination in MS patients, a mixed model analysis was carried out at both the individual vertex level and in anatomically parcellated brain regions. Our results demonstrate that focal areas of csMTR reduction are most prevalent along the outer cortical surface in the superior temporal and posterior cingulate cortices, as well as in the cuneus and precentral gyrus. Additionally, age regression analysis identified that reductions of csMTR in MS patients increase with age but appear to hit a plateau in the outer caudal anterior cingulate, as well as in the precentral and postcentral cortex. After correction for the naturally occurring gradient in cortical MTR, the difference in csMTR between the inner and outer cortex in focal areas in the brains of MS patients correlated with clinical disability. Overall, our findings support multi-surface analysis of csMTR as a sensitive marker of cortical sub-pial abnormality indicative of demyelination in MS patients.

  14. Approach-avoidance activation without anterior asymmetry

    Directory of Open Access Journals (Sweden)

    Andero eUusberg

    2014-03-01

    Full Text Available Occasionally, the expected effects of approach-avoidance motivation on anterior EEG alpha asymmetry fail to emerge, particularly in studies using affective picture stimuli. These null findings have been explained by insufficient motivational intensity of, and/or overshadowing interindividual variability within the responses to emotional pictures. These explanations were systematically tested using data from 70 students watching 5 types of affective pictures ranging from very pleasant to unpleasant. The stimulus categories reliably modulated self-reports as well as the amplitude of late positive potential, an ERP component reflecting orienting towards motivationally significant stimuli. The stimuli did not, however, induce expected asymmetry effects either for the sample or individual participants. Even while systematic stimulus-dependent individual differences emerged in self-reports as well as LPP amplitudes, the asymmetry variability was dominated by stimulus-independent interindividual variability. Taken together with previous findings, these results suggest that under some circumstances anterior asymmetry may not be an inevitable consequence of core affect. Instead, state asymmetry shifts may be overpowered by stable trait asymmetry differences and/or stimulus-independent yet situation-dependent interindividual variability, possibly caused by processes such as emotion regulation or anxious apprehension.

  15. Defective cancellous bone structure and abnormal response to PTH in cortical bone of mice lacking Cx43 cytoplasmic C-terminus domain

    Science.gov (United States)

    Pacheco-Costa, Rafael; Davis, Hannah M.; Sorenson, Chad; Hon, Mary C.; Hassan, Iraj; Reginato, Rejane D.; Allen, Matthew R.; Bellido, Teresita; Plotkin, Lilian I.

    2015-01-01

    Connexin43 (Cx43) forms gap junction channels and hemichannels that allow the communication among osteocytes, osteoblasts, and osteoclasts. Cx43 carboxy-terminal (CT) domain regulates channel opening and intracellular signaling by acting as a scaffold for structural and signaling proteins. To determine the role of Cx43 CT domain in bone, mice in which one allele of full length Cx43 was replaced by a mutant lacking the CT domain (Cx43ΔCT/fl) were studied. Cx43ΔCT/fl mice exhibit lower cancellous bone volume but higher cortical thickness than Cx43fl/fl controls, indicating that the CT domain is involved in normal cancellous bone gain but opposes cortical bone acquisition. Further, Cx43ΔCT is able to exert the functions of full length osteocytic Cx43 on cortical bone geometry and mechanical properties, demonstrating that domains other than the CT are responsible for Cx43 function in cortical bone. In addition, parathyroid hormone (PTH) failed to increase endocortical bone formation or energy to failure, a mechanical property that indicates resistance to fracture, in cortical bone in Cx43ΔCT mice with or without osteocytic full length Cx43. On the other hand, bone mass and bone formation markers were increased by the hormone in all mouse models, regardless of whether full length or Cx43ΔCT were or not expressed. We conclude that Cx43 CT domain is involved in proper bone acquisition; and that Cx43 expression in osteocytes is dispensable for some but not all PTH anabolic actions. PMID:26409319

  16. A Preliminary Transcranial Magnetic Stimulation Study of Cortical Inhibition and Excitability in High-Functioning Autism and Asperger Disorder

    Science.gov (United States)

    Enticott, Peter G.; Rinehart, Nicole J.; Tonge, Bruce J.; Bradshaw, John L.; Fitzgerald, Paul B.

    2010-01-01

    Aim: Controversy surrounds the distinction between high-functioning autism (HFA) and Asperger disorder, but motor abnormalities are associated features of both conditions. This study examined motor cortical inhibition and excitability in HFA and Asperger disorder using transcranial magnetic stimulation (TMS). Method: Participants were diagnosed by…

  17. Single spin asymmetry for charm mesons

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez Zacarias, G. [PIMAyC, Eje Central Lazaro Cardenas No. 152, Apdo. Postal 14-805, D.F. (Mexico); Herrera, G.; Mercado, J. [Centro de Investigacion y de Estudios Avanzados, Apdo. Postal 14-740, D.F. (Mexico)

    2007-08-15

    We study single spin asymmetries of D{sup 0} and D{sup -} mesons in polarized proton-proton collisions. A two component model is used to describe charm meson production. The production of D mesons occurs by recombination of the constituents present in the initial state as well as by fragmentation of quarks in the final state. This model has proved to describe the production of charm. The recombination component involves a mechanism of spin alignment that ends up in a single spin asymmetry. Experimental measurements of single spin asymmetry for pions at RHIC are compared with the model. Predictions for the asymmetry in D mesons are presented. (orig.)

  18. Single spin asymmetry for charm mesons

    International Nuclear Information System (INIS)

    Dominguez Zacarias, G.; Herrera, G.; Mercado, J.

    2007-01-01

    We study single spin asymmetries of D 0 and D - mesons in polarized proton-proton collisions. A two component model is used to describe charm meson production. The production of D mesons occurs by recombination of the constituents present in the initial state as well as by fragmentation of quarks in the final state. This model has proved to describe the production of charm. The recombination component involves a mechanism of spin alignment that ends up in a single spin asymmetry. Experimental measurements of single spin asymmetry for pions at RHIC are compared with the model. Predictions for the asymmetry in D mesons are presented. (orig.)

  19. Pygmoid Australomelanesian Homo sapiens skeletal remains from Liang Bua, Flores: population affinities and pathological abnormalities.

    Science.gov (United States)

    Jacob, T; Indriati, E; Soejono, R P; Hsü, K; Frayer, D W; Eckhardt, R B; Kuperavage, A J; Thorne, A; Henneberg, M

    2006-09-05

    Liang Bua 1 (LB1) exhibits marked craniofacial and postcranial asymmetries and other indicators of abnormal growth and development. Anomalies aside, 140 cranial features place LB1 within modern human ranges of variation, resembling Australomelanesian populations. Mandibular and dental features of LB1 and LB6/1 either show no substantial deviation from modern Homo sapiens or share features (receding chins and rotated premolars) with Rampasasa pygmies now living near Liang Bua Cave. We propose that LB1 is drawn from an earlier pygmy H. sapiens population but individually shows signs of a developmental abnormality, including microcephaly. Additional mandibular and postcranial remains from the site share small body size but not microcephaly.

  20. Increased parietal circuit-breaker activity in delta frequency band and abnormal delta/theta band connectivity in salience network in hyperacusis subjects.

    Directory of Open Access Journals (Sweden)

    Jae Joon Han

    Full Text Available Recent studies have suggested that hyperacusis, an abnormal hypersensitivity to ordinary environmental sounds, may be characterized by certain resting-state cortical oscillatory patterns, even with no sound stimulus. However, previous studies are limited in that most studied subjects with other comorbidities that may have affected cortical activity. In this regard, to assess ongoing cortical oscillatory activity in idiopathic hyperacusis patients with no comorbidities, we compared differences in resting-state cortical oscillatory patterns between five idiopathic hyperacusis subjects and five normal controls. The hyperacusis group demonstrated significantly higher electrical activity in the right auditory-related cortex for the gamma frequency band and left superior parietal lobule (SPL for the delta frequency band versus the control group. The hyperacusis group also showed significantly decreased functional connectivity between the left auditory cortex (AC and left orbitofrontal cortex (OFC, between the left AC and left subgenual anterior cingulate cortex (sgACC for the gamma band, and between the right insula and bilateral dorsal anterior cingulate cortex (dACC and between the left AC and left sgACC for the theta band versus the control group. The higher electrical activity in the SPL may indicate a readiness of "circuit-breaker" activity to shift attention to forthcoming sound stimuli. Also, because of the disrupted salience network, consisting of the dACC and insula, abnormally increased salience to all sound stimuli may emerge, as a consequence of decreased top-down control of the AC by the dACC and dysfunctional emotional weight attached to auditory stimuli by the OFC. Taken together, abnormally enhanced attention and salience to forthcoming sound stimuli may render hyperacusis subjects hyperresponsive to non-noxious auditory stimuli.

  1. Language experience enhances early cortical pitch-dependent responses

    Science.gov (United States)

    Krishnan, Ananthanarayan; Gandour, Jackson T.; Ananthakrishnan, Saradha; Vijayaraghavan, Venkatakrishnan

    2014-01-01

    Pitch processing at cortical and subcortical stages of processing is shaped by language experience. We recently demonstrated that specific components of the cortical pitch response (CPR) index the more rapidly-changing portions of the high rising Tone 2 of Mandarin Chinese, in addition to marking pitch onset and sound offset. In this study, we examine how language experience (Mandarin vs. English) shapes the processing of different temporal attributes of pitch reflected in the CPR components using stimuli representative of within-category variants of Tone 2. Results showed that the magnitude of CPR components (Na-Pb and Pb-Nb) and the correlation between these two components and pitch acceleration were stronger for the Chinese listeners compared to English listeners for stimuli that fell within the range of Tone 2 citation forms. Discriminant function analysis revealed that the Na-Pb component was more than twice as important as Pb-Nb in grouping listeners by language affiliation. In addition, a stronger stimulus-dependent, rightward asymmetry was observed for the Chinese group at the temporal, but not frontal, electrode sites. This finding may reflect selective recruitment of experience-dependent, pitch-specific mechanisms in right auditory cortex to extract more complex, time-varying pitch patterns. Taken together, these findings suggest that long-term language experience shapes early sensory level processing of pitch in the auditory cortex, and that the sensitivity of the CPR may vary depending on the relative linguistic importance of specific temporal attributes of dynamic pitch. PMID:25506127

  2. Cortical serotonin-S2 receptor binding in Lewy body dementia, Alzheimer's and Parkinson's diseases.

    Science.gov (United States)

    Cheng, A V; Ferrier, I N; Morris, C M; Jabeen, S; Sahgal, A; McKeith, I G; Edwardson, J A; Perry, R H; Perry, E K

    1991-11-01

    The binding of the selective 5-HT2 antagonist [3H]ketanserin has been investigated in the temporal cortex of patients with Alzheimer's disease (SDAT), Parkinson's disease (PD), senile dementia of Lewy body type (SDLT) and neuropathologically normal subjects (control). 5-HT2 binding was reduced in SDAT, PD with dementia and SDLT. SDAT showed a 5-HT2 receptor deficit across most of the cortical layers. A significant decrease in 5-HT2 binding in the deep cortical layers was found in those SDLT cases without hallucinations. SDLT cases with hallucinations only showed a deficit in one upper layer. There was a significant difference in cortical layers III and V between SDLT without hallucinations and SDLT with hallucinations. The results confirm an abnormality of serotonin binding in various forms of dementia and suggest that preservation of 5-HT2 receptor in the temporal cortex may differentiate hallucinating from non-hallucinating cases of SDLT.

  3. HEMISPHERIC ASYMMETRIES OF SOLAR PHOTOSPHERIC MAGNETISM: RADIATIVE, PARTICULATE, AND HELIOSPHERIC IMPACTS

    International Nuclear Information System (INIS)

    McIntosh, Scott W.; Burkepile, Joan; Miesch, Mark; Markel, Robert S.; Sitongia, Leonard; Leamon, Robert J.; Gurman, Joseph B.; Olive, Jean-Philippe; Cirtain, Jonathan W.; Hathaway, David H.

    2013-01-01

    Among many other measurable quantities, the summer of 2009 saw a considerable low in the radiative output of the Sun that was temporally coincident with the largest cosmic-ray flux ever measured at 1 AU. Combining measurements and observations made by the Solar and Heliospheric Observatory (SOHO) and Solar Dynamics Observatory (SDO) spacecraft we begin to explore the complexities of the descending phase of solar cycle 23, through the 2009 minimum into the ascending phase of solar cycle 24. A hemispheric asymmetry in magnetic activity is clearly observed and its evolution monitored and the resulting (prolonged) magnetic imbalance must have had a considerable impact on the structure and energetics of the heliosphere. While we cannot uniquely tie the variance and scale of the surface magnetism to the dwindling radiative and particulate output of the star, or the increased cosmic-ray flux through the 2009 minimum, the timing of the decline and rapid recovery in early 2010 would appear to inextricably link them. These observations support a picture where the Sun's hemispheres are significantly out of phase with each other. Studying historical sunspot records with this picture in mind shows that the northern hemisphere has been leading since the middle of the last century and that the hemispheric ''dominance'' has changed twice in the past 130 years. The observations presented give clear cause for concern, especially with respect to our present understanding of the processes that produce the surface magnetism in the (hidden) solar interior—hemispheric asymmetry is the normal state—the strong symmetry shown in 1996 was abnormal. Further, these observations show that the mechanism(s) which create and transport the magnetic flux are slowly changing with time and, it appears, with only loose coupling across the equator such that those asymmetries can persist for a considerable time. As the current asymmetry persists and the basal energetics of the system continue to

  4. HEMISPHERIC ASYMMETRIES OF SOLAR PHOTOSPHERIC MAGNETISM: RADIATIVE, PARTICULATE, AND HELIOSPHERIC IMPACTS

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Scott W.; Burkepile, Joan; Miesch, Mark; Markel, Robert S.; Sitongia, Leonard [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); Leamon, Robert J. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Gurman, Joseph B. [Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Olive, Jean-Philippe [Astrium SAS, 6 rue Laurent Pichat, F-75016 Paris (France); Cirtain, Jonathan W.; Hathaway, David H. [Marshall Space Flight Center, Huntsville, AL 35812 (United States)

    2013-03-10

    Among many other measurable quantities, the summer of 2009 saw a considerable low in the radiative output of the Sun that was temporally coincident with the largest cosmic-ray flux ever measured at 1 AU. Combining measurements and observations made by the Solar and Heliospheric Observatory (SOHO) and Solar Dynamics Observatory (SDO) spacecraft we begin to explore the complexities of the descending phase of solar cycle 23, through the 2009 minimum into the ascending phase of solar cycle 24. A hemispheric asymmetry in magnetic activity is clearly observed and its evolution monitored and the resulting (prolonged) magnetic imbalance must have had a considerable impact on the structure and energetics of the heliosphere. While we cannot uniquely tie the variance and scale of the surface magnetism to the dwindling radiative and particulate output of the star, or the increased cosmic-ray flux through the 2009 minimum, the timing of the decline and rapid recovery in early 2010 would appear to inextricably link them. These observations support a picture where the Sun's hemispheres are significantly out of phase with each other. Studying historical sunspot records with this picture in mind shows that the northern hemisphere has been leading since the middle of the last century and that the hemispheric ''dominance'' has changed twice in the past 130 years. The observations presented give clear cause for concern, especially with respect to our present understanding of the processes that produce the surface magnetism in the (hidden) solar interior-hemispheric asymmetry is the normal state-the strong symmetry shown in 1996 was abnormal. Further, these observations show that the mechanism(s) which create and transport the magnetic flux are slowly changing with time and, it appears, with only loose coupling across the equator such that those asymmetries can persist for a considerable time. As the current asymmetry persists and the basal energetics of the

  5. Asymmetry Assessment Using Surface Topography in Healthy Adolescents

    Directory of Open Access Journals (Sweden)

    Connie Ho

    2015-08-01

    Full Text Available The ability to assess geometric asymmetry in the torsos of individuals is important for detecting Adolescent Idiopathic Scoliosis (AIS. A markerless technique using Surface Topography (ST has been introduced as a non-invasive alternative to standard diagnostic radiographs. The technique has been used to identify asymmetry patterns associated with AIS. However, the presence and nature of asymmetries in the healthy population has not been properly studied. The purpose of this study is therefore to identify asymmetries and potential relationships to development factors such as age, gender, hand dominance and unilateral physical activity in healthy adolescents. Full torso scans of 83 participants were analyzed. Using Geomagic, deviation contour maps (DCMs were created by reflecting the torso along the best plane of sagittal symmetry with each spectrum normalized. Two classes of asymmetry were observed: twist and thickness each with subgroupings. Averaged interobserver and intraobserver Kappas for twist subgroupings were 0.84 and 0.84, respectively, and for thickness subgroupings were 0.53 and 0.63 respectively. Further significant relationships were observed between specific types of asymmetry and gender such as females displaying predominately twist asymmetry, and males with thickness asymmetry. However, no relationships were found between type of asymmetry and age, hand dominance or unilateral physical activity. Understanding asymmetries in healthy subjects will continue to enhance assessment ability of the markerless ST technique.

  6. Information Asymmetry and Credit Risk

    Directory of Open Access Journals (Sweden)

    Lorena TUPANGIU

    2017-11-01

    Full Text Available Information asymmetry defines relationships where an agent holds information while another does not hold it. Thus, to the extent that one of the parties to the financing agreement has information more or less accurate than another, the asymmetry of information appears to be a major constraint in the financing of a project. Banks, in their capacity of financial intermediary, operate the transfer of funds to agents in need of financing, to the borrowers, being necessary in this process to have more information in order to benefit of expertise in assessing borrowers. The research of information asymmetry and credit risk consists of interrogating the following aspects: information issues between the bank and borrowers; settlement of information issues; bank’s activism towards information asymmetry. In our approach we will look at the first aspect, namely the information issues between the bank and the borrowers.

  7. Toroidal current asymmetry in tokamak disruptions

    Science.gov (United States)

    Strauss, H. R.

    2014-10-01

    It was discovered on JET that disruptions were accompanied by toroidal asymmetry of the toroidal plasma current I ϕ. It was found that the toroidal current asymmetry was proportional to the vertical current moment asymmetry with positive sign for an upward vertical displacement event (VDE) and negative sign for a downward VDE. It was observed that greater displacement leads to greater measured I ϕ asymmetry. Here, it is shown that this is essentially a kinematic effect produced by a VDE interacting with three dimensional MHD perturbations. The relation of toroidal current asymmetry and vertical current moment is calculated analytically and is verified by numerical simulations. It is shown analytically that the toroidal variation of the toroidal plasma current is accompanied by an equal and opposite variation of the toroidal current flowing in a thin wall surrounding the plasma. These currents are connected by 3D halo current, which is π/2 radians out of phase with the n = 1 toroidal current variations.

  8. Bipolar disorder type I and II show distinct relationships between cortical thickness and executive function.

    Science.gov (United States)

    Abé, C; Rolstad, S; Petrovic, P; Ekman, C-J; Sparding, T; Ingvar, M; Landén, M

    2018-06-15

    Frontal cortical abnormalities and executive function impairment co-occur in bipolar disorder. Recent studies have shown that bipolar subtypes differ in the degree of structural and functional impairments. The relationships between cognitive performance and cortical integrity have not been clarified and might differ across patients with bipolar disorder type I, II, and healthy subjects. Using a vertex-wise whole-brain analysis, we investigated how cortical integrity, as measured by cortical thickness, correlates with executive performance in patients with bipolar disorder type I, II, and controls (N = 160). We found focal associations between executive function and cortical thickness in the medial prefrontal cortex in bipolar II patients and controls, but not in bipolar I disorder. In bipolar II patients, we observed additional correlations in lateral prefrontal and occipital regions. Our findings suggest that bipolar disorder patients show altered structure-function relationships, and importantly that those relationships may differ between bipolar subtypes. The findings are line with studies suggesting subtype-specific neurobiological and cognitive profiles. This study contributes to a better understanding of brain structure-function relationships in bipolar disorder and gives important insights into the neuropathophysiology of diagnostic subtypes. © 2018 The Authors Acta Psychiatrica Scandinavica Published by John Wiley & Sons Ltd.

  9. Pygmoid Australomelanesian Homo sapiens skeletal remains from Liang Bua, Flores: Population affinities and pathological abnormalities

    OpenAIRE

    Jacob, T.; Indriati, E.; Soejono, R. P.; Hsü, K.; Frayer, D. W.; Eckhardt, R. B.; Kuperavage, A. J.; Thorne, A.; Henneberg, M.

    2006-01-01

    Liang Bua 1 (LB1) exhibits marked craniofacial and postcranial asymmetries and other indicators of abnormal growth and development. Anomalies aside, 140 cranial features place LB1 within modern human ranges of variation, resembling Australomelanesian populations. Mandibular and dental features of LB1 and LB6/1 either show no substantial deviation from modern Homo sapiens or share features (receding chins and rotated premolars) with Rampasasa pygmies now living near Liang Bua Cave. We propose ...

  10. Interplay among transversity induced asymmetries in hadron leptoproduction

    CERN Document Server

    Adolph, C.; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.D.R.; Badelek, B.; Balestra, F.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Buchele, M.; Burtin, E.; Chang, W.C.; Chiosso, M.; Choi, I.; Chung, S.U.; Cicuttin, A.; Crespo, M.L.; Curiel, Q.; d'Hose, N.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Duic, V.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P.D.; Eyrich, W.; Ferrero, A.; Finger, M.; M. Finger jr; Fischer, H.; Franco, C.; von Hohenesche, N. du Fresne; Friedrich, J.M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmuller, S.; Grasso, A.; Grosse-Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; von Harrach, D.; Hashimoto, R.; Heinsius, F.H.; Herrmann, F.; Hinterberger, F.; Horikawa, N.; Hsieh, C.Yu; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jorg, P.; Joosten, R.; Kabuss, E.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.; Kramer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z.V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.K.; Marchand, C.; Marianski, B.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Montuenga, P.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nikolaenko, V.I.; Novy, J.; Nowak, W.D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.C.; Pereira, F.; Pesaro, G.; Pesek, M.; Peshekhonov, D.V.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Rossiyskaya, N.S.; Ryabchikov, D.I.; Rychter, A.; Samoylenko, V.D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schonning, K.; Schopferer, S.; Selyunin, A.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Wolbeek, J. ter; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Weisrock, T.; Wilfert, M.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.

    2016-01-01

    In the fragmentation of a transversely polarized quark several left-right asymmetries are possible for the hadrons in the jet. When only one unpolarized hadron is selected, it exhibits an azimuthal modulation known as Collins effect. When a pair of oppositely charged hadrons is observed, three asymmetries can be considered, a di-hadron asymmetry and two single hadron asymmetries. In lepton deep inelastic scattering on transversely polarized nucleons all these asymmetries are coupled with the transversity distribution. From the high statistics COMPASS data on oppositely charged hadron-pair production we have investigated for the first time the dependence of these three asymmetries on the difference of the azimuthal angles of the two hadrons. The similarity of transversity induced single and di-hadron asymmetries is discussed. A phenomenological analysis of the data allows to establish quantitative relationships among them, providing strong indication that the underlying fragmentation mechanisms are all driven ...

  11. Bessel Weighted Asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Avakian, Harut [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Gamberg, Leonard [Pennsylvania State Univ., University Park, PA (United States); Rossi, Patrizia [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Prokudin, Alexei [Pennsylvania State Univ., University Park, PA (United States)

    2016-05-01

    We review the concept of Bessel weighted asymmetries for semi-inclusive deep inelastic scattering and focus on the cross section in Fourier space, conjugate to the outgoing hadron’s transverse momentum, where convolutions of transverse momentum dependent parton distribution functions and fragmentation functions become simple products. Individual asymmetric terms in the cross section can be projected out by means of a generalized set of weights involving Bessel functions. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Monte Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy and hard scale Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.

  12. Methomyl poisoning presenting with decorticate posture and cortical blindness.

    Science.gov (United States)

    Lin, Chih-Ming

    2014-01-17

    Methomyl is a potent pesticide that is widely used in the field of agriculture. The systemic toxic effects of methomyl have been well described. However, the neurological effects of methomyl intoxication are not well understood. In this study, we report a 61-year-old Taiwanese man sent to our emergency department because of altered mental status. His family stated that he had consumed liquid methomyl in a suicide attempt. He was provided cardiopulmonary resuscitation because of unstable vital signs. He was then sent to an intensive care unit for close observation. On the second day of admission, he regained consciousness but exhibited irregular limb and torso posture. On the sixth day, he started to complain of blurred vision. An ophthalmologist was consulted but no obvious abnormalities could be identified. On suspicion of cerebral disease, a neurologist was consulted. Further examination revealed cortical blindness and decorticate posture. Cerebral magnetic resonance imaging (MRI) was arranged, which identified bilateral occipital regions lesions. The patient was administered normal saline and treated with aspirin and piracetam for 3 weeks in hospital. During the treatment period, his symptom of cortical blindness resolved, whereas his decorticate posture was refractory. Follow-up brain MRI results supported our clinical observations by indicating the disappearance of the bilateral occipital lesions and symmetrical putaminal high signal abnormalities. In this article, we briefly discuss the possible mechanisms underlying the cerebral effects of methomyl poisoning. Our study can provide clinicians with information on the manifestations of methomyl intoxication and an appropriate treatment direction.

  13. Methomyl poisoning presenting with decorticate posture and cortical blindness

    Directory of Open Access Journals (Sweden)

    Chih-Ming Lin

    2014-02-01

    Full Text Available Methomyl is a potent pesticide that is widely used in the field of agriculture. The systemic toxic effects of methomyl have been well described. However, the neurological effects of methomyl intoxication are not well understood. In this study, we report a 61-year-old Taiwanese man sent to our emergency department because of altered mental status. His family stated that he had consumed liquid methomyl in a suicide attempt. He was provided cardiopulmonary resuscitation because of unstable vital signs. He was then sent to an intensive care unit for close observation. On the second day of admission, he regained consciousness but exhibited irregular limb and torso posture. On the sixth day, he started to complain of blurred vision. An ophthalmologist was consulted but no obvious abnormalities could be identified. On suspicion of cerebral disease, a neurologist was consulted. Further examination revealed cortical blindness and decorticate posture. Cerebral magnetic resonance imaging (MRI was arranged, which identified bilateral occipital regions lesions. The patient was administered normal saline and treated with aspirin and piracetam for 3 weeks in hospital. During the treatment period, his symptom of cortical blindness resolved, whereas his decorticate posture was refractory. Follow-up brain MRI results supported our clinical observations by indicating the disappearance of the bilateral occipital lesions and symmetrical putaminal high signal abnormalities. In this article, we briefly discuss the possible mechanisms underlying the cerebral effects of methomyl poisoning. Our study can provide clinicians with information on the manifestations of methomyl intoxication and an appropriate treatment direction.

  14. Reduction in cortical IMP-SPET tracer uptake with recent cigarette consumption in a young group of healthy males

    International Nuclear Information System (INIS)

    Rourke, S.B.; Dupont, R.M.; Grant, I.; Lehr, P.P.; Lamoureux, G.; Halpern, S.; Yeung, D.W.C.

    1997-01-01

    Functional brain imaging techniques are being used increasingly to infer disturbances in brain function in various neuropsychiatric disorders, but the specificity of such findings is not always clear. We retrospectively examined the effects of one possible confound - cigarette smoking - on cortical uptake of iodine-123 iodoamphetamine (IMP) using single-photon emission tomographic imaging in a young (mean age=35 years) healthy group of male controls divided according to their smoking history. Subjects who had never smoked (n=17), or those with a history of smoking but no recent smoking (n=8), had equivalent and significantly higher mean cortical uptake of IMP than subjects with a history of smoking and who were current smokers (n=8). There were no differences in the cortical distribution of IMP. Our results indicate that cigarette smoking has an acute effect on global cerebral blood flow. This potential confound must be considered before abnormalities in cortical tracer uptake are attributed to some neuropsychiatric disorder of interest. (orig.). With 2 figs., 3 tabs

  15. [Orthodontic treatment of Class III patients with mandibular asymmetry].

    Science.gov (United States)

    Duan, Yin-Zhong; Huo, Na; Chen, Lei; Chen, Xue-Peng; Lin, Yang

    2008-12-01

    To investigate the treatment outcome of Class III patients with dental, functional and mild skeletal mandibular asymmetry. Thirty-five patients (14 males and 21 females) with dental, functional and mild skeletal mandibular asymmetry were selected. The age range of the patients was 7 - 22 years with a mean age of 16.5 years. Dental mandibular asymmetry was treated with expansion of maxillary arch to help the mandible returning to normal position. Functional mandibular asymmetry was treated with activator or asymmetrical protraction and Class III elastics. Mild skeletal mandibular asymmetry was treated with camouflage treatment. Good occlusal relationships were achieved and facial esthetics was greatly improved after orthodontic treatment in patients with dental and functional mandibular asymmetry. However, patients with skeletal mandibular asymmetry should be treated with both extraction and genioplasty. Orthodontic treatment was suitable for patients with dental and functional mandibular asymmetry, while combined orthodontics and surgery could get good results in patients with skeletal mandibular asymmetry.

  16. De novo interstitial deletion of 9q32-34.1 with mental retardation, developmental delay, epilepsy, and cortical dysplasia

    DEFF Research Database (Denmark)

    Tos, T; Alp, M Y; Karacan, C D

    2014-01-01

    In this report we describe a 10 year-old female patient with interstitial deletion of 9q32-q34.1 associated with mental retardation, developmental delay, short stature, mild facial dysmorphism, epilepsy, abnormal EEG and brain MRI findings consistent with focal cortical dysplasia. Interstitial...

  17. Neonatal Brain Abnormalities and Memory and Learning Outcomes at 7 Years in Children Born Very Preterm

    Science.gov (United States)

    Omizzolo, Cristina; Scratch, Shannon E; Stargatt, Robyn; Kidokoro, Hiroyuki; Thompson, Deanne K; Lee, Katherine J; Cheong, Jeanie; Neil, Jeffrey; Inder, Terrie E; Doyle, Lex W; Anderson, Peter J

    2014-01-01

    Using prospective longitudinal data from 198 very preterm and 70 full term children, this study characterised the memory and learning abilities of very preterm children at 7 years of age in both verbal and visual domains. The relationship between the extent of brain abnormalities on neonatal magnetic resonance imaging (MRI) and memory and learning outcomes at 7 years of age in very preterm children was also investigated. Neonatal MRI scans were qualitatively assessed for global, white-matter, cortical grey-matter, deep grey-matter, and cerebellar abnormalities. Very preterm children performed less well on measures of immediate memory, working memory, long-term memory, and learning compared with term born controls. Neonatal brain abnormalities, and in particular deep grey matter abnormality, were associated with poorer memory and learning performance at 7 years in very preterm children, especially global, white-matter, grey-matter and cerebellar abnormalities. Findings support the importance of cerebral neonatal pathology for predicting later memory and learning function. PMID:23805915

  18. Parity violating asymmetries in polarized electron scattering

    International Nuclear Information System (INIS)

    Derman, E.; Marciano, W.J.

    1979-01-01

    We discuss parity violating asymmetries between the scattering of right and left-handed electrons on a variety of targets. Implications for gauge theories from recent SLAC results on deep-inelastic electron-deuterium and electron-proton scattering are examined. A derivation of the asymmetry for electron-electron scattering is given, its advantages are pointed out, and the feasibility of such a measurement is discussed. Other proposed or contemplated asymmetry experiments are reviewed and the necessity of including the Collins-Wilczek-Zee hadronic axial isoscalar current contribution in asymmetry predictions is noted

  19. PirB regulates asymmetries in hippocampal circuitry.

    Directory of Open Access Journals (Sweden)

    Hikari Ukai

    Full Text Available Left-right asymmetry is a fundamental feature of higher-order brain structure; however, the molecular basis of brain asymmetry remains unclear. We recently identified structural and functional asymmetries in mouse hippocampal circuitry that result from the asymmetrical distribution of two distinct populations of pyramidal cell synapses that differ in the density of the NMDA receptor subunit GluRε2 (also known as NR2B, GRIN2B or GluN2B. By examining the synaptic distribution of ε2 subunits, we previously found that β2-microglobulin-deficient mice, which lack cell surface expression of the vast majority of major histocompatibility complex class I (MHCI proteins, do not exhibit circuit asymmetry. In the present study, we conducted electrophysiological and anatomical analyses on the hippocampal circuitry of mice with a knockout of the paired immunoglobulin-like receptor B (PirB, an MHCI receptor. As in β2-microglobulin-deficient mice, the PirB-deficient hippocampus lacked circuit asymmetries. This finding that MHCI loss-of-function mice and PirB knockout mice have identical phenotypes suggests that MHCI signals that produce hippocampal asymmetries are transduced through PirB. Our results provide evidence for a critical role of the MHCI/PirB signaling system in the generation of asymmetries in hippocampal circuitry.

  20. Interplay among transversity induced asymmetries in hadron leptoproduction

    Directory of Open Access Journals (Sweden)

    C. Adolph

    2016-02-01

    Full Text Available In the fragmentation of a transversely polarized quark several left–right asymmetries are possible for the hadrons in the jet. When only one unpolarized hadron is selected, it exhibits an azimuthal modulation known as the Collins effect. When a pair of oppositely charged hadrons is observed, three asymmetries can be considered, a di-hadron asymmetry and two single hadron asymmetries. In lepton deep inelastic scattering on transversely polarized nucleons all these asymmetries are coupled with the transversity distribution. From the high statistics COMPASS data on oppositely charged hadron-pair production we have investigated for the first time the dependence of these three asymmetries on the difference of the azimuthal angles of the two hadrons. The similarity of transversity induced single and di-hadron asymmetries is discussed. A new analysis of the data allows quantitative relationships to be established among them, providing for the first time strong experimental indication that the underlying fragmentation mechanisms are all driven by a common physical process.

  1. The Inherent Asymmetry of DNA Replication.

    Science.gov (United States)

    Snedeker, Jonathan; Wooten, Matthew; Chen, Xin

    2017-10-06

    Semiconservative DNA replication has provided an elegant solution to the fundamental problem of how life is able to proliferate in a way that allows cells, organisms, and populations to survive and replicate many times over. Somewhat lost, however, in our admiration for this mechanism is an appreciation for the asymmetries that occur in the process of DNA replication. As we discuss in this review, these asymmetries arise as a consequence of the structure of the DNA molecule and the enzymatic mechanism of DNA synthesis. Increasing evidence suggests that asymmetries in DNA replication are able to play a central role in the processes of adaptation and evolution by shaping the mutagenic landscape of cells. Additionally, in eukaryotes, recent work has demonstrated that the inherent asymmetries in DNA replication may play an important role in the process of chromatin replication. As chromatin plays an essential role in defining cell identity, asymmetries generated during the process of DNA replication may play critical roles in cell fate decisions related to patterning and development.

