WorldWideScience

Sample records for abnormal calcium homeostasis

  1. Diuretics and disorders of calcium homeostasis.

    Science.gov (United States)

    Grieff, Marvin; Bushinsky, David A

    2011-11-01

    Diuretics commonly are administered in disorders of sodium balance. Loop diuretics inhibit the Na-K-2Cl transporter and also increase calcium excretion. They are often used in the treatment of hypercalcemia. Thiazide diuretics block the thiazide-sensitive NaCl transporter in the distal convoluted tubule, and can decrease calcium excretion. They are often used in the treatment of nephrolithiasis. Carbonic anhydrase inhibitors decrease bicarbonate absorption and the resultant metabolic acidosis can increase calcium excretion. Their use can promote nephrocalcinosis and nephrolithiasis. This review will address the use of diuretics on disorders of calcium homeostasis. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Calcium homeostasis in diabetes mellitus.

    Science.gov (United States)

    Ahn, Changhwan; Kang, Ji-Houn; Jeung, Eui-Bae

    2017-09-30

    Diabetes mellitus (DM) is becoming a lifestyle-related pandemic disease. Diabetic patients frequently develop electrolyte disorders, especially diabetic ketoacidosis or nonketotic hyperglycemic hyperosmolar syndrome. Such patients show characteristic potassium, magnesium, phosphate, and calcium depletion. In this review, we discuss a homeostatic mechanism that links calcium and DM. We also provide a synthesis of the evidence in favor or against this linking mechanism by presenting recent clinical indications, mainly from veterinary research. There are consistent results supporting the use of calcium and vitamin D supplementation to reduce the risk of DM. Clinical trials support a marginal reduction in circulating lipids, and some meta-analyses support an increase in insulin sensitivity, following vitamin D supplementation. This review provides an overview of the calcium and vitamin D disturbances occurring in DM and describes the underlying mechanisms. Such elucidation will help indicate potential pathophysiology-based precautionary and therapeutic approaches and contribute to lowering the incidence of DM.

  3. Pharmacological modulation of mitochondrial calcium homeostasis.

    Science.gov (United States)

    Arduino, Daniela M; Perocchi, Fabiana

    2018-01-10

    Mitochondria are pivotal organelles in calcium (Ca 2+ ) handling and signalling, constituting intracellular checkpoints for numerous processes that are vital for cell life. Alterations in mitochondrial Ca 2+ homeostasis have been linked to a variety of pathological conditions and are critical in the aetiology of several human diseases. Efforts have been taken to harness mitochondrial Ca 2+ transport mechanisms for therapeutic intervention, but pharmacological compounds that direct and selectively modulate mitochondrial Ca 2+ homeostasis are currently lacking. New avenues have, however, emerged with the breakthrough discoveries on the genetic identification of the main players involved in mitochondrial Ca 2+ influx and efflux pathways and with recent hints towards a deep understanding of the function of these molecular systems. Here, we review the current advances in the understanding of the mechanisms and regulation of mitochondrial Ca 2+ homeostasis and its contribution to physiology and human disease. We also introduce and comment on the recent progress towards a systems-level pharmacological targeting of mitochondrial Ca 2+ homeostasis. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  4. Calcium homeostasis during pregnancy and lactation: role of vitamin ...

    African Journals Online (AJOL)

    Arun Kumar Agnihotri

    skinned but also even Caucasian women tend to go into vitamin D deficiency during ... homeostasis in this phase of life is still controversial. Studies are .... calcium balance in lactating women. .... work on vitamin D. In general these authors.

  5. Calcium homeostasis modulator (CALHM) ion channels.

    Science.gov (United States)

    Ma, Zhongming; Tanis, Jessica E; Taruno, Akiyuki; Foskett, J Kevin

    2016-03-01

    Calcium homeostasis modulator 1 (CALHM1), formerly known as FAM26C, was recently identified as a physiologically important plasma membrane ion channel. CALHM1 and its Caenorhabditis elegans homolog, CLHM-1, are regulated by membrane voltage and extracellular Ca(2+) concentration ([Ca(2+)]o). In the presence of physiological [Ca(2+)]o (∼1.5 mM), CALHM1 and CLHM-1 are closed at resting membrane potentials but can be opened by strong depolarizations. Reducing [Ca(2+)]o increases channel open probability, enabling channel activation at negative membrane potentials. Together, voltage and Ca(2+) o allosterically regulate CALHM channel gating. Through convergent evolution, CALHM has structural features that are reminiscent of connexins and pannexins/innexins/LRRC8 (volume-regulated anion channel (VRAC)) gene families, including four transmembrane helices with cytoplasmic amino and carboxyl termini. A CALHM1 channel is a hexamer of CALHM1 monomers with a functional pore diameter of ∼14 Å. CALHM channels discriminate poorly among cations and anions, with signaling molecules including Ca(2+) and ATP able to permeate through its pore. CALHM1 is expressed in the brain where it plays an important role in cortical neuron excitability induced by low [Ca(2+)]o and in type II taste bud cells in the tongue that sense sweet, bitter, and umami tastes where it functions as an essential ATP release channel to mediate nonsynaptic neurotransmitter release. CLHM-1 is expressed in C. elegans sensory neurons and body wall muscles, and its genetic deletion causes locomotion defects. Thus, CALHM is a voltage- and Ca(2+) o-gated ion channel, permeable to large cations and anions, that plays important roles in physiology.

  6. Regulation of calcium homeostasis in activated human neutrophils ...

    African Journals Online (AJOL)

    Objectives. The objectives of the current study were to: (i) present an integrated model for the restoration of calcium homeostasis in activated human neutrophils based on current knowledge and recent research; and (ii) identify potential targets for the modulation of calcium fluxes in activated neutrophils based on this model ...

  7. Calcium homeostasis in fly photoreceptor cells

    NARCIS (Netherlands)

    Oberwinkler, J

    2002-01-01

    In fly photoreceptor cells, two processes dominate the Ca2+ homeostasis: light-induced Ca2+ influx through members of the TRP family of ion channels, and Ca2+ extrusion by Na+/Ca2+ exchange.Ca2+ release from intracellular stores is quantitatively insignificant. Both, the light-activated channels and

  8. Chemistry Misconceptions Associated with Understanding Calcium and Phosphate Homeostasis

    Science.gov (United States)

    Cliff, William H.

    2009-01-01

    Successful learning of many aspects in physiology depends on a meaningful understanding of fundamental chemistry concepts. Two conceptual diagnostic questions measured student understanding of the chemical equilibrium underlying calcium and phosphate homeostasis. One question assessed the ability to predict the change in phosphate concentration…

  9. Space medicine considerations: Skeletal and calcium homeostasis

    Science.gov (United States)

    Schneider, Victor B.

    1989-01-01

    Based on the information obtained from space missions, particularly Skylab and the longer Salyut missions, it is clear that bone and mineral metabolism is substantially altered during space flight. Calcium balance becomes increasingly more negative throughout the flight, and the bone mineral content of the os calcis declines. The major health hazards associated with skeletal changes include the signs and symptoms of hypercalcemia with rapid bone turnover, the risk of kidney stones because of hypercalciuria, the lengthy recovery of lost bone mass after flight, the possibility of irreversible bone loss (particularly the trabecular bone), the possible effects of metastated calcification in the soft tissues, and the possible increase in fracture potential. For these reasons, major efforts need to be directed toward elucidating the fundamental mechanisms by which bone is lost in space and developing more effective countermeasures to prevent both short-term and long-term complications.

  10. Prion protein misfolding affects calcium homeostasis and sensitizes cells to endoplasmic reticulum stress.

    Directory of Open Access Journals (Sweden)

    Mauricio Torres

    2010-12-01

    Full Text Available Prion-related disorders (PrDs are fatal neurodegenerative disorders characterized by progressive neuronal impairment as well as the accumulation of an abnormally folded and protease resistant form of the cellular prion protein, termed PrP(RES. Altered endoplasmic reticulum (ER homeostasis is associated with the occurrence of neurodegeneration in sporadic, infectious and familial forms of PrDs. The ER operates as a major intracellular calcium store, playing a crucial role in pathological events related to neuronal dysfunction and death. Here we investigated the possible impact of PrP misfolding on ER calcium homeostasis in infectious and familial models of PrDs. Neuro2A cells chronically infected with scrapie prions showed decreased ER-calcium content that correlated with a stronger upregulation of UPR-inducible chaperones, and a higher sensitivity to ER stress-induced cell death. Overexpression of the calcium pump SERCA stimulated calcium release and increased the neurotoxicity observed after exposure of cells to brain-derived infectious PrP(RES. Furthermore, expression of PrP mutants that cause hereditary Creutzfeldt-Jakob disease or fatal familial insomnia led to accumulation of PrP(RES and their partial retention at the ER, associated with a drastic decrease of ER calcium content and higher susceptibility to ER stress. Finally, similar results were observed when a transmembrane form of PrP was expressed, which is proposed as a neurotoxic intermediate. Our results suggest that alterations in calcium homeostasis and increased susceptibility to ER stress are common pathological features of both infectious and familial PrD models.

  11. Renal Control of Calcium, Phosphate, and Magnesium Homeostasis

    Science.gov (United States)

    Chonchol, Michel; Levi, Moshe

    2015-01-01

    Calcium, phosphate, and magnesium are multivalent cations that are important for many biologic and cellular functions. The kidneys play a central role in the homeostasis of these ions. Gastrointestinal absorption is balanced by renal excretion. When body stores of these ions decline significantly, gastrointestinal absorption, bone resorption, and renal tubular reabsorption increase to normalize their levels. Renal regulation of these ions occurs through glomerular filtration and tubular reabsorption and/or secretion and is therefore an important determinant of plasma ion concentration. Under physiologic conditions, the whole body balance of calcium, phosphate, and magnesium is maintained by fine adjustments of urinary excretion to equal the net intake. This review discusses how calcium, phosphate, and magnesium are handled by the kidneys. PMID:25287933

  12. m-AAA proteases, mitochondrial calcium homeostasis and neurodegeneration.

    Science.gov (United States)

    Patron, Maria; Sprenger, Hans-Georg; Langer, Thomas

    2018-03-01

    The function of mitochondria depends on ubiquitously expressed and evolutionary conserved m-AAA proteases in the inner membrane. These ATP-dependent peptidases form hexameric complexes built up of homologous subunits. AFG3L2 subunits assemble either into homo-oligomeric isoenzymes or with SPG7 (paraplegin) subunits into hetero-oligomeric proteolytic complexes. Mutations in AFG3L2 are associated with dominant spinocerebellar ataxia (SCA28) characterized by the loss of Purkinje cells, whereas mutations in SPG7 cause a recessive form of hereditary spastic paraplegia (HSP7) with motor neurons of the cortico-spinal tract being predominantly affected. Pleiotropic functions have been assigned to m-AAA proteases, which act as quality control and regulatory enzymes in mitochondria. Loss of m-AAA proteases affects mitochondrial protein synthesis and respiration and leads to mitochondrial fragmentation and deficiencies in the axonal transport of mitochondria. Moreover m-AAA proteases regulate the assembly of the mitochondrial calcium uniporter (MCU) complex. Impaired degradation of the MCU subunit EMRE in AFG3L2-deficient mitochondria results in the formation of deregulated MCU complexes, increased mitochondrial calcium uptake and increased vulnerability of neurons for calcium-induced cell death. A reduction of calcium influx into the cytosol of Purkinje cells rescues ataxia in an AFG3L2-deficient mouse model. In this review, we discuss the relationship between the m-AAA protease and mitochondrial calcium homeostasis and its relevance for neurodegeneration and describe a novel mouse model lacking MCU specifically in Purkinje cells. Our results pledge for a novel view on m-AAA proteases that integrates their pleiotropic functions in mitochondria to explain the pathogenesis of associated neurodegenerative disorders.

  13. Influence of whole-body irradiation on calcium and phosphate homeostasis in the rat

    International Nuclear Information System (INIS)

    Pento, J.T.; Kenny, A.D.

    1975-01-01

    Previous irradiation studies have revealed marked alterations in calcium metabolism. Moreover, the maintenance of calcium homeostasis with parathyroid hormone or calcium salts has been reported to reduce radiation lethality. Therefore, the present study was designed to evaluate the influence of irradiation on calcium homeostasis in the rat. Nine hundred rad of whole-body irradiation produced a significant depression of both plasma calcium and phosphate at 4 days postirradiation. This effect of irradiation was observed to be dose-dependent over a range of 600 to 1200 rad, and possibly related to irradiation-induced anorexia. The physiological significance of these observations is discussed

  14. Coupling between phosphate and calcium homeostasis: a mathematical model.

    Science.gov (United States)

    Granjon, David; Bonny, Olivier; Edwards, Aurélie

    2017-12-01

    We developed a mathematical model of calcium (Ca) and phosphate (PO 4 ) homeostasis in the rat to elucidate the hormonal mechanisms that underlie the regulation of Ca and PO 4 balance. The model represents the exchanges of Ca and PO 4 between the intestine, plasma, kidneys, bone, and the intracellular compartment, and the formation of Ca-PO 4 -fetuin-A complexes. It accounts for the regulation of these fluxes by parathyroid hormone (PTH), vitamin D 3 , fibroblast growth factor 23, and Ca 2+ -sensing receptors. Our results suggest that the Ca and PO 4 homeostatic systems are robust enough to handle small perturbations in the production rate of either PTH or vitamin D 3 The model predicts that large perturbations in PTH or vitamin D 3 synthesis have a greater impact on the plasma concentration of Ca 2+ ([Ca 2+ ] p ) than on that of PO 4 ([PO 4 ] p ); due to negative feedback loops, [PO 4 ] p does not consistently increase when the production rate of PTH or vitamin D 3 is decreased. Our results also suggest that, following a large PO 4 infusion, the rapidly exchangeable pool in bone acts as a fast, transient storage PO 4 compartment (on the order of minutes), whereas the intracellular pool is able to store greater amounts of PO 4 over several hours. Moreover, a large PO 4 infusion rapidly lowers [Ca 2+ ] p owing to the formation of CaPO 4 complexes. A large Ca infusion, however, has a small impact on [PO 4 ] p , since a significant fraction of Ca binds to albumin. This mathematical model is the first to include all major regulatory factors of Ca and PO 4 homeostasis. Copyright © 2017 the American Physiological Society.

  15. Transfected parvalbumin alters calcium homeostasis in teratocarcinoma PCC7 cells

    DEFF Research Database (Denmark)

    Müller, B K; Kabos, P; Belhage, B

    1996-01-01

    Indirect evidence supports a protective role of some EF-hand calcium-binding proteins against calcium-induced neurotoxicity. Little is known about how these proteins influence cytosolic calcium levels. After cloning the parvalbumin cDNA into an expression vector, teratocarcinoma cells (PCC7) were...

  16. Cytosolic calcium homeostasis in fungi: Roles of plasma membrane transport and intracellular sequestration of calcium

    International Nuclear Information System (INIS)

    Miller, A.J.; Vogg, G.; Sanders, D.

    1990-01-01

    Cytosolic free calcium ([Ca 2+ ] c ) has been measured in the mycelial fungus Neurospora crassa with Ca 2+ - selective microelectrodes. The mean value of [Ca 2+ ] c is 92 ± 15 nM and it is insensitive to external pH values between 5.8 and 8.4. Simultaneous measurement of membrane potential enables the electrochemical potential difference for Ca 2+ across the plasma membrane to be estimated as about -60 kJmol -1 - a value that cannot be sustained either by a simple Ca 2+ - ATPase, or, in alkaline conditions, by straightforward H + /Ca 2+ exchange with a stoichiometric ratio of + /Ca 2+ . The authors propose that the most likely alternative mechanism of Ca 2+ efflux is ATP-driven H + /Ca 2+ exchange, with a stoichiometric ratio of at least 2 H + /Ca 2+ . The increase in [Ca 2+ ] c in the presence of CN - at pH 8.4 is compared with 45 Ca 2+ influx under the same conditions. The proportion of entering Ca 2+ remaining free in the cytosol is only 8 x 10 -5 , and since the concentration of available chelation sites on Ca 2+ binding proteins is unlikely to exceed 100 μM, a major role for the fungal vacuole in short-term Ca 2+ homeostasis is indicated. This notion is supported by the observation that cytosolic Ca 2+ homeostasis is disrupted by a protonophore, which rapidly abolishes the driving force for Ca 2+ uptake into fungal vacuoles

  17. Targeting Cellular Calcium Homeostasis to Prevent Cytokine-Mediated Beta Cell Death.

    Science.gov (United States)

    Clark, Amy L; Kanekura, Kohsuke; Lavagnino, Zeno; Spears, Larry D; Abreu, Damien; Mahadevan, Jana; Yagi, Takuya; Semenkovich, Clay F; Piston, David W; Urano, Fumihiko

    2017-07-17

    Pro-inflammatory cytokines are important mediators of islet inflammation, leading to beta cell death in type 1 diabetes. Although alterations in both endoplasmic reticulum (ER) and cytosolic free calcium levels are known to play a role in cytokine-mediated beta cell death, there are currently no treatments targeting cellular calcium homeostasis to combat type 1 diabetes. Here we show that modulation of cellular calcium homeostasis can mitigate cytokine- and ER stress-mediated beta cell death. The calcium modulating compounds, dantrolene and sitagliptin, both prevent cytokine and ER stress-induced activation of the pro-apoptotic calcium-dependent enzyme, calpain, and partly suppress beta cell death in INS1E cells and human primary islets. These agents are also able to restore cytokine-mediated suppression of functional ER calcium release. In addition, sitagliptin preserves function of the ER calcium pump, sarco-endoplasmic reticulum Ca 2+ -ATPase (SERCA), and decreases levels of the pro-apoptotic protein thioredoxin-interacting protein (TXNIP). Supporting the role of TXNIP in cytokine-mediated cell death, knock down of TXNIP in INS1-E cells prevents cytokine-mediated beta cell death. Our findings demonstrate that modulation of dynamic cellular calcium homeostasis and TXNIP suppression present viable pharmacologic targets to prevent cytokine-mediated beta cell loss in diabetes.

  18. Restoring calcium homeostasis to treat Alzheimer's disease: a future perspective.

    Science.gov (United States)

    Popugaeva, Elena; Vlasova, Olga L; Bezprozvanny, Ilya

    2015-10-01

    Alzheimer's disease (AD) is a neurodegenerative disorder that primarily compromises memory formation and storage. Several hypotheses regarding the pathogenesis of AD have been proposed; however, no cure is available to date. Here we describe the calcium hypothesis of AD, which is gaining popularity. We present data supporting this hypothesis and focus on a recently discovered calcium-signaling pathway that is dysregulated in AD and propose targets for the development of disease-modifying therapies.

  19. Vitamin D Level Between Calcium-Phosphorus Homeostasis and Immune System: New Perspective in Osteoporosis.

    Science.gov (United States)

    Bellavia, Daniele; Costa, Viviana; De Luca, Angela; Maglio, Melania; Pagani, Stefania; Fini, Milena; Giavaresi, Gianluca

    2016-10-13

    Vitamin D is a key molecule in calcium and phosphate homeostasis; however, increasing evidence has recently shown that it also plays a crucial role in the immune system, both innate and adaptive. A deregulation of vitamin D levels, due also to mutations and polymorphisms in the genes of the vitamin D pathway, determines severe alterations in the homeostasis of the organism, resulting in a higher risk of onset of some diseases, including osteoporosis. This review gives an overview of the influence of vitamin D levels on the pathogenesis of osteoporosis, between bone homeostasis and immune system.

  20. Partial restoration of mutant enzyme homeostasis in three distinct lysosomal storage disease cell lines by altering calcium homeostasis.

    Directory of Open Access Journals (Sweden)

    Ting-Wei Mu

    2008-02-01

    Full Text Available A lysosomal storage disease (LSD results from deficient lysosomal enzyme activity, thus the substrate of the mutant enzyme accumulates in the lysosome, leading to pathology. In many but not all LSDs, the clinically most important mutations compromise the cellular folding of the enzyme, subjecting it to endoplasmic reticulum-associated degradation instead of proper folding and lysosomal trafficking. A small molecule that restores partial mutant enzyme folding, trafficking, and activity would be highly desirable, particularly if one molecule could ameliorate multiple distinct LSDs by virtue of its mechanism of action. Inhibition of L-type Ca2+ channels, using either diltiazem or verapamil-both US Food and Drug Administration-approved hypertension drugs-partially restores N370S and L444P glucocerebrosidase homeostasis in Gaucher patient-derived fibroblasts; the latter mutation is associated with refractory neuropathic disease. Diltiazem structure-activity studies suggest that it is its Ca2+ channel blocker activity that enhances the capacity of the endoplasmic reticulum to fold misfolding-prone proteins, likely by modest up-regulation of a subset of molecular chaperones, including BiP and Hsp40. Importantly, diltiazem and verapamil also partially restore mutant enzyme homeostasis in two other distinct LSDs involving enzymes essential for glycoprotein and heparan sulfate degradation, namely alpha-mannosidosis and type IIIA mucopolysaccharidosis, respectively. Manipulation of calcium homeostasis may represent a general strategy to restore protein homeostasis in multiple LSDs. However, further efforts are required to demonstrate clinical utility and safety.

  1. Components of calcium homeostasis in Archaeon Methanobacterium thermoautotrophicum

    International Nuclear Information System (INIS)

    Varecka, L.; Smigan, P.; Vancek, M.; Greksak, M.

    1998-01-01

    The cells of Archaea are interesting from several points of view. Among others there are: (a) the evolutionary relationship to procaryotes and eucaryotes and (b) the involvement of Na + and H + gradient in archaeal bio-energetics. The observations are presented which are devoted to the description of components of Ca 2+ homeostasis, an apparatus is vital for both procaryotic and eukaryotic organisms, in obligate anaerobe Methanobacterium thermoautotrophicum. This is, after the demonstration of the ATP-dependent Ca 2+ transport in Halobacterium halobium membrane vesicles, the first complex description of processes of Ca 2+ homeostasis in Archaea. The Ca 2+ influx and efflux was measured using radionuclide 4 5 Ca 2+ . The experiment were performed under strictly anaerobic conditions. The measurement of the membrane potential by means of 3 H-tetraphenyl phosphonium chloride showed that the presence of Na + depolarized the membrane from -110 to -60 mV. The growth of M. thermoautotrophicum and methanogenesis was suppressed but nor arrested by the presence EGTA suggesting that the Ca 2+ homeostasis may be involved in controlling these cellular functions. The results indicate the presence of three components involved in establishing the Ca 2+ homeostasis in cell of M. thermoautotrophicum. The first is the Ca 2+ -carrier mediating the CA 2+ influx driven by the proton motive force or the membrane potential. The Ca 2+ efflux is mediated by two transport systems, Na + /Ca 2+ and H + /Ca 2+ anti-porters. The evidence for the presence of the Ca 2+ -transporting ATPase was not obtained so far. (authors)

  2. Effects of gastrin on calcium homeostasis in chickens

    International Nuclear Information System (INIS)

    Persson, P.; Gagnemo-Persson, R.; Orberg, J.; Chen, D.; Hakanson, R.

    1991-01-01

    As in the rat, gastrin and an extract of the acid-producing part of the stomach (proventriculus) were found to lower the blood Ca2+ concentration in the chicken. Furthermore, gastrin enhanced the uptake of 45Ca into the femur. It has been suggested previously that gastrin causes hypocalcemia in the rat by releasing gastrocalcin, a hypothetical hormone thought to reside in the acid-producing part of the stomach. The results of the present study in the chicken are in agreement with this concept. Not only exogenous, but also endogenous gastrin lowered blood calcium levels. Thus, the serum gastrin concentration was increased in response to ranitidine-evoked blockade of the gastric acid output; the rise in gastrin was associated with a transient drop in blood calcium. Also, food intake produced a rise in the serum gastrin concentration and a transient drop in blood calcium. However, injection of ranitidine or food intake in proventriclectomized (acid-producing part of the stomach extirpated) chickens failed to lower blood calcium, supporting the view that the gastrin-evoked hypocalcemia depends upon an agent in the gastric (proventriculus) mucosa. The authors suggest that endogenous and exogenous gastrin evoke hypocalcemia in the chicken by the same mechanism as that which has been postulated in the rat, i.e. by mobilization of the candidate hormone gastrocalcin from endocrine cells in the acid-producing gastric mucosa

  3. Dysregulation of cellular calcium homeostasis in Alzheimer's disease: bad genes and bad habits.

    Science.gov (United States)

    Mattson, M P; Chan, S L

    2001-10-01

    Calcium is one of the most important intracellular messengers in the brain, being essential for neuronal development, synaptic transmission and plasticity, and the regulation of various metabolic pathways. The findings reviewed in the present article suggest that calcium also plays a prominent role in the pathogenesis of Alzheimer's disease (AD). Associations between the pathological hallmarks ofAD (neurofibrillary tangles [NFT] and amyloid plaques) and perturbed cellular calcium homeostasis have been established in studies of patients, and in animal and cell culture models of AD. Studies of the effects of mutations in the beta-amyloid precursor protein (APP) and presenilins on neuronal plasticity and survival have provided insight into the molecular cascades that result in synaptic dysfunction and neuronal degeneration in AD. Central to the neurodegenerative process is the inability of neurons to properly regulate intracellular calcium levels. Increased levels of amyloid beta-peptide (Abeta) induce oxidative stress, which impairs cellular ion homeostasis and energy metabolism and renders neurons vulnerable to apoptosis and excitotoxicity. Subtoxic levels of Abeta may induce synaptic dysfunction by impairing multiple signal transduction pathways. Presenilin mutations perturb calcium homeostasis in the endoplasmic reticulum in a way that sensitizes neurons to apoptosis and excitotoxicity; links between aberrant calcium regulation and altered APP processing are emerging. Environmental risk factors for AD are being identified and may include high calorie diets, folic acid insufficiency, and a low level of intellectual activity (bad habits); in each case, the environmental factor impacts on neuronal calcium homeostasis. Low calorie diets and intellectual activity may guard against AD by stimulating production of neurotrophic factors and chaperone proteins. The emerging picture of the cell and molecular biology of AD is revealing novel preventative and therapeutic

  4. Serotonin and calcium homeostasis during the transition period.

    Science.gov (United States)

    Weaver, S R; Laporta, J; Moore, S A E; Hernandez, L L

    2016-07-01

    The transition from pregnancy to lactation puts significant, sudden demands on maternal energy and calcium reserves. Although most mammals are able to effectively manage these metabolic adaptations, the lactating dairy cow is acutely susceptible to transition-related disorders because of the high amounts of milk being produced. Hypocalcemia is a common metabolic disorder that occurs at the onset of lactation. Hypocalcemia is also known to result in poor animal welfare conditions. In addition, cows that develop hypocalcemia are more susceptible to a host of other negative health outcomes. Different feeding tactics, including manipulating the dietary cation-anion difference and administering low-calcium diets, are commonly used preventative strategies. Despite these interventions, the incidence of hypocalcemia in the subclinical form is still as high as 25% to 30% in the United States dairy cow population, with a 5% to 10% incidence of clinical hypocalcemia. In addition, although there are various effective treatments in place, they are administered only after the cow has become noticeably ill, at which point there is already significant metabolic damage. This emphasizes the need for developing alternative prevention strategies, with the monoamine serotonin implicated as a potential therapeutic target. Our research in rodents has shown that serotonin is critical for the induction of mammary parathyroid hormone-related protein, which is necessary for the mobilization of bone tissue and subsequent restoration of maternal calcium stores during lactation. We have shown that circulating serotonin concentrations are positively correlated with serum total calcium on the first day of lactation in dairy cattle. Administration of serotonin's immediate precursor through feeding, injection, or infusion to various mammalian species has been shown to increase circulating serotonin concentrations, with positive effects on other components of maternal metabolism. Most recently

  5. Functional characterization of calcium sensing receptor polymorphisms and absence of association with indices of calcium homeostasis and bone mineral density.

    Science.gov (United States)

    Harding, Brian; Curley, Alan J; Hannan, Fadil M; Christie, Paul T; Bowl, Michael R; Turner, Jeremy J O; Barber, Mathew; Gillham-Nasenya, Irina; Hampson, Geeta; Spector, Tim D; Thakker, Rajesh V

    2006-11-01

    Associations between calcium-sensing receptor (CaSR) polymorphisms and serum calcium, PTH and bone mineral density (BMD) have been reported by six studies. However, three other studies have failed to detect such associations. We therefore further investigated three CaSR coding region polymorphisms (Ala986Ser, Arg990Gly and Gln1011Glu) for associations with indices of calcium homeostasis and BMD and for alterations in receptor function. One hundred and ten adult, Caucasian, female, dizygotic twin pairs were investigated for associations between the three CaSR polymorphisms and serum calcium, albumin, PTH, 25-hydroxyvitamin D(3) (25OHD(3)), 1,25-dihydroxyvitamin D(3)[1,25(OH)(2)D(3)], urinary calcium excretion and BMD. Each polymorphic CaSR was also transfected into HEK293 cells and functionally evaluated. There was a lack of association between each of these three CaSR polymorphisms and serum calcium corrected for albumin, PTH, 25OHD(3), 1,25(OH)(2)D(3), urinary calcium excretion or BMD at the hip, forearm and lumbar spine. These findings were supported by a lack of functional differences in the dose-response curves of the CaSR variants, with the EC(50) values (mean +/- SEM) of the wild-type (Ala986/Arg990/Gln1011), Ser986, Gly990 and Glu1011 CaSR variants being 2.74 +/- 0.29 mm, 3.09 +/- 0.34 mm (P > 0.4), 2.99 +/- 0.23 mm (P > 0.4) and 2.96 +/- 0.30 mm (P > 0.5), respectively. Our study, which was sufficiently powered to detect effects that would explain up to 5%, but not less than 1%, of the variance has revealed that the three CaSR polymorphisms of the coding region have no major influence on indices of calcium homeostasis in this female population, and that they do not alter receptor function.

  6. Calcium homeostasis and vitamin D metabolism and expression in strongly calcifying laying birds.

    Science.gov (United States)

    Bar, Arie

    2008-12-01

    Egg laying and shell calcification impose severe extra demands on ionic calcium (Ca2+) homeostasis; especially in birds characterized by their long clutches (series of eggs laid sequentially before a "pause day"). These demands induce vitamin D metabolism and expression. The metabolism of vitamin D is also altered indirectly, by other processes associated with increased demands for calcium, such as growth, bone formation and egg production. A series of intestinal, renal or bone proteins are consequently expressed in the target organs via mechanisms involving a vitamin D receptor. Some of these proteins (carbonic anhydrase, calbindin and calcium-ATPase) are also found in the uterus (eggshell gland) or are believed to be involved in calcium transport in the intestine or kidney (calcium channels). The present review deals with vitamin D metabolism and the expression of the above-mentioned proteins in birds, with special attention to the strongly calcifying laying bird.

  7. FGF-23 dysregulates calcium homeostasis and electrophysiological properties in HL-1 atrial cells.

    Science.gov (United States)

    Kao, Yu-Hsun; Chen, Yao-Chang; Lin, Yung-Kuo; Shiu, Rong-Jie; Chao, Tze-Fan; Chen, Shih-Ann; Chen, Yi-Jen

    2014-08-01

    Fibroblast growth factor (FGF)-23 is a key regulator of phosphate homeostasis. Higher FGF-23 levels are correlated with poor outcomes in cardiovascular diseases. FGF-23 can produce cardiac hypertrophy and increase intracellular calcium, which can change cardiac electrical activity. However, it is not clear whether FGF-23 possesses arrhythmogenic potential through calcium dysregulation. Therefore, the purposes of this study were to evaluate the electrophysiological effects of FGF-23 and identify the underlying mechanisms. Patch clamp, confocal microscope with Fluo-4 fluorescence, and Western blot analyses were used to evaluate the electrophysiological characteristics, calcium homeostasis and calcium regulatory proteins in HL-1 atrial myocytes with and without FGF-23 (10 and 25 ng/mL) incubation for 24 h. FGF-23 (25 ng/mL) increased L-type calcium currents, calcium transient and sarcoplasmic reticulum Ca(2+) contents in HL-1 cells. FGF-23 (25 ng/mL)-treated cells (n = 14) had greater incidences (57%, 17% and 15%, P calcium/calmodulin-dependent protein kinase IIδ and phospholamban (PLB) at threonine 17 but had similar phosphorylation extents of PLB at serine 16, total PLB and sarcoplasmic reticulum Ca(2+) -ATPase protein. Moreover, the FGF receptor inhibitor (PD173074, 10 nM), calmodulin inhibitor (W7, 5 μM) and phospholipase C inhibitor (U73122, 1 μM) attenuated the effects of FGF-23 on calcium/calmodulin-dependent protein kinase II phosphorylation. FGF-23 increases HL-1 cells arrhythmogenesis with calcium dysregulation through modulating calcium-handling proteins. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.

  8. Exposure to lithium through drinking water and calcium homeostasis during pregnancy: A longitudinal study

    International Nuclear Information System (INIS)

    Harari, Florencia; Åkesson, Agneta; Casimiro, Esperanza; Lu, Ying; Vahter, Marie

    2016-01-01

    There is increasing evidence of adverse health effects due to elevated lithium exposure through drinking water but the impact on calcium homeostasis is unknown. This study aimed at elucidating if lithium exposure through drinking water during pregnancy may impair the maternal calcium homeostasis. In a population-based mother-child cohort in the Argentinean Andes (n=178), with elevated lithium concentrations in the drinking water (5–1660 μg/L), blood lithium concentrations (correlating significantly with lithium in water, urine and plasma) were measured repeatedly during pregnancy by inductively coupled plasma mass spectrometry and used as exposure biomarker. Markers of calcium homeostasis included: plasma 25-hydroxyvitamin D 3 , serum parathyroid hormone (PTH), and calcium, phosphorus and magnesium concentrations in serum and urine. The median maternal blood lithium concentration was 25 μg/L (range 1.9–145). In multivariable-adjusted mixed-effects linear regression models, blood lithium was inversely associated with 25-hydroxyvitamin D 3 (−6.1 nmol/L [95%CI −9.5; −2.6] for a 25 μg/L increment in blood lithium). The estimate increased markedly with increasing percentiles of 25-hydroxyvitamin D 3 . In multivariable-adjusted mixed-effects logistic regression models, the odds ratio of having 25-hydroxyvitamin D3<30 nmol/L (19% of the women) was 4.6 (95%CI 1.1; 19.3) for a 25 μg/L increment in blood lithium. Blood lithium was also positively associated with serum magnesium, but not with serum calcium and PTH, and inversely associated with urinary calcium and magnesium. In conclusion, our study suggests that lithium exposure through drinking water during pregnancy may impair the calcium homeostasis, particularly vitamin D. The results reinforce the need for better control of lithium in drinking water, including bottled water. - Highlights: • Elevated drinking water lithium (Li) concentrations are increasingly reported. • We studied a Li

  9. Exposure to lithium through drinking water and calcium homeostasis during pregnancy: A longitudinal study

    Energy Technology Data Exchange (ETDEWEB)

    Harari, Florencia [Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Åkesson, Agneta [Unit of Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Casimiro, Esperanza [Atención Primaria de la Salud, Área Operativa XXIX, Hospital Dr. Nicolás Cayetano Pagano, San Antonio de los Cobres, Salta (Argentina); Lu, Ying [Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Vahter, Marie, E-mail: Marie.Vahter@ki.se [Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden)

    2016-05-15

    There is increasing evidence of adverse health effects due to elevated lithium exposure through drinking water but the impact on calcium homeostasis is unknown. This study aimed at elucidating if lithium exposure through drinking water during pregnancy may impair the maternal calcium homeostasis. In a population-based mother-child cohort in the Argentinean Andes (n=178), with elevated lithium concentrations in the drinking water (5–1660 μg/L), blood lithium concentrations (correlating significantly with lithium in water, urine and plasma) were measured repeatedly during pregnancy by inductively coupled plasma mass spectrometry and used as exposure biomarker. Markers of calcium homeostasis included: plasma 25-hydroxyvitamin D{sub 3}, serum parathyroid hormone (PTH), and calcium, phosphorus and magnesium concentrations in serum and urine. The median maternal blood lithium concentration was 25 μg/L (range 1.9–145). In multivariable-adjusted mixed-effects linear regression models, blood lithium was inversely associated with 25-hydroxyvitamin D{sub 3} (−6.1 nmol/L [95%CI −9.5; −2.6] for a 25 μg/L increment in blood lithium). The estimate increased markedly with increasing percentiles of 25-hydroxyvitamin D{sub 3}. In multivariable-adjusted mixed-effects logistic regression models, the odds ratio of having 25-hydroxyvitamin D3<30 nmol/L (19% of the women) was 4.6 (95%CI 1.1; 19.3) for a 25 μg/L increment in blood lithium. Blood lithium was also positively associated with serum magnesium, but not with serum calcium and PTH, and inversely associated with urinary calcium and magnesium. In conclusion, our study suggests that lithium exposure through drinking water during pregnancy may impair the calcium homeostasis, particularly vitamin D. The results reinforce the need for better control of lithium in drinking water, including bottled water. - Highlights: • Elevated drinking water lithium (Li) concentrations are increasingly reported. • We studied a Li

  10. Rare variants in calcium homeostasis modulator 1 (CALHM1 found in early onset Alzheimer's disease patients alter calcium homeostasis.

    Directory of Open Access Journals (Sweden)

    Fanny Rubio-Moscardo

    Full Text Available Calcium signaling in the brain is fundamental to the learning and memory process and there is evidence to suggest that its dysfunction is involved in the pathological pathways underlying Alzheimer's disease (AD. Recently, the calcium hypothesis of AD has received support with the identification of the non-selective Ca(2+-permeable channel CALHM1. A genetic polymorphism (p. P86L in CALHM1 reduces plasma membrane Ca(2+ permeability and is associated with an earlier age-at-onset of AD. To investigate the role of CALHM1 variants in early-onset AD (EOAD, we sequenced all CALHM1 coding regions in three independent series comprising 284 EOAD patients and 326 controls. Two missense mutations in patients (p.G330D and p.R154H and one (p.A213T in a control individual were identified. Calcium imaging analyses revealed that while the mutation found in a control (p.A213T behaved as wild-type CALHM1 (CALHM1-WT, a complete abolishment of the Ca(2+ influx was associated with the mutations found in EOAD patients (p.G330D and p.R154H. Notably, the previously reported p. P86L mutation was associated with an intermediate Ca(2+ influx between the CALHM1-WT and the p.G330D and p.R154H mutations. Since neither expression of wild-type nor mutant CALHM1 affected amyloid ß-peptide (Aß production or Aß-mediated cellular toxicity, we conclude that rare genetic variants in CALHM1 lead to Ca(2+ dysregulation and may contribute to the risk of EOAD through a mechanism independent from the classical Aß cascade.

  11. High fat diet disrupts endoplasmic reticulum calcium homeostasis in the rat liver.

    Science.gov (United States)

    Wires, Emily S; Trychta, Kathleen A; Bäck, Susanne; Sulima, Agnieszka; Rice, Kenner C; Harvey, Brandon K

    2017-11-01

    Disruption to endoplasmic reticulum (ER) calcium homeostasis has been implicated in obesity, however, the ability to longitudinally monitor ER calcium fluctuations has been challenging with prior methodologies. We recently described the development of a Gaussia luciferase (GLuc)-based reporter protein responsive to ER calcium depletion (GLuc-SERCaMP) and investigated the effect of a high fat diet on ER calcium homeostasis. A GLuc-based reporter cell line was treated with palmitate, a free fatty acid. Rats intrahepatically injected with GLuc-SERCaMP reporter were fed a cafeteria diet or high fat diet. The liver and plasma were examined for established markers of steatosis and compared to plasma levels of SERCaMP activity. Palmitate induced GLuc-SERCaMP release in vitro, indicating ER calcium depletion. Consumption of a cafeteria diet or high fat pellets correlated with alterations to hepatic ER calcium homeostasis in rats, shown by increased GLuc-SERCaMP release. Access to ad lib high fat pellets also led to a corresponding decrease in microsomal calcium ATPase activity and an increase in markers of hepatic steatosis. In addition to GLuc-SERCaMP, we have also identified endogenous proteins (endogenous SERCaMPs) with a similar response to ER calcium depletion. We demonstrated the release of an endogenous SERCaMP, thought to be a liver esterase, during access to a high fat diet. Attenuation of both GLuc-SERCaMP and endogenous SERCaMP was observed during dantrolene administration. Here we describe the use of a reporter for in vitro and in vivo models of high fat diet. Our results support the theory that dietary fat intake correlates with a decrease in ER calcium levels in the liver and suggest a high fat diet alters the ER proteome. Lay summary: ER calcium dysregulation was observed in rats fed a cafeteria diet or high fat pellets, with fluctuations in sensor release correlating with fat intake. Attenuation of sensor release, as well as food intake was observed during

  12. Zinc oxide nanoparticles decrease the expression and activity of plasma membrane calcium ATPase, disrupt the intracellular calcium homeostasis in rat retinal ganglion cells.

    Science.gov (United States)

    Guo, Dadong; Bi, Hongsheng; Wang, Daoguang; Wu, Qiuxin

    2013-08-01

    Zinc oxide nanoparticle is one of the most important materials with diverse applications. However, it has been reported that zinc oxide nanoparticles are toxic to organisms, and that oxidative stress is often hypothesized to be an important factor in cytotoxicity mediated by zinc oxide nanoparticles. Nevertheless, the mechanism of toxicity of zinc oxide nanoparticles has not been completely understood. In this study, we investigated the cytotoxic effect of zinc oxide nanoparticles and the possible molecular mechanism involved in calcium homeostasis mediated by plasma membrane calcium ATPase in rat retinal ganglion cells. Real-time cell electronic sensing assay showed that zinc oxide nanoparticles could exert cytotoxic effect on rat retinal ganglion cells in a concentration-dependent manner; flow cytometric analysis indicated that zinc oxide nanoparticles could lead to cell damage by inducing the overproduction of reactive oxygen species. Furthermore, zinc oxide nanoparticles could also apparently decrease the expression level and their activity of plasma membrane calcium ATPase, which finally disrupt the intracellular calcium homeostasis and result in cell death. Taken together, zinc oxide nanoparticles could apparently decrease the plasma membrane calcium ATPase expression, inhibit their activity, cause the elevated intracellular calcium ion level and disrupt the intracellular calcium homeostasis. Further, the disrupted calcium homeostasis will trigger mitochondrial dysfunction, generate excessive reactive oxygen species, and finally initiate cell death. Thus, the disrupted calcium homeostasis is involved in the zinc oxide nanoparticle-induced rat retinal ganglion cell death. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Calreticulin is required for calcium homeostasis and proper pollen tube tip growth in Petunia.

    Science.gov (United States)

    Suwińska, Anna; Wasąg, Piotr; Zakrzewski, Przemysław; Lenartowska, Marta; Lenartowski, Robert

    2017-05-01

    Calreticulin is involved in stabilization of the tip-focused Ca 2+ gradient and the actin cytoskeleton arrangement and function that is required for several key processes driving Petunia pollen tube tip growth. Although the precise mechanism is unclear, stabilization of a tip-focused calcium (Ca 2+ ) gradient seems to be critical for pollen germination and pollen tube growth. We hypothesize that calreticulin (CRT), a Ca 2+ -binding/buffering chaperone typically residing in the lumen of the endoplasmic reticulum (ER) of eukaryotic cells, is an excellent candidate to fulfill this role. We previously showed that in Petunia pollen tubes growing in vitro, CRT is translated on ER membrane-bound ribosomes that are abundant in the subapical zone of the tube, where CRT's Ca 2+ -buffering and chaperone activities might be particularly required. Here, we sought to determine the function of CRT using small interfering RNA (siRNA) to, for the first time in pollen tubes growing in vitro, knockdown expression of a gene. We demonstrate that siRNA-mediated post-transcriptional silencing of Petunia hybrida CRT gene (PhCRT) expression strongly impairs pollen tube growth, cytoplasmic zonation, actin cytoskeleton organization, and the tip-focused Ca 2+ gradient. Moreover, reduction of CRT alters the localization and disturbs the structure of the ER in abnormally elongating pollen tubes. Finally, cytoplasmic streaming is inhibited, and most of the pollen tubes rupture. Our data clearly show an interplay between CRT, Ca 2+ gradient, actin-dependent cytoplasmic streaming, organelle positioning, and vesicle trafficking during pollen tube elongation. Thus, we suggest that CRT functions in Petunia pollen tube growth by stabilizing Ca 2+ homeostasis and acting as a chaperone to assure quality control of glycoproteins passing through the ER.

  14. Astrocytic Pathological Calcium Homeostasis and Impaired Vesicle Trafficking in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Nina Vardjan

    2017-02-01

    Full Text Available Although the central nervous system (CNS consists of highly heterogeneous populations of neurones and glial cells, clustered into diverse anatomical regions with specific functions, there are some conditions, including alertness, awareness and attention that require simultaneous, coordinated and spatially homogeneous activity within a large area of the brain. During such events, the brain, representing only about two percent of body mass, but consuming one fifth of body glucose at rest, needs additional energy to be produced. How simultaneous energy procurement in a relatively extended area of the brain takes place is poorly understood. This mechanism is likely to be impaired in neurodegeneration, for example in Alzheimer’s disease, the hallmark of which is brain hypometabolism. Astrocytes, the main neural cell type producing and storing glycogen, a form of energy in the brain, also hold the key to metabolic and homeostatic support in the central nervous system and are impaired in neurodegeneration, contributing to the slow decline of excitation-energy coupling in the brain. Many mechanisms are affected, including cell-to-cell signalling. An important question is how changes in cellular signalling, a process taking place in a rather short time domain, contribute to the neurodegeneration that develops over decades. In this review we focus initially on the slow dynamics of Alzheimer’s disease, and on the activity of locus coeruleus, a brainstem nucleus involved in arousal. Subsequently, we overview much faster processes of vesicle traffic and cytosolic calcium dynamics, both of which shape the signalling landscape of astrocyte-neurone communication in health and neurodegeneration.

  15. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin

    Science.gov (United States)

    Yang, T.; Poovaiah, B. W.

    2002-01-01

    Environmental stimuli such as UV, pathogen attack, and gravity can induce rapid changes in hydrogen peroxide (H(2)O(2)) levels, leading to a variety of physiological responses in plants. Catalase, which is involved in the degradation of H(2)O(2) into water and oxygen, is the major H(2)O(2)-scavenging enzyme in all aerobic organisms. A close interaction exists between intracellular H(2)O(2) and cytosolic calcium in response to biotic and abiotic stresses. Studies indicate that an increase in cytosolic calcium boosts the generation of H(2)O(2). Here we report that calmodulin (CaM), a ubiquitous calcium-binding protein, binds to and activates some plant catalases in the presence of calcium, but calcium/CaM does not have any effect on bacterial, fungal, bovine, or human catalase. These results document that calcium/CaM can down-regulate H(2)O(2) levels in plants by stimulating the catalytic activity of plant catalase. Furthermore, these results provide evidence indicating that calcium has dual functions in regulating H(2)O(2) homeostasis, which in turn influences redox signaling in response to environmental signals in plants.

  16. Membrane Incorporation, Channel Formation, and Disruption of Calcium Homeostasis by Alzheimer's β-Amyloid Protein

    Directory of Open Access Journals (Sweden)

    Masahiro Kawahara

    2011-01-01

    Full Text Available Oligomerization, conformational changes, and the consequent neurodegeneration of Alzheimer's β-amyloid protein (AβP play crucial roles in the pathogenesis of Alzheimer's disease (AD. Mounting evidence suggests that oligomeric AβPs cause the disruption of calcium homeostasis, eventually leading to neuronal death. We have demonstrated that oligomeric AβPs directly incorporate into neuronal membranes, form cation-sensitive ion channels (“amyloid channels”, and cause the disruption of calcium homeostasis via the amyloid channels. Other disease-related amyloidogenic proteins, such as prion protein in prion diseases or α-synuclein in dementia with Lewy bodies, exhibit similarities in the incorporation into membranes and the formation of calcium-permeable channels. Here, based on our experimental results and those of numerous other studies, we review the current understanding of the direct binding of AβP into membrane surfaces and the formation of calcium-permeable channels. The implication of composition of membrane lipids and the possible development of new drugs by influencing membrane properties and attenuating amyloid channels for the treatment and prevention of AD is also discussed.

  17. Interactions of calcium homeostasis, acetylcholine metabolism, behavior and 3, 4-diaminopyridine during aging

    International Nuclear Information System (INIS)

    Gibson, G.E.; Peterson, C.

    1986-01-01

    Acetylcholine synthesis declines with aging in both whole brain and in various brain regions. Since neither enzyme activities nor acetylcholine concentrations, accurately reflect the dynamics of the cholinergic system, in vivo acetylcholine formation was measured. Incorporation of U-C 14-glucose of 2 H 4 choline into whole brain acetylcholine decreases from 100% (3 months) in two strains of mice. The diminished synthesis is apparently not due to a lack of precursor availability because U- C 14-glucose and 2 H 4 choline entry into the brain is similar at all ages. It is shown that altered brain calcium homeostasis during aging may underlie the deficits in acetylcholine metabolism, as well as those in behavior. Diminished calcium uptake during aging parallels the decline in the calcium dependent release of acetylcholine

  18. Calcium and Bone Homeostasis During 4-6 Months Space Flight

    Science.gov (United States)

    Smith, Scott M.; OBrien, K.; Wastney, M.; Morukov, B.; Larina, I.; Abrams, S.; Lane, H.; Nillen, J.; Davis-Street, J.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    Bone and calcium homeostasis are altered by weightlessness. We previously reported calcium studies on three subjects from the first joint US/Russian mission to Mir. We report here data on an additional three male subjects, whose stays on Mir were 4 (n= 1) and 6 (n=2) mos. Data were collected before, during, and after the missions. Inflight studies were conducted at 2-3 mos. Endocrine and biochemical indices were measured, along with 3-wk calcium tracer studies. Percent differences are reported compared to preflight. Ionized calcium was unchanged (2.8 +/-2.1 %) during flight. Calcium absorption was variable inflight, but was decreased after landing. Vitamin D stores were decreased 35 +/-24% inflight, similar to previous reports. Serum PTH was decreased 59 +/-9% during flight (greater than we previously reported), while 1,25(OH)(sub 2)-Vitamin D was decreased in 2 of 3 subjects. Markers of bone resorption (e.g., crosslinks) were increased in all subjects. Bone-specific alkaline phosphatase was decreased (n=1) or unchanged (n=2), while osteocalcin was decreased 34 +/-23%. Previously presented data showed that inflight bone loss is associated with increased resorption and unchanged/decreased formation. The data reported here support these earlier findings. These studies will help to extend our understanding of space flight-induced bone loss, and of bone loss associated with diseases such as osteoporosis or paralysis.

  19. Tau causes synapse loss without disrupting calcium homeostasis in the rTg4510 model of tauopathy.

    Directory of Open Access Journals (Sweden)

    Katherine J Kopeikina

    Full Text Available Neurofibrillary tangles (NFTs of tau are one of the defining hallmarks of Alzheimer's disease (AD, and are closely associated with neuronal degeneration. Although it has been suggested that calcium dysregulation is important to AD pathogenesis, few studies have probed the link between calcium homeostasis, synapse loss and pathological changes in tau. Here we test the hypothesis that pathological changes in tau are associated with changes in calcium by utilizing in vivo calcium imaging in adult rTg4510 mice that exhibit severe tau pathology due to over-expression of human mutant P301L tau. We observe prominent dendritic spine loss without disruptions in calcium homeostasis, indicating that tangles do not disrupt this fundamental feature of neuronal health, and that tau likely induces spine loss in a calcium-independent manner.

  20. CCDC115 Deficiency Causes a Disorder of Golgi Homeostasis with Abnormal Protein Glycosylation.

    Science.gov (United States)

    Jansen, Jos C; Cirak, Sebahattin; van Scherpenzeel, Monique; Timal, Sharita; Reunert, Janine; Rust, Stephan; Pérez, Belén; Vicogne, Dorothée; Krawitz, Peter; Wada, Yoshinao; Ashikov, Angel; Pérez-Cerdá, Celia; Medrano, Celia; Arnoldy, Andrea; Hoischen, Alexander; Huijben, Karin; Steenbergen, Gerry; Quelhas, Dulce; Diogo, Luisa; Rymen, Daisy; Jaeken, Jaak; Guffon, Nathalie; Cheillan, David; van den Heuvel, Lambertus P; Maeda, Yusuke; Kaiser, Olaf; Schara, Ulrike; Gerner, Patrick; van den Boogert, Marjolein A W; Holleboom, Adriaan G; Nassogne, Marie-Cécile; Sokal, Etienne; Salomon, Jody; van den Bogaart, Geert; Drenth, Joost P H; Huynen, Martijn A; Veltman, Joris A; Wevers, Ron A; Morava, Eva; Matthijs, Gert; Foulquier, François; Marquardt, Thorsten; Lefeber, Dirk J

    2016-02-04

    Disorders of Golgi homeostasis form an emerging group of genetic defects. The highly heterogeneous clinical spectrum is not explained by our current understanding of the underlying cell-biological processes in the Golgi. Therefore, uncovering genetic defects and annotating gene function are challenging. Exome sequencing in a family with three siblings affected by abnormal Golgi glycosylation revealed a homozygous missense mutation, c.92T>C (p.Leu31Ser), in coiled-coil domain containing 115 (CCDC115), the function of which is unknown. The same mutation was identified in three unrelated families, and in one family it was compound heterozygous in combination with a heterozygous deletion of CCDC115. An additional homozygous missense mutation, c.31G>T (p.Asp11Tyr), was found in a family with two affected siblings. All individuals displayed a storage-disease-like phenotype involving hepatosplenomegaly, which regressed with age, highly elevated bone-derived alkaline phosphatase, elevated aminotransferases, and elevated cholesterol, in combination with abnormal copper metabolism and neurological symptoms. Two individuals died of liver failure, and one individual was successfully treated by liver transplantation. Abnormal N- and mucin type O-glycosylation was found on serum proteins, and reduced metabolic labeling of sialic acids was found in fibroblasts, which was restored after complementation with wild-type CCDC115. PSI-BLAST homology detection revealed reciprocal homology with Vma22p, the yeast V-ATPase assembly factor located in the endoplasmic reticulum (ER). Human CCDC115 mainly localized to the ERGIC and to COPI vesicles, but not to the ER. These data, in combination with the phenotypic spectrum, which is distinct from that associated with defects in V-ATPase core subunits, suggest a more general role for CCDC115 in Golgi trafficking. Our study reveals CCDC115 deficiency as a disorder of Golgi homeostasis that can be readily identified via screening for abnormal

  1. Bone turnover, calcium homeostasis, and vitamin D status in Danish vegans.

    Science.gov (United States)

    Hansen, Tue H; Madsen, Marie T B; Jørgensen, Niklas R; Cohen, Arieh S; Hansen, Torben; Vestergaard, Henrik; Pedersen, Oluf; Allin, Kristine H

    2018-01-23

    A vegan diet has been associated with increased bone fracture risk, but the physiology linking nutritional exposure to bone metabolism has only been partially elucidated. This study investigated whether a vegan diet is associated with increased bone turnover and altered calcium homeostasis due to insufficient intake of calcium and vitamin D. Fractionated and total 25-hydroxyvitamin D (25(OH)-D), parathyroid hormone (PTH), calcium, and four bone turnover markers (osteocalcin, N-terminal propeptide of type I procollagen (PINP), bone-specific alkaline phosphatase (BAP), and C-terminal telopeptide of type I collagen (CTX)) were measured in serum from 78 vegans and 77 omnivores. When adjusting for seasonality and constitutional covariates (age, sex, and body fat percentage) vegans had higher concentrations of PINP (32 [95% CI: 7, 64]%, P = 0.01) and BAP (58 [95% CI: 27, 97]%, P Vegans had higher serum PTH concentration (38 [95% CI: 19, 60]%; P Vegans have higher levels of circulating bone turnover markers compared to omnivores, which may in the long-term lead to poorer bone health. Differences in dietary habits including intake of vitamin D and calcium may, at least partly, explain the observed differences.

  2. Calcium current homeostasis and synaptic deficits in hippocampal neurons from Kelch-like 1 knockout mice

    Directory of Open Access Journals (Sweden)

    Paula Patricia Perissinotti

    2015-01-01

    Full Text Available Kelch-like 1 (KLHL1 is a neuronal actin-binding protein that modulates voltage-gated CaV2.1 (P/Q-type and CaV3.2 (α1H T-type calcium channels; KLHL1 knockdown experiments (KD cause down-regulation of both channel types and altered synaptic properties in cultured rat hippocampal neurons (Perissinotti et al., 2014. Here, we studied the effect of ablation of KLHL1 on calcium channel function and synaptic properties in cultured hippocampal neurons from KLHL1 knockout (KO mice. Western blot data showed the P/Q-type channel α1A subunit was less abundant in KO hippocampus compared to wildtype (WT; and PQ-type calcium currents were smaller in KO neurons than WT during early days in vitro, although this decrease was compensated for at late stages by increases in L-type calcium current. In contrast, T-type currents did not change in culture. However, biophysical properties and western blot analysis revealed a differential contribution of T-type channel isoforms in the KO, with CaV3.2 α1H subunit being down-regulated and CaV3.1 α1G up-regulated. Synapsin I levels were reduced in the KO hippocampus; cultured neurons displayed a concomitant reduction in synapsin I puncta and decreased miniature excitatory postsynaptic current (mEPSC frequency. In summary, genetic ablation of the calcium channel modulator resulted in compensatory mechanisms to maintain calcium current homeostasis in hippocampal KO neurons; however, synaptic alterations resulted in a reduction of excitatory synapse number, causing an imbalance of the excitatory-inhibitory synaptic input ratio favoring inhibition.

  3. Oral Exposure to Atrazine Induces Oxidative Stress and Calcium Homeostasis Disruption in Spleen of Mice

    Directory of Open Access Journals (Sweden)

    Shuying Gao

    2016-01-01

    Full Text Available The widely used herbicide atrazine (ATR can cause many adverse effects including immunotoxicity, but the underlying mechanisms are not fully understood. The current study investigated the role of oxidative stress and calcium homeostasis in ATR-induced immunotoxicity in mice. ATR at doses of 0, 100, 200, or 400 mg/kg body weight was administered to Balb/c mice daily for 21 days by oral gavage. The studies performed 24 hr after the final exposure showed that ATR could induce the generation of reactive oxygen species in the spleen of the mice, increase the level of advanced oxidation protein product (AOPP in the host serum, and cause the depletion of reduced glutathione in the serum, each in a dose-related manner. In addition, DNA damage was observed in isolated splenocytes as evidenced by increase in DNA comet tail formation. ATR exposure also caused increases in intracellular Ca2+ within splenocytes. Moreover, ATR treatment led to increased expression of genes for some antioxidant enzymes, such as HO-1 and Gpx1, as well as increased expression of NF-κB and Ref-1 proteins in the spleen. In conclusion, it appears that oxidative stress and disruptions in calcium homeostasis might play an important role in the induction of immunotoxicity in mice by ATR.

  4. Scientific conception on mechanisms of calcium homeostasis disorders under low dose effect of ionizing radiation

    International Nuclear Information System (INIS)

    Abylaev, Zh.A.; Dospolova, Zh.G.

    1997-01-01

    Scientific conception of probable consequences of calcium homeostasis disorders in personals, exposed to low dose effect of ionizing radiation has been developed. Principle positions of the conception is that pathologic processes development have different ways of conducting. During predominance of low doses of external gamma-radiation there is leading pathologic mechanism (mechanism 1) of disorder neuroendocrine regulation of both the calcium and the phosphor. In this case sicks have disorders of both the vegetative tonus and the endocrine status. Under internal irradiation (mechanism 2) there is disfunction of organs and systems (bore changes and disorders of hormone status). These changes are considered as consequence of negative action on organism of incorporated long-living radionuclides. Radio-toxic factors action (mechanism 3) provokes the excess of hormones, which acting on bone tissue and could be cause of steroid osteoporosis. Influence of chronic stress factor (mechanism 4) enlarges and burden action on organism of low radiation doses. It is emphasized, that decisive role in development of pathologic processes has mechanism of disturbance of neuroendocrine regulation of calcium exchange

  5. Altered Calcium and Vitamin D Homeostasis in First-Time Calcium Kidney Stone-Formers.

    Directory of Open Access Journals (Sweden)

    Hemamalini Ketha

    Full Text Available Elevated serum 1,25-dihydroxyvitamin D (1,25(OH2D concentrations have been reported among cohorts of recurrent calcium (Ca kidney stone-formers and implicated in the pathogenesis of hypercalciuria. Variations in Ca and vitamin D metabolism, and excretion of urinary solutes among first-time male and female Ca stone-formers in the community, however, have not been defined.In a 4-year community-based study we measured serum Ca, phosphorus (P, 25-hydroxyvitamin D (25(OHD, 1,25(OH2D, 24,25-dihydroxyvitamin D (24,25(OH2D, parathyroid hormone (PTH, and fibroblast growth factor-23 (FGF-23 concentrations in first-time Ca stone-formers and age- and gender frequency-matched controls.Serum Ca and 1,25(OH2D were increased in Ca stone-formers compared to controls (P = 0.01 and P = 0.001. Stone-formers had a lower serum 24,25(OH2D/25(OHD ratio compared to controls (P = 0.008. Serum PTH and FGF-23 concentrations were similar in the groups. Urine Ca excretion was similar in the two groups (P = 0.82. In controls, positive associations between serum 25(OHD and 24,25(OH2D, FGF-23 and fractional phosphate excretion, and negative associations between serum Ca and PTH, and FGF-23 and 1,25(OH2D were observed. In SF associations between FGF-23 and fractional phosphate excretion, and FGF-23 and 1,25(OH2D, were not observed. 1,25(OH2D concentrations associated more weakly with FGF-23 in SF compared with C (P <0.05.Quantitative differences in serum Ca and 1,25(OH2D and reductions in 24-hydroxylation of vitamin D metabolites are present in first-time SF and might contribute to first-time stone risk.

  6. Influence of the autonomic nervous system on calcium homeostasis in the rat.

    Science.gov (United States)

    Stern, J E; Cardinali, D P

    1994-01-01

    The local surgical manipulation of sympathetic and parasympathetic nerves innervating the thyroid-parathyroid territory was employed to search for the existence of a peripheral neuroendocrine link controlling parathyroid hormone (PTH) and calcitonin (CT) release. From 8 to 24 h after superior cervical ganglionectomy (SCGx), at the time of wallerian degeneration of thyroid-parathyroid sympathetic nerve terminals, an alpha-adrenergic inhibition, together with a minor beta-adrenergic stimulation, of hypercalcemia-induced CT release, and an alpha-adrenoceptor inhibition of hypocalcemia-induced PTH release were found. In chronically SCGx rats PTH response to EDTA was slower, and after CaCl2 injection, serum calcium attained higher levels in face of normal CT levels. SCGx blocked the PTH increase found in sham-operated rats stressed by a subcutaneous injection of turpentine oil, but did not affect the greater response to EDTA. The higher hypocalcemia seen after turpentine oil was no longer observed in SCGx rats. The effects of turpentine oil stress on calcium and CT responses to a bolus injection of CaCl2 persisted in rats subjected to SCGx 14 days earlier. Interruption of thyroid-parathyroid parasympathetic input conveyed by the thyroid nerves (TN) and the inferior laryngeal nerves (ILN) caused a fall in total serum calcium, an increase of PTH levels and a decrease of CT levels, when measured 10 days after surgery. Greater responses of serum CT and PTH were detected in TN-sectioned, and in TN- or ILN-sectioned rats, respectively. Physiological concentrations of CT decreased, and those of PTH increased, in vitro cholinergic activity in rat SCG, measured as specific choline uptake, and acetylcholine synthesis and release. The results indicate that cervical autonomic nerves constitute a pathway through which the brain modulates calcium homeostasis.

  7. Effects of draught load exercise and training on calcium homeostasis in horses.

    Science.gov (United States)

    Vervuert, I; Coenen, M; Zamhöfer, J

    2005-01-01

    This study was conducted to investigate the effects of draught load exercise on calcium (Ca) homeostasis in young horses. Five 2-year-old untrained Standardbred horses were studied in a 4-month training programme. All exercise workouts were performed on a treadmill at a 6% incline and with a constant draught load of 40 kg (0.44 kN). The training programme started with a standardized exercise test (SET 1; six incremental steps of 5 min duration each, first step 1.38 m/s, stepwise increase by 0.56 m/s). A training programme was then initiated which consisted of low-speed exercise sessions (LSE; constant velocity at 1.67 m/s for 60 min, 48 training sessions in total). After the 16th and 48th LSE sessions, SETs (SET 2: middle of training period, SET 3: finishing training period) were performed again under the identical test protocol of SET 1. Blood samples for blood lactate, plasma total Ca, blood ionized calcium (Ca(2+)), blood pH, plasma inorganic phosphorus (P(i)) and plasma intact parathyroid hormone (PTH) were collected before, during and after SETs, and before and after the first, 16th, 32nd and 48th LSE sessions. During SETs there was a decrease in ionized Ca(2+) and a rise in lactate, P(i) and intact PTH. The LSEs resulted in an increase in pH and P(i), whereas lactate, ionized Ca(2+), total Ca and intact PTH were not affected. No changes in Ca metabolism were detected in the course of training. Results of this study suggest that the type of exercise influences Ca homeostasis and intact PTH response, but that these effects are not influenced in the course of the training period.

  8. Putative nanobacteria represent physiological remnants and culture by-products of normal calcium homeostasis.

    Directory of Open Access Journals (Sweden)

    John D Young

    structures described earlier as NB may thus represent remnants and by-products of physiological mechanisms used for calcium homeostasis, a concept which explains the vast body of NB literature as well as explains the true origin of NB as lifeless protein-mineralo entities with questionable role in pathogenesis.

  9. Calcium homeostasis in myogenic differentiation factor 1 (MyoD-transformed, virally-transduced, skin-derived equine myotubes.

    Directory of Open Access Journals (Sweden)

    Marta Fernandez-Fuente

    Full Text Available Dysfunctional skeletal muscle calcium homeostasis plays a central role in the pathophysiology of several human and animal skeletal muscle disorders, in particular, genetic disorders associated with ryanodine receptor 1 (RYR1 mutations, such as malignant hyperthermia, central core disease, multiminicore disease and certain centronuclear myopathies. In addition, aberrant skeletal muscle calcium handling is believed to play a pivotal role in the highly prevalent disorder of Thoroughbred racehorses, known as Recurrent Exertional Rhabdomyolysis. Traditionally, such defects were studied in human and equine subjects by examining the contractile responses of biopsied muscle strips exposed to caffeine, a potent RYR1 agonist. However, this test is not widely available and, due to its invasive nature, is potentially less suitable for valuable animals in training or in the human paediatric setting. Furthermore, increasingly, RYR1 gene polymorphisms (of unknown pathogenicity and significance are being identified through next generation sequencing projects. Consequently, we have investigated a less invasive test that can be used to study calcium homeostasis in cultured, skin-derived fibroblasts that are converted to the muscle lineage by viral transduction with a MyoD (myogenic differentiation 1 transgene. Similar models have been utilised to examine calcium homeostasis in human patient cells, however, to date, there has been no detailed assessment of the cells' calcium homeostasis, and in particular, the responses to agonists and antagonists of RYR1. Here we describe experiments conducted to assess calcium handling of the cells and examine responses to treatment with dantrolene, a drug commonly used for prophylaxis of recurrent exertional rhabdomyolysis in horses and malignant hyperthermia in humans.

  10. Calcium homeostasis in low and high calcium water acclimatized Oreochromis mossambicus exposed to ambient and dietary cadmium

    NARCIS (Netherlands)

    Pratap, H.B.; Wendelaar Bonga, S.E.

    2007-01-01

    The effects of cadmium administered via ambient water (10 mg/l) or food (10 mgCd/fish/day) on plasma calcium, corpuscles of Stannius and bony tissues of Oreochromis mossambicus acclimated to low calcium (0.2 mM) and high calcium (0.8 mM) water were studied for 2, 4, 14 and 35 days. In low calcium

  11. Neuronal calcium sensor synaptotagmin-9 is not involved in the regulation of glucose homeostasis or insulin secretion.

