WorldWideScience

Sample records for abnormal cell growth

  1. Abnormal Grain Growth Suppression in Aluminum Alloys

    Science.gov (United States)

    Hales, Stephen J. (Inventor); Claytor, Harold Dale (Inventor); Alexa, Joel A. (Inventor)

    2015-01-01

    The present invention provides a process for suppressing abnormal grain growth in friction stir welded aluminum alloys by inserting an intermediate annealing treatment ("IAT") after the welding step on the article. The IAT may be followed by a solution heat treatment (SHT) on the article under effectively high solution heat treatment conditions. In at least some embodiments, a deformation step is conducted on the article under effective spin-forming deformation conditions or under effective superplastic deformation conditions. The invention further provides a welded article having suppressed abnormal grain growth, prepared by the process above. Preferably the article is characterized with greater than about 90% reduction in area fraction abnormal grain growth in any friction-stir-welded nugget.

  2. Dynamic Abnormal Grain Growth in Refractory Metals

    Science.gov (United States)

    Noell, Philip J.; Taleff, Eric M.

    2015-11-01

    High-temperature plastic deformation of the body-centered cubic (BCC) refractory metals Mo and Ta can initiate and propagate abnormal grains at significantly lower temperatures and faster rates than is possible by static annealing alone. This discovery reveals a new and potentially important aspect of abnormal grain growth (AGG) phenomena. The process of AGG during plastic deformation at elevated temperatures, termed dynamic abnormal grain growth (DAGG), was observed at homologous temperatures between 0.52 and 0.72 in both Mo and Ta sheet materials; these temperatures are much lower than those for previous observations of AGG in these materials during static annealing. DAGG was used to repeatedly grow single crystals several centimeters in length. Investigations to date have produced a basic understanding of the conditions that lead to DAGG and how DAGG is affected by microstructure in BCC refractory metals. The current state of understanding for DAGG is reviewed in this paper. Attention is given to the roles of temperature, plastic strain, boundary mobility and preexisting microstructure. DAGG is considered for its potential useful applications in solid-state crystal growth and its possibly detrimental role in creating undesired abnormal grains during thermomechanical processing.

  3. Overexpression of TSC-22 (transforming growth factor-β-stimulated clone-22) causes marked obesity, splenic abnormality and B cell lymphoma in transgenic mice

    Science.gov (United States)

    Miwa, Yoshihiro; Horiuchi, Hideki; Furihata, Tadashi; Tachibana, Masatsugu; Fujimori, Takahiro

    2016-01-01

    In this study, we generated transgenic (Tg) mice, which overexpressed transforming growth factor (TGF)-β stimulated clone-22 (TSC-22), and investigate the functional role of TSC-22 on their development and pathogenesis. We obtained 13 Tg-founders (two mice from C57BL6/J and 11 mice from BDF1). Three of 13 Tg-founders were sterile, and the remaining Tg-founders also could generate only a limited number of the F1 generation. We obtained 32 Tg-F1 mice. Most of the Tg-mice showed marked obesity. Histopathological examination could be performed on 31 Tg-mice; seventeen mice died by some disease in their entire life and 14 mice were killed for examination. Most of the Tg-mice examined showed splenic abnormality, in which marked increase of the megakaryocytes, unclearness of the margin of the red pulp and the white pulp, and the enlargement of the white pulp was observed. B cell lymphoma was developed in 10 (71%) of 14 disease-died F1 mice. These results indicate that constitutive over-expression of TSC-22 might disturb the normal embryogenesis and the normal lipid metabolism, and induce the oncogenic differentiation of hematopoietic cells. PMID:26872059

  4. Overexpression of TSC-22 (transforming growth factor- β-stimulated clone-22) causes marked obesity, splenic abnormality and B cell lymphoma in transgenic mice.

    Science.gov (United States)

    Uchida, Daisuke; Kawamata, Hitoshi; Omotehara, Fumie; Miwa, Yoshihiro; Horiuchi, Hideki; Furihata, Tadashi; Tachibana, Masatsugu; Fujimori, Takahiro

    2016-03-22

    In this study, we generated transgenic (Tg) mice, which overexpressed transforming growth factor (TGF)-β stimulated clone-22 (TSC-22), and investigate the functional role of TSC-22 on their development and pathogenesis. We obtained 13 Tg-founders (two mice from C57BL6/J and 11 mice from BDF1). Three of 13 Tg-founders were sterile, and the remaining Tg-founders also could generate only a limited number of the F1 generation. We obtained 32 Tg-F1 mice. Most of the Tg-mice showed marked obesity. Histopathological examination could be performed on 31 Tg-mice; seventeen mice died by some disease in their entire life and 14 mice were killed for examination. Most of the Tg-mice examined showed splenic abnormality, in which marked increase of the megakaryocytes, unclearness of the margin of the red pulp and the white pulp, and the enlargement of the white pulp was observed. B cell lymphoma was developed in 10 (71%) of 14 disease-died F1 mice. These results indicate that constitutive over-expression of TSC-22 might disturb the normal embryogenesis and the normal lipid metabolism, and induce the oncogenic differentiation of hematopoietic cells.

  5. Abnormal sex chromosome constitution and longitudinal growth

    DEFF Research Database (Denmark)

    Aksglaede, Lise; Skakkebaek, Niels E; Juul, Anders

    2008-01-01

    Growth is a highly complex process regulated by the interaction between sex steroids and the GH IGF-axis. However, other factors such as sex chromosome-related genes play independent roles.......Growth is a highly complex process regulated by the interaction between sex steroids and the GH IGF-axis. However, other factors such as sex chromosome-related genes play independent roles....

  6. Abnormal vascular endothelial growth factor protein expression may be correlated with poor prognosis in diffuse large B-cell lymphoma: A meta-analysis.

    Science.gov (United States)

    Jiang, Li; Sun, Jiang Hong; Quan, Li-Na; Tian, Yu-Yang; Jia, Chui-Ming; Liu, Zhi-Qiang; Liu, Ai-Chun

    2016-01-01

    We conducted the present meta-analysis with relevant cohort studies to determine whether expression levels of vascular endothelial growth factor. (VEGF) could predict the prognosis of diffuse large B.cell lymphoma. (DLBCL). The MEDLINE (1966-2013), the Cochrane Library Database (Issue 12, 2013), EMBASE (1980-2013), CINAHL (1982--2013), Web of Science (1945-2013), and the Chinese Biomedical Database (1982-2013) were searched without any language restrictions. Meta-analysis was conducted using STATA software (Version 12.0, Stata Corporation, College Station, Texas USA). Hazard ratios (HR) and their corresponding 95% confidence intervals (95% CI) were calculated. Eight clinical cohort studies, which recruited a total 670 DLBCL patients, were included in the meta-analysis. The results of this meta-analysis indicate that DLBCL patients with positive VEGF expression had a shorter overall survival than those with negative VEGF expression. (HR = 1.58, 95% CI = 0.80-2.36, P analysis illustrates that high expression levels of VEGF may be significantly correlated with poor DLBCL prognosis among both Caucasian and Asian populations. (Caucasian: HR = 1.73, 95% CI = 0.56-2.90, P = 0.004; Asian: HR = 1.45, 95% CI = 0.41-2.50, P = 0.006). The major findings of our meta-analysis reveal that the aberrant expression of VEGF may correspond to shorter overall survival of patients with DLBCL, revealing that VEGF expression could be an unbiased prognostic determinant in the management of DLBCL patients.

  7. Catalase and superoxide dismutase conjugated with platelet-endothelial cell adhesion molecule antibody distinctly alleviate abnormal endothelial permeability caused by exogenous reactive oxygen species and vascular endothelial growth factor.

    Science.gov (United States)

    Han, Jingyan; Shuvaev, Vladimir V; Muzykantov, Vladimir R

    2011-07-01

    Reactive oxygen species (ROS) superoxide anion (O(2)()) and hydrogen peroxide (H(2)O(2)) produced by activated leukocytes and endothelial cells in sites of inflammation or ischemia cause endothelial barrier dysfunction that may lead to tissue edema. Antioxidant enzymes (AOEs) catalase and superoxide dismutase (SOD) conjugated with antibodies to platelet-endothelial cell adhesion molecule-1 (PECAM-1) specifically bind to endothelium, quench the corresponding ROS, and alleviate vascular oxidative stress and inflammation. In the present work, we studied the effects of anti-PECAM/catalase and anti-PECAM/SOD conjugates on the abnormal permeability manifested by transendothelial electrical resistance decline, increased fluorescein isothiocyanate-dextran influx, and redistribution of vascular endothelial-cadherin in human umbilical vein endothelial cell (HUVEC) monolayers. Anti-PECAM/catalase protected HUVEC monolayers against H(2)O(2)-induced endothelial barrier dysfunction. Polyethylene glycol-conjugated catalase exerted orders of magnitude lower endothelial uptake and no protective effect, similarly to IgG/catalase. Anti-PECAM/catalase, but not anti-PECAM/SOD, alleviated endothelial hyperpermeability caused by exposure to hypoxanthine/xanthine oxidase, implicating primarily H(2)O(2) in the disruption of the endothelial barrier in this model. Thrombin-induced endothelial permeability was not affected by treatment with anti-PECAM/AOEs or the NADPH oxidase inhibitor apocynin or overexpression of AOEs, indicating that the endogenous ROS play no key role in thrombin-mediated endothelial barrier dysfunction. In contrast, anti-PECAM/SOD, but not anti-PECAM/catalase, inhibited a vascular endothelial growth factor (VEGF)-induced increase in endothelial permeability, identifying a key role of endogenous O(2)() in the VEGF-mediated regulation of endothelial barrier function. Therefore, AOEs targeted to endothelial cells provide versatile molecular tools for testing the roles of

  8. Ultra-large single crystals by abnormal grain growth.

    Science.gov (United States)

    Kusama, Tomoe; Omori, Toshihiro; Saito, Takashi; Kise, Sumio; Tanaka, Toyonobu; Araki, Yoshikazu; Kainuma, Ryosuke

    2017-08-25

    Producing a single crystal is expensive because of low mass productivity. Therefore, many metallic materials are being used in polycrystalline form, even though material properties are superior in a single crystal. Here we show that an extraordinarily large Cu-Al-Mn single crystal can be obtained by abnormal grain growth (AGG) induced by simple heat treatment with high mass productivity. In AGG, the sub-boundary energy introduced by cyclic heat treatment (CHT) is dominant in the driving pressure, and the grain boundary migration rate is accelerated by repeating the low-temperature CHT due to the increase of the sub-boundary energy. With such treatment, fabrication of single crystal bars 70 cm in length is achieved. This result ensures that the range of applications of shape memory alloys will spread beyond small-sized devices to large-scale components and may enable new applications of single crystals in other metallic and ceramics materials having similar microstructural features.Growing large single crystals cheaply and reliably for structural applications remains challenging. Here, the authors combine accelerated abnormal grain growth and cyclic heat treatments to grow a superelastic shape memory alloy single crystal to 70 cm.

  9. Identification of Abnormal Stem Cells Using Raman Spectroscopy

    DEFF Research Database (Denmark)

    Harkness, Linda; Novikov, Sergey M; Beermann, Jonas

    2012-01-01

    The clinical use of stem cells in cell-based therapeutics for degenerative diseases requires development of criteria for defining normal stem cells to ensure safe transplantation. Currently, identification of abnormal from normal stem cells is based on extensive ex vivo and in vivo testing. Raman...

  10. The acrophysis: a unifying concept for understanding enchondral bone growth and its disorders. II. Abnormal growth

    Energy Technology Data Exchange (ETDEWEB)

    Oestreich, Alan E. [Department of Radiology, Cincinnati Children' s Hospital Medical Center, 3333 Burnet Avenue, OH 45229-3039, Cincinnati (United States)

    2004-03-01

    In order to discuss and illustrate the effects common to normal and abnormal enchondral bone at the physes and at all other growth plates of the developing child, the term ''acrophysis'' was proposed. Acrophyses include the growth plates of secondary growth centers including carpals and tarsals and apophyses, and the growth plates at the nonphyseal ends of small tubular bones. Abnormalities at acrophyseal sites are analogous to those at the physeal growth plates and their metaphyses. For example, changes relating to the zone of provisional calcification (ZPC) are often important to the demonstration of such similarities. Lead lines were an early example of the concept of analogy from abnormality due to physeal and to acrophyseal disturbance. The ZPC is a key factor in understanding patterns of rickets and its healing. Examples (including hypothyroidism, scurvy and other osteoporosis, Ollier disease, achondroplasia, and osteopetrosis, as well as the family of frostbite, Kashin-Beck disease, and rat bite fever) illustrate the acrophysis principle and in turn their manifestations are explained by that principle. (orig.)

  11. The acrophysis: a unifying concept for understanding enchondral bone growth and its disorders. II. Abnormal growth

    International Nuclear Information System (INIS)

    Oestreich, Alan E.

    2004-01-01

    In order to discuss and illustrate the effects common to normal and abnormal enchondral bone at the physes and at all other growth plates of the developing child, the term ''acrophysis'' was proposed. Acrophyses include the growth plates of secondary growth centers including carpals and tarsals and apophyses, and the growth plates at the nonphyseal ends of small tubular bones. Abnormalities at acrophyseal sites are analogous to those at the physeal growth plates and their metaphyses. For example, changes relating to the zone of provisional calcification (ZPC) are often important to the demonstration of such similarities. Lead lines were an early example of the concept of analogy from abnormality due to physeal and to acrophyseal disturbance. The ZPC is a key factor in understanding patterns of rickets and its healing. Examples (including hypothyroidism, scurvy and other osteoporosis, Ollier disease, achondroplasia, and osteopetrosis, as well as the family of frostbite, Kashin-Beck disease, and rat bite fever) illustrate the acrophysis principle and in turn their manifestations are explained by that principle. (orig.)

  12. A Nanodot Array Modulates Cell Adhesion and Induces an Apoptosis-Like Abnormality in NIH-3T3 Cells

    Directory of Open Access Journals (Sweden)

    Hung Yao-Ching

    2009-01-01

    Full Text Available Abstract Micro-structures that mimic the extracellular substratum promote cell growth and differentiation, while the cellular reaction to a nanostructure is poorly defined. To evaluate the cellular response to a nanoscaled surface, NIH 3T3 cells were grown on nanodot arrays with dot diameters ranging from 10 to 200 nm. The nanodot arrays were fabricated by AAO processing on TaN-coated wafers. A thin layer of platinum, 5 nm in thickness, was sputtered onto the structure to improve biocompatibility. The cells grew normally on the 10-nm array and on flat surfaces. However, 50-nm, 100-nm, and 200-nm nanodot arrays induced apoptosis-like events. Abnormality was triggered after as few as 24 h of incubation on a 200-nm dot array. For cells grown on the 50-nm array, the abnormality started after 72 h of incubation. The number of filopodia extended from the cell bodies was lower for the abnormal cells. Immunostaining using antibodies against vinculin and actin filament was performed. Both the number of focal adhesions and the amount of cytoskeleton were decreased in cells grown on the 100-nm and 200-nm arrays. Pre-coatings of fibronectin (FN or type I collagen promoted cellular anchorage and prevented the nanotopography-induced programed cell death. In summary, nanotopography, in the form of nanodot arrays, induced an apoptosis-like abnormality for cultured NIH 3T3 cells. The occurrence of the abnormality was mediated by the formation of focal adhesions.

  13. Over-expression of thymosin beta 4 promotes abnormal tooth development and stimulation of hair growth.

    Science.gov (United States)

    Cha, Hee-Jae; Philp, Deborah; Lee, Soo-Hyun; Moon, Hye-Sung; Kleinman, Hynda K; Nakamura, Takashi

    2010-01-01

    Thymosin beta 4 has multi-functional roles in cell physiology. It accelerates wound healing, hair growth and angiogenesis, and increases laminin-5 expression in corneal epithelium. Furthermore, thymosin beta 4 stimulates tumor growth and metastasis by induction of cell migration and vascular endothelial growth factor-mediated angiogenesis. Using a construct on the skin-specific keratin-5 promoter, we have developed thymosin beta 4 over-expressing transgenic mice to further study its functional roles. Thymosin beta 4 in adult skin and in embryonic stages of the transgenic mouse was analyzed by both Western blot and immunohistochemistry. The over-expression of thymosin beta 4 was observed especially around hair follicles and in the teeth in the transgenic mice. We examined the phenotype of the thymosin beta 4 over-expressing mice. Hair growth was accelerated. In addition, the transgenic mice had abnormally-shaped white teeth and dull incisors. We found that the expression of laminin-5 was up-regulated in the skin of the transgenic mice. We conclude that thymosin beta 4 has an important physiological role in hair growth and in tooth development.

  14. Quantifying the abnormal hemodynamics of sickle cell anemia

    Science.gov (United States)

    Lei, Huan; Karniadakis, George

    2012-02-01

    Sickle red blood cells (SS-RBC) exhibit heterogeneous morphologies and abnormal hemodynamics in deoxygenated states. A multi-scale model for SS-RBC is developed based on the Dissipative Particle Dynamics (DPD) method. Different cell morphologies (sickle, granular, elongated shapes) typically observed in deoxygenated states are constructed and quantified by the Asphericity and Elliptical shape factors. The hemodynamics of SS-RBC suspensions is studied in both shear and pipe flow systems. The flow resistance obtained from both systems exhibits a larger value than the healthy blood flow due to the abnormal cell properties. Moreover, SS-RBCs exhibit abnormal adhesive interactions with both the vessel endothelium cells and the leukocytes. The effect of the abnormal adhesive interactions on the hemodynamics of sickle blood is investigated using the current model. It is found that both the SS-RBC - endothelium and the SS-RBC - leukocytes interactions, can potentially trigger the vicious ``sickling and entrapment'' cycles, resulting in vaso-occlusion phenomena widely observed in micro-circulation experiments.

  15. What is the value of ultrasound soft tissue measurements in the prediction of abnormal fetal growth?

    LENUS (Irish Health Repository)

    Farah, N

    2012-02-01

    Abnormal fetal growth increases the complications of pregnancy not only for the baby but also for the mother. Growth abnormalities also have lifelong consequences. These babies are at increased risk of insulin resistance, diabetes and hypertension later in life. It is important to identify these babies antenatally to optimise their clinical care. Although used extensively antenatally to monitor fetal growth, ultrasound has its limitations. Despite the use of more than 50 different formulae to estimate fetal weight, their performance has been poor at the extremes of fetal weight. Over the past 20 years there has been emerging interest in studying fetal soft tissue measurements to improve detection of growth abnormalities. This review paper outlines the value of soft tissue measurements in identifying fetal growth abnormalities, in estimating fetal weight and in managing diabetes mellitus in pregnancy.

  16. Consistent chromosome abnormalities in LS/BL murine lymphosarcoma cells

    International Nuclear Information System (INIS)

    Juraskova, V.

    1987-01-01

    LS/BL lymphosarcoma was induced by radiation in a C57BL/10 mouse in 1963 and was converted to ascites form in the first mouse transfer generation. In the course of cultivation in vivo the modal number of chromosomes dropped from the initial value 42 to 41 to 39 (73%). The cytogenetic characterization of the LS/BL tumor was carried out using the G-banding technique. Chromosome abnormalities were consistent in the cell line and involved chromosomes Nos. 3, 6, 12, 13, 16 and X. The most frequent abnormality was the presence of three markers and trisomy of chromosome No. 16. (author). 2 figs., 2 tabs., 38 refs

  17. Abnormal grain growth: a non-equilibrium thermodynamic model for multi-grain binary systems

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Fischer, F. D.

    2014-01-01

    Roč. 22, č. 1 (2014), Art. No. 015013 ISSN 0965-0393 Institutional support: RVO:68081723 Keywords : grain boundary segregation * abnormal grain growth * theory * modelling * solute drag Subject RIV: BJ - Thermodynamics Impact factor: 2.167, year: 2014

  18. Abnormal grain growth in the nanostructured Invar alloy fabricated by electrodeposition

    Science.gov (United States)

    Park, Hyung-Ki; Hwang, Nong-Moon; Park, Yong Bum

    2012-11-01

    Abnormal grain growth in the nanostructured Invar alloy fabricated by electrodeposition was investigated by electron backscattered diffraction. The observation showed that most of grains growing abnormally during annealing at 380°C have Σ3 boundaries. The observation could be best explained by the mechanism of solid-state wetting, where the Σ3 boundary provides the low-energy boundary, which increases the probability of solid-state wetting, leading to exclusive growth.

  19. The development of hepatic stellate cells in normal and abnormal human fetuses – an immunohistochemical study

    Science.gov (United States)

    Loo, Christine K C; Pereira, Tamara N; Pozniak, Katarzyna N; Ramsing, Mette; Vogel, Ida; Ramm, Grant A

    2015-01-01

    The precise embryological origin and development of hepatic stellate cells is not established. Animal studies and observations on human fetuses suggest that they derive from posterior mesodermal cells that migrate via the septum transversum and developing diaphragm to form submesothelial cells beneath the liver capsule, which give rise to mesenchymal cells including hepatic stellate cells. However, it is unclear if these are similar to hepatic stellate cells in adults or if this is the only source of stellate cells. We have studied hepatic stellate cells by immunohistochemistry, in developing human liver from autopsies of fetuses with and without malformations and growth restriction, using cellular Retinol Binding Protein-1 (cRBP-1), Glial Fibrillary Acidic Protein (GFAP), and α-Smooth Muscle Actin (αSMA) antibodies, to identify factors that influence their development. We found that hepatic stellate cells expressing cRBP-1 are present from the end of the first trimester of gestation and reduce in density throughout gestation. They appear abnormally formed and variably reduced in number in fetuses with abnormal mesothelial Wilms Tumor 1 (WT1) function, diaphragmatic hernia and in ectopic liver nodules without mesothelium. Stellate cells showed similarities to intravascular cells and their presence in a fetus with diaphragm agenesis suggests they may be derived from circulating stem cells. Our observations suggest circulating stem cells as well as mesothelium can give rise to hepatic stellate cells, and that they require normal mesothelial function for their development. PMID:26265759

  20. Anisotropic atomic packing model for abnormal grain growth mechanism of WC-25 wt.% Co alloy

    International Nuclear Information System (INIS)

    Ryoo, H.S.; Hwang, S.K.

    1998-01-01

    During liquid phase sintering, cemented carbide particles grow into either faceted or non-faceted grain shapes depending on ally system. In case of WC-Co alloy, prism-shape faceted grains with (0001) planes and {1 bar 100} planes on each face are observed, and furthermore an abnormal grain growth has been reported to occur. When abnormal grain growth occurs in WC crystals, dimension ratio, R, of the length of the side of the triangular prism face to the height of the prism is higher than 4 whereas that for normal grains is approximately 2. Abnormal grain growth in this alloy is accelerated by the fineness of starting powders and by high sintering temperature. To account for the mechanism of the abnormal grain growth, there are two proposed models which drew much research attention: nucleation and subsequent carburization and transformation of η (W 3 Co 3 C) phase into WC, and coalescence of coarse WC grains through dissolution and re-precipitation. Park et al. proposed a two-dimensional nucleation theory to explain the abnormal grain growth of faceted grains. There are questions, however, on the role of η phase on abnormal grain growth. The mechanism of coalescence of spherical grains as proposed by Kingery is also unsuitable for faceted grains. So far theories on abnormal grain growth do not provide a satisfactory explanation on the change of R value during the growth process. In the present work a new mechanism of nucleation and growth of faceted WC grains is proposed on the ground of anisotropic packing sequence of each atom

  1. Decidualized Human Endometrial Stromal Cells Mediate Hemostasis, Angiogenesis, and Abnormal Uterine Bleeding

    Science.gov (United States)

    Lockwood, Charles J.; Krikun, Graciela; Hickey, Martha; Huang, S. Joseph; Schatz, Frederick

    2011-01-01

    Factor VII binds trans-membrane tissue factor to initiate hemostasis by forming thrombin. Tissue factor expression is enhanced in decidualized human endometrial stromal cells during the luteal phase. Long-term progestin only contraceptives elicit: 1) abnormal uterine bleeding from fragile vessels at focal bleeding sites, 2) paradoxically high tissue factor expression at bleeding sites; 3) reduced endometrial blood flow promoting local hypoxia and enhancing reactive oxygen species levels; and 4) aberrant angiogenesis reflecting increased stromal cell-expressed vascular endothelial growth factor, decreased Angiopoietin-1 and increased endothelial cell-expressed Angiopoietin-2. Aberrantly high local vascular permeability enhances circulating factor VII to decidualized stromal cell-expressed tissue factor to generate excess thrombin. Hypoxia-thrombin interactions augment expression of vascular endothelial growth factor and interleukin-8 by stromal cells. Thrombin, vascular endothelial growth factor and interlerukin-8 synergis-tically augment angiogenesis in a milieu of reactive oxygen species-induced endothelial cell activation. The resulting enhanced vessel fragility promotes abnormal uterine bleeding. PMID:19208784

  2. Cells competition in tumor growth poroelasticity

    Science.gov (United States)

    Fraldi, Massimiliano; Carotenuto, Angelo R.

    2018-03-01

    Growth of biological tissues has been recently treated within the framework of Continuum Mechanics, by adopting heterogeneous poroelastic models where the interaction between soft matrix and interstitial fluid flow is coupled with inelastic effects ad hoc introduced to simulate the macroscopic volumetric growth determined by cells division, cells growth and extracellular matrix changes occurring at the micro-scale level. These continuum models seem to overcome some limitations intrinsically associated to other alternative approaches based on mass balances in multiphase systems, because the crucial role played by residual stresses accompanying growth and nutrients walkway is preserved. Nevertheless, when these strategies are applied to analyze solid tumors, mass growth is usually assigned in a prescribed form that essentially copies the in vitro measured intrinsic growth rates of the cell species. As a consequence, some important cell-cell dynamics governing mass evolution and invasion rates of cancer cells, as well as their coupling with feedback mechanisms associated to in situ stresses, are inevitably lost and thus the spatial distribution and the evolution with time of the growth inside the tumor -which would be results rather than inputs- are forced to enter in the model simply as data. In order to solve this paradox, it is here proposed an enhanced multi-scale poroelastic model undergoing large deformations and embodying inelastic growth, where the net growth terms directly result from the "interspecific" predator-prey (Volterra/Lotka-like) competition occurring at the micro-scale level between healthy and abnormal cell species. In this way, a system of fully-coupled non-linear PDEs is derived to describe how the fight among cell species to grab the available common resources, stress field, pressure gradients, interstitial fluid flows driving nutrients and inhomogeneous growth all simultaneously interact to decide the tumor fate.

  3. Abnormalities of satellite cells function in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Pradat, Pierre-François; Barani, Aude; Wanschitz, Julia; Dubourg, Odile; Lombès, Anne; Bigot, Anne; Mouly, Vincent; Bruneteau, Gaelle; Salachas, François; Lenglet, Timothée; Meininger, Vincent; Butler-Browne, Gillian

    2011-07-01

    Abstract Amyotrophic lateral sclerosis (ALS) is characterized by progressive denervation leading to muscle atrophy prevented, during the early phase, by compensatory reinnervation. Little is known about muscle fibre regeneration capacity in ALS. We have carried out in vivo and in vitro investigation of skeletal muscle in ALS. Seven ALS patients underwent a deltoid muscle biopsy. Immunohistochemical analysis revealed various degrees of denervation- and reinnervation-related changes in the ALS muscle biopsies including satellite cells (SCs) activation and regenerating fibres. Only 3/7 primary cultures of ALS muscle cells were successfully established and had sufficient myogenicity, as assessed by desmin positivity, to be used without further purification. This was in contrast with the cultures derived from control muscles, predominantly desmin-positive cells. Although capable to proliferate in vitro, ALS-derived SCs presented an abnormal senescent-like morphology. Markers of senescence, including senescent-associated (SA)-βGal activity and p16 expression, were increased. Furthermore, ALS-derived SCs were also unable to fully differentiate in vitro as shown by abnormal myotubes morphology and reduced MHC isoform expression, compared to control myotubes. Our study suggests that SC function is altered in ALS. This could limit the efficacy of compensatory processes and therefore could contribute to the progression of muscle atrophy and weakness.

  4. Abnormal growth of austenite grain of low-carbon steel

    International Nuclear Information System (INIS)

    Yu Qingbo; Sun Ying

    2006-01-01

    Niobium is an important alloying element for the steel. To know further the effect of Nb in the steel, the contrast experiments on the austenite grain growth of the 0.015%Nb and free Nb steels were carried out using Gleeble 1500 thermomechanical simulator. The experimental results indicate that the austenite grain of 0.015%Nb steel is finer than that of Nb free steel at 1150-1230 deg. C. And when the heating temperature arrives the critical temperature 1240 deg. C, the austenite grain of Nb steel suddenly grows up, while the austenite grain of Nb free steel changes little. Finally, the austenite grain of Nb steel is obviously coarser than that of Nb free steel. By transmission electron microscopy (TEM) using a carbon extraction replica technique, the precipitates of Nb(C,N) were not observed in the 0.015%Nb steel. It is concluded that the grain-boundary internal adsorption of Nb atoms leads to the result

  5. Abnormal number cell division of human thyroid anaplastic carcinoma cell line, SW 1736

    Directory of Open Access Journals (Sweden)

    Keiichi Ikeda

    2015-12-01

    Full Text Available Cell division, during which a mother cell usually divides into two daughter cells during one cell cycle, is the most important physiological event of cell biology. We observed one-to-four cell division during imaging of live SW1736 human thyroid anaplastic carcinoma cells transfected with a plasmid expressing the hybrid protein of green fluorescent protein and histone 2B (plasmid eGFP-H2B. Analysis of the images revealed a mother cell divided into four daughter cells. And one of the abnormally divided daughter cells subsequently formed a dinucleate cell.

  6. v-Src-driven transformation is due to chromosome abnormalities but not Src-mediated growth signaling.

    Science.gov (United States)

    Honda, Takuya; Morii, Mariko; Nakayama, Yuji; Suzuki, Ko; Yamaguchi, Noritaka; Yamaguchi, Naoto

    2018-01-18

    v-Src is the first identified oncogene product and has a strong tyrosine kinase activity. Much of the literature indicates that v-Src expression induces anchorage-independent and infinite cell proliferation through continuous stimulation of growth signaling by v-Src activity. Although all of v-Src-expressing cells are supposed to form transformed colonies, low frequencies of v-Src-induced colony formation have been observed so far. Using cells that exhibit high expression efficiencies of inducible v-Src, we show that v-Src expression causes cell-cycle arrest through p21 up-regulation despite ERK activation. v-Src expression also induces chromosome abnormalities and unexpected suppression of v-Src expression, leading to p21 down-regulation and ERK inactivation. Importantly, among v-Src-suppressed cells, only a limited number of cells gain the ability to re-proliferate and form transformed colonies. Our findings provide the first evidence that v-Src-driven transformation is attributed to chromosome abnormalities, but not continuous stimulation of growth signaling, possibly through stochastic genetic alterations.

  7. Misorientation characteristics of penetrating morphologies at the growth front of abnormally growing grains in aluminum alloy

    Science.gov (United States)

    Park, Chang-Soo; Na, Tae-Wook; Park, Hyung-Ki; Kim, Dong-Kyun; Han, Chan-Hee; Hwang, Nong-Moon

    2012-07-01

    The initial stage of abnormal grain growth of the aluminum alloy 5052 has been investigated using electron back-scattered diffraction to analyze the characteristic of misorientations of the penetrating morphology at the growth front. Among the 84 penetrating morphologies examined, none of the penetrated grain boundaries has low angles or coincidence site lattice (CSL) relations, whereas 66 penetrating grain boundaries have low angles or CSL relations. These results strongly suggest that the penetrating morphologies should result from triple-junction wetting.

  8. Morphological and Functional Platelet Abnormalities in Berkeley Sickle Cell Mice

    Science.gov (United States)

    Shet, Arun S.; Hoffmann, Thomas J.; Jirouskova, Marketa; Janczak, Christin A.; Stevens, Jacqueline R.M.; Adamson, Adewole; Mohandas, Narla; Manci, Elizabeth A.; Cynober, Therese; Coller, Barry S.

    2009-01-01

    Berkeley sickle cell mice are used as an animal model of human sickle cell disease but there are no reports of platelet studies in this model. Since humans with sickle cell disease have platelet abnormalities, we studied platelet morphology and function in Berkeley mice (SS). We observed elevated mean platelet forward angle light scatter (FSC) values (an indirect measure of platelet volume) in SS compared to wild type (WT) (37 ± 3.2 vs. 27 ± 1.4, mean ± SD; p Howell-Jolly bodies and “pocked” erythrocytes (p <0.001 for both) suggesting splenic dysfunction. SS mice also had elevated numbers of thiazole orange positive platelets (5 ± 1 % vs. 1 ± 1%; p <0.001), normal to low plasma thrombopoietin levels, normal plasma glycocalicin levels, normal levels of platelet recovery, and near normal platelet life spans. Platelets from SS mice bound more fibrinogen and antibody to P-selectin following activation with a threshold concentration of a protease activated receptor (PAR)-4 peptide compared to WT mice. Enlarged platelets are associated with a predisposition to arterial thrombosis in humans and some humans with SCD have been reported to have large platelets. Thus, additional studies are needed to assess whether large platelets contribute either to pulmonary hypertension or the large vessel arterial occlusion that produces stroke in some children with sickle cell disease. PMID:18374611

  9. Short-term treatment with VEGF receptor inhibitors induces retinopathy of prematurity-like abnormal vascular growth in neonatal rats.

    Science.gov (United States)

    Nakano, Ayuki; Nakahara, Tsutomu; Mori, Asami; Ushikubo, Hiroko; Sakamoto, Kenji; Ishii, Kunio

    2016-02-01

    Retinal arterial tortuosity and venous dilation are hallmarks of plus disease, which is a severe form of retinopathy of prematurity (ROP). In this study, we examined whether short-term interruption of vascular endothelial growth factor (VEGF) signals leads to the formation of severe ROP-like abnormal retinal blood vessels. Neonatal rats were treated subcutaneously with the VEGF receptor (VEGFR) tyrosine kinase inhibitors, KRN633 (1, 5, or 10 mg/kg) or axitinib (10 mg/kg), on postnatal day (P) 7 and P8. The retinal vasculatures were examined on P9, P14, or P21 in retinal whole-mounts stained with an endothelial cell marker. Prevention of vascular growth and regression of some preformed capillaries were observed on P9 in retinas of rats treated with KRN633. However, on P14 and P21, density of capillaries, tortuosity index of arterioles, and diameter of veins significantly increased in KRN633-treated rats, compared to vehicle (0.5% methylcellulose)-treated animals. Similar observations were made with axitinib-treated rats. Expressions of VEGF and VEGFR-2 were enhanced on P14 in KRN633-treated rat retinas. The second round of KRN633 treatment on P11 and P12 completely blocked abnormal retinal vascular growth on P14, but thereafter induced ROP-like abnormal retinal blood vessels by P21. These results suggest that an interruption of normal retinal vascular development in neonatal rats as a result of short-term VEGFR inhibition causes severe ROP-like abnormal retinal vascular growth in a VEGF-dependent manner. Rats treated postnatally with VEGFR inhibitors could serve as an animal model for studying the mechanisms underlying the development of plus disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Quantitative evaluation of normal and abnormal grain growth of cemented carbides during liquid phase sintering

    Science.gov (United States)

    Chabretou, V.; Lavergne, O.; Missiaen, J.-M.; Allibert, C. H.

    1999-04-01

    The liquid-phase sintering (LPS) of cemented carbides prepared from submicronic powders induces a micro-structural evolution generally ascribed to normal and abnormal grain growth. Such phenomena can be prevented by small additions of inhibitors (Cr, V). Presently, the mechanisms controlling either the grain growth or its inhibition are not strictly identified. In the present work, the effects of major parameters on grain growth (initial WC grain size, liquid composition, liquid fraction) are studied by image analysis of specimens sintered at 1450°C up to 8h.The evolution of the mean intercept and intercept distribution of WC grains is analysed in terms of the possible mechanisms involved.

  11. Abnormal Cell Responses and Role of TNF-α in Impaired Diabetic Wound Healing

    Science.gov (United States)

    Xu, Fanxing; Zhang, Chenying; Graves, Dana T.

    2013-01-01

    Impaired diabetic wound healing constitutes a major health problem. The impaired healing is caused by complex factors such as abnormal keratinocyte and fibroblast migration, proliferation, differentiation, and apoptosis, abnormal macrophage polarization, impaired recruitment of mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs), and decreased vascularization. Diabetes-enhanced and prolonged expression of TNF-α also contributes to impaired healing. In this paper, we discuss the abnormal cell responses in diabetic wound healing and the contribution of TNF-α. PMID:23484152

  12. Effect of Strain Restored Energy on Abnormal Grain Growth in Mg Alloy Simulated by Phase Field Methods

    Science.gov (United States)

    Wu, Yan; Huang, Yuan-yuan

    2018-03-01

    Abnormal grain growth of single phase AZ31 Mg alloy in the spatio-temporal process has been simulated by phase field models, and the influencing factors of abnormal grain growth are studied in order to find the ways to control secondary recrystallization in the microstructure. The study aims to find out the mechanisms for abnormal grain growth in real alloys. It is shown from the simulated results that the abnormal grain growth can be controlled by the strain restored energy. Secondary recrystallization after an annealing treatment can be induced if there are grains of a certain orientation in the microstructure with local high restored energy. However, if the value of the local restored energy at a certain grain orientation is not greater than 1.1E 0, there may be no abnormal grain growth in the microstructure.

  13. Raman Spectroscopy of DNA Packaging in Individual Human Sperm Cells distinguishes Normal from Abnormal Cells

    Energy Technology Data Exchange (ETDEWEB)

    Huser, T; Orme, C; Hollars, C; Corzett, M; Balhorn, R

    2009-03-09

    Healthy human males produce sperm cells of which about 25-40% have abnormal head shapes. Increases in the percentage of sperm exhibiting aberrant sperm head morphologies have been correlated with male infertility, and biochemical studies of pooled sperm have suggested that sperm with abnormal shape may contain DNA that has not been properly repackaged by protamine during spermatid development. We have used micro-Raman spectroscopy to obtain Raman spectra from individual human sperm cells and examined how differences in the Raman spectra of sperm chromatin correlate with cell shape. We show that Raman spectra of individual sperm cells contain vibrational marker modes that can be used to assess the efficiency of DNA-packaging for each cell. Raman spectra obtained from sperm cells with normal shape provide evidence that DNA in these sperm is very efficiently packaged. We find, however, that the relative protein content per cell and DNA packaging efficiencies are distributed over a relatively wide range for sperm cells with both normal and abnormal shape. These findings indicate that single cell Raman spectroscopy should be a valuable tool in assessing the quality of sperm cells for in-vitro fertilization.

  14. Predicting the Probability of Abnormal Stimulated Growth Hormone Response in Children After Radiotherapy for Brain Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Hua Chiaho, E-mail: Chia-Ho.Hua@stjude.org [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Wu Shengjie [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Chemaitilly, Wassim [Division of Endocrinology, Department of Pediatric Medicine, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Lukose, Renin C.; Merchant, Thomas E. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States)

    2012-11-15

    Purpose: To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. Methods and Materials: We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n = 72), low-grade glioma (n = 28) or craniopharyngioma (n = 6), who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test {>=}7 ng/mL. Results: Independent predictor variables identified by multivariate logistic regression with high statistical significance (p < 0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Conclusions: Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency.

  15. Predicting the Probability of Abnormal Stimulated Growth Hormone Response in Children After Radiotherapy for Brain Tumors

    International Nuclear Information System (INIS)

    Hua Chiaho; Wu Shengjie; Chemaitilly, Wassim; Lukose, Renin C.; Merchant, Thomas E.

    2012-01-01

    Purpose: To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. Methods and Materials: We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n = 72), low-grade glioma (n = 28) or craniopharyngioma (n = 6), who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test ≥7 ng/mL. Results: Independent predictor variables identified by multivariate logistic regression with high statistical significance (p < 0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Conclusions: Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency.

  16. Aspirin suppresses the abnormal lipid metabolism in liver cancer cells via disrupting an NFκB-ACSL1 signaling.

    Science.gov (United States)

    Yang, Guang; Wang, Yuan; Feng, Jinyan; Liu, Yunxia; Wang, Tianjiao; Zhao, Man; Ye, Lihong; Zhang, Xiaodong

    2017-05-06

    Abnormal lipid metabolism is a hallmark of tumorigenesis. Hence, the alterations of metabolism enhance the development of hepatocellular carcinoma (HCC). Aspirin is able to inhibit the growth of cancers through targeting nuclear factor κB (NF-κB). However, the role of aspirin in disrupting abnormal lipid metabolism in HCC remains poorly understood. In this study, we report that aspirin can suppress the abnormal lipid metabolism of HCC cells through inhibiting acyl-CoA synthetase long-chain family member 1 (ACSL1), a lipid metabolism-related enzyme. Interestingly, oil red O staining showed that aspirin suppressed lipogenesis in HepG2 cells and Huh7 cells in a dose-dependent manner. In addition, aspirin attenuated the levels of triglyceride and cholesterol in the cells, respectively. Strikingly, we identified that aspirin was able to down-regulate ACSL1 at the levels of mRNA and protein. Moreover, we validated that aspirin decreased the nuclear levels of NF-κB in HepG2 cells. Mechanically, PDTC, an inhibitor of NF-κB, could down-regulate ACSL1 at the levels of mRNA and protein in the cells. Functionally, PDTC reduced the levels of lipid droplets, triglyceride and cholesterol in HepG2 cells. Thus, we conclude that aspirin suppresses the abnormal lipid metabolism in HCC cells via disrupting an NFκB-ACSL1 signaling. Our finding provides new insights into the mechanism by which aspirin inhibits abnormal lipid metabolism of HCC. Therapeutically, aspirin is potentially available for HCC through controlling abnormal lipid metabolism. Copyright © 2017. Published by Elsevier Inc.

  17. Abnormal Doppler flow velocimetry in the growth restricted foetus as a predictor for necrotising enterocolitis.

    Directory of Open Access Journals (Sweden)

    Bhatt A

    2002-07-01

    Full Text Available BACKGROUND: Obstetric decision- making for the growth restricted foetus has to take into consideration the benefits and risks of waiting for pulmonary maturity and continued exposure to hostile intra-uterine environment. Necrotising Enterocolitis (NEC results from continued exposure to hostile environment and is an important cause of poor neonatal outcome. AIMS: To evaluate the predictive value of abnormal Doppler flow velocimetry of the foetal umbilical artery for NEC and neonatal mortality. SETTINGS AND DESIGN: A retrospective study carried out at a tertiary care centre for obstetric and neonatal care. MATERIALS AND METHOD: Seventy-seven neonates with birth weight less than 2000 gm, born over a period of 18 months were studied. These pregnancies were identified as having growth abnormalities of the foetus. Besides other tests of foetal well-being, they were also subjected to Doppler flow velocimetry of the foeto-placental vasculature. Obstetric outcome was evaluated with reference to period of gestation and route of delivery. The neonatal outcome was reviewed with reference to birth weight, Apgar scores and evidence of NEC. STATISTICAL ANALYSIS USED: Chi square test. RESULTS: In the group of patients with Absent or Reverse End Diastolic Frequencies (A/R EDF in the umbilical arteries, positive predictive value for NEC was 52.6%, (RR 30.2; OR 264. The mortality from NEC was 50%. When umbilical artery velocimetry did not show A/REDF, there were no cases of NEC or mortality. Abnormal umbilical or uterine artery flow increased the rate of caesarean section to 62.5% as compared to 17.6% in cases where umbilical artery flow was normal. CONCLUSION: In antenatally identified pregnancies at risk for foetal growth restriction, abnormal Doppler velocimetry in the form of A/REDF in the umbilical arteries is a useful guide to predict NEC and mortality in the early neonatal period.

  18. Intrauterine Growth Restriction Associated with Hematologic Abnormalities: Probable Manifestations of Placental Mesenchymal Dysplasia

    Directory of Open Access Journals (Sweden)

    Cristina Martinez-Payo

    2015-10-01

    Full Text Available Introduction - Placental mesenchymal dysplasia is a rare vascular disease associated with intrauterine growth restriction, fetal demise as well as Beckwith–Wiedemann syndrome. Some neonates present hematologic abnormalities possibly related to consumptive coagulopathy and hemolytic anemia in the placental circulation. Case report - We present a case of placental mesenchymal dysplasia in a fetus with intrauterine growth restriction and cerebellar hemorrhagic injury diagnosed in the 20th week of pregnancy. During 26th week, our patient had an intrauterine fetal demise in the context of gestational hypertension. We have detailed the ultrasound findings that made us suspect the presence of hematologic disorders during 20th week. Discussion - We believe that the cerebellar hematoma could be the consequence of thrombocytopenia accompanied by anemia. If hemorrhagic damage during fetal life is found, above all associates with an anomalous placental appearance and with intrauterine growth restriction, PMD should be suspected along other etiologies.

  19. Large-scale grain growth in the solid-state process: From "Abnormal" to "Normal"

    Science.gov (United States)

    Jiang, Minhong; Han, Shengnan; Zhang, Jingwei; Song, Jiageng; Hao, Chongyan; Deng, Manjiao; Ge, Lingjing; Gu, Zhengfei; Liu, Xinyu

    2018-02-01

    Abnormal grain growth (AGG) has been a common phenomenon during the ceramic or metallurgy processing since prehistoric times. However, usually it had been very difficult to grow big single crystal (centimeter scale over) by using the AGG method due to its so-called occasionality. Based on the AGG, a solid-state crystal growth (SSCG) method was developed. The greatest advantages of the SSCG technology are the simplicity and cost-effectiveness of the technique. But the traditional SSCG technology is still uncontrollable. This article first summarizes the history and current status of AGG, and then reports recent technical developments from AGG to SSCG, and further introduces a new seed-free, solid-state crystal growth (SFSSCG) technology. This SFSSCG method allows us to repeatedly and controllably fabricate large-scale single crystals with appreciable high quality and relatively stable chemical composition at a relatively low temperature, at least in (K0.5Na0.5)NbO3(KNN) and Cu-Al-Mn systems. In this sense, the exaggerated grain growth is no longer 'Abnormal' but 'Normal' since it is able to be artificially controllable and repeated now. This article also provides a crystal growth model to qualitatively explain the mechanism of SFSSCG for KNN system. Compared with the traditional melt and high temperature solution growth methods, the SFSSCG method has the advantages of low energy consumption, low investment, simple technique, composition homogeneity overcoming the issues with incongruent melting and high volatility. This SFSSCG could be helpful for improving the mechanical and physical properties of single crystals, which should be promising for industrial applications.

  20. Growth characteristics and endocrine abnormalities in 22q11.2 deletion syndrome.

    Science.gov (United States)

    Levy-Shraga, Yael; Gothelf, Doron; Goichberg, Zohar; Katz, Uriel; Somech, Raz; Pinhas-Hamiel, Orit; Modan-Moses, Dalit

    2017-05-01

    22q11.2 deletion syndrome (22q11.2DS) has a wide range of clinical features including endocrine abnormalities. We aimed to characterize growth patterns, hypoparathyroidism, and thyroid dysfunction of individuals with 22q11.2DS. Anthropometric and laboratory measurements were obtained from the charts of 48 individuals (males=28, 8.0±6.8 visits/participant) followed at a national 22q11.2DS clinic between 2009 and 2016. Age at diagnosis was 4.3±4.9 years and age at last evaluation 11.2±7.2 years. Median height-SDS was negative at all ages. Height-SDS at last visit was correlated to the midparental height-SDS (r=0.52 P=0.002). Yet, participants did not reach their target height, with a difference of 1.06±1.07 SD (P <0.0001). Height-SDS at last visit of participants with a heart defect was lower compared to participants with a normal heart (-1.5±1.4 vs. -0.6±0.8, P=0.036), with lower height-SDS in the subgroup of participants with severe heart defects (-2.1±1.6, P=0.009). Mean IGF1-SDS was low (-0.99±1.68) but was not correlated with height-SDS. Thirteen patients (27%) had hypoparathyroidism: 10 presented during infancy and 3 during adolescence. Five patients (10.4%, female=4) had thyroid abnormalities. In conclusions, individuals with 22q11.2 DS have a distinct growth pattern consisting of growth restriction at all ages, resulting in final adult height in the low-normal range. Hypoparathyroidism is common and may present during the neonatal period as well as later in life. Thyroid abnormalities may present during childhood, adolescence, or adulthood. © 2017 Wiley Periodicals, Inc.

  1. Cell phone radiation effects on cytogenetic abnormalities of oral mucosal cells

    Directory of Open Access Journals (Sweden)

    Natália Batista DAROIT

    2015-01-01

    Full Text Available The aim of this study was to evaluate the effects of exposure to cell phone electromagnetic radiation on the frequency of micronuclei, broken eggs cells, binucleated cells, and karyorrhexis in epithelial cells of the oral mucosa. The sample was composed of 60 cell phone users, who were non-smokers and non-drinkers, and had no clinically visible oral lesions. Cells were obtained from anatomical sites with the highest incidence of oral cancer: lower lip, border of the tongue, and floor of the mouth. The Feulgen reaction was used for quantification of nuclear anomalies in 1,000 cells/slide. A slightly increase in the number of micronucleated cells in the lower lip and in binucleated cells on the floor of the mouth was observed in individuals who used their phones > 60 minutes/week. The analysis also revealed an increased number of broken eggs in the tongue of individuals owning a cell phone for over eight years. Results suggest that exposure to electromagnetic waves emitted by cell phones can increase nuclear abnormalities in individuals who use a cell phone for more than 60 minutes per week and for over eight years. Based on the present findings, we suggest that exposure to electromagnetic radiation emitted by cell phones may interfere with the development of metanuclear anomalies. Therefore, it is demonstrated that, despite a significant increase in these anomalies, the radiation emitted by cell phones among frequent users is within acceptable physiological limits.

  2. Cell phone radiation effects on cytogenetic abnormalities of oral mucosal cells.

    Science.gov (United States)

    Daroit, Natália Batista; Visioli, Fernanda; Magnusson, Alessandra Selinger; Vieira, Geila Radunz; Rados, Pantelis Varvaki

    2015-01-01

    The aim of this study was to evaluate the effects of exposure to cell phone electromagnetic radiation on the frequency of micronuclei, broken eggs cells, binucleated cells, and karyorrhexis in epithelial cells of the oral mucosa. The sample was composed of 60 cell phone users, who were non-smokers and non-drinkers, and had no clinically visible oral lesions. Cells were obtained from anatomical sites with the highest incidence of oral cancer: lower lip, border of the tongue, and floor of the mouth. The Feulgen reaction was used for quantification of nuclear anomalies in 1,000 cells/slide. A slightly increase in the number of micronucleated cells in the lower lip and in binucleated cells on the floor of the mouth was observed in individuals who used their phones > 60 minutes/week. The analysis also revealed an increased number of broken eggs in the tongue of individuals owning a cell phone for over eight years. Results suggest that exposure to electromagnetic waves emitted by cell phones can increase nuclear abnormalities in individuals who use a cell phone for more than 60 minutes per week and for over eight years. Based on the present findings, we suggest that exposure to electromagnetic radiation emitted by cell phones may interfere with the development of metanuclear anomalies. Therefore, it is demonstrated that, despite a significant increase in these anomalies, the radiation emitted by cell phones among frequent users is within acceptable physiological limits.

  3. The morphological classification of normal and abnormal red blood cell using Self Organizing Map

    Science.gov (United States)

    Rahmat, R. F.; Wulandari, F. S.; Faza, S.; Muchtar, M. A.; Siregar, I.

    2018-02-01

    Blood is an essential component of living creatures in the vascular space. For possible disease identification, it can be tested through a blood test, one of which can be seen from the form of red blood cells. The normal and abnormal morphology of the red blood cells of a patient is very helpful to doctors in detecting a disease. With the advancement of digital image processing technology can be used to identify normal and abnormal blood cells of a patient. This research used self-organizing map method to classify the normal and abnormal form of red blood cells in the digital image. The use of self-organizing map neural network method can be implemented to classify the normal and abnormal form of red blood cells in the input image with 93,78% accuracy testing.

  4. Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells.

    Science.gov (United States)

    Kuffer, Christian; Kuznetsova, Anastasia Yurievna; Storchová, Zuzana

    2013-08-01

    Erroneously arising tetraploid mammalian cells are chromosomally instable and may facilitate cell transformation. An increasing body of evidence shows that the propagation of mammalian tetraploid cells is limited by a p53-dependent arrest. The trigger of this arrest has not been identified so far. Here we show by live cell imaging of tetraploid cells generated by an induced cytokinesis failure that most tetraploids arrest and die in a p53-dependent manner after the first tetraploid mitosis. Furthermore, we found that the main trigger is a mitotic defect, in particular, chromosome missegregation during bipolar mitosis or spindle multipolarity. Both a transient multipolar spindle followed by efficient clustering in anaphase as well as a multipolar spindle followed by multipolar mitosis inhibited subsequent proliferation to a similar degree. We found that the tetraploid cells did not accumulate double-strand breaks that could cause the cell cycle arrest after tetraploid mitosis. In contrast, tetraploid cells showed increased levels of oxidative DNA damage coinciding with the p53 activation. To further elucidate the pathways involved in the proliferation control of tetraploid cells, we knocked down specific kinases that had been previously linked to the cell cycle arrest and p53 phosphorylation. Our results suggest that the checkpoint kinase ATM phosphorylates p53 in tetraploid cells after abnormal mitosis and thus contributes to proliferation control of human aberrantly arising tetraploids.

  5. Polyhydramnios or Excessive Fetal Growth Are Markers for Abnormal Perinatal Outcome in Euglycemic Pregnancies.

    Science.gov (United States)

    Crimmins, Sarah; Mo, Cecilia; Nassar, Yomna; Kopelman, Jerome N; Turan, Ozhan M

    2018-01-01

     This study aims to investigate the perinatal outcome of fetuses with polyhydramnios and/or accelerated growth among women with a normal oral glucose challenge test (oGCT).  Singleton, nonanomalous pregnancies with an oGCT(polyhydramnios (amniotic fluid index > 24 cm or maximum vertical pocket > 8 cm) and/or accelerated growth (abdominal circumference > 95th percentile) on two-third trimester examinations were studied. Maternal demographics, delivery, and neonatal information were recorded. Cases were compared with a reference group (normal oGCT with neither abnormal third-trimester growth nor polyhydramnios).  A total of 282 pregnancies were in the study group, and 663 were in the reference group. Deliveries in the study group were at a higher risk for birth weight (BW)% > 90%, standard deviation, and postpartum hemorrhage when compared with the reference group (adjusted odds ratio: 2.3-5.6). Pregnancies complicated by both polyhydramnios and accelerated fetal growth were significantly more likely to result in a BW% > 90% (odds ratio [OR]: 18.5; 95% confidence interval [CI]: 8.9-38.6) and PPH (OR: 4.2; 95% CI: 2.4-7.6).  Pregnancies with normal oGCT that develop polyhydramnios and accelerated growth are at higher risk for maternal and neonatal complications. Isolated polyhydramnios without accelerated growth increases the risk for delivery complications but not neonatal morbidity. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  6. A cell junction pathology of neural stem cells leads to abnormal neurogenesis and hydrocephalus

    Directory of Open Access Journals (Sweden)

    Esteban M Rodríguez

    2012-01-01

    Full Text Available Most cells of the developing mammalian brain derive from the ventricular (VZ and the subventricular (SVZ zones. The VZ is formed by the multipotent radial glia/neural stem cells (NSCs while the SVZ harbors the rapidly proliferative neural precursor cells (NPCs. Evidence from human and animal models indicates that the common history of hydrocephalus and brain maldevelopment starts early in embryonic life with disruption of the VZ and SVZ. We propose that a "cell junction pathology" involving adherent and gap junctions is a final common outcome of a wide range of gene mutations resulting in proteins abnormally expressed by the VZ cells undergoing disruption. Disruption of the VZ during fetal development implies the loss of NSCs whereas VZ disruption during the perinatal period implies the loss of ependyma. The process of disruption occurs in specific regions of the ventricular system and at specific stages of brain development. This explains why only certain brain structures have an abnormal development, which in turn results in a specific neurological impairment of the newborn. Disruption of the VZ of the Sylvian aqueduct (SA leads to aqueductal stenosis and hydrocephalus, while disruption of the VZ of telencephalon impairs neurogenesis. We are currently investigating whether grafting of NSCs/neurospheres from normal rats into the CSF of hydrocephalic mutants helps to diminish/repair the outcomes of VZ disruption.

  7. A rare case of Silver–Russell syndrome associated with growth hormone deficiency and urogenital abnormalities

    Science.gov (United States)

    Prasad, Namburi Rajendra; Reddy, Ponnala Amaresh; Karthik, T. S.; Chakravarthy, Mithun; Ahmed, Faizal

    2012-01-01

    Introduction: Silver–Russell syndrome (SRS) is a very rare genetic disorder. This is usually characterized by asymmetry in the size of the two halves or other parts of the body. Background: We are presenting a case of SRS with growth hormone (GH) deficiency and urogenital abnormalities. Case Report: A 15-year-old boy a product of non-consanguineous marriage brought with a history of short stature and poor development of secondary sexual characters. There were no adverse perinatal events, but weighed 1500 g (hemihypertrophy on the right side. His height was 119 cm (<3rdcentile) and weight was 18 kg which were low (<3rdcentile) as per his age. He was biochemically euthyroid and GH stimulation testing with clonidine (0.15 mg/m2) showed low GH levels at 30′, 60′, and 90′ were 1.7, 1.6, and 1.1ng/ml, respectively. On micturatingcystourethrogram, grade V complex was noted on the right side. Dimercaptosuccinic acid (DMSA) showed normal functioning kidneys. He was started on recombinant GH with a height velocity of 10 cm/year. Conclusion: Urogenital abnormalities are rare but well described anomalies associated with SRS, and all cases have to be screened for them. GH deficiency is not uncommon in SRS, and GH treatment proves to be beneficial. PMID:23565409

  8. The association between abnormal birth history and growth in children with CKD.

    Science.gov (United States)

    Greenbaum, Larry A; Muñoz, Alvaro; Schneider, Michael F; Kaskel, Frederick J; Askenazi, David J; Jenkins, Randall; Hotchkiss, Hilary; Moxey-Mims, Marva; Furth, Susan L; Warady, Bradley A

    2011-01-01

    Poor linear growth is a well described complication of chronic kidney disease (CKD). This study evaluated whether abnormal birth history defined by low birth weight (LBW; growth outcomes in children with CKD. Growth outcomes were quantified by age-sex-specific height and weight z-scores during 1393 visits from 426 participants of the Chronic Kidney Disease in Children Study, an observational cohort of children with CKD. Median baseline GFR was 42.9 ml/min per 1.73 m(2), 21% had a glomerular diagnosis, and 52% had CKD for ≥ 90% of their lifetime. A high prevalence of LBW (17%), SGA (14%), prematurity (12%), and ICU after delivery (40%) was observed. Multivariate analyses demonstrated a negative effect of LBW (-0.43 ± 0.14; P children with glomerular versus nonglomerular diagnoses, the effect of SGA (-1.08 versus -0.18; P = 0.029) on attained weight was more pronounced in children with a glomerular diagnosis. LBW and SGA are novel risk factors for short stature and lower weight percentiles in children with mild to moderate CKD independent of kidney function.

  9. The occurrence of apoptosis, abnormal mitoses, cells dying in mitosis and micronuclei in a human melanoma xenograft exposed to single dose irradiation

    International Nuclear Information System (INIS)

    Falkvoll, K.H.; Norske Radiumhospital, Oslo)

    1990-01-01

    The mechanisms of cell loss, the cell proliferation and the immediate growth response were investigated in a human melanoma xenograft given single dose irradiation with 7.5 Gy and 15.0 Gy, respectively. The frequencies of apoptotic cells, mitoses, abnormal mitoses, cells dying in mitosis and micronuclei, were scored in histological sections. In the untreated xenograft, the occurrence of micronuclei and abnormal mitoses indicated the presence of reproductively dead cells. Cell loss manifested itself through the appearance of apoptosis, cells dying in mitosis and necrosis. After irradiation, the cell proliferation was temporarily inhibited due to a radiation induced division delay. When proliferation resumed, there was a dose-dependent increase in the frequencies of abnormal mitoses and micronuclei and thus in the fraction of reproductively dead cells. The incidence of cell loss through apoptosis and cells dying in mitosis also increased. This cell loss probably reduced transiently the fraction of reproductively dead cells, and accounted for the reduced amount of tumour cells the first days after 15.0 Gy irradiation. The incidence of apoptotic cell loss and micronuclei decreased, and the incidence of normal mitoses increased when tumour growth resumed. (orig.) [de

  10. Effect of Deforming Temperature and Strain on Abnormal Grain Growth of Extruded FGH96 Superalloy

    Directory of Open Access Journals (Sweden)

    WANG Chaoyuan

    2016-10-01

    Full Text Available Based on the experiments of isothermal forging wedge-shaped samples, Deform-3D numerical simulation software was used to confirm the strain distribution in the wedge-shaped samples. The effect of deforming temperature and strain on abnormal grain growth(AGG in extruded FGH96 superalloy was examined. It is found that when the forging speed is 0.04 mm/s,the critical AGG occurring temperature is 1100℃,and the critical strain is 2%.AGG does not occur within 1000-1070℃,but still shows the feature of ‘critical strain’,and the region with strain of 5%-10% has the largest average grain size.AGG can be avoided and the uniform fine grains can be gained when the strain is not less than 15%.

  11. Abnormalities of the axial and proximal appendicular skeleton in adults with Laron syndrome (growth hormone insensitivity)

    International Nuclear Information System (INIS)

    Kornreich, L.; Konen, O.; Schwarz, M.; Horev, G.; Siegel, Y.; Hershkovitz, I.; Laron, Z.

    2008-01-01

    To investigate abnormalities in the skeleton (with the exclusion of the skull, cervical spine, hands and feet) in patients with Laron syndrome, who have an inborn growth hormone resistance and congenital insulin-like growth factor-1 (IGF-1) deficiency. The study group was composed of 15 untreated patients with Laron syndrome (seven male and eight female) aged 21-68 years. Plain films of the axial and appendicular skeleton were evaluated retrospectively for abnormalities in structure and shape. The cortical width of the long bones was evaluated qualitatively and quantitatively (in the upper humerus and mid-femur), and the cortical index was calculated and compared with published references. Measurements were taken of the mid-anteroposterior and cranio-caudal diameters of the vertebral body and spinous process at L3, the interpedicular distance at L1 and L5, and the sacral slope. Thoracic and lumbar osteophytes were graded on a 5-point scale. Values were compared with a control group of 20 healthy persons matched for age. The skeleton appeared small in all patients. No signs of osteopenia were visible. The cortex of the long bones appeared thick in the upper limbs in 11 patients and in the lower limbs in four. Compared with the reference values, the cortical width was thicker than average in the humerus and thinner in the femur. The vertebral diameters at L3 and the interpedicular distances at L1 and L5 were significantly smaller in the patients than in the control subjects (P < 0.001); however, at L5 the canal was wider, relative to the vertebral body. The study group had a higher rate of anterior osteophytes in the lumbar spine than the controls had, and their osteophytes were also significantly larger. In the six patients for whom radiographs of the upper extremity in its entirety were available on one film, the ulna appeared to be rotated. In one 22-year-old man, multiple epiphyses were still open. Congenital IGF-1 deficiency leads to skeletal abnormalities

  12. Abnormalities of the axial and proximal appendicular skeleton in adults with Laron syndrome (growth hormone insensitivity)

    Energy Technology Data Exchange (ETDEWEB)

    Kornreich, L.; Konen, O.; Schwarz, M.; Horev, G. [Schneider Children' s Medical Center of Israel, Imaging Department, Petah Tiqwa (Israel); Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv (Israel); Siegel, Y. [Rabin Medical Center, Imaging Department, Petah Tiqwa (Israel); Jackson Memorial Hospital, Department of Radiology, Thoracic Section, Miami, FL (United States); Hershkovitz, I. [Tel Aviv University, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv (Israel); Laron, Z. [Schneider Children' s Medical Center of Israel, Endocrinology and Diabetes Research Unit, Petah Tiqwa (Israel); Tel Aviv University, Sackler Faculty of Medicine, Tel Aviv (Israel)

    2008-02-15

    To investigate abnormalities in the skeleton (with the exclusion of the skull, cervical spine, hands and feet) in patients with Laron syndrome, who have an inborn growth hormone resistance and congenital insulin-like growth factor-1 (IGF-1) deficiency. The study group was composed of 15 untreated patients with Laron syndrome (seven male and eight female) aged 21-68 years. Plain films of the axial and appendicular skeleton were evaluated retrospectively for abnormalities in structure and shape. The cortical width of the long bones was evaluated qualitatively and quantitatively (in the upper humerus and mid-femur), and the cortical index was calculated and compared with published references. Measurements were taken of the mid-anteroposterior and cranio-caudal diameters of the vertebral body and spinous process at L3, the interpedicular distance at L1 and L5, and the sacral slope. Thoracic and lumbar osteophytes were graded on a 5-point scale. Values were compared with a control group of 20 healthy persons matched for age. The skeleton appeared small in all patients. No signs of osteopenia were visible. The cortex of the long bones appeared thick in the upper limbs in 11 patients and in the lower limbs in four. Compared with the reference values, the cortical width was thicker than average in the humerus and thinner in the femur. The vertebral diameters at L3 and the interpedicular distances at L1 and L5 were significantly smaller in the patients than in the control subjects (P < 0.001); however, at L5 the canal was wider, relative to the vertebral body. The study group had a higher rate of anterior osteophytes in the lumbar spine than the controls had, and their osteophytes were also significantly larger. In the six patients for whom radiographs of the upper extremity in its entirety were available on one film, the ulna appeared to be rotated. In one 22-year-old man, multiple epiphyses were still open. Congenital IGF-1 deficiency leads to skeletal abnormalities

  13. HIV-1 transgenic rats develop T cell abnormalities

    International Nuclear Information System (INIS)

    Reid, William; Abdelwahab, Sayed; Sadowska, Mariola; Huso, David; Neal, Ashley; Ahearn, Aaron; Bryant, Joseph; Gallo, Robert C.; Lewis, George K.; Reitz, Marvin

    2004-01-01

    HIV-1 infection leads to impaired antigen-specific T cell proliferation, increased susceptibility of T cells to apoptosis, progressive impairment of T-helper 1 (Th1) responses, and altered maturation of HIV-1-specific memory cells. We have identified similar impairments in HIV-1 transgenic (Tg) rats. Tg rats developed an absolute reduction in CD4 + and CD8 + T cells able to produce IFN-γ following activation and an increased susceptibility of T cells to activation-induced apoptosis. CD4 + and CD8 + effector/memory (CD45RC - CD62L - ) pools were significantly smaller in Tg rats compared to non-Tg controls, although the converse was true for the naieve (CD45RC + CD62L + ) T cell pool. Our interpretation is that the HIV transgene causes defects in the development of T cell effector function and generation of specific effector/memory T cell subsets, and that activation-induced apoptosis may be an essential factor in this process

  14. Using the Optical Fractionator to Estimate Total Cell Numbers in the Normal and Abnormal Developing Human Forebrain

    DEFF Research Database (Denmark)

    Larsen, Karen B

    2017-01-01

    Human fetal brain development is a complex process which is vulnerable to disruption at many stages. Although histogenesis is well-documented, only a few studies have quantified cell numbers across normal human fetal brain growth. Due to the present lack of normative data it is difficult to gauge...... abnormal development. Furthermore, many studies of brain cell numbers have employed biased counting methods, whereas innovations in stereology during the past 20-30 years enable reliable and efficient estimates of cell numbers. However, estimates of cell volumes and densities in fetal brain samples...... are unreliable due to unpredictable shrinking artifacts, and the fragility of the fetal brain requires particular care in handling and processing. The optical fractionator design offers a direct and robust estimate of total cell numbers in the fetal brain with a minimum of handling of the tissue. Bearing...

  15. Abnormal Akt signalling in bladder epithelial cell explants from patients with interstitial cystitis/bladder pain syndrome can be induced by antiproliferative factor treatment of normal bladder cells.

    Science.gov (United States)

    Keay, Susan K; Zhang, Chen-Ou

    2016-07-01

    To determine whether protein kinase B (Akt) signalling and secretion of specific downstream effector proteins are abnormal in specific cell fractions of bladder epithelial cells from patients with interstitial cystitis/bladder pain syndrome (IC/BPS), as explanted bladder epithelial cells from patients with IC/BPS produce a frizzled 8-related glycopeptide antiproliferative factor (APF) that inhibits normal bladder epithelial cell proliferation and expression of several proteins known to be regulated by Akt signalling. A related secondary objective was to determine whether treatment of normal bladder epithelial cells with active synthetic asialo-antiproliferative factor (as-APF) induces similar changes in Akt signalling and specific downstream effector proteins/mRNAs. Cell proteins were extracted into four subcellular fractions from primary bladder epithelial explants of six patients who fulfilled modified National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) criteria for IC/BPS and six age- and gender-matched controls. Total and/or phosphorylated cellular Akt, glycogen synthase kinase 3β (GSK3β), and β-catenin; total cellular JunB; and secreted matrix metalloproteinase 2 (MMP2) and heparin-binding epidermal growth factor-like growth factor (HB-EGF) levels were determined by Western blot. MMP2, JunB, p53, uroplakin 3 (UPK3), and β-actin mRNAs were quantified by quantitative reverse transcriptase-polymerase chain reaction. Akt activity was determined by nonradioactive assay. IC/BPS cells had lower Akt activity, along with lower Akt ser473- and GSK3β ser9-phosphorylation and higher β-catenin ser33,37/thr41-phosphorylation in specific fractions as compared with matched control cells. IC/BPS explants also had evidence of additional downstream abnormalities compared with control cells, including lower nuclear JunB; lower secreted MMP2 and HB-EGF; plus lower MMP2, JunB, and UPK3 mRNAs but higher p53 mRNA relative to β-actin. Each of these IC

  16. Congenital posteromedial bowing of the tibia: a retrospective analysis of growth abnormalities in the leg.

    Science.gov (United States)

    Shah, Hitesh H; Doddabasappa, Siddesh N; Joseph, Benjamin

    2009-05-01

    We studied case records and radiographs of 20 children with congenital posteromedial bowing of the tibia (CPMBT) retrospectively to determine the pattern of correction of the bowing, the associated growth abnormalities of the tibia and fibula, and the role of surgical intervention in CPMBT. The magnitude of diaphyseal bowing in two planes and the physeal inclination were measured. Abnormalities of ossification of the distal tibial epiphysis and inclination of the distal articular surface if present were noted and shortening of the tibia was recorded. The rate of resolution of deformity was noted from sequential radiographs and expressed as percentage reduction per month of follow-up. At initial presentation the magnitude of deformity varied; the most severe posterior diaphyseal bow was 70 degrees whereas the most severe medial diaphyseal bow was 64 degrees. Two distinct mechanisms seem to be responsible for resolution of the deformity in CPMBT; one involves physeal realignment and the other involves diaphyseal remodeling. In the first year of life, rapid resolution of angulation was noted; the rate of resolution reduced significantly thereafter. In a proportion of children with CPMBT residual deformity may persist till over 4 years of age. Physeal realignment occurred at a faster rate than diaphyseal remodeling. The degree of shortening was related to the severity of bowing and shortening as great as 40% was noted in a patient. Wedging of the distal tibial epiphysis and fibular hypoplasia with valgus inclination of the distal tibial articular surface occur in some children with CPMBT. Eccentric ossification of the distal tibial epiphysis in early childhood may be a predictor of wedging of the distal tibial epiphysis later on. We recommend all the children with CPMBT to be followed up periodically till skeletal maturity, to identify cases with residual bowing, ankle deformity, muscle weakness, and limb length inequality as active surgical intervention may be needed

  17. A rare case of Silver-Russell syndrome associated with growth hormone deficiency and urogenital abnormalities

    Directory of Open Access Journals (Sweden)

    Namburi Rajendra Prasad

    2012-01-01

    Full Text Available Introduction: Silver-Russell syndrome (SRS is a very rare genetic disorder. This is usually characterized by asymmetry in the size of the two halves or other parts of the body. Background: We are presenting a case of SRS with growth hormone (GH deficiency and urogenital abnormalities. Case Report: A 15-year-old boy a product of non-consanguineous marriage brought with a history of short stature and poor development of secondary sexual characters. There were no adverse perinatal events, but weighed 1500 g (<3 rd centile at birth. He had delayed developmental milestones. He has had a poor appetite and feeding difficulties since childhood. On physical examination, he had a broad forehead, triangular facies, and low-set prominent ears. Asymmetry of the face, upper and lower extremities was noted, with hemihypertrophy on the right side. His height was 119 cm (<3 rd centile and weight was 18 kg which were low (<3 rd centile as per his age. He was biochemically euthyroid and GH stimulation testing with clonidine (0.15 mg/m 2 showed low GH levels at 30×, 60×, and 90× were 1.7, 1.6, and 1.1ng/ml, respectively. On micturatingcystourethrogram, grade V complex was noted on the right side. Dimercaptosuccinic acid (DMSA showed normal functioning kidneys. He was started on recombinant GH with a height velocity of 10 cm/ year. Conclusion : Urogenital abnormalities are rare but well described anomalies associated with SRS, and all cases have to be screened for them. GH deficiency is not uncommon in SRS, and GH treatment proves to be beneficial.