  2. Verbal memory impairments in schizophrenia associated with cortical thinning

    Directory of Open Access Journals (Sweden)

    S. Guimond

    2016-01-01

    Full Text Available Verbal memory (VM represents one of the most affected cognitive domains in schizophrenia. Multiple studies have shown that schizophrenia is associated with cortical abnormalities, but it remains unclear whether these are related to VM impairments. Considering the vast literature demonstrating the role of the frontal cortex, the parahippocampal cortex, and the hippocampus in VM, we examined the cortical thickness/volume of these regions. We used a categorical approach whereby 27 schizophrenia patients with ‘moderate to severe’ VM impairments were compared to 23 patients with ‘low to mild’ VM impairments and 23 healthy controls. A series of between-group vertex-wise GLM on cortical thickness were performed for specific regions of interest defining the parahippocampal gyrus and the frontal cortex. When compared to healthy controls, patients with ‘moderate to severe’ VM impairments revealed significantly thinner cortex in the left frontal lobe, and the parahippocampal gyri. When compared to patients with ‘low to mild’ VM impairments, patients with ‘moderate to severe’ VM impairments showed a trend of thinner cortex in similar regions. Virtually no differences were observed in the frontal area of patients with ‘low to mild’ VM impairments relative to controls. No significant group differences were observed in the hippocampus. Our results indicate that patients with greater VM impairments demonstrate significant cortical thinning in regions known to be important in VM performance. Treating VM deficits in schizophrenia could have a positive effect on the brain; thus, subgroups of patients with more severe VM deficits should be a prioritized target in the development of new cognitive treatments.

  3. Altered Cortical Swallowing Processing in Patients with Functional Dysphagia: A Preliminary Study

    Science.gov (United States)

    Wollbrink, Andreas; Warnecke, Tobias; Winkels, Martin; Pantev, Christo; Dziewas, Rainer

    2014-01-01

    Objective Current neuroimaging research on functional disturbances provides growing evidence for objective neuronal correlates of allegedly psychogenic symptoms, thereby shifting the disease concept from a psychological towards a neurobiological model. Functional dysphagia is such a rare condition, whose pathogenetic mechanism is largely unknown. In the absence of any organic reason for a patient's persistent swallowing complaints, sensorimotor processing abnormalities involving central neural pathways constitute a potential etiology. Methods In this pilot study we measured cortical swallow-related activation in 5 patients diagnosed with functional dysphagia and a matched group of healthy subjects applying magnetoencephalography. Source localization of cortical activation was done with synthetic aperture magnetometry. To test for significant differences in cortical swallowing processing between groups, a non-parametric permutation test was afterwards performed on individual source localization maps. Results Swallowing task performance was comparable between groups. In relation to control subjects, in whom activation was symmetrically distributed in rostro-medial parts of the sensorimotor cortices of both hemispheres, patients showed prominent activation of the right insula, dorsolateral prefrontal cortex and lateral premotor, motor as well as inferolateral parietal cortex. Furthermore, activation was markedly reduced in the left medial primary sensory cortex as well as right medial sensorimotor cortex and adjacent supplementary motor area (pdysphagia - a condition with assumed normal brain function - seems to be associated with distinctive changes of the swallow-related cortical activation pattern. Alterations may reflect exaggerated activation of a widely distributed vigilance, self-monitoring and salience rating network that interferes with down-stream deglutition sensorimotor control. PMID:24586948

  4. Porencephaly and cortical dysplasia as cause of seizures in a dog

    Directory of Open Access Journals (Sweden)

    Machado Gisele Fabrino

    2012-12-01

    Full Text Available Abstract Background Seizures are a common problem in small animal neurology and it may be related to underlying diseases. Porencephaly is an extremely rare disorder, and in Veterinary Medicine it affects more often ruminants, with only few reports in dogs. Case presentation A one-year-old intact male Shih-Tzu dog was referred to Veterinary University Hospital with history of abnormal gait and generalized tonic-clonic seizures. Signs included hypermetria, abnormal nystagmus and increased myotatic reflexes. At necropsy, during the brain analysis, a cleft was observed in the left parietal and occipital lobes, creating a communication between the subarachnoid space and the left lateral ventricle, consistent with porencephaly; and also a focal atrophy of the caudal paravermal and vermal portions of the cerebellum. Furthermore, the histological examination showed cortical and cerebellar neuronal dysplasia. Conclusions Reports of seizures due to porencephaly are rare in dogs. In this case, the dog presented a group of brain abnormalities which per se or in assemblage could result in seizure manifestation.

  5. Relationship between information asymmetry and cost of capital

    Directory of Open Access Journals (Sweden)

    Fateme Rahmani

    2013-01-01

    Full Text Available Shareholders expected return is normally impacted by informational risk and informational asymmetry, on the other hand, creates informational risk. Thus, investors demand greater risk premium in the case of informational asymmetry and in turn corporate expenditures increase. In this study, we determine the relationship between informational asymmetry and capital cost. The study uses information of 109 companies listed in Tehran Securities Exchange over the period of 2005-2010 and the results suggest a positive and significant relationship between informational asymmetry and capital cost. In addition, the results from present research indicate that when capital markets are competitive, there is not a significant relationship between informational asymmetry and capital cost. But when markets are partially competitive there is a significant relationship between informational asymmetry and capital cost.

  6. Asymmetry quantization and application to human mandibles

    DEFF Research Database (Denmark)

    Glerup, Nanna; Nielsen, Mads; Sporring, Jon

    2004-01-01

    of asymmetry, the statistics on asymmetry for normal and pathological anatomical structures can be compared. Symmetry is a well-known mathematical group theoretical concept. In this paper, we will mathematically define the concept of weak symmetry, including topological symmetry, which serves as a basis...... of pathological assumed non-symmetric mandibles exhibiting a statistically significant increase of asymmetry....

  7. Proton magnetic resonance spectroscopy in disturbances of cortical development

    International Nuclear Information System (INIS)

    Kaminaga, T.; Kobayashi, M.; Abe, T.

    2001-01-01

    Proton magnetic resonance spectroscopy( 1 H-MRS) can be used for looking at cerebral metabolites in vivo. However, measurement of concentrations of cerebral metabolites in patients with disturbances of cerebral development have not been successful. Our purpose was to measure the concentrations of cerebral metabolites in such patients. We carried out quantitative 1 H-MRS in eight patients with cortical dysplasia, four with lissencephaly and three with heterotopic grey matter and six age-matched normal controls. Regions of interest for 1 H-MRS were set over the affected cortex in the patients and the occipital cortex in controls. The calculated concentration of N-acetylaspartate (NAA) was significantly lower in the affected cortex in patients with cortical dysplasia (P < 0.05), lissencephaly (P < 0.01), and heterotopia (P < 0.05) than in controls, idnicating a decreased number and/or immaturity or dysfunction of neurones in the affected cortex. The concentration of choline (Cho) was significantly lower in patients with lissencephaly (P < 0.01) than in controls, indicating glial proliferation and/or membrane abnormality. (orig.)

  8. Spectral asymmetry for bag boundary conditions

    International Nuclear Information System (INIS)

    Beneventano, C G; Santangelo, E M; Wipf, A

    2002-01-01

    We give an expression, in terms of boundary spectral functions, for the spectral asymmetry of the Euclidean Dirac operator in two dimensions, when its domain is determined by local boundary conditions and the manifold is of product type. As an application, we explicitly evaluate the asymmetry in the case of a finite-length cylinder and check that the outcome is consistent with our general result. Finally, we study the asymmetry in a disc, which is a non-product case, and propose an interpretation

  9. Structural and functional brain abnormalities place phenocopy frontotemporal dementia (FTD in the FTD spectrum

    Directory of Open Access Journals (Sweden)

    Rebecca M.E. Steketee

    2016-01-01

    Conclusion: PhFTD and bvFTD show overlapping cortical structural abnormalities indicating a continuum of changes especially in the frontotemporal regions. Together with functional changes suggestive of a compensatory response to incipient pathology in the left prefrontal regions, these findings are the first to support a possible neuropathological etiology of phFTD and suggest that phFTD may be a neurodegenerative disease on the FTD spectrum.

  10. Exchange asymmetry in experimental settings

    Science.gov (United States)

    Thomas C. Brown; Mark D. Morrison; Jacob A. Benfield; Gretchen Nurse Rainbolt; Paul A. Bell

    2015-01-01

    We review past trading experiments and present 11 new experiments designed to show how the trading rate responds to alterations of the experimental procedure. In agreement with earlier studies, results show that if the trade decision is converted to one resembling a choice between goods the exchange asymmetry disappears, but otherwise the asymmetry is...

  11. Measurement of ttbar forward-backward asymmetry at CDF

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    Early measurements of the forward-backward ttbar production asymmetry at CDF and D0 suggested significant asymmetries that have been interpreted as evidence for exotic gluon partners or new t-channel interactions. We present new measurements performed with 5 fb-1 of Tevatron ppbar collisions at Ecm = 1.96 TeV, recorded and analyzed at CDF. Significant inclusive asymmetries are observed in both the lepton+jets and the dilepton decay modes of the ttbar pair. In the dilepton mode, the asymmetry is observed in the reconstructed top rapidity, and in the lepton rapidity difference, which is independent of any top reconstruction. In the lepton plus jets sample, the full reconstruction of the top kinematics is used to measure the dependence of the asymmetry on the tt bar rapidity difference Delta(y) and the invariant mass M_(ttbar ) of the ttbar system. The asymmetry is found to be most significant at large Delta(y) and M_(ttbar) . For M_(ttbar) > 450 GeV/c2, the parton-level asymmetry in the t-tbar rest frame is...

  12. The impact of ADHD persistence, recent cannabis use, and age of regular cannabis use onset on subcortical volume and cortical thickness in young adults.

    Science.gov (United States)

    Lisdahl, Krista M; Tamm, Leanne; Epstein, Jeffery N; Jernigan, Terry; Molina, Brooke S G; Hinshaw, Stephen P; Swanson, James M; Newman, Erik; Kelly, Clare; Bjork, James M

    2016-04-01

    Both Attention Deficit Hyperactivity Disorder (ADHD) and chronic cannabis (CAN) use have been associated with brain structural abnormalities, although little is known about the effects of both in young adults. Participants included: those with a childhood diagnosis of ADHD who were CAN users (ADHD_CAN; n=37) and non-users (NU) (ADHD_NU; n=44) and a local normative comparison group (LNCG) who did (LNCG_CAN; n=18) and did not (LNCG_NU; n=21) use CAN regularly. Multiple regressions and MANCOVAs were used to examine the independent and interactive effects of a childhood ADHD diagnosis and CAN group status and age of onset (CUO) on subcortical volumes and cortical thickness. After controlling for age, gender, total brain volume, nicotine use, and past-year binge drinking, childhood ADHD diagnosis did not predict brain structure; however, persistence of ADHD was associated with smaller left precentral/postcentral cortical thickness. Compared to all non-users, CAN users had decreased cortical thickness in right hemisphere superior frontal sulcus, anterior cingulate, and isthmus of cingulate gyrus regions and left hemisphere superior frontal sulcus and precentral gyrus regions. Early cannabis use age of onset (CUO) in those with ADHD predicted greater right hemisphere superior frontal and postcentral cortical thickness. Young adults with persistent ADHD demonstrated brain structure abnormalities in regions underlying motor control, working memory and inhibitory control. Further, CAN use was linked with abnormal brain structure in regions with high concentrations of cannabinoid receptors. Additional large-scale longitudinal studies are needed to clarify how substance use impacts neurodevelopment in youth with and without ADHD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group

    NARCIS (Netherlands)

    Hibar, D. P.; Westlye, L. T.; Doan, N. T.; Jahanshad, N.; Cheung, J. W.; Ching, C. R. K.; Versace, A.; Bilderbeck, A. C.; Uhlmann, A.; Mwangi, B.; Krämer, B.; Overs, B.; Hartberg, C. B.; Abé, C.; Dima, D.; Grotegerd, D.; Sprooten, E.; Bøen, E.; Jimenez, E.; Howells, F. M.; Delvecchio, G.; Temmingh, H.; Starke, J.; Almeida, J. R. C.; Goikolea, J. M.; Houenou, J.; Beard, L. M.; Rauer, L.; Abramovic, L.; Bonnin, M.; Ponteduro, M. F.; Keil, M.; Rive, M. M.; Yao, N.; Yalin, N.; Najt, P.; Rosa, P. G.; Redlich, R.; Trost, S.; Hagenaars, S.; Fears, S. C.; Alonso-Lana, S.; van Erp, T. G. M.; Nickson, T.; Chaim-Avancini, T. M.; Meier, T. B.; Elvsåshagen, T.; Haukvik, U. K.; Lee, W. H.; Schene, A. H.; Lloyd, A. J.; Young, A. H.; Nugent, A.; Dale, A. M.; Pfennig, A.; McIntosh, A. M.; Lafer, B.; Baune, B. T.; Ekman, C. J.; Zarate, C. A.; Bearden, C. E.; Henry, C.; Simhandl, C.; McDonald, C.; Bourne, C.; Stein, D. J.; Wolf, D. H.; Cannon, D. M.; Glahn, D. C.; Veltman, D. J.; Pomarol-Clotet, E.; Vieta, E.; Canales-Rodriguez, E. J.; Nery, F. G.; Duran, F. L. S.; Busatto, G. F.; Roberts, G.; Pearlson, G. D.; Goodwin, G. M.; Kugel, H.; Whalley, H. C.; Ruhe, H. G.; Soares, J. C.; Fullerton, J. M.; Rybakowski, J. K.; Savitz, J.; Chaim, K. T.; Fatjó-Vilas, M.; Soeiro-de-Souza, M. G.; Boks, M. P.; Zanetti, M. V.; Otaduy, M. C. G.; Schaufelberger, M. S.; Alda, M.; Ingvar, M.; Phillips, M. L.; Kempton, M. J.; Bauer, M.; Landén, M.; Lawrence, N. S.; van Haren, N. E. M.; Horn, N. R.; Freimer, N. B.; Gruber, O.; Schofield, P. R.; Mitchell, P. B.; Kahn, R. S.; Lenroot, R.; Machado-Vieira, R.; Ophoff, R. A.; Sarró, S.; Frangou, S.; Satterthwaite, T. D.; Hajek, T.; Dannlowski, U.; Malt, U. F.; Arolt, V.; Gattaz, W. F.; Drevets, W. C.; Caseras, X.; Agartz, I.; Thompson, P. M.; Andreassen, O. A.

    2017-01-01

    Despite decades of research, the pathophysiology of bipolar disorder (BD) is still not well understood. Structural brain differences have been associated with BD, but results from neuroimaging studies have been inconsistent. To address this, we performed the largest study to date of cortical gray

  14. Binocular combination in abnormal binocular vision.

    Science.gov (United States)

    Ding, Jian; Klein, Stanley A; Levi, Dennis M

    2013-02-08

    We investigated suprathreshold binocular combination in humans with abnormal binocular visual experience early in life. In the first experiment we presented the two eyes with equal but opposite phase shifted sine waves and measured the perceived phase of the cyclopean sine wave. Normal observers have balanced vision between the two eyes when the two eyes' images have equal contrast (i.e., both eyes contribute equally to the perceived image and perceived phase = 0°). However, in observers with strabismus and/or amblyopia, balanced vision requires a higher contrast image in the nondominant eye (NDE) than the dominant eye (DE). This asymmetry between the two eyes is larger than predicted from the contrast sensitivities or monocular perceived contrast of the two eyes and is dependent on contrast and spatial frequency: more asymmetric with higher contrast and/or spatial frequency. Our results also revealed a surprising NDE-to-DE enhancement in some of our abnormal observers. This enhancement is not evident in normal vision because it is normally masked by interocular suppression. However, in these abnormal observers the NDE-to-DE suppression was weak or absent. In the second experiment, we used the identical stimuli to measure the perceived contrast of a cyclopean grating by matching the binocular combined contrast to a standard contrast presented to the DE. These measures provide strong constraints for model fitting. We found asymmetric interocular interactions in binocular contrast perception, which was dependent on both contrast and spatial frequency in the same way as in phase perception. By introducing asymmetric parameters to the modified Ding-Sperling model including interocular contrast gain enhancement, we succeeded in accounting for both binocular combined phase and contrast simultaneously. Adding binocular contrast gain control to the modified Ding-Sperling model enabled us to predict the results of dichoptic and binocular contrast discrimination experiments

  15. Witnessing Multipartite Entanglement by Detecting Asymmetry

    Directory of Open Access Journals (Sweden)

    Davide Girolami

    2017-03-01

    Full Text Available The characterization of quantum coherence in the context of quantum information theory and its interplay with quantum correlations is currently subject of intense study. Coherence in a Hamiltonian eigenbasis yields asymmetry, the ability of a quantum system to break a dynamical symmetry generated by the Hamiltonian. We here propose an experimental strategy to witness multipartite entanglement in many-body systems by evaluating the asymmetry with respect to an additive Hamiltonian. We test our scheme by simulating asymmetry and entanglement detection in a three-qubit Greenberger–Horne–Zeilinger (GHZ diagonal state.

  16. Altered cortical hubs in functional brain networks in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Ma, Xujing; Zhang, Jiuquan; Zhang, Youxue; Chen, Heng; Li, Rong; Wang, Jian; Chen, Huafu

    2015-11-01

    Cortical hubs are highly connected nodes in functional brain networks that play vital roles in the efficient transfer of information across brain regions. Although altered functional connectivity has been found in amyotrophic lateral sclerosis (ALS), the changing pattern in functional network hubs in ALS remains unknown. In this study, we applied a voxel-wise method to investigate the changing pattern of cortical hubs in ALS. Through resting-state fMRI, we constructed whole-brain voxel-wise functional networks by measuring the temporal correlations of each pair of brain voxels and identified hubs using the graph theory method. Specifically, a functional connectivity strength (FCS) map was derived from the data on 20 patients with ALS and 20 healthy controls. The brain regions with high FCS values were regarded as functional network hubs. Functional hubs were found mainly in the bilateral precuneus, parietal cortex, medial prefrontal cortex, and in several visual regions and temporal areas in both groups. Within the hub regions, the ALS patients exhibited higher FCS in the prefrontal cortex compared with the healthy controls. The FCS value in the significantly abnormal hub regions was correlated with clinical variables. Results indicated the presence of altered cortical hubs in the ALS patients and could therefore shed light on the pathophysiology mechanisms underlying ALS.

  17. Cortical tremor: a variant of cortical reflex myoclonus.

    Science.gov (United States)

    Ikeda, A; Kakigi, R; Funai, N; Neshige, R; Kuroda, Y; Shibasaki, H

    1990-10-01

    Two patients with action tremor that was thought to originate in the cerebral cortex showed fine shivering-like finger twitching provoked mainly by action and posture. Surface EMG showed relatively rhythmic discharge at a rate of about 9 Hz, which resembled essential tremor. However, electrophysiologic studies revealed giant somatosensory evoked potentials (SEPs) with enhanced long-loop reflex and premovement cortical spike by the jerk-locked averaging method. Treatment with beta-blocker showed no effect, but anticonvulsants such as clonazepam, valproate, and primidone were effective to suppress the tremor and the amplitude of SEPs. We call this involuntary movement "cortical tremor," which is in fact a variant of cortical reflex myoclonus.

  18. MRI of cortical dysplasia - correlation with pathological findings

    Energy Technology Data Exchange (ETDEWEB)

    Usui, N.; Kajita, Y.; Yoshida, J. [Dept. of Neurosurgery, Nagoya Univ. School of Medicine (Japan); Matsuda, K.; Mihara, T.; Tottori, T.; Ohtsubo, T.; Baba, K.; Matsuyama, N.; Inoue, Y.; Yagi, K. [National Epilepsy Centre, Shizuoka Higashi Hospital (Japan)

    2001-10-01

    Cortical dysplasia (CD) is the most epileptogenic structural lesion associated with epilepsy and patients with intractable seizures caused by this condition are good surgical candidates. MRI plays an important role in detecting the abnormalities of CD. We clarified the MRI characteristics of CD by comparing imaging and histological findings in 20 patients with intractable seizures who underwent surgical resection. There were 12 males and eight females, mean age at operation was 15 years. MRI was performed at 1.5 tesla; T1-weighted, T2- and proton density-weighted spin-echo and fluid-attenuated inversion-recovery (FLAIR) images were obtained. The lesions were in the frontal lobe in nine cases, temporal in two, occipital in another two, insular in one and multilobar in six. Blurring of the grey/white matter junction was seen in all patients, and T2 prolongation in white matter and/or at the grey/white matter junction in 19. Abnormal signal intensity was more frequent in the white matter or at the grey/white matter junction than in the grey matter. FLAIR images made this abnormal high signal easier to appreciate, and we thought them very useful in this context. In areas of T2 prolongation, we saw dysplastic neurones and/or balloon cells, dysmyelination, and ectopic neuronal clustering histologically; glial proliferation played an important role in prolonging T2. (orig.)

  19. Title: Cytoskeletal proteins in cortical development and diseasesubtitle: Actin associated proteins in periventricular heterotopia

    Directory of Open Access Journals (Sweden)

    Gewei eLian

    2015-04-01

    Full Text Available The actin cytoskeleton regulates many important cellular processes in the brain, including cell division and proliferation, migration, and cytokinesis and differentiation. These developmental processes can be regulated through actin dependent vesicle and organelle movement, cell signaling, and the establishment and maintenance of cell junctions and cell shape. Many of these processes are mediated by extensive and intimate interactions of actin with cellular membranes and proteins. Disruption in the actin cytoskeleton in the brain gives rise to periventricular heterotopia (PH, a malformation of cortical development, characterized by abnormal neurons clustered deep in the brain along the lateral ventricles. This disorder can give rise to seizures, dyslexia and psychiatric disturbances. Anatomically, PH is characterized by a smaller brain (impaired proliferation, heterotopia (impaired initial migration and disruption along the neuroependymal lining (impaired cell-cell adhesion. Genes causal for PH have also been implicated in actin-dependent processes. The current review provides mechanistic insight into actin cytoskeletal regulation of cortical development in the context of this malformation of cortical development.

  20. Altered cortical GABA neurotransmission in schizophrenia: insights into novel therapeutic strategies.

    Science.gov (United States)

    Stan, Ana D; Lewis, David A

    2012-06-01

    Altered markers of cortical GABA neurotransmission are among the most consistently observed abnormalities in postmortem studies of schizophrenia. The altered markers are particularly evident between the chandelier class of GABA neurons and their synaptic targets, the axon initial segment (AIS) of pyramidal neurons. For example, in the dorsolateral prefrontal cortex of subjects with schizophrenia immunoreactivity for the GABA membrane transporter is decreased in presynaptic chandelier neuron axon terminals, whereas immunoreactivity for the GABAA receptor α2 subunit is increased in postsynaptic AIS. Both of these molecular changes appear to be compensatory responses to a presynaptic deficit in GABA synthesis, and thus could represent targets for novel therapeutic strategies intended to augment the brain's own compensatory mechanisms. Recent findings that GABA inputs from neocortical chandelier neurons can be powerfully excitatory provide new ideas about the role of these neurons in the pathophysiology of cortical dysfunction in schizophrenia, and consequently in the design of pharmacological interventions.

  1. Transcranial magnetic stimulation provides means to assess cortical plasticity and excitability in humans with fragile X syndrome and autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Lindsay M Oberman

    2010-06-01

    Full Text Available Fragile X Syndrome (FXS is the most common heritable cause of intellectual disability. In vitro electrophysiologic data from mouse models of FXS suggest that loss of Fragile X Mental Retardation Protein (FMRP affects intracortical excitability and synaptic plasticity. Specifically, the cortex appears hyperexcitable, and use-dependent long-term potentiation (LTP and long-term depression (LTD of synaptic strength are abnormal. Though animal models provide important information, FXS and other neurodevelopmental disorders are human diseases and as such translational research to evaluate cortical excitability and plasticity must be applied in the human. Transcranial magnetic stimulation (TMS paradigms have recently been developed to noninvasively investigate cortical excitability using paired-pulse stimulation, as well as LTP- and LTD-like synaptic plasticity in response to theta burst stimulation (TBS in vivo in the human. TBS applied on consecutive days can be used to measure metaplasticity (the ability of the synapse to undergo a second plastic change following a recent induction of plasticity. The current study investigated intracortical inhibition, plasticity and metaplasticity in full mutation females with FXS, participants with autism spectrum disorders (ASD, and neurotypical controls. Results suggest that intracortical inhibition is normal in participants with FXS, while plasticity and metaplasticity appear abnormal. ASD participants showed abnormalities in plasticity and metaplasticity, as well as heterogeneity in intracortical inhibition. Our findings highlight the utility of noninvasive neurophysiological measures to translate insights from animal models to humans with neurodevelopmental disorders, and thus provide direct confirmation of cortical dysfunction in patients with FXS and ASD.

  2. Abnormal lateralization of fine motor actions in Tourette syndrome persists into adulthood.

    Directory of Open Access Journals (Sweden)

    D Martino

    Full Text Available Youth with Tourette syndrome (TS exhibit, compared to healthy, abnormal ability to lateralize digital sequential tasks. It is unknown whether this trait is related to inter-hemispheric connections, and whether it is preserved or lost in patients with TS persisting through adult life. We studied 13 adult TS patients and 15 age-matched healthy volunteers. All participants undertook: 1 a finger opposition task, performed with the right hand (RH only or with both hands, using a sensor-engineered glove in synchrony with a metronome at 2 Hz; we calculated a lateralization index [(single RH-bimanual RH/single RH X 100 for percentage of correct movements (%CORR; 2 MRI-based diffusion tensor imaging and probabilistic tractography of inter-hemispheric corpus callosum (CC connections between supplementary motor areas (SMA and primary motor cortices (M1. We confirmed a significant increase in the %CORR in RH in the bimanual vs. single task in TS patients (p<0.001, coupled to an abnormal ability to lateralize finger movements (significantly lower lateralization index for %CORR in TS patients, p = 0.04. The %CORR lateralization index correlated positively with tic severity measured with the Yale Global Tic Severity Scale (R = 0.55;p = 0.04. We detected a significantly higher fractional anisotropy (FA in both the M1-M1 (p = 0.036 and the SMA-SMA (p = 0.018 callosal fibre tracts in TS patients. In healthy subjects, the %CORR lateralization index correlated positively with fractional anisotropy of SMA-SMA fibre tracts (R = 0.63, p = 0.02; this correlation was not significant in TS patients. TS patients exhibited an abnormal ability to lateralize finger movements in sequential tasks, which increased in accuracy when the task was performed bimanually. This abnormality persists throughout different age periods and appears dissociated from the transcallosal connectivity of motor cortical regions. The altered interhemispheric transfer of motor abilities in TS may be

  3. Frequency of dentofacial asymmetries: a cross-sectional study on orthodontic patients.

    Science.gov (United States)

    Bhateja, Nita Kumari; Fida, Mubassar; Shaikh, Attiya

    2014-01-01

    Correction of orthodontic asymmetries is crucial to achieve functional occlusion, aesthetics and stability of post orthodontic treatment results. To date valid frequency data of dentofacial asymmetries in Pakistani orthodontic patients do not exist to document orthodontic treatment need. The objectives of this study were to determine frequency of dento-facial asymmetries, severity of dental asymmetries and to determine difference in frequency of dentofacial asymmetries in mixed and permanent dentition. The sample of this cross-sectional study comprised of 280 patients (177 females and 103 males) with no history of previous orthodontic treatment having no craniofacial anomalies. Dento-facial asymmetries were assessed from pre-treatment records of patients. Descriptive statistics were used to determine frequency of dentofacial asymmetries and severity of dental asymmetries. Chi-square test was used to determine difference in frequency of dentofacial asymmetries in mixed and permanent dentition. Seventy eight percent (219) of patients had noncoincident midlines, 67.5% (189) had mandibular midline asymmetry, 43.2% (122) had molar asymmetry, 15.7% (44) had mandibular arch asymmetry, 14.3% (40) had maxillary midline asymmetry, 13.6% (38) had maxillary arch asymmetry, 6.1% (17) had nose deviation, and 12.1% (34) had facial asymmetry and chin deviation. In most patients dental midlines were deviated from one another and from facial midline by ¼ lower incisor widths, while molar asymmetry was found in most patients by ¼ cusp width. Mandibular arch asymmetry was more frequent in permanent than mixed dentition (p = 0.054). Non-coincident dental midline is most commonly seen. Nose deviation is least commonly observed. Mandibular arch asymmetry is more frequent in permanent than mixed dentition.

  4. Evaluation of glucose metabolic abnormality in postlingually deaf patients using F-18-FDG positron emission tomography and statistical parametric mapping

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sung; Lee, Dong Soo; Oh, Seung Ha; Kim, Chong Sun; Park, Kwang Suk; Chung, June Key; Lee, Myung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2000-07-01

    We have previously reported the prognostic relevance of cross-modal cortical plasticity in prelingual deaf patients revealed by F-18-FDG PET and SPM analysis. In this study, we investigated metabolic abnormality in postlingual deaf patients, whose clinical features are different from prelingual deafness. Nine postlingual deaf patients (age: 30.5 {+-}14.0) were performed on F-18-FDG brain PET. We compared their PET images with those of age-matched 20 normal controls (age: 27.1 {+-}8.6), and performed correlation analysis to investigate the relationship between glucose metabolism and deaf duration using SPM99. Glucose metabolism of deaf patients was significantly (p<0.05, corrected) decreased in both anterior cingulate, inferior frontal cortices, and superior temporal cortices, and left hippocampus. Metabolism in both superior temporal cortices and association area in inferior parietal cortices showed significant (p<0.01, uncorrected) positive correlation with deaf duration. Decreased metabolism in hippocampus accompanied with hypometabolism in auditory related areas can be explained by recent finding of anatomical connectivity between them, and may be the evidence indicating their functional connectivity. Metabolism recovery in auditory cortex after long deaf duration suggests that cortical plasticity takes place also in postlingual deafness.

  5. Evaluation of glucose metabolic abnormality in postlingually deaf patients using F-18-FDG positron emission tomography and statistical parametric mapping

    International Nuclear Information System (INIS)

    Lee, Jae Sung; Lee, Dong Soo; Oh, Seung Ha; Kim, Chong Sun; Park, Kwang Suk; Chung, June Key; Lee, Myung Chul

    2000-01-01

    We have previously reported the prognostic relevance of cross-modal cortical plasticity in prelingual deaf patients revealed by F-18-FDG PET and SPM analysis. In this study, we investigated metabolic abnormality in postlingual deaf patients, whose clinical features are different from prelingual deafness. Nine postlingual deaf patients (age: 30.5 ±14.0) were performed on F-18-FDG brain PET. We compared their PET images with those of age-matched 20 normal controls (age: 27.1 ±8.6), and performed correlation analysis to investigate the relationship between glucose metabolism and deaf duration using SPM99. Glucose metabolism of deaf patients was significantly (p<0.05, corrected) decreased in both anterior cingulate, inferior frontal cortices, and superior temporal cortices, and left hippocampus. Metabolism in both superior temporal cortices and association area in inferior parietal cortices showed significant (p<0.01, uncorrected) positive correlation with deaf duration. Decreased metabolism in hippocampus accompanied with hypometabolism in auditory related areas can be explained by recent finding of anatomical connectivity between them, and may be the evidence indicating their functional connectivity. Metabolism recovery in auditory cortex after long deaf duration suggests that cortical plasticity takes place also in postlingual deafness

  6. On the Compton Twist-3 Asymmetries

    International Nuclear Information System (INIS)

    Korotkiyan, V.M.; Teryaev, O.V.

    1994-01-01

    The 'fermionic poles' contribution to the twist-3 single asymmetry in the gluon Compton process is calculated. The 'gluonic poles' existence seems to contradict the density matrix positivity. Qualitative predictions for the direct photon and jets asymmetries are presented. 13 refs., 2 figs

  7. Structural Connectivity Asymmetry in the Neonatal Brain

    OpenAIRE

    Ratnarajah, Nagulan; Rifkin-Graboi, Anne; Fortier, Marielle V.; Chong, Yap Seng; Kwek, Kenneth; Saw, Seang-Mei; Godfrey, Keith M; Gluckman, Peter D.; Meaney, Michael J.; Qiu, Anqi

    2013-01-01

    Asymmetry of the neonatal brain is not yet understood at the level of structural connectivity. We utilized DTI deterministic tractography and structural network analysis based on graph theory to determine the pattern of structural connectivity asymmetry in 124 normal neonates. We tracted white matter axonal pathways characterizing interregional connections among brain regions and inferred asymmetry in left and right anatomical network properties. Our findings revealed that in neonates, small-...

  8. Cerebrospinal fluid flow abnormalities in patients with neoplastic meningitis. An evaluation using 111In-DTPA ventriculography

    International Nuclear Information System (INIS)

    Grossman, S.A.; Trump, D.L.; Chen, D.C.; Thompson, G.; Camargo, E.E.

    1982-01-01

    Cerebrospinal fluid flow dynamics were evaluated by 111 In-diethylenetriamine pentaacetic acid ( 111 In-DTPA) ventriculography in 27 patients with neoplastic meningitis. Nineteen patients (70 percent) had evidence of cerebrospinal fluid flow disturbances. These occurred as ventricular outlet obstructions, abnormalities of flow in the spinal canal, or flow distrubances over the cortical convexities. Tumor histology, physical examination, cerebrospinal fluid analysis, myelograms, and computerized axial tomographic scans were not sufficient to predict cerebrospinal fluid flow patterns. These data indicate that cerebrospinal fluid flow abnormalities are common in patients with neoplastic meningitis and that 111 In-DTPA cerebrospinal fluid flow imaging is useful in characterizing these abnormalities. This technique provides insight into the distribution of intraventricularly administered chemotherapy and may provide explanations for treatment failure and drug-induced neurotoxicity in patients with neoplastic meningitis

  9. Oil demand asymmetry in the OECD

    International Nuclear Information System (INIS)

    Shealy, M.T.

    1990-01-01

    Oil demand asymmetry exists, is significant, and can be captured with a simple demand equation using a Pmax term. The unstable parameters of the original symmetric equations suggest misspecification. Addition of a Pmax term to represent asymmetry yields stable parameters from 1982 through 1989 and so suggests proper specification. Asymmetry is significant because the short-run (and long-run) price elasticity is less than half as large when oil price falls as when price rises beyond the past peak. The lower elasticity applies both to price decreases and also to price increases for which price remains below the past peak. As long as the real oil price remains well below the 1981 peak, asymmetry implies that OECD oil demand should be less sensitive to oil price variations than in 1981. More specifically, the results shown suggest that today's oil demand elasticity should be less than half as large as the elasticity for a price increase in 1981. Forecasts from the asymmetric equations are significantly higher than the DOE base-case forecast. DOE's lower forecast is due to greater price asymmetry through 1995 and to higher long-run price elasticity beyond 1995. One reason for the higher long-run price elasticity might be greater assumed improvements in energy-efficiency than implied by the historical data

  10. Abnormal regional spontaneous neuronal activity associated with symptom severity in treatment-naive patients with obsessive-compulsive disorder revealed by resting-state functional MRI.