    Directory of Open Access Journals (Sweden)

    Natalia Gustavsson

    Full Text Available BACKGROUND: Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium-dependent insulin secretion, thus suggesting that other calcium-sensors must participate in the regulation of insulin secretion. Of the other synaptotagmin isoforms that are present in pancreatic islets, the neuronal calcium sensor synaptotagmin-9 is expressed at the highest level after synaptotagmin-7. METHODOLOGY/PRINCIPAL FINDINGS: In this study we tested whether synaptotagmin-9 participates in the regulation of glucose-stimulated insulin release by using pancreas-specific synaptotagmin-9 knockout (p-S9X mice. Deletion of synaptotagmin-9 in the pancreas resulted in no changes in glucose homeostasis or body weight. Glucose tolerance, and insulin secretion in vivo and from isolated islets were not affected in the p-S9X mice. Single-cell capacitance measurements showed no difference in insulin granule exocytosis between p-S9X and control mice. CONCLUSIONS: Thus, synaptotagmin-9, although a major calcium sensor in the brain, is not involved in the regulation of glucose-stimulated insulin release from pancreatic β-cells.

  12. Neuronal calcium sensor synaptotagmin-9 is not involved in the regulation of glucose homeostasis or insulin secretion.

    Science.gov (United States)

    Gustavsson, Natalia; Wang, Xiaorui; Wang, Yue; Seah, Tingting; Xu, Jun; Radda, George K; Südhof, Thomas C; Han, Weiping

    2010-11-09

    Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium-dependent insulin secretion, thus suggesting that other calcium-sensors must participate in the regulation of insulin secretion. Of the other synaptotagmin isoforms that are present in pancreatic islets, the neuronal calcium sensor synaptotagmin-9 is expressed at the highest level after synaptotagmin-7. In this study we tested whether synaptotagmin-9 participates in the regulation of glucose-stimulated insulin release by using pancreas-specific synaptotagmin-9 knockout (p-S9X) mice. Deletion of synaptotagmin-9 in the pancreas resulted in no changes in glucose homeostasis or body weight. Glucose tolerance, and insulin secretion in vivo and from isolated islets were not affected in the p-S9X mice. Single-cell capacitance measurements showed no difference in insulin granule exocytosis between p-S9X and control mice. Thus, synaptotagmin-9, although a major calcium sensor in the brain, is not involved in the regulation of glucose-stimulated insulin release from pancreatic β-cells.

  13. Growth hormone secretagogues prevent dysregulation of skeletal muscle calcium homeostasis in a rat model of cisplatin-induced cachexia.

    Science.gov (United States)

    Conte, Elena; Camerino, Giulia Maria; Mele, Antonietta; De Bellis, Michela; Pierno, Sabata; Rana, Francesco; Fonzino, Adriano; Caloiero, Roberta; Rizzi, Laura; Bresciani, Elena; Ben Haj Salah, Khoubaib; Fehrentz, Jean-Alain; Martinez, Jean; Giustino, Arcangela; Mariggiò, Maria Addolorata; Coluccia, Mauro; Tricarico, Domenico; Lograno, Marcello Diego; De Luca, Annamaria; Torsello, Antonio; Conte, Diana; Liantonio, Antonella

    2017-06-01

    Cachexia is a wasting condition associated with cancer types and, at the same time, is a serious and dose-limiting side effect of cancer chemotherapy. Skeletal muscle loss is one of the main characteristics of cachexia that significantly contributes to the functional muscle impairment. Calcium-dependent signaling pathways are believed to play an important role in skeletal muscle decline observed in cachexia, but whether intracellular calcium homeostasis is affected in this situation remains uncertain. Growth hormone secretagogues (GHS), a family of synthetic agonists of ghrelin receptor (GHS-R1a), are being developed as a therapeutic option for cancer cachexia syndrome; however, the exact mechanism by which GHS interfere with skeletal muscle is not fully understood. By a multidisciplinary approach ranging from cytofluorometry and electrophysiology to gene expression and histology, we characterized the calcium homeostasis in fast-twitch extensor digitorum longus (EDL) muscle of adult rats with cisplatin-induced cachexia and established the potential beneficial effects of two GHS (hexarelin and JMV2894) at this level. Additionally, in vivo measures of grip strength and of ultrasonography recordings allowed us to evaluate the functional impact of GHS therapeutic intervention. Cisplatin-treated EDL muscle fibres were characterized by a ~18% significant reduction of the muscle weight and fibre diameter together with an up-regulation of atrogin1/Murf-1 genes and a down-regulation of Pgc1-a gene, all indexes of muscle atrophy, and by a two-fold increase in resting intracellular calcium, [Ca 2+ ] i , compared with control rats. Moreover, the amplitude of the calcium transient induced by caffeine or depolarizing high potassium solution as well as the store-operated calcium entry were ~50% significantly reduced in cisplatin-treated rats. Calcium homeostasis dysregulation parallels with changes of functional ex vivo (excitability and resting macroscopic conductance) and in

  14. Vascular calcification in diabetic foot and its association with calcium homeostasis

    Directory of Open Access Journals (Sweden)

    Jayshree Swain

    2012-01-01

    Full Text Available Introduction: Vascular calcification (VC, long thought to result from passive degeneration, involves a complex process of biomineralization resembling osteogenesis, frequently observed in diabetes and is an indicator of diabetic peripheral vascular disease with variable implications. Aim and Objective : To study the association between vascular calcification and calcium homeostasis in diabetic patients with foot ulcers without stage 4, 5 chronic kidney disease. Materials and Methods : A total of 74 patients with diabetic foot ulcer were enrolled, and VC was detected by X-ray and Doppler methods. Serum calcium, phosphate, alkaline phosphatase (ALKP, fasting and post-prandial glucose levels, and glycosylated hemoglobin (HbA1C were recorded. Serum iPTH and 25 (OH vitamin D were estimated by immune radiometric assay and radioimmunoassay, respectively. Data was analyzed by SPSS 16.0. Results: Vascular calcification was present in 42% of patients. Significant difference in the mean (±SD of vitamin D, HbA1C, and eGFR was observed in VC +ve compared to VC -ve. There was no significant association of age, duration, BMI, PTH, Ca, PO4, ALKP with that of VC incidence. Severe vitamin D deficiency was more common in VC +ve (51.6% compared to in VC -ve (18.6%. Sub-group analysis showed that the risk of VC was significantly higher (RR = 2.4, P < 0.05, 95% C.I. = 0.058-2.88 in patients with vitamin D < 10 ng/ml compared to others. Conclusion: Vitamin D deficiency could be a risk for vascular calcification, which possibly act through receptors on vascular smooth muscle cells or modulates osteoprotegerin/RANKL system like other factors responsible for VC in diabetic foot patients.

  15. Calcium Homeostasis and Muscle Energy Metabolism Are Modified in HspB1-Null Mice

    Directory of Open Access Journals (Sweden)

    Brigitte Picard

    2016-05-01

    Full Text Available Hsp27—encoded by HspB1—is a member of the small heat shock proteins (sHsp, 12–43 kDa (kilodalton family. This protein is constitutively present in a wide variety of tissues and in many cell lines. The abundance of Hsp27 is highest in skeletal muscle, indicating a crucial role for muscle physiology. The protein identified as a beef tenderness biomarker was found at a crucial hub in a functional network involved in beef tenderness. The aim of this study was to analyze the proteins impacted by the targeted invalidation of HspB1 in the Tibialis anterior muscle of the mouse. Comparative proteomics using two-dimensional gel electrophoresis revealed 22 spots that were differentially abundant between HspB1-null mice and their controls that could be identified by mass spectrometry. Eighteen spots were more abundant in the muscle of the mutant mice, and four were less abundant. The proteins impacted by the absence of Hsp27 belonged mainly to calcium homeostasis (Srl and Calsq1, contraction (TnnT3, energy metabolism (Tpi1, Mdh1, PdhB, Ckm, Pygm, ApoA1 and the Hsp proteins family (HspA9. These data suggest a crucial role for these proteins in meat tenderization. The information gained by this study could also be helpful to predict the side effects of Hsp27 depletion in muscle development and pathologies linked to small Hsps.

  16. Development and implementation of a high-throughput compound screening assay for targeting disrupted ER calcium homeostasis in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Kamran Honarnejad

    Full Text Available Disrupted intracellular calcium homeostasis is believed to occur early in the cascade of events leading to Alzheimer's disease (AD pathology. Particularly familial AD mutations linked to Presenilins result in exaggerated agonist-evoked calcium release from endoplasmic reticulum (ER. Here we report the development of a fully automated high-throughput calcium imaging assay utilizing a genetically-encoded FRET-based calcium indicator at single cell resolution for compound screening. The established high-throughput screening assay offers several advantages over conventional high-throughput calcium imaging technologies. We employed this assay for drug discovery in AD by screening compound libraries consisting of over 20,000 small molecules followed by structure-activity-relationship analysis. This led to the identification of Bepridil, a calcium channel antagonist drug in addition to four further lead structures capable of normalizing the potentiated FAD-PS1-induced calcium release from ER. Interestingly, it has recently been reported that Bepridil can reduce Aβ production by lowering BACE1 activity. Indeed, we also detected lowered Aβ, increased sAPPα and decreased sAPPβ fragment levels upon Bepridil treatment. The latter findings suggest that Bepridil may provide a multifactorial therapeutic modality for AD by simultaneously addressing multiple aspects of the disease.

  17. CCDC115 Deficiency Causes a Disorder of Golgi Homeostasis with Abnormal Protein Glycosylation

    NARCIS (Netherlands)

    Jansen, Jos C.; Cirak, Sebahattin; van Scherpenzeel, Monique; Timal, Sharita; Reunert, Janine; Rust, Stephan; Pérez, Belén; Vicogne, Dorothée; Krawitz, Peter; Wada, Yoshinao; Ashikov, Angel; Pérez-Cerdá, Celia; Medrano, Celia; Arnoldy, Andrea; Hoischen, Alexander; Huijben, Karin; Steenbergen, Gerry; Quelhas, Dulce; Diogo, Luisa; Rymen, Daisy; Jaeken, Jaak; Guffon, Nathalie; Cheillan, David; van den Heuvel, Lambertus P.; Maeda, Yusuke; Kaiser, Olaf; Schara, Ulrike; Gerner, Patrick; van den Boogert, Marjolein A. W.; Holleboom, Adriaan G.; Nassogne, Marie-Cécile; Sokal, Etienne; Salomon, Jody; van den Bogaart, Geert; Drenth, Joost P. H.; Huynen, Martijn A.; Veltman, Joris A.; Wevers, Ron A.; Morava, Eva; Matthijs, Gert; Foulquier, François; Marquardt, Thorsten; Lefeber, Dirk J.

    2016-01-01

    Disorders of Golgi homeostasis form an emerging group of genetic defects. The highly heterogeneous clinical spectrum is not explained by our current understanding of the underlying cell-biological processes in the Golgi. Therefore, uncovering genetic defects and annotating gene function are

  18. BDE-47 and 6-OH-BDE-47 modulate calcium homeostasis in primary fetal human neural progenitor cells via ryanodine receptor-independent mechanisms

    NARCIS (Netherlands)

    Gassmann, Kathrin; Schreiber, Timm; Dingemans, Milou M L; Krause, Guido; Roderigo, Claudia; Giersiefer, Susanne; Schuwald, Janette; Moors, Michaela; Unfried, Klaus; Bergman, Åke; Westerink, Remco H S; Rose, Christine R.; Fritsche, Ellen

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are bioaccumulating flame retardants found in rising concentrations in human tissue. Epidemiological and animal studies have raised concern for their potential to induce developmental neurotoxicity (DNT). Considering the essential role of calcium homeostasis in

  19. Effect of neurotrophin-3 precursor on glutamate-induced calcium homeostasis deregulation in rat cerebellum granule cells.

    Science.gov (United States)

    Safina, Dina R; Surin, Alexander M; Pinelis, Vsevolod G; Kostrov, Sergey V

    2015-12-01

    Neurotrophin-3 (NT-3) belongs to the family of highly conserved dimeric growth factors that controls the differentiation and activity of various neuronal populations. Mammals contain both the mature (NT-3) and the precursor (pro-NT-3) forms of neurotrophin. Members of the neurotrophin family are involved in the regulation of calcium homeostasis in neurons; however, the role of NT-3 and pro-NT-3 in this process remains unclear. The current study explores the effects of NT-3 and pro-NT-3 on disturbed calcium homeostasis and decline of mitochondrial potential induced by a neurotoxic concentration of glutamate (Glu; 100 µM) in the primary culture of rat cerebellar granule cells. In this Glu excitotoxicity model, mature NT-3 had no effect on the induced changes in Ca²⁺ homeostasis. In contrast, pro-NT-3 decreased the period of delayed calcium deregulation (DCD) and concurrent strong mitochondrial depolarization. According to the amplitude of the increase in the intracellular free Ca²⁺ concentration ([Ca²⁺]i ) and Fura-2 fluorescence quenching by Mn²⁺ within the first 20 sec of exposure to Glu, pro-NT-3 had no effect on the initial rate of Ca²⁺ entry into neurons. During the lag period preceding DCD, the mean amplitude of [Ca²⁺]i rise was 1.2-fold greater in the presence of pro-NT-3 than in the presence of Glu alone (1.67 ±  0.07 and 1.39 ± 0.04, respectively, P < 0.05). The Glu-induced changes in Са²⁺ homeostasis in the presence of pro-NT-3 likely are due to the decreased rate of Са²⁺ removal from the cytosol during the DCD latency period. © 2015 Wiley Periodicals, Inc.

  20. The common inhaled anesthetic isoflurane increases aggregation of huntingtin and alters calcium homeostasis in a cell model of Huntington's disease

    International Nuclear Information System (INIS)

    Wang Qiujun; Liang Ge; Yang Hui; Wang Shouping; Eckenhoff, Maryellen F.; Wei Huafeng

    2011-01-01

    Isoflurane is known to increase β-amyloid aggregation and neuronal damage. We hypothesized that isoflurane will have similar effects on the polyglutamine huntingtin protein and will cause alterations in intracellular calcium homeostasis. We tested this hypothesis in striatal cells from the expanded glutamine huntingtin knock-in mouse (STHdh Q111/Q111 ) and wild type (STHdh Q7/Q7 ) striatal neurons. The primary cultured neurons were exposed for 24 h to equipotent concentrations of isoflurane, sevoflurane, and desflurane in the presence or absence of extracellular calcium and with or without xestospongin C, a potent endoplasmic reticulum inositol 1,4,5-trisphosphate (InsP 3 ) receptor antagonist. Aggregation of huntingtin protein, cell viability, and calcium concentrations were measured. Isoflurane, sevoflurane, and desflurane all increased the aggregation of huntingtin in STHdh Q111/Q111 cells, with isoflurane having the largest effect. Isoflurane induced greater calcium release from the ER and relatively more cell damage in the STHdh Q111/Q111 huntingtin cells than in the wild type STHdh Q7/Q7 striatal cells. However, sevoflurane and desflurane caused less calcium release from the ER and less cell damage. Xestospongin C inhibited the isoflurane-induced calcium release from the ER, aggregation of huntingtin, and cell damage in the STHdh Q111/Q111 cells. In summary, the Q111 form of huntingtin increases the vulnerability of striatal neurons to isoflurane neurotoxicity through combined actions on the ER IP 3 receptors. Calcium release from the ER contributes to the anesthetic induced huntingtin aggregation in STHdh Q111/Q111 striatal cells.

  1. Molecular mechanisms of oxidative and radiation stress effect to the status of calcium homeostasis of immune system cells

    International Nuclear Information System (INIS)

    Pukhteeva, I.V.; Gerasimovich, N.V.

    2007-01-01

    In some works ability of active forms of oxygen and low doses of irradiation to damage biological molecules and theirs role in the disorganisation of the cellular structures is shown. The dynamics of the change of the ratio of the free and connected calcium in thymocytes of the rats after the influence of peroxide (10-9 - 10-3 M) and the irradiation in low doses and the structural state of plasmatic membrane in the present work was analysed. The peroxide and irradiation brought about the modification of the structured organization of the plasmatic membrane and calcium homeostasis. Thus the results of the influence of the peroxide and low doses of ionizing irradiation on the cells of the immune system are similar.(authors)

  2. The importance of being subtle: small changes in calcium homeostasis control cognitive decline in normal aging

    Czech Academy of Sciences Publication Activity Database

    Toescu, E.C.; Verkhratsky, Alexei

    2007-01-01

    Roč. 6, - (2007), s. 267-273 ISSN 1474-9718 Institutional research plan: CEZ:AV0Z50390512 Keywords : Aging * Ca homeostasis * Cognitive decline Subject RIV: FH - Neurology Impact factor: 5.854, year: 2007

  3. [Aging and homeostasis. Management of disorders in bone and calcium metabolism associated with ageing.

    Science.gov (United States)

    Takeuchi, Yasuhiro

    Disorders in bone and calcium metabolism associated with aging are based on secondary hyperparathyroidism due to impaired intestinal calcium absorption caused by insufficient vitamin D actions and augmented bone resorption due to sex hormone deficiency. Both of them are involved in the development of osteoporosis that increases risk of fractures. Therefore, the most important thing for management of disorders in bone and calcium metabolism associated with aging is to prevent fractures with appropriate drugs for osteoporosis.

  4. The effect of enriched chicory inulin on liver enzymes, calcium homeostasis and hematological parameters in patients with type 2 diabetes mellitus: A randomized placebo-controlled trial.

    Science.gov (United States)

    Farhangi, Mahdieh Abbasalizad; Javid, Ahmad Zare; Dehghan, Parvin

    2016-08-01

    Type 2 diabetic mellitus (T2DM) as one of the main causes of morbidity and mortality is associated with immune system disturbances and metabolic abnormalities. In the current study we aimed to evaluate the effects of enriched chicory inulin supplementation on liver enzymes, serum calcium and phosphorous concentrations and hematological parameters in patients with T2DM. Forty-six diabetic females patients were randomly allocated into intervention (n=27) and control (n=22) groups. Subjects in the intervention group received a daily dose of 10g of chicory and subjects in control group received a placebo for two months. Anthropometric variables, glucose homeostasis, hematological parameters and metabolic indices including serum alanine aminotransfersae (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), calcium and phosphorous as well as creatinine concentrations, glomerular filtration rate (GFR) and blood pressure were assessed at the beginning and end of the trial. Significant reductions in fasting serum glucose (FSG), Hb A1C, AST and ALP concentrations were observed in chicory-treated group. Systolic and diastolic blood pressures were also reduced in chicory-treated group. Serum calcium significantly increased after chicory supplementation but no change in placebo treated group has been occurred (P=0.014). Supplementation with enriched chicory for two months significantly reduced hematocrit and mean corpuscular volume (MCV) values (Pliver function tests, blood pressure and reduction in hematologic risk factors of diabetes in female patients with T2DM. Further studies in both genders are needed to generalize these findings to total population. Copyright © 2016 Primary Care Diabetes Europe. Published by Elsevier Ltd. All rights reserved.

  5. The effect of mitochondrial inhibitors on calcium homeostasis in tumor mast cells

    International Nuclear Information System (INIS)

    Mohr, F.C.; Fewtrell, C.

    1990-01-01

    The depletion of intracellular ATP by mitochondrial inhibitors in a glucose-free saline solution inhibited antigen-stimulated 45Ca uptake, the rise in cytoplasmic calcium, measured by fura-2, and secretion in rat basophilic leukemia cells. Lowering the intracellular ATP concentration also released calcium from an intracellular store and made further 45Ca efflux from the cells unresponsive to subsequent antigen stimulation. Antigen-stimulated 45Ca efflux could be restored by the addition of glucose. The ATP-sensitive calcium store appeared to be the same store that releases calcium in response to antigen. In contrast, intracellular ATP was not lowered, and antigen-stimulated secretion was unaffected by mitochondrial inhibitors, provided that glucose was present in the bathing solution. Similarly, antigen-stimulated 45Ca uptake, 45Ca efflux, and the rise in free ionized calcium were unaffected by individual mitochondrial inhibitors in the presence of glucose. However, when the respiratory chain inhibitor antimycin A was used in combination with the ATP synthetase inhibitor oligomycin in the presence of glucose, antigen-stimulated 45Ca uptake was inhibited, whereas the rise in free ionized calcium and secretion were unaffected. Also, antigen-induced depolarization (an indirect measurement of Ca2+ influx across the plasma membrane) was not affected. The inhibition of antigen-stimulated 45Ca uptake could, however, be overcome if a high concentration of the Ca2+ buffer quin2 was present in the cells to buffer the incoming 45Ca. These results suggest that in fully functional rat basophilic leukemia cells the majority of the calcium entering in response to antigen stimulation is initially buffered by a calcium store sensitive to antimycin A and oligomycin, presumably the mitochondria

  6. Calcium homeostasis and signaling in fungi and their relevance for pathogenicity of yeasts and filamentous fungi

    Directory of Open Access Journals (Sweden)

    Renata Tisi

    2016-09-01

    Full Text Available Though fungi show peculiarities in the purposes and specific traits of calcium signaling pathways, the general scheme and the most important players are well conserved if compared to higher eukaryotes. This provides a powerful opportunity either to investigate shared features using yeast as a model or to exploit fungal specificities as potential targets for antifungal therapies. The sequenced genomes from yeast Saccharomyces cerevisiae, Schizosaccharomyces pombe and the filamentous fungus Neurospora crassa were already published more than ten years ago. More recently the genome sequences of filamentous fungi of Aspergillus genus, some of which threatening pathogens, and dimorphic fungi Ustilago maydis were published, giving the chance to identify several proteins involved in calcium signaling based on their homology to yeast or mammalian counterparts. Nonetheless, unidentified calcium transporters are still present in these organisms which await to be molecularly characterized. Despite the relative simplicity in yeast calcium machinery and the availability of sophisticated molecular tools, in the last years, a number of new actors have been identified, albeit not yet fully characterized. This review will try to describe the state of the art in calcium channels and calcium signaling knowledge in yeast, with particular attention to the relevance of this knowledge with respect to pathological fungi.

  7. Atxn2 Knockout and CAG42-Knock-in Cerebellum Shows Similarly Dysregulated Expression in Calcium Homeostasis Pathway.

    Science.gov (United States)

    Halbach, Melanie Vanessa; Gispert, Suzana; Stehning, Tanja; Damrath, Ewa; Walter, Michael; Auburger, Georg

    2017-02-01

    Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominantly inherited neurodegenerative disorder with preferential affection of Purkinje neurons, which are known as integrators of calcium currents. The expansion of a polyglutamine (polyQ) domain in the RNA-binding protein ataxin-2 (ATXN2) is responsible for this disease, but the causal roles of deficient ATXN2 functions versus aggregation toxicity are still under debate. Here, we studied mouse mutants with Atxn2 knockout (KO) regarding their cerebellar global transcriptome by microarray and RT-qPCR, in comparison with data from Atxn2-CAG42-knock-in (KIN) mouse cerebellum. Global expression downregulations involved lipid and growth signaling pathways in good agreement with previous data. As a novel effect, downregulations of key factors in calcium homeostasis pathways (the transcription factor Rora, transporters Itpr1 and Atp2a2, as well as regulator Inpp5a) were observed in the KO cerebellum, and some of them also occurred subtly early in KIN cerebellum. The ITPR1 protein levels were depleted from soluble fractions of cerebellum in both mutants, but accumulated in its membrane-associated form only in the SCA2 model. Coimmunoprecipitation demonstrated no association of ITPR1 with Q42-expanded or with wild-type ATXN2. These findings provide evidence that the physiological functions and protein interactions of ATXN2 are relevant for calcium-mediated excitation of Purkinje cells as well as for ATXN2-triggered neurotoxicity. These insights may help to understand pathogenesis and tissue specificity in SCA2 and other polyQ ataxias like SCA1, where inositol regulation of calcium flux and RORalpha play a role.

  8. Seeking homeostasis: Temporal trends in respiration, oxidation, and calcium in SOD1 G93A Amyotrophic Lateral Sclerosis mice

    Directory of Open Access Journals (Sweden)

    Cameron W Irvin

    2015-07-01

    Full Text Available Impairments in mitochondria, oxidative regulation, and calcium homeostasis have been well documented in numerous amyotrophic lateral sclerosis (ALS experimental models, especially in the superoxide dismutase 1 glycine 93 to alanine (SOD1 G93A transgenic mouse. However, the timing of these deficiencies has been debatable. In a systematic review of 45 articles, we examine experimental measurements of cellular respiration, mitochondrial mechanisms, oxidative markers, and calcium regulation. We evaluate the quantitative magnitude and statistical temporal trend of these aggregated assessments in high transgene copy SOD1 G93A mice compared to wild type mice. Analysis of overall trends reveals cellular respiration, intracellular ATP, and corresponding mitochondrial elements (Cox, cytochrome c, complex I, enzyme activity are depressed for the entire lifespan of the SOD1 G93A mouse. Oxidant markers (H2O2, 8OH2’dG, MDA are initially similar to wild type but are double that of wild type by the time of symptom onset despite early post-natal elevation of protective heat shock proteins. All aspects of calcium regulation show early disturbances, although a notable and likely compensatory convergence to near wild type levels appears to occur between 40-80 days (pre-onset, followed by a post-onset elevation in intracellular calcium. The identified temporal trends and compensatory fluctuations provide evidence that the cause of ALS may lay within failed homeostatic regulation, itself, rather than any one particular perturbing event or cellular mechanism. We discuss the vulnerabilities of motoneurons to regulatory instability and possible hypotheses regarding failed regulation and its potential treatment in ALS.

  9. The effect of dietary calcium and phosphorus supplementation in zeolite A treated dry cows on periparturient calcium and phosphorus homeostasis

    DEFF Research Database (Denmark)

    Thilsing, Trine; Larsen, T.; Jørgensen, Rolf Jess

    2007-01-01

    Previous studies have proved the possibility of preventing parturient hypocalcaemia by zeolite A supplementation during the dry period, and a recent in vitro study has indicated a marked calcium (Ca) as well as phosphorus (P) binding effect of zeolite A in rumen fluid solutions. Because...... of the connection between the Ca and P homeostatic systems, the preventive effect against parturient hypocalcaemia may arise from zeolite induced decreased availability of dietary Ca as well as P. In the present study, the expected Ca and P binding capacity was challenged by feeding high and low levels of dietary...... Ca and/or P to zeolite A treated dry cows. Twenty-one pregnant dry cows were assigned to four experimental groups receiving a dry cow ration unsupplemented or supplemented with extra Ca and/or P. During the last 2 weeks of the dry period all cows additionally received 600 g of zeolite A per day...

  10. A voltage-gated calcium channel regulates lysosomal fusion with endosomes and autophagosomes and is required for neuronal homeostasis.

    Directory of Open Access Journals (Sweden)

    Xuejun Tian

    2015-03-01

    Full Text Available Autophagy helps deliver sequestered intracellular cargo to lysosomes for proteolytic degradation and thereby maintains cellular homeostasis by preventing accumulation of toxic substances in cells. In a forward mosaic screen in Drosophila designed to identify genes required for neuronal function and maintenance, we identified multiple cacophony (cac mutant alleles. They exhibit an age-dependent accumulation of autophagic vacuoles (AVs in photoreceptor terminals and eventually a degeneration of the terminals and surrounding glia. cac encodes an α1 subunit of a Drosophila voltage-gated calcium channel (VGCC that is required for synaptic vesicle fusion with the plasma membrane and neurotransmitter release. Here, we show that cac mutant photoreceptor terminals accumulate AV-lysosomal fusion intermediates, suggesting that Cac is necessary for the fusion of AVs with lysosomes, a poorly defined process. Loss of another subunit of the VGCC, α2δ or straightjacket (stj, causes phenotypes very similar to those caused by the loss of cac, indicating that the VGCC is required for AV-lysosomal fusion. The role of VGCC in AV-lysosomal fusion is evolutionarily conserved, as the loss of the mouse homologues, Cacna1a and Cacna2d2, also leads to autophagic defects in mice. Moreover, we find that CACNA1A is localized to the lysosomes and that loss of lysosomal Cacna1a in cerebellar cultured neurons leads to a failure of lysosomes to fuse with endosomes and autophagosomes. Finally, we show that the lysosomal CACNA1A but not the plasma-membrane resident CACNA1A is required for lysosomal fusion. In summary, we present a model in which the VGCC plays a role in autophagy by regulating the fusion of AVs with lysosomes through its calcium channel activity and hence functions in maintaining neuronal homeostasis.

  11. Effects of chronic administration of clenbuterol on contractile properties and calcium homeostasis in rat extensor digitorum longus muscle.

    Science.gov (United States)

    Sirvent, Pascal; Douillard, Aymerick; Galbes, Olivier; Ramonatxo, Christelle; Py, Guillaume; Candau, Robin; Lacampagne, Alain

    2014-01-01

    Clenbuterol, a β2-agonist, induces skeletal muscle hypertrophy and a shift from slow-oxidative to fast-glycolytic muscle fiber type profile. However, the cellular mechanisms of the effects of chronic clenbuterol administration on skeletal muscle are not completely understood. As the intracellular Ca2+ concentration must be finely regulated in many cellular processes, the aim of this study was to investigate the effects of chronic clenbuterol treatment on force, fatigue, intracellular calcium (Ca2+) homeostasis and Ca2+-dependent proteolysis in fast-twitch skeletal muscles (the extensor digitorum longus, EDL, muscle), as they are more sensitive to clenbuterol-induced hypertrophy. Male Wistar rats were chronically treated with 4 mg.kg-1 clenbuterol or saline vehicle (controls) for 21 days. Confocal microscopy was used to evaluate sarcoplasmic reticulum Ca2+ load, Ca2+-transient amplitude and Ca2+ spark properties. EDL muscles from clenbuterol-treated animals displayed hypertrophy, a shift from slow to fast fiber type profile and increased absolute force, while the relative force remained unchanged and resistance to fatigue decreased compared to control muscles from rats treated with saline vehicle. Compared to control animals, clenbuterol treatment decreased Ca2+-transient amplitude, Ca2+ spark amplitude and frequency and the sarcoplasmic reticulum Ca2+ load was markedly reduced. Conversely, calpain activity was increased by clenbuterol chronic treatment. These results indicate that chronic treatment with clenbuterol impairs Ca2+ homeostasis and this could contribute to the remodeling and functional impairment of fast-twitch skeletal muscle.

  12. Calreticulin is required for calcium homeostasis and proper pollen tube tip growth in Petunia

    OpenAIRE

    Suwi?ska, Anna; Was?g, Piotr; Zakrzewski, Przemys?aw; Lenartowska, Marta; Lenartowski, Robert

    2017-01-01

    Main conclusion Calreticulin is involved in stabilization of the tip-focused Ca 2+ gradient and the actin cytoskeleton arrangement and function that is required for several key processes driving Petunia pollen tube tip growth. Although the precise mechanism is unclear, stabilization of a tip-focused calcium (Ca2+) gradient seems to be critical for pollen germination and pollen tube growth. We hypothesize that calreticulin (CRT), a Ca2+-binding/buffering chaperone typically residing in the lum...

  13. The Serum Level of Fibroblast Growth Factor-23 and Calcium-Phosphate Homeostasis in Obese Perimenopausal Women

    Directory of Open Access Journals (Sweden)

    M. Holecki

    2011-01-01

    Full Text Available Plasma FGF-23 concentrations and its relationship with calcium-phosphate homeostasis were evaluated in 48 perimenopausal obese women and in 29 nonobese controls. Serum parathyroid hormone, 25-hydroxyvitamin D3, CTX1, osteocalcin, total calcium, phosphorus, creatinine, and plasma intact FGF-23 concentrations were assessed. DXA of lumbar spine and femoral neck was performed to determine bone mineral density (BMD. Plasma iFGF-23 concentration was significantly higher in obese patients (by 42% and correlated with age and BMD of proximal femur (R=-0.346; R=0.285, resp. but not with markers of bone turnover. However, serum phosphorus level in obese subjects was significantly lower. iFGF-23 concentration correlated significantly with body mass index (R=0.292 and fat content (R=0.259 in all study subjects. Moreover, a significant correlation between iFGF-23 and iPTH (R=0.254 was found. No correlation between serum phosphorus or eGFR and plasma iFGF-23 and between eGFR and serum phosphorus was found. Elevated serum iFGF-23 concentration may partially explain lower phosphorus levels in the obese and seems not to reflect bone turnover.

  14. Mitochondrial dysfunction induced by frataxin deficiency is associated with cellular senescence and abnormal calcium metabolism

    Directory of Open Access Journals (Sweden)

    Arantxa eBolinches-Amorós

    2014-05-01

    Full Text Available Friedreich ataxia is considered a neurodegenerative disorder involving both the peripheral and central nervous systems. Dorsal root ganglia (DRG are the major target tissue structures. This neuropathy is caused by mutations in the FXN gene that encodes frataxin. Here, we investigated the mitochondrial and cell consequences of frataxin depletion in a cellular model based on frataxin silencing in SH-SY5Y human neuroblastoma cells, a cell line that has been used widely as in vitro models for studies on neurological diseases. We showed that the reduction of frataxin induced mitochondrial dysfunction due to a bioenergetic deficit and abnormal Ca2+ homeostasis in the mitochondria that were associated with oxidative and endoplasmic reticulum stresses. The depletion of frataxin did not cause cell death but increased autophagy, which may have a cytoprotective effect against cellular insults such as oxidative stress. Frataxin silencing provoked slow cell growth associated with cellular senescence, as demonstrated by increased SA-βgal activity and cell cycle arrest at the G1 phase. We postulate that cellular senescence might be related to a hypoplastic defect in the DRG during neurodevelopment, as suggested by necropsy studies.

  15. Age-related changes in bone in the dog: calcium homeostasis

    International Nuclear Information System (INIS)

    Williams, E.A.; Kelly, P.J.

    1984-01-01

    To explore the changes in the relationship between skeletal and Ca 2+ homeostasis with age, a study was made of 50 dogs divided into four age groups. The skeletal uptake of 85 Sr decreased markedly with age, and the immunoreactive parathyroid hormone (iPTH) level increased. There was a significant correlation between iPTH value and the calculated short-term exchange of Ca in bone. Bone formation and bone resorption decreased with age except that in the oldest group of dogs the resorption increased. The authors suggest that in aging dogs the skeletal exchange of Ca falls to a very low level that decreases the immediate effect of PTH and thus leads to a chronic net increase in circulating PTH. Concomitant with this is an increase in osteoclastic bone resorption and, over a long time, loss of skeletal mass

  16. PHYSICAL CONTACT BETWEEN HUMAN VASCULAR ENDOTHELIAL AND SMOOTH MUSCLE CELLS MODULATES CYTOSOLIC AND NUCLEAR CALCIUM HOMEOSTASIS.

    Science.gov (United States)

    Hassan, Ghada S; Jacques, Danielle; D'Orleans-Juste, Pedro; Magder, Sheldon; Bkaily, Ghassan

    2018-05-14

    The interaction between vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) plays an important role in the modulation of vascular tone. There is however no information on whether direct physical communication regulates the intracellular calcium levels of human VECs (hVECs) and/or hVSMCs . Thus, the objective of the study is to verify whether co-culture of hVECs and hVSMCs modulates cytosolic ([Ca2+]c) and nuclear calcium ([Ca2+]n) levels via physical contact and/or factors released by both cell types. Quantitative 3D confocal microscopy for [Ca2+]c and [Ca2+]n measurement was performed in cultured hVECs or hVSMCs or in co-culture of hVECs-hVSMCs. Our results show that: 1) physical contact between hVECs-hVECs or hVSMCs-hVSMCs does not affect [Ca2+]c and [Ca2+]n in these two cell types; 2) physical contact between hVECs and hVSMCs induces a significant increase only of [Ca2+]n of hVECs without affecting the level of [Ca2+]c and [Ca2+]n of hVSMCs; and 3) preconditioned culture medium of hVECs or hVSMCs does not affect [Ca2+]c and [Ca2+]n of both types of cells. We concluded that physical contact between hVECs and hVSMCs only modulates [Ca2+]n in hVECs. The increase of [Ca2+]n in hVECs may modulate nuclear functions that are calcium dependent.

  17. Reduced IRE1α mediates apoptotic cell death by disrupting calcium homeostasis via the InsP3 receptor.

    Science.gov (United States)

    Son, S M; Byun, J; Roh, S-E; Kim, S J; Mook-Jung, I

    2014-04-17

    The endoplasmic reticulum (ER) is not only a home for folding and posttranslational modifications of secretory proteins but also a reservoir for intracellular Ca(2+). Perturbation of ER homeostasis contributes to the pathogenesis of various neurodegenerative diseases, such as Alzheimer's and Parkinson diseases. One key regulator that underlies cell survival and Ca(2+) homeostasis during ER stress responses is inositol-requiring enzyme 1α (IRE1α). Despite extensive studies on this ER membrane-associated protein, little is known about the molecular mechanisms by which excessive ER stress triggers cell death and Ca(2+) dysregulation via the IRE1α-dependent signaling pathway. In this study, we show that inactivation of IRE1α by RNA interference increases cytosolic Ca(2+) concentration in SH-SY5Y cells, leading to cell death. This dysregulation is caused by an accelerated ER-to-cytosolic efflux of Ca(2+) through the InsP3 receptor (InsP3R). The Ca(2+) efflux in IRE1α-deficient cells correlates with dissociation of the Ca(2+)-binding InsP3R inhibitor CIB1 and increased complex formation of CIB1 with the pro-apoptotic kinase ASK1, which otherwise remains inactivated in the IRE1α-TRAF2-ASK1 complex. The increased cytosolic concentration of Ca(2+) induces mitochondrial production of reactive oxygen species (ROS), in particular superoxide, resulting in severe mitochondrial abnormalities, such as fragmentation and depolarization of membrane potential. These Ca(2+) dysregulation-induced mitochondrial abnormalities and cell death in IRE1α-deficient cells can be blocked by depleting ROS or inhibiting Ca(2+) influx into the mitochondria. These results demonstrate the importance of IRE1α in Ca(2+) homeostasis and cell survival during ER stress and reveal a previously unknown Ca(2+)-mediated cell death signaling between the IRE1α-InsP3R pathway in the ER and the redox-dependent apoptotic pathway in the mitochondrion.

  18. Magnesium supplement in pregnancy-induced hypertension: effects on maternal and neonatal magnesium and calcium homeostasis

    DEFF Research Database (Denmark)

    Rudnicki, M; Frølich, A; Fischer-Rasmussen, W

    1991-01-01

    The objective of this study was to evaluate the effect of low dose magnesium supplement upon maternal and fetal serum levels of mineral status in pregnancies complicated with hypertension (PIH). Twenty-five patients with PIH agreed to participate and were randomly allocated, in a double-blind man......The objective of this study was to evaluate the effect of low dose magnesium supplement upon maternal and fetal serum levels of mineral status in pregnancies complicated with hypertension (PIH). Twenty-five patients with PIH agreed to participate and were randomly allocated, in a double...... period despite a significant increased loss of calcium during the first 24 h of inclusion. Low dose maternal magnesium treatment did not cause neonatal hypocalcemia....

  19. Calcium Homeostasis and ER Stress in Control of Autophagy in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Elżbieta Kania

    2015-01-01

    Full Text Available Autophagy is a basic catabolic process, serving as an internal engine during responses to various cellular stresses. As regards cancer, autophagy may play a tumor suppressive role by preserving cellular integrity during tumor development and by possible contribution to cell death. However, autophagy may also exert oncogenic effects by promoting tumor cell survival and preventing cell death, for example, upon anticancer treatment. The major factors influencing autophagy are Ca2+ homeostasis perturbation and starvation. Several Ca2+ channels like voltage-gated T- and L-type channels, IP3 receptors, or CRAC are involved in autophagy regulation. Glucose transporters, mainly from GLUT family, which are often upregulated in cancer, are also prominent targets for autophagy induction. Signals from both Ca2+ perturbations and glucose transport blockage might be integrated at UPR and ER stress activation. Molecular pathways such as IRE 1-JNK-Bcl-2, PERK-eIF2α-ATF4, or ATF6-XBP 1-ATG are related to autophagy induced through ER stress. Moreover ER molecular chaperones such as GRP78/BiP and transcription factors like CHOP participate in regulation of ER stress-mediated autophagy. Autophagy modulation might be promising in anticancer therapies; however, it is a context-dependent matter whether inhibition or activation of autophagy leads to tumor cell death.

  20. Mineral and Skeletal Homeostasis Influence the Manner of Bone Loss in Metabolic Osteoporosis due to Calcium-Deprived Diet in Different Sites of Rat Vertebra and Femur

    Directory of Open Access Journals (Sweden)

    Marzia Ferretti

    2015-01-01

    Full Text Available Rats fed calcium-deprived diet develop osteoporosis due to enhanced bone resorption, secondary to parathyroid overactivity resulting from nutritional hypocalcemia. Therefore, rats provide a good experimental animal model for studying bone modelling alterations during biochemical osteoporosis. Three-month-old Sprague-Dawley male rats were divided into 4 groups: (1 baseline, (2 normal diet for 4 weeks, (3 calcium-deprived diet for 4 weeks, and (4 calcium-deprived diet for 4 weeks and concomitant administration of PTH (1-34 40 µg/Kg/day. Histomorphometrical analyses were made on cortical and trabecular bone of lumbar vertebral body as well as of mid-diaphysis and distal metaphysis of femur. In all rats fed calcium-deprived diet, despite the reduction of trabecular number (due to the maintenance of mineral homeostasis, an intense activity of bone deposition occurs on the surface of the few remaining trabeculae (in answering to mechanical stresses and, consequently, to maintain the skeletal homeostasis. Different responses were detected in different sites of cortical bone, depending on their main function in answering mineral or skeletal homeostasis. This study represents the starting point for work-in-progress researches, with the aim of defining in detail timing and manners of evolution and recovery of biochemical osteoporosis.

  1. The Effect of Moderate Dietary Protein and Phosphate Restriction on Calcium-Phosphate Homeostasis in Healthy Older Cats.

    Science.gov (United States)

    Geddes, R F; Biourge, V; Chang, Y; Syme, H M; Elliott, J

    2016-09-01

    Dietary phosphate and protein restriction decreases plasma PTH and FGF-23 concentrations and improves survival time in azotemic cats, but has not been examined in cats that are not azotemic. Feeding a moderately protein- and phosphate-restricted diet decreases PTH and FGF-23 in healthy older cats and thereby slows progression to azotemic CKD. A total of 54 healthy, client-owned cats (≥ 9 years). Prospective double-blinded randomized placebo-controlled trial. Cats were assigned to test diet (protein 76 g/Mcal and phosphate 1.6 g/Mcal) or control diet (protein 86 g/Mcal and phosphate 2.6 g/Mcal) and monitored for 18 months. Changes in variables over time and effect of diet were assessed by linear mixed models. A total of 26 cats ate test diet and 28 cats ate control diet. There was a significant effect of diet on urinary fractional excretion of phosphate (P = 0.045), plasma PTH (P = 0.005), and ionized calcium concentrations (P = 0.018), but not plasma phosphate, FGF-23, or creatinine concentrations. Plasma PTH concentrations did not significantly change in cats fed the test diet (P = 0.62) but increased over time in cats fed the control diet (P = 0.001). There was no significant treatment effect of the test diet on development of azotemic CKD (3 of 26 (12%) test versus 3 of 28 (11%) control, odds ratio 1.09 (95% CI 0.13-8.94), P = 0.92). Feeding a moderately protein- and phosphate-restricted diet has effects on calcium-phosphate homeostasis in healthy older cats and is well tolerated. This might have an impact on renal function and could be useful in early chronic kidney disease. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  2. Role of mitochondrial calcium uptake homeostasis in resting state fMRI brain networks.

    Science.gov (United States)

    Kannurpatti, Sridhar S; Sanganahalli, Basavaraju G; Herman, Peter; Hyder, Fahmeed

    2015-11-01

    Mitochondrial Ca(2+) uptake influences both brain energy metabolism and neural signaling. Given that brain mitochondrial organelles are distributed in relation to vascular density, which varies considerably across brain regions, we hypothesized different physiological impacts of mitochondrial Ca(2+) uptake across brain regions. We tested the hypothesis by monitoring brain "intrinsic activity" derived from the resting state functional MRI (fMRI) blood oxygen level dependent (BOLD) fluctuations in different functional networks spanning the somatosensory cortex, caudate putamen, hippocampus and thalamus, in normal and perturbed mitochondrial Ca(2+) uptake states. In anesthetized rats at 11.7 T, mitochondrial Ca(2+) uptake was inhibited or enhanced respectively by treatments with Ru360 or kaempferol. Surprisingly, mitochondrial Ca(2+) uptake inhibition by Ru360 and enhancement by kaempferol led to similar dose-dependent decreases in brain-wide intrinsic activities in both the frequency domain (spectral amplitude) and temporal domain (resting state functional connectivity; RSFC). The fact that there were similar dose-dependent decreases in the frequency and temporal domains of the resting state fMRI-BOLD fluctuations during mitochondrial Ca(2+) uptake inhibition or enhancement indicated that mitochondrial Ca(2+) uptake and its homeostasis may strongly influence the brain's functional organization at rest. Interestingly, the resting state fMRI-derived intrinsic activities in the caudate putamen and thalamic regions saturated much faster with increasing dosage of either drug treatment than the drug-induced trends observed in cortical and hippocampal regions. Regional differences in how the spectral amplitude and RSFC changed with treatment indicate distinct mitochondrion-mediated spontaneous neuronal activity coupling within the various RSFC networks determined by resting state fMRI. Copyright © 2015 John Wiley & Sons, Ltd.

  3. TMEM199 Deficiency Is a Disorder of Golgi Homeostasis Characterized by Elevated Aminotransferases, Alkaline Phosphatase, and Cholesterol and Abnormal Glycosylation

    NARCIS (Netherlands)

    Jansen, Jos C.; Timal, Sharita; van Scherpenzeel, Monique; Michelakakis, Helen; Vicogne, Dorothée; Ashikov, Angel; Moraitou, Marina; Hoischen, Alexander; Huijben, Karin; Steenbergen, Gerry; van den Boogert, Marjolein A. W.; Porta, Francesco; Calvo, Pier Luigi; Mavrikou, Mersyni; Cenacchi, Giovanna; van den Bogaart, Geert; Salomon, Jody; Holleboom, Adriaan G.; Rodenburg, Richard J.; Drenth, Joost P. H.; Huynen, Martijn A.; Wevers, Ron A.; Morava, Eva; Foulquier, François; Veltman, Joris A.; Lefeber, Dirk J.

    2016-01-01

    Congenital disorders of glycosylation (CDGs) form a genetically and clinically heterogeneous group of diseases with aberrant protein glycosylation as a hallmark. A subgroup of CDGs can be attributed to disturbed Golgi homeostasis. However, identification of pathogenic variants is seriously

  4. Quantitative Mineralogical Composition of Calculi and Urine Abnormalities for Calcium Oxalate Stone Formers: A Single-Center Results.

    Science.gov (United States)

    Kustov, Andrey V; Strelnikov, Alexander I

    2017-12-26

    The paper focuses on the relationship of risk factors and metabolic disorders with mineralogical composition of calculi, age and gender of calcium oxalate stone formers. Stone mineralogical composition, 24 hour biochemistry and pH-profile of urine were examined for sixty four stone formers using powder X-ray diffraction, spectrophotometric and potentiometric techniques. The analysis indicated that 44 % of calculi were composed of pure calcium oxalate monohydrate, whereas other 56 % contained both monohydrate and dihydrate or usually their mixtures with hydroxyl apatite. Hypocitraturia, hypercalciuria and hyperuricosuria were identified as the most frequent disorders. Patients with pure calcium oxalate stones and calcium oxalate mixed with apatite revealed different patterns including age, acid-base balance of urine, calcium, citrate excretion etc. Our results demonstrate that most patients simultaneously reveal several risk factors. The special attention should be paid to normalize the daily citrate, calcium and urate excretion. High risk patients, such as postmenopausal females or stone formers with a high apatite content require a specific metabolic evaluation towards in highlighting abnormalities associated with stone formation.

  5. Effects of adding chymosin to milk on calcium homeostasis: a randomized, double-blind, cross-over study

    DEFF Research Database (Denmark)

    Liendgaard, Ulla Kristine Møller; Jensen, L.T.; Mosekilde, Leif

    2015-01-01

    either chymosin or similar placebo was added. Compared with placebo, chymosin did not affect 24-h urinary calcium, calcium/creatinine ratio, plasma parathyroid hormone, calcitonin or ionized calcium levels. However, during the first 4 h after intake of milk with chymosin, urinary calcium-creatinine ratio...... was significantly increased (17%) compared with placebo. Stratification by daily calcium intake showed effect of chymosin in participant with a habitual intake above the median (>1,050 mg/day) in whom both urinary calcium and calcium/creatinine ratio were significantly increased compared with placebo. Effects did...

  6. Rapid Electrical Stimulation Increased Cardiac Apoptosis Through Disturbance of Calcium Homeostasis and Mitochondrial Dysfunction in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Le Geng

    2018-06-01

    Full Text Available Background/Aims: Heart failure induced by tachycardia, the most common arrhythmia, is frequently observed in clinical practice. This study was designed to investigate the underlying mechanisms. Methods: Rapid electrical stimulation (RES at a frequency of 3 Hz was applied on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs for 7 days, with 8 h/day and 24 h/day set to represent short-term and long-term tachycardia, respectively. Age-matched hiPSC-CMs without electrical stimulation or with slow electrical stimulation (1 Hz were set as no electrical stimulation (NES control or low-frequency electrical stimulation (LES control. Following stimulation, JC-1 staining flow cytometry analysis was performed to examine mitochondrial conditions. Apoptosis in hiPSC-CMs was evaluated using Hoechst staining and Annexin V/propidium iodide (AV/PI staining flow cytometry analysis. Calcium transients and L-type calcium currents were recorded to evaluate calcium homeostasis. Western blotting and qPCR were performed to evaluate the protein and mRNA expression levels of apoptosis-related genes and calcium homeostasis-regulated genes. Results: Compared to the controls, hiPSC-CMs following RES presented mitochondrial dysfunction and an increased apoptotic percentage. Amplitudes of calcium transients and L-type calcium currents were significantly decreased in hiPSC-CMs with RES. Molecular analysis demonstrated upregulated expression of Caspase3 and increased Bax/Bcl-2 ratio. Genes related to calcium re-sequence were downregulated, while phosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII was significantly upregulated following RES. There was no significant difference between the NES control and LES control groups in these aspects. Inhibition of CaMKII with 1 µM KN93 partly reversed these adverse effects of RES. Conclusion: RES on hiPSC-CMs disturbed calcium homeostasis, which led to mitochondrial stress, promoted cell apoptosis and

  7. Effect of toluene diisocyanate on homeostasis of intracellular-free calcium in human neuroblastoma SH-SY5Y Cells

    International Nuclear Information System (INIS)

    Liu, P.-S.; Chiung, Y.-M.; Kao, Y.-Y.

    2006-01-01

    The mechanisms of TDI (2,4-toluene diisocyanate)-induced occupational asthma are not fully established. Previous studies have indicated that TDI induces non-specific bronchial hyperreactivity to methacholine and induces contraction of smooth muscle tissue by activating 'capsaicin-sensitive' nerves resulting asthma. Cytosolic-free calcium ion concentrations ([Ca 2+ ] c ) are elevated when either capsaicin acts at vanilloid receptors, or methacholine at muscarinic receptors. This study therefore investigated the effects of TDI on Ca 2+ mobilization in human neuroblastoma SH-SY5Y cells. TDI was found to elevate [Ca 2+ ] c by releasing Ca 2+ from the intracellular stores and extracellular Ca 2+ influx. 500 μM TDI induced a net [Ca 2+ ] c increase of 112 ± 8 and 78 ± 6 nM in the presence and absence of extracellular Ca 2+ , respectively. In Ca 2+ -free buffer, TDI induced Ca 2+ release from internal stores to reduce their Ca 2+ content and this reduction was evidenced by a suppression occurring on the [Ca 2+ ] c rise induced by thapsigargin, ionomycin, and methacholine after TDI incubation. In the presence of extracellular Ca 2+ , simultaneous exposure to TDI and methacholine led a higher level of [Ca 2+ ] c compared to single methacholine stimulation, that might explain that TDI induces bronchial hyperreactivity to methacholine. We conclude that TDI is capable of interfering the [Ca 2+ ] c homeostasis including releasing Ca 2+ from internal stores and inducing extracellular Ca 2+ influx. The interaction of this novel character and bronchial hyperreactivity need further investigation

  8. Eukaryotic translation initiation factor 3 subunit e controls intracellular calcium homeostasis by regulation of cav1.2 surface expression.

    Directory of Open Access Journals (Sweden)

    Pawel Buda

    Full Text Available Inappropriate surface expression of voltage-gated Ca(2+channels (CaV in pancreatic ß-cells may contribute to the development of type 2 diabetes. First, failure to increase intracellular Ca(2+ concentrations at the sites of exocytosis impedes insulin release. Furthermore, excessive Ca(2+ influx may trigger cytotoxic effects. The regulation of surface expression of CaV channels in the pancreatic β-cells remains unknown. Here, we used real-time 3D confocal and TIRFM imaging, immunocytochemistry, cellular fractionation, immunoprecipitation and electrophysiology to study trafficking of L-type CaV1.2 channels upon β-cell stimulation. We found decreased surface expression of CaV1.2 and a corresponding reduction in L-type whole-cell Ca(2+ currents in insulin-secreting INS-1 832/13 cells upon protracted (15-30 min stimulation. This internalization occurs by clathrin-dependent endocytosis and could be prevented by microtubule or dynamin inhibitors. eIF3e (Eukaryotic translation initiation factor 3 subunit E is part of the protein translation initiation complex, but its effect on translation are modest and effects in ion channel trafficking have been suggested. The factor interacted with CaV1.2 and regulated CaV1.2 traffic bidirectionally. eIF3e silencing impaired CaV1.2 internalization, which resulted in an increased intracellular Ca(2+ load upon stimulation. These findings provide a mechanism for regulation of L-type CaV channel surface expression with consequences for β-cell calcium homeostasis, which will affect pancreatic β-cell function and insulin production.

  9. Calcium Homeostasis Modulator 1-Like Currents in Rat Fungiform Taste Cells Expressing Amiloride-Sensitive Sodium Currents.

    Science.gov (United States)

    Bigiani, Albertino

    2017-05-01

    Salt reception by taste cells is still the less understood transduction process occurring in taste buds, the peripheral sensory organs for the detection of food chemicals. Although there is evidence suggesting that the epithelial sodium channel (ENaC) works as sodium receptor, yet it is not clear how salt-detecting cells signal the relevant information to nerve endings. Taste cells responding to sweet, bitter, and umami substances release ATP as neurotransmitter through a nonvesicular mechanism. Three different channel proteins have been proposed as conduit for ATP secretion: pannexin channels, connexin hemichannels, and calcium homeostasis modulator 1 (CALHM1) channels. In heterologous expression systems, these channels mediate outwardly rectifying membrane currents with distinct biophysical and pharmacological properties. I therefore tested whether also salt-detecting taste cells were endowed with these currents. To this aim, I applied the patch-clamp techniques to single cells in isolated taste buds from rat fungiform papillae. Salt-detecting cells were functionally identified by exploiting the effect of amiloride, which induces a current response by shutting down ENaCs. I looked for the presence of outwardly rectifying currents by using appropriate voltage-clamp protocols and specific pharmacological tools. I found that indeed salt-detecting cells possessed these currents with properties consistent with the presence, at least in part, of CALHM1 channels. Unexpectedly, CALHM1-like currents in taste cells were potentiated by known blockers of pannexin, suggesting a possible inhibitory action of this protein on CALMH1. These findings indicate that communication between salt-detecting cells and nerve endings might involve ATP release by CALMH1 channels. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Abnormal chloride homeostasis in the substancia nigra pars reticulata contributes to locomotor deficiency in a model of acute liver injury.

    Directory of Open Access Journals (Sweden)

    Yan-Ling Yang

    Full Text Available BACKGROUND: Altered chloride homeostasis has been thought to be a risk factor for several brain disorders, while less attention has been paid to its role in liver disease. We aimed to analyze the involvement and possible mechanisms of altered chloride homeostasis of GABAergic neurons within the substantia nigra pars reticulata (SNr in the motor deficit observed in a model of encephalopathy caused by acute liver failure, by using glutamic acid decarboxylase 67 - green fluorescent protein knock-in transgenic mice. METHODS: Alterations in intracellular chloride concentration in GABAergic neurons within the SNr and changes in the expression of two dominant chloride homeostasis-regulating genes, KCC2 and NKCC1, were evaluated in mice with hypolocomotion due to hepatic encephalopathy (HE. The effects of pharmacological blockade and/or activation of KCC2 and NKCC1 functions with their specific inhibitors and/or activators on the motor activity were assessed. RESULTS: In our mouse model of acute liver injury, chloride imaging indicated an increase in local intracellular chloride concentration in SNr GABAergic neurons. In addition, the mRNA and protein levels of KCC2 were reduced, particularly on neuronal cell membranes; in contrast, NKCC1 expression remained unaffected. Furthermore, blockage of KCC2 reduced motor activity in the normal mice and led to a further deteriorated hypolocomotion in HE mice. Blockade of NKCC1 was not able to normalize motor activity in mice with liver failure. CONCLUSION: Our data suggest that altered chloride homeostasis is likely involved in the pathophysiology of hypolocomotion following HE. Drugs aimed at restoring normal chloride homeostasis would be a potential treatment for hepatic failure.

  11. Neuronal calcium sensor synaptotagmin-9 is not involved in the regulation of glucose homeostasis or insulin secretion

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Wang, Xiaorui; Wang, Yue

    2010-01-01

    the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast......BACKGROUND: Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define...... neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium...

  12. Modulation of intracellular calcium homeostasis by trimethyltin chloride in human tumour cells: Neuroblastoma SY5Y and cervix adenocarcinoma HeLa S3

    International Nuclear Information System (INIS)

    Florea, Ana-Maria; Splettstoesser, Frank; Dopp, Elke; Rettenmeier, Albert W.; Buesselberg, Dietrich

    2005-01-01

    Physiological modifications of intracellular Ca 2+ ([Ca 2+ ] i ) levels trigger and/or regulate a diversity of cellular activities (e.g. neurotransmitter release, synaptic plasticity, muscular contraction, cell proliferation), while calcium overloads could result in cytotoxicity. Previously, we have shown that trimethyltin chloride (Me 3 SnCl; TMT) modulates calcium homeostasis in cervix adenocarcinoma (HeLa S3) cells [Florea, A.-M., Dopp, E., Buesselberg, D., 2005. TMT induces elevated calcium transients in HeLa cells: types and levels of response. Cell Calcium 37, 252-258]. Here we compare [Ca 2+ ] i -changes induced by trimethyltin chloride in neuroblastoma SY5Y and HeLa S3 cells using calcium-sensitive dyes (fluo-4/AM (fluo-4) and rhod-2/AM (rhod-2)) and laser scanning microscopy (LSM). TMT-induced calcium elevations in neuroblastoma SY5Y as well as in HeLa S3 cells. [Ca 2+ ] i rose to a sustained plateau or to transient spikes. Overall, the detected averaged increase of the maximum calcium elevation were: 0.5 μM ∼125.6%; 5 μM ∼130.1%; 500 μM ∼145% in HeLa S3 cells and 0.5 μM ∼133.3%; 5 μM ∼136.1%; 500 μM ∼147.1% in neuroblastoma SY5Y cells. The calcium rise derived from internal stores did not significantly depend on the presence of calcium in the external solution: ∼109% (no calcium added) versus ∼117% (2 mM calcium; 5 μM TMT) in HeLa cells. This difference was similar in neuroblastoma SY5Y cells, were ∼127% versus ∼136% increase (5 μM TMT) were measured. Staining of calcium stores with rhod-2 showed a TMT-induced [Ca 2+ ] i -decrease in the stores followed by an increase of the calcium concentration in the nuclei of the two cell lines tested. Our results suggest that toxic effects in human tumour cells after exposure to trimethyltin compounds might be due to an elevation of [Ca 2+ ] i

  13. Involvement of the cervical sympathetic nervous system in the changes of calcium homeostasis during turpentine oil-induced stress in rats.

    Science.gov (United States)

    Stern, J E; Ladizesky, M G; Keller Sarmiento, M I; Cardinali, D P

    1993-03-01

    Hypocalcemia is a common finding during stress. The objective of this study was to examine: (a) the changes in circulating calcium, parathyroid hormone (PTH) and calcitonin (CT) concentration in rats stressed by being given a subcutaneous injection of turpentine oil, and (b) the involvement of the sympathetic cervical pathway in stress-induced changes of calcium homeostasis. Four hours after receiving turpentine oil or vehicle, rats were subjected either to hypocalcemia, by being given EDTA intraperitoneally, or to hypercalcemia, by being injected CaCl2 intraperitoneally. Significant changes in serum calcium (10% decrease), serum PTH (28% increase) and CT levels (40% decrease) were observed in stressed rats. EDTA administration brought about a significantly greater hypocalcemia, and a higher PTH secretory response in turpentine oil-stressed rats. During stress, the increase of serum calcium after CaCl2 was significantly smaller, and the rise of CT was greater than in controls. In the case of CT the changes were still observed in rats subjected to superior cervical ganglionectomy (SCGx) 14 days earlier. In the case of PTH, the increase found in stressed rats, but not the augmented response after EDTA, was blunted by SCGx. The potentiation of hypocalcemia brought about by turpentine oil was no longer observed in SCGx rats. In vehicle-treated controls, SCGx delayed PTH response to hypocalcemia, but did not affect the increased response of CT to CaCl2 challenge. The results indicate that a number of changes in calcium homeostasis arise during turpentine oil stress in rats. SCGx was effective to modify the set point for PTH release, but played a minor role in affecting the augmentation of CT release during stress.

  14. Initial amino acid intake influences phosphorus and calcium homeostasis in preterm infants--it is time to change the composition of the early parenteral nutrition.

    Directory of Open Access Journals (Sweden)

    Francesco Bonsante

    Full Text Available Early aggressive parenteral nutrition (PN, consisting of caloric and nitrogen intake soon after birth, is currently proposed for the premature baby. Some electrolyte disturbances, such as hypophosphatemia and hypercalcemia, considered unusual in early life, were recently described while using this PN approach. We hypothesize that, due to its impact on cell metabolism, the initial amino acid (AA amount may specifically influence the metabolism of phosphorus, and consequently of calcium. We aim to evaluate the influence of AA intake on calcium-phosphorus metabolism, and to create a calculation tool to estimate phosphorus needs.Prospective observational study. Phosphate and calcium plasma concentrations and calcium balance were evaluated daily during the first week of life in very preterm infants, and their relationship with nutrition was studied. For this purpose, infants were divided into three groups: high, medium and low AA intake (HAA, MAA, LAA. A calculation formula to assess phosphorus needs was elaborated, with a theoretical model based on AA and calcium intake, and the cumulative deficit of phosphate intake was estimated.154 infants were included. Hypophosphatemia (12.5% and hypercalcemia (9.8% were more frequent in the HAA than in the MAA (4.6% and 4.8% and in the LAA group (0% and 1.9%; both p<0.001.Calcium-phosphorus homeostasis was influenced by the early AA intake. We propose to consider phosphorus and calcium imbalances as being part of a syndrome, related to incomplete provision of nutrients after the abrupt discontinuation of the placental nutrition at birth (PI-ReFeeding syndrome. We provide a simple tool to calculate the optimal phosphate intake. The early introduction of AA in the PN soon after birth might be completed by an early intake of phosphorus, since AA and phosphorus are (along with potassium the main determinants of cellular growth.

  15. Calcium

    Science.gov (United States)

    ... You can get decent amounts of calcium from baked beans, navy beans, white beans, and others. Canned fish. You're in luck if you like sardines and canned salmon with bones. Almond milk. Working Calcium Into Your ...

  16. The effect of zeolite A supplementation in the dry period on periparturient calcium, phosphorus, and magnesium homeostasis

    DEFF Research Database (Denmark)

    Thilsing-Hansen, T; Jørgensen, R J; Enemark, J M D

    2002-01-01

    One potential way of preventing parturient hypocalcemia in the dairy cow is to feed dry cow rations very low in calcium (......One potential way of preventing parturient hypocalcemia in the dairy cow is to feed dry cow rations very low in calcium (...

  17. The pmr gene, encoding a Ca2+-ATPase, is required for calcium and manganese homeostasis and normal development of hyphae and conidia in Neurospora crassa.

    Science.gov (United States)

    Bowman, Barry J; Abreu, Stephen; Johl, Jessica K; Bowman, Emma Jean

    2012-11-01

    The pmr gene is predicted to encode a Ca(2+)-ATPase in the secretory pathway. We examined two strains of Neurospora crassa that lacked PMR: the Δpmr strain, in which pmr was completely deleted, and pmr(RIP), in which the gene was extensively mutated. Both strains had identical, complex phenotypes. Compared to the wild type, these strains required high concentrations of calcium or manganese for optimal growth and had highly branched, slow-growing hyphae. They conidiated poorly, and the shape and size of the conidia were abnormal. Calcium accumulated in the Δpmr strains to only 20% of the wild-type level. High concentrations of MnCl(2) (1 to 5 mM) in growth medium partially suppressed the morphological defects but did not alter the defect in calcium accumulation. The Δpmr Δnca-2 double mutant (nca-2 encodes a Ca(2+)-ATPase in the plasma membrane) accumulated 8-fold more calcium than the wild type, and the morphology of the hyphae was more similar to that of wild-type hyphae. Previous experiments failed to show a function for nca-1, which encodes a SERCA-type Ca(2+)-ATPase in the endoplasmic reticulum (B. J. Bowman, S. Abreu, E. Margolles-Clark, M. Draskovic, and E. J. Bowman, Eukaryot. Cell 10:654-661, 2011). The pmr(RIP) Δnca-1 double mutant accumulated small amounts of calcium, like the Δpmr strain, but exhibited even more extreme morphological defects. Thus, PMR can apparently replace NCA-1 in the endoplasmic reticulum, but NCA-1 cannot replace PMR. The morphological defects in the Δpmr strain are likely caused, in part, by insufficient concentrations of calcium and manganese in the Golgi compartment; however, PMR is also needed to accumulate normal levels of calcium in the whole cell.

  18. The effects of abnormalities of glucose homeostasis on the expression and binding of muscarinic receptors in cerebral cortex of rats.

    Science.gov (United States)

    Sherin, Antony; Peeyush, Kumar T; Naijil, George; Nandhu, Mohan Sobhana; Jayanarayanan, Sadanandan; Jes, Paul; Paulose, Cheramadathikudiyil Skaria

    2011-01-25

    Glucose homeostasis in humans is an important factor for the functioning of nervous system. Both hypo and hyperglycemia contributes to neuronal functional deficit. In the present study, effect of insulin induced hypoglycemia and streptozotocin induced diabetes on muscarinic receptor binding, cholinergic enzymes; AChE, ChAT expression and GLUT3 in the cerebral cortex of experimental rats were analysed. Total muscarinic, muscarinic M(1) receptor showed a significant decrease and muscarinic M(3) receptor subtype showed a significant increased binding in the cerebral cortex of hypoglycemic rats compared to diabetic and control. Real-Time PCR analysis of muscarinic M(1), M(3) receptor subtypes confirmed the receptor binding studies. Immunohistochemistry of muscarinic M(1), M(3) receptors using specific antibodies were also carried out. AChE and GLUT3 expression up regulated and ChAT expression down regulated in hypoglycemic rats compared to diabetic and control rats. Our results showed that hypo/hyperglycemia caused impaired glucose transport in neuronal cells as shown by altered expression of GLUT3. Increased AChE and decreased ChAT expression is suggested to alter cortical acetylcholine metabolism in experimental rats along with altered muscarinic receptor binding in hypo/hyperglycemic rats, impair cholinergic transmission, which subsequently lead to cholinergic dysfunction thereby causing learning and memory deficits. We observed a prominent cholinergic functional disturbance in hypoglycemic condition than in hyperglycemia. Hypoglycemia exacerbated the neurochemical changes in cerebral cortex induced by hyperglycemia. These findings have implications for both therapy and identification of causes contributing to neuronal dysfunction in diabetes. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. TRP channels in calcium homeostasis: from hormonal control to structure-function relationship of TRPV5 and TRPV6.