  18. Urinary abnormalities in children with sickle cell anaemia | Ugwu ...

    African Journals Online (AJOL)

    Background: Sickle cell anaemia (SCA) is a health problem worldwide. Almost all the organs of the body are affected by the combined effect of chronic hypoxia, repeated infarction and recurrent infections. Renal function may be progressively impaired in them as a result of sickling in the renal medulla. Microscopic ...

  19. Focal adhesion protein abnormalities in myelodysplastic mesenchymal stromal cells

    Energy Technology Data Exchange (ETDEWEB)

    Aanei, Carmen Mariana, E-mail: caanei@yahoo.com [Laboratoire Hematologie, CHU de Saint-Etienne, 42055, Saint-Etienne (France); Department of Immunology, Gr. T. Popa University of Medicine and Pharmacy, 700115, Iasi (Romania); Eloae, Florin Zugun [Department of Immunology, Gr. T. Popa University of Medicine and Pharmacy, 700115, Iasi (Romania); Flandrin-Gresta, Pascale [Laboratoire Hematologie, CHU de Saint-Etienne, 42055, Saint-Etienne (France); CNRS UMR 5239, Universite de Lyon, 42023, Saint-Etienne (France); Tavernier, Emmanuelle [Service Hematologie Clinique, Institut de Cancerologie de la Loire, 42270, Saint-Priest-en-Jarez (France); CNRS UMR 5239, Universite de Lyon, 42023, Saint-Etienne (France); Carasevici, Eugen [Department of Immunology, Gr. T. Popa University of Medicine and Pharmacy, 700115, Iasi (Romania); Guyotat, Denis [Service Hematologie Clinique, Institut de Cancerologie de la Loire, 42270, Saint-Priest-en-Jarez (France); CNRS UMR 5239, Universite de Lyon, 42023, Saint-Etienne (France); Campos, Lydia [Laboratoire Hematologie, CHU de Saint-Etienne, 42055, Saint-Etienne (France); CNRS UMR 5239, Universite de Lyon, 42023, Saint-Etienne (France)

    2011-11-01

    Direct cell-cell contact between haematopoietic progenitor cells (HPCs) and their cellular microenvironment is essential to maintain 'stemness'. In cancer biology, focal adhesion (FA) proteins are involved in survival signal transduction in a wide variety of human tumours. To define the role of FA proteins in the haematopoietic microenvironment of myelodysplastic syndromes (MDS), CD73-positive mesenchymal stromal cells (MSCs) were immunostained for paxillin, pFAK [Y{sup 397}], and HSP90{alpha}/{beta} and p130CAS, and analysed for reactivity, intensity and cellular localisation. Immunofluorescence microscopy allowed us to identify qualitative and quantitative differences, and subcellular localisation analysis revealed that in pathological MSCs, paxillin, pFAK [Y{sup 397}], and HSP90{alpha}/{beta} formed nuclear molecular complexes. Increased expression of paxillin, pFAK [Y{sup 397}], and HSP90{alpha}/{beta} and enhanced nuclear co-localisation of these proteins correlated with a consistent proliferative advantage in MSCs from patients with refractory anaemia with excess blasts (RAEB) and negatively impacted clonogenicity of HPCs. These results suggest that signalling via FA proteins could be implicated in HPC-MSC interactions. Further, because FAK is an HSP90{alpha}/{beta} client protein, these results suggest the utility of HSP90{alpha}/{beta} inhibition as a target for adjuvant therapy for myelodysplasia.

  20. Pattern of epithelial cell abnormality in Pap smear: A clinicopathological and demographic correlation

    Directory of Open Access Journals (Sweden)

    Urmila Banik

    2011-01-01

    Full Text Available Background: In the low resource settings of a developing country, a conventional Papanicolaou (Pap test is the mainstay screening system for cervical cancer. In order to counsel women and to organize a public health system for cervical cancer screening by Pap smear examination, it is imperative to know the pattern of premalignant and malignant lesions. This study was undertaken to find out the prevalence of an abnormal Pap smear, in a tertiary hospital of a developing country, and to carry out a clinicopathological and demographical analysis for establishing the pattern of epithelial cell abnormality in a Pap smear. Materials and Methods: A cross-sectional descriptive study was carried out in a total of 1699 patients who underwent Pap smear examination. The prevalence of epithelial cell abnormality in the Pap smear was calculated in proportions / percentages. Specimen adequacy and reporting was assessed according to the revised Bethesda system. Results: Among the total of 1699 patients who had their Pap smear done, 139 (8.18% revealed epithelial cell abnormality. Altogether 26 smears revealed high-grade lesions and malignancy, most of which were found to be in women belonging to the 30 - 39 and ≥ 45 age group. A total of 75 (53.96% women were in the 20 - 44 age group and 64 (46.04% were in the ≥ 45 age group. A bimodal age distribution was detected in the epithelial cell abnormality, with the bulk being diagnosed in patients aged 45 or above. Overall one-third of the patients with an abnormal Pap smear result showed healthy cervix in per vaginal examination. Conclusions: A raised prevalence of epithelial cell abnormality reflects the lack of awareness about cervical cancer screening. Women aged 45 or above harbor the bulk of premalignant and malignant lesions in the Pap smear, signifying that these women are among the under users of cytological screening.

  1. Decreased sorbitol synthesis leads to abnormal stamen development and reduced pollen tube growth via an MYB transcription factor, MdMYB39L, in apple (Malus domestica).

    Science.gov (United States)

    Meng, Dong; He, Mingyang; Bai, Yang; Xu, Hongxia; Dandekar, Abhaya M; Fei, Zhangjun; Cheng, Lailiang

    2018-01-01

    Sugars produced by photosynthesis not only fuel plant growth and development, but may also act as signals to regulate plant growth and development. This work focuses on the role of sorbitol, a sugar alcohol, in flower development and pollen tube growth of apple (Malus domestica). Transgenic 'Greensleeves' apple trees with decreased sorbitol synthesis had abnormal stamen development, a decreased pollen germination rate and reduced pollen tube growth, which were all closely related to lower sorbitol concentrations in stamens. RNA sequencing and quantitative RT-PCR analyses identified reduced transcript levels during stamen development and pollen tube growth in the transgenic trees of a stamen-specific MYB39-like transcription factor, MdMYB39L, and of its putative target genes involved in hexose uptake, cell wall formation and microsporogenesis. Suppressing MdMYB39L expression in pollen via antisense oligonucleotide transfection significantly reduced the expression of its putative target genes and pollen tube growth. Exogenous sorbitol application during flower development partially restored MdMYB39L expression, stamen development, and pollen germination and tube growth of the transgenic trees. Addition of sorbitol to the germination medium also partially restored pollen germination and tube growth of the transgenic trees. We conclude that sorbitol plays an essential role in stamen development and pollen tube growth via MdMYB39L in apple. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  2. Growth and development after hematopoietic cell transplant in children.

    Science.gov (United States)

    Sanders, J E

    2008-01-01

    Hematopoietic cell transplantation (HCT) following high-dose chemotherapy or chemoradiotherapy for children with malignant or nonmalignant hematologic disorders has resulted in an increasing number of long-term disease-free survivors. The preparative regimens include high doses of alkylating agents, such as CY with or without BU, and may include TBI. These agents impact the neuroendocrine system in growing children and their subsequent growth and development. Children receiving high-dose CY or BUCY have normal thyroid function, but those who receive TBI-containing regimens may develop thyroid function abnormalities. Growth is not impacted by chemotherapy-only preparative regimens, but TBI is likely to result in growth hormone deficiency and decreased growth rates that need to be treated with synthetic growth hormone therapy. Children who receive high-dose CY-only have normal development through puberty, whereas those who receive BUCY have a high incidence of delayed pubertal development. Following fractionated TBI preparative regimens, approximately half of the patients have normal pubertal development. These data demonstrate that the growth and development problems after HCT are dependent upon the preparative regimen received. All children should be followed for years after HCT for detection of growth and development abnormalities that are treatable with appropriate hormone therapy.

  3. Platelet-derived growth factor over-expression in retinal progenitors results in abnormal retinal vessel formation.

    Directory of Open Access Journals (Sweden)

    Per-Henrik D Edqvist

    Full Text Available Platelet-derived growth factor (PDGF plays an important role in development of the central nervous system, including the retina. Excessive PDGF signaling is associated with proliferative retinal disorders. We reported previously that transgenic mice in which PDGF-B was over-expressed under control of the nestin enhancer, nes/tk-PdgfB-lacZ, exhibited enhanced apoptosis in the developing corpus striatum. These animals display enlarged lateral ventricles after birth as well as behavioral aberrations as adults. Here, we report that in contrast to the relatively mild central nervous system phenotype, development of the retina is severely disturbed in nes/tk-PdgfB-lacZ mice. In transgenic retinas all nuclear layers were disorganized and photoreceptor segments failed to develop properly. Since astrocyte precursor cells did not populate the retina, retinal vascular progenitors could not form a network of vessels. With time, randomly distributed vessels resembling capillaries formed, but there were no large trunk vessels and the intraocular pressure was reduced. In addition, we observed a delayed regression of the hyaloid vasculature. The prolonged presence of this structure may contribute to the other abnormalities observed in the retina, including the defective lamination.

  4. Cell Junction Pathology of Neural Stem Cells Is Associated With Ventricular Zone Disruption, Hydrocephalus, and Abnormal Neurogenesis

    NARCIS (Netherlands)

    Montserrat Guerra, Maria; Henzi, Roberto; Ortloff, Alexander; Lichtin, Nicole; Vio, Karin; Jimenez, Antonio J.; Dolores Dominguez-Pinos, Maria; Gonzalez, Cesar; Clara Jara, Maria; Hinostroza, Fernando; Rodriguez, Sara; Jara, Maryoris; Ortega, Eduardo; Guerra, Francisco; Sival, Deborah A.; den Dunnen, Wilfred F. A.; Perez-Figares, Jose M.; McAllister, James P.; Johanson, Conrad E.; Rodriguez, Esteban M.

    Fetal-onset hydrocephalus affects 1 to 3 per 1,000 live births. It is not only a disorder of cerebrospinal fluid dynamics but also a brain disorder that corrective surgery does not ameliorate. We hypothesized that cell junction abnormalities of neural stem cells (NSCs) lead to the inseparable

  5. Micronuclei Frequencies and Nuclear Abnormalities in Oral Exfoliated Cells of Nuclear Power Plant Workers

    OpenAIRE

    Sagari, Shitalkumar G; Babannavar, Roopa; Lohra, Abhishek; Kodgi, Ashwin; Bapure, Sunil; Rao, Yogesh; J., Arun; Malghan, Manjunath

    2014-01-01

    Aim: Biomonitoring provides a useful tool to estimate the genetic risk from exposure to genotoxic agents. The aim of this study was to evaluate the frequencies of Micronuclei (MN) and other Nuclear abnormalities (NA) from exfoliated oral mucosal cells in Nuclear Power Station (NPS) workers.

  6. Maternal vitamin B12 deficiency and abnormal cell-free DNA results in pregnancy

    NARCIS (Netherlands)

    Schuring-Blom, Heleen; Lichtenbelt, Klaske; van Galen, Karin; Elferink, Martin; Weiss, Marjan; Vermeesch, Joris Robert; Page-Christiaens, Lieve

    2016-01-01

    What's Already Known about this Topic? Prenatal testing with cell-free DNA may incidentally identify maternal genetic anomalies and malignancies. What does this Study Add? Profound vitamin B12 deficiency with intramedullary hemolysis may cause abnormal genomic patterns that can be detected by

  7. Exercise tolerance, lung function abnormalities, anemia, and cardiothoracic ratio in sickle cell patients

    NARCIS (Netherlands)

    van Beers, Eduard J.; van der Plas, Mart N.; Nur, Erfan; Bogaard, Harm-Jan; van Steenwijk, Reindert P.; Biemond, Bart J.; Bresser, Paul

    2014-01-01

    Many patients with sickle cell disease (SCD) have a reduced exercise capacity and abnormal lung function. Cardiopulmonary exercise testing (CPET) can identify causes of exercise limitation. Forty-four consecutive SCD patients (27 HbSS, 11 HbSC, and 6 HbS-beta thalassemia) with a median age

  8. Abnormal mitosis in root meristem cells of Allium cepa L. induced by ...

    African Journals Online (AJOL)

    This investigation was aimed to find mitotic abnormalities as cytological evidence induced by the dye in root tip cells of onion (Allium cepa L.) grown in different concentrations: 0.01, 0.05, 0.1, 0.5 and 1.0% (weight per volume) prepared in distilled water in separate treatment schedules for 24 and 48 h. Mitotic aberrations ...

  9. Prognostic significance of cytogenetic abnormalities in T-cell prolymphocytic leukemia.

    Science.gov (United States)

    Hu, Zhihong; Medeiros, L Jeffrey; Fang, Lianghua; Sun, Yi; Tang, Zhenya; Tang, Guilin; Sun, Tsieh; Quesada, Andres E; Hu, Shimin; Wang, Sa A; Pei, Lin; Lu, Xinyan

    2017-05-01

    T-cell prolymphocytic leukemia (T-PLL) is an aggressive mature T-cell neoplasm. The most common cytogenetic abnormality associated with T-PLL is inv(14)(q11.2q32) involving TCL1, but other abnormalities also have been reported. In this study, we correlated cytogenetic abnormalities with clinical outcome in 97 T-PLL patients, including 66 men and 31 women with a median age of 63 years (range, 34-81). Twenty-seven patients had a normal karyotype (NK), one had two chromosomal aberrations, and 69 had a complex karyotype (CK). Patients with a CK had poorer overall survival (OS) than patients with a NK (P = .0016). In the CK group, the most common aberrations involved 14q (n = 45) and 8q (n = 38). Additional deletions of chromosomes 17p, 11q, 6q, 12p, 13q were observed frequently. No individual cytogenetic abnormality impacted OS. Patients with ≥5 aberrations had an OS of 11 months versus 22 months in patients with 3467). Patients with refractory disease showed worse OS in both the NK and CK groups (P = .0014 and P < .0001, respectively), compared with patients who achieved remission but then relapsed. Stem cell transplantation did not appear to improve OS regardless of karyotype complexity. In conclusion, patients with T-PLL often have a CK which is a poor prognostic factor, particularly in patients with ≥5 cytogenetic aberrations. © 2017 Wiley Periodicals, Inc.

  10. An efficient abnormal cervical cell detection system based on multi-instance extreme learning machine

    Science.gov (United States)

    Zhao, Lili; Yin, Jianping; Yuan, Lihuan; Liu, Qiang; Li, Kuan; Qiu, Minghui

    2017-07-01

    Automatic detection of abnormal cells from cervical smear images is extremely demanded in annual diagnosis of women's cervical cancer. For this medical cell recognition problem, there are three different feature sections, namely cytology morphology, nuclear chromatin pathology and region intensity. The challenges of this problem come from feature combination s and classification accurately and efficiently. Thus, we propose an efficient abnormal cervical cell detection system based on multi-instance extreme learning machine (MI-ELM) to deal with above two questions in one unified framework. MI-ELM is one of the most promising supervised learning classifiers which can deal with several feature sections and realistic classification problems analytically. Experiment results over Herlev dataset demonstrate that the proposed method outperforms three traditional methods for two-class classification in terms of well accuracy and less time.

  11. Effect of second phase particles topology on the onset temperature of abnormal grain growth in Fe - 3%Si steels

    Directory of Open Access Journals (Sweden)

    Stoyka, V.

    2008-01-01

    Full Text Available The relations between regimes of dynamic annealing, state of secondary particles system and the onset temperature of abnormal grain growth are investigated. Two distinguish types of Fe-3%Si grain-oriented steels, after one and two stage cold rolling, were studied. The second phase particles remain unaffected in first type of steel during the heat treatment. Vice versa, the increased density of second phases was observed after annealing in the second type of the investigated materials. It is shown that start/onset of abnormal grain growth strongly depends on both volume fraction of second phase particles and annealing temperature. Texture and magnetic properties of the investigated samples are investigated within the current study.

  12. Cell Cycle Phase Abnormalities Do Not Account for Disordered Proliferation in Barrett's Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Pierre Lao-Sirieix

    2004-11-01

    Full Text Available Barrett's esophagus (BE epithelium is the precursor lesion for esophageal adenocarcinoma. Cell cycle proteins have been advocated as biomarkers to predict the malignant potential in BE. However, whether disruption of the cell cycle plays a causal role in Barrett's carcinogenesis is not clear. Specimens from the Barrett's dysplasia—carcinoma sequence were immunostained for cell cycle phase markers (cyclin D1 for G1; cyclin A for S, G2, and M; cytoplasmic cyclin B1 for G2; and phosphorylated histone 3 for M phase and expressed as a proportion of proliferating cells. Flow cytometric analysis of the cell cycle phase of prospective biopsies was also performed. The proliferation status of nondysplastic BE was similar to gastric antrum and D2, but the proliferative compartment extended to the luminal surface. In dysplastic samples, the number of proliferating cells correlated with the degree of dysplasia (P < .001. The overall levels of cyclins A and B1 correlated with the degree of dysplasia (P < .001. However, the cell cycle phase distribution measured with both immunostaining and flow cytometry was conserved during all stages of BE, dysplasia, and cancer. Hence, the increased proliferation seen in Barrett's carcinogenesis is due to abnormal cell cycle entry or exit, rather than a primary abnormality within the cell cycle.

  13. Abnormal spatial diffusion of Ca2+ in F508del-CFTR airway epithelial cells

    Directory of Open Access Journals (Sweden)

    Becq Frédéric

    2008-10-01

    Full Text Available Abstract Background In airway epithelial cells, calcium mobilization can be elicited by selective autocrine and/or paracrine activation of apical or basolateral membrane heterotrimeric G protein-coupled receptors linked to phospholipase C (PLC stimulation, which generates inositol 1,4,5-trisphosphate (IP3 and 1,2-diacylglycerol (DAG and induces Ca2+ release from endoplasmic reticulum (ER stores. Methods In the present study, we monitored the cytosolic Ca2+ transients using the UV light photolysis technique to uncage caged Ca2+ or caged IP3 into the cytosol of loaded airway epithelial cells of cystic fibrosis (CF and non-CF origin. We compared in these cells the types of Ca2+ receptors present in the ER, and measured their Ca2+ dependent activity before and after correction of F508del-CFTR abnormal trafficking either by low temperature or by the pharmacological corrector miglustat (N-butyldeoxynojirimycin. Results We showed reduction of the inositol 1,4,5-trisphosphate receptors (IP3R dependent-Ca2+ response following both correcting treatments compared to uncorrected cells in such a way that Ca2+ responses (CF+treatment vs wild-type cells were normalized. This normalization of the Ca2+ rate does not affect the activity of Ca2+-dependent chloride channel in miglustat-treated CF cells. Using two inhibitors of IP3R1, we observed a decrease of the implication of IP3R1 in the Ca2+ response in CF corrected cells. We observed a similar Ca2+ mobilization between CF-KM4 cells and CFTR-cDNA transfected CF cells (CF-KM4-reverted. When we restored the F508del-CFTR trafficking in CFTR-reverted cells, the specific IP3R activity was also reduced to a similar level as in non CF cells. At the structural level, the ER morphology of CF cells was highly condensed around the nucleus while in non CF cells or corrected CF cells the ER was extended at the totality of cell. Conclusion These results suggest reversal of the IP3R dysfunction in F508del-CFTR epithelial

  14. GLIAL ABNORMALITIES IN MOOD DISORDERS

    OpenAIRE

    Öngür, Dost; Bechtholt, Anita J.; Carlezon, William A.; Cohen, Bruce M.

    2014-01-01

    Multiple lines of evidence indicate that mood disorders are associated with abnormalities in the brain's cellular composition, especially in glial cells. Considered inert support cells in the past, glial cells are now known to be important for brain function. Treatments for mood disorders enhance glial cell proliferation, and experimental stimulation of cell growth has antidepressant effects in animal models of mood disorders. These findings suggest that the proliferation and survival of glia...

  15. Generation of human embryonic stem cells from abnormal blastocyst diagnosed with adrenoleukodystrophy.

    Science.gov (United States)

    Ouyang, Qi; Zhou, Xiaoying; Chen, Jing; Du, Juan; Lu, Guangxiu; Lin, Ge; Sun, Yi

    2016-11-01

    Human embryonic stem cell (hESC) line chHES-480 was derived from abnormal blastocyst diagnosed with adrenoleukodystrophy (ALD) after preimplantation genetic diagnosis (PGD) treatment. DNA sequencing analysis confirmed that chHES-480 cell line carried a hemizygous missense mutation c.1825G>A(p.Glu609Lys) of ABCD1 gene. Characteristic tests proved that the chHES-480 cell line presented typical markers of pluripotency and had the capability to form the three germ layers both in vitro and in vivo. Copyright © 2016 Michael Boutros, German Cancer Research Center, Heidelberg, Germany. Published by Elsevier B.V. All rights reserved.

  16. Rapid degradation of abnormal proteins in vacuoles from Acer pseudoplatanus L. cells

    International Nuclear Information System (INIS)

    Canut, H.; Alibert, G.; Carrasco, A.; Boudet, A.M.

    1986-01-01

    In Acer pseudoplatanus cells, the proteins synthesized in the presence of an amino acid analog ([ 14 C]p-fluorophenylalanine), were degraded more rapidly than normal ones ([ 14 C]phenylalanine as precursor). The degradation of an important part of these abnormal proteins occurred inside the vacuoles. The degradation process was not apparently associated to a specific proteolytic system but was related to a preferential transfer of these aberrant proteins from the cytoplasm to the vacuole

  17. Phenotype abnormality: 49 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available 49 http://metadb.riken.jp/db/SciNetS_ria224i/cria224u1ria224u555i abnormal for trait of behavioral... quality in organ named whole plant during process named cell growth ... whole plant ... abnormal ... cell growth ... behavioral quality

  18. Transmission of clonal chromosomal abnormalities in human hematopoietic stem and progenitor cells surviving radiation exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, Daniela, E-mail: d.kraft@gsi.de [GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt (Germany); Institute for Transfusion Medicine und Immunohematology, DRK-Blutspendedienst Baden-Wuerttemberg—Hessen, Johann Wolfgang Goethe-University Hospital, Sandhofstrasse 1, 60528 Frankfurt (Germany); Ritter, Sylvia, E-mail: s.ritter@gsi.de [GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt (Germany); Durante, Marco, E-mail: m.durante@gsi.de [GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt (Germany); Institute for Condensed Matter Physics, Physics Department, Technical University Darmstadt, Hochschulstraße 6-8, 64289 Darmstadt (Germany); Seifried, Erhard, E-mail: e.seifried@blutspende.de [Institute for Transfusion Medicine und Immunohematology, DRK-Blutspendedienst Baden-Wuerttemberg—Hessen, Johann Wolfgang Goethe-University Hospital, Sandhofstrasse 1, 60528 Frankfurt (Germany); Fournier, Claudia, E-mail: c.fournier@gsi.de [GSI Helmholtz Center for Heavy Ion Research, Department of Biophysics, Planckstr. 1, 64291 Darmstadt (Germany); Tonn, Torsten, E-mail: t.tonn@blutspende.de [Institute for Transfusion Medicine und Immunohematology, DRK-Blutspendedienst Baden-Wuerttemberg—Hessen, Johann Wolfgang Goethe-University Hospital, Sandhofstrasse 1, 60528 Frankfurt (Germany); Technische Universität Dresden, Med. Fakultät Carl Gustav Carus, Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, Blasewitzer Straße 68/70, 01307 Dresden (Germany)

    2015-07-15

    Highlights: • Radiation induced formation and transmission of chromosomal aberrations were assessed. • Cytogenetic analysis was performed in human CD34+ HSPC by mFISH. • We report transmission of stable aberrations in irradiated, clonally expanded HSPC. • Unstable aberrations in clonally expanded HSPC occur independently of irradiation. • Carbon ions and X-rays bear a similar risk for propagation of cytogenetic changes. - Abstract: In radiation-induced acute myeloid leukemia (rAML), clonal chromosomal abnormalities are often observed in bone marrow cells of patients, suggesting that their formation is crucial in the development of the disease. Since rAML is considered to originate from hematopoietic stem and progenitor cells (HSPC), we investigated the frequency and spectrum of radiation-induced chromosomal abnormalities in human CD34{sup +} cells. We then measured stable chromosomal abnormalities, a possible biomarker of leukemia risk, in clonally expanded cell populations which were grown for 14 days in a 3D-matrix (CFU-assay). We compared two radiation qualities used in radiotherapy, sparsely ionizing X-rays and densely ionizing carbon ions (29 and 60–85 keV/μm, doses between 0.5 and 4 Gy). Only a negligible number of de novo arising, unstable aberrations (≤0.05 aberrations/cell, 97% breaks) were measured in the descendants of irradiated HSPC. However, stable aberrations were detected in colonies formed by irradiated HSPC. All cells of the affected colonies exhibited one or more identical aberrations, indicating their clonal origin. The majority of the clonal rearrangements (92%) were simple exchanges such as translocations (77%) and pericentric inversions (15%), which are known to contribute to the development of rAML. Carbon ions were more efficient in inducing cell killing (maximum of ∼30–35% apoptotic cells for 2 Gy carbon ions compared to ∼25% for X-rays) and chromosomal aberrations in the first cell-cycle after exposure (∼70% and

  19. Excess TSH causes abnormal skeletal development in young mice with hypothyroidism via suppressive effects on the growth plate.

    Science.gov (United States)

    Endo, Toyoshi; Kobayashi, Tetsuro

    2013-09-01

    Hypothyroidism in the young leads to irreversible growth failure. hyt/hyt Mice have a nonfunctional TSH receptor (TSHR) and are severely hypothyroid, but growth retardation was not observed in adult mice. We found that epiphysial cartilage as well as cultured chondrocytes expressed functional TSHR at levels comparable to that seen in the thyroid, and that addition of TSH to cultured chondrocytes suppressed expression of chondrocyte differentiation marker genes such as Sox-9 and type IIa collagen. Next, we compared the long bone phenotypes of two distinct mouse models of hypothyroidism: thyroidectomized (THYx) mice and hyt/hyt mice. Although both THYx and hyt/hyt mice were severely hypothyroid and had similar serum Ca(2+) and growth hormone levels, the tibia was shorter and the proliferating and hypertrophic zones in the growth plate was significantly narrower in THYx mice than in hyt/hyt mice. Supplementation of hyt/hyt mice thyroid hormone resulted in a wider growth plate compared with that of wild-type mice. Expressions of chondrocyte differentiation marker genes Sox-9 and type IIa collagen in growth plate from THYx mice were 52 and 60% lower than those of hyt/hyt mice, respectively. High serum TSH causes abnormal skeletal development in young mice with hypothyroidism via suppressive effects on the growth plate.

  20. Comparison of gene expression profiles and responses to zinc chloride among inter- and intraspecific hybrids with growth abnormalities in wheat and its relatives.

    Science.gov (United States)

    Takamatsu, Kiyofumi; Iehisa, Julio C M; Nishijima, Ryo; Takumi, Shigeo

    2015-07-01

    Hybrid necrosis is a well-known reproductive isolation mechanism in plant species, and an autoimmune response is generally considered to trigger hybrid necrosis through epistatic interaction between disease resistance-related genes in hybrids. In common wheat, the complementary Ne1 and Ne2 genes control hybrid necrosis, defined as type I necrosis. Two other types of hybrid necrosis (type II and type III) have been observed in interspecific hybrids between tetraploid wheat and Aegilops tauschii. Another type of hybrid necrosis, defined here as type IV necrosis, has been reported in F1 hybrids between Triticum urartu and some accessions of Triticum monococcum ssp. aegilopoides. In types I, III and IV, cell death occurs gradually starting in older tissues, whereas type II necrosis symptoms occur only under low temperature. To compare comprehensive gene expression patterns of hybrids showing growth abnormalities, transcriptome analysis of type I and type IV necrosis was performed using a wheat 38k oligo-DNA microarray. Defense-related genes including many WRKY transcription factor genes were dramatically up-regulated in plants showing type I and type IV necrosis, similarly to other known hybrid abnormalities, suggesting an association with an autoimmune response. Reactive oxygen species generation and necrotic cell death were effectively inhibited by ZnCl2 treatment in types I, III and IV necrosis, suggesting a significant association of Ca(2+) influx in upstream signaling of necrotic cell death in wheat hybrid necrosis.

  1. Tannic acid label indicates abnormal cell development coinciding with regeneration of renal tubules.

    Science.gov (United States)

    Minuth, Will W; Denk, Lucia

    2014-01-01

    Stem/progenitor cells are in the focus of research as a future therapeutic option to stimulate regeneration in diseased renal parenchyma. However, current data indicate that successful seeding of implanted stem/progenitor cells is prevented by harmful interstitial fluid and altered extracellular matrix. To find out possible parameters for cell adaptation, the present investigation was performed. Renal stem/progenitor cells were mounted in an artificial interstitium for perfusion culture. Exposure to chemically defined but CO2-independent culture media was tested during 13 days. Cell biological features were then analyzed by histochemistry, while structural details were investigated by transmission electron microscopy after conventional and improved fixation of specimens. Culture of renal stem/progenitor cells as well in Leibovitz's L-15 Medium as CO2 Independent Medium shows in fluorescence microscopy spatial development of numerous tubules. Specimens of both media fixed by conventional glutaraldehyde exhibit in electron microscopy a homogeneous cell population in developed tubules. In contrast, fixation by glutaraldehyde including tannic acid illuminates that dispersed dark marked cells of unknown function are present. The screening further demonstrates that the dark cell type does not comply with cells found in embryonic, maturing or matured renal parenchyma. The actual data show that development of abnormal cell features must be taken into account, when regeneration of renal tubules is simulated under in vitro conditions.

  2. Live birth potential of good morphology and vitrified blastocysts presenting abnormal cell divisions.

    Science.gov (United States)

    Azzarello, Antonino; Hoest, Thomas; Hay-Schmidt, Anders; Mikkelsen, Anne Lis

    2017-06-01

    This study included 238 good morphology blastocysts, which were transferred after vitrification-warming to 152 women by single blastocyst transfer in Holbæk Fertility Clinic, Denmark. Time-lapse recordings of transferred good morphology blastocysts were reassessed to recognize every abnormal cell division (ACD) from the 1st to the 4th cell cycle. ACDs were distinguished as failed cell divisions and multi-cell divisions. ACDs were recognized in 37.0% (no. 88/238) of good morphology blastocysts that were vitrified-warmed and transferred in our clinic. Good morphology blastocysts with ACDs showed a lower live birth rate (17.0%) than blastocyst with solely regular cell divisions (29.3%). ACDs could occur at more than one cell division in the same good morphology blastocyst. Reported as independent events, we observed ACDs occurring more frequently at the later cell cycles (1st: 1.3%; 2nd: 8.0%; 3rd: 18.5%; 4th: 18.1%). More blastocysts presented failed cell divisions (no. 95) than multi-cell divisions (no. 14). Live births were achieved from blastocysts showing multi-cell divisions at any cell cycle and failed cell divisions from the 2nd cell cycle. Analyses of the subgroup of first blastocyst transferred to each patient showed similar to results. In conclusion, good morphology blastocysts presenting ACDs can result in live birth although lower compared to blastocysts with solely regular cell division. Pre-implantation embryos in vitro may undergo self-selection or correcting processes. This supports the transfer of blastocysts instead of cleavage stage embryos, giving first priority to blastocyst showing solely regular cell divisions, and giving second priority to blastocysts presenting ACDs at any cell cycle. Copyright © 2017 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  3. Cell growth and division cycle

    International Nuclear Information System (INIS)

    Darzynkiewicz, Z.

    1986-01-01

    The concept of the cell cycle in its present form was introduced more than three decades ago. Studying incorporation of DNA precursors by autoradiography, these authors observed that DNA synthesis in individual cells was discontinuous and occupied a discrete portion of the cell life (S phase). Mitotic division was seen to occur after a certain period of time following DNA replication. A distinct time interval between mitosis and DNA replication was also apparent. Thus, the cell cycle was subdivided into four consecutive phases, G/sub 1/, S, G/sub 2/, and M. The G/sub 1/ and G/sub 2/ phases represented the ''gaps'' between mitosis and the start of DNA replication, and between the end of DNA replication and the onset of mitosis, respectively. The cell cycle was defined as the interval between the midpoint of mitosis and the midpoint of the subsequent mitosis of the daughter cell(s). The authors' present knowledge on the cell cycle benefited mostly from the development of four different techniques: autoradiography, time-lapse cinematography, cell synchronization and flow cytometry. Of these, autoradiography has been the most extensively used, especially during the past two decades. By providing a means to analyse incorporation of precursors of DNA, RNA or proteins by individual cells and, in combination with various techniques of cell synchronization, autoradiography yielded most of the data fundamental to the current understanding of the cell cycle-related phenomena. Kinetics of cell progression through the cell cycle could be analysed in great detail after development of such sophisticated autoradiographic approaches as measurements of the fraction of labeled mitoses (''FLM curves'') or multiple sequential cell labelling with /sup 3/H- and /sup 14/C-TdR

  4. The Neurological Significance of Abnormal Natural Killer Cell Activity in Chronic Toxigenic Mold Exposures

    Directory of Open Access Journals (Sweden)

    Ebere Anyanwu

    2003-01-01

    Full Text Available Toxigenic mold activities produce metabolites that are either broad-spectrum antibiotics or mycotoxins that are cytotoxic. Indoor environmental exposure to these toxigenic molds leads to adverse health conditions with the main outcome measure of frequent neuroimmunologic and behavioral consequences. One of the immune system disorders found in patients presenting with toxigenic mold exposure is an abnormal natural killer cell activity. This paper presents an overview of the neurological significance of abnormal natural killer cell (NKC activity in chronic toxigenic mold exposure. A comprehensive review of the literature was carried out to evaluate and assess the conditions under which the immune system could be dysfunctionally interfered with leading to abnormal NKC activity and the involvement of mycotoxins in these processes. The functions, mechanism, the factors that influence NKC activities, and the roles of mycotoxins in NKCs were cited wherever necessary. The major presentations are headache, general debilitating pains, nose bleeding, fevers with body temperatures up to 40�C (104�F, cough, memory loss, depression, mood swings, sleep disturbances, anxiety, chronic fatigue, vertigo/dizziness, and in some cases, seizures. Although sleep is commonly considered a restorative process that is important for the proper functioning of the immune system, it could be disturbed by mycotoxins. Most likely, mycotoxins exert some rigorous effects on the circadian rhythmic processes resulting in sleep deprivation to which an acute and transient increase in NKC activity is observed. Depression, psychological stress, tissue injuries, malignancies, carcinogenesis, chronic fatigue syndrome, and experimental allergic encephalomyelitis could be induced at very low physiological concentrations by mycotoxin-induced NKC activity. In the light of this review, it is concluded that chronic exposures to toxigenic mold could lead to abnormal NKC activity with a wide

  5. Three-dimensional brain growth abnormalities in childhood-onset schizophrenia visualized by using tensor-based morphometry.

    Science.gov (United States)

    Gogtay, Nitin; Lu, Allen; Leow, Alex D; Klunder, Andrea D; Lee, Agatha D; Chavez, Alex; Greenstein, Deanna; Giedd, Jay N; Toga, Arthur W; Rapoport, Judith L; Thompson, Paul M

    2008-10-14

    Earlier studies revealed progressive cortical gray matter (GM) loss in childhood-onset schizophrenia (COS) across both lateral and medial surfaces of the developing brain. Here, we use tensor-based morphometry to visualize white matter (WM) growth abnormalities in COS throughout the brain. Using high-dimensional elastic image registration, we compared 3D maps of local WM growth rates in COS patients and healthy children over a 5-year period, based on analyzing longitudinal brain MRIs from 12 COS patients and 12 healthy controls matched for age, gender, and scan interval. COS patients showed up to 2.2% slower growth rates per year than healthy controls in WM (P = 0.02, all P values corrected). The greatest differences were in the right hemisphere (P = 0.006). This asymmetry was attributable to a right slower than left hemisphere growth rate mapped in COS patients (P = 0.037) but not in healthy controls. WM growth rates reached 2.6% per year in healthy controls (P = 0.0002). COS patients showed only a 1.3% per year trend for growth in the left hemisphere (P = 0.066). In COS, WM growth rates were associated with improvement in the Children's Global Assessment Scale (R = 0.64, P = 0.029). Growth rates were reduced throughout the brain in COS, but this process appeared to progress in a front-to-back (frontal-parietal) fashion, and this effect was not attributable to lower IQ. Growth rates were correlated with functional prognosis and were visualized as detailed 3D maps. Finally, these findings also confirm that the progressive GM deficits seen in schizophrenia are not the result of WM overgrowth.

  6. DOES GROWTH-HORMONE TREATMENT OF PATIENTS WITH TURNERS SYNDROME CAUSE AN ABNORMAL BODY SHAPE

    NARCIS (Netherlands)

    GERVER, WJM; DRAYER, NM; VANES, A

    The effect of human growth hormone on the body shape of 51 patients with Turner's syndrome (aged 6-19 years) was evaluated. Biosynthetic growth hormone was given in a dose of 24 IU/m2 body surface/week for two years. Karyotype analysis on peripheral blood was performed. Patients older than 12 years

  7. Induced pluripotent stem cells as a model for telomeric abnormalities in ICF type I syndrome.

    Science.gov (United States)

    Sagie, Shira; Ellran, Erika; Katzir, Hagar; Shaked, Rony; Yehezkel, Shiran; Laevsky, Ilana; Ghanayim, Alaa; Geiger, Dan; Tzukerman, Maty; Selig, Sara

    2014-07-15

    Human telomeric regions are packaged as constitutive heterochromatin, characterized by extensive subtelomeric DNA methylation and specific histone modifications. ICF (immunodeficiency, centromeric instability, facial anomalies) type I patients carry mutations in DNA methyltransferase 3B (DNMT3B) that methylates de novo repetitive sequences during early embryonic development. ICF type I patient fibroblasts display hypomethylated subtelomeres, abnormally short telomeres and premature senescence. In order to study the molecular mechanism by which the failure to de novo methylate subtelomeres results in accelerated telomere shortening, we generated induced pluripotent stem cells (iPSCs) from 3 ICF type I patients. Telomeres were elongated in ICF-iPSCs during reprogramming, and the senescence phenotype was abolished despite sustained subtelomeric hypomethylation and high TERRA levels. Fibroblast-like cells (FLs) isolated from differentiated ICF-iPSCs maintained abnormally high TERRA levels, and telomeres in these cells shortened at an accelerated rate, leading to early senescence, thus recapitulating the telomeric phenotype of the parental fibroblasts. These findings demonstrate that the abnormal telomere phenotype associated with subtelomeric hypomethylation is overridden in cells expressing telomerase, therefore excluding telomerase inhibition by TERRA as a central mechanism responsible for telomere shortening in ICF syndrome. The data in the current study lend support to the use of ICF-iPSCs for modeling of phenotypic and molecular defects in ICF syndrome and for unraveling the mechanism whereby subtelomeric hypomethylation is linked to accelerated telomeric loss in this syndrome. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Abnormal G1 arrest in the cell lines from LEC strain rats after X-irradiation

    International Nuclear Information System (INIS)

    Hayashi, M.; Uehara, K.; Kirisawa, R.; Endoh, D.; Arai, S.; Okui, T.

    1997-01-01

    The effect of X-irradiation of cell lines from LEC and WKAH strain rats on a progression o cell cycle was investigated. When WKAH rat ells were exposed to 5 Gy of X-rays and their cell cycle distribution was determined by a flow cytometer, the proportion of S-phase cells decrease and that of G2/M-phase cells in creased at 8 hr post-irradiation. At 18 and 24 hr post-irradiation, approximately 80% of the cells appeared in the G1 phase. On the contrary, the proportion of S-phase cells increased and that of G1-phase cells decreased in LEC rats during 8-24 hr post-irradiation, compared with that at 0 hr post-irradiation. Thus, radiation-induced delay in the progression from the G1 phase to S phase (G1 arrest) was observed inWKAH rat cells but not in LEC rat cells. In the case of WKAH rat cells, the intensities of the bands of p53 protein increased at 1 and 2 hr after X-irradiation at 5 Gy, compared with those of un-irradiated cells and at 0 hr post-irradiation. In contrast, the intensities of the bands were faint and did not significantly increase in LEC rat ells during 0-6 hr incubation after X-irradiation. Present results suggested that the radioresistant DNA synthesis in LEC rat cells is thought to be due to the abnormal G1 arrest following X-irradiation

  9. Epiphytic lichen growth abnormalities and element concentrations as early indicators of forest decline

    Energy Technology Data Exchange (ETDEWEB)

    Otnyukova, T. [V.N. Sukachev' s Institute for Forest Research, Siberian Branch of Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 660036 (Russian Federation)]. E-mail: t_otn@ksc.krasn.ru

    2007-03-15

    Thallus morphology and element concentrations (S, Al, Fe, Sr, Mn, Ni, Zn, Cu, Pb, As, F, and Cl) were compared in samples of the fruticose lichen genus Usnea at two heights of the Abies sibirica canopy in the East Sayan Mountains (Krasnoyarsk District, Russia) sampled from three stations at 15, 25 and 35 km from Krasnoyark. Usnea species with an abnormal morphology dominated on branches in the upper canopy, 15-22 m above ground level, and normal thalli on lower tree branches, 2-5 m above ground. Abnormal thalli at the tree-top level contained higher Al, Fe, Zn, F, Sr and Pb concentrations compared with normal thalli growing below, confirming a dust impact. No such clear trend was observed between sampling stations. Crown canopy architecture, surface microtopography and the balance between the processes of deposition and the movement and loss of particles play a major role in particle interception and in pollutant delivery to Usnea. - Differences in the morphology and element content of Usnea species at two distinct heights of the Abies sibirica canopy provide an early indication of forest decline.

  10. Generation of human embryonic stem cells from abnormal blastocyst diagnosed with albinism.

    Science.gov (United States)

    Sun, Yi; Zhou, Xiaoying; Chen, Jing; Du, Juan; Lu, Guangxiu; Lin, Ge; Ouyang, Qi

    2016-11-01

    Human embryonic stem cell (hESC) line chHES-478 was derived from abnormal blastocyst diagnosed with albinism after preimplantation genetic diagnosis (PGD) treatment. DNA sequencing analysis confirmed that chHES-478 cell line carried a compound heterozygous mutation, c.896G>A(p.Arg299His) and c.929_930insC(p.Pro310Glnfs*9), of TYR gene. Characteristic tests proved that the chHES-478 cell line presented typical markers of pluripotency and had the capability to form the three germ layers both in vitro and in vivo. Copyright © 2016 Michael Boutros, German Cancer Research Center, Heidelberg, Germany. Published by Elsevier B.V. All rights reserved.

  11. Glucotoxicity induces abnormal glucagon secretion through impaired insulin signaling in InR1G cells.

    Directory of Open Access Journals (Sweden)

    Takashi Katsura

    Full Text Available The significance of glucagon in the pathophysiology of diabetes mellitus is widely recognized, but the mechanisms underlying dysregulated glucagon secretion are still unclear. Here, we explored the molecular mechanisms of glucagon dysregulation, using an in vitro model. Hamster-derived glucagon-secreting InR1G cells were exposed to high glucose (25 mM levels for 12 h before analyzing glucagon secretion and the activity of components involved in insulin signaling. High-glucose treatment induced increased glucagon secretion in InR1G cells, which represents a hallmark of diabetes mellitus. This treatment reduced the phosphorylation of Akt, indicating the deterioration of insulin signaling. Simultaneously, oxidative stress and JNK activity were shown to be increased. The inhibition of JNK signaling resulted in the amelioration of high-glucose level-induced glucagon secretion. Abnormally elevated glucagon secretion in diabetes can be reproduced by high-glucose treatment of InR1G cells, and the involvement of high glucose-oxidative stress-JNK-insulin signaling pathway axis has been demonstrated. These data elucidate, at least partly, the previously unclear mechanism of abnormal glucagon secretion, providing insights into a potential novel approach to diabetes treatment, targeting glucagon.

  12. Abnormal growth patterns in the sea urchin Tripneustes cf. gratilla (l. ) under pollution (Echinodermata, Echinoidea)

    Energy Technology Data Exchange (ETDEWEB)

    Dafni, J.

    1980-10-07

    Two populations of deformed sea-urchins were found near a combined power and desalination plant in the Gulf of Eilat, Red Sea. This area is highly polluted by thermohaline and heavy metal ion effluents. More than 60% of the urchins showed irregular bulging of the aboral half of the test. The height to diameter ratio for the most affected population was 0.70, compared with 0.53 for a normal population. The deformed sea-urchins had a wider peristome aperture and larger Aristotle's lantern, and fewer interambulacral plants than normal urchins of the same diameter. Growth rate of highly deformed urchins was very low. Growth lines in the deformed urchins' plates indicate excessive growth in the meridional direction. Some possible controlling mechanisms are suggested. (4 graphs, 1 map, 11 photos, 32 references, 3 tables)

  13. Abnormal bone collagen morphology and decreased bone strength in growth hormone-deficient rats

    DEFF Research Database (Denmark)

    Lange, Martin; Qvortrup, Klaus; Svendsen, Ole Lander

    2004-01-01

    Patients with growth hormone deficiency (GHD) have an increased risk of bone fractures. In these patients, the well-described decrease in bone mineral density (BMD) and content (BMC) may, however, not alone explain the increase in fracture rate. Accordingly, the aim of this study was to evaluate......% and growth rate to approximately 40-50% when compared to normal control rats. Five male Dw-4 rats were examined at age 12 weeks and five healthy Lewis rats served as age-matched controls. The animals were examined for (1) bone mineral status by dual energy X-ray absorptometry (DXA) and ash weight/bone volume......, (2) biomechanical properties, (3) serum insulin-like growth factor I (IGF-I) and IGF binding protein 3 (IGFBP-3), and (4) collagen morphology of cortical bone from the right femurs was examined by scanning and transmission electron microscopy. A significant decrease was found in serum IGF-I, IGFBP-3...

  14. Abnormal neural precursor cell regulation in the early postnatal Fragile X mouse hippocampus.

    Science.gov (United States)

    Sourial, Mary; Doering, Laurie C

    2017-07-01

    The regulation of neural precursor cells (NPCs) is indispensable for a properly functioning brain. Abnormalities in NPC proliferation, differentiation, survival, or integration have been linked to various neurological diseases including Fragile X syndrome. Yet, no studies have examined NPCs from the early postnatal Fragile X mouse hippocampus despite the importance of this developmental time point, which marks the highest expression level of FMRP, the protein missing in Fragile X, in the rodent hippocampus and is when hippocampal NPCs have migrated to the dentate gyrus (DG) to give rise to lifelong neurogenesis. In this study, we examined NPCs from the early postnatal hippocampus and DG of Fragile X mice (Fmr1-KO). Immunocytochemistry on neurospheres showed increased Nestin expression and decreased Ki67 expression, which collectively indicated aberrant NPC biology. Intriguingly, flow cytometric analysis of the expression of the antigens CD15, CD24, CD133, GLAST, and PSA-NCAM showed a decreased proportion of neural stem cells (GLAST + CD15 + CD133 + ) and an increased proportion of neuroblasts (PSA-NCAM + CD15 + ) in the DG of P7 Fmr1-KO mice. This was mirrored by lower expression levels of Nestin and the mitotic marker phospho-histone H3 in vivo in the P9 hippocampus, as well as a decreased proportion of cells in the G 2 /M phases of the P7 DG. Thus, the absence of FMRP leads to fewer actively cycling NPCs, coinciding with a decrease in neural stem cells and an increase in neuroblasts. Together, these results show the importance of FMRP in the developing hippocampal formation and suggest abnormalities in cell cycle regulation in Fragile X. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  15. Troglitazone inhibits cell growth and induces apoptosis of B-cell acute lymphoblastic leukemia cells with t(14;18).

    Science.gov (United States)

    Takenokuchi, M; Saigo, K; Nakamachi, Y; Kawano, S; Hashimoto, M; Fujioka, T; Koizumi, T; Tatsumi, E; Kumagai, S

    2006-01-01

    Peroxisome proliferator-activated receptor-gamma (PPARgamma), a member of the nuclear receptor superfamily, has been detected in several human leukemia cells. Recent studies reported that PPARgamma ligands inhibit cell proliferation and induce apoptosis in both normal and malignant B-lineage cells. We investigated the expression of PPARgamma and the effects of PPARgamma ligands on UTree-O2, Bay91 and 380, three B-cell acute lymphoblastic leukemia (B-ALL) cell lines with t(14;18), which show a poor prognosis, accompanying c-myc abnormality. Western blot analysis identified expression of PPARgamma protein and real-time PCR that of PPARgamma mRNA on the three cell lines. Troglitazone (TGZ), a synthetic PPARgamma ligand, inhibited cell growth in these cell lines in a dose-dependent manner, which was associated with G(1) cell cycle arrest and apoptosis. We also found this effect PPARgamma independent since PPARgamma antagonists failed to reverse this effect. We assessed the expression of c-myc, an apoptosis-regulatory gene, since c-myc abnormality was detected in most B-ALL cells with t(14;18). TGZ was found to dose-dependently downregulate the expression of c-myc mRNA and c-myc protein in the three cell lines. These results suggest that TGZ inhibits cell growth via induction of G(1) cell cycle arrest and apoptosis in these cell lines and that TGZ-induced apoptosis, at least in part, may be related to the downregulation of c-myc expression. Moreover, the downregulation of c-myc expression by TGZ may depend on a PPARgamma-independent mechanism. Further studies indicate that PPARgamma ligands may serve as a therapeutic agent in B-ALL with t(14;18).

  16. Abnormal sinoatrial node development resulting from disturbed vascular endothelial growth factor signaling

    NARCIS (Netherlands)

    Calkoen, Emmeline E.; Vicente-Steijn, Rebecca; Hahurij, Nathan D.; van Munsteren, Conny J.; Roest, Arno A. W.; Deruiter, Marco C.; Steendijk, Paul; Schalij, Martin J.; Gittenberger-de Groot, Adriana C.; Blom, Nico A.; Jongbloed, Monique R. M.

    2015-01-01

    Background: Sinus node dysfunction is frequently observed in patients with congenital heart disease (CHD). Variants in the Vascular Endothelial Growth Factor-A (VEGF) pathway are associated with CHD. In Vegf(120/120) mice, over-expressing VEGF(120), a reduced sinoatrial node (SAN) volume was

  17. Abnormal cortical development after premature birth shown by altered allometric scaling of brain growth.

    Directory of Open Access Journals (Sweden)

    Olga Kapellou

    2006-08-01

    Full Text Available We postulated that during ontogenesis cortical surface area and cerebral volume are related by a scaling law whose exponent gives a quantitative measure of cortical development. We used this approach to investigate the hypothesis that premature termination of the intrauterine environment by preterm birth reduces cortical development in a dose-dependent manner, providing a neural substrate for functional impairment.We analyzed 274 magnetic resonance images that recorded brain growth from 23 to 48 wk of gestation in 113 extremely preterm infants born at 22 to 29 wk of gestation, 63 of whom underwent neurodevelopmental assessment at a median age of 2 y. Cortical surface area was related to cerebral volume by a scaling law with an exponent of 1.29 (95% confidence interval, 1.25-1.33, which was proportional to later neurodevelopmental impairment. Increasing prematurity and male gender were associated with a lower scaling exponent (p < 0.0001 independent of intrauterine or postnatal somatic growth.Human brain growth obeys an allometric scaling relation that is disrupted by preterm birth in a dose-dependent, sexually dimorphic fashion that directly parallels the incidence of neurodevelopmental impairments in preterm infants. This result focuses attention on brain growth and cortical development during the weeks following preterm delivery as a neural substrate for neurodevelopmental impairment after premature delivery.

  18. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette

    1999-01-01

    cloned a novel GH/PRL stimulated rat islet gene product, Pref-1 (preadipocyte factor-1). This protein contains six EGF-like motifs and may play a role both in embryonic pancreas differentiation and in beta cell growth and function. In summary, the increasing knowledge about the mechanisms involved...... in beta cell differentiation and proliferation may lead to new ways of forming beta cells for treatment of diabetes in man....

  19. Mathematical Description with Fractals Dimensions of Normal Cells and Cytological Abnormality's of Uterine Neck

    Directory of Open Access Journals (Sweden)

    Javier Rodríguez

    2006-12-01

    Full Text Available Introduction. The fractal geometry has shownto be adapted in the mathematical description ofirregular objects; this measurement has denominatedfractal dimension. The application of thefractal analysis to measure the contours of thenormal cells as well as those that present sometype of abnormality, has shown the possibility of mathematical characterization of itsirregularity. Objectives. To measure, from thefractal geometry cells of the squamous epitheliumof uterine neck classified like normal,atypical squamous cells of undetermined significance(ASC-US and Low Grade IntraepitelialLesion (L-SIL, diagnosed by means of microscopicobservation, in search of mathematicalmeasurements that distinguish them. Methodology.This is an exploratory descriptive studyin which the fractal dimensions were calculated,with the simplified and the conventional boxcounting method, of the cellular and nuclearcontours of 13 normal and with abnormalitiescells of the scaly epithelium of uterine neck likeASC-US and L-SIL, from digital photographiesof 7 normal cells, 2 ASC-US and 4 L-SIL diagnosedwith cytomorphologic criteria by meansof microscopic conventional observation. Results.There developed a quantitative, objective and reproduciblemeasurement of the degree of irregularityin the cells of the scaly epithelium of uterineneck identified microscopically like normal, ASCUSy LEI BG. Conclusions an fractal organizationwas demonstrated in the cellular normal architecture,as well as in cells ASC-US and the injuriesintraepiteliales of low degree L-SIL. They did notfind differences between the cellular studied types.

  20. The Role of Helicobacter pylori Seropositivity in Insulin Sensitivity, Beta Cell Function, and Abnormal Glucose Tolerance

    Directory of Open Access Journals (Sweden)

    Lou Rose Malamug

    2014-01-01

    Full Text Available Infection, for example, Helicobacter pylori (H. pylori, has been thought to play a role in the pathogenesis of type 2 diabetes mellitus (T2DM. Our aim was to determine the role of H. pylori infection in glucose metabolism in an American cohort. We examined data from 4,136 non-Hispanic white (NHW, non-Hispanic black (NHB, and Mexican Americans (MA aged 18 and over from the NHANES 1999-2000 cohort. We calculated the odds ratios for states of glucose tolerance based on the H. pylori status. We calculated and compared homeostatic model assessment insulin resistance (HOMA-IR and beta cell function (HOMA-B in subjects without diabetes based on the H. pylori status. The results were adjusted for age, body mass index (BMI, poverty index, education, alcohol consumption, tobacco use, and physical activity. The H. pylori status was not a risk factor for abnormal glucose tolerance. After adjustment for age and BMI and also adjustment for all covariates, no difference was found in either HOMA-IR or HOMA-B in all ethnic and gender groups except for a marginally significant difference in HOMA-IR in NHB females. H. pylori infection was not a risk factor for abnormal glucose tolerance, nor plays a major role in insulin resistance or beta cell dysfunction.

  1. Glial abnormalities in mood disorders.

    Science.gov (United States)

    Öngür, Dost; Bechtholt, Anita J; Carlezon, William A; Cohen, Bruce M

    2014-01-01

    Multiple lines of evidence indicate that mood disorders are associated with abnormalities in the brain's cellular composition, especially in glial cells. Considered inert support cells in the past, glial cells are now known to be important for brain function. Treatments for mood disorders enhance glial cell proliferation, and experimental stimulation of cell growth has antidepressant effects in animal models of mood disorders. These findings suggest that the proliferation and survival of glial cells may be important in the pathogenesis of mood disorders and may be possible targets for the development of new treatments. In this article we review the evidence for glial abnormalities in mood disorders, and we discuss glial cell biology and evidence from postmortem studies of mood disorders. The goal is not to carry out a comprehensive review but to selectively discuss existing evidence in support of an argument for the role of glial cells in mood disorders.

  2. Mdm4 loss in the intestinal epithelium leads to compartmentalized cell death but no tissue abnormalities

    Science.gov (United States)

    Valentin-Vega, Yasmine A.; Box, Neil; Terzian, Tamara; Lozano, Guillermina

    2014-01-01

    Mdm4 is a critical inhibitor of the p53 tumor suppressor. Mdm4 null mice die early during embryogenesis due to increased p53 activity. In this study, we explore the role that Mdm4 plays in the intestinal epithelium by crossing mice carrying the Mdm4 floxed allele to mice with the Villin Cre transgene. Our data show that loss of Mdm4 (Mdm4intΔ) in this tissue resulted in viable animals with no obvious morphological abnormalities. However, these mutants displayed increased p53 levels and apoptosis exclusively in the proliferative compartment of the intestinal epithelium. This phenotype was completely rescued in a p53 null background. Notably, the observed compartmentalized apoptosis in proliferative intestinal epithelial cells was not due to restricted Mdm4 expression in this region. Thus, in this specific cellular context, p53 is negatively regulated by Mdm4 exclusively in highly proliferative cells. PMID:19371999

  3. [Prevalence of epithelial squamous cell abnormalities and associated factors in women of a rural town of Colombia].

    Science.gov (United States)

    Grisales, Hugo; Vanegas, Angela Patricia; Gaviria, Angela M; Castaño, Jorge; Mora, Martín Alonso; Borrero, Mauricio; Rojas, Carlos; Arbeláez, María Patricia; Sánchez, Gloria I

    2008-06-01

    In spite of implementation of cytology-based cervical cancer screening in Colombia, mortality rates remain stable. The description of factors associated to cervical pre-neoplasic lesions is needed to establish strategies for mortality prevention. The prevalence of epithelial squamous cell abnormalities was determined to explore the association of cytology abnormalities with described risk factors. This population-based, cross-sectional study included 739 women randomly selected by age. A validated face-to-face questionnaire and conventional cervical cytology were used to collect the information. To establish the association between cervical abnormalities and some qualitative variables, the independent chi squared test was used. We also calculated prevalence ratio with their 95% confidence intervals. A logistic regression model was used to explore variables that potentially explain cytology abnormalities. The prevalence of squamous cell abnormality was 15.8%. Among women with abnormal cytology, 10% presented atypical squamous cells of undetermined significance, 3.9% low grade squamous intra-epithelial lesion and 1.9% high grade squamous intra-epithelial lesion. The adjusted logistical regression analysis showed that history of sexual transmitted disease, two or more sexual partners during entire life and previous abnormal cytology were associated with cytology abnormalities. The relation of epithelial squamous cell abnormalities with sexual behavior history reflexes the link between human papiloma virus infection and cervical cancer pre-neoplasic lesions. The frequency of use and knowledge about the purpose of cytology were factors that suggested other diagnostic limitations such as quality of cervical cytology or barriers to access health care. These latter factors may be the underlying basis for the high cervical cancer mortality rates.

  4. Modeling abnormal early development with induced pluripotent stem cells from aneuploid syndromes.

    Science.gov (United States)

    Li, Wen; Wang, Xianming; Fan, Wenxia; Zhao, Ping; Chan, Yau-Chi; Chen, Shen; Zhang, Shiqiang; Guo, Xiangpeng; Zhang, Ya; Li, Yanhua; Cai, Jinglei; Qin, Dajiang; Li, Xingyan; Yang, Jiayin; Peng, Tianran; Zychlinski, Daniela; Hoffmann, Dirk; Zhang, Ruosi; Deng, Kang; Ng, Kwong-Man; Menten, Bjorn; Zhong, Mei; Wu, Jiayan; Li, Zhiyuan; Chen, Yonglong; Schambach, Axel; Tse, Hung-Fat; Pei, Duanqing; Esteban, Miguel A

    2012-01-01

    Many human diseases share a developmental origin that manifests during childhood or maturity. Aneuploid syndromes are caused by supernumerary or reduced number of chromosomes and represent an extreme example of developmental disease, as they have devastating consequences before and after birth. Investigating how alterations in gene dosage drive these conditions is relevant because it might help treat some clinical aspects. It may also provide explanations as to how quantitative differences in gene expression determine phenotypic diversity and disease susceptibility among natural populations. Here, we aimed to produce induced pluripotent stem cell (iPSC) lines that can be used to improve our understanding of aneuploid syndromes. We have generated iPSCs from monosomy X [Turner syndrome (TS)], trisomy 8 (Warkany syndrome 2), trisomy 13 (Patau syndrome) and partial trisomy 11;22 (Emanuel syndrome), using either skin fibroblasts from affected individuals or amniocytes from antenatal diagnostic tests. These cell lines stably maintain the karyotype of the donors and behave like embryonic stem cells in all tested assays. TS iPSCs were used for further studies including global gene expression analysis and tissue-specific directed differentiation. Multiple clones displayed lower levels of the pseudoautosomal genes ASMTL and PPP2R3B than the controls. Moreover, they could be transformed into neural-like, hepatocyte-like and heart-like cells, but displayed insufficient up-regulation of the pseudoautosomal placental gene CSF2RA during embryoid body formation. These data support that abnormal organogenesis and early lethality in TS are not caused by a tissue-specific differentiation blockade, but rather involves other abnormalities including impaired placentation.

  5. [Distribution of abnormal cell clone with deletion of chromosome 20q in marrow cell lineages and apoptosis cells in myelodysplastic syndrome].

    Science.gov (United States)

    Qin, Ling; Wang, Chun; Qin, You-Wen; Xie, Kuang-Cheng; Yan, Shi-Ke; Gao, Yan-Rong; Wang, Xiao-Rui; Zhao, Chu-Xian

    2008-06-01

    This study was aimed to investigate the distribution of abnormal clone in marrow cell lineages and apoptosis cells in myelodysplastic syndrome (MDS) with deletion of chromosome 20q. Monoclonal antibodies recognizing myeloid precursors (CD15), erythroid precursors (GPA), T cells (CD3(+)CD56(-)CD16(-)), B cells (CD19), NK cells (CD3(-)CD56(+)CD16(+)) were used to sort bone marrow cells in a MDS patient with del (20q) by fluorescence activated cell sorting (FACS). Annexin V-FITC and PI were used to sort bone marrow Annexin V(+)PI(-) and Annexin V(-)PI(-) cells by FACS. The sorted positive cells were detected by interphase dual-color fluorescence in situ hybridization (D-FISH) using a LSI D20S108 probe (Spectrum Orange) and a Telvysion TM 20p probe (Spectrum Green). FACS and FISH analysis were also performed on the samples from 4 cases with normal karyotype. The results showed that the proportions of MDS clone in the myeloid and erythroid precursors were 70.50% and 93.33% respectively, in the RAEB-1 patient with del (20q) and were obviously higher than that in control group (5.39% and 6.17%). The proportions of abnormal clone in T, B and NK cells were 3.23%, 4.32% and 5.77% respectively and were less than that in control group (5.76%, 4.85%, 6.36%). The percentage of apoptotic cells in the bone marrow nucleated cells was 16.09%. The proportions of MDS clone in Annexin V(+)PI(-) and Annexin V(-)PI(-) cells were 32.48% and 70.11%, respectively. It is concluded that most myeloid and erythroid precursors are originated from the abnormal clone in MDS with del (20q). A little part of apoptotic cells are derived from the abnormal clone.

  6. Association of sickle cell haemoglobinopathies with dental and jaw bone abnormalities.

    Science.gov (United States)

    Souza, Sfc; de Carvalho, Hlcc; Costa, Cps; Thomaz, Ebaf

    2018-04-01

    To estimate the association between sickle cell anaemia and trait with dental and jaw bone abnormalities. Subjects (n = 369) were allocated to three groups: sickle cell anaemia, trait and control. Dental shape, number, size and position and changes in pulp chamber, root and periapex were analysed by intra-oral periapical radiographs. Integrity of lamina dura, quality of cancellous bone and bone trabeculation were also evaluated. Prevalence ratios (PR) were calculated (α = 0.05). Sickle cell anaemia had higher prevalence (PR:8.31) and number of teeth (PR:13.40) with external resorption; higher number of teeth with pulp calcification; partial and total loss of lamina dura; and higher prevalence of changes in trabecular structure of maxilla (PR:6.45) and mandible (PR:5.34). Sickle cell trait showed higher prevalence (PR:1.26) and higher number of teeth (PR:1.98) with partial loss of lamina dura; higher number of teeth with hypercementosis, changes in shape, size, periapex, total loss of lamina dura; and higher prevalence of changes in mandibular trabecular bone (PR:1.43). Pulp calcification and external resorption of the root were the most frequent dental alterations in sickle cell anaemia group, while in trait was higher frequency of changes in shape, size, periapex and root. Jaw bone changes were most prevalent in both homozygous and heterozygous subjects. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.

  7. Melanoma: Genetic Abnormalities, Tumor Progression, Clonal Evolution and Tumor Initiating Cells

    Science.gov (United States)

    Castelli, Germana; Pelosi, Elvira

    2017-01-01

    Melanoma is an aggressive neoplasia issued from the malignant transformation of melanocytes, the pigment-generating cells of the skin. It is responsible for about 75% of deaths due to skin cancers. Melanoma is a phenotypically and molecularly heterogeneous disease: cutaneous, uveal, acral, and mucosal melanomas have different clinical courses, are associated with different mutational profiles, and possess distinct risk factors. The discovery of the molecular abnormalities underlying melanomas has led to the promising improvement of therapy, and further progress is expected in the near future. The study of melanoma precursor lesions has led to the suggestion that the pathway of tumor evolution implies the progression from benign naevi, to dysplastic naevi, to melanoma in situ and then to invasive and metastatic melanoma. The gene alterations characterizing melanomas tend to accumulate in these precursor lesions in a sequential order. Studies carried out in recent years have, in part, elucidated the great tumorigenic potential of melanoma tumor cells. These findings have led to speculation that the cancer stem cell model cannot be applied to melanoma because, in this malignancy, tumor cells possess an intrinsic plasticity, conferring the capacity to initiate and maintain the neoplastic process to phenotypically different tumor cells. PMID:29156643

  8. Melanoma: Genetic Abnormalities, Tumor Progression, Clonal Evolution and Tumor Initiating Cells

    Directory of Open Access Journals (Sweden)

    Ugo Testa

    2017-11-01

    Full Text Available Melanoma is an aggressive neoplasia issued from the malignant transformation of melanocytes, the pigment-generating cells of the skin. It is responsible for about 75% of deaths due to skin cancers. Melanoma is a phenotypically and molecularly heterogeneous disease: cutaneous, uveal, acral, and mucosal melanomas have different clinical courses, are associated with different mutational profiles, and possess distinct risk factors. The discovery of the molecular abnormalities underlying melanomas has led to the promising improvement of therapy, and further progress is expected in the near future. The study of melanoma precursor lesions has led to the suggestion that the pathway of tumor evolution implies the progression from benign naevi, to dysplastic naevi, to melanoma in situ and then to invasive and metastatic melanoma. The gene alterations characterizing melanomas tend to accumulate in these precursor lesions in a sequential order. Studies carried out in recent years have, in part, elucidated the great tumorigenic potential of melanoma tumor cells. These findings have led to speculation that the cancer stem cell model cannot be applied to melanoma because, in this malignancy, tumor cells possess an intrinsic plasticity, conferring the capacity to initiate and maintain the neoplastic process to phenotypically different tumor cells.

  9. Disruption of the gene encoding the latent transforming growth factor-β binding protein 4 (LTBP-4) causes abnormal lung development, cardiomyopathy, and colorectal cancer

    Science.gov (United States)

    Sterner-Kock, Anja; Thorey, Irmgard S.; Koli, Katri; Wempe, Frank; Otte, Jürgen; Bangsow, Thorsten; Kuhlmeier, Katharina; Kirchner, Thomas; Jin, Shenchu; Keski-Oja, Jorma; von Melchner, Harald

    2002-01-01

    Transforming growth factor-βs (TGF-βs) are multifunctional growth factors that are secreted as inactive (latent) precursors in large protein complexes. These complexes include the latency-associated propeptide (LAP) and a latent transforming growth factor-β binding protein (LTBP). Four isoforms of LTBPs (LTBP-1–LTBP-4) have been cloned and are believed to be structural components of connective tissue microfibrils and local regulators of TGF-β tissue deposition and signaling. By using a gene trap strategy that selects for integrations into genes induced transiently during early mouse development, we have disrupted the mouse homolog of the human LTBP-4 gene. Mice homozygous for the disrupted allele develop severe pulmonary emphysema, cardiomyopathy, and colorectal cancer. These highly tissue-specific abnormalities are associated with profound defects in the elastic fiber structure and with a reduced deposition of TGF-β in the extracellular space. As a consequence, epithelial cells have reduced levels of phosphorylated Smad2 proteins, overexpress c-myc, and undergo uncontrolled proliferation. This phenotype supports the predicted dual role of LTBP-4 as a structural component of the extracellular matrix and as a local regulator of TGF-β tissue deposition and signaling. PMID:12208849

  10. A cell junction pathology of neural stem cells leads to abnormal neurogenesis and hydrocephalus

    NARCIS (Netherlands)

    Rodríguez, Esteban M; Guerra, María M; Vío, Karin; González, César; Ortloff, Alexander; Bátiz, Luis F; Rodríguez, Sara; Jara, María C; Muñoz, Rosa I; Ortega, Eduardo; Jaque, Jaime; Guerra, Francisco; Sival, Deborah A; den Dunnen, Wilfred F A; Jiménez, Antonio J; Domínguez-Pinos, María D; Pérez-Fígares, José M; McAllister, James P; Johanson, Conrad

    2012-01-01

    Most cells of the developing mammalian brain derive from the ventricular (VZ) and the subventricular (SVZ) zones. The VZ is formed by the multipotent radial glia/neural stem cells (NSCs) while the SVZ harbors the rapidly proliferative neural precursor cells (NPCs). Evidence from human and animal

  11. Correction of abnormal B-cell subset distribution by interleukin-6 receptor blockade in polymyalgia rheumatica.

    Science.gov (United States)

    Carvajal Alegria, Guillermo; Devauchelle-Pensec, Valérie; Renaudineau, Yves; Saraux, Alain; Pers, Jacques-Olivier; Cornec, Divi

    2017-08-01

    The aim was to study lymphocyte subsets and circulating cytokines at diagnosis of PMR and after tocilizumab monotherapy. Eighteen untreated patients with PMR were included in a prospective study and received 3-monthly tocilizumab infusions without glucocorticoids. Lymphocyte subset distribution was assessed by flow cytometry and serum cytokines were assayed by a 34-cytokine array and ELISA, at baseline and during follow-up. Baseline data were also compared with age- and sex-matched controls. At baseline, total lymphocytes, T-cell subsets and NK cell counts were similar in patients and controls, but patients had significantly lower B-cell counts attributable to lower transitional, naïve and post-switch memory B-cell subsets. Circulating B-cell counts were positively correlated with the PMR activity score (PMR-AS) in untreated active patients at baseline, but subsequently increased to normal values while disease activity was controlled after tocilizumab therapy. Among serum cytokines, IL-6 showed the largest concentration difference between patients and controls, and the serum IL-6 concentration was correlated with baseline PMR-AS. The effects of tocilizumab on serum IL-6 concentration were heterogeneous, and the patients whose serum IL-6 decreased after tocilizumab therapy exhibited a significant increase in circulating B-cell counts. In patients with PMR, B-cell lymphopenia and abnormal B-cell subset distribution are associated with disease activity and IL-6 concentration, and both are corrected by the IL-6 antagonist tocilizumab. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  12. Altered growth, differentiation, and responsiveness to epidermal growth factor of human embryonic mesenchymal cells of palate by persistent rubella virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, T.; Urade, M.; Sakuda, M.; Miyazaki, T.