    Science.gov (United States)

    Qiu, Linlin; Fu, Xiangshuai; Wang, Shuai; Tang, Qunfeng; Chen, Xingui; Cheng, Lin; Zhang, Fuquan; Zhou, Zhenhe; Tian, Lin

    2017-02-15

    A large number of neuroimaging studies have revealed the dysfunction of brain activities in obsessive-compulsive disorder (OCD) during various tasks. However, regional spontaneous activity abnormalities in OCD are gradually being revealed. In this current study, we aimed to investigate cerebral regions with abnormal spontaneous activity using resting-state functional magnetic resonance imaging (fMRI) and further explored the relationship between the spontaneous neuronal activity and symptom severity of patients with OCD. Thirty-one patients with OCD and 32 age-and sex-matched normal controls received the fMRI scans and fractional amplitude of low-frequency fluctuation (fALFF) approach was applied to identify the abnormal brain activity. We found that patients with OCD showed decreased fALFF not only in the cortical-striato-thalamo-cortical (CSTC) circuits like the thalamus, but also in other cerebral systems like the cerebellum, the parietal cortex and the temporal cortex. Additionally, OCD patients demonstrated significant associations between decreased fALFF and obsessive-compulsive symptom severity in the thalamus, the paracentral lobule and the cerebellum. Our results provide evidence for abnormal spontaneous neuronal activity in distributed cerebral areas and support the notion that brain areas outside the CSTC circuits may also play an important role in the pathophysiology of OCD. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Aggression and Brain Asymmetries: A Theoretical Review

    OpenAIRE

    Rohlfs , Paloma; Ramirez, J. Martin

    2006-01-01

    The relationship between aggression and brain asymmetries has not been studied enough. The association between both concepts can be approached from two different perspectives. One perspective points to brain asymmetries underlying the emotion of anger and consequently aggression in normal people. Another one is concerned with the existence of brain asymmetries in aggressive people (e.g., in the case of suicides or psychopathies). Research on emotional processing points out the confusion betw...

  12. Bilateral asymmetry of the humerus during growth and development.

    Science.gov (United States)

    Blackburn, Amanda

    2011-08-01

    The development of handedness throughout growth can be investigated by using bilateral asymmetry of the humerus as a proxy for this trait. A large skeletal sample of nonadults from English archaeological sites was examined using standard metric techniques to assess when right-sided asymmetry first appears in the human skeleton. Results of this work indicate a change in directional asymmetry during growth and development, with infants and young children exhibiting no significant asymmetry and older children and adolescents demonstrating right-sidedness. This trend is consistent with what has been observed in previous studies of upper limb asymmetry in skeletal material and behaviorally in living children, adding further strength to the premise that biomechanical forces strongly influence bilateral asymmetry in the upper limb bones. Variability in the magnitude of asymmetry between different features of the humerus was also noted. This characteristic can be explained by differing degrees of genetic canalization, with length and articular dimensions being more strongly canalized than diaphyseal properties. Copyright © 2011 Wiley-Liss, Inc.

  13. Geometric asymmetry driven Janus micromotors

    Science.gov (United States)

    Zhao, Guanjia; Pumera, Martin

    2014-09-01

    The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a ``coconut'' micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors.The production and application of nano-/micromotors is of great importance. In order for the motors to work, asymmetry in their chemical composition or physical geometry must be present if no external asymmetric field is applied. In this paper, we present a ``coconut'' micromotor made of platinum through the partial or complete etching of the silica templates. It was shown that although both the inner and outer surfaces are made of the same material (Pt), motion of the structure can be observed as the convex surface is capable of generating oxygen bubbles. This finding shows that not only the chemical asymmetry of the micromotor, but also its geometric asymmetry can lead to fast propulsion of the motor. Moreover, a considerably higher velocity can be seen for partially etched coconut structures than the velocities of Janus or fully etched, shell-like motors. These findings will have great importance on the design of future micromotors. Electronic supplementary information (ESI) available: Additional SEM images, data analysis, Videos S

  14. Morphometry of superior temporal gyrus and planum temporale in schizophrenia and psychotic bipolar disorder.

    Science.gov (United States)

    Ratnanather, J Tilak; Poynton, Clare B; Pisano, Dominic V; Crocker, Britni; Postell, Elizabeth; Cebron, Shannon; Ceyhan, Elvan; Honeycutt, Nancy A; Mahon, Pamela B; Barta, Patrick E

    2013-11-01

    Structural abnormalities in temporal lobe, including the superior temporal gyrus (STG) and planum temporale (PT), have been reported in schizophrenia (SCZ) and bipolar disorder (BPD) patients. While most MRI studies have suggested gray matter volume and surface area reduction in temporal lobe regions, few have explored changes in laminar thickness in PT and STG in SCZ and BPD. ROI subvolumes of the STG from 94 subjects were used to yield gray matter volume, gray/white surface area and laminar thickness for STG and PT cortical regions. Morphometric analysis suggests that there may be gender and laterality effects on the size and shape of the PT in BPD (n=36) and SCZ (n=31) with reduced laterality in PT in subjects with SCZ but not in BPD. In addition, PT surface area was seen to be larger in males, and asymmetry in PT surface area was larger in BPD. Subjects with SCZ had reduced thickness and smaller asymmetry in PT volume. Thus, the PT probably plays a more sensitive role than the STG in structural abnormalities seen in SCZ. © 2013.

  15. Three-dimensional assessment of facial asymmetry: A systematic review.

    Science.gov (United States)

    Akhil, Gopi; Senthil Kumar, Kullampalayam Palanisamy; Raja, Subramani; Janardhanan, Kumaresan

    2015-08-01

    For patients with facial asymmetry, complete and precise diagnosis, and surgical treatments to correct the underlying cause of the asymmetry are significant. Conventional diagnostic radiographs (submento-vertex projections, posteroanterior radiography) have limitations in asymmetry diagnosis due to two-dimensional assessments of three-dimensional (3D) images. The advent of 3D images has greatly reduced the magnification and projection errors that are common in conventional radiographs making it as a precise diagnostic aid for assessment of facial asymmetry. Thus, this article attempts to review the newly introduced 3D tools in the diagnosis of more complex facial asymmetries.

  16. Relations between neuropsychological findings and lateral asymmetries of cerebral blood flow measured by SPECT in dementia of Alzheimer type

    International Nuclear Information System (INIS)

    Yoshimura, Nahoko; Soma, Yoshiaki; Ootsuki, Mika

    1993-01-01

    We studied 16 right-handed patients clinically diagnosed as dementia of Alzheimer type (6 men, 10 women; aged 63-85, mean 72.8 years). The average duration of symptoms was 2.7 years. Dementia ranged from mild to moderately severe. None had clinical or laboratory evidence of cerebrovascular disease (Hachinski ischemic scores for all patients were 4 or below 4). All received the Wechsler Adult Intelligence Scale (WAIS), Mini-mental State Test (MMS) and Western Aphasia Battery (WAB, First Japanese edition, 1986). Regional cerebral blood flow (rCBF) was evaluated by single photon emission CT (SPECT) with 123 I-N-isopropyl-p-iodoamphetamine ( 123 I-IMP), using the Matsuda's quantitative method. Regional tracer uptake was measured in regions of interests (ROIs) over right and left frontal, temporal, parietal and occipital cortical regions; basal ganglia; and cerebellar hemispheres. The subjects were divided into three groups on the basis of lateral asymmetries in the temporal and parietal cortexes of rCBF (left< right, n=5; right< left, n=3; left=right, n=8). We decided that lateral asymmetry was present when rCBF for each ROI between left and right sides differs by more than 10%. General score (MMS, T-IQ) was not correlated with asymmetry of cerebral blood flow. Verbal IQ in patients with predominant hypoperfusion of left temporal and parietal lobe was significantly lower than other group, while performance IQ and WAB constructive scores were lower in those with right hemispheric hypoperfusion (p<0.05). We concluded that cerebral blood flow asymmetry by SPECT was related significantly to the deficit of language and constructive function in patients with dementia of Alzheimer type. Decreased rCBF in the left temporoparietal lobe was associated with language dysfunction, and that in the right hemisphere, with constructive dysfunction. (author)

  17. Relations between neuropsychological findings and lateral asymmetries of cerebral blood flow measured by SPECT in dementia of Alzheimer type

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Nahoko; Soma, Yoshiaki; Ootsuki, Mika [Takeda General Hospital, Aizu-Wakamatsu, Fukushima (Japan)

    1993-10-01

    We studied 16 right-handed patients clinically diagnosed as dementia of Alzheimer type (6 men, 10 women; aged 63-85, mean 72.8 years). The average duration of symptoms was 2.7 years. Dementia ranged from mild to moderately severe. None had clinical or laboratory evidence of cerebrovascular disease (Hachinski ischemic scores for all patients were 4 or below 4). All received the Wechsler Adult Intelligence Scale (WAIS), Mini-mental State Test (MMS) and Western Aphasia Battery (WAB, First Japanese edition, 1986). Regional cerebral blood flow (rCBF) was evaluated by single photon emission CT (SPECT) with {sup 123}I-N-isopropyl-p-iodoamphetamine ({sup 123}I-IMP), using the Matsuda`s quantitative method. Regional tracer uptake was measured in regions of interests (ROIs) over right and left frontal, temporal, parietal and occipital cortical regions; basal ganglia; and cerebellar hemispheres. The subjects were divided into three groups on the basis of lateral asymmetries in the temporal and parietal cortexes of rCBF (leftasymmetry was present when rCBF for each ROI between left and right sides differs by more than 10%. General score (MMS, T-IQ) was not correlated with asymmetry of cerebral blood flow. Verbal IQ in patients with predominant hypoperfusion of left temporal and parietal lobe was significantly lower than other group, while performance IQ and WAB constructive scores were lower in those with right hemispheric hypoperfusion (p<0.05). We concluded that cerebral blood flow asymmetry by SPECT was related significantly to the deficit of language and constructive function in patients with dementia of Alzheimer type. Decreased rCBF in the left temporoparietal lobe was associated with language dysfunction, and that in the right hemisphere, with constructive dysfunction. (author).

  18. Extent of cortical involvement in amyotrophic lateral sclerosis--an analysis based on cortical thickness.

    Science.gov (United States)

    Thorns, Johannes; Jansma, Henk; Peschel, Thomas; Grosskreutz, Julian; Mohammadi, Bahram; Dengler, Reinhard; Münte, Thomas F

    2013-10-18

    Besides the defining involvement of upper and lower motor neurons, the involvement of extramotor structures has been increasingly acknowledged in amyotrophic lateral sclerosis (ALS). Here we investigated a group of 14 mildly to moderately affected ALS patients and 14 age-matched healthy control participants using cortical thickness analysis. Cortical thickness was determined from high resolution 3D T1 magnetic resonance images and involved semiautomatic segmentation in grey and white matter, cortical alignment and determination of thickness using the Laplace method. In addition to a whole-cortex analysis a region of interest approach was applied. ALS patients showed regions of significant cortical thinning in the pre- and postcentral gyri bilaterally. Further regions of cortical thinning included superior and inferior parietal lobule, angular and supramarginal gyrus, insula, superior frontal, temporal and occipital regions, thus further substantiating extramotor involvement in ALS. A relationship between cortical thickness of the right superior frontal cortex and clinical severity (assessed by the ALS functional rating scale) was also demonstrated. Cortical thickness is reduced in ALS not only in motor areas but in widespread non-motor cortical areas. Cortical thickness is related to clinical severity.

  19. Dampened hippocampal oscillations and enhanced spindle activity in an asymptomatic model of developmental cortical malformations

    Directory of Open Access Journals (Sweden)

    Elena eCid

    2014-04-01

    Full Text Available Developmental cortical malformations comprise a large spectrum of histopathological brain abnormalities and syndromes. Their genetic, developmental and clinical complexity suggests they should be better understood in terms of the complementary action of independently timed perturbations (i.e. the multiple-hit hypothesis. However, understanding the underlying biological processes remains puzzling. Here we induced developmental cortical malformations in offspring, after intraventricular injection of methylazoxymethanol (MAM in utero in mice. We combined extensive histological and electrophysiological studies to characterize the model. We found that MAM injections at E14 and E15 induced a range of cortical and hippocampal malformations resembling histological alterations of specific genetic mutations and transplacental mitotoxic agent injections. However, in contrast to most of these models, intraventricularly MAM-injected mice remained asymptomatic and showed no clear epilepsy-related phenotype as tested in long-term chronic recordings and with pharmacological manipulations. Instead, they exhibited a non-specific reduction of hippocampal-related brain oscillations (mostly in CA1; including theta, gamma and HFOs; and enhanced thalamocortical spindle activity during non-REM sleep. These data suggest that developmental cortical malformations do not necessarily correlate with epileptiform activity. We propose that the intraventricular in utero MAM approach exhibiting a range of rhythmopathies is a suitable model for multiple-hit studies of associated neurological disorders.

  20. The somatotopic localisation of the descending cortical tract in the cerebral peduncle: a study using MRI of changes following Wallerian degeneration in the cerebral peduncle after a supratentorial vascular lesion

    International Nuclear Information System (INIS)

    Waragai, M.; Watanabe, H.; Iwabuchi, S.

    1994-01-01

    We studied the effects of Wallerian degeneration in the cerebral peduncle shown by magnetic resonance imaging (MRI) following a supratentorial vascular lesion, to identify the somatotopic localisation of the descending cortical tracts. Patients with a lesion involving a large area of a cerebral hemisphere has an area of abnormal signal intensity in the whole cerebral peduncle, suggesting Wallerian degeneration of all the whole descending cortical tracts. With a small lesion confined to the precentral gyrus, corona radiata, or posterior limb of the internal capsule there was an abnormal signal at the centre of the peduncle, suggesting degeneration of the precentrospinal tract. Those with a small lesion confined to the paracentral gyrus had an abnormal area slightly lateral to the centre of the peduncle, suggesting degeneration of the parietospinal tract. Patients with a lesion of the parietal or temporal lobes, not including the paracentral or precentral gyri, corona radiata, or the posterior limb of the internal capsule, had an abnormal area laterally in the peduncle, suggesting degeneration of the parietopontine or temporopontine tract. (orig.)

  1. Mercury exposure may influence fluctuating asymmetry in waterbirds

    Science.gov (United States)

    Herring, Garth; Eagles-Smith, Collin A.; Ackerman, Joshua T.

    2017-01-01

    Variation in avian bilateral symmetry can be an indicator of developmental instability in response to a variety of stressors, including environmental contaminants. The authors used composite measures of fluctuating asymmetry to examine the influence of mercury concentrations in 2 tissues on fluctuating asymmetry within 4 waterbird species. Fluctuating asymmetry increased with mercury concentrations in whole blood and breast feathers of Forster's terns (Sterna forsteri), a species with elevated mercury concentrations. Specifically, fluctuating asymmetry in rectrix feather 1 was the most strongly correlated structural variable of those tested (wing chord, tarsus, primary feather 10, rectrix feather 6) with mercury concentrations in Forster's terns. However, for American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), and Caspian terns (Hydroprogne caspia), the authors found no relationship between fluctuating asymmetry and either whole-blood or breast feather mercury concentrations, even though these species had moderate to elevated mercury exposure. The results indicate that mercury contamination may act as an environmental stressor during development and feather growth and contribute to fluctuating asymmetry of some species of highly contaminated waterbirds.

  2. Asymmetry of the Brain: Development and Implications.

    Science.gov (United States)

    Duboc, Véronique; Dufourcq, Pascale; Blader, Patrick; Roussigné, Myriam

    2015-01-01

    Although the left and right hemispheres of our brains develop with a high degree of symmetry at both the anatomical and functional levels, it has become clear that subtle structural differences exist between the two sides and that each is dominant in processing specific cognitive tasks. As the result of evolutionary conservation or convergence, lateralization of the brain is found in both vertebrates and invertebrates, suggesting that it provides significant fitness for animal life. This widespread feature of hemispheric specialization has allowed the emergence of model systems to study its development and, in some cases, to link anatomical asymmetries to brain function and behavior. Here, we present some of what is known about brain asymmetry in humans and model organisms as well as what is known about the impact of environmental and genetic factors on brain asymmetry development. We specifically highlight the progress made in understanding the development of epithalamic asymmetries in zebrafish and how this model provides an exciting opportunity to address brain asymmetry at different levels of complexity.

  3. Molecular dynamics simulations of tension–compression asymmetry in nanocrystalline copper

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kai, E-mail: kaizhou@aliyun.com; Liu, Bin; Shao, Shaofeng; Yao, Yijun

    2017-04-04

    Molecular dynamics simulations are used to investigate uniaxial tension and compression of nanocrystalline copper with mean grain sizes of 3.8–11.9 nm. The simulation results show an apparent asymmetry in the flow stress, with nanocrystalline copper stronger in compression than in tension. The asymmetry exhibits a maximum at the mean grain size of about 10 nm. The dominant mechanism of the asymmetry depends on the mean grain size. At small grain sizes, grain-boundary based plasticity dominates the asymmetry, while for large grain sizes the asymmetry mainly arises from the pressure dependent dislocation emission from grain boundaries. - Highlights: • The tension–compression asymmetry in strength exhibits a maximum at the mean grain size of about 10 nm. • The main mechanisms govern the asymmetry are grain-boundary mediated plasticity and dislocation based plasticity. • The above-mentioned mechanisms are both grain size and pressure dependent. • The transition of the asymmetry with the mean grain size is not influenced by strain rate.

  4. From Cortical and Subcortical Grey Matter Abnormalities to Neurobehavioral Phenotype of Angelman Syndrome: A Voxel-Based Morphometry Study.

    Directory of Open Access Journals (Sweden)

    Gayane Aghakhanyan

    Full Text Available Angelman syndrome (AS is a rare neurogenetic disorder due to loss of expression of maternal ubiquitin-protein ligase E3A (UBE3A gene. It is characterized by severe developmental delay, speech impairment, movement or balance disorder and typical behavioral uniqueness. Affected individuals show normal magnetic resonance imaging (MRI findings, although mild dysmyelination may be observed. In this study, we adopted a quantitative MRI analysis with voxel-based morphometry (FSL-VBM method to investigate disease-related changes in the cortical/subcortical grey matter (GM structures. Since 2006 to 2013 twenty-six AS patients were assessed by our multidisciplinary team. From those, sixteen AS children with confirmed maternal 15q11-q13 deletions (mean age 7.7 ± 3.6 years and twenty-one age-matched controls were recruited. The developmental delay and motor dysfunction were assessed using Bayley III and Gross Motor Function Measure (GMFM. Principal component analysis (PCA was applied to the clinical and neuropsychological datasets. High-resolution T1-weighted images were acquired and FSL-VBM approach was applied to investigate differences in the local GM volume and to correlate clinical and neuropsychological changes in the regional distribution of GM. We found bilateral GM volume loss in AS compared to control children in the striatum, limbic structures, insular and orbitofrontal cortices. Voxel-wise correlation analysis with the principal components of the PCA output revealed a strong relationship with GM volume in the superior parietal lobule and precuneus on the left hemisphere. The anatomical distribution of cortical/subcortical GM changes plausibly related to several clinical features of the disease and may provide an important morphological underpinning for clinical and neurobehavioral symptoms in children with AS.

  5. Cortical GABA markers identify a molecular subtype of psychotic and bipolar disorders.

    Science.gov (United States)

    Volk, D W; Sampson, A R; Zhang, Y; Edelson, J R; Lewis, D A

    2016-09-01

    Deficits in gamma aminobutyric acid (GABA) neuron-related markers, including the GABA-synthesizing enzyme GAD67, the calcium-binding protein parvalbumin, the neuropeptide somatostatin, and the transcription factor Lhx6, are most pronounced in a subset of schizophrenia subjects identified as having a 'low GABA marker' (LGM) molecular phenotype. Furthermore, schizophrenia shares degrees of genetic liability, clinical features and cortical circuitry abnormalities with schizoaffective disorder and bipolar disorder. Therefore, we determined the extent to which a similar LGM molecular phenotype may also exist in subjects with these disorders. Transcript levels for GAD67, parvalbumin, somatostatin, and Lhx6 were quantified using quantitative PCR in prefrontal cortex area 9 of 184 subjects with a diagnosis of schizophrenia (n = 39), schizoaffective disorder (n = 23) or bipolar disorder (n = 35), or with a confirmed absence of any psychiatric diagnoses (n = 87). A blinded clustering approach was employed to determine the presence of a LGM molecular phenotype across all subjects. Approximately 49% of the subjects with schizophrenia, 48% of the subjects with schizoaffective disorder, and 29% of the subjects with bipolar disorder, but only 5% of unaffected subjects, clustered in the cortical LGM molecular phenotype. These findings support the characterization of psychotic and bipolar disorders by cortical molecular phenotype which may help elucidate more pathophysiologically informed and personalized medications.

  6. Breast asymmetry and predisposition to breast cancer

    OpenAIRE

    Scutt, Diane; Lancaster, Gillian A; Manning, John T

    2006-01-01

    INTRODUCTION: It has been shown in our previous work that breast asymmetry is related to several of the known risk factors for breast cancer, and that patients with diagnosed breast cancer have more breast volume asymmetry, as measured from mammograms, than age-matched healthy women. METHODS: In the present study, we compared the breast asymmetry of women who were free of breast disease at time of mammography, but who had subsequently developed breast cancer, with that of age-matched healthy ...

  7. Cortico-cortical communication dynamics

    Directory of Open Access Journals (Sweden)

    Per E Roland

    2014-05-01

    Full Text Available IIn principle, cortico-cortical communication dynamics is simple: neurons in one cortical area communicate by sending action potentials that release glutamate and excite their target neurons in other cortical areas. In practice, knowledge about cortico-cortical communication dynamics is minute. One reason is that no current technique can capture the fast spatio-temporal cortico-cortical evolution of action potential transmission and membrane conductances with sufficient spatial resolution. A combination of optogenetics and monosynaptic tracing with virus can reveal the spatio-temporal cortico-cortical dynamics of specific neurons and their targets, but does not reveal how the dynamics evolves under natural conditions. Spontaneous ongoing action potentials also spread across cortical areas and are difficult to separate from structured evoked and intrinsic brain activity such as thinking. At a certain state of evolution, the dynamics may engage larger populations of neurons to drive the brain to decisions, percepts and behaviors. For example, successfully evolving dynamics to sensory transients can appear at the mesoscopic scale revealing how the transient is perceived. As a consequence of these methodological and conceptual difficulties, studies in this field comprise a wide range of computational models, large-scale measurements (e.g., by MEG, EEG, and a combination of invasive measurements in animal experiments. Further obstacles and challenges of studying cortico-cortical communication dynamics are outlined in this critical review.

  8. An anterior-to-posterior shift in midline cortical activity in schizophrenia during self-reflection.

    Science.gov (United States)

    Holt, Daphne J; Cassidy, Brittany S; Andrews-Hanna, Jessica R; Lee, Su Mei; Coombs, Garth; Goff, Donald C; Gabrieli, John D; Moran, Joseph M

    2011-03-01

    Deficits in social cognition, including impairments in self-awareness, contribute to the overall functional disability associated with schizophrenia. Studies in healthy subjects have shown that social cognitive functions, including self-reflection, rely on the medial prefrontal cortex (mPFC) and posterior cingulate gyrus, and these regions exhibit highly correlated activity during "resting" states. In this study, we tested the hypothesis that patients with schizophrenia show dysfunction of this network during self-reflection and that this abnormal activity is associated with changes in the strength of resting-state correlations between these regions. Activation during self-reflection and control tasks was measured with functional magnetic resonance imaging in 19 patients with schizophrenia and 20 demographically matched control subjects. In addition, the resting-state functional connectivity of midline cortical areas showing abnormal self-reflection-related activation in schizophrenia was measured. Compared with control subjects, the schizophrenia patients demonstrated lower activation of the right ventral mPFC and greater activation of the mid/posterior cingulate gyri bilaterally during self-reflection, relative to a control task. A similar pattern was seen during overall social reflection. In addition, functional connectivity between the portion of the left mid/posterior cingulate gyrus showing abnormally elevated activity during self-reflection in schizophrenia, and the dorsal anterior cingulate gyrus was lower in the schizophrenia patients compared with control subjects. Schizophrenia is associated with an anterior-to-posterior shift in introspection-related activation, as well as changes in functional connectivity, of the midline cortex. These findings provide support for the hypothesis that aberrant midline cortical function contributes to social cognitive impairment in schizophrenia. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier

  9. Cortical Development Requires Mesodermal Expression of Tbx1, a Gene Haploinsufficient in 22q11.2 Deletion Syndrome.

    Science.gov (United States)

    Flore, Gemma; Cioffi, Sara; Bilio, Marchesa; Illingworth, Elizabeth

    2017-03-01

    In mammals, proper temporal control of neurogenesis and neural migration during embryonic development ensures correct formation of the cerebral cortex. Changes in the distribution of cortical projection neurons and interneurons are associated with behavioral disorders and psychiatric diseases, including schizophrenia and autism, suggesting that disrupted cortical connectivity contributes to the brain pathology. TBX1 is the major candidate gene for 22q11.2 deletion syndrome (22q11.2DS), a chromosomal deletion disorder characterized by a greatly increased risk for schizophrenia. We have previously shown that Tbx1 heterozygous mice have reduced prepulse inhibition, a behavioral abnormality that is associated with 22q11.2DS and nonsyndromic schizophrenia. Here, we show that loss of Tbx1 disrupts corticogenesis in mice by promoting premature neuronal differentiation in the medio-lateral embryonic cortex, which gives rise to the somatosensory cortex (S1). In addition, we found altered polarity in both radially migrating excitatory neurons and tangentially migrating inhibitory interneurons. Together, these abnormalities lead to altered lamination in the S1 at the terminal stages of corticogenesis in Tbx1 null mice and similar anomalies in Tbx1 heterozygous adult mice. Finally, we show that mesoderm-specific inactivation of Tbx1 is sufficient to recapitulate the brain phenotype indicating that Tbx1 exerts a cell nonautonomous role in cortical development from the mesoderm. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Comparing the influence of crestal cortical bone and sinus floor cortical bone in posterior maxilla bi-cortical dental implantation: a three-dimensional finite element analysis.

    Science.gov (United States)

    Yan, Xu; Zhang, Xinwen; Chi, Weichao; Ai, Hongjun; Wu, Lin

    2015-05-01

    This study aimed to compare the influence of alveolar ridge cortical bone and sinus floor cortical bone in sinus areabi-cortical dental implantation by means of 3D finite element analysis. Three-dimensional finite element (FE) models in a posterior maxillary region with sinus membrane and the same height of alveolar ridge of 10 mm were generated according to the anatomical data of the sinus area. They were either with fixed thickness of crestal cortical bone and variable thickness of sinus floor cortical bone or vice versa. Ten models were assumed to be under immediate loading or conventional loading. The standard implant model based on the Nobel Biocare implant system was created via computer-aided design software. All materials were assumed to be isotropic and linearly elastic. An inclined force of 129 N was applied. Von Mises stress mainly concentrated on the surface of crestal cortical bone around the implant neck. For all the models, both the axial and buccolingual resonance frequencies of conventional loading were higher than those of immediate loading; however, the difference is less than 5%. The results showed that bi-cortical implant in sinus area increased the stability of the implant, especially for immediately loading implantation. The thickness of both crestal cortical bone and sinus floor cortical bone influenced implant micromotion and stress distribution; however, crestal cortical bone may be more important than sinus floor cortical bone.

  11. Increased Insular Cortical Thickness Associated With Symptom Severity in Male Youths With Internet Gaming Disorder: A Surface-Based Morphometric Study

    Science.gov (United States)

    Wang, Shuai; Liu, Jing; Tian, Lin; Chen, Limin; Wang, Jun; Tang, Qunfeng; Zhang, Fuquan; Zhou, Zhenhe

    2018-01-01

    With the rising increase in Internet-usage, Internet gaming disorder (IGD) has gained massive attention worldwide. However, detailed cerebral morphological changes remain unclear in youths with IGD. In the current study, our aim was to investigate cortical morphology and further explore the relationship between the cortical morphology and symptom severity in male youths with IGD. Forty-eight male youths with IGD and 32 age- and education-matched normal controls received magnetic resonance imaging scans. We employed a recently proposed surface-based morphometric approach for the measurement of cortical thickness (CT). We found that youths with IGD showed increased CT in the bilateral insulae and the right inferior temporal gyrus. Moreover, significantly decreased CT were found in several brain areas in youths with IGD, including the bilateral banks of the superior temporal sulci, the right inferior parietal cortex, the right precuneus, the right precentral gyrus, and the left middle temporal gyrus. Additionally, youths with IGD demonstrated a significantly positive correlation between the left insular CT and symptom severity. Our data provide evidence for the finding of abnormal CT in distributed cerebral areas and support the notion that altered structural abnormalities observed in substance addiction are also manifested in IGD. Such information extends current knowledge about IGD-related brain reorganization and could help future efforts in identifying the role of insula in the disorder. PMID:29666588

  12. Increased Insular Cortical Thickness Associated With Symptom Severity in Male Youths With Internet Gaming Disorder: A Surface-Based Morphometric Study

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    2018-04-01

    Full Text Available With the rising increase in Internet-usage, Internet gaming disorder (IGD has gained massive attention worldwide. However, detailed cerebral morphological changes remain unclear in youths with IGD. In the current study, our aim was to investigate cortical morphology and further explore the relationship between the cortical morphology and symptom severity in male youths with IGD. Forty-eight male youths with IGD and 32 age- and education-matched normal controls received magnetic resonance imaging scans. We employed a recently proposed surface-based morphometric approach for the measurement of cortical thickness (CT. We found that youths with IGD showed increased CT in the bilateral insulae and the right inferior temporal gyrus. Moreover, significantly decreased CT were found in several brain areas in youths with IGD, including the bilateral banks of the superior temporal sulci, the right inferior parietal cortex, the right precuneus, the right precentral gyrus, and the left middle temporal gyrus. Additionally, youths with IGD demonstrated a significantly positive correlation between the left insular CT and symptom severity. Our data provide evidence for the finding of abnormal CT in distributed cerebral areas and support the notion that altered structural abnormalities observed in substance addiction are also manifested in IGD. Such information extends current knowledge about IGD-related brain reorganization and could help future efforts in identifying the role of insula in the disorder.

  13. Precise discussion of time-reversal asymmetries in B-meson decays

    International Nuclear Information System (INIS)

    Morozumi, Takuya; Okane, Hideaki; Umeeda, Hiroyuki

    2015-01-01

    BaBar collaboration announced that they observed time reversal (T) asymmetry through B meson system. In the experiment, time dependencies of two distinctive processes, B_−→ (B"0)-bar and (B"0)-bar →B_− (− expresses CP value) are compared with each other. In our study, we examine event number difference of these two processes. In contrast to the BaBar asymmetry, the asymmetry of events number includes the overall normalization difference for rates. Time dependence of the asymmetry is more general and it includes terms absent in one used by BaBar collaboration. Both of the BaBar asymmetry and ours are naively thought to be T-odd since two processes compared are related with flipping time direction. We investigate the time reversal transformation property of our asymmetry. Using our notation, one can see that the asymmetry is not precisely a T-odd quantity, taking into account indirect CP and CPT violation of K meson systems. The effect of ϵ_K is extracted and gives rise to O(10"−"3) contribution. The introduced parameters are invariant under rephasing of quarks so that the coefficients of our asymmetry are expressed as phase convention independent quantities. Some combinations of the asymmetry enable us to extract parameters for wrong sign decays of B_d meson, CPT violation, etc. We also study the reason why the T-even terms are allowed to contribute to the asymmetry, and find that several conditions are needed for the asymmetry to be a T-odd quantity.

  14. A voxel-based approach to gray matter asymmetries.

    Science.gov (United States)

    Luders, E; Gaser, C; Jancke, L; Schlaug, G

    2004-06-01

    Voxel-based morphometry (VBM) was used to analyze gray matter (GM) asymmetries in a large sample (n = 60) of male and female professional musicians with and without absolute pitch (AP). We chose to examine these particular groups because previous studies using traditional region-of-interest (ROI) analyses have shown differences in hemispheric asymmetry related to AP and gender. Voxel-based methods may have advantages over traditional ROI-based methods since the analysis can be performed across the whole brain with minimal user bias. After determining that the VBM method was sufficiently sensitive for the detection of differences in GM asymmetries between groups, we found that male AP musicians were more leftward lateralized in the anterior region of the planum temporale (PT) than male non-AP musicians. This confirmed the results of previous studies using ROI-based methods that showed an association between PT asymmetry and the AP phenotype. We further observed that male non-AP musicians revealed an increased leftward GM asymmetry in the postcentral gyrus compared to female non-AP musicians, again corroborating results of a previously published study using ROI-based methods. By analyzing hemispheric GM differences across our entire sample, we were able to partially confirm findings of previous studies using traditional morphometric techniques, as well as more recent, voxel-based analyses. In addition, we found some unusually pronounced GM asymmetries in our musician sample not previously detected in subjects unselected for musical training. Since we were able to validate gender- and AP-related brain asymmetries previously described using traditional ROI-based morphometric techniques, the results of our analyses support the use of VBM for examinations of GM asymmetries.

  15. Abnormalities of the axial and proximal appendicular skeleton in adults with Laron syndrome (growth hormone insensitivity).

    Science.gov (United States)

    Kornreich, L; Konen, O; Schwarz, M; Siegel, Y; Horev, G; Hershkovitz, I; Laron, Z

    2008-02-01

    To investigate abnormalities in the skeleton (with the exclusion of the skull, cervical spine, hands and feet) in patients with Laron syndrome, who have an inborn growth hormone resistance and congenital insulin-like growth factor-1 (IGF-1) deficiency. The study group was composed of 15 untreated patients with Laron syndrome (seven male and eight female) aged 21-68 years. Plain films of the axial and appendicular skeleton were evaluated retrospectively for abnormalities in structure and shape. The cortical width of the long bones was evaluated qualitatively and quantitatively (in the upper humerus and mid-femur), and the cortical index was calculated and compared with published references. Measurements were taken of the mid-anteroposterior and cranio-caudal diameters of the vertebral body and spinous process at L3, the interpedicular distance at L1 and L5, and the sacral slope. Thoracic and lumbar osteophytes were graded on a 5-point scale. Values were compared with a control group of 20 healthy persons matched for age. The skeleton appeared small in all patients. No signs of osteopenia were visible. The cortex of the long bones appeared thick in the upper limbs in 11 patients and in the lower limbs in four. Compared with the reference values, the cortical width was thicker than average in the humerus and thinner in the femur. The vertebral diameters at L3 and the interpedicular distances at L1 and L5 were significantly smaller in the patients than in the control subjects (PLaron syndrome may be related to a marked retroversion of the humeral head.