    Science.gov (United States)

    van Goor, Mark K C; Hoenderop, Joost G J; van der Wijst, Jenny

    2017-06-01

    Maintaining plasma calcium levels within a narrow range is of vital importance for many physiological functions. Therefore, calcium transport processes in the intestine, bone and kidney are tightly regulated to fine-tune the rate of absorption, storage and excretion. The TRPV5 and TRPV6 calcium channels are viewed as the gatekeepers of epithelial calcium transport. Several calciotropic hormones control the channels at the level of transcription, membrane expression, and function. Recent technological advances have provided the first near-atomic resolution structural models of several TRPV channels, allowing insight into their architecture. While this field is still in its infancy, it has increased our understanding of molecular channel regulation and holds great promise for future structure-function studies of these ion channels. This review will summarize the mechanisms that control the systemic calcium balance, as well as extrapolate structural views to the molecular functioning of TRPV5/6 channels in epithelial calcium transport. Copyright © 2016. Published by Elsevier B.V.

  20. Parathyroid hormone, calcitonin, and vitamin D 1974: Present status of physiological studies and analysis of calcium homeostasis

    Science.gov (United States)

    Potts, J. T., Jr.; Swenson, K. G.

    1975-01-01

    The role of parathyroid hormone, calcitonin, and vitamin D in the control of calcium and bone metabolism was studied. Particular emphasis was placed on the physiological adaptation to weightlessness and, as a potential model for this purpose, on the immobilization characteristic of space flight or prolonged bed rest. The biosynthesis, control of secretion, and metabolism of these hormonal agents is considered.

  1. Role of volume-regulated and calcium-activated anion channels in cell volume homeostasis, cancer and drug resistance

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay; Sørensen, Belinda Halling; Sauter, Daniel Rafael Peter

    2015-01-01

    to be an essential component of both VRAC and VSOAC. Reduced VRAC and VSOAC activities are seen in drug resistant cancer cells. ANO1 is a calcium-activated chloride channel expressed on the plasma membrane of e.g. secretory epithelia. ANO1 is amplified and highly expressed in a large number of carcinomas. The gene...... functions as well as their role in cancer and drug resistance....

  2. Something more to say about calcium homeostasis: the role of vitamin K2 in vascular calcification and osteoporosis.

    Science.gov (United States)

    Flore, R; Ponziani, F R; Di Rienzo, T A; Zocco, M A; Flex, A; Gerardino, L; Lupascu, A; Santoro, L; Santoliquido, A; Di Stasio, E; Chierici, E; Lanti, A; Tondi, P; Gasbarrini, A

    2013-09-01

    Vascular calcification and osteoporosis share similar etiopathogenetic mechanisms. Vitamin K2 deficiency could be responsible of the so called "calcium paradox", that is the lack of calcium in the bone and its storage in the vessel wall. These events may have clinically relevant consequences, such as cardiovascular accidents, and bone fractures. To review the biological function of vitamin K2 metabolism, the main factors related to its deficiency and the consequent clinical significance. Vitamin K2 is essential for the function of several proteins, involved in the maintenance of the normal structure of arterial wall, osteoarticular system, teeth, and for the regulation of cell growth. It has been demonstrated to have a pivotal role in the inhibition of vascular foci of calcification, and in the regulation of calcium deposition in the bone. Vitamin K2 deficiency is often subclinic in a large part of healthy population. This deficiency is related to the interaction of various factors, such as the reduced dietary intake, the alteration of intestinal absorption or production, with a possible role of intestinal microbiota and the increased consumption at the vessel wall. Vitamin K2 deficiency has recently been recognized as a protagonist in the development of vascular calcification and osteoporosis. Data reported so far are promising and, dietary supplementation seems a useful tool to contrast these diseases. However, large studies or solid clinical correlations regarding vitamin K2 deficiency and its pathologic consequences are needed to confirm these preliminary experiences.

  3. Role of oxidative stress, mitochondrial membrane potential, and calcium homeostasis in human lymphocyte death induced by nickel carbonate hydroxide in vitro

    Energy Technology Data Exchange (ETDEWEB)

    M' Bemba-Meka, Prosper [Faculty of Medicine, Universite de Montreal, QC (Canada); University of Louisville, Department of Pharmacology and Toxicology, Center for Genetics and Molecular Medicine, Louisville, KY (United States); Lemieux, Nicole [Universite de Montreal, Department of Pathology and Cellular Biology, Main Station, P.O. Box 6128, Montreal, QC (Canada); Chakrabarti, Saroj K. [Faculty of Medicine, Universite de Montreal, QC (Canada)

    2006-07-15

    When isolated human lymphocytes were treated in vitro with various concentrations of soluble form of nickel carbonate hydroxide (NiCH) (0-1 mM), at 37 C for 4 h, both concentration- and time-dependent effects of NiCH on lymphocyte death were observed. Increased generation of hydrogen peroxide (H{sub 2}O{sub 2}), superoxide anion (O{sub 2} {sup -}), depletion of both no protein (NP-) and protein (P-) sulfhydryl (SH) contents and lipid peroxidation (LPO) were induced by NiCH. Pretreatment of lymphocytes with either catalase (H{sub 2}O{sub 2} scavenger), or deferoxamine (DFO) (iron chelator), or excess glutathione (GSH) (an antioxidant) not only significantly reduced the NiCH-induced generation of H{sub 2}O{sub 2} and LPO, but also increased the NP-SH and P-SH contents initially reduced by NiCH. NiCH-induced generation of excess O{sub 2} {sup -} but not excess LPO was significantly reduced by pretreatment with superoxide dismutase (SOD). NiCH-induced lymphocyte death was significantly prevented by pre-treatment with either catalase, or dimethylthiourea/mannitol (hydroxyl radical scavengers), or DFO, or excess GSH/N-acetylcysteine. NiCH-induced lymphocyte death was also significantly prevented by pretreatment with excess SOD. Thus, various types of oxidative stresses play an important role in NiCH-induced lymphocyte death. Cotreatment with cyclosporin A, a specific inhibitor of alteration in mitochondrial membrane potential ({delta}{psi}{sub m}), not only inhibited NiCH-induced alteration in {delta}{psi}{sub m}, but also significantly prevented Ni-compound-induced lymphocyte death. Furthermore, NiCH-induced destabilization of cellular calcium homeostasis. As such, NiCH-induced lymphocyte death was significantly prevented by modulating intracellular calcium fluxes such as Ca{sup 2+} channel blockers and intracellular Ca{sup 2+} antagonist. Thus, the mechanism of NiCH (soluble form)-induced activation of lymphocyte death signalling pathways involves not only the excess

  4. Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta.

    Directory of Open Access Journals (Sweden)

    Wayne A Cabral

    2016-07-01

    Full Text Available Recessive osteogenesis imperfecta (OI is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50-70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes.

  5. Absence of the ER Cation Channel TMEM38B/TRIC-B Disrupts Intracellular Calcium Homeostasis and Dysregulates Collagen Synthesis in Recessive Osteogenesis Imperfecta

    Science.gov (United States)

    Cabral, Wayne A.; Ishikawa, Masaki; Garten, Matthias; Makareeva, Elena N.; Sargent, Brandi M.; Weis, MaryAnn; Barnes, Aileen M.; Webb, Emma A.; Shaw, Nicholas J.; Ala-Kokko, Leena; Lacbawan, Felicitas L.; Högler, Wolfgang; Leikin, Sergey; Blank, Paul S.; Zimmerberg, Joshua; Eyre, David R.; Yamada, Yoshihiko; Marini, Joan C.

    2016-01-01

    Recessive osteogenesis imperfecta (OI) is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50–70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes. PMID:27441836

  6. Polyamines mediate abnormal Ca2+ transport and Ca2+-induced cardiac cell injury in the calcium paradox

    International Nuclear Information System (INIS)

    Trout, J.J.; Koenig, H.; Goldstone, A.D.; Lu, C.Y.; Fan, C.C.

    1986-01-01

    Ca 2+ -free perfusion renders heart cells Ca 2+ -sensitive so that readmission of Ca 2+ causes a sudden massive cellular injury attributed to abnormal entry of Ca 2+ into cells (Ca paradox). Hormonal stimulation of Ca 2+ fluxes was earlier shown to be mediated by polyamines (PA). 5 min perfusion of rat heart with Ca 2+ -free medium induce a prompt 40-50% decline in levels of the PA putrescine (PUT), spermidine and spermine and their rate-regulatory synthetic enzyme ornithine decarboxylase (ODC), and readmission of Ca 2+ -containing medium abruptly ( 2+ reperfusion-induced increases in ODC and PA and also prevented increased 45 Ca 2+ uptake and heart injury, manifested by loss of contractility, release of enzymes (CPK, LDH), myoglobin and protein, and E.M. lesions (contracture bands, mitochondrial changes). 1 mM PUT negated DFMO inhibition, repleted heart PA and restored Ca 2+ reperfusion-induced 45 Ca 2+ influx and cell injury. These data indicate that the Ca 2+ -directed depletion-repletion cycle of ODC and PA triggers excessive transsarcolemmal Ca 2+ transport leading to the calcium paradox

  7. Arsenic-induced alteration in intracellular calcium homeostasis induces head kidney macrophage apoptosis involving the activation of calpain-2 and ERK in Clarias batrachus

    International Nuclear Information System (INIS)

    Banerjee, Chaitali; Goswami, Ramansu; Datta, Soma; Rajagopal, R.; Mazumder, Shibnath

    2011-01-01

    We had earlier shown that exposure to arsenic (0.50 μM) caused caspase-3 mediated head kidney macrophage (HKM) apoptosis involving the p38-JNK pathway in Clarias batrachus. Here we examined the roles of calcium (Ca 2+ ) and extra-cellular signal-regulated protein kinase (ERK), the other member of MAPK-pathway on arsenic-induced HKM apoptosis. Arsenic-induced HKM apoptosis involved increased expression of ERK and calpain-2. Nifedipine, verapamil and EGTA pre-treatment inhibited the activation of calpain-2, ERK and reduced arsenic-induced HKM apoptosis as evidenced from reduced caspase-3 activity, Annexin V-FITC-propidium iodide and Hoechst 33342 staining. Pre-incubation with ERK inhibitor U 0126 inhibited the activation of calpain-2 and interfered with arsenic-induced HKM apoptosis. Additionally, pre-incubation with calpain-2 inhibitor also interfered with the activation of ERK and inhibited arsenic-induced HKM apoptosis. The NADPH oxidase inhibitor apocynin and diphenyleneiodonium chloride also inhibited ERK activation indicating activation of ERK in arsenic-exposed HKM also depends on signals from NADPH oxidase pathway. Our study demonstrates the critical role of Ca 2+ homeostasis on arsenic-induced HKM apoptosis. We suggest that arsenic-induced alteration in intracellular Ca 2+ levels initiates pro-apoptotic ERK and calpain-2; the two pathways influence each other positively and induce caspase-3 mediated HKM apoptosis. Besides, our study also indicates the role of ROS in the activation of ERK pathway in arsenic-induced HKM apoptosis in C. batrachus. - Highlights: → Altered Ca 2+ homeostasis leads to arsenic-induced HKM apoptosis. → Calpain-2 plays a critical role in the process. → ERK is pro-apoptotic in arsenic-induced HKM apoptosis. → Arsenic-induced HKM apoptosis involves cross talk between calpain-2 and ERK.

  8. The impact of LRP5 polymorphism (rs556442) on calcium homeostasis, bone mineral density, and body composition in Iranian children.

    Science.gov (United States)

    Ashouri, Elham; Meimandi, Elham Mahmoodi; Saki, Forough; Dabbaghmanesh, Mohammad Hossein; Omrani, Gholamhossein Ranjbar; Bakhshayeshkaram, Marzieh

    2015-11-01

    Failure to achieve optimal bone mass in childhood is the primary cause of decreased adult bone mineral density (BMD) and increased bone fragility in later life. Activating and inactivating LRP5 gene mutations has been associated with extreme bone-related phenotypes. Our aim was to investigate the role of LRP5 polymorphism on BMD, mineral biochemical parameters, and body composition in Iranian children. This cross-sectional study was performed on 9-18 years old children (125 boys, 137 girls). The serum level of calcium, phosphorous, alkaline phosphatase, and vitamin D parameters were checked. The body composition and BMD variables were measured by the Hologic system DXA. The rs566442 (V1119V) coding polymorphism in exon 15 of LRP5 was performed using PCR-RFLP method. Linear regression analysis, with adjustment for age, gender, body size parameters, and pubertal status was used to determine the association between LRP5 polymorphism (rs556442) and bone and body composition parameters. The allele frequency of the rs566442 gene was 35.5 % A and 63.9 % G. Our study revealed that LRP5 (rs556442) has not any significant influence on serum calcium, phosphorus, 25OHvitD, and serum alkaline phosphatase (P > 0.05). Total lean mass was greater in GG genotype (P = 0.028). Total body less head area (P = 0.044), spine BMD (P = 0.04), and total femoral BMC (P = 0.049) were lower in AG heterozygote genotype. This study show LRP5 polymorphism may associate with body composition and BMD in Iranian children. However, further investigations should be done to evaluate the role of other polymorphism.

  9. Calcium as a cardiovascular toxin in CKD-MBD.

    Science.gov (United States)

    Moe, Sharon M

    2017-07-01

    Disordered calcium balance and homeostasis are common in patients with chronic kidney disease. Such alterations are commonly associated with abnormal bone remodeling, directly and indirectly. Similarly, positive calcium balance may also be a factor in the pathogenesis of extra skeletal soft tissue and arterial calcification. Calcium may directly affect cardiac structure and function through direct effects to alter cell signaling due to abnormal intracellular calcium homeostasis 2) extra-skeletal deposition of calcium and phosphate in the myocardium and small cardiac arterioles, 3) inducing cardiomyocyte hypertrophy through calcium and hormone activation of NFAT signaling mechanisms, and 4) increased aorta calcification resulting in chronic increased afterload leading to hypertrophy. Similarly, calcium may alter vascular smooth muscle cell function and affect cell signaling which may predispose to a proliferative phenotype important in arteriosclerosis and arterial calcification. Thus, disorders of calcium balance and homeostasis due to CKD-MBD may play a role in the high cardiovascular burden observed in patients with CKD. Published by Elsevier Inc.

  10. Effects of 1,25-dihydroxyvitamin D3 on calcium and phosphorus homeostasis in sheep fed diets either adequate or restricted in calcium content.

    Science.gov (United States)

    Wilkens, M R; Mrochen, N; Breves, G; Schröder, B

    2010-04-01

    It was the aim of the present study to collect basic data on calcium (Ca) and phosphorus (P) homoeostasis in sheep. Two series of experiments were carried out to investigate the effects of 1,25-dihydroxyvitammin D(3) (calcitriol) in supraphysiological dosage in combination with varying alimentary Ca supply. In the first series, blood samples were collected over 72 h to determine the concentrations of total Ca (Ca), ionized Ca (Ca(2+)), inorganic phosphate (P(i)), and the bone resorption marker CrossLaps (CL). In the second series, measurements were carried out over 12h. In addition, urine samples were collected to calculate the fractional excretions (FE) of Ca and P(i). Changes in plasma macromineral concentrations (Psheep (Pbone by calcitriol exclusively in this group. From these data, it can be concluded that the sheep can be a suitable animal model for studying catabolic effects of Ca deficiency and calcitriol on bone metabolism. Copyright 2009 Elsevier Inc. All rights reserved.

  11. A novel network analysis approach reveals DNA damage, oxidative stress and calcium/cAMP homeostasis-associated biomarkers in frontotemporal dementia

    Science.gov (United States)

    Ferrari, Raffaele; Graziano, Francesca; Novelli, Valeria; Rossi, Giacomina; Galimberti, Daniela; Rainero, Innocenzo; Benussi, Luisa; Nacmias, Benedetta; Bruni, Amalia C.; Cusi, Daniele; Salvi, Erika; Borroni, Barbara; Grassi, Mario

    2017-01-01

    Frontotemporal Dementia (FTD) is the form of neurodegenerative dementia with the highest prevalence after Alzheimer’s disease, equally distributed in men and women. It includes several variants, generally characterized by behavioural instability and language impairments. Although few mendelian genes (MAPT, GRN, and C9orf72) have been associated to the FTD phenotype, in most cases there is only evidence of multiple risk loci with relatively small effect size. To date, there are no comprehensive studies describing FTD at molecular level, highlighting possible genetic interactions and signalling pathways at the origin FTD-associated neurodegeneration. In this study, we designed a broad FTD genetic interaction map of the Italian population, through a novel network-based approach modelled on the concepts of disease-relevance and interaction perturbation, combining Steiner tree search and Structural Equation Model (SEM) analysis. Our results show a strong connection between Calcium/cAMP metabolism, oxidative stress-induced Serine/Threonine kinases activation, and postsynaptic membrane potentiation, suggesting a possible combination of neuronal damage and loss of neuroprotection, leading to cell death. In our model, Calcium/cAMP homeostasis and energetic metabolism impairments are primary causes of loss of neuroprotection and neural cell damage, respectively. Secondly, the altered postsynaptic membrane potentiation, due to the activation of stress-induced Serine/Threonine kinases, leads to neurodegeneration. Our study investigates the molecular underpinnings of these processes, evidencing key genes and gene interactions that may account for a significant fraction of unexplained FTD aetiology. We emphasized the key molecular actors in these processes, proposing them as novel FTD biomarkers that could be crucial for further epidemiological and molecular studies. PMID:29020091

  12. A novel network analysis approach reveals DNA damage, oxidative stress and calcium/cAMP homeostasis-associated biomarkers in frontotemporal dementia.

    Directory of Open Access Journals (Sweden)

    Fernando Palluzzi

    Full Text Available Frontotemporal Dementia (FTD is the form of neurodegenerative dementia with the highest prevalence after Alzheimer's disease, equally distributed in men and women. It includes several variants, generally characterized by behavioural instability and language impairments. Although few mendelian genes (MAPT, GRN, and C9orf72 have been associated to the FTD phenotype, in most cases there is only evidence of multiple risk loci with relatively small effect size. To date, there are no comprehensive studies describing FTD at molecular level, highlighting possible genetic interactions and signalling pathways at the origin FTD-associated neurodegeneration. In this study, we designed a broad FTD genetic interaction map of the Italian population, through a novel network-based approach modelled on the concepts of disease-relevance and interaction perturbation, combining Steiner tree search and Structural Equation Model (SEM analysis. Our results show a strong connection between Calcium/cAMP metabolism, oxidative stress-induced Serine/Threonine kinases activation, and postsynaptic membrane potentiation, suggesting a possible combination of neuronal damage and loss of neuroprotection, leading to cell death. In our model, Calcium/cAMP homeostasis and energetic metabolism impairments are primary causes of loss of neuroprotection and neural cell damage, respectively. Secondly, the altered postsynaptic membrane potentiation, due to the activation of stress-induced Serine/Threonine kinases, leads to neurodegeneration. Our study investigates the molecular underpinnings of these processes, evidencing key genes and gene interactions that may account for a significant fraction of unexplained FTD aetiology. We emphasized the key molecular actors in these processes, proposing them as novel FTD biomarkers that could be crucial for further epidemiological and molecular studies.

  13. Dual actions of lindane (γ-hexachlorocyclohexane) on calcium homeostasis and exocytosis in rat PC12 cells

    International Nuclear Information System (INIS)

    Heusinkveld, Harm J.; Thomas, Gareth O.; Lamot, Ischa; Berg, Martin van den; Kroese, Alfons B.A.; Westerink, Remco H.S.

    2010-01-01

    The persistent organochlorine pesticide lindane is still abundantly found in the environment and in human and animal tissue samples. Lindane induces a wide range of adverse health effects, which are at least partially mediated via the known inhibition of GABA A and glycine receptors. Additionally, lindane has been reported to increase the basal intracellular Ca 2+ concentration ([Ca 2+ ] i ). As Ca 2+ triggers many cellular processes, including cell death and vesicular neurotransmitter release (exocytosis), we investigated whether lindane affects exocytosis, Ca 2+ homeostasis, production of reactive oxygen species (ROS) and cytotoxicity in neuroendocrine PC12 cells. Amperometric recordings and [Ca 2+ ] i imaging experiments with fura-2 demonstrated that lindane (≥ 10 μM) rapidly increases basal exocytosis and basal [Ca 2+ ] i . Additional imaging and electrophysiological recordings revealed that this increase was largely due to a lindane-induced membrane depolarization and subsequent opening of N- and P/Q-type voltage-gated Ca 2+ channels (VGCC). On the other hand, lindane (≥ 3 μM) induced a concentration-dependent but non-specific inhibition of VGCCs, thereby limiting the lindane-induced increase in basal [Ca 2+ ] i and exocytosis. Importantly, the non-specific inhibition of VGCCs also reduced stimulation-evoked exocytosis and Ca 2+ influx. Though lindane exposure concentration-dependently increased ROS production, cell viability was not affected indicating that the used concentrations were not acute cytotoxic. These combined findings indicate that lindane has two, partly counteracting effects. Lindane causes membrane depolarization, thereby increasing basal [Ca 2+ ] i and exocytosis. In parallel, lindane inhibits VGCCs, thereby limiting the basal effects and reducing stimulation-evoked [Ca 2+ ] i and exocytosis. This study further underlines the need to consider presynaptic, non-receptor-mediated effects in human risk assessment.

  14. Selective effect of hydroxyapatite nanoparticles on osteoporotic and healthy bone formation correlates with intracellular calcium homeostasis regulation.

    Science.gov (United States)

    Zhao, Rui; Xie, Pengfei; Zhang, Kun; Tang, Zhurong; Chen, Xuening; Zhu, Xiangdong; Fan, Yujiang; Yang, Xiao; Zhang, Xingdong

    2017-09-01

    Adequate bone substitutes osseointegration has been difficult to achieve in osteoporosis. Hydroxyapatite of the osteoporotic bone, secreted by pathologic osteoblasts, had a smaller crystal size and lower crystallinity than that of the normal. To date, little is known regarding the interaction of synthetic hydroxyapatite nanoparticles (HANPs) with osteoblasts born in bone rarefaction. The present study investigated the biological effects of HANPs on osteoblastic cells derived from osteoporotic rat bone (OVX-OB), in comparison with the healthy ones (SHM-OB). A selective effect of different concentrations of HANPs on the two cell lines was observed that the osteoporotic osteoblasts had a higher tolerance. Reductions in cell proliferation, ALP activity, collagen secretion and osteoblastic gene expressions were found in the SHM-OB when administered with HANPs concentration higher than 25µg/ml. In contrast, those of the OVX-OB suffered no depression but benefited from 25 to 250µg/ml HANPs in a dose-dependent manner. We demonstrated that the different effects of HANPs on osteoblasts were associated with the intracellular calcium influx into the endoplasmic reticulum. The in vivo bone defect model further confirmed that, with a critical HANPs concentration administration, the osteoporotic rats had more and mechanically matured new bone formation than the non-treated ones, whilst the sham rats healed no better than the natural healing control. Collectively, the observed epigenetic regulation of osteoblastic cell function by HANPs has significant implication on defining design parameters for a potential therapeutic use of nanomaterials. In this study, we investigated the biological effects of hydroxyapatite nanoparticles (HANPs) on osteoporotic rat bone and the derived osteoblast. Our findings revealed a previously unrecognized phenomenon that the osteoporotic individuals could benefit from higher concentrations of HANPs, as compared with the healthy individuals. The in

  15. Fatty Acid Oxidation and Calcium Homeostasis are Involved in the Rescue of Bupivacaine Induced Cardiotoxicity by Lipid Emulsion in Rats

    Science.gov (United States)

    Partownavid, Parisa; Umar, Soban; Li, Jingyuan; Rahman, Siamak; Eghbali, Mansoureh

    2012-01-01

    OBJECTIVES Lipid Emulsion (LE) has been shown to be effective in resuscitating bupivacaine-induced cardiac arrest but its mechanism of action is not clear. Here we investigated whether fatty acid oxidation is required for rescue of bupivacaine induced cardiotoxicity by LE in rats. We also compared the mitochondrial function and calcium threshold for triggering of mitochondrial permeability transition pore (mPTP) opening in bupivacaine-induced cardiac arrest before and after resuscitation with LE. DESIGN Prospective, randomized, animal study. SETTING University Research Laboratory. SUBJECTS Adult male Sprague-Dawley rats. INTERVENTIONS Asystole was achieved with a single dose of bupivacaine (10mg/kg over 20seconds, i.v.) and 20% LE infusion (5ml/kg bolus, and 0.5ml/kg/min maintenance) with cardiac massage started immediately. The rats in CVT group were pretreated with a single dose of fatty acid oxidation inhibitor CVT (0.5, 0.25, 0.125 or 0.0625mg/kg bolus i.v.) 5min prior to inducing asystole by bupivacaine overdose. Heart rate (HR), ejection fraction (EF), fractional shortening (FS), the threshold for opening of mPTP, oxygen consumption and membrane potential were measured. The values are Mean±SEM. MEASUREMENTS AND MAIN RESULTS Administration of bupivacaine resulted in asystole. ILP infusion improved the cardiac function gradually as the EF was fully recovered within 5min (EF=64±4% and FS=36±3%, n=6) and heart rate increased to 239±9 beats/min (71% recovery, n=6) within 10min. LE was only able to rescue rats pretreated with low dose of CVT (0.0625mg/kg) (HR=~181±11 beats/min at 10 min, recovery of 56%; EF=50±1%; FS=26±0.6% at 5min, n=3) but was unable to resuscitate rats pretreated with higher doses of CVT (0.5, 0.25 or 0.125mg/kg). The calcium retention capacity in response to Ca2+ overload was significantly higher in cardiac mitochondria isolated from rats resuscitated with 20% LE compared to the group that did not receive ILP after bupivacaine

  16. Potassium and calcium application ameliorates growth and oxidative homeostasis in salt-stressed indian mustard (brassica juncea) plants

    International Nuclear Information System (INIS)

    Yousuf, P. Y.; Ahmad, A.; Hemant, M.; Ganie, A. H.; Iqbal, M.; Aref, I. M.

    2015-01-01

    The effect of potassium (K) and calcium (Ca) on growth and antioxidant defence system of salt-stressed Indian mustard plants was studied. Twenty-day-old Indian mustard plants grown hydroponically in Hoagland growth medium were randomly divided into five groups. To served as control and did not receive any additional K or Ca (except that present in Hoagland solution), T1 received 150 mM NaCl, T2 was given an additional doze of 6 mM K, T3 was given 5.6 mM Ca as additional doze, while as T4 received a combination of 150 mM NaCl + 6 mM K + 5.6 mM Ca. The response of the plants was studied ten days after treatment. Salt stress inhibited growth parameters including biomass, chlorophyll content, protein content and NR activity. Membrane damage was induced by the salt treatment with a concurrent increase in antioxidant defence system and proline content. Individual application of K and Ca mitigated the negative influence of the stress with the maximum alleviating potential exhibited by the combined application of these nutrients. Results obtained on real time expression of genes encoding enzymatic antioxidants (SOD, APX, CAT and GR), NR and proline supported our findings with biochemical assays. We conclude from the study that maintaining high K and Ca levels may serve as an effective means for regulating the growth and productivity of Indian mustard plants under saline conditions. (author)

  17. Non-classical mechanisms of transcriptional regulation by the vitamin D receptor: insights into calcium homeostasis, immune system regulation and cancer chemoprevention.

    Science.gov (United States)

    Dimitrov, Vassil; Salehi-Tabar, Reyhaneh; An, Beum-Soo; White, John H

    2014-10-01

    Hormonal 1,25-dihydroxyvitamin D [1,25(OH)2D] signals through the nuclear vitamin D receptor (VDR), a ligand-regulated transcription factor. Gene expression profiling studies have revealed that 1,25(OH)2D signaling through the VDR can lead to activation or repression of target gene transcription in roughly equal proportions. Classically, transcriptional regulation by the VDR, similar to other nuclear receptors, has been characterized by its capacity to recognize high affinity cognate vitamin D response elements (VDREs), located in the regulatory regions of target genes. Several biochemical studies revealed that the VDRE-bound receptor recruits a series of coregulatory proteins, leading to transactivation of adjacent target genes. However, genome-wide and other analyses of VDR binding have revealed that a subset of VDR binding sites does not contain VDREs, and that VDREs are not associated with transcriptionally repressed VDR target genes. Work over the last ∼20 years and in particular recent findings have revealed a diverse array of mechanisms by which VDR can form complexes with several other classes of transcriptional activators, leading to repression of gene transcription. Moreover, these efforts have led to several insights into the molecular basis for the physiological regulation of calcium homeostasis, immune system function and cancer chemoprevention by 1,25(OH)2D/VDR signaling. This article is part of a Special Issue entitled '16th Vitamin D Workshop'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. TMBIM3/GRINA is a novel unfolded protein response (UPR) target gene that controls apoptosis through the modulation of ER calcium homeostasis.

    Science.gov (United States)

    Rojas-Rivera, D; Armisén, R; Colombo, A; Martínez, G; Eguiguren, A L; Díaz, A; Kiviluoto, S; Rodríguez, D; Patron, M; Rizzuto, R; Bultynck, G; Concha, M L; Sierralta, J; Stutzin, A; Hetz, C

    2012-06-01

    Transmembrane BAX inhibitor motif-containing (TMBIM)-6, also known as BAX-inhibitor 1 (BI-1), is an anti-apoptotic protein that belongs to a putative family of highly conserved and poorly characterized genes. Here we report the function of TMBIM3/GRINA in the control of cell death by endoplasmic reticulum (ER) stress. Tmbim3 mRNA levels are strongly upregulated in cellular and animal models of ER stress, controlled by the PERK signaling branch of the unfolded protein response. TMBIM3/GRINA synergies with TMBIM6/BI-1 in the modulation of ER calcium homeostasis and apoptosis, associated with physical interactions with inositol trisphosphate receptors. Loss-of-function studies in D. melanogaster demonstrated that TMBIM3/GRINA and TMBIM6/BI-1 have synergistic activities against ER stress in vivo. Similarly, manipulation of TMBIM3/GRINA levels in zebrafish embryos revealed an essential role in the control of apoptosis during neuronal development and in experimental models of ER stress. These findings suggest the existence of a conserved group of functionally related cell death regulators across species beyond the BCL-2 family of proteins operating at the ER membrane.

  19. A Putative Chloroplast-Localized Ca(2+)/H(+) Antiporter CCHA1 Is Involved in Calcium and pH Homeostasis and Required for PSII Function in Arabidopsis.

    Science.gov (United States)

    Wang, Chao; Xu, Weitao; Jin, Honglei; Zhang, Taijie; Lai, Jianbin; Zhou, Xuan; Zhang, Shengchun; Liu, Shengjie; Duan, Xuewu; Wang, Hongbin; Peng, Changlian; Yang, Chengwei

    2016-08-01

    Calcium is important for chloroplast, not only in its photosynthetic but also nonphotosynthetic functions. Multiple Ca(2+)/H(+) transporters and channels have been described and studied in the plasma membrane and organelle membranes of plant cells; however, the molecular identity and physiological roles of chloroplast Ca(2+)/H(+) antiporters have remained unknown. Here we report the identification and characterization of a member of the UPF0016 family, CCHA1 (a chloroplast-localized potential Ca(2+)/H(+) antiporter), in Arabidopsis thaliana. We observed that the ccha1 mutant plants developed pale green leaves and showed severely stunted growth along with impaired photosystem II (PSII) function. CCHA1 localizes to the chloroplasts, and the levels of the PSII core subunits and the oxygen-evolving complex were significantly decreased in the ccha1 mutants compared with the wild type. In high Ca(2+) concentrations, Arabidopsis CCHA1 partially rescued the growth defect of yeast gdt1Δ null mutant, which is defective in a Ca(2+)/H(+) antiporter. The ccha1 mutant plants also showed significant sensitivity to high concentrations of CaCl2 and MnCl2, as well as variation in pH. Taken these results together, we propose that CCHA1 might encode a putative chloroplast-localized Ca(2+)/H(+) antiporter with critical functions in the regulation of PSII and in chloroplast Ca(2+) and pH homeostasis in Arabidopsis. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  20. The Function of the Mitochondrial Calcium Uniporter in Neurodegenerative Disorders

    Directory of Open Access Journals (Sweden)

    Yajin Liao

    2017-02-01

    Full Text Available The mitochondrial calcium uniporter (MCU—a calcium uniporter on the inner membrane of mitochondria—controls the mitochondrial calcium uptake in normal and abnormal situations. Mitochondrial calcium is essential for the production of adenosine triphosphate (ATP; however, excessive calcium will induce mitochondrial dysfunction. Calcium homeostasis disruption and mitochondrial dysfunction is observed in many neurodegenerative disorders. However, the role and regulatory mechanism of the MCU in the development of these diseases are obscure. In this review, we summarize the role of the MCU in controlling oxidative stress-elevated mitochondrial calcium and its function in neurodegenerative disorders. Inhibition of the MCU signaling pathway might be a new target for the treatment of neurodegenerative disorders.

  1. Intracellular calcium homeostasis and signaling.

    Science.gov (United States)

    Brini, Marisa; Calì, Tito; Ottolini, Denis; Carafoli, Ernesto

    2013-01-01

    Ca(2+) is a universal carrier of biological information: it controls cell life from its origin at fertilization to its end in the process of programmed cell death. Ca(2+) is a conventional diffusible second messenger released inside cells by the interaction of first messengers with plasma membrane receptors. However, it can also penetrate directly into cells to deliver information without the intermediation of first or second messengers. Even more distinctively, Ca(2+) can act as a first messenger, by interacting with a plasma membrane receptor to set in motion intracellular signaling pathways that involve Ca(2+) itself. Perhaps the most distinctive property of the Ca(2+) signal is its ambivalence: while essential to the correct functioning of cells, Ca(2+) becomes an agent that mediates cell distress, or even (toxic) cell death, if its concentration and movements inside cells are not carefully tuned. Ca(2+) is controlled by reversible complexation to specific proteins, which could be pure Ca(2+) buffers, or which, in addition to buffering Ca(2+), also decode its signal to pass it on to targets. The most important actors in the buffering of cell Ca(2+) are proteins that transport it across the plasma membrane and the membrane of the organelles: some have high Ca(2+) affinity and low transport capacity (e.g., Ca(2+) pumps), others have opposite properties (e.g., the Ca(2+) uptake system of mitochondria). Between the initial event of fertilization, and the terminal event of programmed cell death, the Ca(2+) signal regulates the most important activities of the cell, from the expression of genes, to heart and muscle contraction and other motility processes, to diverse metabolic pathways involved in the generation of cell fuels.

  2. Calcium and Bone Metabolism Indices.

    Science.gov (United States)

    Song, Lu

    2017-01-01

    Calcium and inorganic phosphate are of critical importance for many body functions, thus the regulations of their plasma concentrations are tightly controlled by the concerted actions of reabsorption/excretion in the kidney, absorption in the intestines, and exchange from bone, the major reservoir for calcium and phosphate in the body. Parathyroid hormone (PTH) and 1,25-dihydroxyvitamin D (1,25(OH) 2 D) control calcium homeostasis, whereas PTH, 1,25(OH) 2 D, and bone-derived fibroblast growth factor 23 (FGF 23) control phosphate homeostasis. Hypoparathyroidism can cause hypocalcemia and hyperphosphatemia, whereas deficient vitamin D actions can cause osteomalacia in adults and rickets in children. Hyperparathyroidism, alternatively, can cause hypercalcemia and hypophosphatemia. Laboratory tests of calcium, phosphate, PTH, and 25-hydroxyvitamin D are very useful in the diagnosis of abnormalities associated with calcium and/or phosphate metabolisms. Bone is constantly remodeled throughout life in response to mechanical stress and a need for calcium in extracellular fluids. Metabolic bone diseases such as osteoporosis, osteomalacia in adults or rickets in children, and renal osteodystrophy develop when bone resorption exceeds bone formation. Bone turnover markers (BTM) such as serum N-terminal propeptide of type I procollagen (P1NP) and C-terminal collagen cross-link (CTX) may be useful in predicting future fracture risk or monitoring the response to anti-resorptive therapy. There is a need to standardize sample collection protocols because certain BTMs exhibit large circadian variations and tend to be influenced by food intakes. In the United States, a project to standardize BTM sample collection protocols and to establish the reference intervals for serum P1NP and serum CTX is ongoing. We anticipate the outcome of this project to shine lights on the standardization of BTM assays, sample collection protocols, reference intervals in relation to age, sex, and ethnic

  3. Proteomic analysis of human bladder epithelial cells by 2D blue native SDS-PAGE reveals TCDD-induced alterations of calcium and iron homeostasis possibly mediated by nitric oxide.

    Science.gov (United States)

    Verma, Nisha; Pink, Mario; Petrat, Frank; Rettenmeier, Albert W; Schmitz-Spanke, Simone

    2015-01-02

    A proteomic analysis of the interaction among multiprotein complexes involved in 2,3,7,8-dibenzo-p-dioxin (TCDD)-mediated toxicity in urinary bladder epithelial RT4 cells was performed using two-dimensional blue native SDS-PAGE (2D BN/SDS-PAGE). To enrich the protein complexes, unexposed and TCDD-exposed cells were fractionated. BN/SDS-PAGE of the resulting fractions led to an effective separation of proteins and protein complexes of various origins, including cell membrane, mitochondria, and other intracellular compartments. Major differences between the proteome of control and exposed cells involved the alteration of many calcium-regulated proteins (calmodulin, protein S100-A2, annexin A5, annexin A10, gelsolin isoform b) and iron-regulated proteins (ferritin, heme-binding protein 2, transferrin). On the basis of these findings, the intracellular calcium concentration was determined, revealing a significant increase after 24 h of exposure to TCDD. Moreover, the concentration of the labile iron pool (LIP) was also significantly elevated in TCDD-exposed cells. This increase was strongly inhibited by the calmodulin (CaM) antagonist W-7, which pointed toward a possible interaction between iron and calcium signaling. Because nitric oxide (NO) production was significantly enhanced in TCDD-exposed cells and was also inhibited by W-7, we hypothesize that alterations in calcium and iron homeostasis upon exposure to TCDD may be linked through NO generated by CaM-activated nitric oxide synthase. In our model, we propose that NO produced upon TCDD exposure interacts with the iron centers of iron-regulatory proteins (IRPs) that modulate the alteration of ferritin and transferrin, resulting in an augmented cellular LIP and, hence, increased toxicity.

  4. N-acetyl-l-cysteine and Mn2+ attenuate Cd2+-induced disturbance of the intracellular free calcium homeostasis in cultured cerebellar granule neurons.

    Science.gov (United States)

    Isaev, Nickolay K; Avilkina, Svetlana; Golyshev, Sergey A; Genrikhs, Elisaveta E; Alexandrova, Olga P; Kapkaeva, Marina R; Stelmashook, Elena V

    2018-01-15

    Cadmium is a highly toxic heavy metal that is capable of accumulating in the body via direct exposure or through the alimentary and respiratory tract, leading to neurodegeneration. In this article, we show that the application of CdCl 2 (0.001-0.005mM) for 48h induced high dose-dependent death rate of cultured cerebellar granule neurons (CGNs). Unlike Trolox or vitamin E, antioxidant N-acetyl-l-cysteine (NAC, 1mM) and Mn 2+ (0.0025-0.005mM) significantly protected CGNs from this toxic effect. Using Fluo-4 AM, measurements of intracellular calcium ions demonstrated that 24h-exposure to Cd 2+ induced intensive increase of Fluo-4 fluorescence in neurons accompanied by mitochondria swelling. These data imply that the cadmium-induced Ca 2+ increase is an important element in the death of neurons due to toxic effect of cadmium and the mechanism of protective action of manganese and NAC is mediated by the prevention of increase in calcium levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Salubrinal protects human skin fibroblasts against UVB-induced cell death by blocking endoplasmic reticulum (ER) stress and regulating calcium homeostasis.

    Science.gov (United States)

    Ji, Chao; Yang, Bo; Huang, Shu-Ying; Huang, Jin-Wen; Cheng, Bo

    2017-12-02

    The role of UVB in skin photo damages has been widely reported. Overexposure to UVB will induce severe DNA damages in epidermal cells and cause most cytotoxic symptoms. In the present study, we tested the potential activity of salubrinal, a selective inhibitor of Eukaryotic Initiation Factor 2 (eIF2) -alpha phosphatase, against UV-induced skin cell damages. We first exposed human fibroblasts to UVB radiation and evaluated the cytosolic Ca 2+ level as well as the induction of ER stress. We found that UVB radiation induced the depletion of ER Ca 2+ and increased the expression of ER stress marker including phosphorylated PERK, CHOP, and phosphorylated IRE1α. We then determined the effects of salubrinal in skin cell death induced by UVB radiation. We observed that cells pre-treated with salubrinal had a higher survival rate compared to cells treated with UVB alone. Pre-treatment with salubrinal successfully re-established the ER function and Ca 2+ homeostasis. Our results suggest that salubrinal can be a potential therapeutic agents used in preventing photoaging and photo damages. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Dengue and Calcium

    OpenAIRE

    Shivanthan, Mitrakrishnan C; Rajapakse, Senaka

    2014-01-01

    Dengue is potentially fatal unless managed appropriately. No specific treatment is available and the mainstay of treatment is fluid management with careful monitoring, organ support, and correction of metabolic derangement. Evidence with regards to the role of calcium homeostasis in dengue is limited. Low blood calcium levels have been demonstrated in dengue infection and hypocalcemia maybe more pronounced in more severe forms. The cause of hypocalcemia is likely to be multifactorial. Calcium...

  7. The Plasma Membrane Calcium Pump

    Science.gov (United States)

    Rasmussen, H.

    1983-01-01

    Three aspect of cellular calcium metabolism in animal cells was discussed including the importance of the plasma membrane in calcium homeostasis, experiments dealing with the actual mechanism of the calcium pump, and the function of the pump in relationship to the mitochondria and to the function of calmodulin in the intact cell.

  8. Stochastic Simulation of Cardiac Ventricular Myocyte Calcium Dynamics and Waves

    OpenAIRE

    Tuan, Hoang-Trong Minh; Williams, George S. B.; Chikando, Aristide C.; Sobie, Eric A.; Lederer, W. Jonathan; Jafri, M. Saleet

    2011-01-01

    A three dimensional model of calcium dynamics in the rat ventricular myocyte was developed to study the mechanism of calcium homeostasis and pathological calcium dynamics during calcium overload. The model contains 20,000 calcium release units (CRUs) each containing 49 ryanodine receptors. The model simulates calcium sparks with a realistic spontaneous calcium spark rate. It suggests that in addition to the calcium spark-based leak, there is an invisible calcium leak caused by the stochastic ...

  9. Fatty-acid oxidation and calcium homeostasis are involved in the rescue of bupivacaine-induced cardiotoxicity by lipid emulsion in rats.

    Science.gov (United States)

    Partownavid, Parisa; Umar, Soban; Li, Jingyuan; Rahman, Siamak; Eghbali, Mansoureh

    2012-08-01

    Lipid emulsion has been shown to be effective in resuscitating bupivacaine-induced cardiac arrest but its mechanism of action is not clear. Here we investigated whether fatty-acid oxidation is required for rescue of bupivacaine-induced cardiotoxicity by lipid emulsion in rats. We also compared the mitochondrial function and calcium threshold for triggering of mitochondrial permeability transition pore opening in bupivacaine-induced cardiac arrest before and after resuscitation with lipid emulsion. Prospective, randomized animal study. University research laboratory. Adult male Sprague-Dawley rats. Asystole was achieved with a single dose of bupivacaine (10 mg/kg over 20 secs, intravenously) and 20% lipid emulsion infusion (5 mL/kg bolus, and 0.5 mL/kg/min maintenance), and cardiac massage started immediately. The rats in CVT-4325 (CVT) group were pretreated with a single dose of fatty-acid oxidation inhibitor CVT (0.5, 0.25, 0.125, or 0.0625 mg/kg bolus intravenously) 5 mins prior to inducing asystole by bupivacaine overdose. Heart rate, ejection fraction, fractional shortening, the threshold for opening of mitochondrial permeability transition pore, oxygen consumption, and membrane potential were measured. The values are mean ± SEM. Administration of bupivacaine resulted in asystole. Lipid Emulsion infusion improved the cardiac function gradually as the ejection fraction was fully recovered within 5 mins (ejection fraction=64±4% and fractional shortening=36±3%, n=6) and heart rate increased to 239±9 beats/min (71% recovery, n=6) within 10 mins. Lipid emulsion was only able to rescue rats pretreated with low dose of CVT (0.0625 mg/kg; heart rate~181±11 beats/min at 10 mins, recovery of 56%; ejection fraction=50±1%; fractional shortening=26±0.6% at 5 mins, n=3), but was unable to resuscitate rats pretreated with higher doses of CVT (0.5, 0.25, or 0.125 mg/kg). The calcium-retention capacity in response to Ca²⁺ overload was significantly higher in cardiac

  10. The platinum (II) complex [Pt(O,O'-acac)(γ-acac)(DMS)] alters the intracellular calcium homeostasis in MCF-7 breast cancer cells.

    Science.gov (United States)

    Muscella, Antonella; Calabriso, Nadia; Vetrugno, Carla; Fanizzi, Francesco Paolo; De Pascali, Sandra Angelica; Storelli, Carlo; Marsigliante, Santo

    2011-01-01

    It was previously demonstrated that [Pt(O,O'-acac)(γ-acac)(DMS)] exerted toxic effects at high doses, whilst sub-cytotoxic concentrations induced anoikis and decreased cell migration. Aim of this study was to investigate the hypothesis that [Pt(O,O'-acac)(γ-acac)(DMS)] alters the [Ca(2+)](i) and that this is linked to its ability to trigger rapid apoptosis in MCF-7 cells. Thus, cells were treated with [Pt(O,O'-acac)(γ-acac)(DMS)] and its effects on some of the systems regulating Ca(2+) homeostasis were studied, also in cells dealing with the complex changes occurring during the Ca(2+) signalling evoked by extracellular stimuli. [Pt(O,O'-acac)(γ-acac)(DMS)] caused the decrease of PMCA activity (but not SERCA or SPCA) and Ca(2+) membrane permeability. These two opposite effects on [Ca(2+)](i) resulted in its overall increase from 102±12nM to 250±24nM after 15min incubation. The effects of [Pt(O,O'-acac)(γ-acac)(DMS)] were also evident when cells were stimulated with ATP: the changes in Ca(2+) levels caused by purinergic stimulation resulted altered due to decreased PMCA activity and to the closure of Ca(2+) channels opened by purinergic receptor. Conversely, [Pt(O,O'-acac)(γ-acac)(DMS)] did not affect the store-operated Ca(2+) channels opened by thapsigargin or by ATP. [Pt(O,O'-acac)(γ-acac)(DMS)] provoked the activation of PKC-α and the production of ROS that were responsible for the Ca(2+) permeability and PMCA activity decrease, respectively. The overall effect of [Pt(O,O'-acac)(γ-acac)(DMS)] is to increase the [Ca(2+)](i), an effect that is likely to be linked to its ability to trigger rapid apoptosis in MCF-7 cells. These data reinforce the notion that [Pt(O,O'-acac)(γ-acac)(DMS)] would be a promising drug in cancer treatment. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Inhibition of NAPDH Oxidase 2 (NOX2 Prevents Oxidative Stress and Mitochondrial Abnormalities Caused by Saturated Fat in Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Leroy C Joseph

    Full Text Available Obesity and high saturated fat intake increase the risk of heart failure and arrhythmias. The molecular mechanisms are poorly understood. We hypothesized that physiologic levels of saturated fat could increase mitochondrial reactive oxygen species (ROS in cardiomyocytes, leading to abnormalities of calcium homeostasis and mitochondrial function. We investigated the effect of saturated fat on mitochondrial function and calcium homeostasis in isolated ventricular myocytes. The saturated fatty acid palmitate causes a decrease in mitochondrial respiration in cardiomyocytes. Palmitate, but not the monounsaturated fatty acid oleate, causes an increase in both total cellular ROS and mitochondrial ROS. Palmitate depolarizes the mitochondrial inner membrane and causes mitochondrial calcium overload by increasing sarcoplasmic reticulum calcium leak. Inhibitors of PKC or NOX2 prevent mitochondrial dysfunction and the increase in ROS, demonstrating that PKC-NOX2 activation is also required for amplification of palmitate induced-ROS. Cardiomyocytes from mice with genetic deletion of NOX2 do not have palmitate-induced ROS or mitochondrial dysfunction. We conclude that palmitate induces mitochondrial ROS that is amplified by NOX2, causing greater mitochondrial ROS generation and partial depolarization of the mitochondrial inner membrane. The abnormal sarcoplasmic reticulum calcium leak caused by palmitate could promote arrhythmia and heart failure. NOX2 inhibition is a potential therapy for heart disease caused by diabetes or obesity.

  12. Mice deficient in carbonic anhydrase type 8 exhibit motor dysfunctions and abnormal calcium dynamics in the somatic region of cerebellar granule cells.

    Science.gov (United States)

    Lamont, Matthew G; Weber, John T

    2015-06-01

    The waddles (wdl) mouse is characterized by a namesake "side-to-side" waddling gait due to a homozygous mutation of the Car8 gene. This mutation results in non-functional copies of the protein carbonic anhydrase type 8. Rota-rod testing was conducted to characterize the wdl mutations' effect on motor output. Results indicated that younger homozygotes outperformed their older cohorts, an effect not seen in previous studies. Heterozygotes, which were thought to be free of motor impairment, displayed motor learning deficiencies when compared with wild type performance. Acute cerebellar slices were then utilized for fluorescent calcium imaging experiments, which revealed significant alterations in cerebellar granule cell somatic calcium signaling when exposed to glutamate. The contribution of GABAergic signaling to these alterations was also verified using bath application of bicuculline. Changes in somatic calcium signals were found to be applicable to an in vivo scenario by comparing group responses to electrical stimulation of afferent mossy fiber projections. Finally, intracellular calcium store function was also found to be altered by the wdl mutation when slices were treated with thapsigargin. These findings, taken together with previous work on the wdl mouse, indicate a widespread disruption in cerebellar circuitry hampering proper neuronal communication. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Calcium metabolism in birds.

    Science.gov (United States)

    de Matos, Ricardo

    2008-01-01

    Calcium is one of the most important plasma constituents in mammals and birds. It provides structural strength and support (bones and eggshell) and plays vital roles in many of the biochemical reactions in the body. The control of calcium metabolism in birds is highly efficient and closely regulated in a number of tissues, primarily parathyroid gland, intestine, kidney, and bone. The hormones with the greatest involvement in calcium regulation in birds are parathyroid hormone, 1,25-dihydroxyvitamin D(3) (calcitriol), and estrogen, with calcitonin playing a minor and uncertain role. The special characteristics of calcium metabolism in birds, mainly associated with egg production, are discussed, along with common clinical disorders secondary to derangements in calcium homeostasis.

  14. Calcilytic Ameliorates Abnormalities of Mutant Calcium-Sensing Receptor (CaSR) Knock-In Mice Mimicking Autosomal Dominant Hypocalcemia (ADH).

    Science.gov (United States)

    Dong, Bingzi; Endo, Itsuro; Ohnishi, Yukiyo; Kondo, Takeshi; Hasegawa, Tomoka; Amizuka, Norio; Kiyonari, Hiroshi; Shioi, Go; Abe, Masahiro; Fukumoto, Seiji; Matsumoto, Toshio

    2015-11-01

    Activating mutations of calcium-sensing receptor (CaSR) cause autosomal dominant hypocalcemia (ADH). ADH patients develop hypocalcemia, hyperphosphatemia, and hypercalciuria, similar to the clinical features of hypoparathyroidism. The current treatment of ADH is similar to the other forms of hypoparathyroidism, using active vitamin D3 or parathyroid hormone (PTH). However, these treatments aggravate hypercalciuria and renal calcification. Thus, new therapeutic strategies for ADH are needed. Calcilytics are allosteric antagonists of CaSR, and may be effective for the treatment of ADH caused by activating mutations of CaSR. In order to examine the effect of calcilytic JTT-305/MK-5442 on CaSR harboring activating mutations in the extracellular and transmembrane domains in vitro, we first transfected a mutated CaSR gene into HEK cells. JTT-305/MK-5442 suppressed the hypersensitivity to extracellular Ca(2+) of HEK cells transfected with the CaSR gene with activating mutations in the extracellular and transmembrane domains. We then selected two activating mutations locating in the extracellular (C129S) and transmembrane (A843E) domains, and generated two strains of CaSR knock-in mice to build an ADH mouse model. Both mutant mice mimicked almost all the clinical features of human ADH. JTT-305/MK-5442 treatment in vivo increased urinary cAMP excretion, improved serum and urinary calcium and phosphate levels by stimulating endogenous PTH secretion, and prevented renal calcification. In contrast, PTH(1-34) treatment normalized serum calcium and phosphate but could not reduce hypercalciuria or renal calcification. CaSR knock-in mice exhibited low bone turnover due to the deficiency of PTH, and JTT-305/MK-5442 as well as PTH(1-34) increased bone turnover and bone mineral density (BMD) in these mice. These results demonstrate that calcilytics can reverse almost all the phenotypes of ADH including hypercalciuria and renal calcification, and suggest that calcilytics can become a

  15. Calcium channel blockers and Alzheimer's disease★

    Science.gov (United States)

    Tan, Yi; Deng, Yulin; Qing, Hong

    2012-01-01

    Alzheimer's disease is characterized by two pathological hallmarks: amyloid plaques and neurofibrillary tangles. In addition, calcium homeostasis is disrupted in the course of human aging. Recent research shows that dense plaques can cause functional alteration of calcium signals in mice with Alzheimer's disease. Calcium channel blockers are effective therapeutics for treating Alzheimer's disease. This review provides an overview of the current research of calcium channel blockers involved in Alzheimer's disease therapy. PMID:25767489

  16. Overexpression of Sarcoendoplasmic Reticulum Calcium ATPase 2a Promotes Cardiac Sympathetic Neurotransmission via Abnormal Endoplasmic Reticulum and Mitochondria Ca2+ Regulation

    Science.gov (United States)

    Shanks, Julia; Herring, Neil; Johnson, Errin; Liu, Kun; Li, Dan

    2017-01-01

    Reduced cardiomyocyte excitation–contraction coupling and downregulation of the SERCA2a (sarcoendoplasmic reticulum calcium ATPase 2a) is associated with heart failure. This has led to viral transgene upregulation of SERCA2a in cardiomyocytes as a treatment. We hypothesized that SERCA2a gene therapy expressed under a similar promiscuous cytomegalovirus promoter could also affect the cardiac sympathetic neural axis and promote sympathoexcitation. Stellate neurons were isolated from 90 to 120 g male, Sprague–Dawley, Wistar Kyoto, and spontaneously hypertensive rats. Neurons were infected with Ad-mCherry or Ad-mCherry-hATP2Aa (SERCA2a). Intracellular Ca2+ changes were measured using fura-2AM in response to KCl, caffeine, thapsigargin, and carbonylcyanide-p-trifluoromethoxyphenylhydrazine to mobilize intracellular Ca2+ stores. The effect of SERCA2a on neurotransmitter release was measured using [3H]-norepinephrine overflow from 340 to 360 g Sprague–Dawley rat atria in response to right stellate ganglia stimulation. Upregulation of SERCA2a resulted in greater neurotransmitter release in response to stellate stimulation compared with control (empty: 98.7±20.5 cpm, n=7; SERCA: 186.5±28.41 cpm, n=8; Pneurons, SERCA2a overexpression facilitated greater depolarization-induced Ca2+ transients (empty: 0.64±0.03 au, n=57; SERCA: 0.75±0.03 au, n=68; Pneurons resulted in increased neurotransmission and increased Ca2+ loading into intracellular stores. Whether the increased Ca2+ transient and neurotransmission after SERCA2A overexpression contributes to enhanced sympathoexcitation in heart failure patients remains to be determined. PMID:28223472

  17. Characterization of vitamin D-deficient klotho(-/-) mice: do increased levels of serum 1,25(OH)2D3 cause disturbed calcium and phosphate homeostasis in klotho(-/-) mice?

    NARCIS (Netherlands)

    Woudenberg-Vrenken, T.E.; van der Eerden, B.C.; van der Kemp, A.W.; Leeuwen, J.P. van; Bindels, R.J.M.; Hoenderop, J.G.J.

    2012-01-01

    BACKGROUND: Klotho(-/-) mice display disturbed Ca(2+) and vitamin D homeostasis. Renal cytochrome p450 27b1 (Cyp27b1), the enzyme that catalyzes the hydrolysis to 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), is increased in klotho(-/-) mice, and a 1,25(OH)(2)D(3)-deficient diet partially normalized

  18. Inhibition of the alpha-ketoglutarate dehydrogenase complex alters mitochondrial function and cellular calcium regulation.

    Science.gov (United States)

    Huang, Hsueh-Meei; Zhang, Hui; Xu, Hui; Gibson, Gary E

    2003-01-20

    Mitochondrial dysfunction occurs in many neurodegenerative diseases. The alpha-ketoglutarate dehydrogenase complex (KGDHC) catalyzes a key and arguably rate-limiting step of the tricarboxylic acid cycle (TCA). A reduction in the activity of the KGDHC occurs in brains and cells of patients with many of these disorders and may underlie the abnormal mitochondrial function. Abnormalities in calcium homeostasis also occur in fibroblasts from Alzheimer's disease (AD) patients and in cells bearing mutations that lead to AD. Thus, the present studies test whether the reduction of KGDHC activity can lead to the alterations in mitochondrial function and calcium homeostasis. alpha-Keto-beta-methyl-n-valeric acid (KMV) inhibits KGDHC activity in living N2a cells in a dose- and time-dependent manner. Surprisingly, concentration of KMV that inhibit in situ KGDHC by 80% does not alter the mitochondrial membrane potential (MMP). However, similar concentrations of KMV induce the release of cytochrome c from mitochondria into the cytosol, reduce basal [Ca(2+)](i) by 23% (Pcalcium release from the endoplasmic reticulum (ER) by 46% (P<0.005). This result suggests that diminished KGDHC activities do not lead to the Ca(2+) abnormalities in fibroblasts from AD patients or cells bearing PS-1 mutations. The increased release of cytochrome c with diminished KGDHC activities will be expected to activate other pathways including cell death cascades. Reductions in this key mitochondrial enzyme will likely make the cells more vulnerable to metabolic insults that promote cell death.

  19. Calcium supplements

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007477.htm Calcium supplements To use the sharing features on this page, please enable JavaScript. WHO SHOULD TAKE CALCIUM SUPPLEMENTS? Calcium is an important mineral for the ...

  20. Calcium Signaling in Taste Cells

    Science.gov (United States)

    Medler, Kathryn F.

    2014-01-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. PMID:25450977

  1. Calcium and Vitamin D Metabolism in Pediatric Nephrotic Syndrome; An Update on the Existing Literature

    Directory of Open Access Journals (Sweden)

    Mohammad Esmaeeili

    2015-03-01

    Full Text Available  Minimal Change Disease (MCD is the leading cause of childhood Nephrotic Syndrome (NS. Therefore in pediatrics nephrotic syndrome, most children beyond the first year of life will be treated with corticosteroids without an initial biopsy. Children with NS often display a number of calcium homeostasis disturbances causing abnormal bone histology, including hypocalcemia, reduced serum vitamin D metabolites, impaired intestinal absorption of calcium, and elevated levels of immunoreactive parathyroid hormone (iPTH. These are mainly attributed to the loss of a variety of plasma proteins and minerals in the urine as well as steroid therapy. Early diagnosis and management of these abnormalities, could prevent the growth retardation and renal osteodystrophy that affects children with nephrotic syndrome. Here we reviewed the literature for changes of calcium and vitamin D metabolism in nephrotic syndrome and its consequences on bones, also the effect of corticosteroid and possible preventive strategies that could be done to avoid long term outcomes in children. Although the exact biochemical basis for Changes in levels of calcium and vitamin D metabolites in patients with NS remains speculative; Because of the potential adverse effects of these changes among growing children, widespread screening for vitamin D deficiency or routine vitamin D supplementation should be considered.

  2. Molecular Basis of the Extracellular Ligands Mediated Signaling by the Calcium Sensing Receptor

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    2016-09-01

    Full Text Available Ca2+-sensing receptors (CaSRs play a central role in regulating extracellular calcium concentration ([Ca2+]o homeostasis and many (pathophysiological processes in multiple organs. This regulation is orchestrated by a cooperative response to extracellular stimuli such as small changes in Ca2+, Mg2+, amino acids and other ligands. In addition, CaSR is a pleiotropic receptor regulating several intracellular signaling pathways, including calcium mobilization and intracellular calcium oscillation. Nearly 200 mutations and polymorphisms have been found in CaSR in relation to a variety of human disorders associated with abnormal Ca2+ homeostasis. In this review, we summarize efforts directed at identifying binding sites for calcium and amino acids. Both homotropic cooperativity among multiple calcium binding sites and heterotropic cooperativity between calcium and amino acid were revealed using computational modeling, predictions, and site-directed mutagenesis coupled with functional assays. The hinge region of the bilobed Venus flytrap (VFT domain of CaSR plays a pivotal role in coordinating multiple extracellular stimuli, leading to cooperative responses from the receptor. We further highlight the extensive number of disease-associated mutations that have also been shown to affect CaSR’s cooperative action via several types of mechanisms. These results provide insights into the molecular bases of the structure and functional cooperativity of this receptor and other members of family C of the G protein-coupled receptors (cGPCRs in health and disease states, and may assist in the prospective development of novel receptor-based therapeutics.

  3. Multilevel control of glucose homeostasis by adenylyl cyclase 8

    NARCIS (Netherlands)

    Raoux, Matthieu; Vacher, Pierre; Papin, Julien; Picard, Alexandre; Kostrzewa, Elzbieta; Devin, Anne; Gaitan, Julien; Limon, Isabelle; Kas, Martien J.; Magnan, Christophe; Lang, Jochen

    2015-01-01

    Aims/hypothesis: Nutrient homeostasis requires integration of signals generated by glucose metabolism and hormones. Expression of the calcium-stimulated adenylyl cyclase ADCY8 is regulated by glucose and the enzyme is capable of integrating signals from multiple pathways. It may thus have an

  4. Human homeostasis in the space environment: A systems synthesis approach

    Science.gov (United States)

    Economos, A. C.

    1982-01-01

    The features of homeostatic changes which occur during adaptation to the weightless state are examined and the possible mechanisms underlying the responses are explored. Cardiac output, negative fluid balance, body weight, bone calcium, and muscle atrophy are discussed. Some testable hypotheses concerning possible effects on homeostasis that long-term exposure to weightlessness might cause are proposed.

  5. Calcium absorption

    International Nuclear Information System (INIS)

    Carlmark, B.; Reizenstein, P.; Dudley, R.A.

    1976-01-01

    The methods most commonly used to measure the absorption and retention of orally administered calcium are reviewed. Nearly all make use of calcium radioisotopes. The magnitude of calcium absorption and retention depends upon the chemical form and amount of calcium administered, and the clinical and nutritional status of the subject; these influences are briefly surveyed. (author)

  6. The impact of calcium assay change on a local adjusted calcium equation.

    Science.gov (United States)

    Davies, Sarah L; Hill, Charlotte; Bailey, Lisa M; Davison, Andrew S; Milan, Anna M

    2016-03-01

    Deriving and validating local adjusted calcium equations is important for ensuring appropriate calcium status classification. We investigated the impact on our local adjusted calcium equation of a change in calcium method by the manufacturer from cresolphthalein complexone to NM-BAPTA. Calcium and albumin results from general practice requests were extracted from the Laboratory Information Management system for a three-month period. Results for which there was evidence of disturbance in calcium homeostasis were excluded leaving 13,482 sets of results for analysis. The adjusted calcium equation was derived following least squares regression analysis of total calcium on albumin and normalized to the mean calcium concentration of the data-set. The revised equation (NM-BAPTA calcium method) was compared with the previous equation (cresolphthalein complexone calcium method). The switch in calcium assay resulted in a small change in the adjusted calcium equation but was not considered to be clinically significant. The calcium reference interval differed from that proposed by Pathology Harmony in the UK. Local adjusted calcium equations should be re-assessed following changes in the calcium method. A locally derived reference interval may differ from the consensus harmonized reference interval. © The Author(s) 2015.

  7. Fluoride Alters Serum Elemental (Calcium, Magnesium, Copper, and Zinc) Homeostasis Along with Erythrocyte Carbonic Anhydrase Activity in Fluorosis Endemic Villages and Restores on Supply of Safe Drinking Water in School-Going Children of Nalgonda District, India.

    Science.gov (United States)

    Khandare, Arjun L; Validandi, Vakdevi; Boiroju, Naveen

    2018-02-17

    The present study aimed to determine the serum trace elements (copper (Cu), zinc (Zn), calcium (Ca), magnesium (Mg)) along with erythrocyte carbonic anhydrase (CA) activity and effect of intervention with safe drinking water for 5 years in the school children of fluorosis endemic area. For this purpose, three categories of villages were selected based on drinking water fluoride (F): Category I (control, F = 1.68 mg/L), category II (affected F = 3.77 mg/L), and category III (intervention village) where initial drinking water F was 4.51 mg/L, and since the last 5 years, they were drinking water containing water for 5 years in school-going children.

  8. Calcium in plant cells

    Directory of Open Access Journals (Sweden)

    V. V. Schwartau

    2014-04-01

    Full Text Available The paper gives the review on the role of calcium in many physiological processes of plant organisms, including growth and development, protection from pathogenic influences, response to changing environmental factors, and many other aspects of plant physiology. Initial intake of calcium ions is carried out by Ca2+-channels of plasma membrane and they are further transported by the xylem owing to auxins’ attractive ability. The level of intake and selectivity of calcium transport to ove-ground parts of the plant is controlled by a symplast. Ca2+enters to the cytoplasm of endoderm cells through calcium channels on the cortical side of Kaspary bands, and is redistributed inside the stele by the symplast, with the use of Ca2+-АТPases and Ca2+/Н+-antiports. Owing to regulated expression and activity of these calcium transporters, calclum can be selectively delivered to the xylem. Important role in supporting calcium homeostasis is given to the vacuole which is the largest depo of calcium. Regulated quantity of calcium movement through the tonoplast is provided by a number of potential-, ligand-gated active transporters and channels, like Ca2+-ATPase and Ca2+/H+ exchanger. They are actively involved in the inactivation of the calcium signal by pumping Ca2+ to the depo of cells. Calcium ATPases are high affinity pumps that efficiently transfer calcium ions against the concentration gradient in their presence in the solution in nanomolar concentrations. Calcium exchangers are low affinity, high capacity Ca2+ transporters that are effectively transporting calcium after raising its concentration in the cell cytosol through the use of protons gradients. Maintaining constant concentration and participation in the response to stimuli of different types also involves EPR, plastids, mitochondria, and cell wall. Calcium binding proteins contain several conserved sequences that provide sensitivity to changes in the concentration of Ca2+ and when you

  9. Congenital Abnormalities

    Science.gov (United States)

    ... tube defects. However, there is also a genetic influence to this type of congenital anomaly. Unknown Causes The vast majority of congenital abnormalities have no known cause. This is particularly troubling for parents who plan to have more children, because there is no way to predict if ...

  10. Intracellular sphingosine releases calcium from lysosomes.

    Science.gov (United States)

    Höglinger, Doris; Haberkant, Per; Aguilera-Romero, Auxiliadora; Riezman, Howard; Porter, Forbes D; Platt, Frances M; Galione, Antony; Schultz, Carsten

    2015-11-27

    To elucidate new functions of sphingosine (Sph), we demonstrate that the spontaneous elevation of intracellular Sph levels via caged Sph leads to a significant and transient calcium release from acidic stores that is independent of sphingosine 1-phosphate, extracellular and ER calcium levels. This photo-induced Sph-driven calcium release requires the two-pore channel 1 (TPC1) residing on endosomes and lysosomes. Further, uncaging of Sph leads to the translocation of the autophagy-relevant transcription factor EB (TFEB) to the nucleus specifically after lysosomal calcium release. We confirm that Sph accumulates in late endosomes and lysosomes of cells derived from Niemann-Pick disease type C (NPC) patients and demonstrate a greatly reduced calcium release upon Sph uncaging. We conclude that sphingosine is a positive regulator of calcium release from acidic stores and that understanding the interplay between Sph homeostasis, calcium signaling and autophagy will be crucial in developing new therapies for lipid storage disorders such as NPC.