    1986-05-01

    We previously demonstrated that human embryonic mesenchymal cells derived from the palate (HEMP cells) retain alkaline phosphatase (ALP) content and capacity for collagen synthesis after long-term culture, and their growth is markedly stimulated by epidermal growth factor (EGF). There was a dramatic decrease in ALP content and capacity to synthesize collagen in HEMP cells (HEMP-RV cells) persistently infected with rubella virus (RV). EGF increased ALP activity and decreased collagen synthesis in HEMP cells, whereas EGF showed no effect on these activities in HEMP-RV cells. Growth of HEMP-RV cells was slightly reduced compared with that of HEMP cells. EGF stimulated growth of HEMP cells and to a lesser extent of HEMP-RV cells. Binding of /sup 125/I-EGF to cell-surface receptors in HEMP-RV cells was, to our surprise, twice as much as that in HEMP cells. However, internalization of bound /sup 125/I-EGF in HEMP-RV cells was profoundly diminished. Thus, persistent RV infection causes not only changes in HEMP cell growth and differentiation but a decrease in or loss of HEMP cell responsiveness to EGF. The effects of persistent RV infection on palatal cell differentiation as well as growth may be responsible for the pathogenesis of congenital rubella. Furthermore, since HEMP cells appear to be closely related to osteoblasts, these results suggest a mechanism for RV-induced osseous abnormalities manifested in congenital rubella patients.

  13. Altered growth, differentiation, and responsiveness to epidermal growth factor of human embryonic mesenchymal cells of palate by persistent rubella virus infection

    International Nuclear Information System (INIS)

    Yoneda, T.; Urade, M.; Sakuda, M.; Miyazaki, T.

    1986-01-01

    We previously demonstrated that human embryonic mesenchymal cells derived from the palate (HEMP cells) retain alkaline phosphatase (ALP) content and capacity for collagen synthesis after long-term culture, and their growth is markedly stimulated by epidermal growth factor (EGF). There was a dramatic decrease in ALP content and capacity to synthesize collagen in HEMP cells (HEMP-RV cells) persistently infected with rubella virus (RV). EGF increased ALP activity and decreased collagen synthesis in HEMP cells, whereas EGF showed no effect on these activities in HEMP-RV cells. Growth of HEMP-RV cells was slightly reduced compared with that of HEMP cells. EGF stimulated growth of HEMP cells and to a lesser extent of HEMP-RV cells. Binding of 125 I-EGF to cell-surface receptors in HEMP-RV cells was, to our surprise, twice as much as that in HEMP cells. However, internalization of bound 125 I-EGF in HEMP-RV cells was profoundly diminished. Thus, persistent RV infection causes not only changes in HEMP cell growth and differentiation but a decrease in or loss of HEMP cell responsiveness to EGF. The effects of persistent RV infection on palatal cell differentiation as well as growth may be responsible for the pathogenesis of congenital rubella. Furthermore, since HEMP cells appear to be closely related to osteoblasts, these results suggest a mechanism for RV-induced osseous abnormalities manifested in congenital rubella patients

  14. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette

    1999-01-01

    cloned a novel GH/PRL stimulated rat islet gene product, Pref-1 (preadipocyte factor-1). This protein contains six EGF-like motifs and may play a role both in embryonic pancreas differentiation and in beta cell growth and function. In summary, the increasing knowledge about the mechanisms involved......Formation of new beta cells can take place by two pathways: replication of already differentiated beta cells or neogenesis from putative islet stem cells. Under physiological conditions both processes are most pronounced during the fetal and neonatal development of the pancreas. In adulthood little...

  15. Galactosylceramidase deficiency causes sperm abnormalities in the mouse model of globoid cell leukodystrophy

    International Nuclear Information System (INIS)

    Luddi, A.; Strazza, M.; Carbone, M.; Moretti, E.; Costantino-Ceccarini, E.

    2005-01-01

    The classical recessive mouse mutant, 'the twitcher,' is one of the several animal models of the human globoid cell leukodystrophy (Krabbe disease) caused by a deficiency in the gene encoding the lysosomal enzyme galactosylceramidase (GALC). The failure to hydrolyze galactosylceramide (gal-cer) and galactosylsphingosine (psychosine) leads to degeneration of oligodendrocytes and severe demyelination. Substrate for GALC is also the galactosyl-alkyl-acyl-glycerol (GalAAG), precursor of the seminolipid, the most abundant glycolipid in spermatozoa of mammals. In this paper, we report the pathobiology of the testis and sperm in the twitcher mouse and demonstrate the importance of GALC for normal sperm maturation and function. The GALC deficit results in accumulation of GalAAG in the testis of the twitcher mouse. Morphological studies revealed that affected spermatozoa have abnormally swollen acrosomes and angulation of the flagellum mainly at midpiece-principal piece junction. Multiple folding of the principal piece was also observed. Electron microscopy analysis showed that in the twitcher sperm, acrosomal membrane is redundant, detached from the nucleus and folded over. Disorganization and abnormal arrangements of the axoneme components were also detected. These results provide in vivo evidence that GALC plays a critical role in spermiogenesis

  16. Influence of intermediate annealing on abnormal Goss grain growth in the rolled columnar-grained Fe-Ga-Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yangyang; Li, Jiheng; Gao, Xuexu, E-mail: gaox@skl.ustb.edu.cn

    2017-08-01

    Highlights: • Texture of primary IA sample was dominated by γ-fiber with a peak at {1 1 1}<1 1 0>. • Texture of primary CR sample was dominated by {1 1 3}<1 1 4> texture. • Inhomogeneous microstructure was significantly improved in primary IA sample. • Strong Goss texture was obtained in final IA sample without surface energy control. - Abstract: Magnetostrictive Fe{sub 82}Ga{sub 4.5}Al{sub 13.5} sheets with 0.1 at% NbC were prepared from directional solidified alloys with <0 0 1> preferred orientation. The slabs were hot rolled at 650 °C and warm rolled at 500 °C. Then some warm-rolled sheets were annealed intermediately at 850 °C for 5 min but the others not. After that, all the sheets were cold rolled to a final thickness of ∼0.3 mm. The microstructures, the textures and the distributions of second phase particles in the primary recrystallized samples were investigated. With intermediate annealing, the inhomogeneous microstructure was improved remarkably and strong Goss ({1 1 0}<0 0 1>) and γ-fiber (<1 1 1>//normal direction [ND]) textures were produced in the primary recrystallized samples. But, an evident disadvantage in size and quantity was observed for Goss grains in the primary recrystallized sample without intermediate annealing. After a final annealing, the final textures and magnetostrictions of samples with and without intermediate annealing were characterized. For samples without intermediate annealing, abnormal growth of {1 1 3} grains occurred and deteriorated the magnetostriction. In contrast, abnormal Goss grain growth occurred completely in samples with intermediate annealing and led to saturation magnetostriction as high as 156 ppm.

  17. Ovarian Cancers: Genetic Abnormalities, Tumor Heterogeneity and Progression, Clonal Evolution and Cancer Stem Cells

    Science.gov (United States)

    Castelli, Germana; Pelosi, Elvira

    2018-01-01

    Four main histological subtypes of ovarian cancer exist: serous (the most frequent), endometrioid, mucinous and clear cell; in each subtype, low and high grade. The large majority of ovarian cancers are diagnosed as high-grade serous ovarian cancers (HGS-OvCas). TP53 is the most frequently mutated gene in HGS-OvCas; about 50% of these tumors displayed defective homologous recombination due to germline and somatic BRCA mutations, epigenetic inactivation of BRCA and abnormalities of DNA repair genes; somatic copy number alterations are frequent in these tumors and some of them are associated with prognosis; defective NOTCH, RAS/MEK, PI3K and FOXM1 pathway signaling is frequent. Other histological subtypes were characterized by a different mutational spectrum: LGS-OvCas have increased frequency of BRAF and RAS mutations; mucinous cancers have mutation in ARID1A, PIK3CA, PTEN, CTNNB1 and RAS. Intensive research was focused to characterize ovarian cancer stem cells, based on positivity for some markers, including CD133, CD44, CD117, CD24, EpCAM, LY6A, ALDH1. Ovarian cancer cells have an intrinsic plasticity, thus explaining that in a single tumor more than one cell subpopulation, may exhibit tumor-initiating capacity. The improvements in our understanding of the molecular and cellular basis of ovarian cancers should lead to more efficacious treatments. PMID:29389895

  18. Cell death associated with abnormal mitosis observed by confocal imaging in live cancer cells.

    Science.gov (United States)

    Castiel, Asher; Visochek, Leonid; Mittelman, Leonid; Zilberstein, Yael; Dantzer, Francoise; Izraeli, Shai; Cohen-Armon, Malka

    2013-08-21

    Phenanthrene derivatives acting as potent PARP1 inhibitors prevented the bi-focal clustering of supernumerary centrosomes in multi-centrosomal human cancer cells in mitosis. The phenanthridine PJ-34 was the most potent molecule. Declustering of extra-centrosomes causes mitotic failure and cell death in multi-centrosomal cells. Most solid human cancers have high occurrence of extra-centrosomes. The activity of PJ-34 was documented in real-time by confocal imaging of live human breast cancer MDA-MB-231 cells transfected with vectors encoding for fluorescent γ-tubulin, which is highly abundant in the centrosomes and for fluorescent histone H2b present in the chromosomes. Aberrant chromosomes arrangements and de-clustered γ-tubulin foci representing declustered centrosomes were detected in the transfected MDA-MB-231 cells after treatment with PJ-34. Un-clustered extra-centrosomes in the two spindle poles preceded their cell death. These results linked for the first time the recently detected exclusive cytotoxic activity of PJ-34 in human cancer cells with extra-centrosomes de-clustering in mitosis, and mitotic failure leading to cell death. According to previous findings observed by confocal imaging of fixed cells, PJ-34 exclusively eradicated cancer cells with multi-centrosomes without impairing normal cells undergoing mitosis with two centrosomes and bi-focal spindles. This cytotoxic activity of PJ-34 was not shared by other potent PARP1 inhibitors, and was observed in PARP1 deficient MEF harboring extracentrosomes, suggesting its independency of PARP1 inhibition. Live confocal imaging offered a useful tool for identifying new molecules eradicating cells during mitosis.

  19. Review: Placental perturbations induce the developmental abnormalities often observed in bovine somatic cell nuclear transfer.

    Science.gov (United States)

    Chavatte-Palmer, P; Camous, S; Jammes, H; Le Cleac'h, N; Guillomot, M; Lee, R S F

    2012-02-01

    Since the first success in cloning sheep, the production of viable animals by somatic cell nuclear transfer (SCNT) has developed significantly. Cattle are by far the most successfully cloned species but, despite this, the technique is still associated with a high incidence of pregnancy failure and accompanying placental and fetal pathologies. Pre- and early post-implantation losses can affect up to 70% of the pregnancies. In the surviving pregnancies, placentomegaly and fetal overgrowth are commonly observed, but the incidence varies widely, depending on the genotype of the nuclear donor cell and differences in SCNT procedures. In all cases, the placenta is central to the onset of the pathologies. Although cellular organisation of the SCNT placenta appears normal, placental vascularisation is modified and fetal-to-maternal tissue ratios are slightly increased in the SCNT placentomes. In terms of functionality, steroidogenesis is perturbed and abnormal estrogen production and metabolism probably play an important part in the increased gestation length and lack of preparation for parturition observed in SCNT recipients. Maternal plasma concentrations of pregnancy-associated glycoproteins are increased, mostly due to a reduction in turnover rate rather than increased placental production. Placental glucose transport and fructose synthesis appear to be modified and hyperfructosemia has been observed in neonatal SCNT calves. Gene expression analyses of the bovine SCNT placenta show that multiple pathways and functions are affected. Abnormal epigenetic re-programming appears to be a key component of the observed pathologies, as shown by studies on the expression of imprinted genes in SCNT placenta. Copyright © 2012. Published by Elsevier Ltd.

  20. Isoprenoid Biosynthesis Inhibitors Targeting Bacterial Cell Growth.

    Science.gov (United States)

    Desai, Janish; Wang, Yang; Wang, Ke; Malwal, Satish R; Oldfield, Eric

    2016-10-06

    We synthesized potential inhibitors of farnesyl diphosphate synthase (FPPS), undecaprenyl diphosphate synthase (UPPS), or undecaprenyl diphosphate phosphatase (UPPP), and tested them in bacterial cell growth and enzyme inhibition assays. The most active compounds were found to be bisphosphonates with electron-withdrawing aryl-alkyl side chains which inhibited the growth of Gram-negative bacteria (Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa) at ∼1-4 μg mL -1 levels. They were found to be potent inhibitors of FPPS; cell growth was partially "rescued" by the addition of farnesol or overexpression of FPPS, and there was synergistic activity with known isoprenoid biosynthesis pathway inhibitors. Lipophilic hydroxyalkyl phosphonic acids inhibited UPPS and UPPP at micromolar levels; they were active (∼2-6 μg mL -1 ) against Gram-positive but not Gram-negative organisms, and again exhibited synergistic activity with cell wall biosynthesis inhibitors, but only indifferent effects with other inhibitors. The results are of interest because they describe novel inhibitors of FPPS, UPPS, and UPPP with cell growth inhibitory activities as low as ∼1-2 μg mL -1 . © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Bacterial Cell Wall Growth, Shape and Division

    NARCIS (Netherlands)

    Derouaux, A.; Terrak, M.; den Blaauwen, T.; Vollmer, W.; Remaut, H.; Fronzes, R.

    2014-01-01

    The shape of a bacterial cell is maintained by its peptidoglycan sacculus that completely surrounds the cytoplasmic membrane. During growth the sacculus is enlarged by peptidoglycan synthesis complexes that are controlled by components linked to the cytoskeleton and, in Gram-negative bacteria, by

  2. Strain-Dependent Effect of Macroautophagy on Abnormally Folded Prion Protein Degradation in Infected Neuronal Cells.

    Directory of Open Access Journals (Sweden)

    Daisuke Ishibashi

    Full Text Available Prion diseases are neurodegenerative disorders caused by the accumulation of abnormal prion protein (PrPSc in the central nervous system. With the aim of elucidating the mechanism underlying the accumulation and degradation of PrPSc, we investigated the role of autophagy in its degradation, using cultured cells stably infected with distinct prion strains. The effects of pharmacological compounds that inhibit or stimulate the cellular signal transduction pathways that mediate autophagy during PrPSc degradation were evaluated. The accumulation of PrPSc in cells persistently infected with the prion strain Fukuoka-1 (FK, derived from a patient with Gerstmann-Sträussler-Scheinker syndrome, was significantly increased in cultures treated with the macroautophagy inhibitor 3-methyladenine (3MA but substantially reduced in those treated with the macroautophagy inducer rapamycin. The decrease in FK-derived PrPSc levels was mediated, at least in part, by the phosphatidylinositol 3-kinase/MEK signalling pathway. By contrast, neither rapamycin nor 3MA had any apparently effect on PrPSc from either the 22L or the Chandler strain, indicating that the degradation of PrPSc in host cells might be strain-dependent.

  3. Prevalence, risk factors, and pregnancy outcomes of cervical cell abnormalities in the puerperium in a hyperendemic HIV setting.

    Science.gov (United States)

    Maise, Hopolang C; Moodley, Dhayendre; Sebitloane, Motshedisi; Maman, Suzanne; Sartorius, Benn

    2018-01-01

    To investigate the impact of cervical cell abnormalities detected in the puerperium in association with HIV-1 infection on pregnancy outcomes. The present study was a secondary data analysis of pregnancy outcomes, Pap smear results, HIV results, and participant demography from a behavioral intervention randomized controlled trial of 1480 pregnant women aged 18 years or more conducted at a periurban primary health clinic in South Africa during 2008-2010. The Pap smear was performed 14 weeks after delivery. In total, 564 (38.1%) women were HIV-1-positive and 78 (8.0%) of 973 women with a categorized Pap smear result tested positive for cervical cell abnormalities; 42 (4.2%) women had low-grade squamous intraepithelial lesions (LGSILs) and 7 (0.7%) had high-grade lesions (HGSILs). In an adjusted analysis, HIV infection was significantly more common among women with LGSILs (28/42 [66.7%]) or HGSILs (6/7 [85.7%]) when compared with the other Pap smear categories (P<0.001). The rates of premature birth, low birth weight, and non-live births were similar among HIV-infected and -uninfected women with abnormal cervical cytology. Pregnant women with HIV were more likely to be diagnosed with higher grades of squamous cell abnormalities than those without HIV. There was no association between squamous cell abnormalities/HIV comorbidity and adverse pregnancy outcomes. © 2017 International Federation of Gynecology and Obstetrics.

  4. Elastic Deformations During Bacterial Cell Growth

    Science.gov (United States)

    Huang, K. C.

    2010-03-01

    The wide variety of shapes and sizes found in bacterial species is almost universally defined by the cell wall, which is a cross-linked network of the material peptidoglycan. In recent years, cell shape has been shown to play a critical role in regulating many important biological functions including attachment, dispersal, motility, polar differentiation, predation, and cellular differentiation. In previous work, we have shown that the spatial organization of the peptidoglycan network can change the mechanical equilibrium of the cell wall and result in changes in cell shape. However, experimental data on the mechanical properties of peptidoglycan is currently limited. Here, we describe a straightforward, inexpensive approach for extracting the mechanical properties of bacterial cells in gels of user-defined stiffness, using only optical microscopy to match growth kinetics to the predictions of a continuum model of cell growth. Using this simple yet general methodology, we have measured the Young's modulus for bacteria ranging across a wide variety of shapes, sizes, and cell wall thicknesses, and our method can easily be extended to other commonly studied bacteria. This method makes it possible to rapidly determine how changes in genotype and biochemistry affect the mechanical properties of the cell wall, and may be particularly relevant for studying the relationship between cell shape and structure, the genetic and molecular control of the mechanical properties of the cell wall, and the identification of antibiotics and other small molecules that affect and specifically modify the mechanical properties of the cell wall. Our work also suggests that bacteria may utilize peptidoglycan synthesis to transduce mechanosensory signals from local environment.

  5. Current controversies in prenatal diagnosis 2: Cell-free DNA prenatal screening should be used to identify all chromosome abnormalities.

    Science.gov (United States)

    Chitty, Lyn S; Hudgins, Louanne; Norton, Mary E

    2018-02-01

    Noninvasive prenatal testing (NIPT) using cell-free DNA (cfDNA) from maternal serum has been clinically available since 2011. This technology has revolutionized our ability to screen for the common aneuploidies trisomy 21 (Down syndrome), trisomy 18, and trisomy 13. More recently, clinical laboratories have offered screening for other chromosome abnormalities including sex chromosome abnormalities and copy number variants (CNV) without little published data on the sensitivity, specificity, and positive predictive value. In this debate, the pros and cons of performing prenatal screening via cfDNA for all chromosome abnormalities is discussed. At the time of the debate in 2017, the general consensus was that the literature does not yet support using this technology to screen for all chromosome abnormalities and that education is key for both providers and the patients so that the decision-making process is as informed as possible. © 2018 John Wiley & Sons, Ltd.

  6. Abnormal distribution of the interstitial cells of cajal in an adult patient with pseudo-obstruction and megaduodenum

    DEFF Research Database (Denmark)

    Boeckxstaens, Guy E; Rumessen, Jüri J; de Wit, Laurens

    2002-01-01

    Interstitial cells of Cajal (ICC) are fundamental regulators of GI motility. Here, we report the manometrical abnormalities and abnormalities of ICC distribution and ultrastructure encountered in a 30-yr-old patient with megaduodenum and pseudo-obstruction. Full thickness biopsies taken during...... laparoscopic placement of a jejunostomy showed vacuolated myocytes and fibrosis predominantly in the outer third of the circular muscle layer of the duodenum, suggestive for visceral myopathy. The distribution of ICC was also strikingly abnormal: by light microscopy, ICC surrounding the myenteric plexus were...... lacking in the megaduodenum, whereas ICC were normally present in the duodenal circular muscle and in the jejunum. By electron microscopy, very few ICC were identified around the duodenal myenteric plexus. These findings suggest that abnormalities in ICC may contribute to the disturbed motility in some...

  7. Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities

    OpenAIRE

    Dixon, Jill; Jones, Natalie C.; Sandell, Lisa L.; Jayasinghe, Sachintha M.; Crane, Jennifer; Rey, Jean-Philippe; Dixon, Michael J.; Trainor, Paul A.

    2006-01-01

    Neural crest cells are a migratory cell population that give rise to the majority of the cartilage, bone, connective tissue, and sensory ganglia in the head. Abnormalities in the formation, proliferation, migration, and differentiation phases of the neural crest cell life cycle can lead to craniofacial malformations, which constitute one-third of all congenital birth defects. Treacher Collins syndrome (TCS) is characterized by hypoplasia of the facial bones, cleft palate, and middle and exter...

  8. Membrane toxicity of abnormal prion protein in adrenal chromaffin cells of scrapie infected sheep.

    Directory of Open Access Journals (Sweden)

    Gillian McGovern

    Full Text Available Transmissible spongiform encephalopathies (TSEs or prion diseases are associated with accumulations of disease specific PrP (PrP(d in the central nervous system (CNS and often the lymphoreticular system (LRS. Accumulations have additionally been recorded in other tissues including the peripheral nervous system and adrenal gland. Here we investigate the effect of sheep scrapie on the morphology and the accumulation of PrP(d in the adrenal medulla of scrapie affected sheep using light and electron microscopy. Using immunogold electron microscopy, non-fibrillar forms of PrP(d were shown to accumulate mainly in association with chromaffin cells, occasional nerve endings and macrophages. PrP(d accumulation was associated with distinctive membrane changes of chromaffin cells including increased electron density, abnormal linearity and invaginations. Internalisation of PrP(d from the chromaffin cell plasma membrane occurred in association with granule recycling following hormone exocytosis. PrP(d accumulation and internalisation from membranes is similarly associated with perturbations of membrane structure and trafficking in CNS neurons and tingible body macrophages of the LRS. These data suggest that a major toxic effect of PrP(d is at the level of plasma membranes. However, the precise nature of PrP(d-membrane toxicity is tissue and cell specific suggesting that the normal protein may act as a multi-functional scaffolding molecule. We further suggest that the co-localisation of PrP(d with exocytic granules of the hormone trafficking system may provide an additional source of infectivity in blood.

  9. Morphological abnormalities, impaired fetal development and decrease in myostatin expression following somatic cell nuclear transfer in dogs.

    Science.gov (United States)

    Hong, Il-Hwa; Jeong, Yeon-Woo; Shin, Taeyoung; Hyun, Sang-Hwan; Park, Jin-Kyu; Ki, Mi-Ran; Han, Seon-Young; Park, Se-Il; Lee, Ji-Hyun; Lee, Eun-Mi; Kim, Ah-Young; You, Sang-Young; Hwang, Woo-Suk; Jeong, Kyu-Shik

    2011-05-01

    Several mammals, including dogs, have been successfully cloned using somatic cell nuclear transfer (SCNT), but the efficiency of generating normal, live offspring is relatively low. Although the high failure rate has been attributed to incomplete reprogramming of the somatic nuclei during the cloning process, the exact cause is not fully known. To elucidate the cause of death in cloned offspring, 12 deceased offspring cloned by SCNT were necropsied. The clones were either stillborn just prior to delivery or died with dyspnea shortly after birth. On gross examination, defects in the anterior abdominal wall and increased heart and liver sizes were found. Notably, a significant increase in muscle mass and macroglossia lesions were observed in deceased SCNT-cloned dogs. Interestingly, the expression of myostatin, a negative regulator of muscle growth during embryogenesis, was down-regulated at the mRNA level in tongues and skeletal muscles of SCNT-cloned dogs compared with a normal dog. Results of the present study suggest that decreased expression of myostatin in SCNT-cloned dogs may be involved in morphological abnormalities such as increased muscle mass and macroglossia, which may contribute to impaired fetal development and poor survival rates. Copyright © 2011 Wiley-Liss, Inc.

  10. Del(20q) in patients with chronic lymphocytic leukemia: a therapy-related abnormality involving lymphoid or myeloid cells.

    Science.gov (United States)

    Yin, C Cameron; Tang, Guilin; Lu, Gary; Feng, Xiaoli; Keating, Michael J; Medeiros, L Jeffrey; Abruzzo, Lynne V

    2015-08-01

    Deletion 20q (Del(20q)), a common cytogenetic abnormality in myeloid neoplasms, is rare in chronic lymphocytic leukemia. We report 64 patients with chronic lymphocytic leukemia and del(20q), as the sole abnormality in 40, a stemline abnormality in 21, and a secondary abnormality in 3 cases. Fluorescence in situ hybridization (FISH) analysis revealed an additional high-risk abnormality, del(11q) or del(17p), in 25/64 (39%) cases. In most cases, the leukemic cells showed atypical cytologic features, unmutated IGHV (immunoglobulin heavy-chain variable region) genes, and ZAP70 positivity. The del(20q) was detected only after chemotherapy in all 27 cases with initial karyotypes available. With a median follow-up of 90 months, 30 patients (47%) died, most as a direct consequence of chronic lymphocytic leukemia. Eight patients developed a therapy-related myeloid neoplasm, seven with a complex karyotype. Combined morphologic and FISH analysis for del(20q) performed in 12 cases without morphologic evidence of a myeloid neoplasm localized the del(20q) to the chronic lymphocytic leukemia cells in 5 (42%) cases, and to myeloid/erythroid cells in 7 (58)% cases. The del(20q) was detected in myeloid cells in all 4 cases of myelodysplastic syndrome. In aggregate, these data indicate that chronic lymphocytic leukemia with del(20q) acquired after therapy is heterogeneous. In cases with morphologic evidence of dysplasia, the del(20q) likely resides in the myeloid lineage. However, in cases without morphologic evidence of dysplasia, the del(20q) may represent clonal evolution and disease progression. Combining morphologic analysis with FISH for del(20q) or performing FISH on immunomagnetically selected sub-populations to localize the cell population with this abnormality may help guide patient management.

  11. Nuclear abnormalities in cells from nasal epithelium: a promising assay to evaluate DNA damage related to air pollution in infants.

    Science.gov (United States)

    Mergener, Michelle; Rhoden, Cláudia R; Amantéa, Sérgio L

    2014-01-01

    This study intends to provide a quick, easy, and inexpensive way to assess nuclear abnormalities such as micronuclei and bud frequencies; binucleated, karyorrhectic, karyolytic, pycnotic, and condensed chromatin cells in nasal scrapings of infants, which are particularly important for conducting genotoxic studies related to the inhaled atmosphere in pediatric populations. Nasal swab samples were collected from 40 infants under 12 months of age using a small cytobrush. 2,000 cells from each infant sample were analyzed and classified according to the frequency of nuclear abnormalities. Rates of nuclear abnormalities found agree with values reported in other studies of neonates and children. This study found 0.13% of cells with micronuclei; 1.20% karyorrhexis; 0.03% pyknosis; 10.85% karyolysis; 1.11% condensed chromatin; 0.54 binucleated cells; and 0.02% nuclear bud. Differences were not observed between genders or environmental passive smoking, nor was any age correlation found. The assay proposed here is suitable for assessing the frequency of nuclear abnormalities from nasal cells in infants. Copyright © 2014 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  12. Nuclear abnormalities in cells from nasal epithelium: a promising assay to evaluate DNA damage related to air pollution in infants

    Directory of Open Access Journals (Sweden)

    Michelle Mergener

    2014-12-01

    Full Text Available OBJECTIVES: This study intends to provide a quick, easy, and inexpensive way to assess nuclear abnormalities such as micronuclei and bud frequencies; binucleated, karyorrhectic, karyolytic, pycnotic, and condensed chromatin cells in nasal scrapings of infants, which are particularly important for conducting genotoxic studies related to the inhaled atmosphere in pediatric populations. METHODS: Nasal swab samples were collected from 40 infants under 12 months of age using a small cytobrush. 2,000 cells from each infant sample were analyzed and classified according to the frequency of nuclear abnormalities. RESULTS: Rates of nuclear abnormalities found agree with values reported in other studies of neonates and children. This study found 0.13% of cells with micronuclei; 1.20% karyorrhexis; 0.03% pyknosis; 10.85% karyolysis; 1.11% condensed chromatin; 0.54 binucleated cells; and 0.02% nuclear bud. Differences were not observed between genders or environmental passive smoking, nor was any age correlation found. CONCLUSION: The assay proposed here is suitable for assessing the frequency of nuclear abnormalities from nasal cells in infants.

  13. Weakly coupled map lattice models for multicellular patterning and collective normalization of abnormal single-cell states

    Science.gov (United States)

    García-Morales, Vladimir; Manzanares, José A.; Mafe, Salvador

    2017-04-01

    We present a weakly coupled map lattice model for patterning that explores the effects exerted by weakening the local dynamic rules on model biological and artificial networks composed of two-state building blocks (cells). To this end, we use two cellular automata models based on (i) a smooth majority rule (model I) and (ii) a set of rules similar to those of Conway's Game of Life (model II). The normal and abnormal cell states evolve according to local rules that are modulated by a parameter κ . This parameter quantifies the effective weakening of the prescribed rules due to the limited coupling of each cell to its neighborhood and can be experimentally controlled by appropriate external agents. The emergent spatiotemporal maps of single-cell states should be of significance for positional information processes as well as for intercellular communication in tumorigenesis, where the collective normalization of abnormal single-cell states by a predominantly normal neighborhood may be crucial.

  14. The role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding.

    Science.gov (United States)

    Schatz, Frederick; Guzeloglu-Kayisli, Ozlem; Arlier, Sefa; Kayisli, Umit A; Lockwood, Charles J

    2016-06-01

    Human pregnancy requires robust hemostasis to prevent hemorrhage during extravillous trophoblast (EVT) invasion of the decidualized endometrium, modification of spiral arteries and post-partum processes. However, decidual hemorrhage (abruption) can occur throughout pregnancy from poorly transformed spiral arteries, causing fetal death or spontaneous preterm birth (PTB), or it can promote the aberrant placentation observed in intrauterine growth restriction (IUGR) and pre-eclampsia; all leading causes of perinatal or maternal morbidity and mortality. In non-fertile cycles, the decidua undergoes controlled menstrual bleeding. Abnormal uterine bleeding (AUB) accompanying progestin-only, long-acting, reversible contraception (pLARC) accounts for most discontinuations of these safe and highly effective agents, thereby contributing to unwanted pregnancies and abortion. The aim of this study was to investigate the role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding. We conducted a critical review of the literature arising from PubMed searches up to December 2015, regarding in situ and in vitro expression and regulation of several specific proteins involved in uterine hemostasis in decidua and cycling endometrium. In addition, we discussed clinical and molecular mechanisms associated with pLARC-induced AUB and pregnancy complications with abruptions, chorioamnionitis or pre-eclampsia. Progestin-induced decidualization of estradiol-primed human endometrial stromal cells (HESCs) increases in vivo and in vitro expression of tissue factor (TF) and type-1 plasminogen activator inhibitor (PAI-1) while inhibiting plasminogen activators (PAs), matrix metalloproteinases (MMPs), and the vasoconstrictor, endothelin-1 (ET-1). These changes in decidual cell-derived regulators of hemostasis, fibrinolysis, extracellular matrix (ECM) turnover, and vascular tone prevent hemorrhage during EVT invasion and

  15. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  16. Neurologic, neuropsychologic, and computed cranial tomography scan abnormalities in 2- to 10-year survivors of small-cell lung cancer.

    Science.gov (United States)

    Johnson, B E; Becker, B; Goff, W B; Petronas, N; Krehbiel, M A; Makuch, R W; McKenna, G; Glatstein, E; Ihde, D C

    1985-12-01

    In order to evaluate the relationship between neurologic function and cranial irradiation, 20 patients treated on National Cancer Institute (NCI) small-cell lung cancer (SCLC) trials who were alive and free of cancer 2.4 to 10.6 years (median, 6.2) from the start of therapy were studied. All were tested with a neurologic history and examination, mental status examination, neuropsychologic testing, and review of serial computed cranial tomography (CCT) scans. Fifteen patients had been treated with prophylactic cranial irradiation (PCI), two patients with therapeutic cranial irradiation, and three received no cranial irradiation. All patients but one were ambulatory and none were institutionalized. Fifteen patients (75%) had neurologic complaints, 13 (65%) had abnormal neurologic examinations, 12 (60%) had abnormal mental status examinations, 13 (65%) had abnormal neuropsychologic testing, and 15 (75%) had abnormal CCT scans. Compared with those given low-dose maintenance chemotherapy during PCI using 200 to 300 rad per fraction, patients who were given high-dose induction chemotherapy during the time of cranial irradiation or large radiotherapy fractions (400 rad) were more likely to have abnormal mental status examinations (6/6 v 4/9) and abnormal neuropsychologic tests (6/6 v 4/9), but no major difference in CCT findings was present. CCT scans in the majority of cases (11/18) showed progressive ventricular dilatation or cerebral atrophy up to 8 years after stopping therapy. We conclude neurologic abnormalities are common in long-term survivors of SCLC, and may be more prominent in patients given high-dose chemotherapy during cranial irradiation or treated with large radiotherapy fractions. The CCT scan abnormalities are common and progressive years after prophylactic cranial irradiation and chemotherapy are stopped.

  17. Cytogenetic evaluation of human glial tumors: correlation of overexpression of epidermal growth factor receptor (EGFB) with abnormalities of chromosome 7

    International Nuclear Information System (INIS)

    Bell, C.W.

    1987-01-01

    Chromosome banding analysis of human glial tumors were performed using G- and Q-banding techniques in an attempt to establish recurring sites of chromosome change. Results revealed a nonrandom karyotypic profile including aneuploidy and considerable variation in chromosome number (range 40 → 200). All tumors examined displayed numerical abnormalities, with the most common numeric change being a gain of chromosome 7. An attempt was then made to correlate the observed chromosome 7 changes with activation of the cellular proto-oncogene c-erb-B, whose produce is the epidermal growth factor receptor (EGFR). Six human glial tumors were analyzed for 125 I-EGF binding, EGFR gene copy number, EGFR gene rearrangement, mRNA expression, and karyotypic profile. Saturation analysis at 4 0 C revealed significant numbers of EGFR's in all 6 tumors. Southern blotting analysis utilizing cDNA probes for the EGFR failed to demonstrate significant amplification or structural rearrangement of the EFGR gene. The results suggest that overexpression of the EGFR may be related to an alternative mechanism, other than gene amplification and elevated mRNA levels, such as the regulation of receptor biosynthesis and degradation. In summary, findings indicate that alterations of chromosome 7 are the most prevalent chromosomal change in human glial tumors, and that these alterations may lead to overexpression of the protooncogene c-erb-B

  18. Performance of the CellaVision ® DM96 system for detecting red blood cell morphologic abnormalities

    Directory of Open Access Journals (Sweden)

    Christopher L Horn

    2015-01-01

    Full Text Available Background: Red blood cell (RBC analysis is a key feature in the evaluation of hematological disorders. The gold standard light microscopy technique has high sensitivity, but is a relativity time-consuming and labor intensive procedure. This study tested the sensitivity and specificity of gold standard light microscopy manual differential to the CellaVision ® DM96 (CCS; CellaVision, Lund, Sweden automated image analysis system, which takes digital images of samples at high magnification and compares these images with an artificial neural network based on a database of cells and preclassified according to RBC morphology. Methods: In this study, 212 abnormal peripheral blood smears within the Calgary Laboratory Services network of hospital laboratories were selected and assessed for 15 different RBC morphologic abnormalities by manual microscopy. The same samples were reassessed as a manual addition from the instrument screen using the CellaVision ® DM96 system with 8 microscope high power fields (×100 objective and a 22 mm ocular. The results of the investigation were then used to calculate the sensitivity and specificity of the CellaVision ® DM96 system in reference to light microscopy. Results: The sensitivity ranged from a low of 33% (RBC agglutination to a high of 100% (sickle cells, stomatocytes. The remainder of the RBC abnormalities tested somewhere between these two extremes. The specificity ranged from 84% (schistocytes to 99.5% (sickle cells, stomatocytes. Conclusions: Our results showed generally high specificities but variable sensitivities for RBC morphologic abnormalities.

  19. Nerve growth factor interactions with mast cells.

    Science.gov (United States)

    Kritas, S K; Caraffa, A; Antinolfi, P; Saggini, A; Pantalone, A; Rosati, M; Tei, M; Speziali, A; Saggini, R; Pandolfi, F; Cerulli, G; Conti, P

    2014-01-01

    Neuropeptides are involved in neurogenic inflammation where there is vasodilation and plasma protein extravasion in response to this stimulus. Nerve growth factor (NGF), identified by Rita Levi Montalcini, is a neurotrophin family compound which is important for survival of nociceptive neurons during their development. Therefore, NGF is an important neuropeptide which mediates the development and functions of the central and peripheral nervous system. It also exerts its proinflammatory action, not only on mast cells but also in B and T cells, neutrophils and eosinophils. Human mast cells can be activated by neuropeptides to release potent mediators of inflammation, and they are found throughout the body, especially near blood vessels, epithelial tissue and nerves. Mast cells generate and release NGF after degranulation and they are involved in iperalgesia, neuroimmune interactions and tissue inflammation. NGF is also a potent degranulation factor for mast cells in vitro and in vivo, promoting differentiation and maturation of these cells and their precursor, acting as a co-factor with interleukin-3. In conclusion, these studies are focused on cross-talk between neuropeptide NGF and inflammatory mast cells.

  20. Overexpression of Rac1 in leukemia patients and its role in leukemia cell migration and growth

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiying [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020 (China); Rao, Qing, E-mail: raoqing@gmail.com [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020 (China); Wang, Min; Wei, Hui; Xing, Haiyan; Liu, Hang; Wang, Yanzhong; Tang, Kejing; Peng, Leiwen; Tian, Zheng; Wang, Jianxiang [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020 (China)

    2009-09-04

    Rac1 belongs to the Rho family that act as critical mediators of signaling pathways controlling cell migration and proliferation and contributes to the interactions of hematopoietic stem cells with their microenvironment. Alteration of Rac1 might result in unbalanced interactions and ultimately lead to leukemogenesis. In this study, we analyze the expression of Rac1 protein in leukemia patients and determine its role in the abnormal behaviours of leukemic cells. Rac1 protein is overexpressed in primary acute myeloid leukemia cells as compared to normal bone marrow mononuclear cells. siRNA-mediated silencing of Rac1 in leukemia cell lines induced inhibition of cell migration, proliferation, and colony formation. Additionally, blocking Rac1 activity by an inhibitor of Rac1-GTPase, NSC23766, suppressed cell migration and growth. We conclude that overexpression of Rac1 contributes to the accelerated migration and high proliferation potential of leukemia cells, which could be implicated in leukemia development and progression.

  1. Overexpression of Rac1 in leukemia patients and its role in leukemia cell migration and growth

    International Nuclear Information System (INIS)

    Wang, Jiying; Rao, Qing; Wang, Min; Wei, Hui; Xing, Haiyan; Liu, Hang; Wang, Yanzhong; Tang, Kejing; Peng, Leiwen; Tian, Zheng; Wang, Jianxiang

    2009-01-01

    Rac1 belongs to the Rho family that act as critical mediators of signaling pathways controlling cell migration and proliferation and contributes to the interactions of hematopoietic stem cells with their microenvironment. Alteration of Rac1 might result in unbalanced interactions and ultimately lead to leukemogenesis. In this study, we analyze the expression of Rac1 protein in leukemia patients and determine its role in the abnormal behaviours of leukemic cells. Rac1 protein is overexpressed in primary acute myeloid leukemia cells as compared to normal bone marrow mononuclear cells. siRNA-mediated silencing of Rac1 in leukemia cell lines induced inhibition of cell migration, proliferation, and colony formation. Additionally, blocking Rac1 activity by an inhibitor of Rac1-GTPase, NSC23766, suppressed cell migration and growth. We conclude that overexpression of Rac1 contributes to the accelerated migration and high proliferation potential of leukemia cells, which could be implicated in leukemia development and progression.

  2. Pentoxifylline reverses chronic experimental Chagasic cardiomyopathy in association with repositioning of abnormal CD8+ T-cell response.

    Directory of Open Access Journals (Sweden)

    Isabela Resende Pereira

    2015-03-01

    Full Text Available Chronic chagasic cardiomyopathy (CCC, the main clinical sign of Chagas disease, is associated with systemic CD8+ T-cell abnormalities and CD8-enriched myocarditis occurring in an inflammatory milieu. Pentoxifylline (PTX, a phosphodiesterase inhibitor, has immunoregulatory and cardioprotective properties. Here, we tested PTX effects on CD8+ T-cell abnormalities and cardiac alterations using a model of experimental Chagas' heart disease.C57BL/6 mice chronically infected by the Colombian Trypanosoma cruzi strain and presenting signs of CCC were treated with PTX. The downmodulation of T-cell receptors on CD8+ cells induced by T. cruzi infection was rescued by PTX therapy. Also, PTX reduced the frequency of CD8+ T-cells expressing activation and migration markers in the spleen and the activation of blood vessel endothelial cells and the intensity of inflammation in the heart tissue. Although preserved interferon-gamma production systemically and in the cardiac tissue, PTX therapy reduced the number of perforin+ cells invading this tissue. PTX did not alter parasite load, but hampered the progression of heart injury, improving connexin 43 expression and decreasing fibronectin overdeposition. Further, PTX reversed electrical abnormalities as bradycardia and prolonged PR, QTc and QRS intervals in chronically infected mice. Moreover, PTX therapy improved heart remodeling since reduced left ventricular (LV hypertrophy and restored the decreased LV ejection fraction.PTX therapy ameliorates critical aspects of CCC and repositioned CD8+ T-cell response towards homeostasis, reinforcing that immunological abnormalities are crucially linked, as cause or effect, to CCC. Therefore, PTX emerges as a candidate to treat the non-beneficial immune deregulation associated with chronic Chagas' heart disease and to improve prognosis.

  3. Pentoxifylline Reverses Chronic Experimental Chagasic Cardiomyopathy in Association with Repositioning of Abnormal CD8+ T-Cell Response

    Science.gov (United States)

    Pereira, Isabela Resende; Vilar-Pereira, Glaucia; Moreira, Otacilio Cruz; Ramos, Isalira Peroba; Gibaldi, Daniel; Britto, Constança; Moraes, Milton Ozório; Lannes-Vieira, Joseli

    2015-01-01

    Background Chronic chagasic cardiomyopathy (CCC), the main clinical sign of Chagas disease, is associated with systemic CD8+ T-cell abnormalities and CD8-enriched myocarditis occurring in an inflammatory milieu. Pentoxifylline (PTX), a phosphodiesterase inhibitor, has immunoregulatory and cardioprotective properties. Here, we tested PTX effects on CD8+ T-cell abnormalities and cardiac alterations using a model of experimental Chagas’ heart disease. Methodology/Principal Findings C57BL/6 mice chronically infected by the Colombian Trypanosoma cruzi strain and presenting signs of CCC were treated with PTX. The downmodulation of T-cell receptors on CD8+ cells induced by T. cruzi infection was rescued by PTX therapy. Also, PTX reduced the frequency of CD8+ T-cells expressing activation and migration markers in the spleen and the activation of blood vessel endothelial cells and the intensity of inflammation in the heart tissue. Although preserved interferon-gamma production systemically and in the cardiac tissue, PTX therapy reduced the number of perforin+ cells invading this tissue. PTX did not alter parasite load, but hampered the progression of heart injury, improving connexin 43 expression and decreasing fibronectin overdeposition. Further, PTX reversed electrical abnormalities as bradycardia and prolonged PR, QTc and QRS intervals in chronically infected mice. Moreover, PTX therapy improved heart remodeling since reduced left ventricular (LV) hypertrophy and restored the decreased LV ejection fraction. Conclusions/Significance PTX therapy ameliorates critical aspects of CCC and repositioned CD8+ T-cell response towards homeostasis, reinforcing that immunological abnormalities are crucially linked, as cause or effect, to CCC. Therefore, PTX emerges as a candidate to treat the non-beneficial immune deregulation associated with chronic Chagas' heart disease and to improve prognosis. PMID:25789471

  4. Berberine slows cell growth in autosomal dominant polycystic kidney disease cells

    Energy Technology Data Exchange (ETDEWEB)

    Bonon, Anna; Mangolini, Alessandra [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy); Pinton, Paolo [Department of Morphology, Surgery and Experimental Medicine, Section of General Pathology, University of Ferrara, 44121 Ferrara (Italy); Senno, Laura del [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy); Aguiari, Gianluca, E-mail: dsn@unife.it [Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, 44121 Ferrara (Italy)

    2013-11-22

    Highlights: •Berberine at appropriate doses slows cell proliferation in ADPKD cystic cells. •Reduction of cell growth by berberine occurs by inhibition of ERK and p70-S6 kinase. •Higher doses of berberine cause an overall cytotoxic effect. •Berberine overdose induces apoptotic bodies formation and DNA fragmentation. •Antiproliferative properties of this drug make it a new candidate for ADPKD therapy. -- Abstract: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary monogenic disorder characterized by development and enlargement of kidney cysts that lead to loss of renal function. It is caused by mutations in two genes (PKD1 and PKD2) encoding for polycystin-1 and polycystin-2 proteins which regulate different signals including cAMP, mTOR and EGFR pathways. Abnormal activation of these signals following PC1 or PC2 loss of function causes an increased cell proliferation which is a typical hallmark of this disease. Despite the promising findings obtained in animal models with targeted inhibitors able to reduce cystic cell growth, currently, no specific approved therapy for ADPKD is available. Therefore, the research of new more effective molecules could be crucial for the treatment of this severe pathology. In this regard, we have studied the effect of berberine, an isoquinoline quaternary alkaloid, on cell proliferation and apoptosis in human and mouse ADPKD cystic cell lines. Berberine treatment slows cell proliferation of ADPKD cystic cells in a dose-dependent manner and at high doses (100 μg/mL) it induces cell death in cystic cells as well as in normal kidney tubule cells. However, at 10 μg/mL, berberine reduces cell growth in ADPKD cystic cells only enhancing G{sub 0}/G{sub 1} phase of cell cycle and inhibiting ERK and p70-S6 kinases. Our results indicate that berberine shows a selected antiproliferative activity in cellular models for ADPKD, suggesting that this molecule and similar natural compounds could open new

  5. Mechanisms of pancreatic beta-cell growth and regeneration

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1989-01-01

    Information about the mechanism of beta-cell growth and regeneration may be obtained by studies of insulinoma cells. In the present study the growth and function of the rat insulinoma cell lines RINm5F and 5AH were evaluated by addition of serum, hormones, and growth factors. It was found...... of insulin mRNA content showed that the insulinoma cells only contained about 2% of that of normal rat beta-cells. These results are discussed in relation to the role of growth factors, oncogenes, and differentiation in the growth and regeneration of beta-cells....

  6. Mechanisms of pancreatic beta-cell growth and regeneration

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1989-01-01

    Information about the mechanism of beta-cell growth and regeneration may be obtained by studies of insulinoma cells. In the present study the growth and function of the rat insulinoma cell lines RINm5F and 5AH were evaluated by addition of serum, hormones, and growth factors. It was found...... that transferrin is the only obligatory factor whereas growth hormone, epidermal growth factor, fibroblast growth factor, and TRH had modulating effects. A heat-labile heparin binding serum factor which stimulated thymidine incorporation but not cell proliferation was demonstrated in human serum. Measurements...... of insulin mRNA content showed that the insulinoma cells only contained about 2% of that of normal rat beta-cells. These results are discussed in relation to the role of growth factors, oncogenes, and differentiation in the growth and regeneration of beta-cells....

  7. Granulosa cell and oocyte mitochondrial abnormalities in a mouse model of fragile X primary ovarian insufficiency.

    Science.gov (United States)

    Conca Dioguardi, Carola; Uslu, Bahar; Haynes, Monique; Kurus, Meltem; Gul, Mehmet; Miao, De-Qiang; De Santis, Lucia; Ferrari, Maurizio; Bellone, Stefania; Santin, Alessandro; Giulivi, Cecilia; Hoffman, Gloria; Usdin, Karen; Johnson, Joshua

    2016-06-01

    We hypothesized that the mitochondria of granulosa cells (GC) and/or oocytes might be abnormal in a mouse model of fragile X premutation (FXPM). Mice heterozygous and homozygous for the FXPM have increased death (atresia) of large ovarian follicles, fewer corpora lutea with a gene dosage effect manifesting in decreased litter size(s). Furthermore, granulosa cells (GC) and oocytes of FXPM mice have decreased mitochondrial content, structurally abnormal mitochondria, and reduced expression of critical mitochondrial genes. Because this mouse allele produces the mutant Fragile X mental retardation 1 (Fmr1) transcript and reduced levels of wild-type (WT) Fmr1 protein (FMRP), but does not produce a Repeat Associated Non-ATG Translation (RAN)-translation product, our data lend support to the idea that Fmr1 mRNA with large numbers of CGG-repeats is intrinsically deleterious in the ovary. Mitochondrial dysfunction has been detected in somatic cells of human and mouse FX PM carriers and mitochondria are essential for oogenesis and ovarian follicle development, FX-associated primary ovarian insufficiency (FXPOI) is seen in women with FXPM alleles. These alleles have 55-200 CGG repeats in the 5' UTR of an X-linked gene known as FMR1. The molecular basis of the pathology seen in this disorder is unclear but is thought to involve either some deleterious consequence of overexpression of RNA with long CGG-repeat tracts or of the generation of a repeat-associated non-AUG translation (RAN translation) product that is toxic. Analysis of ovarian function in a knock-in FXPM mouse model carrying 130 CGG repeats was performed as follows on WT, PM/+, and PM/PM genotypes. Histomorphometric assessment of follicle and corpora lutea numbers in ovaries from 8-month-old mice was executed, along with litter size analysis. Mitochondrial DNA copy number was quantified in oocytes and GC using quantitative PCR, and cumulus granulosa mitochondrial content was measured by flow cytometric analysis

  8. [Effect of aluminum trichloride on abnormal phosphorylation of tau protein in SH-SY5Y cells].

    Science.gov (United States)

    Wang, Hao; Lu, Xiao-ting; Jia, Zhi-jian; Niu, Qiao

    2013-02-01

    To investigate the effect of aluminum trichloride on the abnormal phosphorylation of tau protein in SH-SY5Y cells. SH-SY5Y cells were assigned to control group and aluminum trichloride exposure groups (200, 400, and 800 µmol/L Al(3+)). The cell morphology was observed after 48 hours of exposure; the cell viability was measured by CCK-8 assay; total protein was extracted from the cells, and the expression of phospho-tau (p-tau) 181, 231, 262, and 396 and tau 5 was measured by Western blot. As the Al(3+) concentration rose, the number of living SH-SY5Y cells decreased, and the synapses of the cells retracted. The viability of cells exposed to 800 µmol/L Al(3+) was significantly lower than that of the control group (P aluminum trichloride has toxic effect on SH-SY5Y cells and can lead to abnormal expression of p-tau 181, 231, and 396 and tau 5 at low Al(3+) concentration.

  9. Influence of radiosterilized cells on cells L1210 growth

    International Nuclear Information System (INIS)

    Malaise, E.P.; Decheva-Ninova, Z.; Tubiana, M.

    1975-01-01

    The effect of cells sterilized by acute X-irradiation is investigated on the growth of L 1210 cells. For this purpose young male mice DBA 2 are injected intraperitoneally or hypodermically with suspension of either live cells or live and sterile cells. The effect is considered according to survival time of treated animals and the number of leukemic cells examined in dynamics after their intraperitoneal incorporation or according to tumor size after their hypodermical incorporation. In both cases the incorporation of sterile cells has an inhibitory effect - life duration of treated mice is increased. This common effect disappears if animals are previously irradiated with 350 R. The sterile cells have also a local stimulating effect when incorporated hypodermically - time for their duplication is reduced from 15,8 to 13,7 hours. This stimulation is much more expressed when the recipients are previously irradiated - the time for tumor cells duplication being 12,2 hours. Direct stimulating effect of sterilized cells is not established when they are intraperitoneally incorporated. (author)

  10. Assessment of the abnormal growth of floating macrophytes in Winam Gulf (Kenya) by using MODIS imagery time series

    Science.gov (United States)

    Fusilli, L.; Collins, M. O.; Laneve, G.; Palombo, A.; Pignatti, S.; Santini, F.

    2013-02-01

    The objective of this research study is to assess the capability of time-series of MODIS imagery to provide information suitable for enhancing the understanding of the temporal cycles shown by the abnormal growth of the floating macrophytes in order to support monitoring and management action of Lake Victoria water resources. The proliferation of invasive plants and aquatic weeds is of growing concern. Starting from 1989, Lake Victoria has been interested by the high infestation of water hyacinth with significant socio-economic impact on riparian populations. In this paper, we describe an approach based on the time-series of MODIS to derive the temporal behaviour, the abundance and distribution of the floating macrophytes in the Winam Gulf (Kenyan portion of the Lake Victoria) and its possible links to the concentrations of the main water constituencies. To this end, we consider the NDVI values computed from the MODIS imagery time-series from 2000 to 2009 to identify the floating macrophytes cover and an appropriate bio-optical model to retrieve, by means of an inverse procedure, the concentrations of chlorophyll a, coloured dissolved organic matter and total suspended solid. The maps of the floating vegetation based on the NDVI values allow us to assess the spatial and temporal dynamics of the weeds with high time resolution. A floating vegetation index (FVI) has been introduced for describing the weeds pollution level. The results of the analysis show a consistent temporal relation between the water constituent concentrations within the Winam Gulf and the FVI, especially in the proximity of the greatest proliferation of floating vegetation in the last 10 years that occurred between the second half of 2006 and the first half of 2007.The adopted approach will be useful to implement an automatic system for monitoring and predicting the floating macrophytes proliferation in Lake Victoria.

  11. Raised D-dimer levels in acute sickle cell crisis and their correlation with chest X-ray abnormalities.

    Science.gov (United States)

    Dar, Javeed; Mughal, Inam; Hassan, Hilali; Al Mekki, Taj E; Chapunduka, Zivani; Hassan, Imad S A

    2010-10-08

    Quantitation of D-dimer level during a sickling crisis and its correlation with other clinical abnormalities. Prospective longitudinal study. Armed Forces Hospital, Southern Region, Kingdom of Saudi Arabia. Adult patients (12 years and older) admitted acutely with a sickle cell crisis who consent to taking part in the study. Candidates may re-participate if they are readmitted with a further acute painful crisis. 36 patients with homozygous sickle cell disease consented to take part in the study. D-dimer levels were raised in 31 (68.9%) of 45 episodes of painful crisis of whom 13 had an abnormal chest X-ray. Of those with a normal chest X-ray only one patient had a raised D-dimer level: sensitivity of 92.3%, specificity 40.6%, positive predictive value 38.7% and negative predictive value of 92.9% for an abnormal chest X-ray. D-dimer levels are frequently raised during an acute painful crisis. A normal level has a high negative predictive value for an abnormal chest X-ray.

  12. DASAF: An R Package for Deep Sequencing-Based Detection of Fetal Autosomal Abnormalities from Maternal Cell-Free DNA.

    Science.gov (United States)

    Liu, Baohong; Tang, Xiaoyan; Qiu, Feng; Tao, Chunmei; Gao, Junhui; Ma, Mengmeng; Zhong, Tingyan; Cai, JianPing; Li, Yixue; Ding, Guohui

    2016-01-01

    Background. With the development of massively parallel sequencing (MPS), noninvasive prenatal diagnosis using maternal cell-free DNA is fast becoming the preferred method of fetal chromosomal abnormality detection, due to its inherent high accuracy and low risk. Typically, MPS data is parsed to calculate a risk score, which is used to predict whether a fetal chromosome is normal or not. Although there are several highly sensitive and specific MPS data-parsing algorithms, there are currently no tools that implement these methods. Results. We developed an R package, detection of autosomal abnormalities for fetus (DASAF), that implements the three most popular trisomy detection methods-the standard Z-score (STDZ) method, the GC correction Z-score (GCCZ) method, and the internal reference Z-score (IRZ) method-together with one subchromosome abnormality identification method (SCAZ). Conclusions. With the cost of DNA sequencing declining and with advances in personalized medicine, the demand for noninvasive prenatal testing will undoubtedly increase, which will in turn trigger an increase in the tools available for subsequent analysis. DASAF is a user-friendly tool, implemented in R, that supports identification of whole-chromosome as well as subchromosome abnormalities, based on maternal cell-free DNA sequencing data after genome mapping.

  13. Apoptotic ratios and mitotic abnormalities in 17-β-estradiol-transformed human breast epithelial MCF-10F cells

    Directory of Open Access Journals (Sweden)

    LMS Cruz

    Full Text Available Treatment of human breast epithelial cells MCF-10F with 17-β-estradiol has been reported to result in E2-transformed cells which have given rise to highly invasive C5 cells that in turn generate tumors in SCID mice. From these tumors, various cell lines, among which C5-A6-T6 and C5-A8-T8, were obtained. Although different phases of the tumorigenesis process in this model have been studied in molecular biology and image analysis assays, no cytological data on apoptotic ratios and mitotic abnormalities have been established to accompany the various steps leading to 17-β-estradiol-treated MCF-10F cells to tumorigenesis. Here we detected that the apoptotic ratio decreases with the transformation and tumorigenesis progress, except for the tumor cell line C5-A8-T8, probably on account of its more intense proliferation rate and a more rapid culture medium consumption. Increased frequency of mitotic abnormalities contributed by triple- and tetrapolar metaphases, and by lagging chromosomes and chromosome bridges observed at the anaphase found by transformation and tumorigenesis progress. However, no difference was found under these terms when the C5-A6-T6 and C5-A8-T8 tumor cell lines were compared to each other. Present findings are in agreement with the nuclear instability and enrichment of dysregulated genes in the apoptotic process promoted by transformation and tumorigenesis in 17-β-estradiol-treated MCF-10F cells.

  14. Control of mitochondrial function and cell growth by the atypical cadherin Fat1.

    Science.gov (United States)

    Cao, Longyue L; Riascos-Bernal, Dario F; Chinnasamy, Prameladevi; Dunaway, Charlene M; Hou, Rong; Pujato, Mario A; O'Rourke, Brian P; Miskolci, Veronika; Guo, Liang; Hodgson, Louis; Fiser, Andras; Sibinga, Nicholas E S

    2016-11-24

    Mitochondrial products such as ATP, reactive oxygen species, and aspartate are key regulators of cellular metabolism and growth. Abnormal mitochondrial function compromises integrated growth-related processes such as development and tissue repair, as well as homeostatic mechanisms that counteract ageing and neurodegeneration, cardiovascular disease, and cancer. Physiologic mechanisms that control mitochondrial activity in such settings remain incompletely understood. Here we show that the atypical Fat1 cadherin acts as a molecular 'brake' on mitochondrial respiration that regulates vascular smooth muscle cell (SMC) proliferation after arterial injury. Fragments of Fat1 accumulate in SMC mitochondria, and the Fat1 intracellular domain interacts with multiple mitochondrial proteins, including critical factors associated with the inner mitochondrial membrane. SMCs lacking Fat1 (Fat1 KO ) grow faster, consume more oxygen for ATP production, and contain more aspartate. Notably, expression in Fat1 KO cells of a modified Fat1 intracellular domain that localizes exclusively to mitochondria largely normalizes oxygen consumption, and the growth advantage of these cells can be suppressed by inhibition of mitochondrial respiration, which suggest that a Fat1-mediated growth control mechanism is intrinsic to mitochondria. Consistent with this idea, Fat1 species associate with multiple respiratory complexes, and Fat1 deletion both increases the activity of complexes I and II and promotes the formation of complex-I-containing supercomplexes. In vivo, Fat1 is expressed in injured human and mouse arteries, and inactivation of SMC Fat1 in mice potentiates the response to vascular damage, with markedly increased medial hyperplasia and neointimal growth, and evidence of higher SMC mitochondrial respiration. These studies suggest that Fat1 controls mitochondrial activity to restrain cell growth during the reparative, proliferative state induced by vascular injury. Given recent reports

  15. Rate of Opportunistic Pap Smear Screening and Patterns of Epithelial Cell Abnormalities in Pap Smears in Ajman, United Arab Emirates

    Science.gov (United States)

    Al Eyd, Ghaith J.; Shaik, Rizwana B.

    2012-01-01

    Objectives: The aim of this study was to estimate the proportion of women undergoing Papanicolaou (Pap) smear examinations, and the frequency of epithelial cell abnormalities in a teaching hospital in one emirate of the United Arab Emirates (UAE) during a three-year period. Methods: A retrospective study of 602 patient records from July 2007 to July 2010 was done in a teaching hospital in Ajman, UAE. The variables studied were age, ethnicity, menopausal status, and abnormalities in the Pap smear. Data were analysed using the Statistical Package for the Social Sciences and presented mainly as percentages; to assess associations, the chi-square test was used. Results: The total number of outpatients who attended the Obstetrics & Gynaecology Department from July 2007 to July 2010 was 150,111 patients, of which 602 (0.4% of the total) had a Pap smear test. The sample was 50.1% Arabs and 49.9% other nationalities. While 73% of the outpatients had specific complaints, 27% came for a routine screening. Epithelial cell abnormalities were seen in 3.3% of the sample, with atypical squamous cells of undetermined significance (ASCUS) found in 1.8%, low-grade squamous intraepithelial lesions (LSILs) found in 1.2%, and high-grade squamous intraepithelial lesions (HSILs) found in 0.3%. There were no cases of squamous cell carcinoma. Conclusion: Voluntary routine Pap smear screening was remarkably low in the study group. ASCUS was the most common epithelial cell abnormality. Community health education and opportunistic screening for cervical cancer are recommended for both national and expatriate women in the region. PMID:23275844

  16. Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities.

    Science.gov (United States)

    Dixon, Jill; Jones, Natalie C; Sandell, Lisa L; Jayasinghe, Sachintha M; Crane, Jennifer; Rey, Jean-Philippe; Dixon, Michael J; Trainor, Paul A

    2006-09-05

    Neural crest cells are a migratory cell population that give rise to the majority of the cartilage, bone, connective tissue, and sensory ganglia in the head. Abnormalities in the formation, proliferation, migration, and differentiation phases of the neural crest cell life cycle can lead to craniofacial malformations, which constitute one-third of all congenital birth defects. Treacher Collins syndrome (TCS) is characterized by hypoplasia of the facial bones, cleft palate, and middle and external ear defects. Although TCS results from autosomal dominant mutations of the gene TCOF1, the mechanistic origins of the abnormalities observed in this condition are unknown, and the function of Treacle, the protein encoded by TCOF1, remains poorly understood. To investigate the developmental basis of TCS we generated a mouse model through germ-line mutation of Tcof1. Haploinsufficiency of Tcof1 leads to a deficiency in migrating neural crest cells, which results in severe craniofacial malformations. We demonstrate that Tcof1/Treacle is required cell-autonomously for the formation and proliferation of neural crest cells. Tcof1/Treacle regulates proliferation by controlling the production of mature ribosomes. Therefore, Tcof1/Treacle is a unique spatiotemporal regulator of ribosome biogenesis, a deficiency that disrupts neural crest cell formation and proliferation, causing the hypoplasia characteristic of TCS craniofacial anomalies.

  17. Metabolic Abnormalities Detected in Phase II Evaluation of Doxycycline in Dogs with Multicentric B-Cell Lymphoma

    Science.gov (United States)

    Hume, Kelly R.; Sylvester, Skylar R.; Borlle, Lucia; Balkman, Cheryl E.; McCleary-Wheeler, Angela L.; Pulvino, Mary; Casulo, Carla; Zhao, Jiyong

    2018-01-01

    Doxycycline has antiproliferative effects in human lymphoma cells and in murine xenografts. We hypothesized that doxycycline would decrease canine lymphoma cell viability and prospectively evaluated its clinical tolerability in client-owned dogs with spontaneous, nodal, multicentric, substage a, B-cell lymphoma, not previously treated with chemotherapy. Treatment duration ranged from 1 to 8 weeks (median and mean, 3 weeks). Dogs were treated with either 10 (n = 6) or 7.5 (n = 7) mg/kg by mouth twice daily. One dog had a stable disease for 6 weeks. No complete or partial tumor responses were observed. Five dogs developed grade 3 and/or 4 metabolic abnormalities suggestive of hepatopathy with elevations in bilirubin, ALT, ALP, and/or AST. To evaluate the absorption of oral doxycycline in our study population, serum concentrations in 10 treated dogs were determined using liquid chromatography tandem mass spectrometry. Serum levels were variable and ranged from 3.6 to 16.6 µg/ml (median, 7.6 µg/ml; mean, 8.8 µg/ml). To evaluate the effect of doxycycline on canine lymphoma cell viability in vitro, trypan blue exclusion assay was performed on canine B-cell lymphoma cell lines (17-71 and CLBL) and primary B-cell lymphoma cells from the nodal tissue of four dogs. A doxycycline concentration of 6 µg/ml decreased canine lymphoma cell viability by 80%, compared to matched, untreated, control cells (mixed model analysis, p therapy may be worthwhile if future research determines that doxycycline can alter cell survival pathways in canine lymphoma cells. Due to the potential for metabolic abnormalities, close monitoring is recommended with the use of this drug in tumor-bearing dogs. Additional research is needed to assess the tolerability of chronic doxycycline therapy. PMID:29536017

  18. PDGF receptor-α does not promote HCMV entry into epithelial and endothelial cells but increased quantities stimulate entry by an abnormal pathway.

    Directory of Open Access Journals (Sweden)

    Adam L Vanarsdall

    2012-09-01

    Full Text Available Epidermal growth factor receptor (EGFR and platelet-derived growth factor receptor-α (PDGFRα were reported to mediate entry of HCMV, including HCMV lab strain AD169. AD169 cannot assemble gH/gL/UL128-131, a glycoprotein complex that is essential for HCMV entry into biologically important epithelial cells, endothelial cells, and monocyte-macrophages. Given this, it appeared incongruous that EGFR and PDGFRα play widespread roles in HCMV entry. Thus, we investigated whether PDGFRα and EGFR could promote entry of wild type HCMV strain TR. EGFR did not promote HCMV entry into any cell type. PDGFRα-transduction of epithelial and endothelial cells and several non-permissive cells markedly enhanced HCMV TR entry and surprisingly, promoted entry of HCMV mutants lacking gH/gL/UL128-131 into epithelial and endothelial cells. Entry of HCMV was not blocked by a panel of PDGFRα antibodies or the PDGFR ligand in fibroblasts, epithelial, or endothelial cells or by shRNA silencing of PDGFRα in epithelial cells. Moreover, HCMV glycoprotein induced cell-cell fusion was not increased when PDGFRα was expressed in cells. Together these results suggested that HCMV does not interact directly with PDGFRα. Instead, the enhanced entry produced by PDGFRα resulted from a novel entry pathway involving clathrin-independent, dynamin-dependent endocytosis of HCMV followed by low pH-independent fusion. When PDGFRα was expressed in cells, an HCMV lab strain escaped endosomes and tegument proteins reached the nucleus, but without PDGFRα virions were degraded. By contrast, wild type HCMV uses another pathway to enter epithelial cells involving macropinocytosis and low pH-dependent fusion, a pathway that lab strains (lacking gH/gL/UL128-131 cannot follow. Thus, PDGFRα does not act as a receptor for HCMV but increased PDGFRα alters cells, facilitating virus entry by an abnormal pathway. Given that PDGFRα increased infection of some cells to 90%, PDGFRα may be very

  19. Nuclear abnormalities in cells from nasal epithelium: a promising assay to evaluate DNA damage related to air pollution in infants

    OpenAIRE

    Michelle Mergener; Cláudia R. Rhoden; Sérgio L. Amantéa

    2014-01-01

    OBJECTIVES: This study intends to provide a quick, easy, and inexpensive way to assess nuclear abnormalities such as micronuclei and bud frequencies; binucleated, karyorrhectic, karyolytic, pycnotic, and condensed chromatin cells in nasal scrapings of infants, which are particularly important for conducting genotoxic studies related to the inhaled atmosphere in pediatric populations. METHODS: Nasal swab samples were collected from 40 infants under 12 months of age using a small cytobrush...

  20. Growth of cells superinoculated onto irradiated and nonirradiated confluent monolayers

    International Nuclear Information System (INIS)

    Matsuoka, H.; Ueo, H.; Sugimachi, K.

    1990-01-01

    We prepared confluent monolayers of normal BALB/c 3T3 cells and compared differences in the growth of four types of cells superinoculated onto these nonirradiated and irradiated monolayers. The test cells were normal BALB/c 3T3 A31 cells, a squamous cell carcinoma from a human esophageal cancer (KSE-1), human fetal fibroblasts, and V-79 cells from Chinese hamster lung fibroblasts. Cell growth was checked by counting the cell number, determining [3H]thymidine incorporation and assessing colony formation. We found that on nonirradiated monolayers, colony formation of human fetal fibroblasts and normal BALB/c 3T3 cells was completely inhibited. On irradiated cells, test cells did exhibit some growth. KSE-1 cells, which had a low clonogenic efficiency on plastic surfaces, formed colonies on both irradiated and nonirradiated cells. On these monolayers, the clonogenic efficiency of V-79 cells was also higher than that on plastic surfaces. We conclude that the nonirradiated monolayer of BALB/c 3T3 cells completely inhibits the growth of superinoculated normal BALB/c 3T3 and human fetal fibroblasts, while on the other hand, they facilitate the growth of neoplastic KSE-1 and V-79 cells by providing a surface for cell adherence and growth, without affecting the presence of normal cells in co-cultures

  1. Reversal of Phenotypic Abnormalities by CRISPR/Cas9-Mediated Gene Correction in Huntington Disease Patient-Derived Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Xu, Xiaohong; Tay, Yilin; Sim, Bernice; Yoon, Su-In; Huang, Yihui; Ooi, Jolene; Utami, Kagistia Hana; Ziaei, Amin; Ng, Bryan; Radulescu, Carola; Low, Donovan; Ng, Alvin Yu Jin; Loh, Marie; Venkatesh, Byrappa; Ginhoux, Florent; Augustine, George J; Pouladi, Mahmoud A

    2017-03-14

    Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in HTT. Here we report correction of HD human induced pluripotent stem cells (hiPSCs) using a CRISPR-Cas9 and piggyBac transposon-based approach. We show that both HD and corrected isogenic hiPSCs can be differentiated into excitable, synaptically active forebrain neurons. We further demonstrate that phenotypic abnormalities in HD hiPSC-derived neural cells, including impaired neural rosette formation, increased susceptibility to growth factor withdrawal, and deficits in mitochondrial respiration, are rescued in isogenic controls. Importantly, using genome-wide expression analysis, we show that a number of apparent gene expression differences detected between HD and non-related healthy control lines are absent between HD and corrected lines, suggesting that these differences are likely related to genetic background rather than HD-specific effects. Our study demonstrates correction of HD hiPSCs and associated phenotypic abnormalities, and the importance of isogenic controls for disease modeling using hiPSCs. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Reversal of Phenotypic Abnormalities by CRISPR/Cas9-Mediated Gene Correction in Huntington Disease Patient-Derived Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Xiaohong Xu

    2017-03-01

    Full Text Available Huntington disease (HD is a dominant neurodegenerative disorder caused by a CAG repeat expansion in HTT. Here we report correction of HD human induced pluripotent stem cells (hiPSCs using a CRISPR-Cas9 and piggyBac transposon-based approach. We show that both HD and corrected isogenic hiPSCs can be differentiated into excitable, synaptically active forebrain neurons. We further demonstrate that phenotypic abnormalities in HD hiPSC-derived neural cells, including impaired neural rosette formation, increased susceptibility to growth factor withdrawal, and deficits in mitochondrial respiration, are rescued in isogenic controls. Importantly, using genome-wide expression analysis, we show that a number of apparent gene expression differences detected between HD and non-related healthy control lines are absent between HD and corrected lines, suggesting that these differences are likely related to genetic background rather than HD-specific effects. Our study demonstrates correction of HD hiPSCs and associated phenotypic abnormalities, and the importance of isogenic controls for disease modeling using hiPSCs.