  16. Poor Receptive Joint Attention Skills Are Associated with Atypical Grey Matter Asymmetry in the Posterior Superior Temporal Gyrus of Chimpanzees (Pan troglodytes

    Directory of Open Access Journals (Sweden)

    William eHopkins

    2014-01-01

    Full Text Available Clinical and experimental data have implicated the posterior superior temporal gyrus as an important cortical region in the processing of socially relevant stimuli such as gaze following, eye direction, and head orientation. Gaze following and responding to different socio-communicative signals is an important and highly adaptive skill in primates, including humans. Here, we examined whether individual differences in responding to socio-communicative cues was associated with variation in either grey matter volume and asymmetry in a sample of chimpanzees. MRI scans and behavioral data on receptive joint attention (RJA was obtained from a sample of 191 chimpanzees. We found that chimpanzees that performed poorly on the RJA task had more rightward asymmetries in the posterior but not anterior superior temporal gyrus. We further found that middle-aged and elderly chimpanzee performed more poorly on the RJA task and had significantly less grey matter than young-adult and sub-adult chimpanzees. The results are consistent with previous studies implicating the posterior temporal gyrus in the processing of socially relevant information.

  17. Asymmetry in power-law magnitude correlations.

    Science.gov (United States)

    Podobnik, Boris; Horvatić, Davor; Tenenbaum, Joel N; Stanley, H Eugene

    2009-07-01

    Time series of increments can be created in a number of different ways from a variety of physical phenomena. For example, in the phenomenon of volatility clustering-well-known in finance-magnitudes of adjacent increments are correlated. Moreover, in some time series, magnitude correlations display asymmetry with respect to an increment's sign: the magnitude of |x_{i}| depends on the sign of the previous increment x_{i-1} . Here we define a model-independent test to measure the statistical significance of any observed asymmetry. We propose a simple stochastic process characterized by a an asymmetry parameter lambda and a method for estimating lambda . We illustrate both the test and process by analyzing physiological data.

  18. Prefrontal cortical and striatal activity to happy and fear faces in bipolar disorder is associated with comorbid substance abuse and eating disorder.

    Science.gov (United States)

    Hassel, Stefanie; Almeida, Jorge R; Frank, Ellen; Versace, Amelia; Nau, Sharon A; Klein, Crystal R; Kupfer, David J; Phillips, Mary L

    2009-11-01

    The spectrum approach was used to examine contributions of comorbid symptom dimensions of substance abuse and eating disorder to abnormal prefrontal-cortical and subcortical-striatal activity to happy and fear faces previously demonstrated in bipolar disorder (BD). Fourteen remitted BD-type I and sixteen healthy individuals viewed neutral, mild and intense happy and fear faces in two event-related fMRI experiments. All individuals completed Substance-Use and Eating-Disorder Spectrum measures. Region-of-Interest analyses for bilateral prefrontal and subcortical-striatal regions were performed. BD individuals scored significantly higher on these spectrum measures than healthy individuals (pright PFC activity to intense happy faces (pright caudate nucleus activity to neutral faces (pright ventral putamen activity to intense happy (pabuse and eating disorder and prefrontal-cortical and subcortical-striatal activity to facial expressions in BD. Our findings suggest that these comorbid features may contribute to observed patterns of functional abnormalities in neural systems underlying mood regulation in BD.

  19. Three-dimensional brain growth abnormalities in childhood-onset schizophrenia visualized by using tensor-based morphometry.

    Science.gov (United States)

    Gogtay, Nitin; Lu, Allen; Leow, Alex D; Klunder, Andrea D; Lee, Agatha D; Chavez, Alex; Greenstein, Deanna; Giedd, Jay N; Toga, Arthur W; Rapoport, Judith L; Thompson, Paul M

    2008-10-14

    Earlier studies revealed progressive cortical gray matter (GM) loss in childhood-onset schizophrenia (COS) across both lateral and medial surfaces of the developing brain. Here, we use tensor-based morphometry to visualize white matter (WM) growth abnormalities in COS throughout the brain. Using high-dimensional elastic image registration, we compared 3D maps of local WM growth rates in COS patients and healthy children over a 5-year period, based on analyzing longitudinal brain MRIs from 12 COS patients and 12 healthy controls matched for age, gender, and scan interval. COS patients showed up to 2.2% slower growth rates per year than healthy controls in WM (P = 0.02, all P values corrected). The greatest differences were in the right hemisphere (P = 0.006). This asymmetry was attributable to a right slower than left hemisphere growth rate mapped in COS patients (P = 0.037) but not in healthy controls. WM growth rates reached 2.6% per year in healthy controls (P = 0.0002). COS patients showed only a 1.3% per year trend for growth in the left hemisphere (P = 0.066). In COS, WM growth rates were associated with improvement in the Children's Global Assessment Scale (R = 0.64, P = 0.029). Growth rates were reduced throughout the brain in COS, but this process appeared to progress in a front-to-back (frontal-parietal) fashion, and this effect was not attributable to lower IQ. Growth rates were correlated with functional prognosis and were visualized as detailed 3D maps. Finally, these findings also confirm that the progressive GM deficits seen in schizophrenia are not the result of WM overgrowth.

  20. Leptogenesis and gravity: Baryon asymmetry without decays

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, J.I., E-mail: pymcdonald@swansea.ac.uk; Shore, G.M., E-mail: g.m.shore@swansea.ac.uk

    2017-03-10

    A popular class of theories attributes the matter-antimatter asymmetry of the Universe to CP-violating decays of super-heavy BSM particles in the Early Universe. Recently, we discovered a new source of leptogenesis in these models, namely that the same Yukawa phases which provide the CP violation for decays, combined with curved-spacetime loop effects, lead to an entirely new gravitational mechanism for generating an asymmetry, driven by the expansion of the Universe and independent of the departure of the heavy particles from equilibrium. In this Letter, we build on previous work by analysing the full Boltzmann equation, exploring the full parameter space of the theory and studying the time-evolution of the asymmetry. Remarkably, we find regions of parameter space where decays play no part at all, and where the baryon asymmetry of the Universe is determined solely by gravitational effects.

  1. Cortical morphology development in patients with 22q11.2 deletion syndrome at ultra-high risk of psychosis.

    Science.gov (United States)

    Padula, Maria Carmela; Schaer, Marie; Armando, Marco; Sandini, Corrado; Zöller, Daniela; Scariati, Elisa; Schneider, Maude; Eliez, Stephan

    2018-01-17

    Patients with 22q11.2 deletion syndrome (22q11DS) present a high risk of developing psychosis. While clinical and cognitive predictors for the conversion towards a full-blown psychotic disorder are well defined and largely used in practice, neural biomarkers do not yet exist. However, a number of investigations indicated an association between abnormalities in cortical morphology and higher symptoms severities in patients with 22q11DS. Nevertheless, few studies included homogeneous groups of patients differing in their psychotic symptoms profile. In this study, we included 22 patients meeting the criteria for an ultra-high-risk (UHR) psychotic state and 22 age-, gender- and IQ-matched non-UHR patients. Measures of cortical morphology, including cortical thickness, volume, surface area and gyrification, were compared between the two groups using mass-univariate and multivariate comparisons. Furthermore, the development of these measures was tested in the two groups using a mixed-model approach. Our results showed differences in cortical volume and surface area in UHR patients compared with non-UHR. In particular, we found a positive association between surface area and the rate of change of global functioning, suggesting that higher surface area is predictive of improved functioning with age. We also observed accelerated cortical thinning during adolescence in UHR patients with 22q11DS. These results, although preliminary, suggest that alterations in cortical volume and surface area as well as altered development of cortical thickness may be associated to a greater probability to develop psychosis in 22q11DS.

  2. Inclusive asymmetries

    International Nuclear Information System (INIS)

    Peterson, E.A.

    1977-01-01

    The polarized proton beam was used to measure left-right asymmetries for the reactions p + p → p, K +- , π +- + anything and also some information on the reaction p + n → p, K +- , π + + anything are presented. The incident momentum is 11.8 GeV/c. The data are preliminary. Six references

  3. Striatal morphology correlates with sensory abnormalities in unaffected relatives of cervical dystonia patients.

    LENUS (Irish Health Repository)

    Walsh, Richard A

    2012-02-01

    Structural grey matter abnormalities have been described in adult-onset primary torsion dystonia (AOPTD). Altered spatial discrimination thresholds are found in familial and sporadic AOPTD and in some unaffected relatives who may be non-manifesting gene carriers. Our hypothesis was that a subset of unaffected relatives with abnormal spatial acuity would have associated structural abnormalities. Twenty-eight unaffected relatives of patients with familial cervical dystonia, 24 relatives of patients with sporadic cervical dystonia and 27 control subjects were recruited. Spatial discrimination thresholds (SDTs) were determined using a grating orientation task. High-resolution magnetic resonance imaging (MRI) images (1.5 T) were analysed using voxel-based morphometry. Unaffected familial relatives with abnormal SDTs had reduced caudate grey matter volume (GMV) bilaterally relative to those with normal SDTs (right Z = 3.45, left Z = 3.81), where there was a negative correlation between SDTs and GMV (r = -0.76, r(2) = 0.58, p < 0.0001). Familial relatives also had bilateral sensory cortical expansion relative to unrelated controls (right Z = 4.02, left Z = 3.79). Unaffected relatives of patients with sporadic cervical dystonia who had abnormal SDTs had reduced putaminal GMV bilaterally compared with those with normal SDTs (right Z = 3.96, left Z = 3.45). Sensory abnormalities in some unaffected relatives correlate with a striatal substrate and may be a marker of genetic susceptibility in these individuals. Further investigation of grey matter changes as a candidate endophenotype may assist future genetic studies of dystonia.

  4. Increased cortical-limbic anatomical network connectivity in major depression revealed by diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Peng Fang

    Full Text Available Magnetic resonance imaging studies have reported significant functional and structural differences between depressed patients and controls. Little attention has been given, however, to the abnormalities in anatomical connectivity in depressed patients. In the present study, we aim to investigate the alterations in connectivity of whole-brain anatomical networks in those suffering from major depression by using machine learning approaches. Brain anatomical networks were extracted from diffusion magnetic resonance images obtained from both 22 first-episode, treatment-naive adults with major depressive disorder and 26 matched healthy controls. Using machine learning approaches, we differentiated depressed patients from healthy controls based on their whole-brain anatomical connectivity patterns and identified the most discriminating features that represent between-group differences. Classification results showed that 91.7% (patients=86.4%, controls=96.2%; permutation test, p<0.0001 of subjects were correctly classified via leave-one-out cross-validation. Moreover, the strengths of all the most discriminating connections were increased in depressed patients relative to the controls, and these connections were primarily located within the cortical-limbic network, especially the frontal-limbic network. These results not only provide initial steps toward the development of neurobiological diagnostic markers for major depressive disorder, but also suggest that abnormal cortical-limbic anatomical networks may contribute to the anatomical basis of emotional dysregulation and cognitive impairments associated with this disease.

  5. Rab3A, a possible marker of cortical granules, participates in cortical granule exocytosis in mouse eggs

    Energy Technology Data Exchange (ETDEWEB)

    Bello, Oscar Daniel; Cappa, Andrea Isabel; Paola, Matilde de; Zanetti, María Natalia [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Fukuda, Mitsunori [Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578 (Japan); Fissore, Rafael A. [Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, MA 01003 (United States); Mayorga, Luis S. [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Michaut, Marcela A., E-mail: mmichaut@gmail.com [Instituto de Histología y Embriología, CONICET – Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza (Argentina); Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (Argentina)

    2016-09-10

    Fusion of cortical granules with the oocyte plasma membrane is the most significant event to prevent polyspermy. This particular exocytosis, also known as cortical reaction, is regulated by calcium and its molecular mechanism is still not known. Rab3A, a member of the small GTP-binding protein superfamily, has been implicated in calcium-dependent exocytosis and is not yet clear whether Rab3A participates in cortical granules exocytosis. Here, we examine the involvement of Rab3A in the physiology of cortical granules, particularly, in their distribution during oocyte maturation and activation, and their participation in membrane fusion during cortical granule exocytosis. Immunofluorescence and Western blot analysis showed that Rab3A and cortical granules have a similar migration pattern during oocyte maturation, and that Rab3A is no longer detected after cortical granule exocytosis. These results suggested that Rab3A might be a marker of cortical granules. Overexpression of EGFP-Rab3A colocalized with cortical granules with a Pearson correlation coefficient of +0.967, indicating that Rab3A and cortical granules have almost a perfect colocalization in the egg cortical region. Using a functional assay, we demonstrated that microinjection of recombinant, prenylated and active GST-Rab3A triggered cortical granule exocytosis, indicating that Rab3A has an active role in this secretory pathway. To confirm this active role, we inhibited the function of endogenous Rab3A by microinjecting a polyclonal antibody raised against Rab3A prior to parthenogenetic activation. Our results showed that Rab3A antibody microinjection abolished cortical granule exocytosis in parthenogenetically activated oocytes. Altogether, our findings confirm that Rab3A might function as a marker of cortical granules and participates in cortical granule exocytosis in mouse eggs. - Highlights: • Rab3A has a similar migration pattern to cortical granules in mouse oocytes. • Rab3A can be a marker of

  6. Infant Positioning, Baby Gear Use, and Cranial Asymmetry.

    Science.gov (United States)

    Zachry, Anne H; Nolan, Vikki G; Hand, Sarah B; Klemm, Susan A

    2017-12-01

    Objectives This study aimed to identify predictors of cranial asymmetry. We hypothesize that among infants diagnosed with cranial asymmetry in the sampled region, there is an association between exposure to more time in baby gear and less awake time in prone and side-lying than in infants who do not present with this condition. Methods The study employed a cross sectional survey of caregivers of typically developing infants and infants diagnosed with cranial asymmetry. Results A mutivariable model reveals that caregivers of children who are diagnosed with cranial asymmetry report their children spending significantly less time in prone play than those children without a diagnosis of cranial asymmetry. Side-lying and time spent in baby gear did not attain statistical significance. Conclusions for Practice Occupational therapists, physical therapists, pediatricians, nurses and other health care professionals must provide parents with early education about the importance of varying positions and prone play in infancy and address fears and concerns that may serve as barriers to providing prone playtime.

  7. Information Asymmetry in Federations

    Directory of Open Access Journals (Sweden)

    Alexander Mikhailovich Libman

    2014-12-01

    Full Text Available The paper investigates the problems of information transmission between levels of government in a federal state. The central government in a federation typically faces serious difficulties while collecting information on economic and political situation in the regions. There are two types of problems: lack of incentives for the regions to accurately collect information and strategic manipulation of information, which are discussed in the paper along with possible solutions. In particular, overcoming information asymmetry would require the development of national parties or informal coalitions of bureaucrats and politicians of the center and of the regions, creating incentives for regional politicians to back the successful functioning of the federal level. Furthermore, the paper discusses the issue of «informal decentralization», which emerges as a result of information asymmetry, and its consequences for the functioning of a federal state, including both advantages and disadvantages. We conclude that under information asymmetry the organization of the federation will inevitably turn into an issue of permanent negotiations and bargaining between the center and the regions, which functions as the information acquisition tool for optimal allocation of authorities in a federation

  8. Cortical Visual Impairment

    Science.gov (United States)

    ... resolves by one year of life. Is “cortical blindness” the same thing as CVI? Cortical blindness is ... What visual characteristics are associated with CVI? • Distinct color preferences • Variable level of vision loss, often demonstrating ...

  9. Birth order and fluctuating asymmetry: a first look.

    Science.gov (United States)

    Lalumière, M L; Harris, G T; Rice, M E

    1999-01-01

    We investigated the hypothesis that maternal immunoreactivity to male-specific features of the foetus can increase developmental instability. We predicted that the participants' number of older brothers would be positively related to the fluctuating asymmetry of ten bilateral morphological traits. The participants were 40 adult male psychiatric patients and 31 adult male hospital employees. Consistent with the hypothesis, the participants' number of older brothers--but not number of older sisters, younger brothers or younger sisters--was positively associated with fluctuating asymmetry. The patients had significantly larger fluctuating asymmetry scores and tended to have more older brothers than the employees, but the positive relationship between the number of older brothers and fluctuating asymmetry was observed in both groups. PMID:10643079

  10. Predictions of the poloidal asymmetries and transport frequencies in KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Bae, C., E-mail: cbae@nfri.re.kr; Lee, S. G.; Terzolo, L. [National Fusion Research Institute, Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Stacey, W. M. [Fusion Research Center, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2014-01-15

    The extended neoclassical rotation theory formulated in Miller flux surface geometry enables unprecedented neoclassical calculations of the poloidal asymmetries in density, rotation velocities, electrostatic potential along the flux surfaces, and of the inertial (Reynolds stress) and gyroviscous transport frequencies, which are strong functions of these asymmetries. This paper presents such calculations of the poloidal asymmetries and non-negligible inertial and gyroviscous transport frequencies in two KSTAR (Korea Superconducting Tokamak Advanced Research) [Kwon et al., Nucl. Fusion 51, 094006 (2011)] Neutral Beam Injection H-mode discharges. The in-out asymmetries in the velocities are an order of magnitude larger than their up-down asymmetries. The magnitudes of the predicted inertial and gyroviscous transport frequencies depend on the magnitudes of the density and velocity asymmetries. The neoclassically predicted density asymmetries are shown to correspond with the reported measurements in tokamaks and the predicted carbon toroidal velocities agree very well with the measurements in KSTAR.

  11. Leptogenesis and gravity: Baryon asymmetry without decays

    Directory of Open Access Journals (Sweden)

    J.I. McDonald

    2017-03-01

    Full Text Available A popular class of theories attributes the matter-antimatter asymmetry of the Universe to CP-violating decays of super-heavy BSM particles in the Early Universe. Recently, we discovered a new source of leptogenesis in these models, namely that the same Yukawa phases which provide the CP violation for decays, combined with curved-spacetime loop effects, lead to an entirely new gravitational mechanism for generating an asymmetry, driven by the expansion of the Universe and independent of the departure of the heavy particles from equilibrium. In this Letter, we build on previous work by analysing the full Boltzmann equation, exploring the full parameter space of the theory and studying the time-evolution of the asymmetry. Remarkably, we find regions of parameter space where decays play no part at all, and where the baryon asymmetry of the Universe is determined solely by gravitational effects.

  12. Abnormality of cerebral cortical glucose metabolism in temporal lobe epilepsy with cognitive function impairment

    International Nuclear Information System (INIS)

    Bang-Hung Yang; Tsung-Szu Yeh; Tung-Ping Su; Jyh-Cheng Chen; Ren-Shyan Liu

    2004-01-01

    Objective: People with epilepsy commonly report having problems with their memory. Many indicate that memory difficulties significantly hinder their functioning at work, in school, and at home. Besides, some studies have reported that memory performance as a prognostic factor is of most value in patients with risk of refractory epilepsy and when used in a multidisciplinary setting. However, the cerebral cortical areas involving memory impairment in epilepsy is still unknown. The purpose of this study was to access changes of cerebral glucose metabolism of epilepsy patients using [F-18] fluorodeoxyglucose positron emission tomography (FDG PET). Method: Nine temporal lobe epilepsy patients were studied. Each patient was confirmed with lesions in right mesial temporal lobe by MRI, PET and EEG. Serial cognition function tests were performed. Regional cerebral glucose metabolism (rCMRglc) was measured by PET at 45 minutes after injection of 370 MBq of FDG. Parametric images were generated by grand mean scaling each scan to 50. The images were then transformed into standard stereotactic space. Statistical parametric mapping (SPM2) was applied to find the correlations between verbal memory, figure memory, perception intelligent quotation (PIQ) and rCMRglc in epilepsy patients. The changes of rCMRglc were significant if corrected p value was less than 0.05. Results: There was no significant relationship between figure memory score and verbal memory score. FDG-PET scan showed changes of rCMRglc positive related with verbal memory score in precentral gyms of right frontal lobe (Brodmann area 4, corrected p < 0.001, voxel size 240) and cingulated gyms of right limbic lobe (Brodmann area 32, corrected p=0.002, voxel size 143). No negative relationship was demonstrable between verbal memory and rCMRglc in this study. Besides, significanfiy positive correlation between figure memory was shown in cuneus of right occipital lobe (Brodmann area 18, corrected p < 0.001, voxel size

  13. [Asymmetry of antennal grooming in the cockroach (Periplaneta americana)].

    Science.gov (United States)

    2014-07-01

    The present study was conducted to determine the key features of antennal grooming of male American cockroaches in neutral circumstances. It was shown for the first time that the right antenna was cleaned significantly more often than the left one, which indicates the presence of functional asymmetry of antennal grooming in this insect species. At the same time, no statistically significant asymmetry was found for grooming of antennal bases and legs. Morphological asymmetries of antennae and legs and/or brain lateralization are the plausible sources of observed behavioral asymmetry in antennal grooming.

  14. Kinetic asymmetries between forward and drop jump landing tasks

    Directory of Open Access Journals (Sweden)

    Morgana Alves de Britto

    2015-12-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2015v17n6p661   Landing asymmetry is a risk factor for knee anterior cruciate ligament injury. The aim of this study was to identify kinetic asymmetries in healthy recreational athletes performing different jump-landing techniques. Twelve recreational athletes engaged in regular training underwent kinetic evaluation using two 3D force plates and were analyzed for: (a three-dimensional peak forces, (b time to peak vertical force, and (c initial phase asymmetries. All data were collected during performance of unilateral and bilateral trials of forward and drop jump tasks. Forward jump-landing tasks elicited greater kinetic asymmetry than drop-landing tasks. Regardless of jump-landing technique, the preferred leg experienced higher forces than the non-preferred leg. The initial landing phase showed more kinetic asymmetries than the later phase when peak vertical forces occur. It was concluded that when screening athletes for kinetic asymmetries that may predispose them to injury, forward jump-landing tasks and the early landing phase might show more kinetic asymmetries than drop jump-landing tasks and the late landing phase, respectively.

  15. Unilateral condylar hyperplasia: a 3-dimensional quantification of asymmetry.

    Directory of Open Access Journals (Sweden)

    Tim J Verhoeven

    Full Text Available PURPOSE: Objective quantifications of facial asymmetry in patients with Unilateral Condylar Hyperplasia (UCH have not yet been described in literature. The aim of this study was to objectively quantify soft-tissue asymmetry in patients with UCH and to compare the findings with a control group using a new method. MATERIAL AND METHODS: Thirty 3D photographs of patients diagnosed with UCH were compared with 30 3D photographs of healthy controls. As UCH presents particularly in the mandible, a new method was used to isolate the lower part of the face to evaluate asymmetry of this part separately. The new method was validated by two observers using 3D photographs of five patients and five controls. RESULTS: A significant difference (0.79 mm between patients and controls whole face asymmetry was found. Intra- and inter-observer differences of 0.011 mm (-0.034-0.011 and 0.017 mm (-0.007-0.042 respectively were found. These differences are irrelevant in clinical practice. CONCLUSION: After objective quantification, a significant difference was identified in soft-tissue asymmetry between patients with UCH and controls. The method used to isolate mandibular asymmetry was found to be valid and a suitable tool to evaluate facial asymmetry.

  16. Measurement of Z0 lepton coupling asymmetries

    International Nuclear Information System (INIS)

    Smy, M.B.

    1997-07-01

    Polarized Z 0 's from e + e - collisions at the SLAC Linear Collider (SLC) have been used to determine the asymmetry parameters A e , A μ and A τ from the leptonic decay channels. This is the first direct measurement of A μ . The data have been gathered by the SLC Large Detector (SLD) with the electron polarization averaging 63% during the 1993 data taking period and 77% in 1994-95. A maximum likelihood procedure as well as cross section asymmetries was used to measure the asymmetry parameters from the differential cross sections for equal luminosities of left- and right-handed electron beams. The polarization-dependent muon-pair distributions give A μ = 0.102 ±0.034 and the tau-pairs give A τ = 0.195 ±0.034. The initial state electronic couplings in all three leptonic channels as well as the final state angular distribution in the e + e - final state measure A e to be A e = 0.152±0.012. Assuming lepton universality and defining a global leptonic asymmetry parameter A e-μ-τ = 0.151±0.011. This global leptonic asymmetry value translates directly into sin 2 θ W eff =0.2310±0.0014 at the Z 0 pole

  17. Measuring Asymmetry in Insect-Plant Networks

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Claudia P T [Programa de Pos-Graduacao em Fisica, Universidade Federal do Rio Grande do Norte, UFRN - Campus Universitario, Lagoa Nova, CEP 59078 972, Natal, RN (Brazil); De Almeida, Adriana M [Departamento de Botanica, Ecologia e Zoologia, Centro de Biociencias, Universidade Federal do Rio Grande do Norte, UFRN - Campus Universitario, Lagoa Nova, CEP 59078 972, Natal, RN (Brazil); Corso, Gilberto, E-mail: claudia@dfte.ufrn.br, E-mail: adrianam@ufrn.br, E-mail: corso@cb.ufrn.br [Departamento de Biofisica e Farmacologia, Centro de Biociencias, Universidade Federal do Rio Grande do Norte, UFRN - Campus Universitario, Lagoa Nova, CEP 59078 972, Natal, RN (Brazil)

    2011-03-01

    In this work we focus on interaction networks between insects and plants and in the characterization of insect plant asymmetry, an important issue in coevolution and evolutionary biology. We analyze in particular the asymmetry in the interaction matrix of animals (herbivorous insects) and plants (food resource for the insects). Instead of driving our attention to the interaction matrix itself we derive two networks associated to the bipartite network: the animal network, D{sub 1}, and the plant network, D{sub 2}. These networks are constructed according to the following recipe: two animal species are linked once if they interact with the same plant. In a similar way, in the plant network, two plants are linked if they interact with the same animal. To explore the asymmetry between D{sub 2} and D{sub 1} we test for a set of 23 networks from the ecologic literature networks: the difference in size, {Delta}L, clustering coefficient difference, {Delta}C, and mean connectivity difference, {Delta}. We used a nonparametric statistical test to check the differences in {Delta}L, {Delta}C and {Delta}. Our results indicate that {Delta}L and {Delta} show a significative asymmetry.

  18. Age and Practice Effects on Inter-manual Performance Asymmetry

    Directory of Open Access Journals (Sweden)

    Karen L Francis

    2015-01-01

    Full Text Available Manual dexterity declines with increasing age however, the way in which inter-manual asymmetry responds to aging is unclear. Our purpose was to determine the effect of age and practice on inter-manual performance asymmetry in an isometric force pinch line tracing task that varied in difficulty within segments. Thirty right handed participants, 5 males and 5 females in each of three age groups, young (Y20, young-old (O70, and old-old (O80, practiced an isometric force pinch task for 10 trials with each hand on each of five consecutive days. Inter-manual performance asymmetry of the right and left hands was analyzed with a repeated measures ANOVA of asymmetry with age groups, practice, task difficulty, and hand as factors. The within-individual magnitude of asymmetry was also analyzed with a repeated measures ANOVA of manual asymmetry calculated as an asymmetry index (AI. Post hoc pair-wise comparisons were performed when significance was found. We observed no inter-manual performance asymmetry on this isometric tracing task among any of the age groups, either in the hand performance differences or in the magnitude of the asymmetry index (AI. Age and practice interacted in terms of manual performance: the Y20 and O70 group improved accuracy and task time across the five days of practice but the O80 group did not. However, practice did not differentially affect the AI for accuracy or task time for any group. Accuracy of performance of the two hands was differentially affected by practice. All age groups exhibited poorer performance and larger AIs on the most difficult segments of the task (3 and 6 and this did not change with practice.

  19. Cortical region of interest definition on SPECT brain images using X-ray CT registration

    Energy Technology Data Exchange (ETDEWEB)

    Tzourio, N.; Sutton, D. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot); Joliot, M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot INSERM, Orsay (France)); Mazoyer, B.M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot Antenne d' Information Medicale, C.H.U. Bichat, Paris (France)); Charlot, V. (Hopital Louis Mourier, Colombes (France). Service de Psychiatrie); Salamon, G. (CHU La Timone, Marseille (France). Service de Neuroradiologie)

    1992-11-01

    We present a method for brain single photon emission computed tomography (SPECT) analysis based on individual registration of anatomical (CT) and functional ([sup 133]Xe regional cerebral blood flow) images and on the definition of three-dimensional functional regions of interest. Registration of CT and SPECT is performed through adjustment of CT-defined cortex limits to the SPECT image. Regions are defined by sectioning a cortical ribbon on the CT images, copied over the SPECT images and pooled through slices to give 3D cortical regions of interest. The proposed method shows good intra- and interobserver reproducibility (regional intraclass correlation coefficient [approx equal]0.98), and good accuracy in terms of repositioning ([approx equal]3.5 mm) as compared to the SPECT image resolution (14 mm). The method should be particularly useful for analysing SPECT studies when variations in brain anatomy (normal or abnormal) must be accounted for. (orig.).

  20. Swine cortical and cancellous bone: histomorphometric and densitometric characterisation

    Directory of Open Access Journals (Sweden)

    Maria Elena Andreis

    2017-06-01

    Full Text Available Introduction: Swine bone morphology, composition and remodelling are similar to humans’, therefore they are considered good models in bone-related research. They have been used for several studies involving bone growth, bone and cartilage fractures and femoral head osteonecrosis. Nevertheless, the literature about pig normal bone features is incomplete. This work aims to fill the literature gaps on the microarchitecture and Bone Mineral Density (BMD of swine femoral diaphysis and distal epiphysis and tibial plateau and diaphysis. Materials and methods: Five hind limbs were collected from slaughtered 80-100 kg pigs. Microscopic analysis of cortical and cancellous bone from middle/distal femur and proximal/middle tibia was performed to determine basic histomorphometric parameters at different sites. Dual-energy X-Rays Absorptiometry was also employed to evaluate BMD. ANOVA and correlation between BMD, bone area (BA and cortical thickness were performed. Results and discussion: Diaphyseal cortical bone was mostly plexiform both in the tibia and the femur; primary/secondary osteons without clear organization were also found. Mean values for bone area, bone perimeter, trabecular width, number and separation and BMD at different anatomical sites were defined. No significant difference was found for these values at different anatomical sites. BMD proved to be positively correlated with cortical thickness (r=0,80; p<0,01. Despite the small sample size, these results seem homogeneous. They could therefore represent reference values for normal bone parameters in pigs. Applied anatomy and regenerative medicine, in fact, demand very precise information about bone micromorphology, composition and density to provide reliable indication in bone substitutes building. Moreover, since the interpretation of bone abnormalities is based on mastering normal bone characteristics, the definition of reference parameters is mandatory to avoid misinterpretation and

  1. Relatively lower body mass index is associated with an excess of severe truncal asymmetry in healthy adolescents: Do white adipose tissue, leptin, hypothalamus and sympathetic nervous system influence truncal growth asymmetry?

    Directory of Open Access Journals (Sweden)

    Triantafyllopoulos Georgios

    2009-06-01

    Full Text Available Abstract Background In healthy adolescents normal back shape asymmetry, here termed truncal asymmetry (TA, is evaluated by higher and lower subsets of BMI. The study was initiated after research on girls with adolescent idiopathic scoliosis (AIS showed that higher and lower BMI subsets discriminated patterns of skeletal maturation and asymmetry unexplained by existing theories of pathogenesis leading to a new interpretation which has therapeutic implications (double neuro-osseous theory. Methods 5953 adolescents age 11–17 years (boys 2939, girls 3014 were examined in a school screening program in two standard positions, standing forward bending (FB and sitting FB. The sitting FB position is thought to reveal intrinsic TA free from back humps induced by any leg-length inequality. TA was measured in both positions using a Pruijs scoliometer as angle of trunk inclinations (ATIs across the back at each of three spinal regions, thoracic, thoracolumbar and lumbar. Abnormality of ATIs was defined as being outside 2 standard deviations for each age group, gender, position and spinal region, and termed severe TA. Results In the sitting FB position after correcting for age,relatively lower BMIs are statistically associated with a greater number of severe TAs than with relatively higher BMIs in both girls (thoracolumbar region and boys (thoracolumbar and lumbar regions. The relative frequency of severe TAs is significantly higher in girls than boys for each of the right thoracic (56.76% and thoracolumbar (58.82% regions (p = 0.006, 0.006, respectively. After correcting for age, smaller BMIs are associated with more severe TAs in boys and girls. Discussion BMI is a surrogate measure for body fat and circulating leptin levels. The finding that girls with relatively lower BMI have significantly later menarche, and a significant excess of TAs, suggests a relation to energy homeostasis through the hypothalamus. The hypothesis we suggest for the pathogenesis

  2. Audiometric asymmetry and tinnitus laterality.

    Science.gov (United States)

    Tsai, Betty S; Sweetow, Robert W; Cheung, Steven W

    2012-05-01

    To identify an optimal audiometric asymmetry index for predicting tinnitus laterality. Retrospective medical record review. Data from adult tinnitus patients (80 men and 44 women) were extracted for demographic, audiometric, tinnitus laterality, and related information. The main measures were sensitivity, specificity, positive predictive value (PPV), and receiver operating characteristic (ROC) curves. Three audiometric asymmetry indices were constructed using one, two, or three frequency elements to compute the average interaural threshold difference (aITD). Tinnitus laterality predictive performance of a particular index was assessed by increasing the cutoff or minimum magnitude of the aITD from 10 to 35 dB in 5-dB steps to determine its ROC curve. Single frequency index performance was inferior to the other two (P .05). Two adjoining frequency elements with aITD ≥ 15 dB performed optimally for predicting tinnitus laterality (sensitivity = 0.59, specificity = 0.71, and PPV = 0.76). Absolute and relative magnitudes of hearing loss in the poorer ear were uncorrelated with tinnitus distress. An optimal audiometric asymmetry index to predict tinnitus laterality is one whereby 15 dB is the minimum aITD of two adjoining frequencies, inclusive of the maximal ITD. Tinnitus laterality dependency on magnitude of interaural asymmetry may inform design and interpretation of neuroimaging studies. Monaural acoustic tinnitus therapy may be an initial consideration for asymmetric hearing loss meeting the criterion of aITD ≥ 15 dB. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  3. Subcycle dynamics of Coulomb asymmetry in strong elliptical laser fields.

    Science.gov (United States)

    Li, Min; Liu, Yunquan; Liu, Hong; Ning, Qicheng; Fu, Libin; Liu, Jie; Deng, Yongkai; Wu, Chengyin; Peng, Liang-You; Peng, Liangyou; Gong, Qihuang

    2013-07-12

    We measure photoelectron angular distributions of noble gases in intense elliptically polarized laser fields, which indicate strong structure-dependent Coulomb asymmetry. Using a dedicated semiclassical model, we have disentangled the contribution of direct ionization and multiple forward scattering on Coulomb asymmetry in elliptical laser fields. Our theory quantifies the roles of the ionic potential and initial transverse momentum on Coulomb asymmetry, proving that the small lobes of asymmetry are induced by direct ionization and the strong asymmetry is induced by multiple forward scattering in the ionic potential. Both processes are distorted by the Coulomb force acting on the electrons after tunneling. Lowering the ionization potential, the relative contribution of direct ionization on Coulomb asymmetry substantially decreases and Coulomb focusing on multiple rescattering is more important. We do not observe evident initial longitudinal momentum spread at the tunnel exit according to our simulation.