  11. Oral calcium carbonate affects calcium but not phosphorus balance in stage 3–4 chronic kidney disease

    Science.gov (United States)

    Hill, Kathleen M.; Martin, Berdine R.; Wastney, Meryl; McCabe, George P.; Moe, Sharon M.; Weaver, Connie M.; Peacock, Munro

    2014-01-01

    Chronic kidney disease (CKD) patients are given calcium carbonate to bind dietary phosphorus and reduce phosphorus retention, and to prevent negative calcium balance. Data are limited on calcium and phosphorus balance in CKD to support this. The aim of this study was to determine calcium and phosphorus balance and calcium kinetics with and without calcium carbonate in CKD patients. Eight stage 3/4 CKD patients, eGFR 36 mL/min, participated in two 3-week balances in a randomized placebo-controlled cross-over study of calcium carbonate (1500 mg/d calcium). Calcium and phosphorus balance were determined on a controlled diet. Oral and intravenous 45calcium with blood sampling and urine and fecal collections were used for calcium kinetics. Fasting blood and urine were collected at baseline and end of each week of each balance period for biochemical analyses. Results showed that patients were in neutral calcium and phosphorus balance while on placebo. Calcium carbonate produced positive calcium balance, did not affect phosphorus balance, and produced only a modest reduction in urine phosphorus excretion compared with placebo. Calcium kinetics demonstrated positive net bone balance but less than overall calcium balance suggesting tissue deposition. Fasting biochemistries of calcium and phosphate homeostasis were unaffected by calcium carbonate. If they can be extrapolated to effects of chronic therapy, these data caution against the use of calcium carbonate as a phosphate binder. PMID:23254903

  12. Calcium - ionized

    Science.gov (United States)

    ... diuretics Thrombocytosis (high platelet count) Tumors Vitamin A excess Vitamin D excess Lower-than-normal levels may be due to: Hypoparathyroidism Malabsorption Osteomalacia Pancreatitis Renal failure Rickets Vitamin D deficiency Alternative Names Free calcium; Ionized calcium ...

  13. Calcium Carbonate

    Science.gov (United States)

    ... Calcium is needed by the body for healthy bones, muscles, nervous system, and heart. Calcium carbonate also ... to your pharmacist or contact your local garbage/recycling department to learn about take-back programs in ...

  14. Unknown and abnormal accumulation in the chest in bone scintigraphy

    International Nuclear Information System (INIS)

    Maruyama, Toshiaki; Takeuchi, Masashi; Tokunaga, Koji; Maeda, Yoichi; Hasegawa, Kazuhiko.

    1979-01-01

    In scintigraphies of forty patients with hemiplegia following appoplexia, focal abnormal accumulations in the chest region were seen in bone scintigraphies of four patients. These hot accumulations could be neither rib fracture, rib metastases, nor abnormal calcium accumulation. A mechanism of these accumulation remains to undicided. We believe that this phenomena is related to abnormal bone metabolism in hemiplegial condition. (author)

  15. Baroreflex deficiency induces additional impairment of vagal tone, diastolic function and calcium handling proteins after myocardial infarction

    Science.gov (United States)

    Mostarda, Cristiano; Rodrigues, Bruno; Medeiros, Alessandra; Moreira, Edson D; Moraes-Silva, Ivana C; Brum, Patricia C; Angelis, Katia De; Irigoyen, Maria-Cláudia

    2014-01-01

    Baroreflex dysfunction has been considered an important mortality predictor after myocardial infarction (MI). However, the impact of baroreflex deficiency prior to MI on tonic autonomic control and cardiac function, and on the profile of proteins associated with intracellular calcium handling has not yet been studied. The aim of the present study was to analyze how the impairment of baroreflex induced by sinoaortic denervation (SAD) prior to MI in rats affects the tonic autonomic control, ventricular function and cardiomyocyte calcium handling proteins. After 15 days of following or SAD surgery, rats underwent MI. Echocardiographic, hemodynamic, autonomic and molecular evaluations were performed 90 days after MI. Baroreflex impairment led to additional damage on: left ventricular remodeling, diastolic function, vagal tonus and intrinsic heart rate after MI. The loss of vagal component of the arterial baroreflex and vagal tonus were correlated with changes in the cardiac proteins involved in intracellular calcium homeostasis. Furthermore, additional increase in sodium calcium exchanger expression levels was associated with impaired diastolic function in experimental animals. Our findings strongly suggest that previous arterial baroreflex deficiency may induce additional impairment of vagal tonus, which was associated with calcium handling proteins abnormalities, probably triggering ventricular diastolic dysfunction after MI in rats. PMID:24936224

  16. Amyloid and immune homeostasis.

    Science.gov (United States)

    Wang, Ying-Hui; Zhang, Yu-Gen

    2018-03-01

    Extracellular amyloid deposition defines a range of amyloidosis and amyloid-related disease. Addition to primary and secondary amyloidosis, amyloid-related disease can be observed in different tissue/organ that sharing the common pathogenesis based on the formation of amyloid deposition. Currently, both Alzheimer's disease and type 2 diabetes can be diagnosed with certainly only based on the autopsy results, by which amyloidosis of the associative tissue/organ is observed. Intriguingly, since it demonstrated that amyloid deposits trigger inflammatory reaction through the activation of cascaded immune response, wherein several lines of evidence implies a protective role of amyloid in preventing autoimmunity. Furthermore, attempts for preventing amyloid formation and/or removing amyloid deposits from the brain have caused meningoencephalitis and consequent deaths among the subjects. Hence, it is important to note that amyloid positively participates in maintaining immune homeostasis and contributes to irreversible inflammatory response. In this review, we will focus on the interactive relationship between amyloid and the immune system, discussing the potential functional roles of amyloid in immune tolerance and homeostasis. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Ageing and water homeostasis

    Science.gov (United States)

    Robertson, David; Jordan, Jens; Jacob, Giris; Ketch, Terry; Shannon, John R.; Biaggioni, Italo

    2002-01-01

    This review outlines current knowledge concerning fluid intake and volume homeostasis in ageing. The physiology of vasopressin is summarized. Studies have been carried out to determine orthostatic changes in plasma volume and to assess the effect of water ingestion in normal subjects, elderly subjects, and patients with dysautonomias. About 14% of plasma volume shifts out of the vasculature within 30 minutes of upright posture. Oral ingestion of water raises blood pressure in individuals with impaired autonomic reflexes and is an important source of noise in blood pressure trials in the elderly. On the average, oral ingestion of 16 ounces (473ml) of water raises blood pressure 11 mmHg in elderly normal subjects. In patients with autonomic impairment, such as multiple system atrophy, strikingly exaggerated pressor effects of water have been seen with blood pressure elevations greater than 75 mmHg not at all uncommon. Ingestion of water is a major determinant of blood pressure in the elderly population. Volume homeostasis is importantly affected by posture and large changes in plasma volume may occur within 30 minutes when upright posture is assumed.

  18. Calcium waves.

    Science.gov (United States)

    Jaffe, Lionel F

    2008-04-12

    Waves through living systems are best characterized by their speeds at 20 degrees C. These speeds vary from those of calcium action potentials to those of ultraslow ones which move at 1-10 and/or 10-20 nm s(-1). All such waves are known or inferred to be calcium waves. The two classes of calcium waves which include ones with important morphogenetic effects are slow waves that move at 0.2-2 microm s(-1) and ultraslow ones. Both may be propagated by cycles in which the entry of calcium through the plasma membrane induces subsurface contraction. This contraction opens nearby stretch-sensitive calcium channels. Calcium entry through these channels propagates the calcium wave. Many slow waves are seen as waves of indentation. Some are considered to act via cellular peristalsis; for example, those which seem to drive the germ plasm to the vegetal pole of the Xenopus egg. Other good examples of morphogenetic slow waves are ones through fertilizing maize eggs, through developing barnacle eggs and through axolotl embryos during neural induction. Good examples of ultraslow morphogenetic waves are ones during inversion in developing Volvox embryos and across developing Drosophila eye discs. Morphogenetic waves may be best pursued by imaging their calcium with aequorins.

  19. Pain emotion and homeostasis.

    Science.gov (United States)

    Panerai, Alberto E

    2011-05-01

    Pain has always been considered as part of a defensive strategy, whose specific role is to signal an immediate, active danger. This definition partially fits acute pain, but certainly not chronic pain, that is maintained also in the absence of an active noxa or danger and that nowadays is considered a disease by itself. Moreover, acute pain is not only an automatic alerting system, but its severity and characteristics can change depending on the surrounding environment. The affective, emotional components of pain have been and are the object of extensive attention and research by psychologists, philosophers, physiologists and also pharmacologists. Pain itself can be considered to share the same genesis as emotions and as a specific emotion in contributing to the maintenance of the homeostasis of each unique subject. Interestingly, this role of pain reaches its maximal development in the human; some even argue that it is specific for the human primate.

  20. A Physiologist's View of Homeostasis

    Science.gov (United States)

    Modell, Harold; Cliff, William; Michael, Joel; McFarland, Jenny; Wenderoth, Mary Pat; Wright, Ann

    2015-01-01

    Homeostasis is a core concept necessary for understanding the many regulatory mechanisms in physiology. Claude Bernard originally proposed the concept of the constancy of the "milieu interieur," but his discussion was rather abstract. Walter Cannon introduced the term "homeostasis" and expanded Bernard's notion of…

  1. immunological arthritis Prevalence of biochemical and abnormalities ...

    African Journals Online (AJOL)

    1991-02-02

    Feb 2, 1991 ... the serum creatinine valuell and abnormalities of calcium and cholesterol have .... 16 high. Creatinine (JLmolJl). 75 - 115. 81,3 ± 20,9. 6,6 high. 7 high. 43,4 low ... acid levels without any obvious secondary cause. A raised.

  2. Calcium Electroporation

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; Gibot, Laure; Madi, Moinecha

    2015-01-01

    BACKGROUND: Calcium electroporation describes the use of high voltage electric pulses to introduce supraphysiological calcium concentrations into cells. This promising method is currently in clinical trial as an anti-cancer treatment. One very important issue is the relation between tumor cell kill...... efficacy-and normal cell sensitivity. METHODS: Using a 3D spheroid cell culture model we have tested the effect of calcium electroporation and electrochemotherapy using bleomycin on three different human cancer cell lines: a colorectal adenocarcinoma (HT29), a bladder transitional cell carcinoma (SW780......), and a breast adenocarcinoma (MDA-MB231), as well as on primary normal human dermal fibroblasts (HDF-n). RESULTS: The results showed a clear reduction in spheroid size in all three cancer cell spheroids three days after treatment with respectively calcium electroporation (p

  3. Iron homeostasis during pregnancy.

    Science.gov (United States)

    Fisher, Allison L; Nemeth, Elizabeta

    2017-12-01

    During pregnancy, iron needs to increase substantially to support fetoplacental development and maternal adaptation to pregnancy. To meet these iron requirements, both dietary iron absorption and the mobilization of iron from stores increase, a mechanism that is in large part dependent on the iron-regulatory hormone hepcidin. In healthy human pregnancies, maternal hepcidin concentrations are suppressed in the second and third trimesters, thereby facilitating an increased supply of iron into the circulation. The mechanism of maternal hepcidin suppression in pregnancy is unknown, but hepcidin regulation by the known stimuli (i.e., iron, erythropoietic activity, and inflammation) appears to be preserved during pregnancy. Inappropriately increased maternal hepcidin during pregnancy can compromise the iron availability for placental transfer and impair the efficacy of iron supplementation. The role of fetal hepcidin in the regulation of placental iron transfer still remains to be characterized. This review summarizes the current understanding and addresses the gaps in knowledge about gestational changes in hematologic and iron variables and regulatory aspects of maternal, fetal, and placental iron homeostasis. © 2017 American Society for Nutrition.

  4. INTRACELLULAR Ca2+ HOMEOSTASIS

    Directory of Open Access Journals (Sweden)

    Shahdevi Nandar Kurniawan

    2015-01-01

    Full Text Available Ca2+ signaling functions to regulate many cellular processes. Dynamics of Ca2+ signaling or homeostasis is regulated by the interaction between ON and OFF reactions that control Ca2+ flux in both the plasma membrane and internal organelles such as the endoplasmic reticulum (ER and mitochondria. External stimuli activate the ON reactions, which include Ca2+ into the cytoplasm either through channels in the plasma membrane or from internal storage like in ER. Most of the cells utilize both channels/sources, butthere area few cells using an external or internal source to control certain processes. Most of the Ca2+ entering the cytoplasm adsorbed to the buffer, while a smaller part activate effect or to stimulate cellular processes. Reaction OFF is pumping of cytoplasmic Ca2+ using a combination mechanism of mitochondrial and others. Changes in Ca2+ signal has been detected in various tissues isolated from animals induced into diabetes as well as patients with diabetes. Ca2+ signal interference is also found in sensory neurons of experimental animals with diabetes. Ca2+ signaling is one of the main signaling systems in the cell.

  5. Adaptive mechanisms of homeostasis disorders

    Directory of Open Access Journals (Sweden)

    Anna Maria Dobosiewicz

    2017-08-01

    Full Text Available The ability to preserve a permanent level of internal environment in a human organism, against internal and external factors, which could breach the consistency, can be define as homeostasis. Scientific proven influence on the homeostasis has the periodicity of biological processes, which is also called circadian rhythm. The effect of circadian rhythm is also to see in the functioning of autonomic nervous system and cardiovascular system. Sleep deprivation is an example of how the disorders in circadian rhythm could have the influence on the homeostasis.

  6. Deletion of PTH rescues skeletal abnormalities and high osteopontin levels in Klotho-/- mice.

    Directory of Open Access Journals (Sweden)

    Quan Yuan

    Full Text Available Maintenance of normal mineral ion homeostasis is crucial for many biological activities, including proper mineralization of the skeleton. Parathyroid hormone (PTH, Klotho, and FGF23 have been shown to act as key regulators of serum calcium and phosphate homeostasis through a complex feedback mechanism. The phenotypes of Fgf23(-/- and Klotho(-/- (Kl(-/- mice are very similar and include hypercalcemia, hyperphosphatemia, hypervitaminosis D, suppressed PTH levels, and severe osteomalacia/osteoidosis. We recently reported that complete ablation of PTH from Fgf23(-/- mice ameliorated the phenotype in Fgf23(-/-/PTH(-/- mice by suppressing serum vitamin D and calcium levels. The severe osteomalacia in Fgf23(-/- mice, however, persisted, suggesting that a different mechanism is responsible for this mineralization defect. In the current study, we demonstrate that deletion of PTH from Kl(-/- (Kl(-/-/PTH(-/- or DKO mice corrects the abnormal skeletal phenotype. Bone turnover markers are restored to wild-type levels; and, more importantly, the skeletal mineralization defect is completely rescued in Kl(-/-/PTH(-/- mice. Interestingly, the correction of the osteomalacia is accompanied by a reduction in the high levels of osteopontin (Opn in bone and serum. Such a reduction in Opn levels could not be observed in Fgf23(-/-/PTH(-/- mice, and these mice showed sustained osteomalacia. This significant in vivo finding is corroborated by in vitro studies using calvarial osteoblast cultures that show normalized Opn expression and rescued mineralization in Kl(-/-/PTH(-/- mice. Moreover, continuous PTH infusion of Kl(-/- mice significantly increased Opn levels and osteoid volume, and decreased trabecular bone volume. In summary, our results demonstrate for the first time that PTH directly impacts the mineralization disorders and skeletal deformities of Kl(-/-, but not of Fgf23(-/- mice, possibly by regulating Opn expression. These are significant new perceptions into

  7. Role of vitamin D3 active metabolites in the regulation of calcium metabolism in hypokinetic rats

    International Nuclear Information System (INIS)

    Sergeev, I.N.; Afonin, B.V.; Blazhevich, N.V.

    1985-01-01

    The rats exposed to prolonged hypokinesia showed hypocalciemia, lower PTH and higher calcitonin concentrations in the serum, decreased calcium absorption in the small intestine, and a trend toward nephro- and arteriocalcinosis. Prophylactic administration of 24, 25-hydroxy D 3 , 1, 25-hydroxy D 3 and their combinations enhanced calcium absorption and alleviated hypocalciemia. The changes in the hormonal regulation of calcium homeostasis can be viewed as a factor responsible for calcium metabolic disorders associated with hypokinesia

  8. Respiratory metabolism and calorie restriction relieve persistent endoplasmic reticulum stress induced by calcium shortage in yeast

    OpenAIRE

    Busti, Stefano; Mapelli, Valeria; Tripodi, Farida; Sanvito, Rossella; Magni, Fulvio; Coccetti, Paola; Rocchetti, Marcella; Nielsen, Jens; Alberghina, Lilia; Vanoni, Marco

    2016-01-01

    Calcium homeostasis is crucial to eukaryotic cell survival. By acting as an enzyme cofactor and a second messenger in several signal transduction pathways, the calcium ion controls many essential biological processes. Inside the endoplasmic reticulum (ER) calcium concentration is carefully regulated to safeguard the correct folding and processing of secretory proteins. By using the model organism Saccharomyces cerevisiae we show that calcium shortage leads to a slowdown of cell growth and met...

  9. Metal ion transporters and homeostasis.

    OpenAIRE

    Nelson, N

    1999-01-01

    Transition metals are essential for many metabolic processes and their homeostasis is crucial for life. Aberrations in the cellular metal ion concentrations may lead to cell death and severe diseases. Metal ion transporters play a major role in maintaining the correct concentrations of the various metal ions in the different cellular compartments. Recent studies of yeast mutants revealed key elements in metal ion homeostasis, including novel transport systems. Several of the proteins discover...

  10. [Calcium hypothesis of Alzheimer disease].

    Science.gov (United States)

    Riazantseva, M A; Mozhaeva, G N; Kaznacheeva, E V

    2012-01-01

    Alzheimer's disease is the most common neurodegenerative disorder characterized by progressive memory and cognitive abilities loss. The etiology of Alzheimer's disease is poorly understood. In this regard, there is no effective treatment for the disease. Various hypotheses to explain the nature of the pathology of Alzheimer's disease led to the development of appropriate therapeutics. Despite of decades of research and clinical trials available therapeutics, at best, can only slow down the progression of the disease, but cannot cure it. This review dedicated to the one of modern hypotheses of Alzheimer's disease pathogenesis implied the impairment of calcium homeostasis as a key event for the development of neurodegenerative processes.

  11. The distribution of free calcium ions in the cholesteatoma epithelium

    DEFF Research Database (Denmark)

    Svane-Knudsen, Viggo; Rasmussen, Gurli; Ottosen, Peter D

    2005-01-01

    The distribution of free calcium ions in normal skin and cholesteatoma epithelium was investigated using the oxalate precipitation method. In agreement with previous observations, we could demonstrate a calcium ion gradient in normal epidermis where the cells in stratum basale and spinosum reside...... appeared where oblong accumulations of free calcium ions were found basally in the stratum. These findings provide evidence that fluctuations in epidermal calcium in cholesteatoma epithelium may underlie the abnormal desquamation, may contribute to the formation of an abnormal permeability barrier and may...

  12. Frequency of metabolic abnormalities in urinary stones patients.

    Science.gov (United States)

    Ahmad, Iftikhar; Pansota, Mudassar Saeed; Tariq, Muhammad; Tabassum, Shafqat Ali

    2013-11-01

    To determine the frequency of metabolic abnormalities in the serum and urine of patients with urinary stones disease. Two hundred patients with either multiple or recurrent urolithiasis diagnosed on ultrasonography and intravenous urography were included in this study. 24 hour urine sample were collected from each patient and sent for PH, specific gravity, Creatinine, uric acid, calcium, phosphate, oxalate, citrate and magnesium. In addition, blood sample of each patient was also sent for serum levels of urea, creatinine, uric acid, phosphate and calcium. Mean age of patients was 38 ± 7.75 years with male to female ratio of 2:1. The main presenting complaint was lumber pain and 82.5% patients were found to have calcium oxalate stones on chemical analysis. Metabolic abnormalities were found in 90.5% patients, whereas there were no metabolic abnormalities in 19 (9.5%) patients. Forty patients (21.5%) only had one metabolic abnormality and 157 (78.5%) patients had multiple metabolic abnormalities. Hyperoxaluria was the most commonly observed metabolic abnormality and was found in 64.5% patients. Other significant metabolic abnormalities were hypercalciuria, Hypercalcemia, hypocitraturia and hyperuricemia. This study concludes that frequency of metabolic abnormalities is very high in patients with urolithiasis and hyperoxaluria, hypercalciuria and hypocitraturia are the most important metabolic abnormalities observed in these patients.

  13. Get Enough Calcium

    Science.gov (United States)

    ... Calcium Print This Topic En español Get Enough Calcium Browse Sections The Basics Overview Foods and Vitamins ... women, don't get enough calcium. How much calcium do I need every day? Women: If you ...

  14. Calcium - urine

    Science.gov (United States)

    ... Female urinary tract Male urinary tract Calcium urine test References Bringhurst FR, Demay MB, Kronenberg HM. Hormones and disorders of mineral metabolism. In: Melmed S, Polonsky KS, Larsen PR, Kronenberg HM, eds. Williams Textbook of Endocrinology . 13th ed. Philadelphia, PA: Elsevier; ...

  15. Calcium regulation in frog peripheral nerve by the blood-nerve barrier

    International Nuclear Information System (INIS)

    Wadhwani, K.C.

    1986-01-01

    The objectives of this research were: (a) to investigate the characteristics of calcium transport across the perineurium and the endoneurial capillaries, and (b) to gain a better understanding of the extent of calcium homeostasis in the endoneurial space. To study the nature of calcium transport across the perineurium, the flux of radiotracer 45 Ca was measured through the perineurial cylinder, isolated from the frog sciatic nerve, and through the perineurium into the nerve in situ. To study the nature of calcium transport across the endoneurial capillaries, the permeability-surface area product (PA) of 45 Ca was determined as a function of the calcium concentration in the blood. To study calcium homeostasis, the calcium content of the frog sciatic nerve was determined as a function of chronic changes in plasma [Ca

  16. Transgenic plants with increased calcium stores

    Science.gov (United States)

    Wyatt, Sarah (Inventor); Tsou, Pei-Lan (Inventor); Robertson, Dominique (Inventor); Boss, Wendy (Inventor)

    2004-01-01

    The present invention provides transgenic plants over-expressing a transgene encoding a calcium-binding protein or peptide (CaBP). Preferably, the CaBP is a calcium storage protein and over-expression thereof does not have undue adverse effects on calcium homeostasis or biochemical pathways that are regulated by calcium. In preferred embodiments, the CaBP is calreticulin (CRT) or calsequestrin. In more preferred embodiments, the CaBP is the C-domain of CRT, a fragment of the C-domain, or multimers of the foregoing. In other preferred embodiments, the CaBP is localized to the endoplasmic reticulum by operatively associating the transgene encoding the CaBP with an endoplasmic reticulum localization peptide. Alternatively, the CaBP is targeted to any other sub-cellular compartment that permits the calcium to be stored in a form that is biologically available to the plant. Also provided are methods of producing plants with desirable phenotypic traits by transformation of the plant with a transgene encoding a CaBP. Such phenotypic traits include increased calcium storage, enhanced resistance to calcium-limiting conditions, enhanced growth and viability, increased disease and stress resistance, enhanced flower and fruit production, reduced senescence, and a decreased need for fertilizer production. Further provided are plants with enhanced nutritional value as human food or animal feed.

  17. Calcium paradox and calcium entry blockers

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Slade, A.M.; Nayler, W.G.; Meijler, F.L.

    1984-01-01

    Reperfusion of isolated hearts with calcium-containing solution after a short period of calcium-free perfusion results in irreversible cell damage (calcium paradox). This phenomenon is characterized by an excessive influx of calcium into the cells, the rapid onset of myocardial contracture,

  18. Urine - abnormal color

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003139.htm Urine - abnormal color To use the sharing features on this page, please enable JavaScript. The usual color of urine is straw-yellow. Abnormally colored urine ...

  19. Tooth - abnormal colors

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003065.htm Tooth - abnormal colors To use the sharing features on this page, please enable JavaScript. Abnormal tooth color is any color other than white to yellowish- ...

  20. Abnormal uterine bleeding

    Science.gov (United States)

    Anovulatory bleeding; Abnormal uterine bleeding - hormonal; Polymenorrhea - dysfunctional uterine bleeding ... ACOG committee opinion no. 557: Management of acute abnormal uterine bleeding in nonpregnant reproductive-aged women. Reaffirmed 2015. www. ...

  1. Phosphate homeostasis in Bartter syndrome: a case-control study.

    Science.gov (United States)

    Bettinelli, Alberto; Viganò, Cristina; Provero, Maria Cristina; Barretta, Francesco; Albisetti, Alessandra; Tedeschi, Silvana; Scicchitano, Barbara; Bianchetti, Mario G

    2014-11-01

    Bartter patients may be hypercalciuric. Additional abnormalities in the metabolism of calcium, phosphate, and calciotropic hormones have occasionally been reported. The metabolism of calcium, phosphate, and calciotropic hormones was investigated in 15 patients with Bartter syndrome and 15 healthy subjects. Compared to the controls, Bartter patients had significantly reduced plasma phosphate {mean [interquartile range]:1.29 [1.16-1.46] vs. 1.61 [1.54-1.67] mmol/L} and maximal tubular phosphate reabsorption (1.16 [1.00-1.35] vs. 1.41 [1.37-1.47] mmol/L) and significantly increased parathyroid hormone (PTH) level (6.1 [4.5-7.7] vs. 2.8 [2.2-4.4] pmol/L). However, patients and controls did not differ in blood calcium, 25-hydroxyvitamin D, alkaline phosphatase, and osteocalcin levels. In patients, an inverse correlation (P Bartter patients.

  2. NCKX3 was compensated by calcium transporting genes and bone resorption in a NCKX3 KO mouse model.

    Science.gov (United States)

    Yang, Hyun; Ahn, Changhwan; Shin, Eun-Kyeong; Lee, Ji-Sun; An, Beum-Soo; Jeung, Eui-Bae

    2017-10-15

    Gene knockout is the most powerful tool for determination of gene function or permanent modification of the phenotypic characteristics of an animal. Existing methods for gene disruption are limited by their efficiency, time required for completion and potential for confounding off-target effects. In this study, a rapid single-step approach to knockout of a targeted gene in mice using zinc-finger nucleases (ZFNs) was demonstrated for generation of mutant (knockout; KO) alleles. Specifically, ZFNs to target the sodium/calcium/potassium exchanger3 (NCKX3) gene in C57bl/6j were designed using the concept of this approach. NCKX3 KO mice were generated and the phenotypic characterization and molecular regulation of active calcium transporting genes was assessed when mice were fed different calcium diets during growth. General phenotypes such as body weight and plasma ion level showed no distinct abnormalities. Thus, the potassium/sodium/calcium exchanger of NCKX3 KO mice proceeded normally in this study. As a result, the compensatory molecular regulation of this mechanism was elucidated. Renal TRPV5 mRNA of NCKX3 KO mice increased in both male and female mice. Expression of TRPV6 mRNA was only down-regulated in the duodenum of male KO mice. Renal- and duodenal expression of PTHR and VDR were not changed; however, GR mRNA expression was increased in the kidney of NCKX3 KO mice. Depletion of the NCKX3 gene in a KO mouse model showed loss of bone mineral contents and increased plasma parathyroid hormone, suggesting that NCKX3 may play a role in regulating calcium homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The homeostasis solution – Mechanical homeostasis in architecturally homeostatic buildings

    International Nuclear Information System (INIS)

    Wang, Lin-Shu; Ma, Peizheng

    2016-01-01

    Highlights: • Architectural homeostatic buildings (AHBs) make sense because of the laws of physics. • However, high efficiency can be obtained only with AHBs and equipment considered as systems. • Mechanical homeostasis facilitates AHB-equipment system synergy with heat extraction. • Entropically speaking a building needs neither energy nor a fixed amount of heat, but its homeostatic existence. • Homeostatic buildings can reduce building energy consumption from 80% to 90%. - Abstract: We already know, for energy-saving potential, the necessary architectural features in well-designed buildings: high performance building envelope, sufficient interior thermal mass, and hydronic-network activated radiant surfaces for cooling and heating. Buildings with these features may be referred to as architecturally homeostatic buildings (AHBs); such a building-system is thermally semi-autonomous in the sense that its temperature variation stays within a certain range even without conditioning equipment, and, with conditioning equipment in operation, its thermal regulation is handled by its hydronic heat-distribution-network for controlling the temperature level of the building. At the present time conventional HVAC equipment is used for maintaining the heat-distribution-network: this arrangement, however, has resulted in great energy saving only for AHBs with accessible natural water bodies. In operation of general AHBs, a case is made here for a new kind of mechanical equipment having the attribute of mechanical homeostasis (MH). MH is a new energy transformation concept in a triadic framework. Superlative energy efficiency is predicted as a result of combined improvements in higher triadCOPs and lower total (inducted + removed) heat rates—evincing existence of synergy in architectural and mechanical homeostasis, which together will be referred to as the homeostasis solution.

  4. Epithelial calcium channels: from identification to function and regulation.

    NARCIS (Netherlands)

    Hoenderop, J.G.J.; Nilius, B.; Bindels, R.J.M.

    2003-01-01

    The epithelial calcium channels TRPV5 and TRPV6 have been studied extensively in the epithelial tissues controlling Ca(2+) homeostasis and exhibit a range of distinctive properties that distinguish them from other transient receptor potential (TRP) channels. These two novel members of the

  5. Magnesium, calcium and phosphorus in the intensive care unit: Do ...

    African Journals Online (AJOL)

    Magnesium, calcium and phosphorus are important electrolytes involved in the regulation of homeostasis. However the utility in monitoring them in critically ill patients is still unclear. We therefore undertook a prospective, non-interventional, single center study in the intensive care unit of a tertiary care hospital in ...

  6. Evaluation of biochemical changes in unstimulated salivary, calcium ...

    African Journals Online (AJOL)

    Pregnancy is thought to be predisposed to the impairment of oral and dental health. As saliva contributes to oral homeostasis, this study aimed to compare the changes of total protein, calcium and phosphorous concentration in whole saliva between pregnant and non-pregnant Iranian women. Samples were composed of ...

  7. Calcium blood test

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003477.htm Calcium blood test To use the sharing features on this page, please enable JavaScript. The calcium blood test measures the level of calcium in the blood. ...

  8. Calcium source (image)

    Science.gov (United States)

    Getting enough calcium to keep bones from thinning throughout a person's life may be made more difficult if that person has ... as a tendency toward kidney stones, for avoiding calcium-rich food sources. Calcium deficiency also effects the ...

  9. Calcium Pyrophosphate Deposition (CPPD)

    Science.gov (United States)

    ... Patient / Caregiver Diseases & Conditions Calcium Pyrophosphate Deposition (CPPD) Calcium Pyrophosphate Deposition (CPPD) Fast Facts The risk of ... young people, too. Proper diagnosis depends on detecting calcium pyrophosphate crystals in the fluid of an affected ...

  10. Calcium carbonate overdose

    Science.gov (United States)

    Tums overdose; Calcium overdose ... Calcium carbonate can be dangerous in large amounts. ... Products that contain calcium carbonate are certain: Antacids (Tums, Chooz) Mineral supplements Hand lotions Vitamin and mineral supplements Other products may also contain ...

  11. Calcium and bones (image)

    Science.gov (United States)

    Calcium is one of the most important minerals for the growth, maintenance, and reproduction of the human ... body, are continually being re-formed and incorporate calcium into their structure. Calcium is essential for the ...

  12. Calcium hydroxide poisoning

    Science.gov (United States)

    Hydrate - calcium; Lime milk; Slaked lime ... Calcium hydroxide ... These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement ...

  13. Three-component homeostasis control

    Science.gov (United States)

    Xu, Jin; Hong, Hyunsuk; Jo, Junghyo

    2014-03-01

    Two reciprocal components seem to be sufficient to maintain a control variable constant. However, pancreatic islets adapt three components to control glucose homeostasis. They are α (secreting glucagon), β (insulin), and δ (somatostatin) cells. Glucagon and insulin are the reciprocal hormones for increasing and decreasing blood glucose levels, while the role of somatostatin is unknown. However, it has been known how each hormone affects other cell types. Based on the pulsatile hormone secretion and the cellular interactions, this system can be described as coupled oscillators. In particular, we used the Landau-Stuart model to consider both amplitudes and phases of hormone oscillations. We found that the presence of the third component, δ cell, was effective to resist under glucose perturbations, and to quickly return to the normal glucose level once perturbed. Our analysis suggested that three components are necessary for advanced homeostasis control.

  14. Telomere Homeostasis: Interplay with Magnesium

    Directory of Open Access Journals (Sweden)

    Donogh Maguire

    2018-01-01

    Full Text Available Telomere biology, a key component of the hallmarks of ageing, offers insight into dysregulation of normative ageing processes that accompany age-related diseases such as cancer. Telomere homeostasis is tightly linked to cellular metabolism, and in particular with mitochondrial physiology, which is also diminished during cellular senescence and normative physiological ageing. Inherent in the biochemistry of these processes is the role of magnesium, one of the main cellular ions and an essential cofactor in all reactions that use ATP. Magnesium plays an important role in many of the processes involved in regulating telomere structure, integrity and function. This review explores the mechanisms that maintain telomere structure and function, their influence on circadian rhythms and their impact on health and age-related disease. The pervasive role of magnesium in telomere homeostasis is also highlighted.

  15. Sleep Homeostasis and Synaptic Plasticity

    Science.gov (United States)

    2017-06-01

    Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202...circuit (a homeostat) that operates in concert with the circadian circuitry or does sleep drive accumulate everywhere in the brain? To answer these...neurons is capable of generating sleep drive. RNAi-mediated knockdown of insomniac in R2 neurons abolished sleep homeostasis without affecting baseline

  16. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Serotonin and the regulation of calcium transport in dairy cows.

    Science.gov (United States)

    Hernandez, L L

    2017-12-01

    The mammary gland regulates maternal metabolism during lactation. Numerous factors within the tissue send signals to shift nutrients to the mammary gland for milk synthesis. Serotonin is a monoamine that has been well documented to regulate several aspects of lactation among species. Maintenance of maternal calcium homeostasis during lactation is a highly evolved process that is elegantly regulated by the interaction of the mammary gland with the bone, gut, and kidney tissues. It is well documented that dietary calcium is insufficient to maintain maternal calcium concentrations during lactation, and mammals must rely on bone resorption to maintain normocalcemia. Our recent work focused on the ability of the mammary gland to function as an accessory parathyroid gland during lactation. It was demonstrated that serotonin acts to stimulate parathyroid hormone-related protein (PTHrP) in the mammary gland during lactation. The main role of mammary-derived PTHrP during mammalian lactation is to stimulate bone resorption to maintain maternal calcium homeostasis during lactation. In addition to regulating PTHrP, it was shown that serotonin appears to directly affect calcium transporters and pumps in the mammary gland. Our current working hypothesis regarding the control of calcium during lactation is as follows: serotonin directly stimulates PTHrP production in the mammary gland through interaction with the sonic hedgehog signaling pathway. Simultaneously, serotonin directly increases calcium movement into the mammary gland and, subsequently, milk. These 2 direct actions of serotonin combine to induce a transient maternal hypocalcemia required to further stimulate PTHrP production and calcium mobilization from bone. Through these 2 routes, serotonin is able to improve maternal calcium concentrations. Furthermore, we have shown that Holstein and Jersey cows appear to regulate calcium in different manners and also respond differently to serotonergic stimulation of the calcium

  17. Plant abnormality inspection device

    International Nuclear Information System (INIS)

    Takenaka, Toshio.

    1990-01-01

    The present invention concerns a plant abnormality inspection device for conducting remote or automatic patrolling inspection in a plant and, more particularly, relates to such a device as capable of detecting abnormal odors. That is, the device comprises a moving device for moving to a predetermined position in the plant, a plurality of gas sensors for different kind of gases to be inspected mounted thereon, a comparator for comparing the concentration of a gas detected by the gas sensor with the normal gas concentration at the predetermined position and a judging means for judging the absence or presence of abnormality depending on the combination of the result of the comparison and deliverying a signal if the state is abnormal. As a result, a slight amount of gas responsible to odors released upon abnormality of the plant can be detected by a plurality of gas sensors for different kinds gases to rapidly and easily find abnormal portions in the plant. (I.S.)

  18. Calcium in Urine Test

    Science.gov (United States)

    ... K. Brunner & Suddarth's Handbook of Laboratory and Diagnostic Tests. 2 nd Ed, Kindle. Philadelphia: Wolters Kluwer Health, Lippincott Williams & Wilkins; c2014. Calcium, Serum; Calcium and Phosphates, Urine; ...

  19. Transcellular transport of calcium

    Energy Technology Data Exchange (ETDEWEB)

    Terepka, A R; Coleman, J R; Armbrecht, H J; Gunter, T E

    1976-01-01

    Studies of two calcium transporting epithelia, embryonic chick chorioallantoic membrane and the small intestine of rat and chick, have strongly suggested that the transfer of calcium across a cell involves processes distinctly different from intracellular calcium ion regulation. In the proposed model, transcellular calcium transport is considered as a specialized process developed only by certain cells in those tissues charged with bulk transfer of calcium. The overall effect of the endocytotic mechanism is bulk calcium movement across a cell, protection of mitochondria from exposure to high concentrations of calcium, and the avoidance of wide and potentially toxic fluctuations in cytosol ionic calcium levels. (MFB)

  20. О влиянии перинатального инфицирования на кальций-фосфорный гомеостаз и структурное состояние костной ткани у беременных = About influence of the perinatal infection on calcium-phosphorus homeostasis and structural condition of bone tissue in pregnant women

    Directory of Open Access Journals (Sweden)

    Gulsym S. Manasova

    2016-05-01

    3Communal Health Protection Institution “Maternity Hospital  №5”, Odessa, Ukraine   Аbstract The article presents the results of calcium-phosphorus homeostasis study in pregnant women with verified perinatal infection (VPI and osteopenic syndrome. Materials and methods. 3 groups of pregnant women were examined in dynamics. There were 192 patients with VPI and clinical and/or ultrasound manifestations of infections (I-A, 43 patients had  VPI without manifestations of  infection (I-B; 128 healthy women constituted the control group (II. The content of general and ionized calcium, phosphorus in blood, and urinarium calcium excretion were defined by photometric method; bone tissue state was examined by ultrasound densitometry. Results. The reduction of total and ionized calcium concentration took place with increasing gestational age ((1,89 ± 0,03 and (1,67 ± 0,05 mmol / l and control ((2,41 ± 0,02 in the 2nd, (2,16 ± 0,03 - in the 3rd trimester (p <0,001 groups.  Calcium levels in healthy women remained within the physiological concentrations, whereas calcium decrease was significant already in the 2nd trimester at VPI. BMD conformed osteoporosis in 9,78% of the women under observation with the VPI already at the initial examination and osteopenic syndrome (OPS was identified in 71,91% of women. In the control group OPS was diagnosed in only 23,43% of the patients. Conclusions. Blood calcium concentration is characterized by decrease and depends on  increasing gestational age in all groups; calcium level is significantly lower at infected patients. Evidently, elevation of VPI pregnant women calcium needs is not compensated by the mechanisms of physiological adaptation, as against healthy women. Reduced of bone mineral density at infected womwn is characterized by more pronounced and rapid changes in comparison with the same indexes in  the group of healthy pregnant women. Perinatal infection is one of  risk factor for osteoporosis development in

  1. Interactions of Mitochondria/Metabolism and Calcium Regulation in Alzheimer's Disease: A Calcinist Point of View.

    Science.gov (United States)

    Gibson, Gary E; Thakkar, Ankita

    2017-06-01

    Decades of research suggest that alterations in calcium are central to the pathophysiology of Alzheimer's Disease (AD). Highly reproducible changes in calcium dynamics occur in cells from patients with both genetic and non-genetic forms of AD relative to controls. The most robust change is an exaggerated release of calcium from internal stores. Detailed analysis of these changes in animal and cell models of the AD-causing presenilin mutations reveal robust changes in ryanodine receptors, inositol tris-phosphate receptors, calcium leak channels and store activated calcium entry. Similar anomalies in calcium result when AD-like changes in mitochondrial enzymes or oxidative stress are induced experimentally. The calcium abnormalities can be directly linked to the altered tau phosphorylation, amyloid precursor protein processing and synaptic dysfunction that are defining features of AD. A better understanding of these changes is required before using calcium abnormalities as therapeutic targets.

  2. Defining Abnormally Low Tenders

    DEFF Research Database (Denmark)

    Ølykke, Grith Skovgaard; Nyström, Johan

    2017-01-01

    The concept of an abnormally low tender is not defined in EU public procurement law. This article takes an interdisciplinary law and economics approach to examine a dataset consisting of Swedish and Danish judgments and verdicts concerning the concept of an abnormally low tender. The purpose...

  3. Calcium sensing in exocytosis

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Wu, Bingbing; Han, Weiping

    2012-01-01

    an increase in intracellular calcium levels. Besides the triggering role, calcium signaling modulates the precise amount and kinetics of vesicle release. Thus, it is a central question to understand the molecular machineries responsible for calcium sensing in exocytosis. Here we provide an overview of our...... current understanding of calcium sensing in neurotransmitter release and hormone secretion....

  4. Calcium fluoride

    International Nuclear Information System (INIS)

    King, C.W.; Nestor, O.H.

    1989-01-01

    A new process for producing large, single, oriented crystals of calcium fluoride (CaF 2 ) has been developed which overcomes the limitations of current growing methods. This process has been reduced to practice and has yielded oriented crystals 17.5 x 17.5 x 5 cm 3 . Currently nearing completion is a system for producing 35 x 35 x 7.5 cm 3 single crystals. A scale up to one-meter-square is considered feasible. This crystal growing process makes possible the fabrication of very large CaF 2 windows. Suitability for very high power lasers, however, requires attention to properties beyond mere size. A process to generate higher purity growth stock (starting material) was also developed. The additional purification of the growth stock contributes to lower bulk absorption, the absence of color centers and increased radiation hardness. Also identified were several specific impurities which correlate with radiation hardness. A correlation was found between color centers induced by laser radiation and ionizing radiation. Other CaF 2 crystal properties such as tensile strength, absorption and laser damage thresholds were studied and are discussed

  5. Calcium and bone disorders in pregnancy

    Directory of Open Access Journals (Sweden)

    Shriraam Mahadevan

    2012-01-01

    Full Text Available Significant transplacental calcium transfer occurs during pregnancy, especially during the last trimester, to meet the demands of the rapidly mineralizing fetal skeleton. Similarly, there is an obligate loss of calcium in the breast milk during lactation. Both these result in considerable stress on the bone mineral homeostasis in the mother. The maternal adaptive mechanisms to conserve calcium are different in pregnancy and lactation. During pregnancy, increased intestinal absorption of calcium from the gut mainly due to higher generation of calcitriol (1,25 dihydroxy vitamin D helps in maintaining maternal calcium levels. On the other hand, during lactation, the main compensatory mechanism is skeletal resorption due to increased generation of parathormone related peptide (PTHrP from the breast. Previous studies suggest that in spite of considerable changes in bone mineral metabolism during pregnancy, parity and lactation are not significantly associated with future risk for osteoporosis. However, in India, the situation may not be the same as a significant proportion of pregnancies occur in the early twenties when peak bone mass is not yet achieved. Further, malnutrition, anemia and vitamin D deficiency are commonly encountered in this age group. This may have an impact on future bone health of the mother. It may also probably provide an opportunity for health care providers for prevention. Other metabolic bone diseases like hypoparathyroidism, hyperparathyroidism and pseudohypoparathyroidism are rarely encountered in pregnancy. Their clinical implications and management are also discussed.

  6. Effect of ionizing radiation on calcium and cyclic nucleotides metabolism in rats of different age

    International Nuclear Information System (INIS)

    Efimova, N.I.; Libenson, S.V.

    1982-01-01

    Some features of mechanism of calcium homeostasis and cyclic nucleotide exchange breakage in case of acute radiation injury of rats of various age were studied. It is established that calcium level in blood in nonpuberal animals, calcium and cAMP excretion with urine are minimal and reach maximum at puberal age. cGMP excretion with urine and concentrational levels of cAMP and cGMP in blood do not change with age. It is shown that calcium excretion with urine decreases adaptively in conditions of acute radiation injury in rats of all age groups. Maximal shifts in cAMP/cGMP ratio were noted in nonpuberal animals, whereas maximal adaptive-compensatory abilities in the regulation system of calcium homeostasis and cyclic nucleotides are typical to adolescent puberal animals

  7. Homeostasis, inflammation, and disease susceptibility.

    Science.gov (United States)

    Kotas, Maya E; Medzhitov, Ruslan

    2015-02-26

    While modernization has dramatically increased lifespan, it has also witnessed the increasing prevalence of diseases such as obesity, hypertension, and type 2 diabetes. Such chronic, acquired diseases result when normal physiologic control goes awry and may thus be viewed as failures of homeostasis. However, while nearly every process in human physiology relies on homeostatic mechanisms for stability, only some have demonstrated vulnerability to dysregulation. Additionally, chronic inflammation is a common accomplice of the diseases of homeostasis, yet the basis for this connection is not fully understood. Here we review the design of homeostatic systems and discuss universal features of control circuits that operate at the cellular, tissue, and organismal levels. We suggest a framework for classification of homeostatic signals that is based on different classes of homeostatic variables they report on. Finally, we discuss how adaptability of homeostatic systems with adjustable set points creates vulnerability to dysregulation and disease. This framework highlights the fundamental parallels between homeostatic and inflammatory control mechanisms and provides a new perspective on the physiological origin of inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Chromosomal abnormalities and autism

    Directory of Open Access Journals (Sweden)

    Farida El-Baz

    2016-01-01

    Conclusion: Chromosomal abnormalities were not detected in the studied autistic children, and so the relation between the genetics and autism still needs further work up with different study methods and techniques.

  9. Chromosomal Abnormalities in ADHD

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2002-07-01

    Full Text Available The prevalence of fragile X syndrome, velocardiofacial syndrome (VCFS, and other cytogenetic abnormalities among 100 children (64 boys with combined type ADHD and normal intelligence was assessed at the NIMH and Georgetown University Medical Center.

  10. "Jeopardy" in Abnormal Psychology.

    Science.gov (United States)

    Keutzer, Carolin S.

    1993-01-01

    Describes the use of the board game, Jeopardy, in a college level abnormal psychology course. Finds increased student interaction and improved application of information. Reports generally favorable student evaluation of the technique. (CFR)

  11. Abnormal Uterine Bleeding

    Science.gov (United States)

    ... especially the progestin-only pill (also called the “mini-pill”) can actually cause abnormal bleeding for some ... Basics Sports Safety Injury Rehabilitation Emotional Well-Being Mental Health Sex and Birth Control Sex and Sexuality ...

  12. Abnormal sound detection device

    International Nuclear Information System (INIS)

    Yamada, Izumi; Matsui, Yuji.

    1995-01-01

    Only components synchronized with rotation of pumps are sampled from detected acoustic sounds, to judge the presence or absence of abnormality based on the magnitude of the synchronized components. A synchronized component sampling means can remove resonance sounds and other acoustic sounds generated at a synchronously with the rotation based on the knowledge that generated acoustic components in a normal state are a sort of resonance sounds and are not precisely synchronized with the number of rotation. On the other hand, abnormal sounds of a rotating body are often caused by compulsory force accompanying the rotation as a generation source, and the abnormal sounds can be detected by extracting only the rotation-synchronized components. Since components of normal acoustic sounds generated at present are discriminated from the detected sounds, reduction of the abnormal sounds due to a signal processing can be avoided and, as a result, abnormal sound detection sensitivity can be improved. Further, since it is adapted to discriminate the occurrence of the abnormal sound from the actually detected sounds, the other frequency components which are forecast but not generated actually are not removed, so that it is further effective for the improvement of detection sensitivity. (N.H.)

  13. Association of calcium sensing receptor polymorphisms at rs1801725 with circulating calcium in breast cancer patients.

    Science.gov (United States)

    Wang, Li; Widatalla, Sarrah E; Whalen, Diva S; Ochieng, Josiah; Sakwe, Amos M

    2017-08-02

    Breast cancer (BC) patients with late-stage and/or rapidly growing tumors are prone to develop high serum calcium levels which have been shown to be associated with larger and aggressive breast tumors in post and premenopausal women respectively. Given the pivotal role of the calcium sensing receptor (CaSR) in calcium homeostasis, we evaluated whether polymorphisms of the CASR gene at rs1801725 and rs1801726 SNPs in exon 7, are associated with circulating calcium levels in African American and Caucasian control subjects and BC cases. In this retrospective case-control study, we assessed the mean circulating calcium levels, the distribution of two inactivating CaSR SNPs at rs1801725 and rs1801726 in 199 cases and 384 age-matched controls, and used multivariable regression analysis to determine whether these SNPs are associated with circulating calcium in control subjects and BC cases. We found that the mean circulating calcium levels in African American subjects were higher than those in Caucasian subjects (p calcium levels were higher in BC cases compared to control subjects (p calcium levels in BC patients were independent of race. We also show that in BC cases and control subjects, the major alleles at rs1801725 (G/T, A986S) and at rs1801726 (C/G, Q1011E) were common among Caucasians and African Americans respectively. Compared to the wild type alleles, polymorphisms at the rs1801725 SNP were associated with higher calcium levels (p = 0.006) while those at rs1801726 were not. Using multivariable linear mixed-effects models and adjusting for age and race, we show that circulating calcium levels in BC cases were associated with tumor grade (p = 0.009), clinical stage (p = 0.003) and more importantly, with inactivating mutations of the CASR at the rs1801725 SNP (p = 0.038). These data suggest that decreased sensitivity of the CaSR to calcium due to inactivating polymorphisms at rs1801725, may predispose up to 20% of BC cases to high circulating calcium

  14. Gestational diabetes is characterized by reduced mitochondrial protein expression and altered calcium signaling proteins in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Kristen E Boyle

    Full Text Available The rising prevalence of gestational diabetes mellitus (GDM affects up to 18% of pregnant women with immediate and long-term metabolic consequences for both mother and infant. Abnormal glucose uptake and lipid oxidation are hallmark features of GDM prompting us to use an exploratory proteomics approach to investigate the cellular mechanisms underlying differences in skeletal muscle metabolism between obese pregnant women with GDM (OGDM and obese pregnant women with normal glucose tolerance (ONGT. Functional validation was performed in a second cohort of obese OGDM and ONGT pregnant women. Quantitative proteomic analysis in rectus abdominus skeletal muscle tissue collected at delivery revealed reduced protein content of mitochondrial complex I (C-I subunits (NDUFS3, NDUFV2 and altered content of proteins involved in calcium homeostasis/signaling (calcineurin A, α1-syntrophin, annexin A4 in OGDM (n = 6 vs. ONGT (n = 6. Follow-up analyses showed reduced enzymatic activity of mitochondrial complexes C-I, C-III, and C-IV (-60-75% in the OGDM (n = 8 compared with ONGT (n = 10 subjects, though no differences were observed for mitochondrial complex protein content. Upstream regulators of mitochondrial biogenesis and oxidative phosphorylation were not different between groups. However, AMPK phosphorylation was dramatically reduced by 75% in the OGDM women. These data suggest that GDM is associated with reduced skeletal muscle oxidative phosphorylation and disordered calcium homeostasis. These relationships deserve further attention as they may represent novel risk factors for development of GDM and may have implications on the effectiveness of physical activity interventions on both treatment strategies for GDM and for prevention of type 2 diabetes postpartum.

  15. CHF: circulatory homeostasis gone awry.

    Science.gov (United States)

    Weber, Karl T; Burlew, Brad S; Davis, Richard C; Newman, Kevin P; D'Cruz, Ivan A; Hawkins, Ralph G; Wall, Barry M; Parker, Robert B

    2002-01-01

    The role of the renin-angiotensin-aldosterone system (RAAS) is integral to salt and water retention, particularly by the kidneys. Over time, positive sodium balance leads first to intra- and then to extravascular volume expansion, with subsequent symptomatic heart failure. This report examines the role of the RAAS in regulating a less well recognized component essential to circulatory homeostasis--central blood volume. The regulation of central blood volume draws on integrative cardiorenal physiology and a key role played by the RAAS in its regulation. In presenting insights into the role of the RAAS in regulating central blood volume, this review also addresses other sodium-retaining states with a predisposition to edema formation, such as cirrhosis and nephrosis. (c)2002 CHF, Inc

  16. [Bone homeostasis and Mechano biology.

    Science.gov (United States)

    Nakashima, Tomoki

    The weight-bearing exercises help to build bones and to maintain them strength. Bone is constantly renewed by the balanced action of osteoblastic bone formation and osteoclastic bone resorption both of which mainly occur at the bone surface. This restructuring process called "bone remodeling" is important not only for normal bone mass and strength, but also for mineral homeostasis. Bone remodeling is stringently regulated by communication between bone component cells such as osteoclasts, osteoblasts and osteocytes. An imbalance of this process is often linked to various bone diseases. During bone remodeling, resorption by osteoclasts precedes bone formation by osteoblasts. Based on the osteocyte location within the bone matrix and the cellular morphology, it is proposed that osteocytes potentially contribute to the regulation of bone remodeling in response to mechanical and endocrine stimuli.

  17. Interaction of H2S with Calcium Permeable Channels and Transporters

    Directory of Open Access Journals (Sweden)

    Weihua Zhang

    2015-01-01

    Full Text Available A growing amount of evidence has suggested that hydrogen sulfide (H2S, as a gasotransmitter, is involved in intensive physiological and pathological processes. More and more research groups have found that H2S mediates diverse cellular biological functions related to regulating intracellular calcium concentration. These groups have demonstrated the reciprocal interaction between H2S and calcium ion channels and transporters, such as L-type calcium channels (LTCC, T-type calcium channels (TTCC, sodium/calcium exchangers (NCX, transient receptor potential (TRP channels, β-adrenergic receptors, and N-methyl-D-aspartate receptors (NMDAR in different cells. However, the understanding of the molecular targets and mechanisms is incomplete. Recently, some research groups demonstrated that H2S modulates the activity of calcium ion channels through protein S-sulfhydration and polysulfide reactions. In this review, we elucidate that H2S controls intracellular calcium homeostasis and the underlying mechanisms.

  18. Osmotic homeostasis and NKLy lymphoma cells radiosensitivity

    International Nuclear Information System (INIS)

    Tishchenko, V.V.; Magda, I.N.

    1992-01-01

    In experiments with cells of ascites NKLy lymphoma differing in ploidy and position in the cell cycle, a study was made of the radiosensitivity, osmotic homeostasis peculiarities and thermoradiation changes in potassium content. It was shown that the resistance of osmotic homeostasis of NKLy cells to thermoradiation correlated with their radioresistance

  19. Calcium and magnesium determination

    International Nuclear Information System (INIS)

    Bhattacharya, S.K.

    1982-01-01

    The roles of calcium and magnesium in human health and disease have been extensively studied. Calcium and magnesium have been determined in biological specimens by atomic absorption spectroscopy using stiochiometric nitrous oxide-acetylene flame

  20. Fenoprofen calcium overdose

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002649.htm Fenoprofen calcium overdose To use the sharing features on this page, please enable JavaScript. Fenoprofen calcium is a type of medicine called a nonsteroidal ...

  1. Calcium channel blocker overdose

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002580.htm Calcium-channel blocker overdose To use the sharing features on this page, please enable JavaScript. Calcium-channel blockers are a type of medicine used ...

  2. Endoplasmic reticulum calcium transport ATPase expression during differentiation of colon cancer and leukaemia cells

    International Nuclear Information System (INIS)

    Papp, Bela; Brouland, Jean-Philippe; Gelebart, Pascal; Kovacs, Tuende; Chomienne, Christine

    2004-01-01

    The calcium homeostasis of the endoplasmic reticulum (ER) is connected to a multitude of cell functions involved in intracellular signal transduction, control of proliferation, programmed cell death, or the synthesis of mature proteins. Calcium is accumulated in the ER by various biochemically distinct sarco/endoplasmic reticulum calcium transport ATPase isoenzymes (SERCA isoforms). Experimental data indicate that the SERCA composition of some carcinoma and leukaemia cell types undergoes significant changes during differentiation, and that this is accompanied by modifications of SERCA-dependent calcium accumulation in the ER. Because ER calcium homeostasis can also influence cell differentiation, we propose that the modulation of the expression of various SERCA isoforms, and in particular, the induction of the expression of SERCA3-type proteins, is an integral part of the differentiation program of some cancer and leukaemia cell types. The SERCA content of the ER may constitute a new parameter by which the calcium homeostatic characteristics of the organelle are adjusted. The cross-talk between ER calcium homeostasis and cell differentiation may have some implications for the better understanding of the signalling defects involved in the acquisition and maintenance of the malignant phenotype

  3. Calcium and Mitosis

    Science.gov (United States)

    Hepler, P.

    1983-01-01

    Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.

  4. [Zinc signaling : a novel regulatory system on bone homeostasis, and immune and allergic responses].

    Science.gov (United States)

    Fukada, Toshiyuki; Nishida, Keigo; Yamasaki, Satoru; Hojyo, Shintaro

    2012-11-01

    Zinc (Zn) is an essential trace element that is required for proliferation, differentiation, and variety of cellular functions, and unbalanced homeostasis of Zn ion (Zn(2 + )) results in health problems such as abnormal bone formation and immunodeficiency. Recent studies have shed light on important roles of Zn(2 + )as a signaling mediator, called Zn signal. Zn(2 + )homeostasis is regulated through Zn transporters and cation channels. Advances of genetic and molecular approaches have revealed that Zn signal regulates mammalian physiology and pathogenesis. We will address that Zn signal undoubtedly contributes to our health, by highlighting it in bone homeostasis and immune regulation, and discuss that the "Zn signal axis" selectively controls intracellular signal transduction to fine-tune cellular functions.

  5. Calcium en cardioplegie

    NARCIS (Netherlands)

    Ruigrok, T.J.C.; Meijler, F.L.

    1985-01-01

    Coronary perfusion with a calcium-free solution, followed by reperfusion with a calcium containing solution, may result in acute myocardial cell death and in irreversible loss of the e1ectrical and mechanical activity of the heart. This phenomenon is known as the calcium paradox. A number of

  6. Mechanism of cytotoxic action of perfluorinated acids. III. Disturbance in Ca2+ homeostasis

    International Nuclear Information System (INIS)

    Kleszczynski, Konrad; Skladanowski, Andrzej C.

    2011-01-01

    The global distribution of perfluorinated acids (PFAs) in industry and in household is well known. Their increasing environmental occurrence and biomagnification in the living organisms have drawn growing interests in efforts to describe precisely the mechanisms of action in vitro and in vivo. Our previous investigations widely described lipophilicity-dependent cytotoxicity of PFAs as well as the effect of perfluorination of carbon chain on depolarization of plasma membrane potential, acidification or mitochondrial dysfunctions. In this study we presented in dose- and time-dependent manner the impact of PFAs on calcium homeostasis in HCT116 cells. Comparative analysis of cytosolic [Ca 2+ ] c and mitochondrial calcium [Ca 2+ ] m carried out by flow cytometry revealed distinct uptake of calcium into mitochondria in correlation to increasing lipophilicity of PFAs. Massive accumulation of [Ca 2+ ] m was not accompanied by equivalent loss of [Ca 2+ ] c . Indeed, moderate changes of [Ca 2+ ] c were observed after incubation with 400 μM PFDoDA reaching 29.83% and 49.17% decrease at 4th and 72nd hour, respectively. At the same time, mitochondrial calcium uptake increased from 2- to more than 4-fold comparing with non-treated cells. Incubation with non-fluorinated decanoic acid (DA) did not cause any changes in calcium homeostasis. Presented data show that PFAs-induced perturbations in calcium distribution seem to be a missing link related to mitochondria dysfunction playing a crucial role in determination of apoptotic cell death. Complete scheme for the mechanism of cytotoxic action of PFAs has been included.

  7. Protein synthesis controls phosphate homeostasis.

    Science.gov (United States)

    Pontes, Mauricio H; Groisman, Eduardo A

    2018-01-01

    Phosphorus is an essential element assimilated largely as orthophosphate (Pi). Cells respond to Pi starvation by importing Pi from their surroundings. We now report that impaired protein synthesis alone triggers a Pi starvation response even when Pi is plentiful in the extracellular milieu. In the bacterium Salmonella enterica serovar Typhimurium , this response entails phosphorylation of the regulatory protein PhoB and transcription of PhoB-dependent Pi transporter genes and is eliminated upon stimulation of adenosine triphosphate (ATP) hydrolysis. When protein synthesis is impaired due to low cytoplasmic magnesium (Mg 2+ ), Salmonella triggers the Pi starvation response because ribosomes are destabilized, which reduces ATP consumption and thus free cytoplasmic Pi. This response is transient because low cytoplasmic Mg 2+ promotes an uptake in Mg 2+ and a decrease in ATP levels, which stabilizes ribosomes, resulting in ATP consumption and Pi increase, thus ending the response. Notably, pharmacological inhibition of protein synthesis also elicited a Pi starvation response in the bacterium Escherichia coli and the yeast Saccharomyces cerevisiae Our findings identify a regulatory connection between protein synthesis and Pi homeostasis that is widespread in nature. © 2018 Pontes and Groisman; Published by Cold Spring Harbor Laboratory Press.

  8. [Acid-base homeostasis and the thyro-parathyroid glands].

    Science.gov (United States)

    Cuisinier-Gleizes, P; George, A; Thomasset, M; Mathieu, H

    1975-05-12

    Chronic metabolic acidosis entails hyperparathyroidism and osteopathy. In order to elucidate the role of the thyroparathyroids in this bone lesion production the effects of acidic diet for 7 weeks were studied in parathyroidectomized (PTX), thyroparathyroidectomized (TPTX) and shamoperated (Sh-O) growing rats. In all animals urinary excretion of calcium, phosphate, ammonium and titrable acidity was similarly increased. The rise in hydroxyproline excretion and urinary 85-sr (that was injected previous to acidic feeding) was more marked in PTX and TPTX rats. Moreover, in these animals the serum calcium level was increased, the blood pH was decreased. According to these data, an acidic diet intake that is not sufficient to elicit a fall in blood pH of normal young rats can induce severe acidosis in chronically parathyroidectomized or thyroparathyroidectomized animals; moreover the bone resorption appears more marked. It is concluded that parathyroids are involved in the extra-cellular fluid defense mechanism against acidosis by a no bone resorptive mechanism. We hypothesize that the parathyroids permit the necessary and adequate supply of bicarbonates by the bone to maintain blood pH homeostasis.

  9. Altered sarco(endo)plasmic reticulum calcium adenosine triphosphatase 2a content: Targets for heart failure therapy.

    Science.gov (United States)

    Liu, Gang; Li, Si Qi; Hu, Ping Ping; Tong, Xiao Yong

    2018-05-01

    Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is responsible for transporting cytosolic calcium into the sarcoplasmic reticulum and endoplasmic reticulum to maintain calcium homeostasis. Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is the dominant isoform expressed in cardiac tissue, which is regulated by endogenous protein inhibitors, post-translational modifications, hormones as well as microRNAs. Dysfunction of sarco(endo)plasmic reticulum calcium adenosine triphosphatase is associated with heart failure, which makes sarco(endo)plasmic reticulum calcium adenosine triphosphatase a promising target for heart failure therapy. This review summarizes current approaches to ameliorate sarco(endo)plasmic reticulum calcium adenosine triphosphatase function and focuses on phospholamban, an endogenous inhibitor of sarco(endo)plasmic reticulum calcium adenosine triphosphatase, pharmacological tools and gene therapies.

  10. Calcium dysregulation, functional calpainopathy, and endoplasmic reticulum stress in sporadic inclusion body myositis.

    Science.gov (United States)

    Amici, David R; Pinal-Fernandez, Iago; Mázala, Davi A G; Lloyd, Thomas E; Corse, Andrea M; Christopher-Stine, Lisa; Mammen, Andrew L; Chin, Eva R

    2017-03-22

    Sporadic inclusion body myositis (IBM) is the most common primary myopathy in the elderly, but its pathoetiology is still unclear. Perturbed myocellular calcium (Ca 2+ ) homeostasis can exacerbate many of the factors proposed to mediate muscle degeneration in IBM, such as mitochondrial dysfunction, protein aggregation, and endoplasmic reticulum stress. Ca 2+ dysregulation may plausibly be initiated in IBM by immune-mediated membrane damage and/or abnormally accumulating proteins, but no studies to date have investigated Ca 2+ regulation in IBM patients. We first investigated protein expression via immunoblot in muscle biopsies from IBM, dermatomyositis, and non-myositis control patients, identifying several differentially expressed Ca 2+ -regulatory proteins in IBM. Next, we investigated the Ca 2+ -signaling transcriptome by RNA-seq, finding 54 of 183 (29.5%) genes from an unbiased list differentially expressed in IBM vs. controls. Using an established statistical approach to relate genes with causal transcription networks, Ca 2+ abundance was considered a significant upstream regulator of observed whole-transcriptome changes. Post-hoc analyses of Ca 2+ -regulatory mRNA and protein data indicated a lower protein to transcript ratio in IBM vs. controls, which we hypothesized may relate to increased Ca 2+ -dependent proteolysis and decreased protein translation. Supporting this hypothesis, we observed robust (4-fold) elevation in the autolytic activation of a Ca 2+ -activated protease, calpain-1, as well as increased signaling for translational attenuation (eIF2a phosphorylation) downstream of the unfolded protein response. Finally, in IBM samples we observed mRNA and protein under-expression of calpain-3, the skeletal muscle-specific calpain, which broadly supports proper Ca 2+ homeostasis. Together, these data provide novel insight into mechanisms by which intracellular Ca 2+ regulation is perturbed in IBM and offer evidence of pathological downstream effects.

  11. CT of pleural abnormalities

    International Nuclear Information System (INIS)

    Webb, W.R.

    1995-01-01

    Briefly discussed were CT diagnosis of pleural thickening, CT technique for examining the pleura or pleuro-pulmonary disease, diagnosis of pleural collections, diagnosis of pleural fluid abnormalities in patients with pneumonia, pleural neoplasms, malignant (diffuse) mesothelioma, metastases, local fibrous tumor of the pleura (benign mesothelioma) (21 refs.)

  12. CT of pleural abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Webb, W R [California Univ., San Francisco, CA (United States). Dept. of Radiology

    1996-12-31

    Briefly discussed were CT diagnosis of pleural thickening, CT technique for examining the pleura or pleuro-pulmonary disease, diagnosis of pleural collections, diagnosis of pleural fluid abnormalities in patients with pneumonia, pleural neoplasms, malignant (diffuse) mesothelioma, metastases, local fibrous tumor of the pleura (benign mesothelioma) (21 refs.).

  13. Neurologic abnormalities in murderers.

    Science.gov (United States)

    Blake, P Y; Pincus, J H; Buckner, C

    1995-09-01

    Thirty-one individuals awaiting trial or sentencing for murder or undergoing an appeal process requested a neurologic examination through legal counsel. We attempted in each instance to obtain EEG, MRI or CT, and neuropsychological testing. Neurologic examination revealed evidence of "frontal" dysfunction in 20 (64.5%). There were symptoms or some other evidence of temporal lobe abnormality in nine (29%). We made a specific neurologic diagnosis in 20 individuals (64.5%), including borderline or full mental retardation (9) and cerebral palsy (2), among others. Neuropsychological testing revealed abnormalities in all subjects tested. There were EEG abnormalities in eight of the 20 subjects tested, consisting mainly of bilateral sharp waves with slowing. There were MRI or CT abnormalities in nine of the 19 subjects tested, consisting primarily of atrophy and white matter changes. Psychiatric diagnoses included paranoid schizophrenia (8), dissociative disorder (4), and depression (9). Virtually all subjects had paranoid ideas and misunderstood social situations. There was a documented history of profound, protracted physical abuse in 26 (83.8%) and of sexual abuse in 10 (32.3%). It is likely that prolonged, severe physical abuse, paranoia, and neurologic brain dysfunction interact to form the matrix of violent behavior.

  14. Regulation of intestinal homeostasis by innate immune cells.

    Science.gov (United States)

    Kayama, Hisako; Nishimura, Junichi; Takeda, Kiyoshi

    2013-12-01

    The intestinal immune system has an ability to distinguish between the microbiota and pathogenic bacteria, and then activate pro-inflammatory pathways against pathogens for host defense while remaining unresponsive to the microbiota and dietary antigens. In the intestine, abnormal activation of innate immunity causes development of several inflammatory disorders such as inflammatory bowel diseases (IBD). Thus, activity of innate immunity is finely regulated in the intestine. To date, multiple innate immune cells have been shown to maintain gut homeostasis by preventing inadequate adaptive immune responses in the murine intestine. Additionally, several innate immune subsets, which promote Th1 and Th17 responses and are implicated in the pathogenesis of IBD, have recently been identified in the human intestinal mucosa. The demonstration of both murine and human intestinal innate immune subsets contributing to regulation of adaptive immunity emphasizes the conserved innate immune functions across species and might promote development of the intestinal innate immunity-based clinical therapy.