  3. BMP signaling regulates satellite cell-dependent postnatal muscle growth.

    Science.gov (United States)

    Stantzou, Amalia; Schirwis, Elija; Swist, Sandra; Alonso-Martin, Sonia; Polydorou, Ioanna; Zarrouki, Faouzi; Mouisel, Etienne; Beley, Cyriaque; Julien, Anaïs; Le Grand, Fabien; Garcia, Luis; Colnot, Céline; Birchmeier, Carmen; Braun, Thomas; Schuelke, Markus; Relaix, Frédéric; Amthor, Helge

    2017-08-01

    Postnatal growth of skeletal muscle largely depends on the expansion and differentiation of resident stem cells, the so-called satellite cells. Here, we demonstrate that postnatal satellite cells express components of the bone morphogenetic protein (BMP) signaling machinery. Overexpression of noggin in postnatal mice (to antagonize BMP ligands), satellite cell-specific knockout of Alk3 (the gene encoding the BMP transmembrane receptor) or overexpression of inhibitory SMAD6 decreased satellite cell proliferation and accretion during myofiber growth, and ultimately retarded muscle growth. Moreover, reduced BMP signaling diminished the adult satellite cell pool. Abrogation of BMP signaling in satellite cell-derived primary myoblasts strongly diminished cell proliferation and upregulated the expression of cell cycle inhibitors p21 and p57 In conclusion, these results show that BMP signaling defines postnatal muscle development by regulating satellite cell-dependent myofiber growth and the generation of the adult muscle stem cell pool. © 2017. Published by The Company of Biologists Ltd.

  4. Hormonal and echocardiographic abnormalities in adult patients with sickle-cell anemia in Bahrain

    Directory of Open Access Journals (Sweden)

    Garadah TS

    2016-12-01

    Full Text Available Taysir S Garadah,1,2 Ahmed A Jaradat,3 Mohammed E Alalawi,1 Adla B Hassan2 1Cardiac Unit, Salmaniya Medical Complex, Ministry of Health, 2Department of Internal Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, 3Department of Family and Community Medicine, Arabian Gulf University, Manama, Bahrain Background: Adrenal, thyroid, and parathyroid gland hormonal changes are recognized in children with homozygous (HbSS sickle-cell anemia (SCA, but are not clear in adult patients with SCA. Aim: To assess the metabolic and endocrine abnormalities in adult patients with SCA and evaluate left ventricular (LV systolic and diastolic functions compared with patients with no SCA and further study the relationship between serum levels of cortisol, free thyroxine (T4, and testosterone with serum ferritin. Materials and methods: The study was conducted on 82 patients with adult HbSS SCA compared with a sex- and age-matched control group. The serum levels of cortisol, parathyroid hormone (PTH, testosterone, thyroid-stimulating hormone (TSH, and free T4 were compared. Blood levels of hemoglobin, reticulocyte count, lactate dehydrogenase (LDH, calcium, alkaline phosphatase (ALP, vitamin D3, and ferritin were also compared. Pulsed Doppler echo was performed to evaluate the LV mass, wall thickness, and cavity dimensions with diastolic filling velocities of early (E and atria (A waves. Biometric data were analyzed as mean ± standard deviation between the two groups. Multiple regression analysis was performed between serum levels of ferritin as independent variable and testosterone, cortisol, and thyroid hormones. Results: A total of 82 adult patients with HbSS SCA were enrolled who had a mean age of 21±5.7 years, with 51 males (62%. Patients with SCA compared with the control group had significantly lower hemoglobin, body mass index, cortisol, vitamin D3, testosterone, and T4. Furthermore, there were significantly high levels of

  5. The cytoskeleton in plant and fungal cell tip growth

    NARCIS (Netherlands)

    Geitmann, A.; Emons, A.M.C.

    2000-01-01

    Tip-growing cells have a particular lifestyle that is characterized by the following features: (1) the cells grow in one direction, forming a cylindrical tube; (2) tip-growing cells are able to penetrate their growth environment, thus having to withstand considerable external forces; (3) the growth

  6. Numerical modelling of the influence of stromal cells on tumor growth and angiogenesis

    Science.gov (United States)

    Sakiyama, Nobuyuki; Nagayama, Katsuya

    2018-01-01

    According to the statistics provided by the Ministry of Health, Labor and Welfare the death of one in 3.5 Japanese people is attributed to tumor highlighting the need for active research on malignant tumors. Early detection can be cited as a countermeasure against malignant tumors, but it is often difficult to observe the growth process, and thorough understanding of the phenomena will aid in more efficient detection of such tumors. A malnourished benign tumor may create new blood vessels from existing ones and proliferate abnormally by absorbing nutrients from these newly created blood vessels to become malignant. Different factors influence the shape of tumors and shape is an important factor in evaluating their malignancy. Because interstitial cells greatly influence tumor growth, investigating the influence of stromal cells on tumor growth will help in developing a better understanding of the phenomenon.

  7. Differential gene expression profile associated with the abnormality of bone marrow mesenchymal stem cells in aplastic anemia.

    Directory of Open Access Journals (Sweden)

    Jianping Li

    Full Text Available Aplastic anemia (AA is generally considered as an immune-mediated bone marrow failure syndrome with defective hematopoietic stem cells (HSCs and marrow microenvironment. Previous studies have demonstrated the defective HSCs and aberrant T cellular-immunity in AA using a microarray approach. However, little is known about the overall specialty of bone marrow mesenchymal stem cells (BM-MSCs. In the present study, we comprehensively compared the biological features and gene expression profile of BM-MSCs between AA patients and healthy volunteers. In comparison with healthy controls, BM-MSCs from AA patients showed aberrant morphology, decreased proliferation and clonogenic potential and increased apoptosis. BM-MSCs from AA patients were susceptible to be induced to differentiate into adipocytes but more difficult to differentiate into osteoblasts. Consistent with abnormal biological features, a large number of genes implicated in cell cycle, cell division, proliferation, chemotaxis and hematopoietic cell lineage showed markedly decreased expression in BM-MSCs from AA patients. Conversely, more related genes with apoptosis, adipogenesis and immune response showed increased expression in BM-MSCs from AA patients. The gene expression profile of BM-MSCs further confirmed the abnormal biological properties and provided significant evidence for the possible mechanism of the destruction of the bone marrow microenvironment in AA.

  8. Adult-onset calorie restriction delays the accumulation of mitochondrial enzyme abnormalities in aging rat kidney tubular epithelial cells.

    Science.gov (United States)

    McKiernan, Susan H; Tuen, Victoria C; Baldwin, Katherine; Wanagat, Jonathan; Djamali, Arjang; Aiken, Judd M

    2007-06-01

    Adult-onset calorie restriction (A-CR) is an experimental model of life extension and healthy aging less explored, compared with calorie restriction begun at early ages, but one more realistic for human application. We examined the effect of A-CR on the aging rat kidney with respect to common structural age-dependent changes and the accumulation of mitochondrial enzyme abnormalities in tubular epithelial cells. A 40% calorie restriction was initiated in middle-aged rats, before the onset of significant age-related changes in the Fischer x Brown Norway rat kidney. This dietary intervention effectively reduced glomerulosclerosis and tubular atrophy within 6 mo and changed the rate of interstitial fibrosis formation within 1 yr and vascular wall thickening and the expression cytochrome c oxidase (COX)-deficient tubular epithelial cells in 18 mo compared with age-matched ad libitum-fed rats. Our histological approach (histochemical staining for mitochondrial enzyme activity and laser capture microdissection) coupled with mitochondrial DNA (mtDNA) PCR analyses demonstrated that COX-deficient renal tubular epithelial cells accumulated mtDNA deletion mutations and that these cells contained unique, clonally expanded mtDNA deletion mutations. Renal tubular epithelial cells with mitochondrial abnormalities presented cellular characteristics indicative of physiological dysfunction.

  9. Priming Mesenchymal Stem Cells with Endothelial Growth Medium Boosts Stem Cell Therapy for Systemic Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    Lucas Felipe de Oliveira

    2015-01-01

    Full Text Available Systemic arterial hypertension (SAH, a clinical syndrome characterized by persistent elevation of arterial pressure, is often associated with abnormalities such as microvascular rarefaction, defective angiogenesis, and endothelial dysfunction. Mesenchymal stem cells (MSCs, which normally induce angiogenesis and improve endothelial function, are defective in SAH. The central aim of this study was to evaluate whether priming of MSCs with endothelial growth medium (EGM-2 increases their therapeutic effects in spontaneously hypertensive rats (SHRs. Adult female SHRs were administered an intraperitoneal injection of vehicle solution n=10, MSCs cultured in conventional medium (DMEM plus 10% FBS, n=11, or MSCs cultured in conventional medium followed by 72 hours in EGM-2 (pMSC, n=10. Priming of the MSCs reduced the basal cell death rate in vitro. The administration of pMSCs significantly induced a prolonged reduction (10 days in arterial pressure, a decrease in cardiac hypertrophy, an improvement in endothelium-dependent vasodilation response to acetylcholine, and an increase in skeletal muscle microvascular density compared to the vehicle and MSC groups. The transplanted cells were rarely found in the hearts and kidneys. Taken together, our findings indicate that priming of MSCs boosts stem cell therapy for the treatment of SAH.

  10. PREVENTION OF CONVERSION TO ABNORMAL TCD WITH HYDROXYUREA IN SICKLE CELL ANEMIA: A PHASE III INTERNATIONAL RANDOMIZED CLINICAL TRIAL

    Science.gov (United States)

    Hankins, Jane S.; McCarville, M. Beth; Rankine-Mullings, Angela; Reid, Marvin E.; Lobo, Clarisse L.C.; Moura, Patricia G.; Ali, Susanna; Soares, Deanne; Aldred, Karen; Jay, Dennis W.; Aygun, Banu; Bennett, John; Kang, Guolian; Goldsmith, Jonathan C.; Smeltzer, Matthew P.; Boyett, James M.; Ware, Russell E.

    2015-01-01

    Children with sickle cell anemia (SCA) and conditional transcranial Doppler (TCD) ultrasound velocities (170-199 cm/sec) may develop stroke. However, with limited available clinical data, the current standard of care for conditional TCD velocities is observation. The efficacy of hydroxyurea in preventing conversion from conditional to abnormal TCD (≥200 cm/sec), which confers a higher stroke risk, has not been studied prospectively in a randomized trial. Sparing Conversion to Abnormal TCD Elevation (SCATE #NCT01531387) was an NHLBI-funded Phase III multicenter international clinical trial comparing alternative therapy (hydroxyurea) to standard care (observation) to prevent conversion from conditional to abnormal TCD velocity in children with SCA. SCATE enrolled 38 children from the United States, Jamaica, and Brazil [HbSS (36), HbSβ0-thalassemia (1), and HbSD (1), median age 5.4 years (range, 2.7-9.8)]. Due to slow patient accrual and administrative delays, SCATE was terminated early. In an intention-to-treat analysis, the cumulative incidence of abnormal conversion was 9% (95% CI 0 to 35%) in the hydroxyurea arm and 47% (95% CI 6 to 81%) in observation arm at 15 months (p=0.16). In post-hoc analysis according to treatment received, significantly fewer children on hydroxyurea converted to abnormal TCD velocities, compared to observation (0% versus 50%, p=0.02). After a mean of 10.1 months, a significant change in mean TCD velocity was observed with hydroxyurea treatment (−15.5 versus +10.2 cm/sec, p=0.02). No stroke events occurred in either arm. Hydroxyurea reduces TCD velocities in children with SCA and conditional velocities. PMID:26414435

  11. Prevention of conversion to abnormal transcranial Doppler with hydroxyurea in sickle cell anemia: A Phase III international randomized clinical trial.

    Science.gov (United States)

    Hankins, Jane S; McCarville, Mary Beth; Rankine-Mullings, Angela; Reid, Marvin E; Lobo, Clarisse L C; Moura, Patricia G; Ali, Susanna; Soares, Deanne P; Aldred, Karen; Jay, Dennis W; Aygun, Banu; Bennett, John; Kang, Guolian; Goldsmith, Jonathan C; Smeltzer, Matthew P; Boyett, James M; Ware, Russell E

    2015-12-01

    Children with sickle cell anemia (SCA) and conditional transcranial Doppler (TCD) ultrasound velocities (170-199 cm/sec) may develop stroke. However, with limited available clinical data, the current standard of care for conditional TCD velocities is observation. The efficacy of hydroxyurea in preventing conversion from conditional to abnormal TCD (≥200 cm/sec), which confers a higher stroke risk, has not been studied prospectively in a randomized trial. Sparing Conversion to Abnormal TCD Elevation (SCATE #NCT01531387) was a National Heart, Lung, and Blood Institute-funded Phase III multicenter international clinical trial comparing alternative therapy (hydroxyurea) to standard care (observation) to prevent conversion from conditional to abnormal TCD velocity in children with SCA. SCATE enrolled 38 children from the United States, Jamaica, and Brazil [HbSS (36), HbSβ(0) -thalassemia (1), and HbSD (1), median age = 5.4 years (range, 2.7-9.8)]. Because of the slow patient accrual and administrative delays, SCATE was terminated early. In an intention-to-treat analysis, the cumulative incidence of abnormal conversion was 9% (95% CI = 0-35%) in the hydroxyurea arm and 47% (95% CI = 6-81%) in observation arm at 15 months (P = 0.16). In post hoc analysis according to treatment received, significantly fewer children on hydroxyurea converted to abnormal TCD velocities when compared with observation (0% vs. 50%, P = 0.02). After a mean of 10.1 months, a significant change in mean TCD velocity was observed with hydroxyurea treatment (-15.5 vs. +10.2 cm/sec, P = 0.02). No stroke events occurred in either arm. Hydroxyurea reduces TCD velocities in children with SCA and conditional velocities. © 2015 Wiley Periodicals, Inc.

  12. Congenital Abnormalities

    Science.gov (United States)

    ... Stages Ages and Stages Prenatal Baby (0-12 mos.) Toddler 1-3yrs. Preschool 3-5yrs Grade School ... Categories of Congenital Abnormalities Chromosome Abnormalities Chromosomes are structures that carry genetic material inherited from one generation ...

  13. Control of the actin cytoskeleton in plant cell growth

    NARCIS (Netherlands)

    Hussey, P.J.; Ketelaar, M.J.; Deeks, M.J.

    2006-01-01

    Plant cells grow through increases in volume and cell wall surface area. The mature morphology of a plant cell is a product of the differential rates of expansion between neighboring zones of the cell wall during this process. Filamentous actin arrays are associated with plant cell growth, and the

  14. Microtubule Abnormalities Underlying Gulf War Illness in Neurons from Human-Induced Pluripotent Cells

    Science.gov (United States)

    2016-09-01

    stem cell center reprograms blood cells at expert facility... reprogramming of stem cells occurs at BU. ▪ Personnel exchanges - subject recruitment is done at BUSPH site with BUSPH research assistant. ▪ Other – none...Aim 1. Develop human neurons or glial cells derived from human induced pluripotent stem cells (hiPSCs), originating from

  15. E-cadherin homophilic ligation inhibits cell growth and epidermal growth factor receptor signaling independently of other cell interactions

    DEFF Research Database (Denmark)

    Perrais, Michaël; Chen, Xiao; Perez-Moreno, Mirna

    2007-01-01

    growth inhibitory signals. To address this question, we have selectively formed E-cadherin homophilic bonds at the cell surface of isolated epithelial cells by using functionally active recombinant E-cadherin protein attached to microspheres. We find that E-cadherin ligation alone reduces the frequency...... of cells entering the S phase, demonstrating that E-cadherin ligation directly transduces growth inhibitory signals. E-cadherin binding to beta-catenin is required for cell growth inhibition, but beta-catenin/T-cell factor transcriptional activity is not involved in growth inhibition resulting from...... homophilic binding. Neither E-cadherin binding to p120-catenin nor beta-catenin binding to alpha-catenin, and thereby the actin cytoskeleton, is required for growth inhibition. E-cadherin ligation also inhibits epidermal growth factor (EGF) receptor-mediated growth signaling by a beta...

  16. Fibroblast growth factor 8 increases breast cancer cell growth by promoting cell cycle progression and by protecting against cell death

    International Nuclear Information System (INIS)

    Nilsson, Emeli M.; Brokken, Leon J.S.; Haerkoenen, Pirkko L.

    2010-01-01

    Fibroblast growth factor 8 (FGF-8) is expressed in a large proportion of breast cancers, whereas its level in normal mammary gland epithelium is low. Previous studies have shown that FGF-8b stimulates breast cancer cell growth in vitro and in vivo. To explore the mechanisms by which FGF-8b promotes growth, we studied its effects on cell cycle regulatory proteins and signalling pathways in mouse S115 and human MCF-7 breast cancer cells. We also studied the effect of FGF-8b on cell survival. FGF-8b induced cell cycle progression and up-regulated particularly cyclin D1 mRNA and protein in S115 cells. Silencing cyclin D1 with siRNA inhibited most but not all FGF-8b-induced proliferation. Inhibition of the FGF-8b-activated ERK/MAPK pathway decreased FGF-8b-stimulated proliferation. Blocking the constitutively active PI3K/Akt and p38 MAPK pathways also lowered FGF-8b-induced cyclin D1 expression and proliferation. Corresponding results were obtained in MCF-7 cells. In S115 and MCF-7 mouse tumours, FGF-8b increased cyclin D1 and Ki67 levels. Moreover, FGF-8b opposed staurosporine-induced S115 cell death which effect was blocked by inhibiting the PI3K/Akt pathway but not the ERK/MAPK pathway. In conclusion, our results suggest that FGF-8b increases breast cancer cell growth both by stimulating cell cycle progression and by protecting against cell death.

  17. Fibroblast growth factor 8 increases breast cancer cell growth by promoting cell cycle progression and by protecting against cell death

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Emeli M., E-mail: Emeli.Nilsson@med.lu.se [Department of Laboratory Medicine, Tumour Biology, Lund University, CRC, Building 91, Plan 10, Entrance 72, UMAS, 205 02 Malmoe (Sweden); Brokken, Leon J.S., E-mail: Leon.Brokken@med.lu.se [Department of Laboratory Medicine, Tumour Biology, Lund University, CRC, Building 91, Plan 10, Entrance 72, UMAS, 205 02 Malmoe (Sweden); Haerkoenen, Pirkko L., E-mail: Pirkko.Harkonen@med.lu.se [Department of Laboratory Medicine, Tumour Biology, Lund University, CRC, Building 91, Plan 10, Entrance 72, UMAS, 205 02 Malmoe (Sweden)

    2010-03-10

    Fibroblast growth factor 8 (FGF-8) is expressed in a large proportion of breast cancers, whereas its level in normal mammary gland epithelium is low. Previous studies have shown that FGF-8b stimulates breast cancer cell growth in vitro and in vivo. To explore the mechanisms by which FGF-8b promotes growth, we studied its effects on cell cycle regulatory proteins and signalling pathways in mouse S115 and human MCF-7 breast cancer cells. We also studied the effect of FGF-8b on cell survival. FGF-8b induced cell cycle progression and up-regulated particularly cyclin D1 mRNA and protein in S115 cells. Silencing cyclin D1 with siRNA inhibited most but not all FGF-8b-induced proliferation. Inhibition of the FGF-8b-activated ERK/MAPK pathway decreased FGF-8b-stimulated proliferation. Blocking the constitutively active PI3K/Akt and p38 MAPK pathways also lowered FGF-8b-induced cyclin D1 expression and proliferation. Corresponding results were obtained in MCF-7 cells. In S115 and MCF-7 mouse tumours, FGF-8b increased cyclin D1 and Ki67 levels. Moreover, FGF-8b opposed staurosporine-induced S115 cell death which effect was blocked by inhibiting the PI3K/Akt pathway but not the ERK/MAPK pathway. In conclusion, our results suggest that FGF-8b increases breast cancer cell growth both by stimulating cell cycle progression and by protecting against cell death.

  18. Role of mitotic motors, dynein and kinesin, in the induction of abnormal centrosome integrity and multipolar spindles in cultured V79 cells exposed to dimethylarsinic acid.

    Science.gov (United States)

    Ochi, Takafumi

    2002-01-29

    The role of microtubule-based motors in the induction of abnormal centrosome integrity by dimethylarsinic acid (DMAA) was investigated with the use of monastrol, a specific inhibitor of mitotic kinesin, and vanadate, an inhibitor of dynein ATPase. Cytoplasmic dynein co-localized with multiple foci of gamma-tubulin in mitotic cells arrested by DMAA. Disruption of microtubules caused dispersion of dynein while multiple foci of gamma-tubulin were coalesced to a single dot. Vanadate also caused dispersion of dynein, which had been co-localized with multiple foci of gamma-tubulin by DMAA, without affecting spindle organization. However, the dispersion of dynein did not prohibit the induction of abnormal centrosome integrity by DMAA. Inhibition of mitotic kinesin by monastrol resulted in monoastral cells with non-migrated centrosomes in the cell center. Monastrol, when applied to mitotic cells with abnormal centrosome integrity, rapidly reduced the incidence of cells with the centrosome abnormality. Moreover, monastrol completely inhibited reorganization of abnormal centrosomes that had been coalesced to a single dot by microtubule disruption. These results suggest that abnormal centrosome integrity caused by DMAA is not simply due to dispersion of fragments of microtubule-organizing centers, but is dependent on the action of kinesin. In addition, the results suggest that kinesin plays a role not only in the induction of mitotic centrosome abnormality, but also in maintenance.

  19. The Target of Rapamycin and Mechanisms of Cell Growth

    Directory of Open Access Journals (Sweden)

    Andrew R. Tee

    2018-03-01

    Full Text Available Mammalian target of rapamycin (mTOR, now referred to as mechanistic target of rapamycin is considered as the master regulator of cell growth. A definition of cell growth is a build-up of cellular mass through the biosynthesis of macromolecules. mTOR regulation of cell growth and cell size is complex, involving tight regulation of both anabolic and catabolic processes. Upon a growth signal input, mTOR enhances a range of anabolic processes that coordinate the biosynthesis of macromolecules to build cellular biomass, while restricting catabolic processes such as autophagy. mTOR is highly dependent on the supply of nutrients and energy to promote cell growth, where the network of signalling pathways that influence mTOR activity ensures that energy and nutrient homeostasis are retained within the cell as they grow. As well as maintaining cell size, mTOR is fundamental in the regulation of organismal growth. This review examines the complexities of how mTOR complex 1 (mTORC1 enhances the cell’s capacity to synthesis de novo proteins required for cell growth. It also describes the discovery of mTORC1, the complexities of cell growth signalling involving nutrients and energy supply, as well as the multifaceted regulation of mTORC1 to orchestrate ribosomal biogenesis and protein translation.

  20. Effects of ocean acidification driven by elevated CO2 on larval shell growth and abnormal rates of the venerid clam, Mactra veneriformis

    Science.gov (United States)

    Kim, Jee-Hoon; Yu, Ok Hwan; Yang, Eun Jin; Kang, Sung-Ho; Kim, Won; Choy, Eun Jung

    2016-11-01

    The venerid clam ( Mactra veneriformis Reeve 1854) is one of the main cultured bivalve species in intertidal and shallow subtidal ecosystems along the west coast of Korea. To understand the effects of ocean acidification on the early life stages of Korean clams, we investigated shell growth and abnormality rates and types in the D-shaped, umbonate veliger, and pediveliger stages of the venerid clam M. veneriformis during exposure to elevated seawater pCO2. In particular, we examined abnormal types of larval shell morphology categorized as shell deformations, shell distortions, and shell fissures. Specimens were incubated in seawater equilibrated with bubbled CO2-enriched air at (400±25)×10-6 (ambient control), (800±25)×10-6 (high pCO2), or (1 200±28)×10-6 (extremely high pCO2), the atmospheric CO2 concentrations predicted for the years 2014, 2084, and 2154 (70-year intervals; two human generations), respectively, in the Representative Concentration Pathway (RCP) 8.5 scenario. The mean shell lengths of larvae were significantly decreased in the high and extremely high pCO2 groups compared with the ambient control groups. Furthermore, under high and extremely high pCO2 conditions, the cultures exhibited significantly increased abundances of abnormal larvae and increased severity of abnormalities compared with the ambient control. In the umbonate veliger stage of the experimental larvae, the most common abnormalities were shell deformations, distortions, and fissures; on the other hand, convex hinges and mantle protuberances were absent. These results suggest that elevated CO2 exerts an additional burden on the health of M. veneriformis larvae by impairing early development.

  1. [Correlation between C-MYC protein expression and genetic abnormalities in diffuse large B-cell lymphoma].

    Science.gov (United States)

    Yu, H; Wang, H; Zhang, N; Gao, S M; Zhang, Y X

    2018-03-08

    Objective: To study the correlation between expression of oncogene C-MYC protein and gene abnormality in diffuse large B-cell lymphoma (DLBCL). Methods: The expression of C-MYC protein and gene abnormality were detected by immunohistochemistry and fluorescence in situ hybridization (FISH), respectively, in 42 cases of paraffin-embedded DLBCL. All cases were collected at Department of Pathology, Weifang People's Hospital during January 2015 to October 2016. Results: The positive rate of C-MYC protein expression was 47.6% (20/42) and the rate of abnormal C-MYC gene by FISH was 26.2%(11/42), including translocation (23.8%, 10/42) and gene amplification (2.4%, 1/42). There was a close relationship between the protein expression and gene translocation (χ(2)=11.813; P =0.001) and gene translocation occurred primarily in GCB (χ(2)=4.029; P =0.045). Conclusion: The high expression (≥40%) of C-MYC protein is associated with its gene translocation, suggesting that C-MYC protein detection can be used as a surrogate marker for C-MYC gene translocation in DLBCL.

  2. Nuclear abnormalities in buccal mucosa cells of patients with type I and II diabetes treated with folic acid.

    Science.gov (United States)

    Gómez-Meda, B C; Zamora-Perez, A L; Muñoz-Magallanes, T; Sánchez-Parada, M G; García Bañuelos, J J; Guerrero-Velázquez, C; Sánchez-Orozco, L V; Vera-Cruz, J M; Armendáriz-Borunda, J; Zúñiga-González, G M

    2016-02-01

    Diabetes mellitus (DM) is characterized by high blood glucose. Excessive production of free radicals may cause oxidative damage to DNA and other molecules, leading to complications of the disease. It may be possible to delay or reduce such damage by administration of antioxidants such as folic acid (FA). The objective of this study was to determine the effect of FA on nuclear abnormalities (NAs) in the oral mucosa of patients with DM. NAs (micronucleated cells, binucleated cells, pyknotic nuclei, karyorrhexis, karyolysis, abnormally condensed chromatin, and nuclear buds) were analyzed in 2000 cells from 45 healthy individuals (control group) and 55 patients with controlled or uncontrolled type I or II DM; 35 patients in the latter group were treated with FA. Samples were taken from the FA group before and after treatment. An increased rate of NAs was found in patients with DM in comparison with that of the control group (Pabnormally condensed chromatin, karyolysis, and nuclear buds produced by FA supplementation in DM patients (P<0.02) are consistent with the idea that free radicals are responsible for the increased frequency of NAs in DM patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Metabolic Abnormalities Detected in Phase II Evaluation of Doxycycline in Dogs with Multicentric B-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Kelly R. Hume

    2018-02-01

    Full Text Available Doxycycline has antiproliferative effects in human lymphoma cells and in murine xenografts. We hypothesized that doxycycline would decrease canine lymphoma cell viability and prospectively evaluated its clinical tolerability in client-owned dogs with spontaneous, nodal, multicentric, substage a, B-cell lymphoma, not previously treated with chemotherapy. Treatment duration ranged from 1 to 8 weeks (median and mean, 3 weeks. Dogs were treated with either 10 (n = 6 or 7.5 (n = 7 mg/kg by mouth twice daily. One dog had a stable disease for 6 weeks. No complete or partial tumor responses were observed. Five dogs developed grade 3 and/or 4 metabolic abnormalities suggestive of hepatopathy with elevations in bilirubin, ALT, ALP, and/or AST. To evaluate the absorption of oral doxycycline in our study population, serum concentrations in 10 treated dogs were determined using liquid chromatography tandem mass spectrometry. Serum levels were variable and ranged from 3.6 to 16.6 µg/ml (median, 7.6 µg/ml; mean, 8.8 µg/ml. To evaluate the effect of doxycycline on canine lymphoma cell viability in vitro, trypan blue exclusion assay was performed on canine B-cell lymphoma cell lines (17-71 and CLBL and primary B-cell lymphoma cells from the nodal tissue of four dogs. A doxycycline concentration of 6 µg/ml decreased canine lymphoma cell viability by 80%, compared to matched, untreated, control cells (mixed model analysis, p < 0.0001; Wilcoxon signed rank test, p = 0.0313. Although the short-term administration of oral doxycycline is not associated with the remission of canine lymphoma, combination therapy may be worthwhile if future research determines that doxycycline can alter cell survival pathways in canine lymphoma cells. Due to the potential for metabolic abnormalities, close monitoring is recommended with the use of this drug in tumor-bearing dogs. Additional research is needed to assess the tolerability of chronic

  4. Bergenin suppresses the growth of colorectal cancer cells by ...

    African Journals Online (AJOL)

    It also led to marked accumulation of intracellular reactive oxygen species (ROS), a breaker of DNA strand in HCT116 cells. ..... regulating cell proliferation described in the literature have been related to malignant transformation [12]. Thus, we assumed that bergenin-induced cell growth inhibition was due to cell cycle arrest.

  5. Abnormal regulation of DNA replication and increased lethality in ataxia telangiectasia cells exposed to carcinogenic agents

    Energy Technology Data Exchange (ETDEWEB)

    Jaspers, N.G.; de Wit, J.; Regulski, M.R.; Bootsma, D.

    1982-01-01

    The effect of different carcinogenic agents on the rate of semiconservative DNA replication in normal and ataxia telangiectasis (AT) cells was investigated. The rate of DNA synthesis in all AT cell strains tested was depressed to a significantly lesser extent than in normal cells after exposure to X-rays under oxia or hypoxia or to bleomycin, agents to which AT cells are hypersensitive. In contrast, inhibition of DNA replication in normal human and AT cells was similar after treatment with some DNA-methylating agents or mitomycin C. Colony-forming ability of AT cells treated with these agents was not different from normal cells. Treatment with 4-nitroquinoline 1-oxide elicited a variable response in both AT and normal cell strains. In some strains, including those shown to be hypersensitive to the drug by other workers, the inhibition of DNA synthesis was more pronounced than in other cell strains, but no significant difference between AT and normal cells could be detected. The rejoining of DNA strand breaks induced by X-rays, measured by DNA elution techniques, occurred within l2 hr after treatment and could not be correlated with the difference in DNA synthesis inhibition in AT and normal cells. After low doses of X-rays, AT cells rejoined single-strand breaks slightly more slowly than did normal cells. The rate of DNA replication in X-irradiation AT and normal cells was not affected by nicotinamide, an inhibitor of poly(adenosine diphosphate ribose) synthesis. These data indicate that the diminished inhibition of DNA replication in carcinogen-treated AT cells (a) is a general characteristic of all AT cell strains, (b) correlates with AT cellular hypersensitivity, (c) is not directly caused by the bulk of the DNA strand breaks produced by carcinogenic agents, and (d) is not based on differences in the induction of poly(adenosine diphosphate ribose) synthesis between X-irradiated AT and normal cells.

  6. Role of Conserved Oligomeric Golgi Complex in the Abnormalities of Glycoprotein Processing in Breast Cancer Cells

    National Research Council Canada - National Science Library

    Zolov, Sergey N

    2006-01-01

    ...: protein glycosylation and its sorting. For analysis of COG complex function we utilized RNA interference assay to knockdown COG3p subunit of COG complex in normal and breast cancer cells and other tumor cell lines...

  7. LANGERHANS CELL HISTIOCYTOSIS - EXPRESSION OF LEUKOCYTE CELLULAR ADHESION MOLECULES SUGGESTS ABNORMAL HOMING AND DIFFERENTIATION

    NARCIS (Netherlands)

    DEGRAAF, JH; TAMMINGA, RYJ; KAMPS, WA; TIMENS, W

    Langerhans' cell histiocytosis (LCH) is characterized by an accumulation of cells with a Langerhans' cell (LC) phenotype. Most patients present with solitary skin or bone lesions, but multi-organ lesions may appear Twenty-two LCH-tissue sections from 13 children and adolescents, with lesions at

  8. Live birth potential of good morphology and vitrified blastocysts presenting abnormal cell divisions

    DEFF Research Database (Denmark)

    Azzarello, Antonino; Høst, Thomas; Hay-Schmidt, Anders

    2017-01-01

    division (ACD) from the 1st to the 4th cell cycle. ACDs were distinguished as failed cell divisions and multi-cell divisions. ACDs were recognized in 37.0% (no. 88/238) of good morphology blastocysts that were vitrified-warmed and transferred in our clinic. Good morphology blastocysts with ACDs showed...... a lower live birth rate (17.0%) than blastocyst with solely regular cell divisions (29.3%). ACDs could occur at more than one cell division in the same good morphology blastocyst. Reported as independent events, we observed ACDs occurring more frequently at the later cell cycles (1st: 1.3%; 2nd: 8.0%; 3rd......: 18.5%; 4th: 18.1%). More blastocysts presented failed cell divisions (no. 95) than multi-cell divisions (no. 14). Live births were achieved from blastocysts showing multi-cell divisions at any cell cycle and failed cell divisions from the 2nd cell cycle. Analyses of the subgroup of first blastocyst...

  9. Heterologous expression of a ketohexokinase in potato plants leads to inhibited rates of photosynthesis, severe growth retardation and abnormal leaf development

    DEFF Research Database (Denmark)

    Geigenberger, P.; Regierer, B.; Lytovchenko, A.

    2004-01-01

    of ketohexokinase but did not accumulate fructose 1-phosphate. They were, however, characterised by a severe growth retardation and abnormal leaf development. Studies of (14)CO(2) assimilation and metabolism, and of the levels of photosynthetic pigments, revealed that these lines exhibited restricted photosynthesis......-phosphoglycerate, and these lines were also characterised by an accumulation of glyceraldehyde. The transformants neither displayed consistent changes in the activities of Calvin cycle enzymes nor in enzymes of sucrose synthesis but displayed a metabolic profile partially reminiscent of that brought about by end...

  10. Association of maternal and umbilical cord blood leptin concentrations and abnormal color Doppler indices of umbilical artery with fetal growth restriction

    Directory of Open Access Journals (Sweden)

    Elahe Zareaan

    2017-08-01

    Full Text Available Background: Fetal growth restriction (FGR is a condition with heterogeneous pathophysiology which characterized by fetal weight less than the tenth percentile for gestational age. Several factors have impact on maternal, placental and fetal due to growth restriction. Objective: The aim of this study was to investigate the relationship between levels of leptin in the cord, and serum leptin of mothers also abnormal color Doppler indices of umbilical artery with fetal growth restriction. Materials and Methods: This is a cross sectional study conducted in Isfahan, Iran, 2015-2016. We recruited 40 women with singleton pregnancies complicated by fetal growth restriction (Group I and 40 pregnant women with normal fetal growth (Group II with matched age. Maternal serum and umbilical artery leptin levels were determined with Enzyme-Linked immunosorben method. Also, color Doppler ultrasound of umbilical artery was performed. Results: Mean maternal and fetal leptin levels were lower in the FGR group compared to the normal group (36.58±(20.99 and 7.42 ±(4.08vs. 47.32±(22.50 and 30.49±(14.50 respectively. Also, mean fetal leptin level was lower in the group with abnormal color Doppler sonographic indices compared to the normal group (7. 40 ±(4.10vs 27.06±(15.80, respectively. Conclusion: This study indicated that maternal and fetal leptin levels are correlated with FGR originating from damaged placental function; also fetal leptin level can indicate changes in color Doppler sonographic indices.

  11. Growth of Walled Cells: From Shells to Vesicles

    Science.gov (United States)

    Boudaoud, Arezki

    2003-07-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi, and yeast cells. They are modeled as elastic shells containing a liquid. Cell growth is driven by fluid pressure and is is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  12. On the growth of walled cells: From shells to vesicles.

    Science.gov (United States)

    Boudaoud, Arezki

    2003-03-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi and yeast cells. They are modeled as elastic shells inflated by a liquid. Cell growth is driven by fluid pressure and is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  13. Separating growth from elastic deformation during cell enlargement

    Energy Technology Data Exchange (ETDEWEB)

    Proseus, T.E.; Boyer, J.S. (Univ. of Delaware, Lewes, DE (United States). Coll. of Marine Studies); Ortega, J.K.E. (Univ. of Colorado, Denver, CO (United States). Dept. of Mechanical Engineering)

    1999-02-01

    Plants change size by deforming reversibly (elastically) whenever turgor pressure changes, and by growing. The elastic deformation is independent of growth because it occurs in nongrowing cells. Its occurrence with growth has prevented growth from being observed alone. The authors investigated whether the two processes could be separated in internode cells of Chara corallina Klien ex Willd., em R.D.W. by injecting or removing cell solution with a pressure probe to change turgor while the cell length was continuously measured. Cell size changed immediately when turgor changed, and growth rates appeared to be altered. Low temperature eliminated growth but did not alter the elastic effects. This allowed elastic deformation measured at low temperature to be subtracted from elongation at warm temperature in the same cell. After te subtraction, growth alone could be observed for the first time. Alternations in turgor caused growth to change rapidly to a new, steady rate with no evidence of rapid adjustments in wall properties. This turgor response, together with the marked sensitivity of growth to temperature, suggested that the growth rate was not controlled by inert polymer extension but rather by the biochemical reactions that include a turgor-sensitive step.

  14. Abnormal expression of 11 beta-hydroxysteroid dehydrogenase type 2 in human pituitary adenomas: a prereceptor determinant of pituitary cell proliferation.

    Science.gov (United States)

    Rabbitt, E H; Ayuk, J; Boelaert, K; Sheppard, M C; Hewison, M; Stewart, P M; Gittoes, N J L

    2003-03-20

    The physiological effects of glucocorticoids (GCs) are, at least in part, mediated by inhibition of cell proliferation. Two isozymes of 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) interconvert cortisol (F) and inactive cortisone (E), and are thus able to modulate GC action at an autocrine level. Previously, we have demonstrated absent expression of 11 beta-HSD2 in normal pituitaries; however, in a small number of pituitary tumors analysed, 11 beta-HSD2 was readily demonstrable. Here we have used real-time RT-PCR to quantify expression of mRNA for 11 beta-HSD1 and 2 in 105 human pituitary tumors and have performed enzyme expression and activity studies in primary pituitary cultures. Overall, pituitary tumors expressed lower levels of 11 beta-HSDl mRNA compared with normals (0.2-fold, Pprotein (mean+/-s.d.)) but no detectable 11 beta-HSDl activity. Proliferation assays showed that addition of glycyrrhetinic acid (an 11 beta-HSD2 inhibitor) resulted in a 30.3+/-7.7% inhibition of cell proliferation. In summary, we describe a switch in expression from 11 beta-HSDl to 11 beta-HSD2 in neoplastic pituitary tissue. We propose that abnormal expression of 11 beta-HSD2 acts as a proproliferative prereceptor determinant of pituitary cell growth, and may provide a novel target for future tumor therapy.

  15. Imbalance Between Bone Morphogenetic Protein 2 and Noggin Induces Abnormal Osteogenic Differentiation of Mesenchymal Stem Cells in Ankylosing Spondylitis.

    Science.gov (United States)

    Xie, Zhongyu; Wang, Peng; Li, Yuxi; Deng, Wen; Zhang, Xin; Su, Hongjun; Li, Deng; Wu, Yanfeng; Shen, Huiyong

    2016-02-01

    To study the osteogenic differentiation capacity of bone marrow-derived mesenchymal stem cells (BM-MSCs) from patients with ankylosing spondylitis (AS) and to investigate the mechanisms of abnormal osteogenic differentiation of BM-MSCs in AS. BM-MSCs from healthy donors (HD-MSCs) and patients with AS (AS-MSCs) were cultured in osteogenic differentiation medium for 0-21 days, after which their osteogenic differentiation capacity was determined using alizarin red S and alkaline phosphatase assays. Gene expression levels of osteoblastic markers and related cytokines were detected by high-throughput quantitative reverse transcription-polymerase chain reaction. Enzyme-linked immunosorbent assay was performed to detect protein levels of bone morphogenetic protein 2 (BMP-2) and Noggin in the cell culture supernatant. The activation of Smad1/5/8 and MAPK signaling pathways was measured by Western blotting. The balance between BMP-2 and Noggin expression was regulated using lentiviruses encoding short hairpin RNA and exogenous Noggin, respectively, which enabled evaluation of how this balance affected osteogenic differentiation of AS-MSCs. AS-MSCs outperformed HD-MSCs in osteogenic differentiation capacity. During osteogenic differentiation, AS-MSCs secreted more BMP-2 but less Noggin, accompanied by an overactivation of Smad1/5/8 and ERK-1/2. When the Noggin concentration was increased or BMP-2 expression was inhibited, the abnormal osteogenic differentiation of AS-MSCs was rectified. In addition, the balance between BMP-2 and Noggin secretion was restored. The results of this study demonstrate that an imbalance between BMP-2 and Noggin secretion induces abnormal osteogenic differentiation of AS-MSCs. These findings reveal a mechanism of pathologic osteogenesis in AS and provide a new perspective on inhibiting pathologic osteogenesis by regulating the balance between BMP-2 and Noggin. © 2016, American College of Rheumatology.

  16. Identifying tumor cell growth inhibitors by combinatorial chemistry and zebrafish assays.

    Directory of Open Access Journals (Sweden)

    Jing Xiang

    Full Text Available Cyclin-dependent kinases (CDKs play important roles in regulating cell cycle progression, and altered cell cycles resulting from over-expression or abnormal activation of CDKs observed in many human cancers. As a result, CDKs have become extensive studied targets for developing chemical inhibitors for cancer therapies; however, protein kinases share a highly conserved ATP binding pocket at which most chemical inhibitors bind, therefore, a major challenge in developing kinase inhibitors is achieving target selectivity. To identify cell growth inhibitors with potential applications in cancer therapy, we used an integrated approach that combines one-pot chemical synthesis in a combinatorial manner to generate diversified small molecules with new chemical scaffolds coupled with growth inhibition assay using developing zebrafish embryos. We report the successful identification of a novel lead compound that displays selective inhibitory effects on CDK2 activity, cancer cell proliferation, and tumor progression in vivo. Our approaches should have general applications in developing cell proliferation inhibitors using an efficient combinatorial chemical genetic method and integrated biological assays. The novel cell growth inhibitor we identified should have potential as a cancer therapeutic agent.

  17. Abnormal ion content, hydration and granule expansion of the secretory granules from cystic fibrosis airway glandular cells

    International Nuclear Information System (INIS)

    Baconnais, S.; Delavoie, F.; Zahm, J.M.; Milliot, M.; Terryn, C.; Castillon, N.; Banchet, V.; Michel, J.; Danos, O.; Merten, M.; Chinet, T.; Zierold, K.; Bonnet, N.; Puchelle, E.; Balossier, G.

    2005-01-01

    The absence or decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) induces increased Na + absorption and hyperabsorption of the airway surface liquid (ASL) resulting in a dehydrated and hyperviscous ASL. Although the implication of abnormal airway submucosal gland function has been suggested, the ion and water content in the Cystic Fibrosis (CF) glandular secretory granules, before exocytosis, is unknown. We analyzed, in non-CF and CF human airway glandular cell lines (MM-39 and KM4, respectively), the ion content in the secretory granules by electron probe X-ray microanalysis and the water content by quantitative dark field imaging on freeze-dried cryosections. We demonstrated that the ion content (Na + , Mg 2+ , P, S and Cl - ) is significantly higher and the water content significantly lower in secretory granules from the CF cell line compared to the non-CF cell line. Using videomicroscopy, we observed that the secretory granule expansion was deficient in CF glandular cells. Transfection of CF cells with CFTR cDNA or inhibition of non-CF cells with CFTR inh -172, respectively restored or decreased the water content and granule expansion, in parallel with changes in ion content. We hypothesize that the decreased water and increased ion content in glandular secretory granules may contribute to the dehydration and increased viscosity of the ASL in CF

  18. Prognostic Effect of Complex Karyotype, Monosomal Karyotype, and Chromosome 17 Abnormalities in B-Cell Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Khoral, Priya; Atenafu, Eshetu G; Craddock, Kenneth J; Schimmer, Aaron; Chang, Hong

    2017-04-01

    The effect of monosomal karyotype (MK), complex karyotype (CK), and chromosome 17 abnormalities (abnl 17) on prognosis in B-cell acute lymphoid leukemia (B-ALL) has not yet been established. We conducted a retrospective analysis of prognostic factors on 237 adult patients with B-ALL treated at our institution. Older age (older than 60 years), higher white blood cell count (> 30), and abnl 17 were associated with shorter overall survival in univariate analysis, but multivariable analysis only identified older age as an independent poor prognostic actor. There was a significant correlation between abnl 17 and older age. In contrast to the patients with acute myeloid leukemia, our results show that MK and CK do not play a predictive role in patients with B-ALL, but further study is required to determine whether specific changes on chromosome 17 might have prognostic value when investigated separately. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. MHC class II molecules regulate growth in human T cells

    DEFF Research Database (Denmark)

    Nielsen, M; Odum, Niels; Bendtzen, K

    1994-01-01

    MHC-class-II-positive T cells are found in tissues involved in autoimmune disorders. Stimulation of class II molecules by monoclonal antibodies (mAbs) or bacterial superantigens induces protein tyrosine phosphorylation through activation of protein tyrosine kinases in T cells, and class II signals...... lines tested. Only one of three CD4+, CD45RAhigh, ROhigh T cells responded to class II costimulation. There was no correlation between T cell responsiveness to class II and the cytokine production profile of the T cell in question. Thus, T cell lines producing interferon (IFN)-gamma but not IL-4 (TH1...... modulate several T cell responses. Here, we studied further the role of class II molecules in the regulation of T cell growth. Costimulation of class II molecules by immobilized HLA-DR mAb significantly enhanced interleukin (IL)-2-supported T cell growth of the majority of CD4+, CD45RAlow, ROhigh T cell...

  20. Meiotic abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  1. Abnormal A-type lamin organization in a human lung carcinoma cell line

    NARCIS (Netherlands)

    Machiels, BM; Broers, JL; Raymond, Y; de Leij, Louis; Kuijpers, HJH; Caberg, NEH; Ramaekers, Frans C. S.

    We have studied the expression of lamins A and C (A-type lamins) in a lung carcinoma cell line using type-specific monoclonal antibodies, Using immunofluorescence and immunoblotting studies it was noted that several irregularities in lamin expression exist in the cell line GLC-A1, derived from an

  2. Hsp70 protects mitotic cells against heat-induced centrosome damage and division abnormalities

    NARCIS (Netherlands)

    Hut, HMJ; Kampinga, HH; Sibon, OCM

    The effect of heat shock on centrosomes has been mainly studied in interphase cells. Centrosomes play a key role in proper segregation of DNA during mitosis. However, the direct effect and consequences of heat shock on mitotic cells and a possible cellular defense system against proteotoxic stress

  3. Pityriasis rosea (Gibert): abnormal distribution pattern of antigen presenting cells in situ

    NARCIS (Netherlands)

    Bos, J. D.; Huisman, P. M.; Krieg, S. R.; Faber, W. R.

    1985-01-01

    Pityriasis rosea is a skin disease which is obscure in its etiology and pathogenesis. We studied its immunopathology by immunophenotyping the inflammatory cells in situ using monoclonal antibodies that define leukocyte subsets. Findings as to T-cells and their major subsets did not reveal

  4. Control of Francisella tularensis Intracellular Growth by Pulmonary Epithelial Cells

    Science.gov (United States)

    Maggio, Savannah; Takeda, Kazuyo; Stark, Felicity; Meierovics, Anda I.; Yabe, Idalia; Cowley, Siobhan C.

    2015-01-01

    The virulence of F. tularensis is often associated with its ability to grow in macrophages, although recent studies show that Francisella proliferates in multiple host cell types, including pulmonary epithelial cells. Thus far little is known about the requirements for killing of F. tularensis in the non-macrophage host cell types that support replication of this organism. Here we sought to address this question through the use of a murine lung epithelial cell line (TC-1 cells). Our data show that combinations of the cytokines IFN-γ, TNF, and IL-17A activated murine pulmonary epithelial cells to inhibit the intracellular growth of the F. tularensis Live Vaccine Strain (LVS) and the highly virulent F. tularensis Schu S4 strain. Although paired combinations of IFN-γ, TNF, and IL-17A all significantly controlled LVS growth, simultaneous treatment with all three cytokines had the greatest effect on LVS growth inhibition. In contrast, Schu S4 was more resistant to cytokine-induced growth effects, exhibiting significant growth inhibition only in response to all three cytokines. Since one of the main antimicrobial mechanisms of activated macrophages is the release of reactive nitrogen intermediates (RNI) via the activity of iNOS, we investigated the role of RNI and iNOS in Francisella growth control by pulmonary epithelial cells. NOS2 gene expression was significantly up-regulated in infected, cytokine-treated pulmonary epithelial cells in a manner that correlated with LVS and Schu S4 growth control. Treatment of LVS-infected cells with an iNOS inhibitor significantly reversed LVS killing in cytokine-treated cultures. Further, we found that mouse pulmonary epithelial cells produced iNOS during in vivo respiratory LVS infection. Overall, these data demonstrate that lung epithelial cells produce iNOS both in vitro and in vivo, and can inhibit Francisella intracellular growth via reactive nitrogen intermediates. PMID:26379269

  5. Control of Francisella tularensis Intracellular Growth by Pulmonary Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Savannah Maggio

    Full Text Available The virulence of F. tularensis is often associated with its ability to grow in macrophages, although recent studies show that Francisella proliferates in multiple host cell types, including pulmonary epithelial cells. Thus far little is known about the requirements for killing of F. tularensis in the non-macrophage host cell types that support replication of this organism. Here we sought to address this question through the use of a murine lung epithelial cell line (TC-1 cells. Our data show that combinations of the cytokines IFN-γ, TNF, and IL-17A activated murine pulmonary epithelial cells to inhibit the intracellular growth of the F. tularensis Live Vaccine Strain (LVS and the highly virulent F. tularensis Schu S4 strain. Although paired combinations of IFN-γ, TNF, and IL-17A all significantly controlled LVS growth, simultaneous treatment with all three cytokines had the greatest effect on LVS growth inhibition. In contrast, Schu S4 was more resistant to cytokine-induced growth effects, exhibiting significant growth inhibition only in response to all three cytokines. Since one of the main antimicrobial mechanisms of activated macrophages is the release of reactive nitrogen intermediates (RNI via the activity of iNOS, we investigated the role of RNI and iNOS in Francisella growth control by pulmonary epithelial cells. NOS2 gene expression was significantly up-regulated in infected, cytokine-treated pulmonary epithelial cells in a manner that correlated with LVS and Schu S4 growth control. Treatment of LVS-infected cells with an iNOS inhibitor significantly reversed LVS killing in cytokine-treated cultures. Further, we found that mouse pulmonary epithelial cells produced iNOS during in vivo respiratory LVS infection. Overall, these data demonstrate that lung epithelial cells produce iNOS both in vitro and in vivo, and can inhibit Francisella intracellular growth via reactive nitrogen intermediates.

  6. Another brick in the cell wall: biosynthesis dependent growth model.

    Directory of Open Access Journals (Sweden)

    Adelin Barbacci

    Full Text Available Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.

  7. Another Brick in the Cell Wall: Biosynthesis Dependent Growth Model

    Science.gov (United States)

    Barbacci, Adelin; Lahaye, Marc; Magnenet, Vincent

    2013-01-01

    Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i) a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii) new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper. PMID:24066142

  8. Microtubules Growth Rate Alteration in Human Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Irina B. Alieva

    2010-01-01

    Full Text Available To understand how microtubules contribute to the dynamic reorganization of the endothelial cell (EC cytoskeleton, we established an EC model expressing EB3-GFP, a protein that marks microtubule plus-ends. Using this model, we were able to measure microtubule growth rate at the centrosome region and near the cell periphery of a single human EC and in the EC monolayer. We demonstrate that the majority of microtubules in EC are dynamic, the growth rate of their plus-ends is highest in the internal cytoplasm, in the region of the centrosome. Growth rate of microtubule plus-ends decreases from the cell center toward the periphery. Our data suggest the existing mechanism(s of local regulation of microtubule plus-ends growth in EC. Microtubule growth rate in the internal cytoplasm of EC in the monolayer is lower than that of single EC suggesting the regulatory effect of cell-cell contacts. Centrosomal microtubule growth rate distribution in single EC indicated the presence of two subpopulations of microtubules with “normal” (similar to those in monolayer EC and “fast” (three times as much growth rates. Our results indicate functional interactions between cell-cell contacts and microtubules.

  9. SIRT1-Regulated Abnormal Acetylation of FOXP3 Induces Regulatory T-Cell Function Defect in Hashimoto's Thyroiditis.

    Science.gov (United States)

    Yang, Xiao; Lun, Yu; Jiang, Han; Liu, Xun; Duan, Zhiquan; Xin, Shijie; Zhang, Jian

    2018-02-01

    Hashimoto's thyroiditis (HT) is an autoimmune thyroid disease characterized by low expression of transcription factor Forkhead Box P3 (FOXP3) and functional deficiency of a cluster of differentiation regulatory T cells (Tregs). This study aimed to investigate the mechanism of Treg dysfunction in HT. The number of CD4 + CD25 + FOXP3 + T cells was determined by flow cytometry. Expression of FOXP3 and Sirtuin type 1 (SIRT1) was evaluated by Western blot analysis. Acetylation of FOXP3 was analyzed by immunoprecipitation and Western blot analysis. The suppressive function of Treg was analyzed by the 5,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) assay. The percentage of CD4 + CD25 + FOXP3 + T cells, expression of FOXP3, and FOXP3 acetylation level in the HT group were significantly lower than in the control groups. Conversely, SIRT1 expression was significantly higher in the HT group than in the other two groups. After Ex-527 treatment, the CD4 + CD25 + FOXP3 + T cells percentage, FOXP3 expression, and FOXP3 acetylation level in the HT group were significantly increased. HT Tregs exhibited less suppressive activity, but Ex-527 treatment significantly increased their suppressive activity. The findings demonstrate that the reduced FOXP3 expression level and Treg function defect in HT patients are regulated by SIRT1-mediated abnormal FOXP3 acetylation. Ex-527 may upregulate the FOXP3 acetylation level and subsequently increase the number and suppressive function of Treg cells.

  10. Abnormal sensitivity of some Cockayne's syndrome cell strains to UV- and γ-rays

    International Nuclear Information System (INIS)

    Deschavanne, P.J.; Chavaudra, N.; Fertil, B.; Malaise, E.P.

    1984-01-01

    Cockayne's syndrome (CS) is a rare autosomal recessive genetic disease. Using a colony assay in vitro, we studied the sensitivity of 5 CS cell strains and two normal ones to UV- and γ-irradiation. The 5 CS strains appear to be UV-hypersensitive but the sensitivity varies widely from one strain to another. Hypersensitivity to γ-rays has been reported for 4 out of the 5 CS cell strains investigated. Repair of potentially lethal damage (PLD) after UV- and γ-irradiation was investigated by using unfed plateau cell cultures. Under these conditions, control cells show a great capacity to repair PLD. The two CS strains, which are hypersensitive to both UV- and γ-irradiation, exhibit no or only little PLD repair after treatment. The response of CS cell strains after γ-irradiation suggests a genetic heterogeneity. Three complementation groups are described in CS cells when dealing with UV radiosensitivity. However, variations in γ-ray sensitivity are reported for cells within the same UV complementation group. (Auth.)

  11. MRI of soft tissue abnormalities: a primary cause of sickle cell crisis

    International Nuclear Information System (INIS)

    Feldman, F.; Zwass, A.; Staron, R.B.; Haramati, N.

    1993-01-01

    The early manifestations of sickle cell crisis in soft tissues are important to recognize, though rarely manifest on radiographs and difficult to evaluate on computed tomography and bone scans. Documentation is critical, however, if appropriate judgments as to emergency treatment versus conservative measures are to be made. Seventeen adults seen in the emergency room or hospitalized in presumed sickle cells crisis underwent magnetic resonance imaging within 24-72 h of presentation. Results indicate that magnetic resonance imaging is a sensitive modality for documenting early soft tissue pathology which may be the predominant or sole cause of sickle cell crisis. (orig.)

  12. Effects of several physiochemical factors on cell growth and gallic ...

    African Journals Online (AJOL)

    The production of gallic acid in cell suspension culture of Acer ginnala Maxim was studied. Some physiochemical factors and chemical substances effect on the cell growth and the production of gallic acid were investigated. Cells harvested from plant tissue culture were extracted and applied to high performance liquid ...

  13. Deletion of SHP-2 in mesenchymal stem cells causes growth retardation, limb and chest deformity, and calvarial defects in mice

    Directory of Open Access Journals (Sweden)

    Philip E. Lapinski

    2013-11-01

    In mice, induced global disruption of the Ptpn11 gene, which encodes the SHP-2 tyrosine phosphatase, results in severe skeletal abnormalities. To understand the extent to which skeletal abnormalities can be attributed to perturbation of SHP-2 function in bone-forming osteoblasts and chondrocytes, we generated mice in which disruption of Ptpn11 is restricted to mesenchymal stem cells (MSCs and their progeny, which include both cell types. MSC-lineage-specific SHP-2 knockout (MSC SHP-2 KO mice exhibited postnatal growth retardation, limb and chest deformity, and calvarial defects. These skeletal abnormalities were associated with an absence of mature osteoblasts and massive chondrodysplasia with a vast increase in the number of terminally differentiated hypertrophic chondrocytes in affected bones. Activation of mitogen activated protein kinases (MAPKs and protein kinase B (PKB; also known as AKT was impaired in bone-forming cells of MSC SHP-2 KO mice, which provides an explanation for the skeletal defects that developed. These findings reveal a cell-autonomous role for SHP-2 in bone-forming cells in mice in the regulation of skeletal development. The results add to our understanding of the pathophysiology of skeletal abnormalities observed in humans with germline mutations in the PTPN11 gene (e.g. Noonan syndrome and LEOPARD syndrome.

  14. T-cell abnormalities after mediastinal irradiation for lung cancer. The in vitro influence of synthetic thymosin alpha-1

    International Nuclear Information System (INIS)

    Schulof, R.S.; Chorba, T.L.; Cleary, P.A.; Palaszynski, S.R.; Alabaster, O.; Goldstein, A.L.

    1985-01-01

    The effects of mediastinal irradiation (RT) on the numbers and functions of purified peripheral blood T-lymphocytes from patients with locally advanced non-small cell lung cancer were evaluated. The patients were candidates for a randomized trial to evaluate the immunorestorative properties of synthetic thymosin alpha-1. Twenty-one patients studied before RT did not exhibit any significant difference in T-cell numbers or function compared to age-matched healthy subjects. However, 41 patients studied within 1 week after completing RT exhibited significant depressions of E-rosette-forming cells at 4 degrees C (E4 degrees-RFC)/mm3, E-rosette-forming cells at 29 degrees C (E29 degrees-RFC)/mm3, OKT3/mm3, OKT4/mm3, and OKT8/mm3 (P . 0.0001); total T-cell percentages (%OKT3, P . 0.01); and T-cell proliferative responses in mixed lymphocyte cultures (MLR) (P . 0.01) and to the mitogen phytohemagglutinin under suboptimal conditions (P less than or equal to 0.03). Nine patients studied before and after RT showed a significant increase in OKT4/OKT8 (P . 0.01) following RT. A short-term in vitro incubation with thymosin alpha-1 could enhance MLR of T-cells in 12 of 27 patients with post-RT abnormalities. In 13 patients who were treated with placebo, the RT-induced depression of T-cell numbers and function persisted for at least 3 to 4 months. In addition, in 12 patients progressive decreases developed in %E4 degrees-RFC, %OKT3, %OKT4, and OKT4/OKT8, which always preceded clinical relapse

  15. [Additional phragmoplast corrects abnormal cytokinesis in wheat x rye hybrid pollen mother cells].

    Science.gov (United States)

    Gordeeva, E I; Shamina, N V; Dudka, L F; Kovtunenko, V Ia; Bolobolova, E U

    2009-01-01

    The phragmoplast dysfunction in wheat x rye hybrid F1 male meiosis has been described. The pollen mother cells (PMCs) show the phenotype where transition from central spindle fibers (forming a solid bundle) to a phragmoplast (hollow cylinder) is blocked. The blockade suppresses centrifugal movement of the phragmoplast and cell plate formation. The resulting cells occur to be binucleate. Sometimes, the two nuclei join and form one restitution nucleus. PMCs of wheat x rye F1 hybrid N D-144gp 06r. F1 (T. aestivum c. 93-60 T 9 x S. cereale c. Saratovskaya 7) showing this phenotype have an additional phragmoplast at late telophase. This happens like that in the case of immobile phragmoplast formation in meiosis in bicotyledons: the new phragmoplast arises by the aid of microtubules polymerization starting from the spindle poles. The new additional phragmoplast builds a new cell plate and accomplishes cytokinesis.

  16. Abnormalities of T cell maturation and regulation in human beings with immunodeficiency disorders.

    OpenAIRE

    Reinherz, E L; Cooper, M D; Schlossman, S F; Rosen, F S

    1981-01-01

    A series of monoclonal antibodies to T cell surface antigens were used to characterize peripheral lymphoid populations from patients with a variety of immunodeficiency diseases. Several disorders of T cell differentiation were observed to occur in severe combined immunodeficiency. One subtype of severe combined immunodeficiency was associated with failure to develop lymphocytes that express any thymus specific antigens, another with failure to differentiate beyond the early prothymocyte-thymo...

  17. FANCA knockout in human embryonic stem cells causes a severe growth disadvantage.

    Science.gov (United States)

    Vanuytsel, Kim; Cai, Qing; Nair, Nisha; Khurana, Satish; Shetty, Swati; Vermeesch, Joris R; Ordovas, Laura; Verfaillie, Catherine M

    2014-09-01

    Fanconi anemia (FA) is an autosomal recessive disorder characterized by progressive bone marrow failure (BMF) during childhood, aside from numerous congenital abnormalities. FA mouse models have been generated; however, they do not fully mimic the hematopoietic phenotype. As there is mounting evidence that the hematopoietic impairment starts already in utero, a human pluripotent stem cell model would constitute a more appropriate system to investigate the mechanisms underlying BMF in FA and its developmental basis. Using zinc finger nuclease (ZFN) technology, we have created a knockout of FANCA in human embryonic stem cells (hESC). We introduced a selection cassette into exon 2 thereby disrupting the FANCA coding sequence and found that whereas mono-allelically targeted cells retain an unaltered proliferation potential, disruption of the second allele causes a severe growth disadvantage. As a result, heterogeneous cultures arise due to the presence of cells still carrying an unaffected FANCA allele, quickly outgrowing the knockout cells. When pure cultures of FANCA knockout hESC are pursued either through selection or single cell cloning, this rapidly results in growth arrest and such cultures cannot be maintained. These data highlight the importance of a functional FA pathway at the pluripotent stem cell stage. Copyright © 2014. Published by Elsevier B.V.

  18. Irgm1-deficient mice exhibit Paneth cell abnormalities and increased susceptibility to acute intestinal inflammation.

    Science.gov (United States)

    Liu, Bo; Gulati, Ajay S; Cantillana, Viviana; Henry, Stanley C; Schmidt, Elyse A; Daniell, Xiaoju; Grossniklaus, Emily; Schoenborn, Alexi A; Sartor, R Balfour; Taylor, Gregory A

    2013-10-15

    Crohn's disease (CD) is a chronic, immune-mediated, inflammatory disorder of the intestine that has been linked to numerous susceptibility genes, including the immunity-related GTPase (IRG) M (IRGM). IRGs comprise a family of proteins known to confer resistance to intracellular infections through various mechanisms, including regulation of phagosome processing, cell motility, and autophagy. However, despite its association with CD, the role of IRGM and other IRGs in regulating intestinal inflammation is unclear. We investigated the involvement of Irgm1, an ortholog of IRGM, in the genesis of murine intestinal inflammation. After dextran sodium sulfate exposure, Irgm1-deficient [Irgm1 knockout (KO)] mice showed increased acute inflammation in the colon and ileum, with worsened clinical responses. Marked alterations of Paneth cell location and granule morphology were present in Irgm1 KO mice, even without dextran sodium sulfate exposure, and were associated with impaired mitophagy and autophagy in Irgm1 KO intestinal cells (including Paneth cells). This was manifested by frequent tubular and swollen mitochondria and increased LC3-positive autophagic structures. Interestingly, these LC3-positive structures often contained Paneth cell granules. These results suggest that Irgm1 modulates acute inflammatory responses in the mouse intestine, putatively through the regulation of gut autophagic processes, that may be pivotal for proper Paneth cell functioning.

  19. Skeletal growth and bone mineral acquisition in type 1 diabetic children; abnormalities of the GH/IGF-1 axis.

    Science.gov (United States)

    Raisingani, Manish; Preneet, Brar; Kohn, Brenda; Yakar, Shoshana

    2017-06-01

    Type 1 diabetes mellitus (T1DM) is one of the most common chronic diseases diagnosed in childhood. Childhood and adolescent years are also the most important period for growth in height and acquisition of skeletal bone mineral density (BMD). The growth hormone (GH)/insulin like growth factor -1 (IGF-1) axis which regulates growth, is affected by T1DM, with studies showing increased GH and decreased IGF-1 levels in children with T1DM. There is conflicting data as to whether adolescents with TIDM are able to achieve their genetically-determined adult height. Furthermore, data support that adolescents with T1DM have decreased peak BMD, although the pathophysiology of which has not been completely defined. Various mechanisms have been proposed for the decrease in BMD including low osteocalcin levels, reflecting decreased bone formation; increased sclerostin, an inhibitor of bone anabolic pathways; and increased leptin, an adipocytokine which affects bone metabolism via central and peripheral mechanisms. Other factors implicated in the increased bone resorption in T1DM include upregulation of the osteoprotegerin/ receptor-activator of the nuclear factor-κB ligand pathway, elevated parathyroid hormone levels, and activation of other cytokines involved in chronic systemic inflammation. In this review, we summarize the clinical studies that address the alterations in the GH/IGF-I axis, linear growth velocity, and BMD in children and adolescents with T1DM; and we review the possible molecular mechanisms that may contribute to an attenuation of linear growth and to the reduction in the acquisition of peak bone mass in the child and adolescent with T1DM. Copyright © 2017. Published by Elsevier Ltd.

  20. SOCS3 in retinal neurons and glial cells suppresses VEGF signaling to prevent pathological neovascular growth.

    Science.gov (United States)

    Sun, Ye; Ju, Meihua; Lin, Zhiqiang; Fredrick, Thomas W; Evans, Lucy P; Tian, Katherine T; Saba, Nicholas J; Morss, Peyton C; Pu, William T; Chen, Jing; Stahl, Andreas; Joyal, Jean-Sébastien; Smith, Lois E H

    2015-09-22

    Neurons and glial cells in the retina contribute to neovascularization, or the formation of abnormal new blood vessels, in proliferative retinopathy, a condition that can lead to vision loss or blindness. We identified a mechanism by which suppressor of cytokine signaling 3 (SOCS3) in neurons and glial cells prevents neovascularization. We found that Socs3 expression was increased in the retinal ganglion cell and inner nuclear layers after oxygen-induced retinopathy. Mice with Socs3 deficiency in neuronal and glial cells had substantially reduced vaso-obliterated retinal areas and increased pathological retinal neovascularization in response to oxygen-induced retinopathy, suggesting that loss of neuronal/glial SOCS3 increased both retinal vascular regrowth and pathological neovascularization. Furthermore, retinal expression of Vegfa (which encodes vascular endothelial growth factor A) was higher in these mice than in Socs3 flox/flox controls, indicating that neuronal and glial SOCS3 suppressed Vegfa expression during pathological conditions. Lack of neuronal and glial SOCS3 resulted in greater phosphorylation and activation of STAT3, which led to increased expression of its gene target Vegfa, and increased endothelial cell proliferation. In summary, SOCS3 in neurons and glial cells inhibited the STAT3-mediated secretion of VEGF from these cells, which suppresses endothelial cell activation, resulting in decreased endothelial cell proliferation and angiogenesis. These results suggest that neuronal and glial cell SOCS3 limits pathological retinal angiogenesis by suppressing VEGF signaling. Copyright © 2015, American Association for the Advancement of Science.

  1. Correlation of abnormal DNMT1 and MeCP2 expression with cell biological characteristics in cervical lesion tissue

    Directory of Open Access Journals (Sweden)

    Wei Lin

    2016-10-01

    Full Text Available Objective: To study the correlation of abnormal DNMT1 and MeCP2 expression with cell biological characteristics in cervical lesion tissue. Methods: Cervical cancer tissue and paracarcinoma tissue were collected from cervical cancer patients who received surgery in our hospital from May 2012 to October 2015, and HPV types as well as the expression levels of DNMTs, MeCP2, PBK, TOPK, Snail, Slug, SALL4 and Cat L were determined. Results: Protein levels of DNMT1, DNMT2, DNMT3a, DNMT3b, DNMT3l and MeCP2 in cervical cancer tissue were significantly higher than those in para-carcinoma tissue, and the rising trend of DNMT1 expression level was the most significant; protein levels of DNMT1, DNMT2, DNMT3a, DNMT3b, DNMT3l and MeCP2 in cervical cancer tissue with high-risk HPV infection were significantly higher than those in cervical cancer tissue with normal HPV infection; in cervical cancer tissue with high expression of DNMT1 and MeCP2, PBK, TOPK, Snail, Slug, SALL4 and Cat L levels were significantly higher than those in cervical cancer tissue with low expression of DNMT1 and MeCP2. Conclusions: Abnormally high expression of DNMT1 and MeCP2 in cervical cancer tissue may up-regulate the expression of a variety of malignant biological molecules by increasing methylation level.