  4. Neocortical synaptophysin asymmetry and behavioral lateralization in chimpanzees (Pan troglodytes)

    DEFF Research Database (Denmark)

    Sherwood, Chet C; Duka, Tetyana; Stimpson, Cheryl D

    2010-01-01

    Although behavioral lateralization is known to correlate with certain aspects of brain asymmetry in primates, there are limited data concerning hemispheric biases in the microstructure of the neocortex. In the present study, we investigated whether there is asymmetry in synaptophysin-immunoreacti......Although behavioral lateralization is known to correlate with certain aspects of brain asymmetry in primates, there are limited data concerning hemispheric biases in the microstructure of the neocortex. In the present study, we investigated whether there is asymmetry in synaptophysin...... density. In contrast, puncta densities were symmetrical in right-handed chimpanzees. These findings support the conclusion that synapse asymmetry is modulated by lateralization of skilled motor behavior in chimpanzees....

  5. Frontal sinus asymmetry: Is it an effect of cranial asymmetry? X-ray analysis of 469 normal adult human frontal sinus

    Directory of Open Access Journals (Sweden)

    Ayhan Kanat

    2015-01-01

    Full Text Available Background and Aims: There is no study in the literature that investigates an asymmetric morphological feature of the frontal sinus (FS. Materials and Methods: Four hundred and sixty-nine consecutive direct X-rays of FSs were analyzed for the asymmetry between the right and left sides. When an asymmetry in the height and contour of the FS existed, this difference was quantified. Results: Of the 469 patients, X-rays of 402 patients (85.7%, there was an asymmetry between right and left sides of the FS. Of these 235 (50.1% were dominant on the left side, whereas 167 (35.6% were dominant on the right, the sinuses of remaining 67 patients (14.3% was symmetric. Statistical Analysis: The comparisons between parameters were performed using Wilkinson signed rank test. The relationship between handedness and sinus asymmetry was also examined by two proportions test. There is statistically significant difference between the dominance of left and right FS. Conclusions: Hemispheric dominance may have some effect (s of on sinus asymmetry of the human cranium. Surgeons sometimes enter the cranium through the FS and knowledge of asymmetric FS is important to minimize surgical complications.

  6. Cortical influences drive amyotrophic lateral sclerosis.

    Science.gov (United States)

    Eisen, Andrew; Braak, Heiko; Del Tredici, Kelly; Lemon, Roger; Ludolph, Albert C; Kiernan, Matthew C

    2017-11-01

    The early motor manifestations of sporadic amyotrophic lateral sclerosis (ALS), while rarely documented, reflect failure of adaptive complex motor skills. The development of these skills correlates with progressive evolution of a direct corticomotoneuronal system that is unique to primates and markedly enhanced in humans. The failure of this system in ALS may translate into the split hand presentation, gait disturbance, split leg syndrome and bulbar symptomatology related to vocalisation and breathing, and possibly diffuse fasciculation, characteristic of ALS. Clinical neurophysiology of the brain employing transcranial magnetic stimulation has convincingly demonstrated a presymptomatic reduction or absence of short interval intracortical inhibition, accompanied by increased intracortical facilitation, indicating cortical hyperexcitability. The hallmark of the TDP-43 pathological signature of sporadic ALS is restricted to cortical areas as well as to subcortical nuclei that are under the direct control of corticofugal projections. This provides anatomical support that the origins of the TDP-43 pathology reside in the cerebral cortex itself, secondarily in corticofugal fibres and the subcortical targets with which they make monosynaptic connections. The latter feature explains the multisystem degeneration that characterises ALS. Consideration of ALS as a primary neurodegenerative disorder of the human brain may incorporate concepts of prion-like spread at synaptic terminals of corticofugal axons. Further, such a concept could explain the recognised widespread imaging abnormalities of the ALS neocortex and the accepted relationship between ALS and frontotemporal dementia. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Normal and abnormal fetal brain development during the third trimester as demonstrated by neurosonography

    International Nuclear Information System (INIS)

    Malinger, G.; Lev, D.; Lerman-Sagie, T.

    2006-01-01

    The multiplanar neurosonographic examination of the fetus enables superb visualization of brain anatomy during pregnancy. The examination may be performed using a transvaginal or a transfundal approach and it is indicated in patients at high risk for CNS anomalies or in those with a suspicious finding during a routine examination. The purpose of this paper is to present a description of the normal brain and of abnormal findings usually diagnosed late in pregnancy, including malformations of cortical development, infratentorial anomalies, and prenatal insults

  8. North-South asymmetry of interplanetary plasma and solar parameters

    International Nuclear Information System (INIS)

    El-Borie, M. A.

    2001-01-01

    Data of interplanetary plasma (field magnitude, solar wind speed, ion plasma density and temperature) and solar parameters (sunspot number, solar radio flux, and geomagnetic index) over the period 1965-1991, have been used to examine the asymmetry between the solar field north and south of the heliospheric current sheet (HCS). The dependence of N-S asymmetry of field magnitude (B) upon the interplanetary solar polarities is statistically insignificant. There is no clear indication for the presence of N-S asymmetry in the grand-average field magnitude over the solar cycles. During the period 1981-89 (qA<0; negative solar polarity state), the solar plasma was more dense and cooler south of the HCS than north of it. The solar flux component of toward field vector is larger in magnitude than those of away field vector during the qA<0 epoch, and no asymmetry observed in the qA<0 epoch. Furthermore, the sign of the N-S asymmetry in the solar activity depends positively upon the solar polarity state. In addition, it was studied the N-S asymmetry of solar parameters near the HCS, throughout the periods of northern and southern hemispheres were more active than the other. Some asymmetries (with respect to the HCS) in plasma parameters existed during the periods of southern hemisphere predominance

  9. Seizure-induced brain lesions: A wide spectrum of variably reversible MRI abnormalities

    International Nuclear Information System (INIS)

    Cianfoni, A.; Caulo, M.; Cerase, A.; Della Marca, G.; Falcone, C.; Di Lella, G.M.; Gaudino, S.; Edwards, J.; Colosimo, C.

    2013-01-01

    Introduction MRI abnormalities in the postictal period might represent the effect of the seizure activity, rather than its structural cause. Material and Methods Retrospective review of clinical and neuroimaging charts of 26 patients diagnosed with seizure-related MR-signal changes. All patients underwent brain-MRI (1.5-Tesla, standard pre- and post-contrast brain imaging, including DWI-ADC in 19/26) within 7 days from a seizure and at least one follow-up MRI, showing partial or complete reversibility of the MR-signal changes. Extensive clinical work-up and follow-up, ranging from 3 months to 5 years, ruled out infection or other possible causes of brain damage. Seizure-induced brain-MRI abnormalities remained a diagnosis of exclusion. Site, characteristics and reversibility of MRI changes, and association with characteristics of seizures were determined. Results MRI showed unilateral (13/26) and bilateral abnormalities, with high (24/26) and low (2/26) T2-signal, leptomeningeal contrast-enhancement (2/26), restricted diffusion (9/19). Location of abnormality was cortical/subcortical, basal ganglia, white matter, corpus callosum, cerebellum. Hippocampus was involved in 10/26 patients. Reversibility of MRI changes was complete in 15, and with residual gliosis or focal atrophy in 11 patients. Reversibility was noted between 15 and 150 days (average, 62 days). Partial simple and complex seizures were associated with hippocampal involvement (p = 0.015), status epilepticus with incomplete reversibility of MRI abnormalities (p = 0.041). Conclusions Seizure or epileptic status can induce transient, variably reversible MRI brain abnormalities. Partial seizures are frequently associated with hippocampal involvement and status epilepticus with incompletely reversible lesions. These seizure-induced MRI abnormalities pose a broad differential diagnosis; increased awareness may reduce the risk of misdiagnosis and unnecessary intervention

  10. Seizure-induced brain lesions: A wide spectrum of variably reversible MRI abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Cianfoni, A., E-mail: acianfoni@hotmail.com [Neuroradiology, Neurocenter of Italian Switzerland–Ospedale regionale Lugano, Via Tesserete 46, Lugano, 6900, CH (Switzerland); Caulo, M., E-mail: caulo@unich.it [Department of Neuroscience and Imaging, University of Chieti, Via dei Vestini 33, 6610 Chieti. Italy (Italy); Cerase, A., E-mail: alfonsocerase@gmail.com [Unit of Neuroimaging and Neurointervention NINT, Department of Neurological and Sensorineural Sciences, Azienda Ospedaliera Universitaria Senese, Policlinico “Santa Maria alle Scotte”, V.le Bracci 16, Siena (Italy); Della Marca, G., E-mail: dellamarca@rm.unicatt.it [Neurology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Falcone, C., E-mail: carlo_falc@libero.it [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Di Lella, G.M., E-mail: gdilella@rm.unicatt.it [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Gaudino, S., E-mail: sgaudino@sirm.org [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy); Edwards, J., E-mail: edwardjc@musc.edu [Neuroscience Dept., Medical University of South Carolina, 96J Lucas st, 29425, Charleston, SC (United States); Colosimo, C., E-mail: colosimo@rm.unicatt.it [Radiology Dept., Catholic University of Rome, L.go F Vito 1, 00100, Rome (Italy)

    2013-11-01

    Introduction MRI abnormalities in the postictal period might represent the effect of the seizure activity, rather than its structural cause. Material and Methods Retrospective review of clinical and neuroimaging charts of 26 patients diagnosed with seizure-related MR-signal changes. All patients underwent brain-MRI (1.5-Tesla, standard pre- and post-contrast brain imaging, including DWI-ADC in 19/26) within 7 days from a seizure and at least one follow-up MRI, showing partial or complete reversibility of the MR-signal changes. Extensive clinical work-up and follow-up, ranging from 3 months to 5 years, ruled out infection or other possible causes of brain damage. Seizure-induced brain-MRI abnormalities remained a diagnosis of exclusion. Site, characteristics and reversibility of MRI changes, and association with characteristics of seizures were determined. Results MRI showed unilateral (13/26) and bilateral abnormalities, with high (24/26) and low (2/26) T2-signal, leptomeningeal contrast-enhancement (2/26), restricted diffusion (9/19). Location of abnormality was cortical/subcortical, basal ganglia, white matter, corpus callosum, cerebellum. Hippocampus was involved in 10/26 patients. Reversibility of MRI changes was complete in 15, and with residual gliosis or focal atrophy in 11 patients. Reversibility was noted between 15 and 150 days (average, 62 days). Partial simple and complex seizures were associated with hippocampal involvement (p = 0.015), status epilepticus with incomplete reversibility of MRI abnormalities (p = 0.041). Conclusions Seizure or epileptic status can induce transient, variably reversible MRI brain abnormalities. Partial seizures are frequently associated with hippocampal involvement and status epilepticus with incompletely reversible lesions. These seizure-induced MRI abnormalities pose a broad differential diagnosis; increased awareness may reduce the risk of misdiagnosis and unnecessary intervention.

  11. Do Board Characteristics Affect Information Asymmetry?

    OpenAIRE

    Sougné, Danielle; Laouti, Mhamed; Ajina, Aymen

    2013-01-01

    In this paper, we investigate the empirical relationship between corporate governance and information asymmetry across a range of French firms. Based on a cross-sectional analysis, our study of the empirical relationship between corporate governance and information asymmetry involved 160 companies over the years 2008-2010. Mechanisms of corporate governance include the characteristics of the board of directors. Our results seem to indicate a significant relationship between certain mechani...

  12. Photon asymmetry from radiative muon capture on 40Ca

    International Nuclear Information System (INIS)

    Larabee, A.J.; Burnham, R.A.; Gorringe, T.P.; Hasinoff, M.D.; Horvath, D.; Noble, A.J.; Pouladdej, A.; Virtue, C.J.; Azuelos, G.; Robertson, B.C.; Wright, D.H.

    1989-01-01

    The photon asymmetry (α γ) for 40 Ca has been measured at TRIUMF using the muon spin-rotation technique. From the asymmetry measurement, the value of the pseudoscalar coupling constant, g p , can be obtained. A total of 5500 clean photon events were collected. The preliminary value found for the photon asymmetry of 40 Ca is 1.00 ± 0.23

  13. Temporal lobe developmental malformations and epilepsy: dual pathology and bilateral hippocampal abnormalities.

    Science.gov (United States)

    Ho, S S; Kuzniecky, R I; Gilliam, F; Faught, E; Morawetz, R

    1998-03-01

    Temporal lobe developmental malformations (TLDM) with focal cortical dysplasia and balloon cells may coexist with mesial temporal sclerosis. The true incidence of this dual pathology is unknown. Our aim was to assess the frequency of amygdala (AM)-hippocampal abnormality in a homogeneous population with this specific developmental malformation. MRI-based volumetry of the AM and hippocampal formation (HF) in 30 patients with unilateral TLDM and intractable partial epilepsy was performed. A volume normalization process defined a normal range of HF and AM volumes in control subjects, and enabled the detection of bilateral volume loss. Normalized volumes detected HF atrophy in 26 patients (nine unilateral and 17 bilateral) and AM atrophy in 18 patients (three unilateral and 15 bilateral). Visual analysis detected unilateral HF abnormality in 21 patients and bilateral abnormality in two. When compared with a group of patients with temporal lobe epilepsy and pure hippocampal sclerosis (N = 92), where volumetry revealed bilateral HF atrophy in 18%, a significant difference in the frequency of bilateral HF atrophy was found (p Dual pathology is frequent in patients with TLDM (87%), and the AM-HF abnormality is often bilateral (57%). Our data suggest that more widespread and potentially epileptogenic lesions coexist with visibly detectable unilateral TLDM. This has implications for the selection of patients for temporal lobe surgery and may influence surgical strategies.

  14. Study on parallel-channel asymmetry in supercritical flow instability experiment

    International Nuclear Information System (INIS)

    Xiong Ting; Yu Junchong; Yan Xiao; Huang Yanping; Xiao Zejun; Huang Shanfang

    2013-01-01

    Due to the urgent need for experimental study on supercritical water flow instability, the parallel-channel asymmetry which determines the feasibility of such experiments was studied with the experimental and numerical results in parallel dual channel. The evolution of flow rates in the experiments was analyzed, and the steady-state characteristics as well as transient characteristics of the system were obtained by self-developed numerical code. The results show that the asymmetry of the parallel dual channel would reduce the feasibility of experiments. The asymmetry of flow rates is aroused by geometrical asymmetry. Due to the property variation characteristics of supercritical water, the flow rate asymmetry is enlarged while rising beyond the pseudo critical point. The extent of flow rate asymmetry is affected by the bulk temperature and total flow rate; therefore the experimental feasibility can be enhanced by reducing the total flow rate. (authors)

  15. Axons Pull on the Brain, But Tension Does Not Drive Cortical Folding

    Science.gov (United States)

    Xu, Gang; Knutsen, Andrew K.; Dikranian, Krikor; Kroenke, Christopher D.; Bayly, Philip V.; Taber, Larry A.

    2011-01-01

    During human brain development, the cerebral cortex undergoes substantial folding, leading to its characteristic highly convoluted form. Folding is necessary to accommodate the expansion of the cerbral cortex; abnormal cortical folding is linked to various neurological disorders, including schizophrenia, epilepsy, autism and mental retardation. Although this process requires mechanical forces, the specific force-generating mechanisms that drive folding remain unclear. The two most widely accepted hypotheses are (1) folding is caused by differential growth of the cortex and (2) folding is caused by mechanical tension generated in axons. Direct evidence supporting either theory, however, is lacking. Here we show that axons are indeed under considerable tension in the developing ferret brain, but the patterns of tissue stress are not consistent with a causal role for axonal tension. In particular, microdissection assays reveal that significant tension exists along axons aligned circumferentially in subcortical white matter tracts, as well as those aligned radially inside developing gyri (outward folds). Contrary to previous speculation, however, axonal tension is not directed across developing gyri, suggesting that axon tension does not drive folding. On the other hand, using computational (finite element) models, we show that differential cortical growth accompanied by remodeling of the subplate leads to outward folds and stress fields that are consistent with our microdissection experiments, supporting a mechanism involving differential growth. Local perturbations, such as temporal differences in the initiation of cortical growth, can ensure consistent folding patterns. This study shows that a combination of experimental and computational mechanics can be used to evaluate competing hypotheses of morphogenesis, and illuminate the biomechanics of cortical folding. PMID:20590291

  16. Synchronous changes of cortical thickness and corresponding white matter microstructure during brain development accessed by diffusion MRI tractography from parcellated cortex

    Directory of Open Access Journals (Sweden)

    Tina eJeon

    2015-12-01

    Full Text Available Cortical thickness (CT changes during normal brain development is associated with complicated cellular and molecular processes including synaptic pruning and apoptosis. In parallel, the microstructural enhancement of developmental white matter (WM axons with their neuronal bodies in the cerebral cortex has been widely reported with measurements of metrics derived from diffusion tensor imaging (DTI, especially fractional anisotropy (FA. We hypothesized that the changes of CT and microstructural enhancement of corresponding axons are highly interacted during development. DTI and T1-weighted images of 50 healthy children and adolescents between the ages of 7 to 25 years were acquired. With the parcellated cortical gyri transformed from T1-weighted images to DTI space as the tractography seeds, probabilistic tracking was performed to delineate the WM fibers traced from specific parcellated cortical regions. CT was measured at certain cortical regions and FA was measured from the WM fibers traced from same cortical regions. The CT of all frontal cortical gyri, includeing Brodmann areas 4, 6, 8, 9, 10, 11, 44, 45, 46 and 47, decreased significantly and heterogeneously; concurrently, significant and heterogeneous increases of FA of WM traced from corresponding regions were found. We further revealed significant correlation between the slopes of the CT decrease and the slopes of corresponding WM FA increase in all frontal cortical gyri, suggesting coherent cortical pruning and corresponding WM microstructural enhancement. Such correlation was not found in cortical regions other than frontal cortex. The molecular and cellular mechanisms of these synchronous changes may be associated with overlapping signaling pathways of axonal guidance, synaptic pruning, neuronal apoptosis and more prevalent interstitial neurons in the prefrontal cortex. Revealing the coherence of cortical and WM structural changes during development may open a new window for

  17. Frontal EEG asymmetry as a moderator and mediator of emotion.

    Science.gov (United States)

    Coan, James A; Allen, John J B

    2004-10-01

    Frontal EEG asymmetry appears to serve as (1) an individual difference variable related to emotional responding and emotional disorders, and (2) a state-dependent concomitant of emotional responding. Such findings, highlighted in this review, suggest that frontal EEG asymmetry may serve as both a moderator and a mediator of emotion- and motivation-related constructs. Unequivocal evidence supporting frontal EEG asymmetry as a moderator and/or mediator of emotion is lacking, as insufficient attention has been given to analyzing the frontal EEG asymmetries in terms of moderators and mediators. The present report reviews the frontal EEG asymmetry literature from the framework of moderators and mediators, and overviews data analytic strategies that would support claims of moderation and mediation.

  18. Normal and abnormal neuronal migration in the developing cerebral cortex.

    Science.gov (United States)

    Sun, Xue-Zhi; Takahashi, Sentaro; Cui, Chun; Zhang, Rui; Sakata-Haga, Hiromi; Sawada, Kazuhiko; Fukui, Yoshihiro

    2002-08-01

    Neuronal migration is the critical cellular process which initiates histogenesis of cerebral cortex. Migration involves a series of complex cell interactions and transformation. After completing their final mitosis, neurons migrate from the ventricular zone into the cortical plate, and then establish neuronal lamina and settle onto the outermost layer, forming an "inside-out" gradient of maturation. This process is guided by radial glial fibers, requires proper receptors, ligands, other unknown extracellular factors, and local signaling to stop neuronal migration. This process is also highly sensitive to various physical, chemical and biological agents as well as to genetic mutations. Any disturbance of the normal process may result in neuronal migration disorder. Such neuronal migration disorder is believed as major cause of both gross brain malformation and more special cerebral structural and functional abnormalities in experimental animals and in humans. An increasing number of instructive studies on experimental models and several genetic model systems of neuronal migration disorder have established the foundation of cortex formation and provided deeper insights into the genetic and molecular mechanisms underlying normal and abnormal neuronal migration.

  19. The cortical signature of amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Federica Agosta

    Full Text Available The aim of this study was to explore the pattern of regional cortical thickness in patients with non-familial amyotrophic lateral sclerosis (ALS and to investigate whether cortical thinning is associated with disease progression rate. Cortical thickness analysis was performed in 44 ALS patients and 26 healthy controls. Group differences in cortical thickness and the age-by-group effects were assessed using vertex-by-vertex and multivariate linear models. The discriminatory ability of MRI variables in distinguishing patients from controls was estimated using the Concordance Statistics (C-statistic within logistic regression analyses. Correlations between cortical thickness measures and disease progression rate were tested using the Pearson coefficient. Relative to controls, ALS patients showed a bilateral cortical thinning of the primary motor, prefrontal and ventral frontal cortices, cingulate gyrus, insula, superior and inferior temporal and parietal regions, and medial and lateral occipital areas. There was a significant age-by-group effect in the sensorimotor cortices bilaterally, suggesting a stronger association between age and cortical thinning in ALS patients compared to controls. The mean cortical thickness of the sensorimotor cortices distinguished patients with ALS from controls (C-statistic ≥ 0.74. Cortical thinning of the left sensorimotor cortices was related to a faster clinical progression (r = -0.33, p = 0.03. Cortical thickness measurements allowed the detection and quantification of motor and extramotor involvement in patients with ALS. Cortical thinning of the precentral gyrus might offer a marker of upper motor neuron involvement and disease progression.

  20. The cortical signature of amyotrophic lateral sclerosis.

    Science.gov (United States)

    Agosta, Federica; Valsasina, Paola; Riva, Nilo; Copetti, Massimiliano; Messina, Maria Josè; Prelle, Alessandro; Comi, Giancarlo; Filippi, Massimo

    2012-01-01

    The aim of this study was to explore the pattern of regional cortical thickness in patients with non-familial amyotrophic lateral sclerosis (ALS) and to investigate whether cortical thinning is associated with disease progression rate. Cortical thickness analysis was performed in 44 ALS patients and 26 healthy controls. Group differences in cortical thickness and the age-by-group effects were assessed using vertex-by-vertex and multivariate linear models. The discriminatory ability of MRI variables in distinguishing patients from controls was estimated using the Concordance Statistics (C-statistic) within logistic regression analyses. Correlations between cortical thickness measures and disease progression rate were tested using the Pearson coefficient. Relative to controls, ALS patients showed a bilateral cortical thinning of the primary motor, prefrontal and ventral frontal cortices, cingulate gyrus, insula, superior and inferior temporal and parietal regions, and medial and lateral occipital areas. There was a significant age-by-group effect in the sensorimotor cortices bilaterally, suggesting a stronger association between age and cortical thinning in ALS patients compared to controls. The mean cortical thickness of the sensorimotor cortices distinguished patients with ALS from controls (C-statistic ≥ 0.74). Cortical thinning of the left sensorimotor cortices was related to a faster clinical progression (r = -0.33, p = 0.03). Cortical thickness measurements allowed the detection and quantification of motor and extramotor involvement in patients with ALS. Cortical thinning of the precentral gyrus might offer a marker of upper motor neuron involvement and disease progression.

  1. Swedish Massage and Abnormal Reflexes of Children with Spastic Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Vida Alizad

    2007-09-01

    Full Text Available Objectives: Massage therapy is one of the most widely used complementary and alternative medicine therapies for children. This study was conducted to determine the effect of wedish massage on abnormal reflexes in children with spastic cerebral palsy (CP. Methods: This study was a single blind clinical trial conducted on forty children with spastic CP who were recruited from clinics of the University of Social Welfare & Rehabilitation Sciences. They were randomly assigned to intervention and control groups. The routine occupational therapy (OT techniques were performed during a 3 month-period in both groups. The intervention group also received Swedish massage for 30 minutes before every OT session. Primary, spinal, brain stem, midbrain, cortical and automatic reflexes were evaluated at the beginning of the study and 3 months later. The data analysis was done by parametric and nonparametric tests. Results: Finally, thirteen subjects in the intervention group and 14 subjects in the control group were remained and studied. The average ages in the intervention and control groups were 49.5 and 42.1 months respectively. There were no statistically significant differences in abnormal reflexes in the intervention group in comparison to the control (P>0.05. Discussion: Adding Swedish massage to traditional OT techniques had no significant effects on abnormal reflexes in children with spastic cerebral palsy. Evidently more research is required in order to completely reject the effects of Swedish massage on abnormal reflexes of children with CP.

  2. Dysregulated Expression of Neuregulin-1 by Cortical Pyramidal Neurons Disrupts Synaptic Plasticity

    Directory of Open Access Journals (Sweden)

    Amit Agarwal

    2014-08-01

    Full Text Available Neuregulin-1 (NRG1 gene variants are associated with increased genetic risk for schizophrenia. It is unclear whether risk haplotypes cause elevated or decreased expression of NRG1 in the brains of schizophrenia patients, given that both findings have been reported from autopsy studies. To study NRG1 functions in vivo, we generated mouse mutants with reduced and elevated NRG1 levels and analyzed the impact on cortical functions. Loss of NRG1 from cortical projection neurons resulted in increased inhibitory neurotransmission, reduced synaptic plasticity, and hypoactivity. Neuronal overexpression of cysteine-rich domain (CRD-NRG1, the major brain isoform, caused unbalanced excitatory-inhibitory neurotransmission, reduced synaptic plasticity, abnormal spine growth, altered steady-state levels of synaptic plasticity-related proteins, and impaired sensorimotor gating. We conclude that an “optimal” level of NRG1 signaling balances excitatory and inhibitory neurotransmission in the cortex. Our data provide a potential pathomechanism for impaired synaptic plasticity and suggest that human NRG1 risk haplotypes exert a gain-of-function effect.

  3. Dysregulated expression of neuregulin-1 by cortical pyramidal neurons disrupts synaptic plasticity.

    Science.gov (United States)

    Agarwal, Amit; Zhang, Mingyue; Trembak-Duff, Irina; Unterbarnscheidt, Tilmann; Radyushkin, Konstantin; Dibaj, Payam; Martins de Souza, Daniel; Boretius, Susann; Brzózka, Magdalena M; Steffens, Heinz; Berning, Sebastian; Teng, Zenghui; Gummert, Maike N; Tantra, Martesa; Guest, Peter C; Willig, Katrin I; Frahm, Jens; Hell, Stefan W; Bahn, Sabine; Rossner, Moritz J; Nave, Klaus-Armin; Ehrenreich, Hannelore; Zhang, Weiqi; Schwab, Markus H

    2014-08-21

    Neuregulin-1 (NRG1) gene variants are associated with increased genetic risk for schizophrenia. It is unclear whether risk haplotypes cause elevated or decreased expression of NRG1 in the brains of schizophrenia patients, given that both findings have been reported from autopsy studies. To study NRG1 functions in vivo, we generated mouse mutants with reduced and elevated NRG1 levels and analyzed the impact on cortical functions. Loss of NRG1 from cortical projection neurons resulted in increased inhibitory neurotransmission, reduced synaptic plasticity, and hypoactivity. Neuronal overexpression of cysteine-rich domain (CRD)-NRG1, the major brain isoform, caused unbalanced excitatory-inhibitory neurotransmission, reduced synaptic plasticity, abnormal spine growth, altered steady-state levels of synaptic plasticity-related proteins, and impaired sensorimotor gating. We conclude that an "optimal" level of NRG1 signaling balances excitatory and inhibitory neurotransmission in the cortex. Our data provide a potential pathomechanism for impaired synaptic plasticity and suggest that human NRG1 risk haplotypes exert a gain-of-function effect. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Cortical bone metastases

    International Nuclear Information System (INIS)

    Davis, T.M. Jr.; Rogers, L.F.; Hendrix, R.W.

    1986-01-01

    Twenty-five cases of bone metastases involving the cortex alone are reviewed. Seven patients had primary lung carcinoma, while 18 had primary tumors not previously reported to produce cortical bone metastases (tumors of the breast, kidney, pancreas, adenocarcinoma of unknown origin, multiple myeloma). Radiographically, these cortical lesions were well circumscribed, osteolytic, and produced soft-tissue swelling and occasional periosteal reaction. A recurrent pattern of metadiaphyseal involvement of the long bones of the lower extremity (particularly the femur) was noted, and is discussed. Findings reported in the literature, review, pathophysiology, and the role of skeletal radiographs, bone scans, and CT scans in evaluating cortical bone metastases are addressed

  5. Morphostructural MRI Abnormalities Related to Neuropsychiatric Disorders Associated to Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Simona Bonavita

    2013-01-01

    Full Text Available Multiple Sclerosis associated neuropsychiatric disorders include major depression (MD, obsessive-compulsive disorder (OCD, bipolar affective disorder, euphoria, pseudobulbar affect, psychosis, and personality change. Magnetic Resonance Imaging (MRI studies focused mainly on identifying morphostructural correlates of MD; only a few anecdotal cases on OCD associated to MS (OCD-MS, euphoria, pseudobulbar affect, psychosis, personality change, and one research article on MRI abnormalities in OCD-MS have been published. Therefore, in the present review we will report mainly on neuroimaging abnormalities found in MS patients with MD and OCD. All together, the studies on MD associated to MS suggest that, in this disease, depression is linked to a damage involving mainly frontotemporal regions either with discrete lesions (with those visible in T1 weighted images playing a more significant role or subtle normal appearing white matter abnormalities. Hippocampal atrophy, as well, seems to be involved in MS related depression. It is conceivable that grey matter pathology (i.e., global and regional atrophy, cortical lesions, which occurs early in the course of disease, may involve several areas including the dorsolateral prefrontal cortex, the orbitofrontal cortex, and the anterior cingulate cortex whose disruption is currently thought to explain late-life depression. Further MRI studies are necessary to better elucidate OCD pathogenesis in MS.

  6. Abnormal functional architecture of amygdala-centered networks in adolescent posttraumatic stress disorder.

    Science.gov (United States)

    Aghajani, Moji; Veer, Ilya M; van Hoof, Marie-José; Rombouts, Serge A R B; van der Wee, Nic J; Vermeiren, Robert R J M

    2016-03-01

    Posttraumatic stress disorder (PTSD) is a prevalent, debilitating, and difficult to treat psychiatric disorder. Very little is known of how PTSD affects neuroplasticity in the developing adolescent brain. Whereas multiple lines of research implicate amygdala-centered network dysfunction in the pathophysiology of adult PTSD, no study has yet examined the functional architecture of amygdala subregional networks in adolescent PTSD. Using intrinsic functional connectivity analysis, we investigated functional connectivity of the basolateral (BLA) and centromedial (CMA) amygdala in 19 sexually abused adolescents with PTSD relative to 23 matched controls. Additionally, we examined whether altered amygdala subregional connectivity coincides with abnormal grey matter volume of the amygdaloid complex. Our analysis revealed abnormal amygdalar connectivity and morphology in adolescent PTSD patients. More specifically, PTSD patients showed diminished right BLA connectivity with a cluster including dorsal and ventral portions of the anterior cingulate and medial prefrontal cortices (p < 0.05, corrected). In contrast, PTSD patients showed increased left CMA connectivity with a cluster including the orbitofrontal and subcallosal cortices (p < 0.05, corrected). Critically, these connectivity changes coincided with diminished grey matter volume within BLA and CMA subnuclei (p < 0.05, corrected), with CMA connectivity shifts additionally relating to more severe symptoms of PTSD. These findings provide unique insights into how perturbations in major amygdalar circuits could hamper fear regulation and drive excessive acquisition and expression of fear in PTSD. As such, they represent an important step toward characterizing the neurocircuitry of adolescent PTSD, thereby informing the development of reliable biomarkers and potential therapeutic targets. © 2016 Wiley Periodicals, Inc.

  7. Mercury exposure may influence fluctuating asymmetry in waterbirds.

    Science.gov (United States)

    Herring, Garth; Eagles-Smith, Collin A; Ackerman, Joshua T

    2017-06-01

    Variation in avian bilateral symmetry can be an indicator of developmental instability in response to a variety of stressors, including environmental contaminants. The authors used composite measures of fluctuating asymmetry to examine the influence of mercury concentrations in 2 tissues on fluctuating asymmetry within 4 waterbird species. Fluctuating asymmetry increased with mercury concentrations in whole blood and breast feathers of Forster's terns (Sterna forsteri), a species with elevated mercury concentrations. Specifically, fluctuating asymmetry in rectrix feather 1 was the most strongly correlated structural variable of those tested (wing chord, tarsus, primary feather 10, rectrix feather 6) with mercury concentrations in Forster's terns. However, for American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), and Caspian terns (Hydroprogne caspia), the authors found no relationship between fluctuating asymmetry and either whole-blood or breast feather mercury concentrations, even though these species had moderate to elevated mercury exposure. The results indicate that mercury contamination may act as an environmental stressor during development and feather growth and contribute to fluctuating asymmetry of some species of highly contaminated waterbirds. Environ Toxicol Chem 2017;36:1599-1605. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

  8. Sparse coding can predict primary visual cortex receptive field changes induced by abnormal visual input.

    Science.gov (United States)

    Hunt, Jonathan J; Dayan, Peter; Goodhill, Geoffrey J

    2013-01-01

    Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields.

  9. Different early rearing experiences have long-term effects on cortical organization in captive chimpanzees (Pan troglodytes)

    DEFF Research Database (Denmark)

    Bogart, Stephanie L; Bennett, Allyson J; Schapiro, Steve

    2014-01-01

    -reared chimpanzees have greater global white-to-grey matter volume, more cortical folding and thinner grey matter within the cortical folds than nursery-reared animals. The findings reported here are the first to demonstrate that differences in early rearing conditions have significant consequences on brain......Consequences of rearing history in chimpanzees (Pan troglodytes) have been explored in relation to behavioral abnormalities and cognition; however, little is known about the effects of rearing conditions on anatomical brain development. Human studies have revealed that experiences of maltreatment...... and neglect during infancy and childhood can have detrimental effects on brain development and cognition. In this study, we evaluated the effects of early rearing experience on brain morphology in 92 captive chimpanzees (ages 11-43) who were either reared by their mothers (n = 46) or in a nursery (n = 46...

  10. Prediction of Gap Asymmetry in Differential Micro Accelerometers

    Directory of Open Access Journals (Sweden)

    Xiaoping He

    2012-05-01

    Full Text Available Gap asymmetry in differential capacitors is the primary source of the zero bias output of force-balanced micro accelerometers. It is also used to evaluate the applicability of differential structures in MEMS manufacturing. Therefore, determining the asymmetry level has considerable significance for the design of MEMS devices. This paper proposes an experimental-theoretical method for predicting gap asymmetry in differential sensing capacitors of micro accelerometers. The method involves three processes: first, bi-directional measurement, which can sharply reduce the influence of the feedback circuit on bias output, is proposed. Experiments are then carried out on a centrifuge to obtain the input and output data of an accelerometer. Second, the analytical input-output relationship of the accelerometer with gap asymmetry and circuit error is theoretically derived. Finally, the prediction methodology combines the measurement results and analytical derivation to identify the asymmetric error of 30 accelerometers fabricated by DRIE. Results indicate that the level of asymmetry induced by fabrication uncertainty is about ±5 × 10−2, and that the absolute error is about ±0.2 µm under a 4 µm gap.