  15. Creatine maintains intestinal homeostasis and protects against colitis.

    Science.gov (United States)

    Turer, Emre; McAlpine, William; Wang, Kuan-Wen; Lu, Tianshi; Li, Xiaohong; Tang, Miao; Zhan, Xiaoming; Wang, Tao; Zhan, Xiaowei; Bu, Chun-Hui; Murray, Anne R; Beutler, Bruce

    2017-02-14

    Creatine, a nitrogenous organic acid, replenishes cytoplasmic ATP at the expense of mitochondrial ATP via the phosphocreatine shuttle. Creatine levels are maintained by diet and endogenous synthesis from arginine and glycine. Glycine amidinotransferase (GATM) catalyzes the rate-limiting step of creatine biosynthesis: the transfer of an amidino group from arginine to glycine to form ornithine and guanidinoacetate. We screened 36,530 third-generation germline mutant mice derived from N -ethyl- N -nitrosourea-mutagenized grandsires for intestinal homeostasis abnormalities after oral administration of dextran sodium sulfate (DSS). Among 27 colitis susceptibility phenotypes identified and mapped, one was strongly correlated with a missense mutation in Gatm in a recessive model of inheritance, and causation was confirmed by CRISPR/Cas9 gene targeting. Supplementation of homozygous Gatm mutants with exogenous creatine ameliorated the colitis phenotype. CRISPR/Cas9-targeted ( Gatm c/c ) mice displayed a normal peripheral immune response and immune cell homeostasis. However, the intestinal epithelium of the Gatm c/c mice displayed increased cell death and decreased proliferation during DSS treatment. In addition, Gatm c/c colonocytes showed increased metabolic stress in response to DSS with higher levels of phospho-AMPK and lower levels of phosphorylation of mammalian target of rapamycin (phospho-mTOR). These findings establish an in vivo requirement for rapid replenishment of cytoplasmic ATP within colonic epithelial cells in the maintenance of the mucosal barrier after injury.

  16. Homeostasis of metals in the progression of Alzheimer's disease.

    Science.gov (United States)

    González-Domínguez, Raúl; García-Barrera, Tamara; Gómez-Ariza, José Luis

    2014-06-01

    In order to study the involvement of metals in the progression of Alzheimer's disease, serum samples from patients with Alzheimer and mild cognitive impairment were investigated. For this purpose, metal content was analyzed after size-fractionation of species and then, inter-element and inter-fraction ratios were computed. In this way, the analysis allowed discovering changes that could be used as markers of disease, but also provided a new insight into the interactions in the homeostasis of elements in neurodegeneration and its progression. Aluminum and labile forms of iron and copper were increased in demented patients, while manganese, zinc and selenium were reduced. Interestingly, levels of different elements, principally iron, aluminum and manganese, were closely inter-related, which could evidence a complex interdependency between the homeostasis of the different metals in this disorder. On the other hand, imbalances in metabolism of copper, zinc and selenium could be associated to abnormal redox status. Therefore, this study may contribute to our understanding of the pathological mechanisms related to metals in Alzheimer's disease.

  17. Gut Homeostasis, Microbial Dysbiosis, and Opioids.

    Science.gov (United States)

    Wang, Fuyuan; Roy, Sabita

    2017-01-01

    Gut homeostasis plays an important role in maintaining animal and human health. The disruption of gut homeostasis has been shown to be associated with multiple diseases. The mutually beneficial relationship between the gut microbiota and the host has been demonstrated to maintain homeostasis of the mucosal immunity and preserve the integrity of the gut epithelial barrier. Currently, rapid progress in the understanding of the host-microbial interaction has redefined toxicological pathology of opioids and their pharmacokinetics. However, it is unclear how opioids modulate the gut microbiome and metabolome. Our study, showing opioid modulation of gut homeostasis in mice, suggests that medical interventions to ameliorate the consequences of drug use/abuse will provide potential therapeutic and diagnostic strategies for opioid-modulated intestinal infections. The study of morphine's modulation of the gut microbiome and metabolome will shed light on the toxicological pathology of opioids and its role in the susceptibility to infectious diseases.

  18. Air pollution particles and iron homeostasis

    Science.gov (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, fun...

  19. Neuronal regulation of homeostasis by nutrient sensing.

    Science.gov (United States)

    Lam, Tony K T

    2010-04-01

    In type 2 diabetes and obesity, the homeostatic control of glucose and energy balance is impaired, leading to hyperglycemia and hyperphagia. Recent studies indicate that nutrient-sensing mechanisms in the body activate negative-feedback systems to regulate energy and glucose homeostasis through a neuronal network. Direct metabolic signaling within the intestine activates gut-brain and gut-brain-liver axes to regulate energy and glucose homeostasis, respectively. In parallel, direct metabolism of nutrients within the hypothalamus regulates food intake and blood glucose levels. These findings highlight the importance of the central nervous system in mediating the ability of nutrient sensing to maintain homeostasis. Futhermore, they provide a physiological and neuronal framework by which enhancing or restoring nutrient sensing in the intestine and the brain could normalize energy and glucose homeostasis in diabetes and obesity.

  20. Persistent hepatitis virus infection and immune homeostasis

    OpenAIRE

    ZHOU Yun

    2014-01-01

    Homeostasis between the host and viruses is naturally maintained. On the one hand, the immune system activates the immune response to kill or eliminate viruses; on the other hand, the immune system controls the immune response to maintain immune homeostasis. The cause of persistent infections with hepatitis viruses such as HBV and HCV is that viral molecules damage the immune system of the host and their variants escape immune clearance. Long-term coexistence of the host and viruses is the pr...

  1. Neuroimmune regulation during intestinal development and homeostasis.

    Science.gov (United States)

    Veiga-Fernandes, Henrique; Pachnis, Vassilis

    2017-02-01

    Interactions between the nervous system and immune system are required for organ function and homeostasis. Evidence suggests that enteric neurons and intestinal immune cells share common regulatory mechanisms and can coordinate their responses to developmental challenges and environmental aggressions. These discoveries shed light on the physiology of system interactions and open novel perspectives for therapy designs that target underappreciated neurological-immunological commonalities. Here we highlight findings that address the importance of neuroimmune cell units (NICUs) in intestinal development, homeostasis and disease.

  2. Calcium absorption and achlorhydria

    International Nuclear Information System (INIS)

    Recker, R.R.

    1985-01-01

    Defective absorption of calcium has been thought to exist in patients with achlorhydria. The author compared absorption of calcium in its carbonate form with that in a pH-adjusted citrate form in a group of 11 fasting patients with achlorhydria and in 9 fasting normal subjects. Fractional calcium absorption was measured by a modified double-isotope procedure with 0.25 g of calcium used as the carrier. Mean calcium absorption (+/- S.D.) in the patients with achlorhydria was 0.452 +/- 0.125 for citrate and 0.042 +/- 0.021 for carbonate (P less than 0.0001). Fractional calcium absorption in the normal subjects was 0.243 +/- 0.049 for citrate and 0.225 +/- 0.108 for carbonate (not significant). Absorption of calcium from carbonate in patients with achlorhydria was significantly lower than in the normal subjects and was lower than absorption from citrate in either group; absorption from citrate in those with achlorhydria was significantly higher than in the normal subjects, as well as higher than absorption from carbonate in either group. Administration of calcium carbonate as part of a normal breakfast resulted in completely normal absorption in the achlorhydric subjects. These results indicate that calcium absorption from carbonate is impaired in achlorhydria under fasting conditions. Since achlorhydria is common in older persons, calcium carbonate may not be the ideal dietary supplement

  3. Nitrofurantoin and congenital abnormalities

    DEFF Research Database (Denmark)

    Czeizel, A.E.; Rockenbauer, M.; Sørensen, Henrik Toft

    2001-01-01

    or fetuses with Down’s syndrome (patient controls), 23 (2.8%) pregnant women were treated with nitrofurantoin. The above differences between population controls and cases may be connected with recall bias, because the case-control pair analysis did not indicate a teratogenic potential of nitrofurantoin use......Objective: To study human teratogenic potential of oral nitrofurantoin treatment during pregnancy. Materials and Methods: Pair analysis of cases with congenital abnormalities and matched population controls in the population-based dataset of the Hungarian Case-Control Surveillance of Congenital...... during the second and the third months of gestation, i.e. in the critical period for major congenital abnormalities. Conclusion: Treatment with nitrofurantoin during pregnancy does not present detectable teratogenic risk to the fetus....

  4. Neurological abnormalities predict disability

    DEFF Research Database (Denmark)

    Poggesi, Anna; Gouw, Alida; van der Flier, Wiesje

    2014-01-01

    To investigate the role of neurological abnormalities and magnetic resonance imaging (MRI) lesions in predicting global functional decline in a cohort of initially independent-living elderly subjects. The Leukoaraiosis And DISability (LADIS) Study, involving 11 European centres, was primarily aimed...... at evaluating age-related white matter changes (ARWMC) as an independent predictor of the transition to disability (according to Instrumental Activities of Daily Living scale) or death in independent elderly subjects that were followed up for 3 years. At baseline, a standardized neurological examination.......0 years, 45 % males), 327 (51.7 %) presented at the initial visit with ≥1 neurological abnormality and 242 (38 %) reached the main study outcome. Cox regression analyses, adjusting for MRI features and other determinants of functional decline, showed that the baseline presence of any neurological...

  5. [Calcium and vitamin D in bone metabolism: Clinical importance for fracture treatment].

    Science.gov (United States)

    Amling, M

    2015-12-01

    A balanced calcium homeostasis is of critical importance not only for bone remodeling, the physiological process of bone resorption and bone formation that constantly renews bone throughout life but also for normal fracture healing. Given that disturbances of calcium homeostasis are present in 50 % of the German population and that this might result in delayed fracture healing after correct surgical treatment, this paper focusses on calcium and vitamin D in the daily practice in orthopedics and trauma surgery. To ensure the required enteral calcium uptake the following three conditions are required: (1) sufficient calcium intake via the nutrition, (2) a 25-hydroxyvitamin D serum level > 30 µg/l and (3) the presence of sufficient gastric acidification. Given the endemic vitamin D deficiency in Germany as well as the constantly increasing number of people using proton pump inhibitors on a regular basis, it is necessary to closely connect trauma orthopedic surgery and osteological treatment. The first issue to be dealt with is to control and if needed normalize calcium homeostasis in order to allow a normal undisturbed fracture healing process after both conservative as well as operative treatment of fractures.

  6. Equipment abnormality monitoring device

    International Nuclear Information System (INIS)

    Ando, Yasumasa

    1991-01-01

    When an operator hears sounds in a plantsite, the operator compares normal sounds of equipment which he previously heard and remembered with sounds he actually hears, to judge if they are normal or abnormal. According to the method, there is a worry that abnormal conditions can not be appropriately judged in a case where the number of objective equipments is increased and in a case that the sounds are changed gradually slightly. Then, the device of the present invention comprises a plurality of monitors for monitoring the operation sound of equipments, a recording/reproducing device for recording and reproducing the signals, a selection device for selecting the reproducing signals among the recorded signals, an acoustic device for converting the signals to sounds, a switching device for switching the signals to be transmitted to the acoustic device between to signals of the monitor and the recording/reproducing signals. The abnormality of the equipments can be determined easily by comparing the sounds representing the operation conditions of equipments for controlling the plant operation and the sounds recorded in their normal conditions. (N.H.)

  7. Calcium channel blocker poisoning

    Directory of Open Access Journals (Sweden)

    Miran Brvar

    2005-04-01

    Full Text Available Background: Calcium channel blockers act at L-type calcium channels in cardiac and vascular smooth muscles by preventing calcium influx into cells with resultant decrease in vascular tone and cardiac inotropy, chronotropy and dromotropy. Poisoning with calcium channel blockers results in reduced cardiac output, bradycardia, atrioventricular block, hypotension and shock. The findings of hypotension and bradycardia should suggest poisoning with calcium channel blockers.Conclusions: Treatment includes immediate gastric lavage and whole-bowel irrigation in case of ingestion of sustainedrelease products. All patients should receive an activated charcoal orally. Specific treatment includes calcium, glucagone and insulin, which proved especially useful in shocked patients. Supportive care including the use of catecholamines is not always effective. In the setting of failure of pharmacological therapy transvenous pacing, balloon pump and cardiopulmonary by-pass may be necessary.

  8. Abnormal pressures as hydrodynamic phenomena

    Science.gov (United States)

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  9. Calcium Channel Blockers

    Science.gov (United States)

    ... Certain calcium channel blockers interact with grapefruit products. Kaplan NM, et al. Treatment of hypertension: Drug therapy. In: Kaplan's Clinical Hypertension. 11th ed. Philadelphia, Pa.: Wolters Kluwer ...

  10. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    Science.gov (United States)

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  11. Atypical antipsychotics and glucose homeostasis.

    Science.gov (United States)

    Bergman, Richard N; Ader, Marilyn

    2005-04-01

    Persistent reports have linked atypical antipsychotics with diabetes, yet causative mechanisms responsible for this linkage are unclear. Goals of this review are to outline the pathogenesis of nonimmune diabetes and to survey the available literature related to why antipsychotics may lead to this disease. We accessed the literature regarding atypical antipsychotics and glucose homeostasis using PubMed. The search included English-language publications from 1990 through October 2004. Keywords used included atypical antipsychotics plus one of the following: glucose, insulin, glucose tolerance, obesity, or diabetes. In addition, we culled information from published abstracts from several national and international scientific meetings for the years 2001 through 2004, including the American Diabetes Association, the International Congress on Schizophrenia Research, and the American College of Neuropsychopharmacology. The latter search was necessary because of the paucity of well-controlled prospective studies. We examined publications with significant new data or publications that contributed to the overall comprehension of the impact of atypical antipsychotics on glucose metabolism. We favored original peer-reviewed articles and were less likely to cite single case studies and/or anecdotal information. Approximately 75% of the fewer than 150 identified articles were examined and included in this review. Validity of data was evaluated using the existence of peer-review status as well as our own experience with methodology described in the specific articles. The metabolic profile caused by atypical antipsychotic treatment resembles type 2 diabetes. These agents cause weight gain in treated subjects and may induce obesity in both visceral and subcutaneous depots, as occurs in diabetes. Insulin resistance, usually associated with obesity, occurs to varying degrees with different antipsychotics, although more comparative studies with direct assessment of resistance are

  12. Exercises to Improve Gait Abnormalities

    Science.gov (United States)

    ... Articles Directories Videos Resources Contact Exercises to Improve Gait Abnormalities Home » Article Categories » Exercise and Fitness Font Size: A A A A Exercises to Improve Gait Abnormalities Next Page The manner of how a ...

  13. Pregnancy Complications: Umbilical Cord Abnormalities

    Science.gov (United States)

    ... Umbilical cord abnormalities Umbilical cord abnormalities Now playing: E-mail to a friend Please fill in all fields. ... blood supply) to the baby. The two arteries transport waste from the baby to the placenta (where ...

  14. Abnormalities of magnesium homeostasis in patients with chemotherapy-induced alimentary tract mucositis

    OpenAIRE

    Neven Baršić; Filip Grubišić-Čabo; Marko Nikolić; Neven Ljubičić

    2016-01-01

    Purpose: Hypomagnesemia contributes to morbidity in a significant proportion of hospitalized and severely ill patients, but it could also have beneficial anticancer effects. Alimentary tract mucositis is a frequent complication of cytotoxic chemotherapy. The aim of this study was to determine frequency and severity of hypomagnesemia in patients with different grades of chemotherapy-induced alimentary tract mucositis and to assess its clinical manifestations. Methods: Multicentric observat...

  15. Abnormalities of magnesium homeostasis in patients with chemotherapy-induced alimentary tract mucositis

    Directory of Open Access Journals (Sweden)

    Neven Baršić

    2016-03-01

    Full Text Available Purpose: Hypomagnesemia contributes to morbidity in a significant proportion of hospitalized and severely ill patients, but it could also have beneficial anticancer effects. Alimentary tract mucositis is a frequent complication of cytotoxic chemotherapy. The aim of this study was to determine frequency and severity of hypomagnesemia in patients with different grades of chemotherapy-induced alimentary tract mucositis and to assess its clinical manifestations. Methods: Multicentric observational study included 226 adult patients with alimentary mucositis treated at 3 different institutions. Patients were evaluated for severity of mucositis and the presence of hypomagnesemia, symptoms associated with hypomagnesemia, hypocalcemia, ECG changes and granulocytopenia. Subgroup analysis related to mucositis severity and presence of hypomagnesemia was performed. Results: Patients with grade 3 or 4 alimentary mucositis expectedly had more frequent and more severe granulocytopenia than patients with milder mucositis (49.6% vs. 35.4%, P = 0.043, but there were no differences in rate of hypomagnesemia (24.8% vs. 26.5%. When compared to patients with normal magnesium levels, patients with hypomagnesemia had higher rates of hypocalcemia (50.0% vs. 32.7%, P = 0.026, QTc prolongation (15.5% vs. 3.0%, P = 0.002 and granulocytopenia (77.6% vs. 39.9%, P < 0.001, while there was no difference in symptoms or other ECG features among these subgroups. Conclusions: Hypomagnesaemia is not associated with the severity of chemotherapy-induced mucositis. However, hypomagnesaemia was associated with higher rates of granulocytopenia and hypocalcemia. Our study failed to identify the link between hypomagnesaemia and chemotherapy-induced mucositis.

  16. The SH2B1 obesity locus and abnormal glucose homeostasis

    DEFF Research Database (Denmark)

    Prudente, S; Copetti, M; Morini, E

    2013-01-01

    The development of type 2 diabetes (T2D) is influenced both by environmental and by genetic determinants. Obesity is an important risk factor for T2D, mostly mediated by obesity-related insulin resistance. Obesity and insulin resistance are also modulated by the genetic milieu; thus, genes affect...

  17. Intracellular free calcium concentration and calcium transport in human erythrocytes of lead-exposed workers

    International Nuclear Information System (INIS)

    Quintanar-Escorza, M.A.; Gonzalez-Martinez, M.T.; Navarro, L.; Maldonado, M.; Arevalo, B.; Calderon-Salinas, J.V.

    2007-01-01

    Erythrocytes are the route of lead distribution to organs and tissues. The effect of lead on calcium homeostasis in human erythrocytes and other excitable cells is not known. In the present work we studied the effect of lead intoxication on the uptake and efflux (measured as (Ca 2+ -Mg 2+ )-ATPase activity) of calcium were studied in erythrocytes obtained from lead-exposed workers. Blood samples were taken from 15 workers exposed to lead (blood lead concentration 74.4 ± 21.9 μg/dl) and 15 non-exposed workers (9.9 ± 2 μg/dl). In erythrocytes of lead-exposed workers, the intracellular free calcium was 79 ± 13 nM, a significantly higher concentration (ANOVA, P 2+ -Mg 2+ )-ATPase activity. Lipid peroxidation was 1.7-fold higher in erythrocytes of lead-exposed workers as compared with control. The alteration on calcium equilibrium in erythrocytes is discussed in light of the toxicological effects in lead-exposed workers

  18. Vitamin D signaling in intestinal innate immunity and homeostasis.

    Science.gov (United States)

    Dimitrov, Vassil; White, John H

    2017-09-15

    The lumen of the gut hosts a plethora of microorganisms that participate in food assimilation, inactivation of harmful particles and in vitamin synthesis. On the other hand, enteric flora, a number of food antigens, and toxins are capable of triggering immune responses causing inflammation, which, when unresolved, may lead to chronic conditions such as inflammatory bowel disease (IBD). It is important, therefore, to contain the gut bacteria within the lumen, control microbial load and composition, as well as ensure adequate innate and adaptive immune responses to pathogenic threats. There is growing evidence that vitamin D signaling has impacts on all these aspects of intestinal physiology, contributing to healthy enteric homeostasis. VD was first discovered as the curative agent for nutritional rickets, and its classical actions are associated with calcium absorption and bone health. However, vitamin D exhibits a number of extra-skeletal effects, particularly in innate immunity. Notably, it stimulates production of pattern recognition receptors, anti-microbial peptides, and cytokines, which are at the forefront of innate immune responses. They play a role in sensing the microbiota, in preventing excessive bacterial overgrowth, and complement the actions of vitamin D signaling in enhancing intestinal barrier function. Vitamin D also favours tolerogenic rather than inflammogenic T cell differentiation and function. Compromised innate immune function and overactive adaptive immunity, as well as defective intestinal barrier function, have been associated with IBD. Importantly, observational and intervention studies support a beneficial role of vitamin D supplementation in patients with Crohn's disease, a form of IBD. This review summarizes the effects of vitamin D signaling on barrier integrity and innate and adaptive immunity in the gut, as well as on microbial load and composition. Collectively, studies to date reveal that vitamin D signaling has widespread effects

  19. Calcium, phosphorus, and bone metabolism in the fetus and newborn.

    Science.gov (United States)

    Kovacs, Christopher S

    2015-11-01

    The placenta actively transports minerals whereas the intestines and kidneys may be nonessential for fetal mineral homeostasis. Mineral concentrations are higher in fetal blood than in adults in order for the developing skeleton to accrete adequate mineral content. Fetal bone development and serum mineral regulation are dependent upon parathyroid hormone (PTH) and PTH-related protein (PTHrP), but not calcitriol, fibroblast growth factor-23, calcitonin, or the sex steroids. After birth, a switch from fetal to neonatal regulatory mechanisms is triggered by loss of the placental calcium infusion, onset of a breathing, and a postnatal fall in serum calcium and rise in phosphorus. This is followed by an increase in PTH, then a rise in calcitriol, and developmental changes in kidneys and intestines. Serum calcium increases and phosphorus declines over days. The intestines become the main source of mineral, while kidneys reabsorb mineral, and bone turnover contributes additional mineral to the circulation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Normal and abnormal growth plate

    International Nuclear Information System (INIS)

    Kumar, R.; Madewell, J.E.; Swischuk, L.E.

    1987-01-01

    Skeletal growth is a dynamic process. A knowledge of the structure and function of the normal growth plate is essential in order to understand the pathophysiology of abnormal skeletal growth in various diseases. In this well-illustrated article, the authors provide a radiographic classification of abnormal growth plates and discuss mechanisms that lead to growth plate abnormalities

  1. [Penile congenital abnormalities].

    Science.gov (United States)

    Boillot, B; Teklali, Y; Moog, R; Droupy, S

    2013-07-01

    Congenital abnormalities of the penis are usually diagnosed at birth and pose aesthetic and functional problems sometimes requiring surgical management. A literature review was conducted on Medline considering the articles listed until January 2012. Hypospadias is the most common malformation (1 in 250 boys. Familial forms: 7%). The causes remain hypothetical but the doubling of the incidence in 30 years could be linked to fetal exposure to endocrine disruptors "estrogen-like" used in the food industry in particular. Surgical treatment is usually intended to improve the aesthetic appearance but sometimes, in case of significant curvature or posterior meatus, necessary for normal sexual life and fertility. Other malformations (epispades, buried penis, transpositions, twists and preputial abnormalities) as well as management for functional or aesthetic consequences of these malformations in adulthood require complex surgical care in a specialized environment. The improvement of surgical techniques and pediatric anesthesia allows an early and effective specialized surgical approach of penile malformations. Management of sequelae in adulthood must be discussed and requires experience of surgical techniques on pediatric and adult penis. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. Calcium status in premenopausal and post menopausal women

    International Nuclear Information System (INIS)

    Qureshi, H.J.; Hussain, G.; Bashir, M.U.; Latif, N.; Riaz, Z.

    2010-01-01

    Background: In postmenopausal women, the two major causes of bone loss are oestrogen deficiency after menopause and age related processes. Bone turnover increases to high levels and oestrogen deficiency may induce calcium loss by indirect effects on extra skeletal calcium homeostasis. Objective of this study was to evaluate calcium status in pre-menopausal and postmenopausal women. Methods: This cross sectional study was carried out in 34 premenopausal women and 33 postmenopausal women, in Department of Physiology, Services Institute of Medical Sciences, Lahore. Height and weight of each woman were taken to find out the body mass index (BMI). Serum calcium, parathyroid hormone and calcitonin levels of each subject were determined. Results: Premenopausal women were obese (BMI>30 Kg/m/sup 2/) while postmenopausal women were overweight (BMI>25 Kg/m/sup 2/). Serum calcium levels were significantly lower in postmenopausal women than in pre-menopausal women, while serum parathyroid hormone levels were significantly higher in postmenopausal woman. Serum calcitonin level was not significantly different in the two groups. Conclusion: Postmenopausal women are calcium deficient and have increased bone turnover as indicated by increased serum parathyroid hormone levels. (author)

  3. Acidosis and Urinary Calcium Excretion

    DEFF Research Database (Denmark)

    Alexander, R Todd; Cordat, Emmanuelle; Chambrey, Régine

    2016-01-01

    Metabolic acidosis is associated with increased urinary calcium excretion and related sequelae, including nephrocalcinosis and nephrolithiasis. The increased urinary calcium excretion induced by metabolic acidosis predominantly results from increased mobilization of calcium out of bone and inhibi...

  4. Calcium D-saccharate

    DEFF Research Database (Denmark)

    Garcia, André Castilho; Hedegaard, Martina Vavrusova; Skibsted, Leif Horsfelt

    2016-01-01

    Molar conductivity of saturated aqueous solutions of calcium d-saccharate, used as a stabilizer of beverages fortified with calcium d-gluconate, increases strongly upon dilution, indicating complex formation between calcium and d-saccharate ions, for which, at 25 °C, Kassoc = 1032 ± 80, ΔHassoc......° = -34 ± 6 kJ mol-1, and ΔSassoc° = -55 ± 9 J mol-1 K-1, were determined electrochemically. Calcium d-saccharate is sparingly soluble, with a solubility product, Ksp, of (6.17 ± 0.32) × 10-7 at 25 °C, only moderately increasing with the temperature: ΔHsol° = 48 ± 2 kJ mol-1, and ΔSassoc° = 42 ± 7 J mol-1...... K-1. Equilibria in supersaturated solutions of calcium d-saccharate seem only to adjust slowly, as seen from calcium activity measurements in calcium d-saccharate solutions made supersaturated by cooling. Solutions formed by isothermal dissolution of calcium d-gluconate in aqueous potassium d...

  5. Roentgenologic abnormalities in Down's syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Takehiko; Russell, W J; Komatsuda, Michio; Neriishi, Shotaro

    1968-07-25

    Roentgenograms of 28 patients with Down's syndrome were reviewed with emphasis on all previously reported abnormalities and any possible additional ones. Most of the abnormalities occurred with the same frequency as previously reported, but some less frequently reported findings were also seen. One abnormal vertebral measurement found in this series may be an additional stigma of Down's syndrome. All of the 27 cases studied cytogenetically had chromosomal abnormalities consistent with this disease. This study emphasizes the need for roentgenologic norms for the Japanese, and the desirability of combining chromosome studies with roentgenological abnormalities and clinical observations in diagnosing Down's syndrome. 19 references, 2 figures, 5 tables.

  6. Prevention of nutritional rickets in Nigerian children with dietary calcium supplementation.

    Science.gov (United States)

    Thacher, Tom D; Fischer, Philip R; Isichei, Christian O; Zoakah, Ayuba I; Pettifor, John M

    2012-05-01

    Nutritional rickets in Nigerian children usually results from dietary calcium insufficiency. Typical dietary calcium intakes in African children are about 200mg daily (approximately 20-28% of US RDAs for age). We sought to determine if rickets could be prevented with supplemental calcium or with an indigenous food rich in calcium. We enrolled Nigerian children aged 12 to 18months from three urban communities. Two communities were assigned calcium, either as calcium carbonate (400mg) or ground fish (529±109mg) daily, while children in all three communities received vitamin A (2500IU) daily as placebo. Serum markers of mineral homeostasis and forearm bone density (pDEXA) were measured and radiographs were obtained at enrollment and after 18months of supplementation. The overall prevalence of radiographic rickets at baseline was 1.2% and of vitamin D deficiency [serum 25(OH)DRickets developed in 1, 1, and 2 children assigned to the calcium tablet, ground fish, and control groups, respectively (approximate incidence 6.4/1000 children/year between 1 and 3years of age). Children who developed rickets in the calcium-supplemented groups had less than 50% adherence. Compared with the group that received no calcium supplementation, the groups that received calcium had a greater increase in areal bone density of the distal and proximal 1/3 radius and ulna over time (Prickets. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Palmitoylation of the Cysteine Residue in the DHHC Motif of a Palmitoyl Transferase Mediates Ca2+ Homeostasis in Aspergillus.

    Directory of Open Access Journals (Sweden)

    Yuanwei Zhang

    2016-04-01

    Full Text Available Finely tuned changes in cytosolic free calcium ([Ca2+]c mediate numerous intracellular functions resulting in the activation or inactivation of a series of target proteins. Palmitoylation is a reversible post-translational modification involved in membrane protein trafficking between membranes and in their functional modulation. However, studies on the relationship between palmitoylation and calcium signaling have been limited. Here, we demonstrate that the yeast palmitoyl transferase ScAkr1p homolog, AkrA in Aspergillus nidulans, regulates [Ca2+]c homeostasis. Deletion of akrA showed marked defects in hyphal growth and conidiation under low calcium conditions which were similar to the effects of deleting components of the high-affinity calcium uptake system (HACS. The [Ca2+]c dynamics in living cells expressing the calcium reporter aequorin in different akrA mutant backgrounds were defective in their [Ca2+]c responses to high extracellular Ca2+ stress or drugs that cause ER or plasma membrane stress. All of these effects on the [Ca2+]c responses mediated by AkrA were closely associated with the cysteine residue of the AkrA DHHC motif, which is required for palmitoylation by AkrA. Using the acyl-biotin exchange chemistry assay combined with proteomic mass spectrometry, we identified protein substrates palmitoylated by AkrA including two new putative P-type ATPases (Pmc1 and Spf1 homologs, a putative proton V-type proton ATPase (Vma5 homolog and three putative proteins in A. nidulans, the transcripts of which have previously been shown to be induced by extracellular calcium stress in a CrzA-dependent manner. Thus, our findings provide strong evidence that the AkrA protein regulates [Ca2+]c homeostasis by palmitoylating these protein candidates and give new insights the role of palmitoylation in the regulation of calcium-mediated responses to extracellular, ER or plasma membrane stress.

  8. Neuronal and molecular mechanisms of sleep homeostasis.

    Science.gov (United States)

    Donlea, Jeffrey M

    2017-12-01

    Sleep is necessary for survival, and prolonged waking causes a homeostatic increase in the need for recovery sleep. Homeostasis is a core component of sleep regulation and has been tightly conserved across evolution from invertebrates to man. Homeostatic sleep regulation was first identified among insects in cockroaches several decades ago, but the characterization of sleep rebound in Drosophila melanogaster opened the use of insect model species to understand homeostatic functions and regulation of sleep. This review describes circuits in two neuropil structures, the central complex and mushroom bodies, that influence sleep homeostasis and neuromodulatory systems that influence the accrual of homeostatic sleep need. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. HYPERTHERMIA, INTRACELLULAR FREE CALCIUM AND CALCIUM IONOPHORES

    NARCIS (Netherlands)

    STEGE, GJJ; WIERENGA, PK; KAMPINGA, HH; KONINGS, AWT

    1993-01-01

    It is shown that heat-induced increase of intracellular calcium does not correlate with hyperthermic cell killing. Six different cell lines were investigated; in four (EAT, HeLa S3, L5178Y-R and L5178Y-S) heat treatments killing 90% of the cells did not affect the levels of intracellular free

  10. Ictal Cardiac Ryhthym Abnormalities.

    Science.gov (United States)

    Ali, Rushna

    2016-01-01

    Cardiac rhythm abnormalities in the context of epilepsy are a well-known phenomenon. However, they are under-recognized and often missed. The pathophysiology of these events is unclear. Bradycardia and asystole are preceded by seizure onset suggesting ictal propagation into the cortex impacting cardiac autonomic function, and the insula and amygdala being possible culprits. Sudden unexpected death in epilepsy (SUDEP) refers to the unanticipated death of a patient with epilepsy not related to status epilepticus, trauma, drowning, or suicide. Frequent refractory generalized tonic-clonic seizures, anti-epileptic polytherapy, and prolonged duration of epilepsy are some of the commonly identified risk factors for SUDEP. However, the most consistent risk factor out of these is an increased frequency of generalized tonic-clonic seizures (GTC). Prevention of SUDEP is extremely important in patients with chronic, generalized epilepsy. Since increased frequency of GTCS is the most consistently reported risk factor for SUDEP, effective seizure control is the most important preventive strategy.

  11. A Rare Stapes Abnormality

    Directory of Open Access Journals (Sweden)

    Hala Kanona

    2015-01-01

    Full Text Available The aim of this study is to increase awareness of rare presentations, diagnostic difficulties alongside management of conductive hearing loss and ossicular abnormalities. We report the case of a 13-year-old female reporting progressive left-sided hearing loss and high resolution computed tomography was initially reported as normal. Exploratory tympanotomy revealed an absent stapedius tendon and lack of connection between the stapes superstructure and footplate. The footplate was fixed. Stapedotomy and stapes prosthesis insertion resulted in closure of the air-bone gap by 50 dB. A review of world literature was performed using MedLine. Middle ear ossicular discontinuity can result in significant conductive hearing loss. This can be managed effectively with surgery to help restore hearing. However, some patients may not be suitable or decline surgical intervention and can be managed safely conservatively.

  12. Mineral Metabolic Abnormalities and Mortality in Dialysis Patients

    Directory of Open Access Journals (Sweden)

    Masanori Abe

    2013-03-01

    Full Text Available The survival rate of dialysis patients, as determined by risk factors such as hypertension, nutritional status, and chronic inflammation, is lower than that of the general population. In addition, disorders of bone mineral metabolism are independently related to mortality and morbidity associated with cardiovascular disease and fracture in dialysis patients. Hyperphosphatemia is an important risk factor of, not only secondary hyperparathyroidism, but also cardiovascular disease. On the other hand, the risk of death reportedly increases with an increase in adjusted serum calcium level, while calcium levels below the recommended target are not associated with a worsened outcome. Thus, the significance of target levels of serum calcium in dialysis patients is debatable. The consensus on determining optimal parathyroid function in dialysis patients, however, is yet to be established. Therefore, the contribution of phosphorus and calcium levels to prognosis is perhaps more significant. Elevated fibroblast growth factor 23 levels have also been shown to be associated with cardiovascular events and death. In this review, we examine the associations between mineral metabolic abnormalities including serum phosphorus, calcium, and parathyroid hormone and mortality in dialysis patients.

  13. Bim: guardian of tissue homeostasis and critical regulator of the immune system, tumorigenesis and bone biology.

    Science.gov (United States)

    Akiyama, Toru; Tanaka, Sakae

    2011-08-01

    One of the most important roles of apoptosis is the maintenance of tissue homeostasis. Impairment of apoptosis leads to a number of pathological conditions. In response to apoptotic signals, various proteins are activated in a pathway and signal-specific manner. Recently, the pro-apoptotic molecule Bim has attracted increasing attention as a pivotal regulator of tissue homeostasis. The Bim expression level is strictly controlled in both transcriptional and post-transcriptional levels. This control is dependent on cell, tissue and apoptotic stimuli. The phenotype of Bim-deficient mice is a systemic lupus erythematosus-like autoimmune disease with an abnormal accumulation of hematopoietic cells. Bim is thus a critical regulator of hematopoietic cells and immune system. Further studies have revealed the critical roles of Bim in various normal and pathological conditions, including bone homeostasis and tumorigenesis. The current understanding of Bim signaling and roles in the maintenance of tissue homeostasis is reviewed in this paper, focusing on the immune system, bone biology and tumorigenesis to illustrate the diversified role of Bim.

  14. Preoperative octreotide therapy and surgery in acromegaly: associations between glucose homeostasis and treatment response.

    Science.gov (United States)

    Helseth, R; Carlsen, S M; Bollerslev, J; Svartberg, J; Øksnes, M; Skeie, S; Fougner, S L

    2016-02-01

    In acromegaly, high GH/IGF-1 levels associate with abnormal glucose metabolism. Somatostatin analogs (SSAs) reduce GH and IGF-1 but inhibit insulin secretion. We studied glucose homeostasis in de novo patients with acromegaly and changes in glucose metabolism after treatment with SSA and surgery. In this post hoc analysis from a randomized controlled trial, 55 de novo patients with acromegaly, not using antidiabetic medication, were included. Before surgery, 26 patients received SSAs for 6 months. HbA1c, fasting glucose, and oral glucose tolerance test were performed at baseline, after SSA pretreatment and at 3 months postoperative. Area under curve of glucose (AUC-G) was calculated. Glucose homeostasis was compared to baseline levels of GH and IGF-1, change after SSA pretreatment, and remission both after SSA pretreatment and 3 months postoperative. In de novo patients, IGF-1/GH levels did not associate with baseline glucose parameters. After SSA pretreatment, changes in GH/IGF-1 correlated positively to change in HbA1c levels (both p acromegaly, disease activity did not correlate with glucose homeostasis. Surgical treatment of acromegaly improved glucose metabolism in both cured and not cured patients, while SSA pretreatment led to deterioration in glucose homeostasis in patients not achieving biochemical control.

  15. Genome-wide analysis of wheat calcium ATPases and potential role of selected ACAs and ECAs in calcium stress.

    Science.gov (United States)

    Aslam, Roohi; Williams, Lorraine E; Bhatti, Muhammad Faraz; Virk, Nasar

    2017-10-27

    P 2 - type calcium ATPases (ACAs-auto inhibited calcium ATPases and ECAs-endoplasmic reticulum calcium ATPases) belong to the P- type ATPase family of active membrane transporters and are significantly involved in maintaining accurate levels of Ca 2+ , Mn 2+ and Zn 2+ in the cytosol as well as playing a very important role in stress signaling, stomatal opening and closing and pollen tube growth. Here we report the identification and possible role of some of these ATPases from wheat. In this study, ACA and ECA sequences of six species (belonging to Poaceae) were retrieved from different databases and a phylogenetic tree was constructed. A high degree of evolutionary relatedness was observed among P 2 sequences characterized in this study. Members of the respective groups from different plant species were observed to fall under the same clade. This pattern highlights the common ancestry of P 2- type calcium ATPases. Furthermore, qRT-PCR was used to analyse the expression of selected ACAs and ECAs from Triticum aestivum (wheat) under calcium toxicity and calcium deficiency. The data indicated that expression of ECAs is enhanced under calcium stress, suggesting possible roles of these ATPases in calcium homeostasis in wheat. Similarly, the expression of ACAs was significantly different in plants grown under calcium stress as compared to plants grown under control conditions. This gives clues to the role of ACAs in signal transduction during calcium stress in wheat. Here we concluded that wheat genome consists of nine P 2B and three P 2A -type calcium ATPases. Moreover, gene loss events in wheat ancestors lead to the loss of a particular homoeolog of a gene in wheat. To elaborate the role of these wheat ATPases, qRT-PCR was performed. The results indicated that when plants are exposed to calcium stress, both P 2A and P 2B gene expression get enhanced. This further gives clues about the possible role of these ATPases in wheat in calcium management. These findings can be

  16. Expression of voltage-activated calcium channels in the early zebrafish embryo.

    Science.gov (United States)

    Sanhueza, Dayán; Montoya, Andro; Sierralta, Jimena; Kukuljan, Manuel

    2009-05-01

    Increases in cytosolic calcium concentrations regulate many cellular processes, including aspects of early development. Calcium release from intracellular stores and calcium entry through non-voltage-gated channels account for signalling in non-excitable cells, whereas voltage-gated calcium channels (CaV) are important in excitable cells. We report the expression of multiple transcripts of CaV, identified by its homology to other species, in the early embryo of the zebrafish, Danio rerio, at stages prior to the differentiation of excitable cells. CaV mRNAs and proteins were detected as early as the 2-cell stages, which indicate that they arise from both maternal and zygotic transcription. Exposure of embryos to pharmacological blockers of CaV does not perturb early development significantly, although late effects are appreciable. These results suggest that CaV may have a role in calcium homeostasis and control of cellular process during early embryonic development.

  17. Gut commensal flora: tolerance and homeostasis

    OpenAIRE

    Rescigno, Maria

    2009-01-01

    Commensal microorganisms are not ignored by the intestinal immune system. Recent evidence shows that commensals actively participate in maintaining intestinal immune homeostasis by interacting with intestinal epithelial cells and delivering tolerogenic signals that are transmitted to the underlying cells of the immune system.

  18. Redox Homeostasis in Pancreatic beta Cells

    Czech Academy of Sciences Publication Activity Database

    Ježek, Petr; Dlasková, Andrea; Plecitá-Hlavatá, Lydie

    2012-01-01

    Roč. 2012, č. 2012 (2012), s. 932838 ISSN 1942-0900 R&D Projects: GA ČR(CZ) GAP302/10/0346; GA ČR(CZ) GPP304/10/P204 Institutional support: RVO:67985823 Keywords : beta cells * reactive oxygen species homeostasis * mitochondria Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.393, year: 2012

  19. Effectiveness of carnosine on disturbed electrolytes homeostasis ...

    African Journals Online (AJOL)

    Jane

    2011-07-20

    Jul 20, 2011 ... of the cells to cisplatin may result from the interaction of specific proteins with ..... respiration, which is similar to uncoupling of oxidative phosphorylation (Binet ... cellular ion homeostasis with decreased cellular K+ content, increased ... of sodium and hydrogen ions will take place passively. Also, magnesium ...

  20. Molecular monitoring of equine joint homeostasis

    NARCIS (Netherlands)

    de Grauw, J.C.

    2010-01-01

    Chronic joint disorders are a major cause of impaired mobility and loss of quality of life in both humans and horses. Regardless of the primary insult, any joint disorder is characterized by an upset in normal joint homeostasis, the balance between tissue anabolism and catabolism that is normally

  1. Brain glucose sensing, counterregulation, and energy homeostasis.

    Science.gov (United States)

    Marty, Nell; Dallaporta, Michel; Thorens, Bernard

    2007-08-01

    Neuronal circuits in the central nervous system play a critical role in orchestrating the control of glucose and energy homeostasis. Glucose, beside being a nutrient, is also a signal detected by several glucose-sensing units that are located at different anatomical sites and converge to the hypothalamus to cooperate with leptin and insulin in controlling the melanocortin pathway.

  2. [Influence of hormonal contraceptives on indices of zinc homeostasis and bone remodeling in young adult women].

    Science.gov (United States)

    Simões, Tania Mara Rodrigues; Zapata, Carmiña Lucía Vargas; Donangelo, Carmen Marino

    2015-09-01

    To investigate the influence of the use of oral hormonal contraceptive agents (OCA) on the biochemical indices related to metabolic zinc utilization and distribution, and to bone turnover in young adult women. Cross-sectional study. Blood and urine samples from non-users (-OCA; control; n=69) and users of hormonal contraceptives for at least 3 months (+OCA; n=62) were collected under controlled conditions. Indices of zinc homeostasis and of bone turnover were analyzed in serum or plasma (total, albumin-bound and α2-macroglobulin-bound zinc, albumin and total and bone alkaline phosphatase activity), in erythrocytes (zinc and metallothionein) and in urine (zinc, calcium and hydroxyproline). The habitual zinc and calcium intakes were evaluated by a food frequency questionnaire. Dietary zinc intake was similar in both groups and on average above recommended values, whereas calcium intake was similarly sub-adequate in +OCA and -OCA. Compared to controls, +OCA had lower concentrations of total and α2-macroglobulin-bound zinc (11 and 28.5%, respectively, puse decreases serum zinc, alters zinc distribution in major serum fractions with possible effects on tissue uptake, enhances zinc retention in the body and decreases bone turnover. Prolonged OCA use may lead to lower peak bone mass and/or to impaired bone mass maintenance in young women, particularly in those with marginal calcium intake. The observed OCA effects were more evident in women younger than 25 years and in nulliparous women, deserving special attention in future studies.

  3. Astrocyte glycogenolysis is triggered by store-operated calcium entry and provides metabolic energy for cellular calcium homeostasis

    DEFF Research Database (Denmark)

    Müller, Margit S; Fox, Rebecca; Schousboe, Arne

    2014-01-01

    Astrocytic glycogen, the only storage form of glucose in the brain, has been shown to play a fundamental role in supporting learning and memory, an effect achieved by providing metabolic support for neurons. We have examined the interplay between glycogenolysis and the bioenergetics of astrocytic...

  4. Autoshaping of abnormal children.

    Science.gov (United States)

    Deckner, C W; Wilcox, L M; Maisto, S A; Blanton, R L

    1980-09-01

    Three experimentally naive abnormal children were exposed to a terminal operant contingency, i.e., reinforcement was delivered only if the children pressed a panel during intervals when it was lighted. Despite the absence of both successive approximation and manual shaping, it was found that each child began to respond discriminatively within a small number of trials. These data replicated previous animal studies concerned with the phenomena of autoshaping and signal-controlled responding. It was also found, however, that one type of autoshaping, the classical conditioning procedure, had a powerful suppressive effect on the discriminative responding. An experimental analysis that consisted procedure, had a powerful suppressive effect on discriminative responding. An experimental analysis that consisted of intrasubject reversal an multiple baseline designs established the internal validity of the findings. The finding of rapid acquisition of signal-controlled responding obtained with the initial procedure is suggessted to have practical significance. The disruptive effects of the classical form of autoshaping are discussed in terms of negative behavioral contrast.

  5. Communication and abnormal behaviour.

    Science.gov (United States)

    Crown, S

    1979-01-01

    In this paper the similarities between normal and abnormal behaviour are emphasized and selected aspects of communication, normal and aberrant, between persons are explored. Communication in a social system may be verbal or non-verbal: one person's actions cause a response in another person. This response may be cognitive, behavioural or physiological. Communication may be approached through the individual, the social situation or social interaction. Psychoanalysis approaches the individual in terms of the coded communications of psychoneurotic symptoms or psychotic behaviour; the humanist-existential approach is concerned more with emotional expression. Both approaches emphasize the development of individual identity. The interaction between persons and their social background is stressed. Relevant are sociological concepts such as illness behaviour, stigma, labelling, institutionalization and compliance. Two approaches to social interactions are considered: the gamesplaying metaphor, e.g. back pain as a psychosocial manipulation--the 'pain game'; and the 'spiral of reciprocal perspectives' which emphasizes the interactional complexities of social perceptions. Communicatory aspects of psychological treatments are noted: learning a particular metaphor such as 'resolution' of the problem (psychotherapy), learning more 'rewarding' behaviour (learning theory) or learning authenticity or self-actualization (humanist-existential).

  6. DIHYDROPYRIDINE CALCIUM- CHANNELBLOCKERSFOR ...

    African Journals Online (AJOL)

    Furthermore, the controversy over the role of calci~-channel blockers as first-line ..... group trials while fully accounting for placebo effects as well as interindividual ..... Reducing calcium overload in the ischemic brain. N Engl JMed. 1999; 341 ...

  7. Calcium and Your Child

    Science.gov (United States)

    ... calcium-set tofu edamame (soybeans) broccoli, collard greens, kale, chard, Chinese cabbage, and other leafy greens almonds ... more dark green, leafy vegetables (such as broccoli, kale, collard greens, or Chinese cabbage) with meals. Kids ...

  8. Abnormally dark or light skin

    Science.gov (United States)

    Hyperpigmentation; Hypopigmentation; Skin - abnormally light or dark ... Normal skin contains cells called melanocytes. These cells produce melanin , the substance that gives skin its color. Skin with ...

  9. Correlation of Salivary Statherin and Calcium Levels with Dental Calculus Formation: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Deepak Gowda Sadashivappa Pateel

    2017-01-01

    Full Text Available Background. Salivary constituents have a wide range of functions including oral calcium homeostasis. Salivary proteins such as statherin inhibit crystal growth of calcium phosphate in supersaturated solutions and interact with several oral bacteria to adsorb on hydroxyapatite. Concurrently, saliva, which is supersaturated with respect to calcium phosphates, is the driving force for plaque mineralization and formation of calculus. Thus, the aim of the present study was to estimate and correlate salivary statherin and calcium concentration to the dental calculus formation. Methods. A cross-sectional study was conducted to assess the relationship between salivary statherin, calcium, and dental calculus among 70 subjects, aged 20–55 years. Subjects were divided into 3 groups based on the calculus scores as interpreted by Calculus Index which was followed by collection of whole saliva using Super•SAL™. Salivary calcium levels were assessed by calorimetric method using Calcium Assay kit (Cayman Chemical, Michigan, USA and statherin levels by using ELISA Kit (Cusabio Biotech. Results. Statherin levels showed a weak negative correlation with the calcium levels and with calculus formation. The mean salivary statherin and calcium concentration were found to be 0.96 μg/ml and 3.87 mg/ml, respectively. Salivary statherin levels differed significantly among the three groups (p<0.05. Conclusions. Our preliminary data indicates that statherin could possibly play a role in the formation of dental calculus.

  10. Correlation of Salivary Statherin and Calcium Levels with Dental Calculus Formation: A Preliminary Study.

    Science.gov (United States)

    Pateel, Deepak Gowda Sadashivappa; Gunjal, Shilpa; Math, Swarna Y; Murugeshappa, Devarasa Giriyapura; Nair, Sreejith Muraleedharan

    2017-01-01

    Salivary constituents have a wide range of functions including oral calcium homeostasis. Salivary proteins such as statherin inhibit crystal growth of calcium phosphate in supersaturated solutions and interact with several oral bacteria to adsorb on hydroxyapatite. Concurrently, saliva, which is supersaturated with respect to calcium phosphates, is the driving force for plaque mineralization and formation of calculus. Thus, the aim of the present study was to estimate and correlate salivary statherin and calcium concentration to the dental calculus formation. A cross-sectional study was conducted to assess the relationship between salivary statherin, calcium, and dental calculus among 70 subjects, aged 20-55 years. Subjects were divided into 3 groups based on the calculus scores as interpreted by Calculus Index which was followed by collection of whole saliva using Super•SAL™. Salivary calcium levels were assessed by calorimetric method using Calcium Assay kit (Cayman Chemical, Michigan, USA) and statherin levels by using ELISA Kit (Cusabio Biotech). Statherin levels showed a weak negative correlation with the calcium levels and with calculus formation. The mean salivary statherin and calcium concentration were found to be 0.96  μ g/ml and 3.87 mg/ml, respectively. Salivary statherin levels differed significantly among the three groups ( p dental calculus.

  11. Divergent calcium signaling in RBCs from Tropidurus torquatus (Squamata – Tropiduridae strengthen classification in lizard evolution

    Directory of Open Access Journals (Sweden)

    Garcia Célia RS

    2007-08-01

    Full Text Available Abstract Background We have previously reported that a Teiid lizard red blood cells (RBCs such as Ameiva ameiva and Tupinambis merianae controls intracellular calcium levels by displaying multiple mechanisms. In these cells, calcium stores could be discharged not only by: thapsigargin, but also by the Na+/H+ ionophore monensin, K+/H+ ionophore nigericin and the H+ pump inhibitor bafilomycin as well as ionomycin. Moreover, these lizards possess a P2Y-type purinoceptors that mobilize Ca2+ from intracellular stores upon ATP addition. Results Here we report, that RBCs from the tropidurid lizard Tropidurus torquatus store Ca2+ in endoplasmic reticulum (ER pool but unlike in the referred Teiidae, these cells do not store calcium in monensin-nigericin sensitive pools. Moreover, mitochondria from T. torquatus RBCs accumulate Ca2+. Addition of ATP to a calcium-free medium does not increase the [Ca2+]c levels, however in a calcium medium we observe an increase in cytosolic calcium. This is an indication that purinergic receptors in these cells are P2X-like. Conclusion T. torquatus RBCs present different mechanisms from Teiid lizard red blood cells (RBCs, for controlling its intracellular calcium levels. At T. torquatus the ion is only stored at endoplasmic reticulum and mitochondria. Moreover activation of purinergic receptor, P2X type, was able to induce an influx of calcium from extracelullar medium. These studies contribute to the understanding of the evolution of calcium homeostasis and signaling in nucleated RBCs.

  12. Calcium binding by dietary fibre

    International Nuclear Information System (INIS)

    James, W.P.T.; Branch, W.J.; Southgate, D.A.T.

    1978-01-01

    Dietary fibre from plants low in phytate bound calcium in proportion to its uronic-acid content. This binding by the non-cellulosic fraction of fibre reduces the availability of calcium for small-intestinal absorption, but the colonic microbial digestion of uronic acids liberates the calcium. Thus the ability to maintain calcium balance on high-fibre diets may depend on the adaptive capacity on the colon for calcium. (author)

  13. A model of propagating calcium-induced calcium release mediated by calcium diffusion

    NARCIS (Netherlands)

    Backx, P. H.; de Tombe, P. P.; van Deen, J. H.; Mulder, B. J.; ter Keurs, H. E.

    1989-01-01

    The effect of sudden local fluctuations of the free sarcoplasmic [Ca++]i in cardiac cells on calcium release and calcium uptake by the sarcoplasmic reticulum (SR) was calculated with the aid of a simplified model of SR calcium handling. The model was used to evaluate whether propagation of calcium

  14. [Calcium suppletion for patients who use gastric acid inhibitors: calcium citrate or calcium carbonate?].

    NARCIS (Netherlands)

    Jonge, H.J. de; Gans, R.O.; Huls, G.A.

    2012-01-01

    Various calcium supplements are available for patients who have an indication for calcium suppletion. American guidelines and UpToDate recommend prescribing calcium citrate to patients who use antacids The rationale for this advice is that water-insoluble calcium carbonate needs acid for adequate

  15. Hydrogen peroxide-mediated oxidative stress disrupts calcium binding on calmodulin: More evidence for oxidative stress in vitiligo

    International Nuclear Information System (INIS)

    Schallreuter, K.U.; Gibbons, N.C.J.; Zothner, C.; Abou Elloof, M.M.; Wood, J.M.

    2007-01-01

    Patients with acute vitiligo have low epidermal catalase expression/activities and accumulate 10 -3 M H 2 O 2 . One consequence of this severe oxidative stress is an altered calcium homeostasis in epidermal keratinocytes and melanocytes. Here, we show decreased epidermal calmodulin expression in acute vitiligo. Since 10 -3 M H 2 O 2 oxidises methionine and tryptophan residues in proteins, we examined calcium binding to calmodulin in the presence and absence of H 2 O 2 utilising 45 calcium. The results showed that all four calcium atoms exchanged per molecule of calmodulin. Since oxidised calmodulin looses its ability to activate calcium ATPase, enzyme activities were followed in full skin biopsies from lesional skin of patients with acute vitiligo (n = 6) and healthy controls (n = 6). The results yielded a 4-fold decrease of ATPase activities in the patients. Computer simulation of native and oxidised calmodulin confirmed the loss of all four calcium ions from their specific EF-hand domains. Taken together H 2 O 2 -mediated oxidation affects calcium binding in calmodulin leading to perturbed calcium homeostasis and perturbed L-phenylalanine-uptake in the epidermis of acute vitiligo

  16. Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins

    Energy Technology Data Exchange (ETDEWEB)

    Sirvent, P., E-mail: pascal.sirvent@univ-bpclermont.fr [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France); Clermont Université, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l' Exercice en conditions Physiologiques et Pathologiques (AME2P), BP 80026, F-63171 Aubière cedex (France); Fabre, O.; Bordenave, S. [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France); Hillaire-Buys, D. [CHRU Montpellier, 34295 Montpellier (France); Raynaud De Mauverger, E.; Lacampagne, A.; Mercier, J. [U1046, INSERM, Université Montpellier 1 and Université Montpellier 2, 34295 Montpellier (France); CHRU Montpellier, 34295 Montpellier (France)

    2012-03-01

    The most common and problematic side effect of statins is myopathy. To date, the patho-physiological mechanisms of statin myotoxicity are still not clearly understood. In previous studies, we showed that acute application in vitro of simvastatin caused impairment of mitochondrial function and dysfunction of calcium homeostasis in human and rat healthy muscle samples. We thus evaluated in the present study, mitochondrial function and calcium signaling in muscles of patients treated with statins, who present or not muscle symptoms, by oxygraphy and recording of calcium sparks, respectively. Patients treated with statins showed impairment of mitochondrial respiration that involved mainly the complex I of the respiratory chain and altered frequency and amplitude of calcium sparks. The muscle problems observed in statin-treated patients appear thus to be related to impairment of mitochondrial function and muscle calcium homeostasis, confirming the results we previously reported in vitro. -- Highlights: ► The most common and problematic side effect of statins is myopathy. ► Patients treated with statins showed impairment of mitochondrial respiration. ► Statins-treated patients showed altered frequency and amplitude of calcium sparks.

  17. Muscle mitochondrial metabolism and calcium signaling impairment in patients treated with statins

    International Nuclear Information System (INIS)

    Sirvent, P.; Fabre, O.; Bordenave, S.; Hillaire-Buys, D.; Raynaud De Mauverger, E.; Lacampagne, A.; Mercier, J.

    2012-01-01

    The most common and problematic side effect of statins is myopathy. To date, the patho-physiological mechanisms of statin myotoxicity are still not clearly understood. In previous studies, we showed that acute application in vitro of simvastatin caused impairment of mitochondrial function and dysfunction of calcium homeostasis in human and rat healthy muscle samples. We thus evaluated in the present study, mitochondrial function and calcium signaling in muscles of patients treated with statins, who present or not muscle symptoms, by oxygraphy and recording of calcium sparks, respectively. Patients treated with statins showed impairment of mitochondrial respiration that involved mainly the complex I of the respiratory chain and altered frequency and amplitude of calcium sparks. The muscle problems observed in statin-treated patients appear thus to be related to impairment of mitochondrial function and muscle calcium homeostasis, confirming the results we previously reported in vitro. -- Highlights: ► The most common and problematic side effect of statins is myopathy. ► Patients treated with statins showed impairment of mitochondrial respiration. ► Statins-treated patients showed altered frequency and amplitude of calcium sparks.

  18. Generation of a Homozygous Transgenic Rat Strain Stably Expressing a Calcium Sensor Protein for Direct Examination of Calcium Signaling.

    Science.gov (United States)

    Szebényi, Kornélia; Füredi, András; Kolacsek, Orsolya; Pergel, Enikő; Bősze, Zsuzsanna; Bender, Balázs; Vajdovich, Péter; Tóvári, József; Homolya, László; Szakács, Gergely; Héja, László; Enyedi, Ágnes; Sarkadi, Balázs; Apáti, Ágota; Orbán, Tamás I

    2015-08-03

    In drug discovery, prediction of selectivity and toxicity require the evaluation of cellular calcium homeostasis. The rat is a preferred laboratory animal for pharmacology and toxicology studies, while currently no calcium indicator protein expressing rat model is available. We established a transgenic rat strain stably expressing the GCaMP2 fluorescent calcium sensor by a transposon-based methodology. Zygotes were co-injected with mRNA of transposase and a CAG-GCaMP2 expressing construct, and animals with one transgene copy were pre-selected by measuring fluorescence in blood cells. A homozygous rat strain was generated with high sensor protein expression in the heart, kidney, liver, and blood cells. No pathological alterations were found in these animals, and fluorescence measurements in cardiac tissue slices and primary cultures demonstrated the applicability of this system for studying calcium signaling. We show here that the GCaMP2 expressing rat cardiomyocytes allow the prediction of cardiotoxic drug side-effects, and provide evidence for the role of Na(+)/Ca(2+) exchanger and its beneficial pharmacological modulation in cardiac reperfusion. Our data indicate that drug-induced alterations and pathological processes can be followed by using this rat model, suggesting that transgenic rats expressing a calcium-sensitive protein provide a valuable system for pharmacological and toxicological studies.

  19. Neutrophils in Homeostasis, Immunity, and Cancer.

    Science.gov (United States)

    Nicolás-Ávila, José Ángel; Adrover, José M; Hidalgo, Andrés

    2017-01-17

    Neutrophils were among the first leukocytes described and visualized by early immunologists. Prominent effector functions during infection and sterile inflammation classically placed them low in the immune tree as rapid, mindless aggressors with poor regulatory functions. This view is currently under reassessment as we uncover new aspects of their life cycle and identify transcriptional and phenotypic diversity that endows them with regulatory properties that extend beyond their lifetime in the circulation. These properties are revealing unanticipated roles for neutrophils in supporting homeostasis, as well as complex disease states such as cancer. We focus this review on these emerging functions in order to define the true roles of neutrophils in homeostasis, immunity, and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Imbalanced immune homeostasis in immune thrombocytopenia.

    Science.gov (United States)

    Yazdanbakhsh, Karina

    2016-04-01

    Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder resulting from low platelet counts caused by inadequate production as well as increased destruction by autoimmune mechanisms. As with other autoimmune disorders, chronic ITP is characterized by perturbations of immune homeostasis with hyperactivated effector cells as well as defective regulatory arm of the adaptive immune system, which will be reviewed here. Interestingly, some ITP treatments are associated with restoring the regulatory imbalance, although it remains unclear whether the immune system is redirected to a state of tolerance once treatment is discontinued. Understanding the mechanisms that result in breakdown of immune homeostasis in ITP will help to identify novel pathways for restoring tolerance and inhibiting effector cell responses. This information can then be translated into developing therapies for averting autoimmunity not only in ITP but also many autoimmune disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Homeostasis as the Mechanism of Evolution

    Directory of Open Access Journals (Sweden)

    John S. Torday

    2015-09-01

    Full Text Available Homeostasis is conventionally thought of merely as a synchronic (same time servo-mechanism that maintains the status quo for organismal physiology. However, when seen from the perspective of developmental physiology, homeostasis is a robust, dynamic, intergenerational, diachronic (across-time mechanism for the maintenance, perpetuation and modification of physiologic structure and function. The integral relationships generated by cell-cell signaling for the mechanisms of embryogenesis, physiology and repair provide the needed insight to the scale-free universality of the homeostatic principle, offering a novel opportunity for a Systems approach to Biology. Starting with the inception of life itself, with the advent of reproduction during meiosis and mitosis, moving forward both ontogenetically and phylogenetically through the evolutionary steps involved in adaptation to an ever-changing environment, Biology and Evolution Theory need no longer default to teleology.

  2. Transcranial electrical stimulation accelerates human sleep homeostasis.

    Directory of Open Access Journals (Sweden)

    Davide Reato

    Full Text Available The sleeping brain exhibits characteristic slow-wave activity which decays over the course of the night. This decay is thought to result from homeostatic synaptic downscaling. Transcranial electrical stimulation can entrain slow-wave oscillations (SWO in the human electro-encephalogram (EEG. A computational model of the underlying mechanism predicts that firing rates are predominantly increased during stimulation. Assuming that synaptic homeostasis is driven by average firing rates, we expected an acceleration of synaptic downscaling during stimulation, which is compensated by a reduced drive after stimulation. We show that 25 minutes of transcranial electrical stimulation, as predicted, reduced the decay of SWO in the remainder of the night. Anatomically accurate simulations of the field intensities on human cortex precisely matched the effect size in different EEG electrodes. Together these results suggest a mechanistic link between electrical stimulation and accelerated synaptic homeostasis in human sleep.

  3. The liver in regulation of iron homeostasis.

    Science.gov (United States)

    Rishi, Gautam; Subramaniam, V Nathan

    2017-09-01

    The liver is one of the largest and most functionally diverse organs in the human body. In addition to roles in detoxification of xenobiotics, digestion, synthesis of important plasma proteins, gluconeogenesis, lipid metabolism, and storage, the liver also plays a significant role in iron homeostasis. Apart from being the storage site for excess body iron, it also plays a vital role in regulating the amount of iron released into the blood by enterocytes and macrophages. Since iron is essential for many important physiological and molecular processes, it increases the importance of liver in the proper functioning of the body's metabolism. This hepatic iron-regulatory function can be attributed to the expression of many liver-specific or liver-enriched proteins, all of which play an important role in the regulation of iron homeostasis. This review focuses on these proteins and their known roles in the regulation of body iron metabolism. Copyright © 2017 the American Physiological Society.

  4. Mitochondrial Iron Transport and Homeostasis in Plants

    Directory of Open Access Journals (Sweden)

    Anshika eJain

    2013-09-01

    Full Text Available Iron (Fe is an essential nutrient for plants and although the mechanisms controlling iron uptake from the soil are relatively well understood, comparatively little is known about subcellular trafficking of iron in plant cells. Mitochondria represent a significant iron sink within cells, as iron is required for the proper functioning of respiratory chain protein complexes. Mitochondria are a site of Fe-S cluster synthesis, and possibly heme synthesis as well. Here we review recent insights into the molecular mechanisms controlling mitochondrial iron transport and homeostasis. We focus on the recent identification of a mitochondrial iron uptake transporter in rice and a possible role for metalloreductases in iron uptake by mitochondria. In addition, we highlight recent advances in mitochondrial iron homeostasis with an emphasis on the roles of frataxin and ferritin in iron trafficking and storage within mitochondria.

  5. MicroRNAs and Periodontal Homeostasis.

    Science.gov (United States)

    Luan, X; Zhou, X; Trombetta-eSilva, J; Francis, M; Gaharwar, A K; Atsawasuwan, P; Diekwisch, T G H

    2017-05-01

    MicroRNAs (miRNAs) are a group of small RNAs that control gene expression in all aspects of eukaryotic life, primarily through RNA silencing mechanisms. The purpose of the present review is to introduce key miRNAs involved in periodontal homeostasis, summarize the mechanisms by which they affect downstream genes and tissues, and provide an introduction into the therapeutic potential of periodontal miRNAs. In general, miRNAs function synergistically to fine-tune the regulation of biological processes and to remove expression noise rather than by causing drastic changes in expression levels. In the periodontium, miRNAs play key roles in development and periodontal homeostasis and during the loss of periodontal tissue integrity as a result of periodontal disease. As part of the anabolic phase of periodontal homeostasis and periodontal development, miRNAs direct periodontal fibroblasts toward alveolar bone lineage differentiation and new bone formation through WNT, bone morphogenetic protein, and Notch signaling pathways. miRNAs contribute equally to the catabolic aspect of periodontal homeostasis as they affect osteoclastogenesis and osteoclast function, either by directly promoting osteoclast activity or by inhibiting osteoclast signaling intermediaries or through negative feedback loops. Their small size and ability to target multiple regulatory networks of related sets of genes have predisposed miRNAs to become ideal candidates for drug delivery and tissue regeneration. To address the immense therapeutic potential of miRNAs and their antagomirs, an ever growing number of delivery approaches toward clinical applications have been developed, including nanoparticle carriers and secondary structure interference inhibitor systems. However, only a fraction of the miRNAs involved in periodontal health and disease are known today. It is anticipated that continued research will lead to a more comprehensive understanding of the periodontal miRNA world, and a systematic

  6. The Commensal Microbiota Drives Immune Homeostasis

    OpenAIRE

    Arrieta, Marie-Claire; Finlay, Barton Brett

    2012-01-01

    For millions of years, microbes have coexisted with eukaryotic cells at the mucosal surfaces of vertebrates in a complex, yet usually harmonious symbiosis. An ever-expanding number of reports describe how eliminating or shifting the intestinal microbiota has profound effects on the development and functionality of the mucosal and systemic immune systems. Here, we examine some of the mechanisms by which bacterial signals affect immune homeostasis. Focusing on the strategies that microbes use t...

  7. A mathematical model of brain glucose homeostasis

    Directory of Open Access Journals (Sweden)

    Kimura Hidenori

    2009-11-01

    Full Text Available Abstract Background The physiological fact that a stable level of brain glucose is more important than that of blood glucose suggests that the ultimate goal of the glucose-insulin-glucagon (GIG regulatory system may be homeostasis of glucose concentration in the brain rather than in the circulation. Methods In order to demonstrate the relationship between brain glucose homeostasis and blood hyperglycemia in diabetes, a brain-oriented mathematical model was developed by considering the brain as the controlled object while the remaining body as the actuator. After approximating the body compartmentally, the concentration dynamics of glucose, as well as those of insulin and glucagon, are described in each compartment. The brain-endocrine crosstalk, which regulates blood glucose level for brain glucose homeostasis together with the peripheral interactions among glucose, insulin and glucagon, is modeled as a proportional feedback control of brain glucose. Correlated to the brain, long-term effects of psychological stress and effects of blood-brain-barrier (BBB adaptation to dysglycemia on the generation of hyperglycemia are also taken into account in the model. Results It is shown that simulation profiles obtained from the model are qualitatively or partially quantitatively consistent with clinical data, concerning the GIG regulatory system responses to bolus glucose, stepwise and continuous glucose infusion. Simulations also revealed that both stress and BBB adaptation contribute to the generation of hyperglycemia. Conclusion Simulations of the model of a healthy person under long-term severe stress demonstrated that feedback control of brain glucose concentration results in elevation of blood glucose level. In this paper, we try to suggest that hyperglycemia in diabetes may be a normal outcome of brain glucose homeostasis.