  2. Motor behavioral abnormalities and histopathological findings of Wistar rats inoculated with HTLV-1-infected MT2 cells

    Directory of Open Access Journals (Sweden)

    C.C. Câmara

    2010-07-01

    Full Text Available The objective of the present study was to describe motor behavioral changes in association with histopathological and hematological findings in Wistar rats inoculated intravenously with human T-cell lymphotropic virus type 1 (HTLV-1-infected MT2 cells. Twenty-five 4-month-old male rats were inoculated with HTLV-1-infected MT2 cells and 13 control rats were inoculated with normal human lymphocytes. The behavior of the rats was observed before and 5, 10, 15, and 20 months after inoculation during a 30-min/rat testing time for 5 consecutive days. During each of 4 periods, a subset of rats was randomly chosen to be sacrificed in order to harvest the spinal cord for histopathological analysis and to obtain blood for serological and molecular studies. Behavioral analyses of the HTLV-1-inoculated rats showed a significant decrease of climbing, walking and freezing, and an increase of scratching, sniffing, biting, licking, and resting/sleeping. Two of the 25 HTLV-1-inoculated rats (8% developed spastic paraparesis as a major behavioral change. The histopathological changes were few and mild, but in some cases there was diffuse lymphocyte infiltration. The minor and major behavioral changes occurred after 10-20 months of evolution. The long-term observation of Wistar rats inoculated with HTLV-1-infected MT2 cells showed major (spastic paraparesis and minor motor abnormalities in association with the degree of HTLV-1-induced myelopathy.

  3. ANGUSTIFOLIA mediates one of the multiple SCRAMBLED signaling pathways regulating cell growth pattern in Arabidopsis thaliana.

    Science.gov (United States)

    Kwak, Su-Hwan; Song, Sang-Kee; Lee, Myeong Min; Schiefelbein, John

    2015-09-25

    In Arabidopsis thaliana, an atypical leucine-rich repeat receptor-like kinase, SCRAMBLED (SCM), is required for multiple developmental processes including root epidermal cell fate determination, silique dehiscence, inflorescence growth, ovule morphogenesis, and tissue morphology. Previous work suggested that SCM regulates these multiple pathways using distinct mechanisms via interactions with specific downstream factors. ANGUSTIFOLIA (AN) is known to regulate cell and tissue morphogenesis by influencing cortical microtubule arrangement, and recently, the AN protein was reported to interact with the SCM protein. Therefore, we examined whether AN might be responsible for mediating some of the SCM-dependent phenotypes. We discovered that both scm and an mutant lines cause an abnormal spiral or twisting growth of roots, but only the scm mutant affected root epidermal patterning. The siliques of the an and scm mutants also exhibited spiral growth, as previously reported, but only the scm mutant altered silique dehiscence. Interestingly, we discovered that the spiral growth of roots and siliques of the scm mutant is rescued by a truncated SCM protein that lacks its kinase domain, and that a juxtamembrane domain of SCM was sufficient for AN binding in the yeast two-hybrid analysis. These results suggest that the AN protein is one of the critical downstream factors of SCM pathways specifically responsible for mediating its effects on cell/tissue morphogenesis through cortical microtubule arrangement. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Linking stem cell function and growth pattern of intestinal organoids.

    Science.gov (United States)

    Thalheim, Torsten; Quaas, Marianne; Herberg, Maria; Braumann, Ulf-Dietrich; Kerner, Christiane; Loeffler, Markus; Aust, Gabriela; Galle, Joerg

    2018-01-15

    Intestinal stem cells (ISCs) require well-defined signals from their environment in order to carry out their specific functions. Most of these signals are provided by neighboring cells that form a stem cell niche, whose shape and cellular composition self-organize. Major features of this self-organization can be studied in ISC-derived organoid culture. In this system, manipulation of essential pathways of stem cell maintenance and differentiation results in well-described growth phenotypes. We here provide an individual cell-based model of intestinal organoids that enables a mechanistic explanation of the observed growth phenotypes. In simulation studies of the 3D structure of expanding organoids, we investigate interdependences between Wnt- and Notch-signaling which control the shape of the stem cell niche and, thus, the growth pattern of the organoids. Similar to in vitro experiments, changes of pathway activities alter the cellular composition of the organoids and, thereby, affect their shape. Exogenous Wnt enforces transitions from branched into a cyst-like growth pattern; known to occur spontaneously during long term organoid expansion. Based on our simulation results, we predict that the cyst-like pattern is associated with biomechanical changes of the cells which assign them a growth advantage. The results suggest ongoing stem cell adaptation to in vitro conditions during long term expansion by stabilizing Wnt-activity. Our study exemplifies the potential of individual cell-based modeling in unraveling links between molecular stem cell regulation and 3D growth of tissues. This kind of modeling combines experimental results in the fields of stem cell biology and cell biomechanics constituting a prerequisite for a better understanding of tissue regeneration as well as developmental processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. DNA synthesis, cell proliferation index in normal and abnormal gallbladder epithelium.

    Science.gov (United States)

    Lamote, J; Willems, G

    1997-09-15

    The observation of mitotic figures in the epithelium of the normal gallbladder is exceptional because cell renewal is occurring at a very slow rate. It is only after using 3H-thymidine and autoradiography to observe the cells in DNA synthesis that evidence of a significant epithelial cell replication has been provided. Because numerous mitotic figures and increased 3H-thymidine uptake have been observed after intraluminal introduction of foreign bodies or after ligation of the common bile duct in animals, mechanical distension has been supposed to represent an important trigger factor of cell proliferation in this hollow organ. An increased epithelial cell renewal was also observed in human gallbladders of patients with a complete obstruction of the common bile duct causing the distension. However, the absence of correlation between the degree of gallbladder distension and the proliferative response was suggesting that factors other than distension could be involved. In studies on experimental lithiasis cell proliferation appeared to be enhanced in the gallbladder epithelium of mice fed on a cholesterol-cholic acid-rich lithogenic diet. The fact that the increase in proliferative activity was preceding the formation of gallstones was another indication that factors other than mechanical stimulation by stretching or by the stones may stimulate cell renewal in this organ. Factors in the bile of animals receiving a lithogenic diet could be involved which might cause cellular death and, hence, a regenerative reaction. Direct mitogenic effect of an unknown factor in the bile of these animals is an alternative possibility. On the other hand the stimulating effect of postprandial hormones on gallbladder cell renewal suggested by the observation of a DNA synthesis peak after feeding has been established. Synthetic cholecystokinin analogues have been shown to increase the proliferative activity and to induce epithelial hyperplasia in this organ. In one recent study using

  6. Walking abnormalities

    Science.gov (United States)

    ... include: Arthritis of the leg or foot joints Conversion disorder (a mental disorder) Foot problems (such as a ... injuries. For an abnormal gait that occurs with conversion disorder, counseling and support from family members are strongly ...

  7. Amplification of cyclin D1 in squamous cell carcinoma of the head and neck and the prognostic value of chromosomal abnormalities and cyclin D1 overexpression

    NARCIS (Netherlands)

    Akervall, J. A.; Michalides, R. J.; Mineta, H.; Balm, A.; Borg, A.; Dictor, M. R.; Jin, Y.; Loftus, B.; Mertens, F.; Wennerberg, J. P.

    1997-01-01

    Abnormalities of chromosome band 11q13 are frequent in squamous cell carcinoma of the head and neck (SCCHN). The oncogene CCND1 is located at 11q13 and encodes cyclin D1, a cell cycle-regulating protein. The authors investigated the clinical relevance and associations between amplification and

  8. Autoimmune gastritis and parietal cell reactivity in two children with abnormal intestinal permeability

    NARCIS (Netherlands)

    Greenwood, Deanne L. V.; Crock, Patricia; Braye, Stephen; Davidson, Patricia; Sentry, John W.

    Autoimmune gastritis is characterised by lymphocytic infiltration of the gastric submucosa, with loss of parietal and chief cells and achlorhydria. Often, gastritis is expressed clinically as cobalamin deficiency with megaloblastic anaemia, which is generally described as a disease of the elderly.

  9. Abnormal diffusion-weighted MRI in medulloblastoma: does it reflect small cell histology?

    International Nuclear Information System (INIS)

    Kotsenas, A.L.; Roth, T.C.; Manness, W.K.; Faerber, E.N.

    1999-01-01

    A 12-year-old boy presented with the classic CT and MRI findings of medulloblastoma and the unusual finding of increased signal on diffusion MRI. The small-cell histology of medulloblastoma may account for the increased signal seen on diffusion MRI. Diffusion MRI with echoplanar technique may be useful in evaluation of these tumors and metastatic disease. (orig.)

  10. Microtubule Abnormalities Underlying Gulf War Illness in Neurons from Human Induced Pluripotent Cells

    Science.gov (United States)

    2017-11-01

    and culture of rat embryonic neural cells: a quick protocol. J Vis Exp. 2012;63:e3965. 43. Pruszak J, Just L, Isacson O, Nikkhah G. Isolation and...COMPLETION SECTION Ill - CERTIFICATION 7, CERTIFICATION OF REPORT BY CONTRACTOR/SUBCONTRACTOR !Not required if: IX as appropriate

  11. Pulmonary diffusion abnormalities in relation to cytomegalovirus antigenemia and cytomegalic endothelial cells in blood

    NARCIS (Netherlands)

    Kas-Deelen, AM; de Maar, EF; van der Mark, TW; Harmsen, MC; van Son, WJ; The, H

    The pathophysiology of HCMV infection may involve many different organs including the lungs. In this study we investigated HCMV antigenemia levels and cytomegalic endothelial cells (CEQ in blood in relation to the pulmonary diffusion capacity. Patients with high HCMV antigenemia (greater than or

  12. Cell adhesion and growth on ion-implanted polymer surface

    International Nuclear Information System (INIS)

    Lee, Jae-Suk; Kaibara, M.; Iwaki, M.; Sasabe, H.; Suzuki, Y.; Kusakabe, M.

    1992-01-01

    The adhesion and growth of endothelial cells on ion-implanted polystyrene and segmented polyurethane surface were investigated. Ions of Na + , N 2 + , O 2 + , Ar + and Kr + were implanted to the polymer surface with ion fluences between 1 x 10 15 and 3 x 10 17 ions/cm 2 at energy of 150 KeV at room temperature. Ion-implanted polymers were characterized by FT-IR-ATR an Raman spectroscopies. The adhesion and proliferation of bovine aorta endothelial cells on ion-implanted polymer surface were observed by an optical microscope. The rate of growth of BAECs on ion-implanted PSt was faster than that on non-implanted PSt. Complete cell adhesion and growth were observed on ion-implanted SPU, whereas the adhesion and growth of BAECs on the non-implanted SPU was not observed. It was attempted to control the cell culture on the ion-implanted domain fabricated using a mask. (author)

  13. Growth of fibroblasts and endothelial cells on wettability gradient surfaces

    NARCIS (Netherlands)

    Ruardy, TG; Moorlag, HE; Schakenraad, JM; VanderMei, HC; Busscher, HJ

    1997-01-01

    The growth, spreading, and shape of human skin fibroblasts (PK 84) and human umbilical cord endothelial cells on dichlorodimethylsilane (DDS) and dimethyloctadecylchlorosilane (DOGS) gradient surfaces were investigated in the presence of serum proteins. Gradient surfaces were prepared on glass using

  14. Annual research review: Growth connectomics--the organization and reorganization of brain networks during normal and abnormal development.

    Science.gov (United States)

    Vértes, Petra E; Bullmore, Edward T

    2015-03-01

    We first give a brief introduction to graph theoretical analysis and its application to the study of brain network topology or connectomics. Within this framework, we review the existing empirical data on developmental changes in brain network organization across a range of experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans). We discuss preliminary evidence and current hypotheses for how the emergence of network properties correlates with concomitant cognitive and behavioural changes associated with development. We highlight some of the technical and conceptual challenges to be addressed by future developments in this rapidly moving field. Given the parallels previously discovered between neural systems across species and over a range of spatial scales, we also review some recent advances in developmental network studies at the cellular scale. We highlight the opportunities presented by such studies and how they may complement neuroimaging in advancing our understanding of brain development. Finally, we note that many brain and mind disorders are thought to be neurodevelopmental in origin and that charting the trajectory of brain network changes associated with healthy development also sets the stage for understanding abnormal network development. We therefore briefly review the clinical relevance of network metrics as potential diagnostic markers and some recent efforts in computational modelling of brain networks which might contribute to a more mechanistic understanding of neurodevelopmental disorders in future. © 2014 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for Child and Adolescent Mental Health.

  15. Annual Research Review: Growth connectomics – the organization and reorganization of brain networks during normal and abnormal development

    Science.gov (United States)

    Vértes, Petra E; Bullmore, Edward T

    2015-01-01

    Background We first give a brief introduction to graph theoretical analysis and its application to the study of brain network topology or connectomics. Within this framework, we review the existing empirical data on developmental changes in brain network organization across a range of experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans). Synthesis We discuss preliminary evidence and current hypotheses for how the emergence of network properties correlates with concomitant cognitive and behavioural changes associated with development. We highlight some of the technical and conceptual challenges to be addressed by future developments in this rapidly moving field. Given the parallels previously discovered between neural systems across species and over a range of spatial scales, we also review some recent advances in developmental network studies at the cellular scale. We highlight the opportunities presented by such studies and how they may complement neuroimaging in advancing our understanding of brain development. Finally, we note that many brain and mind disorders are thought to be neurodevelopmental in origin and that charting the trajectory of brain network changes associated with healthy development also sets the stage for understanding abnormal network development. Conclusions We therefore briefly review the clinical relevance of network metrics as potential diagnostic markers and some recent efforts in computational modelling of brain networks which might contribute to a more mechanistic understanding of neurodevelopmental disorders in future. PMID:25441756

  16. Coagulation Abnormalities of Sickle Cell Disease: Relationship with Clinical Outcomes and the Effect of Disease Modifying Therapies

    Science.gov (United States)

    Noubouossie, Denis; Key, Nigel S.; Ataga, Kenneth I.

    2015-01-01

    Sickle cell disease (SCD) is a hypercoagulable state. Patients exhibit increased platelet activation, high plasma levels of markers of thrombin generation, depletion of natural anticoagulant proteins, abnormal activation of the fibrinolytic system, and increased tissue factor expression, even in the non-crisis “steady state.” Furthermore, SCD is characterized by an increased risk of thrombotic complications. The pathogenesis of coagulation activation in SCD appears to be multi-factorial, with contributions from ischemia-reperfusion injury and inflammation, hemolysis and nitric oxide deficiency, and increased sickle RBC phosphatidylserine expression. Recent studies in animal models suggest that activation of coagulation may contribute to the pathogenesis of SCD, but the data on the contribution of coagulation and platelet activation to SCD-related complications in humans are limited. Clinical trials of new generations of anticoagulants and antiplatelet agents, using a variety of clinical endpoints are warranted. PMID:26776344

  17. The role of perivascular adipose tissue in vascular smooth muscle cell growth.

    Science.gov (United States)

    Miao, Chao-Yu; Li, Zhi-Yong

    2012-02-01

    Adipose tissue is the largest endocrine organ, producing various adipokines and many other substances. Almost all blood vessels are surrounded by perivascular adipose tissue (PVAT), which has not received research attention until recently. This review will discuss the paracrine actions of PVAT on the growth of underlying vascular smooth muscle cells (VSMCs). PVAT can release growth factors and inhibitors. Visfatin is the first identified growth factor derived from PVAT. Decreased adiponectin and increased tumour necrosis factor-α in PVAT play a pathological role for neointimal hyperplasia after endovascular injury. PVAT-derived angiotensin II, angiotensin 1-7, reactive oxygen species, complement component 3, NO and H(2) S have a paracrine action on VSMC contraction, endothelial or fibroblast function; however, their paracrine actions on VSMC growth remain to be directly verified. Factors such as monocyte chemoattractant protein-1, interleukin-6, interleukin-8, leptin, resistin, plasminogen activator inhibitor type-1, adrenomedullin, free fatty acids, glucocorticoids and sex hormones can be released from adipose tissue and can regulate VSMC growth. Most of them have been verified for their secretion by PVAT; however, their paracrine functions are unknown. Obesity, vascular injury, aging and infection may affect PVAT, causing adipocyte abnormality and inflammatory cell infiltration, inducing imbalance of PVAT-derived growth factors and inhibitors, leading to VSMC growth and finally resulting in development of proliferative vascular disease, including atherosclerosis, restenosis and hypertension. In the future, using cell-specific gene interventions and local treatments may provide definitive evidence for identification of key factor(s) involved in PVAT dysfunction-induced vascular disease and thus may help to develop new therapies. This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http

  18. Detection of Hepatitis C virus RNA in peripheral blood mononuclear cells of patients with abnormal alanine transaminase in Ahvaz

    Directory of Open Access Journals (Sweden)

    M Makvandi

    2014-01-01

    Full Text Available Purpose: Hepatitis C virus (HCV is an important agent for chronic and acute hepatitis. Occult hepatitis C remains a major health problem worldwide. Patients with chronic occult HCV may progress to cirrhosis and hepatocellular carcinoma. The aim of this study was to determine prevalence of occult hepatitis C by IS-PCR-ISH (in situ PCR in situ hybridisation in the patients with abnormal ALT. Materials and Methods: The blood samples were taken from 53 patients including 17 females (32.1% and 36 (67.9% males who had abnormal alanine transaminase (ALT for more than 1 year. The mean ALT and aspartate transaminase (AST level were 41.02 ± 9.3 and 24.17 ± 7.3, respectively. The patients′ age were between 4 and 70-years old with mean age 38 ± 13. All the patients were negative for HCV antibody, HCV RNA and HBs Ag. The peripheral blood mononuclear cells (PBMC were separated with ficoll gradient from each blood sample, then the cells were fixed on slides by cold acetone and followed by IS-PCR-ISH for HCV RNA detection. Results: Seventeen (32% patients including 6 (11.3% females and 11 (20.7% males showed positive results for HCV RNA by in situ-PCR in situ hybridisation. Ten (18.8% positive cases were between 20 and 40-years old and 6 (11.3% positive patients were between 40 and 60 years old. Ten (19.6% patients who were positive for IS-PCR-ISH also had positive anti-HBc IgG and 7 (13.2% patients were negative for HBc-IgG. Conclusion: In the present study high rate of 32% occult hepatitis C were found among the patients with elevated ALT.

  19. Radiological abnormalities of the skeleton in patients with sickle-cell anemia

    International Nuclear Information System (INIS)

    Ben Dridi, M.F.; Oumaya, A.; Gastli, H.; Doggaz, C.; Bousnina, S.; Fattoum, S.; Ben Osman, R.; Gharbi, H.A.

    1987-01-01

    The way in which bones are affected in cases of sickle-cell anemia is well known. Nevertheless, advances in treatment and in methods of transfusion mean that we are increasingly seeing cases of older patients with this disease. A retrospective analysis of 222 cases of sickle-cell anemia demonstrates the radiological appearance of the skeleton in the disease and reveals the various bone segments which are particularly vulnerable at certain periods of life. Correlation of X-rays permits the discovery of lesions which are not clinically apparent. The frequency and characteristics of epiphyseal osteonecrosis and osteitis are studied. Aggravation of the bone lesions when corticoids are administered poses the problem of differential diagnosis of the disease, especially in comparison with rheumatic fever. (orig.)

  20. Effects of hepatocyte growth factor on glutathione synthesis, growth, and apoptosis is cell density-dependent

    International Nuclear Information System (INIS)

    Yang Heping; Magilnick, Nathaniel; Xia Meng; Lu, Shelly C.

    2008-01-01

    Hepatocyte growth factor (HGF) is a potent hepatocyte mitogen that exerts opposing effects depending on cell density. Glutathione (GSH) is the main non-protein thiol in mammalian cells that modulates growth and apoptosis. We previously showed that GSH level is inversely related to cell density of hepatocytes and is positively related to growth. Our current work examined whether HGF can modulate GSH synthesis in a cell density-dependent manner and how GSH in turn influence HGF's effects. We found HGF treatment of H4IIE cells increased cell GSH levels only under subconfluent density. The increase in cell GSH under low density was due to increased transcription of GSH synthetic enzymes. This correlated with increased protein levels and nuclear binding activities of c-Jun, c-Fos, p65, p50, Nrf1 and Nrf2 to the promoter region of these genes. HGF acts as a mitogen in H4IIE cells under low cell density and protects against tumor necrosis factor α (TNFα)-induced apoptosis by limiting JNK activation. However, HGF is pro-apoptotic under high cell density and exacerbates TNFα-induced apoptosis by potentiating JNK activation. The increase in cell GSH under low cell density allows HGF to exert its full mitogenic effect but is not necessary for its anti-apoptotic effect

  1. Critical telomerase activity for uncontrolled cell growth

    Science.gov (United States)

    Wesch, Neil L.; Burlock, Laura J.; Gooding, Robert J.

    2016-08-01

    The lengths of the telomere regions of chromosomes in a population of cells are modelled using a chemical master equation formalism, from which the evolution of the average number of cells of each telomere length is extracted. In particular, the role of the telomere-elongating enzyme telomerase on these dynamics is investigated. We show that for biologically relevant rates of cell birth and death, one finds a critical rate, R crit, of telomerase activity such that the total number of cells diverges. Further, R crit is similar in magnitude to the rates of mitosis and cell death. The possible relationship of this result to replicative immortality and its associated hallmark of cancer is discussed.

  2. p8 inhibits the growth of human pancreatic cancer cells and its expression is induced through pathways involved in growth inhibition and repressed by factors promoting cell growth

    Directory of Open Access Journals (Sweden)

    Vasseur Sophie

    2003-11-01

    Full Text Available Abstract Background p8 is a stress-induced protein with multiple functions and biochemically related to the architectural factor HMG-I/Y. We analyzed the expression and function of p8 in pancreatic cancer-derived cells. Methods Expression of p8 was silenced in the human pancreatic cancer cell lines Panc-1 and BxPc-3 by infection with a retrovirus expressing p8 RNA in the antisense orientation. Cell growth was measured in control and p8-silenced cells. Influence on p8 expression of the induction of intracellular pathways promoting cellular growth or growth arrest was monitored. Results p8-silenced cells grew more rapidly than control cells transfected with the empty retrovirus. Activation of the Ras→Raf→MEK→ERK and JNK intracellular pathways down-regulated p8 expression. In addition, the MEK1/2 inhibitor U0126 and the JNK inhibitor SP600125 up-regulates expression of p8. Conversely, p38 or TGFβ-1 induced p8 expression whereas the specific p38 inhibitor SB203580 down-regulated p8 expression. Finally, TGFβ-1 induction was in part mediated through p38. Conclusions p8 inhibits the growth of human pancreatic cancer cells. p8 expression is induced through pathways involved in growth inhibition and repressed by factors that promote cell growth. These results suggest that p8 belongs to a pathway regulating the growth of pancreatic cancer cells.

  3. Abnormalities in plasma and red blood cell fatty acid profiles of patients with colorectal cancer.

    OpenAIRE

    Bar??, L.; Hermoso, J. C.; N????ez, M. C.; Jim??nez-Rios, J. A.; Gil, A.

    1998-01-01

    We evaluated total plasma fatty acid concentrations and percentages, and the fatty acid profiles for the different plasma lipid fractions and red blood cell lipids, in 17 patients with untreated colorectal cancer and 12 age-matched controls with no malignant diseases, from the same geographical area. Cancer patients had significantly lower total plasma concentrations of saturated, monounsaturated and essential fatty acids and their polyunsaturated derivatives than healthy controls; when the v...

  4. Identification of abnormal gene expression in bovine transgenic somatic cell nuclear transfer embryos

    OpenAIRE

    Cho, Jongki; Kang, Sungkeun; Lee, Byeong Chun

    2014-01-01

    This study was conducted to investigate the expression of three genes related to early embryonic development in bovine transgenic cloned embryos. To accomplish this, development of bovine transgenic somatic cell nuclear transfer (SCNT) embryos was compared with non-transgenic embryos. Next, mRNA transcription of three specific genes (DNMT1, Hsp 70.1, and Mash2) related to early embryo development in transgenic SCNT embryos was compared between transgenic and non-transgenic SCNTs, parthenogene...

  5. A Human Neural Crest Stem Cell-Derived Dopaminergic Neuronal Model Recapitulates Biochemical Abnormalities in GBA1 Mutation Carriers

    Directory of Open Access Journals (Sweden)

    Shi-Yu Yang

    2017-03-01

    Full Text Available Numerically the most important risk factor for the development of Parkinson's disease (PD is the presence of mutations in the glucocerebrosidase GBA1 gene. In vitro and in vivo studies show that GBA1 mutations reduce glucocerebrosidase (GCase activity and are associated with increased α-synuclein levels, reflecting similar changes seen in idiopathic PD brain. We have developed a neural crest stem cell-derived dopaminergic neuronal model that recapitulates biochemical abnormalities in GBA1 mutation-associated PD. Cells showed reduced GCase protein and activity, impaired macroautophagy, and increased α-synuclein levels. Advantages of this approach include easy access to stem cells, no requirement to reprogram, and retention of the intact host genome. Treatment with a GCase chaperone increased GCase protein levels and activity, rescued the autophagic defects, and decreased α-synuclein levels. These results provide the basis for further investigation of GCase chaperones or similar drugs to slow the progression of PD.

  6. Phosphoinositide turnover in cell growth and transformation

    International Nuclear Information System (INIS)

    Fleischman, L.F.

    1987-01-01

    Interaction of cells with various stimuli triggers a common signal transduction pathway involving breakdown and resynthesis of the minor membrane lipid phosphatidylinositol-4,5-bisphosphate (PIP 2 ). Hydrolysis of PIP 2 by phospholipase C generates two key catabolites-inositol-1,4,5-trisphosphate (IP 3 ) and diacylglycerol (DAG)-which mediate and amplify cellular responses. These studies provide evidence for potential involvement of this pathway in oncogenic transformation and cell cycle progression. Altered levels of PIP 2 and its breakdown products were found in cells transformed by ras oncogenes, in contrast to untransformed counterparts. Steady-state levels of PIP 2 , DAG and inositol phosphates were measured in NIH 3T3 and NRK cells metabolically labelled with 3 H-glycerol and 3 H-inositol. DAG and inositol phosphate levels were significantly elevated by 2.5-3 fold in the transformed cells while levels of PIP 2 were decreased. These findings suggest that the ras protein may activate phospholipase C. Elevated DAG content in the transformed cells was also measured by phosphorylation of DAG using a partially purified DAG kinase, indicating that the differences seen could not be attributed to differences in labelling between the cell lines

  7. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells.

    Science.gov (United States)

    Choi, Nahyun; Shin, Soyoung; Song, Sun U; Sung, Jong-Hyuk

    2018-02-28

    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal-regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration.

  8. The effect of secondary abnormal grain growth on the dielectric properties of La/Mn co-doped BaTiO3 ceramics

    Directory of Open Access Journals (Sweden)

    Živković Lj.M.

    2006-01-01

    Full Text Available La/Mn-codoped BaTiO3 systems, obtained by solid state reactions, were investigated regarding their microstructure characteristics and ferroelectric properties. Different concentrations of La2O3 were used for doping, ranging from 0.1 to 5.0 at% La, while a content of Mn was constant at 0.05 at%. For all samples sintered below the eutectic temperature (1332°C, a uniform microstructure was formed with average grain size from 1-3 μm. The appearance of secondary abnormal grains with (111 double twins grains with curved or faceted grain boundaries were observed in La/Mn BaTiO3 ceramics after sintering at temperatures above the eutectic temperature. All sintered samples exhibited a high electrical resistivity. Better dielectric performances were obtained for low doped samples (0.1 at% La sintered at 1350°C. For samples with La content above 1.0 at% a lower value in dielectric permittivity at higher sintering temperature is due to secondary abnormal grain growth, and to the presence of a non-ferroelectric phase rich in La. The Curie constant together with other dielectric parameters were also calculated.

  9. Abnormal Endogenous Repression of GA Signaling in a Seedless Table Grape Cultivar with High Berry Growth Response to GA Application

    Directory of Open Access Journals (Sweden)

    Atiako K. Acheampong

    2017-05-01

    Full Text Available Gibberellin (GA application is routinely used in the table grape industry to increase berry size and cluster length. Although grapevine cultivars show a wide range of growth responsiveness to GA3 application, the reasons for these differences is unclear. To shed light on this issue, two commercial grapevine cultivars with contrasting berry response to GA were selected for comparative analysis, in which we tested if the differences in response: (1 is organ-specific or cultivar-related; (2 will be reflected in qualitative/quantitative differences in transcripts/proteins of central components of GA metabolism and signaling and levels of GA metabolites. Our results showed that in addition to the high response of its berries to GA, internodes and rachis of cv. Black finger (BF presented a greater growth response compared to that of cv. Spring blush (SB. In agreement, the results exposed significant quantitative differences in GA signaling components in several organs of both cultivars. Exceptionally higher level of all three functional VvDELLA proteins was recorded in young BF organs, accompanied by elevated VvGID1 expression and lower VvSLY1b transcripts. Absence of seed traces, low endogenous GA quantities and lower expression of VvGA20ox4 and VvGA3ox3 were also recorded in berries of BF. Our results raise the hypothesis that, in young organs of BF, low expression of VvSLY1b may be responsible for the massive accumulation of VvDELLA proteins, which then leads to elevated VvGID1 levels. This integrated analysis suggests causal relationship between endogenous mechanisms leading to anomalous GA signaling repression in BF, manifested by high quantities of VvDELLA proteins, and greater growth response to GA application.

  10. Radiation adaptive response for the growth of cultured glial cells

    International Nuclear Information System (INIS)

    Suzuki, S.; Miura, Y.; Kano, M.; Toda, T.; Urano, S.

    2003-01-01

    Full text: To examine the molecular mechanism of radiation adaptive response (RAR) for the growth of cultured glial cells and to investigate the influence of aging on the response, glial cells were cultured from young and aged rats (1 month and 24 months old). RAR for the growth of glial cells conditioned with a low dose of X-rays and subsequently exposed to a high dose of X-rays was examined for cell number and BrdU incorporation. Involvement of the subcellular signaling pathway factors in RAR was investigated using their inhibitors, activators and mutated glial cells. RAR was observed in cells cultured from young rats, but was not in cells from aged rats. The inhibitors of protein kinase C (PKC) and DNA-dependent protein kinase (DNA-PK) or phosphatidylinositol 3-kinase (PI3K) suppressed RAR. The activators of PKC instead of low dose irradiation also caused RAR. Moreover, glial cells cultured from severe combined immunodeficiency (scid) mice (CB-17 scid) and ataxia-telangiectasia (AT) cells from AT patients showed no RAR. These results indicated that PKC, ATM, DNAPK and/or PI3K were involved in RAR for growth and BrdU incorporation of cultured glial cells and RAR decreased with aging. Proteomics data of glial cells exposed to severe stress of H 2 O 2 or X-rays also will be presented in the conference since little or no difference has not been observed with slight stress yet

  11. Detection of male reproductive abnormalities by flow cytometry measurements of testicular and ejaculated germ cells

    International Nuclear Information System (INIS)

    Evenson, D.P.; Higgins, P.J.; Melamed, M.R.

    1984-01-01

    Flow cytometry of developing and mature sperm from humans and animals with pathological conditions or those exposed to testicular function modifying agents can provide rapidly acquired data that are statistically sound due to the large numbers of randomly measured cells. Of more importance, however, is the fact that the authors can acquire information on factors such as chromatin structure that cannot be practically obtained in any other manner. This approach, coupled with classical techniques in reproductive biology, including electron microscopy, will provide a powerful methodology to study the response of animals to agents that modify testicular function

  12. Leptin Regulation of Mammary Cell Growth

    National Research Council Canada - National Science Library

    Pighetti, Gina

    2000-01-01

    .... The studies of this proposal were designed to test the hypothesis that the interaction of leptin with its receptor regulates normal and pathologic mammary epithelial cell proliferation and/or differentiation...

  13. Diagnostic accuracy of fundal height and handheld ultrasound-measured abdominal circumference to screen for fetal growth abnormalities

    Science.gov (United States)

    Haragan, Adriane F.; Hulsey, Thomas C.; Hawk, Angela F.; Newman, Roger B.; Chang, Eugene Y.

    2015-01-01

    OBJECTIVE We sought to compare fundal height and handheld ultrasound–measured fetal abdominal circumference (HHAC) for the prediction of fetal growth restriction (FGR) or large for gestational age. STUDY DESIGN This was a diagnostic accuracy study in nonanomalous singleton pregnancies between 24 and 40 weeks’ gestation. Patients underwent HHAC and fundal height measurement prior to formal growth ultrasound. FGR was defined as estimated fetal weight less than 10%, whereas large for gestational age was defined as estimated fetal weight greater than 90%. Sensitivity and specificity were calculated and compared using methods described elsewhere. RESULTS There were 251 patients included in this study. HHAC had superior sensitivity and specificity for the detection of FGR (sensitivity, 100% vs 42.86%) and (specificity, 92.62% vs 85.24%). HHAC had higher specificity but lower sensitivity when screening for LGA (specificity, 85.66% vs 66.39%) and (sensitivity, 57.14% vs 71.43%). CONCLUSION HHAC could prove to be a valuable screening tool in the detection of FGR. Further studies are needed in a larger population. PMID:25818672

  14. Growth and Plating of Cell Suspension Cultures of Datura Innoxia

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1974-01-01

    malate) or on NO3−-N alone. Dry weight yield was proportional to the amount of nitrate-N added (47 mg/mg N). Filtered suspension cultures containing single cells (plating cultures) could be grown in agar in petri dishes when NAA or 2,4-D were used as growth substances. Cells grew at densities above 500...

  15. Nerve Growth Factor in Cancer Cell Death and Survival

    International Nuclear Information System (INIS)

    Molloy, Niamh H.; Read, Danielle E.; Gorman, Adrienne M.

    2011-01-01

    One of the major challenges for cancer therapeutics is the resistance of many tumor cells to induction of cell death due to pro-survival signaling in the cancer cells. Here we review the growing literature which shows that neurotrophins contribute to pro-survival signaling in many different types of cancer. In particular, nerve growth factor, the archetypal neurotrophin, has been shown to play a role in tumorigenesis over the past decade. Nerve growth factor mediates its effects through its two cognate receptors, TrkA, a receptor tyrosine kinase and p75 NTR , a member of the death receptor superfamily. Depending on the tumor origin, pro-survival signaling can be mediated by TrkA receptors or by p75 NTR . For example, in breast cancer the aberrant expression of nerve growth factor stimulates proliferative signaling through TrkA and pro-survival signaling through p75 NTR . This latter signaling through p75 NTR promotes increased resistance to the induction of cell death by chemotherapeutic treatments. In contrast, in prostate cells the p75 NTR mediates cell death and prevents metastasis. In prostate cancer, expression of this receptor is lost, which contributes to tumor progression by allowing cells to survive, proliferate and metastasize. This review focuses on our current knowledge of neurotrophin signaling in cancer, with a particular emphasis on nerve growth factor regulation of cell death and survival in cancer

  16. Virtual microstructural leaf tissue generation based on cell growth modeling

    NARCIS (Netherlands)

    Abera, M.K.; Retta, M.A.; Verboven, P.; Nicolai, B.M.; Berghuijs, H.; Struik, P.

    2016-01-01

    A cell growth algorithm for virtual leaf tissue generation is presented based on the biomechanics of plant cells in tissues. The algorithm can account for typical differences in epidermal layers, palisade mesophyll layer and spongy mesophyll layer which have characteristic differences in the

  17. Abnormal epigenetic changes during differentiation of human skeletal muscle stem cells from obese subjects

    DEFF Research Database (Denmark)

    Davegårdh, Cajsa; Broholm, Christa; Perfilyev, Alexander

    2017-01-01

    subjects. Interestingly, numerous genes implicated in metabolic diseases and epigenetic regulation showed differential methylation and expression during differentiation only in obese subjects. CONCLUSIONS: Our study identifies IL-32 as a novel myogenic regulator, provides a comprehensive map of the dynamic......BACKGROUND: Human skeletal muscle stem cells are important for muscle regeneration. However, the combined genome-wide DNA methylation and expression changes taking place during adult myogenesis have not been described in detail and novel myogenic factors may be discovered. Additionally, obesity...... is associated with low relative muscle mass and diminished metabolism. Epigenetic alterations taking place during myogenesis might contribute to these defects. METHODS: We used Infinium HumanMethylation450 BeadChip Kit (Illumina) and HumanHT-12 Expression BeadChip (Illumina) to analyze genome-wide DNA...

  18. Mechanisms of Abnormal Growth Regulation in Prostatic Adenocarcinoma Using Abi1/Hssh3bp1 Conditional Knockout Mouse Model

    Science.gov (United States)

    2009-06-01

    deletion involving two microsatellite markers, D10S89 and D10S111, did not express Abi1/Hssh3bp1. Additionally, 5 of 11 tumors that were diploid for...such as viruses, bacteria , and apoptotic fragments can be internalized by macropinocytosis (Fiorentini et al., 2003; Krysko et al., 21 2006; Meier and...Rho GTPases by protein toxins and apoptosis: molecular strategies of pathogenic bacteria . Cell Death Differ. 10:147-52. Funato, Y., T. Terabayashi, N

  19. Non-invasive prenatal cell-free fetal DNA testing for down syndrome and other chromosomal abnormalities

    Directory of Open Access Journals (Sweden)

    Darija Strah

    2015-12-01

    Full Text Available Background: Chorionic villus sampling and amniocentesis as definitive diagnostic procedures represent a gold standard for prenatal diagnosis of chromosomal abnormalities. The methods are invasive and lead to a miscarriage and fetal loss in approximately 0.5–1 %. Non-invasive prenatal DNA testing (NIPT is based on the analysis of cell-free fetal DNA from maternal blood. It represents a highly accurate screening test for detecting the most common fetal chromosomal abnormalities. In our study we present the results of NIPT testing in the Diagnostic Center Strah, Slovenia, over the last 3 years.Methods: In our study, 123 pregnant women from 11th to 18th week of pregnancy were included. All of them had First trimester assessment of risk for trisomy 21, done before NIPT testing.Results: 5 of total 6 high-risk NIPT cases (including 3 cases of Down syndrome and 2 cases of Klinefelter’s syndrome were confirmed by fetal karyotyping. One case–Edwards syndrome was false positive. Patau syndrome, triple X syndrome or Turner syndrome were not observed in any of the cases. Furthermore, there were no false negative cases reported. In general, NIPT testing had 100 % sensitivity (95 % confidence interval: 46.29 %–100.00 % and 98.95 % specificity (95 % confidence interval: 93.44 %–99.95 %. In determining Down syndrome alone, specificity (95 % confidence interval: 95.25 %- 100.00 % and sensitivity (95 % confidence interval: 31.00 %–100.00 % turned out to be 100 %. In 2015, the average turnaround time for analysis was 8.3 days from the day when the sample was taken. Repeated blood sampling was required in 2 cases (redraw rate = 1.6 %.Conclusions: Our results confirm that NIPT represents a fast, safe and highly accurate advanced screening test for most common chromosomal abnormalities. In current clinical practice, NIPT would significantly decrease the number of unnecessary invasive procedures and the rate of fetal

  20. Trivalent dimethylarsenic compound induces histone H3 phosphorylation and abnormal localization of Aurora B kinase in HepG2 cells

    International Nuclear Information System (INIS)

    Suzuki, Toshihide; Miyazaki, Koichi; Kita, Kayoko; Ochi, Takafumi

    2009-01-01

    Trivalent dimethylarsinous acid [DMA(III)] has been shown to induce mitotic abnormalities, such as centrosome abnormality, multipolar spindles, multipolar division, and aneuploidy, in several cell lines. In order to elucidate the mechanisms underlying these mitotic abnormalities, we investigated DMA(III)-mediated changes in histone H3 phosphorylation and localization of Aurora B kinase, which is a key molecule in cell mitosis. DMA(III) caused the phosphorylation of histone H3 (ser10) and was distributed predominantly in mitotic cells, especially in prometaphase cells. By contrast, most of the phospho-histone H3 was found to be localized in interphase cells after treatment with inorganic arsenite [iAs(III)], suggesting the involvement of a different pathway in phosphorylation. DMA(III) activated Aurora B kinase and slightly activated ERK MAP kinase. Phosphorylation of histone H3 by DMA(III) was effectively reduced by ZM447439 (Aurora kinase inhibitor) and slightly reduced by U0126 (MEK inhibitor). By contrast, iAs(III)-dependent histone H3 phosphorylation was markedly reduced by U0126. Aurora B kinase is generally localized in the midbody during telophase and plays an important role in cytokinesis. However, in some cells treated with DMA(III), Aurora B was not localized in the midbody of telophase cells. These findings suggested that DMA(III) induced a spindle abnormality, thereby activating the spindle assembly checkpoint (SAC) through the Aurora B kinase pathway. In addition, cytokinesis was not completed because of the abnormal localization of Aurora B kinase by DMA(III), thereby resulting in the generation of multinucleated cells. These results provide insight into the mechanism of arsenic tumorigenesis.

  1. Coxsackie and adenovirus receptor is a critical regulator for the survival and growth of oral squamous carcinoma cells.

    Science.gov (United States)

    Saito, K; Sakaguchi, M; Iioka, H; Matsui, M; Nakanishi, H; Huh, N H; Kondo, E

    2014-03-06

    Coxsackie and adenovirus receptor (CAR) is essential for adenovirus infection to target cells, and its constitutive expression in various cancerous and normal tissues has been reported. Recently, the biological role of CAR in human cancers of several different origins has been investigated with respect to tumor progression, metastasis and tumorigenesis. However, its biological function in tumor cells remains controversial. Here we report the critical role of CAR in growth regulation of oral squamous cell carcinomas (SCCs) in vitro and in vivo via the specific interaction with Rho-associated protein kinase (ROCK). Loss of endogenous CAR expression by knockdown using specific small interfering RNA (siRNA) against CAR facilitates growth suppression of SCC cells due to cell dissociation, followed by apoptosis. The consequent morphological reaction was reminiscent of anoikis, rather than epithelial-mesenchymal transition, and the dissociation of oral SCC cells was triggered not by lack of contact with extracellular matrix, but by loss of cell-to-cell contact caused by abnormal translocation of E-cadherin from surface membrane to cytoplasm. Immunoprecipitation assays of the CAR-transfected oral SCC cell line, HSC-2, with or without ROCK inhibitor (Y-27632) revealed that CAR directly associates with ROCKI and ROCKII, which results in inhibition of ROCK activity and contributes to maintenance of cell-to-cell adhesion for their growth and survival. Based on these findings, in vivo behavior of CAR-downregulated HSC-2 cells from siRNA knockdown was compared with that of normally CAR-expressing cells in intraperitoneally xenografted mouse models. The mice engrafted with CAR siRNA-pretreated HSC-2 cells showed poor formation of metastatic foci in contrast to those implanted with the control siRNA-pretreated cells. Thus, CAR substantially has an impact on growth and survival of oral SCC cells as a negative regulator of ROCK in vitro and in vivo.

  2. Automated identification of abnormal metaphase chromosome cells for the detection of chronic myeloid leukemia using microscopic images

    Science.gov (United States)

    Wang, Xingwei; Zheng, Bin; Li, Shibo; Mulvihill, John J.; Chen, Xiaodong; Liu, Hong

    2010-07-01

    Karyotyping is an important process to classify chromosomes into standard classes and the results are routinely used by the clinicians to diagnose cancers and genetic diseases. However, visual karyotyping using microscopic images is time-consuming and tedious, which reduces the diagnostic efficiency and accuracy. Although many efforts have been made to develop computerized schemes for automated karyotyping, no schemes can get be performed without substantial human intervention. Instead of developing a method to classify all chromosome classes, we develop an automatic scheme to detect abnormal metaphase cells by identifying a specific class of chromosomes (class 22) and prescreen for suspicious chronic myeloid leukemia (CML). The scheme includes three steps: (1) iteratively segment randomly distributed individual chromosomes, (2) process segmented chromosomes and compute image features to identify the candidates, and (3) apply an adaptive matching template to identify chromosomes of class 22. An image data set of 451 metaphase cells extracted from bone marrow specimens of 30 positive and 30 negative cases for CML is selected to test the scheme's performance. The overall case-based classification accuracy is 93.3% (100% sensitivity and 86.7% specificity). The results demonstrate the feasibility of applying an automated scheme to detect or prescreen the suspicious cancer cases.

  3. Early Reticulocytosis and Anemia Are Associated with Abnormal and Conditional Transcranial Doppler Velocities in Children with Sickle Cell Anemia.

    Science.gov (United States)

    Meier, Emily Riehm; Fasano, Ross M; Estrada, Monica; He, Jianping; Luban, Naomi L C; McCarter, Robert

    2016-02-01

    To improve prediction of sickle cell anemia severity at an early age, we evaluated whether absolute reticulocyte count (ARC) or hemoglobin (Hb) levels during early infancy (2-6 months of age) in patients with sickle cell anemia predict the risk of later developing an abnormal (abTCD) or conditional (cdTCD) Transcranial Doppler (TCD). We used chart review to identify 121 consecutive patients who underwent TCD screening and had steady state ARC and Hb levels recorded between 2 and 6 months of age. Cox regression analysis was used to determine the relationship between ARC, Hb levels, and risk of developing cdTCD/abTCD over time. Mean ARC in early infancy was highest and mean Hb lowest in those children with abTCDs and cdTCDs. Cox regression analysis revealed that those subjects with an ARC ≥200 K/μL in early infancy had nearly 3 times the risk of having an abTCD/cdTCD than the group with an ARC <200 K/μL, and patients with a Hb <8.5 g/dL had 2.7 times the risk of having an abTCD/cdTCD. These data suggest that both elevated ARC and low baseline Hb during early infancy are associated with an increased risk of developing a cdTCD or abTCD later in childhood. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Cognitive and behavioral abnormalities in children after hematopoietic stem cell transplantation for severe congenital immunodeficiencies.

    Science.gov (United States)

    Titman, Penny; Pink, Elizabeth; Skucek, Emily; O'Hanlon, Katherine; Cole, Tim J; Gaspar, Jane; Xu-Bayford, Jinhua; Jones, Alison; Thrasher, Adrian J; Davies, E Graham; Veys, Paul A; Gaspar, H Bobby

    2008-11-01

    Hematopoietic stem cell transplantation (HSCT) is a highly successful treatment for severe congenital immunodeficiencies. However, some studies have suggested that children may experience cognitive difficulties after HSCT. This large-scale study assessed cognitive and behavioral function for the cohort of children treated by HSCT at one center between 1979 and 2003 to determine the frequency and severity of problems and to identify risk factors. A total of 105 patients were assessed on standardized measures of cognitive and emotional and behavioral function together with a control group of unaffected siblings. The average IQ for the cohort was 85 (95% confidence interval, 81-90), significantly lower than both the population average of 100 (P severe combined immunodeficiency, and consanguinity were associated with worse outcome but that age at transplantation and chemotherapy conditioning were not. Children treated by HSCT for severe immunodeficiency have an increased risk of long-term cognitive difficulties and associated emotional and behavioral difficulties. The specific genetic diagnosis, consanguinity, and severe clinical course are associated with poor outcome. Long-term follow-up of these patients should include screening to identify and manage these problems more effectively.

  5. Abnormal autonomic cardiac response to transient hypoxia in sickle cell anemia

    International Nuclear Information System (INIS)

    Sangkatumvong, S; Khoo, M C K; Coates, T D

    2008-01-01

    The objective of this study was to non-invasively assess cardiac autonomic control in subjects with sickle cell anemia (SCA) by tracking the changes in heart rate variability (HRV) that occur following brief exposure to a hypoxic stimulus. Five African–American SCA patients and seven healthy control subjects were recruited to participate in this study. Each subject was exposed to a controlled hypoxic stimulus consisting of five breaths of nitrogen. Time-varying spectral analysis of HRV was applied to estimate the cardiac autonomic response to the transient episode of hypoxia. The confounding effects of changes in respiration on the HRV spectral indices were reduced by using a computational model. A significant decrease in the parameters related to parasympathetic control was detected in the post-hypoxic responses of the SCA subjects relative to normal controls. The spectral index related to sympathetic activity, on the other hand, showed a tendency to increase the following hypoxic stimulation, but the change was not significant. This study suggests that there is some degree of cardiovascular autonomic dysfunction in SCA that is revealed by the response to transient hypoxia

  6. 8q24/MYC rearrangement is a recurrent cytogenetic abnormality in blastic plasmacytoid dendritic cell neoplasms.

    Science.gov (United States)

    Boddu, Prajwal C; Wang, Sa A; Pemmaraju, Naveen; Tang, Zhenya; Hu, Shimin; Li, Shaoying; Xu, Jie; Medeiros, L Jeffrey; Tang, Guilin

    2018-03-01

    8q24/MYC rearrangements resulting in MYC overexpression occur most frequently in lymphoid neoplasms. MYC rearrangements rarely have been described in blastic plasmacytoid dendritic cell neoplasm (BPDCN). Over an 8-year period in our hospital, 5 of 41 (12%) patients with BPDCN were shown 8q24/MYC rearrangements, including 2 with t(6;8)(p21;q24), 1 with t(8;14)(q24;q32), 1 with t(X;8)(q24;q24), and 1 with t(3;8)(p25;q24). 8q24/MYC rearrangement was present in the stemline in 4 patients and in the sideline in one; the latter was a patient with primary myelofibrosis who then developed BPDCN. MYC overexpression by immunohistochemistry was variable, but largely correlated with the percentage of blasts. Four patients were treated with acute lymphoblastic leukemia-type chemotherapy regimens and 3 had a good response; 1 patient was treated with acute myeloid leukemia-type regimens and was refractory to therapy. By the end of the follow-up, 3 patients died and 2 were alive in complete remission. We conclude that 8q24/MYC rearrangements occur in 10-15% of BPDCN, often partnered with non-immunoglobulin chromosomal loci, and may play a role in BPDCN pathogenesis. In this small patient sample, patients with BPDCN and MYC rearrangement often responded to therapy with acute lymphoblastic leukemia-type chemotherapy regimens. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Mechanical characterization of yeast cells: effects of growth conditions.

    Science.gov (United States)

    Overbeck, A; Kampen, I; Kwade, A

    2015-10-01

    Industrial biotechnology uses microbiological cells to produce a wide range of products. While the organisms in question are well understood regarding their genetic and molecular properties, less is known about their mechanical properties. Previous work has established a testing procedure for single Saccharomyces cerevisiae cells using a Nanoindenter equipped with a Flat Punch probe, allowing the compression between two parallel surfaces. The resulting force-displacement curves clearly showed the bursting of the cells and served to determine characteristic values such as the bursting force, bursting energy and relative deformation. This study examined the mechanical characteristics of yeast cells under the influence of varying cultivation parameters, namely the pH value, temperature, aeration rate, stirrer speed and culture medium composition. It was observed that only temperature and medium composition showed significant effect on the mechanical properties of the cells. Higher temperatures during cultivation caused lower bursting forces and energies. Further analysis of the data showed that the mechanical characteristics of the cells were only influenced by parameters which also had an influence on the growth rate. In conclusion, higher growth rates result in a lower mechanical strength of the yeast cells. This study provides data on the influence of growth conditions on the mechanical properties of yeast cells. Single cell compression tests on Saccharomyces cerevisiae cells indicate that higher growth rates result in a lower mechanical strength of the cells. As in biotechnological processes mechanical degradation is often part of the downstream process to release the product from the micro-organisms, the knowledge about the mechanical properties of the cells is relevant for process optimization. © 2015 The Society for Applied Microbiology.

  8. Erythropoietin Protects Against Lipopolysaccharide-Induced Microgliosis and Abnormal Granule Cell Development in the Ovine Fetal Cerebellum

    Directory of Open Access Journals (Sweden)

    Annie R. A. McDougall

    2017-07-01

    density of Iba-1-positive microglia in the deep WM or the density of apopotic cells in the cerebellum. LPS-induced intrauterine inflammation caused microgliosis and abnormal development of granule cells. rhEPO ameliorated these changes, suggesting that it is neuroprotective against LPS-induced inflammatory effects in the cerebellum.

  9. Mice deficient of glutamatergic signaling from intrinsically photosensitive retinal ganglion cells exhibit abnormal circadian photoentrainment.

    Directory of Open Access Journals (Sweden)

    Nicole Purrier

    Full Text Available Several aspects of behavior and physiology, such as sleep and wakefulness, blood pressure, body temperature, and hormone secretion exhibit daily oscillations known as circadian rhythms. These circadian rhythms are orchestrated by an intrinsic biological clock in the suprachiasmatic nuclei (SCN of the hypothalamus which is adjusted to the daily environmental cycles of day and night by the process of photoentrainment. In mammals, the neuronal signal for photoentrainment arises from a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs that send a direct projection to the SCN. ipRGCs also mediate other non-image-forming (NIF visual responses such as negative masking of locomotor activity by light, and the pupillary light reflex (PLR via co-release of neurotransmitters glutamate and pituitary adenylate cyclase-activating peptide (PACAP from their synaptic terminals. The relative contribution of each neurotransmitter system for the circadian photoentrainment and other NIF visual responses is still unresolved. We investigated the role of glutamatergic neurotransmission for circadian photoentrainment and NIF behaviors by selective ablation of ipRGC glutamatergic synaptic transmission in mice. Mutant mice displayed delayed re-entrainment to a 6 h phase shift (advance or delay in the light cycle and incomplete photoentrainment in a symmetrical skeleton photoperiod regimen (1 h light pulses between 11 h dark periods. Circadian rhythmicity in constant darkness also was reduced in some mutant mice. Other NIF responses such as the PLR and negative masking responses to light were also partially attenuated. Overall, these results suggest that glutamate from ipRGCs drives circadian photoentrainment and negative masking responses to light.

  10. A splice site mutation in laminin-α2 results in a severe muscular dystrophy and growth abnormalities in zebrafish.

    Directory of Open Access Journals (Sweden)

    Vandana A Gupta

    Full Text Available Congenital muscular dystrophy (CMD is a clinically and genetically heterogeneous group of inherited muscle disorders. In patients, muscle weakness is usually present at or shortly after birth and is progressive in nature. Merosin deficient congenital muscular dystrophy (MDC1A is a form of CMD caused by a defect in the laminin-α2 gene (LAMA2. Laminin-α2 is an extracellular matrix protein that interacts with the dystrophin-dystroglycan (DGC complex in membranes providing stability to muscle fibers. In an N-ethyl-N-nitrosourea mutagenesis screen to develop zebrafish models of neuromuscular diseases, we identified a mutant fish that exhibits severe muscular dystrophy early in development. Genetic mapping identified a splice site mutation in the lama2 gene. This splice site is highly conserved in humans and this mutation results in mis-splicing of RNA and a loss of protein function. Homozygous lama2 mutant zebrafish, designated lama2(cl501/cl501, exhibited reduced motor function and progressive degeneration of skeletal muscles and died at 8-15 days post fertilization. The skeletal muscles exhibited damaged myosepta and detachment of myofibers in the affected fish. Laminin-α2 deficiency also resulted in growth defects in the brain and eye of the mutant fish. This laminin-α2 deficient mutant fish represents a novel disease model to develop therapies for modulating splicing defects in congenital muscular dystrophies and to restore the muscle function in human patients with CMD.

  11. Mechanical behavior of cells within a cell-based model of wheat leaf growth

    Directory of Open Access Journals (Sweden)

    Ulyana Zubairova

    2016-12-01

    Full Text Available Understanding the principles and mechanisms of cell growth coordination in plant tissue remains an outstanding challenge for modern developmental biology. Cell-based modeling is a widely used technique for studying the geometric and topological features of plant tissue morphology during growth. We developed a quasi-one-dimensional model of unidirectional growth of a tissue layer in a linear leaf blade that takes cell autonomous growth mode into account. The model allows for fitting of the visible cell length using the experimental cell length distribution along the longitudinal axis of a wheat leaf epidermis. Additionally, it describes changes in turgor and osmotic pressures for each cell in the growing tissue. Our numerical experiments show that the pressures in the cell change over the cell cycle, and in symplastically growing tissue, they vary from cell to cell and strongly depend on the leaf growing zone to which the cells belong. Therefore, we believe that the mechanical signals generated by pressures are important to consider in simulations of tissue growth as possible targets for molecular genetic regulators of individual cell growth.

  12. Tempol inhibits growth of As4.1 juxtaglomerular cells via cell cycle arrest and apoptosis.

    Science.gov (United States)

    Han, Yong Hwan; Park, Woo Hyun

    2012-03-01

    A stable nitroxide 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-osyl (Tempol) is widely used as an antioxidant in vitro and in vivo. In this study, we investigated the effects of Tempol on the growth of As4.1 juxtaglomerular cells in relation to cell cycle and cell death. Tempol dose-dependently decreased the growth of As4.1 cells with an IC50 of ~1 mM at 48 h. DNA flow cytometry analysis and BrdU staining indicated that Tempol induced S phase arrest, which is accompanied by a downregulation of cyclin A. Tempol also induced apoptotic cell death, which was accompanied by the loss of mitochondrial membrane potential (MMP; ∆Ψm), an activation of caspase-3 and cleavage of poly(ADP-ribose)polymerase-1 (PARP-1). Furthermore, Tempol increased reactive oxygen species (ROS) levels, and the phosphorylation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). MEK and JNK inhibitors significantly attenuated a growth inhibition in Tempol-treated As4.1 cells. In conclusion, Tempol inhibited the growth of As4.1 cells via cell cycle arrest and apoptosis. Tempol also activated ERK and JNK signaling, which was responsible for cell growth inhibition. Our present data provide useful information for the toxicological effects of Tempol in juxtaglomerular cells in relation to cell growth inhibition and cell death.

  13. Associations between abnormal vitamin D metabolism pathway function and non-small cell lung cancer.

    Science.gov (United States)

    Ge, Nan; Chu, Xiu-Mei; Xuan, Yun-Peng; Ren, Dun-Qiang; Wang, Yongjie; Ma, Kai; Gao, Hui-Jiang; Jiao, Wen-Jie

    2017-12-01

    Lung cancer is a type of malignant tumor derived from the respiratory system, which is the leading cause of cancer-associated mortality worldwide, of which ~80% of cases are attributable to non-small cell lung cancer (NSCLC). A previous study demonstrated that 1α,25-Dihydroxyvitamin D 3 (1α,25(OH) 2 D 3 ), derived from the vitamin D metabolic pathway contributes an antitumor effect. Aberrant expression of the essential enzyme encoding genes, Cytochrome P450 Family 27 Subfamily A Member 1 ( CYP27A1 ), Cytochrome P450 Family 27 Subfamily B Member 1 ( CYP27B1 ), and Cytochrome P450 Family 24 Subfamily A Member 1 ( CYP24A1 ) may be associated with lung cancer. However, a lack of evidence exists concerning the association between CYP27A1 , CYP27B1 , CYP24A1 expression and NSCLC. The aim of the present study was to investigate the functions of CYP27A1, CYP27B1 and CYP24A1 expression in NSCLC. Lung cancer tissue and para-carcinoma control tissue were collected from patients with NSCLC. Reverse transcription-quantitative polymerase chain reaction was applied to analyze CYP27A1, CYP27B1 and CYP24A1 mRNA expression in lung cancer tissues. An association analysis was performed between the aforementioned metabolic enzymes and patients with NSCLC age, gender, tumor node metastasis (TNM) stage, pathological type, differentiation and prognosis. CYP27B1 and CYP24A1 mRNA were upregulated in NSCLC compared with controls (PCYP27A1 expression were observed between NSCLC and control. In addition, CYP24A1 expression was not associated with age, sex, smoking or TNM stage, but was associated with pathological type, differentiation and prognosis (P<0.05). CYP27B1 expression was significantly associated with TNM stage, differentiation, and prognosis, but not age, sex, smoking or pathological type. In conclusion, CYP27B1 and CYP24A1 may be considered as independent prognostic factors of NSCLC and may be novel therapeutic targets to assist clinical diagnosis, treatment and prognosis of the

  14. Effector and naturally occurring regulatory T cells display no abnormalities in activation induced cell death in NOD mice.

    Directory of Open Access Journals (Sweden)

    Ayelet Kaminitz

    Full Text Available BACKGROUND: Disturbed peripheral negative regulation might contribute to evolution of autoimmune insulitis in type 1 diabetes. This study evaluates the sensitivity of naïve/effector (Teff and regulatory T cells (Treg to activation-induced cell death mediated by Fas cross-linking in NOD and wild-type mice. PRINCIPAL FINDINGS: Both effector (CD25(-, FoxP3(- and suppressor (CD25(+, FoxP3(+ CD4(+ T cells are negatively regulated by Fas cross-linking in mixed splenocyte populations of NOD, wild type mice and FoxP3-GFP trangeneess. Proliferation rates and sensitivity to Fas cross-linking are dissociated in Treg cells: fast cycling induced by IL-2 and CD3/CD28 stimulation improve Treg resistance to Fas-ligand (FasL in both strains. The effector and suppressor CD4(+ subsets display balanced sensitivity to negative regulation under baseline conditions, IL-2 and CD3/CD28 stimulation, indicating that stimulation does not perturb immune homeostasis in NOD mice. Effective autocrine apoptosis of diabetogenic cells was evident from delayed onset and reduced incidence of adoptive disease transfer into NOD.SCID by CD4(+CD25(- T cells decorated with FasL protein. Treg resistant to Fas-mediated apoptosis retain suppressive activity in vitro. The only detectable differential response was reduced Teff proliferation and upregulation of CD25 following CD3-activation in NOD mice. CONCLUSION: These data document negative regulation of effector and suppressor cells by Fas cross-linking and dissociation between sensitivity to apoptosis and proliferation in stimulated Treg. There is no evidence that perturbed AICD in NOD mice initiates or promotes autoimmune insulitis.

  15. Mice lacking NKT cells but with a complete complement of CD8+ T-cells are not protected against the metabolic abnormalities of diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Benjamin S Mantell

    Full Text Available The contribution of natural killer T (NKT cells to the pathogenesis of metabolic abnormalities of obesity is controversial. While the combined genetic deletion of NKT and CD8(+ T-cells improves glucose tolerance and reduces inflammation, interpretation of these data have been complicated by the recent observation that the deletion of CD8(+ T-cells alone reduces obesity-induced inflammation and metabolic dysregulation, leaving the issue of the metabolic effects of NKT cell depletion unresolved. To address this question, CD1d null mice (CD1d(-/-, which lack NKT cells but have a full complement of CD8(+ T-cells, and littermate wild type controls (WT on a pure C57BL/6J background were exposed to a high fat diet, and glucose intolerance, insulin resistance, dyslipidemia, inflammation, and obesity were assessed. Food intake (15.5±4.3 vs 15.3±1.8 kcal/mouse/day, weight gain (21.8±1.8 vs 22.8±1.4 g and fat mass (18.6±1.9 vs 19.5±2.1 g were similar in CD1d(-/- and WT, respectively. As would be expected from these data, metabolic rate (3.0±0.1 vs 2.9±0.2 ml O(2/g/h and activity (21.6±4.3 vs 18.5±2.6 beam breaks/min were unchanged by NKT cell depletion. Furthermore, the degree of insulin resistance, glucose intolerance, liver steatosis, and adipose and liver inflammatory marker expression (TNFα, IL-6, IL-10, IFN-γ, MCP-1, MIP1α induced by high fat feeding in CD1d(-/- were not different from WT. We conclude that deletion of NKT cells, in the absence of alterations in the CD8(+ T-cell population, is insufficient to protect against the development of the metabolic abnormalities of diet-induced obesity.

  16. Ectopic cerebellar cell migration causes maldevelopment of Purkinje cells and abnormal motor behaviour in Cxcr4 null mice.

    Directory of Open Access Journals (Sweden)

    Guo-Jen Huang

    Full Text Available SDF-1/CXCR4 signalling plays an important role in neuronal cell migration and brain development. However, the impact of CXCR4 deficiency in the postnatal mouse brain is still poorly understood. Here, we demonstrate the importance of CXCR4 on cerebellar development and motor behaviour by conditional inactivation of Cxcr4 in the central nervous system. We found CXCR4 plays a key role in cerebellar development. Its loss leads to defects in Purkinje cell dentritogenesis and axonal projection in vivo but not in cell culture. Transcriptome analysis revealed the most significantly affected pathways in the Cxcr4 deficient developing cerebellum are involved in extra cellular matrix receptor interactions and focal adhesion. Consistent with functional impairment of the cerebellum, Cxcr4 knockout mice have poor coordination and balance performance in skilled motor tests. Together, these results suggest ectopic the migration of granule cells impairs development of Purkinje cells, causes gross cerebellar anatomical disruption and leads to behavioural motor defects in Cxcr4 null mice.

  17. Immunoreactive transforming growth factor alpha and epidermal growth factor in oral squamous cell carcinomas

    DEFF Research Database (Denmark)

    Therkildsen, M H; Poulsen, Steen Seier; Bretlau, P

    1993-01-01

    , the cells above the basal cell layer were positive for both TGF-alpha and EGF. The same staining pattern was observed in oral mucosa obtained from healthy persons. In moderately to well differentiated carcinomas, the immunoreactivity was mainly confined to the cytologically more differentiated cells, thus......Forty oral squamous cell carcinomas have been investigated immunohistochemically for the presence of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF). The same cases were recently characterized for the expression of EGF-receptors. TGF-alpha was detected...... previous results confirms the existence of TGF-alpha, EGF, and EGF-receptors in the majority of oral squamous cell carcinomas and their metastases....

  18. Growth inhibitory effects of quercetin on bladder cancer cell.

    Science.gov (United States)

    Ma, Li; Feugang, Jean Magloire; Konarski, Patricia; Wang, Jian; Lu, Jianzhong; Fu, Shengjun; Ma, Baoliang; Tian, Binqiang; Zou, Changping; Wang, Zhingping

    2006-09-01

    Quercetin, a flavonoid found in many fruits and vegetables, belongs to an extensive class of polyphenolic compounds. Previous studies reported that quercetin inhibits the proliferation of various cancer cells and tumor growth in animal models. We investigated the growth inhibition and colony formation of quercetin on three bladder cancer cells (EJ, J82 and T24). The expression of tumor suppressor genes and oncogenes such as P53, Survivin, PTEN, as well as the methylation status of these genes was also evaluated. We observed that quercetin induced apoptosis in bladder cancer cells in a time- and dose-dependent manner. Quercetin (100 micromolars) significantly inhibited EJ, T24 and J82 cell growth accompanied by an increase in the G0/G1 phase. In all cell lines, quercetin decreased the expression of mutant P53 and Survivin proteins. However, there was no change in the level of PTEN protein. Moreover, the DNA methylation levels of the estrogen receptor (Er-beta), P16INK4a and RASSF1A were strongly decreased (from 35 to 70%) in the quercetin-treated group compared to the control. In conclusion, our study suggested that quercetin inhibits growth, colony formation and hypermethylation of bladder cancer cell lines. Quercetin-induced apoptosis might be associated with a decrease in mutant P53 and Survivin proteins.

  19. Bacterial cell curvature through mechanical control of cell growth

    DEFF Research Database (Denmark)

    Cabeen, M.; Charbon, Godefroid; Vollmer, W.

    2009-01-01

    The cytoskeleton is a key regulator of cell morphogenesis. Crescentin, a bacterial intermediate filament-like protein, is required for the curved shape of Caulobacter crescentus and localizes to the inner cell curvature. Here, we show that crescentin forms a single filamentous structure...... that collapses into a helix when detached from the cell membrane, suggesting that it is normally maintained in a stretched configuration. Crescentin causes an elongation rate gradient around the circumference of the sidewall, creating a longitudinal cell length differential and hence curvature. Such curvature...... can be produced by physical force alone when cells are grown in circular microchambers. Production of crescentin in Escherichia coli is sufficient to generate cell curvature. Our data argue for a model in which physical strain borne by the crescentin structure anisotropically alters the kinetics...

  20. Total triterpenoids from Ganoderma Lucidum suppresses prostate cancer cell growth by inducing growth arrest and apoptosis.

    Science.gov (United States)

    Wang, Tao; Xie, Zi-ping; Huang, Zhan-sen; Li, Hao; Wei, An-yang; Di, Jin-ming; Xiao, Heng-jun; Zhang, Zhi-gang; Cai, Liu-hong; Tao, Xin; Qi, Tao; Chen, Di-ling; Chen, Jun

    2015-10-01

    In this study, one immortalized human normal prostatic epithelial cell line (BPH) and four human prostate cancer cell lines (LNCaP, 22Rv1, PC-3, and DU-145) were treated with Ganoderma Lucidum triterpenoids (GLT) at different doses and for different time periods. Cell viability, apoptosis, and cell cycle were analyzed using flow cytometry and chemical assays. Gene expression and binding to DNA were assessed using real-time PCR and Western blotting. It was found that GLT dose-dependently inhibited prostate cancer cell growth through induction of apoptosis and cell cycle arrest at G1 phase. GLT-induced apoptosis was due to activation of Caspases-9 and -3 and turning on the downstream apoptotic events. GLT-induced cell cycle arrest (mainly G1 arrest) was due to up-regulation of p21 expression at the early time and down-regulation of cyclin-dependent kinase 4 (CDK4) and E2F1 expression at the late time. These findings demonstrate that GLT suppresses prostate cancer cell growth by inducing growth arrest and apoptosis, which might suggest that GLT or Ganoderma Lucidum could be used as a potential therapeutic drug for prostate cancer.

  1. Aberrant activation of NF-κB signaling in mammary epithelium leads to abnormal growth and ductal carcinoma in situ

    International Nuclear Information System (INIS)

    Barham, Whitney; Chen, Lianyi; Tikhomirov, Oleg; Onishko, Halina; Gleaves, Linda; Stricker, Thomas P.; Blackwell, Timothy S.; Yull, Fiona E.

    2015-01-01

    activated ductal tissue. These results indicate that aberrant NF-κB activation within mammary epithelium can lead to molecular and morphological changes consistent with the earliest stages of breast cancer. Thus, inhibition of NF-κB signaling following acute inflammation or the initial signs of hyperplastic ductal growth could represent an important opportunity for breast cancer prevention. The online version of this article (doi:10.1186/s12885-015-1652-8) contains supplementary material, which is available to authorized users

  2. Abnormal Grain Growth in the Heat Affected Zone of Friction Stir Welded Joint of 32Mn-7Cr-1Mo-0.3N Steel during Post-Weld Heat Treatment

    Directory of Open Access Journals (Sweden)

    Yijun Li

    2018-04-01

    Full Text Available The abnormal grain growth in the heat affected zone of the friction stir welded joint of 32Mn-7Cr-1Mo-0.3N steel after post-weld heat treatment was confirmed by physical simulation experiments. The microstructural stability of the heat affected zone can be weakened by the welding thermal cycle. It was speculated to be due to the variation of the non-equilibrium segregation state of solute atoms at the grain boundaries. In addition, the pressure stress in the welding process can promote abnormal grain growth in the post-weld heat treatment.

  3. Hydrodynamic effects on cell growth in agitated microcarrier bioreactors

    Science.gov (United States)

    Cherry, Robert S.; Papoutsakis, E. Terry

    1988-01-01

    The net growth rate of bovine embryonic kidney cells in microcarrier bioreactor is the result of a variable death rate imposed on a cell culture trying to grow at a constant intrinsic growth rate. The death rate is a function of the agitation conditions in the system, and increases at higher agitation because of increasingly energetic interactions of the cell covered microcarriers with turbulent eddies in the fluid. At very low agitation rates bead-bead bridging becomes important; the large clumps formed by bridging can interact with larger eddies than single beads, leading to a higher death rate at low agitation. The growth and death rate were correlated with a dimensionless eddy number which compares eddy forces to the buoyant force on the bead.

  4. Induction of embryogenesis in Brassica napus microspores produces a callosic subintinal layer and abnormal cell walls with altered levels of callose and cellulose

    Directory of Open Access Journals (Sweden)

    Veronica eParra-Vega

    2015-11-01

    Full Text Available The induction of microspore embryogenesis produces dramatic changes in different aspects of the cell physiology and structure. Changes at the cell wall level are among the most intriguing and poorly understood. In this work, we used high pressure freezing and freeze substitution, immunolocalization, confocal and electron microscopy to analyze the structure and composition of the first cell walls formed during conventional Brassica napus microspore embryogenesis, and in cultures treated to alter the intracellular Ca2+ levels. Our results revealed that one of the first signs of embryogenic commitment is the formation of a callose-rich, cellulose-deficient layer beneath the intine (the subintinal layer, and of irregular, incomplete cell walls. In these events, Ca2+ may have a role. We propose that abnormal cell walls are due to a massive callose synthesis and deposition of excreted cytoplasmic material, and the parallel inhibition of cellulose synthesis. These features were absent in pollen-like structures and in microspore-derived embryos, few days after the end of the heat shock, where abnormal cell walls were no longer produced. Together, our results provide an explanation to a series of relevant aspects of microspore embryogenesis including the role of Ca2+ and the occurrence of abnormal cell walls. In addition, our discovery may be the explanation to why nuclear fusions take place during microspore embryogenesis.