  11. Frontal Brain Asymmetry and Willingness to Pay.

    Science.gov (United States)

    Ramsøy, Thomas Z; Skov, Martin; Christensen, Maiken K; Stahlhut, Carsten

    2018-01-01

    Consumers frequently make decisions about how much they are willing to pay (WTP) for specific products and services, but little is known about the neural mechanisms underlying such calculations. In this study, we were interested in testing whether specific brain activation-the asymmetry in engagement of the prefrontal cortex-would be related to consumer choice. Subjects saw products and subsequently decided how much they were willing to pay for each product, while undergoing neuroimaging using electroencephalography. Our results demonstrate that prefrontal asymmetry in the gamma frequency band, and a trend in the beta frequency band that was recorded during product viewing was significantly related to subsequent WTP responses. Frontal asymmetry in the alpha band was not related to WTP decisions. Besides suggesting separate neuropsychological mechanisms of consumer choice, we find that one specific measure-the prefrontal gamma asymmetry-was most strongly related to WTP responses, and was most coupled to the actual decision phase. These findings are discussed in light of the psychology of WTP calculations, and in relation to the recent emergence of consumer neuroscience and neuromarketing.

  12. Hemispheric and facial asymmetry: faces of academe.

    Science.gov (United States)

    Smith, W M

    1998-11-01

    Facial asymmetry (facedness) of selected academic faculty members was studied in relation to brain asymmetry and cognitive specialization. Comparisons of facedness were made among humanities faculty (H), faculty members of mathematics and physics (M-P), psychologists (P), and a group of randomly selected individuals (R). Facedness was defined in terms of the relative sizes (in square centimeters) of the two hemifaces. It was predicted that the four groups would show differences in facedness, namely, H, right face bias; M-P, left face bias; P, no bias; and R, no bias. The predictions were confirmed, and the results interpreted in terms of known differences in hemispheric specialization of cognitive functions as they relate to the dominant cognitive activity of each of the different groups. In view of the contralateral control of the two hemifaces (below the eyes) by the two hemispheres of the brain, the two sides of the face undergo differential muscular development, thus creating facial asymmetry. Other factors, such as gender, also may affect facial asymmetry. Suggestions for further research on facedness are discussed.

  13. REVERSIBLE CORTICAL BLINDNESS FOLLOWING SUCCESSFUL SURGICAL REPAIR OF TWO STAB WOUNDS IN THE HEART

    Directory of Open Access Journals (Sweden)

    Zaiton A

    2008-01-01

    Full Text Available This report describes a case of cortical blindness that followed successful surgical repair of two stab wounds in the heart in a 29-year old Libyan man. The patient presented in a state of pre cardiac arrest (shock and low cardiac output status, following multiple chest stab wounds. Chest tube was immediately inserted. Surgery was urgently performed suturing the two wounds; in the root of the aorta and in the left ventricle, and haemostasis was secured. Cardiac arrest was successfully prevented. The patient recovered smoothly, but 24 hours later he declared total blindness. Ophtalmic and neurological examinations and investigations that included fundoscopy, Electroencephalograms (EEGs and Computed Tomography Scans revealed no abnormalities, apart from absence of alpha waves in the EEGs. We diagnosed the case as cortical blindness and continued caring for the patient conservatively. Three days later, the patient regained his vision gradually and was discharged on the 7th postoperative day without any remarks.

  14. STUDY OF FACIAL ASYMMETRY IN PATIENTS WITH DENTOMAXILLARY ANOMALIES

    Directory of Open Access Journals (Sweden)

    Daniela Anistoroaei

    2011-09-01

    Full Text Available The study aimed at establishing the prevalence index of facial asymmetry by extraoral clinical examination of orthodontic patients. The group of study included 384 subjects, selected from the patients who required a specialized orthodontic treatment. Facial asymmetry was evaluated by the parallelism of the horizontal planes and deviation of the menton and nasal pyramid. The age, sex and ecological environment from which one came, the type of dentition and of dento-maxillary anomaly were registered for each patient in part. In the experimental group, facial asymmetry was present in 4.7% of patients, menton deviation in 5.7%, and nasal pyramid deviation - in 3.4%. Significant associations were established between facial asymmetry and the type of dento-maxillary anomaly, classes of age and type of dentition. The results obtained indicate that the prevalence of facial asymmetries in orthodontic patients is especially important for the clinician, as the deviations should be established prior to the initiation of any orthodontic – possibly surgical - treatment.

  15. Asymmetries in heavy meson production from light quark fragmentation

    International Nuclear Information System (INIS)

    Dias de Deus, J.; Duraes, F.

    2000-01-01

    We discuss the possibility of the asymmetry in D - /D + production from π - beams, being a direct consequence of the properties of the light quark fragmentation function into heavy mesons. The main features of the asymmetry, as a function of x F , are easily described. An integrated sum rule for the D - , D + multiplicity difference is presented. Predictions for the asymmetry in B meson production are given. (orig.)

  16. PET in malformations of cortical development; La tomographie d'emission de positons (TEP) dans les malformations corticales de developpement

    Energy Technology Data Exchange (ETDEWEB)

    Bouilleret, V.; O' Brien, T.J. [Department of medicine, the Royal Melbourne Hospital, Royal Parade, Parkville, 3005 Victoria (Australia); Bouilleret, V. [Unite de neurophysiologie clinique et d' epileptologie, AP-HP, CHU Bicetre, 94275 Paris (France); Bouilleret, V.; Chiron, C. [Service hospitalier Frederic-Joliot, DRM, CEA, 4, place du General-Leclerc, 91401 Orsay cedex (France); Chiron, C. [Inserm U663, AP-HP, hopital Necker, 75015 Paris (France); University Paris-Descartes, 11, rue Pierre-et-Marie-Curie, 75005 Paris (France)

    2009-01-15

    Within the group of malformations of cortical development, focal cortical dysplasia (FCD) are an increasingly recognized cause of intractable epilepsy that can be cured by surgery. The success of cortical resection for intractable epilepsy is highly dependent on the accurate pre-surgical delineation of the regions responsible for generating seizures. [{sup 18}F]-FDG PET, which images cerebral metabolism studying brain glucose uptake, is the most established functional imaging modality in the evaluation of patients with epilepsy. The aim of this article is to review [{sup 18}F]-FDG PET usefulness as a pre-surgical tool in the evaluation of medically refractory partial epilepsy. It has an established place in assisting in the localisation and definition of FCD in patients with no lesion, or only a subtle abnormality, on MRI. The role of FDG-PET in defining the extent of the surgical resection is still uncertain and needs to be the focus of future research. (authors)

  17. Hand preference and magnetic resonance imaging asymmetries of the central sulcus.

    Science.gov (United States)

    Foundas, A L; Hong, K; Leonard, C M; Heilman, K M

    1998-04-01

    Hand preference is perhaps the most evident behavioral asymmetry observed in humans. Anatomic brain asymmetries that may be associated with hand preference have not been extensively studied, and no clear relationship between asymmetries of the motor system and hand preference have been established. Therefore, using volumetric magnetic resonance imaging methodologies, the surface area of the hand representation was measured along the length of the central sulcus in 15 consistent right- and 15 left-handers matched for age and gender. There was a significant leftward asymmetry of the motor hand area of the precentral gyrus in the right-handers, but no directional asymmetry was found in the left-handers. When asymmetry quotients were computed to determine the distribution of interhemispheric asymmetries, the left motor bank was greater than the right motor bank in 9 of 15 right-handers, the right motor bank was greater than the left motor bank in 3 of 15 right-handers, and the motor banks were equal in 3 of 15 right-handers. In contrast, among left-handers, the left motor bank was greater than the right motor bank in 5 of 15, the right motor bank was greater than the left motor bank in 5 of 15, and the motor banks were equal in 5 of 15. Although no direct measure of motor dexterity and skill was performed, these data suggest that anatomic asymmetries of the motor hand area may be related to hand preference because of the differences in right-handers and left-handers. Furthermore, the predominant leftward asymmetry in right-handers and the random distribution of asymmetries in the left-handers support Annett's right-shift theory. It is unclear, however, whether these asymmetries are the result of preferential hand use or are a reflection of a biologic preference to use one limb over the other.

  18. New tuning method of the low-mode asymmetry for ignition capsule implosions

    International Nuclear Information System (INIS)

    Gu, Jianfa; Dai, Zhensheng; Zou, Shiyang; Song, Peng; Ye, Wenhua; Zheng, Wudi; Gu, Peijun

    2015-01-01

    In the deuterium-tritium inertial confinement fusion implosion experiments on the National Ignition Facility, the hot spot and the surrounding main fuel layer show obvious P2 asymmetries. This may be caused by the large positive P2 radiation flux asymmetry during the peak pulse resulting form the poor propagation of the inner laser beam in the gas-filled hohlraum. The symmetry evolution of ignition capsule implosions is investigated by applying P2 radiation flux asymmetries during different time intervals. A series of two-dimensional simulation results show that a positive P2 flux asymmetry during the peak pulse results in a positive P2 shell ρR asymmetry; while an early time positive P2 flux asymmetry causes a negative P2 in the fuel ρR shape. The opposite evolution behavior of shell ρR asymmetry is used to develop a new tuning method to correct the radiation flux asymmetry during the peak pulse by adding a compensating same-phased P2 drive asymmetry during the early time. The significant improvements of the shell ρR symmetry, hot spot shape, hot spot internal energy, and neutron yield indicate that the tuning method is quite effective. The similar tuning method can also be used to control the early time drive asymmetries

  19. Baryon asymmetry, inflation and squeezed states

    International Nuclear Information System (INIS)

    Bambah, Bindu A.; Chaitanya, K.V.S. Shiv; Mukku, C.

    2007-01-01

    We use the general formalism of squeezed rotated states to calculate baryon asymmetry in the wake of inflation through parametric amplification. We base our analysis on a B and CP violating Lagrangian in an isotropically expanding universe. The B and CP violating terms originate from the coupling of complex fields with non-zero baryon number to a complex background inflaton field. We show that a differential amplification of particle and antiparticle modes gives rise to baryon asymmetry

  20. Cerebral asymmetry in a selected Chinese population

    International Nuclear Information System (INIS)

    Wang, Y.X.; He, G.X.; Tong, G.H.; Wang, D.B.; Xu, K.Y.

    1999-01-01

    Previous studies have demonstrated anatomical differences between the two cerebral hemispheres and ethnic differences in cerebral asymmetry. This study examined asymmetry of Chinese living in Shanghai. Measurements were taken across the frontal, mid-cerebral and occipital regions from normal head computed tomography (CT) scans of 200 Chinese Shanghai residents (100 male and 100 female, aged 6-73 years, average 48.7 years). The results were compared with reported data in the literature. The following results were found: (i) In the frontal region the right side was larger than the left in 57.5% of cases, equal in 10.5% and smaller in 32% of cases; in the mid-cerebral region the right side was larger than the left in 65.5% of cases, equal in 12.5% and smaller in 22% of cases; in the occipital regions the right side was larger than the left in 34.5% of cases, equal in 8.5% and smaller in 57% of cases. The average right-left differences between the frontal, mid-cerebral and occipital regions were 0.43 mm, 0.9 mm and 0.4 mm respectively. No difference in cerebral asymmetry existed between males and females. The occipital lobes showed the greatest individual asymmetry. The distribution of cerebral asymmetry of Chinese in Shanghai showed similarity to North American Whites rather than North American Blacks, but the average right-left differences were smaller than those of Whites. Copyright (1999) Blackwell Science Pty Ltd

  1. Cortical Spreading Depression Closes Paravascular Space and Impairs Glymphatic Flow: Implications for Migraine Headache.

    Science.gov (United States)

    Schain, Aaron J; Melo-Carrillo, Agustin; Strassman, Andrew M; Burstein, Rami

    2017-03-15

    Functioning of the glymphatic system, a network of paravascular tunnels through which cortical interstitial solutes are cleared from the brain, has recently been linked to sleep and traumatic brain injury, both of which can affect the progression of migraine. This led us to investigate the connection between migraine and the glymphatic system. Taking advantage of a novel in vivo method we developed using two-photon microscopy to visualize the paravascular space (PVS) in naive uninjected mice, we show that a single wave of cortical spreading depression (CSD), an animal model of migraine aura, induces a rapid and nearly complete closure of the PVS around surface as well as penetrating cortical arteries and veins lasting several minutes, and gradually recovering over 30 min. A temporal mismatch between the constriction or dilation of the blood vessel lumen and the closure of the PVS suggests that this closure is not likely to result from changes in vessel diameter. We also show that CSD impairs glymphatic flow, as indicated by the reduced rate at which intraparenchymally injected dye was cleared from the cortex to the PVS. This is the first observation of a PVS closure in connection with an abnormal cortical event that underlies a neurological disorder. More specifically, the findings demonstrate a link between the glymphatic system and migraine, and suggest a novel mechanism for regulation of glymphatic flow. SIGNIFICANCE STATEMENT Impairment of brain solute clearance through the recently described glymphatic system has been linked with traumatic brain injury, prolonged wakefulness, and aging. This paper shows that cortical spreading depression, the neural correlate of migraine aura, closes the paravascular space and impairs glymphatic flow. This closure holds the potential to define a novel mechanism for regulation of glymphatic flow. It also implicates the glymphatic system in the altered cortical and endothelial functioning of the migraine brain. Copyright © 2017

  2. Abnormalities of the axial and proximal appendicular skeleton in adults with Laron syndrome (growth hormone insensitivity)

    Energy Technology Data Exchange (ETDEWEB)

    Kornreich, L.; Konen, O.; Schwarz, M.; Horev, G. [Schneider Children' s Medical Center of Israel, Imaging Department, Petah Tiqwa (Israel); Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv (Israel); Siegel, Y. [Rabin Medical Center, Imaging Department, Petah Tiqwa (Israel); Jackson Memorial Hospital, Department of Radiology, Thoracic Section, Miami, FL (United States); Hershkovitz, I. [Tel Aviv University, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv (Israel); Laron, Z. [Schneider Children' s Medical Center of Israel, Endocrinology and Diabetes Research Unit, Petah Tiqwa (Israel); Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv (Israel)

    2008-02-15

    To investigate abnormalities in the skeleton (with the exclusion of the skull, cervical spine, hands and feet) in patients with Laron syndrome, who have an inborn growth hormone resistance and congenital insulin-like growth factor-1 (IGF-1) deficiency. The study group was composed of 15 untreated patients with Laron syndrome (seven male and eight female) aged 21-68 years. Plain films of the axial and appendicular skeleton were evaluated retrospectively for abnormalities in structure and shape. The cortical width of the long bones was evaluated qualitatively and quantitatively (in the upper humerus and mid-femur), and the cortical index was calculated and compared with published references. Measurements were taken of the mid-anteroposterior and cranio-caudal diameters of the vertebral body and spinous process at L3, the interpedicular distance at L1 and L5, and the sacral slope. Thoracic and lumbar osteophytes were graded on a 5-point scale. Values were compared with a control group of 20 healthy persons matched for age. The skeleton appeared small in all patients. No signs of osteopenia were visible. The cortex of the long bones appeared thick in the upper limbs in 11 patients and in the lower limbs in four. Compared with the reference values, the cortical width was thicker than average in the humerus and thinner in the femur. The vertebral diameters at L3 and the interpedicular distances at L1 and L5 were significantly smaller in the patients than in the control subjects (P < 0.001); however, at L5 the canal was wider, relative to the vertebral body. The study group had a higher rate of anterior osteophytes in the lumbar spine than the controls had, and their osteophytes were also significantly larger. In the six patients for whom radiographs of the upper extremity in its entirety were available on one film, the ulna appeared to be rotated. In one 22-year-old man, multiple epiphyses were still open. Congenital IGF-1 deficiency leads to skeletal abnormalities

  3. Abnormalities of the axial and proximal appendicular skeleton in adults with Laron syndrome (growth hormone insensitivity)

    International Nuclear Information System (INIS)

    Kornreich, L.; Konen, O.; Schwarz, M.; Horev, G.; Siegel, Y.; Hershkovitz, I.; Laron, Z.

    2008-01-01

    To investigate abnormalities in the skeleton (with the exclusion of the skull, cervical spine, hands and feet) in patients with Laron syndrome, who have an inborn growth hormone resistance and congenital insulin-like growth factor-1 (IGF-1) deficiency. The study group was composed of 15 untreated patients with Laron syndrome (seven male and eight female) aged 21-68 years. Plain films of the axial and appendicular skeleton were evaluated retrospectively for abnormalities in structure and shape. The cortical width of the long bones was evaluated qualitatively and quantitatively (in the upper humerus and mid-femur), and the cortical index was calculated and compared with published references. Measurements were taken of the mid-anteroposterior and cranio-caudal diameters of the vertebral body and spinous process at L3, the interpedicular distance at L1 and L5, and the sacral slope. Thoracic and lumbar osteophytes were graded on a 5-point scale. Values were compared with a control group of 20 healthy persons matched for age. The skeleton appeared small in all patients. No signs of osteopenia were visible. The cortex of the long bones appeared thick in the upper limbs in 11 patients and in the lower limbs in four. Compared with the reference values, the cortical width was thicker than average in the humerus and thinner in the femur. The vertebral diameters at L3 and the interpedicular distances at L1 and L5 were significantly smaller in the patients than in the control subjects (P < 0.001); however, at L5 the canal was wider, relative to the vertebral body. The study group had a higher rate of anterior osteophytes in the lumbar spine than the controls had, and their osteophytes were also significantly larger. In the six patients for whom radiographs of the upper extremity in its entirety were available on one film, the ulna appeared to be rotated. In one 22-year-old man, multiple epiphyses were still open. Congenital IGF-1 deficiency leads to skeletal abnormalities

  4. Amplitude and polarization asymmetries in a ring laser

    Science.gov (United States)

    Campbell, L. L.; Buholz, N. E.

    1971-01-01

    Asymmetric amplitude effects between the oppositely directed traveling waves in a He-Ne ring laser are analyzed both theoretically and experimentally. These effects make it possible to detect angular orientations of an inner-cavity bar with respect to the plane of the ring cavity. The amplitude asymmetries occur when a birefringent bar is placed in the three-mirror ring cavity, and an axial magnetic field is applied to the active medium. A simplified theoretical analysis is performed by using a first order perturbation theory to derive an expression for the polarization of the active medium, and a set of self-consistent equations are derived to predict threshold conditions. Polarization asymmetries between the oppositely directed waves are also predicted. Amplitude asymmetries similar in nature to those predicted at threshold occur when the laser is operating in 12-15 free-running modes, and polarization asymmetry occurs simultaneously.

  5. Rare decays and CP asymmetries in charged B decays

    International Nuclear Information System (INIS)

    Deshpande, N.G.

    1991-01-01

    The theory of loop induced rare decays and the rate asymmetry due to CP violation in charged B Decays in reviewed. After considering b → sγ and b → se + e - decays, the asymmetries for pure penguin process are estimated first. A larger asymmetry can result in those modes where a tree diagram and a penguin diagram interfere, however these estimates are necessarily model dependent. Estimates of Cabbibo suppressed penguins are also considered

  6. Censoring distances based on labeled cortical distance maps in cortical morphometry.

    Science.gov (United States)

    Ceyhan, Elvan; Nishino, Tomoyuki; Alexopolous, Dimitrios; Todd, Richard D; Botteron, Kelly N; Miller, Michael I; Ratnanather, J Tilak

    2013-01-01

    It has been demonstrated that shape differences in cortical structures may be manifested in neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM) which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM) voxels with respect to GM/white matter (WM) surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information contained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs) of subjects with major depressive disorder (MDD), subjects at high risk (HR) of MDD, and healthy control (Ctrl) subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface) for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.

  7. Censoring Distances Based on Labeled Cortical Distance Maps in Cortical Morphometry

    Directory of Open Access Journals (Sweden)

    Elvan eCeyhan

    2013-10-01

    Full Text Available It has been demonstrated that shape differences are manifested in cortical structures due to neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM voxels with respect to GM/white matter (WM surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information con-tained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs of subjects with major depressive disorder (MDD, subjects at high risk (HR of MDD, and healthy control (Ctrl subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.

  8. Asymmetry dependence of the nuclear caloric curve

    International Nuclear Information System (INIS)

    McIntosh, A.B.; Bonasera, A.; Cammarata, P.; Hagel, K.; Heilborn, L.; Kohley, Z.; Mabiala, J.; May, L.W.; Marini, P.; Raphelt, A.; Souliotis, G.A.; Wuenschel, S.; Zarrella, A.; Yennello, S.J.

    2013-01-01

    A basic feature of the nuclear equation of state is not yet understood: the dependence of the nuclear caloric curve on the neutron–proton asymmetry. Predictions of theoretical models differ on the magnitude and even the sign of this dependence. In this work, the nuclear caloric curve is examined for fully reconstructed quasi-projectiles around mass A=50. The caloric curve extracted with the momentum quadrupole fluctuation thermometer shows that the temperature varies linearly with quasi-projectile asymmetry (N−Z)/A . An increase in asymmetry of 0.15 units corresponds to a decrease in temperature on the order of 1 MeV. These results also highlight the importance of a full quasi-projectile reconstruction in the study of thermodynamic properties of hot nuclei

  9. CP asymmetries in semiinclusive B0 decays

    Energy Technology Data Exchange (ETDEWEB)

    Dunietz, Isard

    1999-02-01

    It was recently pointed out that inclusive B^0(t) decays could show CP violation. The totally inclusive asymmetry is expected to be tiny [O(10^{-3})] because of large cancellations among the asymmetries in the charmless, single charm and double charm final states. Enriching particular final state configurations could significantly increase the CP-asymmetry and observability. Such studies can extract fundamental CKM (Cabibbo-Kobayashi-Maskawa) parameters, and (perhaps) even Delta m(B_s). A superb vertex detector could see CP violation with 10^5 (10^6) flavor-tagged B_s (B_d) mesons within the CKM model. Because the effects could be significantly larger due to new physics, they should be searched for in existing or soon available data samples.

  10. Frontal EEG asymmetry in borderline personality disorder is associated with alexithymia.

    Science.gov (United States)

    Flasbeck, Vera; Popkirov, Stoyan; Brüne, Martin

    2017-01-01

    Frontal EEG asymmetry is a widely studied correlate of emotion processing and psychopathology. Recent research suggests that frontal EEG asymmetry during resting state is related to approach/withdrawal motivation and is also found in affective disorders such as major depressive disorder. Patients with borderline personality disorder (BPD) show aberrant behavior in relation to both approach and withdrawal motivation, which may arguably be associated with their difficulties in emotion processing. The occurrence and significance of frontal EEG asymmetry in BPD, however, has received little attention. Thirty-seven BPD patients and 39 controls underwent resting EEG and completed several psychometric questionnaires. While there were no between-group differences in frontal EEG asymmetry, in BPD frontal EEG asymmetry scores correlated significantly with alexithymia. That is, higher alexithymia scores were associated with relatively lower right-frontal activity. A subsequent analysis corroborated the significant interaction between frontal EEG asymmetry and alexithymia, which was moderated by group. Our findings reveal that lower right frontal EEG asymmetry is associated with alexithymia in patients with BPD. This finding is in accordance with neurophysiological models of alexithymia that implicate a right hemisphere impairment in emotion processing, and could suggest frontal EEG asymmetry as a potential biomarker of relevant psychopathology in these patients.

  11. Baryogenesis and Dark Matter through a Higgs Asymmetry

    CERN Document Server

    Servant, Geraldine

    2013-01-01

    In addition to explaining the masses of elementary particles, the Higgs boson may have far-reaching implications for the generation of the matter content in the Universe. For instance, the Higgs plays a key role in two main theories of baryogenesis, namely electroweak baryogenesis and leptogenesis. In this letter, we propose a new cosmological scenario where the Higgs chemical potential mediates asymmetries between visible and dark matter sectors, either generating a baryon asymmetry from a dark matter asymmetry or vice-versa. We illustrate this mechanism with a simple model with two new fermions coupled to the Higgs and discuss associated signatures.

  12. Bottom production asymmetries at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Norrbin, E.; Vogt, R.

    1999-01-01

    We present results on bottom hadron production asymmetries at the LHC within both the Lund string fragmentation model and the intrinsic bottom model. The main aspects of the models are summarized and specific predictions for pp collisions at 14 TeV are given. Asymmetries are found to be very small at central rapidities increasing to a few percent at forward rapidities. At very large rapidities intrinsic production could dominate but this region is probably out of reach of any experiment.

  13. Bottom production asymmetries at the LHC

    International Nuclear Information System (INIS)

    Norrbin, E.; Vogt, R.

    1999-01-01

    We present results on bottom hadron production asymmetries at the LHC within both the Lund string fragmentation model and the intrinsic bottom model. The main aspects of the models are summarized and specific predictions for pp collisions at 14 TeV are given. Asymmetries are found to be very small at central rapidities increasing to a few percent at forward rapidities. At very large rapidities intrinsic production could dominate but this region is probably out of reach of any experiment

  14. Left-right asymmetry in neutrino-produced hadron jets

    International Nuclear Information System (INIS)

    Ballagh, H.C.; Bingham, H.H.; Lawry, T.J.; Lys, J.; Lynch, G.R.; Sokoloff, M.D.; Stevenson, M.L.; Huson, F.R.; Schmidt, E.; Smart, W.; Treadwell, E.; Cence, R.J.; Harris, F.A.; Jones, M.D.; Koide, A.; Peters, M.W.; Peterson, V.Z.; Lubatti, H.J.; Moriyasu, K.; Wolin, E.

    1989-01-01

    In an experiment (E546) to study interactions of left-angle E right-angle=100 GeV and left-angle Q 2 right-angle=17 GeV 2 neutrinos in the Fermilab 15-foot bubble chamber, we have looked for a left-right asymmetry in the azimuthal angle φ of individual hadrons about the direction of the lepton momentum transfer (q vector). Significant asymmetry is found for forward positive hadrons; for x F >0.10, we find left-angle cosφ right-angle=-0.029±0.008, where x F is the Feynman x variable. Negative hadrons with x F >0.10 show no asymmetry, left-angle cosφ right-angle=0.004±0.011. A model which includes parton intrinsic transverse momentum k t reproduces the asymmetry of combined positive and negative hadrons with x F >0.10, left-angle cosφ right-angle=-0.018±0.0065, if left-angle k t 2 right-angle=0.065±0.024 GeV 2 /c 2 . But the model predicts almost equal asymmetries for positive and negative hadrons. The model also agrees poorly with the observed dependence on the kinematic variables x and Q 2 if the k t distribution is assumed to be independent of kinematic variables

  15. Hemispheric asymmetries in dorsal language pathway white-matter tracts: A magnetic resonance imaging tractography and functional magnetic resonance imaging study.

    Science.gov (United States)

    Silva, Guilherme; Citterio, Alberto

    2017-10-01

    Introduction Previous studies have shown that the arcuate fasciculus has a leftward asymmetry in right-handers that could be correlated with the language lateralisation defined by functional magnetic resonance imaging. Nonetheless, information about the asymmetry of the other fibres that constitute the dorsal language pathway is scarce. Objectives This study investigated the asymmetry of the white-matter tracts involved in the dorsal language pathway through the diffusion tensor imaging (DTI) technique, in relation to language hemispheric dominance determined by task-dependent functional magnetic resonance imaging (fMRI). Methods We selected 11 patients (10 right-handed) who had been studied with task-dependent fMRI for language areas and DTI and who had no language impairment or structural abnormalities that could compromise magnetic resonance tractography of the fibres involved in the dorsal language pathway. Laterality indices (LI) for fMRI and for the volumes of each tract were calculated. Results In fMRI, all the right-handers had left hemispheric lateralisation, and the ambidextrous subject presented right hemispheric dominance. The arcuate fasciculus LI was strongly correlated with fMRI LI ( r = 0.739, p = 0.009), presenting the same lateralisation of fMRI in seven subjects (including the right hemispheric dominant). It was not asymmetric in three cases and had opposite lateralisation in one case. The other tracts presented predominance for rightward lateralisation, especially superior longitudinal fasciculus (SLF) II/III (nine subjects), but their LI did not correlate (directly or inversely) with fMRI LI. Conclusion The fibres that constitute the dorsal language pathway have an asymmetric distribution in the cerebral hemispheres. Only the asymmetry of the arcuate fasciculus is correlated with fMRI language lateralisation.

  16. Assessment of cortical and sub-cortical function in neonates by electrophysiological monitoring

    NARCIS (Netherlands)

    Jennekens, W.

    2012-01-01

    The aim of this thesis was the assessment of cortical and sub-cortical function in neonates by electrophysiological monitoring, i.e. to evaluate the function of the neonatal cortex and brainstem through quantitative analysis of signals readily available in the NICU. These signals include

  17. L-R asymmetry in gut's

    International Nuclear Information System (INIS)

    Karadayi, H.R.

    1982-01-01

    An idea of L-R asymmetry is proposed for the grand unification schemes. The idea provides an intrinsic mechanism to obtain standard model charges of fermions in the case of more than one weak gauge boson. It is elaborated within a scheme based on the partial symmetry SU(4)sub(C)xSU(2)sub(L)xSU(2)sub(R) where the coupling constants gsub(L) and gsub(R) corresponding to the chiral SU(2) factors are assumed to be different from each other. Then, the embedding of this structure within the simple symmetry SO(10) is shown. In both cases, a consistent description of vector particle masses is given. These two schemes are considered as primary models to realize the L-R asymmetry idea due to the lack of family unification. However, in a subsequent work, we will show that the SO(14) unification of the three families can be obtained within the framework of L-R asymmetry. All formulations are carried out with the aid of a mathematical method that we recently proposed for the Lie algebra representations of classical groups. (author)

  18. Investor relations and information asymmetry

    Directory of Open Access Journals (Sweden)

    Sandrielem da Silva Rodrigues

    2017-03-01

    Full Text Available ABSTRACT Companies invest significant volumes of resources in investor relations (IR departments. The professionals working in the IR department are responsible for communication between the company and the market, so that the information generated is widely disseminated and understood by investors. In this context, this research aims to investigate whether there is evidence that the IR activity decreases information asymmetry between the company and the market. Specifically, we evaluate the hypothesis that Brazilian companies with IR websites classified as more informative have a reduced bid-ask spread (proxy for asymmetry. Therefore, this paper classifies the informative content from IR websites of Brazilian companies for the years 2013 and 2014 and relates the outcomes obtained with information asymmetry metrics. Initially, the estimation considers the pooled ordinary least squares (POLS model and, at a second moment, in order to mitigate potential endogeneity problems, the pooled two-stage least squares (2SLS model is used. The results indicate that more informative IR websites are able to decrease the bid-ask spread of Brazilian listed companies. This finding strongly encourages companies to provide information to stakeholders on well-structured IR websites of their own.

  19. INFORMATION ASYMMETRY AND HERDING BEHAVIOR

    Directory of Open Access Journals (Sweden)

    Puput Tri Komalasari

    2016-06-01

    Full Text Available Conceptually, the stock market is strong form efficient in the long term. However, in practice, there are various forms of market anomalies that undermine the accuracy of the efficient market hypothesis. One factor suspected as the cause of market inefficiency is herding behavior. Investors herd when they imitate the actions of other investors. This behavior occurs when there is a continuous interaction among rational investors that prevents them from seeking information about market fundamentals. This study provides new insights by including information asymmetry as a moderating variable. This research examines the phenomenon of herding behavior in the Indonesia Stock Exchange as well as examines directly the effect of information asymmetry on herding behavior. The period of study is 2008 using time series of daily stocks data that actively traded in the capital market. Results of this study find that investor tends to follow market consensus when price changes at the low level, but when there is large price swing market participant acts independently from other investors. Interestingly, this study finds that information asymmetry is a necessary condition for the existence of herding behavior.

  20. What is the impact of child abuse on gray matter abnormalities in individuals with major depressive disorder: a case control study.

    Science.gov (United States)

    Ahn, Sung Jun; Kyeong, Sunghyon; Suh, Sang Hyun; Kim, Jae-Jin; Chung, Tae-Sub; Seok, Jeong-Ho

    2016-11-14

    Patients with major depressive disorder (MDD) present heterogeneous clinical symptoms, and childhood abuse is associated with deepening of psychopathology. The aim of this study was to identify structural brain abnormalities in MDD and to assess further differences in gray matter density (GMD) associated with childhood abuse in MDD. Differences in regional GMD between 34 MDD patients and 26 healthy controls were assessed using magnetic resonance imaging and optimized voxel-based morphometry. Within the MDD group, further comparisons were performed focusing on the experience of maltreatment during childhood (23 MDD with child abuse vs 11 MDD without child abuse). Compared with healthy controls, the MDD patient group showed decreased GMD in the bilateral orbitofrontal cortices, right superior frontal gyrus, right posterior cingulate gyrus, bilateral middle occipital gyri, and left cuneus. In addition, the patient group showed increased GMD in bilateral postcentral gyri, parieto-occipital cortices, putamina, thalami, and hippocampi, and left cerebellar declive and tuber of vermis. Within the MDD patient group, the subgroup with abuse showed a tendency of decreased GMD in right orbitofrontal cortex, but showed increased GMD in the left postcentral gyrus compared to the subgroup without abuse. Our findings suggest a complicated dysfunction of networks between cortical-subcortical circuits in MDD. In addition, increased GMD in postcentral gyrus and a possible reduction of GMD in the orbitofrontal cortex of MDD patients with abuse subgroup may be associated with abnormalities of body perception and emotional dysregulation.

  1. Abnormal Gray Matter Shape, Thickness, and Volume in the Motor Cortico-Subcortical Loop in Idiopathic Rapid Eye Movement Sleep Behavior Disorder: Association with Clinical and Motor Features.

    Science.gov (United States)

    Rahayel, Shady; Postuma, Ronald B; Montplaisir, Jacques; Bedetti, Christophe; Brambati, Simona; Carrier, Julie; Monchi, Oury; Bourgouin, Pierre-Alexandre; Gaubert, Malo; Gagnon, Jean-François

    2018-02-01

    Idiopathic rapid eye movement sleep behavior disorder (iRBD) is a major risk factor for Parkinson's disease and dementia with Lewy bodies. Anatomical gray matter abnormalities in the motor cortico-subcortical loop areas remain under studied in iRBD patients. We acquired T1-weighted images and administrated quantitative motor tasks in 41 patients with polysomnography-confirmed iRBD and 41 healthy subjects. Cortical thickness and voxel-based morphometry (VBM) analyses were performed to investigate local cortical thickness and gray matter volume changes, vertex-based shape analysis to investigate shape of subcortical structures, and structure-based volumetric analyses to investigate volumes of subcortical and brainstem structures. Cortical thickness analysis revealed thinning in iRBD patients in bilateral medial superior frontal, orbitofrontal, anterior cingulate cortices, and the right dorsolateral primary motor cortex. VBM results showed lower gray matter volume in iRBD patients in the frontal lobes, anterior cingulate gyri, and caudate nucleus. Shape analysis revealed extensive surface contraction in the external and internal segments of the left pallidum. Clinical and motor impaired features in iRBD were associated with anomalies of the motor cortico-subcortical loop. In summary, iRBD patients showed numerous gray matter structural abnormalities in the motor cortico-subcortical loop, which are associated with lower motor performance and clinical manifestations of iRBD. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. [Presurgical orthodontics for facial asymmetry].