  8. Molecular monitoring of equine joint homeostasis

    OpenAIRE

    de Grauw, J.C.

    2010-01-01

    Chronic joint disorders are a major cause of impaired mobility and loss of quality of life in both humans and horses. Regardless of the primary insult, any joint disorder is characterized by an upset in normal joint homeostasis, the balance between tissue anabolism and catabolism that is normally maintained by resident articular cells. This upset is often fuelled by a local inflammatory response in the synovial membrane and the articular cartilage. Our current understanding of the pathogenesi...

  9. THE WORLD VIEW, IDENTITY AND SOCIOCULTUR HOMEOSTASIS

    Directory of Open Access Journals (Sweden)

    Marina Yur’evna Neronova

    2016-02-01

    Full Text Available The paper presents the relationship between the phenomenon of world view and sociocultural identity both individuals and the community as a whole. The research is being carried out in the context of current crisis of world view accepted in so-called art Nouveau era. This paper also presents the identity crisis typical for modern civilized societies. A new notion of sociocultural homeostasis is introduced in connection with analyzable phenomena and their mutual relations.Purpose. Study of the relationship between the phenomenon of the world view and sociocultural identity as a structural and functional mechanism.Methodology. Phenomenological and systematic methods with the elements of historical method were employed. Cultural analysis is based on using both axiological and phenomenological approach, and also the elements of semiotic approach.Results. The dependence of identity on the world view is revealed (or is being revealed?, the phenomenon of sociocultural homeostasis is singled out (or is being singled out in the capacity of the mechanism setting up the correspondence in the contradictory unity between the world view as a subjective image and concrete reality as an objective part of this contradictory. The analysis of sociocultural homeostasis is carried out (or is being carried out and the conclusion is being drown that instability of the latter leads to serious problems in the identification of both individuals and communities as a whole. Besides, (moreover the relationship between the legitimacy level of the world view and stability of sociocultural homeostasis is established. (is being established.Practical implications: the system of education.

  10. Guest editor's introduction: Energy homeostasis in context.

    Science.gov (United States)

    Schneider, Jill E

    2014-06-01

    This article is part of a Special Issue "Energy Balance". Energy homeostasis is achieved through neuroendocrine and metabolic control of energy intake, storage, and expenditure. Traditionally, these controls have been studied in an unrealistic and narrow context. The appetite for food, for example, is most often assumed to be independent of other motivations, such as sexual desire, fearfulness, and competition. Furthermore, our understanding of all aspects of energy homeostasis is based on studying males of only a few species. The baseline control subjects are most often housed in enclosed spaces, with continuous, unlimited access to food. In the last century, this approach has generated useful information, but all the while, the global prevalence of obesity has increased and remains at unprecedented levels (Ogden et al., 2013, 2014). It is likely, however, that the mechanisms that control ingestive behavior were molded by evolutionary forces, and that few, if any vertebrate species evolved in the presence of a limitless food supply, in an enclosed 0.5 × 1 ft space, and exposed to a constant ambient temperature of 22+2 °C. This special issue of Hormones and Behavior therefore contains 9 review articles and 7 data articles that consider energy homeostasis within the context of other motivations and physiological processes, such as early development, sexual differentiation, sexual motivation, reproduction, seasonality, hibernation, and migration. Each article is focused on a different species or on a set of species, and most vertebrate classes are represented. Energy homeostasis is viewed in the context of the selection pressures that simultaneously molded multiple aspects of energy intake, storage, and expenditure. This approach yields surprising conclusions regarding the function of those traits and their underlying neuroendocrine mechanisms. Copyright © 2014. Published by Elsevier Inc.

  11. Orm family proteins mediate sphingolipid homeostasis

    DEFF Research Database (Denmark)

    Breslow, David K; Collins, Sean R; Bodenmiller, Bernd

    2010-01-01

    a conserved complex with serine palmitoyltransferase, the first and rate-limiting enzyme in sphingolipid production. We also define a regulatory pathway in which phosphorylation of Orm proteins relieves their inhibitory activity when sphingolipid production is disrupted. Changes in ORM gene expression...... or mutations to their phosphorylation sites cause dysregulation of sphingolipid metabolism. Our work identifies the Orm proteins as critical mediators of sphingolipid homeostasis and raises the possibility that sphingolipid misregulation contributes to the development of childhood asthma....

  12. Impact of intermittent fasting on glucose homeostasis.

    Science.gov (United States)

    Varady, Krista A

    2016-07-01

    This article provides an overview of the most recent human trials that have examined the impact of intermittent fasting on glucose homeostasis. Our literature search retrieved one human trial of alternate day fasting, and three trials of Ramadan fasting published in the past 12 months. Current evidence suggests that 8 weeks of alternate day fasting that produces mild weight loss (4% from baseline) has no effect on glucose homeostasis. As for Ramadan fasting, decreases in fasting glucose, insulin, and insulin resistance have been noted after 4 weeks in healthy normal weight individuals with mild weight loss (1-2% from baseline). However, Ramadan fasting may have little impact on glucoregulatory parameters in women with polycystic ovarian syndrome who failed to observe weight loss. Whether intermittent fasting is an effective means of regulating glucose homeostasis remains unclear because of the scarcity of studies in this area. Large-scale, longer-term randomized controlled trials will be required before the use of fasting can be recommended for the prevention and treatment of metabolic diseases.

  13. Regulation of energy homeostasis via GPR120

    Directory of Open Access Journals (Sweden)

    Atsuhiko eIchimura

    2014-07-01

    Full Text Available Free fatty acids (FFAs are fundamental units of key nutrients. FFAs exert various biological functions, depending on the chain length and degree of desaturation. Recent studies have shown that several FFAs act as ligands of G-protein-coupled receptors (GPCRs, activate intracellular signaling and exert physiological functions via these GPCRs. GPR120 (also known as free fatty acid receptor 4, FFAR4 is activated by unsaturated medium- to long-chain FFAs and has a critical role in various physiological homeostasis mechanisms such as incretin hormone secretion, food preference, anti-inflammation and adipogenesis. Recent studies showed that a lipid sensor GPR120 has a key role in sensing dietary fat in white adipose tissue and regulates the whole body energy homeostasis in both humans and rodents. Genetic study in human identified the loss-of-functional mutation of GPR120 associated with obesity and insulin resistance. In addition, dysfunction of GPR120 has been linked as a novel risk factor for diet-induced obesity. This review aims to provide evidence from the recent development in physiological function of GPR120 and discusses its functional roles in regulation of energy homeostasis and its potential as drug targets.

  14. Pseudomonas aeruginosa Trent and zinc homeostasis.

    Science.gov (United States)

    Davies, Corey B; Harrison, Mark D; Huygens, Flavia

    2017-09-01

    Pseudomonas aeruginosa is a Gram-negative pathogen and the major cause of mortality in patients with cystic fibrosis. The mechanisms that P. aeruginosa strains use to regulate intracellular zinc have an effect on infection, antibiotic resistance and the propensity to form biofilms. However, zinc homeostasis in P. aeruginosa strains of variable infectivity has not been compared. In this study, zinc homeostasis in P. aeruginosa Trent, a highly infectious clinical strain, was compared to that of a laboratory P. aeruginosa strain, ATCC27853. Trent was able to tolerate higher concentrations of additional zinc in rich media than ATCC27853. Further, pre-adaptation to additional zinc enhanced the growth of Trent at non-inhibitory concentrations but the impact of pre-adaption on the growth of ATCC27853 under the same conditions was minimal. The results establish clear differences in zinc-induced responses in Trent and ATCC27853, and how zinc homeostasis can be a promising target for the development of novel antimicrobial strategies for P. aeruginosa infection in cystic fibrosis patients. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Electrocardiographic abnormalities in opiate addicts.

    Science.gov (United States)

    Wallner, Christina; Stöllberger, Claudia; Hlavin, Anton; Finsterer, Josef; Hager, Isabella; Hermann, Peter

    2008-12-01

    To determine in a cross-sectional study the prevalence of electrocardiographic (ECG) abnormalities in opiate addicts who were therapy-seeking and its association with demographic, clinical and drug-specific parameters. In consecutive therapy-seeking opiate addicts, a 12-lead ECG was registered within 24 hours after admission and evaluated according to a pre-set protocol between October 2004 and August 2006. Additionally, demographic, clinical and drug-specific parameters were recorded. Included were 511 opiate-addicts, 25% female, with a mean age of 29 years (range 17-59 years). One or more ECG abnormalities were found in 314 patients (61%). In the 511 patients we found most commonly ST abnormalities (19%), QTc prolongation (13%), tall R- and/or S-waves (11%) and missing R progression (10%). ECG abnormalities were more common in males than in females (64 versus 54%, P seizures less often (16 versus 27%, P opiate addicts. The most frequent ECG abnormalities are ST abnormalities, QTc prolongation and tall R- and/or S-waves. ST abnormalities are associated with cannabis, and QTc prolongation with methadone and benzodiazepines.

  16. Imaging findings of sternal abnormalities

    International Nuclear Information System (INIS)

    Franquet, T.; Gimenez, A.; Alegret, X.; Sanchis, E.; Rivas, A.

    1997-01-01

    Radiographic findings in the sternal abnormalities are often nonspecific, showing appearances from a localized benign lesion to an aggressive lesion as seen with infections and malignant neoplasms. A specific diagnosis of sternal abnormalities can be suggested on the basis of CT and MR characteristics. Familiarity with the presentation and variable appearance of sternal abnormalities may aid the radiologist is suggesting a specific diagnosis. We present among others characteristic radiographic findings of hemangioma, chondrosarcoma, hydatid disease, and SAPHO syndrome. In those cases in which findings are not specific, cross-sectional imaging modalities may help the clinician in their management. (orig.)

  17. Regional cerebral blood flow abnormalities in patients with primary hyperparathyroidism

    International Nuclear Information System (INIS)

    Cermik, Tevfik F.; Kaya, Meryem; Bedel, Deniz; Berkarda, Sakir; Yigitbasi, Oemer N.; Ugur-Altun, Betuel

    2007-01-01

    We assessed the alterations in regional cerebral blood flow (rCBF) in patients with primary hyperparathyroidism (PHP) before parathyroidectomy by semiquantitative analysis of brain single photon emission computed tomography (SPECT) images. Included in this prospective study were 14 patients (mean age 47.6 ± 10.4 years; 3 male, 11 female) and 10 control subjects (mean age 36.0 ± 8.5 years, 6 male, 4 female) were SPECT imaging was performed using a dual-headed gamma camera 60-90 min after intravenous administration of 925 MBq Tc-99m HMPAO. The corticocerebellar rCBF ratios were calculated from 52 brain areas and reference lower values (RLVs) were calculated from the rCBF ratios of control subjects. The regional ratios that were below the corresponding RLV were considered abnormal (hypoperfused). Hypoperfusion was shown in 171 out of 728 regions (23%) and there was a significant correlation between serum calcium, PTH levels and the sum of hypoperfused regions in the patient group (R = 0.75 and P = 0.001, and R = 0.75, P = 0.001, respectively). Significantly reduced rCBF were found in the following cortical regions: bilateral cingulate cortex, superior and inferior frontal cortex, anterior temporal cortex, precentral gyrus, postcentral gyrus and parietal cortex, and right posterior temporal cortex. Our results indicate that alterations in rCBF in patients with PHP can be demonstrated with brain SPECT. The correlation between serum calcium, PTH levels and the sum of hypoperfused regions indicates that there may be a strong relationship between rCBF abnormalities and increased levels of serum calcium and PTH. In addition, the degree of rCBF abnormalities could be determined by brain SPECT in PHP patients with or without psychiatric symptoms. (orig.)

  18. Regional cerebral blood flow abnormalities in patients with primary hyperparathyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Cermik, Tevfik F. [Hospital of the University of Trakya, Department of Nuclear Medicine, Edirne (Turkey); Trakya Universitesi Hastanesi, Nukleer Tip Anabilim Dali, Gullapoglu Yerleskesi, Edirne (Turkey); Kaya, Meryem; Bedel, Deniz; Berkarda, Sakir; Yigitbasi, Oemer N. [Hospital of the University of Trakya, Department of Nuclear Medicine, Edirne (Turkey); Ugur-Altun, Betuel [Hospital of the University of Trakya, Department of Internal Medicine, Division of Endocrinology, Edirne (Turkey)

    2007-04-15

    We assessed the alterations in regional cerebral blood flow (rCBF) in patients with primary hyperparathyroidism (PHP) before parathyroidectomy by semiquantitative analysis of brain single photon emission computed tomography (SPECT) images. Included in this prospective study were 14 patients (mean age 47.6 {+-} 10.4 years; 3 male, 11 female) and 10 control subjects (mean age 36.0 {+-} 8.5 years, 6 male, 4 female) were SPECT imaging was performed using a dual-headed gamma camera 60-90 min after intravenous administration of 925 MBq Tc-99m HMPAO. The corticocerebellar rCBF ratios were calculated from 52 brain areas and reference lower values (RLVs) were calculated from the rCBF ratios of control subjects. The regional ratios that were below the corresponding RLV were considered abnormal (hypoperfused). Hypoperfusion was shown in 171 out of 728 regions (23%) and there was a significant correlation between serum calcium, PTH levels and the sum of hypoperfused regions in the patient group (R = 0.75 and P = 0.001, and R = 0.75, P = 0.001, respectively). Significantly reduced rCBF were found in the following cortical regions: bilateral cingulate cortex, superior and inferior frontal cortex, anterior temporal cortex, precentral gyrus, postcentral gyrus and parietal cortex, and right posterior temporal cortex. Our results indicate that alterations in rCBF in patients with PHP can be demonstrated with brain SPECT. The correlation between serum calcium, PTH levels and the sum of hypoperfused regions indicates that there may be a strong relationship between rCBF abnormalities and increased levels of serum calcium and PTH. In addition, the degree of rCBF abnormalities could be determined by brain SPECT in PHP patients with or without psychiatric symptoms. (orig.)

  19. Bone turnover, calcium homeostasis, and vitamin D status in Danish vegans

    DEFF Research Database (Denmark)

    Hansen, Tue H; Madsen, Marie T B; Jørgensen, Niklas R

    2018-01-01

    BACKGROUND/OBJECTIVES: A vegan diet has been associated with increased bone fracture risk, but the physiology linking nutritional exposure to bone metabolism has only been partially elucidated. This study investigated whether a vegan diet is associated with increased bone turnover and altered...... phosphatase (BAP), and C-terminal telopeptide of type I collagen (CTX)) were measured in serum from 78 vegans and 77 omnivores. RESULTS: When adjusting for seasonality and constitutional covariates (age, sex, and body fat percentage) vegans had higher concentrations of PINP (32 [95% CI: 7, 64]%, P = 0.......01) and BAP (58 [95% CI: 27, 97]%, P Vegans had higher serum PTH concentration (38 [95% CI: 19, 60]%; P 

  20. Altered ubiquitin causes perturbed calcium homeostasis, hyperactivation of calpain, dysregulated differentiation, and cataract.

    Science.gov (United States)

    Liu, Ke; Lyu, Lei; Chin, David; Gao, Junyuan; Sun, Xiurong; Shang, Fu; Caceres, Andrea; Chang, Min-Lee; Rowan, Sheldon; Peng, Junmin; Mathias, Richard; Kasahara, Hideko; Jiang, Shuhong; Taylor, Allen

    2015-01-27

    Although the ocular lens shares many features with other tissues, it is unique in that it retains its cells throughout life, making it ideal for studies of differentiation/development. Precipitation of proteins results in lens opacification, or cataract, the major blinding disease. Lysines on ubiquitin (Ub) determine fates of Ub-protein substrates. Information regarding ubiquitin proteasome systems (UPSs), specifically of K6 in ubiquitin, is undeveloped. We expressed in the lens a mutant Ub containing a K6W substitution (K6W-Ub). Protein profiles of lenses that express wild-type ubiquitin (WT-Ub) or K6W-Ub differ by only ∼2%. Despite these quantitatively minor differences, in K6W-Ub lenses and multiple model systems we observed a fourfold Ca(2+) elevation and hyperactivation of calpain in the core of the lens, as well as calpain-associated fragmentation of critical lens proteins including Filensin, Fodrin, Vimentin, β-Crystallin, Caprin family member 2, and tudor domain containing 7. Truncations can be cataractogenic. Additionally, we observed accumulation of gap junction Connexin43, and diminished Connexin46 levels in vivo and in vitro. These findings suggest that mutation of Ub K6 alters UPS function, perturbs gap junction function, resulting in Ca(2+) elevation, hyperactivation of calpain, and associated cleavage of substrates, culminating in developmental defects and a cataractous lens. The data show previously unidentified connections between UPS and calpain-based degradative systems and advance our understanding of roles for Ub K6 in eye development. They also inform about new approaches to delay cataract and other protein precipitation diseases.

  1. Evaluation of methods for the assessment of in vitro neurotoxicity : Calcium homeostasis as target for insecticides

    NARCIS (Netherlands)

    Meijer, M.

    2016-01-01

    Due to the REACH regulation, more animal studies for regulatory safety studies are needed in the coming years unless suitable alternatives become available. In addition, regulatory neurotoxicity tests have been criticized for their low sensitivity and the large amount of animals, time and money that

  2. Ethanol exerts dual effects on calcium homeostasis in CCK-8-stimulated mouse pancreatic acinar cells.

    Science.gov (United States)

    Fernández-Sánchez, Marcela; del Castillo-Vaquero, Angel; Salido, Ginés M; González, Antonio

    2009-10-30

    A significant percentage of patients with pancreatitis often presents a history of excessive alcohol consumption. Nevertheless, the patho-physiological effect of ethanol on pancreatitis remains poorly understood. In the present study, we have investigated the early effects of acute ethanol exposure on CCK-8-evoked Ca2+ signals in mouse pancreatic acinar cells. Changes in [Ca2+]i and ROS production were analyzed employing fluorescence techniques after loading cells with fura-2 or CM-H2DCFDA, respectively. Ethanol, in the concentration range from 1 to 50 mM, evoked an oscillatory pattern in [Ca2+]i. In addition, ethanol evoked reactive oxygen species generation (ROS) production. Stimulation of cells with 1 nM or 20 pM CCK-8, respectively led to a transient change and oscillations in [Ca2+]i. In the presence of ethanol a transformation of 20 pM CCK-8-evoked physiological oscillations into a single transient increase in [Ca2+]i in the majority of cells was observed. Whereas, in response to 1 nM CCK-8, the total Ca2+ mobilization was significantly increased by ethanol pre-treatment. Preincubation of cells with 1 mM 4-MP, an inhibitor of alcohol dehydrogenase, or 10 microM of the antioxidant cinnamtannin B-1, reverted the effect of ethanol on total Ca2+ mobilization evoked by 1 nM CCK-8. Cinnamtannin B-1 blocked ethanol-evoked ROS production. ethanol may lead, either directly or through ROS generation, to an over stimulation of pancreatic acinar cells in response to CCK-8, resulting in a higher Ca2+ mobilization compared to normal conditions. The actions of ethanol on CCK-8-stimulation of cells create a situation potentially leading to Ca2+ overload, which is a common pathological precursor that mediates pancreatitis.

  3. Ethanol exerts dual effects on calcium homeostasis in CCK-8-stimulated mouse pancreatic acinar cells

    Directory of Open Access Journals (Sweden)

    Salido Ginés M

    2009-10-01

    Full Text Available Abstract Background A significant percentage of patients with pancreatitis often presents a history of excessive alcohol consumption. Nevertheless, the patho-physiological effect of ethanol on pancreatitis remains poorly understood. In the present study, we have investigated the early effects of acute ethanol exposure on CCK-8-evoked Ca2+ signals in mouse pancreatic acinar cells. Changes in [Ca2+]i and ROS production were analyzed employing fluorescence techniques after loading cells with fura-2 or CM-H2DCFDA, respectively. Results Ethanol, in the concentration range from 1 to 50 mM, evoked an oscillatory pattern in [Ca2+]i. In addition, ethanol evoked reactive oxygen species generation (ROS production. Stimulation of cells with 1 nM or 20 pM CCK-8, respectively led to a transient change and oscillations in [Ca2+]i. In the presence of ethanol a transformation of 20 pM CCK-8-evoked physiological oscillations into a single transient increase in [Ca2+]i in the majority of cells was observed. Whereas, in response to 1 nM CCK-8, the total Ca2+ mobilization was significantly increased by ethanol pre-treatment. Preincubation of cells with 1 mM 4-MP, an inhibitor of alcohol dehydrogenase, or 10 μM of the antioxidant cinnamtannin B-1, reverted the effect of ethanol on total Ca2+ mobilization evoked by 1 nM CCK-8. Cinnamtannin B-1 blocked ethanol-evoked ROS production. Conclusion ethanol may lead, either directly or through ROS generation, to an over stimulation of pancreatic acinar cells in response to CCK-8, resulting in a higher Ca2+ mobilization compared to normal conditions. The actions of ethanol on CCK-8-stimulation of cells create a situation potentially leading to Ca2+ overload, which is a common pathological precursor that mediates pancreatitis.

  4. The impact of mitochondrial endosymbiosis on the evolution of calcium signaling.

    Science.gov (United States)

    Blackstone, Neil W

    2015-03-01

    At high concentrations, calcium has detrimental effects on biological systems. Life likely arose in a low calcium environment, and the first cells evolved mechanisms to maintain this environment internally. Bursts of calcium influx followed by efflux or sequestration thus developed in a functional context. For example, in proto-cells with exterior energy-converting membranes, such bursts could be used to depolarize the membrane. In this way, proto-cells could maintain maximal phosphorylation (metabolic state 3) and moderate levels of reactive oxygen species (ROS), while avoiding the resting state (metabolic state 4) and high levels of ROS. This trait is likely a shared primitive characteristic of prokaryotes. When eukaryotes evolved, the α-proteobacteria that gave rise to proto-mitochondria inhabited a novel environment, the interior of the proto-eukaryote that had a low calcium concentration. In this environment, metabolic homeostasis was difficult to maintain, and there were inherent risks from ROS, yet depolarizing the proto-mitochondrial membrane by calcium influx was challenging. To maintain metabolic state 3, proto-mitochondria were required to congregate near calcium influx points in the proto-eukaryotic membrane. This behavior, resulting in embryonic forms of calcium signaling, may have occurred immediately after the initiation of the endosymbiosis. Along with ROS, calcium may have served as one of the key forms of crosstalk among the community of prokaryotes that led to the eukaryotic cell. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Calcium ferrite formation from the thermolysis of calcium tris (maleato)

    Indian Academy of Sciences (India)

    For preparing calcium ferrite, calcium tris (maleato) ferrate(III) precursor was prepared by mixing aqueous solutions of iron(III) maleate, calcium maleate and maleic acid. Various physico-chemical techniques i.e. TG, DTG, DTA, Mössbauer, XRD, IR etc have been used to study the decomposition behaviour from ambient to ...

  6. Effects of Oxcarbazepine and Levetiracetam on Calcium, Ionized Calcium, and 25-OH Vitamin-D3 Levels in Patients with Epilepsy.

    Science.gov (United States)

    Aksoy, Duygu; Güveli, Betül Tekin; Ak, Pelin Doğan; Sarı, Hüseyin; Ataklı, Dilek; Arpacı, Baki

    2016-02-29

    The primary objective of the present study was to further elucidate the effects of oxcarbazepine (OXC) and levetiracetam (LEV) monotherapies on the bone health status of patients with epilepsy. This study included 48 patients who attended our epilepsy outpatient clinic, had a diagnosis of epilepsy, and were undergoing either OXC or LEV monotherapy and 42 healthy control subjects. The demographic and clinical features of the patients, including gender, age, onset of disease, daily drug dosage, and duration of disease, were noted. Additionally, the calcium, ionized calcium, and 25-OH vitamin-D3 levels of the participants were prospectively evaluated. The 25-OH vitamin-D3, calcium, and ionized calcium levels of the patients taking OXC were significantly lower than those of the control group. These levels did not significantly differ between the patients taking LEV and the control group, but there was a significant negative relationship between daily drug dose and ionized calcium levels in the LEV patients. In the present study, anti-epileptic drugs altered the calcium, ionized calcium, and 25-OH vitamin-D3 levels of epilepsy patients and resulted in bone loss, abnormal mineralization, and fractures. These findings suggest that the calcium, ionized calcium, and 25-OH vitamin-D3 levels of patients with epilepsy should be regularly assessed.

  7. Mathematical modeling of calcium waves induced by mechanical stimulation in keratinocytes.

    Directory of Open Access Journals (Sweden)

    Yasuaki Kobayashi

    Full Text Available Recent studies have shown that the behavior of calcium in the epidermis is closely related to the conditions of the skin, especially the differentiation of the epidermal keratinocytes and the permeability barrier function, and therefore a correct understanding of the calcium dynamics is important in explaining epidermal homeostasis. Here we report on experimental observations of in vitro calcium waves in keratinocytes induced by mechanical stimulation, and present a mathematical model that can describe the experimentally observed wave behavior that includes finite-range wave propagation and a ring-shaped pattern. A mechanism of the ring formation hypothesized by our model may be related to similar calcium propagation patterns observed during the wound healing process in the epidermis. We discuss a possible extension of our model that may serve as a tool for investigating the mechanisms of various skin diseases.

  8. A sensor for calcium uptake

    Science.gov (United States)

    Collins, Sean; Meyer, Tobias

    2011-01-01

    Mitochondria — the cell’s power plants — increase their energy production in response to calcium signals in the cytoplasm. A regulator of the elusive mitochondrial calcium channel has now been identified. PMID:20844529

  9. Children's Bone Health and Calcium

    Science.gov (United States)

    ... Twitter Pinterest Email Print Children's Bone Health and Calcium: Condition Information What is bone health and how ... straight, walk, run, and lead an active life. Calcium is one of the key dietary building blocks ...

  10. Calcium – how and why?

    Indian Academy of Sciences (India)

    Unknown

    biological processes because of its unusual physical and chemical properties. 1. History of calcium ... cellular roles of calcium has established the importance of this ion ..... Ca2+ ion, for example in regulating enzyme activity (Price. 1975 ...

  11. Somatosensory abnormalities in knee OA.

    Science.gov (United States)

    Wylde, Vikki; Palmer, Shea; Learmonth, Ian D; Dieppe, Paul

    2012-03-01

    The aim of this study was to use quantitative sensory testing (QST) to explore the range and prevalence of somatosensory abnormalities demonstrated by patients with advanced knee OA. One hundred and seven knee OA patients and 50 age- and sex-matched healthy participants attended a 1-h QST session. Testing was performed on the medial side of the knee and the pain-free forearm. Light-touch thresholds were assessed using von Frey filaments, pressure pain thresholds using a digital pressure algometer, and thermal sensation and pain thresholds using a Thermotest MSA. Significant differences in median threshold values from knee OA patients and healthy participants were identified using Mann-Whitney U-tests. The z-score transformations were used to determine the prevalence of the different somatosensory abnormalities in knee OA patients. Testing identified 70% of knee OA patients as having at least one somatosensory abnormality. Comparison of median threshold values between knee OA patients and healthy participants revealed that patients had localized thermal and tactile hypoaesthesia and pressure hyperalgesia at the osteoarthritic knee. Tactile hypoaesthesia and pressure hyperalgesia were also present at the pain-free forearm. The most prevalent somatosensory abnormalities were tactile hypoaesthesia and pressure hyperalgesia, evident in between 20 and 34% of patients. This study found that OA patients demonstrate an array of somatosensory abnormalities, of which the most prevalent were tactile hypoaesthesia and pressure hyperalgesia. Further research is now needed to establish the clinical implications of these somatosensory abnormalities.

  12. Chronic ethanol increases calcium/calmodulin-dependent protein kinaseIIδ gene expression and decreases monoamine oxidase amount in rat heart muscles: Rescue effect of Zingiber officinale (ginger) extract.

    Science.gov (United States)

    Heshmati, Elaheh; Shirpoor, Alireza; Kheradmand, Fatemeh; Alizadeh, Mohammad; Gharalari, Farzaneh Hosseini

    2018-01-01

    Association between chronic alcohol intake and cardiac abnormality is well known; however, the precise underlying molecular mediators involved in ethanol-induced heart abnormalities remain elusive. This study investigated the effect of chronic ethanol exposure on calcium/calmodulin-dependent protein kinase IIδ (CaMKIIδ) gene expression and monoamine oxidase (MAO) levels and histological changes in rat heart. It was also planned to find out whether Zingiber officinale (ginger) extract mitigated the abnormalities induced by ethanol in rat heart. Male wistar rats were divided into three groups of eight animals each: control, ethanol, and ginger extract treated-ethanol (GETE) groups. After 6 weeks of treatment, the results revealed a significant increase in CaMKIIδtotal and isoforms δ2 and δ3 of CaMKIIδ gene expression as well as a significant decrease in the MAO levels in the ethanol group compared to that in the control group. Moreover, compared to the control group, the ethanol group showed histological changes, such as fibrosis, heart muscle cells proliferation, myocyte hypertrophy, vacuolization, and focal lymphocytic infiltration. Consumption of ginger extract along with ethanol ameliorated CaMKIIδtotal. In addition, compared to the ethanol group, isoforms gene expression changed and increased the reduced MAO levels and mitigated heart structural changes. These findings indicate that ethanol-induced heart abnormalities may, in part, be associated with Ca 2+ homeostasis changes mediated by overexpression of CaMKIIδ gene and the decrease of MAO levels and that these effects can be alleviated by using ginger extract as an antioxidant and anti-inflammatory agent.

  13. Reelin secreted by GABAergic neurons regulates glutamate receptor homeostasis.

    Directory of Open Access Journals (Sweden)

    Cecilia Gonzalez Campo

    Full Text Available BACKGROUND: Reelin is a large secreted protein of the extracellular matrix that has been proposed to participate to the etiology of schizophrenia. During development, reelin is crucial for the correct cytoarchitecture of laminated brain structures and is produced by a subset of neurons named Cajal-Retzius. After birth, most of these cells degenerate and reelin expression persists in postnatal and adult brain. The phenotype of neurons that bind secreted reelin and whether the continuous secretion of reelin is required for physiological functions at postnatal stages remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: Combining immunocytochemical and pharmacological approaches, we first report that two distinct patterns of reelin expression are present in cultured hippocampal neurons. We show that in hippocampal cultures, reelin is secreted by GABAergic neurons displaying an intense reelin immunoreactivity (IR. We demonstrate that secreted reelin binds to receptors of the lipoprotein family on neurons with a punctate reelin IR. Secondly, using calcium imaging techniques, we examined the physiological consequences of reelin secretion blockade. Blocking protein secretion rapidly and reversibly changes the subunit composition of N-methyl-D-aspartate glutamate receptors (NMDARs to a predominance of NR2B-containing NMDARs. Addition of recombinant or endogenously secreted reelin rescues the effects of protein secretion blockade and reverts the fraction of NR2B-containing NMDARs to control levels. Therefore, the continuous secretion of reelin is necessary to control the subunit composition of NMDARs in hippocampal neurons. CONCLUSIONS/SIGNIFICANCE: Our data show that the heterogeneity of reelin immunoreactivity correlates with distinct functional populations: neurons synthesizing and secreting reelin and/or neurons binding reelin. Furthermore, we show that continuous reelin secretion is a strict requirement to maintain the composition of NMDARs. We propose

  14. Solar Imagery - Chromosphere - Calcium

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of full-disk images of the sun in Calcium (Ca) II K wavelength (393.4 nm). Ca II K imagery reveal magnetic structures of the sun from about 500...

  15. The commensal microbiota drives immune homeostasis

    Directory of Open Access Journals (Sweden)

    Marie-Claire eArrieta

    2012-03-01

    Full Text Available For millions of years, microbes have coexisted with eukaryotic cells at the mucosal surfaces of vertebrates in a complex, yet usually harmonious symbiosis. An ever-expanding number of reports describe how eliminating or shifting the intestinal microbiota has profound effects on the development and functionality of the mucosal and systemic immune systems. Here, we examine some of the mechanisms by which bacterial signals affect immune homeostasis. Focusing on the strategies that microbes use to keep our immune system healthy, as opposed to trying to correct the immune imbalances caused by dysbiosis, may prove to be a more astute and efficient way of treating immune-mediated disease.

  16. Antenatal calcium intake in Malaysia.

    Science.gov (United States)

    Mahdy, Zaleha Abdullah; Basri, Hashimah; Md Isa, Zaleha; Ahmad, Shuhaila; Shamsuddin, Khadijah; Mohd Amin, Rahmah

    2014-04-01

    To determine the adequacy of antenatal calcium intake in Malaysia, and the influencing factors. A cross-sectional study was conducted among postnatal women who delivered in two tertiary hospitals. Data were collected from antenatal cards, hospital documents and diet recall on daily milk and calcium intake during pregnancy. SPSS version 19.0 was used for statistical analyses. A total of 150 women were studied. The total daily calcium intake was 834 ± 43 mg (mean ± standard error of the mean), but the calcium intake distribution curve was skewed to the right with a median intake of 725 mg daily. When calcium intake from milk and calcium supplements was excluded, the daily dietary calcium intake was only 478 ± 25 mg. Even with inclusion of milk and calcium supplements, more than a third (n=55 or 36.7%) of the women consumed less than 600 mg calcium in their daily diet. The adequacy of daily calcium intake was not influenced by maternal age, ethnicity, income or maternal job or educational status as well as parity. The daily dietary calcium intake of the Malaysian antenatal population is far from adequate without the addition of calcium supplements and milk. © 2013 The Authors. Journal of Obstetrics and Gynaecology Research © 2013 Japan Society of Obstetrics and Gynecology.

  17. Evidence for a possible calcium flux dependent cardiomyopathy in hyperthyroidism

    International Nuclear Information System (INIS)

    Barat, J.L.; Wicker, P.; Manley, W.

    1985-01-01

    This study was designed to test the hypothesis that the impaired functional cardiac reserve to exercise in hyperthyroidism is related to alterations in the regulation of calcium transport. In 2l hyperthyroid patients, the left ventricular ejection fraction (LVEF) was measured using equilibrium gated radionuclide angiocardiography at rest and during supine dynamic exercise. After a recovery period, the patients performed a second exercise study after random administration of Verapamil, a calcium entry blocker (11 pts), or propanolol, a beta adrenergic antagonist (10 pts) for comparison. The results showed i) normal resting LVEF with no significant change during exercise before any medication, ii) resting LVEF significantly decreased after Propanolol, and no significantly changed after Verapamil, iii) during exercise, significant increase of LVEF after Verapamil, and no significant change after Propanolol. These results are consistent with previous studies showing that abnormal change in LVEF during exercise in hyperthyroidism seems independent of beta adrenergic activation, and suggest a reversible functional cardiomyopathy dependent of calcium transporting systems

  18. Evidence for a possible calcium flux dependent cardiomyopathy in hyperthyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Barat, J.L.; Wicker, P.; Manley, W.; Brendel, A.J.; Lefort, G.; San Galli, F.; Commenges-Ducos, M.; Latapie, J.L.; Riviere, J.; Ducassou, D.

    1985-05-01

    This study was designed to test the hypothesis that the impaired functional cardiac reserve to exercise in hyperthyroidism is related to alterations in the regulation of calcium transport. In 2l hyperthyroid patients, the left ventricular ejection fraction (LVEF) was measured using equilibrium gated radionuclide angiocardiography at rest and during supine dynamic exercise. After a recovery period, the patients performed a second exercise study after random administration of Verapamil, a calcium entry blocker (11 pts), or propanolol, a beta adrenergic antagonist (10 pts) for comparison. The results showed i) normal resting LVEF with no significant change during exercise before any medication, ii) resting LVEF significantly decreased after Propanolol, and no significantly changed after Verapamil, iii) during exercise, significant increase of LVEF after Verapamil, and no significant change after Propanolol. These results are consistent with previous studies showing that abnormal change in LVEF during exercise in hyperthyroidism seems independent of beta adrenergic activation, and suggest a reversible functional cardiomyopathy dependent of calcium transporting systems.

  19. Excessive signal transduction of gain-of-function variants of the calcium-sensing receptor (CaSR are associated with increased ER to cytosol calcium gradient.

    Directory of Open Access Journals (Sweden)

    Marianna Ranieri

    Full Text Available In humans, gain-of-function mutations of the calcium-sensing receptor (CASR gene are the cause of autosomal dominant hypocalcemia or type 5 Bartter syndrome characterized by an abnormality of calcium metabolism with low parathyroid hormone levels and excessive renal calcium excretion. Functional characterization of CaSR activating variants has been so far limited at demonstrating an increased sensitivity to external calcium leading to lower Ca-EC50. Here we combine high resolution fluorescence based techniques and provide evidence that for the efficiency of calcium signaling system, cells expressing gain-of-function variants of CaSR monitor cytosolic and ER calcium levels increasing the expression of the Sarco-Endoplasmic Reticulum Calcium-ATPase (SERCA and reducing expression of Plasma Membrane Calcium-ATPase (PMCA. Wild-type CaSR (hCaSR-wt and its gain-of-function (hCaSR-R990G; hCaSR-N124K variants were transiently transfected in HEK-293 cells. Basal intracellular calcium concentration was significantly lower in cells expressing hCaSR-wt and its gain of function variants compared to mock. In line, FRET studies using the D1ER probe, which detects [Ca2+]ER directly, demonstrated significantly higher calcium accumulation in cells expressing the gain of function CaSR variants compared to hCaSR-wt. Consistently, cells expressing activating CaSR variants showed a significant increase in SERCA activity and expression and a reduced PMCA expression. This combined parallel regulation in protein expression increases the ER to cytosol calcium gradient explaining the higher sensitivity of CaSR gain-of-function variants to external calcium. This control principle provides a general explanation of how cells reliably connect (and exacerbate receptor inputs to cell function.

  20. Memetics clarification of abnormal behavior

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: Biological medicine is hard to fully and scientifically explain the etiological factor and pathogenesis of abnormal behaviors; while, researches on philosophy and psychology (including memetics) are beneficial to better understand and explain etiological factor and pathogenesis of abnormal behaviors. At present, the theory of philosophy and psychology is to investigate the entity of abnormal behavior based on the views of memetics.METHODS: Abnormal behavior was researched in this study based on three aspects, including instinctive behavior disorder, poorly social-adapted behavior disorder and mental or body disease associated behavior disorder. Most main viewpoints of memetics were derived from "The Meme Machine", which was written by Susan Blackmore. When questions about abnormal behaviors induced by mental and psychological diseases and conduct disorder of teenagers were discussed, some researching achievements which were summarized by authors previously were added in this study, such as aggressive behaviors, pathologically aggressive behaviors, etc.RESULTS: The abnormal behaviors mainly referred to a part of people's substandard behaviors which were not according with the realistic social environment, culture background and the pathologic behaviors resulted from people's various psychological diseases. According to the theory of "meme", it demonstrated that the relevant behavioral obstacles of various psychological diseases, for example, the unusual behavior of schizophrenia, were caused, because the old meme was destroyed thoroughly but the new meme was unable to establish; psychoneurosis and personality disorder were resulted in hard establishment of meme; the behavioral obstacles which were ill-adapted to society, for example, various additional and homosexual behaviors, were because of the selfish replications and imitations of "additional meme" and "homosexual meme"; various instinct behavioral and congenital intelligent obstacles were not significance

  1. Respiratory metabolism and calorie restriction relieve persistent endoplasmic reticulum stress induced by calcium shortage in yeast

    DEFF Research Database (Denmark)

    Busti, Stefano; Mapelli, Valeria; Tripodi, Farida

    2016-01-01

    respiration. Calcium homeostasis, protein biosynthesis and the unfolded protein response are tightly intertwined and the consequences of facing calcium starvation are determined by whether cellular energy production is balanced with demands for anabolic functions. Our findings confirm that the connections...... reticulum (ER stress) triggers the unfolded protein response (UPR) and generates a state of oxidative stress that decreases cell viability. These effects are severe during growth on rapidly fermentable carbon sources and can be mitigated by decreasing the protein synthesis rate or by inducing cellular...

  2. Calcium channel-dependent molecular maturation of photoreceptor synapses.

    Directory of Open Access Journals (Sweden)

    Nawal Zabouri

    Full Text Available Several studies have shown the importance of calcium channels in the development and/or maturation of synapses. The Ca(V1.4(α(1F knockout mouse is a unique model to study the role of calcium channels in photoreceptor synapse formation. It features abnormal ribbon synapses and aberrant cone morphology. We investigated the expression and targeting of several key elements of ribbon synapses and analyzed the cone morphology in the Ca(V1.4(α(1F knockout retina. Our data demonstrate that most abnormalities occur after eye opening. Indeed, scaffolding proteins such as Bassoon and RIM2 are properly targeted at first, but their expression and localization are not maintained in adulthood. This indicates that either calcium or the Ca(V1.4 channel, or both are necessary for the maintenance of their normal expression and distribution in photoreceptors. Other proteins, such as Veli3 and PSD-95, also display abnormal expression in rods prior to eye opening. Conversely, vesicle related proteins appear normal. Our data demonstrate that the Ca(V1.4 channel is important for maintaining scaffolding proteins in the ribbon synapse but less vital for proteins related to vesicular release. This study also confirms that in adult retinae, cones show developmental features such as sprouting and synaptogenesis. Overall we present evidence that in the absence of the Ca(V1.4 channel, photoreceptor synapses remain immature and are unable to stabilize.

  3. Calcium channel-dependent molecular maturation of photoreceptor synapses.

    Science.gov (United States)

    Zabouri, Nawal; Haverkamp, Silke

    2013-01-01

    Several studies have shown the importance of calcium channels in the development and/or maturation of synapses. The Ca(V)1.4(α(1F)) knockout mouse is a unique model to study the role of calcium channels in photoreceptor synapse formation. It features abnormal ribbon synapses and aberrant cone morphology. We investigated the expression and targeting of several key elements of ribbon synapses and analyzed the cone morphology in the Ca(V)1.4(α(1F)) knockout retina. Our data demonstrate that most abnormalities occur after eye opening. Indeed, scaffolding proteins such as Bassoon and RIM2 are properly targeted at first, but their expression and localization are not maintained in adulthood. This indicates that either calcium or the Ca(V)1.4 channel, or both are necessary for the maintenance of their normal expression and distribution in photoreceptors. Other proteins, such as Veli3 and PSD-95, also display abnormal expression in rods prior to eye opening. Conversely, vesicle related proteins appear normal. Our data demonstrate that the Ca(V)1.4 channel is important for maintaining scaffolding proteins in the ribbon synapse but less vital for proteins related to vesicular release. This study also confirms that in adult retinae, cones show developmental features such as sprouting and synaptogenesis. Overall we present evidence that in the absence of the Ca(V)1.4 channel, photoreceptor synapses remain immature and are unable to stabilize.

  4. Long-Term Blocking of Calcium Channels in mdx Mice Results in Differential Effects on Heart and Skeletal Muscle

    DEFF Research Database (Denmark)

    Jørgensen, Louise Helskov; Blain, Alison; Greally, Elizabeth

    2011-01-01

    in older mice. However, streptomycin treatment did not show positive effects in diaphragm or heart muscle, and heart pathology was worsened. Thus, blocking calcium channels even before disease onset does not prevent dystrophy, making this an unlikely treatment for DMD. These findings highlight......The disease mechanisms underlying dystrophin-deficient muscular dystrophy are complex, involving not only muscle membrane fragility, but also dysregulated calcium homeostasis. Specifically, it has been proposed that calcium channels directly initiate a cascade of pathological events by allowing...... calcium ions to enter the cell. The objective of this study was to investigate the effect of chronically blocking calcium channels with the aminoglycoside antibiotic streptomycin from onset of disease in the mdx mouse model of Duchenne muscular dystrophy (DMD). Treatment in utero onwards delayed onset...

  5. Macrophages in intestinal homeostasis and inflammation

    Science.gov (United States)

    Bain, Calum C; Mowat, Allan McI

    2014-01-01

    The intestine contains the largest pool of macrophages in the body which are essential for maintaining mucosal homeostasis in the face of the microbiota and the constant need for epithelial renewal but are also important components of protective immunity and are involved in the pathology of inflammatory bowel disease (IBD). However, defining the biological roles of intestinal macrophages has been impeded by problems in defining the phenotype and origins of different populations of myeloid cells in the mucosa. Here, we discuss how multiple parameters can be used in combination to discriminate between functionally distinct myeloid cells and discuss the roles of macrophages during homeostasis and how these may change when inflammation ensues. We also discuss the evidence that intestinal macrophages do not fit the current paradigm that tissue-resident macrophages are derived from embryonic precursors that self-renew in situ, but require constant replenishment by blood monocytes. We describe our recent work demonstrating that classical monocytes constantly enter the intestinal mucosa and how the environment dictates their subsequent fate. We believe that understanding the factors that drive intestinal macrophage development in the steady state and how these may change in response to pathogens or inflammation could provide important insights into the treatment of IBD. PMID:24942685

  6. Innate immunity orchestrates adipose tissue homeostasis.

    Science.gov (United States)

    Lin, Yi-Wei; Wei, Li-Na

    2017-06-23

    Obesity is strongly associated with multiple diseases including insulin resistance, type 2 diabetes, cardiovascular diseases, fatty liver disease, neurodegenerative diseases and cancers, etc. Adipose tissue (AT), mainly brown AT (BAT) and white AT (WAT), is an important metabolic and endocrine organ that maintains whole-body homeostasis. BAT contributes to non-shivering thermogenesis in a cold environment; WAT stores energy and produces adipokines that fine-tune metabolic and inflammatory responses. Obesity is often characterized by over-expansion and inflammation of WAT where inflammatory cells/mediators are abundant, especially pro-inflammatory (M1) macrophages, resulting in chronic low-grade inflammation and leading to insulin resistance and metabolic complications. Macrophages constitute the major component of innate immunity and can be activated as a M1 or M2 (anti-inflammatory) phenotype in response to environmental stimuli. Polarized M1 macrophage causes AT inflammation, whereas polarized M2 macrophage promotes WAT remodeling into the BAT phenotype, also known as WAT browning/beiging, which enhances insulin sensitivity and metabolic health. This review will discuss the regulation of AT homeostasis in relation to innate immunity.

  7. [Glucose homeostasis and gut-brain connection].

    Science.gov (United States)

    De Vadder, Filipe; Mithieux, Gilles

    2015-02-01

    Since the XIX(th) century, the brain has been known for its role in regulating food intake (via the control of hunger sensation) and glucose homeostasis. Further interest has come from the discovery of gut hormones, which established a clear link between the gut and the brain in regulating glucose and energy homeostasis. The brain has two particular structures, the hypothalamus and the brainstem, which are sensitive to information coming either from peripheral organs or from the gut (via circulating hormones or nutrients) about the nutritional status of the organism. However, the efforts for a better understanding of these mechanisms have allowed to unveil a new gut-brain neural axis as a key regulator of the metabolic status of the organism. Certain nutrients control the hypothalamic homeostatic function via this axis. In this review, we describe how the gut is connected to the brain via different neural pathways, and how the interplay between these two organs drives the energy balance. © 2015 médecine/sciences – Inserm.

  8. Thiol/disulphide homeostasis in celiac disease

    Science.gov (United States)

    Kaplan, Mustafa; Ates, Ihsan; Yuksel, Mahmut; Ozderin Ozin, Yasemin; Alisik, Murat; Erel, Ozcan; Kayacetin, Ertugrul

    2017-01-01

    AIM To determine dynamic thiol/disulphide homeostasis in celiac disease and to examine the associate with celiac autoantibodies and gluten-free diet. METHODS Seventy three patients with celiac disease and 73 healthy volunteers were enrolled in the study. In both groups, thiol/disulphide homeostasis was examined with a new colorimetric method recently developed by Erel and Neselioglu. RESULTS In patients with celiac disease, native thiol (P = 0.027) and total thiol (P = 0.031) levels were lower, while disulphide (P < 0.001) level, disulphide/native thiol (P < 0.001) and disulphide/total thiol (P < 0.001) ratios were higher compared to the control group. In patients who do not comply with a gluten-free diet, disulphide/native thiol ratio was found higher compared to the patients who comply with the diet (P < 0.001). In patients with any autoantibody-positive, disulphide/native thiol ratio was observed higher compared to the patients with autoantibody-negative (P < 0.05). It is found that there is a negative correlation between celiac autoantibodies, and native thiol, total thiol levels and native thiol/total thiol ratio, while a positive correlation is observed between disulphide, disulphide/native thiol and disulphide/total thiol levels. CONCLUSION This study is first in the literature which found that the patients with celiac disease the dynamic thiol/disulphide balance shifts through disulphide form compared to the control group. PMID:28533921

  9. Air pollution particles and iron homeostasis | Science ...

    Science.gov (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, functional groups at the surface of retained particle complex iron available in the cell. In response to a reduction in concentrations of requisite iron, a functional deficiency can result intracellularly. Superoxide production by the cell exposed to a particle increases ferrireduction which facilitates import of iron with the objective being the reversal of the metal deficiency. Failure to resolve the functional iron deficiency following cell exposure to particles activates kinases and transcription factors resulting in a release of inflammatory mediators and inflammation. Tissue injury is the end product of this disruption in iron homeostasis initiated by the particle exposure. Elevation of available iron to the cell precludes deficiency of the metal and either diminishes or eliminates biological effects.General Significance: Recognition of the pathway for biological effects after particle exposure to involve a functional deficiency of iron suggests novel therapies such as metal supplementation (e.g. inhaled and oral). In addition, the demonstration of a shared mechanism of biological effects allows understanding the common clinical, physiological, and pathological presentation fol

  10. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis

    Directory of Open Access Journals (Sweden)

    Arya Bagus Boedi Iswanto

    2017-04-01

    Full Text Available Abstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD, which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs is highly controlled by plasmodesmata callose (PDC, which is synthesized by callose synthases (CalS and degraded by β-1,3-glucanases (BGs. In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft–processed PDC.

  11. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis.

    Science.gov (United States)

    Iswanto, Arya Bagus Boedi; Kim, Jae-Yean

    2017-04-03

    A bstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD), which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs) is highly controlled by plasmodesmata callose (PDC), which is synthesized by callose synthases (CalS) and degraded by β-1,3-glucanases (BGs). In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft-processed PDC.

  12. Voltage-Gated Calcium Channels

    Science.gov (United States)

    Zamponi, Gerald Werner

    Voltage Gated Calcium Channels is the first comprehensive book in the calcium channel field, encompassing over thirty years of progress towards our understanding of calcium channel structure, function, regulation, physiology, pharmacology, and genetics. This book balances contributions from many of the leading authorities in the calcium channel field with fresh perspectives from risings stars in the area, taking into account the most recent literature and concepts. This is the only all-encompassing calcium channel book currently available, and is an essential resource for academic researchers at all levels in the areas neuroscience, biophysics, and cardiovascular sciences, as well as to researchers in the drug discovery area.

  13. Calcium Overload Accelerates Phosphate-Induced Vascular Calcification Via Pit-1, but not the Calcium-Sensing Receptor.

    Science.gov (United States)

    Masumoto, Asuka; Sonou, Tomohiro; Ohya, Masaki; Yashiro, Mitsuru; Nakashima, Yuri; Okuda, Kouji; Iwashita, Yuko; Mima, Toru; Negi, Shigeo; Shigematsu, Takashi

    2017-07-01

    Vascular calcification (VC) is a risk factor of cardiovascular and all-cause mortality in patients with chronic kidney disease (CKD). CKD-mineral and bone metabolism disorder is an important problem in patients with renal failure. Abnormal levels of serum phosphate and calcium affect CKD-mineral and bone metabolism disorder and contribute to bone disease, VC, and cardiovascular disease. Hypercalcemia is a contributing factor in progression of VC in patients with CKD. However, the mechanisms of how calcium promotes intracellular calcification are still unclear. This study aimed to examine the mechanisms underlying calcium-induced calcification in a rat aortic tissue culture model. Aortic segments from 7-week-old male Sprague-Dawley rats were cultured in serum-supplemented medium for 10 days. We added high calcium (HiCa; calcium 3.0 mM) to high phosphate (HPi; phosphate 3.8 mM) medium to accelerate phosphate and calcium-induced VC. We used phosphonoformic acid and the calcimimetic R-568 to determine whether the mechanism of calcification involves Pit-1 or the calcium-sensing receptor. Medial VC was significantly augmented by HPi+HiCa medium compared with HPi alone (300%, p<0.05), and was associated with upregulation of Pit-1 protein. Pit-1 protein concentrations in HPi+HiCa medium were greater than those in HPi medium. Phosphonoformic acid completely negated the augmentation of medial VC induced by HPi+HiCa. R-568 had no additive direct effect on medial VC. These results indicated that exposure to HPi+HiCa accelerates medial VC, and this is mediated through Pit-1, not the calcium-sensing receptor.

  14. Abnormal Cervical Cancer Screening Test Results

    Science.gov (United States)

    ... AQ FREQUENTLY ASKED QUESTIONS FAQ187 GYNECOLOGIC PROBLEMS Abnormal Cervical Cancer Screening Test Results • What is cervical cancer screening? • What causes abnormal cervical cancer screening test ...

  15. Astrocytes in the nucleus of the solitary tract are activated by low glucose or glucoprivation: evidence for glial involvement in glucose homeostasis.

    Science.gov (United States)

    McDougal, David H; Hermann, Gerlinda E; Rogers, Richard C

    2013-01-01

    Glucose homeostasis is maintained through interplay between central and peripheral control mechanisms which are aimed at storing excess glucose following meals and mobilizing these same stores during periods of fasting. The nucleus of the solitary tract (NST) in the dorsal medulla has long been associated with the central detection of glucose availability and the control of glucose homeostasis. Recent evidence has emerged which supports the involvement of astrocytes in glucose homeostasis. The aim of the present study was to investigate whether NST-astrocytes respond to physiologically relevant decreases in glucose availability, in vitro, as well as to the presence of the glucoprivic compound 2-deoxy-D-Glucose. This report demonstrates that some NST-astrocytes are capable of responding to low glucose or glucoprivation by increasing cytoplasmic calcium; a change that reverses with restoration of normal glucose availability. While some NST-neurons also demonstrate an increase in calcium signaling during low glucose availability, this effect is smaller and somewhat delayed compared to those observed in adjacent astrocytes. TTX did not abolish these hypoglycemia mediated responses of astrocytes, suggesting that NST-astrocytes may be directly sensing low glucose levels as opposed to responding to neuronal detection of hypoglycemia. Thus, chemodetection of low glucose by NST-astrocytes may play an important role in the autonomic regulation of glucose homeostasis.

  16. Astrocytes in the nucleus of the solitary tract are activated by low glucose or glucoprivation: evidence for glial involvement in glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    David Harry McDougal

    2013-12-01

    Full Text Available Glucose homeostasis is maintained through interplay between central and peripheral control mechanisms which are aimed at storing excess glucose following meals and mobilizing these same stores during periods of fasting. The nucleus of the solitary tract (NST in the dorsal medulla has long been associated with the central detection of glucose availability and the control of glucose homeostasis. Recent evidence has emerged which supports the involvement of astrocytes in glucose homeostasis. The aim of the present study was to investigate whether NST-astrocytes respond to physiologically relevant decreases in glucose availability, in vitro, as well as to the presence of the glucoprivic compound 2-deoxy-D-Glucose. This report demonstrates that some NST-astrocytes are capable of responding to low glucose or glucoprivation by increasing cytoplasmic calcium; a change that reverses with restoration of normal glucose availability. While some NST-neurons also demonstrate an increase in calcium signaling during low glucose availability, this effect is smaller and somewhat delayed compared to those observed in adjacent astrocytes. TTX did not abolish these hypoglycemia mediated responses of astrocytes, suggesting that NST-astrocytes may be directly sensing low glucose levels as opposed to responding to neuronal detection of hypoglycemia. Thus, chemodetection of low glucose by NST-astrocytes may play an important role in the autonomic regulation of glucose homeostasis.

  17. Crystal structure of the epithelial calcium channel TRPV6.

    Science.gov (United States)

    Saotome, Kei; Singh, Appu K; Yelshanskaya, Maria V; Sobolevsky, Alexander I

    2016-06-23

    Precise regulation of calcium homeostasis is essential for many physiological functions. The Ca(2+)-selective transient receptor potential (TRP) channels TRPV5 and TRPV6 play vital roles in calcium homeostasis as Ca(2+) uptake channels in epithelial tissues. Detailed structural bases for their assembly and Ca(2+) permeation remain obscure. Here we report the crystal structure of rat TRPV6 at 3.25 Å resolution. The overall architecture of TRPV6 reveals shared and unique features compared with other TRP channels. Intracellular domains engage in extensive interactions to form an intracellular 'skirt' involved in allosteric modulation. In the K(+) channel-like transmembrane domain, Ca(2+) selectivity is determined by direct coordination of Ca(2+) by a ring of aspartate side chains in the selectivity filter. On the basis of crystallographically identified cation-binding sites at the pore axis and extracellular vestibule, we propose a Ca(2+) permeation mechanism. Our results provide a structural foundation for understanding the regulation of epithelial Ca(2+) uptake and its role in pathophysiology.

  18. Calcium, essential for health

    Science.gov (United States)

    Martínez de Victoria, Emilio

    2016-07-12

    Calcium (Ca) is the most abundant mineral element in our body. It accounts for about 2% of body weight. The functions of calcium are: a) functions skeletal and b) regulatory functions. Bone consists of a protein matrix that mineralizes mainly with calcium (the most abundant), phosphate and magnesium, for it is essential an adequate dietary intake of Ca, phosphorus and vitamin D. The ionic Ca (Ca2+) is essential to maintain and / or perform different specialized functions of, virtually, all body cells cellular. Because of its important functions Ca2+ must be closely regulated, keeping plasma concentrations within narrow ranges. For this reason there is an accurate response against hypocalcemia or hypercalcemia in which the parathormone, calcitriol, calcitonin and vitamin K are involved. Ca intakes in the Spanish population are low in a significant percentage of the older adult’s population, especially in women. The main source of Ca in the diet is milk and milk derivatives. Green leafy vegetables, fruits and legumes can be important sources of Ca in a Mediterranean dietary pattern. The bioavailability of dietary Ca depends on physiological and dietary factors. Physiological include age, physiological status (gestation and lactation) Ca and vitamin D status and disease. Several studies relate Ca intake in the diet and various diseases, such as osteoporosis, cancer, cardiovascular disease and obesity.

  19. Models of calcium signalling

    CERN Document Server

    Dupont, Geneviève; Kirk, Vivien; Sneyd, James

    2016-01-01

    This book discusses the ways in which mathematical, computational, and modelling methods can be used to help understand the dynamics of intracellular calcium. The concentration of free intracellular calcium is vital for controlling a wide range of cellular processes, and is thus of great physiological importance. However, because of the complex ways in which the calcium concentration varies, it is also of great mathematical interest.This book presents the general modelling theory as well as a large number of specific case examples, to show how mathematical modelling can interact with experimental approaches, in an interdisciplinary and multifaceted approach to the study of an important physiological control mechanism. Geneviève Dupont is FNRS Research Director at the Unit of Theoretical Chronobiology of the Université Libre de Bruxelles;Martin Falcke is head of the Mathematical Cell Physiology group at the Max Delbrück Center for Molecular Medicine, Berlin;Vivien Kirk is an Associate Professor in the Depar...

  20. Peroxisomal abnormalities in the immortalized human hepatocyte (IHH) cell line.

    Science.gov (United States)

    Klouwer, Femke C C; Koster, Janet; Ferdinandusse, Sacha; Waterham, Hans R

    2017-04-01

    The immortalized human hepatocyte (IHH) cell line is increasingly used for studies related to liver metabolism, including hepatic glucose, lipid, lipoprotein and triglyceride metabolism, and the effect of therapeutic interventions. To determine whether the IHH cell line is a good model to investigate hepatic peroxisomal metabolism, we measured several peroxisomal parameters in IHH cells and, for comparison, HepG2 cells and primary skin fibroblasts. This revealed a marked plasmalogen deficiency and a deficient fatty acid α-oxidation in the IHH cells, due to a defect of PEX7, a cytosolic receptor protein required for peroxisomal import of a subset of peroxisomal proteins. These abnormalities have consequences for the lipid homeostasis of these cells and thus should be taken into account for the interpretation of data previously generated by using this cell line and when considering using this cell line for future research.

  1. Bioavailability of essential trace elements in the presence of phytate, fiber and calcium

    International Nuclear Information System (INIS)

    Gharib, A.G.; Mohseni, S.G.; Gharib, M.

    2006-01-01

    Bioavailability and/or homeostasis of some essential trace elements such as zinc, iron, etc., in the presence of phytate, fiber and calcium are subject to alteration. These factors were measured in this study for Iranian diets in a frame of a Coordinated Research Project (CRP). However, the most prominent dietary factor in this regard is phytate. The phytate effect on zinc homeostasis is a chemical phenomenon dependent physiologically on pH in the gastrointestinal tract at or near the sites of absorption. Calcium is a synergistic coprecipitating factor in the complexation of zinc by phytate. Fiber has also a tendency to absorb insoluble compounds in gastrointestinal tract including zinc, iron and many other trace elements. One of the most known clinical observations regarding zinc deficiency was found in the rural area of the Fars province of Iran in the late 1950s at Shiraz University. However, the molar ratio of [phytate] : [zinc] and [calcium] [phytate] : [zinc] in Iranian Diets in a recent study are 7-17 and 150-800, respectively. The critical ratios of [phytate] : [zinc] of 10 or less will provide adequate zinc to sustain homeostasis. (author)

  2. Mitochondrial redox biology and homeostasis in plants.

    Science.gov (United States)

    Noctor, Graham; De Paepe, Rosine; Foyer, Christine H

    2007-03-01

    Mitochondria are key players in plant cell redox homeostasis and signalling. Earlier concepts that regarded mitochondria as secondary to chloroplasts as the powerhouses of photosynthetic cells, with roles in cell proliferation, death and ageing described largely by analogy to animal paradigms, have been replaced by the new philosophy of integrated cellular energy and redox metabolism involving mitochondria and chloroplasts. Thanks to oxygenic photosynthesis, plant mitochondria often operate in an oxygen- and carbohydrate-rich environment. This rather unique environment necessitates extensive flexibility in electron transport pathways and associated NAD(P)-linked enzymes. In this review, mitochondrial redox metabolism is discussed in relation to the integrated cellular energy and redox function that controls plant cell biology and fate.

  3. TAM Receptor Signaling in Immune Homeostasis

    Science.gov (United States)

    Rothlin, Carla V.; Carrera-Silva, Eugenio A.; Bosurgi, Lidia; Ghosh, Sourav

    2015-01-01

    The TAM receptor tyrosine kinases (RTKs)—TYRO3, AXL, and MERTK—together with their cognate agonists GAS6 and PROS1 play an essential role in the resolution of inflammation. Deficiencies in TAM signaling have been associated with chronic inflammatory and autoimmune diseases. Three processes regulated by TAM signaling may contribute, either independently or collectively, to immune homeostasis: the negative regulation of the innate immune response, the phagocytosis of apoptotic cells, and the restoration of vascular integrity. Recent studies have also revealed the function of TAMs in infectious diseases and cancer. Here, we review the important milestones in the discovery of these RTKs and their ligands and the studies that underscore the functional importance of this signaling pathway in physiological immune settings and disease. PMID:25594431

  4. Nitric oxide and plant iron homeostasis.

    Science.gov (United States)

    Buet, Agustina; Simontacchi, Marcela

    2015-03-01

    Like all living organisms, plants demand iron (Fe) for important biochemical and metabolic processes. Internal imbalances, as a consequence of insufficient or excess Fe in the environment, lead to growth restriction and affect crop yield. Knowledge of signals and factors affecting each step in Fe uptake from the soil and distribution (long-distance transport, remobilization from old to young leaves, and storage in seeds) is necessary to improve our understanding of plant mineral nutrition. In this context, the role of nitric oxide (NO) is discussed as a key player in maintaining Fe homeostasis through its cross talk with hormones, ferritin, and frataxin and the ability to form nitrosyl-iron complexes. © 2015 New York Academy of Sciences.

  5. The Acid Test: Calcium Signaling in the Skeletogenic Layer of Reef-Building Coral

    Science.gov (United States)

    Florn, A. M.

    2016-02-01

    Since the Industrial Revolution, carbon dioxide (CO2) emissions have increased more than 40%. This increased atmospheric CO2 drives ocean acidification and has potentially serious consequences for all marine life, especially calcifying organisms. The specific goal of this study was to examine calcium homeostasis and signaling dynamics within the skeletogenic tissue layers (calicodermal cells) of two coral species (Pavona maldivensis and Porites rus) at three pH treatments corresponding to present-future ocean acidification levels. Confocal microscopy techniques were used to analyze in vivo calcium dynamics of the calicodermal cells in Pavona maldivensis and Porites rus. The results show biological variation between the two reef-building coral species and their response to ocean acidification. Pavona maldivensis showed a significant difference (p < 0.01) in the ionomycin-induced calcium response among the pH treatments, but not among the microcolonies. Porites rus did not show a significant difference (p < 0.01) in the ionomycin-induced calcium response among the pH treatments or the microcolonies. Upon comparing the calcium response curves, the ionomycin-induced calcium response exhibited by Pavona maldivensis is phenomenologically similar to a calcium response that is commonly found in vertebrates. This well-studied phenomenon in vertebrate biology is known as store-operated calcium entry (SOCE) and is closely associated with the endoplasmic reticulum (ER) and mitochondria-associated endoplasmic reticulum (MAM) calcium stores. This study provides insight into the preliminary steps needed to understand in vivo calcium signaling in the calicodermis of reef-building coral and the associated consequences of ocean acidification.

  6. Determination of percent calcium carbonate in calcium chromate

    International Nuclear Information System (INIS)

    Middleton, H.W.

    1979-01-01

    The precision, accuracy and reliability of the macro-combustion method is superior to the Knorr alkalimetric method, and it is faster. It also significantly reduces the calcium chromate waste accrual problem. The macro-combustion method has been adopted as the official method for determination of percent calcium carbonate in thermal battery grade anhydrous calcium chromate and percent calcium carbonate in quicklime used in the production of calcium chromate. The apparatus and procedure can be used to measure the percent carbonate in inorganic materials other than calcium chromate. With simple modifications in the basic apparatus and procedure, the percent carbon and hydrogen can be measured in many organic material, including polymers and polymeric formulations. 5 figures, 5 tables

  7. Calcium oxalate stone and gout.

    Science.gov (United States)

    Marickar, Y M Fazil

    2009-12-01

    Gout is well known to be produced by increased uric acid level in blood. The objective of this paper is to assess the relationship between gout and calcium oxalate stone formation in the humans. 48 patients with combination of gout and calcium oxalate stone problem were included. The biochemical values of this group were compared with 38 randomly selected uric acid stone patients with gout, 43 stone patients with gout alone, 100 calcium oxalate stone patients without gout and 30 controls, making a total of 259 patients. Various biochemical parameters, namely serum calcium, phosphorus and uric acid and 24-h urine calcium, phosphorus, uric acid, oxalate, citrate and magnesium were analysed. ANOVA and Duncan's multiple-range tests were performed to assess statistical significance of the variations. The promoters of stone formation, namely serum calcium (P stone patients and gouty calcium oxalate stone patients compared to the non-gouty patients and controls. Urine oxalate (P stones patients. The inhibitor urine citrate (P stone gouty patients, followed by the gouty uric acid stone formers and gouty calcium oxalate stone patients. The high values of promoters, namely uric acid and calcium in the gouty stone patients indicate the tendency for urinary stone formation in the gouty stone patients. There is probably a correlation between gout and calcium oxalate urinary stone. We presume this mechanism is achieved through the uric acid metabolism. The findings point to the summation effect of metabolic changes in development of stone disease.