  5. Association between leg bowing and serum alkaline phosphatase level regardless of the presence of a radiographic growth plate abnormality in pediatric patients with genu varum.

    Science.gov (United States)

    Sakamoto, Yuko; Ishijima, Muneaki; Kinoshita, Mayuko; Liu, Lizu; Suzuki, Mitsuyoshi; Kim, Sung-Gon; Kamata, Koichi; Tokita, Akifumi; Kaneko, Haruka; Shimizu, Toshiaki; Kaneko, Kazuo; Nozawa, Masahiko

    2017-06-29

    When children around 2 years of age show leg bowing and diseases are ruled out based on radiographic findings without conducting blood tests, they are classified as "physiologic" genu varum. Since whether or not physiologic genu varum is associated with bone metabolism is unclear, this study was conducted to clarify the association between genu varum and bone metabolism in children. Thirty-five pediatric patients with genu varm who visited our out-patient clinic were enrolled. While two of the 35 children had nutritional rickets, showing abnormalities on both blood test (ALP, ≥1000 IU/L; iPTH, >65 pg/mL and 25(OH)D, ≤20 ng/mL) and radiographs (such as cupping, fraying or splaying), five of 35 children showed abnormalities on blood tests but not radiographs. While metaphyseal-diaphyseal angle (MDA) correlated with serum 25-hydroxy vitamin D (r = -0.35, p = 0.04) and magnesium (r = -0.36, p = 0.04), MDA and femorotibial angle (FTA) correlated with alkaline phosphatase (r = 0.43, p = 0.01 and r = 0.51, p = 0.006, respectively). A ridge regression analysis adjusted for age and body mass index indicated that ALP was associated with MDA and FTA. A logistic regression analysis adjusted for age and BMI indicated that higher ALP influenced an MDA >11°, which indicates the risk for the progression of genu varum (odds ratio 1.002, 95% confidence interval 1.0003-1.003, p = 0.021). The higher ALP (+100 IU), the higher risk of an MDA >11° (odds ratio 1.22). In conclusion, genu varum is associated with the alkaline phosphatase level regardless of the presence of radiographic abnormalities in the growth plate in children.

  6. Abnormal changes in NKT cells, the IGF-1 axis, and liver pathology in an animal model of ALS.

    Directory of Open Access Journals (Sweden)

    Arseny Finkelstein

    Full Text Available Amyotrophic lateral sclerosis (ALS is a rapidly progressing fatal neurodegenerative disorder characterized by the selective death of motor neurons (MN in the spinal cord, and is associated with local neuroinflammation. Circulating CD4(+ T cells are required for controlling the local detrimental inflammation in neurodegenerative diseases, and for supporting neuronal survival, including that of MN. T-cell deficiency increases neuronal loss, while boosting T cell levels reduces it. Here, we show that in the mutant superoxide dismutase 1 G93A (mSOD1 mouse model of ALS, the levels of natural killer T (NKT cells increased dramatically, and T-cell distribution was altered both in lymphoid organs and in the spinal cord relative to wild-type mice. The most significant elevation of NKT cells was observed in the liver, concomitant with organ atrophy. Hepatic expression levels of insulin-like growth factor (IGF-1 decreased, while the expression of IGF binding protein (IGFBP-1 was augmented by more than 20-fold in mSOD1 mice relative to wild-type animals. Moreover, hepatic lymphocytes of pre-symptomatic mSOD1 mice were found to secrete significantly higher levels of cytokines when stimulated with an NKT ligand, ex-vivo. Immunomodulation of NKT cells using an analogue of α-galactosyl ceramide (α-GalCer, in a specific regimen, diminished the number of these cells in the periphery, and induced recruitment of T cells into the affected spinal cord, leading to a modest but significant prolongation of life span of mSOD1 mice. These results identify NKT cells as potential players in ALS, and the liver as an additional site of major pathology in this disease, thereby emphasizing that ALS is not only a non-cell autonomous, but a non-tissue autonomous disease, as well. Moreover, the results suggest potential new therapeutic targets such as the liver for immunomodulatory intervention for modifying the disease, in addition to MN-based neuroprotection and systemic

  7. The Populus Class III HD ZIP transcription factor POPCORONA affects cell differentiation during secondary growth of woody stems.

    Directory of Open Access Journals (Sweden)

    Juan Du

    Full Text Available The developmental mechanisms regulating cell differentiation and patterning during the secondary growth of woody tissues are poorly understood. Class III HD ZIP transcription factors are evolutionarily ancient and play fundamental roles in various aspects of plant development. Here we investigate the role of a Class III HD ZIP transcription factor, POPCORONA, during secondary growth of woody stems. Transgenic Populus (poplar trees expressing either a miRNA-resistant POPCORONA or a synthetic miRNA targeting POPCORONA were used to infer function of POPCORONA during secondary growth. Whole plant, histological, and gene expression changes were compared for transgenic and wild-type control plants. Synthetic miRNA knock down of POPCORONA results in abnormal lignification in cells of the pith, while overexpression of a miRNA-resistant POPCORONA results in delayed lignification of xylem and phloem fibers during secondary growth. POPCORONA misexpression also results in coordinated changes in expression of genes within a previously described transcriptional network regulating cell differentiation and cell wall biosynthesis, and hormone-related genes associated with fiber differentiation. POPCORONA illustrates another function of Class III HD ZIPs: regulating cell differentiation during secondary growth.

  8. The Populus Class III HD ZIP transcription factor POPCORONA affects cell differentiation during secondary growth of woody stems.

    Science.gov (United States)

    Du, Juan; Miura, Eriko; Robischon, Marcel; Martinez, Ciera; Groover, Andrew

    2011-02-28

    The developmental mechanisms regulating cell differentiation and patterning during the secondary growth of woody tissues are poorly understood. Class III HD ZIP transcription factors are evolutionarily ancient and play fundamental roles in various aspects of plant development. Here we investigate the role of a Class III HD ZIP transcription factor, POPCORONA, during secondary growth of woody stems. Transgenic Populus (poplar) trees expressing either a miRNA-resistant POPCORONA or a synthetic miRNA targeting POPCORONA were used to infer function of POPCORONA during secondary growth. Whole plant, histological, and gene expression changes were compared for transgenic and wild-type control plants. Synthetic miRNA knock down of POPCORONA results in abnormal lignification in cells of the pith, while overexpression of a miRNA-resistant POPCORONA results in delayed lignification of xylem and phloem fibers during secondary growth. POPCORONA misexpression also results in coordinated changes in expression of genes within a previously described transcriptional network regulating cell differentiation and cell wall biosynthesis, and hormone-related genes associated with fiber differentiation. POPCORONA illustrates another function of Class III HD ZIPs: regulating cell differentiation during secondary growth.

  9. Actin polymerization drives polar growth in Arabidopsis root hair cells.

    Science.gov (United States)

    Vazquez, Luis Alfredo Bañuelos; Sanchez, Rosana; Hernandez-Barrera, Alejandra; Zepeda-Jazo, Isaac; Sánchez, Federico; Quinto, Carmen; Torres, Luis Cárdenas

    2014-01-01

    In plants, the actin cytoskeleton is a prime regulator of cell polarity, growth, and cytoplasmic streaming. Tip growth, as observed in root hairs, caulonema, and pollen tubes, is governed by many factors, including calcium gradients, exocytosis and endocytosis, reactive oxygen species, and the cytoskeleton. Several studies indicate that the polymerization of G-actin into F-actin also contributes to tip growth. The structure and function of F-actin within the apical dome is variable, ranging from a dense meshwork to sparse single filaments. The presence of multiple F-actin structures in the elongating apices of tip-growing cells suggests that this cytoskeletal array is tightly regulated. We recently reported that sublethal concentrations of fluorescently labeled cytochalasin could be used to visualize the distribution of microfilament plus ends using fluorescence microscopy, and found that the tip region of the growing root hair cells of a legume plant exhibits a clear response to the nodulation factors secreted by Rhizobium. (1) In this current work, we expanded our analysis using confocal microscopy and demonstrated the existence of highly dynamic fluorescent foci along Arabidopsis root hair cells. Furthermore, we show that the strongest fluorescence signal accumulates in the tip dome of the growing root hair and seems to be in close proximity to the apical plasma membrane. Based on these findings, we propose that actin polymerization within the dome of growing root hair cells regulates polar growth.

  10. A novel cell growth-promoting factor identified in a B cell leukemia cell line, BALL-1

    International Nuclear Information System (INIS)

    Dao, T.; Holan, V.; Minowada, J.

    1993-01-01

    A novel leukemia cell growth-promoting activity has been identified in the culture supernatant from a human B cell leukemia cell line, BALL-1. The supernatant from unstimulated cultures of the BALL-1 cells significantly promoted the growth of 16 out of 24 leukemia/lymphoma cell lines of different lineages (T, B and non-lymphoid) in a minimal concentration of fetal bovine serum (FBS), and 5 out of 12 cases of fresh leukemia cells in FBS-free medium. The growth-promoting sieve filtration and dialysis. The MW of the factor was less than 10 kDa. The growth-promoting activity was heat and acid stable and resistant to trypsin treatment. The factor isolated from the BALL-1 supernatant was distinct from known polypeptide growth factors with MW below 10 kDa, such as epidermal growth factor, transforming growth factor α, insulin-like growth factor I (IGF-I), IGF-II and insulin, as determine by specific antibodies and by cell-growth-promoting tests. The factor is the BALL-1 supernatant did not promote the proliferation of normal human fresh peripheral blood lymphocytes or mouse fibroblast cell line, BALB/C 3T3. In addition to the BALL-1 supernatant, a similar growth-promoting activity was found in the culture supernatant from 13 of 17 leukemia/lymphoma cell lines tested. The activity in these culture supernatant promoted the growth of leukemia/lymphoma cell lines in autocrine and/or paracrine fashions. These observations suggest that the low MW cell growth-promoting activity found in the BALL-1 culture supernatant is mediated by a novel factor which may be responsible for the clonal expansion of particular leukemic clones. (author)

  11. Growth hormone is a growth factor for the differentiated pancreatic beta-cell

    DEFF Research Database (Denmark)

    Linde, S; Welinder, B S; Billestrup, N

    1989-01-01

    The regulation of the growth of the pancreatic beta-cell is poorly understood. There are previous indications of a role of GH in the growth and insulin production of the pancreatic islets. In the present study we present evidence for a direct long-term effect of GH on proliferation and insulin...... biosynthesis of pancreatic beta-cells in monolayer culture. In culture medium RPMI 1640 supplemented with 2% normal human serum islets or dissociated islet cells from newborn rats maintained their insulin-producing capacity. When supplemented with 1-1000 ng/ml pituitary or recombinant human GH the islet cells...... was accompanied with a continuous increase in insulin release to the culture medium reaching a 10- 20-fold increase after 2-3 months with a half-maximal effect at about 10 ng/ml human GH. The biosynthesis of (pro)insulin was markedly increased with a normal rate of conversion of proinsulin to insulin...

  12. Atypical endometrial cells and atypical glandular cells favor endometrial origin in Papanicolaou cervicovaginal tests: Correlation with histologic follow-up and abnormal clinical presentations

    Directory of Open Access Journals (Sweden)

    Longwen Chen

    2014-01-01

    Full Text Available The 2001 Bethesda system recommends further classifying atypical glandular cells (AGCs as either endocervical or endometrial origin. Numerous studies have investigated the clinical significance of AGC. In this study, we investigated the incidence of clinically significant lesions among women with liquid-based Papanicolaou cervicovaginal (Pap interpretations of atypical endometrial cells (AEMs or AGC favor endometrial origin (AGC-EM. More importantly, we correlated patients of AEM or AGC-EM with their clinical presentations to determine if AEM/AGC-EM combined with abnormal vaginal bleeding is associated with a higher incidence of significant endometrial pathology. All liquid-based Pap tests with an interpretation of AEM and AGC-EM from July, 2004 through June, 2009 were retrieved from the database. Women with an interpretation of atypical endocervical cells, AGC, favor endocervical origin or AGC, favor neoplastic were not included in the study. The most severe subsequent histologic diagnoses were recorded for each patient. During this 5-year period, we accessioned 332,470 Pap tests of which 169 (0.05% were interpreted as either AEM or AGC-EM. Of the 169 patients, 133 had histologic follow-up within the health care system. The patients ranged in age from 21 to 71 years old (mean 49.7. On follow-up histology, 27 (20.3% had neoplastic/preneoplastic uterine lesions. Among them, 20 patients were diagnosed with adenocarcinoma (18 endometrial, 1 endocervical, and 1 metastatic colorectal, 3 with atypical endometrial hyperplasia, and 4 with endometrial hyperplasia without atypia. All patients with significant endometrial pathology, except one, were over 40 years old, and 22 of 25 patients reported abnormal vaginal bleeding at the time of endometrial biopsy or curettage. This study represents a large series of women with liquid-based Pap test interpretations of AEM and AGC-EM with clinical follow-up. Significant preneoplastic or neoplastic endometrial

  13. Fibroblast growth factor signaling in embryonic and cancer stem cells

    Czech Academy of Sciences Publication Activity Database

    Dvořák, Petr; Dvořáková, D.; Hampl, Aleš

    2006-01-01

    Roč. 580, - (2006), s. 2869-2874 ISSN 0014-5793 R&D Projects: GA MŠk 1M0538; GA ČR GA301/03/1122 Institutional research plan: CEZ:AV0Z50390512 Keywords : Fibroblast growth factor 2 * Embryonic stem cell * Hematopoietic progenitor cell Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.372, year: 2006

  14. Metabolic pathways promoting cancer cell survival and growth.

    Science.gov (United States)

    Boroughs, Lindsey K; DeBerardinis, Ralph J

    2015-04-01

    Activation of oncogenes and loss of tumour suppressors promote metabolic reprogramming in cancer, resulting in enhanced nutrient uptake to supply energetic and biosynthetic pathways. However, nutrient limitations within solid tumours may require that malignant cells exhibit metabolic flexibility to sustain growth and survival. Here, we highlight these adaptive mechanisms and also discuss emerging approaches to probe tumour metabolism in vivo and their potential to expand the metabolic repertoire of malignant cells even further.

  15. Mitotic Gene Bookmarking: An Epigenetic Mechanism for Coordination of Lineage Commitment, Cell Identity and Cell Growth.

    Science.gov (United States)

    Zaidi, Sayyed K; Lian, Jane B; van Wijnen, Andre; Stein, Janet L; Stein, Gary S

    2017-01-01

    Epigenetic control of gene expression contributes to dynamic responsiveness of cellular processes that include cell cycle, cell growth and differentiation. Mitotic gene bookmarking, retention of sequence-specific transcription factors at target gene loci, including the RUNX regulatory proteins, provide a novel dimension to epigenetic regulation that sustains cellular identity in progeny cells following cell division. Runx transcription factor retention during mitosis coordinates physiological control of cell growth and differentiation in a broad spectrum of biological conditions, and is associated with compromised gene expression in pathologies that include cancer.

  16. The cytoskeleton in plant cell growth: lessons from root hairs

    NARCIS (Netherlands)

    Ketelaar, M.J.; Emons, A.M.C.

    2001-01-01

    In this review, we compare expansion of intercalary growing cells, in which growth takes place over a large surface, and root hairs, where expansion occurs at the tip only. Research that pinpoints the role of the cytoskeleton and the cytoplasmic free calcium in both root hairs and intercalary

  17. Stromal Cell-Derived Factor-1 Promotes Cell Migration, Tumor Growth of Colorectal Metastasis

    Directory of Open Access Journals (Sweden)

    Otto Kollmar

    2007-10-01

    Full Text Available In a mouse model of established extrahepatic colorectal metastasis, we analyzed whether stromal cellderived factor (SDF 1 stimulates tumor cell migration in vitro, angiogenesis, tumor growth in vivo. METHODS: Using chemotaxis chambers, CT26.WT colorectal tumor cell migration was studied under stimulation with different concentrations of SDF-1. To evaluate angiogenesis, tumor growth in vivo, green fluorescent protein-transfected CT26.WT cells were implanted in dorsal skinfold chambers of syngeneic BALB/c mice. After 5 days, tumors were locally exposed to SDF-1. Cell proliferation, tumor microvascularization, growth were studied during a further 9-day period using intravital fluorescence microscopy, histology, immunohistochemistry. Tumors exposed to PBS only served as controls. RESULTS:In vitro, > 30% of unstimulated CT26.WT cells showed expression of the SDF-1 receptor CXCR4. On chemotaxis assay, SDF-1 provoked a dose-dependent increase in cell migration. In vivo, SDF-1 accelerated neovascularization, induced a significant increase in tumor growth. Capillaries of SDF-1-treated tumors showed significant dilation. Of interest, SDF-1 treatment was associated with a significantly increased expression of proliferating cell nuclear antigen, a downregulation of cleaved caspase-3. CONCLUSION: Our study indicates that the CXC chemokine SDF-1 promotes tumor cell migration in vitro, tumor growth of established extrahepatic metastasis in vivo due to angiogenesis-dependent induction of tumor cell proliferation, inhibition of apoptotic cell death.

  18. SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Wu, Feng; Jordan, Ashley; Kluz, Thomas; Shen, Steven; Sun, Hong; Cartularo, Laura A.; Costa, Max

    2016-01-01

    The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study, we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA-mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealed the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation. - Highlights: • We performed SATB2 overexpression in the BEAS-2B cell line. • We performed SATB2 knockdown in a Ni transformed BEAS-2B cell line. • SATB2 induced anchorage-independent growth and increased cell migration. • SATB2 knockdown significantly decreased anchorage-independent growth. • We identified alterations in gene involved in cytoskeleton, cell adhesion.

  19. Brain abnormalities and glioma-like lesions in mice overexpressing the long isoform of PDGF-A in astrocytic cells.

    Directory of Open Access Journals (Sweden)

    Inga Nazarenko

    2011-04-01

    Full Text Available Deregulation of platelet-derived growth factor (PDGF signaling is a hallmark of malignant glioma. Two alternatively spliced PDGF-A mRNAs have been described, corresponding to a long (L and a short (S isoform of PDGF-A. In contrast to PDGF-A(S, the PDGF-A(L isoform has a lysine and arginine rich carboxy-terminal extension that acts as an extracellular matrix retention motif. However, the exact role of PDGF-A(L and how it functionally differs from the shorter isoform is not well understood.We overexpressed PDGF-A(L as a transgene under control of the glial fibrillary acidic protein (GFAP promoter in the mouse brain. This directs expression of the transgene to astrocytic cells and GFAP expressing neural stem cells throughout the developing and adult central nervous system. Transgenic mice exhibited a phenotype with enlarged skull at approximately 6-16 weeks of age and they died between 1.5 months and 2 years of age. We detected an increased number of undifferentiated cells in all areas of transgene expression, such as in the subependymal zone around the lateral ventricle and in the cerebellar medulla. The cells stained positive for Pdgfr-α, Olig2 and NG2 but this population did only partially overlap with cells positive for Gfap and the transgene reporter. Interestingly, a few mice presented with overt neoplastic glioma-like lesions composed of both Olig2 and Gfap positive cell populations and with microvascular proliferation, in a wild-type p53 background.Our findings show that PDGF-A(L can induce accumulation of immature cells in the mouse brain. The strong expression of NG2, Pdgfr-α and Olig2 in PDGF-A(L brains suggests that a fraction of these cells are oligodendrocyte progenitors. In addition, accumulation of fluid in the subarachnoid space and skull enlargement indicate that an increased intracranial pressure contributed to the observed lethality.

  20. Effect of acute exercise on prostate cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Helene Rundqvist

    Full Text Available Physical activity is associated with reduced risk of several cancers, including aggressive prostate cancer. The mechanisms mediating the effects are not yet understood; among the candidates are modifications of endogenous hormone levels. Long-term exercise is known to reduce serum levels of growth stimulating hormones. In contrast, the endocrine effects of acute endurance exercise include increased levels of mitogenic factors such as GH and IGF-1. It can be speculated that the elevation of serum growth factors may be detrimental to prostate cancer progression into malignancy. The incentive of the current study is to evaluate the effect of acute exercise serum on prostate cancer cell growth. We designed an exercise intervention where 10 male individuals performed 60 minutes of bicycle exercise at increasing intensity. Serum samples were obtained before (rest serum and after completed exercise (exercise serum. The established prostate cancer cell line LNCaP was exposed to exercise or rest serum. Exercise serum from 9 out of 10 individuals had a growth inhibitory effect on LNCaP cells. Incubation with pooled exercise serum resulted in a 31% inhibition of LNCaP growth and pre-incubation before subcutaneous injection into SCID mice caused a delay in tumor formation. Serum analyses indicated two possible candidates for the effect; increased levels of IGFBP-1 and reduced levels of EGF. In conclusion, despite the fear of possible detrimental effects of acute exercise serum on tumor cell growth, we show that even the short-term effects seem to add to the overall beneficial influence of exercise on neoplasia.

  1. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    Science.gov (United States)

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Two-dimensional diffusion limited system for cell growth

    International Nuclear Information System (INIS)

    Hlatky, L.

    1985-11-01

    A new cell system, the ''sandwich'' system, was developed to supplement multicellular spheroids as tumor analogues. Sandwiches allow new experimental approaches to questions of diffusion, cell cycle effects and radiation resistance in tumors. In this thesis the method for setting up sandwiches is described both theoretically and experimentally followed by its use in x-ray irradiation studies. In the sandwich system, cells are grown in a narrow gap between two glass slides. Where nutrients and waste products can move into or out of the local environment of the cells only by diffusing through the narrow gap between the slides. Due to the competition between cells, self-created gradients of nutrients and metabolic products are set up resulting in a layer of cells which resembles a living spheroid cross section. Unlike the cells of the spheroid, however, cells in all regions of the sandwich are visible. Therefore, the relative sizes of the regions and their time-dependent growth can be monitored visually without fixation or sectioning. The oxygen and nutrient gradients can be ''turned off'' at any time without disrupting the spatial arrangement of the cells by removing the top slide of the assembly and subsequently turned back on if desired. Removal of the top slide also provides access to all the cells, including those near the necrotic center, of the sandwich. The cells can then be removed for analysis outside the sandwich system. 61 refs., 17 figs

  3. Distribution and number of epidermal growth factor receptors in skin is related to epithelial cell growth

    DEFF Research Database (Denmark)

    Green, M R; Basketter, D A; Couchman, J R

    1983-01-01

    receptors are detected on the epithelial cells overlying the basement membranes of the epidermis, sebaceous gland, and regions of the hair follicle all of which have proliferative capacity. In marked contrast, tissues which have started to differentiate and lost their growth potential, carry either......Epidermal growth factor (EGF), a low-molecular-weight polypeptide (G. Carpenter and S. Cohen, 1979, Annu. Rev. Biochem. 48, 193-216), stimulates the proliferation and keratinisation of cultured embryonic epidermis (S. Cohen, 1965, Dev. Biol. 12, 394-407) and promotes epidermal growth, thickening......, and keratinisation when injected into neonatal mice (S. Cohen and G.A. Elliott, 1963, J. Invest. Dermatol, 40, 1-5). We have determined the distribution of the available receptors for epidermal growth factor in rat skin using autoradiography following incubation of explants with 125I-labelled mouse EGF. EGF...

  4. Nonmalignant T cells stimulate growth of T-cell lymphoma cells in the presence of bacterial toxins

    DEFF Research Database (Denmark)

    Woetmann, Anders; Lovato, Paola; Eriksen, Karsten W

    2007-01-01

    Bacterial toxins including staphylococcal enterotoxins (SEs) have been implicated in the pathogenesis of cutaneous T-cell lymphomas (CTCLs). Here, we investigate SE-mediated interactions between nonmalignant T cells and malignant T-cell lines established from skin and blood of CTCL patients....... The malignant CTCL cells express MHC class II molecules that are high-affinity receptors for SE. Although treatment with SE has no direct effect on the growth of the malignant CTCL cells, the SE-treated CTCL cells induce vigorous proliferation of the SE-responsive nonmalignant T cells. In turn, the nonmalignant...... T cells enhance proliferation of the malignant cells in an SE- and MHC class II-dependent manner. Furthermore, SE and, in addition, alloantigen presentation by malignant CTCL cells to irradiated nonmalignant CD4(+) T-cell lines also enhance proliferation of the malignant cells. The growth...

  5. Matrix rigidity regulates cancer cell growth and cellular phenotype.

    Directory of Open Access Journals (Sweden)

    Robert W Tilghman

    2010-09-01

    Full Text Available The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness of the microenvironment and how this response varies among cancer cell lines.In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: "rigidity dependent" (those which show an increase in cell growth as extracellular rigidity is increased, and "rigidity independent" (those which grow equally on both soft and stiff substrates. Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug.These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models.

  6. TOR and paradigm change: cell growth is controlled.

    Science.gov (United States)

    Hall, Michael N

    2016-09-15

    This year marks the 25th anniversary of the discovery of target of rapamycin (TOR), a highly conserved kinase and central controller of cell growth. In this Retrospective, I briefly describe the discovery of TOR and the subsequent elucidation of its cellular role. I place particular emphasis on an article by Barbet et al. from 1996, the first suggesting that TOR controls cell growth in response to nutrients. © 2016 Hall. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Senescence from glioma stem cell differentiation promotes tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Ouchi, Rie [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Okabe, Sachiko; Migita, Toshiro [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Nakano, Ichiro [Department of Neurosurgery, Comprehensive Cancer Center, University of Alabama at Birmingham, 1824 6th Avenue South, Birmingham, AL 35233 (United States); Seimiya, Hiroyuki, E-mail: hseimiya@jfcr.or.jp [Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Laboratory of Molecular Target Therapy of Cancer, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan)

    2016-02-05

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  8. Senescence from glioma stem cell differentiation promotes tumor growth

    International Nuclear Information System (INIS)

    Ouchi, Rie; Okabe, Sachiko; Migita, Toshiro; Nakano, Ichiro; Seimiya, Hiroyuki

    2016-01-01

    Glioblastoma (GBM) is a lethal brain tumor composed of heterogeneous cellular populations including glioma stem cells (GSCs) and differentiated non-stem glioma cells (NSGCs). While GSCs are involved in tumor initiation and propagation, NSGCs' role remains elusive. Here, we demonstrate that NSGCs undergo senescence and secrete pro-angiogenic proteins, boosting the GSC-derived tumor formation in vivo. We used a GSC model that maintains stemness in neurospheres, but loses the stemness and differentiates into NSGCs upon serum stimulation. These NSGCs downregulated telomerase, shortened telomeres, and eventually became senescent. The senescent NSGCs released pro-angiogenic proteins, including vascular endothelial growth factors and senescence-associated interleukins, such as IL-6 and IL-8. Conditioned medium from senescent NSGCs promoted proliferation of brain microvascular endothelial cells, and mixed implantation of GSCs and senescent NSGCs into mice enhanced the tumorigenic potential of GSCs. The senescent NSGCs seem to be clinically relevant, because both clinical samples and xenografts of GBM contained tumor cells that expressed the senescence markers. Our data suggest that senescent NSGCs promote malignant progression of GBM in part via paracrine effects of the secreted proteins. - Highlights: • Non-stem glioma cells (NSGCs) lose telomerase and eventually become senescent. • Senescent NSGCs secrete pro-angiogenic proteins, such as VEGFs, IL-6, and IL-8. • Senescent NSGCs enhance the growth of brain microvascular endothelial cells. • Senescent NSGCs enhance the tumorigenic potential of glioma stem cells in vivo.

  9. Cell size and growth regulation in the Arabidopsis thaliana apical stem cell niche

    Science.gov (United States)

    Willis, Lisa; Refahi, Yassin; Wightman, Raymond; Landrein, Benoit; Teles, José; Huang, Kerwyn Casey; Meyerowitz, Elliot M.

    2016-01-01

    Cell size and growth kinetics are fundamental cellular properties with important physiological implications. Classical studies on yeast, and recently on bacteria, have identified rules for cell size regulation in single cells, but in the more complex environment of multicellular tissues, data have been lacking. In this study, to characterize cell size and growth regulation in a multicellular context, we developed a 4D imaging pipeline and applied it to track and quantify epidermal cells over 3–4 d in Arabidopsis thaliana shoot apical meristems. We found that a cell size checkpoint is not the trigger for G2/M or cytokinesis, refuting the unexamined assumption that meristematic cells trigger cell cycle phases upon reaching a critical size. Our data also rule out models in which cells undergo G2/M at a fixed time after birth, or by adding a critical size increment between G2/M transitions. Rather, cell size regulation was intermediate between the critical size and critical increment paradigms, meaning that cell size fluctuations decay by ∼75% in one generation compared with 100% (critical size) and 50% (critical increment). Notably, this behavior was independent of local cell–cell contact topologies and of position within the tissue. Cells grew exponentially throughout the first >80% of the cell cycle, but following an asymmetrical division, the small daughter grew at a faster exponential rate than the large daughter, an observation that potentially challenges present models of growth regulation. These growth and division behaviors place strong constraints on quantitative mechanistic descriptions of the cell cycle and growth control. PMID:27930326

  10. Distribution and number of epidermal growth factor receptors in skin is related to epithelial cell growth

    DEFF Research Database (Denmark)

    Green, M R; Basketter, D A; Couchman, J R

    1983-01-01

    markedly with age. This decrease in receptor number is similar in trend to the known drop in basal cell [3H]thymidine labelling index which occurs over the same time period. The data suggest that the distribution of EGF receptors and EGF cell surface receptor number in skin are important in the spatial......, and keratinisation when injected into neonatal mice (S. Cohen and G.A. Elliott, 1963, J. Invest. Dermatol, 40, 1-5). We have determined the distribution of the available receptors for epidermal growth factor in rat skin using autoradiography following incubation of explants with 125I-labelled mouse EGF. EGF...... receptors are detected on the epithelial cells overlying the basement membranes of the epidermis, sebaceous gland, and regions of the hair follicle all of which have proliferative capacity. In marked contrast, tissues which have started to differentiate and lost their growth potential, carry either...

  11. MEK/ERK pathway activation by insulin receptor isoform alteration is associated with the abnormal proliferation and differentiation of intestinal epithelial cells in diabetic mice.

    Science.gov (United States)

    Ouyang, Hui; Yang, Hong-Sheng; Yu, Tao; Shan, Ti-Dong; Li, Jie-Yao; Huang, Can-Ze; Zhong, Wa; Xia, Zhong-Sheng; Chen, Qi-Kui

    2016-02-01

    In previous studies, we have reported the abnormal proliferation and differentiation of intestinal epithelial cells (IECs) in diabetes mellitus (DM) mice. The insulin receptor (IR) and its downstream mitogen-activated protein kinase kinase (MAPKK also known as MEK)/extracellular-regulated protein kinase (ERK) pathway is a classic pathway associated with cell proliferation and differentiation. The purpose of the present study is to investigate the role of the MEK/ERK pathway in abnormal proliferation and differentiation of IECs in DM mice. DM mouse models were induced by intraperitoneal injection of streptozotocin. The expression levels of the IR and its isoforms in IECs of DM mice and in IEC-6 cells were investigated. To ensure that the downstream pathways were monitored, QPCR and Western blotting were performed to detect the expression levels of MEK1/2, ERK1/2, PI3K, and Akt. Moreover, siRNA for IR-A and U0126, a specific inhibitor of MEK, were used to further investigate the relationship between the IR/MEK/ERK pathway and abnormal proliferation and differentiation of IECs in DM mice. In DM mice, excessive proliferation, disturbed differentiation, and a high ratio of IR-A/IR-B were detected in IECs. The expression levels of MEK1, MEK2, and ERK1/2 and their phosphorylated proteins in DM mice were significantly higher than those in the control group (P < 0.05), which could be offset by using siRNA for IR-A. The abnormal proliferation and differentiation of IECs in DM mice were normalized after the in vivo administration of U0126. The abnormal proliferation and differentiation of IECs in DM mice are associated with high IR-A/IR-B ratio and increased IR/MEK/ERK pathway activity.

  12. Modeling bacterial population growth from stochastic single-cell dynamics.

    Science.gov (United States)

    Alonso, Antonio A; Molina, Ignacio; Theodoropoulos, Constantinos

    2014-09-01

    A few bacterial cells may be sufficient to produce a food-borne illness outbreak, provided that they are capable of adapting and proliferating on a food matrix. This is why any quantitative health risk assessment policy must incorporate methods to accurately predict the growth of bacterial populations from a small number of pathogens. In this aim, mathematical models have become a powerful tool. Unfortunately, at low cell concentrations, standard deterministic models fail to predict the fate of the population, essentially because the heterogeneity between individuals becomes relevant. In this work, a stochastic differential equation (SDE) model is proposed to describe variability within single-cell growth and division and to simulate population growth from a given initial number of individuals. We provide evidence of the model ability to explain the observed distributions of times to division, including the lag time produced by the adaptation to the environment, by comparing model predictions with experiments from the literature for Escherichia coli, Listeria innocua, and Salmonella enterica. The model is shown to accurately predict experimental growth population dynamics for both small and large microbial populations. The use of stochastic models for the estimation of parameters to successfully fit experimental data is a particularly challenging problem. For instance, if Monte Carlo methods are employed to model the required distributions of times to division, the parameter estimation problem can become numerically intractable. We overcame this limitation by converting the stochastic description to a partial differential equation (backward Kolmogorov) instead, which relates to the distribution of division times. Contrary to previous stochastic formulations based on random parameters, the present model is capable of explaining the variability observed in populations that result from the growth of a small number of initial cells as well as the lack of it compared to

  13. Video Bioinformatics Analysis of Human Embryonic Stem Cell Colony Growth

    Science.gov (United States)

    Lin, Sabrina; Fonteno, Shawn; Satish, Shruthi; Bhanu, Bir; Talbot, Prue

    2010-01-01

    Because video data are complex and are comprised of many images, mining information from video material is difficult to do without the aid of computer software. Video bioinformatics is a powerful quantitative approach for extracting spatio-temporal data from video images using computer software to perform dating mining and analysis. In this article, we introduce a video bioinformatics method for quantifying the growth of human embryonic stem cells (hESC) by analyzing time-lapse videos collected in a Nikon BioStation CT incubator equipped with a camera for video imaging. In our experiments, hESC colonies that were attached to Matrigel were filmed for 48 hours in the BioStation CT. To determine the rate of growth of these colonies, recipes were developed using CL-Quant software which enables users to extract various types of data from video images. To accurately evaluate colony growth, three recipes were created. The first segmented the image into the colony and background, the second enhanced the image to define colonies throughout the video sequence accurately, and the third measured the number of pixels in the colony over time. The three recipes were run in sequence on video data collected in a BioStation CT to analyze the rate of growth of individual hESC colonies over 48 hours. To verify the truthfulness of the CL-Quant recipes, the same data were analyzed manually using Adobe Photoshop software. When the data obtained using the CL-Quant recipes and Photoshop were compared, results were virtually identical, indicating the CL-Quant recipes were truthful. The method described here could be applied to any video data to measure growth rates of hESC or other cells that grow in colonies. In addition, other video bioinformatics recipes can be developed in the future for other cell processes such as migration, apoptosis, and cell adhesion. PMID:20495527

  14. Autophagy contributes to gefitinib-induced glioma cell growth inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Cheng-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Graduate Institute of Pharmaceutical Science and Technology, Central Taiwan University of Science and Technology, Taichung 406, Taiwan (China); Kuan, Yu-Hsiang [Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Ou, Yen-Chuan; Li, Jian-Ri [Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Wu, Chih-Cheng [Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Department of Financial and Computational Mathematics, Providence University, Taichung 433, Taiwan (China); Pan, Pin-Ho [Department of Pediatrics, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan (China); Chen, Wen-Ying [Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Huang, Hsuan-Yi [Department of Surgery, Fong-Yuan Hospital, Taichung 420, Taiwan (China); Chen, Chun-Jung, E-mail: cjchen@vghtc.gov.tw [Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan (China); Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan (China); Center for General Education, Tunghai University, Taichung 407, Taiwan (China); Department of Nursing, HungKuang University, Taichung 433, Taiwan (China)

    2014-09-10

    Epidermal growth factor receptor tyrosine kinase inhibitors, including gefitinib, have been evaluated in patients with malignant gliomas. However, the molecular mechanisms involved in gefitinib-mediated anticancer effects against glioma are incompletely understood. In the present study, the cytostatic potential of gefitinib was demonstrated by the inhibition of glioma cell growth, long-term clonogenic survival, and xenograft tumor growth. The cytostatic consequences were accompanied by autophagy, as evidenced by monodansylcadaverine staining of acidic vesicle formation, conversion of microtubule-associated protein-1 light chain 3-II (LC3-II), degradation of p62, punctate pattern of GFP-LC3, and conversion of GFP-LC3 to cleaved-GFP. Autophagy inhibitor 3-methyladenosine and chloroquine and genetic silencing of LC3 or Beclin 1 attenuated gefitinib-induced growth inhibition. Gefitinib-induced autophagy was not accompanied by the disruption of the Akt/mammalian target of rapamycin signaling. Instead, the activation of liver kinase-B1/AMP-activated protein kinase (AMPK) signaling correlated well with the induction of autophagy and growth inhibition caused by gefitinib. Silencing of AMPK suppressed gefitinib-induced autophagy and growth inhibition. The crucial role of AMPK activation in inducing glioma autophagy and growth inhibition was further supported by the actions of AMP mimetic AICAR. Gefitinib was shown to be capable of reducing the proliferation of glioma cells, presumably by autophagic mechanisms involving AMPK activation. - Highlights: • Gefitinib causes cytotoxic and cytostatic effect on glioma. • Gefitinib induces autophagy. • Gefitinib causes cytostatic effect through autophagy. • Gefitinib induces autophagy involving AMPK.

  15. Anisotropic cell growth-regulated surface micropatterns in flower petals

    Directory of Open Access Journals (Sweden)

    Xiao Huang

    2017-05-01

    Full Text Available Flower petals have not only diverse macroscopic morphologies but are rich in microscopic surface patterns, which are crucial to their biological functions. Both experimental measurements and theoretical analysis are conducted to reveal the physical mechanisms underlying the formation of minute wrinkles on flower petals. Three representative flowers, daisy, kalanchoe blossfeldiana, and Eustoma grandiflorum, are investigated as examples. A surface wrinkling model, incorporating the measured mechanical properties and growth ratio, is used to elucidate the difference in their surface morphologies. The mismatch between the anisotropic epidermal cell growth and the isotropic secretion of surficial wax is found to dictate the surface patterns.

  16. Cell proliferation along vascular islands during microvascular network growth

    Directory of Open Access Journals (Sweden)

    Kelly-Goss Molly R

    2012-06-01

    Full Text Available Abstract Background Observations in our laboratory provide evidence of vascular islands, defined as disconnected endothelial cell segments, in the adult microcirculation. The objective of this study was to determine if vascular islands are involved in angiogenesis during microvascular network growth. Results Mesenteric tissues, which allow visualization of entire microvascular networks at a single cell level, were harvested from unstimulated adult male Wistar rats and Wistar rats 3 and 10 days post angiogenesis stimulation by mast cell degranulation with compound 48/80. Tissues were immunolabeled for PECAM and BRDU. Identification of vessel lumens via injection of FITC-dextran confirmed that endothelial cell segments were disconnected from nearby patent networks. Stimulated networks displayed increases in vascular area, length density, and capillary sprouting. On day 3, the percentage of islands with at least one BRDU-positive cell increased compared to the unstimulated level and was equal to the percentage of capillary sprouts with at least one BRDU-positive cell. At day 10, the number of vascular islands per vascular area dramatically decreased compared to unstimulated and day 3 levels. Conclusions These results show that vascular islands have the ability to proliferate and suggest that they are able to incorporate into the microcirculation during the initial stages of microvascular network growth.

  17. Fibroblast growth factor-10 is a mitogen for urothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Bagai, Shelly; Rubio, Eric; Cheng, Jang-Fang; Sweet, Robert; Thomas, Regi; Fuchs, Elaine; Grady, Richard; Mitchell, Michael; Bassuk, James A.

    2002-02-01

    Fibroblast Growth Factor (FGF)-10 plays an important role in regulating growth, differentiation, and repair of the urothelium. This process occurs through a paracrine cascade originating in the mesenchyme (lamina propria) and targeting the epithelium (urothelium). In situ hybridization analysis demonstrated that (i) fibroblasts of the human lamina propria were the cell type that synthesized FGF-10 RNA and (ii) the FGF-10 gene is located at the 5p12-p13 locus of chromosome 5. Recombinant (r) preparations of human FGF-10 were found to induce proliferation of human urothelial cells in vitro and of transitional epithelium of wild-type and FGF7-null mice in vivo. Mechanistic studies with human cells indicated two modes of FGF-10 action: (i) translocation of rFGF-10 into urothelial cell nuclei and (ii) a signaling cascade that begins with the heparin-dependent phosphorylation of tyrosine residues of surface transmembrane receptors. The normal urothelial phenotype, that of quiescence, is proposed to be typified by negligible levels of FGF-10. During proliferative phases, levels of FGF-10 rise at the urothelial cell surface and/or within urothelial cell nuclei. An understanding of how FGF-10 works in conjunction with these other processes will lead to better management of many diseases of the bladder and urinary tract.

  18. Inhibition of cancer cell growth by ruthenium complexes.

    Science.gov (United States)

    Iida, Joji; Bell-Loncella, Elisabeth T; Purazo, Marc L; Lu, Yifeng; Dorchak, Jesse; Clancy, Rebecca; Slavik, Julianna; Cutler, Mary Lou; Shriver, Craig D

    2016-02-12

    Previous studies suggest that certain transition metal complexes, such as cisplatin, are efficacious for treating various cancer types, including ovarian, lung, and breast. In order to further evaluate ruthenium (Ru) complexes as potential anti-cancer agents, we synthesized and evaluated Ru-arene complexes. Two complexes with the general formula [Ru (η (6)-p-cym) (N-N) Cl](+) were tested for their abilities to inhibit cancer cells. The complex with o-phenylenediamine as the N-N ligand (o-PDA) significantly inhibited growth of breast (MDA-MB-231, MCF-7, SKBR-3, and SUM149), lymphoma (Raji), melanoma (Bowes), and osteosarcoma (HT1080); however, the complex with o-benzoquinonediimine (o-BQDI) was ineffective except for SUM149. In contrast, o-PDA failed to inhibit growth of human breast epithelial cells, MCF-10A. Treatment of MDA-MBA-231 cells with o-PDA resulted in a significant reduction of productions of PDGF-AA, GM-CSF, and VEGF-A proteins at the transcriptional levels. Finally, we demonstrated that o-PDA synergistically inhibited MDA-MB-231 cell growth with cyclophosphamide but not doxorubicin or paclitaxel. These results suggest that Ru-arene complexes are promising anti-cancer drugs that inhibit progression and metastasis by blocking multiple processes for breast and other types of cancer.

  19. Glycan Sulfation Modulates Dendritic Cell Biology and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Roland El Ghazal

    2016-05-01

    Full Text Available In cancer, proteoglycans have been found to play roles in facilitating the actions of growth factors, and effecting matrix invasion and remodeling. However, little is known regarding the genetic and functional importance of glycan chains displayed by proteoglycans on dendritic cells (DCs in cancer immunity. In lung carcinoma, among other solid tumors, tumor-associated DCs play largely subversive/suppressive roles, promoting tumor growth and progression. Herein, we show that targeting of DC glycan sulfation through mutation in the heparan sulfate biosynthetic enzyme N-deacetylase/N-sulfotransferase-1 (Ndst1 in mice increased DC maturation and inhibited trafficking of DCs to draining lymph nodes. Lymphatic-driven DC migration and chemokine (CCL21-dependent activation of a major signaling pathway required for DC migration (as measured by phospho-Akt were sensitive to Ndst1 mutation in DCs. Lewis lung carcinoma tumors in mice deficient in Ndst1 were reduced in size. Purified CD11c+ cells from the tumors, which contain the tumor-infiltrating DC population, showed a similar phenotype in mutant cells. These features were replicated in mice deficient in syndecan-4, the major heparan sulfate proteoglycan expressed on the DC surface: Tumors were growth-impaired in syndecan-4–deficient mice and were characterized by increased infiltration by mature DCs. Tumors on the mutant background also showed greater infiltration by NK cells and NKT cells. These findings indicate the genetic importance of DC heparan sulfate proteoglycans in tumor growth and may guide therapeutic development of novel strategies to target syndecan-4 and heparan sulfate in cancer.

  20. Fine structure of changes produced in cultured cells sampled at specified intervals during a single growth cycle of polio virus.

    Science.gov (United States)

    KALLMAN, F; WILLIAMS, R C; DULBECCO, R; VOGT, M

    1958-05-25

    Primary suspended cultures of rhesus monkey kidney cells were infected with poliomyelitis virus, type 1 (Brunhilde strain). The release of virus from these cells over a one-step growth curve was correlated with their change in fine structure, as seen in the electron microscope. Most of the cells were infected nearly simultaneously, and morphological changes developed in the cells were sufficiently synchronous to be classified into three stages. The earliest change (stage I) became visible at a time when virus release into the culture fluid begins, some 3 hours after adsorption. Accentuation of the abnormal characteristics soon occurs, at 4 to 7 hours after adsorption, and results in stage II. Stage III represents the appearance of cells after their rate of virus release had passed its maximum, and probably the abnormal morphology of these cells reflects non-specific physiological damage. There seems to be consistency between the previously described cellular changes as seen under the light microscope and the finer scale changes reported here. Cytoplasmic bodies, called U bodies, were seen in large number at the time when the virus release was the most rapid (stage II). While these bodies are not of proper size to be considered polio virus, they seem to be specifically related to the infection. No evidence was found for the presence of particles that could even be presumptively identified with those of polio virus.

  1. Mxi1 regulates cell proliferation through insulin-like growth factor binding protein-3

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Je Yeong; Yoo, Kyung Hyun [Department of Biological Science, Sookmyung Women' s University, Seoul (Korea, Republic of); Lee, Han-Woong [Department of Biochemistry, Yonsei University, Seoul (Korea, Republic of); Park, Jong Hoon, E-mail: parkjh@sookmyung.ac.kr [Department of Biological Science, Sookmyung Women' s University, Seoul (Korea, Republic of)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Mxi1 regulates cell proliferation. Black-Right-Pointing-Pointer Expression of IGFBP-3 is regulated by Mxi1. Black-Right-Pointing-Pointer Inactivation of Mxi1 reduces IGFBP-3 expression in vitro and in vivo. -- Abstract: Mxi1, a member of the Myc-Max-Mad network, is an antagonist of the c-Myc oncogene and is associated with excessive cell proliferation. Abnormal cell proliferation and tumorigenesis are observed in organs of Mxi1-/- mice. However, the Mxi1-reltaed mechanism of proliferation is unclear. The present study utilized microarray analysis using Mxi1 mouse embryonic fibroblasts (MEFs) to identify genes associated with cell proliferation. Among these genes, insulin-like growth factor binding protein-3 (IGFBP-3) was selected as a candidate gene for real-time PCR to ascertain whether IGFBP-3 expression is regulated by Mxi1. Expression of IGFBP-3 was decreased in Mxi1-/- MEFs and Mxi1-/- mice, and the gene was regulated by Mxi1 in Mxi1 MEFs. Furthermore, proliferation pathways related to IGFBP-3 were regulated in Mxi1-/- mice compared to Mxi1+/+ mice. To determine the effect of Mxi1 inactivation on the induction of cell proliferation, a proliferation assay is performed in both Mxi1 MEFs and Mxi1 mice. Cell viability was regulated by Mxi1 in Mxi1 MEFs and number of PCNA-positive cells was increased in Mxi1-/- mice compared to Mxi1+/+ mice. Moreover, the IGFBP-3 level was decreased in proliferation defect regions in Mxi1-/- mice. The results support the suggestion that inactivation of Mxi1 has a positive effect on cell proliferation by down-regulating IGFBP-3.

  2. Alterações renais nas doenças falciformes Renal abnormalities in sickle cell disease

    Directory of Open Access Journals (Sweden)

    Isis Q. Magalhães

    2007-09-01

    Full Text Available A doença falciforme associa-se a anormalidades renais estruturais glomerulares e tubulares, alterações hemodinâmicas e da síntese dos hormônios renais (eritropoetina, renina e prostaglandinas. Estas se iniciam na infância, em conseqüência da anemia crônica, fluxo sangüíneo aumentado, e eventos de veno-oclusão intraparenquimatosos, principalmente na medular renal. Na doença SS, a taxa de filtração glomerular encontra-se elevada desde os primeiros anos de vida e decresce com a idade. Decorrente de anormalidade tubular distal está a hipostenúria com as manifestações clínicas de poliúria, noctúria, enurese e susceptibilidade a desidratação, diminuição da capacidade de acidificar urina e excretar potássio. As anormalidades de túbulo proximal se traduzem por secreção aumentada de creatinina e ácido úrico, reabsorção aumentada de fosfatos e b2-microglobulina. A hipersecreção de creatinina superestima a taxa de filtração glomerular (FG, tornando o clearance de creatinina impróprio como detector precoce da deterioração da função renal. A proteinúria ocorre em 29%-50% dos pacientes acima de 10 anos de idade; 2/3 destes evoluem para insuficiência renal crônica de evolução ruim. A literatura apresenta benefícios consistentes com o uso de inibidores de enzimas conversoras de angiotensina (IECA na redução da proteinúria, que talvez tenha impacto na progressão da insuficiência renal. Microalbuminúria (MA é um marcador sensível da glomerulopatia falcêmica que precede a proteinúria. Na população pediátrica documenta-se prevalência de 19%, estando associado com idade, síndrome torácica aguda, níveis de Hb baixos e altas de leucometrias. Recomenda-se screening para MA a partir de 10 anos de idade. Em andamento estudo multicêntrico com uso precoce de hidroxiuréia na prevenção das lesões orgânicas crônicas (Baby HUG.Sickle cell disease is associated with glomerular and tabular structural

  3. Individual cell-based models of cell scatter of ARO and MLP-29 cells in response to hepatocyte growth factor.

    Science.gov (United States)

    Scianna, Marco; Merks, Roeland M H; Preziosi, Luigi; Medico, Enzo

    2009-09-07

    The different behaviors of colonies of two cell lines, ARO (thyroid carcinoma-derived cells) and MLP-29 (mouse liver progenitor cells), in response to hepatocyte growth factor (HGF) are described deducing suitable cellular Potts models (CPM). It is shown how increased motility and decreased adhesiveness are responsible for cell-cell dissociation and tissue invasion in the ARO cells. On the other hand, it is shown that, in addition to the biological mechanisms above, it is necessary to include directional persistence in cell motility and HGF diffusion to describe the scattering and the branching processes characteristic of MLP-29 cells.

  4. High risk human papillomavirus type 16 and 18 infection in the cervical lesions of women with epithelial cell abnormality in Pap smear: A cytohistomorphologic association in Bangladeshi women.

    Science.gov (United States)

    Banik, Urmila; Ahamad, M Shahab Uddin; Bhattacharjee, Pradip; Adhikary, Arun Kumar; Rahman, Zillur

    2013-01-01

    The aim of this study was to find out the extent of high-risk human papillomavirus (hrHPV) type 16/18 infection in the cervical tissue of women with epithelial cell abnormality in Pap smear and to establish an association between hrHPV type 16/18 infection and cytohistomorphology. A cross-sectional descriptive study was carried out in 1699 patients who went through Pap smear examination. Prevalence of epithelial cell abnormality was calculated. Forty eight of these women underwent routine histopathology and 47 were evaluated for human papillomavirus (HPV) type 16/18 by polymerase chain reaction assay. Total 139 women revealed epithelial cell abnormality. Histopathology showed simple inflammation to malignancy. HPV type 16/18 infection was detected in 40.42% (19/47) of the patients. Individually type 16 and 18 were positive in 7 (14.9%) cases each and dual infection with type 16 and 18 were seen in 5 (10.6%) cases. While cervical intraepithelial neoplasia grade 1 (CIN 1) and cervical cancer screening strategies.

  5. Zebularine inhibits the growth of A549 lung cancer cells via cell cycle arrest and apoptosis.

    Science.gov (United States)

    You, Bo Ra; Park, Woo Hyun

    2014-11-01

    Zebularine (Zeb) is a DNA methyltransferase (DNMT) inhibitor to that has an anti-tumor effect. Here, we evaluated the anti-growth effect of Zeb on A549 lung cancer cells in relation to reactive oxygen species (ROS) levels. Zeb inhibited the growth of A549 cells with an IC50 of approximately 70 µM at 72 h. Cell cycle analysis indicated that Zeb induced an S phase arrest in A549 cells. Zeb also induced A549 cell death, which was accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨm ), Bcl-2 decrease, Bax increase, p53 increase and activation of caspase-3 and -8. In contrast, Zeb mildly inhibited the growth of human pulmonary fibroblast (HPF) normal cells and lead to a G1 phase arrest. Zeb did not induce apoptosis in HPF cells. In relation to ROS level, Zeb increased ROS level in A549 cells and induced glutathione (GSH) depletion. The well-known antioxidant, N-acetyl cysteine (NAC) prevented the death of Zeb-treated A549 cells. Moreover, Zeb increased the level of thioredoxin reductase 1 (TrxR1) in A549 cells. While the overexpression of TrxR1 attenuated death and ROS level in Zeb-treated A549 cells, the downregulation of TrxR1 intensified death and ROS level in these cells. In conclusion, Zeb inhibited the growth of A549 lung cancer cells via cell cycle arrest and apoptosis. The inhibition was influenced by ROS and TrxR1 levels. © 2013 Wiley Periodicals, Inc.

  6. Tissue transglutaminase in normal and abnormal wound healing: review article

    OpenAIRE

    Verderio, EAM; Johnson, T; Griffin, M

    2004-01-01

    A complex series of events involving inflammation, cell migration and proliferation, ECM stabilisation and remodelling, neovascularisation and apoptosis are crucial to the tissue response to injury. Wound healing involves the dynamic interactions of multiple cells types with components of the extracellular matrix (ECM) and growth factors. Impaired wound healing as a consequence of aging, injury or disease may lead to serious disabilities and poor quality of life. Abnormal wound healing may al...

  7. Fluctuation of Parameters in Tumor Cell Growth Model

    Science.gov (United States)

    Ai, Bao-Quan; Wang, Xian-Ju; Liu, Guo-Tao; Liu, Liang-Gang

    2003-07-01

    We study the steady state properties of a logistic growth model in the presence of Gaussian white noise. Based on the corresponding Fokker-Planck equation the steady state solution of the probability distribution function and its extrema have been investigated. It is found that the fluctuation of the tumor birth rate reduces the population of the cells while the fluctuation of predation rate can prevent the population of tumor cells from going into extinction. Noise in the system can induce the phase transition. The project supported by National Natural Science Foundation of China under Grant No. 10275099 and Natural Science Foundation of Guangdong Province of China under Grant Nos. 021707 and 001182

  8. Genomic imprinting in development, growth, behavior and stem cells.

    Science.gov (United States)

    Plasschaert, Robert N; Bartolomei, Marisa S

    2014-05-01

    Genes that are subject to genomic imprinting in mammals are preferentially expressed from a single parental allele. This imprinted expression of a small number of genes is crucial for normal development, as these genes often directly regulate fetal growth. Recent work has also demonstrated intricate roles for imprinted genes in the brain, with important consequences on behavior and neuronal function. Finally, new studies have revealed the importance of proper expression of specific imprinted genes in induced pluripotent stem cells and in adult stem cells. As we review here, these findings highlight the complex nature and developmental importance of imprinted genes.

  9. Growth hormone action in rat insulinoma cells expressing truncated growth hormone receptors

    DEFF Research Database (Denmark)

    Møldrup, Annette; Allevato, G; Dyrberg, Thomas

    1991-01-01

    Transfection of the insulin-producing rat islet tumor cell line RIN-5AH with a full length cDNA of the rat hepatic growth hormone (GH) receptor (GH-R1-638) augments the GH-responsive insulin synthesis in these cells. Using this functional system we analyzed the effect of COOH-terminal truncation...... of the GH receptor. Two mutated cDNAs encoding truncated GH receptors, GH-R1-294 and GH-R1-454, respectively, were generated by site-directed mutagenesis and transfected into the RIN cells. Both receptor mutants were expressed on the cell surface and displayed normal GH binding affinity. Whereas GH-R1......-638 had a molecular mass of about 110 kDa, GH-R1-294 and GH-R1-454 showed molecular masses of 49 and 80 kDa, respectively. Cells expressing GH-R1-454 internalized GH to a similar extent as cells transfected with the full length receptor and the parent cell line, but GH-R1-294-expressing cells showed...

  10. TOR, the Gateway to Cellular Metabolism, Cell Growth, and Disease.

    Science.gov (United States)

    Blenis, John

    2017-09-21

    Michael N. Hall is this year's recipient of the Lasker Basic Medical Research Award for the identification of the target of rapamycin, TOR. TOR is a master regulator of the cell's growth and metabolic state, and its dysregulation contributes to a variety of diseases, including diabetes, obesity, neurodegenerative disorders, aging, and cancer, making the TOR pathway an attractive therapeutic target. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Systems-biology dissection of eukaryotic cell growth

    Directory of Open Access Journals (Sweden)

    Andrews Justen

    2010-05-01

    Full Text Available Abstract A recent article in BMC Biology illustrates the use of a systems-biology approach to integrate data across the transcriptome, proteome and metabolome of budding yeast in order to dissect the relationship between nutrient conditions and cell growth. See research article http://jbiol.com/content/6/2/4 and http://www.biomedcentral.com/1741-7007/8/68

  12. Clinical values for abnormal {sup 18}F-FDG uptake in the head and neck region of patients with head and neck squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hwan Seo [Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Jae Seung [Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Roh, Jong-Lyel, E-mail: rohjl@amc.seoul.kr [Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Choi, Seung-Ho; Nam, Soon Yuhl [Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Sang Yoon [Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Biomedical Research Institute, Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2014-08-15

    Highlights: • Abnormal {sup 18}F-FDG uptakes in the head and neck (HN) region can be carefully interpreted as being index primary, second primary cancer (SP) or benign. • {sup 18}F-FDG PET/CT identified 91.9% primary HN squamous cell carcinomas (HNSCC). • The specificity and negative predictive value of {sup 18}F-FDG PET/CT for identification of SP were as high as 98.7% and 99.3%, respectively. • Proper detection of primary tumors and SP in the HN region may promote appropriate therapeutic planning of HNSCC patients. - Abstract: Purpose: Fluorine 18-fluorodeoxyglucose ({sup 18}F-FDG) positron emission tomography (PET)/computed tomography (CT) is used to identify index or second primary cancer (SP) of the head and neck (HN) through changes in {sup 18}F-FDG uptake. However, both physiologic and abnormal lesions increase {sup 18}F-FDG uptake. Therefore, we evaluated {sup 18}F-FDG uptake in the HN region to determine clinical values of abnormal tracer uptake. Methods: A prospective study approved by the institutional review board was conducted in 314 patients with newly diagnosed HN squamous cell carcinoma (HNSCC) and informed consent was obtained from all enrolled patients. The patients received initial staging workups including {sup 18}F-FDG PET/CT and biopsies. All lesions with abnormal HN {sup 18}F-FDG uptake were recorded and most of those were confirmed by biopsies. Diagnostic values for abnormal {sup 18}F-FDG uptake were calculated. Results: Abnormal {sup 18}F-FDG uptake was identified in primary tumors from 285 (91.9%) patients. False-negative results were obtained for 22.3% (23/103) T1 tumors and 2.2% (2/93) T2 tumors (P < 0.001). Thirty-eight regions of abnormal {sup 18}F-FDG uptake were identified in 36 (11.5%) patients: the thyroid (n = 13), maxillary sinus (n = 7), palatine tonsil (n = 6), nasopharynx (n = 5), parotid gland (n = 2) and others (n = 5). Synchronous SP of the HN was identified in eight (2.5%) patients: the thyroid (n = 5), palatine

  13. Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells

    Directory of Open Access Journals (Sweden)

    Huang Jennifer

    2007-12-01

    Full Text Available Abstract Background Ginger (Zingiber officinale Rosc is a natural dietary component with antioxidant and anticarcinogenic properties. The ginger component [6]-gingerol has been shown to exert anti-inflammatory effects through mediation of NF-κB. NF-κB can be constitutively activated in epithelial ovarian cancer cells and may contribute towards increased transcription and translation of angiogenic factors. In the present study, we investigated the effect of ginger on tumor cell growth and modulation of angiogenic factors in ovarian cancer cells in vitro. Methods The effect of ginger and the major ginger components on cell growth was determined in a panel of epithelial ovarian cancer cell lines. Activation of NF-κB and and production of VEGF and IL-8 was determined in the presence or absence of ginger. Results Ginger treatment of cultured ovarian cancer cells induced profound growth inhibition in all cell lines tested. We found that in vitro, 6-shogaol is the most active of the individual ginger components tested. Ginger treatment resulted in inhibition of NF-kB activation as well as diminished secretion of VEGF and IL-8. Conclusion Ginger inhibits growth and modulates secretion of angiogenic factors in ovarian cancer cells. The use of dietary agents such as ginger may have potential in the treatment and prevention of ovarian cancer.

  14. Intracellular Angiotensin II and cell growth of vascular smooth muscle cells

    NARCIS (Netherlands)

    Filipeanu, CM; Henning, RH; de Zeeuw, D; Nelemans, A

    1 We recently demonstrated that intracellular application of Angiotensin II (Angiotensin IIintr) induces rat aorta contraction independent of plasma membrane Angiotensin II receptors. In this study we investigated the effects of Angiotensin IIintr on cell growth in A7r5 smooth muscle cells. 2

  15. Abnormal distribution of the interstitial cells of cajal in an adult patient with pseudo-obstruction and megaduodenum

    DEFF Research Database (Denmark)

    Boeckxstaens, Guy E; Rumessen, Jüri J; de Wit, Laurens

    2002-01-01

    laparoscopic placement of a jejunostomy showed vacuolated myocytes and fibrosis predominantly in the outer third of the circular muscle layer of the duodenum, suggestive for visceral myopathy. The distribution of ICC was also strikingly abnormal: by light microscopy, ICC surrounding the myenteric plexus were...

  16. Directing neuronal cell growth on implant material surfaces by microstructuring.

    Science.gov (United States)

    Reich, Uta; Fadeeva, Elena; Warnecke, Athanasia; Paasche, Gerrit; Müller, Peter; Chichkov, Boris; Stöver, Timo; Lenarz, Thomas; Reuter, Günter

    2012-05-01

    For best hearing sensation, electrodes of auditory prosthesis must have an optimal electrical contact to the respective neuronal cells. To improve the electrode-nerve interface, microstructuring of implant surfaces could guide neuronal cells toward the electrode contact. To this end, femtosecond laser ablation was used to generate linear microgrooves on the two currently relevant cochlear implant materials, silicone elastomer and platinum. Silicone surfaces were structured by two different methods, either directly, by laser ablation or indirectly, by imprinting using laser-microstructured molds. The influence of surface structuring on neurite outgrowth was investigated utilizing a neuronal-like cell line and primary auditory neurons. The pheochromocytoma cell line PC-12 and primary spiral ganglion cells were cultured on microstructured auditory implant materials. The orientation of neurite outgrowth relative to the microgrooves was determined. Both cell types showed a preferred orientation in parallel to the microstructures on both, platinum and on molded silicone elastomer. Interestingly, microstructures generated by direct laser ablation of silicone did not influence the orientation of either cell type. This shows that differences in the manufacturing procedures can affect the ability of microstructured implant surfaces to guide the growth of neurites. This is of particular importance for clinical applications, since the molding technique represents a reproducible, economic, and commercially feasible manufacturing procedure for the microstructured silicone surfaces of medical implants. Copyright © 2012 Wiley Periodicals, Inc.

  17. Griseofulvin inhibits the growth of adrenocortical cancer cells in vitro.

    Science.gov (United States)

    Bramann, E L; Willenberg, H S; Hildebrandt, B; Müller-Mattheis, V; Schott, M; Scherbaum, W A; Haase, M

    2013-04-01

    Supernumerary centrosomes and aneuploidy are associated with a malignant phenotype of tumor cells. Centrosomal clustering is a mechanism used by cancer cells with supernumerary centrosomes to solve the threatening problem of multipolar spindles. Griseofulvin is an antifungal substance that interferes with the microtubule apparatus and inhibits centrosomal clustering. It has also been demonstrated that griseofulvin inhibits the growth of tumor cells in vitro and in vivo. However, it is not yet known whether treatment with griseofulvin inhibits growth of adrenocortical tumor cells. We studied the viability and antiproliferative effects of griseofulvin on cultured NCI-H295R adrenocortical carcinoma cells using Wst-1-, BrdUrd-, and [³H]-thymidine assays. For the detection of apoptosis we used a caspase 3/7 cleavage assay and light microscopy techniques. We observed that incubation with griseofulvin for 24-48 h leads to a decrease in the viability and proliferation of NCI-H295R cells in a dose-dependent manner. Significant effects could be observed after incubation with griseofulvin as measured by Wst-1-, BrdUrd-, and [³H]dT- uptake assays. Apoptosis of NCI-H295R cells was increased in a dose-dependent manner up to 4.5-fold after incubation with griseofulvin 40 μM for 24 h as shown by caspase 3/7 cleavage assay and light microscopy. With regard to new treatment strategies for adrenocortical cancer, griseofulvin, and possibly other agents, which interfere with the microtubule apparatus and inhibit centrosomal clustering, may turn out to be interesting targets for further research. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Estrogen-induced abnormal accumulation of fat cells in the rat penis and associated loss of fertility depends upon estrogen exposure during critical period of penile development.

    Science.gov (United States)

    Goyal, H O; Braden, T D; Williams, C S; Dalvi, P; Mansour, M; Williams, J W

    2005-09-01

    We previously reported that diethylstilbestrol (DES) or estradiol valerate (EV) exposure at a dose of 0.10-0.12 mg/kg, or higher, per day, on alternate days, from postnatal days 2-12, resulted in abnormal penis development and infertility (H. O. Goyal et al., 2005, J. Androl. 26, 32-43). The objective of this study was to identify a critical developmental period(s) during which EV exposure results in the observed penile abnormalities. Male pups received EV at a dose of 0.10-0.12 mg/kg on postnatal day(s) 1, 1-3, 4-6, 1-6, 7-12, 13-18, 19-24, or 25-30. Fertility was tested at 102-115 days of age and tissues were examined at 117-137 days. Both penile morphology and fertility were unaltered in rats treated with EV after 12 days of age. Conversely, except in rats treated on postnatal day 1 only, none of the males treated prior to 12 days of age sired pups, and all had abnormal penises, including varying degrees of abnormal accumulation of fat cells and loss of cavernous spaces and smooth muscle cells in the corpora cavernosa penis, which were maximal in the 1-6-day group. Also, the preputial sheath was partially released or its release was delayed, and the weight of the bulbospongiosus muscle was significantly reduced. Plasma testosterone (T) in the 1-6- and 4-6-day groups and intratesticular T in the 4-6-day group were significantly lower. The testosterone surge, characteristic of controls in the first week of life, was suppressed in the 1-3-day group. Estrogen receptor alpha mRNA expression was enhanced in the body of the penis in the 1-3-day group, but not in the 13-18-day group. Hence, EV exposure prior to 12 days of age (as short as 1-3 days postnatal), but not after 12 days of age, results in long-term abnormal penile morphology, characterized by abnormal accumulation of fat cells in the corpora cavernosa penis and, consequently, loss of fertility.

  19. Models of lipid droplets growth and fission in adipocyte cells

    International Nuclear Information System (INIS)

    Boschi, Federico; Rizzatti, Vanni; Zamboni, Mauro; Sbarbati, Andrea

    2015-01-01

    Lipid droplets (LD) are spherical cellular inclusion devoted to lipids storage. It is well known that excessive accumulation of lipids leads to several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis and atherosclerosis. LDs' size range from fraction to one hundred of micrometers in adipocytes and is related to the lipid content, but their growth is still a puzzling question. It has been suggested that LDs can grow in size due to the fusion process by which a larger LD is obtained by the merging of two smaller LDs, but these events seems to be rare and difficult to be observed. Many other processes are thought to be involved in the number and growth of LDs, like the de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets. Moreover the number and size of LDs are influenced by the catabolism and the absorption or interaction with other organelles. The comprehension of these processes could help in the confinement of the pathologies related to lipid accumulation. In this study the LDs' size distribution, number and the total volume of immature (n=12), mature (n=12, 10-days differentiated) and lipolytic (n=12) 3T3-L1 adipocytes were considered. More than 11,000 LDs were measured in the 36 cells after Oil Red O staining. In a previous work Monte Carlo simulations were used to mimic the fusion process alone between LDs. We found that, considering the fusion as the only process acting on the LDs, the size distribution in mature adipocytes can be obtained with numerical simulation starting from the size distribution in immature cells provided a very high rate of fusion events. In this paper Monte Carlo simulations were developed to mimic the interaction between LDs taking into account many other processes in addition to fusion (de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets) in order to reproduce the LDs growth and we also simulated the

  20. Models of lipid droplets growth and fission in adipocyte cells

    Energy Technology Data Exchange (ETDEWEB)

    Boschi, Federico, E-mail: federico.boschi@univr.it [Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona (Italy); Rizzatti, Vanni; Zamboni, Mauro [Department of Medicine, Geriatric Section, University of Verona, Piazzale Stefani 1, 37126 Verona (Italy); Sbarbati, Andrea [Department of Neurological and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy)

    2015-08-15

    Lipid droplets (LD) are spherical cellular inclusion devoted to lipids storage. It is well known that excessive accumulation of lipids leads to several human worldwide diseases like obesity, type 2 diabetes, hepatic steatosis and atherosclerosis. LDs' size range from fraction to one hundred of micrometers in adipocytes and is related to the lipid content, but their growth is still a puzzling question. It has been suggested that LDs can grow in size due to the fusion process by which a larger LD is obtained by the merging of two smaller LDs, but these events seems to be rare and difficult to be observed. Many other processes are thought to be involved in the number and growth of LDs, like the de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets. Moreover the number and size of LDs are influenced by the catabolism and the absorption or interaction with other organelles. The comprehension of these processes could help in the confinement of the pathologies related to lipid accumulation. In this study the LDs' size distribution, number and the total volume of immature (n=12), mature (n=12, 10-days differentiated) and lipolytic (n=12) 3T3-L1 adipocytes were considered. More than 11,000 LDs were measured in the 36 cells after Oil Red O staining. In a previous work Monte Carlo simulations were used to mimic the fusion process alone between LDs. We found that, considering the fusion as the only process acting on the LDs, the size distribution in mature adipocytes can be obtained with numerical simulation starting from the size distribution in immature cells provided a very high rate of fusion events. In this paper Monte Carlo simulations were developed to mimic the interaction between LDs taking into account many other processes in addition to fusion (de novo formation and the growth through additional neutral lipid deposition in pre-existing droplets) in order to reproduce the LDs growth and we also simulated the

  1. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  2. Neural cell adhesion molecule differentially interacts with isoforms of the fibroblast growth factor receptor

    DEFF Research Database (Denmark)

    Christensen, Claus; Berezin, Vladimir; Bock, Elisabeth

    2011-01-01

    The fibroblast growth factor receptor (FGFR) can be activated through direct interactions with various fibroblast growth factors or through a number of cell adhesion molecules, including the neural cell adhesion molecule (NCAM). We produced recombinant proteins comprising the ligand...