    Science.gov (United States)

    Labarrère, H

    2003-03-01

    As with the treatment of all facial deformities, orthodontic pre-surgical preparation for facial asymmetry should aim at correcting severe occlusal discrepancies not solely on the basis of a narrow occlusal analysis but also in a way that will not disturb the proposed surgical protocol. In addition, facial asymmetries require specific adjustments, difficult to derive and to apply because of their inherent atypical morphological orientation of both alveolar and basal bony support. Three treated cases illustrate different solutions to problems posed by pathological torque: this torque must be considered with respect to proposed surgical changes, within the framework of their limitations and their possible contra-indications.

  3. Predicting infant cortical surface development using a 4D varifold-based learning framework and local topography-based shape morphing.

    Science.gov (United States)

    Rekik, Islem; Li, Gang; Lin, Weili; Shen, Dinggang

    2016-02-01

    Longitudinal neuroimaging analysis methods have remarkably advanced our understanding of early postnatal brain development. However, learning predictive models to trace forth the evolution trajectories of both normal and abnormal cortical shapes remains broadly absent. To fill this critical gap, we pioneered the first prediction model for longitudinal developing cortical surfaces in infants using a spatiotemporal current-based learning framework solely from the baseline cortical surface. In this paper, we detail this prediction model and even further improve its performance by introducing two key variants. First, we use the varifold metric to overcome the limitations of the current metric for surface registration that was used in our preliminary study. We also extend the conventional varifold-based surface registration model for pairwise registration to a spatiotemporal surface regression model. Second, we propose a morphing process of the baseline surface using its topographic attributes such as normal direction and principal curvature sign. Specifically, our method learns from longitudinal data both the geometric (vertices positions) and dynamic (temporal evolution trajectories) features of the infant cortical surface, comprising a training stage and a prediction stage. In the training stage, we use the proposed varifold-based shape regression model to estimate geodesic cortical shape evolution trajectories for each training subject. We then build an empirical mean spatiotemporal surface atlas. In the prediction stage, given an infant, we select the best learnt features from training subjects to simultaneously predict the cortical surface shapes at all later timepoints, based on similarity metrics between this baseline surface and the learnt baseline population average surface atlas. We used a leave-one-out cross validation method to predict the inner cortical surface shape at 3, 6, 9 and 12 months of age from the baseline cortical surface shape at birth. Our

  4. Axial asymmetry, finite particle number and the IBA

    International Nuclear Information System (INIS)

    Casten, R.F.

    1984-01-01

    Although the IBA-1 contains no solutions corresponding to a rigid triaxial shape, it does contain an effective asymmetry. This arises from zero point motion in a γ-soft potential leading to a non-zero mean or rms γ. Three aspects of this feature will be discussed: (1) The relation between IBA-1 calculations and the corresponding γ. This point is developed in the context of the Consistent Q Formalism (CQF) of the IBA. (2) The dependence of this asymmetry on boson number, N, and the exploitation of this dependence to set limits on both the relative and absolute values of N for deformed nuclei. (3) The relation between this asymmetry and the triaxiality arising from the introduction of cubic terms into the IBA Hamiltonian. Various observables will be inspected in order both to determine their sensitivity to these two structural features and to explore empirical ways of distinguishing which origin of asymmetry applies in any given nucleus. 16 references

  5. microRNA function in left-right neuronal asymmetry: perspectives from C. elegans.

    Science.gov (United States)

    Alqadah, Amel; Hsieh, Yi-Wen; Chuang, Chiou-Fen

    2013-09-23

    Left-right asymmetry in anatomical structures and functions of the nervous system is present throughout the animal kingdom. For example, language centers are localized in the left side of the human brain, while spatial recognition functions are found in the right hemisphere in the majority of the population. Disruption of asymmetry in the nervous system is correlated with neurological disorders. Although anatomical and functional asymmetries are observed in mammalian nervous systems, it has been a challenge to identify the molecular basis of these asymmetries. C. elegans has emerged as a prime model organism to investigate molecular asymmetries in the nervous system, as it has been shown to display functional asymmetries clearly correlated to asymmetric distribution and regulation of biologically relevant molecules. Small non-coding RNAs have been recently implicated in various aspects of neural development. Here, we review cases in which microRNAs are crucial for establishing left-right asymmetries in the C. elegans nervous system. These studies may provide insight into how molecular and functional asymmetries are established in the human brain.

  6. microRNA function in left-right neuronal asymmetry: perspectives from C. elegans

    Directory of Open Access Journals (Sweden)

    Amel eAlqadah

    2013-09-01

    Full Text Available Left-right asymmetry in anatomical structures and functions of the nervous system is present throughout the animal kingdom. For example, language centers are localized in the left side of the human brain, while spatial recognition functions are found in the right hemisphere in the majority of the population. Disruption of asymmetry in the nervous system is correlated with neurological disorders. Although anatomical and functional asymmetries are observed in mammalian nervous systems, it has been a challenge to identify the molecular basis of these asymmetries. C. elegans has emerged as a prime model organism to investigate molecular asymmetries in the nervous system, as it has been shown to display functional asymmetries clearly correlated to asymmetric distribution and regulation of biologically relevant molecules. Small non-coding RNAs have been recently implicated in various aspects of neural development. Here, we review cases in which microRNAs are crucial for establishing left-right asymmetries in the C. elegans nervous system. These studies may provide insight into how molecular and functional asymmetries are established in the human brain.

  7. Frontal cortical control of posterior sensory and association cortices through the claustrum.

    Science.gov (United States)

    White, Michael G; Mathur, Brian N

    2018-04-06

    The claustrum is a telencephalic gray matter nucleus that is richly interconnected with the neocortex. This structure subserves top-down executive functions that require frontal cortical control of posterior cortical regions. However, functional anatomical support for the claustrum allowing for long-range intercortical communication is lacking. To test this, we performed a channelrhodopsin-assisted long-circuit mapping strategy in mouse brain slices. We find that anterior cingulate cortex input to the claustrum is transiently amplified by claustrum neurons that, in turn, project to parietal association cortex or to primary and secondary visual cortices. Additionally, we observe that claustrum drive of cortical neurons in parietal association cortex is layer-specific, eliciting action potential generation briefly in layers II/III, IV, and VI but not V. These data are the first to provide a functional anatomical substrate through claustrum that may underlie top-down functions, such as executive attention or working memory, providing critical insight to this most interconnected and enigmatic nucleus.

  8. Left-right asymmetries of behaviour and nervous system in invertebrates.

    Science.gov (United States)

    Frasnelli, Elisa; Vallortigara, Giorgio; Rogers, Lesley J

    2012-04-01

    Evidence of left-right asymmetries in invertebrates has begun to emerge, suggesting that lateralization of the nervous system may be a feature of simpler brains as well as more complex ones. A variety of studies have revealed sensory and motor asymmetries in behaviour, as well as asymmetries in the nervous system, in invertebrates. Asymmetries in behaviour are apparent in olfaction (antennal asymmetries) and in vision (preferential use of the left or right visual hemifield during activities such as foraging or escape from predators) in animals as different as bees, fruitflies, cockroaches, octopuses, locusts, ants, spiders, crabs, snails, water bugs and cuttlefish. Asymmetries of the nervous system include lateralized position of specific brain structures (e.g., in fruitflies and snails) and of specific neurons (e.g., in nematodes). As in vertebrates, lateralization can occur both at the individual and at the population-level in invertebrates. Theoretical models have been developed supporting the hypothesis that the alignment of the direction of behavioural and brain asymmetries at the population-level could have arisen as a result of social selective pressures, when individually asymmetrical organisms had to coordinate with each other. The evidence reviewed suggests that lateralization at the population-level may be more likely to occur in social species among invertebrates, as well as vertebrates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Shifting brain asymmetry: the link between meditation and structural lateralization.

    Science.gov (United States)

    Kurth, Florian; MacKenzie-Graham, Allan; Toga, Arthur W; Luders, Eileen

    2015-01-01

    Previous studies have revealed an increased fractional anisotropy and greater thickness in the anterior parts of the corpus callosum in meditation practitioners compared with control subjects. Altered callosal features may be associated with an altered inter-hemispheric integration and the degree of brain asymmetry may also be shifted in meditation practitioners. Therefore, we investigated differences in gray matter asymmetry as well as correlations between gray matter asymmetry and years of meditation practice in 50 long-term meditators and 50 controls. We detected a decreased rightward asymmetry in the precuneus in meditators compared with controls. In addition, we observed that a stronger leftward asymmetry near the posterior intraparietal sulcus was positively associated with the number of meditation practice years. In a further exploratory analysis, we observed that a stronger rightward asymmetry in the pregenual cingulate cortex was negatively associated with the number of practice years. The group difference within the precuneus, as well as the positive correlations with meditation years in the pregenual cingulate cortex, suggests an adaptation of the default mode network in meditators. The positive correlation between meditation practice years and asymmetry near the posterior intraparietal sulcus may suggest that meditation is accompanied by changes in attention processing. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  10. Magnetic fields and chiral asymmetry in the early hot universe

    Energy Technology Data Exchange (ETDEWEB)

    Sydorenko, Maksym; Shtanov, Yuri [Bogolyubov Institute for Theoretical Physics, 03680 Kiev (Ukraine); Tomalak, Oleksandr, E-mail: maxsydorenko@gmail.com, E-mail: tomalak@uni-mainz.de, E-mail: shtanov@bitp.kiev.ua [Institut für Kernphysik, Johannes Gutenberg Universität, 55128 Mainz (Germany)

    2016-10-01

    In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field and lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of 'inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.

  11. Magnetic fields and chiral asymmetry in the early hot universe

    International Nuclear Information System (INIS)

    Sydorenko, Maksym; Shtanov, Yuri; Tomalak, Oleksandr

    2016-01-01

    In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field and lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of 'inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.

  12. Visual search asymmetries within color-coded and intensity-coded displays.

    Science.gov (United States)

    Yamani, Yusuke; McCarley, Jason S

    2010-06-01

    Color and intensity coding provide perceptual cues to segregate categories of objects within a visual display, allowing operators to search more efficiently for needed information. Even within a perceptually distinct subset of display elements, however, it may often be useful to prioritize items representing urgent or task-critical information. The design of symbology to produce search asymmetries (Treisman & Souther, 1985) offers a potential technique for doing this, but it is not obvious from existing models of search that an asymmetry observed in the absence of extraneous visual stimuli will persist within a complex color- or intensity-coded display. To address this issue, in the current study we measured the strength of a visual search asymmetry within displays containing color- or intensity-coded extraneous items. The asymmetry persisted strongly in the presence of extraneous items that were drawn in a different color (Experiment 1) or a lower contrast (Experiment 2) than the search-relevant items, with the targets favored by the search asymmetry producing highly efficient search. The asymmetry was attenuated but not eliminated when extraneous items were drawn in a higher contrast than search-relevant items (Experiment 3). Results imply that the coding of symbology to exploit visual search asymmetries can facilitate visual search for high-priority items even within color- or intensity-coded displays. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  13. Short-term tidal asymmetry inversion in a macrotidal estuary (Beira, Mozambique)

    Science.gov (United States)

    Nzualo, Teodósio N. M.; Gallo, Marcos N.; Vinzon, Susana B.

    2018-05-01

    The distortion of the tide in estuaries, bays and coastal areas is the result of the generation of overtides due to the non-linear effects associated with friction, advection, and the finite effects of the tidal amplitude in shallow waters. The Beira estuary is classified as macrotidal, with a large ratio of S2/M2. Typical tides ranges from 6 m and 0.8 m, during springs and neaps tides, respectively. As a consequence of this large fortnightly tidal amplitude difference and the estuarine morphology, asymmetry inversions occur. Two types of tidal asymmetries were investigated in this paper, one considering tidal duration asymmetry (time difference between rising and falling tide) and the other, related to tidal velocity asymmetry (unequal magnitudes of flood and ebb peaks currents). In the Beira estuary when we examine the tidal duration asymmetry, flood dominance is observed during spring tide periods (negative time difference between rising and falling tide), while ebb dominance appears during neap tides (positive time difference between rising and falling tide). A 2DH hydrodynamic model was implemented to analyze this asymmetry inversion. The model was calibrated with water-level data measured at the Port of Beira and current data measured along the estuary. The model was run for different scenarios considering tidal constituents at the ocean boundary, river discharge and the morphology of the estuary. River discharge did not show significant effects on the tidal duration asymmetry. Through comparison of the scenarios, it was shown that the incoming ocean tide at the boundary has an ebb-dominant asymmetry, changing to flood-dominant only during spring tides due to the effect of shoaling and friction within the estuary. During neap tides, the propagation occurs mainly in the channels, and ebb dominance remains. The interplay between the estuary morphodynamics was thus identified and the relation between tidal duration asymmetry and tidal velocity asymmetry was

  14. Altered Cortical Activation in Adolescents With Acute Migraine: A Magnetoencephalography Study

    Science.gov (United States)

    Xiang, Jing; deGrauw, Xinyao; Korostenskaja, Milena; Korman, Abraham M.; O’Brien, Hope L.; Kabbouche, Marielle A.; Powers, Scott W.; Hershey, Andrew D.

    2013-01-01

    To quantitatively assess cortical dysfunction in pediatric migraine, 31 adolescents with acute migraine and age- and gender-matched controls were studied using a magnetoencephalography (MEG) system at a sampling rate of 6,000 Hz. Neuromagnetic brain activation was elicited by a finger-tapping task. The spectral and spatial signatures of magnetoencephalography data in 5 to 2,884 Hz were analyzed using Morlet wavelet and beamformers. Compared with controls, 31 migraine subjects during their headache attack phases (ictal) showed significantly prolonged latencies of neuromagnetic activation in 5 to 30 Hz, increased spectral power in 100 to 200 Hz, and a higher likelihood of neuromagnetic activation in the supplementary motor area, the occipital and ipsilateral sensorimotor cortices, in 2,200 to 2,800 Hz. Of the 31 migraine subjects, 16 migraine subjects during their headache-free phases (interictal) showed that there were no significant differences between interictal and control MEG data except that interictal spectral power in 100 to 200 Hz was significantly decreased. The results demonstrated that migraine subjects had significantly aberrant ictal brain activation, which can normalize interictally. The spread of abnormal ictal brain activation in both low- and high-frequency ranges triggered by movements may play a key role in the cascade of migraine attacks. Perspective This is the first study focusing on the spectral and spatial signatures of cortical dysfunction in adolescents with migraine using MEG signals in a frequency range of 5 to 2,884 Hz. This analyzing aberrant brain activation may be important for developing new therapeutic interventions for migraine in the future. PMID:23792072

  15. Sagittal otolith morphogenesis asymmetry in marine fishes.

    Science.gov (United States)

    Mille, T; Mahe, K; Villanueva, M C; De Pontual, H; Ernande, B

    2015-09-01

    This study investigated and compared asymmetry in sagittal otolith shape and length between left and right inner ears in four roundfish and four flatfish species of commercial interest. For each species, the effects of ontogenetic changes (individual age and total body length), sexual dimorphism (individual sex) and the otolith's location on the right or left side of the head, on the shape and length of paired otoliths (between 143 and 702 pairs according to species) were evaluated. Ontogenetic changes in otolith shape and length were observed for all species. Sexual dimorphism, either in otolith shape and length or in their ontogenetic changes, was detected for half of the species, be they round or flat. Significant directional asymmetry in otolith shape and length was detected in one roundfish species each, but its inconsistency across species and its small average amplitude (6·17% for shape and 1·99% for length) suggested that it has barely any biological relevance. Significant directional asymmetry in otolith shape and length was found for all flatfish species except otolith length for one species. Its average amplitude varied between 2·06 and 17·50% for shape and between 0·00 and 11·83% for length and increased significantly throughout ontogeny for two species, one dextral and one sinistral. The longer (length) and rounder otolith (shape) appeared to be always on the blind side whatever the species. These results suggest differential biomineralization between the blind and ocular inner ears in flatfish species that could result from perturbations of the proximal-distal gradient of otolith precursors in the endolymph and the otolith position relative to the geometry of the saccular epithelium due to body morphology asymmetry and lateralized behaviour. The fact that asymmetry never exceeded 18% even at the individual level suggests an evolutionary canalization of otolith shape symmetry to avoid negative effects on fish hearing and balance. Technically

  16. Focal cortical dysplasia type IIa and IIb: MRI aspects in 118 cases proven by histopathology

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, Nadia; Citterio, Alberto [Ospedale Ca Granda Niguarda, Department of Neuroradiology, Milano (Italy); Tassi, Laura; Mai, Roberto; Sartori, Ivana; Cardinale, Francesco; Lo Russo, Giorgio [Ospedale Niguarda, Claudio Munari Epilepsy Surgery Center, Milano (Italy); Deleo, Francesco; Spreafico, Roberto [IRCCS Foundation Neurological Institute ' ' C. Besta' ' , Department of Epilepsy Clinic and Experimental Neurophysiology, Milano (Italy); Bramerio, Manuela [Ospedale Niguarda, Department of Pathology, Milano (Italy)

    2012-10-15

    This study aims to review the magnetic resonance imaging (MRI) aspects of a large series of patients with focal cortical dysplasia type II (FCD II) and attempt to identify distinctive features in the two histopathological subtypes IIa and IIb. We retrospectively reviewed the MRI scans of 118 patients with histological proven FCD IIa (n = 37) or IIb (n = 81) who were surgically treated for intractable epilepsy. MRI was abnormal in 93 patients (79 %) and unremarkable in 25 (21 %). A dysplastic lesion was identified in 90 cases (97 %) and classified as FCD II in 83 and FCD non-II in seven cases. In three cases, the MRI diagnosis was other than FCD. There was a significant association between the presence of cortical thickening (p = 0.002) and the ''transmantle sign'' (p < 0.001) and a correct MRI diagnosis of FCD II. MRI positivity was more frequent in the patients with FCD IIb than in those with FCD IIa (91 % vs. 51 %), and the detection rate of FCD II was also better in the patients with type IIb (88 % vs. 32 %). The transmantle sign was significantly more frequent in the IIb subgroup (p = 0.003). The rates of abnormal MRI results and correct MRI diagnoses of FCD II were significantly higher in the IIb subgroup. Although other MRI stigmata may contribute to the diagnosis, the only significant correlation was between the transmantle sign and FCD IIb. (orig.)

  17. Abnormal prefrontal cortex resting state functional connectivity and severity of internet gaming disorder.

    Science.gov (United States)

    Jin, Chenwang; Zhang, Ting; Cai, Chenxi; Bi, Yanzhi; Li, Yangding; Yu, Dahua; Zhang, Ming; Yuan, Kai

    2016-09-01

    Internet Gaming Disorder (IGD) among adolescents has become an important public concern and gained more and more attention internationally. Recent studies focused on IGD and revealed brain abnormalities in the IGD group, especially the prefrontal cortex (PFC). However, the role of PFC-striatal circuits in pathology of IGD remains unknown. Twenty-five adolescents with IGD and 21 age- and gender-matched healthy controls were recruited in our study. Voxel-based morphometric (VBM) and functional connectivity analysis were employed to investigate the abnormal structural and resting-state properties of several frontal regions in individuals with online gaming addiction. Relative to healthy comparison subjects, IGD subjects showed significant decreased gray matter volume in PFC regions including the bilateral dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC) and the right supplementary motor area (SMA) after controlling for age and gender effects. We chose these regions as the seeding areas for the resting-state analysis and found that IGD subjects showed decreased functional connectivity between several cortical regions and our seeds, including the insula, and temporal and occipital cortices. Moreover, significant decreased functional connectivity between some important subcortical regions, i.e., dorsal striatum, pallidum, and thalamus, and our seeds were found in the IGD group and some of those changes were associated with the severity of IGD. Our results revealed the involvement of several PFC regions and related PFC-striatal circuits in the process of IGD and suggested IGD may share similar neural mechanisms with substance dependence at the circuit level.

  18. Trade-off of cerebello-cortical and cortico-cortical functional networks for planning in 6-year-old children.

    Science.gov (United States)

    Kipping, Judy A; Margulies, Daniel S; Eickhoff, Simon B; Lee, Annie; Qiu, Anqi

    2018-05-03

    Childhood is a critical period for the development of cognitive planning. There is a lack of knowledge on its neural mechanisms in children. This study aimed to examine cerebello-cortical and cortico-cortical functional connectivity in association with planning skills in 6-year-olds (n = 76). We identified the cerebello-cortical and cortico-cortical functional networks related to cognitive planning using activation likelihood estimation (ALE) meta-analysis on existing functional imaging studies on spatial planning, and data-driven independent component analysis (ICA) of children's resting-state functional MRI (rs-fMRI). We investigated associations of cerebello-cortical and cortico-cortical functional connectivity with planning ability in 6-year-olds, as assessed using the Stockings of Cambridge task. Long-range functional connectivity of two cerebellar networks (lobules VI and lateral VIIa) with the prefrontal and premotor cortex were greater in children with poorer planning ability. In contrast, cortico-cortical association networks were not associated with the performance of planning in children. These results highlighted the key contribution of the lateral cerebello-frontal functional connectivity, but not cortico-cortical association functional connectivity, for planning ability in 6-year-olds. Our results suggested that brain adaptation to the acquisition of planning ability during childhood is partially achieved through the engagement of the cerebello-cortical functional connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Comparative study of muscular tonus in spastic tetra paretic cerebral palsy in children with predominantly cortical and subcortical lesions in computerized tomography of the skull

    International Nuclear Information System (INIS)

    Iwabe, Cristina; Piovesana, Ana Maria Sedrez Gonzaga

    2003-01-01

    The objective was to compare distribution and intensity of muscular tonus in spastic tetra paretic cerebral palsy (CP), correlating the clinical data with lesion location in the central nervous system. Twelve children aged two to four years old with predominantly cortical lesions (six children) and subcortical lesions (six children) were included. The tonus was analyzed in the upper (UULL) and lower limbs (LLLL) based on Durigon and Piemonte protocol. The result showed that there was no significant difference regarding tonus intensity and distribution in the UULL and LLLL in both groups. Comparing the upper and lower limbs of subjects in the same group, the LLLL presented more asymmetry and higher tonus intensity than the UULL. It was concluded that in this study children with CP as a result of predominantly cortical or subcortical lesions present a similar deficit in tonus modulation, causing a symmetric and homogeneous distribution of hypertonicity, which is predominant in the LLLL. (author)

  20. The electroweak polarization asymmetry: A guided tour

    International Nuclear Information System (INIS)

    Kennedy, D.C.

    1988-10-01

    A comprehensive review is provided of the electroweak polarization asymmetry at the Z 0 , a highly accurate measure of the Z 0 coupling to fermions. Its significance as a precision test of the Standard Model is explored in detail. Emphasized are the role of electroweak symmetry-breaking and radiative corrections; the non-decoupling of new physics beyond the Z 0 ; and the testing of extensions of the Standard Model, such as supersymmetry, technicolor, new generations of fermions, grand unification, and new gauge forces. Also discussed are the relationship of the polarization asymmetry to other electroweak observables and its superiority to other Z 0 asymmetries. Experimental issues are briefly presented, stressing the importance of polarization at the SLC and LEP e + e - colliders. 42 refs., 13 figs., 2 tabs

  1. A 15oxygen positron study of relative local perfusion and oxygen extraction of the brain in lacunar hemiparesis

    International Nuclear Information System (INIS)

    Rougemont, D.; Baron, J.C.; Lebrun-Grandie, P.; Comar, D.; Bousser, M.G.; Soisson, T.

    1982-01-01

    The oxygen-15 non invasive continuous inhalation technique coupled with positron emission tomography (PET) allows the local study of cerebral blood flow and oxygen metabolism. Recent PET studies have demonstrated the frequent occurrence of widespread metabolic depression remote from the site of middle cerebral artery territory infarct per se, especially over the cortical mantle and thalamus ipsilaterally, and over the cerebellar hemisphere contralaterally. We thought interesting to study the possible occurrence of such abnormalities in patients with lacunar syndromes. We have applied the 15 O technique to seven patients in whom no large causal ischemic lesion could be demonstrated on CT Scans; in only one patient was a lacunar lesion, presumably responsable for the clinical deficit, evidenced. Compared to a set of 19 patients without brain disease, the semi-quantitative results (analyzed in terms of asymmetry indices between homologous brain regions) in our patients did not disclose any pathophysiologically significant abnormality. More specifically no evidence of physiological dysfunction similar to that reported in internal carotid artery territory infarcts, was detected over the cerebral or the cerebellar cortices. These original findings are commented upon in view of the presumably small size and the uncertain topography of the causal lesion [fr

  2. Spatial integration and cortical dynamics.

    Science.gov (United States)

    Gilbert, C D; Das, A; Ito, M; Kapadia, M; Westheimer, G

    1996-01-23

    Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells within each cortical area over distances of 6-8 mm. The relationship between horizontal connections and cortical functional architecture suggests a role in visual segmentation and spatial integration. The distribution of lateral interactions within striate cortex was visualized with optical recording, and their functional consequences were explored by using comparable stimuli in human psychophysical experiments and in recordings from alert monkeys. They may represent the substrate for perceptual phenomena such as illusory contours, surface fill-in, and contour saliency. The dynamic nature of receptive field properties and cortical architecture has been seen over time scales ranging from seconds to months. One can induce a remapping of the topography of visual cortex by making focal binocular retinal lesions. Shorter-term plasticity of cortical receptive fields was observed following brief periods of visual stimulation. The mechanisms involved entailed, for the short-term changes, altering the effectiveness of existing cortical connections, and for the long-term changes, sprouting of axon collaterals and synaptogenesis. The mutability of cortical function implies a continual process of calibration and normalization of the perception of visual attributes that is dependent on sensory experience throughout adulthood and might further represent the mechanism of perceptual learning.

  3. Cortical activity and children's rituals, habits and other repetitive behavior: a visual P300 study.

    Science.gov (United States)

    Evans, David W; Maliken, Ashley

    2011-10-10

    This study examines the link between children's repetitive, ritualistic, behavior and cortical brain activity. Twelve typically developing children between the ages of 6 and 12 years were administered two visual P300, oddball tasks with a 32-electrode electroencephalogram (EEG) system. One of the oddball tasks was specifically designed to reflect sensitivity to asymmetry, a phenomenon common in children and in a variety of disorders involving compulsive behavior. Parents completed the Childhood Routines Inventory. Children's repetitive, compulsive-like behaviors were strongly associated with faster processing of an asymmetrical target stimulus, even when accounting for their P300 latencies on a control task. The research punctuates the continuity between observed brain-behavior links in clinical disorders such as OCD and autism spectrum disorders, and normative variants of repetitive behavior. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Forward-backward asymmetries in W and Z decays

    International Nuclear Information System (INIS)

    Rosner, J.L.; Langacker, P.; Robinett, R.W.

    1984-01-01

    The leptons emitted in decays of W and Z bosons produced in pp or anti pp collisions exhibit characteristic asymmetries with respect to the beam direction, as measured in the W or Z center-of-mass. The asymmetries appear in both pp and anti pp collisions. For anti pp collisions they appear to be approximately constant over the whole y range for values of M/√s greater than or equal to 0.1. For smaller values of M/√s, the asymmetries become more and more washed out in the central region as sea-sea collisions begin to play a larger role in gauge boson formation

  5. Next to leading order semi-inclusive spin asymmetries

    International Nuclear Information System (INIS)

    Florian, D. de; Epele, L.N.; Fanchiotti, H.; Garcia C, C.A.; Sassot, R.

    1996-04-01

    We have computed semi-inclusive spin asymmetries for proton and deuteron targets including next to leading order (NLO) QCD corrections and contributions coming from the target fragmentation region. These corrections have been estimated using NLO fragmentation functions, parton distributions and also a model for spin dependent fracture functions which is proposed here. We have found that NLO corrections are small but non-negligible in a scheme where gluons are polarised and that our estimate for target fragmentation effects, which is in agreement with the available semi-inclusive data, does not modify significantly charged asymmetries but is non-negligible for the so called difference asymmetries. (author). 18 refs., 7 figs

  6. Baryogenesis and dark matter through a Higgs asymmetry.

    Science.gov (United States)

    Servant, Géraldine; Tulin, Sean

    2013-10-11

    In addition to explaining the masses of elementary particles, the Higgs boson may have far-reaching implications for the generation of the matter content in the Universe. For instance, the Higgs boson plays a key role in two main theories of baryogenesis, namely, electroweak baryogenesis and leptogenesis. In this Letter, we propose a new cosmological scenario where the Higgs chemical potential mediates asymmetries between visible and dark matter sectors, either generating a baryon asymmetry from a dark matter asymmetry or vice versa. We illustrate this mechanism with a simple model with two new fermions coupled to the Higgs boson and discuss the associated signatures.

  7. Decision making in noisy bistable systems with time-dependent asymmetry

    Science.gov (United States)

    Nené, Nuno R.; Zaikin, Alexey

    2013-01-01

    Our work draws special attention to the importance of the effects of time-dependent parameters on decision making in bistable systems. Here, we extend previous studies of the mechanism known as speed-dependent cellular decision making in genetic circuits by performing an analytical treatment of the canonical supercritical pitchfork bifurcation problem with an additional time-dependent asymmetry and control parameter. This model has an analogous behavior to the genetic switch. In the presence of transient asymmetries and fluctuations, slow passage through the critical region in both systems increases substantially the probability of specific decision outcomes. We also study the relevance for attractor selection of reaching maximum values for the external asymmetry before and after the critical region. Overall, maximum asymmetries should be reached at an instant where the position of the critical point allows for compensation of the detrimental effects of noise in retaining memory of the transient asymmetries.

  8. CP violating rate asymmetries in B decays ∑

    Indian Academy of Sciences (India)

    CP violating rate asymmetries in B decays. N G DESHPANDE. Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403-5203, USA. Email: desh@oregon.uoregon.edu. Abstract. We briefly discuss measurements of angles β and α of the unitarity triangle. We then review rate asymmetries using SU´3µ ...

  9. Discrimination of cortical laminae using MEG.

    Science.gov (United States)

    Troebinger, Luzia; López, José David; Lutti, Antoine; Bestmann, Sven; Barnes, Gareth

    2014-11-15

    Typically MEG source reconstruction is used to estimate the distribution of current flow on a single anatomically derived cortical surface model. In this study we use two such models representing superficial and deep cortical laminae. We establish how well we can discriminate between these two different cortical layer models based on the same MEG data in the presence of different levels of co-registration noise, Signal-to-Noise Ratio (SNR) and cortical patch size. We demonstrate that it is possible to make a distinction between superficial and deep cortical laminae for levels of co-registration noise of less than 2mm translation and 2° rotation at SNR > 11 dB. We also show that an incorrect estimate of cortical patch size will tend to bias layer estimates. We then use a 3D printed head-cast (Troebinger et al., 2014) to achieve comparable levels of co-registration noise, in an auditory evoked response paradigm, and show that it is possible to discriminate between these cortical layer models in real data. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Origins of the di-jet asymmetry in heavy ion collisions

    CERN Document Server

    Milhano, José Guilherme

    2016-01-01

    The di-jet asymmetry --- the measure of the momentum imbalance in a di-jet system --- is a key jet quenching observable. Using the event generator \\jewel we show that the di-jet asymmetry is dominated by fluctuations both in proton-proton and in heavy ion collisions. We discuss how in proton-proton collisions the asymmetry is generated through recoil and out-of-cone radiation. In heavy ion collisions two additional sources contribute to the asymmetry, namely energy loss fluctuations and differences in path length. The latter is shown to be a sub-leading effect. We discuss the implications of our results for the interpretation of this observable.

  11. Origins of the di-jet asymmetry in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Milhano, Jose Guilherme; Zapp, Korinna Christine [Universidade de Lisboa, CENTRA, Instituto Superior Tecnico, Lisbon (Portugal); CERN, Physics Department, Theory Unit, Geneva 23 (Switzerland)

    2016-05-15

    The di-jet asymmetry - the measure of the momentum imbalance in a di-jet system - is a key jet quenching observable. Using the event generator Jewel we show that the di-jet asymmetry is dominated by fluctuations both in proton-proton and in heavy-ion collisions. We discuss how in proton-proton collisions the asymmetry is generated through recoil and out-of-cone radiation. In heavy-ion collisions two additional sources can contribute to the asymmetry, namely energy loss fluctuations and differences in path length. The latter is shown to be a sub-leading effect. We discuss the implications of our results for the interpretation of this observable. (orig.)

  12. LHCb; Measurement of the forward-central $b \\bar{b}$ production asymmetry

    CERN Multimedia

    Salustino Guimarães, V

    2013-01-01

    CDF and D0 collaborations results suggests that the top-quark forward-backward production asymmetry is much larger than the Standard Model (SM) predictions. Measuring the $b \\bar{b}$ asymmetry production would provide constraint on the flavor structure of any model that attempts to explain the CDF and D0 results. A measurement of the forward-central (FC) $b\\bar{b}$ production asymmetry is presented based on the LHCb data collected in 2011 at $\\sqrt{s}$ = 7 TeV corresponding to an integrated luminosity of 1.0 fb$^{-1}$ using selected events that have two identified $b$ jets, one of which is flavor tagged by one muon with high momentum. The FC asymmetry is defined as \\begin{align} A^{b \\bar{b}}_{FC}=\\frac{N(\\Delta y > 0)-N(\\Delta y 0)+N(\\Delta y 100$ GeV the expected asymmetry is about $\\cal{O}$(0.1 %) where gluon fusion which has no asymmetry is less dominant at high mass.