  8. Interference between nanoparticles and metal homeostasis

    International Nuclear Information System (INIS)

    Petit, A N; Catty, P; Charbonnier, P; Cuillel, M; Mintz, E; Moulis, J M; Niviere, V; Choudens, S Ollagnier de; Garcia, C Aude; Candeias, S; Chevallet, M; Collin-Faure, V; Lelong, C; Luche, S; Rabilloud, T; Casanova, A; Herlin-Boime, N; Douki, T; Ravanat, J L; Sauvaigo, S

    2011-01-01

    The TiO 2 nanoparticles (NPs) are now produced abundantly and widely used in a variety of consumer products. Due to the important increase in the production of TiO 2 -NPs, potential widespread exposure of humans and environment may occur during both the manufacturing process and final use. Therefore, the potential toxicity of TiO 2 -NPs on human health and environment has attracted particular attention. Unfortunately, the results of the large number of studies on the toxicity of TiO 2 -NPs differ significantly, mainly due to an incomplete characterization of the used nanomaterials in terms of size, shape and crystalline structure and to their unknown state of agglomeration/aggregation. The purpose of our project entitled NanoBioMet is to investigate if interferences between nanoparticles and metal homeostasis could be observed and to study the toxicity mechanisms of TiO 2 -NPs with well-characterized physicochemical parameters, using proteomic and molecular approaches. A perturbation of metal homeostasis will be evaluated upon TiO 2 -NPs exposure which could generate reactive oxygen species (ROS) production. Moreover, oxidative stress consequences such as DNA damage and lipid peroxidation will be studied. The toxicity of TiO 2 -NPs of different sizes and crystalline structures will be evaluated both in prokaryotic (E. coli) and eukaryotic cells (A549 human pneumocytes, macrophages, and hepatocytes). First results of the project will be presented concerning the dispersion of TiO 2 -NPs in bacterial medium, proteomic studies on total extracts of macrophages and genotoxicity on pneumocytes.

  9. NMR studies of myocardial energy metabolism and ionic homeostasis during ischemia and reperfusion

    International Nuclear Information System (INIS)

    Kirkels, J.H.

    1989-01-01

    In this study several aspects of myocardial energy metabolism and ionic homeostasis during ischemia and reperfusion were investigated in isolated perfused rat hearts, regionally ischemic rabbit hearts, and ex vivo human donor hearts during long term hypothermic cardioplegia. Phosphorus-31 nuclear magnetic resonance ( 31 P NMR) spectroscopy was used as a powerful tool to non-destructively follow the time course in changes in intracellular high-energy phosphates, (creatine phosphate and ATP), inorganic phosphate, and pH. In addition, changes in intracellular free magnesium were followed during ischemia and reperfusion. Sodium-23 ( 23 Na) NMR spectroscopy was used to study intracellular sodium during ischemia and reperfusion and during calcium-free perfusion. (author). 495 refs.; 33 figs.; 11 tabs

  10. Lentiginosis, Deafness and Cardiac Abnormalities*

    African Journals Online (AJOL)

    1973-01-06

    Jan 6, 1973 ... His height. mass. intelligence and genitalia were normal. The aSSOCiatIOn between deafness and disturbance of cardiac conduction and between pigmented skin lesions and cardiac abnormalities, has been well described. Should. ~I patient present with multiple lentigines and/or familial sensineural ...

  11. Cardiac abnormalities after subarachnoid hemorrhage

    NARCIS (Netherlands)

    Bilt, I.A.C. van der

    2016-01-01

    Aneurysmal subarachnoid hemorrhage(aSAH) is a devastating neurological disease. During the course of the aSAH several neurological and medical complications may occur. Cardiac abnormalities after aSAH are observed often and resemble stress cardiomyopathy or Tako-tsubo cardiomyopathy(Broken Heart

  12. Chromosomal Abnormalities Associated With Omphalocele

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2007-03-01

    Full Text Available Fetuses with omphalocele have an increased risk for chromosomal abnormalities. The risk varies with maternal age, gestational age at diagnosis, association with umbilical cord cysts, complexity of associated anomalies, and the contents of omphalocele. There is considerable evidence that genetics contributes to the etiology of omphalocele. This article provides an overview of chromosomal abnormalities associated with omphalocele and a comprehensive review of associated full aneuploidy such as trisomy 18, trisomy 13, triploidy, trisomy 21, 45,X, 47,XXY, and 47,XXX, partial aneuploidy such as dup(3q, dup(11p, inv(11, dup(1q, del(1q, dup(4q, dup(5p, dup(6q, del(9p, dup(15q, dup(17q, Pallister-Killian syndrome with mosaic tetrasomy 12p and Miller-Dieker lissencephaly syndrome with deletion of 17p13.3, and uniparental disomy (UPD such as UPD 11 and UPD 14. Omphalocele is a prominent marker for chromosomal abnormalities. Perinatal identification of omphalocele should alert chromosomal abnormalities and familial unbalanced translocations, and prompt thorough cytogenetic investigations and genetic counseling.

  13. Admission haematological abnormalities and postoperative ...

    African Journals Online (AJOL)

    Admission haematological abnormalities and postoperative outcomes in neonates with acute surgical conditions in Alexandria, Egypt. HL Wella, SMM Farahat. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals ...

  14. The grapevine VvCAX3 is a cation/H+ exchanger involved in vacuolar Ca2+ homeostasis.

    Science.gov (United States)

    Martins, Viviana; Carneiro, Filipa; Conde, Carlos; Sottomayor, Mariana; Gerós, Hernâni

    2017-12-01

    The grapevine VvCAX3 mediates calcium transport in the vacuole and is mostly expressed in green grape berries and upregulated by Ca 2+ , Na + and methyl jasmonate. Calcium is an essential plant nutrient with important regulatory and structural roles in the berries of grapevine (Vitis vinifera L.). On the other hand, the proton-cation exchanger CAX proteins have been shown to impact Ca 2+ homeostasis with important consequences for fruit integrity and resistance to biotic/abiotic stress. Here, the CAX gene found in transcriptomic databases as having one of the highest expressions in grapevine tissues, VvCAX3, was cloned and functionally characterized. Heterologous expression in yeast showed that a truncated version of VvCAX3 lacking its NNR autoinhibitory domain (sCAX3) restored the ability of the yeast strain to grow in 100-200 mM Ca 2+ , demonstrating a role in Ca 2+ transport. The truncated VvCAX3 was further shown to be involved in the transport of Na + , Li + , Mn 2+ and Cu 2+ in yeast cells. Subcellular localization studies using fluorescently tagged proteins confirmed VvCAX3 as a tonoplast transporter. VvCAX3 is expressed in grapevine stems, leaves, roots, and berries, especially at pea size, decreasing gradually throughout development, in parallel with the pattern of calcium accumulation in the fruit. The transcript abundance of VvCAX3 was shown to be regulated by methyl jasmonate (MeJA), Ca 2+ , and Na + in grape cell suspensions, and the VvCAX3 promotor contains several predicted cis-acting elements related to developmental and stress response processes. As a whole, the results obtained add new insights on the mechanisms involved in calcium homeostasis and intracellular compartmentation in grapevine, and indicate that VvCAX3 may be an interesting target towards the development of strategies for enhancement of grape berry properties.

  15. Multiple, disparate roles for calcium signaling in apoptosis of human prostate and cervical cancer cells exposed to diindolylmethane.

    Science.gov (United States)

    Savino, John A; Evans, Jodi F; Rabinowitz, Dorianne; Auborn, Karen J; Carter, Timothy H

    2006-03-01

    Diindolylmethane (DIM), derived from indole-3-carbinol in cruciferous vegetables, causes growth arrest and apoptosis of cancer cells in vitro. DIM also induces endoplasmic reticulum (ER) stress, and thapsigargin, a specific inhibitor of the sarcoplasmic reticulum/ER calcium-dependent ATPase, enhances this effect. We asked whether elevated cytosolic free calcium [Ca2+]i is required for cytotoxicity of DIM and thapsigargin in two cancer cells lines (C33A, from cervix, and DU145, from prostate). [Ca2+]i was measured in real-time by FURA-2 fluorescence. We tested whether DIM, thapsigargin, and DIM + thapsigargin cause apoptosis, measured by nucleosome release, under conditions that prevented elevation of [Ca2+]i, using both cell-permeable and cell-impermeable forms of the specific calcium chelator BAPTA. DIM, like thapsigargin, rapidly mobilized ER calcium. C33A and DU145 responded differently to perturbations in Ca2+ homeostasis, suggesting that DIM induces apoptosis by different mechanisms in these two cell lines and/or that calcium mobilization also activates different survival pathways in C33A and DU145. Apoptosis in C33A was independent of increased [Ca2+]i, suggesting that depletion of ER Ca2+ stores may be sufficient for cell killing, whereas apoptosis in DU145 required elevated [Ca2+]i for full response. Inhibitor studies using cyclosporin A and KN93 showed that Ca2+ signaling is important for cell survival but the characteristics of this response also differed in the two cell lines. Our results underscore the complex and variable nature of cellular responses to disrupted Ca2+ homeostasis and suggest that alteration Ca2+ homeostasis in the ER can induce cellular apoptosis by both calcium-dependent and calcium-independent mechanisms.

  16. Regulation of intestinal homeostasis and immunity with probiotic lactobacilli

    NARCIS (Netherlands)

    Baarlen, van P.; Wells, J.; Kleerebezem, M.

    2013-01-01

    The gut microbiota provide important stimuli to the human innate and adaptive immune system and co-mediate metabolic and immune homeostasis. Probiotic bacteria can be regarded as part of the natural human microbiota, and have been associated with improving homeostasis, albeit with different levels

  17. A Formal Explication of the Concept of Family Homeostasis.

    Science.gov (United States)

    Ariel, Shlomo; And Others

    1984-01-01

    Presents three articles discussing the concept of family homeostasis and the related concepts of family rules and family feedback. Includes a reply by Paul Dell citing the need for family therapy to go beyond homeostasis and further comments by Ariel, Carel, and Tyano. (JAC)

  18. Development and Validation of the Homeostasis Concept Inventory

    Science.gov (United States)

    McFarland, Jenny L.; Price, Rebecca M.; Wenderoth, Mary Pat; Martinková, Patrícia; Cliff, William; Michael, Joel; Modell, Harold; Wright, Ann

    2017-01-01

    We present the Homeostasis Concept Inventory (HCI), a 20-item multiple-choice instrument that assesses how well undergraduates understand this critical physiological concept. We used an iterative process to develop a set of questions based on elements in the Homeostasis Concept Framework. This process involved faculty experts and undergraduate…

  19. Pyrazoleamide compounds are potent antimalarials that target Na+ homeostasis in intraerythrocytic Plasmodium falciparum

    Science.gov (United States)

    Vaidya, Akhil B.; Morrisey, Joanne M.; Zhang, Zhongsheng; Das, Sudipta; Daly, Thomas M.; Otto, Thomas D.; Spillman, Natalie J.; Wyvratt, Matthew; Siegl, Peter; Marfurt, Jutta; Wirjanata, Grennady; Sebayang, Boni F.; Price, Ric N.; Chatterjee, Arnab; Nagle, Advait; Stasiak, Marcin; Charman, Susan A.; Angulo-Barturen, Iñigo; Ferrer, Santiago; Belén Jiménez-Díaz, María; Martínez, María Santos; Gamo, Francisco Javier; Avery, Vicky M.; Ruecker, Andrea; Delves, Michael; Kirk, Kiaran; Berriman, Matthew; Kortagere, Sandhya; Burrows, Jeremy; Fan, Erkang; Bergman, Lawrence W.

    2014-01-01

    The quest for new antimalarial drugs, especially those with novel modes of action, is essential in the face of emerging drug-resistant parasites. Here we describe a new chemical class of molecules, pyrazoleamides, with potent activity against human malaria parasites and showing remarkably rapid parasite clearance in an in vivo model. Investigations involving pyrazoleamide-resistant parasites, whole-genome sequencing and gene transfers reveal that mutations in two proteins, a calcium-dependent protein kinase (PfCDPK5) and a P-type cation-ATPase (PfATP4), are necessary to impart full resistance to these compounds. A pyrazoleamide compound causes a rapid disruption of Na+ regulation in blood-stage Plasmodium falciparum parasites. Similar effect on Na+ homeostasis was recently reported for spiroindolones, which are antimalarials of a chemical class quite distinct from pyrazoleamides. Our results reveal that disruption of Na+ homeostasis in malaria parasites is a promising mode of antimalarial action mediated by at least two distinct chemical classes. PMID:25422853

  20. Effects of nanoparticle zinc oxide on emotional behavior and trace elements homeostasis in rat brain.

    Science.gov (United States)

    Amara, Salem; Slama, Imen Ben; Omri, Karim; El Ghoul, Jaber; El Mir, Lassaad; Rhouma, Khemais Ben; Abdelmelek, Hafedh; Sakly, Mohsen

    2015-12-01

    Over recent years, nanotoxicology and the potential effects on human body have grown in significance, the potential influences of nanosized materials on the central nervous system have received more attention. The aim of this study was to determine whether zinc oxide (ZnO) nanoparticles (NPs) exposure cause alterations in emotional behavior and trace elements homeostasis in rat brain. Rats were treated by intraperitoneal injection of ZnO NPs (20-30 nm) at a dose of 25 mg/kg body weight. Sub -: acute ZnO NPs treatment induced no significant increase in the zinc content in the homogenate brain. Statistically significant decreases in iron and calcium concentrations were found in rat brain tissue compared to control. However, sodium and potassium contents remained unchanged. Also, there were no significant changes in the body weight and the coefficient of brain. In the present study, the anxiety-related behavior was evaluated using the plus-maze test. ZnO NPs treatment modulates slightly the exploratory behaviors of rats. However, no significant differences were observed in the anxious index between ZnO NP-treated rats and the control group (p > 0.05). Interestingly, our results demonstrated minimal effects of ZnO NPs on emotional behavior of animals, but there was a possible alteration in trace elements homeostasis in rat brain. © The Author(s) 2012.

  1. A conceptual framework for homeostasis: development and validation

    Science.gov (United States)

    Wenderoth, Mary Pat; Michael, Joel; Cliff, William; Wright, Ann; Modell, Harold

    2016-01-01

    We have developed and validated a conceptual framework for understanding and teaching organismal homeostasis at the undergraduate level. The resulting homeostasis conceptual framework details critical components and constituent ideas underlying the concept of homeostasis. It has been validated by a broad range of physiology faculty members from community colleges, primarily undergraduate institutions, research universities, and medical schools. In online surveys, faculty members confirmed the relevance of each item in the framework for undergraduate physiology and rated the importance and difficulty of each. The homeostasis conceptual framework was constructed as a guide for teaching and learning of this critical core concept in physiology, and it also paves the way for the development of a concept inventory for homeostasis. PMID:27105740

  2. A conceptual framework for homeostasis: development and validation.

    Science.gov (United States)

    McFarland, Jenny; Wenderoth, Mary Pat; Michael, Joel; Cliff, William; Wright, Ann; Modell, Harold

    2016-06-01

    We have developed and validated a conceptual framework for understanding and teaching organismal homeostasis at the undergraduate level. The resulting homeostasis conceptual framework details critical components and constituent ideas underlying the concept of homeostasis. It has been validated by a broad range of physiology faculty members from community colleges, primarily undergraduate institutions, research universities, and medical schools. In online surveys, faculty members confirmed the relevance of each item in the framework for undergraduate physiology and rated the importance and difficulty of each. The homeostasis conceptual framework was constructed as a guide for teaching and learning of this critical core concept in physiology, and it also paves the way for the development of a concept inventory for homeostasis. Copyright © 2016 The American Physiological Society.

  3. The SigmaR1 chaperone drives breast and colorectal cancer cell migration by tuning SK3-dependent Ca2+ homeostasis.

    Science.gov (United States)

    Gueguinou, M; Crottès, D; Chantôme, A; Rapetti-Mauss, R; Potier-Cartereau, M; Clarysse, L; Girault, A; Fourbon, Y; Jézéquel, P; Guérin-Charbonnel, C; Fromont, G; Martin, P; Pellissier, B; Schiappa, R; Chamorey, E; Mignen, O; Uguen, A; Borgese, F; Vandier, C; Soriani, O

    2017-06-22

    The remodeling of calcium homeostasis contributes to the cancer hallmarks and the molecular mechanisms involved in calcium channel regulation in tumors remain to be characterized. Here, we report that SigmaR1, a stress-activated chaperone, is required to increase calcium influx by triggering the coupling between SK3, a Ca 2+ -activated K + channel (KCNN3) and the voltage-independent calcium channel Orai1. We show that SigmaR1 physically binds SK3 in BC cells. Inhibition of SigmaR1 activity, either by molecular silencing or by the use of sigma ligand (igmesine), decreased SK3 current and Ca 2+ entry in breast cancer (BC) and colorectal cancer (CRC) cells. Interestingly, SigmaR1 inhibition diminished SK3 and/or Orai1 levels in lipid nanodomains isolated from BC cells. Analyses of tissue microarray from CRC patients showed higher SigmaR1 expression levels in cancer samples and a correlation with tumor grade. Moreover, the exploration of a cohort of 4937 BC patients indicated that high expression of SigmaR1 and Orai1 channels was significantly correlated to a lower overall survival. As the SK3/Orai1 tandem drives invasive process in CRC and bone metastasis progression in BC, our results may inaugurate innovative therapeutic approaches targeting SigmaR1 to control the remodeling of Ca 2+ homeostasis in epithelial cancers.

  4. Bone development and mineral homeostasis in the fetus and neonate: roles of the calciotropic and phosphotropic hormones.

    Science.gov (United States)

    Kovacs, Christopher S

    2014-10-01

    Mineral and bone metabolism are regulated differently in utero compared with the adult. The fetal kidneys, intestines, and skeleton are not dominant sources of mineral supply for the fetus. Instead, the placenta meets the fetal need for mineral by actively transporting calcium, phosphorus, and magnesium from the maternal circulation. These minerals are maintained in the fetal circulation at higher concentrations than in the mother and normal adult, and such high levels appear necessary for the developing skeleton to accrete a normal amount of mineral by term. Parathyroid hormone (PTH) and calcitriol circulate at low concentrations in the fetal circulation. Fetal bone development and the regulation of serum minerals are critically dependent on PTH and PTH-related protein, but not vitamin D/calcitriol, fibroblast growth factor-23, calcitonin, or the sex steroids. After birth, the serum calcium falls and phosphorus rises before gradually reaching adult values over the subsequent 24-48 h. The intestines are the main source of mineral for the neonate, while the kidneys reabsorb mineral, and bone turnover contributes mineral to the circulation. This switch in the regulation of mineral homeostasis is triggered by loss of the placenta and a postnatal fall in serum calcium, and is followed in sequence by a rise in PTH and then an increase in calcitriol. Intestinal calcium absorption is initially a passive process facilitated by lactose, but later becomes active and calcitriol-dependent. However, calcitriol's role can be bypassed by increasing the calcium content of the diet, or by parenteral administration of calcium. Copyright © 2014 the American Physiological Society.

  5. Copper, but not cadmium, is acutely toxic for trout hepatocytes: short-term effects on energetics and ion homeostasis

    International Nuclear Information System (INIS)

    Manzl, Claudia; Ebner, Hannes; Koeck, Guenter; Dallinger, Reinhard; Krumschnabel, Gerhard

    2003-01-01

    The toxic effects of cadmium (Cd) and copper (Cu) on cellular energy metabolism and ion homeostasis were investigated in hepatocytes from the rainbow trout, Oncorhynchus mykiss. The metal content of cells did not increase during incubation with Cu, whereas a dose-dependent increase was seen with Cd. Cell viability was unaffected in the presence of 100 μM Cd and 10 μM Cu but was significantly reduced after 30 min of exposure to 100 μM Cu, both in the presence and absence of extracellular calcium. Oxygen consumption (VO 2 ) was not affected by 100 μM Cd or 10 μM Cu, whereas 100 μM Cu caused a significant and calcium-dependent increase of VO 2 . Lactate production and basal glucose release were not altered by either of the metals. However, the epinephrine-stimulated rate of glucose release was significantly reduced after 2 h of incubation with 100 μM Cu. Hepatocytes exposed to Cd showed only a marginal increase of intracellular free calcium (Ca i 2+ ), whereas with Cu a pronounced and dose-dependent increase of Ca i 2+ was induced after a delay of 10 to 15 min, the calcium being of extracellular origin. Intracellular pH was not altered by Cd but decreased significantly in the presence of Cu. Overall our data demonstrate that Cu, but not Cd, is acutely toxic for trout hepatocytes. Since Cu does not enter the cells in the short term it appears to exert its acutely toxic effects at the cell membrane. Although Cu toxicity is associated with an uptake of calcium from extracellular space, leading to an elevation of cellular respiration, cytotoxicity does not appear to be dependent on the presence of extracellular calcium

  6. Cardiovascular Effects of Calcium Supplements

    Directory of Open Access Journals (Sweden)

    Ian R. Reid

    2013-07-01

    Full Text Available Calcium supplements reduce bone turnover and slow the rate of bone loss. However, few studies have demonstrated reduced fracture incidence with calcium supplements, and meta-analyses show only a 10% decrease in fractures, which is of borderline statistical and clinical significance. Trials in normal older women and in patients with renal impairment suggest that calcium supplements increase the risk of cardiovascular disease. To further assess their safety, we recently conducted a meta-analysis of trials of calcium supplements, and found a 27%–31% increase in risk of myocardial infarction, and a 12%–20% increase in risk of stroke. These findings are robust because they are based on pre-specified analyses of randomized, placebo-controlled trials and are consistent across the trials. Co-administration of vitamin D with calcium does not lessen these adverse effects. The increased cardiovascular risk with calcium supplements is consistent with epidemiological data relating higher circulating calcium concentrations to cardiovascular disease in normal populations. There are several possible pathophysiological mechanisms for these effects, including effects on vascular calcification, vascular cells, blood coagulation and calcium-sensing receptors. Thus, the non-skeletal risks of calcium supplements appear to outweigh any skeletal benefits, and are they appear to be unnecessary for the efficacy of other osteoporosis treatments.

  7. SR calcium handling and calcium after-transients in a rabbit model of heart failure

    NARCIS (Netherlands)

    Baartscheer, Antonius; Schumacher, Cees A.; Belterman, Charly N. W.; Coronel, Ruben; Fiolet, Jan W. T.

    2003-01-01

    Objective: After-depolarization associated arrhythmias are frequently observed in heart failure and associated with spontaneous calcium release from sarcoplasmic reticulum (SR), calcium after-transients. We hypothesize that disturbed SR calcium handling underlies calcium after-transients in heart

  8. 21 CFR 573.240 - Calcium periodate.

    Science.gov (United States)

    2010-04-01

    ... with calcium hydroxide or calcium oxide to form a substance consisting of not less than 60 percent by... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium periodate. 573.240 Section 573.240 Food... Additive Listing § 573.240 Calcium periodate. The food additive calcium periodate may be safely used in...

  9. 21 CFR 573.260 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 573.260 Section 573.260 Food and... Listing § 573.260 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used as an anticaking agent in animal feed, provided that the amount of calcium silicate does not...

  10. Presenilin 1 Maintains Lysosomal Ca(2+) Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification.

    Science.gov (United States)

    Lee, Ju-Hyun; McBrayer, Mary Kate; Wolfe, Devin M; Haslett, Luke J; Kumar, Asok; Sato, Yutaka; Lie, Pearl P Y; Mohan, Panaiyur; Coffey, Erin E; Kompella, Uday; Mitchell, Claire H; Lloyd-Evans, Emyr; Nixon, Ralph A

    2015-09-01

    Presenilin 1 (PS1) deletion or Alzheimer's disease (AD)-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit, causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in Presenilin 1 knockout (PS1KO) cells induces abnormal Ca(2+) efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca(2+). In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca(2+) homeostasis, but correcting lysosomal Ca(2+) deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss-of-function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca(2+) homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Presenilin 1 Maintains Lysosomal Ca2+ Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification

    Directory of Open Access Journals (Sweden)

    Ju-Hyun Lee

    2015-09-01

    Full Text Available Presenilin 1 (PS1 deletion or Alzheimer’s disease (AD-linked mutations disrupt lysosomal acidification and proteolysis, which inhibits autophagy. Here, we establish that this phenotype stems from impaired glycosylation and instability of vATPase V0a1 subunit, causing deficient lysosomal vATPase assembly and function. We further demonstrate that elevated lysosomal pH in Presenilin 1 knockout (PS1KO cells induces abnormal Ca2+ efflux from lysosomes mediated by TRPML1 and elevates cytosolic Ca2+. In WT cells, blocking vATPase activity or knockdown of either PS1 or the V0a1 subunit of vATPase reproduces all of these abnormalities. Normalizing lysosomal pH in PS1KO cells using acidic nanoparticles restores normal lysosomal proteolysis, autophagy, and Ca2+ homeostasis, but correcting lysosomal Ca2+ deficits alone neither re-acidifies lysosomes nor reverses proteolytic and autophagic deficits. Our results indicate that vATPase deficiency in PS1 loss-of-function states causes lysosomal/autophagy deficits and contributes to abnormal cellular Ca2+ homeostasis, thus linking two AD-related pathogenic processes through a common molecular mechanism.

  12. Interactions between calcium and phosphorus in the regulation of the production of fibroblast growth factor 23 in vivo

    Science.gov (United States)

    Quinn, Stephen J.; Thomsen, Alex R. B.; Pang, Jian L.; Kantham, Lakshmi; Bräuner-Osborne, Hans; Pollak, Martin; Goltzman, David

    2013-01-01

    Calcium and phosphorus homeostasis are highly interrelated and share common regulatory hormones, including FGF23. However, little is known about calcium's role in the regulation of FGF23. We sought to investigate the regulatory roles of calcium and phosphorus in FGF23 production using genetic mouse models with targeted inactivation of PTH (PTH KO) or both PTH and the calcium-sensing receptor (CaSR; PTH-CaSR DKO). In wild-type, PTH KO, and PTH-CaSR DKO mice, elevation of either serum calcium or phosphorus by intraperitoneal injection increased serum FGF23 levels. In PTH KO and PTH-CaSR DKO mice, however, increases in serum phosphorus by dietary manipulation were accompanied by severe hypocalcemia, which appeared to blunt stimulation of FGF23 release. Increases in dietary phosphorus in PTH-CaSR DKO mice markedly decreased serum 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] despite no change in FGF23, suggesting direct regulation of 1,25(OH)2D3 synthesis by serum phosphorus. Calcium-mediated increases in serum FGF23 required a threshold level of serum phosphorus of about 5 mg/dl. Analogously, phosphorus-elicited increases in FGF23 were markedly blunted if serum calcium was less than 8 mg/dl. The best correlation between calcium and phosphorus and serum FGF23 was found between FGF23 and the calcium × phosphorus product. Since calcium stimulated FGF23 production in the PTH-CaSR DKO mice, this effect cannot be mediated by the full-length CaSR. Thus the regulation of FGF23 by both calcium and phosphorus appears to be fundamentally important in coordinating the serum levels of both mineral ions and ensuring that the calcium × phosphorus product remains within a physiological range. PMID:23233539

  13. Echocardiographic abnormalities in hypertensive patients

    International Nuclear Information System (INIS)

    Rodulfo Garcia, Maikel; Tornes Perez, Victor Manuel; Castellanos Tardo, Juan Ramon

    2012-01-01

    A descriptive cross-sectional study was carried out in 120 hypertensive patients with a course of 5 or more years, who went to the emergency room of 'Saturnino Lora' Provincial Teaching Hospital from November 2010 to November 2011 in order to determine the presence or absence of echocardiographic abnormalities typical of hypertension. Of these, 78,3 % was affected, most of whom reported not to continue with regular previous medical treatment, and 21,7 % had not these abnormalities. Age group of 50-60 years, males and blacks prevailed in the case material. The most significant echocardiographic findings were left ventricular hypertrophy and heart failure with ejection fraction of left ventricle preserved

  14. Goldenhar syndrome and urogenital abnormalities

    Directory of Open Access Journals (Sweden)

    Mohan Marulaiah

    2003-01-01

    Full Text Available The Goldenhar syndrome (oculo-auriculo-vertebral syn-drome or 1st and 2nd branchial arch syndrome is a com-plex of craniofacial anomalies. It has been associated with anomalies in other systems and with abnormalities of the urogenital system. We present a case of Goldenhar syn-drome with multiple renal anomalies and a urogenital si-nus, which has not been reported before.

  15. Mastoid abnormalities in Down syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Glass, R.B.J.; Yousefzadeh, D.K.; Roizen, N.J.

    1989-06-01

    Hearing loss and otitis media are commonly associated with Down syndrome. Hypoplasia of the mastoids is seen in many affected children and sclerosis of mastoid bones is not uncommon in Down syndrome. Awareness and early recognition of mastoid abnormality may lead to appropriate and timely therapy, thereby preserving the child's hearing or compensating for hearing loss; factors which are important for learning and maximum development.

  16. Computed tomography of thymic abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, P.; Candardjis, G.

    1987-05-01

    Computed tomographic examinations of 38 patients with surgically and histologically proven diagnosis were reviewed. Twenty subjects (52%) had an invasive thymoma and 16% an hyperplastic thymus. Myasthenia gravis was present in 6 cases (16%) of thymic abnormalities, four (10,5%) with invasive thymoma and two (5%) with thymic hyperplasia. Graves' disease was also present in one case of thymic hyperplasia. We emphasize the contribution of CT to the diagnosis and the prognosis.

  17. Computed tomography of thymic abnormalities

    International Nuclear Information System (INIS)

    Schnyder, P.; Candardjis, G.

    1987-01-01

    Computed tomographic examinations of 38 patients with surgically and histologically proven diagnosis were reviewed. Twenty subjects (52%) had an invasive thymoma and 16% an hyperplastic thymus. Myasthenia gravis was present in 6 cases (16%) of thymic abnormalities, four (10,5%) with invasive thymoma and two (5%) with thymic hyperplasia. Graves' disease was also present in one case of thymic hyperplasia. We emphasize the contribution of CT to the diagnosis and the prognosis. (orig.)

  18. Mastoid abnormalities in Down syndrome

    International Nuclear Information System (INIS)

    Glass, R.B.J.; Yousefzadeh, D.K.; Roizen, N.J.

    1989-01-01

    Hearing loss and otitis media are commonly associated with Down syndrome. Hypoplasia of the mastoids is seen in many affected children and sclerosis of mastoid bones is not uncommon in Down syndrome. Awareness and early recognition of mastoid abnormality may lead to appropriate and timely therapy, thereby preserving the child's hearing or compensating for hearing loss; factors which are important for learning and maximum development. (orig.)

  19. Abnormal uterine bleeding in perimenopause.

    Science.gov (United States)

    Goldstein, S R; Lumsden, M A

    2017-10-01

    Abnormal uterine bleeding is one of the commonest presenting complaints encountered in a gynecologist's office or primary-care setting. The wider availability of diagnostic tools has allowed prompt diagnosis and treatment of an increasing number of menstrual disorders in an office setting. This White Paper reviews the advantages and disadvantages of transvaginal ultrasound, blind endometrial sampling and diagnostic hysteroscopy. Once a proper diagnosis has been established, appropriate therapy may be embarked upon. Fortunately, only a minority of such patients will have premalignant or malignant disease. When bleeding is sufficient to cause severe anemia or even hypovolemia, prompt intervention is called for. In most of the cases, however, the abnormal uterine bleeding will be disquieting to the patient and significantly affect her 'quality of life'. Sometimes, reassurance and expectant management will be sufficient in such patients. Overall, however, in cases of benign disease, some intervention will be required. The use of oral contraceptive pills especially those with a short hormone-free interval, the insertion of the levonorgestrel intrauterine system, the incorporation of newer medical therapies including antifibrinolytic drugs and selective progesterone receptor modulators and minimally invasive treatments have made outpatient therapy increasingly effective. For others, operative hysteroscopy and endometrial ablation are proven therapeutic tools to provide both long- and short-term relief of abnormal uterine bleeding, thus avoiding, or deferring, hysterectomy.

  20. Hemostatic abnormalities in Noonan syndrome.

    Science.gov (United States)

    Artoni, Andrea; Selicorni, Angelo; Passamonti, Serena M; Lecchi, Anna; Bucciarelli, Paolo; Cerutti, Marta; Cianci, Paola; Gianniello, Francesca; Martinelli, Ida

    2014-05-01

    A bleeding diathesis is a common feature of Noonan syndrome, and various coagulation abnormalities have been reported. Platelet function has never been carefully investigated. The degree of bleeding diathesis in a cohort of patients with Noonan syndrome was evaluated by a validated bleeding score and investigated with coagulation and platelet function tests. If ratios of prothrombin time and/or activated partial thromboplastin time were prolonged, the activity of clotting factors was measured. Individuals with no history of bleeding formed the control group. The study population included 39 patients and 28 controls. Bleeding score was ≥2 (ie, suggestive of a moderate bleeding diathesis) in 15 patients (38.5%) and ≥4 (ie, suggestive of a severe bleeding diathesis) in 7 (17.9%). Abnormal coagulation and/or platelet function tests were found in 14 patients with bleeding score ≥2 (93.3%) but also in 21 (87.5%) of those with bleeding score Noonan syndrome had a bleeding diathesis and >90% of them had platelet function and/or coagulation abnormalities. Results of these tests should be taken into account in the management of bleeding or invasive procedures in these patients. Copyright © 2014 by the American Academy of Pediatrics.

  1. Resveratrol and Calcium Signaling: Molecular Mechanisms and Clinical Relevance

    Directory of Open Access Journals (Sweden)

    Audrey E. McCalley

    2014-06-01

    Full Text Available Resveratrol is a naturally occurring compound contributing to cellular defense mechanisms in plants. Its use as a nutritional component and/or supplement in a number of diseases, disorders, and syndromes such as chronic diseases of the central nervous system, cancer, inflammatory diseases, diabetes, and cardiovascular diseases has prompted great interest in the underlying molecular mechanisms of action. The present review focuses on resveratrol, specifically its isomer trans-resveratrol, and its effects on intracellular calcium signaling mechanisms. As resveratrol’s mechanisms of action are likely pleiotropic, its effects and interactions with key signaling proteins controlling cellular calcium homeostasis are reviewed and discussed. The clinical relevance of resveratrol’s actions on excitable cells, transformed or cancer cells, immune cells and retinal pigment epithelial cells are contrasted with a review of the molecular mechanisms affecting calcium signaling proteins on the plasma membrane, cytoplasm, endoplasmic reticulum, and mitochondria. The present review emphasizes the correlation between molecular mechanisms of action that have recently been identified for resveratrol and their clinical implications.

  2. 21 CFR 172.330 - Calcium pantothenate, calcium chloride double salt.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium pantothenate, calcium chloride double salt... FOOD FOR HUMAN CONSUMPTION Special Dietary and Nutritional Additives § 172.330 Calcium pantothenate, calcium chloride double salt. The food additive calcium chloride double salt of calcium pantothenate may...

  3. The Effects of Dietary Calcium and/or Iron Deficiency upon Murine Intestinal Calcium Binding Protein Activity and Calcium Absorption

    OpenAIRE

    McDonald, Catherine M.

    1980-01-01

    Iron deficiency has been shown to impair calcium absorption, leading to decreased bone mass. Vitamin D3-dependent calcium binding protein (CaBP) has been demonstrated to be necessary for the active transport of calcium in the intestine of numerous species. Iron deficiency might affect the activity of the calcium binding protein. Four experimental diets were formulated as follows: Diet 1, iron adequate, calcium adequate; Diet 2, iron deficient, calcium adequate; Diet 3, iron adequate, calci...

  4. The calcium endocrine system of adolescent rhesus monkeys and controls before and after spaceflight

    Science.gov (United States)

    Arnaud, Sara B.; Navidi, Meena; Deftos, Leonard; Thierry-Palmer, Myrtle; Dotsenko, Rita; Bigbee, Allison; Grindeland, Richard E.

    2002-01-01

    The calcium endocrine system of nonhuman primates can be influenced by chairing for safety and the weightless environment of spaceflight. The serum of two rhesus monkeys flown on the Bion 11 mission was assayed pre- and postflight for vitamin D metabolites, parathyroid hormone, calcitonin, parameters of calcium homeostasis, cortisol, and indexes of renal function. Results were compared with the same measures from five monkeys before and after chairing for a flight simulation study. Concentrations of 1,25-dihydroxyvitamin D were 72% lower after the flight than before, and more than after chairing on the ground (57%, P endocrine system were similar to the effects of chairing on the ground, but were more pronounced. Reduced intestinal calcium absorption, losses in body weight, increases in cortisol, and higher postflight blood urea nitrogen were the changes in flight monkeys that distinguished them from the flight simulation study animals.

  5. Electrophysiological localization of distinct calcium potentials at selective somatodendritic sites in the substantia nigra

    DEFF Research Database (Denmark)

    Hounsgaard, J; Nedergaard, S; Greenfield, S A

    1992-01-01

    of differential polarization through applied electric fields, the cell body and dendrites have been activated in effective isolation during intracellular recordings from pars compacta neurons in the substantia nigra in vitro. In one class of neurons, which discharge in a "phasic" fashion and are located......The dendrites of dopaminergic neurons in the substantia nigra play a pivotal role in the neurochemical homeostasis of the nucleus. It is conceivable therefore that the cell body and dendrites of these nigral neurons possess distinct and independent electro-responsive features. By means......, a high-threshold calcium spike is located principally in the cell body. The differential localization of these calcium conductances in sub-populations of neurons is likely to determine the functions for the calcium responses in each type of neuron, and moreover highlight the dendrites as dynamic...

  6. Gravity and positional homeostasis of the cell

    Science.gov (United States)

    Nace, G. W.

    1983-01-01

    The effect of gravity upon cytoplasmic aggregates of the size present in eggs and upon cells is investigated. An expression is developed to describe the tendency of torque to rotate the egg and reorganize its constituents. This expression provides the net torque resulting from buoyancy and gravity acting upon a dumbbell-shaped cell, with heavy and light masses at either end and floating in a medium. Torques of approximately 2.5 x 10 to the -13th to 0.85 dyne-cm are found to act upon cells ranging from 6.4 microns to 31 mm (chicken egg). It is noted that cells must expend energy to maintain positional homeostasis against gravity, as demonstrated by results from Skylab 3, where tissue cultures used 58 percent more glucose on earth than in space. The implications for developmental biology, physiology, genetics, and evolution are discussed. It is argued that at the cellular and tissue levels the concept of gravity receptors may be unnecessary.

  7. Modulation of immune homeostasis by commensal bacteria

    Science.gov (United States)

    Ivanov, Ivaylo I.; Littman, Dan R.

    2011-01-01

    Intestinal bacteria form a resident community that has co-evolved with the mammalian host. In addition to playing important roles in digestion and harvesting energy, commensal bacteria are crucial for the proper functioning of mucosal immune defenses. Most of these functions have been attributed to the presence of large numbers of “innocuous” resident bacteria that dilute or occupy niches for intestinal pathogens or induce innate immune responses that sequester bacteria in the lumen, thus quenching excessive activation of the mucosal immune system. However it has recently become obvious that commensal bacteria are not simply beneficial bystanders, but are important modulators of intestinal immune homeostasis and that the composition of the microbiota is a major factor in pre-determining the type and robustness of mucosal immune responses. Here we review specific examples of individual members of the microbiota that modify innate and adaptive immune responses, and we focus on potential mechanisms by which such species-specific signals are generated and transmitted to the host immune system. PMID:21215684

  8. Regulation of leucocyte homeostasis in the circulation.

    Science.gov (United States)

    Scheiermann, Christoph; Frenette, Paul S; Hidalgo, Andrés

    2015-08-01

    The functions of blood cells extend well beyond the immune functions of leucocytes or the respiratory and hemostatic functions of erythrocytes and platelets. Seen as a whole, the bloodstream is in charge of nurturing and protecting all organs by carrying a mixture of cell populations in transit from one organ to another. To optimize these functions, evolution has provided blood and the vascular system that carries it with various mechanisms that ensure the appropriate influx and egress of cells into and from the circulation where and when needed. How this homeostatic control of blood is achieved has been the object of study for over a century, and although the major mechanisms that govern it are now fairly well understood, several new concepts and mediators have recently emerged that emphasize the dynamism of this liquid tissue. Here we review old and new concepts that relate to the maintenance and regulation of leucocyte homeostasis in blood and briefly discuss the mechanisms for platelets and red blood cells. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  9. [Contribution of the kidney to glucose homeostasis].

    Science.gov (United States)

    Segura, Julián; Ruilope, Luis Miguel

    2013-09-01

    The kidney is involved in glucose homeostasis through three major mechanisms: renal gluconeogenesis, renal glucose consumption, and glucose reabsorption in the proximal tubule. Glucose reabsorption is one of the most important physiological functions of the kidney, allowing full recovery of filtered glucose, elimination of glucose from the urine, and prevention of calorie loss. Approximately 90% of the glucose is reabsorbed in the S1 segment of the proximal tubule, where glucose transporter-2 (GLUT2) and sodium-glucose transporter-2 (SGLT2) are located, while the remaining 10% is reabsorbed in the S3 segment by SGLT1 and GLUT1 transporters. In patients with hyperglycemia, the kidney continues to reabsorb glucose, thus maintaining hyperglycemia. Most of the renal glucose reabsorption is mediated by SGLT2. Several experimental and clinical studies suggest that pharmacological blockade of this transporter might be beneficial in the management of hyperglycemia in patients with type 2 diabetes. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  10. Neural Control Mechanisms and Body Fluid Homeostasis

    Science.gov (United States)

    Johnson, Alan Kim

    1998-01-01

    The goal of the proposed research was to study the nature of afferent signals to the brain that reflect the status of body fluid balance and to investigate the central neural mechanisms that process this information for the activation of response systems which restore body fluid homeostasis. That is, in the face of loss of fluids from intracellular or extracellular fluid compartments, animals seek and ingest water and ionic solutions (particularly Na(+) solutions) to restore the intracellular and extracellular spaces. Over recent years, our laboratory has generated a substantial body of information indicating that: (1) a fall in systemic arterial pressure facilitates the ingestion of rehydrating solutions and (2) that the actions of brain amine systems (e.g., norepinephrine; serotonin) are critical for precise correction of fluid losses. Because both acute and chronic dehydration are associated with physiological stresses, such as exercise and sustained exposure to microgravity, the present research will aid in achieving a better understanding of how vital information is handled by the nervous system for maintenance of the body's fluid matrix which is critical for health and well-being.

  11. Nutrition and protein energy homeostasis in elderly.

    Science.gov (United States)

    Boirie, Yves; Morio, Béatrice; Caumon, Elodie; Cano, Noël J

    2014-01-01

    Protein-energy homeostasis is a major determinant of healthy aging. Inadequate nutritional intakes and physical activity, together with endocrine disturbances are associated with of sarcopenia and frailty. Guidelines from scientific societies mainly address the quantitative aspects of protein and energy nutrition in elderly. Besides these quantitative aspects of protein load, perspective strategies to promote muscle protein synthesis and prevent sarcopenia include pulse feeding, the use of fast proteins and the addition of leucine or citrulline to dietary protein. An integrated management of sarcopenia, taking into account the determinants of muscle wasting, i.e. nutrition, physical activity, anabolic factors such as androgens, vitamin D and n-3 polyunsaturated fatty acids status, needs to be tested in the prevention and treatment of sarcopenia. The importance of physical activity, specifically resistance training, is emphasized, not only in order to facilitate muscle protein anabolism but also to increase appetite and food intake in elderly people at risk of malnutrition. According to present data, healthy nutrition in elderly should respect the guidelines for protein and energy requirement, privilege a Mediterranean way of alimentation, and be associated with a regular physical activity. Further issues relate to the identification of the genetics determinants of protein energy wasting in elderly. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Zinc and the modulation of redox homeostasis

    Science.gov (United States)

    Oteiza, Patricia I.

    2012-01-01

    Zinc, a redox inactive metal, has been long viewed as a component of the antioxidant network, and growing evidence points to its involvement in redox-regulated signaling. These actions are exerted through several mechanisms based on the unique chemical and functional properties of zinc. Overall, zinc contributes to maintain the cell redox balance through different mechanisms including: i) the regulation of oxidant production and metal-induced oxidative damage; ii) the dynamic association of zinc with sulfur in protein cysteine clusters, from which the metal can be released by nitric oxide, peroxides, oxidized glutathione and other thiol oxidant species; iii) zinc-mediated induction of the zinc-binding protein metallothionein, which releases the metal under oxidative conditions and act per se scavenging oxidants; iv) the involvement of zinc in the regulation of glutathione metabolism and of the overall protein thiol redox status; and v) a direct or indirect regulation of redox signaling. Findings of oxidative stress, altered redox signaling, and associated cell/tissue disfunction in cell and animal models of zinc deficiency, stress the relevant role of zinc in the preservation of cell redox homeostasis. However, while the participation of zinc in antioxidant protection, redox sensing, and redox-regulated signaling is accepted, the involved molecules, targets and mechanisms are still partially known and the subject of active research. PMID:22960578

  13. Transient Receptor Potential Canonical 3 (TRPC3) Channels Are Required for Hypothalamic Glucose Detection and Energy Homeostasis.

    Science.gov (United States)

    Chrétien, Chloé; Fenech, Claire; Liénard, Fabienne; Grall, Sylvie; Chevalier, Charlène; Chaudy, Sylvie; Brenachot, Xavier; Berges, Raymond; Louche, Katie; Stark, Romana; Nédélec, Emmanuelle; Laderrière, Amélie; Andrews, Zane B; Benani, Alexandre; Flockerzi, Veit; Gascuel, Jean; Hartmann, Jana; Moro, Cédric; Birnbaumer, Lutz; Leloup, Corinne; Pénicaud, Luc; Fioramonti, Xavier

    2017-02-01

    The mediobasal hypothalamus (MBH) contains neurons capable of directly detecting metabolic signals such as glucose to control energy homeostasis. Among them, glucose-excited (GE) neurons increase their electrical activity when glucose rises. In view of previous work, we hypothesized that transient receptor potential canonical type 3 (TRPC3) channels are involved in hypothalamic glucose detection and the control of energy homeostasis. To investigate the role of TRPC3, we used constitutive and conditional TRPC3-deficient mouse models. Hypothalamic glucose detection was studied in vivo by measuring food intake and insulin secretion in response to increased brain glucose level. The role of TRPC3 in GE neuron response to glucose was studied by using in vitro calcium imaging on freshly dissociated MBH neurons. We found that whole-body and MBH TRPC3-deficient mice have increased body weight and food intake. The anorectic effect of intracerebroventricular glucose and the insulin secretory response to intracarotid glucose injection are blunted in TRPC3-deficient mice. TRPC3 loss of function or pharmacological inhibition blunts calcium responses to glucose in MBH neurons in vitro. Together, the results demonstrate that TRPC3 channels are required for the response to glucose of MBH GE neurons and the central effect of glucose on insulin secretion and food intake. © 2017 by the American Diabetes Association.

  14. Special report on abnormal climate in 2010

    International Nuclear Information System (INIS)

    2010-12-01

    This reports on abnormal climate in 2010 with impact on the each field. It is comprised of four chapters, which deal with Introduction with purpose of publish and background, current situation and cause of abnormal climate in 2010 on abnormal climate around the world and Korea, Action and impact against abnormal climate in 2010 to agriculture, industry and energy, prevention of disasters, forest, fishery products, environment and health, Evaluation and policy proposal. It also has an appendix about occurrence and damage on abnormal climate of the world in 2010 and media reports on abnormal climate in Korea in 2010.

  15. Regulation of Bicarbonate Secretion in Marine Fish Intestine by the Calcium-Sensing Receptor

    Directory of Open Access Journals (Sweden)

    Sílvia F. Gregório

    2018-04-01

    Full Text Available In marine fish, high epithelial intestinal HCO3− secretion generates luminal carbonate precipitates of divalent cations that play a key role in water and ion homeostasis. The present study was designed to expose the putative role for calcium and the calcium-sensing receptor (CaSR in the regulation of HCO3− secretion in the intestine of the sea bream (Sparus aurata L.. Effects on the expression of the CaSR in the intestine were evaluated by qPCR and an increase was observed in the anterior intestine in fed fish compared with unfed fish and with different regions of intestine. CaSR expression reflected intestinal fluid calcium concentration. In addition, anterior intestine tissue was mounted in Ussing chambers to test the putative regulation of HCO3− secretion in vitro using the anterior intestine. HCO3− secretion was sensitive to varying calcium levels in luminal saline and to calcimimetic compounds known to activate/block the CaSR i.e., R 568 and NPS-2143. Subsequent experiments were performed in intestinal sacs to measure water absorption and the sensitivity of water absorption to varying luminal levels of calcium and calcimimetics were exposed as well. It appears, that CaSR mediates HCO3− secretion and water absorption in marine fish as shown by responsiveness to calcium levels and calcimimetic compounds.

  16. Safety assessment of the calcium-binding protein, apoaequorin, expressed by Escherichia coli.

    Science.gov (United States)

    Moran, Daniel L; Tetteh, Afua O; Goodman, Richard E; Underwood, Mark Y

    2014-07-01

    Calcium-binding proteins are ubiquitous modulators of cellular activity and function. Cells possess numerous calcium-binding proteins that regulate calcium concentration in the cytosol by buffering excess free calcium ion. Disturbances in intracellular calcium homeostasis are at the heart of many age-related conditions making these proteins targets for therapeutic intervention. A calcium-binding protein, apoaequorin, has shown potential utility in a broad spectrum of applications for human health and well-being. Large-scale recombinant production of the protein has been successful; enabling further research and development and commercialization efforts. Previous work reported a 90-day subchronic toxicity test that demonstrated this protein has no toxicity by oral exposure in Sprague-Dawley rodents. The current study assesses the allergenic potential of the purified protein using bioinformatic analysis and simulated gastric digestion. The results from the bioinformatics searches with the apoaequorin sequence show the protein is not a known allergen and not likely to cross-react with known allergens. Apoaequorin is easily digested by pepsin, a characteristic commonly exhibited by many non-allergenic dietary proteins. From these data, there is no added concern of safety due to unusual stability of the protein by ingestion. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Calcium, vitamin D, and your bones

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000490.htm Calcium, vitamin D, and your bones To use the sharing ... and maintain strong bones. How Much Calcium and Vitamin D do I Need? Amounts of calcium are ...

  18. Calcium Supplements: Do Men Need Them Too?

    Science.gov (United States)

    ... Lifestyle Nutrition and healthy eating Should men take calcium supplements? Answers from Katherine Zeratsky, R.D., L. ... Most healthy men don't need to take calcium supplements. Calcium is important for men for optimal ...

  19. Calcium transport in turtle bladder

    International Nuclear Information System (INIS)

    Sabatini, S.; Kurtzman, N.A.

    1987-01-01

    Unidirectional 45 Ca fluxes were measured in the turtle bladder under open-circuit and short-circuit conditions. In the open-circuited state net calcium flux (J net Ca ) was secretory (serosa to mucosa). Ouabain reversed J net Ca to an absorptive flux. Amiloride reduced both fluxes such that J net Ca was not significantly different from zero. Removal of mucosal sodium caused net calcium absorption; removal of serosal sodium caused calcium secretion. When bladders were short circuited, J net Ca decreased to approximately one-third of control value but remained secretory. When ouabain was added under short-circuit conditions, J net Ca was similar in magnitude and direction to ouabain under open-circuited conditions (i.e., absorptive). Tissue 45 Ca content was ≅30-fold lower when the isotope was placed in the mucosal bath, suggesting that the apical membrane is the resistance barrier to calcium transport. The results obtained in this study are best explained by postulating a Ca 2+ -ATPase on the serosa of the turtle bladder epithelium and a sodium-calcium antiporter on the mucosa. In this model, the energy for calcium movement would be supplied, in large part, by the Na + -K + -ATPase. By increasing cell sodium, ouabain would decrease the activity of the mucosal sodium-calcium exchanger (or reverse it), uncovering active calcium transport across the serosa

  20. Calcium chromate process related investigations

    International Nuclear Information System (INIS)

    Dillard, B.M.

    1979-01-01

    A pilot plant for production of calcium chromate has been scaled up to a small production facility at the General Electric Neutron Devices Department. In preparation for this scale-up, the process and final product were studied in order to evaluate problems not considered previously. The variables and processes studied included: (1) the determination of optimum drying temperature and time for product analysis; (2) the effect of the grade of lime used as the precipitating agent on the purity of the calcium chromate; (3) product purity when calcium chromate is precipitated by the addition of ammonium chromate to slaked lime; (4) the reagents best suited for cleaning calcium chromate spills; and (5) methods for determining hydroxide ion concentration in calcium chromate. The optimum drying time for the product before analysis is four hours at 600 0 C. Gases evolved at various temperatures during the drying process were carbon dioxide and water vapor. Technical grade lime produced calcium chromate of the highest purity. Both nitric and acetic acids were efficient dissolvers of calcium chromate spills. Direct titration of hydroxide ion with sulfuric acid gave an average recovery of 93% for samples spiked with calcium hydroxide. 1 figure, 17 tables

  1. Calcium addition in straw gasification

    DEFF Research Database (Denmark)

    Risnes, H.; Fjellerup, Jan Søren; Henriksen, Ulrik Birk

    2003-01-01

    The present work focuses on the influence of calcium addition in gasification. The inorganic¿organic element interaction as well as the detailed inorganic¿inorganic elements interaction has been studied. The effect of calcium addition as calcium sugar/molasses solutions to straw significantly...... affected the ash chemistry and the ash sintering tendency but much less the char reactivity. Thermo balance test are made and high-temperature X-ray diffraction measurements are performed, the experimental results indicate that with calcium addition major inorganic¿inorganic reactions take place very late...... in the char conversion process. Comprehensive global equilibrium calculations predicted important characteristics of the inorganic ash residue. Equilibrium calculations predict the formation of liquid salt if sufficient amounts of Ca are added and according to experiments as well as calculations calcium binds...

  2. Regulation of intestinal homeostasis and immunity with probiotic lactobacilli.

    Science.gov (United States)

    van Baarlen, Peter; Wells, Jerry M; Kleerebezem, Michiel

    2013-05-01

    The gut microbiota provide important stimuli to the human innate and adaptive immune system and co-mediate metabolic and immune homeostasis. Probiotic bacteria can be regarded as part of the natural human microbiota, and have been associated with improving homeostasis, albeit with different levels of success. Composition of microbiota, probiotic strain identity, and host genetic differences may account for differential modulation of immune responses by probiotics. Here, we review the mechanisms of immunomodulating capacities of specific probiotic strains, the responses they can induce in the host, and how microbiota and genetic differences between individuals may co-influence host responses and immune homeostasis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The role of CDX2 in intestinal homeostasis and inflammation

    DEFF Research Database (Denmark)

    Coskun, Mehmet; Troelsen, Jesper Thorvald; Nielsen, Ole Haagen

    2011-01-01

    a causal role in a large number of diseases and developmental disorders. Inflammatory bowel disease (IBD) is characterized by a chronically inflamed mucosa caused by dysregulation of the intestinal immune homeostasis. The aetiology of IBD is thought to be a combination of genetic and environmental factors......, including luminal bacteria. The Caudal-related homeobox transcription factor 2 (CDX2) is critical in early intestinal differentiation and has been implicated as a master regulator of the intestinal homeostasis and permeability in adults. When expressed, CDX2 modulates a diverse set of processes including...... of the intestinal homeostasis and further to reveal its potential role in inflammation....

  4. Relationship between ionized calcium and serum albumin level in children with idiopathic nephrotic syndrome

    Directory of Open Access Journals (Sweden)

    Viiola Irene Winata

    2016-10-01

    Full Text Available Background Nephrotic syndrome (NS patients frequently have abnormalities in calcium metabolism that manifest as hypocalcemia and reduced intestinal absorption of calcium. Hypocalcemia is initially attributed to hypoalbuminemia but it may also relate to a low level of ionized calcium. The ionized calcium level depends on the severity and duration of proteinuria. Objective To assess the rel ationship between ionized calcium and serum albumin level in idiopathic NS children. Methods An analytical study with cross-sectional design was applied to NS and healthy children between 1-14 years old in the Child Health Department of Hasan Sadikin Hospital, Bandung from December 2009 to April 2010. Ionized calcium was examined by Ca2 + analyzer AVL 980 with ion-selective electrodes (ISE methods. Results A total of34 subjects were recruited, consist of 17 NS and 17 healthy children. The mean ionized calcium and serum albumin level in NS children was 4.56 (SD 0.23 mg/dLand 1.45 (SD 0.24 g/dL, respectively. Statistical difference between ionized calcium level in NS and in healthy children was significant (P<0.05. Pearson correlation test between ionized calcium and serum albumin was significant (P<0.05 with correlation coefficient (r 0.53. We found the following equation to estimate ionized calcium (y based on the serum albumin level (x: y=3.84+0.49x. Conclusion There is a moderately positive linear relationship between ionized calcium and serum albumin level in NS children.

  5. Subcutis calcinosis caused by injection of calcium-containing heparin in a chronic kidney injury patient

    Directory of Open Access Journals (Sweden)

    Lilia Ben Fatma

    2014-01-01

    Full Text Available Subcutis calcinosis, characterized by abnormal calcium deposits in the skin, is a rare complication of using calcium-containing heparin occurring in patients with advanced renal failure. We report the case of an 83-year-old female, a known case of chronic kidney disease (CKD for four years with recent worsening of renal failure requiring hospitalization and hemodialysis. She developed subcutis calcinosis following injection of calcium-containing heparin. Biochemical tests showed serum parathormone level at 400 pg/dL, hypercalcemia, elevated calcium-phosphate product and monoclonal gammopathy related to multiple myeloma. She developed firm subcu-taneous nodules in the abdomen and the thighs, the injection sites of Calciparin ® (calcium nadroparin that was given as a preventive measure against deep vein thrombosis. The diagnosis of subcutis calcinosis was confirmed by the histological examination showing calcium deposit in the dermis and hypodermis. These lesions completely disappeared after discontinuing calcium nadro-parin injections. Subcutis calcinosis caused by injections of calcium-containing heparin is rare, and, to the best our knowledge, not more than 12 cases have been reported in the literature. Pathogenesis is not well established but is attributed to the calcium disorders usually seen in advanced renal failure. Diagnosis is confirmed by histological tests. Outcome is mostly favorable. The main differential diagnosis is calciphylaxis, which has a poor prognosis. Even though rarely reported, we should be aware that CKD patients with elevated calcium-phosphorus product can develop subcutis calcinosis induced by calcium-containing heparin. When it occurs, fortunately and unlike calci-phylaxis, outcome is favorable.

  6. A Single Nucleotide Polymorphism (rs4236480 in TRPV5 Calcium Channel Gene Is Associated with Stone Multiplicity in Calcium Nephrolithiasis Patients

    Directory of Open Access Journals (Sweden)

    Anas Khaleel

    2015-01-01

    Full Text Available Nephrolithiasis is characterized by calcification of stones in the kidneys from an unknown cause. Animal models demonstrated the functional roles of the transient receptor potential vanilloid member 5 (TRPV5 gene in calcium renal reabsorption and hypercalciuria. Therefore, TRPV5 was suggested to be involved in calcium homeostasis. However, whether genetic polymorphisms of TRPV5 are associated with kidney stone multiplicity or recurrence is unclear. In this study, 365 Taiwanese kidney-stone patients were recruited. Both biochemical data and DNA samples were collected. Genotyping was performed by a TaqMan allelic discrimination assay. We found that a TRPV5 polymorphism (rs4236480 was observed to be associated with stone multiplicity of calcium nephrolithiasis, as the risk of stone multiplicity was higher in patients with the TT+CT genotype than in patients with the CC genotype (p=0.0271. In summary, despite the complexity of nephrolithiasis and the potential association of numerous calcium homeostatic absorption/reabsorption factors, TRPV5 plays an important role in the pathogenesis of calcium nephrolithiasis.

  7. Abnormalities of the five serum ions in patients with Leber congenital amaurosis

    Directory of Open Access Journals (Sweden)

    Zhi-Zhong Wu

    2017-03-01

    Full Text Available AIM:To study the concentration changes of the serum magnesium, calcium, potassium, sodium and chloride ions of the patients of Leber congenital amaurosis(LCA.METHODS:Based on the retrospective study and the simple size in the statistics, 50 cases of LCA patients and 99 cases of normal people were tested the serum ions by professionals in hospital according to the single blind study. Data were analyzed statistically between LCA and normal groups. RESULTS: In the clinical serum ions test of LCA group, the concentration of calcium and potassium were 2.338±0.090mmol/L and 4.164±0.356mmol/L respectively, which were significantly higher than those of the normal group(all PPP>0.05. CONCLUSION: In the patients with LCA, abnormal concentration changes of magnesium, calcium and potassium will be needed to concern of the ophthalmologist, which is probably related with the occurrence of LCA.

  8. Functions of innate immune cells and commensal bacteria in gut homeostasis.

    Science.gov (United States)

    Kayama, Hisako; Takeda, Kiyoshi

    2016-02-01

    The intestinal immune system remains unresponsive to beneficial microbes and dietary antigens while activating pro-inflammatory responses against pathogens for host defence. In intestinal mucosa, abnormal activation of innate immunity, which directs adaptive immune responses, causes the onset and/or progression of inflammatory bowel diseases. Thus, innate immunity is finely regulated in the gut. Multiple innate immune cell subsets have been identified in both murine and human intestinal lamina propria. Some innate immune cells play a key role in the maintenance of gut homeostasis by preventing inappropriate adaptive immune responses while others are associated with the pathogenesis of intestinal inflammation through development of Th1 and Th17 cells. In addition, intestinal microbiota and their metabolites contribute to the regulation of innate/adaptive immune responses. Accordingly, perturbation of microbiota composition can trigger intestinal inflammation by driving inappropriate immune responses. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  9. Kit W-sh Mutation Prevents Cancellous Bone Loss during Calcium Deprivation.

    Science.gov (United States)

    Lotinun, Sutada; Suwanwela, Jaijam; Poolthong, Suchit; Baron, Roland

    2018-01-01

    Calcium is essential for normal bone growth and development. Inadequate calcium intake increases the risk of osteoporosis and fractures. Kit ligand/c-Kit signaling plays an important role in regulating bone homeostasis. Mice with c-Kit mutations are osteopenic. The present study aimed to investigate whether impairment of or reduction in c-Kit signaling affects bone turnover during calcium deprivation. Three-week-old male WBB6F1/J-Kit W /Kit W-v /J (W/W v ) mice with c-Kit point mutation, Kit W-sh /HNihrJaeBsmJ (W sh /W sh ) mice with an inversion mutation in the regulatory elements upstream of the c-Kit promoter region, and their wild-type controls (WT) were fed either a normal (0.6% calcium) or a low calcium diet (0.02% calcium) for 3 weeks. μCT analysis indicated that both mutants fed normal calcium diet had significantly decreased cortical thickness and cancellous bone volume compared to WT. The low calcium diet resulted in a comparable reduction in cortical bone volume and cortical thickness in the W/W v and W sh /W sh mice, and their corresponding controls. As expected, the low calcium diet induced cancellous bone loss in the W/W v mice. In contrast, W sh /W sh cancellous bone did not respond to this diet. This c-Kit mutation prevented cancellous bone loss by antagonizing the low calcium diet-induced increase in osteoblast and osteoclast numbers in the W sh /W sh mice. Gene expression profiling showed that calcium deficiency increased Osx, Ocn, Alp, type I collagen, c-Fms, M-CSF, and RANKL/OPG mRNA expression in controls; however, the W sh mutation suppressed these effects. Our findings indicate that although calcium restriction increased bone turnover, leading to osteopenia, the decreased c-Kit expression levels in the W sh /W sh mice prevented the low calcium diet-induced increase in cancellous bone turnover and bone loss but not the cortical bone loss.

  10. Low-set ears and pinna abnormalities

    Science.gov (United States)

    Low-set ears; Microtia; "Lop" ear; Pinna abnormalities; Genetic defect - pinna; Congenital defect - pinna ... conditions: Abnormal folds or location of the pinna Low-set ears No opening to the ear canal ...

  11. Enhanced monitoring of abnormal emergency department demands

    KAUST Repository

    Harrou, Fouzi; Sun, Ying; Kadri, Farid

    2016-01-01

    of abnormal situations caused by abnormal patient arrivals to the ED. More specifically, This work proposed the application of autoregressive moving average (ARMA) models combined with the generalized likelihood ratio (GLR) test for anomaly-detection. ARMA

  12. Evolution of the Calcium Paradigm: The Relation between Vitamin D, Serum Calcium and Calcium Absorption

    Directory of Open Access Journals (Sweden)

    Borje E. Christopher Nordin

    2010-09-01

    Full Text Available Osteoporosis is the index disease for calcium deficiency, just as rickets/osteomalacia is the index disease for vitamin D deficiency, but there is considerable overlap between them. The common explanation for this overlap is that hypovitaminosis D causes malabsorption of calcium which then causes secondary hyperparathyroidism and is effectively the same thing as calcium deficiency. This paradigm is incorrect. Hypovitaminosis D causes secondary hyperparathyroidism at serum calcidiol levels lower than 60 nmol/L long before it causes malabsorption of calcium because serum calcitriol (which controls calcium absorption is maintained until serum calcidiol falls below 20 nmol/L. This secondary hyperparathyroidism, probably due to loss of a “calcaemic” action of vitamin D on bone first described in 1957, destroys bone and explains why vitamin D insufficiency is a risk factor for osteoporosis. Vitamin D thus plays a central role in the maintenance of the serum (ionised calcium, which is more important to the organism than the preservation of the skeleton. Bone is sacrificed when absorbed dietary calcium does not match excretion through the skin, kidneys and bowel which is why calcium deficiency causes osteoporosis in experimental animals and, by implication, in humans.

  13. Mechanical homeostasis regulating adipose tissue volume

    Directory of Open Access Journals (Sweden)

    Svedman Paul

    2007-09-01

    Full Text Available Abstract Background The total body adipose tissue volume is regulated by hormonal, nutritional, paracrine, neuronal and genetic control signals, as well as components of cell-cell or cell-matrix interactions. There are no known locally acting homeostatic mechanisms by which growing adipose tissue might adapt its volume. Presentation of the hypothesis Mechanosensitivity has been demonstrated by mesenchymal cells in tissue culture. Adipocyte differentiation has been shown to be inhibited by stretching in vitro, and a pathway for the response has been elucidated. In humans, intermittent stretching of skin for reconstructional purposes leads to thinning of adipose tissue and thickening of epidermis – findings matching those observed in vitro in response to mechanical stimuli. Furthermore, protracted suspension of one leg increases the intermuscular adipose tissue volume of the limb. These findings may indicate a local homeostatic adipose tissue volume-regulating mechanism based on movement-induced reduction of adipocyte differentiation. This function might, during evolution, have been of importance in confined spaces, where overgrowth of adipose tissue could lead to functional disturbance, as for instance in the turtle. In humans, adipose tissue near muscle might in particular be affected, for instance intermuscularly, extraperitoneally and epicardially. Mechanical homeostasis might also contribute to protracted maintainment of soft tissue shape in the face and neck region. Testing of the hypothesis Assessment of messenger RNA-expression of human adipocytes following activity in adjacent muscle is planned, and study of biochemical and volumetric adipose tissue changes in man are proposed. Implications of the hypothesis The interpretation of metabolic disturbances by means of adipose tissue might be influenced. Possible applications in the head and neck were discussed.

  14. Maintaining homeostasis by decision-making.

    Directory of Open Access Journals (Sweden)

    Christoph W Korn

    2015-05-01

    Full Text Available Living organisms need to maintain energetic homeostasis. For many species, this implies taking actions with delayed consequences. For example, humans may have to decide between foraging for high-calorie but hard-to-get, and low-calorie but easy-to-get food, under threat of starvation. Homeostatic principles prescribe decisions that maximize the probability of sustaining appropriate energy levels across the entire foraging trajectory. Here, predictions from biological principles contrast with predictions from economic decision-making models based on maximizing the utility of the endpoint outcome of a choice. To empirically arbitrate between the predictions of biological and economic models for individual human decision-making, we devised a virtual foraging task in which players chose repeatedly between two foraging environments, lost energy by the passage of time, and gained energy probabilistically according to the statistics of the environment they chose. Reaching zero energy was framed as starvation. We used the mathematics of random walks to derive endpoint outcome distributions of the choices. This also furnished equivalent lotteries, presented in a purely economic, casino-like frame, in which starvation corresponded to winning nothing. Bayesian model comparison showed that--in both the foraging and the casino frames--participants' choices depended jointly on the probability of starvation and the expected endpoint value of the outcome, but could not be explained by economic models based on combinations of statistical moments or on rank-dependent utility. This implies that under precisely defined constraints biological principles are better suited to explain human decision-making than economic models based on endpoint utility maximization.