  3. Effect of laser modified surface microtopochemistry on endothelial cell growth.

    Science.gov (United States)

    Duncan, A C; Rouais, F; Lazare, S; Bordenave, L; Baquey, Ch

    2007-02-15

    The introduction of microelectronics technology in the area of biological sciences has brought forth previously unforeseeable applications such as DNA or protein biochips, miniaturized, multiparametric biosensors for high performance multianalyte assays, DNA sequencing, biocomputers, and substrates for controlled cell growth (i.e. tissue engineering). We developed and investigated a new method using "cold" excimer laser beam technology combined with microlithographical techniques to create surfaces with well defined 3D microdomains in order to delineate critical microscopic surface features governing cell-material interactions. Microfabricated surfaces with microgrooves 30-3 microm deep, 10 - 1 microm wide spaced 30 microm apart were obtained with micron resolution, by "microsculpturing" polymer model surfaces using a computer controlled laser KrF excimer beam coupled with a microlithographic projection technique. The laser beam after exiting a mask was focused onto the polymer target surface via an optical setup allowing for a 10-fold reduction of the mask pattern. Various 3D micropatterned features were obtained at the micron level. Reproducible submicron features could also be obtained using this method. Subsequently, model human umbilical endothelial cells (HUVEC) were cultured on the laser microfabricated surfaces in order to study the effects of specific microscopic surface features on cell deposition and orientation. Cell deposition patterns were found to be microstructure dependant, and showed cell orientation dependency for features in the cell range dimension, a behaviour significantly different from that of a previously studied cell model (osteoprogenitor cell). This model may be a promising in so far as it is very rapid (a time frame less than a second per square centimeter of micropatterned surface) and provides further insights into the effects of surface microtopography on cell response with possible applications in the field of biosensors

  4. Human keloid cell characterization and inhibition of growth with human Wharton's jelly stem cell extracts.

    Science.gov (United States)

    Fong, Chui-Yee; Biswas, Arijit; Subramanian, Arjunan; Srinivasan, Akshaya; Choolani, Mahesh; Bongso, Ariff

    2014-05-01

    Keloids are firm rubbery growths that grow beyond the boundaries of human wounds and their treatment has met with limited success. Their properties and growth behavior have not been properly characterized and it has been suggested that a benign neoplastic stem cell-like phenotype in an altered cytokine microenvironment drives their uncontrolled cell proliferation. Modification of the stem cell niche may be an attractive approach to its prevention. We studied the growth behavior, stemness, and tumorigenic characteristics of keloid cells in prolonged culture. Since human Wharton's jelly stem cells (hWJSCs) secrete high levels of cytokines and have anti-tumorigenic properties we explored its role on the inhibition of keloid growth in vitro. Keloid cells grew readily in both adherent and sphere culture and expressed high levels of mesenchymal CD and tumor-associated fibroblast (TAF) markers up to passage 10. When they were exposed to repeat doses of hWJSC conditioned medium (hWJSC-CM) and lysate (hWJSC-CL) every 72 h up to 9 days their growth was inhibited with a reduction in CD and TAF marker expression. On Days 3, 6, and 9 treated keloid cells showed linear decreases in cell proliferation (BrdU), increases in Annexin V-FITC and TUNEL-positive cells, interruptions of the cell cycle and inhibition of migration in scratch-wound assays. Immunocytochemistry and qRT-PCR confirmed a significant downregulation of TAF and anti-apoptotic-related gene (SURVIVIN) expression and upregulation of autophagy-related (BAX, ATG5, ATG7, BECLIN-1) gene expression. The results suggest that hWJSCs or molecules secreted by them may be of therapeutic value in the treatment of keloids. © 2013 Wiley Periodicals, Inc.

  5. Cultivating liver cells on printed arrays of hepatocyte growth factor.

    Science.gov (United States)

    Jones, Caroline N; Tuleuova, Nazgul; Lee, Ji Youn; Ramanculov, Erlan; Reddi, A Hari; Zern, Mark A; Revzin, Alexander

    2009-08-01

    Growth factors are commonly present in soluble form during in vitro cell cultivation experiments in order to provide signals for cellular proliferation or differentiation. In contrast to these traditional experiments, we investigated solid-phase presentation of a hepatocyte growth factor (HGF), a protein important in liver development and regeneration, on microarrays of extracellular matrix (ECM) proteins. In our experiments, HGF was mixed in solution with ECM proteins (collagen (I), (IV) or laminin) and robotically printed onto silane-modified glass slides. Primary rat hepatocytes were seeded onto HGF/ECM protein microarrays and formed cellular clusters that corresponded in size to the dimensions of individual protein spots (500 microm diameter). Analysis of liver-specific products, albumin and alpha1-antitrypsin, revealed several fold higher levels of expression of these proteins in hepatocytes cultured on HGF/ECM microarrays compared to cells cultivated on ECM proteins alone. In addition, cultivation of hepatocytes on HGF/ECM protein spots led to spontaneous reorganization of cellular clusters from a monolayer into three-dimensional spheroids. We also investigated the effects of surface-tethered HGF on hepatocytes co-cultivated with stromal cells and observed a significantly higher level of albumin in co-cultures where hepatocytes were stimulated by HGF/ECM spots compared to co-cultures created on ECM protein islands without the growth factor. In summary, our study suggests that incorporation of HGF into ECM protein microarrays has a profound and long-lasting effect on the morphology and phenotype of primary hepatocytes. In the future, the number of growth factors printed on ECM microarrays will be expanded to enable multiplexed and combinatorial screening of inducers of cellular differentiation or proliferation.

  6. Relationships among seminal culture, seminal white blood cells, and the percentage of primary sperm abnormalities in bulls evaluated prior to the breeding season.

    Science.gov (United States)

    Sprecher, D J; Coe, P H; Walker, R D

    1999-04-15

    Semen samples from 100 beef breed bulls were evaluated for sperm morphology (phased contrast microscopy), seminal white blood cells, and the presence of potential reproductive pathogens. Eligibility required visualization of the glans penis throughout semen collection. Based on clinical spermiograms, bulls were grouped into normal, marginal, or unsatisfactory morphology classifications. The 3 experimental groups were similar in age and scrotal circumference and differed significantly in the percentage of primary sperm abnormalities. Most semen samples (94%) contained one or more potential reproductive pathogens (Hemophilus somnus. Mycoplasma bovigenitalium, Arcanobacterium pyogenes and Ureaplasma diversum). No significant relationship could be demonstrated between primary abnormalities and the assigned culture score. Our experimental results suggest that clinicians should interpret clinical semen culture results with great care. No significant relationship could be demonstrated between primary abnormalities and assigned white blood cell (WBC) score, although, only 1% of the samples was scored >5 WBC per high power field. The use of seminal WBC score may be valid adjunct to routine semen evaluation when that threshold is the basis for clinical decisions.

  7. A carboxy methyl tamarind polysaccharide matrix for adhesion and growth of osteoclast-precursor cells.

    Science.gov (United States)

    Sanyasi, Sridhar; Kumar, Ashutosh; Goswami, Chandan; Bandyopadhyay, Abhijit; Goswami, Luna

    2014-01-30

    Remodeling of bone by tissue engineering is a realistic option for treating several bone-related pathophysiological ailments such as osteoporosis, bone tumor, bone cancer or abnormal bone development. But, these possibilities are hindered due to lack of proper natural and biodegradable surface on which bone precursor cells can adhere efficiently and grow further. Here we describe the synthesis and characterization of a new hydrogel as an effective surface which can acts as a material for bone tissue engineering. This hydrogel has been prepared by chemically grafting a semi-synthetic polymer with a synthetic monomer, namely hydroxyethyl methacrylate (HEMA). Carboxy methyl tamarind (CMT) was selected as the semi-synthetic polymer. The hydrogel was prepared at different mole ratios and at the ratio of 1:10 (CMT:HEMA) yielded the best hydrogel as characterized by several physico-chemical analysis such as UV spectroscopy, FT-IR spectroscopy and swelling properties. We further demonstrate that this material is suitable for effective adhesion, growth and further clustering of bone precursor cells (RAW 264.7). This material is also compatible for growing other sensitive cells such as neuronal cells (Neuro2a) and human umbilical vein endothelial cells (HUVEC) demonstrating that this surface does not possess any cytotoxicity and is compatible for primary human cells too. We conclude that the hydrogel made of CMT:HEMA at a ratio of 1:10 can be suitable for bone tissue engineering and thus may have clinical as well as commercial application in future. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. RANKL induces organized lymph node growth by stromal cell proliferation.

    Science.gov (United States)

    Hess, Estelle; Duheron, Vincent; Decossas, Marion; Lézot, Frédéric; Berdal, Ariane; Chea, Sylvestre; Golub, Rachel; Bosisio, Mattéo R; Bridal, S Lori; Choi, Yongwon; Yagita, Hideo; Mueller, Christopher G

    2012-02-01

    RANK and its ligand RANKL play important roles in the development and regulation of the immune system. We show that mice transgenic for Rank in hair follicles display massive postnatal growth of skin-draining lymph nodes. The proportions of hematopoietic and nonhematopoietic stromal cells and their organization are maintained, with the exception of an increase in B cell follicles. The hematopoietic cells are not activated and respond to immunization by foreign Ag and adjuvant. We demonstrate that soluble RANKL is overproduced from the transgenic hair follicles and that its neutralization normalizes lymph node size, inclusive area, and numbers of B cell follicles. Reticular fibroblastic and vascular stromal cells, important for secondary lymphoid organ formation and organization, express RANK and undergo hyperproliferation, which is abrogated by RANKL neutralization. In addition, they express higher levels of CXCL13 and CCL19 chemokines, as well as MAdCAM-1 and VCAM-1 cell-adhesion molecules. These findings highlight the importance of tissue-derived cues for secondary lymphoid organ homeostasis and identify RANKL as a key molecule for controlling the plasticity of the immune system.

  9. Chromosome replication, cell growth, division and shape: a personal perspective

    Directory of Open Access Journals (Sweden)

    Arieh eZaritsky

    2015-08-01

    Full Text Available The origins of Molecular Biology and Bacterial Physiology are reviewed, from our personal standpoints, emphasizing the coupling between bacterial growth, chromosome replication and cell division, dimensions and shape. Current knowledge is discussed with historical perspective, summarizing past and present achievements and enlightening ideas for future studies. An interactive simulation program of the Bacterial Cell Division Cycle (BCD, described as The Central Dogma in Bacteriology, is briefly represented. The coupled process of transcription/translation of genes encoding membrane proteins and insertion into the membrane (so-called transertion is invoked as the functional relationship between the only two unique macromolecules in the cell, DNA and peptidoglycan embodying the nucleoid and the sacculus respectively. We envision that nucleoid complexity, defined as the weighted-mean DNA content associated with the replication terminus, is directly related to cell shape through the transertion process. Accordingly, the primary signal for cell division transmitted by DNA dynamics (replication, transcription and segregation to the peptidoglycan biosynthetic machinery is of a physico-chemical nature, eg stress in the plasma membrane, relieving nucleoid occlusion in the cell's center hence enabling the divisome to assemble and function between segregated daughter nucleoids.

  10. Cheiradone: a vascular endothelial cell growth factor receptor antagonist

    Directory of Open Access Journals (Sweden)

    Ahmed Nessar

    2008-01-01

    Full Text Available Abstract Background Angiogenesis, the growth of new blood vessels from the pre-existing vasculature is associated with physiological (for example wound healing and pathological conditions (tumour development. Vascular endothelial growth factor (VEGF, fibroblast growth factor-2 (FGF-2 and epidermal growth factor (EGF are the major angiogenic regulators. We have identified a natural product (cheiradone isolated from a Euphorbia species which inhibited in vivo and in vitro VEGF- stimulated angiogenesis but had no effect on FGF-2 or EGF activity. Two primary cultures, bovine aortic and human dermal endothelial cells were used in in vitro (proliferation, wound healing, invasion in Matrigel and tube formation and in vivo (the chick chorioallantoic membrane models of angiogenesis in the presence of growth factors and cheiradone. In all cases, the concentration of cheiradone which caused 50% inhibition (IC50 was determined. The effect of cheiradone on the binding of growth factors to their receptors was also investigated. Results Cheiradone inhibited all stages of VEGF-induced angiogenesis with IC50 values in the range 5.20–7.50 μM but did not inhibit FGF-2 or EGF-induced angiogenesis. It also inhibited VEGF binding to VEGF receptor-1 and 2 with IC50 values of 2.9 and 0.61 μM respectively. Conclusion Cheiradone inhibited VEGF-induced angiogenesis by binding to VEGF receptors -1 and -2 and may be a useful investigative tool to study the specific contribution of VEGF to angiogenesis and may have therapeutic potential.

  11. Decreased SAP Expression in T Cells from Patients with Systemic Lupus Erythematosus Contributes to Early Signaling Abnormalities and Reduced IL-2 Production.

    Science.gov (United States)

    Karampetsou, Maria P; Comte, Denis; Kis-Toth, Katalin; Terhorst, Cox; Kyttaris, Vasileios C; Tsokos, George C

    2016-06-15

    T cells from patients with systemic lupus erythematosus (SLE) display a number of abnormalities, including increased early signaling events following engagement of the TCR. Signaling lymphocytic activation molecule family cell surface receptors and the X-chromosome-defined signaling lymphocytic activation molecule-associated protein (SAP) adaptor are important in the development of several immunocyte lineages and modulating the immune response. We present evidence that SAP protein levels are decreased in T cells and in their main subsets isolated from 32 women and three men with SLE, independent of disease activity. In SLE T cells, SAP protein is also subject to increased degradation by caspase-3. Forced expression of SAP in SLE T cells normalized IL-2 production, calcium (Ca(2+)) responses, and tyrosine phosphorylation of a number of proteins. Exposure of normal T cells to SLE serum IgG, known to contain anti-CD3/TCR Abs, resulted in SAP downregulation. We conclude that SLE T cells display reduced levels of the adaptor protein SAP, probably as a result of continuous T cell activation and degradation by caspase-3. Restoration of SAP levels in SLE T cells corrects the overexcitable lupus T cell phenotype. Copyright © 2016 by The American Association of Immunologists, Inc.

  12. Hematopoietic growth factors including keratinocyte growth factor in allogeneic and autologous stem cell transplantation.

    Science.gov (United States)

    Seggewiss, Ruth; Einsele, Hermann

    2007-07-01

    The aim of hematopoietic stem cell transplantation (HSCT) is to cure patients of malignancies, autoimmune diseases, and immunodeficiency disorders by redirecting the immune system: the often described graft-versus-leukemia (GVL) or graft-versus-tumor (GVT) effects. Unfortunately, fulfillment of this goal is often hampered by relapse of the underlying disease, graft-versus-host disease (GVHD), or severe opportunistic infections, which account for the majority of post-transplantation deaths. Moreover, studies of long-term survivors of transplantation indicate an accelerated immune aging due to the transplantation procedure itself, preceding chemo- or radiotherapy, and acute and chronic GVHD. Significant advances have been made towards overcoming these obstacles by enhancing immune reconstitution with hematopoietic growth factors (HGFs) such as granulocyte colony-stimulating factor (G-CSF) or erythropoietin (EPO) or through the application of cytokines. In addition, there are approaches to promote the thymic-dependent development of naive T cells, which are prepared for the interaction with a multitude of pathogens. Examples are the application of keratinocyte growth factor (KGF), neuroendocrine hormones such as growth hormone or prolactin, sex hormone ablation, or the invention of a three-dimensional artificial thymus based on a cytomatrix. Might these measures result in a higher rate of healthy and fully recovered patients? Here we review progress in each of these areas.

  13. Trends in Epithelial Cell Abnormalities Observed on Cervical Smears over a 21-Year Period in a Tertiary Care Hospital in Kuwait

    Directory of Open Access Journals (Sweden)

    Kusum Kapila

    2015-01-01

    Full Text Available Objectives: This study aimed to analyse trends in epithelial cell abnormalities (ECAs in cervical cytology at a tertiary care hospital in Kuwait. Methods: ECAs in 135,766 reports were compared over three seven-year periods between 1992 and 2012. Conventional Papanicolaou (Pap smear tests were used in the first two periods and ThinPrep (Hologic Corp., Bedford, Massachusetts, USA tests were used in the third. Results: Significant increases in satisfactory smears, atypical squamous cells of undetermined significance (ASCUS and atypical glandular cells of undetermined significance/atypical glandular cells (AGUS/AGCs were seen in the second and third periods (P 0.05. An increase was noted in carcinomas between the first and second periods although a significant decline was seen in the third (P <0.014. Conclusion: Satisfactory smears, ASCUS and AGUS/AGC increased during the study period although no significant increases in LSILs, HSILs or carcinomas were observed.

  14. Single-cell analysis of growth and cell division of the anaerobe Desulfovibrio vulgaris Hildenborough

    Directory of Open Access Journals (Sweden)

    Anouchka eFievet

    2015-12-01

    Full Text Available Recent years have seen significant progress in understanding basic bacterial cell cycle properties such as cell growth and cell division. While characterization and regulation of bacterial cell cycle is quite well documented in the case of fast growing aerobic model organisms, no data has been so far reported for anaerobic bacteria. This lack of information in anaerobic microorganisms can mainly be explained by the absence of molecular and cellular tools such as single cell microscopy and fluorescent probes usable for anaerobes and essential to study cellular events and/or subcellular localization of the actors involved in cell cycle.In this study, single-cell microscopy has been adapted to study for the first time, in real time, the cell cycle of a bacterial anaerobe, Desulfovibrio vulgaris Hildenborough (DvH. This single-cell analysis provides mechanistic insights into the cell division cycle of DvH, which seems to be governed by the recently discussed so-called incremental model that generates remarkably homogeneous cell sizes. Furthermore, cell division was reversibly blocked during oxygen exposure. This may constitute a strategy for anaerobic cells to cope with transient exposure to oxygen that they may encounter in their natural environment, thereby contributing to their aerotolerance. This study lays the foundation for the first molecular, single-cell assay that will address factors that cannot otherwise be resolved in bulk assays and that will allow visualization of a wide range of molecular mechanisms within living anaerobic cells.

  15. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation

    DEFF Research Database (Denmark)

    Frödin, M; Gammeltoft, S

    1994-01-01

    We have investigated the effects of insulin-like growth factors (IGFs), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) on DNA synthesis in cultured chromaffin cells from fetal, neonatal, and adult rats by using 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling for 24 or 48 h...

  16. The resveratrol analogue trimethoxystilbene inhibits cancer cell growth by inducing multipolar cell mitosis.

    Science.gov (United States)

    Traversi, Gianandrea; Fiore, Mario; Percario, Zulema; Degrassi, Francesca; Cozzi, Renata

    2017-03-01

    Natural compounds are extensively studied for their potential use in traditional and non-traditional medicine. Several natural and synthetic Resveratrol analogues have shown interesting biological activities in the field of cancer chemoprevention. In the present study, we have focused on the ability of Resveratrol and two methoxylated derivatives (Trimethoxystilbene and Pterostilbene) to inhibit human cancer cell growth particularly analyzing their ability to interfere with tubulin dynamics at mitosis. We show that Trimethoxystilbene, differently from Resveratrol and Pterostilbene, alters microtubule polymerization dynamics in HeLa cells specifically inducing multipolar spindles and mitotic arrest coupled to a reduction of cell growth and an increase in apoptotic death by mitotic catastrophe. This work demonstrates that the structural modification of Rsv causes substantial changes in the mechanism of action of the derivatives. The presence of three extra methyl groups renders Trimethoxy very efficient in impairing cell proliferation by inducing mitotic catastrophe in cancer cells. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Studies of micronuclei and other nuclear abnormalities in red blood cells of Colossoma macropomum exposed to methylmercury

    OpenAIRE

    da Rocha, Carlos Alberto Machado; da Cunha, Lorena Ara?jo; da Silva Pinheiro, Raul Henrique; de Oliveira Bahia, Marcelo; Burbano, Rommel Mario Rodr?guez

    2011-01-01

    The frequencies of micronuclei (MN) and morphological nuclear abnormalities (NA) in erythrocytes in the peripheral blood of tambaqui (Colossoma macropomum), treated with 2 mg.L-1 methylmercury (MeHg), were analyzed. Two groups (nine specimens in each) were exposed to MeHg for different periods (group A - 24 h; group B - 120 h). A third group served as negative control (group C, untreated; n = 9). Although, when compared to the control group there were no significant differences in MN frequenc...

  18. Zebrin II Expressing Purkinje Cell Phenotype—Related and—Unrelated Cerebellar Abnormalities in Ca˅2.1 Mutant, Rolling Mouse Nagoya

    Directory of Open Access Journals (Sweden)

    Kazuhiko Sawada

    2010-01-01

    Full Text Available Rolling mouse Nagoya is an ataxic mutant mouse that carries a mutation in a gene encoding for the alpha 1A subunit of the voltage-gated P/Q-type Ca2+ channel (Ca˅2.1. This report summarizes our studies and others concerning cerebellar abnormalities in rolling mice based on chemical neuroanatomy. While there are no obvious cerebellar deformations in this mutant mouse, the altered functions of Purkinje cells can be revealed as a reduced expression of type 1 ryanodine receptor (RyR1 in all Purkinje cells uniformly throughout the cerebellum, and as an ectopic expression of tyrosine hydroxylase (TH in the Purkinje cell subsets with the zebrin II—immunopositive phenotype. As the mutated Ca˅2.1 channel is expressed at uniform levels in all Purkinje cells, its copresence with RyR1 staining suggests that a Ca˅2.1 channel dysfunction links with the expression of RyR1 in Purkinje cells of rolling mice. However, an ectopic expression of TH in the Purkinje cells is topologically related to the projection of corticotrophin-releasing factor—immunopositive climbing fibers rather than expression of the mutated Ca˅2.1 channel. On the other hand, increased levels of serotonin (5-HT in 5-HTergic fibers were revealed immunohistochemically in Purkinje cells of the vermis of rolling cerebellum. Thus, to determine whether or not cerebellar abnormalities are related to Purkinje cell populations revealed by zebrin II expression is essential for enhancing our understanding of the pathogenesis of hereditary cerebellar ataxic mutants such as rolling mice.

  19. Formation and growth of crystal defects in directionally solidified multicrystalline silicon for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ryningen, Birgit

    2008-07-01

    Included in this thesis are five publications and one report. The common theme is characterisation of directionally solidified multicrystalline silicon for solar cells. Material characterisation of solar cell silicon is naturally closely linked to both the casting process and to the solar cell processing: Many of the material properties are determined by the casting process, and the solar cell processing will to some extend determine which properties will influence the solar cell performance. Solar grade silicon (SoG-Si) made by metallurgical refining route and supplied by Elkem Solar was directionally solidified and subsequently characterised, and a simple solar cell process was applied. Except from some metallic co-precipitates in the top of the ingot, no abnormalities were found, and it is suggested that within the limits of the tests performed in this thesis, the casting and the solar cell processing, rather than the assumed higher impurity content, was the limiting factor. It is suggested in this thesis that the main quality problem in multicrystalline silicon wafers is the existence of dislocation clusters covering large wafer areas. The clusters will reduce the effect of gettering and even if gettering could be performed successfully, the clusters will still reduce the minority carrier mobility and hence the solar cell performance. It has further been pointed out that ingots solidified under seemingly equal conditions might have a pronounced difference in minority carrier lifetime. Ingots with low minority carrier lifetime have high dislocation densities. The ingots with the substantially higher lifetime seem all to be dominated by twins. It is also found a link between a higher undercooling and the ingots dominated by twins. It is suggested that the two types of ingots are subject to different nucleation and crystal growth mechanisms: For the ingots dominated by dislocations, which are over represented, the crystal growth is randomly nucleated at the

  20. Senescent mesenchymal stem cells promote colorectal cancer cells growth via galectin-3 expression.

    Science.gov (United States)

    Li, Yanju; Xu, Xiao; Wang, Lihua; Liu, Guangjin; Li, Yanqi; Wu, Xiaobing; Jing, Yongguang; Li, Haiyan; Wang, Guihua

    2015-01-01

    Cellular senescence is linked to aging and tumorigenesis. The senescence of mesenchymal stem cells (MSCs) may influence the tumor growth, metastasis, and angiogenesis by secreting a variety of cytokines and growth factors. The conditioned media of adipose derived MSCs (AD-MSCs) stimulated the proliferation of human LoVo colorectal-cancer cells, and the replicative senescent MSCs had the more obvious effects in comparison to that of premature AD-MSCs. Analysis of the factors secreted in the MSCs culture media determined that senescent MSCs expressed and secreted high levels of galectin-3. Galectin-3 expression correlated with the stimulatory effect of senescent AD-MSCs on LoVo cells proliferation, as knockdown of galectin-3 in senescent AD-MSCs significantly reversed the effect of MSCs-mediated growth stimulation of LoVo cells. Furthermore, the simultaneous addition of recombinant galectin-3 to the co-culture systems partially restored the tumor-promoting effect of the senescent AD-MSCs. Analysis of the mechanisms of senescent MSCs and galectin-3 on LoVo cells signal transduction determined that senescent MSCs and exogenous galectin-3 promoted cell growth by activating the mitogen-activated protein kinase (MAPK) (extracellular signal-regulated kinase [ERK]1/2) pathway. Senescent MSCs may alter the tissue microenvironment and affect nearby malignant cells via cytokine secretion, and galectin-3 is an important mediator of senescent AD-MSC-mediated stimulation of colon cancer cell growth. Therefore, thorough assessment of AD-MSCs prior to their implementation in clinical practice is warranted.

  1. Influence of Cell-Cell Interactions on the Population Growth Rate in a Tumor

    Science.gov (United States)

    Chen, Yong

    2017-12-01

    The understanding of the macroscopic phenomenological models of the population growth at a microscopic level is important to predict the population behaviors emerged from the interactions between the individuals. In this work, we consider the influence of the population growth rate R on the cell-cell interaction in a tumor system and show that, in most cases especially small proliferative probabilities, the regulative role of the interaction will be strengthened with the decline of the intrinsic proliferative probabilities. For the high replication rates of an individual and the cooperative interactions, the proliferative probability almost has no effect. We compute the dependences of R on the interactions between the cells under the approximation of the nearest neighbor in the rim of an avascular tumor. Our results are helpful to qualitatively understand the influence of the interactions between the individuals on the growth rate in population systems. Supported by the National Natural Science Foundation of China under Grant Nos. 11675008 and 21434001

  2. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation

    DEFF Research Database (Denmark)

    Frödin, M; Gammeltoft, S

    1994-01-01

    We have investigated the effects of insulin-like growth factors (IGFs), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) on DNA synthesis in cultured chromaffin cells from fetal, neonatal, and adult rats by using 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling for 24 or 48 h...... implications for improving the survival of chromaffin cell implants in diseased human brain....

  3. Growth of primary embryo cells in a microculture system.

    Science.gov (United States)

    Villa, Max; Pope, Sara; Conover, Joanne; Fan, Tai-Hsi

    2010-04-01

    We present optimal perfusion conditions for the growth of primary mouse embryonic fibroblasts (mEFs) and mouse embryonic stem cells (mESCs) using a microfluidic perfusion culture system. In an effort to balance nutrient renewal while ensuring the presence of cell secreted factors, we found that the optimal perfusion rate for culturing primary embryonic fibroblasts (mEFs) in our experimental setting is 10 nL/min with an average flow velocity 0.55 microm/s in the microchannel. Primary mEFs may have a greater dependence on cell secreted factors when compared to their immortalized counterpart 3T3 fibroblasts cultured under similar conditions. Both the seeding density and the perfusion rate are critical for the proliferation of primary cells. A week long cultivation of mEFs and mESCs using the microculture system exhibited similar morphology and viability to those grown in a petri dish. Both mEFs and mESCs were analyzed using fluorescence immunoassays to determine their proliferative status and protein expression. Our results demonstrate that a perfusion-based microculture environment is capable of supporting the highly proliferative status of pluripotent embryonic stem cells.

  4. Human Neuron-Committed Teratocarcinoma NT2 Cell Line Has Abnormal ND10 Structures and Is Poorly Infected by Herpes Simplex Virus Type 1

    Science.gov (United States)

    Hsu, Wei-Li; Everett, Roger D.

    2001-01-01

    Herpes simplex virus type 1 (HSV-1) immediate-early regulatory protein ICP0 stimulates the initiation of lytic infection and reactivation from quiescence in human fibroblast cells. These functions correlate with its ability to localize to and disrupt centromeres and specific subnuclear structures known as ND10, PML nuclear bodies, or promyelocytic oncogenic domains. Since the natural site of herpesvirus latency is in neurons, we investigated the status of ND10 and centromeres in uninfected and infected human cells with neuronal characteristics. We found that NT2 cells, a neuronally committed human teratocarcinoma cell line, have abnormal ND10 characterized by low expression of the major ND10 component PML and no detectable expression of another major ND10 antigen, Sp100. In addition, PML is less extensively modified by the ubiquitin-like protein SUMO-1 in NT2 cells compared to fibroblasts. After treatment with retinoic acid, NT2 cells differentiate into neuron-like hNT cells which express very high levels of both PML and Sp100. Infection of both NT2 and hNT cells by HSV-1 was poor compared to human fibroblasts, and after low-multiplicity infection yields of virus were reduced by 2 to 3 orders of magnitude. ICP0-deficient mutants were also disabled in the neuron-related cell lines, and cells quiescently infected with an ICP0-null virus could be established. These results correlated with less-efficient disruption of ND10 and centromeres induced by ICP0 in NT2 and hNT cells. Furthermore, the ability of ICP0 to activate gene expression in transfection assays in NT2 cells was poor compared to Vero cells. These results suggest that a contributory factor in the reduced HSV-1 replication in the neuron-related cells is inefficient ICP0 function; it is possible that this is pertinent to the establishment of latent infection in neurons in vivo. PMID:11264371

  5. Modification of MCF-10A Cells with Pioglitazone and Serum-Rich Growth Medium Increases Soluble Factors in the Conditioned Medium, Likely Reducing BT-474 Cell Growth

    OpenAIRE

    Khoo, Boon Yin; Miswan, Noorizan; Balaram, Prabha; Nadarajan, Kalpanah; Elstner, Elena

    2012-01-01

    In the present study, we aimed to preincubate MCF-10A cells with pioglitazone and/or serum-rich growth media and to determine adhesive and non-adhesive interactions of the preincubated MCF-10A cells with BT-474 cells. For this purpose, the MCF-10A cells were preincubated with pioglitazone and/or serum-rich growth media, at appropriate concentrations, for 1 week. The MCF-10A cells preincubated with pioglitazone and/or serum-rich growth media were then co-cultured adhesively and non-adhesively ...

  6. Modification of MCF-10A Cells with Pioglitazone and Serum-Rich Growth Medium Increases Soluble Factors in the Conditioned Medium, Likely Reducing BT-474 Cell Growth

    Directory of Open Access Journals (Sweden)

    Kalpanah Nadarajan

    2012-05-01

    Full Text Available In the present study, we aimed to preincubate MCF-10A cells with pioglitazone and/or serum-rich growth media and to determine adhesive and non-adhesive interactions of the preincubated MCF-10A cells with BT-474 cells. For this purpose, the MCF-10A cells were preincubated with pioglitazone and/or serum-rich growth media, at appropriate concentrations, for 1 week. The MCF-10A cells preincubated with pioglitazone and/or serum-rich growth media were then co-cultured adhesively and non-adhesively with BT-474 cells for another week. Co-culture of BT-474 cells with the preincubated MCF-10A cells, both adhesively and non-adhesively, reduced the growth of the cancer cells. The inhibitory effect of the preincubated MCF-10A cells against the growth of BT-474 cells was likely produced by increasing levels of soluble factors secreted by the preincubated MCF-10A cells into the conditioned medium, as immunoassayed by ELISA. However, only an elevated level of a soluble factor distinguished the conditioned medium collected from the MCF-10A cells preincubated with pioglitazone and serum-rich growth medium than that with pioglitazone alone. This finding was further confirmed by the induction of the soluble factor transcript expression in the preincubated MCF-10A cells, as determined using real-time PCR, for the above phenomenon. Furthermore, modification of the MCF-10A cells through preincubation did not change the morphology of the cells, indicating that the preincubated cells may potentially be injected into mammary fat pads to reduce cancer growth in patients or to be used for others cell-mediated therapy.

  7. Chicken stem cell factor enhances primordial germ cell proliferation cooperatively with fibroblast growth factor 2.

    Science.gov (United States)

    Miyahara, Daichi; Oishi, Isao; Makino, Ryuichi; Kurumisawa, Nozomi; Nakaya, Ryuma; Ono, Tamao; Kagami, Hiroshi; Tagami, Takahiro

    2016-04-22

    An in vitro culture system of chicken primordial germ cells (PGCs) has been recently developed, but the growth factor involved in the proliferation of PGCs is largely unknown. In the present study, we investigated the growth effects of chicken stem cell factor (chSCF) on the in vitro proliferation of chicken PGCs. We established two feeder cell lines (buffalo rat liver cells; BRL cells) that stably express the putative secreted form of chSCF (chSCF1-BRL) and membrane bound form of chSCF (chSCF2-BRL). Cultured PGC lines were incubated on chSCF1 or chSCF2-BRL feeder cells with fibroblast growth factor 2 (FGF2), and growth effects of each chSCF isoform were investigated. The in vitro proliferation rate of the PGCs cultured on chSCF2-BRL at 20 days of culture was more than threefold higher than those cultured on chSCF1-BRL cells and more than fivefold higher than those cultured on normal BRL cells. Thus, use of chSCF2-BRL feeder layer was effective for in vitro proliferation of chicken PGCs. However, the acceleration of PGC proliferation on chSCF2-BRL was not observed without FGF2, suggesting that chSCF2 would act as a proliferation co-factor of FGF2. We transferred the PGCs cultured on chSCF2-BRL cells to recipient embryos, generated germline chimeric chickens and assessed the germline competency of cultured PGCs by progeny test. Donor-derived progenies were obtained, and the frequency of germline transmission was 3.39%. The results of this study demonstrate that chSCF2 induces hyperproliferation of chicken PGCs retaining germline competency in vitro in cooperation with FGF2.

  8. Expression of the epidermal growth factor receptor in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Damstrup, L; Rygaard, K; Spang-Thomsen, M

    1992-01-01

    Epidermal growth factor (EGF) receptor expression was evaluated in a panel of 21 small cell lung cancer cell lines with radioreceptor assay, affinity labeling, and Northern blotting. We found high-affinity receptors to be expressed in 10 cell lines. Scatchard analysis of the binding data...... lung cancer cell lines express the EGF receptor....... of EGF receptor mRNA in all 10 cell lines that were found to be EGF receptor-positive and in one cell line that was found to be EGF receptor-negative in the radioreceptor assay and affinity labeling. Our results provide, for the first time, evidence that a large proportion of a broad panel of small cell...

  9. β-Catenin activation regulates tissue growth non-cell autonomously in the hair stem cell niche.

    Science.gov (United States)

    Deschene, Elizabeth R; Myung, Peggy; Rompolas, Panteleimon; Zito, Giovanni; Sun, Thomas Yang; Taketo, Makoto M; Saotome, Ichiko; Greco, Valentina

    2014-03-21

    Wnt/β-catenin signaling is critical for tissue regeneration. However, it is unclear how β-catenin controls stem cell behaviors to coordinate organized growth. Using live imaging, we show that activation of β-catenin specifically within mouse hair follicle stem cells generates new hair growth through oriented cell divisions and cellular displacement. β-Catenin activation is sufficient to induce hair growth independently of mesenchymal dermal papilla niche signals normally required for hair regeneration. Wild-type cells are co-opted into new hair growths by β-catenin mutant cells, which non-cell autonomously activate Wnt signaling within the neighboring wild-type cells via Wnt ligands. This study demonstrates a mechanism by which Wnt/β-catenin signaling controls stem cell-dependent tissue growth non-cell autonomously and advances our understanding of the mechanisms that drive coordinated regeneration.

  10. Lipid raft involvement in yeast cell growth and death

    Directory of Open Access Journals (Sweden)

    Faustino eMollinedo

    2012-10-01

    Full Text Available The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Crytococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na+, K+ and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  11. Lipid raft involvement in yeast cell growth and death

    International Nuclear Information System (INIS)

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na + , K + , and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  12. Functional B cell abnormalities in HIV type 1 infection: role of CD40L and CD70

    NARCIS (Netherlands)

    Wolthers, K. C.; Otto, S. A.; Lens, S. M.; van Lier, R. A.; Miedema, F.; Meyaard, L.

    1997-01-01

    Early in HIV-1 infection, B cell responses to T cell-dependent antigens are impaired. In addition to the receptor-ligand pair CD40/CD40L, CD27/CD70 also appears to be involved in T cell-dependent B cell stimulation. We have shown that CD70+ B cells are the main producers of Ig when stimulated in a T

  13. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Payton-Stewart, Florastina [Department of Chemistry, College of Arts and Sciences, Xavier University of Louisiana, New Orleans, LA (United States); Tilghman, Syreeta L. [Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA (United States); Williams, LaKeisha G. [Division of Clinical and Administrative Sciences, College of Pharmacy Xavier University of Louisiana, New Orleans, LA (United States); Winfield, Leyte L., E-mail: lwinfield@spelman.edu [Department of Chemistry, Spelman College, Atlanta, GA (United States)

    2014-08-08

    Highlights: • The methyl-substituted benzimidazole was more effective at inhibiting growth in MDA-MB 231 cells. • The naphthyl-substituted benzimidazole was more effective at inhibiting growth in MCF-7 cells than ICI. • The benzimidazole molecules demonstrated a dose-dependent reduction in ERE transcriptional activity. • The benzimidazole molecules had binding mode in ERα and ERβ comparable to that of the co-crystallized ligand. - Abstract: Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets for developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules

  14. Growth inhibitory activity of Ankaferd hemostat on primary melanoma cells and cell lines

    Directory of Open Access Journals (Sweden)

    Seyhan Turk

    2017-02-01

    Full Text Available Objective: Ankaferd hemostat is the first topical hemostatic agent about the red blood cell–fibrinogen relations tested in the clinical trials. Ankaferd hemostat consists of standardized plant extracts including Alpinia officinarum, Glycyrrhiza glabra, Thymus vulgaris, Urtica dioica, and Vitis vinifera. The aim of this study was to determine the effect of Ankaferd hemostat on viability of melanoma cell lines. Methods: Dissimilar melanoma cell lines and primary cells were used in this study. These cells were treated with different concentrations of Ankaferd hemostat to assess the impact of different dosages of the drug. All cells treated with different concentrations were incubated for different time intervals. After the data had been obtained, one-tailed T-test was used to determine whether the Ankaferd hemostat would have any significant inhibitory impact on cell growth. Results: We demonstrated in this study that cells treated with Ankaferd hemostat showed a significant decrease in cell viability compared to control groups. The cells showed different resistances against Ankaferd hemostat which depended on the dosage applied and the time treated cells had been incubated. We also demonstrated an inverse relationship between the concentration of the drug and the incubation time on one hand and the viability of the cells on the other hand, that is, increasing the concentration of the drug and the incubation time had a negative impact on cell viability. Conclusion: The findings in our study contribute to our knowledge about the anticancer impact of Ankaferd hemostat on different melanoma cells.

  15. Facile modification of gelatin-based microcarriers with multiporous surface and proliferative growth factors delivery to enhance cell growth

    International Nuclear Information System (INIS)

    Huang Sha; Wang Yijuan; Deng, Tianzheng; Jin Fang; Liu Shouxin; Zhang Yongjie; Feng Feng; Jin Yan

    2008-01-01

    The design of microcarriers plays an important role in the success of cell expansion. The present article provides a facile approach to modify the gelatin-based particles and investigates the feasibility of their acting as microcarriers for cell attachment and growth. Gelatin particles (150-320 μm) were modified by cryogenic treatment and lyophilization to develop the surface with the features of multiporous morphology and were incorporated with proliferative growth factors (bFGF) by adsorption during the post-preparation, which enables them to serve as microcarriers for cells amplification, together with the advantages of larger cell-surface contact area and capability of promoting cell propagation. The microstructure and release assay of the modified microcarriers demonstrated that the pores on surface were uniform and bFGF was released in a controlled manner. Through in vitro fibroblast culture, these features resulted in a prominent increase in the cell attachment rate and cell growth rate relative to the conditions without modification. Although the scanning electron microscopy and optical microscopy analysis results indicated that cells attached, spread, and proliferated on all the microcarriers, cell growth clearly showed a significant correlation with the multiporous structure of microcarriers, in particular on bFGF combined ones. These results validate our previous assumption that the facile modification could improve cell growth on the gelatin-based microcarriers obviously and the novel microcarriers may be a promising candidate in tissue engineering

  16. Comparisons of stomatal parameters between normal and abnormal ...

    African Journals Online (AJOL)

    ED), guard cell length (GCL) and guard cell width (GCW) of normal and abnormal leaf of Bougainvillea spectabilis Willd were studied. This can be useful for further research of physical mechanism of abnormal leaf. Epidermal cells were ...

  17. When ultrasound anomalies are present: An estimation of the frequency of chromosome abnormalities not detected by cell-free DNA aneuploidy screens.

    Science.gov (United States)

    Reimers, Rebecca M; Mason-Suares, Heather; Little, Sarah E; Bromley, Bryann; Reiff, Emily S; Dobson, Lori J; Wilkins-Haug, Louise

    2018-03-01

    This study characterizes cytogenetic abnormalities with ultrasound findings to refine counseling following negative cell-free DNA (cfDNA). A retrospective cohort of pregnancies with chromosome abnormalities and ultrasound findings was examined to determine the residual risk following negative cfDNA. Cytogenetic data was categorized as cfDNA detectable for aneuploidies of chromosomes 13, 18, 21, X, or Y or non-cfDNA detectable for other chromosome abnormalities. Ultrasound reports were categorized as structural anomaly, nuchal translucency (NT) ≥3.0 mm, or other "soft markers". Results were compared using chi squared and Fishers exact tests. Of the 498 fetuses with cytogenetic abnormalities and ultrasound findings, 16.3% (81/498) had non-cfDNA detectable results. In the first, second, and third trimesters, 12.4% (32/259), 19.5% (42/215), and 29.2% (7/24) had non-cfDNA detectable results respectively. The first trimester non-cfDNA detectable results reduced to 7.7% (19/246) if triploidy was detectable by cfDNA testing. For isolated first trimester NT of 3.0-3.49 mm, 15.8% (6/38) had non-cfDNA detectable results, while for NT ≥3.5 mm, it was 12.3% (20/162). For cystic hygroma, 4.3% (4/94) had non-cfDNA detectable results. Counseling for residual risk following cfDNA in the presence of an ultrasound finding is impacted by gestational age, ultrasound finding, and cfDNA detection of triploidy. © 2018 John Wiley & Sons, Ltd.

  18. Growth of melanocytes in human epidermal cell cultures

    International Nuclear Information System (INIS)

    Staiano-Coico, L.; Hefton, J.M.; Amadeo, C.; Pagan-Charry, I.; Madden, M.R.; Cardon-Cardo, C.

    1990-01-01

    Epidermal cell cultures were grown in keratinocyte-conditioned medium for use as burn wound grafts; the melanocyte composition of the grafts was studied under a variety of conditions. Melanocytes were identified by immunohistochemistry based on a monoclonal antibody (MEL-5) that has previously been shown to react specifically with melanocytes. During the first 7 days of growth in primary culture, the total number of melanocytes in the epidermal cultures decreased to 10% of the number present in normal skin. Beginning on day 2 of culture, bipolar melanocytes were present at a mean cell density of 116 +/- 2/mm2; the keratinocyte to melanocyte ratio was preserved during further primary culture and through three subpassages. Moreover, exposure of cultures to mild UVB irradiation stimulated the melanocytes to proliferate, suggesting that the melanocytes growing in culture maintained their responsiveness to external stimuli. When the sheets of cultured cells were enzymatically detached from the plastic culture flasks before grafting, melanocytes remained in the basal layer of cells as part of the graft applied to the patient

  19. Glucose Signaling-Mediated Coordination of Cell Growth and Cell Cycle in Saccharomyces Cerevisiae

    Directory of Open Access Journals (Sweden)

    Stefano Busti

    2010-06-01

    Full Text Available Besides being the favorite carbon and energy source for the budding yeast Sacchromyces cerevisiae, glucose can act as a signaling molecule to regulate multiple aspects of yeast physiology. Yeast cells have evolved several mechanisms for monitoring the level of glucose in their habitat and respond quickly to frequent changes in the sugar availability in the environment: the cAMP/PKA pathways (with its two branches comprising Ras and the Gpr1/Gpa2 module, the Rgt2/Snf3-Rgt1 pathway and the main repression pathway involving the kinase Snf1. The cAMP/PKA pathway plays the prominent role in responding to changes in glucose availability and initiating the signaling processes that promote cell growth and division. Snf1 (the yeast homologous to mammalian AMP-activated protein kinase is primarily required for the adaptation of yeast cell to glucose limitation and for growth on alternative carbon source, but it is also involved in the cellular response to various environmental stresses. The Rgt2/Snf3-Rgt1 pathway regulates the expression of genes required for glucose uptake. Many interconnections exist between the diverse glucose sensing systems, which enables yeast cells to fine tune cell growth, cell cycle and their coordination in response to nutritional changes.

  20. UVB-irradiated apoptotic cells induce accelerated growth of co-implanted viable tumor cells in immune competent mice.

    Science.gov (United States)

    Chaurio, Ricardo; Janko, Christina; Schorn, Christine; Maueröder, Christian; Bilyy, Rostyslav; Gaipl, Udo; Schett, Georg; Berens, Christian; Frey, Benjamin; Munoz, Luis E

    2013-08-01

    The presence of a solid tumor is the result of a complex balance between rejection, tolerance and regeneration in which the interactions of tumor cells with cells of the host immune system contribute strongly to the final outcome. Here we report on a model where lethally UVB-irradiated cells cause accelerated growth of viable tumor cells in vitro and in allogeneic immune competent mice. UVB-irradiated tumor cells alone did not form tumors and failed to induce tolerance for a second challenge with the same allogeneic tumor. Our data show an important role for dying cells in promoting accelerated tumor cell growth of a small number of viable tumor cells in a large inoculum of UVB-irradiated tumor cells. This occurs when viable and dying/dead tumor cells are in close proximity, suggesting that mobile factors contribute to growth promotion. The anti-inflammatory and growth promoting properties of apoptotic cells are based on several independent effects. UVB-irradiated apoptotic cells directly release a growth promoting activity and clearance by macrophages of apoptotic cells is accompanied by the secretion of IL10, TGFß, and PGE2. Growth promotion is even observed with dying heterologous cells implying a conserved mechanism. Future experiments should focus on the effects of dying tumor cells generated in vivo on the outgrowth of surviving tumor cells which is prone to have implications for cancer therapy.

  1. A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Shima P Damodaran

    Full Text Available To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers and a significant subpopulation of slowly dividing cells (slow-growers. These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes.

  2. Abnormal Head Position

    Science.gov (United States)

    ... Frequently Asked Questions Español Condiciones Chinese Conditions Abnormal Head Position En Español Read in Chinese What is an abnormal head posture? An abnormal or compensatory head posture occurs ...

  3. Total polysaccharide of Yupingfeng protects against bleomycin-induced pulmonary fibrosis via inhibiting transforming growth factor-β1-mediated type I collagen abnormal deposition in rats.

    Science.gov (United States)

    Xu, Liang; Li, Liu-cheng; Zhao, Ping; Qi, Lian-wen; Li, Ping; Gao, Jian; Fei, Guang-he

    2014-12-01

    This study was to explore the antifibrotic effect and the possible mechanism of total polysaccharides of Yupingfeng (YPF-P) on bleomycin (BLM)-induced pulmonary fibrosis in rats. Pulmonary fibrosis was induced in Sprague-Dawley rats by BLM (5 mg/kg), killed 14 and 28 days after BLM administration by abdominal aorta exsanguination and removed the lungs. Lung coefficient was counted at the same time. Besides, H&E and Masson's trichrome staining for histopathological changes of lung tissues were observed. Additionally, western blotting and immunohistochemical staining techniques were used to detect expression of transforming growth factor-β1 (TGF-β1), type I collagen (Col-I) and α-smooth muscle actin (α-SMA). Finally, the levels of Col-I and hydroxyproline (HYP) in lung tissues were also utilized. YPF-P alleviated the increase of lung coefficient induced by BLM instillation in pulmonary fibrosis rat, pathologic changes and collagen distribution were obviously ameliorated, while the increase of α-SMA-positive cells and TGF-β1 expression was prevented after YPF-P treatment. Moreover, the contents of HYP and Col-I were decreased in YPF-P group. YPF-P had antifibrotic effect in experiment, which may reduce the synthesis and promote the deposition of Col-I via suppressing the increase of TGF-β1-mediated activation of myofibroblasts. © 2014 Royal Pharmaceutical Society.

  4. Decreased SAP expression in T cells from patients with SLE contributes to early signaling abnormalities and reduced IL-2 production

    Science.gov (United States)

    Karampetsou, Maria P.; Comte, Denis; Kis-Toth, Katalin; Terhorst, Cox; Kyttaris, Vasileios C.; Tsokos, George C.

    2016-01-01

    T cells from patients with systemic lupus erythematosus (SLE) display a number of functions including increased early signaling events following engagement of the T cell receptor (TCR). Signaling lymphocytic activation molecule family (SLAMF) cell surface receptors and the X-chromosome-defined signaling lymphocytic activation molecule-associated protein (SAP) adaptor are important in the development of several immunocyte lineages and modulating immune response. Here we present evidence that SAP protein levels are decreased in T cells and in their main subsets isolated from 32 women and 3 men with SLE independently of disease activity. In SLE T cells the SAP protein is also subject to increased degradation by a caspase-3. Forced expression of SAP in SLE T cells simultaneously heightened IL-2 production, calcium (Ca2+) responses and tyrosine phosphorylation of a number of proteins. Exposure of normal T cells to SLE serum IgG, known to contain anti-CD3/TCR antibodies, resulted in SAP downregulation. We conclude that SLE T cells display reduced levels of the adaptor protein SAP probably as a result of continuous T cell activation and degradation by caspase-3. Restoration of SAP levels in SLE T cells corrects the overexcitable lupus T cell phenotype. PMID:27183584

  5. Feeder Cell Type Affects the Growth of In Vitro Cultured Bovine Trophoblast Cells

    Directory of Open Access Journals (Sweden)

    Islam M. Saadeldin

    2017-01-01

    Full Text Available Trophectoderm cells are the foremost embryonic cells to differentiate with prospective stem-cell properties. In the current study, we aimed at improving the current approach for trophoblast culture by using granulosa cells as feeders. Porcine granulosa cells (PGCs compared to the conventional mouse embryonic fibroblasts (MEFs were used to grow trophectoderm cells from hatched bovine blastocysts. Isolated trophectoderm cells were monitored and displayed characteristic epithelial/cuboidal morphology. The isolated trophectoderm cells expressed mRNA of homeobox protein (CDX2, cytokeratin-8 (KRT8, and interferon tau (IFNT. The expression level was higher on PGCs compared to MEFs throughout the study. In addition, primary trophectoderm cell colonies grew faster on PGCs, with a doubling time of approximately 48 hrs, compared to MEFs. PGCs feeders produced a fair amount of 17β-estradiol and progesterone. We speculated that the supplementation of sex steroids and still-unknown factors during the trophoblasts coculture on PGCs have helped to have better trophectoderm cell’s growth than on MEFs. This is the first time to use PGCs as feeders to culture trophectoderm cells and it proved superior to MEFs. We propose PGCs as alternative feeders for long-term culture of bovine trophectoderm cells. This model will potentially benefit studies on the early trophoblast and embryonic development in bovines.

  6. Abnormal apoptosis of trophoblastic cells is related to the up-regulation of CYP11A gene in placenta of preeclampsia patients.

    Directory of Open Access Journals (Sweden)

    Guolin He

    Full Text Available Abnormal placenta trophoblast proliferation and apoptosis is related to the pathogenesis of preeclampsia. Emerging evidence has also indicated that key pregnancy-associated hormones, such as hCG, progesterone, are found in high concentration at the maternal-fetal interface. The purpose of this study was to investigate the expression of CYP11A, a key enzyme in steroid hormone synthesis and metabolism, in normal pregnancy and severe preeclampsia placenta and to explore the underlying mechanism of the relationship between the altered CYP11A expression and onset of preeclampsia. Immunohistochemistry method was used to study the localization of CYP11A-encoded protein P450scc in the placenta; reverse transcription polymerase chain reaction (RT-PCR and Western blotting were used to examine CYP11A expression at mRNA and protein levels in patients with severe preeclampsia and normal placental tissue. CYP11A overexpression in trophoblastic cells was used to evaluate the effect on viability. TUNEL staining was used to determine whether overexpression of CYP11A could affect trophoblastic cell apoptosis. The results showed that CYP11A was selectively expressed in the cytoplasm of the placental trophoblastic cells. CYP11A expression were significantly increased in severe preeclampsia compared with normal pregnancy in both mRNA and protein levels. Multiple regression analysis indicated that CYP11A gene expression was positively correlated to ALT level and Plt, while negatively correlated to INR. Overexpression of CYP11A reduced trophoblastic cell proliferation and induced HTR8/SVneo cells apoptosis through activation of activated caspase-3 expression. These results suggest that abnormally high expression of CYP11A inhibits trophoblastic proliferation and increases apoptosis and therefore could be involved in the pathogenesis of preeclampsia.

  7. Understanding pollen tube growth: the hydrodynamic model versus the cell wall model

    NARCIS (Netherlands)

    Zonia, L.; Munnik, T.

    2011-01-01

    Scientific progress stimulates the evolution of models used to understand and conceptualize biological behaviors. The widely accepted cell wall model of pollen tube growth explains stochastic growth of the apical pectin wall, but fails to explain the mechanism driving oscillations in growth and cell

  8. Oncolytic viruses for cancer therapy II. Cell-internal factors for conditional growth in neoplastic cells.

    Science.gov (United States)

    Campbell, Stephanie A; Gromeier, Matthias

    2005-04-01

    Recent advances in our understanding of virus-host interactions have fueled new studies in the field of oncolytic viruses. The first part of this review explained how cell-external factors, such as cellular receptors, influence tumor tropism and specificity of oncolytic virus candidates. In the second part of this review, we focus on cellinternal factors that mediate tumor-specific virus growth. An oncolytic virus must be able to replicate within cancerous cells and kill them without collateral damage to healthy surrounding cells. This desirable property is inherent to some proposed oncolytic viral agents or has been achieved by genetic manipulation in others.

  9. Knockdown of asparagine synthetase (ASNS) suppresses cell proliferation and inhibits tumor growth in gastric cancer cells.

    Science.gov (United States)

    Yu, Qingxiang; Wang, Xiaoyu; Wang, Li; Zheng, Jia; Wang, Jiang; Wang, Bangmao

    2016-10-01

    Asparagine synthetase (ASNS) gene encodes an enzyme that catalyzes the glutamine- and ATP-dependent conversion of aspartic acid to asparagine. ASNS is deemed as a promising therapeutic target and its expression is associated with the chemotherapy resistance in several human cancers. However, its role in gastric cancer tumorigenesis has not been investigated. In this study, we employed small interfering RNA (siRNA) to transiently knockdown ASNS in two gastric cancer cell lines, AGS and MKN-45, followed by growth rate assay and colony formation assay. Dose response curve analysis was performed in AGS and MKN-45 cells with stable ASNS knockdown to assess sensitivity to cisplatin. Xenograft experiment was performed to examine in vivo synergistic effects of ASNS depletion and cisplatin on tumor growth. Expression level of ASNS was evaluated in human patient samples using quantitative PCR. Kaplan-Meier curve analysis was performed to evaluate association between ASNS expression and patient survival. Transient knockdown of ASNS inhibited cell proliferation and colony formation in AGS and MKN-45 cells. Stable knockdown of ASNS conferred sensitivity to cisplatin in these cells. Depletion of ASNS and cisplatin treatment exerted synergistic effects on tumor growth in AGS xenografts. Moreover, ASNS was found to be up-regulated in human gastric cancer tissues compared with matched normal colon tissues. Low expression of ASNS was significantly associated with better survival in gastric cancer patients. ASNS may contribute to gastric cancer tumorigenesis and may represent a novel therapeutic target for prevention or intervention of gastric cancer.

  10. Abnormally high levels of virus-infected IFN-gamma+ CCR4+ CD4+ CD25+ T cells in a retrovirus-associated neuroinflammatory disorder.

    Directory of Open Access Journals (Sweden)

    Yoshihisa Yamano

    Full Text Available BACKGROUND: Human T-lymphotropic virus type 1 (HTLV-1 is a human retrovirus associated with both HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP, which is a chronic neuroinflammatory disease, and adult T-cell leukemia (ATL. The pathogenesis of HAM/TSP is known to be as follows: HTLV-1-infected T cells trigger a hyperimmune response leading to neuroinflammation. However, the HTLV-1-infected T cell subset that plays a major role in the accelerated immune response has not yet been identified. PRINCIPAL FINDINGS: Here, we demonstrate that CD4(+CD25(+CCR4(+ T cells are the predominant viral reservoir, and their levels are increased in HAM/TSP patients. While CCR4 is known to be selectively expressed on T helper type 2 (Th2, Th17, and regulatory T (Treg cells in healthy individuals, we demonstrate that IFN-gamma production is extraordinarily increased and IL-4, IL-10, IL-17, and Foxp3 expression is decreased in the CD4(+CD25(+CCR4(+ T cells of HAM/TSP patients as compared to those in healthy individuals, and the alteration in function is specific to this cell subtype. Notably, the frequency of IFN-gamma-producing CD4(+CD25(+CCR4(+Foxp3(- T cells is dramatically increased in HAM/TSP patients, and this was found to be correlated with disease activity and severity. CONCLUSIONS: We have defined a unique T cell subset--IFN-gamma(+CCR4(+CD4(+CD25(+ T cells--that is abnormally increased and functionally altered in this retrovirus-associated inflammatory disorder of the central nervous system.

  11. Studies of micronuclei and other nuclear abnormalities in red blood cells of Colossoma macropomum exposed to methylmercury

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Machado da Rocha

    2011-01-01

    Full Text Available The frequencies of micronuclei (MN and morphological nuclear abnormalities (NA in erythrocytes in the peripheral blood of tambaqui (Colossoma macropomum, treated with 2 mg.L-1 methylmercury (MeHg, were analyzed. Two groups (nine specimens in each were exposed to MeHg for different periods (group A - 24 h; group B - 120 h. A third group served as negative control (group C, untreated; n = 9. Although, when compared to the control group there were no significant differences in MN frequency in the treated groups, for NA, the differences between the frequencies of group B (treated for 120 h and the control group were extremely significant (p < 0.02, thus demonstrating the potentially adverse effects of MeHg on C. macropomum erythrocytes after prolonged exposure.

  12. Studies of micronuclei and other nuclear abnormalities in red blood cells of Colossoma macropomum exposed to methylmercury.

    Science.gov (United States)

    da Rocha, Carlos Alberto Machado; da Cunha, Lorena Araújo; da Silva Pinheiro, Raul Henrique; de Oliveira Bahia, Marcelo; Burbano, Rommel Mario Rodríguez

    2011-10-01

    The frequencies of micronuclei (MN) and morphological nuclear abnormalities (NA) in erythrocytes in the peripheral blood of tambaqui (Colossoma macropomum), treated with 2 mg.L(-1) methylmercury (MeHg), were analyzed. Two groups (nine specimens in each) were exposed to MeHg for different periods (group A - 24 h; group B - 120 h). A third group served as negative control (group C, untreated; n = 9). Although, when compared to the control group there were no significant differences in MN frequency in the treated groups, for NA, the differences between the frequencies of group B (treated for 120 h) and the control group were extremely significant (p macropomum erythrocytes after prolonged exposure.

  13. Cannabidiol rather than Cannabis sativa extracts inhibit cell growth and induce apoptosis in cervical cancer cells.

    Science.gov (United States)

    Lukhele, Sindiswa T; Motadi, Lesetja R

    2016-09-01

    Cervical cancer remains a global health related issue among females of Sub-Saharan Africa, with over half a million new cases reported each year. Different therapeutic regimens have been suggested in various regions of Africa, however, over a quarter of a million women die of cervical cancer, annually. This makes it the most lethal cancer amongst black women and calls for urgent therapeutic strategies. In this study we compare the anti-proliferative effects of crude extract of Cannabis sativa and its main compound cannabidiol on different cervical cancer cell lines. To achieve our aim, phytochemical screening, MTT assay, cell growth analysis, flow cytometry, morphology analysis, Western blot, caspase 3/7 assay, and ATP measurement assay were conducted. Results obtained indicate that both cannabidiol and Cannabis sativa extracts were able to halt cell proliferation in all cell lines at varying concentrations. They further revealed that apoptosis was induced by cannabidiol as shown by increased subG0/G1 and apoptosis through annexin V. Apoptosis was confirmed by overexpression of p53, caspase 3 and bax. Apoptosis induction was further confirmed by morphological changes, an increase in Caspase 3/7 and a decrease in the ATP levels. In conclusion, these data suggest that cannabidiol rather than Cannabis sativa crude extracts prevent cell growth and induce cell death in cervical cancer cell lines.

  14. [Protective effect of Liuweidihuang Pills against cellphone electromagnetic radiation-induced histomorphological abnormality, oxidative injury, and cell apoptosis in rat testes].

    Science.gov (United States)

    Ma, Hui-rong; Cao, Xiao-hui; Ma, Xue-lian; Chen, Jin-jin; Chen, Jing-wei; Yang, Hui; Liu, Yun-xiao

    2015-08-01

    To observe the effect of Liuweidihuang Pills in relieving cellphone electromagnetic radiation-induced histomorphological abnormality, oxidative injury, and cell apoptosis in the rat testis. Thirty adult male SD rats were equally randomized into a normal, a radiated, and a Liuweidihuang group, the animals in the latter two groups exposed to electromagnetic radiation of 900 MHz cellphone frequency 4 hours a day for 18 days. Meanwhile, the rats in the Liuweidihuang group were treated with the suspension of Liuweidihuang Pills at 1 ml/100 g body weight and the other rats intragastrically with the equal volume of purified water. Then all the rats were killed for observation of testicular histomorphology by routine HE staining, measurement of testicular malondialdehyde (MDA) and glutathione (GSH) levels by colorimetry, and determination of the expressions of bax and bcl-2 proteins in the testis tissue by immunohistochemistry. Compared with the normal controls, the radiated rats showed obviously loose structure, reduced layers of spermatocytes, and cavitation in the seminiferous tubules. Significant increases were observed in the MDA level (P electromagnetic radiation-induced histomorphological abnormality of the testis tissue and reduce its oxidative damage and cell apoptosis.

  15. Impact of PTEN abnormalities on outcome in pediatric patients with T-cell acute lymphoblastic leukemia treated on the MRC UKALL2003 trial.

    Science.gov (United States)

    Jenkinson, S; Kirkwood, A A; Goulden, N; Vora, A; Linch, D C; Gale, R E

    2016-01-01

    PTEN gene inactivation by mutation or deletion is common in pediatric T-cell acute lymphoblastic leukemia (T-ALL), but the impact on outcome is unclear, particularly in patients with NOTCH1/FBXW7 mutations. We screened samples from 145 patients treated on the MRC UKALL2003 trial for PTEN mutations using heteroduplex analysis and gene deletions using single nucleotide polymorphism arrays, and related genotype to response to therapy and long-term outcome. PTEN loss-of-function mutations/gene deletions were detected in 22% (PTEN(ABN)). Quantification of mutant level indicated that 67% of mutated cases harbored more than one mutant, with up to four mutants detected, consistent with the presence of multiple leukemic sub-clones. Overall, 41% of PTEN(ABN) cases were considered to have biallelic abnormalities (mutation and/or deletion) with complete loss of PTEN in a proportion of cells. In addition, 9% of cases had N- or K-RAS mutations. Neither PTEN nor RAS genotype significantly impacted on response to therapy or long-term outcome, irrespective of mutant level, and there was no evidence that they changed the highly favorable outcome of patients with double NOTCH1/FBXW7 mutations. These results indicate that, for pediatric patients treated according to current protocols, routine screening for PTEN or RAS abnormalities at diagnosis is not warranted to further refine risk stratification.

  16. Abnormal sex chromosome constitution and longitudinal growth: serum levels of insulin-like growth factor (IGF)-I, IGF binding protein-3, luteinizing hormone, and testosterone in 109 males with 47,XXY, 47,XYY, or sex-determining region of the Y chromosome (SRY)-positive 46,XX karyotypes

    DEFF Research Database (Denmark)

    Aksglaede, L.; Skakkebaek, N.E.; Juul, A.

    2008-01-01

    CONTEXT: Growth is a highly complex process regulated by the interaction between sex steroids and the GH IGF-axis. However, other factors such as sex chromosome-related genes play independent roles. AIM: The aim of the study was to evaluate the role of abnormal chromosome constitution for longitu...

  17. Abnormal intracellular localization of Bax with a normal membrane anchor domain in human lung cancer cell lines.

    Science.gov (United States)

    Salah-eldin, A; Inoue, S; Tsuda, M; Matsuura, A

    2000-12-01

    Proapoptotic Bax is a member of the Bcl-2 family proteins, which have a key role in regulating programmed cell death. The intracellular localization and redistribution of Bax are important in promoting apoptosis. Bax contains a BH3 domain heterodimerizing with Bcl-2 and a hydrophobic transmembrane segment to be inserted in specified organelle membranes. In this study, Bcl-2 showed cytoplasmic localization in all of ten human lung cancer cell lines tested. Interestingly, Bax was localized in the nucleus in 7 cell lines, although Bax lacks nuclear import signals. This may allow cancer cells to escape from apoptosis. Why Bax is able to exist in the nucleus is still unclear. We hypothesized that mutation in the BH3 domain and / or transmembrane segment of Bax possibly causes intracellular Bax distribution. We analyzed the sequence of the bax gene in these cell lines and found only a silent point mutation at codon 184 (TCG-->TCA) in the transmembrane segment in all cell lines. This finding indicates that changes in cellular localization of Bax in lung cancer cell lines do not depend on bax mutation and that Bax is possibly translocated into the nucleus without any mutation. This is the first report showing that Bax with the normal amino acid sequence can be localized in the nucleus in established lung cancer cell lines without any treatment of the cells.

  18. Depletion of cutaneous macrophages and dendritic cells promotes growth of basal cell carcinoma in mice.

    Directory of Open Access Journals (Sweden)

    Simone König

    Full Text Available Basal cell carcinoma (BCC belongs to the group of non-melanoma skin tumors and is the most common tumor in the western world. BCC arises due to mutations in the tumor suppressor gene Patched1 (Ptch. Analysis of the conditional Ptch knockout mouse model for BCC reveals that macrophages and dendritic cells (DC of the skin play an important role in BCC growth restraining processes. This is based on the observation that a clodronate-liposome mediated depletion of these cells in the tumor-bearing skin results in significant BCC enlargement. The depletion of these cells does not modulate Ki67 or K10 expression, but is accompanied by a decrease in collagen-producing cells in the tumor stroma. Together, the data suggest that cutaneous macrophages and DC in the tumor microenvironment exert an antitumor effect on BCC.

  19. Plasticity of tumor cell invasion: governance by growth factors and cytokines.

    Science.gov (United States)

    Odenthal, Julia; Takes, Robert; Friedl, Peter

    2016-12-01

    Tumor cell migration, the basis for metastatic dissemination, is an adaptive process which depends upon coordinated cell interaction with the environment, influencing cell-matrix and cell-cell adhesion, cytoskeletal dynamics and extracellular matrix remodeling. Growth factors and cytokines, released within the reactive tumor microenvironment and their intracellular effector signals strongly impact mechanocoupling functions in tumor cells and thereby control the mode and extent of tumor invasion, including collective and single-cell migration and their interconversions. Besides their role in controlling tumor cell growth and survival, cytokines and growth factors thus provide complex orchestration of the metastatic cascade and tumor cell adaptation to environmental challenge. We here review the mechanisms by which growth factors and cytokines control the reciprocal interactions between tumor cells and their microenvironment, and the consequences for the efficacy and plasticity of invasion programs and metastasis. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Cell binding and growth inhibition by hexachlorophene of decanoate and their reversibility.

    Science.gov (United States)

    Levin, B C; Freese, E

    1978-01-01

    More than 80% of the hexachlorophene added to a Bacillus subtilis culture binds to the cells. Complete growth inhibition requires 6 x 10(5) molecules bound per cell. In contrast, more than 99% decanoate remains in solution and 3.8 x 10(7) molecules bound per cell are needed to inhibit growth. Centrifugation and resuspension of cells in growth medium removes only decanoate, whereas the addition of 1% bovine serum albumin to the growth medium removes both inhibitors from their binding sites on the cells. The addition of untreated cells to a hexachlorophene-treated culture enables the hexachlorophene molecules to redistribute among all the cells with the result that the inhibited cells can resume growth.

  1. Plasticity in sunflower leaf and cell growth under high salinity.

    Science.gov (United States)

    Céccoli, G; Bustos, D; Ortega, L I; Senn, M E; Vegetti, A; Taleisnik, E

    2015-01-01

    A group of sunflower lines that exhibit a range of leaf Na(+) concentrations under high salinity was used to explore whether the responses to the osmotic and ionic components of salinity can be distinguished in leaf expansion kinetics analysis. It was expected that at the initial stages of the salt treatment, leaf expansion kinetics changes would be dominated by responses to the osmotic component of salinity, and that later on, ion inclusion would impose further kinetics changes. It was also expected that differential leaf Na(+) accumulation would be reflected in specific changes in cell division and expansion rates. Plants of four sunflower lines were gradually treated with a relatively high (130 mm NaCl) salt treatment. Leaf expansion kinetics curves were compared in leaves that were formed before, during and after the initiation of the salt treatment. Leaf areas were smaller in salt-treated plants, but the analysis of growth curves did not reveal differences that could be attributed to differential Na(+) accumulation, since similar changes in leaf expansion kinetics were observed in lines with different magnitudes of salt accumulation. Nevertheless, in a high leaf Na(+) -including line, cell divisions were affected earlier, resulting in leaves with proportionally fewer cells than in a Na(+) -excluding line. A distinct change in leaf epidermal pavement shape caused by salinity is reported for the first time. Mature pavement cells in leaves of control plants exhibited typical lobed, jigsaw-puzzle shape, whereas in treated plants, they tended to retain closer-to-circular shapes and a lower number of lobes. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  2. Breviscapine suppresses the growth of non-small cell lung cancer ...

    Indian Academy of Sciences (India)

    Breviscapine (BVP) has previously been shown to inhibit the proliferation of hepatocellular carcinoma cells.However, little is known about the effects of BVP on non-small cell lung cancer (NSCLC) growth. Here, we aimedto study the effects of BVP on human NSCLC growth. We employed A549, NCL-H460 and A549 cells ...

  3. Hypoxia is a key regulator of limbal epithelial stem cell growth and differentiation

    DEFF Research Database (Denmark)

    Bath, Chris; Yang, Sufang; Muttuvelu, Danson

    2013-01-01

    The aim of this study was to determine whether the growth and differentiation of limbal epithelial stem cell cultures could be controlled through manipulation of the oxygen tension. Limbal epithelial cells were isolated from corneoscleral disks, and cultured using either feeder cells in a growth ...

  4. Aspects of plant cell growth and the actin cytoskeleton : lessons from root hairs

    NARCIS (Netherlands)

    Ruijter, de N.C.A.

    1999-01-01

    The main topic the thesis addresses is the role of the actin cytoskeleton in the growth process of plant cells. Plant growth implies a combination of cell division and cell expansion. The cytoskeleton, which exists of microtubules and actin filaments, plays a major role in both processes.