  13. Is cortical bone hip? What determines cortical bone properties?

    Science.gov (United States)

    Epstein, Sol

    2007-07-01

    Increased bone turnover may produce a disturbance in bone structure which may result in fracture. In cortical bone, both reduction in turnover and increase in hip bone mineral density (BMD) may be necessary to decrease hip fracture risk and may require relatively greater proportionate changes than for trabecular bone. It should also be noted that increased porosity produces disproportionate reduction in bone strength, and studies have shown that increased cortical porosity and decreased cortical thickness are associated with hip fracture. Continued studies for determining the causes of bone strength and deterioration show distinct promise. Osteocyte viability has been observed to be an indicator of bone strength, with viability as the result of maintaining physiological levels of loading and osteocyte apoptosis as the result of a decrease in loading. Osteocyte apoptosis and decrease are major factors in the bone loss and fracture associated with aging. Both the osteocyte and periosteal cell layer are assuming greater importance in the process of maintaining skeletal integrity as our knowledge of these cells expand, as well being a target for pharmacological agents to reduce fracture especially in cortical bone. The bisphosphonate alendronate has been seen to have a positive effect on cortical bone by allowing customary periosteal growth, while reducing the rate of endocortical bone remodeling and slowing bone loss from the endocortical surface. Risedronate treatment effects were attributed to decrease in bone resorption and thus a decrease in fracture risk. Ibandronate has been seen to increase BMD as the spine and femur as well as a reduced incidence of new vertebral fractures and non vertebral on subset post hoc analysis. And treatment with the anabolic agent PTH(1-34) documented modeling and remodelling of quiescent and active bone surfaces. Receptor activator of nuclear factor kappa B ligand (RANKL) plays a key role in bone destruction, and the human monoclonal

  14. Using ground reaction force to predict knee kinetic asymmetry following anterior cruciate ligament reconstruction.

    Science.gov (United States)

    Dai, B; Butler, R J; Garrett, W E; Queen, R M

    2014-12-01

    Asymmetries in sagittal plane knee kinetics have been identified as a risk factor for anterior cruciate ligament (ACL) re-injury. Clinical tools are needed to identify the asymmetries. This study examined the relationships between knee kinetic asymmetries and ground reaction force (GRF) asymmetries during athletic tasks in adolescent patients following ACL reconstruction (ACL-R). Kinematic and GRF data were collected during a stop-jump task and a side-cutting task for 23 patients. Asymmetry indices between the surgical and non-surgical limbs were calculated for GRF and knee kinetic variables. For the stop-jump task, knee kinetics asymmetry indices were correlated with all GRF asymmetry indices (P kinetic asymmetry indices were correlated with the peak propulsion vertical GRF and vertical GRF impulse asymmetry indices (P kinetic asymmetries and therefore may assist in optimizing rehabilitation outcomes and minimizing re-injury rates. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Effect of age at onset on cortical thickness and cognition in posterior cortical atrophy

    Science.gov (United States)

    Suárez-González, Aida; Lehmann, Manja; Shakespeare, Timothy J.; Yong, Keir X.X.; Paterson, Ross W.; Slattery, Catherine F.; Foulkes, Alexander J.M.; Rabinovici, Gil D.; Gil-Néciga, Eulogio; Roldán-Lora, Florinda; Schott, Jonathan M.; Fox, Nick C.; Crutch, Sebastian J.

    2016-01-01

    Age at onset (AAO) has been shown to influence the phenotype of Alzheimer’s disease (AD), but how it affects atypical presentations of AD remains unknown. Posterior cortical atrophy (PCA) is the most common form of atypical AD. In this study, we aimed to investigate the effect of AAO on cortical thickness and cognitive function in 98 PCA patients. We used Freesurfer (v5.3.0) to compare cortical thickness with AAO both as a continuous variable, and by dichotomizing the groups based on median age (58 years). In both the continuous and dichotomized analyses, we found a pattern suggestive of thinner cortex in precuneus and parietal areas in earlier-onset PCA, and lower cortical thickness in anterior cingulate and prefrontal cortex in later-onset PCA. These cortical thickness differences between PCA subgroups were consistent with earlier-onset PCA patients performing worse on cognitive tests involving parietal functions. Our results provide a suggestion that AAO may not only affect the clinico-anatomical characteristics in AD but may also affect atrophy patterns and cognition within atypical AD phenotypes. PMID:27318138

  16. Diagnostic value of 18F-FDG PET and 11C-PIB PET on early stage posterior cortical atrophy

    Directory of Open Access Journals (Sweden)

    Shuai LIU

    2015-08-01

    Full Text Available Background  Posterior cortical atrophy (PCA is a kind of progressive neurodegenerative disease with cortical visual impairment as the first symptom. Because of rare clinical incidence, early onset age, special clinical symptoms and unobvious MRI abnormality, the definitive diagnosis of PCA is difficult. This study used 18F-fluoro-2-deoxy-D-glucose (18F-FDG PET and 11C-Pittsburgh compound B (11C-PIB PET for PCA patients with unobvious MRI abnormality, so as to discuss the value of PET in the early diagnosis of PCA.  Methods  Five patients diagnosed as PCA in our hospital between April 2012 and March 2015 were enrolled in this study. Cognitive function was measured by Mini-Mental State Examination (MMSE, Montreal Cognitive Assessment (MoCA, Activities of Daily Living (ADL and Clock Drawing Test (CDT. Brain MRI, 18F-FDG PET and 11C-PIB PET were performed to analyze glucose metabolism and perfusion of posterior cortex.  Results Neuropsychological tests revealed that the ability of writing, calculating, visuospatial and executive function of all these patients were impaired. Color vision tests showed abnormal results. MRI showed that the posterior atrophy (PA scores were 0-2 (average 1 on the left side and 0-1 (average 0.80 on the right side. The medial temporal atrophy (MTA scores were 1-3 (average 1.80 on the left side and 1-4 (average 2 on the right side. The ventricular enlargement (VE scores were 1-2 (average 1.80 on the left side and 1-2 (average 1.60 on the right side. 18F-FDG PET showed glucose metabolism decreased obviously on bilateral temporo-parieto-occipital cortex, precuneus and cingulate gyrus, and slightly on frontal lobes and subcortical structure. 11C-PIB PET showed radioactive 11C-PIB deposition on bilateral frontal, temporal, parietal and occipital cortex, and the outline of cerebellar cortex was clear.  Conclusions  For PCA patients whose parietal and occipital cortical atrophy is not obvious on MRI, 18F-FDG PET

  17. Trajectories of cortical surface area and cortical volume maturation in normal brain development

    Directory of Open Access Journals (Sweden)

    Simon Ducharme

    2015-12-01

    Full Text Available This is a report of developmental trajectories of cortical surface area and cortical volume in the NIH MRI Study of Normal Brain Development. The quality-controlled sample included 384 individual typically-developing subjects with repeated scanning (1–3 per subject, total scans n=753 from 4.9 to 22.3 years of age. The best-fit model (cubic, quadratic, or first-order linear was identified at each vertex using mixed-effects models, with statistical correction for multiple comparisons using random field theory. Analyses were performed with and without controlling for total brain volume. These data are provided for reference and comparison with other databases. Further discussion and interpretation on cortical developmental trajectories can be found in the associated Ducharme et al.׳s article “Trajectories of cortical thickness maturation in normal brain development – the importance of quality control procedures” (Ducharme et al., 2015 [1].

  18. Human cerebral asymmetries evaluated by computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Chang Chui, H; Damasio, A R [Iowa Univ., Iowa City (USA)

    1980-10-01

    The handedness of seventy-five persons without evidence of neurological disease, was assessed with a standardised test. An analysis of the CT scans of the same persons was performed to determine (1) presence and lateralisation of frontal and occipital 'petalia', (2) width of frontal and occipital lobes of each hemisphere, (3) direction of straight sinus deviation. Results suggest that handedness and cerebral asymmetries are independent variables. There were no significant differences between right-handers and non-right handers. Also there was no significant differences between strongly left-handed and ambidextrous individuals, nor were there differences between right-handers with or without family history of left-handedness. Irrespective of handedness, left occipital 'petalia' was more common than right (p<0.01), right frontal petalia was more common than left (p<0.01), and straight sinus deviation was more commonly toward the right. The study does not support the concept that cerebral 'symmetry' or 'reverse asymmetry' are associated with left-handedness or ambidexterity. The noted asymmetries are more likely to be direct correlates of cerebral language dominance, than of handedness. Outside forces acting on the bone may also contribute to the asymmetries. CT scan may be of value as a direct predictor of cerebral dominance.

  19. Human cerebral asymmetries evaluated by computed tomography

    International Nuclear Information System (INIS)

    Chang Chui, H.; Damasio, A.R.

    1980-01-01

    The handedness of seventy-five persons without evidence of neurological disease, was assessed with a standardised test. An analysis of the CT scans of the same persons was performed to determine (1) presence and lateralisation of frontal and occipital 'petalia', (2) width of frontal and occipital lobes of each hemisphere, (3) direction of straight sinus deviation. Results suggest that handedness and cerebral asymmetries are independent variables. There were no significant differences between right-handers and non-right handers. Also there was no significant differences between strongly left-handed and ambidextrous individuals, nor were there differences between right-handers with or without family history of left-handedness. Irrespective of handedness, left occipital 'petalia' was more common than right (p<0.01), right frontal petalia was more common than left (p<0.01), and straight sinus deviation was more commonly toward the right. The study does not support the concept that cerebral 'symmetry' or 'reverse asymmetry' are associated with left-handedness or ambidexterity. The noted asymmetries are more likely to be direct correlates of cerebral language dominance, than of handedness. Outside forces acting on the bone may also contribute to the asymmetries. CT scan may be of value as a direct predictor of cerebral dominance. (author)

  20. Co-clustering directed graphs to discover asymmetries and directional communities.

    Science.gov (United States)

    Rohe, Karl; Qin, Tai; Yu, Bin

    2016-10-21

    In directed graphs, relationships are asymmetric and these asymmetries contain essential structural information about the graph. Directed relationships lead to a new type of clustering that is not feasible in undirected graphs. We propose a spectral co-clustering algorithm called di-sim for asymmetry discovery and directional clustering. A Stochastic co-Blockmodel is introduced to show favorable properties of di-sim To account for the sparse and highly heterogeneous nature of directed networks, di-sim uses the regularized graph Laplacian and projects the rows of the eigenvector matrix onto the sphere. A nodewise asymmetry score and di-sim are used to analyze the clustering asymmetries in the networks of Enron emails, political blogs, and the Caenorhabditis elegans chemical connectome. In each example, a subset of nodes have clustering asymmetries; these nodes send edges to one cluster, but receive edges from another cluster. Such nodes yield insightful information (e.g., communication bottlenecks) about directed networks, but are missed if the analysis ignores edge direction.

  1. Abnormal cortical synaptic transmission in CaV2.1 knockin mice with the S218L missense mutation which causes a severe familial hemiplegic migraine syndrome in humans

    Science.gov (United States)

    Vecchia, Dania; Tottene, Angelita; van den Maagdenberg, Arn M.J.M.; Pietrobon, Daniela

    2015-01-01

    Familial hemiplegic migraine type 1 (FHM1) is caused by gain-of-function mutations in CaV2.1 (P/Q-type) Ca2+ channels. Knockin (KI) mice carrying the FHM1 R192Q missense mutation show enhanced cortical excitatory synaptic transmission at pyramidal cell synapses but unaltered cortical inhibitory neurotransmission at fast-spiking interneuron synapses. Enhanced cortical glutamate release was shown to cause the facilitation of cortical spreading depression (CSD) in R192Q KI mice. It, however, remains unknown how other FHM1 mutations affect cortical synaptic transmission. Here, we studied neurotransmission in cortical neurons in microculture from KI mice carrying the S218L mutation, which causes a severe FHM syndrome in humans and an allele-dosage dependent facilitation of experimental CSD in KI mice, which is larger than that caused by the R192Q mutation. We show gain-of-function of excitatory neurotransmission, due to increased action-potential evoked Ca2+ influx and increased probability of glutamate release at pyramidal cell synapses, but unaltered inhibitory neurotransmission at multipolar interneuron synapses in S218L KI mice. In contrast with the larger gain-of-function of neuronal CaV2.1 current in homozygous than heterozygous S218L KI mice, the gain-of-function of evoked glutamate release, the paired-pulse ratio and the Ca2+ dependence of the excitatory postsynaptic current were similar in homozygous and heterozygous S218L KI mice, suggesting compensatory changes in the homozygous mice. Furthermore, we reveal a unique feature of S218L KI cortical synapses which is the presence of a fraction of mutant CaV2.1 channels being open at resting potential. Our data suggest that, while the gain-of-function of evoked glutamate release may explain the facilitation of CSD in heterozygous S218L KI mice, the further facilitation of CSD in homozygous S218L KI mice is due to other CaV2.1-dependent mechanisms, that likely include Ca2+ influx at voltages sub-threshold for action

  2. Communication Apprehension and Resting Alpha Range Asymmetry in the Anterior Cortex

    Science.gov (United States)

    Beatty, Michael J.; Heisel, Alan D.; Lewis, Robert J.; Pence, Michelle E.; Reinhart, Amber; Tian, Yan

    2011-01-01

    In this study, we examined the relationship between trait-like communication apprehension (CA) and resting alpha range asymmetry in the anterior cortex (AC). Although theory and research in cognitive neuroscience suggest that asymmetry in the AC constitutes a relatively stable, inborn, substrate of emotion, some studies indicate that asymmetry can…

  3. Right-handed snakes: convergent evolution of asymmetry for functional specialization

    OpenAIRE

    Hoso, Masaki; Asami, Takahiro; Hori, Michio

    2007-01-01

    External asymmetry found in diverse animals bears critical functions to fulfil ecological requirements. Some snail-eating arthropods exhibit directional asymmetry in their feeding apparatus for foraging efficiency because dextral (clockwise) species are overwhelmingly predominant in snails. Here, we show convergence of directional asymmetry in the dentition of snail-eating vertebrates. We found that snakes in the subfamily Pareatinae, except for non-snail-eating specialists, have more teeth o...

  4. Asymmetry of Stark-broadened Layman lines from laser-produced plasmas

    International Nuclear Information System (INIS)

    Joyce, R.F.; Woltz, L.A.; Hooper, C.F. Jr.

    1986-01-01

    This paper discusses three significant causes of spectral line asymmetry: the ion-quadrupole interaction, the quadratic Stark effect and fine structure splitting that are included in the calculation of Lyman line profiles emitted by highly-ionized hydrogenic radiators in a dense, hot plasma. The line asymmetries are shown to be strongly dependent on the plasma density, indicating that the asymmetry may be of use as a density diagnostic

  5. Focal cortical dysplasias: surgical outcome in 67 patients in relation to histological subtypes and dual pathology.

    Science.gov (United States)

    Fauser, Susanne; Schulze-Bonhage, Andreas; Honegger, Juergen; Carmona, Hans; Huppertz, Hans-Juergen; Pantazis, Georgios; Rona, Sabine; Bast, Thomas; Strobl, Karl; Steinhoff, Bernhard J; Korinthenberg, Rudolf; Rating, Dietz; Volk, Benedikt; Zentner, Josef

    2004-11-01

    The purpose of this study was to assess whether the histological subtype of focal cortical dysplasia and dual pathology affect surgical outcome in patients with medically intractable epilepsy due to focal cortical dysplasia (FCD). We retrospectively analysed the outcome of 67 patients from 2 to 66 years of age at follow-up periods of 6 to 48 months after epilepsy surgery. Histological subtypes were classified according to Palmini and included a few cases with mild histological abnormalities corresponding to the definition of mild malformations of cortical development. The seizure outcome was classified according to Engel and evaluated at the last follow-up visit as well as at follow-up periods of 12 and 24 months after surgery. The outcome in patients with FCD and additional hippocampal pathology (dual pathology) was analysed separately. Distribution of histological subtypes differed in temporal and extratemporal localization, with a significantly higher extratemporal prevalence of FCD type 2. There was a tendency towards better postsurgical outcome related to the last follow-up visit in patients with more subtle abnormalities classified as mild malformations of cortical development (mMCD) (63% Engel Ia), FCD type 1a (67% Engel Ia) and FCD type 1b (55% Engel Ia) compared with patients with FCD type 2a (43% Engel Ia) and FCD type 2b (Taylor type) (50% Engel Ia). Considering the outcome at follow-up periods over 12 and 24 months, complete seizure-freedom was achieved significantly more often in patients with FCD type 1 and mMCD than with FCD type 2, and seizure reduction by less than 75% (Engel IV) occurred in more patients with FCD type 2a compared with the other subgroups. This tendency was seen in the whole patient group and in the extratemporal subgroup. Patients with dual pathology almost always had temporal lobe epilepsy; the outcome in this patient group was generally favourable (66% complete seizure-freedom at the last follow-up visit). The outcome remained

  6. Toroidal asymmetries in divertor impurity influxes in NSTX

    Directory of Open Access Journals (Sweden)

    F. Scotti

    2017-08-01

    Full Text Available Toroidal asymmetries in divertor carbon and lithium influxes were observed in NSTX, due to toroidal differences in surface composition, tile leading edges, externally-applied three-dimensional (3D fields and toroidally-localized edge plasma modifications due to radio frequency heating. Understanding toroidal asymmetries in impurity influxes is critical for the evaluation of total impurity sources, often inferred from measurements with a limited toroidal coverage. The toroidally-asymmetric lithium deposition induced asymmetries in divertor lithium influxes. Enhanced impurity influxes at the leading edge of divertor tiles were the main cause of carbon toroidal asymmetries and were enhanced during edge localized modes. Externally-applied 3D fields led to strike point splitting and helical lobes observed in divertor impurity emission, but marginal changes to the toroidally-averaged impurity influxes. Power coupled to the scrape-off layer SOL plasma during radio frequency (RF heating of H-mode discharges enhanced impurity influxes along the non-axisymmetric divertor footprint of flux tubes connecting to plasma in front of the RF antenna.

  7. Critical asymmetry in renormalization group theory for fluids.

    Science.gov (United States)

    Zhao, Wei; Wu, Liang; Wang, Long; Li, Liyan; Cai, Jun

    2013-06-21

    The renormalization-group (RG) approaches for fluids are employed to investigate critical asymmetry of vapour-liquid equilibrium (VLE) of fluids. Three different approaches based on RG theory for fluids are reviewed and compared. RG approaches are applied to various fluid systems: hard-core square-well fluids of variable ranges, hard-core Yukawa fluids, and square-well dimer fluids and modelling VLE of n-alkane molecules. Phase diagrams of simple model fluids and alkanes described by RG approaches are analyzed to assess the capability of describing the VLE critical asymmetry which is suggested in complete scaling theory. Results of thermodynamic properties obtained by RG theory for fluids agree with the simulation and experimental data. Coexistence diameters, which are smaller than the critical densities, are found in the RG descriptions of critical asymmetries of several fluids. Our calculation and analysis show that the approach coupling local free energy with White's RG iteration which aims to incorporate density fluctuations into free energy is not adequate for VLE critical asymmetry due to the inadequate order parameter and the local free energy functional used in the partition function.

  8. The autism puzzle: Diffuse but not pervasive neuroanatomical abnormalities in children with ASD

    Directory of Open Access Journals (Sweden)

    D. Sussman

    2015-01-01

    Full Text Available Autism Spectrum Disorder (ASD is a clinically diagnosed, heterogeneous, neurodevelopmental condition, whose underlying causes have yet to be fully determined. A variety of studies have investigated either cortical, subcortical, or cerebellar anatomy in ASD, but none have conducted a complete examination of all neuroanatomical parameters on a single, large cohort. The current study provides a comprehensive examination of brain development of children with ASD between the ages of 4 and 18 years who are carefully matched for age and sex with typically developing controls at a ratio of one-to-two. Two hundred and ten magnetic resonance images were examined from 138 Control (116 males and 22 females and 72 participants with ASD (61 males and 11 females. Cortical segmentation into 78 brain-regions and 81,924 vertices was conducted with CIVET which facilitated a region-of-interest- (ROI- and vertex-based analysis, respectively. Volumes for the cerebellum, hippocampus, striatum, pallidum, and thalamus and many associated subregions were derived using the MAGeT Brain algorithm. The study reveals cortical, subcortical and cerebellar differences between ASD and Control group participants. Diagnosis, diagnosis-by-age, and diagnosis-by-sex interaction effects were found to significantly impact total brain volume but not total surface area or mean cortical thickness of the ASD participants. Localized (vertex-based analysis of cortical thickness revealed no significant group differences, even when age, age-range, and sex were used as covariates. Nonetheless, the region-based cortical thickness analysis did reveal regional changes in the left orbitofrontal cortex and left posterior cingulate gyrus, both of which showed reduced age-related cortical thinning in ASD. Our finding of region-based differences without significant vertex-based results likely indicates non-focal effects spanning the entirety of these regions. The hippocampi, thalamus, and globus

  9. Baryon asymmetry, dark matter and local baryon number

    International Nuclear Information System (INIS)

    Fileviez Pérez, Pavel; Patel, Hiren H.

    2014-01-01

    We propose a new mechanism to understand the relation between baryon and dark matter asymmetries in the universe in theories where the baryon number is a local symmetry. In these scenarios the B−L asymmetry generated through a mechanism such as leptogenesis is transferred to the dark matter and baryonic sectors through sphalerons processes which conserve total baryon number. We show that it is possible to have a consistent relation between the dark matter relic density and the baryon asymmetry in the universe even if the baryon number is broken at the low scale through the Higgs mechanism. We also discuss the case where one uses the Stueckelberg mechanism to understand the conservation of baryon number in nature.

  10. A Statistical Model of Head Asymmetry in Infants with Deformational Plagiocephaly

    DEFF Research Database (Denmark)

    Lanche, Stéphanie; Darvann, Tron Andre; Ólafsdóttir, Hildur

    2007-01-01

    Deformational plagiocephaly is a term describing cranial asymmetry and deformation commonly seen in infants. The purpose of this work was to develop a methodology for assessment and modelling of head asymmetry. The clinical population consisted of 38 infants for whom 3-dimensional surface scans...... quantitative description of the asymmetry present in the dataset....

  11. Targeted presurgical decompensation in patients with yaw-dependent facial asymmetry.

    Science.gov (United States)

    Kim, Kyung-A; Lee, Ji-Won; Park, Jeong-Ho; Kim, Byoung-Ho; Ahn, Hyo-Won; Kim, Su-Jung

    2017-05-01

    Facial asymmetry can be classified into the rolling-dominant type (R-type), translation-dominant type (T-type), yawing-dominant type (Y-type), and atypical type (A-type) based on the distorted skeletal components that cause canting, translation, and yawing of the maxilla and/or mandible. Each facial asymmetry type represents dentoalveolar compensations in three dimensions that correspond to the main skeletal discrepancies. To obtain sufficient surgical correction, it is necessary to analyze the main skeletal discrepancies contributing to the facial asymmetry and then the skeletal-dental relationships in the maxilla and mandible separately. Particularly in cases of facial asymmetry accompanied by mandibular yawing, it is not simple to establish pre-surgical goals of tooth movement since chin deviation and posterior gonial prominence can be either aggravated or compromised according to the direction of mandibular yawing. Thus, strategic dentoalveolar decompensations targeting the real basal skeletal discrepancies should be performed during presurgical orthodontic treatment to allow for sufficient skeletal correction with stability. In this report, we document targeted decompensation of two asymmetry patients focusing on more complicated yaw-dependent types than others: Y-type and A-type. This may suggest a clinical guideline on the targeted decompensation in patient with different types of facial asymmetries.

  12. Central crosstalk for somatic tinnitus: abnormal vergence eye movements.

    Directory of Open Access Journals (Sweden)

    Qing Yang

    Full Text Available BACKGROUND: Frequent oulomotricity problems with orthoptic testing were reported in patients with tinnitus. This study examines with objective recordings vergence eye movements in patients with somatic tinnitus patients with ability to modify their subjective tinnitus percept by various movements, such as jaw, neck, eye movements or skin pressure. METHODS: Vergence eye movements were recorded with the Eyelink II video system in 15 (23-63 years control adults and 19 (36-62 years subjects with somatic tinnitus. FINDINGS: 1 Accuracy of divergence but not of convergence was lower in subjects with somatic tinnitus than in control subjects. 2 Vergence duration was longer and peak velocity was lower in subjects with somatic tinnitus than in control subjects. 3 The number of embedded saccades and the amplitude of saccades coinciding with the peak velocity of vergence were higher for tinnitus subjects. Yet, saccades did not increase peak velocity of vergence for tinnitus subjects, but they did so for controls. 4 In contrast, there was no significant difference of vergence latency between these two groups. INTERPRETATION: The results suggest dysfunction of vergence areas involving cortical-brainstem-cerebellar circuits. We hypothesize that central auditory dysfunction related to tinnitus percept could trigger mild cerebellar-brainstem dysfunction or that tinnitus and vergence dysfunction could both be manifestations of mild cortical-brainstem-cerebellar syndrome reflecting abnormal cross-modality interactions between vergence eye movements and auditory signals.

  13. Changes in basal ganglia processing of cortical input following magnetic stimulation in Parkinsonism.

    Science.gov (United States)

    Tischler, Hadass; Moran, Anan; Belelovsky, Katya; Bronfeld, Maya; Korngreen, Alon; Bar-Gad, Izhar

    2012-12-01

    Parkinsonism is associated with major changes in neuronal activity throughout the cortico-basal ganglia loop. Current measures quantify changes in baseline neuronal and network activity but do not capture alterations in information propagation throughout the system. Here, we applied a novel non-invasive magnetic stimulation approach using a custom-made mini-coil that enabled us to study transmission of neuronal activity throughout the cortico-basal ganglia loop in both normal and parkinsonian primates. By magnetically perturbing cortical activity while simultaneously recording neuronal responses along the cortico-basal ganglia loop, we were able to directly investigate modifications in descending cortical activity transmission. We found that in both the normal and parkinsonian states, cortical neurons displayed similar multi-phase firing rate modulations in response to magnetic stimulation. However, in the basal ganglia, large synaptically driven stereotypic neuronal modulation was present in the parkinsonian state that was mostly absent in the normal state. The stimulation-induced neuronal activity pattern highlights the change in information propagation along the cortico-basal ganglia loop. Our findings thus point to the role of abnormal dynamic activity transmission rather than changes in baseline activity as a major component in parkinsonian pathophysiology. Moreover, our results hint that the application of transcranial magnetic stimulation (TMS) in human patients of different disorders may result in different neuronal effects than the one induced in normal subjects. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. The role of three-gluon correlation functions in the single spin asymmetry

    Directory of Open Access Journals (Sweden)

    Beppu Hiroo

    2015-01-01

    Full Text Available We study the twist-3 three-gluon contribution to the single spin asymmetry in the light-hadron production in pp collision in the framework of the collinear factorization. We derive the corresponding cross section formula in the leading order with respect to the QCD coupling constant. We also present a numerical calculation of the asymmetry at the RHIC energy, using a model for the three-gluon correlation functions suggested by the asymmetry for the D-meson production at RHIC. We found that the asymmetries for the light-hadron and the jet productions are very useful to constrain the magnitude and form of the correlation functions. Since the three-gluon correlation functions shift the asymmetry for all kinds of hadrons in the same direction, it is unlikely that they become a main source of the asymmetry.

  15. Communication and Wiring in the Cortical Connectome

    Directory of Open Access Journals (Sweden)

    Julian eBudd

    2012-10-01

    Full Text Available In cerebral cortex, the huge mass of axonal wiring that carries information between near and distant neurons is thought to provide the neural substrate for cognitive and perceptual function. The goal of mapping the connectivity of cortical axons at different spatial scales, the cortical connectome, is to trace the paths of information flow in cerebral cortex. To appreciate the relationship between the connectome and cortical function, we need to discover the nature and purpose of the wiring principles underlying cortical connectivity. A popular explanation has been that axonal length is strictly minimized both within and between cortical regions. In contrast, we have hypothesized the existence of a multi-scale principle of cortical wiring where to optimise communication there is a trade-off between spatial (construction and temporal (routing costs. Here, using recent evidence concerning cortical spatial networks we critically evaluate this hypothesis at neuron, local circuit, and pathway scales. We report three main conclusions. First, the axonal and dendritic arbor morphology of single neocortical neurons may be governed by a similar wiring principle, one that balances the conservation of cellular material and conduction delay. Second, the same principle may be observed for fibre tracts connecting cortical regions. Third, the absence of sufficient local circuit data currently prohibits any meaningful assessment of the hypothesis at this scale of cortical organization. To avoid neglecting neuron and microcircuit levels of cortical organization, the connectome framework should incorporate more morphological description. In addition, structural analyses of temporal cost for cortical circuits should take account of both axonal conduction and neuronal integration delays, which appear mostly of the same order of magnitude. We conclude the hypothesized trade-off between spatial and temporal costs may potentially offer a powerful explanation for

  16. Karyotipic asymmetry of both wild and cultivated species of Pennisetum

    Directory of Open Access Journals (Sweden)

    Vânia Helena Techio

    2010-01-01

    Full Text Available This study aimed the establishment of the relation between karyotipic asymmetry values obtained for different accessions of both wild and cultivated species of Pennisetum from Germplasm Bank of Embrapa Gado de Leite/Juiz de Fora-Minas Gerais State, Brazil. Conventional cell cycle synchronization protocols and Feulgen staining method were used to obtain metaphases plates. The wild-type accessions corresponded to the species P. setosum (2n=6x=54, P. nervosum (2n=4x=36, and P. orientale (2n=4x=36, and the cultivated to P. purpureum (2n=4x=28 and P. glaucum (2n=2x=14. No significant difference was found for the total length of chromosomes (p>0.05 among the species. The analysis of intra-chromosomal asymmetry (A1 and inter-chromosomal asymmetry (A2 has shown that P. setosum has a tendency to chromosome asymmetry. P. nervosum, P. orientale, and P. purpureum have presented an intermediary level of asymmetry and P. glaucum, low asymmetry. Considering Stebbins criteria, the karyotype of P. glaucum and those from the three wild species fitted into the category 1A-symmetrical. With regard to P. purpureum, karyotypes of the accessions BAGs 54, 65 and 91 fitted into the category 2B and the other two genotypes (BAGs 63 and 75 fitted into the 1A. Comparison between the karyotype classification according to the inter- and intra-chromosomal asymmetry and Stebbins methodologies revealed that this last one alone was not able to detect small variations between karyotypes of the taxa closely related.

  17. Poloidal asymmetries of the heavy ions in the ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Odstrcil, Tomas [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Physik-Department E28, Technische Universitaet Muenchen, Garching (Germany); Puetterich, Thomas; Angioni, Clemente; Bilato, Roberto; Gude, Anja; Vezinet, Didier [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Mazon, Didier [CEA, IRFM, Saint Paul-lez-Durance (France); Collaboration: ASDEX Upgrade Team

    2015-05-01

    Poloidal asymmetries of heavy ions in the tokamak plasma are caused by the presence of forces parallel with field-lines which have comparable magnitude to the thermal pressure. The most important examples are the centrifugal force (CF) and the electric force (EF). The CF is caused by fast toroidal rotation of the plasma column which is pushing impurity ions, that have a substantially higher mass than the main ions, on the outer-side of the plasma. And the EF can be produced by ion cyclotron heated fast particles with high pitch angle that are trapped by the mirror force on the low field side of the plasma. The excessive charge produced by these particles is affecting highly charged impurities and pushing them to the high field side of the plasma. From predictions based on neoclassical and turbulent theory, it follows that the radial flux of heavy ions will be significantly changed by the presence of these asymmetries. The purpose of this study is to investigate the presence of these asymmetries in ASDEX Upgrade and verify the predicted consequences on the particles flux. High intrinsic content of the tungsten in AUG plasma makes this device well suitable for such studies. Precise measurement of the SXR (soft-X-ray) radiation profiles has identified a presence of CF generated asymmetries in every NBI heated Asdex discharge. Poloidal asymmetry should than lead to the significant change in the neoclassical and turbulent radial transport of these heavy ions. High intrinsic content of the tungsten in Asdex plasma makes this device well suitable for studying these asymmetries. Precise measurement of the SXR (soft-X-ray) radiation profiles has identified a presence of CF generated asymmetries in every NBI heated Asdex discharge. For heavy and highly charged impurities multiple mechanisms exist that produce non-constant impurities densities on the flux surfaces. As for neoclassical and turbulent transport models such an asymmetry is of highly importance an effort is

  18. Perceptual learning and adult cortical plasticity.

    Science.gov (United States)

    Gilbert, Charles D; Li, Wu; Piech, Valentin

    2009-06-15

    The visual cortex retains the capacity for experience-dependent changes, or plasticity, of cortical function and cortical circuitry, throughout life. These changes constitute the mechanism of perceptual learning in normal visual experience and in recovery of function after CNS damage. Such plasticity can be seen at multiple stages in the visual pathway, including primary visual cortex. The manifestation of the functional changes associated with perceptual learning involve both long term modification of cortical circuits during the course of learning, and short term dynamics in the functional properties of cortical neurons. These dynamics are subject to top-down influences of attention, expectation and perceptual task. As a consequence, each cortical area is an adaptive processor, altering its function in accordance to immediate perceptual demands.

  19. Abnormal development of sensory-motor, visual temporal and parahippocampal cortex in children with learning disabilities and borderline intellectual functioning

    Directory of Open Access Journals (Sweden)

    Francesca eBaglio

    2014-10-01

    Full Text Available Borderline intellectual functioning (BIF is a condition characterized by an intelligence quotient (IQ between 70 and 85. BIF children present with cognitive, motor, social and adaptive limitations that result in learning disabilities and are more likely to develop psychiatric disorders later in life. Aim of this study was to investigate brain morphometry and its relation to IQ level in borderline intellectual functioning children.Thirteen children with BIF and 14 age- and sex-matched typically developing children were enrolled. All children underwent a full IQ assessment (WISC-III scale and a Magnetic Resonance (MR examination including conventional sequences to assess brain structural abnormalities and high resolution 3D images for voxel based morphometry (VBM analysis. To investigate to what extent the group influenced gray matter volumes, both univariate and multivariate generalized linear model analysis of variance were used, and the varimax factor analysis was used to explore variable correlations and clusters among subjects. Results showed that BIF children, compared to controls have increased regional gray matter volume in bilateral sensori-motor and right posterior temporal cortices and decreased gray matter volume in right parahippocampal gyrus. Gray matter volumes were highly correlated with IQ indices.Our is a case study of a group of BIF children showing that BIF is associated with abnormal cortical development in brain areas that have a pivotal role in motor, learning and behavioral processes. Our findings, although allowing for little generalization to general population, contributes to the very limited knowledge in this field. Future longitudinal MR studies will be useful in verifying whether cortical features can be modified over time even in association with rehabilitative intervention.

  20. Basic visual function and cortical thickness patterns in posterior cortical atrophy.

    Science.gov (United States)

    Lehmann, Manja; Barnes, Josephine; Ridgway, Gerard R; Wattam-Bell, John; Warrington, Elizabeth K; Fox, Nick C; Crutch, Sebastian J

    2011-09-01

    Posterior cortical atrophy (PCA) is characterized by a progressive decline in higher-visual object and space processing, but the extent to which these deficits are underpinned by basic visual impairments is unknown. This study aimed to assess basic and higher-order visual deficits in 21 PCA patients. Basic visual skills including form detection and discrimination, color discrimination, motion coherence, and point localization were measured, and associations and dissociations between specific basic visual functions and measures of higher-order object and space perception were identified. All participants showed impairment in at least one aspect of basic visual processing. However, a number of dissociations between basic visual skills indicated a heterogeneous pattern of visual impairment among the PCA patients. Furthermore, basic visual impairments were associated with particular higher-order object and space perception deficits, but not with nonvisual parietal tasks, suggesting the specific involvement of visual networks in PCA. Cortical thickness analysis revealed trends toward lower cortical thickness in occipitotemporal (ventral) and occipitoparietal (dorsal) regions in patients with visuoperceptual and visuospatial deficits, respectively. However, there was also a lot of overlap in their patterns of cortical thinning. These findings suggest that different presentations of PCA represent points in a continuum of phenotypical variation.