  15. Regulatory mechanisms of anthrax toxin receptor 1-dependent vascular and connective tissue homeostasis.

    Science.gov (United States)

    Besschetnova, Tatiana Y; Ichimura, Takaharu; Katebi, Negin; St Croix, Brad; Bonventre, Joseph V; Olsen, Bjorn R

    2015-03-01

    It is well known that angiogenesis is linked to fibrotic processes in fibroproliferative diseases, but insights into pathophysiological processes are limited, due to lack of understanding of molecular mechanisms controlling endothelial and fibroblastic homeostasis. We demonstrate here that the matrix receptor anthrax toxin receptor 1 (ANTXR1), also known as tumor endothelial marker 8 (TEM8), is an essential component of these mechanisms. Loss of TEM8 function in mice causes reduced synthesis of endothelial basement membrane components and hyperproliferative and leaky blood vessels in skin. In addition, endothelial cell alterations in mutants are almost identical to those of endothelial cells in infantile hemangioma lesions, including activated VEGF receptor signaling in endothelial cells, increased expression of the downstream targets VEGF and CXCL12, and increased numbers of macrophages and mast cells. In contrast, loss of TEM8 in fibroblasts leads to increased rates of synthesis of fiber-forming collagens, resulting in progressive fibrosis in skin and other organs. Compromised interactions between TEM8-deficient endothelial and fibroblastic cells cause dramatic reduction in the activity of the matrix-degrading enzyme MMP2. In addition to insights into mechanisms of connective tissue homeostasis, our data provide molecular explanations for vascular and connective tissue abnormalities in GAPO syndrome, caused by loss-of-function mutations in ANTXR1. Furthermore, the loss of MMP2 activity suggests that fibrotic skin abnormalities in GAPO syndrome are, in part, the consequence of pathophysiological mechanisms underlying syndromes (NAO, Torg and Winchester) with multicentric skin nodulosis and osteolysis caused by homozygous loss-of-function mutations in MMP2. Copyright © 2014 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  16. MR imaging of abnormal synovial processes

    International Nuclear Information System (INIS)

    Quinn, S.F.; Sanchez, R.; Murray, W.T.; Silbiger, M.L.; Ogden, J.; Cochran, C.

    1987-01-01

    MR imaging can directly image abnormal synovium. The authors reviewed over 50 cases with abnormal synovial processes. The abnormalities include Baker cysts, semimembranous bursitis, chronic shoulder bursitis, peroneal tendon ganglion cyst, periarticular abscesses, thickened synovium from rheumatoid and septic arthritis, and synovial hypertrophy secondary to Legg-Calve-Perthes disease. MR imaging has proved invaluable in identifying abnormal synovium, defining the extent and, to a limited degree, characterizing its makeup

  17. Dynamic thiol/disulfide homeostasis and effects of smoking on homeostasis parameters in patients with psoriasis.

    Science.gov (United States)

    Emre, Selma; Demirseren, Duriye Deniz; Alisik, Murat; Aktas, Akin; Neselioglu, Salim; Erel, Ozcan

    2017-12-01

    Recently, increased reactive oxygen species (ROS), reduced antioxidant capacity, and oxidative stress have been suggested in the pathogenesis of psoriasis. The aim of this study to evaluate the thiol/disulfide homeostasis in patients with psoriasis. Ninety patients with psoriasis who did not receive any systemic treatment in the last six  months were included in the study. Seventy-six age and gender-matched healthy volunteers served as control group. Thiol/disulfide homeostasis was measured in venous blood samples obtained from patient and control groups. Native thiol and total thiol levels were significantly higher in patients than in control group. When thiol/disulfide hemostasis parameters and clinical and demographic characteristics were compared, a negative correlation was detected between native thiol and total thiol with age. The levels of total thiols had also negative correlation with PASI and duration of the disease. When we divided the patients into smokers and non-smokers, native thiol and total thiol levels were significantly higher in smokers than in controls, whereas native thiol and total thiol levels were comparable in non-smoker patients and controls. Thiol/disulfide balance shifted towards thiol in psoriasis patients and this may be responsible for increased keratinocyte proliferation in the pathogenesis of psoriasis.

  18. Investigation of manganese homeostasis in dogs with anaemia and ...

    African Journals Online (AJOL)

    Investigation of manganese homeostasis in dogs with anaemia and chronic enteropathy. Marisa da Fonseca Ferreira, Arielle Elizabeth Ann Aylor, Richard John Mellanby, Susan Mary Campbell, Adam George Gow ...

  19. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3

    OpenAIRE

    Halfter, Ursula; Ishitani, Manabu; Zhu, Jian-Kang

    2000-01-01

    The Arabidopsis thaliana SOS2 and SOS3 genes are required for intracellular Na+ and K+ homeostasis and plant tolerance to high Na+ and low K+ environments. SOS3 is an EF hand type calcium-binding protein having sequence similarities with animal neuronal calcium sensors and the yeast calcineurin B. SOS2 is a serine/threonine protein kinase in the SNF1/AMPK family. We report here that SOS3 physically interacts with and activates SOS2 protein kinase. Genetically, sos2sos3 double mutant analysis ...

  20. Operator training for the abnormal

    International Nuclear Information System (INIS)

    Marzec, R.J.

    1977-01-01

    Training of nuclear power plant control room operators, on actions to be taken for an abnormal event, has classically been limited to discussion, on-shift and/or during requalification training classes, of symptoms, logical thought processes, systems analysis, and operator experience. The prerequisites for these discussions are a common technical vocabulary, and a minimum basic comprehension of nuclear power plant fundamentals, plant component theory of operation, system configuration, system control philosophy and operating procedures. Nuclear power plant control room operators are not the only personnel who are or should be involved in these discussions. The shift supervisors, operations management, and auxiliary equipment operators require continuing training in abnormal operations, as well. More in-depth training is necessary for shift supervisors and control room operators. The availability of vendor simulators has improved the effectiveness of training efforts for these individuals to some extent by displaying typical situations and plant performance characteristics and by providing a degree of ''hands on'' experience. The evolution of in-depth training with these simulators is reviewed

  1. Redox homeostasis: The Golden Mean of healthy living.

    Science.gov (United States)

    Ursini, Fulvio; Maiorino, Matilde; Forman, Henry Jay

    2016-08-01

    The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve "reactive oxygen species" rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles (parahormesis). In summary

  2. Association of SSTR2 Polymorphisms and Glucose Homeostasis Phenotypes

    OpenAIRE

    Sutton, Beth S.; Palmer, Nicholette D.; Langefeld, Carl D.; Xue, Bingzhong; Proctor, Alexandria; Ziegler, Julie T.; Haffner, Steven M.; Norris, Jill M.; Bowden, Donald W.

    2009-01-01

    OBJECTIVE This study evaluated the influence of somatostatin receptor type 2 (SSTR2) polymorphisms on measures of glucose homeostasis in the Insulin Resistance Atherosclerosis Family Study (IRASFS). SSTR2 is a G-protein?coupled receptor that, in response to somatostatin, mediates inhibition of insulin, glucagon, and growth hormone release and thus may affect glucose homeostasis. RESEARCH DESIGN AND METHODS Ten single nucleotide polymorphisms (SNPs) spanning the gene were chosen using a SNP de...

  3. Redox homeostasis: The Golden Mean of healthy living

    Directory of Open Access Journals (Sweden)

    Fulvio Ursini

    2016-08-01

    Full Text Available The notion that electrophiles serve as messengers in cell signaling is now widely accepted. Nonetheless, major issues restrain acceptance of redox homeostasis and redox signaling as components of maintenance of a normal physiological steady state. The first is that redox signaling requires sudden switching on of oxidant production and bypassing of antioxidant mechanisms rather than a continuous process that, like other signaling mechanisms, can be smoothly turned up or down. The second is the misperception that reactions in redox signaling involve “reactive oxygen species” rather than reaction of specific electrophiles with specific protein thiolates. The third is that hormesis provides protection against oxidants by increasing cellular defense or repair mechanisms rather than by specifically addressing the offset of redox homeostasis. Instead, we propose that both oxidant and antioxidant signaling are main features of redox homeostasis. As the redox shift is rapidly reversed by feedback reactions, homeostasis is maintained by continuous signaling for production and elimination of electrophiles and nucleophiles. Redox homeostasis, which is the maintenance of nucleophilic tone, accounts for a healthy physiological steady state. Electrophiles and nucleophiles are not intrinsically harmful or protective, and redox homeostasis is an essential feature of both the response to challenges and subsequent feedback. While the balance between oxidants and nucleophiles is preserved in redox homeostasis, oxidative stress provokes the establishment of a new radically altered redox steady state. The popular belief that scavenging free radicals by antioxidants has a beneficial effect is wishful thinking. We propose, instead, that continuous feedback preserves nucleophilic tone and that this is supported by redox active nutritional phytochemicals. These nonessential compounds, by activating Nrf2, mimic the effect of endogenously produced electrophiles

  4. Cellular Links between Neuronal Activity and Energy Homeostasis

    OpenAIRE

    Shetty, Pavan K.; Galeffi, Francesca; Turner, Dennis A.

    2012-01-01

    Neuronal activity, astrocytic responses to this activity, and energy homeostasis are linked together during baseline, conscious conditions, and short-term rapid activation (as occurs with sensory or motor function). Nervous system energy homeostasis also varies during long-term physiological conditions (i.e., development and aging) and with adaptation to pathological conditions, such as ischemia or low glucose. Neuronal activation requires increased metabolism (i.e., ATP generation) which lea...

  5. The ICET-A Recommendations for the Diagnosis and Management of Disturbances of Glucose Homeostasis in Thalassemia Major Patients

    Science.gov (United States)

    De Sanctis, Vincenzo; Soliman, Ashraf T.; Elsedfy, Heba; Yaarubi, Saif AL; Skordis, Nicos; Khater, Doaa; El Kholy, Mohamed; Stoeva, Iva; Fiscina, Bernadette; Angastiniotis, Michael; Daar, Shahina; Kattamis, Christos

    2016-01-01

    Iron overload in patients with thalassemia major (TM) affects glucose regulation and is mediated by several mechanisms. The pathogenesis of glycaemic abnormalities in TM is complex and multifactorial. It has been predominantly attributed to a combination of reduced insulin secretory capacity and insulin resistance. The exact mechanisms responsible for progression from norm glycaemia to overt diabetes in these patients are still poorly understood but are attributed mainly to insulin deficiency resulting from the toxic effects of iron deposited in the pancreas and insulin resistance. A group of endocrinologists, haematologists and paediatricians, members of the International Network of Clinicians for Endocrinopathies in Thalassemia and Adolescence Medicine (ICET-A) convened to formulate recommendations for the diagnosis and management of abnormalities of glucose homeostasis in thalassemia major patients on the basis of available evidence from clinical and laboratory data and consensus practice. The results of their work and discussions are described in this article. PMID:27872738

  6. Calcium and Calcium Supplements: Achieving the Right Balance

    Science.gov (United States)

    ... may have on heart attack risk. A similar controversy surrounds calcium and prostate cancer. Some studies have ... your agreement to the Terms and Conditions and Privacy Policy linked below. Terms and Conditions Privacy Policy ...

  7. Calcium signals in olfactory neurons.

    Science.gov (United States)

    Tareilus, E; Noé, J; Breer, H

    1995-11-09

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  8. Use of two calcium concentrations in hemodialysis--report of a 20-year clinical experience.

    Science.gov (United States)

    Seyffart, G; Schulz, T; Stiller, S

    2009-03-01

    Over the past almost 50 years several calcium concentrations in the dialysate (CaD) have been used to balance calcium in hemodialysis (HD) patients but a consensus as to which is most appropriate has not been established. Moreover, since the late 1980s, further confusion has been caused following the use of calcium salts as intestinal phosphate binders. This paper reports results of 387 chronic HD patients with respect to secondary hyperparathyroidism (sHPT) and renal osteodystrophy (ROD) of a single center over 20 years. The most important therapeutic measures applied were use of only 2 CaD, 1.5 and 1.75 mmol/l, with very few exceptions, administration of either calcium-containing or calcium-magnesium-containing and/or calcium-free phosphate binders, no dietary restrictions and continuous compensation of uremic acidosis via dialysate and oral supplements of bicarbonate. Using one of the two CaD and selective administration of different phosphate binders for fine adjustment of serum calcium through this combination, we were able to maintain in the long term almost physiological conditions. With exception of the phosphate metabolism, most physiological functions with regard to sHPT and ROD returned close to normal. As a result, the incidence of hypercalcemia, hypocalcemia, extraosseous, extravascular calcification, bone pain and spontaneous bone fractures was extremely low. We conclude that the clinical advantages of the therapeutic measures, above all precise balance of calcium homeostasis, in our investigation were demonstrated by high survival rates (92% after the first year on HD, 82% after 2, and 55% after 5 years), low incidence of cardiovascular fatalities (about 25%), and very low incidence of sHPT (mostly normal parathyroid hormone levels, 1 parathyrdoidectomy within 20 years).

  9. Why Calcium? How Calcium Became the Best Communicator*

    OpenAIRE

    Carafoli, Ernesto; Krebs, Joachim

    2016-01-01

    Calcium carries messages to virtually all important functions of cells. Although it was already active in unicellular organisms, its role became universally important after the transition to multicellular life. In this Minireview, we explore how calcium ended up in this privileged position. Most likely its unique coordination chemistry was a decisive factor as it makes its binding by complex molecules particularly easy even in the presence of large excesses of other cations,...

  10. Isomorfic Substitutions of Calcium by Strontium in Calcium Hydroxyapatite

    International Nuclear Information System (INIS)

    Christensen, Hilbert

    1962-12-01

    By means of homogeneous precipitation it has been possible to synthesize crystalline solid solutions of calcium strontium hydroxyapatite from aqueous solutions. The lattice constants for the solid solutions were measured in the range Ca 9 Sr(PO 4 ) 6 (OH) 2 - CaSr 9 (PO 4 ) 6 (OH) 2 . The investigations show that the discrimination of strontium against calcium is considerably smaller than reported elsewhere (1). Strontium is preferentially built into the c-axis direction of the apatite lattice

  11. Influence of dietary calcium on bone calcium utilization

    International Nuclear Information System (INIS)

    Farmer, M.; Roland, D.A. Sr.; Clark, A.J.

    1986-01-01

    In Experiment 1, 10 microCi 45 Ca/day were administered to 125 hens for 10 days. Hens were then allocated to five treatments with calcium levels ranging from .08 to 3.75% of the diet. In Experiment 2, hens with morning oviposition times were randomly allocated to 11 treatments that were periods of time postoviposition ranging from 6 hr to 24 hr, in 2-hr increments (Experiment 2). At the end of each 2-hr period, eggs from 25 hens were removed from the uterus. The 18-, 20-, and 22-hr treatments were replicated three times. In Experiment 3, hens were fed either ad libitum or feed was withheld the last 5 or 6 hr before oviposition. In Experiment 4, hens were fed 10 microCi of 45 Ca for 15 days to label skeletal calcium. Hens were divided into two groups and fed a .08 or 3.75% calcium diet for 2 days. On the second day, 25 hens fed the 3.75% calcium diet were intubated with 7 g of the same diet containing .5 g calcium at 1700, 2100, 0100, 0500, and 0700 hr. The measurements used were egg weight, shell weight, and 45 Ca content of the egg shell. Results indicated a significant linear or quadratic regression of dietary calcium levels on 45 Ca accumulation in eggshells and eggshell weight (Experiment 1). As the calcium level of the diet increased, eggshell weight increased and 45 Ca recovery decreased. Utilization of skeletal calcium for shell formation ranged from 28 to 96%. In Experiment 2, the rate of shell calcification was not constant throughout the calcification process but varied significantly

  12. Associations between Zinc Deficiency and Metabolic Abnormalities in Patients with Chronic Liver Disease

    Directory of Open Access Journals (Sweden)

    Takashi Himoto

    2018-01-01

    Full Text Available Zinc (Zn is an essential trace element which has favorable antioxidant, anti-inflammatory, and apoptotic effects. The liver mainly plays a crucial role in maintaining systemic Zn homeostasis. Therefore, the occurrence of chronic liver diseases, such as chronic hepatitis, liver cirrhosis, or fatty liver, results in the impairment of Zn metabolism, and subsequently Zn deficiency. Zn deficiency causes plenty of metabolic abnormalities, including insulin resistance, hepatic steatosis and hepatic encephalopathy. Inversely, metabolic abnormalities like hypoalbuminemia in patients with liver cirrhosis often result in Zn deficiency. Recent studies have revealed the putative mechanisms by which Zn deficiency evokes a variety of metabolic abnormalities in chronic liver disease. Zn supplementation has shown beneficial effects on such metabolic abnormalities in experimental models and actual patients with chronic liver disease. This review summarizes the pathogenesis of metabolic abnormalities deriving from Zn deficiency and the favorable effects of Zn administration in patients with chronic liver disease. In addition, we also highlight the interactions between Zn and other trace elements, vitamins, amino acids, or hormones in such patients.

  13. Abnormality diagnosis device for nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Utsunomiya, Kazuhiro; Oyama, Shinmi; Sakaba, Hideo

    1989-02-21

    According to the present invention, abnormality such as abnormal increase of temperature in a nuclear reactor is detected to send a signal to control rod drives, etc. thereby stopping the operation of the nuclear reactor. Receiving/transmission device transmits a signal for conducting normal operation of an abnormality information section, as well as receives an echo signal from the abnormality information section to transmit an abnormal signal to a reactor protection system. The abnormality information section is disposed to fuel assemblies, receives a signal from the receiving/transmission device for conducting the normal operation to transmit a normal echo signal, as well as changes the echo signal when detecting the nuclear reactor abnormality. By the foregoing method, since the abnormality information section is disposed to the fuel assemblies, various effects can be attained such as: (1) there is no response delay from the occurrence of abnormality to emergency counter measure after detection, (2) high burnup degree for fuels can thus be possible to improve the economical property, (3) the abnormality information section can be taken out from the reactor container together with fuel assemablies by an existent take-out mechanism and (4) since wireless transmission and reception are established between the receiving/transmission device and the abnormality information section, cables are not required in the container. (K.M.).

  14. Craniometaphyseal dysplasia with obvious biochemical abnormality and rickets-like features.

    Science.gov (United States)

    Wu, Bo; Jiang, Yan; Wang, Ou; Li, Mei; Xing, Xiao-Ping; Xia, Wei-Bo

    2016-05-01

    Craniometaphyseal dysplasia (CMD) is a rare genetic disorder that is characterized by progressive sclerosis of the craniofacial bones and metaphyseal widening of long bones, and biochemical indexes were mostly normal. To further the understanding of the disease from a biochemical perspective, we reported a CMD case with obviously abnormal biochemical indexes. A 1-year-old boy was referred to our clinic. Biochemical test showed obviously increased alkaline phosphatase (ALP) and parathyroid hormone (PTH), mild hypocalcemia and hypophosphatemia. Moreover, significant elevated receptor activator of nuclear factor kappa-B ligand (RANKL) level, but normal β-C-terminal telopeptide of type I collagen (β-CTX) concentration were revealed. He was initially suspected of rickets, because the radiological examination also showed broadened epiphysis in his long bones. Supplementation with calcium and calcitriol alleviated biochemical abnormality. However, the patient gradually developed osteosclerosis which was inconformity with rickets. Considering that he was also presented with facial paralysis and nasal obstruction symptom, the diagnosis of craniometaphyseal dysplasia was suspected, and then was confirmed by the mutation analysis of ANKH of the proband and his family, which showed a de novo heterozygous mutation (C1124-1126delCCT) on exon 9. Our study revealed that obvious biochemical abnormality and rickets-like features might present as uncommon characteristics in CMD patients, and the calcium and calcitriol supplementation could alleviate biochemical abnormalities. Furthermore, although early osteoclast differentiation factor was excited in CMD patient, activity of osteoclast was still inert. Copyright © 2016. Published by Elsevier B.V.

  15. Hair Mercury Negatively Correlates with Calcium Pump Activity in Human Term Newborns and Their Mothers at Delivery

    OpenAIRE

    Huel, Guy; Sahuquillo, Josiane; Debotte, Ginette; Oury, Jean-François; Takser, Larissa

    2007-01-01

    Background Calcium homeostasis is a known target of several environmental toxicants including lead and mercury. Objective Our goal was to determine the relationship between Hg exposure and erythrocyte Ca pump activity in women at delivery and in their newborns. Methods We determined total Hg as well as Pb concentrations in 81 hair and blood samples obtained at delivery. Basal and calmodulin-stimulated Ca pump activity was measured in red blood cells from cord blood and maternal erythrocyte pl...

  16. Cellular copper homeostasis: current concepts on its interplay with glutathione homeostasis and its implication in physiology and human diseases.

    Science.gov (United States)

    Bhattacharjee, Ashima; Chakraborty, Kaustav; Shukla, Aditya

    2017-10-18

    Copper is a trace element essential for almost all living organisms. But the level of intracellular copper needs to be tightly regulated. Dysregulation of cellular copper homeostasis leading to various diseases demonstrates the importance of this tight regulation. Copper homeostasis is regulated not only within the cell but also within individual intracellular compartments. Inactivation of export machinery results in excess copper being redistributed into various intracellular organelles. Recent evidence suggests the involvement of glutathione in playing an important role in regulating copper entry and intracellular copper homeostasis. Therefore interplay of both homeostases might play an important role within the cell. Similar to copper, glutathione balance is tightly regulated within individual cellular compartments. This review explores the existing literature on the role of glutathione in regulating cellular copper homeostasis. On the one hand, interplay of glutathione and copper homeostasis performs an important role in normal physiological processes, for example neuronal differentiation. On the other hand, perturbation of the interplay might play a key role in the pathogenesis of copper homeostasis disorders.

  17. Abnormal Returns and Contrarian Strategies

    Directory of Open Access Journals (Sweden)

    Ivana Dall'Agnol

    2003-12-01

    Full Text Available We test the hypothesis that strategies which are long on portfolios of looser stocks and short on portfolios of winner stocks generate abnormal returns in Brazil. This type of evidence for the US stock market was interpreted by The Bondt and Thaler (1985 as reflecting systematic evaluation mistakes caused by investors overreaction to news related to the firm performance. We found evidence of contrarian strategies profitability for horizons from 3 months to 3 years in a sample of stock returns from BOVESPA and SOMA from 1986 to 2000. The strategies are more profitable for shorter horizons. Therefore, there was no trace of the momentum effect found by Jagadeesh and Titman (1993 for the same horizons with US data. There are remaing unexplained positive returns for contrarian strategies after accounting for risk, size, and liquidity. We also found that the strategy profitability is reduced after the Real Plan, which suggests that the Brazilian stock market became more efficient after inflation stabilization.

  18. 21 CFR 172.410 - Calcium silicate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely...

  19. A Crash Course in Calcium Channels.

    Science.gov (United States)

    Zamponi, Gerald W

    2017-12-20

    Much progress has been made in understanding the molecular physiology and pharmacology of calcium channels. Recently, there have been tremendous advances in learning about calcium channel structure and function through crystallography and cryo-electron microscopy studies. Here, I will give an overview of our knowledge about calcium channels, and highlight two recent studies that give important insights into calcium channel structure.

  20. Calcium-sensing beyond neurotransmitters

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Han, Weiping

    2009-01-01

    Neurotransmitters, neuropeptides and hormones are released through the regulated exocytosis of SVs (synaptic vesicles) and LDCVs (large dense-core vesicles), a process that is controlled by calcium. Synaptotagmins are a family of type 1 membrane proteins that share a common domain structure. Most....... Also, we discuss potential roles of synaptotagmins in non-traditional endocrine systems....... synaptotagmins are located in brain and endocrine cells, and some of these synaptotagmins bind to phospholipids and calcium at levels that trigger regulated exocytosis of SVs and LDCVs. This led to the proposed synaptotagmin-calcium-sensor paradigm, that is, members of the synaptotagmin family function...... as calcium sensors for the regulated exocytosis of neurotransmitters, neuropeptides and hormones. Here, we provide an overview of the synaptotagmin family, and review the recent mouse genetic studies aimed at understanding the functions of synaptotagmins in neurotransmission and endocrine-hormone secretion...

  1. Calcium phosphates for biomedical applications

    Directory of Open Access Journals (Sweden)

    Maria Canillas

    2017-05-01

    Full Text Available The history of calcium phosphates in the medicine field starts in 1769 when the first evidence of its existence in the bone tissue is discovered. Since then, the interest for calcium phosphates has increased among the scientific community. Their study has been developed in parallel with new advances in materials sciences, medicine or tissue engineering areas. Bone tissue engineering is the field where calcium phosphates have had a great importance. While the first bioceramics are selected according to bioinert, biocompatibility and mechanical properties with the aim to replace bone tissue damaged, calcium phosphates open the way to the bone tissue regeneration challenge. Nowadays, they are present in the majority of commercial products directed to repair or regenerate damaged bone tissue. Finally, in the last few decades, they have been suggested and studied as drug delivering devices and as vehicles of DNA and RNA for the future generation therapies.

  2. Functions of vitamin D / Calcium

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Excitation-contraction coupling,. Cardiac functions. Hormonal secretion. Control of enzymatic reactions. Mitotic division. Maintenance of cell integrity. Ciliary motility. Notes: Calcium is a vital second messenger.

  3. Calcium signals in planetary embryos

    Science.gov (United States)

    Morbidelli, Alessandro

    2018-03-01

    The calcium-isotope composition of planetary bodies in the inner Solar System correlates with the masses of such objects. This finding could have implications for our understanding of how the Solar System formed.

  4. Calcium phosphates for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Canillas, M.; Pena, P.; Aza, A.H. de; Rodriguez, M.A.

    2017-07-01

    The history of calcium phosphates in the medicine field starts in 1769 when the first evidence of its existence in the bone tissue is discovered. Since then, the interest for calcium phosphates has increased among the scientific community. Their study has been developed in parallel with new advances in materials sciences, medicine or tissue engineering areas. Bone tissue engineering is the field where calcium phosphates have had a great importance. While the first bioceramics are selected according to bioinert, biocompatibility and mechanical properties with the aim to replace bone tissue damaged, calcium phosphates open the way to the bone tissue regeneration challenge. Nowadays, they are present in the majority of commercial products directed to repair or regenerate damaged bone tissue. Finally, in the last few decades, they have been suggested and studied as drug delivering devices and as vehicles of DNA and RNA for the future generation therapies. (Author)

  5. Calcium signaling in liver.

    Science.gov (United States)

    Gaspers, Lawrence D; Thomas, Andrew P

    2005-01-01

    In hepatocytes, hormones linked to the formation of the second messenger inositol 1,4,5-trisphosphate (InsP3) evoke transient increases or spikes in cytosolic free calcium ([Ca2+]i), that increase in frequency with the agonist concentration. These oscillatory Ca2+ signals are thought to transmit the information encoded in the extracellular stimulus to down-stream Ca2+-sensitive metabolic processes. We have utilized both confocal and wide field fluorescence microscopy techniques to study the InsP3-dependent signaling pathway at the cellular and subcellular levels in the intact perfused liver. Typically InsP3-dependent [Ca2+]i spikes manifest as Ca2+ waves that propagate throughout the entire cytoplasm and nucleus, and in the intact liver these [Ca2+]i increases are conveyed through gap junctions to encompass entire lobular units. The translobular movement of Ca2+ provides a means to coordinate the function of metabolic zones of the lobule and thus, liver function. In this article, we describe the characteristics of agonist-evoked [Ca2+]i signals in the liver and discuss possible mechanisms to explain the propagation of intercellular Ca2+ waves in the intact organ.

  6. Energy and Redox Homeostasis in Tumor Cells

    Directory of Open Access Journals (Sweden)

    Marcus Fernandes de Oliveira

    2012-01-01

    Full Text Available Cancer cells display abnormal morphology, chromosomes, and metabolism. This review will focus on the metabolism of tumor cells integrating the available data by way of a functional approach. The first part contains a comprehensive introduction to bioenergetics, mitochondria, and the mechanisms of production and degradation of reactive oxygen species. This will be followed by a discussion on the oxidative metabolism of tumor cells including the morphology, biogenesis, and networking of mitochondria. Tumor cells overexpress proteins that favor fission, such as GTPase dynamin-related protein 1 (Drp1. The interplay between proapoptotic members of the Bcl-2 family that promotes Drp 1-dependent mitochondrial fragmentation and fusogenic antiapoptotic proteins such as Opa-1 will be presented. It will be argued that contrary to the widespread belief that in cancer cells, aerobic glycolysis completely replaces oxidative metabolism, a misrepresentation of Warburg’s original results, mitochondria of tumor cells are fully viable and functional. Cancer cells also carry out oxidative metabolism and generally conform to the orthodox model of ATP production maintaining as well an intact electron transport system. Finally, data will be presented indicating that the key to tumor cell survival in an ROS rich environment depends on the overexpression of antioxidant enzymes and high levels of the nonenzymatic antioxidant scavengers.

  7. Mechanoregulation of Wound Healing and Skin Homeostasis

    Directory of Open Access Journals (Sweden)

    Joanna Rosińczuk

    2016-01-01

    Full Text Available Basic and clinical studies on mechanobiology of cells and tissues point to the importance of mechanical forces in the process of skin regeneration and wound healing. These studies result in the development of new therapies that use mechanical force which supports effective healing. A better understanding of mechanobiology will make it possible to develop biomaterials with appropriate physical and chemical properties used to treat poorly healing wounds. In addition, it will make it possible to design devices precisely controlling wound mechanics and to individualize a therapy depending on the type, size, and anatomical location of the wound in specific patients, which will increase the clinical efficiency of the therapy. Linking mechanobiology with the science of biomaterials and nanotechnology will enable in the near future precise interference in abnormal cell signaling responsible for the proliferation, differentiation, cell death, and restoration of the biological balance. The objective of this study is to point to the importance of mechanobiology in regeneration of skin damage and wound healing. The study describes the influence of rigidity of extracellular matrix and special restrictions on cell physiology. The study also defines how and what mechanical changes influence tissue regeneration and wound healing. The influence of mechanical signals in the process of proliferation, differentiation, and skin regeneration is tagged in the study.

  8. Effects of diphosphonate on kidney calcium content and duodenal absorption of 45calcium

    International Nuclear Information System (INIS)

    Goulding, A.; Cameron, V.

    1978-01-01

    In rats the relationships between EHDP-induced changes in serum calcium concentration, kidney calcium content and duodenal transport of 45 calcium were studied. Body weights and kidney weights were similar in all groups. EHDP administration was associated with an increase in serum calcium concentration and kidney calcium content, and a decrease in duodenal 45 calcium transport. In the EHDP-treated rats, there was a significant negative correlation between kidney calcium concentration and duodenal 45 calcium transport but no correlation between either kidney calcium content and serum calcium concentration (r = 0.116) or between serum calcium concentration and duodenal 45 calcium transport (r = 0.02). Further experiments will be needed to determine whether the demonstrated increase in kidney calcium content induced by EHDP administration was the cause of, or was secondary to, inhibition of 1, 25(OH) 2 D 3 synthesis. (orig./AJ) [de

  9. 6′-Hydroxy Justicidin B Triggers a Critical Imbalance in Ca2+ Homeostasis and Mitochondrion-Dependent Cell Death in Human Leukemia K562 Cells

    Directory of Open Access Journals (Sweden)

    Jiaoyang Luo

    2018-06-01

    Full Text Available Justicia procumbens (J. procumbens is a traditional Chinese herbal medicine which was used for the treatment of fever, pain, and cancer. A compound 6′-hydroxy justicidin B (HJB isolated from J. procumbens exhibits promising biological properties. However, the mechanism of action and the in vivo behavior of HJB remain to be elucidated. In this study, we investigated the mechanism of action of HJB on human leukemia K562 cells and its pharmacokinetic properties in rats. The results demonstrated that HJB significantly inhibited the proliferation of K562 cells and promoted apoptosis. Besides, HJB resulted in decreased mitochondrial membrane potential deltaPSIm, increased the level of the calcium homeostasis regulator protein TRPC6 and cytosolic calcium. The activity of caspase-8, caspase-9 and the expression of p53 were significantly increased after treatment with HJB. Additionally, HJB has rapid absorption rate and relative long elimination t1/2, indicating a longer residence time in vivo. The results indicate that HJB inhibited the proliferation of K562 cells and induced apoptosis by affecting the function of mitochondria and calcium homeostasis to activate the p53 signaling pathway. The pharmacokinetic study of HJB suggested it is absorbed well and has moderate metabolism in vivo. These results present HJB as a potential novel alternative to standard human leukemia therapies.

  10. Alpha2delta-1 in SF1+ Neurons of the Ventromedial Hypothalamus Is an Essential Regulator of Glucose and Lipid Homeostasis

    Directory of Open Access Journals (Sweden)

    Jennifer A. Felsted

    2017-12-01

    Full Text Available Summary: The central mechanisms controlling glucose and lipid homeostasis are inadequately understood. We show that α2δ-1 is an essential regulator of glucose and lipid balance, acting in steroidogenic factor-1 (SF1 neurons of the ventromedial hypothalamus (VMH. These effects are body weight independent and involve regulation of SF1+ neuronal activity and sympathetic output to metabolic tissues. Accordingly, mice with α2δ-1 deletion in SF1 neurons exhibit glucose intolerance, altered lipolysis, and decreased cholesterol content in adipose tissue despite normal energy balance regulation. Profound reductions in the firing rate of SF1 neurons, decreased sympathetic output, and elevated circulating levels of serotonin are associated with these alterations. Normal calcium currents but reduced excitatory postsynaptic currents in mutant SF1 neurons implicate α2δ-1 in the promotion of excitatory synaptogenesis separate from its canonical role as a calcium channel subunit. Collectively, these findings identify an essential mechanism that regulates VMH neuronal activity and glycemic and lipid control and may be a target for tackling metabolic disease. : Felsted et al. show a required role of the calcium channel subunit and thrombospondin receptor α2δ-1 in regulating glucose and lipid homeostasis in the ventromedial hypothalamus (VMH. These effects are caused by regulation of SF1+ neuronal activity in the VMH through non-canonical mechanisms and concomitant influences on sympathetic output. Keywords: diabetes, VMH, hypothalamus, glucose, norepinephrine, serotonin, excitability, lipid, SF1

  11. MICU1 Serves as a Molecular Gatekeeper to Prevent In Vivo Mitochondrial Calcium Overload

    Directory of Open Access Journals (Sweden)

    Julia C. Liu

    2016-08-01

    Full Text Available MICU1 is a component of the mitochondrial calcium uniporter, a multiprotein complex that also includes MICU2, MCU, and EMRE. Here, we describe a mouse model of MICU1 deficiency. MICU1−/− mitochondria demonstrate altered calcium uptake, and deletion of MICU1 results in significant, but not complete, perinatal mortality. Similar to afflicted patients, viable MICU1−/− mice manifest marked ataxia and muscle weakness. Early in life, these animals display a range of biochemical abnormalities, including increased resting mitochondrial calcium levels, altered mitochondrial morphology, and reduced ATP. Older MICU1−/− mice show marked, spontaneous improvement coincident with improved mitochondrial calcium handling and an age-dependent reduction in EMRE expression. Remarkably, deleting one allele of EMRE helps normalize calcium uptake while simultaneously rescuing the high perinatal mortality observed in young MICU1−/− mice. Together, these results demonstrate that MICU1 serves as a molecular gatekeeper preventing calcium overload and suggests that modulating the calcium uniporter could have widespread therapeutic benefits.

  12. Research of calcium oxide hydration in calcium nitrate solutions

    Directory of Open Access Journals (Sweden)

    M.A. Oliynyk

    2016-09-01

    Full Text Available Mineral fertilizers are one of the important factors of agriculture intensification and increasing of food products quantity. The volume of fertilizers production and its domestic consumption in Ukraine indicate that nitrogen fertilizer using only comes nearer to the required number of science-based. One of the most widespread artificial fertilizers is the calcium nitrate. Aim: The aim is to study and theoretically substantiate the processes occurring in the preparation of suspensions of calcium hydroxide Са(ОН2 in solution of calcium nitrate Ca(NО32. Materials and Methods: The technical calcium oxide (quicklime DSTU BV.2.7-90-99, solutions of calcium nitrate of 15, 20, 25, 30, 35 and 40% Ca(NО32 concentrations were used in the work. The content of lime in the preparation of a suspension in the solution changed (in terms of calcium oxide CaO from 150 g/dm3 to the maximum possible. Each of these solutions saturated at 40°С in lime to maximum concentration. Suitable for use in these experiments and in the technology of calcium nitrate obtaining are considered the solutions (suspensions that within 12 hours did not lose their mobility (transportability. Results: The experimental results show that increasing of the concentration of calcium nitrate in solution within the range 15...40%, the amount of lime that you can put into the solution without loss of transportability decreases. Further increasing of lime quantity in solutions concentrations causes to its solidifying, loss of mobility (transportability. Calculations showed that in the presence of calcium nitrate the solubility of Са(ОН2 is reduced nearly by order that can lead to the formation of calcium oxide CaO the solid phase Са(ОН2 on the surface, which also can form hydrogen bonds with the components of the solution. As the probability of formation of hydrogen bonds in solutions is high, there is a possibility of formation of clusters.

  13. Clinical usefulness of multidetector-row CT to evaluate coronary artery calcium score in type 2 diabetes

    International Nuclear Information System (INIS)

    Nishioka, Makiko; Sakuma, Toru; Sano, Hironari; Utsunomiya, Kazunori; Agata, Toshihiko; Shimizu, Keisuke; Tajima, Naoko

    2004-01-01

    According to recent studies, multidetector-row CT (MDCT) with a retrospective electrocardiogram (ECG)-gating reconstruction algorithm shows a high correlation with coronary artery calcium score determined using electron-beam CT. Diabetes leads to many macrovascular complications, including coronary artery disease. The aim of this study was to evaluate risk factors for cardiac macroangiopathy in type 2 diabetes using MDCT. An observational cross-sectional study was performed in 90 patients with diabetes mellitus. Coronary calcium data was acquired by MDCT (SOMATOM Volume Zoom, Siemens AG, Medical Solutions, Germany). Physical examinations, laboratory data, glycemic control, and control of other risk factors were analyzed. The coronary artery calcium score increased with age. Multivariant analysis revealed that the coronary calcium score was closely correlated with electrocardiogram evaluation and control of hypertension. Coronary artery calcium score as determined by MDCT can be used as a screening radiological examination for cardiac macroangiopathy in diabetes patients with electrocardiogram abnormality and hypertension. (author)

  14. Calcium Orthophosphate Cements and Concretes

    Directory of Open Access Journals (Sweden)

    Sergey V. Dorozhkin

    2009-03-01

    Full Text Available In early 1980s, researchers discovered self-setting calcium orthophosphate cements, which are a bioactive and biodegradable grafting material in the form of a powder and a liquid. Both phases form after mixing a viscous paste that after being implanted, sets and hardens within the body as either a non-stoichiometric calcium deficient hydroxyapatite (CDHA or brushite, sometimes blended with unreacted particles and other phases. As both CDHA and brushite are remarkably biocompartible and bioresorbable (therefore, in vivo they can be replaced with newly forming bone, calcium orthophosphate cements represent a good correction technique for non-weight-bearing bone fractures or defects and appear to be very promising materials for bone grafting applications. Besides, these cements possess an excellent osteoconductivity, molding capabilities and easy manipulation. Furthermore, reinforced cement formulations are available, which in a certain sense might be described as calcium orthophosphate concretes. The concepts established by calcium orthophosphate cement pioneers in the early 1980s were used as a platform to initiate a new generation of bone substitute materials for commercialization. Since then, advances have been made in the composition, performance and manufacturing; several beneficial formulations have already been introduced as a result. Many other compositions are in experimental stages. In this review, an insight into calcium orthophosphate cements and concretes, as excellent biomaterials suitable for both dental and bone grafting application, has been provided.

  15. Tight junction regulates epidermal calcium ion gradient and differentiation

    International Nuclear Information System (INIS)

    Kurasawa, Masumi; Maeda, Tetsuo; Oba, Ai; Yamamoto, Takuya; Sasaki, Hiroyuki

    2011-01-01

    Research highlights: → We disrupted epidermal tight junction barrier in reconstructed epidermis. → It altered Ca 2+ distribution and consequentially differentiation state as well. → Tight junction should affect epidermal homeostasis by maintaining Ca 2+ gradient. -- Abstract: It is well known that calcium ions (Ca 2+ ) induce keratinocyte differentiation. Ca 2+ distributes to form a vertical gradient that peaks at the stratum granulosum. It is thought that the stratum corneum (SC) forms the Ca 2+ gradient since it is considered the only permeability barrier in the skin. However, the epidermal tight junction (TJ) in the granulosum has recently been suggested to restrict molecular movement to assist the SC as a secondary barrier. The objective of this study was to clarify the contribution of the TJ to Ca 2+ gradient and epidermal differentiation in reconstructed human epidermis. When the epidermal TJ barrier was disrupted by sodium caprate treatment, Ca 2+ flux increased and the gradient changed in ion-capture cytochemistry images. Alterations of ultrastructures and proliferation/differentiation markers revealed that both hyperproliferation and precocious differentiation occurred regionally in the epidermis. These results suggest that the TJ plays a crucial role in maintaining epidermal homeostasis by controlling the Ca 2+ gradient.

  16. 21 CFR 184.1207 - Calcium lactate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium lactate. 184.1207 Section 184.1207 Food and... Substances Affirmed as GRAS § 184.1207 Calcium lactate. (a) Calcium lactate (C6H10CaO6.xH2O, where x is any... calcium carbonate or calcium hydroxide. (b) The ingredient meets the specifications of the Food Chemicals...

  17. Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity.

    Science.gov (United States)

    Ozcan, Lale; Wong, Catherine C L; Li, Gang; Xu, Tao; Pajvani, Utpal; Park, Sung Kyu Robin; Wronska, Anetta; Chen, Bi-Xing; Marks, Andrew R; Fukamizu, Akiyoshi; Backs, Johannes; Singer, Harold A; Yates, John R; Accili, Domenico; Tabas, Ira

    2012-05-02

    Hepatic glucose production (HGP) is crucial for glucose homeostasis, but the underlying mechanisms have not been fully elucidated. Here, we show that a calcium-sensing enzyme, CaMKII, is activated in a calcium- and IP3R-dependent manner by cAMP and glucagon in primary hepatocytes and by glucagon and fasting in vivo. Genetic deficiency or inhibition of CaMKII blocks nuclear translocation of FoxO1 by affecting its phosphorylation, impairs fasting- and glucagon/cAMP-induced glycogenolysis and gluconeogenesis, and lowers blood glucose levels, while constitutively active CaMKII has the opposite effects. Importantly, the suppressive effect of CaMKII deficiency on glucose metabolism is abrogated by transduction with constitutively nuclear FoxO1, indicating that the effect of CaMKII deficiency requires nuclear exclusion of FoxO1. This same pathway is also involved in excessive HGP in the setting of obesity. These results reveal a calcium-mediated signaling pathway involved in FoxO1 nuclear localization and hepatic glucose homeostasis. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Intermittent Hypoxia Impairs Glucose Homeostasis in C57BL6/J Mice: Partial Improvement with Cessation of the Exposure

    Science.gov (United States)

    Polak, Jan; Shimoda, Larissa A.; Drager, Luciano F.; Undem, Clark; McHugh, Holly; Polotsky, Vsevolod Y.; Punjabi, Naresh M.

    2013-01-01

    Objectives: Obstructive sleep apnea is associated with insulin resistance, glucose intolerance, and type 2 diabetes mellitus. Although several studies have suggested that intermittent hypoxia in obstructive sleep apnea may induce abnormalities in glucose homeostasis, it remains to be determined whether these abnormalities improve after discontinuation of the exposure. The objective of this study was to delineate the effects of intermittent hypoxia on glucose homeostasis, beta cell function, and liver glucose metabolism and to investigate whether the impairments improve after the hypoxic exposure is discontinued. Interventions: C57BL6/J mice were exposed to 14 days of intermittent hypoxia, 14 days of intermittent air, or 7 days of intermittent hypoxia followed by 7 days of intermittent air (recovery paradigm). Glucose and insulin tolerance tests were performed to estimate whole-body insulin sensitivity and calculate measures of beta cell function. Oxidative stress in pancreatic tissue and glucose output from isolated hepatocytes were also assessed. Results: Intermittent hypoxia increased fasting glucose levels and worsened glucose tolerance by 67% and 27%, respectively. Furthermore, intermittent hypoxia exposure was associated with impairments in insulin sensitivity and beta cell function, an increase in liver glycogen, higher hepatocyte glucose output, and an increase in oxidative stress in the pancreas. While fasting glucose levels and hepatic glucose output normalized after discontinuation of the hypoxic exposure, glucose intolerance, insulin resistance, and impairments in beta cell function persisted. Conclusions: Intermittent hypoxia induces insulin resistance, impairs beta cell function, enhances hepatocyte glucose output, and increases oxidative stress in the pancreas. Cessation of the hypoxic exposure does not fully reverse the observed changes in glucose metabolism. Citation: Polak J; Shimoda LA; Drager LF; Undem C; McHugh H; Polotsky VY; Punjabi NM

  19. Inhibition of Endothelial p53 Improves Metabolic Abnormalities Related to Dietary Obesity

    Directory of Open Access Journals (Sweden)

    Masataka Yokoyama

    2014-06-01

    Full Text Available Accumulating evidence has suggested a role for p53 activation in various age-associated conditions. Here, we identified a crucial role of endothelial p53 activation in the regulation of glucose homeostasis. Endothelial expression of p53 was markedly upregulated when mice were fed a high-calorie diet. Disruption of endothelial p53 activation improved dietary inactivation of endothelial nitric oxide synthase that upregulated the expression of peroxisome proliferator-activated receptor-γ coactivator-1α in skeletal muscle, thereby increasing mitochondrial biogenesis and oxygen consumption. Mice with endothelial cell-specific p53 deficiency fed a high-calorie diet showed improvement of insulin sensitivity and less fat accumulation, compared with control littermates. Conversely, upregulation of endothelial p53 caused metabolic abnormalities. These results indicate that inhibition of endothelial p53 could be a novel therapeutic target to block the vicious cycle of cardiovascular and metabolic abnormalities associated with obesity.

  20. Why Calcium? How Calcium Became the Best Communicator*

    Science.gov (United States)

    Carafoli, Ernesto; Krebs, Joachim

    2016-01-01

    Calcium carries messages to virtually all important functions of cells. Although it was already active in unicellular organisms, its role became universally important after the transition to multicellular life. In this Minireview, we explore how calcium ended up in this privileged position. Most likely its unique coordination chemistry was a decisive factor as it makes its binding by complex molecules particularly easy even in the presence of large excesses of other cations, e.g. magnesium. Its free concentration within cells can thus be maintained at the very low levels demanded by the signaling function. A large cadre of proteins has evolved to bind or transport calcium. They all contribute to buffer it within cells, but a number of them also decode its message for the benefit of the target. The most important of these “calcium sensors” are the EF-hand proteins. Calcium is an ambivalent messenger. Although essential to the correct functioning of cell processes, if not carefully controlled spatially and temporally within cells, it generates variously severe cell dysfunctions, and even cell death. PMID:27462077

  1. Why Calcium? How Calcium Became the Best Communicator.

    Science.gov (United States)

    Carafoli, Ernesto; Krebs, Joachim

    2016-09-30

    Calcium carries messages to virtually all important functions of cells. Although it was already active in unicellular organisms, its role became universally important after the transition to multicellular life. In this Minireview, we explore how calcium ended up in this privileged position. Most likely its unique coordination chemistry was a decisive factor as it makes its binding by complex molecules particularly easy even in the presence of large excesses of other cations, e.g. magnesium. Its free concentration within cells can thus be maintained at the very low levels demanded by the signaling function. A large cadre of proteins has evolved to bind or transport calcium. They all contribute to buffer it within cells, but a number of them also decode its message for the benefit of the target. The most important of these "calcium sensors" are the EF-hand proteins. Calcium is an ambivalent messenger. Although essential to the correct functioning of cell processes, if not carefully controlled spatially and temporally within cells, it generates variously severe cell dysfunctions, and even cell death. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Testosterone increases urinary calcium excretion and inhibits expression of renal calcium transport proteins.

    NARCIS (Netherlands)

    Hsu, Y.J.; Dimke, H.; Schoeber, J.P.H.; Hsu, S.C.; Lin, S.H.; Chu, P.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2010-01-01

    Although gender differences in the renal handling of calcium have been reported, the overall contribution of androgens to these differences remains uncertain. We determined here whether testosterone affects active renal calcium reabsorption by regulating calcium transport proteins. Male mice had

  3. Calcium: the molecular basis of calcium action in biology and medicine

    National Research Council Canada - National Science Library

    Pochet, Roland; Donato, Rosario

    2000-01-01

    ... of Calcium Calcium Signalling in Excitable Cells Ca2+ Release in Muscle Cells by N. Macrez and J. Mironneau Calcium Signalling in Neurons Exemplified by Rat Sympathetic Ganglion Cells by S.J. M...

  4. Lithium prevents early cytosolic calcium increase and secondary injurious calcium overload in glycolytically inhibited endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Bosche, Bert, E-mail: bert.bosche@uk-essen.de [Department of Neurology, University of Duisburg-Essen (Germany); Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Schäfer, Matthias, E-mail: matthias.schaefer@sanofi.com [Institute of Physiology, Justus-Liebig-University Giessen (Germany); Graf, Rudolf, E-mail: rudolf.graf@nf.mpg.de [Max Planck Institute for Neurological Research with Klaus-Joachim-Zülch Laboratories of the Max Planck Society and the Medical Faculty of the University of Cologne (Germany); Härtel, Frauke V., E-mail: frauke.haertel@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany); Schäfer, Ute, E-mail: ute.schaefer@medunigraz.at [Research Unit for Experimental Neurotraumatology, Medical University of Graz (Austria); Noll, Thomas, E-mail: thomas.noll@tu-dresden.de [Institute of Physiology, Medical Faculty Carl Gustav Carus, Technical University Dresden (Germany)

    2013-05-03

    Highlights: •We investigate free calcium as a central signalling element in endothelial cells. •Inhibition of glycolysis with 2-deoxy-D-glucose reduces cellular ATP. •This manoeuvre leads to a biphasic increase and overload of free calcium. •Pre-treatment with lithium for 24 h abolishes both phases of the calcium increase. •This provides a new strategy to protect endothelial calcium homeostasis and barrier function. -- Abstract: Cytosolic free calcium concentration ([Ca{sup 2+}]{sub i}) is a central signalling element for the maintenance of endothelial barrier function. Under physiological conditions, it is controlled within narrow limits. Metabolic inhibition during ischemia/reperfusion, however, induces [Ca{sup 2+}]{sub i} overload, which results in barrier failure. In a model of cultured porcine aortic endothelial monolayers (EC), we addressed the question of whether [Ca{sup 2+}]{sub i} overload can be prevented by lithium treatment. [Ca{sup 2+}]{sub i} and ATP were analysed using Fura-2 and HPLC, respectively. The combined inhibition of glycolytic and mitochondrial ATP synthesis by 2-desoxy-D-glucose (5 mM; 2-DG) plus sodium cyanide (5 mM; NaCN) caused a significant decrease in cellular ATP content (14 ± 1 nmol/mg protein vs. 18 ± 1 nmol/mg protein in the control, n = 6 culture dishes, P < 0.05), an increase in [Ca{sup 2+}]{sub i} (278 ± 24 nM vs. 71 ± 2 nM in the control, n = 60 cells, P < 0.05), and the formation of gaps between adjacent EC. These observations indicate that there is impaired barrier function at an early state of metabolic inhibition. Glycolytic inhibition alone by 10 mM 2-DG led to a similar decrease in ATP content (14 ± 2 nmol/mg vs. 18 ± 1 nmol/mg in the control, P < 0.05) with a delay of 5 min. The [Ca{sup 2+}]{sub i} response of EC was biphasic with a peak after 1 min (183 ± 6 nM vs. 71 ± 1 nM, n = 60 cells, P < 0.05) followed by a sustained increase in [Ca{sup 2+}]{sub i}. A 24-h pre-treatment with 10 mM of lithium

  5. Hemostatic abnormalities in liver cirrhosis

    Directory of Open Access Journals (Sweden)

    Kendal YALÇIN

    2009-06-01

    Full Text Available In this study, 44 patients with liver cirrhosis were investigated for hemostatic parameters. Patients with spontaneous bacterial peritonitis, hepatocellular carcinoma, hepatorenal syndrome and cholestatic liver diseases were excluded. Patients were classified by Child-Pugh criterion and according to this 4 patients were in Class A, 20 in Class B and 20 in C. Regarding to these results, it was aimed to investigate the haematological disturbances in liver cirrhotic patients.In the result there was a correlation between activated partial thromboplastin time, serum iron, ferritin, transferrin, haptoglobin and Child-Pugh classification. Besides there was no correlation between prothrombin time, factor 8 and 9, protein C and S, anti-thrombin 3, fibrinogen, fibrin degradation products, serum iron binding capacity, hemoglobin, leukocyte, mean corpuscular volume and Child-Pugh classification.There were significant difference, in terms of AST, ferritin, haptoglobulin, sex and presence of ascites between groups (p0.05. In the summary, we have found correlation between hemostatic abnormalities and disease activity and clinical prognosis in patients with liver cirrhosis which is important in the management of these patients. This is also important for identification of liver transplant candidiates earlier.

  6. [Cognitive abnormalities and cannabis use].

    Science.gov (United States)

    Solowij, Nadia; Pesa, Nicole

    2010-05-01

    Evidence that cannabis use impairs cognitive function in humans has been accumulating in recent decades. The purpose of this overview is to update knowledge in this area with new findings from the most recent literature. Literature searches were conducted using the Web of Science database up to February 2010. The terms searched were: "cannabi*" or "marijuana", and "cogniti*" or "memory" or "attention" or "executive function", and human studies were reviewed preferentially over the animal literature. Cannabis use impairs memory, attention, inhibitory control, executive functions and decision making, both during the period of acute intoxication and beyond, persisting for hours, days, weeks or more after the last use of cannabis. Pharmacological challenge studies in humans are elucidating the nature and neural substrates of cognitive changes associated with various cannabinoids. Long-term or heavy cannabis use appears to result in longer-lasting cognitive abnormalities and possibly structural brain alterations. Greater adverse cognitive effects are associated with cannabis use commencing in early adolescence. The endogenous cannabinoid system is involved in regulatory neural mechanisms that modulate processes underlying a range of cognitive functions that are impaired by cannabis. Deficits in human users most likely therefore reflect neuroadaptations and altered functioning of the endogenous cannabinoid system.

  7. Report on abnormal climate in 2011

    International Nuclear Information System (INIS)

    2011-12-01

    This paper reports of impact on abnormal climate in 2011. It has Introduction with purpose and background of publish and summary of this report. The cause and current state on abnormal climate of the world and Korea in 2011, Measurement and impact against abnormal climate in 2011 to agriculture, land and maritime, industry and energy, prevention of disasters, environment and health, assessment and advice on the policy. It lists the appendix about occurrence and damage on abnormal climate of the world and Korea in 2011 and media report data.

  8. Evaluation of Chromosomal Abnormalities and Common ...

    African Journals Online (AJOL)

    Evaluation of Chromosomal Abnormalities and Common Trombophilic Mutations in Cases with Recurrent Miscarriage. Ahmet Karatas, Recep Eroz, Mustafa Albayrak, Tulay Ozlu, Bulent Cakmak, Fatih Keskin ...

  9. MicroRNAs at the epicenter of intestinal homeostasis.

    Science.gov (United States)

    Belcheva, Antoaneta

    2017-03-01

    Maintaining intestinal homeostasis is a key prerequisite for a healthy gut. Recent evidence points out that microRNAs (miRNAs) act at the epicenter of the signaling networks regulating this process. The fine balance in the interaction between gut microbiota, intestinal epithelial cells, and the host immune system is achieved by constant transmission of signals and their precise regulation. Gut microbes extensively communicate with the host immune system and modulate host gene expression. On the other hand, sensing of gut microbiota by the immune cells provides appropriate tolerant responses that facilitate the symbiotic relationships. While the role of many regulatory proteins, receptors and their signaling pathways in the regulation of the intestinal homeostasis is well documented, the involvement of non-coding RNA molecules in this process has just emerged. This review discusses the most recent knowledge about the contribution of miRNAs in the regulation of the intestinal homeostasis. © 2017 WILEY Periodicals, Inc.

  10. Breast Milk Hormones and Regulation of Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Francesco Savino

    2011-01-01

    Full Text Available Growing evidence suggests that a complex relationship exists between the central nervous system and peripheral organs involved in energy homeostasis. It consists in the balance between food intake and energy expenditure and includes the regulation of nutrient levels in storage organs, as well as in blood, in particular blood glucose. Therefore, food intake, energy expenditure, and glucose homeostasis are strictly connected to each other. Several hormones, such as leptin, adiponectin, resistin, and ghrelin, are involved in this complex regulation. These hormones play a role in the regulation of glucose metabolism and are involved in the development of obesity, diabetes, and metabolic syndrome. Recently, their presence in breast milk has been detected, suggesting that they may be involved in the regulation of growth in early infancy and could influence the programming of energy balance later in life. This paper focuses on hormones present in breast milk and their role in glucose homeostasis.

  11. Phospholipid Homeostasis Regulates Dendrite Morphogenesis in Drosophila Sensory Neurons

    Directory of Open Access Journals (Sweden)

    Shan Meltzer

    2017-10-01

    Full Text Available Disruptions in lipid homeostasis have been observed in many neurodevelopmental disorders that are associated with dendrite morphogenesis defects. However, the molecular mechanisms of how lipid homeostasis affects dendrite morphogenesis are unclear. We find that easily shocked (eas, which encodes a kinase with a critical role in phospholipid phosphatidylethanolamine (PE synthesis, and two other enzymes in this synthesis pathway are required cell autonomously in sensory neurons for dendrite growth and stability. Furthermore, we show that the level of Sterol Regulatory Element-Binding Protein (SREBP activity is important for dendrite development. SREBP activity increases in eas mutants, and decreasing the level of SREBP and its transcriptional targets in eas mutants largely suppresses the dendrite growth defects. Furthermore, reducing Ca2+ influx in neurons of eas mutants ameliorates the dendrite morphogenesis defects. Our study uncovers a role for EAS kinase and reveals the in vivo function of phospholipid homeostasis in dendrite morphogenesis.

  12. Lead in calcium supplements (abstract)

    International Nuclear Information System (INIS)

    Rehman, S.; Khalid, N.

    2011-01-01

    Lead present in calcium supplements is of grave concern as some lead levels have been measured up to the extent of regulatory limit set by the United States. Calcium supplements inevitably get contaminated with lead as both are naturally occurring elements. Therefore, it is imperative to indicate its level in these supplements in order to create awareness among consumers. In this study, a sophisticated analytical technique, atomic absorption spectrometry was used to analyze Pb contents in 27 commonly consumed Ca supplements manufactured by different national and multinational companies. The daily intake of lead through these supplements was calculated. Only 10% of the calcium supplements analyzed met the criteria of acceptable Pb levels (1.5 mu g/daily dose) in supplements/consumer products set by the United States. It was also found that Pb intake was highest in chelated calcium supplements 28.5 mu g/daily dose, whereas lowest 0.47 mu g/daily dose through calcium supplements with vitamin D formulation. In order to validate our results from the study conducted, IAEA-certified reference material (animal bone, H-5) was analyzed for its Pb levels. The levels of Pb determined were quite in good agreement with the certified values. (author)

  13. Isomorfic Substitutions of Calcium by Strontium in Calcium Hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Hilbert

    1962-12-15

    By means of homogeneous precipitation it has been possible to synthesize crystalline solid solutions of calcium strontium hydroxyapatite from aqueous solutions. The lattice constants for the solid solutions were measured in the range Ca{sub 9}Sr(PO{sub 4}){sub 6}(OH){sub 2} - CaSr{sub 9}(PO{sub 4}){sub 6}(OH){sub 2}. The investigations show that the discrimination of strontium against calcium is considerably smaller than reported elsewhere (1). Strontium is preferentially built into the c-axis direction of the apatite lattice.

  14. Neurohypophyseal hormones: novel actors of striated muscle development and homeostasis

    Directory of Open Access Journals (Sweden)

    Alessandra Costa

    2014-09-01

    Full Text Available Since the 1980's, novel functional roles of the neurohypophyseal hormones vasopressin and oxytocin have emerged. Several studies have investigated the effects of these two neurohormones on striated muscle tissues, both in vitro and in vivo. The effects of vasopressin on skeletal myogenic cells, developing muscle and muscle homeostasis have been documented. Oxytocin appears to have a greater influence on cardiomyocite differentiation and heart homeostasis. This review summarizes the studies on these novel roles of the two neurohypophyseal hormones, and open the possibility of new therapeutic approaches for diseases affecting striated muscle.

  15. Molecular aspects of bacterial pH sensing and homeostasis

    Science.gov (United States)

    Krulwich, Terry A.; Sachs, George; Padan, Etana

    2011-01-01

    Diverse mechanisms for pH-sensing and cytoplasmic pH homeostasis enable most bacteria to tolerate or grow at external pH values that are outside the cytoplasmic pH range they must maintain for growth. The most extreme cases are exemplified by the extremophiles that inhabit environments whose pH is below 3 or above 11. Here we describe how recent insights into the structure and function of key molecules and their regulators reveal novel strategies of bacterial pH-homeostasis. These insights may help us better target certain pathogens and better harness the capacities of environmental bacteria. PMID:21464825

  16. Upper intestinal lipids regulate energy and glucose homeostasis.

    Science.gov (United States)

    Cheung, Grace W C; Kokorovic, Andrea; Lam, Tony K T

    2009-09-01

    Upon the entry of nutrients into the small intestine, nutrient sensing mechanisms are activated to allow the body to adapt appropriately to the incoming nutrients. To date, mounting evidence points to the existence of an upper intestinal lipid-induced gut-brain neuronal axis to regulate energy homeostasis. Moreover, a recent discovery has also revealed an upper intestinal lipid-induced gut-brain-liver neuronal axis involved in the regulation of glucose homeostasis. In this mini-review, we will focus on the mechanisms underlying the activation of these respective neuronal axes by upper intestinal lipids.

  17. PGC-1α accelerates cytosolic Ca2+ clearance without disturbing Ca2+ homeostasis in cardiac myocytes

    International Nuclear Information System (INIS)

    Chen, Min; Wang, Yanru; Qu, Aijuan

    2010-01-01

    Energy metabolism and Ca 2+ handling serve critical roles in cardiac physiology and pathophysiology. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is a multi-functional coactivator that is involved in the regulation of cardiac mitochondrial functional capacity and cellular energy metabolism. However, the regulation of PGC-1α in cardiac Ca 2+ signaling has not been fully elucidated. To address this issue, we combined confocal line-scan imaging with off-line imaging processing to characterize calcium signaling in cultured adult rat ventricular myocytes expressing PGC-1α via adenoviral transduction. Our data shows that overexpressing PGC-1α improved myocyte contractility without increasing the amplitude of Ca 2+ transients, suggesting that myofilament sensitivity to Ca 2+ increased. Interestingly, the decay kinetics of global Ca 2+ transients and Ca 2+ waves accelerated in PGC-1α-expressing cells, but the decay rate of caffeine-elicited Ca 2+ transients showed no significant change. This suggests that sarcoplasmic reticulum (SR) Ca 2+ -ATPase (SERCA2a), but not Na + /Ca 2+ exchange (NCX) contribute to PGC-1α-induced cytosolic Ca 2+ clearance. Furthermore, PGC-1α induced the expression of SERCA2a in cultured cardiac myocytes. Importantly, overexpressing PGC-1α did not disturb cardiac Ca 2+ homeostasis, because SR Ca 2+ load and the propensity for Ca 2+ waves remained unchanged. These data suggest that PGC-1α can ameliorate cardiac Ca 2+ cycling and improve cardiac work output in response to physiological stress. Unraveling the PGC-1α-calcium handing pathway sheds new light on the role of PGC-1α in the therapy of cardiac diseases.

  18. Letrozole induced low estrogen levels affected the expressions of duodenal and renal calcium-processing gene in laying hens.

    Science.gov (United States)

    Li, Qiao; Zhao, Xingkai; Wang, Shujie; Zhou, Zhenlei

    2018-01-01

    Estrogen regulates the calcium homeostasis in hens, but the mechanisms involved are still unclear fully. In this study, we investigated whether letrozole (LZ) induced low estrogen levels affected the calcium absorption and transport in layers. In the duodenum, we observed a significant decrease of mRNA expressions of Calbindin-28k (CaBP-28k) and plasma membrane Ca 2+ -ATPase (PMCA 1b) while CaBP-28k protein expression was declined in birds with LZ treatment, and the mRNA levels of duodenal transient receptor potential vanilloid 6 (TRPV6) and Na + /Ca 2+ exchanger 1 (NCX1) were not affected. Interestingly, we observed the different changes in the kidney. The renal mRNA expressions of TRPV6 and NCX1 were unregulated while the PMCA1b was down-regulated in low estrogen layers, however, the CaBP-28k gene and protein expressions were no changed in the kidney. Furthermore, it showed that the duodenal estradiol receptor 2 (ESR2) transcripts rather than parathyroid hormone 1 receptor (PTH1R) and calcitonin receptor (CALCR) played key roles to down-regulate calcium transport in LZ-treated birds. In conclusion, CaBP-28k, PMCA 1b and ESR2 genes in the duodenum may be primary targets for estrogen regulation in order to control calcium homeostasis in hens. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Specific association of growth-associated protein 43 with calcium release units in skeletal muscles of lower vertebrates

    Directory of Open Access Journals (Sweden)

    G.A. Caprara

    2014-10-01

    Full Text Available Growth-associated protein 43 (GAP43, is a strictly conserved protein among vertebrates implicated in neuronal development and neurite branching. Since GAP43 structure contains a calmodulin-binding domain, this protein is able to bind calmodulin and gather it nearby membrane network, thus regulating cytosolic calcium and consequently calcium-dependent intracellular events. Even if for many years GAP43 has been considered a neuronal-specific protein, evidence from different laboratories described its presence in myoblasts, myotubes and adult skeletal muscle fibers. Data from our laboratory showed that GAP43 is localized between calcium release units (CRUs and mitochondria in mammalian skeletal muscle suggesting that, also in skeletal muscle, this protein can be a key player in calcium/calmodulin homeostasis. However, the previous studies could not clearly distinguish between a mitochondrion- or a triad-related positioning of GAP43. To solve this question, the expression and localization of GAP43 was studied in skeletal muscle of Xenopus and Zebrafish known to have triads located at the level of the Z-lines and mitochondria not closely associated with them. Western blotting and immunostaining experiments revealed the expression of GAP43 also in skeletal muscle of lower vertebrates (like amphibians and fishes, and that the protein is localized closely to the triad junction. Once more, these results and GAP43 structural features, support an involvement of the protein in the dynamic intracellular Ca2+ homeostasis, a common conserved role among the different species.

  20. Human cartilaginous endplate degeneration is induced by calcium and the extracellular calcium-sensing receptor in the intervertebral disc

    Directory of Open Access Journals (Sweden)

    MP Grant

    2016-07-01

    Full Text Available The cartilaginous endplates (CEPs are thin layers of hyaline cartilage found adjacent to intervertebral discs (IVDs. In addition to providing structural support, CEPs regulate nutrient and metabolic exchange in the disc. In IVD pathogenesis, CEP undergoes degeneration and calcification, compromising nutrient availability and disc cell metabolism. The mechanism(s underlying the biochemical changes of CEP in disc degeneration are currently unknown. Since calcification is often observed in later stages of IVD degeneration, we hypothesised that elevations in free calcium (Ca2+ impair CEP homeostasis. Indeed, our results demonstrated that the Ca2+ content was consistently higher in human CEP tissue with grade of disc degeneration. Increasing the levels of Ca2+ resulted in decreases in the secretion and accumulation of collagens type I, II and proteoglycan in cultured human CEP cells. Ca2+ exerted its effects on CEP matrix protein synthesis through activation of the extracellular calcium-sensing receptor (CaSR; however, aggrecan content was also affected independent of CaSR activation as increases in Ca2+ directly enhanced the activity of aggrecanases. Finally, supplementing Ca2+ in our IVD organ cultures was sufficient to induce degeneration and increase the mineralisation of CEP, and decrease the diffusion of glucose into the disc. Thus, any attempt to induce anabolic repair of the disc without addressing Ca2+ may be impaired, as the increased metabolic demand of IVD cells would be compromised by decreases in the permeability of the CEP.