  5. Regulation of DU145 prostate cancer cell growth by Scm-like with ...

    Indian Academy of Sciences (India)

    2012-12-08

    Dec 8, 2012 ... Collectively, our findings indicate that human SFMBT2 may regulate cell growth via epigenetic regulation of HOXB13 gene expression in DU145 prostate cancer cells. [Lee K, Na W , Maeng J-H, Wu H and Ju B-G 2013 Regulation of DU145 prostate cancer cell growth by Scm-like with four mbt domains 2. J.

  6. Andrographolide inhibits growth of acute promyelocytic leukaemia cells by inducing retinoic acid receptor-independent cell differentiation and apoptosis.

    Science.gov (United States)

    Manikam, Shiamala D; Manikam, Shiamala T; Stanslas, Johnson

    2009-01-01

    The growth inhibiting potential of andrographolide was evaluated in three acute promyelocytic leukaemia cell line models (HL-60, NB4 and all-trans retinoic acid (ATRA)-resistant NB4-R2). In elucidating the mechanisms of growth inhibition, a special emphasis was placed on assessing the induction of differentiation and apoptosis by andrographolide in the primary acute promyelocytic leukaemia NB4 cells. The compound was 2- and 3-fold more active in inhibiting the growth of HL-60 and NB4-R2 cells compared with NB4 cells, respectively. At IC50 (concentration at which growth of 50% of the cells (compared with medium only treated control cells) is inhibited; 4.5 microM) the compound exhibited strong cell-differentiating activity in NB4 cells, similar to ATRA (IC50 1.5 microM). In the presence of a pure retinoic acid receptor antagonist AGN193109, the growth inhibition of NB4 cells by ATRA was reversed, whereas the activity of andrographolide was not affected. This clearly suggested that andrographolide's cell differentiating activity to induce growth inhibition of NB4 cells most likely occurred via a retinoic acid receptor-independent pathway. At higher concentration (2xIC50), andrographolide was an efficient inducer of apoptosis in NB4 cells. Taken together, these results suggest andrographolide and its derivatives, apparently with a novel cell differentiating mechanism and with ability to induce apoptosis, might be beneficial in the treatment of primary and ATRA-resistant acute promyelocytic leukaemia.

  7. The Role of Tumor Associated Macrophage in Recurrent Growth of Tumor Stem Cell

    Science.gov (United States)

    2011-09-01

    recent cancer stem cell (CSC) theory, recurrent tumor must arise from a dormant tumor stem cell whose re-growth is triggered by shifting of...microenvironment. This project aims at clarifying the roles of TAM in recurrent growth of dormant stem cell in breast cancer. We hypothesize that the balance of...dormancy and recurrence is determined by the ability of the tumor stem cells to recruit TAM which in turn promotes self-renewal of the stem cell . We

  8. The Inhibitory Effect of Ellagic Acid on Cell Growth of Ovarian Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Yuan-Chiang Chung

    2013-01-01

    Full Text Available Ellagic acid (EA is able to inhibit the growth of several cancer cells; however, its effect on human ovarian carcinoma cells has not yet been investigated. Ovarian carcinoma ES-2 and PA-1 cells were treated with EA (10~100 μM and assessed for viability, cell cycle, apoptosis, anoikis, autophagy, and chemosensitivity to doxorubicin and their molecular mechanisms. EA inhibited cell proliferation in a dose- and time-dependent manner by arresting both cell lines at the G1 phase of the cell cycle, which were from elevating p53 and Cip1/p21 and decreasing cyclin D1 and E levels. EA also induced caspase-3-mediated apoptosis by increasing the Bax : Bcl-2 ratio and restored anoikis in both cell lines. The enhancement of apoptosis and/or inhibition of autophagy in these cells by EA assisted the chemotherapy efficacy. The results indicated that EA is a potential novel chemoprevention and treatment assistant agent for human ovarian carcinoma.

  9. CD47-CAR-T Cells Effectively Kill Target Cancer Cells and Block Pancreatic Tumor Growth.

    Science.gov (United States)

    Golubovskaya, Vita; Berahovich, Robert; Zhou, Hua; Xu, Shirley; Harto, Hizkia; Li, Le; Chao, Cheng-Chi; Mao, Mike Ming; Wu, Lijun

    2017-10-21

    CD47 is a glycoprotein of the immunoglobulin superfamily that is often overexpressed in different types of hematological and solid cancer tumors and plays important role in blocking phagocytosis, increased tumor survival, metastasis and angiogenesis. In the present report, we designed CAR (chimeric antigen receptor)-T cells that bind CD47 antigen. We used ScFv (single chain variable fragment) from mouse CD47 antibody to generate CD47-CAR-T cells for targeting different cancer cell lines. CD47-CAR-T cells effectively killed ovarian, pancreatic and other cancer cells and produced high level of cytokines that correlated with expression of CD47 antigen. In addition, CD47-CAR-T cells significantly blocked BxPC3 pancreatic xenograft tumor growth after intratumoral injection into NSG mice. Moreover, we humanized mouse CD47 ScFv and showed that it effectively bound CD47 antigen. The humanized CD47-CAR-T cells also specifically killed ovarian, pancreatic, and cervical cancer cell lines and produced IL-2 that correlated with expression of CD47. Thus, CD47-CAR-T cells can be used as a novel cellular therapeutic agent for treating different types of cancer.

  10. Eugenol and its synthetic analogues inhibit cell growth of human cancer cells (Part I)

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco A, H.; Cardona, W. [Universidad Andres Bello, Vina del Mar (Chile). Dept. de Ciencias Quimicas]. E-mail: hcarrasco@unab.cl; Espinoza C, L.; Gallardo, C.; Catalan M, K. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Quimica; Cardile, V.; Lombardo, L. [University of Catania (Italy). Dept. of Physiological Sciences; Cuellar F, M. [Universidad de Valparaiso (Chile). Facultad de Farmacia; Russo, A. [University of Catania (Italy). Dept. of Biological Chemistry, Medical Chemistry and Molecular Biology

    2008-07-01

    Eugenol (4-allyl-2-methoxyphenol) (1) has been reported to possess antioxidant and anticancer properties. In an attempt to enhance intrinsic activity of this natural compound, some derivatives were synthesized. Eugenol was extracted from cloves oil and further, the eugenol analogues (2-6) were obtained through acetylation and nitration reactions. Eugenol (1) and its analogues (2-6) were examined by in vitro model of cancer using two human cancer cell lines: DU-145 (androgeninsensitive prostate cancer cells) and KB (oral squamous carcinoma cells). Cell viability, by tetrazolium salts assay, was measured. Lactic dehydrogenase (LDH) release was also investigated to evaluate the presence of cell toxicity as a result of cell disruption, subsequent to membrane rupture. In the examined cancer cells, all compounds showed cell-growth inhibition activity. The obtained results demonstrate that the compounds 5-allyl-3-nitrobenzene-1,2-diol (3) and 4-allyl- 2-methoxy-5-nitrophenyl acetate (5) were significantly (p < 0,001) more active than eugenol, with IC{sub 50} values in DU-145 cells of 19.02 x 10{sup -6} and 21.5 x 10{sup -6} mol L{sup -1}, respectively, and in KB cells of 18.11 x 10{sup -6} and 21.26 x 10{sup -6} mol L{sup -1}, respectively, suggesting that the presence of nitro and hydroxyl groups could be important in the activity of these compounds. In addition, our results seem to indicate that apoptotic cell demise appears to be induced in KB and DU-145 cells. In fact, in our experimental conditions, no statistically significant increase in LDH release was observed in cancer cells treated with eugenol and its analogues. (author)

  11. Proliferating fibroblasts and HeLa cells co-cultured in vitro reciprocally influence growth patterns, protein expression, chromatin features and cell survival.

    Science.gov (United States)

    Delinasios, John G; Angeli, Flora; Koumakis, George; Kumar, Shant; Kang, Wen-Hui; Sica, Gigliola; Iacopino, Fortunata; Lama, Gina; Lamprecht, Sergio; Sigal-Batikoff, Ina; Tsangaris, George T; Farfarelos, Christos D; Farfarelos, Maria C; Vairaktaris, Eleftherios; Vassiliou, Stavros; Delinasios, George J

    2015-04-01

    if fibroblast proliferation is blocked by contact inhibition of growth at confluency, or by omitting replacement of the nutrient medium. The present observations show that: (a) interaction between proliferating fibroblasts and HeLa cells in vitro drastically influences each other's protein expression, growth pattern, chromatin features and survival; (b) these functions depend on the fibroblast/HeLa ratio, cell topology (cell-cell contact and the architectural pattern developed during co-culture) and frequent medium change, as prerequisites for fibroblast proliferation; (c) this co-culture model is useful in the study of the complex processes within the tumour microenvironment, as well as the in vitro reproduction and display of several phenomena conventionally seen in tumour cytological sections, such as desmoplasia, apoptosis, nuclear abnormalities; and (d) overgrown fibroblasts adhering to the boundaries of HeLa colonies produce and secrete lipid droplets. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Knockdown of asparagine synthetase by RNAi suppresses cell growth in human melanoma cells and epidermoid carcinoma cells.

    Science.gov (United States)

    Li, Hui; Zhou, Fusheng; Du, Wenhui; Dou, Jinfa; Xu, Yu; Gao, Wanwan; Chen, Gang; Zuo, Xianbo; Sun, Liangdan; Zhang, Xuejun; Yang, Sen

    2016-05-01

    Melanoma, the most aggressive form of skin cancer, causes more than 40,000 deaths each year worldwide. And epidermoid carcinoma is another major form of skin cancer, which could be studied together with melanoma in several aspects. Asparagine synthetase (ASNS) gene encodes an enzyme that catalyzes the glutamine- and ATP-dependent conversion of aspartic acid to asparagine, and its expression is associated with the chemotherapy resistance and prognosis in several human cancers. The present study aims to explore the potential role of ASNS in melanoma cells A375 and human epidermoid carcinoma cell line A431. We applied a lentivirus-mediated RNA interference (RNAi) system to study its function in cell growth of both cells. The results revealed that inhibition of ASNS expression by RNAi significantly suppressed the growth of melanoma cells and epidermoid carcinoma cells, and induced a G0/G1 cell cycle arrest in melanoma cells. Knockdown of ASNS in A375 cells remarkably downregulated the expression levels of CDK4, CDK6, and Cyclin D1, and upregulated the expression of p21. Therefore, our study provides evidence that ASNS may represent a potential therapeutic target for the treatment of melanoma. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  13. Establishment of a simple cell-based ELISA for the direct detection of abnormal isoform of prion protein from prion-infected cells without cell lysis and proteinase K treatment

    Science.gov (United States)

    Shan, Zhifu; Yamasaki, Takeshi; Suzuki, Akio; Hasebe, Rie; Horiuchi, Motohiro

    2016-01-01

    ABSTRACT Prion-infected cells have been used for analyzing the effect of compounds on the formation of abnormal isoform of prion protein (PrPSc). PrPSc is usually detected using anti-prion protein (PrP) antibodies after the removal of the cellular isoform of prion protein (PrPC) by proteinase K (PK) treatment. However, it is expected that the PK-sensitive PrPSc (PrPSc-sen), which possesses higher infectivity and conversion activity than the PK-resistant PrPSc (PrPSc-res), is also digested through PK treatment. To overcome this problem, we established a novel cell-based ELISA in which PrPSc can be directly detected from cells persistently infected with prions using anti-PrP monoclonal antibody (mAb) 132 that recognizes epitope consisting of mouse PrP amino acids 119–127. The novel cell-based ELISA could distinguish prion-infected cells from prion-uninfected cells without cell lysis and PK treatment. MAb 132 could detect both PrPSc-sen and PrPSc-res even if all PrPSc molecules were not detected. The analytical dynamic range for PrPSc detection was approximately 1 log. The coefficient of variation and signal-to-background ratio were 7%–11% and 2.5–3.3, respectively, demonstrating the reproducibility of this assay. The addition of a cytotoxicity assay immediately before PrPSc detection did not affect the following PrPSc detection. Thus, all the procedures including cell culture, cytotoxicity assay, and PrPSc detection were completed in the same plate. The simplicity and non-requirement for cell lysis or PK treatment are advantages for the high throughput screening of anti-prion compounds. PMID:27565564

  14. The progression from MGUS to smoldering myeloma and eventually to multiple myeloma involves a clonal expansion of genetically abnormal plasma cells.

    Science.gov (United States)

    López-Corral, Lucía; Gutiérrez, Norma C; Vidriales, Maria Belén; Mateos, Maria Victoria; Rasillo, Ana; García-Sanz, Ramón; Paiva, Bruno; San Miguel, Jesús F

    2011-04-01

    Genetic aberrations detected in multiple myeloma (MM) have also been reported in the premalignant conditions monoclonal gammopathy of undetermined significance (MGUS) and smoldering MM (SMM). Our aim was to investigate in depth the level of clonal heterogeneity of recurrent genetic abnormalities in these conditions. Immunoglobulin heavy chain (IGH) translocations, 13q14 and 17p13 deletions, and 1q21 gains using FISH were evaluated in 90 MGUS, 102 high-risk SMM, and 373 MM. To this end, we not only purified plasma cells (PC) for the FISH analysis (purity > 90%), but subsequently, we examined the correlation between the proportion of PC with cytogenetic changes and the number of clonal PC present in the same sample, as measured by multiparametric flow cytometry. We observed a significant difference between the proportion of clonal PC with specific genetic abnormalities in MGUS compared with SMM and in SMM compared with MM. Thus, the median proportion of PC with IGH translocations globally considered, t(11;14) and 13q deletions was significantly lower in MGUS than in SMM, and in SMM than in MM [IGH translocations: 34% vs. 57% vs. 76%; t(11;14): 38% vs. 61% vs. 81%; and 13q deletion: 37% vs. 61% vs. 74% in MGUS, SMM, and MM, respectively]. For t(4;14), the difference was significant in the comparison between MGUS/SMM and MM and for 1q between MGUS and SMM/MM. This study demonstrates that the progression from MGUS to SMM, and eventually to MM, involves a clonal expansion of genetically abnormal PC.

  15. Separation of cell survival, growth, migration, and mesenchymal transdifferentiation effects of fibroblast secretome on tumor cells of head and neck squamous cell carcinoma.

    Science.gov (United States)

    Metzler, Veronika Maria; Pritz, Christian; Riml, Anna; Romani, Angela; Tuertscher, Raphaela; Steinbichler, Teresa; Dejaco, Daniel; Riechelmann, Herbert; Dudás, József

    2017-11-01

    Fibroblasts play a central role in tumor invasion, recurrence, and metastasis in head and neck squamous cell carcinoma. The aim of this study was to investigate the influence of tumor cell self-produced factors and paracrine fibroblast-secreted factors in comparison to indirect co-culture on cancer cell survival, growth, migration, and epithelial-mesenchymal transition using the cell lines SCC-25 and human gingival fibroblasts. Thereby, we particularly focused on the participation of the fibroblast-secreted transforming growth factor beta-1.Tumor cell self-produced factors were sufficient to ensure tumor cell survival and basic cell growth, but fibroblast-secreted paracrine factors significantly increased cell proliferation, migration, and epithelial-mesenchymal transition-related phenotype changes in tumor cells. Transforming growth factor beta-1 generated individually migrating disseminating tumor cell groups or single cells separated from the tumor cell nest, which were characterized by reduced E-cadherin expression. At the same time, transforming growth factor beta-1 inhibited tumor cell proliferation under serum-starved conditions. Neutralizing transforming growth factor beta antibody reduced the cell migration support of fibroblast-conditioned medium. Transforming growth factor beta-1 as a single factor was sufficient for generation of disseminating tumor cells from epithelial tumor cell nests, while other fibroblast paracrine factors supported tumor nest outgrowth. Different fibroblast-released factors might support tumor cell proliferation and invasion, as two separate effects.

  16. Nerve cell nuclear and nucleolar abnormalities in the human oedematous cerebral cortex. An electron microscopic study using cortical biopsies.

    Science.gov (United States)

    Castejón, O J; Arismendi, G J

    2004-01-01

    Cerebral cortical biopsies of 17 patients with clinical diagnosis of congenital hydrocephalus, complicated brain trauma, cerebellar syndrome and vascular anomaly were examined with the transmission electron microscope to study the nuclear and nucleolar abnormalities induced by moderate and severe brain oedema, and the associated anoxic-ischemic conditions of brain tissue. In infant patients with congenital hydrocephalus and Arnold-Chiari malformation two different structural patterns of immature chromatin organization were found: the clear type characterized by a clear granular and fibrillar structure of euchromatin, scarce heterochromatin masses and few perichromatin granules, and a dense granular and fibrillar euchromatin with abundant and scattered heterochromatin masses, and increased number of perichromatin granules. The lobulated nuclei exhibited an irregularly dilated and fragmented perinuclear cistern, and areas of apparently intact nuclear pore complexes alternating with regions of nuclear pore complex disassembly. In moderate traumatic brain injuries some nucleoli exhibit apparent intact nucleolar substructures, and in severe brain oedema some nucleoli appeared shrunken and irregularly outlined with one or two fibrillar centers, and others were disintegrated. The nuclear and nucleolar morphological alterations are discussed in relation with oxidative stress, peroxidative damage, hemoglobin-induced cytotoxicity, calcium overload, glutamate excitotoxicity, and caspase activation.

  17. Abnormal labyrinthine zone in the Hectd1-null placenta.

    Science.gov (United States)

    Sarkar, Anjali A; Sabatino, Julia A; Sugrue, Kelsey F; Zohn, Irene E

    2016-02-01

    The labyrinthine zone of the placenta is where exchange of nutrients and waste occurs between maternal and fetal circulations. Proper development of the placental labyrinth is essential for successful growth of the developing fetus and abnormalities in placental development are associated with intrauterine growth restriction (IUGR), preeclampsia and fetal demise. Our previous studies demonstrate that Hectd1 is essential for development of the junctional and labyrinthine zones of the placenta. Here we further characterize labyrinthine zone defects in the Hectd1 mutant placenta. The structure of the mutant placenta was compared to wildtype littermates using histological methods. The expression of cell type specific markers was examined by immunohistochemistry and in situ hybridization. Hectd1 is expressed in the labyrinthine zone throughout development and the protein is enriched in syncytiotrophoblast layer type I cells (SynT-I) and Sinusoidal Trophoblast Giant cells (S-TGCs) in the mature placenta. Mutation of Hectd1 results in pale placentas with frequent hemorrhages along with gross abnormalities in the structure of the labyrinthine zone including a smaller overall volume and a poorly elaborated fetal vasculature that contain fewer fetal blood cells. Examination of molecular markers of labyrinthine trophoblast cell types reveals increased Dlx3 positive cells and Syna positive SynT-I cells, along with decreased Hand1 and Ctsq positive sinusoidal trophoblast giant cells (S-TGCs). Together these defects indicate that Hectd1 is required for development of the labyrinthine zonethe mouse placenta. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Gastrodin stimulates anticancer immune response and represses transplanted H22 hepatic ascitic tumor cell growth: Involvement of NF-κB signaling activation in CD4 + T cells

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Guangwen; Yang, Tianming [College of Pharmacy, South-Central University for Nationalities, Wuhan (China); Wang, Chaoyuan [College of Life Science, South-Central University for Nationalities, Wuhan (China); Su, Hanwen, E-mail: suhanwen-1@163.com [Renmin Hospital of Wuhan University, Wuhan (China); Xiang, Meixian, E-mail: xiangmeixian99@163.com [College of Pharmacy, South-Central University for Nationalities, Wuhan (China)

    2013-06-15

    Gastrodia elata Blume (G. elata) is a famous restorative food in East Asia. It can be used as an auxiliary reagent in hepatocellular carcinoma (HCC) treatment. Previous studies unveiled that G. elata exhibited immunomodulatory activities. To explore the active ingredients contributing to its immunomodulatory activities, gastrodin, vanillin, and parishin B were purified from G. elata and their anti-HCC effects were assessed in vivo. Among these compounds, only gastrodin was capable of repressing transplanted H22 ascitic hepatic tumor cell growth in vivo with low toxicity. Further investigations were designed to explore the effects of gastrodin on the immune system of tumor-bearing mice and potential molecular mechanisms underlying these effects. Our data showed that gastrodin ameliorated tumor cell transplantation-induced activation of endogenous pro-apoptotic pathway in CD4 + T cells and abnormalities in serum cytokine profiles in host animals. These events enhanced cytotoxic activities of natural killer and CD8 + T cells against H22 hepatic cancer cells. Gastrodin administration specifically upregulated mRNA levels of several nuclear factor κB (NF-κB) responsive genes in CD4 + T cells but not in CD8 + T cells. Chromatin immunoprecipitation assay showed that gastrodin increased the association of NF-κB p65 subunit to the promoter regions of IL-2 and Bcl-2 encoding genes in CD4 + T cells. Our investigations demonstrated that gastrodin is the main active ingredient contributing to the anticancer immunomodulatory properties of G. elata. Promoting NF-κB-mediated gene transcription in CD4 + T cells is implicated in its immunomodulatory activity. - Highlights: • Gastrodin stimulates anticancer immune response. • Gastrodin represses tumor transplantation-induced CD4 + T cell apoptosis. • Gastrodin activates NF-κB activity in CD4 + T cells.

  19. Bone Abnormalities in Mice with Protein Kinase A (PKA) Defects Reveal a Role of Cyclic AMP Signaling in Bone Stromal Cell-Dependent Tumor Development.

    Science.gov (United States)

    Liu, S; Shapiro, J M; Saloustros, E; Stratakis, C A

    2016-11-01

    Protein kinase A (PKA) is an important enzyme for all eukaryotic cells. PKA phosphorylates other proteins, thus, it is essential for the regulation of many diverse cellular functions, including cytoplasmic trafficking and signaling, organelle structure and mitochondrial oxidation, nuclear gene expression, the cell cycle, and cellular division. The PKA holoenzyme is composed of 2 regulatory and 2 catalytic subunits. Four regulatory (R1α, R1β, R2α, and R2β) and 4 catalytic subunits (Cα, Cβ, Cγ, and Prkx) have been identified, giving rise to mainly PKA-I (when the 2 regulatory subunits are either R1α or R1β), or PKA-II (when the 2 regulatory subunits are either R2α or R2β). Mutations in the PKA subunits can lead to altered total PKA activity or abnormal PKA-I to PKA-II ratio, leading to various abnormalities in both humans and mice. These effects can be tissue-specific. We studied the effect of PKA subunit defects on PKA activity and bone morphology of mice that were single or double heterozygous for null alleles of the various PKA subunit genes. Bone lesions including fibrous dysplasia, myxomas, osteo-sarcomas, -chondromas and -chondrosarcomas were found in these mice. Observational and molecular studies showed that these lesions were derived from bone stromal cells (BSCs). We conclude that haploinsufficiency for different PKA subunit genes affected bone lesion formation, new bone generation, organization, and mineralization in variable ways. This work identified a PKA subunit- and activity-dependent pathway of bone lesion formation from BSCs with important implications for understanding how cyclic AMP affects the skeleton and its tumorigenesis. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Abnormal sex chromosome constitution and longitudinal growth: serum levels of insulin-like growth factor (IGF)-I, IGF binding protein-3, luteinizing hormone, and testosterone in 109 males with 47,XXY, 47,XYY, or sex-determining region of the Y chromosome (SRY)-positive 46,XX karyotypes

    DEFF Research Database (Denmark)

    Aksglaede, L.; Skakkebaek, N.E.; Juul, A.

    2008-01-01

    CONTEXT: Growth is a highly complex process regulated by the interaction between sex steroids and the GH IGF-axis. However, other factors such as sex chromosome-related genes play independent roles. AIM: The aim of the study was to evaluate the role of abnormal chromosome constitution for longitu......CONTEXT: Growth is a highly complex process regulated by the interaction between sex steroids and the GH IGF-axis. However, other factors such as sex chromosome-related genes play independent roles. AIM: The aim of the study was to evaluate the role of abnormal chromosome constitution...... and sitting height, serum levels of reproductive hormones, IGF-I, and IGFBP-3 were measured. RESULTS: In boys with 47,XXY and 47,XYY karyotypes, growth was accelerated already in childhood, compared with healthy boys. 46,XX-males were significantly shorter than healthy boys but matched the stature of healthy...... and elevated LH levels after puberty, whereas the sex hormone secretion of the 47,XYY boys remained normal. CONCLUSION: We found accelerated growth in early childhood in boys with 47,XXY and 47,XYY karyotypes, whereas 46,XX-males were shorter than controls. These abnormal growth patterns were not reflected...

  1. Glycosaminoglycan synthesis and shedding induced by growth factors are cell and compound specific.

    Science.gov (United States)

    Suarez, Eloah R; Nohara, Angela S; Mataveli, Fábio D; de Matos, Leandro L; Nader, Helena B; Pinhal, Maria Aparecida S

    2007-02-01

    The interactions between growth factors and sulphated glycosaminoglycans (GAG) have been extensively studied. The aim of this study is to investigate if growth factors would show specificity of action on the synthesis and shedding of sulphated GAG, using two different cell lines: endothelial and smooth muscle cells. The cells were grown in the presence or absence of growth factors: EGF, FGF2, VEGF121, VEGF165. Transfection assays were also performed using recombinant pcDNA3.1, containing VEGF165 cDNA. In order to analyse the different types of GAG the cells were metabolically labelled with [(35)S]-sulphate. At low doses, VEGF121 was the only growth factor able to increase both the synthesis and secretion of heparan sulphate (HS) in endothelial cells. Over expression of VEGF165 stimulated HS synthesis in both cells. The combined results showed that growth factors affect GAG synthesis in a cell specific and dose dependent manner.

  2. Spatiotemporal relationships between growth and microtubule orientation as revealed in living root cells of Arabidopsis thaliana transformed with green-fluorescent-protein gene construct GFP-MBD

    Science.gov (United States)

    Granger, C. L.; Cyr, R. J.

    2001-01-01

    Arabidopsis thaliana plants were transformed with GFP-MBD (J. Marc et al., Plant Cell 10: 1927-1939, 1998) under the control of a constitutive (35S) or copper-inducible promoter. GFP-specific fluorescence distributions, levels, and persistence were determined and found to vary with age, tissue type, transgenic line, and individual plant. With the exception of an increased frequency of abnormal roots of 35S GFP-MBD plants grown on kanamycin-containing media, expression of GFP-MBD does not appear to affect plant phenotype. The number of leaves, branches, bolts, and siliques as well as overall height, leaf size, and seed set are similar between wild-type and transgenic plants as is the rate of root growth. Thus, we conclude that the transgenic plants can serve as a living model system in which the dynamic behavior of microtubules can be visualized. Confocal microscopy was used to simultaneously monitor growth and microtubule behavior within individual cells as they passed through the elongation zone of the Arabidopsis root. Generally, microtubules reoriented from transverse to oblique or longitudinal orientations as growth declined. Microtubule reorientation initiated at the ends of the cell did not necessarily occur simultaneously in adjacent neighboring cells and did not involve complete disintegration and repolymerization of microtubule arrays. Although growth rates correlated with microtubule reorientation, the two processes were not tightly coupled in terms of their temporal relationships, suggesting that other factor(s) may be involved in regulating both events. Additionally, microtubule orientation was more defined in cells whose growth was accelerating and less stringent in cells whose growth was decelerating, indicating that microtubule-orienting factor(s) may be sensitive to growth acceleration, rather than growth per se.

  3. Abnormalities of Endocytosis, Phagocytosis, and Development Process in Dictyostelium Cells That Over-Express Acanthamoeba castellanii Metacaspase Protein.

    Directory of Open Access Journals (Sweden)

    Entsar Saheb

    2015-06-01

    Full Text Available Acanthamoeba castellanii forms a resistant cyst that protects the parasite against the host's immune response. Acanthamoeba Type-I metacaspase (Acmcp is a caspase-like protein that has been found to be expressed during the encystations. Dictyostelium discoideum is an organism closely related to Acanthamoeba useful for studying the molecular function of this protozoan caspase-like protein.The full length of Acmcp and a mutated version of the same gene, which lacks the proline rich N-terminal region (Acmcp-dpr, were cloned into the pDneo2a-GFP vector separately. The pDneo2a-GFP-Acmcp and pDneo2a-GFPAcmcp-dpr were electro-transfected into wild type D. discoideum cells to create cell lines that over-expressed Acmcp or Acmcp-dpr.Both cell lines that over-expressed Acmcp and Acmcp-dpr showed a significant increase in the fluid phase internalization and phagocytosis rate compared to the control cells. Additionally, the cells expressing the Acmcp-dpr mutant were unable to initiate early development and failed to aggregate or form fruiting bodies under starvation conditions, whereas Acmcp over-expressing cells showed the opposite phenomena. Quantitative cell death analysis provided additional support for these findings.Acmcp is involved in the processes of endocytosis and phagocytosis. In addition, the proline rich region in Acmcp is important for cellular development in Dictyostelium. Given its important role in the development process, metacaspase protein is proposed as a candidate drug target against infections caused by A. castellanii.

  4. Inhibitory effect of maple syrup on the cell growth and invasion of human colorectal cancer cells.

    Science.gov (United States)

    Yamamoto, Tetsushi; Uemura, Kentaro; Moriyama, Kaho; Mitamura, Kuniko; Taga, Atsushi

    2015-04-01

    Maple syrup is a natural sweetener consumed by individuals of all ages throughout the world. Maple syrup contains not only carbohydrates such as sucrose but also various components such as organic acids, amino acids, vitamins and phenolic compounds. Recent studies have shown that these phenolic compounds in maple syrup may possess various activities such as decreasing the blood glucose level and an anticancer effect. In this study, we examined the effect of three types of maple syrup, classified by color, on the cell proliferation, migration and invasion of colorectal cancer (CRC) cells in order to investigate whether the maple syrup is suitable as a phytomedicine for cancer treatment. CRC cells that were administered maple syrup showed significantly lower growth rates than cells that were administered sucrose. In addition, administration of maple syrup to CRC cells caused inhibition of cell invasion, while there was no effect on cell migration. Administration of maple syrup clearly inhibited AKT phosphorylation, while there was no effect on ERK phosphorylation. These data suggest that maple syrup might inhibit cell proliferation and invasion through suppression of AKT activation and be suitable as a phytomedicine for CRC treatment, with fewer adverse effects than traditional chemotherapy.

  5. Expression of transforming growth factor-beta (TGF-beta) receptors, TGF-beta 1 and TGF-beta 2 production and autocrine growth control in osteosarcoma cells

    NARCIS (Netherlands)

    Kloen, P.; Jennings, C. L.; Gebhardt, M. C.; Springfield, D. S.; Mankin, H. J.

    1994-01-01

    Transforming growth factor-beta (TGF-beta) is a polypeptide with multiple physiological functions. Isoforms of this growth factor have important roles in control of the cell cycle, in regulation of cell-cell interactions and in growth and development. Malignant transformation has been shown to be

  6. Tumor cells secrete an angiogenic factor that stimulates basic fibroblast growth factor and urokinase expression in vascular endothelial cells

    NARCIS (Netherlands)

    Peverali, F.A.; Mandriota, S.J.; Ciana, P.; Marelli, R.; Quax, P.; Rifkin, D.B.; Della Valle, G.; Mignatti, P.

    1994-01-01

    Culture medium conditioned by human SK-Hep1 hepatoma cells or mouse S180 sarcoma cells rapidly up-regulates endothelial cell expression of basic fibroblast growth factor (bFGF) and induces formation of capillary-like structures by vascular endothelial cells grown on three-dimensional fibrin gels (in

  7. MicroRNA 128a increases intracellular ROS level by targeting Bmi-1 and inhibits medulloblastoma cancer cell growth by promoting senescence.

    Directory of Open Access Journals (Sweden)

    Sujatha Venkataraman

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are a class of short non-coding RNAs that regulate cell homeostasis by inhibiting translation or degrading mRNA of target genes, and thereby can act as tumor suppressor genes or oncogenes. The role of microRNAs in medulloblastoma has only recently been addressed. We hypothesized that microRNAs differentially expressed during normal CNS development might be abnormally regulated in medulloblastoma and are functionally important for medulloblastoma cell growth. METHODOLOGY AND PRINCIPAL FINDINGS: We examined the expression of microRNAs in medulloblastoma and then investigated the functional role of one specific one, miR-128a, in regulating medulloblastoma cell growth. We found that many microRNAs associated with normal neuronal differentiation are significantly down regulated in medulloblastoma. One of these, miR-128a, inhibits growth of medulloblastoma cells by targeting the Bmi-1 oncogene. In addition, miR-128a alters the intracellular redox state of the tumor cells and promotes cellular senescence. CONCLUSIONS AND SIGNIFICANCE: Here we report the novel regulation of reactive oxygen species (ROS by microRNA 128a via the specific inhibition of the Bmi-1 oncogene. We demonstrate that miR-128a has growth suppressive activity in medulloblastoma and that this activity is partially mediated by targeting Bmi-1. This data has implications for the modulation of redox states in cancer stem cells, which are thought to be resistant to therapy due to their low ROS states.

  8. Dynamic expression of cell surface hydrophobicity during initial yeast cell growth and before germ tube formation of Candida albicans.

    OpenAIRE

    Hazen, B W; Hazen, K C

    1988-01-01

    Expression of cell surface hydrophobicity (CSH) during initial growth of Candida albicans was monitored. CSH of hydrophobic and hydrophilic yeast cells changed within 30 min upon subculture into fresh medium. Morphologic evidence of germination was preceded by expression of CSH. These results indicate that CSH expression is important in C. albicans growth.

  9. Characteristics of MIC-1 antlerogenic stem cells and their effect on hair growth in rabbits.

    Science.gov (United States)

    Cegielski, Marek; Izykowska, Ilona; Chmielewska, Magdalena; Dziewiszek, Wojciech; Bochnia, Marek; Calkosinski, Ireneusz; Dziegiel, Piotr

    2013-01-01

    We characterized growth factors produced by MIC-1 antlerogenic stem cells and attempted to apply those cells to stimulate hair growth in rabbits. We evaluated the gene and protein expression of growth factors by immunocytochemical and molecular biology techniques in MIC-1 cells. An animal model was used to assess the effects of xenogenous stem cells on hair growth. In the experimental group, rabbits were intradermally injected with MIC-1 stem cells, whereas the control group rabbits were given vehicle-only. After 1, 2 and 4 weeks, skin specimen were collected for histological and immunohistochemical tests. MIC-1 antlerogenic stem cells express growth factors, as confirmed at the mRNA and protein levels. Histological and immunohistochemical analysis demonstrated an increase in the number of hair follicles, as well as the amount of secondary hair in the follicles, without an immune response in animals injected intradermally with MIC-1 cells, compared to animals receiving vehicle-alone. MIC-1 cells accelerated hair growth in rabbits due to the activation of cells responsible for the regulation of the hair growth cycle through growth factors. Additionally, the xenogenous cell implant did not induce immune response.

  10. Reduction in placental growth factor impaired gestational beta-cell proliferation through crosstalk between beta-cells and islet endothelial cells.

    Science.gov (United States)

    Xu, Xiaosheng; Shen, Jian

    2016-01-01

    Reduced placental growth factor (PLGF) during pregnancy is known to be a reason for developing preeclampsia (PE) and gestational diabetes mellitus (GDM), but the underlying mechanisms remain unclear. Recently, it has been shown that reduced PLGF may induce GDM through suppressing beta-cell mass growth in a PI3k/Akt signalling-dependent manner. Here, we dissected the interaction between beta-cells and islet endothelial cells in this model. We analysed proliferation of beta-cells and islet endothelial cells at different time points of gestation in mice. We cultured mouse islet endothelial cells (MS1), with or without PLGF. We cultured primary mouse beta-cells in conditioned media from PLGF-treated MS1. We cultured MS1 cells in conditioned media from proliferating beta-cells that were activated with conditioned media from PLGF-treated MS1 cells. We analysed cell proliferation by BrdU incorporation. We analysed cell growth by a MTT assay. We found that during mouse gestation, the increases in cell proliferation occurred earlier in beta-cells than in islet endothelial cells. In vitro, PLGF itself failed to induce proliferation of MS1 cells. However, conditioned media from the PLGF-treated MS1 cells induced beta-cell proliferation, resulting in increases in beta-cell number. Moreover, proliferation of MS1 cells significantly increased when MS1 cells were cultured in conditioned media from proliferating beta-cells activated with conditioned media from PLGF-treated MS1 cells. Thus, our data suggest that gestational PLGF may stimulate islet endothelial cells to release growth factors to promote beta-cell proliferation, and proliferating beta-cells in turn release endothelial cell growth factor to increase proliferation of endothelial cells. PE-associated reduction in PLGF impairs these processes to result in islet growth impairment, and subsequently the onset of GDM.

  11. Impact of genetic abnormalities after allogeneic stem cell transplantation in multiple myeloma: a report of the Société Française de Greffe de Moelle et de Thérapie Cellulaire.

    Science.gov (United States)

    Roos-Weil, Damien; Moreau, Philippe; Avet-Loiseau, Hervé; Golmard, Jean-Louis; Kuentz, Mathieu; Vigouroux, Stéphane; Socié, Gérard; Furst, Sabine; Soulier, Jean; Le Gouill, Steven; François, Sylvie; Thiebaut, Anne; Buzyn, Agnès; Maillard, Natacha; Yakoub-Agha, Ibrahim; Raus, Nicole; Fermand, Jean-Paul; Michallet, Mauricette; Blaise, Didier; Dhédin, Nathalie

    2011-10-01

    The impact of cytogenetic abnormalities in multiple myeloma after allogeneic stem cell transplantation has not been clearly defined. This study examines whether allogeneic stem cell transplantation could be of benefit for myeloma patients with high-risk cytogenetic abnormalities. This is a retrospective multicenter analysis of the registry of the Société Française de Greffe de Moelle et de Thérapie Cellulaire, including 143 myeloma patients transplanted between 1999 and 2008. The incidences of cytogenetic abnormalities were 59% for del(13q), 25% for t(4;14), 25% for del(17p) and 4% for t(14;16). When comparing the population carrying an abnormality to that without the same abnormality, no significant difference was found in progression-free survival, overall survival or progression rate. Patients were grouped according to the presence of any of the poor prognosis cytogenetic abnormalities t(4;14), del(17p) or t(14;16) (n=53) or their absence (n=32). No difference in outcomes was observed between these two groups: the 3-year progression-free survival, overall survival and progression rates were 30% versus 17% (P=0.9), 45% versus 39% (P=0.8) and 53% versus 75% (P=0.9), respectively. These data indicate that allogeneic stem cell transplantation could potentially be of benefit to high-risk myeloma patients.

  12. Insulin and insulin-like growth factor I exert different effects on plasminogen activator production or cell growth in the ovine thyroid cell line OVNIS.

    Science.gov (United States)

    Degryse, B; Maisonobe, F; Hovsépian, S; Fayet, G

    1991-11-01

    Insulin and Insulin-like Growth Factor I (IGF-I) are evaluated for their capacity to affect cell proliferation and plasminogen activator (PA) activity production in an ovine thyroid cell line OVNIS. Insulin at physiological and supraphysiological doses induces cell proliferation and increases PA activity. IGF-I, which is also clearly mitogenic for these cells, surprisingly does not modulate PA activity. The results indicate that the growth promoting effect is mediated through the insulin and IGF-I receptors whereas PA activity is solely regulated via the insulin receptors.

  13. Role of the Conserved Ologomeric Golgi Complex in the Abnormalities of Glycoprotein Processing in Breast Cancer Cells

    National Research Council Canada - National Science Library

    Zolov, Sergey

    2004-01-01

    .... We propose that the COG3 protein plays one of the main roles in these processes. We utilized RNA interference assay to knockdown COG3p in HeLa cells to determine the effect of its depletion on Golgi proteins localization...

  14. Cells from the adult corneal stroma can be reprogrammed to a neuron-like cell using exogenous growth factors

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Carol Ann, E-mail: carol.greene@auckland.ac.nz; Chang, Chuan-Yuan; Fraser, Cameron J.; Nelidova, Dasha E.; Chen, Jing A.; Lim, Angela; Brebner, Alex; McGhee, Jennifer; Sherwin, Trevor; Green, Colin R.

    2014-03-10

    Cells thought to be stem cells isolated from the cornea of the eye have been shown to exhibit neurogenic potential. We set out to uncover the identity and location of these cells within the cornea and to elucidate their neuronal protein and gene expression profile during the process of switching to a neuron-like cell. Here we report that every cell of the adult human and rat corneal stroma is capable of differentiating into a neuron-like cell when treated with neurogenic differentiation specifying growth factors. Furthermore, the expression of genes regulating neurogenesis and mature neuronal structure and function was increased. The switch from a corneal stromal cell to a neuron-like cell was also shown to occur in vivo in intact corneas of living rats. Our results clearly indicate that lineage specifying growth factors can affect changes in the protein and gene expression profiles of adult cells, suggesting that possibly many adult cell populations can be made to switch into another type of mature cell by simply modifying the growth factor environment. - Highlights: • Adult corneal stromal cells can differentiated into neuron-like cells. • Neuronal specification of the adult stromal cell population is stochastic. • Neuronal specification in an adult cell population can be brought about by growth factors.

  15. Cells from the adult corneal stroma can be reprogrammed to a neuron-like cell using exogenous growth factors

    International Nuclear Information System (INIS)

    Greene, Carol Ann; Chang, Chuan-Yuan; Fraser, Cameron J.; Nelidova, Dasha E.; Chen, Jing A.; Lim, Angela; Brebner, Alex; McGhee, Jennifer; Sherwin, Trevor; Green, Colin R.

    2014-01-01

    Cells thought to be stem cells isolated from the cornea of the eye have been shown to exhibit neurogenic potential. We set out to uncover the identity and location of these cells within the cornea and to elucidate their neuronal protein and gene expression profile during the process of switching to a neuron-like cell. Here we report that every cell of the adult human and rat corneal stroma is capable of differentiating into a neuron-like cell when treated with neurogenic differentiation specifying growth factors. Furthermore, the expression of genes regulating neurogenesis and mature neuronal structure and function was increased. The switch from a corneal stromal cell to a neuron-like cell was also shown to occur in vivo in intact corneas of living rats. Our results clearly indicate that lineage specifying growth factors can affect changes in the protein and gene expression profiles of adult cells, suggesting that possibly many adult cell populations can be made to switch into another type of mature cell by simply modifying the growth factor environment. - Highlights: • Adult corneal stromal cells can differentiated into neuron-like cells. • Neuronal specification of the adult stromal cell population is stochastic. • Neuronal specification in an adult cell population can be brought about by growth factors

  16. Control of Vascular Smooth Muscle Cell Growth by Connexin 43

    Directory of Open Access Journals (Sweden)

    Chintamani eJoshi

    2012-06-01

    Full Text Available Connexin 43 (Cx43, the principal gap junction protein in vascular smooth muscle cells (VSMCs, regulates movement of ions and other signaling molecules through gap junction intercellular communication (GJIC and plays important roles in maintaining normal vessel function; however, many of the signaling mechanisms controlling Cx43 in VSMCs are not clearly described. The goal of this study was to investigate mechanisms of Cx43 regulation with respect to VSMC proliferation. Treatment of rat primary VSMCs with the cAMP analog 8Br-cAMP, the soluble guanylate cyclase (sGC stimulator BAY 41-2272 (BAY, or the Cx inducer diallyl disulfide (DADS significantly reduced proliferation after 72 h compared to vehicle controls. Bromodeoxyuridine uptake revealed reduction (p<.001 in DNA synthesis after 6 h and flow cytometry showed reduced (40% S phase cell numbers after 16 h in DADS-treated cells compared to controls. Cx43 expression significantly increased after 270 min treatment with 8Br-cAMP, 8Br-cGMP, BAY or DADS. Inhibition of PKA, PKG or PKC reversed 8Br-cAMP-stimulated increases in Cx43 expression, whereas only PKG or PKC inhibition reversed 8Br-cGMP- and BAY-stimulated increases in total Cx43. Interestingly, stimulation of Cx43 expression by DADS was not dependent on PKA, PKG or PKC. Using fluorescence recovery after photobleaching, only 8Br-cAMP or DADS increased GJIC with 8Br-cAMP mediated by PKC and DADS mediated by PKG. Further, DADS significantly increased phosphorylation at the MAPK-sensitive serine (Ser255 and Ser279, the cell cycle regulatory kinase-sensitive Ser262 and the PKC-sensitive Ser368 after 30 min while 8Br-cAMP significantly increased phosphorylation only at Ser279 compared to controls. This study demonstrates that 8Br-cAMP- and DADS-enhanced GJIC rather than Cx43 expression and/or phosphorylation plays an important role in regulation of VSMC proliferation and provides new insights into the growth-regulatory capacities of Cx43 in VSMCs.

  17. The Expression of BTS-2 Enhances Cell Growth and Invasiveness in Renal Cell Carcinoma.

    Science.gov (United States)

    Pham, Quoc Thang; Oue, Naohide; Yamamoto, Yuji; Shigematsu, Yoshinori; Sekino, Yohei; Sakamoto, Naoya; Sentani, Kazuhiro; Uraoka, Naohiro; Tiwari, Mamata; Yasui, Wataru

    2017-06-01

    Renal cell carcinoma (RCC) is one of the most common types of cancer in developed countries. Bone marrow stromal cell antigen 2 (BST2) gene, which encodes BST2 transmembrane glycoprotein, is overexpressed in several cancer types. In the present study, we analyzed the expression and function of BST2 in RCC. BST2 expression was analyzed by immunohistochemistry in 123 RCC cases. RNA interference was used to inhibit BST2 expression in a RCC cell line. Immunohistochemical analysis showed that 32% of the 123 RCC cases were positive for BST2. BST2 expression was positively associated with tumour stage. Furthermore, BST2 expression was an independent predictor of survival in patients with RCC. BST2 siRNA-transfected Caki-1 cells displayed significantly reduced cell growth and invasive activity relative to negative control siRNA-transfected cells. These results suggest that BST2 plays an important role in the progression of RCC. Because BST2 is expressed on the cell membrane, BST2 is a good therapeutic target for RCC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery smooth muscle cell survival patterns to promote pulmonary arterial hypertension

    Science.gov (United States)

    Aghamohammadzadeh, Reza; Zhang, Ying-Yi; Stephens, Thomas E.; Arons, Elena; Zaman, Paula; Polach, Kevin J.; Matar, Majed; Yung, Lai-Ming; Yu, Paul B.; Bowman, Frederick P.; Opotowsky, Alexander R.; Waxman, Aaron B.; Loscalzo, Joseph; Leopold, Jane A.; Maron, Bradley A.

    2016-01-01

    Activation of the mammalian target of rapamycin complex 1 (mTORC1) subunit Raptor induces cell growth and is a downstream target of Akt. Elevated levels of aldosterone activate Akt, and, in pulmonary arterial hypertension (PAH), correlate with pulmonary arteriole thickening, which suggests that mTORC1 regulation by aldosterone may mediate adverse pulmonary vascular remodeling. We hypothesized that aldosterone-Raptor signaling induces abnormal pulmonary artery smooth muscle cell (PASMC) survival patterns to promote PAH. Remodeled pulmonary arterioles from SU-5416/hypoxia-PAH rats and monocrotaline-PAH rats with hyperaldosteronism expressed increased levels of the Raptor target, p70S6K, which provided a basis for investigating aldosterone-Raptor signaling in human PASMCs. Aldosterone (10−9 to 10−7 M) increased Akt/mTOR/Raptor to activate p70S6K and increase proliferation, viability, and apoptosis resistance in PASMCs. In PASMCs transfected with Raptor–small interfering RNA or treated with spironolactone/eplerenone, aldosterone or pulmonary arterial plasma from patients with PAH failed to increase p70S6K activation or to induce cell survival in vitro. Optimal inhibition of pulmonary arteriole Raptor was achieved by treatment with Staramine-monomethoxy polyethylene glycol that was formulated with Raptor-small interfering RNA plus spironolactone in vivo, which decreased arteriole muscularization and pulmonary hypertension in 2 experimental animal models of PAH in vivo. Up-regulation of mTORC1 by aldosterone is a critical pathobiologic mechanism that controls PASMC survival to promote hypertrophic vascular remodeling and PAH.—Aghamohammadzadeh, R., Zhang, Y.-Y., Stephens, T. E., Arons, E., Zaman, P., Polach, K. J., Matar, M., Yung, L.-M., Yu, P. B., Bowman, F. P., Opotowsky, A. R., Waxman, A. B., Loscalzo, J., Leopold, J. A., Maron, B. A. Up-regulation of the mammalian target of rapamycin complex 1 subunit Raptor by aldosterone induces abnormal pulmonary artery

  19. The use of antioxidative stress enzymes, lipid peroxidation, and red blood cell abnormalities as biomarkers of stress in Periphthalmus papilio of the polluted coastal Lagos lagoon.

    Science.gov (United States)

    Nnamdi, Amaeze H; Olumide, Adebesin A; Adeladun, Adepegba E; Oyenike, Kolapo; Rosemary, Egonmwan I

    2015-03-01

    We assessed the mudskipper, Periphthalmus papilio inhabiting the coast line of the Lagos lagoon, Gulf of Guinea, to determine suitable biomarkers of stress due to its current status as a polluted water body. The gill and liver samples showed evidence of some activities of antioxidative stress enzymes including catalase, superoxide dismutase, glutathione-s-transferase, reduced glutahthione, as well as some detectable levels of lipid peroxidation product. The stress status of the fishes was also elucidated by nuclear abnormalities especially micronucleus formation and the presence of numerous vacuolated red blood cells. Given the current need for more sensitive bioindicators in monitoring pollution in this lagoon, we hereby present these inherent responses in P. papilio as a suitable candidate for incorporation into the current repertoire for ecotoxicological investigations in polluted water bodies of the Gulf of Guinea coastline.

  20. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Science.gov (United States)

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  1. SBDS-deficiency results in deregulation of reactive oxygen species leading to increased cell death and decreased cell growth.

    Science.gov (United States)

    Ambekar, Chhaya; Das, Bikul; Yeger, Herman; Dror, Yigal

    2010-12-01

    Shwachman-Diamond syndrome (SDS) is characterized by reduced hematopoietic and exocrine pancreatic cell numbers and a marked propensity for leukemia. Most patients have mutations in the SBDS gene. We previously reported that SBDS-deficient cells overexpress Fas, undergo accelerated spontaneous and Fas-mediated apoptosis and grow slowly. However the mechanism of how SBDS regulates apoptosis remains unknown. Several studies have shown that reactive oxygen species (ROS) regulate cell growth and spontaneous and Fas-mediated cell death. Therefore, we hypothesized that SBDS-deficiency disrupts ROS regulation and subsequently increases sensitivity to Fas stimulation and reduced cell growth. SBDS was knocked down in HeLa cervical cancer cells and TF-1 myeloid cells using short hairpin RNA. ROS levels were evaluated by oxidation of 2',7'-dichlorodihydrofluorescein diacetate. Apoptosis and cell growth were evaluated with and without antioxidants by annexin V/propidium iodide and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, respectively. We found that shRNA mediated SBDS-knockdown resulted in a significant increase in ROS levels compared to control cells. Fas stimulation further increased ROS levels in the SBDS-knockdown HeLa cells more than in the controls. Importantly, balancing ROS levels by antioxidants rescued SBDS-deficient cells from spontaneous and Fas-mediated apoptosis and reduced cell growth. ROS levels are increased in SBDS-deficient cells, which leads to increased apoptosis and decreased cell growth. Increased baseline and Fas-mediated ROS levels in SBDS-deficient cells can enhance the sensitivity to Fas stimulation. By balancing ROS levels, antioxidants can improve cell growth and survival in SBDS-deficient cells.

  2. Mesenchymal stem cell 1 (MSC1-based therapy attenuates tumor growth whereas MSC2-treatment promotes tumor growth and metastasis.

    Directory of Open Access Journals (Sweden)

    Ruth S Waterman

    Full Text Available Currently, there are many promising clinical trials using mesenchymal stem cells (MSCs in cell-based therapies of numerous diseases. Increasingly, however, there is a concern over the use of MSCs because they home to tumors and can support tumor growth and metastasis. For instance, we established that MSCs in the ovarian tumor microenvironment promoted tumor growth and favored angiogenesis. In parallel studies, we also developed a new approach to induce the conventional mixed pool of MSCs into two uniform but distinct phenotypes we termed MSC1 and MSC2.Here we tested the in vitro and in vivo stability of MSC1 and MSC2 phenotypes as well as their effects on tumor growth and spread. In vitro co-culture of MSC1 with various cancer cells diminished growth in colony forming units and tumor spheroid assays, while conventional MSCs or MSC2 co-culture had the opposite effect in these assays. Co-culture of MSC1 and cancer cells also distinctly affected their migration and invasion potential when compared to MSCs or MSC2 treated samples. The expression of bioactive molecules also differed dramatically among these samples. MSC1-based treatment of established tumors in an immune competent model attenuated tumor growth and metastasis in contrast to MSCs- and MSC2-treated animals in which tumor growth and spread was increased. Also, in contrast to these groups, MSC1-therapy led to less ascites accumulation, increased CD45+leukocytes, decreased collagen deposition, and mast cell degranulation.These observations indicate that the MSC1 and MSC2 phenotypes may be convenient tools for the discovery of critical components of the tumor stroma. The continued investigation of these cells may help ensure that cell based-therapy is used safely and effectively in human disease.

  3. NMR ({sup 1}H and {sup 13}C) based signatures of abnormal choline metabolism in oral squamous cell carcinoma with no prominent Warburg effect

    Energy Technology Data Exchange (ETDEWEB)

    Bag, Swarnendu, E-mail: Swarna.bag@gmail.com [School of Medical Science and Technology, Indian Institute of Technology-Kharagpur, 721302 West Bengal (India); Banerjee, Deb Ranjan, E-mail: debranjan2@gmail.com [Department of Chemistry, Indian Institute of Technology-Kharagpur, 721302 West Bengal (India); Basak, Amit, E-mail: absk@chem.iitkgp.ernet.in [Department of Chemistry, Indian Institute of Technology-Kharagpur, 721302 West Bengal (India); Das, Amit Kumar, E-mail: amitk@hijli.iitkgp.ernet.in [Department of Biotechnology, Indian Institute of Technology-Kharagpur, 721302 West Bengal (India); Pal, Mousumi, E-mail: drmpal62@gmail.com [Department of Oral and Maxillofacial Pathology, Guru Nanak Institute of Dental Sciences and Research, Kolkata, West Bengal (India); Banerjee, Rita, E-mail: ritabanerjee@outlook.com [Department of Science and Technology, New Mehrauli Road, New Delhi 110016 (India); Paul, Ranjan Rashmi, E-mail: dr_rsspaul@yahoo.co.in [Department of Oral and Maxillofacial Pathology, Guru Nanak Institute of Dental Sciences and Research, Kolkata, West Bengal (India); Chatterjee, Jyotirmoy, E-mail: jchatterjee.iitkgp@gmail.com [School of Medical Science and Technology, Indian Institute of Technology-Kharagpur, 721302 West Bengal (India)

    2015-04-17

    At functional levels, besides genes and proteins, changes in metabolome profiles are instructive for a biological system in health and disease including malignancy. It is understood that metabolomic alterations in association with proteomic and transcriptomic aberrations are very fundamental to unravel malignant micro-ambient criticality and oral cancer is no exception. Hence deciphering intricate dimensions of oral cancer metabolism may be contributory both for integrated appreciation of its pathogenesis and to identify any critical but yet unexplored dimension of this malignancy with high mortality rate. Although several methods do exist, NMR provides higher analytical precision in identification of cancer metabolomic signature. Present study explored abnormal signatures in choline metabolism in oral squamous cell carcinoma (OSCC) using {sup 1}H and {sup 13}C NMR analysis of serum. It has demonstrated down-regulation of choline with concomitant up-regulation of its break-down product in the form of trimethylamine N-oxide in OSCC compared to normal counterpart. Further, no significant change in lactate profile in OSCC possibly indicated that well-known Warburg effect was not a prominent phenomenon in such malignancy. Amongst other important metabolites, malonate has shown up-regulation but D-glucose, saturated fatty acids, acetate and threonine did not show any significant change. Analyzing these metabolomic findings present study proposed trimethyl amine N-oxide and malonate as important metabolic signature for oral cancer with no prominent Warburg effect. - Highlights: • NMR ({sup 1}H and {sup 13}C) study of Oral Squamous cell Carcinoma Serum. • Abnormal Choline metabolomic signatures. • Up-regulation of Trimethylamine N-oxide. • Unchanged lactate profile indicates no prominent Warburg effect. • Proposed alternative glucose metabolism path through up-regulation of malonate.

  4. Abnormal recovery of DNA replication in ultraviolet-irradiated cell cultures of Drosophila melanogaster which are defective in DNA repair

    International Nuclear Information System (INIS)

    Brown, T.C.; Boyd, J.B.

    1981-01-01

    Cell cultures prepared from embryos of a control stock of Drosophila melanogaster respond to ultraviolet light with a decline and subsequent recovery both of thymidine incorporation and in the ability to synthesize nascent DNA in long segments. Recovery of one or both capacities is absent or diminished in irradiated cells from ten nonallelic mutants that are defective in DNA repair and from four of five nonallelic mutagen-sensitive mutants that exhibit normal repair capabilities. Recovery of thymidine incorporation is not observed in nine of ten DNA repair-defective mutants. On the other hand, partial or complete recovery of incorporation is observed in all but one repair-proficient mutagen-sensitive mutant. (orig./AJ) [de

  5. Radiological abnormalities of the skeleton in patients with sickle-cell anemia. A study of 222 cases in Tunisia

    Energy Technology Data Exchange (ETDEWEB)

    Ben Dridi, M.F.; Oumaya, A.; Gastli, H.; Doggaz, C.; Bousnina, S.; Fattoum, S.; Ben Osman, R.; Gharbi, H.A.

    1987-05-01

    The way in which bones are affected in cases of sickle-cell anemia is well known. Nevertheless, advances in treatment and in methods of transfusion mean that we are increasingly seeing cases of older patients with this disease. A retrospective analysis of 222 cases of sickle-cell anemia demonstrates the radiological appearance of the skeleton in the disease and reveals the various bone segments which are particularly vulnerable at certain periods of life. Correlation of X-rays permits the discovery of lesions which are not clinically apparent. The frequency and characteristics of epiphyseal osteonecrosis and osteitis are studied. Aggravation of the bone lesions when corticoids are administered poses the problem of differential diagnosis of the disease, especially in comparison with rheumatic fever.

  6. Effects of basic fibroblast growth factor and insulin-like growth factor on cultured cartilage cells from skate Raja porasa

    Science.gov (United States)

    Fan, Tingjun; Jin, Lingyun; Wang, Xiaofeng

    2003-12-01

    Effects of basic fibroblast growth factor (bFGF) and insulin-like growth factor II (IGF-II) on cartilage cells from proboscis of skate, Raja porasa Günther, were investigated in this study. The cartilage cells were cultured in 20% FBS-supplemented MEM medium at 24°C. Twelve hours after culture initiation, the cartilage cells were treated with bFGF and IGF-II at different concentration combinations. It was found that 20 ng/ml of bFGF or 80 ng/ml of IGF-II was enough to have obvious stimulating effect on the growth and division of skate cartilage cells. Test of bFGF and IGF-II together, revealed that 20 ng/ml of bFGF and 80 ng/ml of IGF-II together had the best stimulating effect on the growth and division of skate cartilage cells. The cartilage cells cultured could form a monolayer at day 7.

  7. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    International Nuclear Information System (INIS)

    Xu, Ling; Hausmann, Martin; Dietmaier, Wolfgang; Kellermeier, Silvia; Pesch, Theresa; Stieber-Gunckel, Manuela; Lippert, Elisabeth; Klebl, Frank; Rogler, Gerhard

    2010-01-01

    Cholangiocarcinoma (CC) is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Expression of EGFR (epithelial growth factor receptor), HGFR (hepatocyte growth factor receptor) IGF1R (insulin-like growth factor 1 receptor), IGF2R (insulin-like growth factor 2 receptor) and VEGFR1-3 (vascular endothelial growth factor receptor 1-3) were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1). The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml), with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D). HuH28, OZ and TFK-1 lacked KRAS mutation. CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab

  8. Expression of the IL-6 receptor alpha-chain (CD126) in normal and abnormal plasma cells in monoclonal gammopathy of undetermined significance and smoldering myeloma.

    Science.gov (United States)

    Salem, Dalia Abdel-Raouf; Korde, Neha; Venzon, David J; Liewehr, David J; Maric, Irina; Calvo, Katherine R; Braylan, Raul; Tembhare, Prashant R; Yuan, Constance M; Landgren, Carl Ola; Stetler-Stevenson, Maryalice

    2018-01-01

    IL-6 activity in normal plasma cells (nPCs) and abnormal plasma cells (aPCs) is CD126 (subunit of IL-6 receptor) dependent. We quantified CD126 expression on nPCs and aPCs in monoclonal gammopathy of undetermined significance (MGUS), smoldering myeloma (SMM), and multiple myeloma (MM). CD126 was detected on all nPCs and aPCs indicating that CD126 does not have diagnostic utility. CD126 expression was higher in aPCs than in nPCs in 85% SMM but only 41% MGUS and there was evidence that CD126 was higher in aPCs than nPCs in the SMM (p = .048) but not MGUS (p = .96) patients. There is also a greater association between nPC and aPC CD126 expression in low risk MGUS than observed in high risk MGUS and SMM, suggesting normal regulation of CD126 decreases with disease progression. Future studies need to elucidate the role of bone marrow milieu versus escape from normal CD126 regulation in malignant transformation of clonal plasma cells.

  9. Comparative effects of 4-phenyl-3-butenoic acid and vorinostat on cell growth and signaling.

    Science.gov (United States)

    Burns, Timothy J; Ali, Amna; Matesic, Diane F

    2015-02-01

    4-phenyl-3-butenoic acid (PBA) is a small-molecule anti-inflammatory agent, which has been shown to inhibit growth, increase gap junction intercellular communication and modulate activation of p38 mitogen-activated protein kinase (p38 MAPK) and c-jun n-terminal kinase (JNK) in tumorigenic cells at concentrations that do not similarly affect non-tumorigenic cells. Vorinostat is an anticancer agent structurally similar to PBA. The purpose of this study was to compare the effects of these two agents on JNK and p38 activation, cell growth and gap junction intercellular communication (GJIC). Cell growth, GJIC and western blot analyses were performed utilizing tumorigenic WBras1 and H2009 human carcinoma cells, and non-tumorigenic WBneo3 and human bronchial epithelial (HBE) cells. Both compounds significantly inhibited WBras1 and H2009 tumorigenic cell growth and increased GJIC in WBras1 cells, as previously reported for PBA. Under similar conditions, both compounds increased phosphorylation of p38 MAPK in tumorigenic but not in non-tumorigenic cells and decreased phosphorylation of JNK in tumorigenic cells. However, a decrease in phosphorylation of JNK occurred in non-tumorigenic WBras1 cells following vorinostat treatment but not PBA treatment. Both compounds showed a selective growth inhibition of H2009 human carcinoma over normal HBE lung cells but, unlike PBA, vorinostat significantly decreased cell growth in WBneo3 cells. Overall, PBA exhibited similar effects to vorinostat in tumorigenic cells, while also showing reduced effects on JNK phosphorylation and growth in non-tumorigenic cells compared to ras-transformed cells. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Growth techniques used to develop CDS/CDTE thin film solar cells ...

    African Journals Online (AJOL)

    Growth techniques used to develop CDS/CDTE thin film solar cells: a review. ... Techniques such as molecular beam epitaxy (MBE), metal organic chemical vapour deposition (MOCVD) called melt growth or Bridgman are well known as high quality semiconductor growth techniques. One of the limitations of these ...

  11. Pharmacological targeting of the KIT growth factor receptor: a therapeutic consideration for mast cell disorders

    DEFF Research Database (Denmark)

    Jensen, Bettina Margrethe; Akin, C; Gilfillan, A M

    2008-01-01

    KIT is a member of the tyrosine kinase family of growth factor receptors which is expressed on a variety of haematopoietic cells including mast cells. Stem cell factor (SCF)-dependent activation of KIT is critical for mast cell homeostasis and function. However, when KIT is inappropriately activa...

  12. Histamine-stimulated expression of insulin-like growth factors in human glioma cells.

    OpenAIRE

    Van der Ven, L. T.; Van Buul-Offers, S. C.; Gloudemans, T.; Roholl, P. J.; Sussenbach, J. S.; Den Otter, W.

    1997-01-01

    Glioma tumour growth is associated with the expression of insulin-like growth factors I and II (IGFs) and of both type I and type II IGF receptors. It has also been shown that IGFs can stimulate proliferation of cultured glioma cells. We previously reported that histamine too can stimulate the growth of glioma cells in vitro. In this report, we study whether the histamine-induced growth of G47 glioma cells is mediated by the IGFs. We found that histamine stimulates the expression of both IGF-...

  13. the non-genomic effects of high doses of rosiglitazone on cell growth

    African Journals Online (AJOL)

    DR. AMINU

    shown to inhibit cell growth by inducing apoptosis (Mao et al., 2007). This study focused on ER stress-mediated effects on cell growth, viability and apoptosis in .... secondary antibodies. Arrow indicates 105KDa molecular weight bands, which correspond to SERCA2b. Image is representative of three separate experiments ...

  14. Compounds in a particular production lot of tryptic soy broth inhibit Staphylococcus aureus cell growth.

    Science.gov (United States)

    Ishii, Masaki; Matsumoto, Yasuhiko; Sekimizu, Kazuhisa

    2015-06-01

    Staphylococcus aureus Newman strain and several methicillin-resistant S. aureus (MRSA) clinical isolates were grown on agar plates prepared with conventional lots of tryptic soy broth (TSB). Cell growth of these strains was inhibited on agar plates containing TSB of a particular product lot (lot A), whereas the cell growth of S. aureus RN4220 strain and several other MRSA clinical isolates was not inhibited. The cell growth of a strain of S. epidermidis was also inhibited on agar plates containing TSB of lot A, whereas the cell growth of Bacillus subtilis, Lactococcus lactis, Klebsiella pneumonia, Salmonella enterica, Serratia marcescens, Pseudomonas aeruginosa, and Escherichia coli was not inhibited. Although cell growth of the Newman strain was inhibited on agar plates containing TSB of lot A that was autoclaved in stainless steel or glass containers, cell growth inhibition was not observed when the medium was autoclaved in polypropylene containers. Compounds that inhibited the cell growth of the Newman strain were extracted from a polypropylene tube that was preincubated with liquid medium prepared from TSB of lot A. These findings suggest that polypropylene-binding compounds in TSB of lot A inhibited the cell growth of S. aureus Newman strain, some MRSA clinical isolates, and S. epidermidis.

  15. High-Resolution Transmission Electron Microscopy Observation of Colloidal Nanocrystal Growth Mechanisms using Graphene Liquid Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yuk, Jong Min; Park, Jungwon; Ercius, Peter; Kim, Kwanpyo; Hellebusch, Danny J.; Crommie, Michael F.; Lee, Jeong Yong; Zettl, A.; Alivisatos, A. Paul

    2011-12-12

    We introduce a new type of liquid cell for in-situ electron microscopy based upon entrapment of a liquid film between layers of graphene. We employ this cell to achieve high-resolution imaging of colloidal platinum nanocrystal growth. The ability to directly image and resolve critical steps at atomic resolution provides new insights into nanocrystal coalescence and reshaping during growth.

  16. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation

    DEFF Research Database (Denmark)

    Kratchmarova, Irina; Blagoev, Blagoy; Haack-Sorensen, M.

    2005-01-01

    Closely related signals often lead to very different cellular outcomes. We found that the differentiation of human mesenchymal stem cells into bone-forming cells is stimulated by epidermal growth factor (EGF) but not platelet-derived growth factor (PDGF). We used mass spectrometry-based proteomics...

  17. Breviscapine suppresses the growth of non-small cell lung cancer ...

    Indian Academy of Sciences (India)

    2017-02-10

    Feb 10, 2017 ... Breviscapine (BVP) has previously been shown to inhibit the proliferation of hepatocellular carcinoma cells. However, little is known about the effects of BVP on non-small cell lung cancer (NSCLC) growth. Here, we aimed to study the effects of BVP on human NSCLC growth. We employed A549, NCL-H460 ...

  18. Genetic and Nongenetic Determinants of Cell Growth Variation Assessed by High-Throughput Microscopy

    Science.gov (United States)

    Ziv, Naomi; Siegal, Mark L.; Gresham, David

    2013-01-01

    In microbial populations, growth initiation and proliferation rates are major components of fitness and therefore likely targets of selection. We used a high-throughput microscopy assay, which enables simultaneous analysis of tens of thousands of microcolonies, to determine the sources and extent of growth rate variation in the budding yeast (Saccharomyces cerevisiae) in different glucose environments. We find that cell growth rates are regulated by the extracellular concentration of glucose as proposed by Monod (1949), but that significant heterogeneity in growth rates is observed among genetically identical individuals within an environment. Yeast strains isolated from different geographic locations and habitats differ in their growth rate responses to different glucose concentrations. Inheritance patterns suggest that the genetic determinants of growth rates in different glucose concentrations are distinct. In addition, we identified genotypes that differ in the extent of variation in growth rate within an environment despite nearly identical mean growth rates, providing evidence that alleles controlling phenotypic variability segregate in yeast populations. We find that the time to reinitiation of growth (lag) is negatively correlated with growth rate, yet this relationship is strain-dependent. Between environments, the respirative activity of individual cells negatively correlates with glucose abundance and growth rate, but within an environment respirative activity and growth rate show a positive correlation, which we propose reflects differences in protein expression capacity. Our study quantifies the sources of genetic and nongenetic variation in cell growth rates in different glucose environments with unprecedented precision, facilitating their molecular genetic dissection. PMID:23938868

  19. Abnormal Wnt signaling and stem cell activation in reactive lymphoid tissue and low-grade marginal zone lymphoma.

    Science.gov (United States)

    Zhang, Da; O'neil, Maura F; Cunningham, Mark T; Fan, Fang; Olyaee, Mojtaba; Li, Linheng

    2010-05-01

    The variable natural history of mucosa-associated lymphoid tissue (MALT) lymphoma poses a challenge in predicting clinical outcome. Since Wnt signaling, as indicated by nuclear localization of beta-catenin, is believed to be key in stem cell activation and stem cell self-renewal, we explored the possibility that it might have a predictive value in marginal zone lymphoma. We chose to analyze pbeta-catenin-S552 because its nuclear localization by immunohistochemistry appears to coincide with Wnt signaling-initiated tumorigenesis in intestinal and hematopoietic tissues. Wnt signaling and activation was studied in 22 tissue samples of extranodal marginal zone lymphoma, atypical lymphoid hyperplasia, reactive lymphoid hyperplasia, and normal lymphoid tissue to determine whether Wnt signaling could help distinguish MALT lymphoma from benign lesions. Compared to normal or reactive lymphoid tissue, we found increased nuclear expression of localized pbeta-catenin-S552 in atypical lymphoid hyperplasia and extranodal marginal zone lymphoma. We show that the anti-pbeta-catenin-S552 antibody may be useful in diagnosing and monitoring the progression of or response to therapy of MALT lymphoma.

  20. c-myb stimulates cell growth by regulation of insulin-like growth factor (IGF) and IGF-binding protein-3 in K562 leukemia cells

    International Nuclear Information System (INIS)

    Kim, Min-Sun; Kim, Sun-Young; Arunachalam, Sankarganesh; Hwang, Pyoung-Han; Yi, Ho-Keun; Nam, Sang-Yun; Lee, Dae-Yeol

    2009-01-01

    c-myb plays an important role in the regulation of cell growth and differentiation, and is highly expressed in immature hematopoietic cells. The human chronic myelogenous leukemia cell K562, highly expresses IGF-I, IGF-II, IGF-IR, and IGF-induced cellular proliferation is mediated by IGF-IR. To characterize the impact of c-myb on the IGF-IGFBP-3 axis in leukemia cells, we overexpressed c-myb using an adenovirus gene transfer system in K562 cells. The overexpression of c-myb induced cell proliferation, compared to control, and c-myb induced cell